
 
 
 
 

 
 

 
 

 
 
 

 
 

	
 

Integrating structural and X-chromosome variants  
in genetic studies of complex diseases 

 
Daniel Matías Sánchez 

 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – 
SenseObraDerivada  4.0. Espanya de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – SinObraDerivada  
4.0.  España de Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0. Spain License.  
 



Integrating structural and
X-chromosome variants in
genetic studies of complex

diseases

PhD Thesis
Daniel Matías Sánchez

May 2023





Facultat de Biologia, Universitat de Barcelona
Programa de doctorat Biomedicina (HDK05)

Integrating structural and X-chromosome variants in
genetic studies of complex diseases

Memòria presentada per Daniel Matías Sánchez per
optar al grau de doctor per la Universitat de Barcelona

Tesi realitzada al

Barcelona Supercomputing Center (BSC)

Doctorand
Daniel Matías Sánchez

Director Director Tutor
David Torrents Arenales            Cecilia Salvoro Àlex Sànchez Plà



2



Agradecimientos

Durante el desarrollo,  ya no solo de esta tesis,  sino también de mi carrera
profesional como bioinformático, ha habido tantas personas que podría llenar
todas las páginas de esta tesis solo agradeciendo a cada una de ellas todo lo
que me han aportado, enseñado y hecho crecer.
En primer lugar, quiero empezar por la persona que me dio la oportunidad de
entrar  en  este  mundo:  David.  Siendo  honestos,  podríamos  decir  que  mi
expediente  no  era  el  más  adecuado  para  realizar  un  doctorado,  siempre
rondando el  típico 7 de media,  pero esto a él  nunca le ha importado.  Aún
recuerdo el día que, después de una clase suya en la universidad, me acerqué
a preguntarle que requisitos tenía que cumplir para realizar el doctorado en su
grupo, y su respuesta fue “Ganas”. Actualmente pocos te dan la oportunidad
de hacer un doctorado sin un expediente que les garantice una beca, y, en el
caso de David, esto no le importó y me dio la posibilidad, no solo de hacer un
doctorado, sino de entrar en un mundo profesional que me apasiona.
Las siguientes personas a las que tengo que agradecerles que hoy esté donde
estoy son Montse, Jordi e Iván. La primera, por hacer que mi primer contacto
con una terminal no fuera una pesadilla, enseñándome desde el día uno todo
un mundo de computación y programación y, además, por convertirse en una
gran amiga. De Jordi qué decir, nos hemos reído, discutido, peleado, chillado…
todo lo que haces con un compañero de proyecto. He aprendido mucho de él
durante los dos años que trabajamos juntos y no tengo más que palabras de
agradecimiento para él. Por último, pero no menos importante en este bloque,
Iván,  una  persona  que  hizo  que  volviera  a  interesarme  por  la  “odiada”
bioestadística que años atrás en la universidad me había hecho pasarlo mal.
Siempre dispuesto a ayudar y a aportar ideas, gracias por cada cosa que me
has enseñado y por tener con nosotros tanta paciencia. Además, me gustaría
incluir a Rafael de Cid y a su grupo por la oportunidad de trabajar con ellos y el
buen trato siempre recibido.
Me gustaría destacar en estos agradecimientos a la persona que es, con toda
seguridad la más especial y uno de los pilares de mi desarrollo profesional:
Cecilia. No solo me dejó formar parte de su proyecto, sino que me acogió y
formó desde  cero  en  todo  lo  que  ha  podido.  Has  sido  amiga,  compañera,
profesora  y  por  último  codirectora  de  esta  tesis.  Nunca  sabré  como
agradecerte que cogieras a un chaval que había programado cuatro cosas y le
enseñaras como ser un “científico”, a tener un pensamiento crítico, a darle mil
vueltas a las cosas, a mirar cada resultado desde distintos puntos de vista y
que me trasmitieras la motivación, pasión y amor que tú tienes por la genética.
Este párrafo se queda muy corto para de verdad transmitirte todo lo que me

3



has enseñado y ayudado, y si hoy en día tengo las oportunidades profesionales
que tengo es en gran parte, gracias a ti.
No me quiero dejar tampoco a cada uno de los miembros del grupo con los que
he compartido estos años experiencias tanto científicas como personales. En
primer  lugar,  agradecer  a  Lorena,  con  la  que  he  compartido  cientos  de
conversaciones frikis de todo tipo. Gracias por ayudarme siempre que lo he
necesitado, eres la nobleza en persona. A Ignasi,  por la paciencia que tuvo
conmigo  y  aguantar  mis  “chapas”  en  cada  comida.  A  Luisa,  por  nuestras
conversaciones sobre nuestro futuro profesional y las ganas que teníamos de
ser ricos y no tener que preocuparnos por nada más.  A Álvaro, Miguel, Elias,
Mercé y Marta,  porque,  aunque hemos coincidimos menos tiempo,  también
habéis formado parte de esta etapa y me llevo un pedacito de cada uno de
vosotros.
Este párrafo seguramente es el que más corto se me quede para darle las
gracias a una de las personas, no solo más especiales en el tiempo en el que
estado realizando esta tesis, sino actualmente de mi vida, Ana. La verdad es
que nuestra primera toma de contacto no fue la mejor; no nos dirigimos la
palabra prácticamente durante los tres primeros meses, pese a estar sentados
a poco más de 5 metros. Nunca me hubiera imaginado que esa persona que
tenía pinta de tener mal humor iba a ser una de mis mejores amigas y la
persona  más  importante  que  me llevo  de  mi  estancia  en  Barcelona.  Nada
escrito con palabras puede reflejar lo que eres para mí. Gracias por ser amiga y
compañera,  por  estar  en  las  buenas  pero,  sobre  todo,  en  las  malas,  por
apoyarme en cada decisión que he tomado y por decirme lo que necesitaba
escuchar en cada momento. Porque ni una pandemia mundial, o estar a 400
km,  ha  hecho  que  nos  distanciemos;  lo  mejor  que  me  llevo  de  todo  este
periodo no es un título de doctor, sino el hecho de haberte conocido.
Tampoco quiero dejarme fuera de estos agradecimientos a personas que me
han hecho crecer mucho a nivel  personal  y  profesional.  En primer lugar,  a
Ramón Catalá, por dejarme formar parte de tellmeGen durante los dos últimos
años y aceptar que realizara la tesis doctoral en paralelo al trabajo, teniendo
comprensión y paciencia y dejándome flexibilidad siempre que la he necesitado
para  que  este  trabajo  fuera  posible.  También  agradecer  a  mi  “familia”  de
tellmeGen: Lucia, Blanca, Marta, Marián, Silvia, Raquel, Diego, Rafa, Jesús, Yara
y Celia, por cada momento bueno que hemos pasado juntos y por hacer que
cada momento de agobio fuera más llevadero con vosotros.
Pero  si  en  la  familia  tellmeGen  hay  alguien  a  la  que  le  debo  miles  de
agradecimientos, es a mi “minion” y una de mis mejores amigas, Judith. Tú aún
crees que has aprendido mucho de mí, pero no eres consciente de todo lo que
me has enseñado. Gracias por tener la paciencia necesaria para aguantarme
en cada momento de estrés y de agobio, por leerte esta tesis y aconsejarme y
ayudarme como si fuera tuya, por cada cotilleo, cerveza, comida, cena y viaje
que hemos compartido. 

4



A mi familia, que me dieron la oportunidad de estudiar lo que he querido y
donde he querido sin hacer preguntas, garantizándome el mejor futuro que han
podido  y  sacrificándose  para  que  nunca  me  faltara  de  nada.  Gracias  por
apoyarme en cada una de mis decisiones y aventuras, aunque ello supusiera
vivir en la distancia.
Por último, no quiero terminar sin darle las gracias al eje central de mi vida,
amiga y pareja, Lucrezia. Nunca podré agradecerte lo que haces y eres para
mí. Sé que aguantarme no es fácil, y menos en momentos de estrés como los
que estoy pasando ahora mientras escribo estas palabras, pero tú estás ahí
siempre, sin una mala cara y siempre dándome cariño y amor para que me
sienta lo mejor posible. He hecho que tu vida dé mil vueltas, que cambiemos
de ciudad, de comunidad y hasta de país, y siempre has estado ahí apoyando
cada una de mis  decisiones  y  sacrificando cosas por  mi  bien profesional  y
personal. Nunca podré expresar con palabras lo que eres para mí y lo que te
quiero.

5



6



Thesis Trajectory

Before diving into the content of the thesis, I would like to initially provide some
context  regarding  the  development  of  this  thesis  within  the  computational
genomics group at the Barcelona Supercomputing Center (BSC), from both a
professional and personal perspective.
When I joined the BSC in April 2018, I began working with Jordi Valls, who was a
PhD student in the group at the time, on the GCAT project in collaboration with
the principal investigator Rafael del Cid from the Institute for Health Science
Research Germans Trias i Pujol (IGTP).
The aim of this project was to generate a haplotype reference panel with a
specific focus on the identification of structural variants. Jordi, who had already
spent a year in the group, had been working on creating an  in silico sample
with  known variants  introduced by himself  to  have an example  sample  for
benchmarking variant callers. He was also researching and pre-selecting the
variant  callers  that  we  would  use  in  the  project,  which  proved  to  be  a
fundamental  source  of  information  at  the  beginning  of  the  project
development.
Once I joined the group, we divided the project tasks. In the first phase, he
focused on processing and performing the necessary quality  control  on  the
whole genome sequencing (WGS) samples from GCAT, while I began working
on the execution of the variant callers, their fine-tuning, and the benchmarking
study to determine which programs were best suited for the research. Following
this, Jordi focused on running the different variant callers that I had selected on
all the GCAT samples. In parallel, Iván Galván, who was a biostatistician at IGTP
at  the  time,  joined  the  project,  and  he  and  I  worked  together  on  the
development and application of various logistic regression models for filtering
high-quality variants in the creation of the reference panel. In the third phase of
this project, Jordi and Iván worked on evaluating the imputation performance of
the  reference  panel  created,  while  I  focused  on  validation  using  both
experimental  information  and  comparisons  of  our  variant  set  with  other
available databases.
Although during the different project phases, each of the three team members
focused on a specific part, we all directly collaborated in each other's tasks and
provided support, making it a collaborative effort in the end. As a result, this
project culminated in the publication of an article in the journal Nucleic Acid
Research  (NAR),  in  which  all  three  of  us  are  listed  as  first  authors  or  co-
authors1.  Finally,  this  project,  along  with  the  development  of  the  in  silico

7



sample,  is  the  central  core of  Jordi  Valls'  thesis,  so part  of  the information
presented about this project in this thesis has been previously presented.
The second phase of my thesis involved working with PhD Cecilia Salvoro on
what we called the “X chromosome project”. The aim of this project was to
recover the role of the X chromosome on complex diseases, something that
had been neglected until now due to computational limitations. In this project,
our main strategy was to use case-control cohorts obtained from the database
of  genotypes  and  phenotypes  (dbGaP)  that  covered  a  wide  range  of
phenotypes, and perform X chromosome association studies (XWAS), analyzing
males and females separately. Later, we decided to expand our study by also
including the UK Biobank.
During the first phase of the project, I worked on phenotype curation, quality
control,  phasing,  imputation,  and  association  of  all  dbGaP  cohorts  and
phenotypes, while Cecilia worked on the UK Biobank. It should be noted that in
these  processes,  we  used  the  GCAT  reference  panel,  which  allowed  us  to
introduce variants that would not have been possible to analyze without this
panel.
In the second phase, my focus was on calculating a significance threshold for
the study and determining which loci were significant in the project, as well as
comparing them with loci described in previous analysis of the UK Biobank.
The third phase of the project was marked by various personal changes for
both  me  and  Cecilia.  In  July  2021,  I  joined  a  company  as  a  full-time
bioinformatician,  while  Cecilia  also  left  the  BSC  and  joined  an  external
company,  causing  the  final  phase of  the  project  to  slow down as  we  both
worked part-time on it. During this phase, Miguel Pérez, now PhD student at the
group, joined the project to provide support. In this last phase, we worked on
conducting a preliminary functional analysis of the signals obtained and tried to
determine significant functional differences between males and females.
Currently, we are working to finish writing the paper of the project, while there
is  an  open  analysis  that  consists  of  studying  the  impact  of  heterozygous
genotypes  on  association  analyses  in  women.  Cecilia  and  I  initiated  this
analysis, which is now being carried out by Miguel Perez and will be part of his
future thesis, while I am providing him with support.
In conclusion, the two projects I have worked on during these five years are
large-scale  projects  in  which  various  individuals  have  been  involved,  and  I
would like to thank them for their efforts. Without their contribution, these two
projects and this thesis could not have been completed.

