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Water does not resist. Water flows. When you plunge your hand into it, all you feel is a caress. 
Water is not a solid wall; it will not stop you. But water always goes where it wants to go, and 
nothing, in the end, can stand against it. Water is patient. Dripping water wears away a stone. 
Remember that my child. Remember you are half water. If you can't go through an obstacle, 
go around it. Water does. 

M. Atwood, The Penelopiad 
  



 

iv 

 



 

 

Abstract 

Droughts are a complex and multidimensional phenomenon described in simple terms as 
sustained periods of water deficit compared to normal conditions. While global in nature, their 
most severe consequences are observed in arid or semi-arid regions, such as the Iberian Peninsula. 
However, these hydrological extremes are not solely driven by natural processes. Human 
activities, including dam construction, groundwater abstractions, and irrigation practices, have 
significantly altered the natural water flow, leading to the current era being labeled the 
Anthropocene. This highlights the critical importance of water resources management in regions 
already facing variable and limited water availability. Consequently, there is a growing need for 
methodologies that accurately represent the hydrological response of basins in coupled natural-
human systems, especially during low flow periods, to effectively manage water resources. 

Modeling is an adequate tool used in water management to address the challenges of managing 
scarce water resources and mitigating the impacts of climate change on the water cycle. In this 
research, various approaches are applied to improve hydrological simulations using the physically 
based and spatially distributed hydrometeorological platform SASER (SAFRAN-SURFEX-
Eaudyssée-Rapid). These approaches aim to enhance the representation of hydrological 
processes, particularly for low flows, and incorporate human water management considerations. 

This document presents two interrelated works. First, improvements have been implemented in 
the SASER model in order to improve its performance. Second, a dam model has been 
implemented, which is forced by both observations and the SASER model to study the impacts 
of dams in droughts. This work has been implemented in an area encompassing the Pyrenean 
domain, including the Ebro basin, basins flowing to the Bay of Biscay, the Catalan and some 
Languedocian basins, and the Adour-Garonne basins, but these methodologies can be applied 
anywhere.  

Adequate input-forcing data with appropriate spatial and temporal resolution are essential for 
obtaining accurate and reliable results from Land Surface Models (LSMs). To this end, a novel 
linear correction method in precipitation forcing that leverages regional climate model (RCM) 
data was introduced. By utilizing a weekly correction window, the method better captures the 
temporal variability and patterns in precipitation, resulting in a more realistic portrayal of 
precipitation events in statistical terms. The impact on simulated runoff aligns with expectations, 
while changes in drainage and evapotranspiration are influenced by various factors, including 
climate regime and response in wet climates. 

Additionally, the default SASER model exhibited a negative bias in low flows, which is 
problematic in drought studies. The cause of this bias in the low flows is the lack of a groundwater 
scheme in the SASER model. The inclusion of a conceptual reservoir scheme to regulate drainage 
improved streamflow simulation, as evidenced by positive values in performance metrics. The 
implementation of the reservoir scheme was straightforward and effectively enhanced the 
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representation of low flows without compromising high flows. Moreover, a regionalization 
approach was implemented, allowing the integration of the conceptual reservoir as an external 
module in SURFEX. This approach facilitated the establishment of parameter relationships with 
climate and physiographic variables using a genetic algorithm, enabling the consideration of 
within-catchment variability across the study area. While the reservoir lacks a physical basis, it 
successfully links the new parameters with physical variables, striking a favorable balance 
between distributed modeling and physical representation. Furthermore, the regionalization 
approach extends the applicability of the reservoir beyond natural systems, encompassing both 
natural and human-influenced basins. 

To incorporate human water management in the study, the area irrigated by the Canal de Aragón 
y Cataluña was chosen as a case study to apply a prototype dam module. This has been used in 
combination with the new SURFEX irrigation scheme, which allows us to estimate actual 
demands. This approach combines a reservoir operation model and the SURFEX irrigation 
scheme, accurately capturing drought dynamics. The new module effectively simulates storage 
and outflows, demonstrating good agreement with reference data. Furthermore, SURFEX's new 
irrigation scheme captures interannual water demand variability, leading to an improved 
representation of the system, allowing us to go further than the usual “climatological” demand 
tables used in such studies. The study reveals that human influences exacerbate hydrological 
drought but alleviate agronomical drought. Hydrological drought characteristics lengthen, and the 
timing of peak hydrological drought events shifts under human influences. Irrigation impacts both 
hydrological and agronomical droughts, emphasizing the need to consider these factors in drought 
management strategies. These findings enhance our understanding of the complex interactions 
between human activities, water resources, and drought dynamics. 

In conclusion, this research significantly advances the representation of hydrological processes in 
a LSM-based model in a semi-arid region, sensitive to droughts, through the incorporation of 
various approaches and the development of a module to integrate the human factor. The 
improvements achieved in precipitation representation and hydrological modeling provide 
valuable insights into the complex dynamics of hydrological response and drought, encompassing 
both natural and anthropogenic influences. This work is a first step towards the integration of 
human influences, such as irrigation and reservoir operation, into the SASER platform, opening 
up new possibilities for studying drought dynamics and developing improved strategies for 
drought assessment and management in coupled natural-human systems.   
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Resumen 

 
Las sequías son un fenómeno complejo y multidimensional descrito en términos sencillos como 
periodos sostenidos de déficit hídrico en comparación con las condiciones normales. Aunque de 
carácter global, sus consecuencias más graves se observan en regiones áridas o semiáridas, como 
la Península Ibérica. Sin embargo, estos extremos hidrológicos no se deben únicamente a procesos 
naturales. Las actividades humanas, como la construcción de presas, las extracciones de aguas 
subterráneas y las prácticas de regadío, han alterado significativamente el flujo natural del agua, 
lo que ha llevado a la era actual a denominarse Antropoceno. Esto pone de relieve la importancia 
crítica de la gestión de los recursos hídricos en regiones que ya se enfrentan a una disponibilidad 
de agua variable y limitada. En consecuencia, existe una creciente necesidad de metodologías que 
representen con precisión la respuesta hidrológica de las cuencas en sistemas naturales-humanos 
acoplados, especialmente durante los periodos de caudales bajos, para gestionar eficazmente los 
recursos hídricos. 

La modelización es una herramienta adecuada utilizada en la gestión del agua para afrontar los 
retos de gestionar unos recursos hídricos escasos y mitigar los impactos del cambio climático en 
el ciclo del agua. En esta investigación se aplican varios enfoques para mejorar las simulaciones 
hidrológicas utilizando la plataforma hidrometeorológica SASER (SAFRAN-SURFEX-
Eaudyssée-Rapid), de base física y distribuida espacialmente. Estos enfoques tienen por objeto 
mejorar la representación de los procesos hidrológicos, en particular para los caudales bajos, e 
incorporar consideraciones relativas a la gestión humana del agua. 

Este documento presenta dos trabajos interrelacionados. En primer lugar, se han introducido 
mejoras en el modelo SASER para mejorar su comportamiento. En segundo lugar, se ha 
implementado un modelo de presas, forzado tanto por las observaciones como por el modelo 
SASER, para estudiar los impactos de las presas en las sequías. Este trabajo se ha llevado a cabo 
en una zona que abarca el dominio pirenaico, incluyendo la cuenca del Ebro, las cuencas que 
fluyen hacia el Golfo de Vizcaya, las cuencas catalanas y algunas languedocianas, y las cuencas 
Adour-Garonne, pero estas metodologías pueden aplicarse en cualquier lugar.  

Para obtener resultados precisos y fiables de los modelos de superficie terrestre (LSM, en inglés) 
es esencial disponer de datos de forzamiento de entrada adecuados con una resolución espacial y 
temporal apropiada. Con este fin, se ha introducido un nuevo método de corrección lineal del 
forzamiento de las precipitaciones que aprovecha los datos de los modelos climáticos regionales 
(RCM). Al utilizar una ventana de corrección semanal, el método capta mejor la variabilidad 
temporal y los patrones de precipitación, lo que resulta en una representación más realista de los 
eventos de precipitación en términos estadísticos. El impacto en la escorrentía simulada se ajusta 
a las expectativas, mientras que los cambios en el drenaje y la evapotranspiración están influidos 
por diversos factores, entre ellos el régimen climático y la respuesta en climas húmedos. 

Además, el modelo SASER por defecto presentaba un sesgo negativo en los caudales bajos, lo 
que resulta problemático en los estudios sobre la sequía. La causa de este sesgo en los caudales 
bajos es la falta de un esquema de aguas subterráneas en el modelo SASER. La inclusión de un 
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esquema conceptual de embalses para regular el drenaje mejoró la simulación de los caudales, 
como demuestran los valores positivos en las métricas de rendimiento. La aplicación del esquema 
de embalses fue sencilla y mejoró eficazmente la representación de los caudales bajos sin 
comprometer los caudales altos. Además, se aplicó un enfoque de regionalización que permitió 
la integración del embalse conceptual como módulo externo en SURFEX. Este enfoque facilitó 
el establecimiento de relaciones entre los parámetros y las variables climáticas y fisiográficas 
mediante un algoritmo genético, lo que permitió tener en cuenta la variabilidad dentro de la cuenca 
en toda la zona de estudio. Aunque el embalse carece de una base física, vincula con éxito los 
nuevos parámetros con variables físicas, logrando un equilibrio favorable entre la modelización 
distribuida y la representación física. Además, el enfoque de regionalización amplía la 
aplicabilidad del embalse más allá de los sistemas naturales, abarcando tanto las cuencas naturales 
como las influenciadas por el hombre. 

Para incorporar la gestión humana del agua en el estudio, se eligió la zona regada por el Canal de 
Aragón y Cataluña como caso de estudio para aplicar un módulo prototipo de presa. Éste se ha 
utilizado en combinación con el nuevo esquema de riego SURFEX, que permite estimar las 
demandas reales. Este enfoque combina un modelo de explotación de embalses y el esquema de 
riego SURFEX, capturando con precisión la dinámica de la sequía. El nuevo módulo simula 
eficazmente el almacenamiento y los flujos de salida, demostrando una buena concordancia con 
los datos de referencia. Además, el nuevo esquema de riego de SURFEX capta la variabilidad 
interanual de la demanda de agua, lo que da lugar a una representación mejorada del sistema, 
permitiéndonos ir más allá de las habituales tablas "climatológicas" de demanda utilizadas en este 
tipo de estudios. El estudio revela que las influencias humanas agravan la sequía hidrológica, pero 
alivian la agronómica. Las características de la sequía hidrológica se alargan y el momento de los 
picos de sequía hidrológica cambian bajo la influencia humana. El regadío influye tanto en la 
sequía hidrológica como en la agronómica, lo que subraya la necesidad de tener en cuenta estos 
factores en las estrategias de gestión de la sequía. Estos resultados mejoran nuestra comprensión 
de las complejas interacciones entre las actividades humanas, los recursos hídricos y la dinámica 
de la sequía. 

En conclusión, esta investigación avanza significativamente la representación de los procesos 
hidrológicos en un modelo basado en LSM en una región semiárida, sensible a las sequías, 
mediante la incorporación de varios enfoques y el desarrollo de un módulo para integrar el factor 
humano. Las mejoras logradas en la representación de las precipitaciones y en la modelización 
hidrológica aportan valiosos conocimientos sobre la compleja dinámica de la respuesta 
hidrológica y la sequía, abarcando tanto las influencias naturales como las antropogénicas. Este 
trabajo es un primer paso hacia la integración de las influencias humanas, como el regadío y la 
explotación de embalses, en la plataforma SASER, lo que abre nuevas posibilidades para estudiar 
la dinámica de la sequía y desarrollar estrategias mejoradas de evaluación y gestión de la sequía 
en sistemas naturales-humanos acoplados. 
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Resum 

 
Les sequeres són un fenomen complex i multidimensional descrit en termes senzills com a 
períodes sostinguts de dèficit hídric en comparació amb les condicions normals. Encara que de 
caràcter global, les seves conseqüències més greus s'observen a regions àrides o semiàrides, com 
la península Ibèrica. No obstant això, aquests extrems hidrològics no es deuen únicament a 
processos naturals. Les activitats humanes, com la construcció de preses, les extraccions d'aigües 
subterrànies i les pràctiques de regadiu, han alterat significativament el flux natural de l'aigua, 
cosa que ha fet que l'era actual s'anomeni Antropocè. Això posa en relleu la importància crítica 
de la gestió dels recursos hídrics a regions que ja s'enfronten a una disponibilitat d'aigua variable 
i limitada. En conseqüència, hi ha una creixent necessitat de metodologies que representin amb 
precisió la resposta hidrològica de les conques en sistemes naturals-humans acoblats, 
especialment durant els períodes de baix cabal, per gestionar eficaçment els recursos hídrics. 

La modelització és una eina adequada utilitzada en la gestió de l’aigua per afrontar els reptes de 
gestionar uns recursos hídrics escassos i mitigar els impactes del canvi climàtic en el cicle de 
l’aigua. En aquesta investigació s'apliquen diversos enfocaments per millorar les simulacions 
hidrològiques emprant la plataforma hidrometeorològica SASER (SAFRAN-SURFEX-
Eaudyssée-Rapid), de base física i distribuïda espacialment. Aquests enfocaments tenen per 
objecte millorar la representació dels processos hidrològics, en particular per als cabals baixos, i 
incorporar-hi consideracions relatives a la gestió humana de l'aigua. 

Aquest document presenta dos treballs interrelacionats. En primer lloc, s'han introduït millores al 
model SASER per augmentar-ne el rendiment. En segon lloc, s'ha implementat un model de 
preses, forçat tant per les observacions com pel model SASER, per estudiar els impactes de les 
preses a les sequeres. Aquest treball s'ha dut a terme en una zona que abasta el domini pirinenc, 
incloent-hi la conca de l'Ebre, les conques que flueixen cap al Golf de Biscaia, les conques 
catalanes, algunes llenguadocianes, i les conques de l'Adur-Garona, però aquestes metodologies 
poden aplicar-se a qualsevol regió. 

Per obtenir resultats precisos i fiables dels models de superfície terrestre (Land Surface Model, 
LSM) és essencial disposar de dades de forçament d’entrada adequades amb una resolució 
espacial i temporal apropiada. A aquest efecte, s'ha introduït un nou mètode de correcció lineal 
del forçament de les precipitacions que aprofita les dades dels models climàtics regionals (MCR). 
En utilitzar una finestra de correcció setmanal, el mètode capta millor la variabilitat temporal i els 
patrons de precipitació, cosa que resulta en una representació més realista dels esdeveniments de 
precipitació en termes estadístics. L'impacte en l'escorriment simulat s'ajusta a les expectatives, 
mentre que els canvis en el drenatge i l'evapotranspiració estan influïts per diversos factors, com 
ara el règim climàtic i la resposta en climes humits. 

A més, el model SASER per defecte presentava un biaix negatiu als cabals baixos, cosa que resulta 
problemàtica en els estudis sobre la sequera. La causa dels cabals baixos és la manca d'un esquema 
d'aigües subterrànies al model SASER. La inclusió d'un esquema conceptual d'embassaments per 
regular el drenatge va millorar la simulació dels cabals, com demostren els valors positius a les 
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mètriques de rendiment. L'aplicació de l'esquema d'embassaments va ser senzilla i va millorar 
eficaçment la representació dels cabals baixos sense comprometre els cabals alts. A més, es va 
aplicar un enfocament de regionalització que va permetre la integració de l'embassament 
conceptual com a mòdul extern a SURFEX. Aquest enfocament va facilitar l'establiment de 
relacions entre els paràmetres i les variables climàtiques i fisiogràfiques mitjançant un algorisme 
genètic, fet que va permetre tenir en compte la variabilitat dins de la conca a tota la zona d'estudi. 
Tot i que l'embassament no té una base física, vincula amb èxit els nous paràmetres amb variables 
físiques, aconseguint un equilibri favorable entre la modelització distribuïda i la representació 
física. A més, l'enfocament de regionalització amplia l'aplicabilitat de l'embassament més enllà 
dels sistemes naturals, i abasta tant les conques naturals com les influenciades per l'home. 

Per incorporar la gestió humana de l’aigua a l’estudi, es va triar la zona regada pel Canal d’Aragó 
i Catalunya com a cas d’estudi per aplicar un mòdul prototip de presa. Aquest ha estat utilitzat en 
combinació amb el nou esquema de reg de SURFEX, que permet estimar les demandes reals. 
Aquest enfocament combina un model d’explotació d’embassaments i l’esquema de reg de 
SURFEX, capturant amb precisió la dinàmica de la sequera. El nou mòdul simula eficaçment 
l'emmagatzematge i els fluxos de sortida i demostra una bona concordança amb les dades de 
referència. A més, el nou esquema de reg de SURFEX capta la variabilitat interanual de la 
demanda d'aigua, cosa que dona lloc a una representació millorada del sistema, permetent anar 
més enllà de les habituals taules de demanda "climatològiques" emprades en aquest tipus 
d'estudis. L'estudi revela que les influències humanes agreugen la sequera hidrològica, però 
alleugen l'agronòmica. Les característiques de la sequera hidrològica s'allarguen i el moment dels 
pics de sequera hidrològica es desplaça sota la influència humana. El regadiu influeix tant en la 
sequera hidrològica com en l'agronòmica, cosa que subratlla la necessitat de tenir en compte 
aquests factors en les estratègies de gestió de la sequera. Aquests resultats milloren la nostra 
comprensió de les complexes interaccions entre les activitats humanes, els recursos hídrics i la 
dinàmica de la sequera. 

En conclusió, aquesta investigació avança significativament la representació dels processos 
hidrològics en un model basat en LSM en una regió semiàrida sensible a les sequeres mitjançant 
la incorporació de diversos enfocaments i el desenvolupament d'un mòdul per integrar el factor 
humà. Les millores aconseguides en la representació de les precipitacions i en la modelització 
hidrològica aporten valuosos coneixements sobre la complexa dinàmica de la resposta hidrològica 
i la sequera, abastant tant les influències naturals com les antropogèniques. Aquest treball és un 
primer pas cap a la integració de les influències humanes, com el regadiu i l'explotació 
d'embassaments, a la plataforma SASER, fet que obre noves possibilitats per estudiar la dinàmica 
de la sequera i desenvolupar estratègies millorades d'avaluació i gestió de la sequera en sistemes 
naturals-humans acoblats. 
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1. Introduction 

1.1. Background 

Water is an essential resource, but its availability is limited and varies. The movement and 
transformation of water within and between Earth's surface, atmosphere, and oceans are known 
as the water cycle or hydrological cycle. Water flows and stocks on the earth's surface play a vital 
role in shaping human and environmental systems. Additionally, water and its movement can lead 
to potential hazards such as floods and droughts. These hydrological extremes have significant 
impacts on society and the environment across the globe (Wilhite et al., 2007). 

Floods and droughts, which are part of the complex water cycle, occur in diverse geographies and 
climates. As a result, society is exposed to these hydrological hazards, which can also be 
influenced by human activities (Van Loon et al., 2016). To manage these variations, our societies 
have developed hydraulic infrastructure such as dams. These structures allow for water storage 
during wet seasons or melting periods in snow-dominated areas, which can then be released 
during high-demand dry periods. 

In this context, the water cycle is not solely driven by natural processes; human interactions have 
significantly altered it, leading to the era being labeled the Anthropocene (Van Loon et al., 2016; 
Di Baldassarre et al., 2017). Anthropogenic factors such as river diversion, dam construction, 
groundwater abstractions, and irrigation practices have disrupted the natural flow of water 
(Nilsson et al., 2005), causing changes in its storage and movement. 

Moreover, in some regions of the world (e.g. southern Europe and West Africa), droughts have 
experienced a trend toward more intense and longer effects in the last decades (Seneviratne et al., 
2012; Prudhomme et al., 2014; Zhao & Dai, 2015). Additionally, climate change and growing 
water demand exert additional stress on water resource systems (Bates et al., 2008; Wanders & 
Wada, 2015). As a result, droughts have garnered increasing attention.  

However, defining drought universally is challenging since it is a complex and multidimensional 
phenomenon. In simple terms, drought can be described as an extreme climate event characterized 
by a sustained period of water deficit compared to normal conditions. Traditionally, drought is 
categorized into different types depending on the variable it affects (Wilhite, 2000; Mishra & 
Singh, 2010). 

While precipitation deficits naturally propagate through the interconnected components of the 
water cycle (Van Loon, 2015; Zhang et al., 2022), drought cannot be considered solely a natural 
phenomenon in human-dominated environments. Water scarcity resulting from human activities 
and drought are interconnected processes that need to be examined together (Van Loon et al., 
2016). Human activities play a significant role in the development of drought and thus in the 
underlying processes and must be considered in current drought research (AghaKouchak et al., 
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2021). Understanding the complex interplay between natural and anthropogenic drivers is 
essential for effective water management and sustainable development, especially as water 
resources face increasing pressure. 

1.1.1. Drought and water management in the Mediterranean region 

Droughts, a global phenomenon, exhibit their most severe consequences in arid or semi-arid 
regions. These areas face the challenge of meeting water demands that often surpass the available 
natural resources, necessitating the reliance on hydraulic infrastructure for adaptation to semiarid 
conditions and drought events. Consequently, drought impacts have significant implications on 
agriculture, ecosystems, and human health (Schwabe et al., 2013, 2015). 

The Mediterranean region is characterized by a dry summer season and a pronounced annual 
precipitation cycle, with limited or no rainfall during summer. This inherent climate pattern 
renders the region highly vulnerable to droughts, making it one of the most exposed areas to 
socioeconomic drought impacts (Seneviratne et al., 2012). Previous studies have documented 
severe drought events in the Mediterranean region (Vicente-Serrano, 2006; Tejedor et al., 2017), 
including the Iberian Peninsula (García-Herrera et al., 2007; Belo-Pereira et al., 2011; Andrade 
& Belo-Pereira, 2015; Coll et al., 2017; Páscoa et al., 2017, 2021) resulting in adverse 
environmental, agricultural, and economic consequences (Hoerling et al., 2012; Vicente-Serrano 
et al., 2014; Blauhut et al., 2015). And more specifically, in Spain, comprehensive assessments 
of extreme drought events have been conducted, spanning different historical periods 
(Domínguez-Castro et al., 2012; García-Valdecasas Ojeda et al., 2017; González-Hidalgo et al., 
2018). 

The combination of the arid and semi-arid climate, high population density, heavy reliance on 
agriculture, and already limited water resources creates significant pressure on water supplies in 
the Mediterranean region. Consequently, effective drought management in this area poses unique 
challenges. The uneven distribution of water resources further complicates water resources 
management, contributing to the complexity of the situation. 

Furthermore, climate change projections indicate a drier and warmer Mediterranean region (Bates 
et al., 2008; Seneviratne et al., 2012; Tramblay et al., 2020), accompanied by an increase in 
drought occurrences. Studies investigating streamflow trends have shown negative trends, 
resulting in decreased streamflow in the southern and eastern regions of Europe, while generally 
positive trends have been observed in the western and northern regions (Stahl et al., 2010, 2011). 
Thus, changes in drought patterns are also anticipated. However, significant uncertainties persist 
due to the intricate interrelationships among drought impacts on ecosystems, agriculture, water 
resources, and other sectors, further compounded by the complexity of the phenomenon. 

Therefore, the research topic of understanding and studying drought and its underlying processes 
in the Mediterranean region is important. Valuable insights can be gained by unraveling the 
mechanisms that drive drought in the Mediterranean, such as the interplay between climate 
patterns, land surface processes, and human activities. This understanding informs the design and 
implementation of effective drought management strategies (Iglesias et al., 2007, 2012; Garrote 
et al., 2016). 

This highlights the importance of water resources management in areas where water availability 
is already highly variable and limited, at seasonal and annual scales (e.g., the Iberian Peninsula). 
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Furthermore, it reinforces the necessity to apply methodologies to reproduce more appropriately 
the hydrological response of the basins, especially during low flow periods, to provide decision-
makers with tools to efficiently manage water resources. 

1.1.2. The role of Land Surface Models in understanding drought  

In recent years, the use of models in water management has increased to address the growing need 
for managing scarce water resources and mitigating the impacts of climate change on the water 
cycle (Vörösmarty et al., 2015; Döll et al., 2016). The recognition of the interconnectedness 
between water flows, economic factors, and institutions has led to the development of models that 
transcend the boundaries of stand-alone hydrological models (Alcamo et al., 2008). Among these 
models, Land Surface Models (LSMs) have emerged as valuable tools for large-scale hydrological 
modeling and predicting extreme events. 

LSMs are numerical models that simulate the exchange of water, energy, and carbon between the 
Earth's surface and the atmosphere. Significant advancements have been made in recent years to 
improve their representation of the water cycle (Clark et al., 2015; Blyth et al., 2021), 
incorporating more realistic descriptions of physical processes. They now encompass a wide 
range of processes, including soil moisture dynamics, hydrological processes, vegetation 
dynamics, and biogeochemical cycles (Lawrence et al., 2019). 

LSMs are particularly suitable for studying drought due to their ability to simulate the processes 
associated with drought propagation throughout the system (Vidal et al., 2010). This makes them 
valuable for investigating the causes and mechanisms underlying drought events. Numerous 
studies have demonstrated the enhanced analysis of the hydrological cycle, particularly droughts, 
through the use of LSMs (Lehner et al., 2006; Vidal et al., 2010; Prudhomme et al., 2011; Van 
Loon et al., 2012; Mo & Lettenmaier, 2014; Xia et al., 2014; Quintana-Seguí et al., 2020). 

While LSMs have predominantly focused on natural processes, it is essential to consider the 
significant impact of human activities on water flows and storage on the Earth's land surface 
(Vörösmarty & Sahagian, 2000; Rost et al., 2008; Sterling et al., 2013). Current generation models 
often have limited representations of human factors and struggle to capture the complexity of 
interactions between human and natural processes (Pokhrel et al., 2016; Wada et al., 2017). 
Incorporating human activities into global LSMs remains a significant challenge that needs to be 
addressed. 

A comprehensive understanding of freshwater systems and improved water resource management 
can be achieved by advancing the representation of human impacts in LSMs and thus, improving 
their integration into global models. Addressing these challenges will enable more accurate 
simulations and predictions, facilitating informed decision-making for sustainable water 
management in the face of changing environmental conditions. 
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1.2. Motivation 

The utilization of comprehensive models known as Land Surface Models (LSMs) is on the rise 
as they aim to encompass various aspects of the Earth's system (Vörösmarty et al., 2015; Döll et 
al., 2016). These models require parameterization of all physical processes and the definition of 
boundary and initial conditions, demanding a substantial amount of information. While LSMs 
offer a high level of detail, they have inherent limitations that impede the understanding of 
hydrological processes and hinder attribution studies. Therefore, there is a need for improvements 
in both the parametrization and process representations of these models (Clark et al., 2015; Fisher 
& Koven, 2020). Consequently, it is crucial to develop comprehensive simulations that capture 
the complex dynamics of hydrological response, considering both natural and anthropogenic 
influences within LSMs. Such advancements will enable the development of improved strategies 
for drought assessment and management in a coupled natural-human system. 

1.2.1. Research subject and objectives 

The thesis aims to enhance comprehension of drought in Spain by utilizing physical modeling, 
with a specific focus on the impact of human activity. Additionally, the research seeks to supply 
valuable information for informed decision-making. 

I. Improve different aspects of the SASER modeling chain in order to improve streamflow 
simulation. 

II. Simulating the main reservoirs of the Ebro basin in conjunction with the SASER model 
and studying the impacts of water management on the (anthropic) drought. 

III. Analysis of drought in an irrigated area using the tools developed in the project. 

1.2.2. Structure of the thesis 

This thesis is structured as follows. After this introductory chapter, an overview of the current 
state-of-the-art for the reader is presented in Chapter 2. The study area, general data, and the 
model used throughout this thesis are introduced in Chapter 3.  

In Chapter 4, a methodological framework is presented, which describes the pathway followed in 
this thesis to improve different aspects of the SASER model. Additionally, the different 
approaches employed in this research are briefly explained. 

In Chapters 5 and 6, the different efforts to improve the hydrologic modeling in the SASER model 
are explained, focusing on the improvements in precipitation forcing and the enhancement 
streamflow simulation, in particular low-flow simulation, respectively. 

In Chapter 7, a new module, externally incorporated, to simulate human water management 
(reservoir operation scheme) is introduced in the SASER modeling chain. 

Finally, a synthesis of this research is summarized in Chapter 8. In this final chapter, the relevance 
of the research outcomes to the general objective is evaluated. Moreover, examines the 
implications for the scientific field and drought management and provides guides for future 
research.



 

 

2. State-of-the-art 

2.1. Drought as part of the water cycle  

Water is a vital resource that plays a crucial role in supporting ecosystems and sustaining human 
societies. The movement and transformation of water within and between Earth's surface, 
atmosphere, and oceans, is known as the water cycle or hydrological cycle. It is a fundamental 
component of the Earth's climate system that describes the exchange and transformation of water 
between the atmosphere, land, and oceans. This process is mainly driven by solar radiation, wind, 
and temperature gradients. 

Water flows and stocks on the earth's surface play a vital role in shaping human and environmental 
systems. In addition, water and its movement also raise potential hazards such as floods and 
droughts. Both floods and drought, hydrological extremes, are part of the complex water cycle 
and occur in diverse geographies and climates. These hydrological extremes have significant 
impacts on society and the environment across the globe (Wilhite, 2000; Wilhite et al., 2007). 
The immediate and visible impacts of floods often receive more attention. Conversely, droughts, 
also known as "the creeping phenomenon" (Mishra & Singh, 2011), pose a significant and 
widespread threat to societies globally. Among the different forms of drought, flash droughts 
emerge as a concern due to their rapid onset and intensified nature. These events, characterized 
by a sudden and severe decline in soil moisture and the abrupt manifestation of drought 
conditions, can have profound implications on many socioeconomic sectors, particularly 
agriculture (Christian et al., 2019, 2023). Unlike floods, droughts typically occur over a much 
larger spatial and temporal scale, affecting extensive areas for months or even years and causing 
severe impacts on many economic sectors (Tallaksen & Van Lanen, 2004; Sheffield et al., 2012; 
Stahl et al., 2016). As a result, there has been a growing focus on this phenomenon in recent years. 

Therefore, understanding the water cycle and its interaction with these hydrological extremes, 
especially with drought, is essential for predicting, managing, and adapting to the current and 
future challenges of water resources sustainability and resilience. 

Moreover, the water cycle is not only driven by natural processes, human interactions have also 
significantly altered the natural water cycle, leading to the era being labeled the Anthropocene 
(Van Loon et al., 2016; Di Baldassarre et al., 2017). Anthropogenic factors such as river diversion, 
dam construction, hydroelectricity generation, municipal uses, and agricultural irrigation have 
disrupted the natural flow of water, causing changes in its storage and movement. Although much 
research has been done in recent years on the interaction between natural and human drivers, a 
unified and comprehensive diagram illustrating these interactions had not been developed until 
2022, Figure 2-1. This diagram provided by the United States Geological Survey (USGS) depicts 
the present-day global water cycle with a focus on the major human activities that impact the 
water flow and storage at the global scale. 
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These interactions between natural and anthropogenic drivers can cause alterations in the quantity, 
quality, and timing of water availability, leading to significant impacts on humans and 
ecosystems. Hence, understanding the complex interplay between these drivers is essential for 
effective water management and sustainable development under the increasing pressure on water 
resources.  

 

Figure 2-1 D
iagram

 of the w
ater cycle considering hum

an com
ponents. 
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2.1.1. Drought definition and propagation  

Drought is a complex and multidimensional phenomenon that leads to a lack of a universal 
definition that can be applied across all regions and contexts. As a result, several definitions have 
been proposed in scientific literature and operational practice, some definitions can be found in 
(Dracup et al., 1980a; Wilhite & Glantz, 1985; Mishra & Singh, 2010; Dai, 2011). Hence, finding 
an appropriate definition of drought represents the first challenge to address, and thus may hinder 
its accurate assessment, monitoring, and management. 

In a simple and general way, drought can be defined as an extreme climate event characterized 
by a sustained period of water deficit compared with normal conditions. By their nature droughts 
can persist for extended periods, ranging from months to years or even decades. It is worldwide 
and spatial and temporal characteristics depend on the region. However, it is important to regard 
that “normal” conditions depend on the water use and therefore, the drought definition strongly 
depends on the objective of the study. 

Traditionally drought is usually categorized into different types (Mishra & Singh, 2010), 
depending on which variable affects it, Figure 2-2. Extensive drought indices can be found in 
(Dracup et al., 1980a; Wilhite, 2000; Keyantash & Dracup, 2002; Mishra & Singh, 2010; Dai, 
2011; Sheffield & Wood, 2012). Here, an exhaustive review of the available drought indices is 
not provided. Instead, a select set of widely-utilized indices is focused on to characterize the 
meteorological, agricultural, and hydrological drought. 

 

Figure 2-2 Schematic representation of drought categories and their development (Van Loon, 2015). 

Meteorological drought refers to a prolonged period characterized by an extended period of 
below-average precipitation. Meteorological drought is usually identified through the use of 
standardized precipitation indices (SPI, Mckee et al., 1993), which calculate the amount of 
precipitation that falls in a given period relative to the long-term average for the same period. SPI 
is a flexible index that can be calculated for different time scales, from a few weeks to several 
years, and can be used to assess the severity and duration of a drought event. The main benefit of 
the SPI is that it allows to compare drought status across climates. The main limitation of this 
index is that precipitation is the only variable considered for calculation. For calculation, long-
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term records of precipitation are required. In addition, fitting a probability distribution within SPI 
calculation is necessary, which has an important impact on its results (Mishra & Singh, 2011). 
Comprehensive frameworks for calculating standardized indices, both univariate and 
multivariate, in a nonparametric manner have been also developed (Farahmand & Aghakouchak, 
2015). Since precipitation is not the only driver of the meteorological drought, other indices 
considered are the Standardized Precipitation and Evapotranspiration Index (SPEI; Vicente-
Serrano et al., 2010) and the Palmer Drought Severity Index (PDSI; Palmer, 1965), which 
consider the evapotranspiration and soil moisture on their calculation, respectively.  Nevertheless, 
it is imperative to understand that these indices are not without their drawbacks and may not 
always offer an optimal solution. The choice of index depends on the particular type of drought 
being analyzed and the specific needs and preferences of the user. Furthermore, it is important to 
note that the SPEI inherits the challenges associated with the SPI, while also introducing 
additional complexities in estimating evapotranspiration. 

Agricultural drought occurs when there is a soil moisture deficit caused by low precipitation 
and/or high evapotranspiration, which affects crop growth and productivity. This type of drought 
is primarily measured using indicators such as crop yield, plant stress, and soil moisture content. 
The formulation of SPI can be extended to other variables, such as soil moisture. The Standardized 
Soil Moisture Index (SSMI) uses a similar approach that SPI (Sheffield et al., 2004). The PDSI is 
primarily considered a meteorological drought index but can also serve as an agricultural drought 
index. Other indices are the Soil Moisture Drought Index (SMDI) and the Evapotranspiration 
Deficit Index (ETDI) developed by (Narasimhan & Srinivasan, 2005).  

Hydrological drought is related to a negative anomaly (below-normal level) in water availability 
in rivers, lakes, and groundwater systems. The most commonly used variable to characterize this 
drought type is streamflow due to its widely available measured data and easily simulated, but 
piezometers are also often used in areas where groundwater plays an important role. The 
Standardized Runoff Index (SRI; Shukla & Wood, 2008) is calculated similarly to the 
Standardized Precipitation Index (SPI), with the difference that SRI uses streamflow data instead 
of precipitation data. The Surface Water Supply Index (SWSI; Shafer & Dezman, 1982), provides 
a single value for each basin on a monthly scale throughout the year. The index is derived from 
the cumulative probability distributions of snow course, precipitation, reservoir, and streamflow 
data. Similarly, piezometric data can also be standardized (Bloomfield & Marchant, 2013). 

The impacts of such drought events extend beyond the natural environment and have significant 
consequences for society and the economy. Referred to as socio-economic drought when water 
resource systems are not able to meet the water demands of society and the adverse effects on 
various sectors (Apurv et al., 2017; AghaKouchak et al., 2021). 

Under natural conditions, the precipitation deficits transmit through the interconnected 
components of the water cycle, including soil, surface runoff, and groundwater as shown in Figure 
2-2, thus giving rise to what is known as drought propagation (Van Loon, 2015; Zhang et al., 
2022). In their research, Gaona et al. (2022) suggest that the complexity of drought propagation 
in semi-arid regions is amplified by the interplay of factors such as soil moisture and evaporation. 
Nevertheless, in human-dominated environments, drought cannot be considered solely a natural 
phenomenon; just as water scarcity (unbalance between available water and demands) resulting 
from human activities cannot be considered a separate and independent process from drought 
(Van Loon et al., 2016). Indeed, human activities play an important role in the development of 
drought (Figure 2-3), which needs to be accounted for in the current research on drought 
(AghaKouchak et al., 2021). 
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Figure 2-3 Schematic representation of natural and human-induced drivers and their corresponding 
interactions (AghaKouchak et al., 2021). 

Recent studies argued that both natural and human processes have to be considered in drought 
definitions and analysis frameworks (Nazemi & Wheater, 2015a; Van Loon et al., 2016; Di 
Baldassarre et al., 2017; AghaKouchak et al., 2021). Human activities can modify the propagation 
of drought, amplifying its effects or even triggering drought events in the absence of natural 
drivers. Van Loon et al. (2016) have proposed to group natural drought types into “climate-
induced” droughts and “human-induced” droughts to those based on human drivers. This 
distinction can be helpful in research focused on attributing the causes of drought. 

Table 2-1 Nature and causes of the different phenomena related to water availability (adapted from 
Pereira et al., 2002). 

Regime Nature produced Human-induced 

Permanent Aridity Desertification 

Temporary Drought Water scarcity 

Moreover, aridity, desertification, and water scarcity are all complex concepts that are closely 
intertwined with drought, however, understanding the differences between these concepts is 
crucial to addressing the challenges related to water resources. Aridity and desertification describe 
climatic and environmental conditions and refer to long-time scales (Table 2-1). Desertification 
is the process of land degradation resulting from various factors, including human activities and 
climate change. Whereas drought is a temporary phenomenon, and water scarcity is due to 
insufficient water resources to meet the demands of the population or ecosystem. To sum up, 
aridity is caused by a change in the mean status of the hydro-system and drought is an extreme 
event. 
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2.1.2. The impacts of drought (a global phenomenon) 

Drought has been a recurring natural disaster throughout human history. It is important to note 
that the most severe drought events in recent history have occurred across all continents in recent 
decades, and some of these events have had far-reaching and long-lasting consequences. 
However, in contemporary times, the impact of droughts has been notably intensified, primarily 
attributable to a confluence of two contributing factors: firstly, the reliance on water-dependent 
economies and increasingly growing population, and secondly, the influence of climate change.  
It is essential to elucidate that the aim of this section does not entail an exhaustive enumeration 
of the multifaceted effects of drought; rather, it endeavors to provide a comprehensive 
understanding of the wide-ranging drought impacts. 

The risk of droughts has increased since the late 1970s, attributed to global warming causing 
higher temperatures and increased drying (Dai et al., 2004; Zou et al., 2005). India is among the 
most vulnerable drought-prone countries in the world, studies have shown that the occurrence of 
drought is more prevalent in the upper regions of a basin, resulting in an increased risk of water 
shortages in these areas compared to the lower parts of the basin (Pandey et al., 2008). 