8



9



10



Abstract
In  recent  years,  the  genetics  field  has  placed  a  significant  emphasis  on
identifying and characterizing genetic factors contributing to complex diseases,
alongside  environmental  factors.  Genome-wide  association  studies  (GWAS)
have emerged as one of the principal methodologies for this purpose, as they
analyze  extensive  genetic  and phenotypic  data  from multiple  individuals  to
identify  genetic  variations associated with specific traits.  This  approach has
advanced our understanding of the genetic architecture of complex diseases,
allowing the development of prevention strategies and genetic risk estimation.
However, despite progress, much information remains to be uncovered, leading
to a heritability discrepancy, which refers to the difference between heritability
estimated  in  population  studies  and  that  explained  by  known  genetic
variations.
Many  methodological  and  statistical  limitations  are  slowing  down  the
identification  of  the  genetic  variation  associated  with  the  risk  to  develop
complex  diseases.  Current  GWAS  rely  on  Single  Nucleotide  Polymorphisms
(SNP) arrays that have a limited number of  variants.  To overcome this,  the
number of  variants analyzed can be augmented through imputation of  pre-
existing  genetic  variants  from reference  panels.  However,  reference  panels
frequently exclude rare variants and structural variants (SVs) which results in
these  variants  not  being  considered  in  the  imputation  process  leading  to
potential missed associations.
Another  element  neglected  in  most  studies  of  complex  diseases  is  the  X
chromosome, which is one of the two sex chromosomes and has unique biology
that results in different copy number in females and males.  When examining
the SNP-trait associations reported in the National Human Genome Research
Institute's (NHGRI) GWAS catalog, a clear shortfall in the representation of the
X chromosome becomes apparent.  Still, only 0.5% of the known associations
map  on  chromosome  X.  This  under-representation  is  primarily  due  to  the
methodological challenges associated with its analysis. The unique pattern of
inheritance and the effects of allelic inactivation in females can result in allelic
imbalances  between  the  sexes  and  decrease  the  statistical  power  during
genetic association studies.
In this thesis, we aim to address these challenges by creating a comprehensive
genetic resource, consisting of a haplotype map, particularly enriched in well
characterized,  and  phased  SVs;  and  deal  with  the  gap  in  X-chromosome
analysis by designing, implementing and applying a targeted methodology for
the study of the role of the X-chromosome across multiple phenotypes.
The haplotype map was  generated using  785 Illumina  high coverage (30x)
whole-genomes  from  the  Iberian  GCAT  Cohort  with  multiple  variant
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identification  methods  and  Logistic  Regression  Models  (LRMs)  for  their
validation. The resulting catalog includes 35,431,441 variants, including 89,178
SVs (≥50 bp), 30,325,064 SNVs and 5,017,199 indels, across all individuals in
the  cohort.  The  haplotype  panel  demonstrates  improved  imputation
capabilities,  with  14,360,728  SNVs/indels  and  23,179  SVs  being  imputed,
representing a 2.7-fold increase in SVs compared to other available genetic
variation panels. This panel's significance is highlighted by the imputation of a
rare Alu element located in a new locus associated with Mononeuritis of the
lower limb, a rare neuromuscular disease. This study represents the first in-
depth characterization of genetic variation in the Iberian population and the
first haplotype panel that systematically includes SVs in genome-wide genetic
studies.
The  X-Chromosome  targeted  strategy  was  designed  and  applied  to  nearly
800,000 individuals across 600 phenotypes from publicly available cohorts (UK
Biobank  and  dbGaP).  This  pipeline  includes  the  data  collection  process,  a
specific and fundamental quality control for the X-chromosome analysis and
the  phasing,  imputation  and  association  process,  which  was  performed  by
splitting females and males and then meta-analyzing the results, thus allowing
to detect sex-differences.
Our analysis of nearly 500,000 X-linked variants, including SVs, resulted in 96
significant  associations  with  77  traits,  with  75  of  these  being  novel.  By
incorporating sex-specific analyses, we identified 41 loci with different behavior
between males and females. These findings give us insight into the level of
missing  information  and  the  X  chromosome's  potential  role  in  complex
diseases, as well as its contribution to sex-specific risk and manifestation.
In conclusion, this work highlights the importance of considering SVs and the
chromosome X in genetic studies, particularly in the context of exploring the
genetic architecture of human complex diseases. The findings offer a valuable
asset  for  further  examination  of  the genetic  components  that  contribute  to
complex  diseases,  marking  a  progression  towards  a  more  complete
comprehension of the genetic landscape and its effects on human health.
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1 Brief History of Genetics
Genetics,  as  defined  by  the  National  Institute  of  Health  (NIH),
(https://www.nih.gov/), is the study of heredity and variation of inherited traits.
It is a scientific discipline that deals with the mechanisms of inheritance and
the way traits  are passed down from one generation to the next.  Genetics
encompasses a wide range of topics, including the structure and function of
genes, the organization of the genetic material within cells, the mechanisms of
mutation  and  genetic  variation,  and  the  study  of  complex  traits  that  are
influenced by multiple genes and environmental factors.
The  history  of  genetics  can  be  divided  into  three  major  stages:  from  its
beginnings until the early 20th century, when the first hypotheses on heredity
and evolution emerged; the second half of the 20th century, known as the DNA
era, when the structure of DNA was discovered; and the 21st century, from the
development  of  sequencing  technology  and  the  completion  of  the  human
genome project to the present day (Figure 1).

1.1 From the origins to the mid-20th century
The study of genetics can be traced back to the ancient Greeks, who were the
first to propose the concept of heredity. They believed that traits were inherited
and determined by the mixture of fluids or “humors” in the body2.
In the 19th century, the science of genetics began to develop. Gregor Mendel
(1822-1884) published his experiments on pea plants in 1866, establishing the
laws of inheritance and laying the foundation for the science of genetics2. He
explained how traits were passed from one generation to another through what
we  now  know  as  a  genotype,  and  how genetic  material  could  create  new
variations.  His  work demonstrated that  genes  are the fundamental  units  of
inheritance,  providing  the  basis  for  the  modern  understanding  of  how
characteristics are passed down from one generation to the next3. However,
the “Mendelian Laws of Inheritance” were disregarded for several decades due
to limited understanding of the mechanisms of heredity and the presence of
alternative inheritance theories4.
Charles Darwin (1809-1882) also greatly influenced the field of genetics with
his  theory  of  evolution  in  1859.  He  showed  that  species  evolve  over  time
through natural selection, where advantageous traits are passed on to offspring
and disadvantageous traits are eliminated5. Darwin also proposed the theory of
pangenesis  in  his  book  “The  Variation  of  Animals  and  Plants  Under
Domestication”.  This  theory  suggested  that  every  part  of  an  organism
produced small particles called “gemmules” that were believed to be units of
inheritance and carried in the blood to the reproductive organs6.
Over  the  next  few  decades,  the  history  of  genetics  saw  several  key
developments and discoveries where researchers made significant progress in
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understanding the mechanisms of heredity. One key event was in 1900, where
Carl  Correns  (1864-1933),  Hugo  de  Vries  (1848-1935),  and  Erik  Tschermak
(1871-1962) independently rediscovered Mendel's work7. This led to a renewed
interest  in  Mendel's  theories  and  helped  to  lay  the  foundation  for  the
development  of  the  science  of  genetics.  Between  1903  and  1905,  Walter
Sutton (1877-1916) and Theodor Boveri (1862-1915) proposed the idea that
genes were located on chromosomes and confirmed their role in heredity8. In
addition,  in the  early  1900s,  Thomas  Hunt  Morgan  (1856-1945)  conducted
experiments on Drosophila melanogaster to study the inheritance of traits. He
discovered  that  some  traits  were  linked,  meaning  that  they  were  always
inherited together9. He also found that the frequency of recombination, or the
exchange of genetic material between chromosomes, was a measure of the
distance  between  two  linked  genes10.  Also,  in  1908,  Godfrey  Harold  Hardy
(1877-1947)  and  Wilhelm  Weinberg  (1862-1937)  hypothesized  that  the
frequency of alleles in a population will remain constant from one generation to
the  next  in  the  absence  of  evolutionary  forces,  what  is  known  as  “Hardy-
Weinberg Equilibrium” (HWE)9.
Finally, the concept of “population genetics” as we know it today was born at
same time as the field of genetics was taking shape. It was first introduced by
the mathematician and statistician Ronald A. Fisher (1890-1962) as a way to
integrate  evolutionary  biology  and  genetics.  In  his  work,  Fisher  applied
quantitative methods to the study of evolution and genetics, and he showed
how the principles of Mendelian inheritance could be used to understand the
evolution of populations over time11,12.  Population genetics has been a central
component  of  genetics  research  since  its  inception,  and  has  had  a  major
impact on our understanding of the genetic basis of diseases, the evolution of
species, and the conservation of biodiversity.

1.2 Second half of the 20th century: The DNA era
While the first decades of the 20th century saw great advances in the field of
genetics, the second half of the century is marked by the discovery of DNA
(deoxyribonucleic acid). For this reason, this period is known as the “DNA era”.
The  “DNA  era”  conventionally  starts  in  the  1950s  when  scientists  made
significant breakthroughs in understanding the structure and function of DNA.
This period was marked by a rapid increase in knowledge and technological
advancements that transformed the field of molecular biology and led to the
development of new techniques for studying the structure and function of DNA
having.
The discovery of  DNA,  however,  occurred before this  time.  It  was made by
Swiss physician and biologist Friedrich Miescher (1844-1895) in 1869. Miescher
was studying the composition of white blood cells and discovered a new type of
nucleic acid that he called “nuclein”13. Later, it was determined that this nucleic
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acid was DNA. In parallel, between 1884 and 1885, Albrecht von Kölliker (1817-
1905), Oscar Hertwig (1849-1922), August Weismann (1834- 1914) and Eduard
Strasburger (1844-1912) evidenced that the cell nucleus contains the basis for
inheritance8. But it was not until 1944 that Oswald Avery (1877-1955), Colin
MacLeod (1909-1972), and Maclyn McCarty (1911-2005) demonstrated that a
genetic transformation in bacteria could be accomplished by exposing them to
purified DNA. Their work showed that DNA was the genetic material responsible
for passing on traits from one generation to the next8.
The key event that marked the beginning of the “DNA era” was the discovery
of the double-helix structure of DNA. In 1952, Rosalind Franklin (1920-1958)
and Maurice Wilkins (1916-2004) used X-ray crystallography to determine the
structure of DNA. Then, James Watson (1928- ) and Francis Crick (1916-2004)
used Franklin and Wilkins' X-ray diffraction data, along with other data, to build
a model of the structure of DNA. They found that the two chains of nucleotides
were held together by hydrogen bonds between the nitrogenous bases and that
the bases were paired in a specific way: adenine with thymine and cytosine
with guanine14.
Shortly  after,  in  1961,  Marshall  W.  Nirenberg  (1927-2010)  and  J.  Heinrich
Matthaei (1929- ) deciphered the genetic code, figuring out how the sequence
of DNA nucleotides translates into the sequence of amino acids in a protein.
This was done through a series of experiments involving decoding the codons15.
This  knowledge  allowed  the  discovery  and  application  of  recombinant  DNA
technologies in the 1970s16.

1.3 The sequencing era
The discovery of DNA structure in the 1950s set the stage for the field of DNA
sequencing. Sequencing is the process of reading and determining the order of
nucleotides or bases in a DNA molecule. 
The first  entire  genome sequence,  the  bacteriophage Φ-X174 genome,  was
determined  in  the  late  1970s  by  Frederick  Sanger  (1918-2013)  using  the
“Sanger  Method” which  involved  a  chemically  interruption  of  DNA  chain
synthesis  at  specific  points  and  then  separating  the  fragments  by  size17,
marking  a  significant  milestone  in  the  field  of  genomics. As  sequencing
technologies  advanced  and  the  potential  applications  of  genomics  became
more apparent,  an ambitious  goal  emerged:  to sequence the entire  human
genome. This led to the establishment of the Human Genome Project (HGP).
The Human Genome Project (HGP), launched in 1990, aimed to sequence the
entire human genome using a combination of the Sanger method and newer,
high-throughput  sequencing  approaches  such  as  the  “shotgun  sequencing”
method. The first draft of the human genome was published in 200116,18 and
was completed in 2003. This landmark achievement made it possible to study
the human genome at a level of detail never possible before.
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Parallel to the HGP, scientists recognized the need for a more efficient and cost-
effective way to identify genetic variants in the human genome. This led to the
development of genotyping arrays, also known as DNA chips or microarrays.
The idea was to use these arrays to detect single nucleotide polymorphisms
(SNPs)19.
In the late 2000s and early 2010s, the advent of next-generation sequencing
(NGS)  technologies  revolutionized  DNA  sequencing.  NGS  allows  for  the
simultaneous sequencing of millions of DNA fragments, making it possible to
sequence entire genomes in a matter of days, rather than years.
The completion of the human genome project, together with the emergence of
new technology, led to the emergence of other international projects such as
HapMap,  which  aims to  study human genetic  variation20 or  ENCODE,  which
aims to identify the functional elements of the human genome21.
Today,  DNA  sequencing  continues  to  advance  at  a  rapid  pace  with  new
technologies and applications being developed all the time. For example, long-
read sequencing technologies have been developed allowing DNA molecules of
up  to  100,000  base  pairs  (bp)  to  be  sequenced  and  enabling  the  precise
determination  of  genomic  structures  changes  such  as  the  arrangement  of
chromosomes22.

Figure 1. Genetics historical overview. The history of genetics starts with the first theories
of  inheritance  and  finishes  with  the  current  scenario  and  next-generation  sequencing
technologies.
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2 Basis of genetics

2.1 Definition and types of genetic variants
Genetic information is stored in DNA molecules. In the case of humans, the
genome contains a sequence of approximately 3 billion nucleotides, organized
into  23  chromosome  pairs.  However,  not  all  the  physical  positions  in  the
genome are identical among all individuals, there are differences that give rise
to genetic variation. Genetic variants refer to the different versions or forms in
the DNA sequence between individuals in a population. The latest estimations
from the  1000G-Phase3  release  mentioned  that  a  human genome typically
differs from the human reference sequence in around 5 M positions23. While, in
2017, it was published that more than 644 million high-quality polymorphisms
from sequenced human genomes are known24.
Depending  on  their  nature  or  origin,  we  can  make  a  distinction  between
germline  variants  and  somatic  variants.  Germline  variants  refer  to  genetic
variants present in the parent’s germline cells, and therefore present in any cell
of the offspring. In contrast, somatic variants are genetic variations that occur
in an individual's non-reproductive cells and are not present in all the cells of
an individual. These somatic variants are not passed on to offspring (Figure 2a).
In this thesis, I will always refer to germline variants when talking about genetic
variants.
There is still no consensus on the criteria to classify genetic variants, however,
one  of  the  most  commonly  used  is  based  on  size  (Figure  2b).  Using  this
classification,  we  can  differentiate  between  (i)  Single  nucleotide  variants
(SNVs), single base pair differences in the DNA sequence; (ii) Small insertions
and  deletions  (INDELs),  differences  in  the  DNA  sequence  caused  by  the
insertion or deletion of one or more base; and (iii) Structural variants (SVs),
large-scale  differences in  the DNA structure,  including inversions,  deletions,
duplications,  translocations  and  insertions25.  Even  within  this  classification,
there is debate about the size thresholds that define a variant as one type or
another. For example, in the 1000 Genomes Project, any variant between 2-50
base pairs (bp) was considered an INDEL, and any variant larger than 50 bp
was considered a SV26. However, in later projects such as gnomAD27, the size
windows were modified, defining INDELs as variants between 2-30 bp and SVs
as  variants  larger  than 150 bp.  This  change introduced  the  term "mid-size
INDEL" to encompass variants between 30-150 bp. While the size thresholds for
differentiating  between  various  types  of  genetic  variants  continue  to  be  a
subject of debate, for the purposes of this thesis, we will classify any variant
larger than 50bp as SV.
The  frequency  with  which  these  genetic  variants  are  present  within  a
population is another way of classifying genetic variants (Figure 2c). Each of
these variants is located at a unique position on the genome, known as a locus.
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At each locus, a variant can have different versions, termed as alleles. We can
distinguish the major allele, which is the most prevalent in a population, a the
minor allele, the second most common. With this, variants can be classified
according to the frequency of the minor allele (Minor Allele Frequency, MAF) in
common variants (MAF > 5%), low-frequency variants (1% ≤ MAF < 5%) and
rare variants (MAF < 1%)26,28–30. 

Figure  2.  Types  of  genetic  variants  depending  on  different  features.  a) Genetic
variation can be classified based on their origin into germline or somatic. Germline variants are
present in an individual's germ cells and can be passed on to their offspring. Somatic variants
occur  in  an  individual's  non-reproductive  cells  and  are  not  passed  on  to  the  offspring.  
b) Genetic variation can be classified according to the size of the variant into SNVs, affecting
only one nucleotide; INDELs, insertions or deletions smaller than 50bp; and SVs, large-scale
differences in the DNA structure, including inversions, deletions, duplications, and insertions.  
c) Genetic  variants  can  be  classified  according  to  their  frequency  in  the  population  into
common, low-frequency and rare variants.
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2.2 Linkage Disequilibrium
Although millions of variants have been described in the human genome, they
do not provide unique and independent information.  This is primarily due to
the non-uniform nature of recombination. Recombination occurs during meiosis
when homologous chromosomes, which carry identical sets of genes, pair up
and exchange genetic material. This process results in the shuffling of alleles at
the same locus. However, recombination is not uniformly distributed across the
genome;  there  are  regions,  known  as  recombination  hotspots,  where
recombination occurs at a higher frequency31.
This  non-uniform  recombination  leads  to  the  phenomenon  of  linkage
disequilibrium (LD), which helps explain the observed correlation patterns in
human genetic variation32. In essence, LD is a correlation that quantifies the
degree of association between alleles in a population and, occurs when the
frequency of a specific combination of alleles at multiple loci is  higher than
what would be expected. On top of this,  distance plays a critical role since the
closer the loci are on a chromosome, the more likely they are to be inherited
together.
A set of alleles at different loci in the same chromosome that are inherited
together is defined as a haplotype. Because of  the nature of  recombination
described above, haplotype blocks, also named LD blocks, can be identified in
human populations33,34.

3 Methods and technologies to identify human genetic
variability

Advancements  in  technology  have  greatly  facilitated  the  identification  of
human genetic variability, which is crucial in comprehending the genetic basis
of  human  phenotypes,  including  complex  diseases.  Over  the  last  several
decades, the methods for recognizing and categorizing genome variability have
improved  with  regards  to  accuracy,  sensitivity,  and  cost-effectiveness.  The
identification of genetic variants involves reading the genome or portions of it
and, the use of various analysis techniques on the readings obtained. Although
there are multiple technologies for genome reading, two stand out as the most
widely utilized: genotyping arrays and sequencing technologies.

3.1 Genotyping arrays
Genotyping  arrays  marked  a  new  era  in  the  field  of  genetics,  providing
researchers with a powerful and efficient tool for analyzing large numbers of
genetic variants in a population of individuals.
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Genotyping arrays  are  designed to  detect  specific  variants  in  a  individual’s
DNA.  This  is  done  by  hybridizing  a  sample  of  DNA  with  a  set  of  probe
sequences, which are anchored to a solid surface, typically a glass slide or a
chip. The probes are designed to bind to specific locations in the genome and
detect variants of interest, mainly single-nucelotide polymorphisms (SNPs).
Genotyping arrays have become an important tool in the field of genetics and
genomics because they provide a cost-effective and efficient way to genotype
large numbers of individuals. This makes it possible to study large populations,
including those from diverse ethnic backgrounds, as they could easily provide a
bunch of genetic markers evenly distributed in the genome. Additionally, the
arrays can be used to genotype individuals in a variety of different studies,
including population genetics,  association studies,  family-based studies,  and
case-control studies35.
Advances in genotyping array technology have made it possible to genotype
entire  genomes,  including a  larger  number  of  variants  to be analyzed,  and
providing  an  even  more  comprehensive  understanding  of  an  individual's
genetic  information.  However,  despite  their  widespread  use,  there  are  a
number  of  limitations  associated  with  this  technology  that  should  be
considered when using genotyping arrays in research studies.
One of the main limitations of genotyping arrays is the accuracy of the results.
The accuracy of the results depends on the quality of the DNA sample and the
specificity of the probes used in the assay. If the DNA sample is of low quality
or has been degraded, the results of the genotyping assay may be incorrect or
incomplete.  Additionally,  if  the  probes  used  in  the  assay  are  not  specific
enough,  the  results  may  not  accurately  reflect  the  true  genotype  of  the
individual. This can lead to false positive or false negative results, which can
have serious implications for genetic association studies and other types of
research.  Nevertheless,  in  recent  years,  there  has  been  a  significant
advancement in genotyping technologies. This progress has been marked by a
considerable  improvement  in  the  accuracy  of  genetic  variant  identification,
with current methods approaching a remarkable accuracy rate.
Another limitation of genotyping arrays is the coverage of the genome. While
genotyping arrays are capable of genotyping large numbers of individuals, they
typically only cover a subset of pre-defined variants, around 1 million SNPs.
This  is  a  much  smaller  number  of  SNPs  compared  to  the  total  number  of
genetic  variants  present  in  the  human  genome.  Furthermore,  due  to  their
reliance  on  predetermined  alleles,  which  exhibit  different  degrees  of
polymorphism among various ancestries, genotyping arrays cannot be applied
universally across all populations.
A third limitation of genotyping arrays is the variability in performance between
different  platforms  and  manufacturers,  being  Illumina,  with  its  Infinium
technology36,  and  Thermo  Fisher  Scientific  with  Affymetrix37,  the  market
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leaders. This can lead to differences between arrays, including differences in
accuracy, sensitivity, and specificity. This variability in performance can have
serious implications for genetic association studies, where results from different
arrays may not be comparable38.
Finally,  genotyping arrays  are not  capable  of  detecting all  types of  genetic
variants. For example, they are not capable of detecting SVs, such as deletions,
duplications,  and  insertions,  which  can  have  a  significant  impact  on  gene
function and disease susceptibility39. In order to detect these types of genetic
variants,  researchers  must  use  other  technologies,  such  as  whole  genome
sequencing or targeted sequencing.

3.2 Sequencing technologies
The  information  obtained  from sequencing  is  critical  for  understanding  the
genetic code and can be used to study the human genome and the genomes of
other species. The process of sequencing is performed on DNA fragments and
as a result, sequence reads are obtained, which are sequences of DNA letters
obtained  from  a  single  pass  of  a  sequencing  machine.  The  size  of  the
sequenced fragments is determined by the type of machine and sequencing
technologies used.  There are various sequencing technologies available, each
with its unique strengths and weaknesses.
The choice of  technology depends  on factors  such as  the  specific research
question, the size of the genome being studied, and the amount of sequencing
that  needs  to  be  performed.  Currently,  three  generations  of  sequencing
technologies can be distinguished (Figure 3).

3.2.1 First-Generation Sequencing technologies
First-Generation Sequencing, also known as Sanger sequencing, is one of the
first and most widely used sequencing technologies.  It is a chain-termination
method,  in  which  DNA  is  replicated  in  the  presence  of  a  specific  set  of
nucleotides  that  are modified to prevent  the extension of  the growing DNA
strand. This results in a series of DNA fragments with different lengths, which
can be separated by electrophoresis and visualized by autoradiography (now
replaced by fluorescence). Sanger sequencing is still widely used, especially for
sequencing smaller regions of DNA17.

3.2.2 Second-Generation Sequencing technologies
As  technology  has  advanced,  new  sequencing  techniques  have  been
developed, giving rise to what is known as NGS technologies, a concept first
introduced  in  200540,  giving  rise  to  second-generation  sequencing.  Second-
generation  sequencing,  also  known  as  high-throughput  sequencing,
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revolutionized the field of genomics by making it possible to sequence large
amounts of DNA sequences at a much faster pace and lower cost compared to
first-generation sequencing. These methods typically involve the simultaneous
sequencing  of  many  DNA  fragments  in  parallel,  which  results  in  massive
amounts  of  data41.  While  it  took  years  to  sequence  a  genome  with  first-
generation  sequencing  technologies,  more  recent  second-generation
technologies can do so in less than 24 hours. Additionally, NGS technologies
allow for the sequencing of complete genomes or exomes.
Second-generation sequencing is currently the most widely used, mainly due to
its  advantages  over  first  generation.  lllumina  sequencing,  also  known  as
Illumina high-throughput sequencing, is  the most popular second-generation
technology that uses a process called bridge amplification to generate clusters
of DNA fragments on a surface42. The DNA fragments are then sequenced by
reading the fluorescent signals generated by the incorporation of fluorescent
labeled nucleotides. Illumina sequencing is highly scalable and cost-effective,
making it a popular choice for large-scale genome sequencing projects such as
the  1000  Genomes  Project29.  However,  second-generation  sequencing
technologies have some limitations, manly related with the read length. While
NGS can generate a vast amount of data, the individual sequences, or reads,
are relatively short. This makes it challenging to assemble complex genomes or
map reads back to repetitive regions of the genome.