For instance, North America has been experiencing severe droughts with a longer duration and 
wider extent (Wilhite & Hayes, 1998), causing substantial economic and environmental damages. 
Hence, droughts have been identified as the costliest natural disasters, in terms of economic 
losses, to strike the United States (Cook et al., 2007). Similarly, Europe has witnessed droughts 
in several countries with significant consequences on agriculture, hydrology, and water 
management (Hisdal et al., 2001; Stahl, 2001; Blauhut et al., 2015). Over the last three decades, 
Europe has experienced numerous severe drought events (Bradford, 2000). More recently, in 
2008, the Iberian Peninsula faced a multiyear drought reducing groundwater levels and reservoir 
storage (Andreu et al., 2009)  

Australia has also suffered from frequent and severe droughts, which have severely affected its 
agricultural productivity and water supply the “Millennium” drought had significant impacts on 
Southern and Eastern Australia, and is considered to be one of the most severe droughts 
experienced in the region (Murphy & Timbal, 2008). In Africa, droughts are recurrent and often 
lead to widespread famine, poverty, and migration. In 2011 drought in the Horn of Africa had 
devastating consequences (Viste et al., 2013). 

In Asia, droughts have affected many countries, leading to severe water scarcity and affecting 
millions of people. In northern China, frequent severe droughts from 1997, 1999 to 2002 resulted 
in major economic and societal losses, causing water shortages, and dust storms in both rural and 
urban areas (Zou et al., 2005).  

These recent drought events are not exhaustive but serve as a reminder of the devastating impacts 
that drought can have on societies, economies, and the environment; and evidence that drought is 
a worldwide and recurrent phenomenon. It is, therefore, crucial to have a thorough understanding 
of the impacts of drought to develop effective drought management strategies to mitigate its 
adverse effects on both the environment and society. 
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2.1.2.1. Drought (and water management) in the Mediterranean 
region 

While droughts are a global phenomenon, their most severe consequences tend to occur in arid or 
semi-arid areas, where the availability of water is already limited. For example, semiarid 
environments are characterized by low water availability because the mean annual potential 
evapotranspiration is 2 to 5 times greater than the mean annual precipitation (Ponce et al., 2000; 
Stahl & Hisdal, 2004). In these regions, the water demand often exceeds the natural availability 
and societies depend on hydraulic infrastructure to adapt to semiarid conditions and droughts. As 
a result, droughts in semiarid regions can have a substantial impact on agriculture, ecosystems, 
and human health (Schwabe et al., 2013). 

The dry summer season and marked annual precipitation cycle with little to no rainfall during 
summer, are inherent to the Mediterranean region. Additionally, the Mediterranean basin is a 
region particularly vulnerable to droughts. This region is considered one of the most exposed 
areas to the socioeconomic impacts of droughts, as highlighted by Seneviratne et al. (2012). As a 
result, effective drought management in this region is particularly challenging. Indeed, several 
studies have documented severe drought events in the last century (Vicente-Serrano, 2006; Sousa 
et al., 2011; Vicente-Serrano et al., 2014; Spinoni et al., 2015; Tejedor et al., 2017; Russo et al., 
2019). Moreover, the Iberian Peninsula has been tackled by increased severity of droughts over 
the past few decades (García-Herrera et al., 2007; Belo-Pereira et al., 2011; Andrade & Belo-
Pereira, 2015; Coll et al., 2017; Páscoa et al., 2017, 2021), with adverse environmental, 
agricultural, and economic impacts (Vicente-Serrano et al., 2011, 2014; Gouveia et al., 2012; 
Hoerling et al., 2012; Blauhut et al., 2015).  

In the context of Spain, Domínguez-Castro et al. (2012) conducted a comprehensive assessment 
of extreme drought events spanning the period from 1750 to 1850. Furthermore, González-
Hidalgo et al. (2018) presented a descriptive analysis focusing on more recent decades to shed 
light on drought events. Another study by García-Valdecasas Ojeda et al. (2017) specifically 
aimed to evaluate the effectiveness of the WRF model in detecting droughts within Spain. 

In the Mediterranean region, the different types of drought and their impacts are strongly 
interrelated, making drought a complex phenomenon, further compounding the challenges of 
effective drought management. The arid and semi-arid climate of the region, combined with its 
high population density, heavy reliance on agriculture, and already limited water resources, has 
resulted in significant pressure on water supplies (Tramblay et al., 2020). In addition, intense 
water regulation exists to meet the needs of irrigation and drinking water needs. For instance, 
López-Moreno et al. (2009) highlight the complex nature of water management in the Tagus River 
basin due to seasonal streamflow regimes and severe changes in droughts caused by the 
exploitation of the Alcántara reservoir. Additionally, there are competing interests for water 
resources in the region, such as irrigation, drinking water, ecosystem conservation, and other uses.  

The Mediterranean region faces a complex challenge when it comes to water resources 
management, due to the irregular distribution of water resources (Iglesias et al., 2007, 2012; 
Garrote et al., 2016). This region has historically experienced a high frequency of conflicts related 
to water use, leading to a need for intensive control of water resources to meet various water 
demands (Monreal & Amelin, 2010). To address the heterogeneity of water resources, different 
measures have been implemented at the national level. For example, water supply infrastructures 
have been constructed or upgraded to meet irrigation demands and ensure adequate public water 
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supply. However, the presence of reservoirs has been found to could be contributing to the 
aggravation of streamflow drought downstream (Van Loon et al., 2022). In Spain, for instance, 
Batalla et al. (2004) analyze the hydrological alterations caused by dams in the Ebro River basin. 

Moreover, climate change predictions suggest a dryer and warmer Mediterranean area (Bates et 
al., 2008; Seneviratne et al., 2012) with increased droughts. Some studies have investigated trends 
in streamflow and found negative trends, resulting in lower streamflow in southern and eastern 
regions of Europe, while western and northern regions experience generally positive trends (Stahl 
et al., 2010, 2012). Therefore, changes in drought are also expected. More recently, Tramblay et 
al. (2020) reported that the Mediterranean basin is projected to experience more frequent and 
severe droughts under future climate change scenarios, Figure 2-4. By 2100, it is estimated that 
the frequency of droughts in the region could increase by up to 40%. Finally, according to Gu et 
al. (2020), the Mediterranean region is one of the most vulnerable areas to the socioeconomic 
impacts of droughts, and this vulnerability is expected to worsen in the next years 

 

Figure 2-4 Drought duration from historical observations (E-OBS) during the period 1960–2014 and 
with RCP 2.6, 6.0, and 8.5 for three periods: near future (2010−2030), mid-century (2031–2060), and 

end of the century (2061–2090) for the Mediterranean region (Tramblay et al., 2020). 

In addition, projections from various model experiments indicate that future climate change 
scenarios will likely exacerbate the frequency and severity of droughts in this region (Tramblay 
et al., 2020). However, significant uncertainties remain, given the complexity of the phenomenon 
and the intricate interrelationships among its impacts on ecosystems, agriculture, water resources, 
and other sectors. Therefore, it involves a significant obstacle in assessing and managing drought 
effectively in the Mediterranean basin. 

2.1.3. The need for effective drought assessment  

The complex nature of drought and its potential impact on various sectors, in both natural and 
human systems, have made it a topic of interest to a wide range of scientists. Consequently, a 
wide range of approaches have been developed to study drought, each with its advantages and 
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limitations. They vary from statistical methods to modern remote sensing and modeling 
techniques (Mishra & Singh, 2011). 

Statistical analysis-based approaches serve as valuable tools for understanding the 
interconnections between various types of drought and characterizing their propagation. The 
statistical analysis offers several advantages in drought assessment. It is a relatively 
straightforward approach that can be applied to various datasets, including precipitation and 
streamflow. These methods provide quantitative measures and indices that help in quantifying the 
severity and duration of droughts. However, it is essential to acknowledge the limitations of 
statistical analysis in fully characterizing drought propagation. These approaches are not suitable 
to capture the underlying physical processes that drive drought dynamics. Furthermore, statistical 
analysis may not explicitly account for the complex interactions between climatic, hydrological, 
and human factors that influence drought occurrence and impacts. 

Conversely, modeling approaches have been employed for studying drought propagation. To 
understand the process that leads to drought, the Land Surface Models (LSMs) offer a physically-
based approach and thus they allow us to assess drought impacts and interactions on different 
variables through the water cycle. The use of LSMs in drought research has several advantages, 
including their ability to incorporate various land surface characteristics including human 
influences, their flexibility in modeling different land use types, and their ability to be applied 
across different spatial and temporal scales. But they do have important limitations such as 
uncertainties in input data and challenges in capturing the complex interactions between various 
factors influencing droughts. 

Overall, a combination of both approaches provides a comprehensive understanding of drought 
propagation, taking into account both statistical relationships and physical processes. Moreover, 
advances in remote sensing and data availability have expanded our ability to study drought, but 
uncertainties remain (Aghakouchak et al., 2015; Gaona et al., 2022). 

Despite extensive research on various aspects of drought, there is a significant gap in effectively 
communicating the results to decision-makers (Thompson et al., 2013). Moreover, (Thompson et 
al., 2013; Verburg et al., 2016) reinforce the necessity to develop a framework that takes into 
account the interactions between hydrology and other sub-systems such as vegetation, land use, 
and anthropogenic uses. For example, Iglesias et al. (2007) present a proactive approach to 
mitigate the impacts of droughts in the Mediterranean region. Instead of relying on crisis 
management, their framework emphasizes preparedness and risk reduction. Thus, the objective 
of these insight frameworks can aid in developing strategies to mitigate its effects on society and 
the environment in the Anthropocene (Verburg et al., 2016). Nevertheless, developing such 
systems is challenging due to the inherent uncertainties associated with climate models and the 
complex nature of the drought phenomenon. 

2.2. Modeling the water cycle and drought 

Water movement and storage in the Earth's systems have a significant impact on water availability 
for both humans and ecosystems. This relationship can lead to natural hazards, such as floods and 
droughts. Likewise, with the increasing demand for water resources and the growing threat of 
droughts, it is essential to monitor and understand the behavior of the water cycle in various 
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climatic conditions. Hence, modeling the water cycle, and understanding underlying processes, is 
a crucial area of research in hydrology.  

Modeling is an essential tool in hydrology that enables the simulation and prediction of the 
complex dynamics of the water cycle. Hydrological research has traditionally focused on 
understanding the precipitation-runoff process, evaporation, surface water-groundwater 
interactions, and water supply and demand in basins. However, recent studies have treated the 
water cycle as a more integrated system. As a result, comprehensive studies of water systems have 
become increasingly popular and have led to the development of various sub-disciplines, such as 
eco-hydrology (Acreman, 2001; Hannah et al., 2004; Wood et al., 2008) and socio-hydrology (Di 
Baldassarre et al., 2013, 2015; Ross & Chang, 2020). 

The use of land surface models (LSMs) in hydrological studies has experienced a notable upswing 
in recent times. These models have proven to be indispensable tools for investigating the intricate 
dynamics between the land surface and the water cycle in comparison with the classical 
hydrological models (Vidal et al., 2010). By simulating various physical processes, such as 
evapotranspiration, soil moisture dynamics, and runoff generation, LSMs offer a comprehensive 
understanding of water fluxes and storage within the land surface. This enhanced understanding 
enables us to accurately assess water availability, study the impacts of climate change on 
hydrological systems, and devise effective strategies for sustainable water management. 

2.2.1. Background 

Modeling the hydrological cycle, at different scales, both temporal and spatial is essential to 
understand natural (and human-induced) water flows. Hence, a variety of models have been 
developed for spatial scales that range from a small catchment to the global scale;  and for 
temporal scales that range from the intense precipitation event (and subsequently peak flow) to 
climate scales. Of course, both spatial and temporal scales are not independent and models for 
larger domains tend to focus on longer time scales. Hydrological models vary in complexity from 
simple conceptual models with a few parameters that represent the movement of water through a 
catchment using simplified equations, to complex physically-based models that simulate the 
physical processes involved in the water and energy cycles. The choice of model type depends on 
the research question, the scale of analysis, and the available data.  

The recognition of the “global water system” has emerged as a significant paradigm in the field 
of hydrology, emphasizing the interdependencies between water flows and other interconnected 
systems, including economic and institutional factors (Alcamo et al., 2008). In response to this, 
there has been a growing effort to develop models and associated processes that enable 
simulations that transcend the boundaries of stand-alone hydrological models. This facilitates a 
more comprehensive understanding of the complex interactions within the water system. By 
incorporating the physical relationships, these integrated models strive to provide a holistic 
representation of the global water cycle and its implications for sustainable water management 
strategies. 

Therefore, process descriptions are becoming more physically based resulting in the physically-
based models that provide a most detailed representation of the water cycle. Thus, Land Surface 
Models (LSMs), initially created to aid in atmospheric and climate modeling purposes, emerged 
and are used for large-scale hydrological modeling and prediction of extreme events. The LSMs 
simulate both water and energy balances at the land surface. Additionally, the LSMs often 
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represent the soil with a higher vertical resolution and represent evapotranspiration and other 
processes (such as snowmelt) less conceptually than the hydrological models. Nevertheless, 
LSMs do not simulate, or do roughly, the impact of human water use, and even they often lack a 
lateral routing and groundwater representation. The latter results in poor simulation of river 
discharge during the summer season, making it subject to improvement (Stahl et al., 2011; 
Gudmundsson, Tallaksen, et al., 2012). 

The use of models in water management has increased in recent years, driven by the need to 
manage increasingly scarce water resources and mitigate the impacts of climate change on the 
water cycle (Vörösmarty et al., 2015; Döll et al., 2016). However, model uncertainty remains a 
major challenge in hydrological modeling, and efforts to improve model accuracy and reduce 
uncertainty are ongoing areas of research in hydrology (Sood & Smakhtin, 2015). However, the 
complexities of hydrological systems heavily influenced by humans make this task difficult. 

2.2.2. Addressing the complexities in low-flow modeling 

Despite the numerous models to simulate natural (and human) flows, most of them are optimized 
to simulate peak flows, and thus, low flows are often not well reproduced by these models 
(Smakhtin et al., 1998; Lehner et al., 2006; Kumar et al., 2010). Modeling low flows through 
hydrological models is still a challenging task due to the complexity of low-flow generation 
processes (Smakhtin, 2001; Staudinger et al., 2011). Low flows are generally controlled by 
subsurface storage and the slow response of groundwater systems. Therefore, capturing the low 
flow regime requires models that accurately simulate groundwater and surface water interactions. 
This is often one of the main weak points of the LSM community. 

In recent years, attempts have been developed to improve low-flow modeling in established 
models, some of them are discussed in section 6.3. The level of complexity often depends on the 
availability of data and the research questions being addressed. Furthermore, as Clark et al. (2008) 
point out, the choice of the model structure is just as crucial as the choice of model parameters. 
The model structure determines the type of hydrological processes that can be represented and 
the level of detail in the model's parameterization. A suitable model structure will depend on the 
specific characteristics of the hydrological system under study, including its geology, topography, 
and climate. Each model has a very different model structure and parametrizations, and therefore 
very different responses, which the choice cannot be made easily (Staudinger et al., 2011; Van 
Loon et al., 2012). 

In the context of low-flow modeling, incorporating groundwater schemes into the simulations is 
a complex task that involves a detailed knowledge of the hydrogeological characteristics of 
groundwater systems that can accurately represent the complex interactions between surface 
water and groundwater (Habets et al., 2008; Vergnes et al., 2012). Furthermore, hydrological and 
hydrogeological communities have limited the exchange of ideas, methodologies, and data, 
impeding holistic approaches to water resource management. However, in recent years, there has 
been a growing recognition of the need for integrated hydrological and hydrogeological modeling 
to address water-related challenges effectively. 

In addition, low-flow modeling has been a topic of concern in recent years, especially in 
simulating drought propagation processes. It has been observed that models fail to accurately 
simulate some of these processes, indicating a strong coupling between precipitation and runoff 
generation (Van Loon et al., 2012; Quintana-Seguí et al., 2020). Such immediate reaction of 
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runoff to precipitation, which does not occur in some regions, such as arid or semi-arid, nor in 
catchments with significant storage capacity. These difficulties suggest the need for improved 
simulation of processes related to storage in large-scale models.  

Moreover, model outputs are frequently evaluated based on how accurately they can replicate the 
shape of a hydrograph and the corresponding flood peaks and volumes. While these criteria are 
essential, they do not necessarily indicate the accuracy of low-flow simulations. In this context, 
it is crucial to use other evaluation criteria that provide insight into the model's performance in 
the low-flow domain (Smakhtin et al., 1998; Staudinger et al., 2011) 

2.2.3. The application of LSMs for drought assessment 

Low flow conditions and drought exhibit a close interconnection in the field of hydrology, as they 
are integral components of the natural water cycle. Low flows are encompassed within the concept 
of hydrological droughts, however, hydrological droughts, in a broader sense, encompass several 
factors beyond low flows (Smakhtin, 2001; Van Loon, 2015). Despite their distinctive 
characteristics, both droughts and low flows encounter similar modeling challenges, highlighting 
their interconnected nature and the importance of studying and understanding them together. 

Droughts are a serious problem that affects many regions of the world, with significant economic, 
social, and environmental impacts, as previously discussed. Hence, the analysis of the 
hydrological cycle, particularly droughts, has been greatly enhanced by the utilization of Land 
Surface Models (Lehner et al., 2006; Vidal et al., 2010; Prudhomme et al., 2011; Van Loon et al., 
2012; Mo & Lettenmaier, 2014; Xia et al., 2014). 

In recent years, LSMs which simulate the energy balance between vegetation, soil, and 
atmosphere, have emerged as an important tool for assessing and monitoring drought conditions 
(Sheffield et al., 2014; Wood et al., 2015). Moreover, due to their physical nature, LSMs simulate 
a majority of the processes associated with the propagation of drought throughout the system 
(Vidal et al., 2010). Therefore, they are well-suited for studying drought-related processes. In 
addition, LSMs are crucial components of drought prediction systems (Wood et al., 2015; Thober 
et al., 2015). 

One of the key advantages of LSMs for drought assessment is that provide a comprehensive and 
accurate picture of the current system conditions. This is particularly important in regions where 
data are limited or unreliable, and where traditional methods of drought assessment, such as the 
standardized precipitation index (SPI), may not provide a complete or accurate assessment of 
drought severity. However, it should be acknowledged that LSMs are susceptible to uncertainties 
in the forcing data as well as the model structure. In their study, Quintana-Seguí et al. (2020) 
found that the duration of drought propagation, from precipitation to soil moisture and 
streamflow, is significantly influenced by the LSM model structure 

The LSMs also provide a useful framework for investigating the underlying causes and 
mechanisms of drought. LSMs can identify the relative contributions of different factors, such as 
changes in the main hydrological variables (evapotranspiration, soil moisture, and runoff) to the 
onset as well as the persistence of drought. In a recent study, Gaona et al. (2022) identified critical 
feedback for both antecedent and subsequent drought conditions with a fundamental role of 
evapotranspiration in the relationship between rainfall and soil moisture. It also further underlines 
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the importance of analyzing drought at a weekly scale, to better identify the quick self-intensifying 
and mitigating drought mechanisms, which are relevant for drought monitoring in semi-arid areas.  

Barella-Ortiz & Quintana-Seguí (2019) evaluated the accuracy of drought representation through 
the use of regional climate models (RCMs). Their findings indicate that RCMs can enhance the 
representation of meteorological drought, which is a crucial aspect of drought characterization. 
However, uncertainties are also identified in RCMs' ability to accurately capture soil moisture 
and hydrological drought, as well as the propagation of drought.  

Another instance where LSMs have been applied to study drought is (Crow et al., 2012). They 
examined the effectiveness of different land surface models (LSMs) in agricultural drought 
monitoring. Their research revealed that when globally averaged across the entire annual cycle, 
LSMs have limited impact on the accuracy of agricultural drought monitoring systems, however, 
these models can provide significant added value (ranging from 5% to 15% in relative terms) 
during specific points along the seasonal cycle. 

Overall, LSMs represent a powerful and flexible tool for drought assessment and management, 
with the potential to improve our understanding of the causes and impacts of drought, and to 
support more effective and sustainable water resource management practices (Hao et al., 2014; 
Nijssen et al., 2014). 

2.3. The current state of the LSMs 

Land surface models (LSMs) are numerical models that simulate fluxes of water, energy, and 
carbon between the earth's surface and the atmosphere. In recent years, significant progress has 
been made in the development of these models for simulating the water cycle (Blyth et al., 2021). 
These models have become increasingly sophisticated over time, incorporating more realistic 
representations of the physical and biogeochemical processes that govern land surface dynamics 
and thus the influence on the water cycle. This section provides a general overview of the 
advancements in LSM to understand the water cycle, as well as the limitation and further 
improvements. Additionally, a description of the current challenges of these models to represent 
the human-natural system is presented. 

2.3.1. Overview of the Land Surface Models 

LSMs were initially created to aid in atmospheric and climate modeling purposes, however, land 
surface processes and their impacts themselves have gained relevance in recent years. Over time, 
LSMs have undergone significant improvements, incorporating a multitude of processes that 
impact the dynamics of land-atmosphere interactions, Figure 2-5. From their initial simple 
biophysical configurations (Sellers et al., 1986), they have evolved to include representations of 
a range of processes, such as soil moisture dynamics, hydrological processes, vegetation 
dynamics, and biogeochemical cycles (Lawrence et al., 2019) until human land management (Döll 
et al., 2016; Wada et al., 2017). 
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Figure 2-5 Chronological overview of the development of land surface models (Fisher & Koven, 
2020). 

LSMs may be coupled with atmospheric models (online) or can be run offline, forced, for 
instance, by a gridded dataset of atmospheric observations. Online simulations include the 
feedback between the land surface and the atmosphere, which is physically more realistic, but 
they inherit the biases of the atmospheric model. In the offline case, the surface energy and water 
balance are simulated without explicit feedback to the atmosphere, but if the forcing dataset is 
based on observations, the atmospheric forcing will have fewer biases. Offline simulations have 
proven to be crucial in hydrology research, as they allow for the isolation and examination of 
individual land surface processes. By separating the land surface model from the atmospheric 
model, offline simulations can provide more accurate and precise estimates of water and energy 
fluxes, soil moisture dynamics, and other hydrological variables, despite the missing explicit 
feedback. 

2.3.2. The structure and components 

While LSMs are complex models that incorporate numerous processes and mechanisms, this 
subsection aims to provide an understanding of the different components that make up these 
models. As such, it does not delve into each mechanism's intricate details but offers a simplified 
overview of the main elements. Wood et al. (2011), Lawrence et al. (2019), Decharme et al. 
(2019), and Blyth et al. (2021) provide an extensive review of the state-of-the-art of LSMs. The 
structure of the LSM models could be grouped into (i) vegetation and canopy representation, (ii) 
soil physics, (iii) water bodies and hydrology, and (iv) land and water use, as depicted in Figure 
2-6. 
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Figure 2-6 Schematic representation of the LSMs’ components and their exchanges between them 
(Blyth et al., 2021). 

The vegetation and canopy components of LSMs simulate the exchange of energy, water, and 
carbon between the land surface and the atmosphere. Canopy models incorporate various 
physical, chemical, and biological processes to describe the behavior of vegetation. These models 
typically rely on remote sensing data and assume a uniform distribution of leaves within the 
canopy. 

As an example of advancements in the field, (Calvet et al., 1998) added an interactive vegetation 
algorithm to ISBA (Noilhan & Planton, 1989) -SVAT (soil-vegetation-atmosphere transfer) 
scheme, called ISBA–A–gs. More recently, research conducted by Boone et al. (2017) and Napoly 
et al. (2017) has played a crucial role in enhancing our understanding of vegetation dynamics 
within the SURFEX (Surface Externalisée, in French) platform (Masson et al., 2013). Boone et 
al. (2017) focused on the development of an explicit representation of vegetation, called the ISBA 
multi-energy balance (MEB). Similarly, Napoly et al. (2017) conducted an in-depth evaluation of 
this explicit vegetation representation for local-scale forest sites in France. 

The soil component of LSMs plays a crucial role in stimulating energy and water transfer 
vertically through the soil. Soil models incorporate various physical, chemical, and biological 
processes to describe the behavior of soil, including soil water balance, soil temperature, and soil 
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nutrient cycling. These models can vary in complexity depending on the research question and 
available data. Whereas the hydrology component simulates the movement and storage of water 
through the land surface, including surface runoff, infiltration, and groundwater recharge. At the 
simplest level, bucket models can be used to simulate the water balance by dividing the land 
surface into a few water storage compartments, such as soil moisture and surface water. 

The land and water use component in LSMs is an important component that captures the impact 
of human activities on the land surface and water cycle. This component represents the 
management of land and water resources by humans, including various agricultural practices, 
land-use changes, irrigation schemes, reservoir operations, and groundwater withdrawal. 

Finally, the structure and configuration of LSMs can vary widely depending on the components 
included in the model. This flexibility allows for LSMs to be tailored to specific research 
questions or applications, and to capture the complexity of land-atmosphere interactions at 
different scales. For example, some LSMs may include only the bare minimum of components 
necessary to simulate surface fluxes of energy and water, such as a simple vegetation model and 
a soil water balance model. On the other hand, more advanced LSMs can incorporate additional 
components such as the carbon cycle, nutrient cycling, and vegetation dynamics. These models 
are typically more complex and computationally intensive but can provide more accurate 
simulations of ecosystem processes and feedback to the Earth system. 

2.3.2.1. The key processes involved 

The LSMs use a combination of physical laws and empirical relationships to represent these 
complex processes in a simplified way that can be used for weather and climate prediction. For 
example, to represent canopy processes LSMs model the interactions between vegetation and the 
atmosphere, throughout photosynthesis, transpiration, and carbon uptake (Sellers et al., 1996; 
Wang & Leuning, 1998). More detailed canopy models aim to capture these interactions by 
simulating the physiological processes of individual leaves (Bonan et al., 2014).  

The ISBA scheme within the SURFEX platform has made significant strides in recent years, 
leading to important developments in the field. One notable advancement is the introduction of 
the ISBA-A-gs model, which represents a breakthrough in simulating the combined processes of 
photosynthesis and stomatal conductance, as well as the response of leaf transpiration to 
atmospheric carbon dioxide concentration (Calvet et al., 2004, 2008; Gibelin et al., 2006; Albergel 
et al., 2010). Precipitation undergoes various processes once it reaches the land surface. It can 
either infiltrate through the soil matrix and get stored or be lost through evapotranspiration or 
drainage. If the precipitation accumulates on the soil surface, it can evaporate, or in the case of 
sloped terrain or saturated soil, it can lead to surface runoff. To simulate these complex water 
exchanges between the surface and soil, most LSMs use the TOPMODEL basis (Beven & Kirkby, 
1979; Todini, 1996), which considers the spatial distribution of contributing areas to simulate the 
movement of water through the landscape. In recent years, LSMs have incorporated deeper soil 
layers into their models (Miguez-Macho et al., 2007) and improved organic soil representation 
(Lawrence & Slater, 2008). This has enhanced the soil's thermal and hydrologic dynamics on 
longer timescales (Lawrence & Slater, 2008) and has enabled a better representation of soil carbon 
processes. 

Water movement on the surface plays a critical role in the terrestrial water cycle, as it determines 
the timing and magnitude of flows to the oceans. To accurately estimate these flows, it is 
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necessary to incorporate a routing scheme into LSMs (Lohmann et al., 1996; Oki et al., 1999). 
Traditionally, routing schemes have been developed to estimate runoff without considering the 
interaction between energy and water balance. However, recent studies have shown that water 
flows can have a significant impact on the energy balance. For instance, Fan et al. (2013) 
demonstrated that groundwater can alter the energy balance in the Iberian region. As a result, 
there has been a growing interest in including groundwater models in LSMs to better capture the 
interactions between water and energy (Miguez-Macho et al., 2007; Miguez-Macho & Fan, 2012). 
Several attempts have been made to develop groundwater models that can be incorporated into 
LSMs, such as those proposed by de Graaf et al. (2015, 2019). By incorporating groundwater 
models, LSMs can more accurately represent the complex feedback between water and energy in 
the terrestrial system, leading to improved predictions of future hydrological and climate 
conditions. 

Water management practices have significantly altered the natural water flows and storage in the 
hydrological systems due to human activities such as land management, water abstractions, and 
the construction of dams. Agricultural irrigation, for example, has a considerable impact on the 
energy balance of a region. Many LSMs have incorporated irrigation schemes, in which water is 
artificially supplied rather than sourced from reservoirs or surface water bodies, that trigger 
irrigation when soil water drops below a certain threshold (Sacks et al., 2009). This approach can 
be used to investigate how increased evaporation due to irrigation influences local and regional 
weather and climate (Sorooshian et al., 2012; Tuinenburg et al., 2014). However, to obtain a 
comprehensive understanding of human intervention in hydrological systems, models must 
consider various processes such as water withdrawal from surface and groundwater sources, and 
reservoir operations (Pokhrel et al., 2016; Calvin & Bond-Lamberty, 2018; Yokohata et al., 2020). 
Incorporating these processes in LSMs enables more realistic simulations of human-induced 
impacts on the hydrological system and provides a complete picture of the water and energy 
balance of a region. 

2.3.3. Main limitations and uncertainties 

The current generation of LSMs now includes representations of sub-grid variability, vegetation 
dynamics, and soil heterogeneity, which have significantly improved our ability to capture the 
spatial and temporal dynamics of the water cycle. Improving the exchanges between the land and 
atmosphere is crucial to increasing the complexity of component models in LSMs. The exchange 
must respond to both the temporal and spatial scale of the atmosphere model and urban land 
surfaces must also be better represented to address the increasing need for finer-scale modeling 
for human health and well-being. 

The largest limitation in present LSMs is sub-grid heterogeneity (Ament & Simmer, 2006; De 
Vrese & Hagemann, 2016). For instance, most models use a single set of soil data that may not 
be adequate for all regions. To improve the representation of soil properties, it may be important 
to include the changes in soil properties with time (Wang & Feddema, 2020). Incorporating 
detailed process understanding into LSMs for catchment and smaller scales is a recent 
development, and it is important to capture how the flow and storage of water across a landscape 
are regulated by fine-scale topographic features(Wood et al., 2011; Fan et al., 2019). 

Detailed sourcing data to describe human-influenced environments is a major challenge for 
developing global-scale models that include these human processes. Additionally, including other 
quantities such as the impact on the temperature of river water or the use of agricultural fertilizers 
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(Bussi et al., 2016) is important when addressing water resources. Although some models include 
detailed descriptions of water management activities, they often rely on the prescription of simple 
operating rules (Hanasaki et al., 2018). Future developments will need to better represent the 
optimal management of complex catchments while considering economic and social impacts. 

The uncertainty in LSM parameters can arise from a variety of sources, including input data (Döll 
& Fiedler, 2008; Biemans et al., 2009), simplified model structures, and the complexity of land 
surface processes (Walker et al., 2018). Many of the parameters used in LSMs are also site-
specific and can vary across different regions or vegetation types, which can further complicate 
parameter estimation and lead to uncertainty in model predictions (Samaniego et al., 2010). For 
example, Samaniego et al. (2013) demonstrated that parametric uncertainty of simulated soil 
moisture plays a strong spatiotemporal variability in drought characteristics. Weihermüller et al. 
(2021) showed that the parameterization of soil hydraulic properties in LSMs introduces notable 
variability in the simulated fluxes. Hence, the accuracy of LSM predictions for future scenarios 
is limited by the uncertainty in model parameters or inputs and the ability of the models to capture 
the full complexity of land-atmosphere interactions under changing conditions. 

Furthermore, one of the critical problems is quantifying the role of humans in the Earth System. 
Linking LSMs with integrated models that capture feedback between climate, food, water, and 
land-use are necessary to address this (Yokohata et al., 2020). This will enable future LSMs to 
address key societal and scientific questions related to ecosystem resilience under a range of 
environmental and anthropogenic pressures. 

2.4. Recent Advances in the LSMs 

LSMs were initially developed to provide physical boundary conditions for atmospheric and 
climate models, particularly to represent the influences of the land in meteorological processes 
(Fisher & Koven, 2020). Later the aims and applications of LSMs have expanded considerably. 
By simulating the behavior of land surface processes, such as water cycling and biogeochemical 
cycling, LSMs offer a means to assess the impacts of future climate scenarios, especially under 
global warming (Cox et al., 2000). Additionally, the integration of anthropogenic factors, such as 
irrigation or water abstractions, into LSMs has gained significant attention in the scientific 
community to better understand the different impacts that human activities have on modifying the 
land surface and water cycle (Lawrence et al., 2012; Boysen et al., 2014; Pongratz et al., 2018; 
Yue et al., 2018). 

The incorporation of process representations into LSMs is accelerating due to the needs of diverse 
user communities, including hydrologists, ecologists, atmospheric scientists, and crop modelers. 
These communities have increasingly recognized the importance of accurately representing land 
surface processes and their impacts on the broader Earth system, thus making LSM an 
interdisciplinary tool. 

In recent years, LSMs play a critical role to inform decision-making related to natural resource 
management, such as water availability and crop production, and provide critical insights into the 
vulnerabilities and resilience of ecological and societal systems to events such as floods and 
droughts. As a result, the LSMs have become an increasingly important tool for understanding 
and investigating the complex feedback between the land surface, the atmosphere, and human 
activities on the Earth system. 
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2.4.1. Advances in model complexity  

The continued incorporation of processes into LSMs has also increased the complexity of these 
models. This reflects the reality that the Earth is a complex system and that the interactions 
between land, atmosphere, and water systems are highly interconnected and dynamic. The 
inclusion of more detailed process representations within LSMs recognizes the importance of 
capturing the complexity of these interactions and their impacts. 

Incorporating different processes in LSMs the modular approach is widely used. This approach 
involves dividing the models into smaller and more manageable modules, each representing a 
specific process or component of the land surface system. By doing so, these modules can be 
developed, improved, or removed independently, and then combined as needed to create a more 
complex and comprehensive model. The modular approach has made it easier to update or modify 
specific components of the model without affecting other parts. A comprehensive exploration of 
large-scale models utilizing a modular structure can be found in the literature, e.g. (Bierkens et 
al., 2015; Blyth et al., 2021). Additionally, modularization can allow for greater flexibility in 
terms of representing different configurations within a given model. 

At lower resolutions, numerous inaccuracies in prognosis and the strong non-linearity of the land 
surface processes are notable (Sellers et al., 2007). To deal with this, Wood et al. (2011) described 
the hyper-resolution models for hydrological applications, to improve the representation of 
surface interactions. Later, recent LSMs implemented a gridded tile approach to take account and 
disaggregate the heterogeneity of various surface processes, e.g. SURFEX (Masson et al., 2013), 
ORCHIDEE (de Rosnay & Polcher, 1998; Guimberteau, Drapeau, et al., 2012) and JULES (Best 
et al., 2011) to name few.  On the other hand, while early land surface models were primarily 
focused on representing one-dimensional processes, recent years have seen a growing emphasis 
on including vertical detail in model development (Clark, Nijssen, et al., 2015). This increased 
vertical resolution has enabled more robust comparisons between model simulations and field 
data. Enhancing resolution poses a significant challenge, given the intricate nature of the 
continental surface, the diverse range of processes operating at various time scales, the lack of 
accurate information, and the inherent uncertainty associated with parameters (Wood et al., 2011; 
Bierkens et al., 2015; Clark, Nijssen, et al., 2015). 

Finally, artificial intelligence (AI) and machine learning (ML) are rapidly increasing in the water 
cycle and water resources analysis. Besides, the increasing availability of data and computational 
resources, these techniques have the potential to transform the field of water resources 
management and facilitate the development of more sustainable and efficient water use practices. 
Machine learning opens a new and promising perspective to a detailed process-level 
understanding where solving complex equations is computationally too expensive for a given 
application (Fisher & Koven, 2020). In this case, models based on machine learning approaches 
that have been trained on the full process representation models may allow for higher fidelity 
solutions than the current, purely process-driven approach used across LSMs. 

In this regard, leveraging techniques such as machine learning and data mining can enhance model 
precision by providing more efficient and accurate methods for obtaining physiographic data and 
parameter estimation (Shen, 2018; Sawada, 2020; Schmidt et al., 2020). These techniques enable 
the analysis and processing of large volumes of geospatial data, facilitating the identification of 
complex patterns and relationships. By employing these techniques in enhancing physiographic 
representations and parameter estimation, more precise and reliable results might be obtained in 
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modeling the water cycle and its interactions with the environment. One of the key challenges 
with AI models is their lack of interpretability. Complex AI algorithms, can produce accurate 
predictions but provide little insight into the underlying physical processes (Schmidt et al., 2020). 
Thus, the interpretability of ML models should be carefully investigated to further explore 
understand and validate the model's outputs. Future research should focus on developing 
interpretable AI models, enhancing generalization capabilities, quantifying uncertainties, 
addressing biases, and making AI approaches computationally feasible for broader application in 
hydrological modeling and water resource management (Pal & Sharma, 2021). 

Given the increasing emphasis on machine learning approaches and the successes of machine 
learning in solving problems in Earth System Models (Gentine et al., 2018; Shen, 2018) or offline 
hydrologic models (Bai et al., 2016; Fang et al., 2017) designing models with an emphasis on 
modular complexity to allow for such hybrid approaches is a crucial challenge in modeling the 
land surface. 

2.4.2. The use of remote sensing in LSMs 

Recently, the use of remote sensing has provided an unprecedented opportunity to fill the spatial 
and temporal gaps in ground-based observations for large-scale modeling. Remote sensing has 
rapidly become an essential tool for land surface modeling, allowing for the observation and 
measurement of surface properties and processes through different scales (Overgaard et al., 2006). 
Additionally, advancements in data assimilation techniques have facilitated the integration of 
multiple sources of data, including remote sensing, to improve the representation of processes in 
LSMs (Reichle et al., 2004; Albergel et al., 2017). 

Advancements in satellite Earth observation have significantly improved our ability to monitor 
various aspects of the Earth's surface covering different topics. For instance, the Tropical Rainfall 
Measuring Mission (TRMM) and Global Precipitation Measurement - Integrated Multi-satellitE 
Retrievals (GPM-IMERG) provide precipitation data, while the Shuttle Radar Topography 
Mission (SRTM) provides high-resolution topography data useful for global and regional water 
transport and groundwater modeling. Meanwhile, products such as the Moderate Resolution 
Imaging Spectroradiometer (MODIS), Sentinel 2, and Landsat satellites provide data on 
vegetation development and stress. To monitor surface soil moisture, satellites such as the 
Advanced Scatterometer (ASCAT), Soil Moisture and Ocean Salinity (SMOS), Soil Moisture 
Active Passive (SMAP), and Sentinel 1, have been launched, to name a few. These observations 
are used to inform and constrain the parameterization of models, which in turn improves their 
accuracy and predictive capabilities.  

Moreover, remote sensing has also enabled a better evaluation of human activities in hydrological 
models (Famiglietti et al., 2015). Winsemius et al. (2009) demonstrated the use of combinations 
of available remote sensing products to force, calibrate, and/or validate hydrological models to 
increase understanding of hydrological behavior and the influence of human activities. However, 
satellite-derived products have inherent uncertainties and limitations, such as limited temporal 
coverage and significant uncertainties due to certain algorithms used to derive the desired 
geophysical product. Despite these limitations, the advancements in remote sensing have greatly 
improved our understanding and modeling of the Earth's surface and this is, in turn, helping 
improve LSMs. 
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2.4.3. Progress of LSMs in the modeling of the Mediterranean 
region   

Land Surface Models (LSMs) have evolved in the last years, they were designed originally to 
simulate the energy and mass balances of the Earth's surface until incorporating more physical 
and biological processes to meet the growing demands of the research and user communities, as 
discussed in the previous subsections and section 2.3. In recent years, there has been a growing 
interest in enhancing LSMs to better capture the effects of drought in arid and semi-arid regions, 
with improved physics and parameterizations aimed at improving the accuracy of hydrological 
response in LSMs’ simulations. 