3.2.3 Third Generation Sequencing technologies
Third-Generation Sequencing technologies refer to a new generation of DNA
sequencing methods that aim to overcome the limitations of the previous first-
and  second-generation  sequencing  technologies43.  The  most  prominent
technologies  include  Oxford  Nanopore  technologies  and  PacBio  sequencing,
which are also known as long-read sequencing technologies.
Pacific  Biosciences  sequencing,  also  known  as  single-molecule  real-time
sequencing, is a NGS technology where each DNA molecule is attached to a
DNA polymerase enzyme,  and this  complex is  then placed into a tiny well,
known as zero-mode waveguides, to detect the fluorescence signals generated
by the incorporation of nucleotides22. Pacific Biosciences sequencing provides
longer read lengths than second-generation sequencing technologies, allowing
for the detection of SVs and improved genome assembly.
Oxford Nanopore sequencing, also known as real-time nanopore sequencing, is
a  NGS  technology  that  uses  a  nanopore  to  detect  the  electrical  signals
generated by DNA molecules as they pass through at pore44. Oxford Nanopore
sequencing provides long read lengths and the ability to sequence DNA in real-
time, making it a popular choice for the sequencing of complex genomes and
the detection of SVs. However, it is currently more expensive and less scalable
than other NGS technologies.
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Figure 3. Sequencing technologies.  Sequencing technologies can be divided into 3 main
generations  based  on  the  technology  used.  The  first  generation  corresponds  to  the  first
technologies  based  on  Sanger's  discoveries.  The  second  generation,  also  known  as  next-
generation sequencing, allowed massive sequencing in a shorter space of time and at a lower
cost.  The  third  generation,  known  as  long-read  generation,  made  it  possible  to  sequence
fragments of tens of thousands of kb for the first time.

3.3 From sequencing to analysis: BAM files
Sequencing technologies generate large amounts of genomic data by reading
the genome and recording the information in files. These files are referred to as
FASTQ files, which are a complex file format that store raw sequencing data.
Each FASTQ file contains four lines of information for each read, including the
read  identifier  and  description,  the  actual  nucleotide  sequence,  a  symbol
indicating  the  start  of  the  quality  scores,  and  the  quality  scores  for  each
nucleotide in the sequence. The nucleotide sequence is made up of the four
building blocks of DNA (A, T, C, and G), and the quality scores measure the
accuracy of the base calling for each nucleotide. The quality scores are usually
recorded in Phred format, a logarithmic scale that reflects the accuracy of the
nucleotide base calls45.
FASTQ files, therefore, contain short reads with no information about where in
the genome they are located. To deal with this, a process called alignment is
necessary. This process aims to match the different reads with their correct
location using a reference genome. The reference genome is a curated version
of  the  human  genome,  based  on  the  DNA  of  a  few  individuals,  and  is
considered the standard against which all other genomes are compared. When
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a sample genome is  sequenced,  millions  of  DNA reads are generated.  This
alignment results in information that is stored in Binary Alignment Map files
(BAMs),  which  contain  information  about  the  location  and  quality  of  each
aligned read46. There are different software tools available for performing this
alignment process, with the Burrows-Wheeler Aligner (BWA)47 being the most
widely used (Figure 4a).
Alignment algorithms need to address multiple issues, among which sequence
complexity is a significant factor. The difficulty in aligning reads arises when
the  reference  genome lacks  proper  annotation  or  if  there  is  high  genomic
complexity in a region, such as repetitive sequences or regions with high C-G
content.  In addition,  the inability to align reads in regions missing from the
reference genome, such as gaps or SVs, can also result in alignment errors48.
Finally, the alignment of short reads onto sex chromosomes is a challenge due
to the high similarity between the X and Y chromosomes, producing technical
artifacts and affecting downstream analyses49.
Despite its limitations, the process of alignment and generation of BAM files
has  allowed the  development  of  methodologies  that  allow the  detection  of
genetic variants by comparing the genetic information of an individual and a
reference  genome.  These  methodologies  are  known  as  variant  calling
methodologies.

3.4 Methodologies to detect and genotype genetic variants in NGS
Detection of genetic variants from NGS data is crucial as it provides valuable
information about  an individual's  genome.  The process of  detecting genetic
variants can be divided into two parts: (i) identifying which variants exist and
where they are located within an individual's genome, known as variant calling,
and (ii) determining the number of alleles affected for each variant, known as
its genotype, through the process of genotype calling. (Figure 4b).

3.4.1 Variant calling process
Variant  calling  is  the  process  of  identifying  changes  (variants)  between  a
sample genome and a reference genome. This process starts from the data
obtained  in  the  read  alignment  process.  In  this  context,  coverage  is  an
important  factor  in  the  variant  calling  step  because  it  directly  affects  the
accuracy and sensitivity of variant detection. Coverage refers to the number of
times a given nucleotide in  a genome is  sequenced during the sequencing
process. In other words, it represents the depth of sequencing data that has
been obtained for a particular region of the genome. High coverage provides
more confident and accurate identification of variants, while low coverage can
lead to false-negative results  or lower confidence in variant calls.  Once the
reads are aligned, a quality control step is performed to filter out low-quality
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data and ensure the accuracy of the results. This can involve removing reads
that are contaminated with adapter sequences, reads that contain poor-quality
nucleotides, and reads that have a low mapping quality score.
Once  these  steps  have  been  completed,  the  variant  calling  algorithms  are
applied to identify the variants present in the sample genome. The accuracy of
detecting genetic variants is directly influenced by the characteristics of the
variant, from its type to its size or position in the genome; or characteristics of
the sequencing process, such as coverage, read size or insert size50,51.
Currently, there are more than 150 variant calling algorithms, which can be
classified  according  to  the  type of  variants  they  detect,  creating  two main
groups; algorithms for detecting SNVs and INDELs; and algorithms for detecting
SVs52.
The detection of SNVs and INDELs is a crucial aspect of genomic analysis. SNVs
are the most prevalent type of  variants in human with a median of  ~3.3-4
million SNVs per genome, followed by INDELs, with numbers between 492 and
850 thousand per genome53,54. Most of these variants are likely neutral or have
small effects, which do not result in noticeable changes in diseases. However, a
minority of these variants can have clinically relevant impacts55.
Variant callers for SNV detection are highly accurate, thanks to the small size of
SNVs and ease of read mapping. On the other hand, the detection of INDELs is
more  challenging  due  to  low  concordance  between  sequencing  platforms,
alignment errors in repetitive regions, differences in INDEL size, and variations
between variant callers56. In this context, The Global Alliance for Genomics and
Health (GA4GH) has developed a pipeline to standardize the SNV and INDEL
representations, known as normalization, allowing the comparison of outputs
from different variant callers57.
Several  variant  callers  are  available  for  the  detection  of  SNVs  and INDELs,
including Haplotype Caller58, FreeBayes59, Platypus60, VarScan261, Strelka262, or
Deepvariant63.  These  tools  use  different  approaches,  such  as  assembly
strategies (AS), deep learning, or Split Reads strategies (SR), to detect genetic
variants. Nonetheless, the ability to identify variants is not uniform across all
variant callers, as they exhibit disparities in precision, recall, and the range of
detectable variant sizes. Despite such inconsistencies, the accuracy of SNVs
and INDELs variant callers is generally high, leading to accurate identification
of these variant types in the current state.
SVs,  on  other  hand,  involve  larger  changes  in  the  genomic  structure  and
typically have a higher impact on human phenotypes. These changes can take
the form of deletions, duplications, insertions, or rearrangements of genomic
segments, which can range in size from a few kilobases to several megabases.
They  can  impact  gene  expression,  topologically  associating  domains,  and
protein-coding  genes,  leading  to  altered  gene function  and causing  rare  or
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complex diseases64. Despite their importance, until recently, the analysis of SVs
has been neglected, mainly due to technical challenges.
The advent of second-generation sequencing methods improved SV detection,
but its accuracy remained limited due to short reads and the low coverage
sequencing methods used65,66.  Nevertheless,  different  projects  emerged with
the aim of describing and identifying SVs within a human genome. The most
noteworthy are 1000G-Phase326, which identified around 2,500 SVs per genome
using  samples  with  low coverage  (3x),  and  the  recent  gnomAD-SV project,
which using genomes with higher coverage (30x) identified more than 7000
SVs per individual67. These types of studies have increased our knowledge of
SVs and their impact, leading to their incorporation into important databases
such as dbVar26 or Database of Genomic Variants68 (DGV), including about 19
and 36 million variants respectively.
More  recently,  the  use  of  third-generation  sequencing  techniques,  which
employ longer reads, has greatly improved the detection and study of SVs, with
the Human Genome Structural Variant Consortium (HGSVC) standing out69,70.
However, due to the high cost of these techniques, their systematic use is still
unfeasible. This has led to efforts being focused on improving the detection of
SVs through the design and improvement of different variant callers and the
increase of coverage used during the second-generation sequencing process,
which is currently more economically accessible.
Currently, the field of SVs calling does not have a widely accepted standard, as
no single variant caller can accurately detect all types and sizes of variants51,71.
In response to this challenge, various variant callers have been developed in
the scientific community to detect specific types of SVs, including deletions,
duplications, insertions, inversions, translocations, and transposable elements,
by utilizing paired-end read and alignment information72.
Some  of  these  software  tools,  such  as  Lumpy73 or  Wham74,  allow  for  the
detection of a range of SV types, while others, such as PopIns75 or MELT76, are
more  specialized,  focusing  on  the  detection  of  large  insertions  or
transpositions,  respectively.  Additionally,  the  detection  strategy  used  by  a
variant caller can greatly impact its performance, accuracy, and computational
requirements.  For example, Delly277 combines split-read, discordant-read, and
read-depth strategies, leading to a need for high computational resources. On
the other hand, variant callers as Manta78 use only assembly strategies, which
is  known  to  be  one  of  the  most  accurate  methods,  resulting  in  a  lower
computational burden than multi-strategy variant callers.
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3.4.2 Genotype calling process
Variant calling and genotype calling are closely related but distinct steps in the
analysis of genomic data. While variant calling aims to identify positions with
differences  from  a  reference  sequence,  genotype  calling  is  the  process  of
determining the genotype for each variant that has already been called in the
variant  calling  step79.  An  accurate  genotyping  is  crucial  for  enhancing  the
understanding  of  genetic  variability  in  a  population,  as  it  provides  a  more
accurate representation of the variant allele frequency, allowing to increase the
performance of genetic variability reference panels80.
The accuracy of genotyping depends directly on the coverage of the sequenced
sample on which the calling process is performed81. Generally, in samples with
low  coverage  (<20x),  probabilistic  approximations  are  used  to  infer  the
genotype of each of the variants, obtaining a genotyping likelihood. 
Genotype likelihood (GL)  is  a  numerical  representation  of  the  probability  of
observing  a  particular  genotype  given  the  sequence  data.  It  provides  a
measure  of  confidence  in  the  assigned  genotype based on  the  sequencing
quality, coverage, and alignment of the data. Genotype likelihoods are often
used in probabilistic genotype calling frameworks, where they are combined
with prior information, such as allele frequencies and LD patterns, to determine
the most likely genotype for each individual. The resulting genotype calls are
typically expressed as a probability score, reflecting the degree of confidence in
the assignment.
In genotype calling in samples with high coverage (>20x), the number of reads
observed  for  each  individual  is  counted  and  fixed  cutoffs  are  applied.  For
example, a Phred-type quality score of Q20 can be used and, if the proportion
of  the  non-reference  reads  falls  between  20%  and  80%,  a  heterozygous
genotype is called, otherwise a homozygous genotype. This method is widely
used and effective when sequencing depth is high79.
Nowadays,  most  software  that  performs  variant  calling  is  also  capable  of
performing genotyping. However, as in the variant calling, the strategies and
accuracies obtained between SNVs or INDELs and SVs differ dramatically.
In the case of SNVs and INDELs,  genotyping accuracy is high and consistent
with the variant calling process. Additionally, some tools provide the option to
perform  a  joint  re-genotyping  of  the  entire  sample  set  after  individual
genotyping. This re-genotyping, based on LD patterns, can correct any errors
from the initial genotyping, enhancing accuracy even further.
In contrast, variant calling of SVs is challenging, often due to poor resolution in
detecting the breakpoint position of the event or variation during the variant
calling.  This  leads  to  lower  precision  in  genotype  calling  by  variant  calling
software82.  To overcome this,  tools  specifically  designed for  genotyping SVs
have been developed. These tools commonly use both the output of the variant
calling  (the  vcf  file  )  and  alignment  (BAM),  providing  more  information  to
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improve genotype estimation. Examples of these tools are BayesTyper83 and
SVJed84.

Figure 4. Pipeline for variant detection in whole-genome sequencing samples.  a)
From the sequencing stage, a result from a sample goes through different checks and steps to
produce a Binary Alignment Map file (BAM), including a post-sequencing quality control on the
generated reads, an alignment of the reads with a reference genome and a post-alignment
quality control. b) Once the BAM file is generated, variant calling is performed. In this process,
the reads present in the BAM are compared against a reference genome to determine the
variants  present  in  the  sample.  Finally,  the  ratio  of  reads  with  and without  the  variant  is
estimated to determine the genotype of  the variant.  The result  is variant calling file (VCF)
containing all variants present in the sample.
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3.5 Main projects studying human genetic variability and population
genetics
The study of population genetics has undergone major advances thanks to new
sequencing and genetic analysis technologies. This has led to the emergence
of  important  initiatives  and  projects  building  genetic  variability  reference
panels,  collections  of  genetic  data  from individuals  representing a  set  or  a
particular population. These panels are used as a reference for understanding
patterns of genetic variation within and between populations.
The first  project who aimed at characterizing human genetic variation on a
global scale was the HapMap Project (2002-2010). It involved the genotyping of
over  1  million  single  nucleotide  variants  in  over  270  individuals  from four
different  populations.  The  results  of  the  project  were  used  to  develop
genotyping  arrays  that  have  become  widely  used  in  genetic  association
studies20.
In 2002, the Human Genome Diversity Panel (HGDP), aimed to characterize the
genetic diversity of human populations around the world by sequencing the
genomes of over 1,000 individuals from 52 different populations. The results of
the project have provided insight into the genetic diversity of populations and
the evolutionary history of human populations85.
In 2008, the 1000 Genomes Project aimed to create a high-resolution map of
human genetic variation by sequencing the genomes of over 2,500 individuals
from 26 different populations. The project generated a wealth of data that has
been  used  to  understand  the  patterns  of  genetic  variation  in  different
populations and the genetic basis of disease26.
In 2014, the Exome Aggregation Consortium (ExAC) aimed to  aggregate and
harmonize exome sequencing data from over 60,000 individuals to create a
comprehensive reference dataset for human genetic variation86.
As sequencing technologies advanced and whole-genome sequencing became
more cost-effective, the Genome Aggregation Database (gnomAD) project was
established in 2016 including and built on top of ExAC. GnomAD expanded the
scope  to  include  both  whole-exome  and  whole-genome  sequencing  data,
providing a more comprehensive view of human genetic variation. This project
contains data from over 140,000 individuals including information on over 20
million  genetic  variants,  including  SNVs,  copy  number  variants  (CNVs),  and
SVs. This  resource provides a rich dataset for  studying the distribution and
impact of genetic variation in different populations, including the role that rare
variants play in human disease27.
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4 Characterization of inheritance of human traits
Human inherited diseases exhibit a wide range of heterogeneity, but certain
historical  classifications  have  been  established  to  provide  a  theoretical
framework for studying them. This knowledge requires a deep understanding of
both, heritability and genetic architecture of the particular trait. 

4.1 Contribution of genetics to traits: the concept of heritability
The understanding of inheritance of traits and diseases was furthered by the
realization that relatives tend to be more alike in their traits than randomly
selected individuals from the population. This observation led to the creation of
the concept of heritability87.
Heritability is a quantitative estimate of the degree to which the variation in a
trait is due to genetic variance, and it is expressed as a value between 0 and 1.
A heritability estimate of 1 means that 100% of the variation in a trait is due to
genetic factors, while a heritability estimates of 0 means that the trait is not
influenced by genetics at all87,88.
The heritability of a trait can be estimated through various studies. One widely
used method is twin studies, which compare the similarities and differences of
traits  between  identical  twins  (who  share  same  genetic  information)  and
fraternal  twins  (who  share  only  half  of  the  genetic  information).  Another
method  is  family  studies,  which  examine  the  inheritance  of  traits  within
families. Additionally,  heritability can be analyzed through population design
studies.  These  studies,  which  use  a  population  of  unrelated  individuals  to
capture  only  the  proportion  of  phenotypic  variance  explained  by  genetic
variants, can help avoid inflated heritability estimates due to environmental
factors shared between related individuals89,90.
It  is  important  to  note  that  heritability  estimates  are  population-specific,
meaning that they only apply to the specific population that was studied. For
example, a heritability estimate for a particular trait in one population may not
be  the  same as  the  heritability  estimate  for  that  same trait  in  a  different
population87. This is because the frequency of certain genes and environmental
factors can vary between populations and can influence the heritability of a
trait. Heritability estimates are also influenced by the age of the individuals
being  studied.  For  example,  the  heritability  of  a  trait  may  be  different  in
children  compared  to  adults,  as  environmental  factors  can  play  a  more
important  role  in  the development  of  a trait  during early  life91.  In  addition,
heritability may also vary between the sexes, with the heritability of  a trait
being different in males and females92.
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4.2 Genetic architecture of human diseases and traits
The  study  of  human  genetics  and  the  connection  between  genotype  and
phenotype has been a challenge for the scientific community. This has given
rise to efforts to understand the genetic architecture of human diseases.  The
genetic architecture of human traits refers to the number, type, frequencies
and effect sizes of genetic variants that determine the trait93.
One of the key components of the genetic architecture of human diseases and
traits are the inheritance patterns. Traits and diseases can be classified into two
main different categories based on their  genetic architecture, monogenic or
Mendelian diseases and complex diseases. (Figure 5).

4.2.1 Monogenic diseases
Monogenic diseases are diseases where mutations, typically rare, in a single
gene  are  enough  to  cause  the  diseases94.  They  are  also  called  Mendelian
diseases as they are passed from generation to generation in a predictable
manner, following the laws of inheritance described by Mendel. These diseases
follow different inheritance models, including autosomal dominant, recessive or
co-dominant. In these diseases, a single variant may be enough to produce a
pathological phenotype94.
Studies of monogenic diseases have shown that the variants involved in the
development of  these traits  have a substantial  effect  size,  with  penetrance
playing  an  important  role  in  disease  expression.  In  these  cases,  the
environment often plays a minor role.  Over the past few decades,  research
efforts have focused on monogenic diseases and have resulted in significant
advances in understanding the genetic basis of these conditions. Some of the
most significant milestones include the discovery of the BRCA2 gene, which is
associated with a significantly increased risk of breast and ovarian cancer95, or
the discovery of the Huntington gene, which is associated with Huntington's
disease96,97. 
NGS  techniques  have  enabled  the  acceleration  of  gene  identification  in
monogenic phenotypes,  leading to an increase in the pace of  disease gene
discovery.  As  a  result,  2,937  genes  were  reported  for  4,163  monogenic
phenotypes between 2005 and 2014. However, the underlying causal genes for
approximately  50%  of  all  known  monogenic  disorders  are  still  unknown98.
Despite  that,  the  study  of  monogenic  diseases  has  greatly  enriched  our
understanding  of  gene  function,  regulation,  human  phenotypes,  and
physiology.  This  has  led  to  the  development  of  new  treatments  and  early
diagnostics for diseases86,98.
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4.2.2 Complex diseases
Complex  diseases,  also  known  as  multi-factorial  diseases,  result  from  a
combination of multiple genetic and environmental factors, that can increase or
reduce the  risk  of  developing  the  disease31.  Examples  of  complex diseases
include heart disease, diabetes, asthma, Alzheimer's disease, and some forms
of cancer.
The  genetic  basis  of  complex  diseases  are  not  well  understood.  Unlike
monogenic diseases, in which mutations in a single gene are enough to cause
the disease, complex diseases are the result of a combination of numerous low-
penetrant  variants  that  arise  from  multiple  loci,  which,  together  with  the
environment, collectively contribute to the susceptibility to the disease99. 
The model that was initially widely accepted for years to explain the genetics of
complex diseases is based on the common disease-common variant (CDCV)
hypothesis.  This  hypothesis  was  built  upon  Fisher's  infinitesimal  rationale,
which posits that multiple genetic variants with a minor allele frequency of at
least 1-5%, have individual, modest effects on disease susceptibility. However,
when considered collectively, these variants can impart a substantial risk for
the manifestation of a complex phenotype16,99,100.
Nevertheless, despite the efforts of the scientific community to study complex
diseases and the impact of the cooperation of multiple common variants, a big
fraction of the heritability for most common diseases remains unknown101. This
led to the emergence of alternative hypotheses to the CDCV hypothesis. The
most notably was the common disease-rare variant (CDRV) hypothesis, which
suggests that complex diseases are caused by a large number of rare genetic
variants with larger effect sizes, which individually have a small contribution to
disease risk but collectively have a significant impact102.  The debate over the
relative contributions of common and rare genetic variants to complex diseases
has  been  a  longstanding  one,  with  the  CDCV  and  RVCD  hypotheses
representing the two main viewpoints. However, it is now widely accepted that
both  common and rare genetic  variants  play a  role  in  the genetic  basis  of
complex diseases.
Additionally, other theories propose that other factors may also be involved in
the development and cause of complex diseases. One of these theories is the
epistatic  hypothesis,  which  suggests  that  complex  diseases  result  from the
interactions between multiple genes, rather than the effect of a single gene,
leading to disease susceptibility99,103,104.
Due to their chronic nature, complex diseases, as defined by the World Health
Organization,  are  a  critical  public  health  concern  and  the  leading  cause of
mortality worldwide, compromising economies and life quality. Furthermore, as
populations age, the prevalence of complex diseases tends to increase, which
in turn can strain healthcare systems and lead to increased healthcare costs105.
In  this  context,  comprehending  the  interplay  of  genetic  and  environmental
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components  in  their  manifestation  is  imperative  for  the  advancement  of
preventive  measures  and  therapeutic  approaches.  Despite  the  substantial
progress made in understanding the genetics of complex diseases, much more
research  is  needed  to  fill  the  gap  in  our  knowledge  about  how  genetics
contribute to their development.

Figure 5. Genetic architecture of rare and complex diseases.
In rare/Mendelian diseases large effect sizes are expected. For complex diseases, the common 
disease/common variant hypothesis have been accepted. GWA = genome-wide association. 
Figure from Manolio et al.99
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5 Genome wide association studies

The advancement in the use of family tree studies has greatly improved our
understanding of the inheritance patterns of rare diseases. By 2003, over 1,400
genes responsible for monogenic diseases had been identified106. However, this
progress has not been reflected in complex traits. Unlike monogenic diseases,
only 8 regions with small effect sizes were linked to complex diseases through
linkage studies in 2003107.
As  previously  discussed,  monogenic  diseases  are  characterized  by  high
penetrance,  where  the  variants  associated  with  the  disease  have  a  strong
impact on its development. Unlike monogenic diseases, complex diseases do
not exhibit clear inheritance patterns within families. These complex diseases
demonstrate a polygenic architecture that complicates their investigation and
comprehension.  This  complexity  poses  significant  challenges  for  genomics
experts, as they endeavor to unravel the underlying genetic factors and their
role in the emergence of these multifaceted conditions.
This  indicates  that  family-based  linkage  analyses  were  not  appropriate  for
complex  diseases,  highlighting  the  need  for  new  methodologies  to  study
complex  diseases  more  effectively.  This  resulted  in  the  development  of
population-based association studies,  including the genome-wide association
study (GWAS). The first GWAS was conducted as part of the HapMap project in
2005108, but it was not until the publication of the Wellcome Trust Case Control
Consortium (WTCCC) that this technique was widely accepted and began to be
used extensively.

5.1 GWAS definition 
GWAS  are  a  statistical  and  computational  approach  used  in  genetics  and
genomics to identify genetic variants associated with a specific trait or disease.
This method involves the simultaneous analysis of hundreds of thousands or
millions of genetic markers across the entire genome in large sample sizes of
individuals, typically using a case-control design where individuals with the trait
or disease of interest are compared to those without it (Figure 6)109. 
The main goal of GWAS is to identify specific genomic regions, known as loci,
through  the  analysis  of  different  genetic  markers  which  demonstrate  a
statistical correlation with the trait or disease being examined. For binary traits,
this  association  typically  means  that  a  particular  variant  has  a  different
frequency between cases and controls, suggesting a connection between the
locus and the trait under investigation.
These loci  contain causal variants, genetic variations that directly influence the
trait or disease. However, pinpointing the causal variants can be challenging
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due to LD, which,  as previously explained, is  a phenomenon where genetic
variants are inherited together more often than would be expected by chance.
This complicates the identification of the specific variant responsible for the
observed association, making it difficult to discern which one is the true causal
variant inside the locus.