In this context, the SURFEX platform has undergone a significant number of improvements, 
showcasing advancements that have expanded its capabilities and enhanced its performance. 
While some of these enhancements were previously mentioned (see section 2.3.2), numerous 
other advancements have significantly contributed to the platform's capabilities. For instance, 
researchers have focused on the development of a multi-layer approach to explicitly represent 
sub-surface heat transfer, resulting in more accurate simulations ( Boone et al., 2000; Decharme 
et al., 2016). Additionally, efforts have been made to refine soil hydrological processes, further 
enhancing the platform's representation of the water cycle ( Boone et al., 2000). Furthermore, 
(Boone & Etchevers, 2001) dedicated research towards improving the realism of snowpack 
simulations within SURFEX. More recently, Guinaldo et al. (2021) introduced a novel lake mass 
module called MLake (Mass-Lake Model) into the river-routing model CTRIP. This addition has 
allowed for more comprehensive modeling of lake dynamics and their interactions. In a similar 
vein, Sadki et al. (2023) incorporated the DROP (Dam-Reservoir Operation) model into the 
ISBA-CTRIP model, specifically focusing on its implementation within Spain. 

Recent other studies have been exploring ways to enhance the representation of physical processes 
in LSMs. For instance, Gelati et al. (2018) presented a hydrological assessment of atmospheric 
forcing uncertainty in the Euro-Mediterranean. They reported that atmospheric forcing 
uncertainty has a significant impact on hydrological processes, particularly in regions with high 
variability in precipitation and temperature. Leroux et al. (2018) implemented satellite-derived 
Surface Soil Moisture and Leaf Area Index products to improve the monitoring quality of land 
surface variables in the Euro-Mediterranean region and reported positive impacts. On the other 
hand, incorporating water vapor transfer into LSMs has been demonstrated to significantly 
enhance simulated soil moisture and evapotranspiration, particularly in semiarid regions (Garcia 
Gonzalez et al., 2012). 

Although there have been advancements in the representation of physical processes in LSMs there 
are still challenges (section 2.3.3) in accurately capturing atmosphere-land interactions in 
semiarid Mediterranean environments. Hogue et al. (2005) depicted that LSMs face difficulties 
in accurately capturing the spatial heterogeneity of semi-arid environments, leading to significant 
variations in their performance across sites with similar characteristics. 

In addition, the Mediterranean landscape is significantly influenced by anthropogenic processes 
such as reforestation and agricultural practices (including irrigation) and reservoir buildings. 
However, the incorporation of these anthropogenic processes within LSMs is important for 
regions like this, especially, since incorporating irrigation into LSMs is challenging since 
detecting and quantifying irrigation at a plot scale over large areas is difficult. This involves two 
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aspects: mapping irrigated areas and representing the physical process and impacts of irrigation, 
both of which present their unique challenges (Tramblay et al., 2020). 

2.4.4. Incorporation of the human dimension into LSMs 

The Earth's hydro-climatic components are intertwined with human factors, shaping the overall 
functioning of the Earth's system (Pokhrel et al., 2016). The schematic framework, depicted in 
Figure 2-7, illustrates the intricate linkages between human influences and the Earth system, 
providing insights into the pathways through which human activities can influence critical 
processes within the hydro-climatic system. 

 

Figure 2-7 Schematic illustrating the interconnections and impact pathways between human land-water 
management practices and the simulated land-atmosphere-ocean processes within Earth System 

Models (Pokhrel et al., 2016). 

Land Surface Models have focused on natural processes such as vegetation dynamics, soil 
moisture, and energy exchanges. Nevertheless, human activities have significantly impacted the 
natural water flows and storage on the land surface of the Earth (Vörösmarty & Sahagian, 2000; 
Rost et al., 2008; Sterling et al., 2013), highlighting the need for a comprehensive characterization 
of freshwater systems, as shown in Figure 2-1, that includes both their natural and human 
components (Oki & Kanae, 2006; Döll et al., 2016). Hence, to better understand the complex 
interplay between human activities and natural systems, current LSMs must incorporate 
anthropogenic factors into their representations, Figure 2-8.  

Although LSMs have the potential to incorporate human factors, their representation in current 
generation models is often limited to fully capturing the complexity of their interactions with 
natural processes, mainly because human representations are rather simple (Pokhrel et al., 2016; 
Wada et al., 2017). Thus, incorporating human activities into global LSMs remains a significant 
challenge. 
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Figure 2-8 Schematic representation of exchange between water and main human systems (Blyth et al., 
2021). 

The goal of this section is not to delve extensively into the existing literature on human impact 
modeling. Instead, its purpose is to provide an overview of the current status of large-scale 
hydrologic modeling within the context of how humans interact with water systems, particularly 
regarding reservoir management and irrigation practices. 

For instance, primarily advances have been focused on incorporating human activities with the 
main objective of assessing water resources availability and use at global to regional scales 
(Alcamo et al., 2003; Döll et al., 2009; Van Beek et al., 2011), and more recently progress in 
incorporating human land-water management into global land surface models, especially in land 
use change (particularly irrigation practices), reservoir operation, and groundwater (Figure 2-7).  

Some examples of studies that have incorporated human-water management into their schemes. 
For instance, Alcamo et al. (2003) integrated a water use model and a hydrology model, both 
global, creating the hydrological model, Water-Global Analysis and Prognosis (WaterGAP) that 
provides scenarios of changes in water resources. Haddeland et al. (2006) examined the effects 
of reservoir operation and irrigation water withdrawal on surface water fluxes at the continental 
scale in the Variable Infiltration Capacity (VIC; Liang et al., 1996) model. A reservoir operation 
scheme was implemented in the river routing model Total Runoff Integrating Pathways (TRIP; 
Oki & Sud, 1998) demonstrated that reservoir operations substantially altered monthly discharge 
(Haddeland et al., 2006), and more recently, Sadki et al. (2023) incorporate the DROP (Dam-
Reservoir OPeration) model into the ISBA-CTRIP scheme. Wada et al. (2011) listed several 
studies focused on the assessment of water stress through global hydrological models. In addition, 
recent advances in the representation of human activities in hydrological models have been 
extensively reviewed in the literature (Döll & Siebert, 2002; Nazemi & Wheater, 2015b, 2015a; 
Döll et al., 2016; Pokhrel et al., 2016; Wada et al., 2017). 

An expanding body of literature has increasingly emphasized the integration of irrigation into 
various LSMs. For instance, Takata et al. (2003) introduced irrigation and groundwater pumping 
into the MATSIRO LSM, thereby examining human-induced alterations to land surface water and 
energy balances. de Rosnay et al. (2003) incorporated an irrigation scheme into the ORCHIDEE-
LSM, investigating the regional repercussions of irrigation on the partitioning of energy, 
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differentiating between sensible and latent heat fluxes. Tang et al. (2007) integrated irrigation into 
the simulation of land surface hydrologic processes using a distributed biosphere hydrological 
model. In the case of LPJmL (Rost et al., 2008), attributed the irrigation demand to surface water 
and groundwater resources. Ozdogan et al. (2010) incorporated a satellite-derived irrigation data 
approach into the NOAH LSM to scrutinize the influence of irrigation on hydrologic fluxes and 
states within the LSM. On a global scale, Guimberteau et al. (2012) investigated the impact of 
irrigation on climate using the ORCHIDEE model, shedding light on its profound effects on the 
water cycle. Similarly, Leng et al. (2014; 2015) applied irrigation schemes across various global 
land surface models, including the Community Land Model (CLM), for offline applications. 

In addition to these offline studies, some researchers have directly incorporated water 
management, particularly irrigation, into online applications. These studies aim to investigate the 
climate effects of irrigation and the associated feedback mechanisms within the land water cycle, 
e.g., (Adegoke et al., 2003; Boucher et al., 2004; Lobell et al., 2009; Sacks et al., 2009; Saeed et 
al., 2009). 

Moreover, regional water management is a complex task, and current LSMs have limitations in 
accounting for dynamic irrigation water supply, flooding control, and hydropower production, 
which are crucial for realistic simulations of regional hydrological processes. These processes are 
increasingly important in the context of water scarcity and climate change. For instance, current 
LSMs predominantly assume optimal irrigation practices in their simulations, whereas accounting 
for regional deficit irrigation practices can significantly reduce water demand by up to 30% (Döll 
et al., 2014). 

While progress has been made in recent years to incorporate human impacts into large-scale 
hydrological models, there are still significant gaps and challenges. It is noteworthy to emphasize 
that most of these models are typically designed to operate in an offline mode, meaning they 
simulate the water cycle on land using external climate data as input and are not coupled with 
global or regional climate models. Thus, the integration of these schemes in online simulations is 
still a challenge (Pokhrel et al., 2016).  

The development of a common and standardized framework for the evaluation of the 
advancement of LSMs is another of the major challenges (Döll et al., 2016; Wada et al., 2017). 
This lack leads to a wide range of models with significant differences in model parameterization 
and representation of biophysical processes and human land-water management. Hence, inter-
comparison between different models and schemes is a relevant interest area for further 
development. Same mentioned in section 2.3.3, most of those limitations and challenges are also 
in common with the incorporation of water-human management into large-scale hydrological 
models. 

In the face of the urgent need to understand how Earth modifications, associated with human 
interactions, will affect our living conditions and the ecological and hydrological systems we rely 
on, the LSMs mustn’t be merely viewed as atmospheric boundary conditions but recognized as 
distinct own scientific discipline (Fisher & Koven, 2020). Finally, it is important to mention that 
LSM has evolved into a powerful and multidisciplinary field, with extensive applications in 
atmospheric science, ecology, water management, and hydrology. 

 



 

 

3. Area of study and materials 

In this section, the study area and data used in this research, together with the model applied to it, 
are described throughout this chapter. The study area utilized is introduced first, followed by a 
summary of the data and a comprehensive description of the model.  

 

3.1. Study area 

This study uses three study areas, which all lay within the larger domain of the  Pyrenees and all 
surrounding basins that drain this mountain range, which is the area of study of Chapter 6, the 
Ebro river basin, which is the focus of Chapter 5, and, finally, the hydrological system of the 
Canal de Aragon and Catalonia, which is the focus of Chapter 7.  

3.1.1. The Pyrenean Domain 

The Pyrenean domain covers the Ebro basin to the south, some basins that flow to the Bay of 
Biscay to the west, the Catalan and some Languedocian basins to the east, and the Adour-Garonne 
basins to the north as depicted in Figure 3-1.  
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Figure 3-1 Location of the study area and domain used for simulations. 

The Pyrenees are located on the isthmus of the Iberian Peninsula, between the Atlantic Ocean and 
the Mediterranean Sea, with a length of more than 400 km in the E-W direction and a maximum 
width of 150 km in its central part. The topography of the study area is very heterogeneous, as it 
includes the Pyrenees Mountain range, which reaches over 3000 m. at the highest points, and flat 
areas of the surrounding valleys, such as the Ebro Valley. The climate is predominantly influenced 
by Mediterranean features on its eastern side and Atlantic influences on its western side, with an 
alpine climate in the highest areas. Furthermore, the topography results in large spatial 
precipitation and temperature variability. 

In the Adour-Garonne River basin, the southeastern part is dominated by the Mediterranean 
climate, whereas the western part is influenced by Atlantic Ocean conditions. Precipitation varies 
on average from 600 mm in the middle part of the basin to 2000 mm in the south part and Atlantic 
coast. The precipitation decreases with both the topography and the distance to the Atlantic. 
Seasonally, precipitation has two maxima, one in winter and a second in spring. 

Similarly, on the Spanish side of the Pyrenees precipitation decreases from west to east and from 
north to south. Annual precipitation varies from 100 mm in the central Ebro Valley to more than 
2000 mm in the highest areas. The precipitation regime is characterized by high interannual 
variability (López & Justribó, 2010), particularly in Mediterranean areas, most of the annual 
precipitation occurs during spring and autumn. However in some regions the maximum 
precipitation occurs during the cold season (in the Atlantic areas). In the Pyrenees and the central 
Ebro Valley, the summers are mainly dry (López-Moreno et al., 2008, 2011). 

The Pyrenees, considered natural water towers for their surrounding basins, provide the water that 
satisfies the downstream demands for human and environmental needs (Immerzeel et al., 2019). 
The main water uses in the Adour-Garonne basin are agricultural and industrial. In the Ebro, water 
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demands by the agricultural sector represent 92% of the total water volume of the basin, this being 
the main water use in the basin (http://www.chebro.es/guest/uso-del-agua). This agricultural 
development was made possible by the construction of several dams that regulate the river flows 
and store water for dry periods. The large number of dams has caused major alterations in river 
regimes and reduced the magnitude of floods. Nevertheless, low flows were also affected, being 
reduced by half, on average, and by an order of magnitude in some cases, which is undesirable 
for ecological purposes (environmental flows) (Batalla et al., 2004). Additionally, the ever-
expanding human activity, mainly irrigation, has increased the pressure on the water resources of 
the basin. 

3.1.2. Description of the Ebro basin 

The Ebro River basin is located in the Iberian Peninsula, the largest basin of Mediterranean Spain 
with an extension of 85,534 km2 (Figure 3-1). It is surrounded by a number of mountain ranges. 
To the north, the Pyrenees and the Cantabrian Mountain ranges shape the edge of the basin. To 
the south, the Iberian range marks the southern boundary of the basin. To the east, the Catalan 
coastal ranges extend along the Mediterranean Sea and enclose the basin from the east. The basin 
has a heterogeneous topography, the maximum elevation exceeds 3000 m at the peak of Aneto 
Mountain, and the mean elevation in the central valley is around 200 m. 

Due to the location, the spatial and temporal distribution of the precipitation of the Ebro basin is 
complex and varied, attributable to relief and the Atlantic and Mediterranean influences, as 
mentioned in the previous section. The Ebro basin can experience high rainfall events, particularly 
during the autumn and winter months when the region is most likely to receive significant 
precipitation but can occur at any time of year. Overall, the combination of these weather 
influences on precipitation creates a unique and dynamic climate in the Ebro basin. 

Moreover, the Ebro basin has a complex hydraulic infrastructure that serves various purposes, 
including irrigation, energy production, flood control, and navigation. The hydraulic 
infrastructure in the Ebro basin includes large reservoirs, dams, and canals, which are used mainly 
to store and distribute water for irrigation and hydropower generation purposes. This 
infrastructure plays a crucial role in the management of water resources in the region and 
contributes to its economic and social development. 

3.1.2.1. Exposure to drought 

The Ebro basin is an example of a Mediterranean region heavily reliant on water sources 
originating in mountainous areas like the Pyrenees, which face significant challenges. Several 
factors have converged to intensify the pressure on its water resources. The expansion of irrigation 
zones, the growth of industrial zones, and the development of major cities have all led to increased 
demands on this critical water supply, as mentioned previously. In the Ebro basin, there are 125 
reservoirs. Together, they can hold about 8000 Hm3. They are mainly used to provide water for 
over 900,000 ha of farmland that needs irrigation, and they also help run 360 hydroelectric power 
plants (CHE, 2022). 

One key factor that exacerbates the Ebro basin's vulnerability to drought is the complex 
relationship between climate fluctuations and vegetation in its headwaters (Beguería et al., 2003; 
López-Moreno et al., 2008). These dynamics are the primary drivers behind the concerning 
reduction in river flows in the Pyrenean rivers. Furthermore, to manage water resources and 
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mitigate floods, numerous dams were constructed in the region. However, these dams, while 
serving their intended purpose, have significantly altered the natural flow of rivers (López-
Moreno & García-Ruiz, 2004). Yet, this reliance on engineered structures, combined with the 
inherent variability of water resources, has made the basin more susceptible to drought. 

An analysis of a prolonged drought period from 2005 to 2008 has shed light on the Ebro basin's 
vulnerability and exposure to drought. While agriculture and food production suffered the most 
during this extended drought, its effects rippled through various sectors. Hydropower production 
faced significant reductions, as well as water supplies, and recreational activities were 
constrained, and the overall ecosystem functioned less effectively (Pérez y Pérez & Barreiro-
Hurlé, 2009; Hernandez-Mora et al., 2013). Moreover, different drought events have been 
reported in the literature (Linés et al., 2017, 2018). This highlights the urgent need for holistic 
strategies to drought management recognizing the intricate web of dependencies within the Ebro 
basin. 

3.1.3. Canal de Aragón y Cataluña (CAyC) 

The Canal de Aragón y Cataluña (hereafter, CAyC) is a strong, and one of the most important, 
irrigated areas located in the northeastern part of the Ebro basin with a size of 98,000 ha (Figure 
3-2). This irrigation district is supplied by the canal with the same name (CAyC). This canal has 
a length of 124 km with a source point at the Barasona or Joaquín Costa Reservoir, constructed 
along the Ésera River. Additionally, it receives the water of the Noguera-Ribagorzana River from 
the Santa Ana reservoir, through the Canal de Enlace which has a 6 km longitude. 

There are two defined regions within the irrigated zone: an upstream zone (54,000 ha) supplied 
by the Barasona reservoir and a downstream zone supplied by the Santa Ana reservoir, with 
44,000 ha.  

 

Figure 3-2. Location of the CAyC and the two reservoirs that supply this irrigated area. 
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The Barasona reservoir has a maximum capacity of 92 Hm3, whereas Santa Ana has 236 Hm3. 
In recent years, the San Salvador reservoir has been put into operation, which along with the 
Barasona reservoir, manages the water in the upstream zone on the CAyC. However, the San 
Salvador reservoir is not included in this research. 

The primary crops grown in the area consist of fruit orchards, including apples, pears, peaches, 
and nectarines, and extensive herbaceous crops like maize, alfalfa, and barley. The region has 
seen an increase in wine vine cultivation, though it remains largely concentrated in certain areas. 

3.2. Data 

For hydrological analysis, the availability of time series of different variables is required. Our 
region of study is rich in data. However, observational data are not always available, data quality 
is sometimes too low, or they include processes that are not simulated, such as human processes. 
Hydrological models can be employed as a solution to overcome these problems by extending 
data sets, simulating unobserved variables, and simulating the natural regime, however, models 
also require data, to be forced or for calibration and validation. In this sub-section, the 
meteorological and hydrological data used are described. 

 

3.2.1. Precipitation data 

Here, a comprehensive overview of the precipitation data utilized, with a specific focus on 
Chapter 5, is provided. 

3.2.1.1. Observational data 

The observational data comprise 11 rainfall gauging stations with hourly precipitation records, 
selected from the SAIH (Automatic Hydrologic Information System, in its original acronym in 
Spanish) of the Ebro River basin authority (Confederación Hidrográfica del Ebro, in Spanish) 
(Table 3-1). The stations were chosen so that data the time series would have data during the 
period (2005 to 2014).  

The stations are distributed over the Ebro basin, thus representing the diversity of conditions 
found in the basin (mountain vs valley, Atlantic vs Mediterranean). Figure 3-3 and Table 3-1 
show the location and details of rainfall gauge stations used it. 
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Figure 3-3 Location of the selected rain gauge stations, in yellow circles; the streamflow stations, in 
red; stations in black circles are defined as near-natural. The river network is depicted in blue. 

 

Table 3-1. Location of the selected stations 

ID Station Name Lat (°) Lon (°) Alt (m) Start End 

9027 EBRO TORTOSA 40.812 0.520 25 04/06/2004 01/09/2014 

9102 NOGUERA 42.275 1.034 535 01/10/1997 01/09/2014 

PC04 ZARAGOZA 41.644 -0.886 215 01/01/1998 01/09/2014 

9074 ZADORRA 42.677 -2.897 455.1 01/10/1997 31/12/2017 

9095 VERO 42.029 0.132 320 01/10/1997 31/12/2017 

9256 SEGRE 42.373 1.814 1030.6 02/07/1998 31/12/2017 

9259 SALAZAR 42.914 -1.055 796 01/01/2005 31/12/2017 

9271 ARAGON 42.720 -0.525 1045 01/10/1997 31/12/2017 

9282 ARAGÓN EN MARTES 42.591 -0.883 544 01/01/2005 31/12/2017 

P008 LAGRAN 42.623 -2.584 750.5 01/10/1997 31/12/2017 

P016 ANSO 42.757 -0.832 900 01/10/1997 31/12/2017 
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3.2.1.2. High-resolution RCM simulation: CNRM-ALADIN63 

The CNRM-ALADIN model, Aire Limitée Adaptation dynamique Développement InterNational, 
is a regional climate model (Daniel et al., 2019; Nabat et al., 2020), is used by the Centre National 
de Recherches Météorologiques (CNRM) as a regional climate model. This model uses a 
microphysical parameterization scheme to simulate the rain and snow amounts at the surface. 
This ALADIN simulation is driven by Era-Interim (Dee et al., 2011), which guarantees 
synchronicity with actual weather and is part of the EURO-CORDEX initiative, the Europe 
branch of the Coordinated Regional Downscaling Experiment (Jacob et al., 2014).  

The CNRM-ALADIN model provides a climate simulation at a fine spatial and temporal 
resolution of 0.11° (12 km approx.) and, most importantly, a time resolution of one hour. The area 
covers the European domain (http://www.euro-cordex.net/, last access: 10/09/2022), version 6.3 
is used in this study. 

3.2.2. Hydrological data 
3.2.2.1. Observed streamflow data 

The observational streamflow database used, especially in Chapter 6, was gathered by the 
EFA210/16 PIRAGUA project (Zabaleta et al., 2022). It consists of daily streamflow records 
from the different river basin authorities that manage the water in the study area. For the analysis, 
a final database comprising 392 gauging stations that encompass the period between September 
1979 and August 2014 (35 years) was considered, of these, 104 were selected as natural and near-
natural gauging stations analyzing the data and metadata, as indicated by the Figure 3-3 with black 
circles. The selection was carried out following the criteria below: 

1. Only stations with at least 20 years of data within the analysis period were considered. 

2. Data gaps of less than 10% of the total record length (these gaps were not filled) were 

allowed. 

3. Flows must have a natural or near-natural hydrological regime, i.e. the stations must not 

be downstream of important human-influenced areas (e.g., reservoirs, irrigation areas). 

For calibration purposes (section 6.3.2.3), from the selection of natural stations previously done, 
outlet stations with series starting in 1979 and with at least 30 years of records were selected. 
Figure 3-4 shows the final selection, which resulted in 31 outlet stations (in total 53 sub-
catchments if the nested catchments are considered).  

http://www.euro-cordex.net/
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Figure 3-4 Selected outlet gauging stations of near-natural basins. 

3.2.2.2. SIMPA model (reference) 

SIMPA (”Integrated Precipitation-Streamflow Modelling System”, in its original acronym in 
Spanish) is a conceptual and semi-distributed hydrological model developed in the Centre for 
Public Works Studies and Experimentation (CEDEX) in Spain (Estrela & Quintas, 1996). SIMPA 
simulates the natural water balance and provides information about the main hydrological 
variables (precipitation, evapotranspiration, streamflow) at a monthly time step. SIMPA is used 
by the Spanish authorities for water resources evaluation. In this research, the focus is solely 
placed on the streamflow data provided by SIMPA. 

3.2.3. Physiographic data 

Within this thesis (explicitly section 6.3.2.3), SURFEX's default physiographic database 
ECOCLIMAP II (Faroux et al., 2013) was used. It has a spatial resolution of 1 km and includes 
an ecosystem classification as well as a consistent set of land surface parameters. 

In contrast to commonly used land cover products like Corine Land Cover and Global Land 
Cover, ECOCLIMAP-II has a new division of the existing classes with a better regional character 
obtained from the climatic environment (latitude, proximity to the sea, topography). The land 
cover parameters provided in this dataset include root depth, minimal stomatal resistance, albedo, 
and Leaf Area Index (LAI). The temporal variables are represented using a climatology (i.e. a 
mean annual cycle). 

Additionally, the Copernicus NDVI product, which was obtained from 
(https://land.copernicus.eu/global/products/ndvi, last access 2022/06/07) was utilized. 

https://land.copernicus.eu/global/products/ndvi
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3.2.3.1. ESDAC database 

The European Soil Data Centre (ESDAC) was initiated in 2009 by the European Union (EU) as 
a project with the overarching objective of facilitating informed decision-making. ESDAC 
provides an invaluable repository of soil-related data and knowledge to policymakers, 
researchers, and diverse stakeholders. Encompassing a rich spectrum of soil-focused information, 
the database includes comprehensive datasets on topics ranging from soil properties and erosion 
to soil organic carbon, biodiversity, and contamination. ESDAC, overseen by the European 
Commission's Joint Research Centre is an integral component of the EU's broader commitment 
to promoting sustainable land management practices. 

This database was employed in this research to enhance the default model's soil information is 
thoroughly expounded upon in Chapter 6, Section 6.2.2. This section provides a detailed 
exploration of how it was utilized to refine the model's representation o\f soil. For a 
comprehensive understanding of the results, we invite readers to explore Appendix A.2 

 

3.2.4. Information on anthropogenic influences 

In this section, a comprehensive and detailed overview of the data related to human-water 
management, specifically utilized in Chapter 7, is presented. 

As mentioned in section 3.1.2, the Ebro basin features a hydraulic infrastructure that serves 
multiple purposes, such as supporting irrigation and playing a decisive role in the region's 
socioeconomic progress. To obtain information about reservoirs, data provided from the 
automatic measurement stations of the Automatic Hydrologic Information System (SAIH, in 
Spanish) was utilized.  These stations provide information, such as storage, inflows, and releases. 
These data are available from https://ceh.cedex.es/anuarioaforos/default.asp (last access: 
2022/11/30). Data from both reservoirs, Barasona (station code: 9848) and Santa Ana (station 
code: 9852) are available from 1944 to 2019 and from 1961 to 2019, respectively. In this study, 
the period from 01/09/1979 to 01/08/2014 was utilized. 

The Ebro River Basin Authority (Confederación Hidrográfica del Ebro, CHE) holds the 
responsibility of making operational decisions regarding drought and water allocation. To 
establish a robust framework for these decisions, CHE spearheaded the development of a 
pioneering drought management plan in 2007 (CHE, 2007), setting a precedent within Europe. 
This plan outlines specific indicators to guide decision-making, these indicators are based for 
instance on the storage level of water in reservoirs and serve as the primary indicator. In addition, 
other river basin authorities have implemented similar management plans. Hence, the CHE 
defines indicators for the different areas of the basin. 

In the context of this plan, the CHE identifies situations of prolonged drought (a natural situation 
of reduced precipitation with a consequent decrease in the water supply) and situations of 
temporary scarcity (problems in meeting demands due to a reduction in the available resource). 
For the latter, the storage volume in the corresponding reservoirs has been selected as an indicator. 

The CHE establishes distinct shortfall indicators for the Ésera and Noguera-Ribagorzana river 
basins (CHE, 2022). The volume of water stored in the Barasona reservoir serves as the basis for 

https://ceh.cedex.es/anuarioaforos/default.asp
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defining the short-term scarcity thresholds (umbrales de escasez coyuntural) specific to the Ésera 
River basin, as outlined in Table 3-2.  

Table 3-2 Thresholds of short-term scarcity for Barasona reservoir (volume stored in Hm3) 

Threshold Oct Nov Dec Jan Feb Mar Apr May Jun Jul Ago Sep 

Prealert 45.0  60.0  68.0  68.0  68.0  68.0  74.0  82.0  82.0  60.0  33.0  24.0  
Alert 35.0  45.0  50.0  53.0  53.0  53.0  60.0  64.0  64.0  45.0  24.0  18.0  
Emergency 24.0 30.0  36.0  42.0  42.0  42.0  45.0  50.0  50.0  36.0  18.0  14.0  

 

Whereas, indicators for the Noguera-Ribagorzana River basin are determined by considering the 
cumulative reserves in the Santa Ana, Canelles, and Escales reservoirs, as depicted in Table 3-3. 
It is worth noting that the primary purpose of the Canelles and Escales reservoirs is energy 
production, which is outside the scope of this research focused on irrigation. Therefore, these 
reservoirs are not considered in the simulation, and only the Santa Ana reservoir is included in 
the analysis. 

In this analysis, the thresholds applied to the Santa Ana reservoir were calculated as a proportion 
of the total volume (sum of the capacity of the three reservoirs). 

Table 3-3 Thresholds of short-term scarcity for Santa Ana, Canelles, and Escales reservoir (cumulative 
volume stored in Hm3) 

Threshold Oct Nov Dec Jan Feb Mar Apr May Jun Jul Ago Sep 

Prealert 428.0  442.6  460.9  492.0  530.5  551.3  572.0  591.0  588.8  528.4  464.6  438.6  
Alert 325.6  334.4  345.4  364.0  387.1  399.6  412.1  423.4  422.1  385.9  347.6  332.0  
Emergency 248.9  253.2  258.7  268.1  279.6  285.9  292.1  297.8  297.1  279.0  259.8  252.0  

 

Environmental flows are defined for different areas of the Ebro basin (CHE, 2022), Table 3-4 
shows the ecological flows to be respected for the two rivers downstream of the respective 
reservoirs. 

Table 3-4 Monthly environmental flows (in Hm3) 

River Oct Nov Dec Jan Feb Mar Apr May Jun Jul Ago Sep 

Barasona 1.88 1.81 1.88 1.88 1.45 1.61 1.81 2.41 2.33 1.88 1.61 1.56 

Santa Ana 4.12 3.8 3.72 3.75 3.39 3.41 3.75 4.22 4.52 3.81 3.72 3.67 
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3.3. The SASER hydrometeorological modeling chain  

The SASER (SAfran-Surfex-Eaudysee-Rapid) suite, is a distributed and physically-based 
hydrometeorological modeling chain consisting of three elements: a meteorological analysis 
system, that generates the meteorological forcing dataset from observational data;  a LSM, which 
simulates the energy and water balance between the land surface and the atmosphere; and a 
routing scheme which simulates the streamflows. In this section, a brief explanation of these 
elements is provided.  

3.3.1. SAFRAN 

Systéme d’Analyse Fournissant des Renseignements Atmosphériques á la Neige, SAFRAN, 
(Durand et al., 1993) is a meteorological analysis system, which was primarily for a snow model 
and later developed by forcing LSM models (Habets et al., 2008; Quintana-Seguí et al., 2008), 
that produces the meteorological gridded forcing dataset. 

SAFRAN uses an optimal interpolation algorithm  (Gandin, 1966) which combines in-situ 
observations and a first guess to analyze different screen-level meteorological variables 
(precipitation, temperature, relative humidity, and wind speed). For all variables, except 
precipitation, the analysis is performed every six hours and then the data is interpolated to the 
hourly time step fitting the appropriate function for each variable. To take advantage of the dense 
network of daily precipitation observations, SAFRAN analyzes precipitation at a daily time step. 
To interpolate to the hourly time step, relative humidity is used, therefore the higher the relative 
humidity, the higher is the precipitation. More information on the methodology used in SAFRAN 
can be found in (Quintana-Seguí et al., 2008). 

In a Mediterranean setting, where precipitation patterns are often characterized by a high degree 
of spatial variability and rainfall events occurring sporadically and often at high intensities 
(Herrera et al., 2010), the interpolation method referred to results in precipitation distributions 
that are overly smooth, with very low-intensity levels, and do not accurately capture this 
variability. The above represents a drawback in the current SAFRAN system, especially for 
regions that predominate Mediterranean conditions. 

SAFRAN provides hourly meteorological data which is then ingested by the LSM. The SAFRAN 
dataset used here is PIRAGUA_atmos_analysis (Quintana-Seguí et al., 2022), which was created 
within the EFA210/16 PIRAGUA project and corresponds to a union of the French (Quintana-
Seguí et al., 2008; Vidal et al., 2010) and the Spanish (Quintana-Seguí et al., 2016, 2017) 
implementations of SAFRAN. It has a temporal resolution of one hour and a spatial resolution of 
2.5 km, which covers the whole domain depicted in Figure 3-1. 

3.3.2. SURFEX 

The LSM used by SASER is SURFEX (Surface Externalisée, in French) a modeling platform 
developed and maintained by Metéo-France (Masson et al., 2013; Le Moigne et al., 2020). In 
offline mode, the LSM SURFREX is driven by the SAFRAN atmospheric forcing to simulate the 
water transfer in the soil and surface hydrology. Figure 3-5 shows the main schemes of the 
modeling platform. 
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Figure 3-5 SURFEX (Surface Externalisée, in French) modeling platform (source: http://www.umr-
cnrm.fr/surfex/). 

SURFEX provides schemes for natural surfaces, urban areas, lakes, and oceans. In this research, 
the focus is solely placed on the natural surfaces. An integral part of the SURFEX model is the 
Interaction Soil-Biospére-Atmosphére (ISBA) scheme (Noilhan & Planton, 1989; Noilhan & 
Mahfouf, 1996), which is used for modeling natural soils. Since the ISBA scheme is modular, 
different versions of ISBA have been developed, e.g. ISBA-3L (Boone et al., 1999), which 
includes a three-layered description of the soil; and ISBA-DIF (Boone et al., 2000; Habets et al., 
2003; Decharme et al., 2011), that consider a soil multilayer diffusion scheme. 

The ISBA scheme represents the land surface as a single, vertically-resolved soil column, with 
the vegetation and soil layers being modeled as a combined entity. This scheme describes the 
physical processes that occur on the land surface, including evapotranspiration, soil water balance, 
and heat transfer. Even though it is unable to simulate groundwater processes. In this thesis, 
simulations were performed using the SURFEX version 8.1 which uses the ISBA-DIF scheme. 

3.3.2.1. Irrigation scheme in SURFEX 

Irrigation is a feature that has been incorporated into many crop models, nevertheless, 
representation on most LSMs is not fully explicit (Verburg et al., 2016). With this in mind, a finer 
irrigation scheme has been recently developed (Druel et al., 2022) within the SURFEX-ISBA 
model, in which a detailed representation of the irrigation practices are incorporated, Figure 3-6. 

In this new scheme, SURFEX v.9, three main irrigation practices (sprinkler, flood, and drip 
irrigation) are considered. Irrigation can be activated when soil moisture content drops (producing 
a limited vegetation growth) below a threshold value. The irrigation scheme takes into account 
soil moisture, irrigation frequency, and the amount of water applied to the crops (Druel et al., 
2022). The above, allows us to estimate a realistic amount of irrigation water. In this thesis, 
simulations at the same spatial resolution of SAFRAN were carried out by SURFEX v.9. 

 

http://www.umr-cnrm.fr/surfex/
http://www.umr-cnrm.fr/surfex/
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Figure 3-6 Overview of the new irrigation algorithm illustrating the sequential steps involved in its 
implementation (Druel et al., 2022). 

3.3.3. Eaudyssée-RAPID 

The runoff and drainage generated by SURFEX must be postprocessing to determine the water 
distribution on the surface, which is the reason why a routing scheme was implemented.  The 
Routing Application for Parallel Computation of Discharge (RAPID) scheme (David et al., 2011) 
was chosen. 

RAPID is a river network model designed to compute the river flow and estimate the discharge 
of water from a river basin. This model uses a matrix-based version of the Muskingum method, 
which allows us to calculate the flow and volume of water in all reaches of the river network, and 
not only in the basin outlet (David et al., 2011). To link the SURFEX’s outputs with the RAPID 
model, the hydro-system Eaudysée  (Saleh et al., 2011; Vergnes & Habets, 2018) was used.  

The Eaudyssée system, which was designed to address water resources and quality in regional 
scale river basins, is a suite of hydro(geo)logical models that simulate the movement of water 
through the soil. Four distributed modules form the core of the model and represent the major 
components of the terrestrial water cycle: surface, unsaturated, saturated zone (aquifer), and river 
network (Saleh et al., 2011). 
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This system has a modular design that allows for flexibility in the selection and implementation 
of different models and tools. This modular approach makes it possible to tailor the system to the 
specific needs of different regions and applications. 

3.3.4. Limitations of the SASER model 

Some limitations within the current SASER implementations, specifically from the SURFEX 
model, are that: (i) There is no lateral flow between SURFEX grid cells; (ii) there is no 
bidirectional interaction between the river and the alluvial aquifer; and (iii) groundwater processes 
are not simulated. This translates into a fast reaction between runoff and precipitation. 

Another limitation of the SASER hydrometeorological modeling chain is that requires significant 
computational resources to run when large domains are simulated at high resolution, which can 
be a limiting factor for some users, especially those with limited access to high-performance 
computing resources. 

Finally, the SASER model involves some simplifications of the real hydrological system. For 
example, the model may not fully capture, or do crudely, the effects of human activities, such as 
irrigation practices or reservoir operation, on the hydrological cycle. In addition, it is important 
to highlight that the irrigation scheme implemented in this study does not incorporate water 
conservation practices. Specifically, no direct connection has been established between the water 
required for irrigation and the available water in the reservoir. As a result, the irrigation water is 
generated independently, without considering the overall water balance or the potential scarcity 
of water resources. 

 

 
 



 

 

4. Methodological framework 

In this chapter, an overview of the general methodological framework utilized in this research is 
presented. Throughout the chapter, the different approaches used to improve the SASER-
hydrometeorological modeling chain are briefly explained it. This provides readers with a 
comprehensive understanding of the overall research methodology. 

 

4.1. Pathway to improve the hydrologic modeling in the 
SASER model 

While LSMs estimate surface state variables at high spatial and temporal resolutions, as discussed 
in the previous chapter. They are subjected to uncertainties in the input data to force the model, 
improper parameterization, and lack of or inadequate physical process representations (Clark et 
al., 2015). These limitations can affect the accuracy of simulations made by the LSMs. Figure 4-1 
presents the pathway followed to improve different aspects of the SASER modeling chain. 
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Figure 4-1 Pathway used to improve the hydrologic modeling. 

In line with the significant advancements made to LSM in recent years described in section 2.1, 
the SASER modeling chain aims to further improve hydrologic modeling. The use of high-
resolution data and remote sensing data can help to improve the initialization and constraint of 
the model (Wood et al., 2011), thereby increasing the accuracy of the simulated hydrologic 
variables. Thus, the initial focus is placed on the physical (empirical parameter dominates runoff 
generation) and physiographic (soil information) parametrization to improve the SURFEX-LSM 
model. 

Another way forward to improve hydrologic modeling in LSMs is by using higher-quality forcing 
data. The term "forcing data" is used to denote the inputs that drive the model, including 
precipitation, temperature, and solar radiation. Accuracy and high temporal and spatial resolution 
can help to improve the realism of the hydrological response. In this sense, the hourly distribution 
of precipitation, as well as the corresponding intensities, in SAFRAN forcing were improved to 
enhance the representation of temporal precipitation patterns and their impact on runoff. 

On the other hand, LSMs are not coupled to a groundwater scheme or do not directly simulate 
groundwater processes (which is the standard practice), thus encountering difficulties in 
representing the slow component of the flow, as it is often heavily influenced by underground 
water processes. This is observed in the case of SASER, where the representation of the slow 
component of the flow is challenging due to the absence of direct simulation of groundwater 
processes. To address this limitation and enhance the representation of the slow component of the 
hydrological response within SASER, a conceptual reservoir was implemented based on the 
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formulation derived from rainfall-runoff models. This incorporation aims to improve the 
simulation of low-flow conditions. 

Finally, even though progress made so far in LSM, as discussed early in section 2.4.4, most of the 
LSMs have not yet integrated or do crudely,  the impacts of human activities (e.g. irrigation, 
reservoir operation, withdrawal groundwater) on their formulation, which reinforces the necessity 
to develop models that take into account the human land-water management in LSMs (Pokhrel et 
al., 2016; Hanasaki et al., 2018; Pongratz et al., 2018; Boone et al., 2019; Yokohata et al., 2020). 
Thus, incorporating these human activities into the SASER modeling chain is essential to provide 
a better representation of the coupled natural-human system. Consequently, it makes it possible 
to analyze drought propagation in a human-modified context.  

4.2. Improvements in the SASER modeling chain 

In this section, a general description of the approaches used to improve the hydrological response 
of the SASER model is presented. Each modeling approach is treated in detail in the chapter in 
which it is used. Additionally, a section on the different metrics employed to evaluate the 
performance of the models included in this research is included. 

4.2.1. Improvement to precipitation in SAFRAN forcing 

Precipitation plays a vital role in the water cycle as it influences the availability of water for 
various purposes. This, in turn, affects the performance of Land Surface Models (LSMs) as 
precipitation data is the primary input for these models. Hence, the accuracy and dependability of 
LSM simulations depend on the quality of precipitation data used. Therefore, obtaining high-
quality precipitation data is crucial for producing precise and reliable LSM simulations. 

In this context, the aim is to enhance the precipitation input data for the hydrological model 
(Chapter 5). This is achieved by utilizing a linear correction method, which is applied to adjust 
the hourly precipitation distribution of SAFRAN to a more realistic distribution, obtained from 
the regional climate model (CNRM-ALADIN). The correction method provides a more accurate 
representation of the precipitation patterns in the study area. 

The new precipitation dataset, with improved intensities, is then used as input to the SURFEX-
LSM model to evaluate the impact on hydrological response. This effort represents a crucial step 
towards improving the overall performance of the hydrological model in simulating the 
hydrological response. 

4.2.2. Attempts to improve inner model parameters 

Our initial efforts were aimed at improving the hydrological simulation, both for low and high 
flow conditions, as mentioned early in this chapter. These involved (i) calibrating the internal 
parameters that controlled the runoff generation and (ii) enhancing the physiographic information. 
Despite these efforts, these attempts did not result in success (section 6.2).  

The initial step involved determining the optimal value of the key empirical parameter, runoff b 
(section 6.2.1), which governs runoff generation in the model. To achieve this, a series of 
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simulations were performed, systematically varying the value of runoff b. The analysis led to the 
conclusion that the default value of runoff b (0.5) was already deemed suitable.  

Subsequently, an investigation was conducted to explore the possibility of calibrating the value 
of runoff b in a distributed manner within the domain, using physical information. For this 
purpose, a simulation was carried out, employing the Indice de Développement et Persistance des 
Réseaux (IDPR in French, Mardhel et al., 2021). However, the simulation did not yield positive 
results, and no clear and direct relationship was found between the IDPR and the value of runoff 
b.  

The following stage involved an attempt to improve the representation of soil information by 
utilizing the ESDAC database, section 6.2.2. For this purpose, simulations were performed 
whereby the default soil information in the SURFEX model was modified. This yielded a barely 
noticeable improvement in the hydrological response, adding to the uncertainty associated with 
the ESDAC database. Therefore, it was decided to maintain the default information of the 
SURFEX model. 

Notwithstanding these attempts, the calibration of the internal parameters of the SURFEX model 
could not be improved to enhance the simulation of hydrological processes. As a result, the 
decision was made to maintain the default configuration and shift the focus toward investigating 
ways to enhance the simulation of low flows. 

4.2.3. Improvement of low-flow simulation in the SURFEX model 

In this phase, specific attention is given to the enhancement of the low flow simulation (section 
6.3), considering that one of the main limitations is that the SURFEX model does not have a 
groundwater component (as mentioned in section 3.3.4). The choice of an approach to improve 
the low-flow simulation is not straightforward. In this research, a conceptual approach, common 
in hydrological models, to improve the representation of the slow component of the streamflow 
is implemented. 

Two strategies were used to calibrate the new parameters associated with the conceptual reservoir 
added to the modeling chain: (i) a classical calibration approach (catchment-by-catchment), and 
(ii) a regionalization approach. 

In the first one, the parameters of the conceptual reservoir model were determined on a catchment-
by-catchment basis and calibrated against locally observed streamflow data, thus resulting in 
semi-distributed parameters. Whereas, the regionalization approach, which links physiographic 
information with reservoir parameters through linear equations, uses a genetic algorithm to obtain 
the optimized parameter set. The key benefit of it is that allows us to determine the new empirical 
parameter of the conceptual reservoir in basins where calibration is not possible (ungauged or 
human-influenced basins) 

4.2.4. Adding human water management to the SASER model 

A critical aspect of hydrological management is diagnosing and forecasting drought, particularly 
in regions where water is already limited. LSMs have the potential to provide valuable insights 
into the evolution of drought conditions, helping water managers make informed decisions 
(Quintana-Seguí et al., 2020). Moreover, drought is influenced by various factors, such as climate 
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and catchment controls, but in many regions, it is now also driven by human activities like 
reservoir building, irrigation, and groundwater abstraction. 

With this in consideration, in Chapter 7, the focus is shifted towards assessing the impact of 
human activities, particularly irrigation, on the water budget and drought propagation. To achieve 
this, a simplified water management model was employed to simulate the reservoir operation in 
a human-influenced scenario, with the purpose to investigate the relationship between agricultural 
drought, linked to evapotranspiration, and hydrological drought in such a human-influenced 
environment. 

Finally, to understand the drought processes, drought characteristics (duration, intensity, and 
timing) need to be identified, for which different approaches can be used, the choice and 
implementation of this approach are important as it can result in different conclusions. The 
threshold level method (Yevjevich, 1967; Hisdal et al., 2004; Fleig et al., 2006) was employed in 
this analysis, whereby a drought condition is defined when the variable falls below a specific 
level. This approach allows us to easily identify drought events as close to the original time series 
as possible and compare the changes induced by human activities. 

 

4.2.5. Criteria for evaluation of model performance 

The performance of the simulated variables needs to be evaluated at different stages of this 
research, including the default model and each improvement approach. The model performance 
consists in evaluating how to correctly be reproducing observed variables (Mathevet et al., 2006). 
The agreement between simulated and observed variables was evaluated by different metrics and 
depended on each variable (precipitation, discharge, or storage). In this research, different criteria 
were used as an objective function for each of the variables that were simulated. Therefore, in this 
sub-section, the metrics used in this research are described. 

4.2.5.1. Precipitation forcing 

In Chapter 5, our objective is to improve the distribution of hourly precipitation. Therefore, to 
evaluate the corrected precipitation against observations the Perkins Skill Score (PSS; Perkins et 
al. (2007)), which evaluates the similarity between observed and modeled frequencies was 
calculated 

𝑃𝑃𝑃𝑃𝑃𝑃 =  �𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍1,𝑍𝑍2)
𝑚𝑚

1

 (4.1) 

Where m is the number of bins, Z1,2 are the frequencies of values from the observed and 
simulated data, respectively. This metric measures how well the observations and modeled 
frequencies coincide (De Troch et al., 2013). This score ranges from zero (no overlap) to one for 
a perfect match as illustrated in Figure 4-2. 
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Figure 4-2 Schematic representation of Perkins Skill Score. 

4.2.5.2. Hydrological information  

In Chapters 6 and 7 use the Kling-Gupta Efficiency, KGE (Gupta et al., 2009), a statistical 
measure that combines information from both correlation and bias between the modeled and 
observed data. The KGE ranges from 0 to 1, with a value of 1 indicating perfect agreement 
between the modeled and observed data. It is used to evaluate the performance of a hydrological 
model and thus was selected as objective function. The KGE is defined as follows: 

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −  �(1 − 𝑟𝑟)2 + (1 − 𝛼𝛼)2 + (1 − 𝛽𝛽)2)   (4.2) 

where r is the Pearson’s correlation coefficient, α is the bias component and β represent the ratio 
of discharge variance: 

𝛼𝛼 =
𝑚𝑚𝑠𝑠

𝑚𝑚𝑜𝑜
 and 𝛽𝛽 =

𝜎𝜎𝑠𝑠
𝜎𝜎𝑜𝑜

 (4.3) 

m and σ represent the mean and standard deviation, respectively. Similarly, subscripts s and o 
represent simulated and observed discharge, respectively. 

The KGE over untransformed discharge puts more weight on high flows (Garcia et al., 2017), and 
since this analysis is focused on low flows (Chapter 6), a root square transformation, KGE (Q1/2) 
was used. It allows balancing the weight on low and high flow without losing the physical 
meaning (Santos et al., 2018). 

For performance metrics is important to have a benchmark to determine when the model 
performance is strength or not (Clark et al., 2021). The more traditional Nash-Suttclife (NSE) 
criterion (Nash & Sutcliffe, 1970) uses the average of the observations as a benchmark, this means 
that NSE>0  if the model performed better than the benchmark. Knoben et al. (2019), 
demonstrated that using the same reasoning (NSE > 0) in the KGE criteria is not consistent. They 
showed that KGE values greater than -0.41 indicate an improvement over the mean flow 
benchmark. Therefore, a KGE value of -0.41 as the baseline value was used. 
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Only within the context of the genetic algorithm (section 6.3.2.3), which must evaluate the 
goodness of fit of each member of the population at each step, a transformation of the KGE was 
applies: 

𝐾𝐾𝐾𝐾𝐾𝐾𝐵𝐵 =
𝐾𝐾𝐾𝐾𝐾𝐾

2 −𝐾𝐾𝐾𝐾𝐾𝐾
 (4.4) 

This transformation avoids the skewed distribution of efficiencies for large samples (Mathevet et 
al., 2006). 

In addition to calculating the KGE scores, and to evaluate how the conceptual reservoir 
implementation (local calibration and regionalization approach) impacted the simulated low 
flows, two low flow indices (the ratio Q90/Q50 and the annual minimum monthly flow with a return 
period of 5 years, QMNA(5) ) were calculated (detail explained in section 6.3.2.4). 
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5. Improvement of the precipitation forcing1 

5.1. Introduction  

Precipitation is one of the most important components in the water cycle and climate studies, 
through it, water mass is transported and redistributed around the world (Kidd & Huffman, 2011; 
Trenberth et al., 2017). Therefore, Land Surface Models (LSMs) allow us to simulate water and 
energy exchanges, however, inaccuracies in precipitation forcing used in these models can lead 
to errors in simulated outputs, such as runoff or evapotranspiration. Thus, high-quality 
precipitation forcing data with the appropriate spatial and temporal resolution is a fundamental 
requirement for obtaining accurate and reliable results from LSMs, especially when they are used 
for the management of water resources (Liu et al., 2017; Sun et al., 2018). 

Precipitation has a wide temporal and spatial variability worldwide, which makes it difficult to 
monitor. Accurate monitoring and measurement of precipitation are crucial to our well-being 
(Kidd & Huffman, 2011). The most common precipitation information source is ground rain 
gauges, which measure the depth of rainfall as it accumulates over time (Sun et al., 2018). To 
fully understand the variability of the precipitation, it is essential to have dense observational 
networks that capture such variability, specifically at fine temporal (i.e., intra-daily) and spatial, 
from local to global, scales. However, despite the importance of such data, observational networks 
fall short in terms of both spatial density and temporal resolution, as the availability of 
precipitation measurements at sub-daily scales is becoming increasingly limited (Kidd & 
Huffman, 2011; Kidd et al., 2017) making it challenging to understand intra-daily precipitation 
patterns and variability. 

Owing to the sparse spatial coverage of observational networks, spatial interpolation methods are 
necessary to provide estimated precipitation over large areas (Hofstra et al., 2008; Zolina et al., 
2014), resulting in gridded products, e.g. SAFRAN (Quintana-Seguí et al., 2017), Spain02 
(Herrera et al., 2016), GPCC-daily (Schamm et al., 2014), GHCN-Daily (Menne et al., 2012), and 
the E-OBS Gridded Observation-Based Data Set (Cornes et al., 2018). Nevertheless, interpolated 
data is seldom representative, due to techniques used to interpolate often smooth the extreme 
values and affect the long-term trends. Thus, interpolated precipitation is therefore subjected to 
uncertainty from errors in measurements and interpolation methods, both may be associated with 
orography and atmospheric characteristics (Boers et al., 2016). For example, Raimonet et al. 

                                                      

1 Based on: Cenobio-Cruz, O., Quintana-Seguí, P., Boone, A., Le Moigne, P., & Garrote, L. (2023). 
Assessment of the hydrological impact of an hourly precipitation distribution correction method in the 
SASER modeling system. (Manuscript submitted for publication). Journal of Hydrology X 
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(2017) compared different precipitation products and showed that the choice of gridded 
meteorological datasets has a significant impact on the efficiency of streamflow simulations. 

On the other hand, recent advances and sophisticated instruments allow us to make up for the 
coverage and temporal scale limitations from precipitation measurements (Sun et al., 2018) using 
infrared and microwave instruments, such as disdrometers and radars. The latter provides real-
time spatially-distributed measurements of precipitation, although the spatial coverage of radar 
networks is inadequate to monitor and quantify precipitation on a global basis (Kidd & Huffman, 
2011; Habib et al., 2012). Some products merge satellite and ground measurements in order to 
take advantage of the information provided by the different systems (Tapiador et al., 2012; Sun 
et al., 2018), some examples of these products include, the Climate Prediction Center morphing 
technique (CMORPH, Joyce et al., 2004), the Integrated Multisatellite Retrievals for Global 
Precipitation Measurement (IMERG, Huffman et al., 2014); the Global Satellite Mapping of 
Precipitation (GSMaP, Mega et al., 2014); the Climate Hazards Group Infrared Precipitation with 
Stations (CHIRPS, Funk et al., 2015), all of them are constrained to regions with latitudes of 
≤60°N/S (≤50°N/S for CHIRPS) and have a spatial resolution varying from 0.04° to 0.25°; and 
the global coverage Multi-Source Weighted-Ensemble Precipitation (MSWEP, 0.1°, Beck et al., 
2019). 

Other sources of precipitation are models based on reanalysis (e.g. Era-Interim (Dee et al., 2011); 
ERA-5 (Hersbach et al., 2020); JRA25 (Onogi et al., 2007) to name a few) and Regional Climate 
Models (RCMs). The former provides spatially and temporally homogeneous data that encompass 
physical and dynamical processes which generate relatively high-quality estimations with a 
higher spatial resolution (Tapiador et al., 2012). Moreover, RCMs driven by reanalysis are able 
to simulate the internal variability of the climate system in synchrony with reality, proving the 
reanalysis is of enough good quality, in contrast to those driven by the Global Climate Models 
(GCMs). Either way, the RCMs were designed to increase the spatial resolution through a 
downscaling approach over a limited area domain (Giorgi et al., 1990). As a result, RCMs enable 
the improvement of the representation of small-scale processes that affect the precipitation 
(Rummukainen, 2016), even though simulated precipitation by reanalysis or RCMs often requires 
further processing, such as bias correction, before it can be used in different applications 
(Christensen et al., 2008; Teutschbein & Seibert, 2010; Themeßl et al., 2012).  

The present chapter has a two-fold objective. First, to enhance the hourly representation of 
precipitation and its variability in the Ebro basin by incorporating data from a regional climate 
model to improve SAFRAN's data. To achieve this, the precipitation distribution of SAFRAN 
data was adjusted based on the distribution provided by a RCM, to better align it with 
observations. This approach is consistent with the statistical techniques applied to bias correction 
(Gudmundsson, Bremnes, et al., 2012; Chen et al., 2013; Lafon et al., 2013; Maraun, 2016). 

Furthermore, the integration of RCMs in conjunction with Land Surface Models (LSMs) has been 
a widely adopted approach to improve the representation of Earth’s physical processes and 
provide valuable insights to better understand underlying physical mechanisms (Prudhomme et 
al., 2014; Barella-Ortiz & Quintana-Seguí, 2019; Quintana-Seguí et al., 2020). Hence, the second 
objective is to evaluate the impact of the improved precipitation dataset on the hydrological 
simulation using the SURFEX-LSM model, by comparing the results of the simulation using the 
improved dataset to those of the previous simulations using the original SAFRAN dataset. 
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5.2. Study area and data 

The study area, which encompasses the geographical region of interest, is described in detail in 
sections 3.1.1 and 3.1.2. This section provides information on the location, boundaries, and 
specific characteristics of the study area. 

In section 3.2.1, we provide a comprehensive description of the data used in this analysis. 

5.3. Methodology  

In this section, a correction method was applied consisting of two steps: (i) hourly precipitation 
with very low intensity was adjusted, and (ii) the linear correction method was applied. Those 
steps are shown in Figure 5-1 and described in detail below. 

 

Figure 5-1 Flow chart of the methodology proposed to correct the hourly precipitation distribution and 
evaluate the hydrological response. 

 

5.3.1. Correction Method 

As a first step, simulated precipitation is corrected by removing very low intensity events. The 
main reason is that the drizzle effect produced by the RCM often overestimates the low intensity 
precipitation (Fowler et al., 2007). A static threshold between 0.01 and 1 mm d-1 can be defined 
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to correct the precipitation, as indicated in previous studies (Piani et al., 2010; Lafon et al., 2013). 
Thus, a threshold was selected, which was fixed at 1/24 mm h-1 to be consistent with the temporal 
scale (24 hours), and consequently, all simulated precipitation values below this threshold were 
set to zero. 

The hypothesis arises from the consistent negative bias in SAFRAN precipitation data, attributed 
to its reliance on relative humidity-based interpolation (Quintana-Seguí et al., 2008). The notable 
disparities between observed and modeled precipitation data, especially in complex climates like 
the Mediterranean (Herrera et al., 2010) , suggest room for improvement. To address this, we 
integrate an RCM. By utilizing the RCM, we aim to notably enhance the temporal and spatial 
distribution of precipitation patterns, aligning them more accurately with the unique 
Mediterranean climate. Leveraging the RCM's capabilities, we expect to gain a more precise 
understanding of Mediterranean rainfall-runoff processes, thereby mitigating the negative bias in 
SAFRAN data and deepening our comprehension of the region's hydrological dynamics. 

As a second step, a correction to the SAFRAN hourly precipitation rates was applied, to adjust 
their hourly distribution to the more realistic distribution provided by the RCM. As SAFRAN’s 
precipitation is obtained from daily ground observations, we have high confidence in SAFRAN’s 
total precipitation amounts, which are to be preserved. While RCMs perform well in non-
mountainous regions, their performance is limited in areas with complex topography, as 
demonstrated by several studies (Rajczak et al., 2013; Isotta et al., 2014; Torma et al., 2015). 
Nevertheless, the precipitation temporal distribution of CNRM-ANLADIN is better than that of 
SAFRAN, but not necessarily the timing. Thus, a precipitation event that in reality happened at a 
given time, can be simulated by the model a few hours earlier or later. Thus, a time window w, 
which can be one or more days long, is defined in which SAFRAN’s accumulated precipitation 
is preserved. The total precipitation is transformed to Pcorrected according to the equation (1): 

𝑃𝑃(𝑡𝑡)𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  𝑃𝑃(𝑡𝑡)𝐴𝐴𝐴𝐴𝐴𝐴 ×
∑ 𝑃𝑃(𝑡𝑡)𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑤𝑤
𝑐𝑐=1
∑ 𝑃𝑃(𝑡𝑡)𝐴𝐴𝐴𝐴𝐴𝐴𝑤𝑤
𝑐𝑐=1

 (5.1) 

where P(t) is precipitation at time step t, in hours; P(t)ALD is the CNRM-ALADIN63 precipitation 
data at time step t; both in mm h-1, and w is the time size of the window used to apply the 
correction, in days. 

The previous equation was used to correct the hourly precipitation rate testing different values of 
w (from 1 to 7 and 14 days), to find the best window. In this step, improved precipitation data for 
each grid point at a spatial resolution of 2.5 km was generated. 

5.3.1.1. Assessment of the corrected precipitation 

The assessment of the methodology cannot be based on a method that requires perfect 
synchronicity between the time series, as this is impossible. The CNRM-ALADIN simulation will 
generate weather close to reality (as it has been forced by ERA-Interim at the boundaries), but it 
is not as close to reality as a reanalysis. Hence, our objective is to improve the distribution of 
hourly precipitation, while the accumulated amounts were preserved at a scale that ranges from 
one to a few days. Therefore, to compare the corrected product and the observations the Perkins 
skill score (PSS) was calculated (section 4.2.5.1). 
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The PSS has been calculated for hourly precipitation amounts from zero to the 99th quantile of the 
observations, which is used as a threshold for the calculation of the PSS. The PSS is calculated 
for each station separately, for different window sizes (w) and the final value of PSS for each 
window size (w) is the mean value of the 11 selected stations. The highest PSS value determines 
the best temporal window to correct the precipitation. Additionally, to evaluate the change of this 
skill score in more extreme precipitation values, the PSS for the 99.5th and 99.9th quantiles were 
calculated. 

5.3.2. Assessment the impact on hydrological variables 

SURFEX-LSM (SURFace EXternalisée, in French), a modeling platform developed and 
maintained by Metéo-France (Masson et al., 2013; Le Moigne et al., 2020) that has been used to 
assess the hydrological response to different precipitation inputs in the current research. The ISBA 
(Interaction Soil-Biospère-Atmosphère) scheme (Noilhan & Planton, 1989; Noilhan & Mahfouf, 
1996) is an integral part of the SURFEX model. This scheme simulates the interactions between 
natural surfaces, consisting of the soil, vegetation and snow, and the atmosphere. Note that it does 
not simulate groundwater processes (as they are simulated by external models which can be 
coupled to SURFEX). In this research, SURFEX version 8.1 was used, along with the ISBA-DIF 
scheme, which allows for the resolution of water and heat transfer via diffusion within the soil 
(Decharme et al., 2011). 

Precipitation plays a pivotal role, particularly in regions where flow persistence relies heavily on 
rainfall. Consequently, the intensity and magnitude of rainfall events constitute integral 
components within hydrological models (Kirkby et al., 2005; Gioia et al., 2008). The hypothesis 
that more intense precipitation events result in higher runoff volumes is firmly rooted in the 
dynamics of rainfall-runoff processes (Clark & Gedney, 2008; Price, 2011). This process occurs 
when the intensity of precipitation exceeds the soil's capacity for infiltration, the surplus water 
becomes unable to permeate the soil and, instead, swiftly traverses the land surface as runoff. This 
process is predominantly governed by several key factors, including soil permeability, land cover 
characteristics, and the antecedent moisture conditions of the soil (Price, 2011; Troch et al., 2013). 
Central to the hypothesis is the recognition of a direct relationship between the intensity of rainfall 
and the resultant volume of runoff generated 

SURFEX simulations are performed using SAFRAN and the improved precipitation dataset as 
input. The default configuration of SURFEX uses the Variable Infiltration Capacity (VIC) to 
generate the sub-grid runoff, which was not modified in this research. Similarly, a comparison is 
made between the results obtained using the standard SAFRAN precipitation dataset and the 
improved dataset. Additionally, an analysis of the various components of the water balance is 
conducted at an hourly time step. Since a high spatial resolution SURFEX setup (such as that used 
herein) is computationally intensive, a subset of the data is selected for simulation purposes. This 
approach significantly reduces the computational burden while still yielding valuable 
information. Consequently, hourly simulations were performed over three years, specifically from 
2011 to 2014. 

The water balance analysis at the grid point scale is performed with a focus on the more intense 
events. For this purpose, the highest n precipitation events, with intensities exceeding 10 mm h-1 
(WMO, 2018), were extracted and centered using a ±12 hour time window before and after the 
peak. The mean hourly precipitation was then computed based on these n events. As was done 
for the precipitation, the values of the other variables simulated by SURFEX (surface runoff, 
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drainage, and evapotranspiration) were extracted, and then the mean values were computed to 
explore changes in the hydrological response. 

5.4. Results 
5.4.1. Improvement of precipitation intensities 

The ability of SAFRAN to reproduce the precipitation amounts from different precipitation 
intensities (from 5 to 30 mm h-1) was evaluated as depicted in both panels of  Figure 5-2. For 
lower intensities (left panel of Figure 5-2), SAFRAN reveals lower frequencies with respect to 
the observations, while for higher intensities, SAFRAN almost does not capture any event of the 
higher rainfall intensities. In other words, SAFRAN has difficulties in producing low-intensity 
precipitation events (between 5- and 9-mm h-1) and is practically unable to reproduce events 
higher than or equal to 10 mm h-1. 

 

Figure 5-2 Comparison of frequency from different precipitation intensities for observed data in gray 
(saih), precipitation simulated by SAFRAN in red (sfrn), and corrected precipitation (7 days) in blue 

(corrected). The horizontal line in each box represents the median, top and bottom box edges represent 
the interquartile range. 

To improve SAFRAN's precipitation, the determination of the optimal window size to correct 
precipitation intensities while preserving the accumulated rainfall of SAFRAN (which is 
considered reliable) is conducted as the first step. Thus, as explained earlier, the average PSS 
score over the 11 stations was computed, for different values of w and selected the one that 
maximizes the PSS, as indicated in Table 5-1. The 7-day correction shows the highest average 
PSS (0.86) and four stations show the highest PSS for this time step.  Thus, the one-week (7 days) 
window size was selected. Figure 5-3 shows the time series comparison for the Ebro-Tortosa 
station between SAIH, SAFRAN, and improved precipitation data.  
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Figure 5-3 Time series comparison for the Tortosa-Ebro station (only the last 3 years for better 
visualization). 

 

Figure 5-4 depicts the effect of the correction method for different window sizes (w) for the Ebro-
Tortosa station. To obtain a better representation of the extreme values, a logarithmic scale was 
used.  It allows us to compare the relative frequency of hourly precipitation between the improved 
precipitation (in blue), the observed data (in black), and the simulated precipitation by SAFRAN 
and CNRM-ALADIN (in red and gray, respectively). Notice that the SAFRAN maximum 
intensity rate does not exceed 10 mm h-1, which is much lower than the observed intensity rate 
(40 mm h-1). It is therefore clear that SAFRAN underestimates precipitation intensities. Also, is 
observed as a larger window size is employed for calculating the precipitation correction, it 
becomes closer to the observed data, especially for 7 and 14-day values. 
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Figure 5-4 Relative frequencies of precipitation for observations (in black), SAFRAN (in red), CNRM-
ALADIN (in gray), and correction (in blue) from different correction windows. Probabilities are 

computed for the period (2005 - 2014) hourly precipitation to the Ebro-Tortosa station. PSS number 
corresponds to Perkins Skill Score for corrected precipitation. The vertical dotted line represents the 

99th percentile of the observation. 

For low precipitation amounts (i.e. <5 mm h-1) both products, SAFRAN and CNRM-ALADIN, 
match well with the observations, as depicted in Figure 5-4. In contrast, for higher rates, SAFRAN 
begins to differ markedly from the observations, which indicates that SAFRAN is not able to 
reproduce higher rainfall rates adequately. Both products underestimate the values, however, the 
distribution of the CNRM product remains similar to the observations. Focusing on the improved 
precipitation, blue boxes in Figure 5-2, have revealed significant improvements in the intensity 
rates, providing a more accurate representation of the precipitation patterns and distribution. 

Table 5-2 shows the PSS calculated for precipitation amounts above three different percentile 
values (99th, 99.5th, and 99.99th). In this way, the accuracy of the correction method to reproduce 
the most extreme intensities was evaluated. It is evident that the PSS between SAFRAN and the 
observations for the 99.9th percentile experiences a sharp decline, indicating that SAFRAN is not 
able to accurately simulate the most extreme precipitation events. In some cases, there is a 
noticeable lack of similarity between the distributions, further demonstrating the limitations of 
SAFRAN in simulating these intense events. 

The only station that has no reported events of intensity greater than 10 mm h-1, after applying the 
correction, was station LAGRAN (Figure 5-5). Although the PSS of this station showed a notable 
improvement as registered in Table 5-1. 
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Table 5-1. PSS values for different time-step and each selected station. 

ID Station Name Percentile 99th 

(mm) 

PSS 

(SAFRAN) 

PSS 

(CNRM) 

PSS (Correction with a window of w days) 

1 2 3 4 5 6 7 14 

9027 EBRO TORTOSA 1.2 0.73 0.85 0.83 0.86 0.88 0.86 0.87 0.91 0.89 0.87 

9102 NOGUERA 1.8 0.68 0.74 0.79 0.81 0.79 0.82 0.82 0.79 0.82 0.82 

PC04 ZARAGOZA 1.0 0.73 0.87 0.77 0.81 0.81 0.83 0.84 0.83 0.83 0.87 

9074 ZADORRA 1.6 0.59 0.84 0.83 0.84 0.86 0.89 0.87 0.88 0.89 0.90 

9095 VERO 1.2 0.60 0.75 0.71 0.75 0.76 0.78 0.76 0.79 0.80 0.81 

9256 SEGRE 1.4 0.72 0.89 0.80 0.84 0.83 0.85 0.88 0.86 0.89 0.88 

9259 SALAZAR 3.0 0.75 0.77 0.86 0.90 0.90 0.88 0.88 0.87 0.84 0.87 

9271 ARAGON 3.2 0.75 0.72 0.81 0.79 0.81 0.82 0.83 0.83 0.85 0.79 

9282 ARAGÓN - MARTES 1.8 0.80 0.90 0.87 0.89 0.89 0.90 0.91 0.90 0.92 0.90 

P008 LAGRAN 1.4 0.71 0.85 0.81 0.85 0.87 0.88 0.92 0.89 0.89 0.88 

P016 ANSO 3.0 0.76 0.75 0.87 0.86 0.86 0.86 0.87 0.87 0.85 0.84 

Mean value 0.71 0.81 0.81 0.84 0.84 0.85 0.86 0.85 0.86 0.86 
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Figure 5-5 Sam
e as Figure 5-4 but only for the 7 days correction for each station. 
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5.4.2. Impact on the water balance components  
5.4.2.1. Impact on intense events 

To investigate the hydrological response on the main variables (drainage, runoff, and 
evapotranspiration), SURFEX was implemented using the default SAFRAN and the improved 
precipitation datasets as inputs. Since SURFEX, when used in a configuration such as that in the 
current study, can be computationally-intensive, the model was run for the last three years (2011 
to 2014) with output stored at an hourly time step. 

For each station location, the n number of highly intense precipitation events and their respective 
variables simulated by SURFEX were extracted from the gridded precipitation data. 
Subsequently, the mean event was computed, centered at ±12 hours. Figure 5-6 shows the mean 
event for the Ebro-Tortosa station. 

 

Figure 5-6 Composite of the 6 highest hourly events in the Ebro-Tortosa station. Mean precipitation is 
plotted in gray bars (the improved precipitation) and red bars (SAFRAN’s precipitation). Solid lines 
represent the mean variables (accumulated) from the new simulation. The dashed lines represent the 

variables of the default simulation. In blue, the runoff; in green, the evaporation and in black the 
drainage. 

Figure 5-6 shows the cumulative volumes of the three main components of the water balance at 
the grid scale for the Tortosa station. A noticeable impact was found on the runoff, as expected, 
as higher precipitation intensities were introduced. However, no changes were observed in the 
drainage. In terms of evapotranspiration (ET), the response is less clear, however, follows a 
similar behavior. Similar patterns of hydrological response were found in the stations located in 
the dominated Mediterranean weather. In contrast stations 9256-SEGRE and 9102-NOGUERA 
show responses in both variables (runoff and ET) as shown in Figure 5-7, these stations are located 
in mountainous areas of the basin. In general, the amount of runoff produced varies greatly across 
the stations analyzed. However, a common trend observed in all stations is that greater 
precipitation intensity leads to a corresponding increase in runoff. 
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5.4.2.2. Long-term water budget 

To understand the impact on the water balance the long-term budget was evaluated (runoff, 
drainage, and ET) on the same grid points where the meteorological stations are located. It is 
important to mention that the total amount of water provided by SAFRAN was unchanged, it was 
only temporally redistributed using a more realistic precipitation distribution. The SURFEX 
hourly simulation for the last three years was used and computed the relative frequencies of the 
different water balance variables were. Figure 5-8 shows the change in the simulated variables 
using SURFEX driven by the new precipitation dataset for the Ebro-Tortosa station. Note that in 
particular low rates for runoff (<1 mm h-1) nicely follow similar patterns in both simulations 
(SAFRAN and improved, blue dashed line and blue solid line, respectively). For higher rates, the 
runoff clearly shows an impact, increasing the extreme values to 3 times higher than the default 
simulation. In contrast, drainage and evapotranspiration have no noticeable changes. The same 
plot for each station can be found in Figure 5-9. 

 

Figure 5-8 Relative frequencies of water balance variables (runoff, drainage, evapotranspiration) for 
the Ebro-Tortosa station. Solid lines represent the simulation driven by corrected precipitation; dashed 

lines correspond to the default simulation (SAFRAN). Frequencies are computed with the hourly 
simulation for the last 3 years (2011-2014) 

The water budget was evaluated at the grid point level (Figure 5-8 and Figure 5-9), the pixel that 
corresponds with the location of each station. Similar patterns were found in each station, only 
for the station Salazar the drainage reported significative changes (Figure 5-9). The stations 
located in higher elevations (e.g. Salazar, Aragón, Anso) show major changes in the hydrological 
response, especially runoff that report extreme values on average two times higher than the 
produced by the simulation driven by SAFRAN; evapotranspiration also shows slight changes 
and drainage do not report significative changes. The rest of stations reported similar patterns in 
each variable. 
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In Figure 5-10 the statistics of the variables simulated by the default precipitation data (SAFRAN, 
light colors) and by the improved precipitation (darker colors) are shown for three different 
(extreme) percentiles to the 11 stations. The simulation driven by the improved precipitation 
reported higher extreme values, especially in the percentile 99.9th of runoff (darker blue boxes in 
Figure 5-10 a) as expected. Evapotranspiration shows similar changes, whereas drainage 
exhibited much smaller changes (green and grey boxes, respectively in Figure 5-10 b). 

 

Figure 5-10. Comparison of different hourly percentiles (R=runoff, D=drainage, and E=evaporation) 
for simulation driven by SAFRAN (default, light colors) and by improved precipitation forcing 
(improved, darker colors). The horizontal line in each box represents the median, and the box 

represents the interquartile range. The whiskers extend a maximum of 1.5 times the interquartile range. 

After evaluating the water budget at the grid point level (station), each variable of the water budget 
simulated by SURFEX was spatially aggregated to evaluate the water budget at the catchment 
scale using the yearly mean of each variable. The percentage of the water budget that represents 
each variable is presented in Table 5-3. 

Table 5-3 Water budget per year over the Ebro basin. 

year Default Corrected Total (mm) 

Drainage Runoff Evap Drainage Runoff Evap 

2011 7.0% 10.8% 82.3% 6.6% 9.8% 83.7% 492.56 

2012 15.4% 17.0% 67.6% 14.8% 16.2% 69.0% 865.68 

2013 11.9% 14.1% 74.0% 11.4% 13.2% 75.4% 680.81 
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The results reveal only small changes in the water budget at the catchment scale. The main 
differences are related to ET, which increases by 1.5% on average, whereas runoff and drainage 
decrease by 1% and 0.5% on average, respectively. It indicates that the impact of the improved 
precipitation dataset is more noticeable at finer scales, whereas the changes become less evident 
as the scale increases, both temporal and spatial. 

5.5. Discussion 

The accuracy and reliability of hydrologic simulations are influenced by multiple factors, 
including not only the uncertainty of the input data but also the characteristics of the simulation 
model and the specific hydrologic variables being studied. 

Precipitation is the main source of water for surface runoff, thus changes in precipitation can 
directly influence the amount and timing of surface runoff. Overall, the sensitivity of the surface 
runoff to differences in precipitation highlights the importance of accurately representing 
precipitation in hydrologic models. Herrera et al. (2016) found that the spatial distribution of 
precipitation is influenced by the complex orography and that the density of observation stations 
plays a crucial role in accurately representing precipitation patterns in gridded products. Thus, 
gridded precipitation products, such as SAFRAN, may not be representative in mountainous 
regions due to sparse weather station coverage, and the spatial heterogeneity of precipitation 
events that are not often captured by the gauge network (Durand et al., 1993; Prein & Gobiet, 
2017). It highlights the potential use of RCMs to improve the precipitation patterns in mountain 
regions, where observations are sparse. 

The focus of this study was on the improvement of the hourly precipitation distribution in the 
Ebro basin, with the timing issue (Figure 5-3) not being addressed, which can be considered 
another limitation of our research. The enhancement of precipitation event timing would enable 
a more accurate simulation of the effects of rainfall on the overall water balance, which is of 
crucial importance for real-time water management. Nevertheless, improving the timing of 
precipitation (when an event occurs) is a more challenging task than improving its temporal 
distribution (disaggregating rainfall to neighboring time steps within some window). Future 
research could explore the effects of both the distribution and timing of precipitation on the 
hydrologic response of the basin. 

In this study, the precipitation distribution was modified, while the remaining forcing variables 
were left unadjusted. It is essential to recognize that changes in precipitation have consequential 
effects on other atmospheric forcing. For instance, an increase in precipitation leads to an 
augmented presence of clouds, which can subsequently affect evapotranspiration processes. 
Consequently, this alteration in the energy balance may also lead to modifications in runoff or 
drainage patterns. Additionally, it is important to note that rainfall can also influence air 
temperature dynamics. Therefore, future research should consider these interrelated processes to 
ensure the preservation of variable homogeneity and to achieve a comprehensive understanding 
of the system dynamics. 

Our results confirm that precipitation has a significant impact on the amount of runoff generated 
in a particular area, as expected. Increased precipitation can lead to increased surface runoff, and 
this relationship is incorporated into the corresponding runoff generation models. In mountainous 
areas, which tend to receive higher amounts of precipitation compared to the rest of the basin, 
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high-intensity precipitation events have a significant impact on runoff generation due to 
topography, soil characteristics, and permeability. Factors such as slope, soil depth, and land 
cover can also influence the reaction of runoff to high-intensity precipitation events in these areas. 
In contrast, the Mediterranean part of the basin experiences semi-arid and arid conditions, which 
often result in dry and compacted soil. Consequently, when high-intensity rainfall events occur, 
the water cannot easily infiltrate the soil and instead runs off quickly over the surface, resulting 
in a direct response to intense precipitation events. Additionally, the timing and duration of the 
intense precipitation event can also impact runoff, with longer-duration events generally leading 
to more infiltration and less runoff. These findings highlight the challenges of capturing the details 
of runoff generation processes in hydrological models due to the terrain's complexity and 
precipitation patterns' variability. 

The responses of evapotranspiration (ET) and drainage to modified rainfall exhibit a reduced 
sensitivity compared to surface runoff. Particularly, these variables show slight changes only in 
areas that predominate wet conditions (the northern part of the Ebro basin). In these areas, soil 
retains more water, thus intense precipitation events can have a more significant impact on both 
evapotranspiration and drainage: intense precipitation events can increase the amount of water 
availability and can lead to raised evapotranspiration, resulting in a reduction of water available 
for drainage. In contrast, in semi-arid regions with a Mediterranean climate, the soil is generally 
drier and does not retain as much water, meaning that intense precipitation events may not have 
a significant impact on evapotranspiration and drainage, or at least impacts may be less 
pronounced. 