Figure 6. Basis for genome-wide association studies. GWAS test hundreds of thousands
of genetic variant to find those with allele frequencies discrepancies between a group of cases
and controls. The results are plot usually in a Manhattan plot, displaying the -log10 p-value in
the y-axis  and the  genome in  the  x-axis.  All  the  variants  above  the  p-value  threshold  (in
general p-value < 5x10-8 for genome-wide analysis) are considered statistically associated with
the disease.
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5.2 Statistical methods for GWAS
Statistical  methods,  such  as  regression  analysis,  are  fundamental  to  the
analysis  and  interpretation  of  GWAS  association  results.  In  the  analysis  of
binary traits, such as diseases, logistic regression has traditionally been applied
as the standard method as they allows for the incorporation of multiple co-
variates and confounding factors.
In recent years, logistic mixed models (LMMs) have emerged as an advanced
statistical approach in the context of GWAS, particularly when analyzing binary
traits  while  accounting  for  population  stratification  and  relatedness  among
study participants. LMMs are an extension of logistic regression, incorporating
both  fixed  effects  and  random  effects  to  model  the  relationship  between
genetic variants and binary traits. The fixed effects typically capture the main
genetic effects, while the random effects account for confounding factors such
as  population  stratification  or  relatedness  within  the  study  population.  By
incorporating both fixed and random effects, LMMs allow for a more accurate
estimation of the association between genetic variants and binary traits, while
also  mitigating  the  risk  of  false  positives  due  to  unobserved  confounding
factors110.  The  application  of  tools  that  use  LMMs,  such  as  SAIGE111,  is  of
particular interest, especially in the analysis of biobanks, where confounding
factors like relatedness can have a significant impact110.
In  the  association  analysis,  one  of  the  obtained  results  is  the  p-value,  a
statistical measure that helps to determine whether the association observed
between a genetic variant and a trait is statically significant. A p-value is the
probability of obtaining the observed data if the null hypothesis is true. In the
case of a GWAS, the null hypothesis is typically that there is no association
between the genetic variant and the trait or disease. A small p-value suggests
that  the  association  is  unlikely  to  have  occurred  by  chance,  indicating  a
statistically significant finding112. 
Another result obtained in a GWAS is the effect size of each variant, which is
expressed as the odds ratio (OR)99. An OR greater than 1 indicates that the
variant is associated with an increased risk of disease or trait occurrence, while
an OR less than 1 indicates that the variant is associated with a decreased risk
of disease or trait occurrence113. 
One of the principal challenges inherent in the use of these statistical methods
in  the association  analysis  step is  the  issue of  multiple  testing.  Given that
thousands or even millions of genetic markers are examined, the probability of
encountering false positive associations increases substantially. To account for
this,  stringent  significance  thresholds  are  imposed.  However,  this  strict
threshold  may  inadvertently  result  in  false  negatives,  whereby  true
associations are overlooked114.
One  of  the  most  popular  correction  methods  for  multiple  testing  is  the
Bonferroni correction. This method tries to keep the experimental-wise error
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rate (αe) at a nominal level by adjusting the point-wise error rate (αp). In the
case of  Bonferroni,  correction  gives  αp  = αe/N,  where  N is  the  number  of
independent tests115.
In  2005,  The  HapMap  project  estimated  that  the  number  of  common
independent  variants  were  150  each  500kb23.  Considering  that  the  whole
genome has around 3.3 gigabase pair, it suggested a total of around 100.000
independent tests resulting in a p-value threshold of 5x10-8  116. This value was
subsequently  established  as  the  standard  significance  threshold  for  GWAS,
where any variant  with a p-value of  less  than 5x10-8 was considered to be
associated with genome-wide significance117. 

5.3 The importance of sample size in GWAS: repositories and biobanks

The initial step in a GWAS is sample collection, which plays a critical role in the
success of the study. The number of samples included in the study is a crucial
factor to consider, as larger sample sizes offer increased statistical power for
detecting  true  associations.  This  is  because  larger  sample  sizes  result  in
smaller  standard errors,  making it  easier  to detect differences between the
phenotype  and  genotype  groups,  especially  when  effect  sizes  are  small.
Additionally, larger sample sizes increase the chances of detecting rare genetic
variants that may have a significant effect on the phenotype118.
Once the samples have been collected, usually from blood or saliva, the DNA is
extracted and genotyped to determine the specific genetic variants present in
each participant, generating the input data for the study. In this context, public
genetic  repositories,  and  large-scale  biomedical  databases  (also  known  as
biobanks)  are  crucial,  making  a  large  number  of  samples  available  to
researchers for further analysis.
The Human Genome Project paved the way for extensive research in human
genetics,  leading  to  the  emergence  of  numerous  large-scale  projects  and
initiatives. The proliferation of multiple projects has led to a substantial output
of discoveries and knowledge of interest, triggering the need to share data,
making  it  publicly  accessible,  and  thus  allowing  it  to  be  used  for  further
research119.
Data-sharing has led to emergence of genotype repositories in recent years
revolutionizing the field of genetics. This has enabled researchers to validate
their  results,  to  identify  new  genetic  associations,  and  to  advance  our
understanding of the genetic basis of complex diseases and other phenotypes. 
The main repositories containing genotype information include (i) the National
Center  for  Biotechnology  Information's  (NCBI)  Database  of  Genotypes  and
Phenotypes  (dbGaP)24,  including  information  on  over  2,000  studies.  (ii)  The
European  Genome-phenome  Archive  (EGA),  a  centralized  repository  that
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provides access to large-scale genotype data from various  studies120; and (iii)
the GA4GH, a resource that provides access to genotypic data from multiple
sources, including data from over 100 institutions121. These public repositories
consist of data from an extensive range of studies, frequently concentrating on
specific diagnoses or disease cohorts. Since these repositories compile data
from  a  multitude  of  sources,  there  can  be  significant  variation  in  study
populations  and  recruitment  methods  across  individual  datasets.  This
heterogeneity within the repositories may pose challenges when attempting to
compare or merge datasets, as recruitment methods and control types may not
be uniformly consistent throughout the studies.
In addition to repositories, genetic biobanks have also played a crucial role in
facilitating data sharing and advancing the field of genetics. These biobanks
have recently emerged to link genetics and epidemiological factors to disease
risk122.  Genetic  biobanks  consist  of  large  population-based  cohorts  with
hundreds of thousands of individuals, containing genetic data associated with
extensive  phenotypic  information,  making  them  an  invaluable  resource  for
GWAS123.
Among  the  existing  biobanks,  the  United  Kingdom  (UK)  Biobank  is  a  vital
biobank and one of the first established. Since its establishment in 2006, it has
collected  extensive  biological  and  medical  data  from 500,000  UK  residents
aged 40-69 at recruitment. Biological samples, such as blood, urine, and saliva,
were  collected  from  participants  to  conduct  genetic  analysis.  Additionally,
detailed information on their medical history, lifestyle, and health was obtained
through  face-to-face  interviews,  touch  screen  questionnaires,  and  medical
examinations. The UK Biobank also gathered a vast amount of phenotypic data
from electronic health records and information from national health registries.
The majority of this phenotypic data is based on International Classification of
Disease (ICD)-10 codes, a standardized coding system utilized to categorize
medical conditions and diseases.
This large-scale study includes genotype data from over 500,000 individuals124,
whole-exome sequencing data from 470,000 individuals125, and whole-genome
sequencing data from over 300,000 individuals126, with plans to increase their
sample size in the coming years.

5.4 Genotype imputation: a key breakthrough in GWAS
The number of markers analyzed in GWAS is also a crucial factor in determining
the  statistical  power  and  accuracy  of  the  study.  As  GWAS aims  to  identify
genetic variants associated with complex traits or diseases, a larger number of
markers  allows  for  a  more  comprehensive  assessment  of  the  genetic
landscape. By analyzing a higher number of markers, researchers can capture
a  broader  range  of  genetic  variation,  which  increases  the  likelihood  of
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identifying associations between specific genetic loci and the trait or disease
under investigation118.
Early GWAS studies  relied on information from genotyping arrays, which only
included  a  few hundred  thousand variants. The  limited  number  of  variants
included in the analysis resulted in a reduced power to detect genetic variants
associated  with  traits.  In  addition,  commercial  genotyping  arrays  are  also
biased towards common variants, hindering the study of less frequent variants
in the population. In the beginning of the use of GWAS, the assumption was
that common variants were the cause of common diseases following the CD/CV
principle. However, other trends suggested that lower frequency variants may
have greater impact on diseases based on the observation of rare variant with
larger effect sizes and, not studying them would be contributing to the gap in
our understanding of the genetic architecture underlying complex traits and
diseases102,104,127.
In this context, the most logical solution would be to work with whole-genome
sequencing  methodologies,  which,  apart  from  allowing  us  to  increase
drastically the number of variants analyzed, would also allow us to work with
lower frequencies128,129. However, this is unaffordable due to its high cost130. To
address this issue, genotype imputation was introduced as a method to infer
genotype data based on available data from haplotype reference panels131, a
collection  of  genetic  sequences,  that  are  used  as  a  reference  for  genomic
imputation (Figure 7).
Genotype imputation  is  based on the  principle  of  LD.  The idea  behind this
process is to leverage the LD relationships observed in a reference panel to
predict the missing genotypes in a target sample132,133.

Figure 7. Scheme of imputation process. By using a reference panel of haplotypes, we are
able to infer part of the variants which are not present in the genotyping data based on the
principle of LD.
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A variety of  tools  and software have been designed to perform imputation,
including IMPUTE124,132–134, BEAGLE135 and MINIMAC136 among the most popular.
Furthermore, given the high computational demands of genotype imputation,
pre-imputation  methods  have  been  developed  to  reduce  the  computational
cost while maintaining high-quality results. The most notable of these is the
estimation of haplotypes of individuals in the cohort prior to imputation, known
as phasing134, where the SHAPEIT tool is particularly noteworthy137–139. 
The  quality  of  the  haplotype  reference  panel  plays  a  crucial  role  in  the
imputation  process.  A  high-quality  reference  panel  should  include  a  large
sample  size,  represent  a  diverse  range  of  haplotypes  from  the  target
population, and have a high density of genomic markers.
Building a reference panel involves multiple steps, including sample collection,
sequencing  (typically  via  WGS),  quality  control,  variant  calling,  haplotype
inference, and validation  The first reference panel,  1000G, sequenced 2,504
individuals  from  various  ethnic  groups,  revealing  a  wide  range  of  genetic
variability64.  Since  then,  more  panels  have  been  created,  including  specific
population panels as the Genome of the Netherlands (GoNL)140 and UK10K30, or
larger multi-ethnic panels, as the Haplotype Reference Consortium (HRC)131.
However,  the  cost  of  genome  sequencing  has  limited  the  quality  of  these
panels,  leading to  two main  problems:  low sequencing  coverage and small
sample size. Low coverage leads to incomplete variant detection and under-
representation of SVs, which play a significant role in diseases141. On the other
hand, a small sample size results in reduced capabilities to detect rare variants,
affecting the accuracy of imputation results140.
The limitations in reference panels, such as lack of rare and SVs or poor quality,
negatively affect GWAS by causing their poor imputation quality and exclusion
from association studies.

5.5 Limitations of GWAS
GWAS have been very successful in identifying novel variant-trait associations.
At this moment, more than 4,000 GWAS have been published142 for diseases
like cancer and its subtypes143, type 2 diabetes mellitus144, inflammatory bowel
disease145 or  Crohn’s  disease146,  among  others.  However,  despite  their
significant contribution to advancements in genomics, GWAS do present certain
limitations.
One of the main limitations is regarding the discovery of associations. Although
the  use  of  GWAS  is  widely  established,  there  is  still  a  gap  between  the
heritability  estimated  by  population-based  studies  and  the  amount  of
heritability that can be explained by currently known genetic variants involved
in a given trait99.  This phenomenon is commonly referred to as the missing
heritability problem highlighting that, current methodologies for studying the
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genetic architecture of complex diseases, such as GWAS approaches, still have
several  limitations,  not  being  able  to  discover  all  the  genetic  variants
influencing the presence of a trait .
Another limitation of GWAS is  that they may not determine the causal variants
and causal genes. As explained before, the presence of local correlation among
multiple genetic variants due to LD facilitates the initial identification of a locus
but makes it difficult to discern the causal variant147. In addition, the majority of
association signals are located in non-coding regions of the genome, making it
challenging to understand their biological implications148. Therefore, additional
steps  such  as  fine-mapping,  functional  analysis,  or  evolutionary  genetic
analysis  are  often  necessary  to  identify  the  causal  variants  and  the  target
genes149. Nonetheless, even though additional methods attempt to explain the
functional  interpretation  of  these  signals,  a  large  number  of  loci  remain
uninterpreted.
Another widely criticized limitation of  GWAS is the limited clinical predictive
value. The modest explanation of heritability and small effect sizes of the SNVs
identified by GWAS hinder their clinical predictive power. However, polygenic
risk  scores  (PRSs),  which  are  quantitative  measures  of  risk  calculated from
multiple  risk  alleles,  are  starting  to  demonstrate  potential  in  categorizing
populations into distinct risk groups that can influence clinical  and personal
decision-making150 (Figure 8). However, GWAS have historically been conducted
in  populations  of  European  ancestry,  potentially  limiting  the  applicability  of
findings to other populations. 
Concerning the discovery limitations, as previously mentioned, sample size is a
critical factor as it directly influences the power of the analysis. A larger sample
size enhances the capacity to detect genuine associations between genetic
variants and traits, resulting in more accurate and reliable outcomes. With a
smaller sample size, the study might face decreased statistical power, which
increases  the  likelihood  of  both  false  positive  and  false  negative  results.
Therefore,  an  adequate  sample  size  is  crucial  to  ensure  the  robustness  of
GWAS findings and to further our understanding of the genetic foundation of
complex traits and diseases. However, assembling large sample sizes for all
traits of interest can be challenging, posing a significant constraint. Although
GWAS cannot account for all the heritability of complex traits, it still represents
a practical way to identify genuine associations, and increasing sample size in
GWAS is  expected  to  uncover  new loci.  Research has  shown that  for  each
complex  trait,  there  is  a  sample  size  threshold  where  the  rate  of  locus
discovery increases in GWAS151, and so far, the discovery of risk loci has not yet
plateaued for any trait152.
Another limitation in GWAS regarding the discovery is the number of variants
included  in  the  analysis.  As  previously  discussed,  the  number  of  variants
examined plays a critical role in determining the statistical power and accuracy
of the study. GWAS have typically been based on SNP arrays that are imputed
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with  pre-existing  haplotype  reference  panels  which  commonly  lack  of  rare
variants and SVs rising in difficulties for their imputation. These rare and SVs
often have larger effects on complex traits67,153.  This can lead to imputation
bias, with missed associations. To address this issue, it is important to use and
combine large reference panels that are representative of the population being
studied1,154 and to develop methods that are specifically tailored to handle rare
and SVs. Reference panels including a higher number of high-quality genetic
variants would allow for an increase in the number of variants interrogated and,
therefore, enhance the power of the study.
Lastly,  GWAS  typically  exclude  the  X  chromosome  from  analysis  due  to
methodological challenges that the analysis of this chromosome involves. The
X chromosome,  as explained below, contains many genes with important roles
in disease,  including sex-linked traits  and diseases155.  As  explained in  more
detail  in the following section,  despite being a challenge, it  is  necessary to
develop a pipeline and methods that allow the systematic integration of the X
chromosome into GWAS studies, owing to its interesting characteristics.