As previously mentioned, our results suggest that precipitation has a stronger influence on surface 
runoff, which is in line with our initial expectations. Higher precipitation intensity can result in 
more surface runoff, i.e. the same precipitation amount over 1 hour has a much greater impact on 
surface runoff than if it were distributed over 3 or more hours. Furthermore, this is also associated 
with the representation of the fast runoff process in the model, which is an important factor in 
understanding the impacts of precipitation distribution on surface runoff. Hence, it is essential to 
carefully consider these factors when modeling surface runoff, particularly in regions that 
frequently experience intense precipitation events, such as arid or semiarid regions. In these areas, 
the infiltration mechanism tends to dominate the overland flow production, thus the Horton runoff 
approach is often more appropriate to describe these processes; within SURFEX, this approach 
can be activated to evaluate the impact on hydrological response. Although, the different runoff 
generation approaches in SURFEX were not evaluated. Therefore, further research could 
investigate and compare these different approaches. Finally, our study highlights the importance 
of using more detailed precipitation data to advance our understanding of hydrological processes 
and improve hydrological models at finer scales, particularly in areas with high spatial and 
temporal variability in precipitation. 

The SURFEX model within the SASER suite has been used for simulating the water balance and 
streamflow, which is effective on average values (section 6.3.3.1). These findings suggest that the 
SURFEX model exhibits limited sensitivity in simulating hydrological variables in response to 
the use of finer precipitation inputs. This can be attributed to the catchment size, larger catchments 
have a lower sensitivity to forcing data due to the damping effect (Raimonet et al., 2017). This 
suggests that the choice of forcing data may not have a significant impact on the model 
performance in larger watersheds. Further investigations are needed to better understand the 
damping effect associated with catchment size on model sensitivity. Also, might be attributed to 
the nature of the model formulation itself, particularly in the runoff generation processes, which 
may not be capturing the complex details of precipitation information at higher temporal 
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resolution. This could result in the loss of information during the simulation of the hydrological 
response across the entire basin, leading to only minor variations in the results. This highlights 
the need for further investigation and consideration of alternative model formulations, or finer 
hydrological models, that are better suited to capture the complexities of precipitation and its 
impact on the hydrological response. 

5.6. Conclusions 

In this chapter, a novel linear correction method was introduced to enhance the accuracy of 
precipitation intensities by leveraging results from a regional climate model (RCM). Our proposed 
approach involves utilizing the precipitation distribution of the ERA-Interim driven CNRM-
ALADIN RCM simulation to improve the hourly distribution of the SAFRAN meteorological 
forcing data. The resulting gridded precipitation dataset spans from 1979 to 2014 and has a high 
spatial resolution of 2.5 km and a time step of one hour. To evaluate the effectiveness of this 
improved precipitation dataset on the hydrological response, the SURFEX-LSM  model was 
employed. 

The results of our comparison between the SAFRAN meteorological forcing data, the improved 
precipitation data, and the observed precipitation data at the hourly time scale indicate that 
SAFRAN consistently underestimates precipitation intensities. However, the improved 
precipitation data, which was obtained through the correction of the RCM precipitation 
distribution, provides a better representation of the precipitation patterns in the Ebro basin, 
especially in the Mediterranean-dominated areas. Although the improved precipitation data still 
shows some underestimation of precipitation rates, it is a significant improvement over the 
original SAFRAN data and provides a more accurate representation of the actual precipitation 
patterns in the study area. One important limitation of our approach is that the timing of the 
precipitation events is not necessarily accurate. However, the weekly precipitation amount of the 
original SAFRAN dataset was preserved.  

Our results show that the correction method has a clear impact on the simulated runoff at the grid 
point scale, which is consistent with our expectations. However, the changes in drainage and 
evapotranspiration are not straightforward to interpret, as they depend on multiple factors, such 
as the climate regime, as the response to drainage is higher in wet climates. During the analysis 
of the water balance at the watershed scale, it was observed that the overall balance, as represented 
by the sum of runoff, drainage, and evaporation, was found to be relatively minor in terms of its 
impact, with an average change of only 2%. 

Finally, the new precipitation dataset presents a potential use in water resources particularly in 
improving the simulation of extreme weather events at finer temporal scales, such as floods and 
river discharge events. The accuracy of the dataset's magnitude is particularly critical in this 
context. However, its application would depend on the used model and the main purpose. 
Furthermore, the new dataset provides valuable insights into the impact of intense precipitation 
events on hydrological simulations by LSMs at sub-daily temporal scales. Therefore, it allows a 
more accurate and detailed understanding of the mechanisms that drive runoff generation during 
extreme weather events, which is essential for water resources. 
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6. Improvements in the SASER modeling chain 

6.1. Introduction 

Improving land surface models (LSM) is challenging. These challenges stem from the inherent 
complexities of the Earth's land surface and the multitude of processes that unfold within it. 
Consequently, the enhancement of LSM parameters that control hydrological response becomes 
essential for accurately representing land-atmosphere interactions, hydrological processes, and 
the feedback mechanisms that shape the Earth's system. 

Several opportunities for improvement in the representation of hydrologic processes in land 
models can be identified across three distinct categories (Clark et al., 2015). The first category 
revolves around the direct enhancement of the model's representation of individual hydrologic 
processes, with critical factors such as soil moisture and groundwater dynamics being targeted for 
improvement. This category emphasizes the need to enhance data sets on geophysical attributes, 
including bedrock depth and permeability (Tesfa et al., 2009; Fan et al., 2015). Additionally, data 
sets on the physical characteristics of rivers are also identified as vital (Getirana et al., 2013; 
Gleason & Smith, 2014), providing a strong basis for these areas of improvement.   

The second category involves the development of novel approaches that effectively capture the 
spatial heterogeneity and hydrologic connectivity present in real-world systems. For instance, 
several studies have shown that soil moisture can exert profound impacts on regional meteorology 
(Avissar & Pielke, 1989; F. Chen & Avissar, 1994; H. Y. Huang & Margulis, 2009), indicating 
that improved representation of soil moisture heterogeneity, and associated vegetation, can 
significantly enhance simulations of land-atmosphere interactions (Maxwell & Kollet, 2008). 
Addressing subgrid-scale heterogeneity can be achieved through explicit representation, utilizing 
parametrizations based on statistical-dynamical models (e.g. TOPMODEL (Beven & Kirkby, 
1979) approach), or employing other approaches (Clark et al. (2015); Clark, Nijssen, et al. (2015) 
discuss them in detail). 

The third category focuses on improving the representation of anthropogenic influences on the 
water cycle within land surface models. This aspect, beyond the scope of this chapter, is 
extensively covered in Chapter 7. 

Therefore, the challenge of addressing uncertainties associated with model parametrization looms 
large. The simplifications and assumptions made during the parametrization process can 
propagate and impact the accuracy of model outputs. Understanding the sources of uncertainties 
and their propagation through the modeling system is crucial in addressing these challenges. Thus, 
developing strategies for quantifying and reducing uncertainties in LSM parametrization is crucial 
for improving model simulations. 
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The main objective of this chapter is to enhance the streamflow simulation in the 
hydrometeorological model SASER (SAFRAN – SURFEX – EauDyssée – RAPID) through 
different approaches. To achieve this goal, the first part of the chapter is focused on improving 
both high and low flows through calibration of the runoff b parameter and by improving soil 
information. For this purpose, a sensitivity analysis of the runoff b parameter was performed and 
then an attempt was made to calibrate this parameter using an index that compiles information on 
physical variables. Furthermore, the improvement in streamflow simulation was evaluated by 
enhancing the forcing of the soil database utilized by the SURFEX model. 

In the second part, the low-flow simulation was enhanced, through the implementation of a well-
known method: a conceptual reservoir (conceptual approach), which improves the representation 
of the slow component of the streamflow. To this end, and to determine the values of the new 
empirical parameters introduced by the reservoir, two methods were compared: (i) a catchment-
by-catchment calibration approach (local calibration), which can only be used in near-natural 
basins where observational data are available, and (ii) a regionalization approach, which links the 
values of the parameters to physiographic and climate variables. This second approach allows 
determining the parameter values of the conceptual reservoir in human-influenced basins where 
observed low flows represent the water management effects of dams (which are not simulated) 
instead of the natural processes (which are expected to be simulated). 

6.2. Early attempts aimed at improving inner model 
parametrization 

This section will provide a concise overview of the key results regarding the early attempts at 
improving internal parameters that control hydrological response in the SURFEX model. These 
attempts were aimed to refine the representation of key model parameters to enhance the 
streamflow simulations. More detailed results are presented in Appendix A. 

6.2.1. Calibration of the runoff b parameter 

The parameterization of the saturated fraction has a significant impact on runoff dynamics and is 
thus crucial for the determination of saturation-excess runoff. Variations in this parameter can 
have profound effects on the surface infiltration processes, subsequently influencing the 
generation of saturation-excess runoff and, in turn, base flow (Boone et al., 2004; Clark & 
Gedney, 2008; Clark et al., 2008). Considering this, an attempt was made to calibrate the runoff 
b parameter, within the SURFEX-LSM model, which is responsible for controlling runoff 
generation.  

A sensitivity analysis was conducted to calibrate the parameter runoff b, which is critical in 
controlling runoff generation within the SURFEX model. The objective was to assess the 
sensitivity of model outputs to variations in the value of the runoff b parameter and identify the 
optimal value that best represents the observed hydrological processes. Multiple simulations were 
performed by systematically varying this parameter over a reasonable range. The simulated 
streamflow was compared against observed data to evaluate the model performance of each 
simulation. Therefore, KGE was calculated, as depicted in Figure 6-1. 
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Figure 6-1 Accumulated distribution of the KGE from the different simulations varying the runoff b 
parameter. The left panel shows the KGE calculated on discharges and the right panel shows the KGE 

calculated on root-square transformed discharges. 

The sensitivity analysis revealed that the runoff b parameter significantly influenced the simulated 
hydrological response, with variations in its value leading to noticeable changes in the model 
outputs (left panel in Figure 6-1). An optimal value for the runoff b parameter was determined 
that yielded the highest values of the KGE metric between simulated and observed streamflow. 

The simulations revealed noticeable changes in the calculation of streamflow, indicating that the 
runoff b parameter associated with runoff has a discernible influence on the simulated results. 
However, despite these modifications, the performance of the simulated streamflow, as evaluated 
by the KGE metric, did not exhibit significant improvements. Consequently, it can be inferred 
that the default value of the parameter (b=0.5) adequately represents the runoff generation within 
the study area. These findings provide valuable insights into the modeling of streamflow and 
reaffirm the suitability of the chosen parameter in accurately capturing the hydrological processes 
of the study region.  

A first attempt to consider the spatial variability of the runoff b parameter within the study area, 
an exploration was undertaken to establish a relationship between the b parameter and the Indice 
de Développement et Persistance des Reseaux, IDPR in French, (Mardhel et al., 2021). A brief 
description of this index can be found in Appendix A.1.3. This is a hydrological index used to 
assess the development and persistence of river networks. It quantifies the connectivity and 
continuity of flow paths within a river network, reflecting the overall efficiency of water flow and 
runoff generation processes. 

To achieve this, natural stations from the PIRAGUA project database were selected and analyzed. 
The objective was to investigate whether the variability of the runoff b parameter within the study 
area could be linked to the IDPR values. Visual analysis was conducted by comparing the best 
values of the b parameter obtained for each catchment with the IDPR map, as depicted in Figure 
A 1-7. However, despite examining the patterns, no clear relationship between this parameter and 
the IDPR emerged from visual inspection. 
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To further explore the potential relationship between the b parameter and the IDPR, a scatterplot 
was constructed, plotting the median IDPR values against the best runoff b parameter values for 
each of the selected natural basins (Figure A 1-6). However, similar to the visual comparison, no 
distinct pattern or correlation between the two variables was observed in this analysis. The 
scatterplot showed a scattered distribution of data points, indicating the absence of a clear 
relationship between the runoff b parameter and the IDPR index, suggesting that the runoff b 
parameter may not be directly linked by the IDPR index in the study area. Finally, it is worth 
noting that the absence of a clear pattern between them highlights the complexity and inherent 
uncertainties in calibrating this parameter and also in the IDPR formulation. 

In a final attempt to account for the variability in the runoff b parameter values, a simulation using 
SURFEX-Eaudyssée-Rapid was conducted. This simulation aimed to incorporate non-uniform 
runoff b values across the entire study area. To achieve this, the IDPR values were categorized 
into three percentiles, and each percentile was assigned an initial approximation of the runoff b 
value (Figure A 1-8 in Appendix A.1.3 for details). The results of this simulation, referred to as 
the Runoff-B Model, were then compared with the default simulation, and the findings are 
presented in Figure 6-2. It is noteworthy that during the initial stages of this research, efforts were 
made to expand the database, eventually leading to the creation of the comprehensive database 
described in Section 3.2.2.1. Consequently, within the context of this specific stage of the 
research, the initial database from the PIRAGUA project, wherein the number of stations 
categorized as "natural" was comparatively smaller, was utilized (as visually demonstrated in 
Figure 6-2 and Figure A 1-9). 

 

Figure 6-2 Accumulated distribution of KGE scores. The dashed line represents the default simulation 
and the solid line represents the IDPR terciles simulation.  

The comparison of this new simulation (Modelo Runoff-B in Figure 6-2) with the default 
simulation revealed that there was no improvement in the KGE values; in fact, the KGE values 
decreased. This suggests that the incorporation of non-uniform runoff b parameter values based 
on IDPR percentiles did not lead to an enhancement in the model performance. It is important to 
acknowledge that conducting further simulations with additional percentile categories and 
assigning different runoff b parameter values may provide more insights. However, it should be 
noted that this approach becomes impractical due to the computational constraints of the SURFEX 
model. 
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6.2.2. Attempts to improve the soil information database 

In recent years, the accurate representation of soil depth in land surface models has become 
increasingly recognized as a crucial factor in accurately simulating hydrological processes (Lovat 
et al., 2019). However, in the case of the SURFEX model, concerns arise regarding the realism 
of the soil depth values derived solely from the vegetation cover in the ECOCLIMAP II dataset 
(Faroux et al., 2013), particularly in diverse geographical regions like mountain areas. In this 
context, the inaccuracies associated with the representation of the soil database used by SURFEX 
are investigated, and the assessment of improvements in soil information through the 
incorporation of the ESDAC database (Panagos et al., 2012) in conjunction with Plant Rooting 
Depth (Zr) map (Guswa, 2008), for hydrological modeling is performed (see Appendix A.2). 
Thus, the impacts on hydrological simulations in SURFEX are evaluated by exploring this 
alternative soil data source. 

At this stage of the research, a simulation was conducted incorporating data from the ESDAC 
database on the representation of soil information in the SURFEX model. In this simulation, only 
the soil information file was modified (Figure A 2-1), while the default values of the remaining 
parameters, including the runoff b parameter, were retained. The results of this simulation did not 
demonstrate significant improvements in the KGE values when compared to the default 
simulation (PIR1), as depicted in Figure 6-3. The right panel in Figure 6-3 indicates a substantial 
decrease in the number of stations with KGE values exceeding 0.5, accompanied by an increase 
in the number of stations with KGE values below -0.25. 

 

Figure 6-3 Histograms of the KGE values on the selected station. The left panel shows the default 
simulation (PIR1) and the right panel shows the simulation using improved soil information 

(PIR1ESDACGDRD) 

In conclusion, the incorporation of the ESDAC and Zr databases into the existing database utilized 
by the SURFEX model did not yield enhancements in the hydrological simulation. This outcome 
can be attributed to the inherent uncertainty associated with the construction of the ESDAC 
database and that Zr is estimated using a carbon cost-benefit model, which may introduce biases 
and uncertainty in the representation of soil information. 

Despite considerable efforts have been invested, enhancing the representation of hydrologic 
processes in the SURFEX model has proven challenging. Nevertheless, it has been established 
that the current configuration of the model is sufficiently accurate for the study region. 
Consequently, the default configuration will be retained, and emphasis will shift to enhancing the 
overall model formulation to improve the simulation of low flows. 
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6.3. Improvement of low flows simulation2 

Droughts and low flows are characteristics of the natural water cycle (Van Loon, 2015). The 
former are usually defined by a water deficit in relation to a long-term average value and 
depending on which variable presents a deficit, drought is categorized into different types (Mishra 
& Singh, 2010): meteorological drought, related to a precipitation deficit; agricultural drought, 
due to a soil moisture deficit; and hydrological drought, which is related to a low streamflow 
condition. Each of them is characterized by different indices (Keyantash & Dracup, 2002; Mishra 
& Singh, 2010). Specifically, hydrological drought can be defined by the Standardized Flow 
Index, SFI, (Vidal et al., 2010); however, must not to be confused with low flow conditions, which 
are usual during the dry season every year (Smakhtin, 2001). Therefore, hydrological drought is 
a more general phenomenon, which is characterized by more factors than just low flows (Van 
Loon, 2015). Droughts have severe impacts on water availability to sustain the ecosystem and 
societal requirements (Sheffield et al., 2012; Stahl et al., 2016). To study drought impacts, and to 
improve water resource management, it is necessary to improve our knowledge of low flows. 
However, modeling low flows through hydrological models is still a challenge (Smakhtin, 2001; 
Staudinger et al., 2011).  

Land-surface models (LSMs) have proven very useful for studying the hydrological cycle, 
including droughts (Lehner et al., 2006; Vidal et al., 2010; Prudhomme et al., 2011; Van Loon et 
al., 2012; Mo & Lettenmaier, 2014; Xia et al., 2014; Gaona et al., 2022) and seasonal low flows 
(Gudmundsson, Tallaksen, et al., 2012; Quintana-Seguí et al., 2020). Being mostly physically-
based models, they help understand the underlying physical processes. However, the hydrological 
response in these models can be potentially improved, especially the representation of the slow 
component of the streamflow, which in many cases, is constrained by a limited description or 
even the absence of groundwater modeling (Stahl et al., 2011; Gudmundsson, Tallaksen, et al., 
2012), among other processes, such as lateral subsurface flows. 

Low-flow periods have not been well represented in large-scale models mainly due to a too fast 
response between precipitation and runoff (Van Loon et al., 2012; Barella-Ortiz & Quintana-
Seguí, 2019; Quintana-Seguí et al., 2020). This represents a disadvantage in areas where 
streamflow is dominated by slower processes, such as groundwater discharge (i.e., from aquifers), 
mostly during the dry season (Van Loon et al., 2012). These limitations are even more important 
in mountainous areas, where groundwater is poorly known (Somers & McKenzie, 2020). 
Therefore, it is necessary to improve the simulation of processes that influence the flow’s slow 
component and sustain the summer flows. This improvement can be done through (i) physical 
(groundwater models, improved lateral flows, etc.), or by (ii) conceptual approaches. 

The improvement through physical models is a complex task due to the complexity and the high 
uncertainties involved, also demands good knowledge of the geological structures (Habets et al., 
2008; Vergnes et al., 2012). For example, Sutanudjaja et al. (2011) and Tian et al. (2012) coupled 
groundwater models to offline LSM models, which do not allow feedback between groundwater 

                                                      

2 Based on: Cenobio-Cruz, O., Quintana-Seguí, P., Barella-Ortiz, A., Zabaleta, A., Garrote, L., Clavera-
Gispert, R., Habets, F., & Beguería, S. (2023). Improvement of low flows simulation in the SASER 
hydrological modeling chain. Journal of Hydrology X, 18, 100147. 
https://doi.org/10.1016/J.HYDROA.2022.100147 

https://doi.org/10.1016/J.HYDROA.2022.100147
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storage and soil moisture. On the contrary, York et al. (2002; Maxwell & Miller, (2004); Vergnes 
et al. (2012, 2020) used coupling schemes where this kind of feedback was considered. Another 
physically-based approach, instead of coupling two models, is by modification of the model itself 
to consider the groundwater effects, such as the work done by Miguez-Macho et al. (2007). In 
this case, a two-way exchange between groundwater and rivers is allowed, together with the 
exchange between the vadose and the saturated zones.  

Conceptual approaches use simple mathematical equations to describe hydrologic processes (Z. 
Liu et al., 2019), it should be stressed that implementing these is not as complex as the options 
described in the previous paragraph. Conceptual models depend on parameters to be calibrated, 
which do not correspond to a physical meaning or quantity. Several studies have tested this 
approach. For example, Artinyan et al. (2008) and Getirana et al. (2014) added two additional 
reservoirs to SURFEX LSM to evaluate the water budget. Lafaysse et al. (2011) added a reservoir 
to represent the effect of aquifers in mountain areas, that was extended in the plain over hard rock 
aquifer (Le Moigne et al., 2020) within the SIM (SAFRAN - ISBA - MODCOU) model. Gascoin 
et al. (2009) implemented an additional storage reservoir to consider the deep groundwater flow 
in France. Huang et al. (2019) added an additional layer to the DBH (Distributed Biosphere 
Hydrological) model to connect the soil layers with a groundwater reservoir. Guimberteau et al. 
(2014) compared a conceptual soil hydrology scheme against a physical approach using the 
ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEm) model over the 
Amazonian basin and reported improvements in the simulated water budget with small 
differences between them. 

6.3.1. Study area and data 

The natural watersheds analyzed in this study are situated within the study area detailed in section 
3.1.1. Similarly, the data employed for the analysis are outlined in section 3.2.2 and 3.2.3. 

 

6.3.2. Methodology 

This section presents a detailed description of the methods implemented to improve low flow 
simulation. Figure 6-4 shows the schematic flowchart with the steps of the two methodologies 
used that are described below. 
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Figure 6-4 G
eneral fram

ew
ork used in this analysis. The left panel show

 steps used during the local calibration and the right panel detailed the steps of the 
regionalization approach. 
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6.3.2.1. Conceptual reservoir 

The implementation of a conceptual reservoir is based on the formulation from rainfall-runoff 
models, like ARNO (Todini, 1996) or TOPMODEL (Beven & Kirkby, 1979). Particularly focus 
lies in the incorporation of a conceptual reservoir to enhance the streamflow simulations produced 
by the SASER model. Large-scale models exhibit quick responsiveness to rainfall events, a 
characteristic that often introduces challenges in accurately representing low-flow conditions 
(Van Loon et al., 2012; Quintana-Seguí et al., 2020). Consequently, there arises a need for a 
buffering mechanism to emulate the role of subsurface storage. It is within this context that the 
introduction of the conceptual reservoir emerges as a viable solution to address this limitation. 

Notably, this implementation is confined to the drainage component, which predominantly 
characterizes the slow component of the streamflow. The hypothesis is that the integration of the 
conceptual reservoir into the modeling framework will effectively mitigate the limitations 
associated with low-flow representation in SASER. In doing so, it promises to facilitate a more 
comprehensive and precise simulation of the intricate hydrological processes at play. The major 
difference is that the reservoir here presented is implemented as an external module in the LSM 
model, as a postprocessing of the drainage, to account for a better representation of the slow 
component of simulated streamflow. 

The introduction of a conceptual reservoir at grid point level was done, to improve the slow 
component of the streamflow. The partitioning between surface runoff and drainage done by 
SURFEX LSM was not modified. The reservoir’s purpose is to modulate the drainage simulated 
by SURFEX (to sustain it during the dry period), before being fed to the river routing component 
Eaudysée-RAPID as shown in Figure 6-5. Moreover, surface runoff is not modified, to avoid an 
excessive role of empirical parameters on the hydrological response of the model. 

 

Figure 6-5 Diagram of the conceptual reservoir implementation, in the SASER modeling chain. 
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The input to the reservoir is the drainage generated by SURFEX. The reservoir has two outflows. 
The first mimics a baseflow and is the main contributing term sustaining flow during the dry 
period. The second occurs when the reservoir exceeds the maximum threshold, so there is no time 
lag when drainage is simulated during the wet season (when the reservoir is full). The total 
reservoir outflow is calculated following equations (6.1) to (6.3).  

𝐿𝐿𝑖𝑖 = 𝜏𝜏(𝐷𝐷𝑖𝑖 + (1/𝜏𝜏 − 𝑘𝑘) × 𝐿𝐿𝑖𝑖−1 − 𝑄𝑄𝑜𝑜𝑜𝑜) 

𝑄𝑄𝑐𝑐𝑖𝑖  = 𝑘𝑘 × 𝐿𝐿𝑖𝑖−1 +  𝑄𝑄𝑜𝑜𝑜𝑜  

and 𝑄𝑄𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝐿𝐿𝑖𝑖−1 − 𝐿𝐿𝑚𝑚á𝑥𝑥)/𝜏𝜏 

(6.1) 

(6.2) 

(6.3) 

Where Di [mm day-1] is the drainage; Li [mm], is the water content of the reservoir; k [day-1] and 
Lmax [mm] are empirical parameters, which correspond to the depletion coefficient and the size of 
the reservoir, respectively. Qdi [mm day-1] is the total reservoir outflow, Qov [mm day-1] is the 
reservoir outflow and τ is a constant with a value of 1 day. The sub-indices i and (i-1) represent 
the current time step and the previous step, respectively. Finally, Qdi is added to SURFEX’s runoff 
and sent to Eaudysée-RAPID to compute daily streamflow. 

In different steps (calibration, validation, and regionalization), performance evaluation of the 
simulations is required. Thus, the Kling-Gupta Efficiency, KGE, was chosen (a detailed 
description of this performance metric is found in section 4.2.5.2). 

6.3.2.2. Calibration procedure for reservoir parameters  

The size of the reservoir (Lmax) and the depletion coefficient (k) have to be calibrated. For 
calibration and validation, a classical split-sample procedure was used. Therefore, the entire 
record into two halves was split. The calibration period spans from 01/09/1979 to 31/08/1997 and 
the validation period from 01/09/1997 to 31/08/2014. Both parameters were calibrated at the sub-
catchment scale on a catchment-by-catchment basis against locally observed streamflow data, 
which involves that all the grid points belonging to the sub-catchment had the same values of the 
parameters. Hereafter, this step is referred to as local calibration. 

The grid resolution and the distribution of hydrological stations allowed us to use a nested 
approach to calibrate the parameters where streamflow data were available. Thus, the parameters 
were calibrated first on the upstream sub-catchments and then progressively towards the outlet.  

The valid range for both parameters was set using similar criteria defined by Artinyan et al. 
(2008). The accumulated streamflow of the dry period from July to September should be close to 
the average reservoir level (Lmax parameter). For each sub-catchment, the total runoff volume for 
the dry period of the driest year of the calibration period (Qdry, in mm), and Lmax was estimated as 
12Qdry ≥ Lmax ≥ Qdry, was obtained. According to Artinyan et al. (2008), twelve times the volume 
of the driest months seems a reasonable upper bound for this parameter. The limits of the depletion 
coefficient (k) were calculated considering the length of the dry period; thus, the reservoir has 
drainage releases during the length of the dry period.  

A parameter space, for simulation purposes, where the range between the extreme values of each 
parameter was discretized into 12 values was generated. A total of 144 simulations were carried 
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out and the performance of each simulation was evaluated for each sub-catchment using the KGE 
(Q1/2) (see section 4.2.5.2). The best simulation for each sub-catchment was chosen, and the 
parameter set associated with each of them was saved. 

6.3.2.3. Regionalization approach 

When observational data are not available, or they do not have good quality, or they include 
processes that are not simulated, such as human processes (dams and irrigation), local calibration 
is unfeasible. To overcome this limitation, the regionalization approach presented by Beck et al. 
(2020) was used, which allows setting the values of the reservoir parameters all over the domain, 
going beyond the near-natural basins used in the calibration procedure. 

The regionalization approach uses a genetic algorithm to optimize the coefficients of the transfer 
equations. These equations link the reservoir parameters (predictands) to the physiographic 
variables (predictors). The same near-natural basis that in the local calibration (all of them have 
an area smaller than 5,000 km2) was used. 

For the regionalization approach, eight physiographic variables as predictors were selected: 

− Three of them were related to climate: ARI, aridity index; MAP, mean annual 
precipitation; and PET, potential evaporation. Nijssen et al. (2001), Troch et al. (2013), 
Singh et al. (2014), Beck et al. (2016) demonstrated that these variables exert an important 
influence on the flow response in regionalization studies at a global scale. The MAP 
predictor was transformed to a square root to better fit a normal distribution. 

− The NDVI, Normalized Difference Vegetation Index; and SNW, the fraction of snow 
with respect to the total precipitation, are predictors related to land cover. The NDVI was 
added because the vegetation influences the evaporation, infiltration, and hydrological 
function of the soil, which may also affect the slow component (low flows) and runoff-
rainfall conversion processes (Zhang et al., 2001; Donohue et al., 2007; Peel, 2009). The 
snow affects the land cover and has an important role in streamflow generation in 
mountain regions, and also in the slow component of the flow. 

− Finally, SL, the slope; SND, soil sand content; and CLY, soil clay content, are variables 
related to the topography and the soil. The slope predictor was included due to the good 
general correlation between surface slope and soil depth (Tesfa et al., 2009), and the soil 
texture has a strong influence on all soil-related processes, including subsurface runoff 
(Price, 2011). 

Most of these variables were obtained from the ECOCLIMAP II database. Although these 
descriptors are not directly associated with groundwater, they help determine a landscape that can 
be prone or not to groundwater. 

For the optimization, the reservoir scheme was run at daily time step and at the same SURFEX 
spatial resolution, for the whole period (1979-2014). The SURFEX runoff and reservoir output 
were spatially aggregated and compared with observed runoff. This comparison is possible due 
to the size of the catchments that allows us to discard channel routing effects (Gericke & Smithers, 
2014). The methodology is shown in Figure 6-4 (right panel), and a detailed description is 
presented below.  
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Since the reservoir is implemented as an external module to post-process the SURFEX drainage 
before the routing step, there is no need to run SURFEX within the genetic algorithm (see Figure 
6-5). This is a key benefit, as SURFEX is a computationally-expensive model. Furthermore, given 
the size of the catchments, there is no need to run the routing scheme (Eaudyssée-RAPID) at each 
iteration (Figure 6-6). A very high number of simulations can be undertaken, as the very simple 
reservoir model, consisting of a few lines of Python code, is the only component that is run. 

 

Figure 6-6 Scheme of the main steps of the regionalization approach. For each time that the algorithm 
is run, the steps (parameter maps and hydrological modeling) are repeated in each iteration for the 

optimization process. 

The transfer equations that link the predictors with the predictands are expressed as follows:  

𝑀𝑀𝑃𝑃𝑖𝑖 = 𝑤𝑤𝑖𝑖1 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑤𝑤𝑖𝑖2𝑀𝑀𝐴𝐴𝑃𝑃 + 𝑤𝑤𝑖𝑖3𝑃𝑃𝐾𝐾𝑃𝑃 + 𝑤𝑤𝑖𝑖4𝑁𝑁𝐷𝐷𝑁𝑁𝐴𝐴 + 𝑤𝑤𝑖𝑖5𝑃𝑃𝑁𝑁𝑆𝑆 + 𝑤𝑤𝑖𝑖6𝑃𝑃𝐿𝐿 + 𝑤𝑤𝑖𝑖7𝑃𝑃𝑁𝑁𝐷𝐷 + 𝑤𝑤𝑖𝑖8𝐶𝐶𝐿𝐿𝐶𝐶 + 𝑤𝑤𝑖𝑖9 (6.4) 

where MPi are the model parameters (k and Lmax) and wi are the coefficients that will be optimized. 
The eight predictors chosen are (see the previous section):  

− ARI, aridity index (P/PET); 
− MAP, mean annual precipitation (root square transformed); 
− PET, mean annual potential evaporation; 
− NDVI, Mean Normalized Difference Vegetation Index; 
− SNW, the fraction of snow with respect to the total precipitation; 
− SL, topographic slope;  
− SND, soil sand content; and  
− CLY, soil clay content. 

First, each predictor was interpolated to the same grid as the model uses (2.5 km of resolution). 
Next, as Beck et al. (2020) did, predictor values were clipped using the 99th and 1st percentiles of 
the area covered by the sub-catchments. Finally, to make the predictors comparable to each other, 
they were standardized by subtracting the mean and dividing the results by the standard deviation 
of the area covered by the sub-catchments. 
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The coefficients of the transfer equations (9 x 2 = 18 wi) were optimized using our own 
implementation of the (μ+λ) genetic algorithm (Slowik & Kwasnicka, 2020). The (μ+λ) algorithm 
indicates that selected parents and children together comprise the new population (offspring) for 
the next iteration. The algorithm starts with a random population (λ) of 32 members, all of them 
are evaluated using the performance score (KGEB), and the best three members are selected and 
saved for the next iteration (μ, size of the parents in the population). Subsequently, through the 
mutation operator, the offspring is created (λ/μ children are randomly created from each selected 
parent) following a normal distribution, within the search space. A maximum number of 100 
iterations was set. 

Figure 6-6 represents the main steps in the optimization process. First, predictor maps are obtained 
depending on the area covered by the catchments used. Second, the parameter maps are calculated 
using transfer equations, to subsequently apply the reservoir scheme. This scheme is run using as 
input the daily drainage simulated by SURFEX. The reservoir output (modulated drainage) and 
the SURFEX runoff are spatially aggregated (all cells that comprise each catchment) and 
compared to observed streamflow of each catchment using the KGE score. 

To avoid overfitting, and to have an indicator of uncertainty in the parameter sets, cross-validation 
was used. For this, the catchment set was subdivided into training (87%) and validation (13%) 
subsets. This selection was performed randomly, the catchments used for validation were used 
only once in each iteration, performing different experiments until all of them were used in the 
validation. 

In total, 8 experiments were run. Each experiment consists of a training subset (27 catchments) 
and 4 randomly selected catchments for independent validation. In this sense, the validation subset 
in each experiment is different, because each catchment was used only once. 

 

6.3.2.4. Low flow indices 

Different low flow indices can be estimated (Gustard et al., 1992; Smakhtin, 2001), but our 
attention was directed toward two common ones. First, the ratio (Q90/Q50), where Q50 is the median 
and the Q90 is the low value that is observed 1/10th of the time, at daily time step. This index is 
interpreted as the proportion of streamflow originating from groundwater stores, excluding the 
effects of the catchment area (Smakhtin, 2001). Second, the annual minimum monthly flow with 
a return period of 5 years, QMNA(5), which is widely used in France for water management 
issues and provides information about low flow severity. To compute the QMNA(5), the 5-year 
return period was calculated for each sub-catchment fitting it to a log-normal distribution for low 
flows (Catalogne, 2012), based on a series with at least 30 years of record. 

Low flow indices for the summer period (July to September) for each station were derived and 
computed both using the observations and the simulations. Then, to evaluate and compare the 
performance of the simulations the relative bias was calculated.  
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6.3.3. Results 

To evaluate the performance of the SASER model (default simulation) the KGE(Q1/2) was utilized 
and the 104 stations defined as natural or near-natural, which are indicated by circles with black 
borders in Figure 6-7, were used. 

 

Figure 6-7 KGE(Q1/2) scores between observed data and the default simulation, for the whole period 
(1979-2014). Larger circles with a black border indicate stations defined as natural or near-natural. The 

other stations are considered as influenced. 

Figure 6-7 shows the calculated KGE scores for the entire period (1979-2014). Stations with the 
highest KGE values are located mainly in the Pyrenean region, where direct human influence is 
low. However, most of the stations in the Ebro River basin (a highly influenced basin) showed 
lower KGE values, especially in areas downstream of the reservoirs. This was expected since the 
model must perform poorly over human-influenced areas, as it only simulates natural processes. 

In Figure 6-8, the observed (OBS, in beige) and simulated (Default, in red) statistics of the 
streamflow for the different percentiles (near-natural basins) and the 53 catchments where the 
reservoir was calibrated are compared. The SASER model (Default) simulates reasonably well 
high and median daily streamflow, represented by the 90th to 99th percentiles, and 50th to 75th 
percentiles respectively. However, low flows (25th percentile and below) are underestimated, as 
depicted in the red boxes in Figure 6-8. For example, the median relative bias between observed 
discharge and default simulation for the 25th percentile is -66%, whereas for the 95th percentile 
is 12%. This shows that low flows are poorly simulated by the default SASER model. 
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Figure 6-8 Comparison of different daily runoff percentiles for observed data (OBS) and simulated 
streamflow (default simulation in red and simulation with reservoir scheme in blue). The horizontal 

line in each box represents the median, the box represents the interquartile range. The whiskers extend 
a maximum of 1.5 times the interquartile range. 

 

6.3.3.1. Evaluation of the model including the reservoir with 
calibrated parameters  

Figure 6-9 shows the result of the calibration of the two model parameters Lmax and k in the near-
natural basins. They were calibrated empirically by running the reservoir scheme. The values of 
the Lmax parameter ranged from a minimum of 4 mm to a maximum of 600 mm, with an average 
value of 108 mm, while the values of parameter k ranged from 0.01 to 0.04, with a median value 
of 0.018. At the end of the calibration process, the following results were observed: most Ebro 
catchments have the same value of parameter k, 0.02; whereas the parameter Lmax varies over a 
wider range of values. These parameter values are explained by basin characteristics, such as soil 
type, topography, etc. For example, higher Lmax values correspond to sub-catchments with high 
permeability (e.g., south of France); detailed information is presented in the discussion section. 
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Figure 6-9 D
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Figure 6-10 summarizes the resulting KGE scores and shows that adding a calibrated conceptual 
reservoir improves them over all catchments. On the one hand, panel (a) shows that for the 
calibration period, the median KGE value of the default simulation was 0.63, and using the 
reservoir scheme it was 0.72, which represents a clear improvement with respect to the default 
simulation. For the validation period, panel (b), the default simulation has a score of 0.60 and the 
calibrated one of 0.71, which is a similar improvement to that from the calibration period. Panel 
(c) compares the difference between the scores of the calibrated model with the reservoir obtained 
during the calibration and validation periods. The two lines are very close, which is an indicator 
of robustness, the model performs similarly inside and outside the calibration period. 

 

 

Figure 6-10 Accumulated distribution of KGE scores:  a) for the calibration period (1979-1997), b) for 
the validation period (1997-2014), and c) the comparison between KGE obtained in both periods for 

local calibration. 

 

The resulting time series (Figure 6-11) shows graphically that the calibrated reservoir produces 
time series closer to the observations. The KGE values were higher for the simulation using the 
reservoir scheme, for both periods. Panels (a) and (b) of Figure 6-11 show the time series of the 
daily streamflow at two stations (only two years of the calibration period are depicted in order to 
make the plots easy to read) and panels (c) and (d) show the same stations for the validation 
period. The improved model is able to sustain the summer flows much better than the default 
model, without affecting the median and high flows. 
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Figure 6-11 Daily time series comparison of two stations, for two hydrological years of the calibration 
(a and b) and validation (c and d) periods, respectively. Observed streamflow (black line), simulated 

streamflow without reservoir scheme (red line), and simulated streamflow adding a conceptual 
reservoir (blue line). KGE(Q1/2) is calculated over each complete period (1979-1997 to calibration and 

1997-2014 to validation, respectively). 

The blue boxes in Figure 6-8, clearly show that the lower percentiles of the simulation with the 
calibrated reservoir are improved compared to the default simulation. For the three percentiles 
related to low flows (the 5th, 10th, and 25th), the values of median relative bias for default 
simulation were -90%, -84%, and -66% respectively. Whereas the values obtained from the 
simulation with the reservoir scheme were -37%, -33%, and -17% for the same percentiles. Even 
though the values remain slightly underestimated, it represents an improvement in low flow 
simulation.  

6.3.3.2. Evaluation of the regionalization approach 

As an example, Figure 6-12 shows the evolution of the KGE and the KGEB for one of the 
experiments. It is recalled that the KGE and KGEB are related through equation 4.4. Each point 
represents the model performance after each iteration of the genetic algorithm while it searches 
for the best solution. For this experiment, during the first iterations, the KGE rapidly increases, 
and after iteration 30 the slope of the curve changes drastically to be almost flat, which indicates 
that the algorithm is close to a maximum (in this case, the median KGE is slightly higher than 
0.53) as the new mutations do not improve the result and are not selected. Similar behavior was 
founded in all the experiments. 
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Figure 6-12 Evolution of performance metric (median KGE(Q1/2) and KGEB) in each iteration for one 
experiment 

Figure 6-13 shows the boxplots of the resulting KGE for the independent catchments of each 
experiment and compares it with the KGE obtained from the default and local calibration 
experiments. The median daily KGE value of the default simulation was 0.41 and the median 
daily KGE value of the local calibration was 0.53, while for the regionalization it was 0.52, its 
value is close to the obtained by the local calibration. Furthermore, improvements in 79% of the 
validation catchments were obtained. This confirms the robustness of the regionalization 
approach to improve low flows in the catchments that were not used in the training dataset, also 
the KGE scores are as good as using the local calibration. 

 

Figure 6-13 Boxplot of KGE scores for the validation period using the local calibration (adding 
conceptual reservoir), the regionalization (cross-validation), and default simulation (without 

conceptual reservoir). 
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Figure 6-14 shows the distribution of the KGE values for the different experiments. Starting from 
the left the graph shows (i) the default simulation (brown), (ii) the local calibration (dark blue), 
which represents a clear improvement, (iii) the eight different regionalization experiments (light 
green), and (iv) three additional experiments (light brown). The eight regionalization experiments 
show median KGE values very close to each other, around 0.51. In Figure 6-14, the 75th percentile 
(top edge of each box) of all experiments shows a similar value (close to 0.6), while the minimum 
values (lower whiskers) show greater variability, suggesting that catchments for which the KGE 
score was poor are more sensitive. 

 

Figure 6-14 Box plot of KGE for streamflow of the local calibration, using the genetic algorithm (run 
01 to 08), the median of simulated streamflow (median runs), the median of eight parameter maps 
(median params), and simulation using fixed parameter values over the full domain. Streamflow 

validation period from 1997 to 2014. 

The three additional experiments (the last three boxes in Figure 6-14) were performed to see how 
the eight experiments can be combined to obtain a final result. In the first additional experiment, 
the median time series of the eight previous experiments was calculated. In the second, the 
reservoir scheme was run using the median value of the k and Lmax parameter maps (median value 
of the parameters for each grid point) and streamflow was calculated. In the last experiment, the 
median value of each parameter (57 mm and 0.016 for Lmax and k, respectively) was calculated, 
and the reservoir scheme was run with these homogeneous values over the entire domain. 
Surprisingly, these three extra experiments showed similar median values of KGE compared to 
the previous experiments, however, the last experiment (fixed median values) showed a slightly 
larger spread among KGE values. In any case, in the local calibration or regionalization approach, 
KGE values are not below -0.41, the benchmark defined previously. 
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An example of one year of observed and simulated (by aggregating runoff and drainage) daily 
streamflow for one catchment is given in Figure 6-15. In this plot, the median flow of the eight 
regionalization experiments was computed (dark blue line) and also plotted, in light blue, the 
confidence interval of the simulations. 

 

 

Figure 6-15 Comparison of the observed (black line), simulated by SASER without adding the 
reservoir (red dashed line), and the median values of the eight simulations (blue line) of daily 

streamflow for a catchment; shaded area represents the percentile 90th and 5th of the eight simulations. 
Y-axis is the discharge root square. 

 

6.3.3.3. Computing natural streamflow with the improved model 

Once the maps of the two parameters of the reservoir model were obtained using the median value 
of the parameter maps of the eight experiments (Figure 6-18), the final streamflow was calculated 
using the river routing scheme. 

Figure 6-16 a presents the streamflow simulation performance obtained using the median values 
of the eight regionalization experiments for the entire record (1979-2014) over the complete 
database. Of the total stations, 47% showed higher KGE values than 0.5 (5% more compared to 
the default simulation). Figure 6-16 b shows the improvement, in terms of ΔKGE, due to 
regionalization for the whole period. 
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For comparison purposes, the KGE values were calculated over the same periods that were used 
for the local calibration (1979-1997) and validation (1997-2014). For the first period (calibration) 
the regionalization approach obtains a median KGE of 0.69 and for the second one (validation) it 
was 0.67, which is very close. Figure 6-17 summarizes the performance of the local calibration 
and regionalization approach over the calibration (solid lines) and validation (dashed lines) 
periods on the near-natural basins. Both approaches showed an improvement compared to the 
default simulation (without the reservoir). The best KGE values are provided by the local 
calibration, as anticipated, even though the regionalization approach showed very close values to 
local calibration. 

 

Figure 6-17 Same as Figure 6-10, comparing KGE from local calibration (blue) and KGE by the 
regionalization (green) against to default simulation (red) for calibration (solid line) and validation 

(dashed line) period. 

The advantage of the regionalization approach is that it allows us to estimate the values of the 
parameters anywhere in the area of study, enabling the calculation of improved natural flows on 
influenced basins, where local calibration would be impossible. 
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Figure 6-18 Median of the eight maps of the two parameters (k and Lmax) of the reservoir obtained 
applying the regionalization approach. The map set was obtained by cross-validation. 
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6.3.3.4. Evaluation of low-flows indices 

In Figure 6-19, the improvements in the low flow indices are depicted. For the Q90/Q50 ratio (left 
panel of  Figure 6-19), the default simulation (without reservoir) showed a median relative bias 
of -80% with respect to observations, whereas the median relative bias of the simulation adding 
a reservoir was of -32%. In both cases, this index is underestimated, but there is a significant gain 
due to the reservoir implementation. On the other hand, the QMNA (5) (right panel of Figure 
6-19) also showed an improvement in median relative bias, from -64% of the default simulations 
to -20% of the simulation adding a reservoir. 

 

Figure 6-19 Comparison of relative bias [%] for low flow indices for the default simulation and for the 
two approaches. The left panel shows the ratio Q90/Q50 and the right panel the QMNA(5). The line in 
each box represents the median and the box the interquartile range. The whiskers extend a maximum 

of 1.5 times the interquartile range. 

In the case of the regionalization approach (green boxes in Figure 6-19), low flow indices reported 
values of median relative bias of -26% and -22% for the Q90/Q50 ratio and QMNA(5), respectively. 
These values are practically same to the local calibration; only the 75th percentile (top edge of the 
box) for the Q90/Q50 shows a larger difference. In any case, although low flow indices still remain 
underestimated, the inclusion and calibration of a reservoir (using either approach) noticeably 
improve the simulated values of the low flow indices and the regionalization approach behaves 
very well, compared to the local calibration one. 
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6.3.3.5. Comparison with a reference model 

As the observations are affected by water management, the results are compared with an 
independent model. In this case, the SIMPA model, which is used by water managers in the Ebro 
river basin, is utilized for the comparison. 

The time series simulated by default and the improved models were extracted at the outlet of the 
Ebro River basin, located in Tortosa. The mean annual cycle of streamflow was computed at a 
monthly step for the period 1980 to 2006. The computed mean annual cycle was then plotted 
(Figure 6-20) along with the observations (in black) and the SIMPA model (in green). 

 

Figure 6-20 Mean monthly streamflow time series at Tortosa station (main Ebro River) from 
observations and different models. 

The default simulation, in red, presents the lowest flows during the summer (from July to 
September), as expected, whereas the peak flow occurs in January. In general, the hydrograph of 
the default simulation has a shape similar to that of the observations, but with a positive bias. A 
positive bias is expected, as in the real basin there is more evapotranspiration, due to irrigation, 
than in the naturalized one. In contrast, the SIMPA model (gray line) shows two peaks, one in 
December and the other in April, and the minimum streamflow corresponds to the summer 
months, but with values twice higher than the observations. The flows obtained with the improved 
model, setting the parameters with the regionalization approach (green line), show a clear increase 
of low flows, but they are still very low compared to SIMPA. It is notable that the improved model 
reduces the January peak but increases the streamflow of the following months (February and 
March). The new hydrograph presents a double peak, which aligns with our expectations and is 
also observed in SIMPA. It is notable how the reservoir modifies the streamflow of the winter 
months. While this effect may not have been clearly visible in the daily hydrographs presented in 
Figure 6-15, it becomes apparent in the monthly mean annual cycle at the outlet. Nevertheless, is 
difficult to determine which model is closer to reality, because the observations represent the real 
basin, not the naturalized one, as the models do. 
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6.4. Discussion  
6.4.1. Attempt to improve inner parametrization 

The runoff b parameter plays a critical role in governing runoff generation and is highly 
responsive to changes in hydrological conditions. Therefore, it is essential to emphasize that the 
optimal value found in this analysis (b=0.5, the default value) should not be interpreted as 
universally applicable to the entire study area and all hydrological applications. Different regions 
or environmental conditions may require different values for this parameter, necessitating more 
comprehensive calibration processes and extensive sensitivity analysis. 

However, it is important to acknowledge the challenges associated with conducting a more 
sophisticated calibration scheme for this parameter, such as employing Monte Carlo simulations 
or genetic algorithms. The significant computational and time requirements to perform a single 
simulation using the SURFEX model can limit the feasibility of such approaches. 

Despite these limitations, it is crucial to recognize the significance of pursuing more refined 
calibration techniques in future research. Exploring advanced methods, such as machine learning 
algorithms, may offer potential solutions to expedite the calibration process and mitigate 
computational challenges. These techniques can help automate parameter estimation, optimize 
parameter sets, and improve the overall accuracy of the model. For instance, these approaches 
might help link the IDPR with the runoff b parameter. 

Concerning soil information, ECOCLIMAP II determines the soil depth using vegetation cover, 
this assumption is based on that vegetation cover is a good indicator of soil depth, as plants are 
known to develop root systems that extend to different depths depending on the soil type and 
other soil characteristics. Thus, in each pixel of the ECOCLIMAP II dataset, the vegetation cover 
is assigned a specific rooting depth according to the root system development of typical plant 
species for that particular vegetation type. The rooting depth is defined as the maximum depth of 
the soil profile to which plant roots can penetrate and access soil water and nutrients. 

The above represents some disadvantages, for example: within the same pixel vegetation cover 
class have the same rooting depth, which may not always be the case, in reality, the rooting depth 
of plants within a vegetation class can vary depending on factors such as local soil conditions 
(geology) and water availability. Consequently, this approach only considers the effect of 
vegetation cover on soil depth, neglecting other factors that can also play an important role in soil 
depth, such as topography and geology, which can be not realistic, especially in areas with shallow 
soils, like mountain areas. 

To estimate the soil depth, the ESDAC database uses a combination of different methods and 
resources that include pedotransfer functions, remote sensing data, and modeling approaches. 
While ESDAC provides a valuable resource for estimating soil depth, has some limitations. 
Modeling approaches and functions may not accurately capture the complex soil properties that 
influence soil depth, and their accuracy may vary depending on the soil type and location 

It is noteworthy that soil depth provided by ESDAC is a modeled estimation based on various 
sources and environmental factors, so there may be inaccuracies and uncertainties associated with 
this estimation, whereby simulations carried out using this information are subject to uncertainties 
from both the model itself and soil data. This may explain the fact that the performance metric of 
the simulation does not improve. 
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6.4.2. Improvement on low flows representation  

A conceptual approach, based on rainfall-runoff models, to improve the streamflow simulated by 
SASER (adding a reservoir at the grid-scale resolution) was used. This is intended to provide a 
better representation of the slow component in the hydrological response, which is not well 
simulated by SURFEX. Results show that the additional reservoir, which is simple and easy to 
calibrate, has a very positive impact on the streamflow simulation. However, the calibration of 
the reservoir parameters is only possible in gauged natural basins, which are not numerous in the 
area of study.  

The implementation of the conceptual reservoir has as its main objective to sustain the flows 
without having a significant impact on the daily high and medium flows (surface runoff). For this 
reason, the reservoir scheme is implemented as a postprocessing of just the drainage, which is the 
slow component. This redistribution of the water volume does not affect the shape of the 
hydrograph during peak events. During the summer months, there is a significant improvement 
in the low flow simulation, as shown in Figure 6-20. This fact supports the effectiveness of the 
reservoir to improve the streamflow simulation. At the same time, at the monthly time step, it is 
evident that the annual cycle has undergone significant changes, redistributing water from winter 
to summer and obtaining a more realistic double-peaked hydrograph at the outlet of the Ebro 
basin. 

A regionalization approach was established to find the values of the parameters for all the grid 
points of the area of study, not only those located in near-natural basins. This approach uses 
physiographic and climate-related predictors, although these variables are not immediately 
associated with groundwater, they exert an indirect influence on the runoff response. Therefore, 
those predictors are acting as proxies for defining the predictands. Moreover, several previous 
regionalization studies have emphasized the use of those predictors (Nijssen et al., 2001; Singh et 
al., 2014; Beck et al., 2016, 2020).  

The performance of the model with regionalized parameters is almost as good as that of the 
catchment-by-catchment (local calibration) approach as reported KGE values. In the local 
calibration approach the values of the parameters are lumped, which probably would not work 
well in larger basins. Thus, the regionalization approach would probably be more advantaged if 
tested in larger basins. Additionally, having lumped values of the parameters per basin does not 
play well with a model that is mostly physical and which tries to be as spatially distributed as 
possible. 

The regionalization approach allows us to apply the reservoir everywhere in the study domain, 
even in heavily human-influenced areas where a local calibration approach is not feasible. Due to 
the lack of validation data, our simulation with a reference one (SIMPA) has been compared. The 
results from such an experiment are less easily interpretable. Still, at least it makes it evident that 
the differences are lower now, even if they remain very large when compare with the reference 
model. 

The maps of the reservoir parameters produced by the regionalization approach are presented in 
Figure 6-18. The full domain is covered by these maps at a 2.5 km resolution, and they vary 
according to climate and physiographic information that was used as predictors. It is difficult to 
explain the spatial patterns due to the complex and strong connection between the different 
variables (e.g. climate, vegetation, and soil properties) involved (Troch et al., 2013).  
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Despite that, spatial patterns related to known hydrological processes can be identified at least in 
one of the parameter maps (L, reservoir size). Patterns in this parameter, associated with soil 
moisture content, can be explained by the land cover, precipitation, and soil granulometric 
distribution. For example, in the region of the south-west of France where large sand deposits 
exist (Landes), the runoff response is quick, and infiltration has high rates, thus a buffer is required 
to play the role of groundwater storage and sustain the flows during the dry season, and hence the 
values of the reservoir size are expected to be larger than in clay predominated regions. On the 
other hand, the patterns in the map of the k parameter are not easily interpreted. Both, soil 
properties and topography influence the distribution of water storage, and isolating the influence 
of each other is problematic (Price, 2011).   

Different regionalization experiments were carried out, to account for the equifinality problem 
(multiple optimal solutions providing reasonably similar or equal model performance values), 
which is one of the most important sources of uncertainty in hydrological modeling (Beven & 
Freer, 2001). Furthermore, in each experiment cross-validation process was used, which allows 
us to estimate the generalizability of the parameters and provides an indication of uncertainty. 
Previous experiments done (not shown here) indicated that the parameters used to initialize the 
genetic algorithm have a strong influence over the search direction and efficiency score. 

As shown in Figure 6-15 (light blue bands), the time series of simulated daily streamflow provide, 
in general, a wide range of streamflow uncertainty bands derived from the parameter sets, 
especially at the end of the wet season and gradually decreasing during the dry season (July to 
August). Otherwise, the uncertainty bands during the winter months were of much lesser extent, 
except in some months (November and December), this could be explained by the fact that the 
reservoir configuration focuses only on low flows, however, an extensive parameter uncertainty 
assessment is beyond the scope of this study. 

In addition to KGE scores, and to understand how well the additional reservoir simulates low 
flows, which is the main objective of the study, the Q90/Q50 and the QMNA (5) indices were 
evaluated. The negative relative bias in both indices of default simulation suggests a fast 
precipitation-to-runoff reaction of the SASER model; hence, the low flows are underestimated 
during the dry periods. Results of our different simulations (local calibration or regionalization 
approach) adding the reservoir showed a considerable improvement in both indices, although they 
are still slightly underestimated, suggesting the suitability of the conceptual reservoir to improve 
the simulation of the slow component of the streamflow, even though other aspects of the model 
still need to be improved. 

A key result of this work is that the introduction of a conceptual reservoir in the SASER model is 
found to be useful, even in cases where it is not feasible to easily calibrate the parameters in each 
catchment. This is possible as long as the values of the parameters are reasonable. This was 
demonstrated by different simulations (eight experiments and the three extra experiments using 
lumped parameters) carried out. Even though determining the most appropriate parameter map is 
challenging, it is noteworthy that all of the parameter maps yield reasonable results and are 
significantly better than the simulation without the reservoir (default). 
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6.5. Conclusions 

The calibration of internal model parameters in SURFEX models is a complex task that requires 
careful attention and rigorous analysis. The process of calibrating the runoff b parameter and 
improving the soil database information in the SURFEX model proved to be a complex and 
demanding endeavor, both in terms of calibration efforts and computational requirements. Despite 
these challenges, our findings led to the conclusion that the default value (b = 0.5) of the runoff b 
parameter adequately captures the dynamics of runoff generation within the model. This implies 
that the default setting offers a reliable representation of the hydrological processes under 
consideration. The potential relationship between the hydrological model parameter, specifically 
the runoff b parameter, and the Indice de Développement et Persistance des Reseaux (IDPR) was 
explored, however, no significant correlation between the IDPR and the runoff b parameter was 
found. 

Simulations conducted using the improved soil information from the ESDAC database did not 
demonstrate significant impacts on the hydrological response, in terms of KGE. In fact, they even 
increased the uncertainty associated with the variables considered, such as the root zone. These 
findings suggest that the incorporation of the ESDAC database for soil information did not yield 
improvements in the modeling of hydrological response. 

Despite the extensive efforts made, the improvement of the internal parametrization of the 
SURFEX model to enhance the simulation of hydrological processes was not achieved. 
Consequently, the decision was made to maintain the default parametrization. 

In the second part of the chapter, to improve the simulation of low streamflow in the 
hydrometeorological model SASER by using a simple conceptual reservoir scheme to post-
process the drainage and thus improve the slow component of the streamflow, the results can be 
summarized as follow. 

The default SASER model presents a strong negative bias of low flow indices. The addition of a 
reservoir scheme to modulate the drainage had a positive result in terms of KGE values, when the 
parameters were set using a local calibration method, both for the calibration and validation 
periods. The addition of a conceptual reservoir proved to be a simple and efficient option, with a 
limited number of parameters, which improves the low flows simulated by SURFEX without 
deteriorating high flows, as shown in the improvement of the low flow indices studied (QMNA(5) 
and Q90/Q50). 

A regionalization approach, based on a genetic algorithm, was introduced to determine the values 
of the parameters all over the domain, including basins heavily influenced by water management, 
where a standard local calibration of these parameters is not possible. Results of the 
regionalization approach showed a clear general improvement of simulated streamflow 
(ΔKGE=0.11) with an improvement for 79% of the validation catchments. Those results were 
almost as good as those using local calibration. Both, KGE scores and the two low flow indices 
indicate improvements, especially for the low flow indices, although a small negative bias of the 
low flow indices remains.  

The regionalization approach based on a genetic algorithm was possible due to the simplicity of 
the conceptual model and its implementation as an external module of SURFEX. Applying this 
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approach to calibrate other empirical parameters within the SURFEX model itself would be 
desirable, but impractical due to computational constraints.  

A relationship between the parameters of the conceptual reservoir with climate and physiographic 
variables was established through the genetic algorithm, which allows us to take into account the 
within-catchment variability all over the study area. Although this approach is not physically 
based, it allows linking the two new parameters with physical variables, which is a good 
compromise for a model that tries to be distributed and as physical as possible. 

In conclusion, the addition of a conceptual reservoir to postprocess the SASER simulated drainage 
led to considerable improvement in low flow simulation. The regionalization approach allows us 
to apply the reservoir all over the domain including the human influenced basins, not just natural 
ones. 
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7. Water management and drought 

7.1. Introduction  

The Earth's landscape has been profoundly influenced by humans through natural resource 
exploitation (Postel et al., 1996; Marsh, 2003). These human-induced impacts on the natural 
environment have now reached a significant magnitude, marking a new geological epoch known 
as the Anthropocene (Montanari et al., 2013; Savenije et al., 2014; Lewis & Maslin, 2015). The 
large-scale flow and storage of water are significantly influenced by human factors, for example, 
one evident manifestation of these impacts is the reduction in river flows and the alteration of 
hydrological regimes attributed to the construction of large dams (Nilsson et al., 2005). These 
observable changes highlight the expanding human footprint on freshwater resources and 
ecosystem services, raising concerns about the rapid rate of alteration occurring across the Earth 
(Sanderson et al., 2002; Vörösmarty et al., 2010; Carpenter et al., 2011; Gleeson et al., 2012). 
Moreover, the effects of human activities on freshwater systems are overwhelming, with 
substantial alterations observed across diverse spatiotemporal scales (Postel et al., 1996; Vitousek 
et al., 1997; Nilsson et al., 2005; Rockström et al., 2009). 

The exploitation of freshwater resources has yielded remarkable socio-economic benefits; 
however, these advantages have been also accompanied by negative environmental consequences 
(M. Palmer et al., 2004). The spatial and temporal variability in water availability and usage has 
led to water scarcity in numerous regions worldwide (Postel, 2000; Hanasaki et al., 2013). To 
address the uneven distribution and ensure water availability across different locations and times, 
humans have significantly modified the natural patterns of freshwater flows and storage 
(Vörösmarty et al., 2000; Lehner et al., 2011). Thus, three major land-water management practices 
have emerged as key drivers of water cycle dynamics on a global scale: agricultural irrigation, 
flow regulation, and groundwater use (Pokhrel et al., 2016) 

Over the past century, a considerable number of dams have been built in major river systems 
(Nilsson et al., 2005; Lehner et al., 2011), serving purposes such as guaranteeing water supply, 
controlling floods, and generating hydropower (Liu et al., 2015), which has resulted in the 
fragmentation of large river systems worldwide, causing a wide range of impacts (Dynesius & 
Nilsson, 1994; Graf, 1999; Nilsson et al., 2005). Simultaneously, irrigation plays a vital role in 
global water consumption (~70% of the world’s freshwater), food production, and the terrestrial 
water balance. While irrigation has been practiced since the advent of agriculture, a rapid 
expansion of irrigated areas occurred during the last century (Pervez & Brown, 2010; Siebert et 
al., 2015), therefore intensifying the impacts on freshwater systems and climate (Hanasaki et al., 
2013; Leng et al., 2015). Moreover, the growing global temperatures are projected to further strain 
Earth's water resources in some areas of the world, leading to increased water demands, 
particularly for agriculture (Wada et al., 2013; Dirmeyer et al., 2014; Haddeland et al., 2014; 
Schewe et al., 2014). Consequently, the integration of reservoirs, their operational dynamics, and 
irrigation practices into hydrological modeling is increasingly vital for developing effective 
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adaptation strategies, with a specific focus on the agricultural sector (Iglesias et al., 2012; Iglesias 
& Garrote, 2015). Therefore, continued research and development in the field of incorporating 
human influences in hydrological modeling will contribute to a comprehensive understanding of 
water management and improve the characterization of interactions and feedback between natural 
and human systems, thus will remain imperative in future studies (Pokhrel et al., 2016). As 
interdisciplinary approaches to addressing the challenges of adapting water systems, especially 
under uncertain and changing conditions (Garrote, 2017).  

Land-surface models (LSMs) have been widely recognized as a powerful tool for understanding 
and simulating the hydrological cycle, focusing on droughts (Lehner et al., 2006; Vidal et al., 
2010; Prudhomme et al., 2011; Van Loon et al., 2012; Barella-Ortiz & Quintana-Seguí, 2019; 
Gaona et al., 2022). They allow a deeper understanding of the physical processes involved in 
droughts and how they interact with other components of the hydrological cycle, providing 
valuable insights for understanding the dynamics of droughts and can assist in the management 
of droughts by providing information on water availability and potential drought hotspots.  

In recent years, significant advancements have been made in LSMs, especially through 
improvements in vegetation, soil moisture, and groundwater schemes (Fisher & Koven, 2020; 
Blyth et al., 2021). And therefore, to ensure consistent analysis of human-induced changes in 
water resources at large scales, numerous large hydrological models that account for these 
interactions have been developed since the late 1990s (Sood & Smakhtin, 2015). Recently 
hydrological models now incorporate dynamic feedback mechanisms that account for the 
interplay between hydrology and human water management. This is achieved through the 
integration of various components such as irrigation-soil moisture dynamics, reservoir-
streamflow interaction, and water allocation-return flow dynamics (Döll et al., 2012; Wada et al., 
2014; Pokhrel et al., 2015). However, despite these advancements, the representation of human 
factors in current-generation LSMs remains somewhat limited and often oversimplified, thereby 
may not fully capture the complexity inherent in their interactions with natural processes (Pokhrel 
et al., 2016; Wada et al., 2017). 

The hydrological system encompasses not only natural processes but also the crucial role of 
human behavior, and thus humans are not be considered as external drivers or boundary 
conditions (Montanari et al., 2013; Sivapalan, 2015; Troy et al., 2015; Van Loon et al., 2016). 
The field of socio-hydrology has emerged as a discipline aimed at unraveling the intricate 
dynamics that connect humans and water within a coupled hydrological-social system (Sivapalan 
et al., 2012, 2014; Gober & Wheater, 2015). The development of socio-hydrology has brought a 
shift in perspective that allows for an assessment of the co-evolution of human activities and 
hydrology, driven by feedback mechanisms operating over extended temporal scales, an aspect 
not comprehensively previously addressed (Wada et al., 2017).  

However, socio-hydrology must transcend individual case studies and undertake efforts to 
establish generalized yet locally relevant frameworks that capture changes in the dynamics of the 
human-water system on a larger scale (McMillan et al., 2016). While many recent studies 
incorporate human water management, significant uncertainties persist in model simulations 
(Döll et al., 2016). Nonetheless, it is worth noting that recent research reports indicate that 
integrating human influences into regional hydrology models improves their performance in 
simulating river discharge or groundwater storage (Wanders & Wada, 2015; Wada et al., 2016), 
thereby enhancing the realism of large-scale hydrological models and fostering more accurate 
predictions of the co-evolution of the coupled human-water system. 
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This chapter aims to integrate a reservoir regulation scheme into the SASER hydrological 
modeling framework to enhance the accuracy of simulating highly regulated basins, such as the 
Ebro basin. The improved modeling approach leads to a better comprehension of the historical 
conditions of water resource systems. To achieve this, two objectives are raised: (i) a simplified 
reservoir operation scheme that can be incorporated into the SURFEX-LSM model is proposed, 
which is applicable at any scale, particularly at large scales. The model utilizes a simple yet 
effective parameterization approach that demands minimal data availability. And (ii) quantifying 
the impact of human activities, especially reservoir operation and irrigation, on drought 
propagation. 

7.2. Case study and data  

The irrigated area, Canal de Aragón y Cataluña (CAyC) located in the northeastern part of the 
Ebro basin was used to implement the reservoir operation module in this chapter. It has been 
studied intensively in several researches (Milano et al., 2013; Linés et al., 2017, 2018). 

For a description of the study area see section 3.1.3. 

Data used in this chapter are presented in section 3.2.4. 

7.3. Methodology 

The following section provides a detailed account of the methodology adopted to incorporate an 
independent reservoir operation module into the SASER model. Figure 7-1 depicts a schematic 
flowchart that highlights the main steps involved, which are described in detail below. 
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7.3.1. Reservoir operation scheme3 

A simplified reservoir operation scheme was implemented to simulate human water management 
in the framework of the SASER suite, as depicted in Figure 7-1. This scheme is based on the 
Water Availability and Adaptation Policy Analysis (WAAPA) model (Sordo-Ward et al., 2019, 
2020) which is briefly described in the next subsection.  

The scheme implemented in this research has been developed in Python code and retains several 
considerations of the WAAPA model. The main difference is that the simulations performed by 
our scheme only consider each reservoir individually at a time. It is noteworthy that the scheme 
employed in this study is not an integral component of the SASER chain. Instead, the scheme was 
utilized as an external module in this application, as depicted in Figure 7-1. 

7.3.1.1. Description of the WAAPA model 

The WAAPA model (Garrote et al., 2015; Sordo-Ward et al., 2019, 2020) is a GIS-based model 
that performs simulations of reservoir operation, enabling the computation of the supply of water 
to demands from an individual reservoir or a system of reservoirs, Figure 7-2. The platform takes 
into account ecological flows and evaporation losses in its calculations. The fundamental elements 
of WAAPA comprise reservoirs, inflows, and demands that are interconnected with nodes of the 
river network. 

 

Figure 7-2 Operation scheme of the high-resolution Water Availability and Adaptation Policy 
Assessment (WAAPA) model (Sordo-Ward et al., 2019). 

Initially, the model releases water from reservoirs located in the lower regions of the basin to meet 
the demands. Should these reservoirs reach their full capacity and continue to receive additional 

                                                      

3 Based on: Cenobio-Cruz, O., Quintana-Seguí, P., & Garrote, L. (2023). Drought Propagation under 
Combined Influences of Reservoir Regulation and Irrigation over a Mediterranean Catchment. 
Environmental Sciences Proceedings 2023, Vol. 25, Page 8, 25(1), 8. https://doi.org/10.3390/ECWS-7-
14239 
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inflows, uncontrolled spillage occurs, resulting in water being discharged from the system. 
Conversely, if upstream reservoirs are at full capacity and experience further inflows, the surplus 
water is collected by downstream reservoirs.  However, this management criterion is a 
simplification, as real-world systems take into account more conditions and constraints. The 
model approach aims to maximize water availability while minimizing excess storage. The 
WAAPA model, in each timestep, computes the following operations: 

1. The environmental flow requirements are satisfied in each reservoir by considering the 
available inflow. Environmental flows are subsequently transmitted to downstream 
reservoirs and incorporated into their respective inflows. 

2. Computing evaporation in each reservoir, and thus the evaporation losses and adjusting 
the storage accordingly,   

3. Calculation of the excess storage (storage exceeding the maximum capacity) in each 
reservoir, which is the increment in storage resulting from the remaining inflow. 

4. The model meets demands in a prioritized manner by utilizing the excess storage first, 
followed by available storage, starting from the reservoirs with higher priority. 

5. The model computes uncontrolled spills, if excess storage persists in any reservoir, to any 
surplus water. 

As a result, the model generates a set of time series data encompassing monthly volumes supplied 
to each demand, monthly storage values, spills, environmental flows, and evaporation losses in 
every reservoir. 

 

7.3.1.2. Model input data 

The model requires several key data inputs to simulate the reservoir systems obtained from the 
CHE. These essential data include the monthly series of inflows, maximum storage capacity, and 
the threshold values used for reservoir zoning. This scheme divides the reservoir storage into 3 
zones (prealert, alert, and emergency), which correspond to the short-term scarcity threshold 
levels established by the CHE. Similarly, the monthly series of irrigation demands are crucial for 
comprehensive modeling. 

Furthermore, to calculate the monthly rate of evaporation losses within the reservoir, the 
utilization of stored volume-area curves becomes imperative. The detailed procedure for this 
calculation is provided in Appendix B.1. 
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Figure 7-3 Schematic representation of the reservoir model as implemented in the area of study. Dams 
are represented by triangles; inflows and outflows are represented by arrows. Light triangles represent 

dams not considered in the simulation. 

7.3.1.3. Model configuration 

The CHE established shortfall thresholds for each reservoir, which are thoroughly described in 
section 3.2.4 of the study. These thresholds play a critical role in determining the zoning of the 
reservoir within the model. The zoning concept entails classifying the reservoir based on its 
storage levels, allowing water management strategies to be implemented. When the reservoir's 
storage level falls within its designated zone, an allocation coefficient is applied, influencing the 
water allocation decisions. By incorporating these thresholds and allocation coefficients, the 
model captures the dynamic nature of the reservoirs, enabling more realistic water allocation 
simulations. 

To determine the proportion of available resources that effectively reach the crops, an allocation 
factor is applied to the accumulated inflow in the reservoir. This factor takes into consideration 
various factors, such as water supply to other uses. In this research, by defining the allocation 
factor, the model only considers the amount of water available for irrigation purposes. 

As the precise allocation factor for each area is unknown, it is necessary to test the sensitivity of 
the model. This is achieved by running the model with different allocation factors, assuming 
perfect knowledge of the expected water availability. By conducting these sensitivity tests, the 
modeler assesses the impact of different allocation factors on irrigation outcomes. An allocation 
factor of 1 represents a theoretical scenario where all incoming water into the reservoir is directly 
accessible for irrigation purposes. 
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An allocation factor of 1.0 was selected for the Barasona reservoir due to its low storage capacity 
and therefore its regulation capacity is also low. Conversely, for the Santa Ana reservoir, an 
allocation factor of 0.55 was established since it was found as a benchmark (Linés et al., 2018). 

7.3.1.4. Evaluation criteria 

To assess the performance of the reservoir module in emulating the outflow and storage for the 
selected reservoirs, the Kling-Gupta Efficiency (KGE) metric, as outlined in section 4.2.5.2 was 
employed. The KGE was computed to evaluate the agreement between the simulated volume 
storage and releases generated by the reservoir operation scheme, and their corresponding 
observed variables. This metric provides a comprehensive evaluation of the model's ability to 
reproduce the dynamics of the reservoir operation. 

7.3.2. Irrigation water demands 

The CAyC is supplied mainly by the Barasona and Santa Ana reservoirs, as mentioned in section 
3.1.3,  to determine the corresponding irrigation demands, the monthly distribution provided by 
the CHE was utilized. The upstream zone comprises 55% of the total area within the CAyC region 
and exhibits an annual water demand of 436 Hm3. In contrast, the downstream zone, which is 
supplied by the Santa Ana reservoir, accounts for the remaining 45% of the CAyC area 
(equivalent to 357 Hm3) and includes the irrigation districts of Piñana (with a demand of 215 
Hm3) and Algerri-Balaguer (with a demand of 48 Hm3). Both monthly distribution values are 
depicted in Table 7-1. 

Table 7-1 Monthly distribution of irrigation demands for each irrigated area (Hm3) 

Irrigated 
Zone 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Ago Sep 

Barasona 
(Upstream) 

21.37 21.37 21.37 21.37 21.37 21.37 12.65 54.51 86.35 81.12 46.66 25.73 

Santa Ana 
(Downstream) 

15.51 0 6.20 9.30 0 12.41 37.22 86.84 99.24 136.46 136.46 80.64 

The San Salvador reservoir, with a capacity of 137 Hm3, holds a distinctive position as it is not 
situated along any river course. Instead, it receives water from the Barasona reservoir through the 
Zaidín channel. The primary function of the San Salvador reservoir is to store water during the 
winter months, which subsequently provides vital support to the Barasona reservoir during the 
summer months. 

To ensure an accurate representation of the system dynamics, the monthly distribution of demand 
has been meticulously adjusted to implicitly account for the presence of the San Salvador 
reservoir. This adjustment takes into consideration the winter filling period, during which the 
reservoir experiences a steady inflow from October to March (first row in Table 7-1). By 
incorporating this constant value, the model effectively captures the interplay between the San 
Salvador reservoir and the broader water management scheme within the analyzed system. 

Moreover, in this research, the irrigation scheme implemented within the SURFEX model (see 
section 3.3.2.1) was also utilized to estimate the irrigation demands corresponding to the areas 
supplied by each reservoir. This estimation takes into account the variability of weather conditions 
and thus every year, the calculated demands are different. 
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The model performs a detailed calculation of the crop water requirements. The model generates 
irrigation water based on soil moisture thresholds during the period of the irrigation campaign, 
representing the amount of irrigation water needed at each grid point within the defined irrigation 
zone, Figure 7-4. This level of spatial resolution allows for a more accurate representation of the 
spatial variability in water demands across the study area. The default configuration of the 
irrigation scheme was adopted for this simulation, taking into account various parameters that 
influence the irrigation process. Specifically, sprinkler irrigation was considered, irrigation 
duration was set to 8 hours, and a maximum water amount of 30 mm per irrigation event was 
specified. Additionally, the irrigation events were scheduled on a weekly basis. At the time of 
writing this manuscript, new simulations have been performed with more realistic parameters of 
irrigation (closer to the actual irrigation patterns). Unfortunately, these simulations could not be 
included in the analysis due to time constraints.   

 

Figure 7-4 Total irrigation amount simulated by SURFEX for the hydrological year 2013-2014. 

The previous figure shows all irrigated points within the Ebro basin. Hence, the total water amount 
for irrigation is calculated as the sum of the grid points corresponding to each irrigated zone at 
the end of each month every year for the whole period. 

7.3.3. Drought analysis 

To characterize a drought event and thus understand the processes involved, some features such 
as timing, duration, and intensity are necessary. Hence, given the complex nature of droughts, 
onset and recovery, and the different types of drought (mentioned in section  2.1.1), several 
indices have been developed to characterize a drought event (Mishra & Singh, 2010; Dai, 2011; 
Zargar et al., 2011). Most of them are based on probability distributions or statistical methods, 
which transform the original data series into standardized data. Besides, there are other 
approaches to characterize drought while maintaining the original series utilizing a defined 
threshold.  

The standardized indices used for drought assessment have limitations when it comes to 
evaluating anthropogenic drought, as early mentioned in section 2.1.1. The primarily rely on 
meteorological variables, that by themselves, may not fully account for the influence of human 
activities on water availability. The omission of human factors can limit the accuracy of drought 
assessment focused on anthropogenic impacts (see Appendix B.3). To address these limitations, 
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it is important to incorporate additional data sources and modeling approaches that explicitly 
consider the human influences on the water cycle. 

In this study, droughts are identified and analyzed through the widely-used threshold level method 
(Dracup et al., 1980b; Fleig et al., 2006; Tallaksen et al., 2009; Vidal et al., 2010; Van Loon, 
2013), that detailed described following. 

7.3.3.1. Threshold level method 

The threshold level method is based on the run theory (Yevjevich, 1967; Guerrero-Salazar & 
Jevjevich, 1975). The threshold level method is a widely used approach for characterizing 
droughts in hydrology, particularly in temperate regions where runoff values are typically larger 
than zero. The method involves defining a threshold value for a hydrological variable, such as 
streamflow, but it can be applied to any other, below which a drought is considered to occur. The 
duration and severity of the drought are then calculated based on the number of consecutive time 
periods that the variable remains below the threshold level (Figure 7-5).  

 

Figure 7-5 Scheme of drought characteristics using the run theory, from (Mishra & Singh, 2010). 

One of the main advantages of the threshold level method over standardized indices, such as the 
Standardized Precipitation Index (SPI) or the Palmer Drought Severity Index (PDSI), is that it 
does not require prior knowledge of probability distributions, although nonparametric indices are 
available. Instead, the drought characteristics such as frequency, duration, and severity are 
directly determined from the original time series. Hence, the threshold level method allows for 
calculating the so-called deficit volume, which represents the total amount of water shortage that 
occurs during a drought event, a crucial drought characteristic in water resources management. 
Additionally, physical meaning is straightforward to interpret, which is valuable in a water 
management context.  