Figure 8. Polygenic Risk Scores. Polygenic risk scores are calculated by computing the sum
of risk alleles corresponding to a phenotype of interest in each individual, weighted by the
effect  size  estimate  of  GWAS.  People  with  a  higher  score  have  a  greater  genetic  risk  of
presenting the trait or disease.
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6 The impact of the X chromosome in human genetics

6.1 Biology of the chromosome X
The X chromosome is  one of  the two sex chromosomes in  humans. With a
length of approximately 155 million base pairs, it is the 8th largest chromosome
in  the  genome,  and  it  contains  over  1200  genes156.  The  X  chromosome is
involved  in  determining  the  biological  sex  of  an  individual,  with  females
possessing two copies of the X chromosome, while males having one X and one
Y  chromosome.  The  X  chromosome  is  inherited  to  offspring,  with  females
inheriting one X chromosome from each parent and males inheriting one X
chromosome from their mother and one Y chromosome from their father.
The  X  chromosome  can  be  divided  into  two  distinct  regions:  the
pseudoautosomal  regions  (PAR)  and  the  non-pseudoautosomal  region  (non-
PAR). The PAR regions (PAR1 and PAR2) are homologous sequences between
the X and Y  chromosomes that  resemble  sequences  in  autosomes and are
present in both men and women in two copies. In contrast, the non-PAR region
has no homologous sequence in the Y chromosome, resulting in a difference in
dosage between men and women.
To balance the difference in dosage, the non-PAR region of one copy of the X
chromosome in females is silenced. In males, the absence of second copy of
the X chromosome, implies that they have only one copy of X-linked genes,
condition known as hemizigosity. Females, on the other hand, achieve a state
of functional hemizigosity for most X-linked genes through X- inactivation. This
leads  to  the expression of  only  a  single  functional  X chromosome per  cell,
resulting in equivalent X chromosome-linked gene expression between males
and females. The X-inactivation process, also known as lyonization, therefore
plays a crucial role in maintaining the balance of gene expression between the
sexes and helps to ensure normal cellular function157.
The  process  of  X  chromosome  inactivation  occurs  during  early  embryonic
development and is randomly and independently established in each cell. This
random  inactivation  generates  female  mosaicism,  meaning  that  females
possess  a  mix  of  cells  with  either  the maternal  or  paternal  X chromosome
inactivated. Once the inactivation has occurred, it is stably maintained during
further cell division, ensuring that the same X chromosome remains inactivated
in all daughter cells.156,158. X chromosome inactivation is accomplished through
the  silencing  of  the  entire  X  chromosome  by  accumulating  repressive
epigenetic  marks,  such as  DNA methylation,  histone modifications,  and the
accumulation of non-coding RNA molecules known as XIST (X-inactive specific
transcript)159.
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However, certain genes on the X chromosome can escape X-inactivation and
remain  active.  This  phenomenon  is  referred  to  as  “escape  from  X-
inactivation”160.  Escape  from  X-inactivation  can  occur  for  several  reasons,
including  differences  in  the  location  and  structure  of  the  XIST  gene,  the
presence of  cis-  or  trans-acting  elements  that  modify  XIST  expression,  and
other epigenetic modifications161. As a result, escape from X-inactivation can
lead to differences in gene expression patterns between females, which can
contribute  to  individual  differences  in  phenotypic  traits  and  disease
susceptibility156,162,163.

6.2 Impact of the chromosome X in complex diseases
It  has  long  been  known  that  the  incidence  and  severity  of  many  complex
diseases  varies  between males  and females.  Males  and  females  commonly
differ,  for  example,  in  disease  prevalence,  symptoms,  and  drug  response.
However, the mechanisms behind these differences are still poorly understood,
with  important  clinical  repercussions164.  Both,  environmental  and  genetic
factors  are  implicated  in  sexual  differences  in  complex  diseases.  From the
genetic perspective, evidence is accumulating for variants having differential
risk effects between the two sexes165.  In this context, the X chromosome is
particularly  interesting,  as,  besides  carrying  such  variants,  it  could  further
contribute to sex differences through dosage imbalance mechanisms. Indeed,
while sexual dosage compensation is achieved by the random inactivation of
one  X  chromosome  in  females,  about  30%  of  X-linked  genes  escape  this
inactivation162,166, realizing an intrinsic dosage imbalance between sexes.
There is a growing body of evidence that the X chromosome plays a significant
role in complex diseases. For example, a number of studies have reported an
over-representation of  X-linked genes in several  complex diseases,  including
psychiatric  disorders167,  and  autoimmune  diseases168.  Additionally,  several
studies  have  identified  X-linked  genetic  variants  that  are  associated  with
complex  diseases,  including  variants  in  the  FOXP2 gene,  which  has  been
implicated in the development of language-related disorders169, and variants in
the  NALCN gene,  which  has  been  linked  to  the  development  of  several
neurological disorders170.
This  growing  body  of  evidence  suggests  that  the  X  chromosome  plays  a
significant  role  in  complex  diseases  and  has  a  critical  impact  on  sex
differences. However, much more research is needed to fully understand the
mechanisms behind the X chromosome's influence, and how it contributes to
sex-differences in disease susceptibility and severity. Future studies will likely
focus  on  developing  improved  methods  for  X-chromosome  analysis  and
investigating the X chromosome's role in a broader range of complex diseases.
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6.3 Widespread exclusion of the X chromosome in association studies
Upon  examining  the  SNP-trait  associations  reported  in  the  National  Human
Genome Research Institute's  (NHGRI)  GWAS catalog,  a clear shortfall  in the
representation of the X chromosome becomes apparent171. Only 0.5% of the
known associations map on chromosome X. Assuming a correlation between
chromosome  size/genetic  variability  with  the  expected  number  of  loci
associated to disease172, this 0.5% is  almost 10 times less than expected from
a similar chromosome size (e.g., chromosome 7 and 8, with 4.8% and 4.5% of
the associations, respectively), and 8 times less than expected from a similar
chromosome variability (e.g., chromosome 16, 3.8%)173. (Figure 9)
The under-representation of the X chromosome in GWAS is primarily due to the
added  methodological  challenges  associated  with  its  analysis164,172.  These
challenges arise from the unique pattern of inheritance of the X chromosome,
both of which results in allelic imbalances between sexes, lower power in males
and possible noisy statistics during genetic association studies174. Furthermore,
the complex processes related to X-inactivation and escape from X-inactivation
in females can introduce noise into the statistical  analysis.  The presence of
both inactivated and escape genes on the X chromosome generates a mosaic
pattern  of  gene expression in  females,  which  can confound the  analysis  of
genotype-phenotype  associations  and  may  mask  or  obscure  true  genetic
effects160,175. Further, the X chromosome is more prone to false positives, due to
the higher overall rate of genotyping errors. This has resulted in many projects
directly  excluding  the  X  chromosome from their  genotyping  data,  which  is
visible in a large part of the genotyped cohorts present in EGA120 or dbGaP24.
Hence,  X-chromosome  analysis  requires  specific  strategies  and  algorithms,
including  additional  quality  control  measures  and  alternative  association
testing methods distinct from those for the autosomes, to account for male
hemizygosity and female dosage compensation. For instance, while analyzing
data  from  both  sexes  combined  can  uncover  global  variant-phenotype
associations, separating the sexes can enhance discovery and reveal potential
signals for sex-specific phenotypes, aiding in the identification of associations
that might be masked when both sexes are analyzed together176. 
Gradually,  the  scientific  community  is  working  on  new  strategies  and
methodologies177 to overcome the limitations of  X-chromosome analysis,  but
there are still limited studies being conducted in this area. A deeper knowledge
of  the connection between complex diseases and the X-chromosome would
have a major effect, not just in addressing the issue of missing heritability, but
also in deciphering and explaining the differences in disease susceptibility and
manifestation that are seen between males and females178.
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Figure 9. GWAS catalog diagram associations (p-value < 5x10-8) in February 2023.
Each of  the dots  represents  an association reported in  the GWAS catalog.  Although the X
chromosome is similar in size to chromosome 7, the number of reported associations is smaller
than  expected,  being  even  smaller  than  chromosome  22,  the  smallest  of  the  human
autosomes.
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The main aim of this thesis is to contribute to the understanding of the genetic
basis of complex disease, by addressing specific gaps and limitations within the
field. These specific aims are focused on the generation of a genetic resource,
i.e. an Haplotype map, and on the understanding and completing the study of
the role of the X chromosome in complex traits.
Specific goals that have been pursued for each block:

• Development  a  comprehensive  structural  variant  haplotype  map from
high-coverage whole-genome sequencing (GCAT|panel):

1. Design, implementation and benchmarking of a complete variant
calling  pipeline  for  the  detection  and genotyping of  all  types  of
germline  variation,  including  SNVs,  INDELs,  and  with  particular
focus on SVs.

2. Benchmarking and application of phasing strategies and validation
through imputation across different populations.

• Recovery of the role of the X chromosome in complex diseases:
1. Collection and preparation of genetic and phenotypic data from UK

Biobank and dbGaP databases. 
2. Design, implementation and application of a X-Chromosome-wide

association  study  (XWAS)  strategy  for  the  identification  and
classification of genetic associations with complex diseases.

3. Identify  and  characterize  previously  unknown  variants  of  the  X-
Chromosome  that  are  associated  with  complex  diseases.
Identification of sex-specific signals
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The methods  section  is  divided into  two primary  sections.  The first  section
outlines  the  resources  and  methodologies  employed  to  create  the  GCAT
reference panel. This section covers (1) the design and validation of the variant
calling strategy; and (2) the use of the strategy to generate the GCAT reference
panel and its comparison with other databases. The second section describes
(3) the development of a strategy to include the X chromosome systematically
in complex trait association analyses, and its application to identify new loci;
(4) a fine-mapping and gene-mapping analysis of the discovered loci; and (5) a
preliminary investigation of sex differences.

Development  a  comprehensive  structural  variant
haplotype  map  from  high-coverage  whole-genome
sequencing (GCAT|panel)

1 Selection of the best approach for variant identification and
validation

1.1 Samples used for testing the variant calling strategy
We evaluated the performance of each variant caller, including their precision,
recall, and computational time, using two samples with known genetic variants:

• Artificial sample (in silico): this sample was previously created1 at the
computational genomics group at the Barcelona Supercomputing Center
(BSC) using ART software (ART-Illumina)179. This sample mimics a human
genome (reference hg19) including 5,330,762 human variants described
in the 1000Genomes26 and the PanCancer180 projects. Additionally, 3,925
artificial structural variants (SVs), covering different ranges of size and
type were included1.

• Genome in a bottle sample (GIAB): sample NA12878 from the GIAB
Consortium181. This sample was downloaded in its 30X BAM file version
from  NCBI,  where  it  is  publicly  available  (ftp://ftp-tra
ce.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_
300x/). Additionally, the variant call file (VCF) containing all the variants
validated  by  the  GIAB  consortium  was  obtained  (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001 /latest/GRCh37/).