Furthermore, several approaches have been developed to estimate the return period of droughts, 
defined according to the run method. These approaches include statistical procedures, such as the 
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method proposed by Fernández & Salas (1999), which is based on the extreme value theory, and 
the method proposed by Shiau & Shen, (2001), which uses a frequency analysis approach. 
Additionally, Bonaccorso et al. (2003) proposed a procedure to estimate the return period of 
droughts based on the probability distribution of drought duration. Cancelliere & Salas (2004) 
proposed a method to estimate drought risk using a Monte Carlo simulation approach. These 
procedures have proven to be effective in quantifying the risk associated with drought events and 
can provide valuable information for decision-making in drought-prone regions. In this context, 
the run method has emerged as an ideal candidate for performing drought risk analysis, as it 
identifies drought events based on hydrological data and provides a straightforward way to 
estimate their return period. 

However, despite its usefulness, this method has some limitations, for example, the calculation of 
the threshold level method does not consider a standard classification of drought, which can result 
in significant differences between climate types and hinder global comparison. Therefore, 
standardization is often required for global drought studies (Wanders et al., 2010). Moreover, in 
extremely arid regions with ephemeral rivers, the threshold level method (as well as other drought 
analysis methods) faces an additional challenge. In these areas, long periods of almost no 
precipitation and natural zero flow can lead to a threshold level of zero, making it difficult to 
identify and characterize drought events (Scanlon et al., 2006). Finally, the threshold level method 
is limited by the need for accurate and reliable data on hydrological variables, and the choice of 
an appropriate threshold level can be subjective and dependent on expert judgment. In our case 
study, these limitations do not apply, because the comparison of different regions is not involved, 
the rivers under study are not intermittent, and adequate thresholds based on stakeholder 
experience can be defined. 

The determination of the threshold level is a fundamental aspect of the threshold level method for 
drought analysis. Various approaches to defining the threshold level have been proposed, 
including historical averages and statistical methods. The fixed threshold level approach, which 
uses a constant threshold level to identify drought, represents the simplest form of this method. 
However, variations in climate and land use can affect the hydrological regime, leading to 
temporal changes in the threshold level. To address this, alternative versions of the threshold level 
method have been developed. These include the seasonal and monthly-varying threshold level 
approach, which uses different threshold levels for each season or month, based on historical data 
or statistical methods. These approaches aim to improve the accuracy of drought identification by 
accounting for temporal variations in the hydrological regime as depicted in Figure 7-6. 

 

Figure 7-6 Illustration of the threshold level method, with a) constant and seasonally constant 
threshold, b) monthly-varying threshold, and c) daily-varying threshold (Stahl, 2001). 
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7.3.3.2. Calculation procedure 

The threshold level method defines a drought event when a specific hydrological variable of 
interest, falls below a predetermined threshold value (q). The onset of a drought event occurs 
when the variable (x) drops below the threshold level (t=1), and the event continues until the 
threshold is exceeded once again (recovery; t=T). Each drought event (i) can be identified by its 
duration (Δ) and a severity measure. Thus, the duration of a drought event is obtained through the 
following equations: 

𝛿𝛿(𝑡𝑡) =  � 1 ,       𝑚𝑚(𝑡𝑡) < 𝑞𝑞(𝑡𝑡)
 0 ,        𝑚𝑚(𝑡𝑡) ≥ 𝑞𝑞(𝑡𝑡) 

( 7-1) 

 

In this equation, the binary variable δ(t) represents whether a drought situation is occurring at 
time t, while x(t) represents the value of the hydrometeorological variable at time t. It is important 
to note that time t is measured in discrete time steps. 

Δ𝑖𝑖 = �𝛿𝛿(𝑡𝑡) ⋅ ∆𝑡𝑡
𝑇𝑇

𝑐𝑐=1

 ( 7-2) 

The duration of a drought event (i) is denoted by Δ, and Δt is the time step (one month in this 
case). 

The deficit volume (D), is obtained by adding up the differences between the actual flux and the 
threshold level during the drought period. The procedure can be expressed using the equations 7-
3 and 7-4. 

𝑑𝑑(𝑡𝑡) = � 𝑞𝑞
(𝑡𝑡) − 𝑚𝑚(𝑡𝑡), 𝑚𝑚(𝑡𝑡) < 𝑞𝑞(𝑡𝑡)

0, 𝑚𝑚(𝑡𝑡) ≥ 𝑞𝑞(𝑡𝑡) ( 7-3) 

The volume deficit (D) of drought event i (in mm), is obtained as following: 

D𝑖𝑖 = �𝑑𝑑(𝑡𝑡) ⋅ ∆𝑡𝑡
𝑇𝑇

𝑐𝑐=1

 ( 7-4) 

Using a threshold-level method related to the drought-impacted sectors is crucial to effectively 
manage water resources during drought events. Each sector, such as irrigation, drinking water, 
and ecology requires specific threshold levels that reflect their needs (Hisdal et al., 2004; Fleig et 
al., 2006; Sheffield & Wood, 2012). The threshold level can be either fixed or variable, depending 
on the scale and purpose of the analysis Figure 7-6. A variable threshold level, which accounts 
for seasonal variations, is commonly used in global drought studies (Stahl, 2001; Vidal et al., 
2010; Hannaford et al., 2011; Prudhomme et al., 2011; Parry et al., 2012). In this study,  a variable 
threshold level was employed to better capture the seasonal variations in drought events. This 
approach provides a more accurate representation of the severity and duration of drought events, 
which can aid in the development of effective drought management strategies. 
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Depending on the research question and the specific context of the study different threshold levels 
can be used (Mishra & Singh, 2010), which can be derived from the flow duration curves (FDC). 
By selecting a different percentile in the calculation of the threshold level, the drought 
characteristics can be altered. For instance, a 95th percentile threshold identifies fewer events with 
lower deficit volumes and maximum deviations but shorter durations, while a 70th percentile 
threshold identifies the opposite. Nonetheless, the relationship between the drought characteristics 
of different hydrometeorological variables or catchments is unlikely to be impacted. This has been 
demonstrated in several studies, including (KO & Tarhule, 1994; TATE & FREEMAN, 2000). 
Therefore, the selection of the percentile should be based on the specific needs of the study and 
the characteristics of the catchment in question. For example, in regions with scarce water 
resources, it may be appropriate to use a lower percentile threshold to identify drought events 
with larger deficit volumes and longer durations. In contrast, in areas with abundant water 
resources, a higher percentile threshold may be used to identify more extreme drought events with 
shorter durations. The choice of threshold level should also consider the availability and quality 
of the data, as well as the objectives and scope of the study. 

For the study presented here, and to take into account seasonality a variable threshold based on 
the 80th percentile (Q80) from the monthly FDC was used to identify drought events as depicted 
in Figure 7-7. This threshold was chosen because it represents the discharge level that is exceeded 
80% of the time and is a commonly used threshold in drought studies (Hisdal et al., 2001; 
Tallaksen & Van Lanen, 2004; Fleig et al., 2006; Tallaksen et al., 2009; Van Loon, 2013). 

 

Figure 7-7 Panel (a) shows the FDC for each month and (b) the variable threshold level scheme based 
on the 80th percentile from the FDC. 

7.3.3.3. Drought characteristics 

Drought metrics can be obtained from drought event analysis, the comparison between flow and 
threshold levels, such as frequency, duration, and deficit volume. It is noteworthy that the use of 
different drought metrics provides an overall understanding of the characteristics of drought in 
each region. To ensure that all drought events analyzed have a duration longer than the time step 
of the threshold, drought events with a duration of only 1 month are not included in the analysis 
process.  
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The first drought metric is drought frequency (occurrence of drought events, which is calculated 
as the total number of drought events identified in the period. The second drought metric analyzed 
is the duration of drought events. The average duration of all events and the duration of the 
maximum event were used.  

The third drought metric is drought severity (the strength of a drought), it can be quantified 
through different approaches, such as standardized indices, e.g. SPI (Mckee et al., 1993), this 
index quantifies drought severity by expressing it in terms of the number of standard deviations 
from the mean. Notable examples of their application can be found in studies by (Mishra et al. 
(2009), Vicente-Serrano et al. (2010), and Joetzjer et al. (2013). While standardized indices 
provide valuable insights, it is important to note that for many impacts, a more comprehensive 
understanding of drought severity, physical measures are required (Wong et al., 2013). These 
physical measures offer a deeper exploration of the severity's tangible effects and provide an 
extended perspective on the implications of drought across various sectors. 

In this analysis, the deficit volume of drought events was used as a severity drought metric, which 
is defined as the cumulative difference between the flow and the threshold over the drought event. 
Same as for drought duration, the total deficit over the entire period, the average deficit of all 
events, and the deficit of the maximum event were used. 

7.3.3.4. Quantifying the human influence 

The drought characteristics for each type were obtained through the drought analysis and then the 
human influence on drought (difference between human-influenced and naturalized scenarios) 
was quantified through the following equation: 

𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎 (%) = �
ℎ𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎

𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎
� ∗ 100 ( 7-5) 

The reported percentages indicate the variation in human-influenced conditions compared to the 
naturalized state. These values reflect the extent of change or deviation from the baseline 
conditions that occur because of human activities or interventions. 

7.4. Application of the methodology to the CAyC 

In this section, the application of the adopted framework, described in section 7.3 and illustrated 
in Figure 7-1 in the CAyC is presented. 

7.4.1. Irrigations demands from SURFEX-LSM 

The initial step involved comparing the irrigation demands derived from the SURFEX irrigation 
scheme with the data obtained from the CHE, as depicted in Figure 7-8. Examining the results for 
the Barasona reservoir, it is evident that the model-estimated demand closely aligns with the 
reference data. Conversely, for the Santa Ana reservoir, a notable disparity emerges, with the 
estimated demand significantly lower than the data provided by the CHE. 
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Figure 7-8 Irrigation demands estimated by SURFEX for both areas supplied by (a) Barasona and (b) 
Santa Ana. Gray lines represent each year and the green line represents the mean. The black solid line 

represents the irrigated demand derived from the CHE data. 

For the Barasona reservoir, the simulation results indicate that the monthly values of irrigation 
demand closely align with the reference data. The main variations are observed during the months 
of October to March, which coincide with the adjustments made to implicitly account for the 
influence of the San Salvador reservoir. However, the simulation results for the Santa Ana 
reservoir exhibit greater disparities compared to the observed demands, particularly during the 
months of May to August. In this period, the estimated values are approximately half of the 
observed values, indicating a significant deviation in the simulation results.  

It is important to highlight the advantage of utilizing the model-estimated demand, which exhibits 
interannual variability. Unlike fixed values every year, this dynamic approach captures the year-
to-year fluctuations in demand, enabling a more realistic representation of the system. While the 
model-estimated demand demonstrates favorable agreement for the Barasona reservoir, further 
investigations and refinement are required to align the estimated demand with the data from the 
CHE for the Santa Ana reservoir, and also these simulations require refinements in order to make 
them closer to the actual practices of irrigators. 

7.4.2. Performance of the reservoir operation scheme 

The results presented in this study focus on the simulation of reservoirs individually, with a 
specific emphasis on the demand for irrigation as the primary anthropogenic activity. To 
accomplish this, data obtained from the CHE and SURFEX simulations utilizing the newly 
implemented irrigation scheme (Druel et al., 2022) were employed. The latter allows for 
estimating realistic amounts of irrigation water and, consequently, the associated 
evapotranspiration (ET). As a result, four different scenarios encompassing different 
combinations of irrigation demand and inflow data were defined: 

S1. Observed data; inflow provided by SAIH and demands obtained from CHE data. 
S2. Inflow data from SAIH and irrigation demands extracted from SURFEX 
S3. Inflow obtained from (bias-corrected) SASER-reg, and irrigation demand obtained from 

CHE. 
S4. Simulated data: inflow from (bias-corrected) SASER-reg and irrigation extracted from 

SURFEX 
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These scenarios are then compared with the naturalized scenario, without human influence, this 
simulation is performed by the SASER model. 

The ability of the new module that simulates human-water management (reservoir operation) is 
evaluated through the performance metric KGE. Figure 7-9 shows performance metric results in 
terms of KGE for simulated storage and releases compared to the non-reservoir assumption 
(without human influence). The results show a good agreement, especially for the Barasona 
reservoir that reported in general higher KGE values for the different scenarios, panel (a) in Figure 
7-9. KGE values using the outflows reported values around 0.75. These results demonstrate the 
efficacy of the proposed reservoir operation strategy in meeting the water demands within the 
respective systems. 

In contrast, the Santa Ana reservoir exhibits lower KGE values for the simulated storage. Even in 
the best-case scenario (S1), the KGE values do not exceed 0.25, panel (b) in Figure 7-9. On the 
other hand, the KGE values for releases show slightly higher values, ranging above 0.4 in all 
cases. However, these values are significantly lower when compared to the Barasona reservoir. 
This discrepancy suggests that the model performance for simulating storage and releases in the 
Santa Ana reservoir is relatively weaker than that of the Barasona reservoir. 

 

Figure 7-9 Performance evaluation results of the reservoir operation scheme. KGE metric for the 
naturalized scenario and the human-influenced scenarios (S1 to S4). Panel (a) for Barasona and (b) for 

Santa Ana reservoir. 

The naturalized scenario (no reservoir assumption), red bars in Figure 7-9, for the Barasona 
reservoir depicted a KGE value of 0.66, whereas for the Santa Ana reservoir resulted in a negative 
KGE value (-0.2), which indicates the significant influence of the reservoir regulation in the 
hydrological regime, and thus it also indicates that the Santa Ana case is more difficult, as the 
results depend more on the model than in the Barasona case. In general, for the Barasona reservoir, 
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KGE values (outflow, blueish bars in Figure 7-9 a) reported similar positive values, which 
demonstrate a lower influence on reservoir regulation in the hydrograph shape. As anticipated, a 
notable degradation in performance was observed in the S3 scenario, primarily attributable to the 
uncertainty associated with the simulated inflow by SASER and the higher irrigation demands 
provided by CHE, in contrast to the estimations provided by SURFEX. The inclusion of these 
factors introduced significant challenges in accurately capturing the dynamics of the system. 

In contrast, the S1 scenario served to represent the module's capability to reproduce the current 
behavior of each dam as indicated the upper right square in Figure 7-1. To achieve this, observed 
data for both streamflow and irrigation demands were utilized as inputs for the module. The 
simulated results were then compared against the observed data for volume and reservoir outflow, 
providing a comprehensive assessment of the model's performance. This scenario (S1) 
demonstrated that the model's outputs aligned closely with the real-world behavior of the dam, 
enabling a more reliable evaluation of its effectiveness in capturing the system dynamics as 
depicted in Figure 7-10 and Figure 7-11, respectively. 

The results of the reservoir operation module shown here, indicate a satisfactory performance to 
simulate storage and outflows, with KGE values of 0.4 and 0.82, respectively (Figure 7-10). The 
simulated volume storage in the Barasona reservoir follows the same dynamics, except for the 
events from 1995 to 1997, which correspond to other factors and not to irrigation demands. 

 

Figure 7-10 Simulated storage and releases (blue solid lines) for the S1 (observed data as input) 
scenario for the Barasona reservoir. 

It is worth noting that although the reservoir's maximum capacity is 236 Hm3, it is rarely reached 
after 1996. Therefore, a maximum volume consistent with observations (200 Hm3) is considered 
for the simulation. Results for the Santa Ana reservoir show KGE values lower, especially for 
simulated storage (0.2), whereas for releases the value is acceptable (0.56), as indicated in Figure 
7-11.  

Overall, the simulation results indicate a satisfactory match between the observed and modeled 
dynamics of the reservoir, particularly after 1996 (gray area indicated in upper panel in Figure 
7-11). The stored volume demonstrates a similar pattern to the observations, suggesting that the 
model reasonably captures the reservoir's behavior. Furthermore, the model performs favorably 
in simulating the outflow values, closely approximating the observed data. 
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Figure 7-11 Same as Figure 7-10 but for Santa Ana reservoir. 

Appendix B.2 contains supplementary figures presenting additional reservoir results that 
complement the findings presented in the main body of this study. These additional figures 
provide a more comprehensive visualization of the reservoir results, including variations in 
storage levels, outflow rates, and deficits. 

The KGE results demonstrate that the reservoir operation module is capable to simulate the 
storage and outflows reasonably well. It is worth highlighting that for the S1 and S2 scenarios, 
the same irrigation demand was assumed every year, which does not accurately reflect realistic 
conditions. Nevertheless, this approach has yielded reasonably good results, especially S1 which 
only uses observed data and can be viewed as a calibration scenario. 

 

7.4.3. Identifying drought events and analysis 
7.4.3.1. Barasona case study 

The results presented in Figure 7-12 provide valuable insights into the impact of human activities 
on the streamflow and evapotranspiration (ET) dynamics in the Barasona case study. The left 
column of the figure represents the natural condition, non-reservoir assumption, and non-
irrigation considerations, while the right column represents the human scenario. 

In the natural condition (right column in Figure 7-12), the streamflow exhibits temporal 
variability, characterized by fluctuating levels that correspond to the wet and dry seasons. The 
data reveals distinct high peaks during the wet season and low peaks during the dry season, 
capturing the natural hydrological processes. These variations in streamflow reflect the natural 
dynamic of the river in the absence of human interventions. Additionally, the evapotranspiration 
values in the natural condition display a consistent pattern, indicating the influence of natural 
processes on the water cycle. 

However, in the human scenario, the presence of the reservoir and the implementation of 
irrigation practices have noticeable effects. The upper right panel in Figure 7-12 illustrates the 
simulated flow downstream of the reservoir using the reservoir model. Here, a significant decrease 
in flow is observed compared to the natural condition. This reduction is a consequence of water 
diversion for irrigation purposes, resulting in a decreased volume of water flowing downstream. 
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Furthermore, Figure 7-12 (lower right panel) shows the ET associated with irrigation, simulated 
using the SURFEX irrigation module. The ET levels show a marked increase in response to the 
introduction of irrigation, as water is redirected from the river to meet the demands of irrigated 
areas. This increase in ET further exacerbates the decrease in downstream flow since the water is 
intended for irrigation purposes. 

The identification of drought events is an important aspect of this study. The reddish areas in 
Figure 7-12 indicate deficit events, which are considered drought events according to the variable 
threshold method. The threshold used for identifying drought events was derived from the 
naturalized data series, obtained through simulations without using the irrigation scheme and the 
SASER model. This threshold was then applied to both the natural condition and the human 
scenario, providing a comprehensive assessment of drought occurrence. 

In the natural condition, it is evident that the system responds to drought events by propagating 
hydrological drought events to evapotranspiration (ET), leading to negative anomalies in this 
variable. The drought periods in both variables are similar. This consistent pattern demonstrates 
the clear propagation of drought within the system. 

In contrast, the findings in the human scenario reveal a notable discrepancy. The reservoir's 
presence downstream induces hydrological drought events, which deviate from the natural 
condition, but, in exchange, ET deficits are greatly reduced. This is the point of water 
management, agronomical droughts (ET) are reduced, in exchange for an increase of hydrological 
droughts. 

However, a comment on the ET plot must be made. The model’s irrigation water is created, it is 
not extracted from the dams (there is not a bidirectional coupling); thus, allows for indefinite 
irrigation. Consequently, extreme droughts that cause a reduction in water allocations might be 
not correctly represented. Furthermore, it has been determined that the irrigation parameters 
utilized in this simulation are not realistic enough. Nonetheless, the point is the same, dams 
contribute to an increase in hydrological drought when compared with natural thresholds, but they 
also allow to avoid most ET deficits, as they enable irrigation. Hence, it is of great interest to 
analyze these variables in conjunction. It is worth mentioning that the improvement of our 
analysis would undoubtedly be facilitated by the implementation of a fully coupled model and we 
hope in the future this will be possible. 
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Figure 7-13 presents the monthly deficits for the variables used in this study, precipitation, 
streamflow, and evapotranspiration (ET), under both natural (upper panels) and human (lower 
panels) scenarios. The analysis reveals the occurrence of a meteorological drought event, 
characterized by prolonged precipitation deficits, in the year 1991. This drought event is observed 
to propagate to both streamflow and ET, indicating a strong propagation effect within the 
hydrological system. Furthermore, it is noteworthy that the period from 2004 onwards exhibits an 
increased frequency of hydrological drought events. Notably, drought events in 2004, 2006, and 
2007-2008, which are widely documented in the literature, are clearly identified using the 
proposed approach, underscoring its effectiveness in accurately capturing and identifying drought 
events. 

 

Figure 7-13. Monthly deficits for precipitation, streamflow, and ET for the Barasona case study. The 
upper panels represent the natural situation and the lower panels represent the human situation. 

The Figure 7-13 also shows, in the “Q-Human” panel, that currently the river, compared to the 
natural behavior, is almost permanently in deficit, especially in winter, when the dams are being 
filled, except those years when the dam is already at capacity and thus outflow is closer to inflow. 
Of course, this allows to reduce ET deficits (“ET-Human” panel). It is also important to note that 
the ET-Human (lower right panel), during the months that the model irrigates (from April to 
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August) no deficit events are recorded, which is the main objective of the reservoir. Here, all the 
caveats mentioned before on the lack of a link between irrigation and dams apply. 

In Figure 7-14, the deficit events for scenario S4 are graphically presented, showcasing the 
simulation results obtained by utilizing the flows simulated by SASER as input data, in 
conjunction with the irrigation demands simulated by SURFEX, which vary from year to year. 
The comparison reveals a notable shift in the deficit patterns. It is worth highlighting that a 
considerable number of months exhibit no deficits, particularly during the winter months when 
water availability is relatively abundant. However, as the irrigation season commences in April 
and May, a discernible surge in deficit values becomes evident. This surge is attributed to 
irrigation demand estimated by SURFEX being higher during April in comparison to reference 
demands. 

 

Figure 7-14 Deficits in downstream flow simulated by the reservoir scheme, for the S4 scenario. 

 

7.4.3.2. Santa Ana case study 

In the Santa Ana case study, the impacts of the reservoir are even more prominent, as 
demonstrated in Figure 7-15. The left column of the figure represents the natural condition, non-
reservoir assumption, and non-irrigation considerations, while the right column represents the 
human scenario. Similar to the Barasona case, the reservoir's influence on downstream flow is 
evident, albeit significantly greater in magnitude. Throughout the analyzed period, streamflow 
consistently falls below the established threshold, highlighting the substantial alteration caused 
by the reservoir (right upper panel in Figure 7-15). 
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Similar to the Barasona case study, the lower right panel of Figure 7-15 shows the simulated 
evapotranspiration (ET) associated with irrigation using the SURFEX irrigation module, and 
demonstrates similar behavior, in both cases the ET increase two times approximately under 
irrigation scenario (as previously mentioned before, this simulation is not realistic enough, but it 
makes the qualitative point of showing the dramatic increase of ET allowed by irrigation). 

In the absence of human interventions, the natural condition exhibits a clear response of the 
system to drought events (left panels in Figure 7-15). This is evident in the propagation of 
hydrological drought events to evapotranspiration (ET), resulting in negative anomalies in this 
variable. Thus, drought propagation shows a consistent pattern within the system, as in Barasona, 
and hydrological drought is related to agronomical drought. 

In Figure 7-16, the monthly deficits for the Santa Ana case study are displayed, depicting both 
natural (upper panels) and human (lower panels) scenarios. Similar to the Barasona case study, it 
is revealed through the analysis that meteorological drought events occur, which subsequently 
propagate to impact both streamflow and ET, indicating a strong propagation effect within the 
hydrological system. 

As observed in the Santa Ana case study, a discernible trend of increasing hydrological drought 
events becomes apparent from the year 2004 onwards. Among these events, the drought episode 
spanning 2007-2008 stands out as the longest-lasting, persisting for an extensive duration of 10 
months (“Q-natural” panel in Figure 7-16). This particular event has also been documented in the 
scientific literature, validating the effectiveness of the proposed scheme in identifying and 
capturing severe drought occurrences in this area. 

Furthermore, it is worth highlighting the discrepancy between the deficit events in the ET-natural 
and Q-Natural. The deficit events recorded in the ET-natural exhibit more pronounced negative 
values compared to those observed in the Q-Natural (upper panels in Figure 7-16). This disparity 
indicates that agronomic drought events, associated with ET, manifest with greater severity in this 
study case. This insight provides valuable information regarding the vulnerability of the 
agricultural sector to drought impacts for this study area. 
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Figure 7-16. Monthly deficits for precipitation, streamflow, and ET for the Santa Ana case study. 
Upper panels represent the natural situation and lower panels represent the human situation. 

Figure 7-16 presents valuable insights into the behavior of the river in the "Q-Human" panel, 
indicating a sustained and practically continuous deficit in the current state compared to its natural 
behavior. This persistent hydrological drought can be primarily attributed to the implementation 
of environmental flows downstream in the reservoir scheme employed, which are set at 
significantly low levels throughout the period. As a consequence, the deficits in river flow are 
further intensified, exacerbating the drought effects. Conversely, the "ET-Human" panel 
illustrates a reduction in ET deficits. 

Notably, in the "ET-Human" panel (lower right in Figure 7-16), it is crucial to highlight that 
during the months when the model initiates irrigation operations (from April to August), no deficit 
events are observed. This outcome aligns with the primary objective of the reservoir, which aims 
to ensure sufficient water supply for irrigation purposes. However, it is important to acknowledge 
that the aforementioned conclusions should be interpreted with caution, as the existing limitations 
regarding the lack of direct linkage between irrigation and dam operations persist. 
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Figure 7-17 presents the deficit events resulting from the simulation (S4), where the flows 
simulated by SASER and the irrigation demands simulated by SURFEX (with variable demands 
in each year) are used as input data. The visualization of the deficits clearly illustrates the changes 
that occur throughout the simulation period in comparison with the same panel in Figure 7-16.  

Notably, a considerable number of months exhibit no deficits, especially during the winter 
months, indicating a more favorable water balance during that period. However, as the irrigation 
season commences in April and May, the values of deficits experience a significant surge. This 
observation highlights the increased water demand during the irrigation period (values are similar 
to those reported by the reference data, Figure 7-8 panel b), leading to higher deficits and potential 
water stress in the system. 

 

Figure 7-17 Deficits in downstream flow simulated by the reservoir scheme, for the S4 scenario. 

7.4.4. Human influence on drought events 

The analysis of the time series data clearly demonstrates the significant role played by the 
reservoirs in regulating the downstream flow of both basins. A visual comparison of the time 
series, as depicted in Figure 7-12 and Figure 7-15, both reveal distinct patterns and variations 
between the naturalized and human scenarios. Notably, the impact of drought events is more 
severe in the human scenario compared to the naturalized conditions, as depicted in Figure 7-13 
and Figure 7-16, respectively. 

In the human scenario, the presence of reservoirs enables the storage and controlled release 
downstream. The reservoirs act as buffers, maintaining a more stable water supply during dry 
periods and supporting various water-dependent sectors, mainly agriculture. The regulated flow 
from the reservoirs helps to alleviate the impacts of droughts on the agricultural sector, reducing 
the severity and duration of drought events associated with evapotranspiration, but with a cost on 
the river itself. 
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Table 7-2 reveals a clear and consistent trend of worsening hydrological drought characteristics 
as a result of anthropogenic influences. For both case studies, drought characteristics are negative, 
indicating an aggravation of hydrological drought conditions. The findings demonstrate the 
substantial impact that human activities have on the hydrological system. It is evident that human-
induced modifications to the environment and water resources management practices contribute 
to an exacerbation of hydrological drought.  

On the other hand, it is important to note that the impact of human activities on drought is not 
uniform across all aspects. While hydrological droughts show a worsening trend, the findings also 
indicate that agronomic droughts, specifically those associated with evapotranspiration (ET), have 
been ameliorated due to irrigation practices, specifically the frequency of drought events as 
reported in Table 7-2. 

Table 7-2 Drought metrics results from naturalized and human-influenced data, respectively. 

case study 

Natural Human 

Freq 
mean 

duration 
(months) 

mean 
deficit 
(mm) 

max 
duration 
(months) 

max 
intensity 

(mm) 
Freq 

mean 
duration 
(months) 

mean 
deficit 
(mm) 

max 
duration 
(months) 

max 
intensity 

(mm) 

Barasona           

Q 20 3.4 9.7 10 37.7 26 12.3 89.0 49 385 

ET 20 3.3 11.4 8 28.3 9 3.3 10.7 6 23 

Santa Ana           

Q 20 3.4 8.0 10 31.2 9 44.2 294.7 126 852 

ET 16 3.4 15.3 9 47.3 9 3.1 10.3 6 28 

The total duration of drought events was examined in both natural and human-induced scenarios 
for the Barasona and Santa Ana case studies. In the natural conditions, the occurrence of drought 
was relatively consistent between the two case studies. Barasona experienced 67 months of 
hydrological drought out of a total of 420 months, while agronomic drought was recorded for 65 
months. Similarly, Santa Ana recorded 67 months of hydrological drought and 55 months of 
agronomic drought. 

However, when considering the human simulation, a notable shift in the total number of drought 
months was observed. In both the Barasona and Santa Ana case studies, there was a substantial 
increase in the duration of hydrological drought, with 321 months and 398 months, respectively. 
This signifies a significant impact of human activities, such as reservoir regulation and water 
diversion, on exacerbating hydrological drought conditions. In contrast, the total number of 
months in agronomic drought decreased to 30 months for Barasona and 28 months for Santa Ana. 

Figure 7-18 presents the boxplots depicting the duration and deficit of drought events for the 
natural and human-influenced scenarios in both case studies. The analysis of the boxplots reveals 
distinct patterns in the characteristics of drought for evapotranspiration (ET) and streamflow (Q). 

Regarding ET, a noticeable decrease is observed in both the duration and deficit of drought events 
(green boxes in Figure 7-18). This implies that human influences (irrigation practices) have 
effectively mitigated the severity and duration of agronomic drought (darker green boxes in 
Figure 7-18). The boxplots indicate a shift towards lower values, indicating a (slightly) positive 
impact on reducing the duration and deficit of drought events associated with ET. 
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In contrast, for streamflow, the boxplots show a different trend (blue boxes in Figure 7-18).  The 
upper values, represented by the top of the darker blue boxes in Figure 7-18, are significantly 
higher in both the duration and deficit of drought events due to human activities. This confirms 
that human influences altered hydrological regimes and thus, contributed to an exacerbation of 
hydrological droughts, leading to longer durations and greater deficits in streamflow. 

Overall, the boxplots provide a visual representation of the contrasting effects of human activities 
on different aspects of drought. While the changes in ET indicate an improvement in drought 
characteristics (slightly significative), the boxplots for streamflow highlight the markable adverse 
impacts of human interventions. 

 

Figure 7-18. Drought boxplot results for natural and human influenced droughts in the (a) Barasona 
and (b) Santa Ana case studies. The y-axis shows different scales. The horizontal line in each box 

represents the median, the box represents the interquartile range. The whiskers extend a maximum of 
1.5 times the interquartile range. 

The influence of human activities on drought characteristics is evident, with a clear and consistent 
negative trend observed (drought events are aggravated), especially for hydrological drought, 
while the opposite is true for drought associated with ET, however, it is less notable in comparison 
with the streamflow.  
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In human-influenced scenarios, hydrological drought characteristics are notably aggravated, as 
reported in Table 7-3, with drought durations extending up to 268% and 1220% longer compared 
to the naturalized scenario, for Barasona and Santa Ana, respectively. Furthermore, the maximum 
intensity of hydrological droughts increases by up to 922% and 2627%, respectively. It highlights 
the amplified severity of drought events in the presence of anthropogenic factors. 

Table 7-3 Percentage change results from naturalized to human-induced data 

 Freq mean duration mean deficit max duration max intensity 

Barasona      

Q +30% +268% +819% +390% +922% 

ET -55% +2% -6% -25% -19% 

Santa Ana      

Q -55% +1220% +3572% +1160% +2627% 

ET -44% -10% -33% -33% -41% 

In contrast, the agronomical drought (ET) situation has been ameliorated under human influenced 
scenario (Table 7-3). All metrics used to measure the severity and duration of agronomic drought 
consistently demonstrate a decreasing trend, indicating a positive impact on irrigation practices. 
The mean duration of agronomic droughts has been alleviated in most cases, with only a slight 
increase of 2% observed in the Barasona case study. Moreover, the frequency of agronomic 
drought events has shown substantial reductions in both the Barasona and Santa Ana case studies. 
The frequency has decreased by 55% and 44%, respectively, indicating a significant reduction in 
the occurrence of drought periods. 

7.5. Discussion 

The development of a comprehensive water management simulation that integrates the reservoir 
module with SASER results represents a significant advancement in optimizing water resources. 
While this study focused on simulating the reservoir operations considering only the demand for 
irrigation as the primary anthropogenic activity, there is a broader potential to expand the model's 
capabilities. Furthermore, the integration of human-water management into the SASER model 
would facilitate the assessment of different management scenarios and strategies, allowing for the 
exploration of trade-offs between various water uses, such as irrigation. This comprehensive 
approach would enable decision-makers to evaluate the impacts of different policies and 
interventions on water availability, environmental and socio-economic development. 

It is noteworthy that in the context of a cascade of reservoirs (e.g., Santa Ana reservoir), the 
scheme presented here may implicitly incorporate, to a certain extent, the effects of upstream 
regulation from the cascade's preceding reservoirs. This is achieved by utilizing the regulated 
inflow as input for downstream reservoirs, thereby reflecting the regulatory actions taken by the 
upstream reservoirs. In practice, cascade reservoirs follow interconnected operation rules, 
especially during the flood season, and exhibit a high level of interdependency. However, the 
presented scheme does not precisely capture such complex interlinked operations, as it assumes 
that each reservoir operates independently. Depending on the modeling objective, an alternative 
may be to aggregate these reservoirs into a single hypothetical reservoir to enhance downstream 
simulations (Ehsani et al., 2016). In any case, accurately modeling these systems necessitates 
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detailed operational considerations, which are challenging to achieve in large-scale hydrological 
models. 

Simulating the Santa Ana reservoir poses unique challenges due to its specific characteristics. 
Upstream of the reservoir, two reservoirs are primarily utilized for hydroelectric power 
generation, adding to the system's complexity. The upper panel in Figure 7-11 reveals an 
interesting observation from the years 1984 to 1995, that suggests observed volume follows 
distinct management rules, maintaining a nearly constant storage level. Replicating such a 
situation proves difficult for the model. These findings highlight the model's robustness in 
replicating the storage and release dynamics, particularly to the Santa Ana reservoir. 

Another potential source of uncertainty in reservoir operations is attributed to temporal changes 
in demand resulting from increasing needs for irrigation, power generation, water supply, and 
other purposes. Moreover, the intended purpose of a reservoir can also undergo modifications, 
such as enlarging the reservoir, or the addition of a hydropower station to an initially designated 
irrigation dam. The scheme, as developed and implemented here, implicitly incorporates these 
changes through the utilization of storage and release time series. 

The results of this research highlight the complexity and challenges involved in accurately 
simulating reservoir operations, particularly when considering the intricate dynamics of multiple 
reservoirs and subjectivity in the irrigation demands. Future research efforts should focus on 
improving not only the reservoir operation schemes but also the model's representation of 
agricultural practices, local conditions, and other factors that influence water management. By 
enhancing the model's capabilities, these kinds of models can help policymakers and water 
managers to make more informed decisions regarding water allocation and resource management. 

By incorporating environmental flow considerations into the reservoir management strategy 
presented here, it acknowledges the interconnectedness between the reservoir operation and the 
downstream ecosystem dynamics. Hence, becomes a critical factor in shaping the downstream 
conditions. Environmental flows are the water allocations within a river system that aim to 
maintain the ecological integrity and functions of the aquatic ecosystem. At the same time, 
ensuring an adequate water supply for agricultural activities is crucial for sustaining food 
production and supporting rural livelihoods. Thus, achieving harmonious balanced environmental 
flows requires a thorough understanding of the hydrological, ecological, and socio-economic 
dynamics of the region, which represents a complex challenge in water resource management and 
in the case of the model presented here, resulted in significant results discrepancies when it 
environmental flows change into the simulation. 

Balancing the ecological and agricultural aspects to establish environmental flows requires a 
nuanced approach that considers the specific characteristics of each river system and the 
associated ecosystems. Collaborative approaches that involve water managers, ecologists, 
agricultural experts, and local communities are vital for defining environmental flow regimes. 
Moreover, incorporating tools like remote sensing, data analytics, and hydrological modeling can 
enhance the understanding of water availability and thus environmental flow definition. 

Human activities exacerbate drought conditions, leading to a decrease in water availability and 
prolonged drought periods compared to the natural state. Additionally, the presence of reservoirs 
has been found to contribute to the aggravation of streamflow drought downstream (Firoz et al., 
2018; Tijdeman et al., 2018; Van Loon et al., 2022). However, it is important to consider a 
comprehensive evaluation of the various variables involved in the hydrological cycle, rather than 
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solely focusing on the negative impacts attributed to dams. It should be noted that reservoirs also 
have positive effects on certain aspects, such as downstream evapotranspiration (ET) and 
agriculture productivity. Therefore, to gain a comprehensive understanding of the overall impact 
of reservoirs on drought, it is necessary to conduct an integrated assessment that takes into account 
the diverse factors influencing the hydrological cycle, rather than solely emphasizing the negative 
consequences produced by reservoirs. 

However, it is important to acknowledge that developing such a complete water management 
simulation is a challenging assignment that requires further research and data integration. Data 
availability, model calibration, and uncertainty quantification are challenges that need to be 
addressed to ensure the reliability and accuracy of the simulation results. Moreover, collaborative 
efforts involving stakeholders, researchers, and policymakers are crucial in advancing toward a 
comprehensive water management framework that optimizes water resources in the region. 

An important aspect of our future work lies in the integration of the reservoir management module 
presented in this study into the SASER modeling chain. The integration of the reservoir 
management module holds significant potential for enhancing the representation of fluxes in the 
hydrometeorological chain of SASER within a coupled human system. By incorporating this 
module, our objective is to achieve a more comprehensive and integrated approach to water 
resources management. This integration will enable us to simulate and optimize reservoir 
operations more accurately and realistically. 

Moreover, the incorporation of a fully coupled model that enables bidirectional coupling between 
the irrigation scheme and dam operation would greatly enhance and advance the analysis 
presented in this study. Such a model would provide a more holistic approach to investigating the 
intricate interactions between irrigation practices, reservoir operations, and their impact on the 
hydrological system. This would enable a more accurate representation of the complex feedback 
mechanisms between human water-land activities and the hydrological cycle. Furthermore, the 
bidirectional coupling would provide a more realistic assessment of the dynamic changes in water 
availability and demand under varying climatic and operational conditions. Thus, the 
development of a fully coupled model represents a promising avenue for future research in this 
field. 

7.6. Conclusions 

A framework has been developed to assess the impact of human activities on agricultural and 
hydrological droughts in a Mediterranean catchment by incorporating evapotranspiration 
processes associated with irrigation. This framework represents an important step forward in 
understanding the complex interactions between human activities and drought dynamics in this 
region. Thus, a reservoir operation scheme as an external module, which allows for a flexible 
approach (rapid iteration process), was implemented in this research. The reservoir model showed 
good performance, considering the model’s simplifications. 

In general, the findings of this research demonstrate favorable agreement for the Barasona case 
study in terms of both the model-estimated irrigation demand and reservoir operation scheme. 
However, further investigations and refinement are required for the Santa Ana case study in both 
models. 
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The utilization of the estimated demand by SURFEX offers a notable advantage due to its capacity 
to capture interannual variability. By accommodating year-to-year fluctuations in demand instead 
of relying on fixed values, this dynamic approach provides a more realistic representation of the 
system. It also enhances the temporal variations in water demand, enabling more accurate 
assessments. 

The evaluation of the new module, simulating human-water management in different scenarios, 
was conducted using the performance metric KGE. The results indicate a good agreement, 
particularly for the Barasona reservoir, which consistently reported higher KGE values across the 
various scenarios. The KGE values for outflows averaged around 0.75, while Santa Ana exhibited 
lower values. Overall, these results demonstrate the capability of the reservoir operation module 
to simulate storage and outflows reasonably well in both case studies. 

The threshold level method proved to be an effective approach for accurately capturing and 
identifying drought events in a human-natural system, allowing to compare the natural and the 
human scenarios. Under natural conditions, the system responded to meteorological drought 
events by propagating to hydrological and agronomical droughts, revealing strong propagation 
effects within the hydrological system. Conversely, in a human-influenced scenario, the presence 
of the downstream reservoir induced streamflow deficits, exacerbating the hydrological drought 
situation. However, this was accompanied by reduced evapotranspiration deficits. 

Human influences, compared to naturalized conditions, led to longer hydrological drought 
characteristics in both case studies, with mean deficits reaching values up to +819%. Additionally, 
the time of the year of higher hydrological drought events shifted in response to human influences. 
In contrast, the human-influenced scenario alleviated agronomical drought situations, with a 
decrease in the frequency of events by -55% and -44% for Barasona and Santa Ana, respectively. 
However, the remaining agronomical drought characteristics exhibited fewer notable effects 
compared to hydrological drought. 

The impact of irrigation on drought conditions, both hydrological and agronomical, was evident 
in both basins. These findings highlight the importance of considering human influences and 
irrigation practices in drought assessment and management strategies. 

 



 

 

8. Conclusions and further work 

In this last chapter, the conclusions of the research will be presented. It begins with a concise 
summary of the scientific framework, followed by the main conclusions derived from this 
research, providing a comprehensive overview of the findings. Finally, an overview of the 
implications will be provided, along with recommendations and potential areas for future 
research. 

The main objective of this thesis has been to improve the performance of the SASER hydrological 
framework and to enhance the comprehension of drought, including the underlying processes, 
within the context of Spain. This was achieved by employing physics-based modeling with a 
particular focus on the influence of anthropogenic activities. This aim was achieved by the 
following steps: 

− The enhancement of the representation of temporal precipitation patterns in the SAFRAN 
forcing dataset, used by the SURFEX model within the SASER framework, and thereby 
striving for a more realistic simulation of hydrological processes (Chapter 5).  

− The improvement of the hydrologic response, particularly the simulation of low flows, in 
the SASER hydrometeorological model (Chapter 6). 

− The simulation of reservoirs, as a first step for a future inclusion within the SASER 
modeling chain, evaluates the impact of water management practices on (anthropic) 
drought dynamics (Chapter 7). 
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8.1. Scientific framework synthesis 

The modeling of the hydrological cycle in several domains over Spain and southern France has 
been carried out in this research by utilizing the SASER hydrometeorological model, which 
integrates the SURFEX Land Surface Model. The LSM models are being widely used in the 
hydrology field. Hence, in Chapter 2 a comprehensive overview of the existing knowledge and 
research and current challenges regarding the use of LSM to represent the hydrological processes 
and their application to drought studies are presented. 

Chapter 3 provides an in-depth description of the study area, encompassing various domains 
situated between Spain and France, with a focus on the Pyrenean region. Furthermore, Chapter 4 
outlines the methodology employed in this research, elucidating the approach taken to investigate 
the research objectives. 

In Chapter 5, the objective was to enhance the hydrological impact of SAFRAN hourly 
precipitation distribution on SURFEX LSM simulations. A correction method was employed to 
adjust the SAFRAN distribution using a more realistic distribution derived from a regional climate 
model simulation forced by ERA-Interim (CNRM-ALADIN). Evaluation of the correction 
method was conducted across different time windows to identify the optimal performance and 
determine the most effective correction time windows. 

Chapter 6 outlines the efforts undertaken to improve hydrologic modeling in the SASER model. 
The initial focus was on enhancing the simulation of the hydrological response of both low and 
high flow simultaneously (section 6.2). This involved calibrating the internal parameter 
controlling runoff generation and exploring the possibility of a distributed calibration based on 
physical variables. Additionally, efforts were made to enhance the physiographic information 
utilized in the model.  

In the subsequent phase, section 6.3 presents an improvement of the SASER modeling chain 
through the introduction of a conceptual reservoir to improve the representation of the slow 
component (drainage) in the hydrological response. The conceptual reservoir introduced two new 
empirical parameters. The parameter values were determined on a catchment-by-catchment basis 
through calibration against daily observed data. Furthermore, a regionalization approach was 
employed, linking physiographic information to reservoir parameters using linear equations 
optimized with a genetic algorithm. The regionalization approach proved valuable for 
determining the new empirical reservoir parameters in basins where traditional calibration 
methods were not feasible, such as ungauged or human-influenced basins. 

Finally, in Chapter 7, the focus shifted to a heavily irrigated area located in the Ebro river basin, 
northeast of the Iberian Peninsula, specifically the Canal of Aragon and Catalonia (CAyC) district 
supplied by a reservoir system. In this case study, a simple water management model was 
implemented, based on the WAAPA model, to simulate reservoir operations under a human-
influenced scenario. This simulation was compared against naturalized variables obtained from 
the default SASER simulation, allowing an examination of the contribution of human activities, 
including irrigation and reservoir regulation, to the water budget and propagation of drought. 
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8.2. Conclusions 

In this research, different approaches have been integrated with the aim of improving the 
representation of the hydrological processes underlying drought within an LSM model. 
Furthermore, a module has been developed to incorporate the human factor into the hydrological 
simulation chain of the current SASER model. The main results are summarized in the following 
paragraphs. 

The novel linear correction method improves the accuracy of precipitation intensities by 
leveraging regional climate model (RCM) data. The improved precipitation dataset, derived from 
the SAFRAN meteorological forcing data, provides a better representation of precipitation 
statistics in the Ebro basin, especially in Mediterranean-dominated areas, compared to the original 
SAFRAN data. As the number and the resolution and quality of RCM simulations with hourly 
outputs increase, these kinds of approaches can be used to compensate for the limitations of 
observations-based interpolation methods such as SAFRAN. Similar approaches can be used to 
improve other aspects of observational forcing datasets, for example, the improvement of 
precipitation over the highest relief, where observations are scarce and not very representative.  

The effectiveness of the precipitation correction method was demonstrated through the 
implementation of a weekly time step. Significant improvements in precipitation statistics were 
achieved by leveraging data from the regional climate model CNRM-ALADIN, allowing for the 
adjustment of the hourly precipitation distribution of SAFRAN and the attainment of more 
reliable and representative results. The use of a weekly window to apply the corrections allowed 
for better capture of the temporal variability and patterns in precipitation, leading to a more 
realistic depiction of precipitation events (in statistical terms). The impact of simulation forced 
by the improved precipitation on simulated runoff, at the grid point scale, was evident and aligned 
with our expectations. However, interpreting the changes in drainage and evapotranspiration was 
more complex due to various factors, including climate regime and the higher response to 
drainage in wet climates. At the watershed scale, the overall water balance, represented by the 
sum of runoff, drainage, and evaporation, was only minimally affected. 

The new precipitation dataset provides valuable insights into the impact of intense precipitation 
events on hydrological simulations, enabling a more detailed understanding of the mechanisms 
driving runoff generation during extreme weather events, which is vital for effective water 
resources management. 

Achieving an accurate calibration of the runoff parameter and improving the soil database 
information in the SURFEX model proved to be a challenging task, demanding both meticulous 
calibration procedures and extensive computational resources. Despite the limitations imposed by 
these complexities, our findings indicate that, in our area of study, the default value of the runoff 
b parameter satisfactorily captures the mechanisms governing runoff generation within the model. 
This implies that the default setting offers a reliable representation of the hydrological processes 
under consideration.  

The default SASER model exhibited a significant negative bias in low flow indices. However, the 
introduction of a reservoir scheme to regulate drainage and thus, improve the slow component of 
streamflow, demonstrated positive outcomes in terms of KGE values. The inclusion of the 
conceptual reservoir proved to be a straightforward and efficient approach, requiring only a 
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limited number of parameters. It effectively improved the simulation of low flows in SURFEX 
without compromising high flows. 

The regionalization approach was made feasible by the simplicity of the conceptual model and its 
implementation as an external module of SURFEX. It allows the establishment of a relationship 
between the parameters of the conceptual reservoir and climate and physiographic variables 
through the genetic algorithm. This enabled the consideration of within-catchment variability 
throughout the study area. Although the reservoir approach lacks a physical basis, it successfully 
links the two new parameters with physical variables, striking a favorable compromise for a model 
striving to be both distributed and physically representative. Additionally, the regionalization 
approach allowed for the application of the reservoir across the entire domain, encompassing both 
natural and human-influenced basins, thereby enhancing its utility beyond natural systems. 

An approach that accurately captures drought dynamics has been achieved by incorporating a 
reservoir simulation scheme and utilizing the SURFEX irrigation scheme. This provides valuable 
insights into the impact of human activities on agricultural and hydrological droughts in a 
Mediterranean catchment.  

The implementation of a reservoir operation scheme as an external module in the SASER 
modeling chain has shown good streamflow performance in a human-natural system, for both 
study cases, despite its simplifications. Nevertheless, the Barasona case study demonstrated better 
agreement in both the model-estimated irrigation demand and reservoir operation scheme, 
highlighting the potential application of this scheme. However, further investigations and 
refinements are needed for the Santa Ana case study. 

The utilization of SURFEX's irrigation scheme has proved advantageous due to its ability to 
capture interannual variability in water demand. Therefore, the framework proposed in this 
research provides a more realistic representation of the system, enhancing accuracy in 
assessments. The evaluation of the new module showed good agreement against reference data, 
particularly for the Barasona case study, indicating its capability to simulate storage and outflows 
effectively. 

Under natural conditions, meteorological drought events propagated to hydrological and 
agronomical droughts, demonstrating strong propagation effects in both case studies. In a human-
influenced scenario, the presence of a downstream reservoir exacerbated hydrological drought by 
inducing streamflow deficits, although it reduced evapotranspiration deficits, and hence, 
alleviated the agronomical drought. 

Human influences resulted in longer hydrological drought characteristics in the case studies 
presented here, with significant shifts in the time of the year of higher hydrological drought 
events. Conversely, agronomical drought situations were alleviated to some extent in the human-
influenced scenario. The impact of irrigation on both hydrological and agronomical droughts was 
evident in the basins, emphasizing the importance of considering human influences and irrigation 
practices in drought assessment and management strategies. Finally, it is noteworthy these 
findings contribute to a better understanding of the complex interactions between human 
activities, water resources, and drought dynamics.   
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8.3. Implications and recommendations  

This research mainly aimed to develop modeling tools that integrate a more accurate 
representation of natural processes and incorporate human water management practices for the 
comprehensive study of drought. Consequently, the main scientific implication of this research is 
to foster a holistic understanding of drought in coupled natural-human systems.  

The enhancement of hydrological process representation in Land Surface Models (LSMs), as 
demonstrated in this study, yields valuable insights into the intricate interactions among various 
variables within a human-influenced hydrological cycle. This improvement holds particular 
importance for the Iberian Peninsula, and specifically the Ebro basin, which is known for its 
susceptibility to drought. 

An important outcome of this research is the necessity to balance the trade-off between 
complexity and parsimony in LSMs to be useful tools for simulating a wide range of land surface 
processes and future scenarios. On the one hand, the models must be complex enough to represent 
the heterogeneity and complexity of the real world, including interactions between land, 
atmosphere, and hydrology in coupled natural-human systems, as well as the inherent feedback 
and uncertainties associated with these processes. On the other hand, the models must be 
parsimonious enough to be computationally efficient, flexible, and applicable across various 
spatial and temporal scales and scenarios. 

This trade-off creates several limitations in LSMs that need to be acknowledged and addressed. 
One limitation is that LSMs may oversimplify some processes or neglect important feedback, 
leading to biases and inaccuracies in model simulations. Another limitation is that LSMs may 
require extensive calibration and parameterization, which can introduce uncertainties and limit 
their transferability to other regions or scenarios. Additionally, the trade-off between complexity 
and parsimony may limit the ability of LSMs to represent new or emerging processes, land use 
changes, or extreme events that fall outside the range of conditions for which the model was 
designed. 

While acknowledging that the methodology proposed in section 6.3 to enhance the simulation of 
low flows in LSMs lacks a physical basis, it successfully links the two new parameters with 
physical variables, striking a favorable compromise for a model striving to be both distributed 
and physically representative.  

Furthermore, it is crucial to identify and prioritize the critical processes and drivers of change that 
necessitate representation or inclusion in the LSMs. This includes obtaining improved and higher-
quality forcing data, as discussed in Chapter 5, which serves as another fundamental component 
for achieving a more accurate hydrological response in these models. Nevertheless, caution 
should be exercised when utilizing these forcings, particularly in areas characterized by high 
precipitation variability, both in terms of spatial distribution and temporal patterns, such as 
mountainous regions. Thus, detailed validation processes should be conducted, and uncertainties 
associated with the forcing data should be carefully considered. 

Given the complex nature of LSMs and their broad implications for understanding and managing 
drought, interdisciplinary collaboration is crucial. Therefore, to address the practical challenges 
associated with water management and decision-making, active engagement with stakeholders is 
paramount. This includes involving experts from fields such as ecology, meteorology, and remote 



8. Synthesis 

140 

sensing, along with water managers, policymakers, and other decision-makers throughout the 
research process. By incorporating their insights, needs, and perspectives, the resulting LSMs can 
be more relevant and useful for real-world applications. 

The outcomes of this research extend beyond the scope of drought analysis. While Chapter 7 did 
not explicitly target water management, the outcomes hold substantial relevance for water 
managers, contributing to valuable insights. Therefore, the framework proposed in this study 
offers water managers a robust tool for formulating and evaluating water and drought 
management policies, particularly in the context of agricultural use. 

Although the focus of this approach was primarily on assessing the impact of reservoir 
construction and irrigation on drought dynamics, its application can be extended to other human 
activities, such as land use change or groundwater extraction, provided that reliable data and an 
appropriate model capable of simulating the associated human influence are available. By 
employing this approach, a comprehensive understanding of the effects of diverse human 
activities on hydrological systems can be obtained, assisting in decision-making processes and 
enabling the implementation of effective drought management strategies. 

Finally, it is worth noting that while indices serve as a convenient approach to assess drought, 
caution must be exercised when evaluating the influence of human activities, also known as 
anthropogenic drought. Given the complexity of drought phenomena, relying solely on indices 
may not capture the full range of causal mechanisms, particularly within natural-human systems. 
Hence, it is highly recommended to complement the use of indices with robust modeling tools to 
obtain a more comprehensive understanding. The foremost recommendation is to integrate 
modeling tools alongside drought indices, as this combination enables a more nuanced analysis 
of drought dynamics, especially within the context of natural-human interactions.  

By employing modeling tools, a deeper understanding of the various causal mechanisms behind 
drought can be attained, facilitating more informed decision-making processes. Moreover, 
modeling tools provide the flexibility to account for the intricate complexities inherent in natural-
human systems, enhancing the accuracy and reliability of drought assessments. Alternatively, the 
variable threshold method (discussed in section 7.4) offers a viable alternative to traditional 
indices. This approach proves particularly valuable for water resources management and planning 
fields. 

8.4. Perspectives and further research 

Although the methodologies gathered and utilized in this research have varying applications, their 
collective aim remains shared: to enhance the modeling of land surface hydrological processes. 
To make further progress in refining these models, it is imperative to explore different 
perspectives regarding the respective processes involved. 

Moving forward, there are several avenues for further progress in the use of LSMs for drought 
studies. First and foremost, there is a need to enhance the representation of key hydrological 
processes within these models. This includes improving the representation of soil moisture 
dynamics, vegetation dynamics, and groundwater interactions, to name a few. By refining the 
process-level understanding and incorporating more accurate representations of these processes, 
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LSMs can provide more reliable and robust simulations of hydrological response and thus drought 
onset, severity, and duration. 

Advancements in computing power and data availability open up new possibilities for the use of 
artificial intelligence (AI) and machine learning (ML) techniques in drought studies. Machine 
learning algorithms can assist in pattern recognition, feature extraction, and data assimilation, 
enabling LSMs to learn from historical observations and improve their predictive capabilities. 
Leveraging big data sources, such as global climate and hydrological databases, can further 
enhance our understanding of drought patterns and their underlying drivers. Therefore, an 
interesting area is the application of AI and ML to calibrate some internal parameters to improve 
the representation of hydrological processes in physically-based models, such as SURFEX-LSM. 

Furthermore, incorporating the influence of human activities on drought dynamics represents a 
crucial frontier in LSM research. Anthropogenic factors, such as irrigation practices, water 
management policies, and land use changes, can significantly alter the hydrological cycle and 
exacerbate or mitigate drought impacts. Furthermore, integrating human-induced modifications 
into LSMs can provide a more comprehensive understanding of drought processes and facilitate 
better-informed decision-making in water resources management and drought mitigation 
strategies. Hence, future research efforts could focus on the development of a bidirectionally 
coupled model to simulate human activities, specifically reservoir management, and irrigation. 
And therefore, developing a fully coupled model that integrates the improvement of hydrological 
response and the land-water management in the SASER model is a potential interest area. 

In the context of future research, the possibility of conducting a comprehensive comparative 
analysis of various modeling strategies in the field of land surface modeling and water 
management is being considered. This analysis aims to highlight the strengths, weaknesses, and 
nuances of the various approaches utilized. 

In addition, immense potential lies in the application of this fully coupled model for the creation 
of effective strategies in water resources management. Valuable insights might be gained through 
the utilization of this framework, facilitating the optimization of water allocation, ensuring the 
sustainability of water usage, and addressing the challenges posed by water scarcity and the ever-
changing climate conditions. By employing the fully coupled model, various management 
scenarios can be explored by water resource managers, allowing for the evaluation of their 
impacts on water availability. Through the consideration of the dynamic feedback between human 
actions and hydrological responses, decision-makers can devise robust strategies that effectively 
balance competing demands, minimize conflicts, and foster water security. 

Finally, advancing the integration of remote sensing data and satellite observations into LSMs 
holds immense potential for improving drought monitoring and especially drought forecasting. 
Remote sensing provides valuable information on key variables such as soil moisture, vegetation, 
and evapotranspiration, which are critical for assessing drought conditions, particularly in 
semiarid environments where these variables play an essential role in the development of drought. 
The accuracy and spatial resolution of drought monitoring systems can be improved by 
assimilating these observations into LSMs, enabling more timely and precise assessments of 
drought conditions at various scales. Therefore, an intriguing area to explore is the application of 
the research outcomes in drought forecasting, including future scenarios. 
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Appendix A. Attempts to improve internal 
model parameters of the SASER model 

A.1. Runoff generation scheme  
A.1.1. Background  

The SASER suite incorporates the Land Surface Model, SURFEX, which plays a crucial role in 
estimating the catchment's water balance. Within the SURFEX model, the simulation of surface 
runoff is carried out using the saturation excess mechanism, commonly known as the Dune 
mechanism. According to this mechanism, runoff occurs only when precipitation exceeds the 
soil's saturation capacity. However, this poses a challenge at the scale considered in the SASER 
suite, as the variability of runoff production is smaller than the typical size of the grid cell (2.5 x 
2.5 km). 

Consequently, when the ISBA model is run at these lower resolutions, the soil seldom reaches 
saturation, leading to minimal or no runoff production. To address this limitation, Habets et al. 
(1999) introduced the Variable Infiltration Capacity (VIC) scheme, as described by DÜMENIL 
& TODINI (1992) and Wood et al. (1992). The VIC scheme takes into account the subgrid 
variability by considering the fraction of the grid cell that is saturated. This fraction depends on 
various soil parameters, the soil water content of the root zone (w2), and a new parameter denoted 
as "b", which represents the shape of the heterogeneity distribution of effective soil moisture 
capacity (see Figure A 1-1). 

 

Figure A 1-1 Scheme of the variable infiltration model at sub-grid runoff. The right panel shows the 
variation of the saturated proportion of the grid cell to different values of the parameter b. 

In this empirical approach, determining the optimal value for the shape parameter (b) poses a 
significant challenge since it cannot be obtained in advance or through direct measurement. This 
parameter selection is a crucial aspect that requires careful consideration and calibration to ensure 
an accurate representation of the sub-grid variability. Therefore, in the VIC scheme, finding an 
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appropriate value for the shape parameter is a key task, as it directly impacts the simulation 
outcomes 

This parameter, b, is a dimensionless value that represents the proportion of precipitation that 
flows over the surface of the catchment as runoff, rather than infiltrating into the soil (Figure A 
1-1). The value of the coefficient of runoff is determined by several factors, including the type of 
vegetation cover, the soil type, and the topography of the catchment. For example, catchments 
with dense vegetation cover and permeable soils tend to have lower coefficients of runoff, while 
catchments with sparse vegetation and impermeable soils tend to have higher coefficients of 
runoff. The topography of the catchments is another important factor that affects the parameter b. 
Catchments with steep slopes tend to have higher coefficients of runoff, as the steep slopes 
increase the rate of runoff and reduce the amount of time that the precipitation is in contact with 
the soil, allowing it to infiltrate. In contrast, catchments with gentle slopes tend to have lower 
coefficients of runoff, as the precipitation has more time to infiltrate into the soil. 

A.1.2. Calibration of the parameter b 

To calibrate the parameter governing runoff generation (referred to as runoff b), a series of 
simulations were conducted. The objective was to investigate the impact of different values of 
this parameter on the model's performance in representing the runoff processes. 

However, it is worth noting that the SURFEX model used in this study imposes certain 
computational constraints due to its high computational cost. The extensive computations 
required by the model demand significant computational resources and execution time. Given 
these limitations, a total of eight simulations were performed to cover a range of parameter values. 
These values were carefully selected based on a previous study by Quintana Seguí et al. (2009) 
that explored similar ranges of parameter values. The chosen parameter values for the simulations 
were b = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, and 5.0). Figure A 1-2 illustrates the histogram 
displaying KGE values obtained from the 8 simulations conducted. 

 

Figure A 1-2 Histograms of the KGE calculated on root-squared transformed discharge for the 
different simulations 
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Although a more extensive range of parameter values would have been desirable, the selected 
range was deemed representative of the plausible values for the specific study area and research 
objectives. These values aimed to capture a spectrum of runoff characteristics. Despite the limited 
number of simulations, this approach provided valuable insights into the relationship between the 
parameter controlling runoff generation and the model's ability to accurately represent runoff 
processes. 

On the other hand, to further investigate the relationship between Indice de Développement et 
Persistance des Reseaux (IDPR, Mardhel et al. (2021)) and the runoff parameter (b), a thorough 
analysis was conducted by classifying the selected stations based on the specific value of the 
runoff parameter that resulted in the highest KGE value. This classification, represented in Figure 
A 1-3, provides valuable insights into the distribution of stations across different runoff parameter 
ranges. 

 

Figure A 1-3 Histogram of the selected stations with KGE values above -0.5, to each B value 

The findings imply that the default value results in several stations that showcase higher 
agreement between observed and simulated daily streamflow, as indicated by their relatively 
higher KGE values. This suggests that selecting a value within the range of 0.5 to 1 for the runoff 
parameter can yield more accurate and reliable simulations of daily streamflow. 

After evaluating various parameter values for the runoff parameter (b), it was found that the 
default value provided the best-fit metrics. Subsequently, the monthly flows of the Ebro-Tortosa 
station were compared with the SIMPA reference model. Once again, it was observed that a value 
of b=0.5 resulted in the highest Kling-Gupta Efficiency (KGE) values and exhibited a strong 
correlation with the reference model, Figure A 1-4. 

These findings further reinforce the appropriateness of the default value of the runoff parameter 
for the study area. The consistent performance of the default value in terms of KGE and 
correlation with the SIMPA model supports its suitability for accurately representing the monthly 
flow dynamics at the Ebro-Tortosa station. 
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Figure A 1-4 Comparison between the SIMPA (reference) model and the SASER model for the Ebro-
Tortosa station. 

By demonstrating the compatibility of the default parameter value with an established reference 
model, this analysis affirms the reliability and robustness of the default setting within the context 
of the study area. This provides confidence in the application of the default value of the runoff 
parameter in future modeling studies and reinforces its adequacy for representing the hydrological 
behavior of the study area. 

A.1.3. Finding a relationship between runoff b and IDPR 

The Indice de Développement et Persistance des Reseaux (IDPR, Mardhel et al. (2021)) is a 
metric used in hydrology and water resources management, particularly in the context of studying 
and analyzing river networks. It is a measure that assesses the development and persistence of 
river networks over time. The IDPR is typically calculated based on various characteristics of the 
river network, such as the length of the main channel, the total length of tributaries, and the 
number of loops or bifurcations in the network. 

The IDPR is often used to evaluate the connectivity and overall functioning of river systems. It 
provides insights into the network's complexity, stability, and ability to maintain water flow and 
transport processes. High IDPR values indicate a well-developed and persistent river network 
with interconnected channels, while low values suggest a less developed or fragmented network 
(Figure A 1-5). Overall, the IDPR serves as a useful tool for understanding the structural 
properties of river networks and their implications for hydrological processes. 
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Figure A 1-5 IDPR table's guide (Mardhel et al., 2021). 

The scatter plot presented in Figure A 1-6 depicts the relationship between the median value of 
the Network Development and Persistence Index (IDPR) for each watershed and the 
corresponding value of the runoff parameter (b). Despite careful examination, no significant 
correlation or discernible pattern was observed between these variables. 

 

Figure A 1-6 Relationship between the median IPDR value and the runoff b parameter. Each data point 
represents a catchment selected as near-natural or natural. 
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To analyze the impact of variability in the runoff parameter (b) on the simulation, the original 
IDPR map (panel (a) in Figure A 1-8) was divided into three distinct categories based on 
percentile values. The categorization process employed the following thresholds: 

• IDPR values below the 33.3rd  percentile were assigned a fixed value of b=1.0. 
• IDPR values ranging between the 33.3rd  and 66.6th  percentiles were assigned a fixed 

value of b=0.5. 
• IDPR values falling between the 66.6th  percentile and the 100th  percentile were assigned 

a fixed value of b=0.1. 

The resulting categorization is depicted in panel (b) of Figure A 1-8, providing a representation 
of how the IDPR values align with the assigned runoff parameter values. 

  

Figure A 1-8 (a) IDPR at 25 m (original) spatial resolution over the whole domain, and (b) 
classification of IDPR terciles used for simulation   
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Furthermore, Figure A 1-9 presents a map illustrating the initial stations considered in this 
investigation, which are derived from the PIRAGUA project's initial database. 

 

Figure A 1-9 Selected station (natural and near-natural), in black circles, in the initial database of the 
PIRAGUA project 
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A.2. Improvement of Soil Information 
A.2.1. Background 

The European Soil Data Centre (ESDAC) is a European Union (EU) project that was launched in 
2009. Its goal is to provide access to a range of soil data and information, in order to help 
policymakers, researchers, and other stakeholders make informed decisions related to soil 
management and conservation. The data available through the ESDAC covers a wide range of 
topics, including soil properties, soil erosion, soil organic carbon, soil biodiversity, and soil 
contamination. The ESDAC is managed by the European Commission's Joint Research Centre 
(JRC), and it is part of the EU's broader effort to promote sustainable land management practices 
and improve the state of the environment 

The ESDAC database, despite its utility, is not without limitations that warrant careful 
consideration. One such limitation is the variability in the availability and completeness of soil 
data across different regions. While some areas may benefit from comprehensive data coverage, 
others may suffer from limited or incomplete information (Panagos et al., 2012). This variability 
can significantly impact the accuracy and reliability of soil-related analyses and modeling efforts. 
Additionally, it is important to acknowledge that the ESDAC database relies on various modeling 
approaches and assumptions to estimate soil properties beyond the scope of available direct 
measurements. These models, while valuable, are not exempt from limitations and uncertainties 
that can introduce biases into the derived soil information. Therefore, when utilizing the ESDAC 
database, it is crucial to exercise caution and account for these limitations. 

The estimation of plant rooting depth (Zr) is based on a carbon cost-benefit model developed by 
Guswa (2008), which offers valuable insights into the relationship between root depth, soil 
moisture availability, and carbon uptake. This model operates on the premise that deeper roots 
enable plants to access a larger reservoir of soil moisture, allowing them to withstand extended 
dry periods and optimize carbon assimilation. The carbon cost-benefit model takes into account 
the carbon investment required for root construction and maintenance. It posits that there exists 
an optimal rooting depth where the additional carbon benefit gained from accessing more soil 
moisture is balanced against the carbon cost of sustaining those additional roots. 

The model developed by Guswa (2008) provides an estimation of the effective rooting depth 
across various geographical locations. This parameterization considers the inherent spatial 
variability of rooting depth within different biomes, emphasizing the limitations of using 
simplistic look-up tables to define rooting depth in contemporary land surface and hydrological 
models (Yang et al., 2016). By incorporating the carbon cost-benefit framework, a more realistic 
and ecologically sound representation of plant rooting depth can be achieved, enabling improved 
modeling of land-atmosphere interactions and hydrological processes. 
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A.2.2. Search for an improved soil depth database 

A new soil information map was generated for the PIR1ESDACGDRD simulation, incorporating 
two key variables sourced from the ESDAC4 database and the plant rooting depth (Zr) map 
(Guswa, 2008). The description of the ESDAC’s variables is provided below: 

• ROO: The depth class of an obstacle to roots within the Soil Taxonomical Unit (STU). 
• DR: The depth to rock. 

The ROO variable provides information on the depth at which an obstacle restricts the growth of 
plant roots within a specific soil unit. This variable is important because it helps to assess the 
availability of rooting space for plants and the potential limitations that certain obstacles may pose 
to root development. Consequently, the root distribution within the soil profile can significantly 
impact water uptake by plants and influence hydrological processes. Whereas, the DR variable is 
important for various applications that involve understanding soil characteristics and processes, 
as well as for hydrological and geological studies. It helps to identify the presence and depth of 
the bedrock or hard rock layer, which can have significant implications for soil properties, water 
movement, and plant growth. 

It is crucial to emphasize that the ROO variable represents the "depth available to roots," which 
should not be confused with the real root depth. Consequently, when comparing and interpreting 
these values, it is essential to consider them for accurate analysis. 

The creation of the resulting map involved merging the hydro_depth_eu and Zr maps. Given the 
primary focus of the ESDAC map on geological characteristics rather than biological factors, the 
decision was made to prioritize the rooting depth information from the Zr map. However, when 
the rooting depth indicated by the Zr map exceeded the values provided in the ESDAC map, the 
depth values from the ESDAC map were used instead. As a result, the representation of root depth 
closely corresponds to the information sourced from the Zr map, except in cases where the soil 
exhibits unusually shallow characteristics ( Figure A 2-1). 

                                                      

4 (https://esdac.jrc.ec.europa.eu/content/european-soil-database-v2-raster-library-1kmx1km) 

https://esdac.jrc.ec.europa.eu/content/european-soil-database-v2-raster-library-1kmx1km
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Figure A 2-1 Improved soil depth map used in PIR1ESDACGDRD simulation 

One limitation that arises when incorporating the ESDAC's variables in the SURFEX model is 
the lack of direct compatibility between the two datasets. ESDAC's variables cannot be directly 
utilized within the SURFEX model as they do not correspond exactly to the variables required by 
SURFEX, as previously mentioned. Furthermore, ESDAC´s variables do not consider the 
vegetation component. This mismatch between the variables and the absence of vegetation 
considerations can result in uncertainties and inaccuracies in simulating hydrological processes. 

Finally, the streamflow was obtained, and the impact of the modified soil information was 
evaluated by launching the last part of the modeling chain (Eaudyssée-Rapid) using the results of 
the SURFEX simulation.  

Figure A 2-2 displays the simulated flow series obtained from the PIR1ESDAC simulation, 
integrating the ESDAC data and Zr map. For clarity, two stations and a limited number of years 
are depicted in this figure. It is noteworthy that the new simulation (represented by the blue line) 
exhibits a noticeable increase in peak flows, accompanied by a slight alteration (decrease) in mean 
and low flows. However, the critical observation to highlight is that the KGE metric does not 
indicate any improvement. 
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Figure A 2-2 Daily time series comparison for two stations, for five hydrological years (to make the 
plots easy to read). Observed streamflow (dashed black line), simulated streamflow using ESDAC soil 
database (blue line), and simulated streamflow using default configuration (red line). The KGE(Q1/2) is 

calculated over the complete period (1979-2014) 

The visualization in Figure A 2-2 provides a comprehensive overview of the simulated flow 
dynamics resulting from the PIR1ESDAC simulation, offering valuable insights into the impact 
of incorporating the ESDAC data and Zr into the hydrological simulation. Nevertheless, despite 
these observed alterations in the flow characteristics, the KGE metric, which serves as an indicator 
of model performance, does not demonstrate any enhancement. This suggests that the simulation, 
despite capturing changes in flow patterns, fails to accurately reproduce the observed flow 
dynamics. 

The collaboration with the National Institute of Meteorology and Hydrology (Bulgaria) played a 
pivotal role in conducting this research stage. I would like to express my sincere gratitude to Dr. 
Eram Artinyan for his invaluable contribution to preparing the soil information maps utilized in 
these simulations. And I would also like to extend my appreciation to Dr. Aaron Boone from the 
Centre National de Recherches Météorologiques (France) for his generous assistance and detailed 
explanations regarding the configuration of the ISBA scheme. 
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Appendix B. Results of the reservoir scheme 
using different inputs 

B.1. Estimation volume – area  curves 

The accurate estimation of reservoir volume is of paramount importance for effective water 
resource management and planning. However, direct volume measurements can be challenging, 
costly, or impractical in certain scenarios. In such cases, the volume-area curve offers a practical 
solution by establishing a mathematical relationship between the reservoir's surface area and its 
corresponding volume. 

Firstly, volume measurements, which their corresponding dates, were obtained from historical 
records provided by the SAIH platform. Subsequently, with these meticulously chosen dates were 
utilized to conduct an extensive search for SENTINEL images to estimate the area. It is important 
to look for images ideally with minimal cloud cover and high quality. In this analysis, the 
Sentinel-2 product was used (https://www.sentinel-hub.com/explore/data/). Then, the sentinel 
satellite images were used to calculate the Normalized Difference Water Index (NDWI, 
McFEETERS, 1996) as depicted in Figure B 1-1. 

 

Figure B 1-1 Example of the determination of reservoir area for different time steps 

 

https://www.sentinel-hub.com/explore/data/
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The NDWI is a widely used index for water body detection and monitoring. The NDWI formula 
involves subtracting the green band reflectance from the near-infrared (NIR) band reflectance and 
dividing it by their sum. This index yields a normalized index that enhances the discrimination of 
water bodies. Later, to calculate the area of the reservoir, a geographic information system (QGIS 
software) was utilized. 

With the reservoir area on the x-axis and the corresponding observed volume on the y-axis, a 
scatter plot was created. Each data point represents a specific instance of the reservoir's area and 
the associated volume (Figure B 1-2). The best-fitting curve that represents the relationship 
between the reservoir area and volume was determined through linear interpolation. This step was 
developed with Python code packages. 

 

Figure B 1-2 Area-Volume curves determined for Barasona and Santa Ana. 

Figure B 1-2 represents the obtained volume-area curves for both reservoirs considered in this 
analysis. Based on the interpretation of the volume-area curve, it is evident that both the Barasona 
and Santa Ana reservoirs exhibit comparable surface area values. However, a notable distinction 
arises when examining their regulation capacities, as reflected in the storage volume 
measurements. The volume values associated with the Barasona reservoir are consistently lower 
than those of the Santa Ana reservoir. This discrepancy implies that the Barasona Reservoir 
possesses a relatively lower storage capacity in comparison to its counterpart, the Santa Ana 
Reservoir. 

Finally, it is important to highlight that the volume-area curve is specific to each reservoir and 
can change over time due to various factors such as sedimentation, changes in storage capacity, 
or alterations in the reservoir's shape. Regular updates and validation of the curve are essential to 
maintain accurate volume estimations. 
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B.2. Reservoir simulation plots 

In this Appendix, complementary plots of the reservoir operation results are presented. Plots for 
each case study and scenarios (S1 to S4) are depicted. Result plots for the Barasona case study. 
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Figure B
 2-2 Sam

e as Figure B
 2-1 but for the S2 scenario. 
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Figure B
 2-4 Sam

e as Figure B
 2-1 but for the S4 scenario. 
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Result plots for the Santa Ana case study. 
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Figure B
 2-6 Sam

e as Figure B
 2-5 but for the S2 scenario. 
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Figure B
 2-8 Sam

e as Figure B
 2-5 but for the S4 scenario. 
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B.3. Drought analysis using standardized indices 

One important limitation in evaluating anthropogenic drought using distribution-based 
approaches is the reliance on historical data in which human influences are not fully captured or 
easily separate from natural drivers on the water cycle. These approaches typically assume that 
the observed data, such as precipitation or streamflow, represent natural conditions unaffected by 
human interventions.  

However, in many regions, human activities such as water abstraction, reservoir operations, and 
land-use changes can significantly alter the hydrological system, leading to shifts in the 
distribution of these variables. Consequently, using distribution-based methods without 
accounting for these human influences may not accurately capture the occurrence and severity of 
anthropogenic drought. Additionally, changes in water management practices, such as the 
implementation of irrigation schemes or water conservation measures, can further modify the 
distribution of meteorological and hydrological variables. 

To estimate the impact of human influence on drought using standardized indices, a calculation 
procedure similar to the Standardized Precipitation Index (SPI, Mckee et al., 1993) was employed, 
but with adaptations for monthly data. Parametric indices were utilized for the analysis, 
necessitating the identification of the best-fitting distribution function for the naturalized data 
series obtained through the SASER modeling chain. The monthly series of streamflow, and 
evapotranspiration (ET) were considered, as depicted by the blue and green bars in Figure B 3-1. 

Different distribution functions, such as log-normal, log-Pearson, GVE, gamma, etc., were tested, 
thus a Python code script was developed to determine the appropriate distribution function. Once 
the distribution function was determined, their respective parameters were derived from the 
observed data, which accounts for human influence. Subsequently, the standardization process, 
following the same procedure as the SPI, was applied, and the results of the standardized index 
are presented in Figure B 3-1. 

Figure B 3-1 clearly demonstrates the significant alterations in the distribution of hydrological 
variables due to human influence. The presence of the reservoir leads to a remarkable reduction 
in flow from May to September, resulting in a distinct distribution pattern. Conversely, ET 
exhibits a substantial increase in values during the same months due to irrigation, causing them 
to fall outside the distribution range. 

These changes in the distributions have a profound impact on the results shown in Figure B 3-1. 
The Standardized Index (SRI) for flow displays highly negative values, making the interpretation 
impractical. In contrast, the standardized index for ET takes positive values that exceed the 
distribution, posing the opposite challenge. As a result, it becomes challenging to directly estimate 
the impact of human activities on drought using statistical indices within this framework. 
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Figure B 3-1 Example of some monthly fitted distribution for both variables (streamflow and ET) at 
different time scales. Blue and green bars represent the natural distribution of streamflow and ET, 

respectively. Red bars show the shift in these variables due to human influences. 

In conclusion, the utilization of standardized indices to evaluate the impact of human activities 
on drought encounters several limitations in this study. While these indices offer a valuable tool 
for assessing drought based on meteorological variables, their application becomes challenging 
when analyzing anthropogenic influences. Therefore, it becomes crucial to incorporate 
knowledge of human-induced alterations in the water cycle, along with appropriate modeling 
approaches that account for the impacts of human activities on drought dynamics. 
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