To minimize technical variability and ensure that the results obtained were as
accurate  and  reliable  as  possible  in  the  analysis  of  both  samples,  we
implemented the GATK Best Practices182. This toolkit comprises a collection of
guidelines and recommendations aimed at achieving high-quality results when
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processing  genomic  data.  First,  we  used  PICARD  (version  1.108)  to  mark
duplicated  reads;  then  we  applied  two  modules  (VariantRecalibrator  and
ApplyVQSR) from the GATK4 package (version 4.0.11) to recalibrate the Base
Quality  Scores  (BQSR)  of  the  BAM  file.  The  resulting  files  are  available  at
http://cg.bsc.es/GCAT_BSC_iberianpanel/.

1.2 Preliminary variant caller selection
Variant  callers  are  software  tools  designed  to  identify  genetic  variation  in
genomic data by comparing it with a reference genome. To achieve accurate
results,  they  employ  statistical  models  to  evaluate  the  probability  of  each
variant  call  and filter  out  false  positives  due to  sequencing errors  or  other
technical  artifacts.  However,  different  variant  callers  use  distinct  detection
strategies leading to variations in their  ability  to detect different types and
sizes of variants.
To ensure comprehensive coverage of variant types and sizes in developing the
reference panel, we conducted a thorough selection process of variant callers
based on the data described in their documentation. This selection was guided
by their  detection strategy,  ability  to  detect  specific  types of  variants,  and
accuracy  and  recall  in  different  size  ranges.  Consequently,  we  selected  16
variant  callers,  of  which  five  were  capable  of  detecting  single  nucleotide
variants (SNVs) and small insertions and deletions (INDELs) (Table 1), and 11
were able to detect SVs (Table 2), including deletions, insertions, duplications,
inversions, translocations, and mobile element insertions (MEIs), based on their
performance in detecting these specific types of variant and sizes.

Variant caller Type of variant
detected

Calling strategy Genotyping
method

Resources per
sample

Haplotype
caller183 
(version
4.0.2.0)

SNVs, INDELs and
mid-size deletions

and insertions 
(< 300bp)

Split Read
Assembly

Included in the
software 16 CPUs

Strelka262(vers
ion 2.9.2) SNVs and INDELs Assembly Included in the

software 48 CPUs

Deepvariant63

(version 0.6.1) SNVs and INDELs Deep Neural Network Included in the
software 48 CPUs

Platypus60

(version 0.8.1)
SNVs, INDELs,

deletions (< 2kb) and
insertions (< 500bp) 

Assembly Included in the
software 16 CPUs

Varscan261

(version 2.4.3) SNVs and INDELs Split-Read + BAM
Map Quality

Included in the
software 16 CPUs

Table 1. Variant callers selected for SNVs and INDELs detection. 
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Variant
caller

Type of variant
detected Calling strategy Genotyping method Resources per

sample

Manta78

(version
1.2)

Deletions
Duplications
Inversions
Insertions

Translocations

Split-Read
Discordant-Read

Assembly
Included in the

software 24 CPUs

Delly277

(version
0.7.7)

Deletions
Duplications
Inversions
Insertions

Translocations

Split-Read
Discordant-Read

Read-depth
Included in the

software 24 CPUs

Lumpy73

(version
0.2.13)

Deletions
Duplications
Inversions
Break-ends

Split-Read
Discordant-Read

Read-depth
SVtyper tool184

Pe-processing: 12
CPUs

Calling:
24 CPUs

Genotyping: 
1 CPUs

Pindel185

(version
0.2.5b9)

Deletions
Duplications
Inversions
Insertions

Translocations

Split-Read
Discordant-Read In-house script*1

184 CPUs (8 per
chromosome)

SvABA186

(version
7.0.2)

Breakpoints
without indicating
the type of variant 

Split-Read
Discordant-Read

Assembly
Included in the

software 16 CPUs

CNVnator187

(version
0.3.3)

Deletions
Duplications Read-Depth Included in the

software 12 CPUs

Wham74

(version
v1.7)

Deletions
Duplications

Insertions
Inversions

Split-Read
Discordant-Read
Machine learning

classification
SVtyper tool184

Calling:
48 CPUs

Genotyping: 
1 CPUs

Popins75

(version
damp v1-

51)
Insertions Assembly Included in the

software 48 CPUs

Genome
Strip188*2

(version
2.0)

Deletions
Duplications

Split-Read
Discordant-Read

Read-Depth
Included in the

software 48 CPUs

Pamir189*2

(version
1.2.2)

Insertions
Split-Read

Discordant-Read
Read-Depth

One-End Anchored

Included in the
software 48 CPUs

Melt76

(version
2.1.4)

MEIs Split-Read
Discordant-Read

Included in the
software 24 CPUs

Table 2. Variant callers selected for SVs detection. *1. This script extracts the position
information from the BAM file where a variant was detected and calculates the proportion of
altered reads (with a mapping quality >20). If the proportion was less than 20%, genotype was
0/0. If the proportion was between 20 and 80%, the genotype was 0/1. If the percentage >
80%, the resulting genotype was 1/1.

69



1.3 Variant caller execution
Once we selected the 16 variant callers, we ran them on both the  in silico
sample and the sample NA12878.
All variant callers were run on the Marenostrum 4 supercomputer at the BSC.
This  computer  has  48  racks  housing  3,456  nodes  with  a  total  of  165,888
processor cores and 390 Terabytes of  main memory.  Each compute node is
equipped  with  48  cores  (96  GB  of  main  memory  1,880  GB/core,  12x  8GB
2667Mhz DIMM (216 special nodes with high memory, 10,368 cores with 7,928
GB/core)). The processors support well-known vectorization instructions such as
SSE, AVX up to AVX-512.
Although we initially  selected GenomeStrip (version 2.0)  and Pamir (version
1.2.2) software, we had to discard them due to their incompatibility with the
LSF system of Marenostrum 4. As a result, we reduced the list of variant callers
to 14.

1.3.1 Variant callers for SNVs and INDELs detection
All  variant  callers  described  in  this  section  were  used  to  detect  SNVs  and
INDELs in the in silico sample and the NA12878 sample. The required resources
and detection strategies for each tool are detailed in Table 1.

• Haplotype caller (GATK package): We ran Haplotype Caller using the
default parameters and the following command flags: -ERC GVCF, --dbsnp
dbsnp_138.b37.vcf -L chr -G Standard Annotation.

• Strelka2:  The  execution  involved  two  main  steps  performed  using
default  parameters.  First,  we  used  the  configureStrelka
GermlineWorkflow.py  script  to  configure  the  calling  process.  Then,  we
performed the calling process by running the runWorkFlow.py script.

• Deepvariant: This execution involved three main steps, each executed
with default parameters. First, we ran the make_examples.zip module to
create  a  reference  calling  dataset.  Second,  we  ran  the  call_variants
module  for  variant  calling.  Finally,  we  filtered  the  output  using  the
postprocess-variants.zip module.

• Platypus: We  ran  Platypus  with  default  parameters  and  added  the
following  flags:  --assemble=1  –assembleBrokenPairs=1
mergeClusteredVariants=1.

• Varscan2: Varscan2 was run using default  parameters in its germline
variant detection mode.
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1.3.2 Variant callers for SV detection

The variant  callers  explained in  this  section  were  executed on the  in  silico
sample, for which the list of SVs was known in advance. The specific types of
variants  detected,  resources  needed  for  their  execution,  and  detection
strategies employed by each tool are detailed in Table 2.

• Manta: Manta was executed in two steps using default parameters. First,
we ran the configManta.py module, which maps regions in the genome
where SVs can be found. Next, we ran the runWorkflow.py module, which
identifies SVs in each region and assigns a score, resulting in the final
VCF file.

• Delly2: We executed this tool once for each type of structural variant by
modifying the flag -type accordingly. Moreover, we excluded the telomere
and  centromere  regions  using  the  flag  -x.  Subsequently,  all  types  of
variants were merged into a single file using the CALL BCF and MERGE
modules.

• Pindel:  The execution  of  Pindel  involved two steps.  In  the  first  step,
variant calling was performed, resulting in an output coded in Pindel's
format. In the second step, we used the pindel2vcf module to convert
that format output into VCF format. Each of these steps was performed
for each chromosome individually using the following parameters: -a 3 -C
-k -l -I -M 8 - T 6 -x 5 -v 10 -c 1 -R hs37d5 -d Feb2009. 

• SvABA:  SvaBa  was  run  with  default  settings  in  its  germline  variant
detection mode.

• CNVnator: CNVnator was executed using a bin size parameter of read-
length=150. The output of this tool was in .root format, and we converted
it  into  VCF  format  using  the  cnvnator2VCF.pl  script  included  in  the
software package.

• Lumpy:  We  first  preprocessed  the  BAM  file  following  the
recommendations of the Lumpy developers. This involved extracting split
reads with the extractSplitReads_BwaMem module and discordant reads
with Samtools46 (version 1.5) from the BAM file. We then ran the variant
detection  process  with  the  Lumpyexpress  module  using  default
parameters.  All  detected  variants  were  genotyped  using  SVTyper.  We
filtered  out  variants  with  quality  scores  <  20  and  BNDs  with  both
endpoints located in the same chromosome.

• Wham:  The  variant  calling  process  was  executed  with  default
parameters, followed by the genotyping process using SVTyper.
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• PopINS:  To  execute  PopINS,  we  followed  several  steps  using  default
parameters: 1) assembly, 2) merge, 3) contigmap, 4) place-refalign, 5)
place-splitalign,  6) place-finish,  and 7) genotyping. Variants labeled as
NO-ANCHOR in the output file were filtered out.

• MELT:  The execution process for MELT involved four steps, all of which
were executed with default parameters: (i) pre-processing the BAM file,
(ii) individual analysis, (iii) genotyping, and (iv) creating the VCF file.

1.4 Benchmarking of variant callers
Once  the  14  variant  callers  were  executed  and their  corresponding  variant
caller files were obtained, we assessed their performance by evaluating their
precision, recall, and F-score.

To analyze the performance of the variant callers that detect SNVs and INDELs,
we used both the in silico sample and sample NA12878 as reference. We then
compared  the  metrics  of  each  variant  caller  between  the  two  samples  to
ensure consistency. For the benchmark of variant callers that detect SVs, we
solely used the  in silico sample as a reference, as it was the only sample for
which the list of SVs that contains was known. Notably, we did not consider
variants on the Y chromosome or mitochondrial chromosome in either of the
two analyses.
To determine the number of true positives (TP), false positives (FP), and false
negatives (FN), we considered the following parameters:

• Breakpoint detection: A variant caller's ability to accurately detect the
exact position of a variant in the genome may vary depending on the
detection strategy and the size of the variant. While base-pair resolution
was expected for INDELs and SNVs, breakpoint detection becomes less
precise as the size of the variant increases.
Taking this into consideration, we conducted an assessment to determine
the optimal window or margin of error for detecting the position of the
variant  for each variant caller.  We tested different  detection windows,
ranging from 10bp to 300bp, being this  maximum value the sample's
insert size (10, 20, 50, 100, 200, and 300bp). If the variant in the in silico
sample fell within the range reported by the variant caller ± the selected
window, we considered the variant as correctly detected. Based on this
criterion, we estimated the window at which the best precision and recall
metrics were obtained.
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• Type of variant: Some tools have difficulties in accurately identifying the
type of SV detected, even though the breakpoint detection was correct.
Therefore, we only considered calls as true positives if they matched the
reference samples in both position and type.

• Length: The precision and recall of variant callers are influenced by the
length of the variant, generally, the quality of the call decreases as the
length of the variant increases.

• Genotype:  Genotyping  is  a  process  that  enables  the  determination  of
whether  a  variant  affects  one  allele  (0/1)  or  both  alleles  (1/1).  While
genotyping accuracy is typically high for SNVs and INDELs, some tools
encounter difficulties in accurately genotyping SV.

During  the  benchmarking  we  divided  the  process  into  two  primary  blocks.
Firstly, we evaluated the performance of the detection process, which referred
to the ability  to detect  a variant,  including its  size and type.  Secondly,  we
assessed  the  tool's  capability  to  accurately  genotype  the  detected  variant.
Then,  based  on  the  results  obtained  from  the  benchmarking,  we  made  a
decision on which callers to include in the study and which to discard.  The
objective  of  discarding  variant  callers  was  to  reduce  the  computational
requirements of the project and eliminate those with lower performance.

1.4.1 Variant detection evaluation
Regarding SNVs and INDELs, before assessing the quality of the variant calls,
we applied  a  normalization  process  on  the  called  INDELs  in  VCF files.  This
process  consisted  of  aligning  the  indel-containing  sequence  to  a  reference
sequence and then, determining the minimal representation of the INDEL in
relation to the reference. The normalization was done using the pre.py tool
designed by the Global Alliance for Genomics and Health (GA4GH). After the
normalization, we deemed a variant as a TP if the chromosome and position
reported by the callers matched the reference samples at base-pair resolution,
and the alleles were identical. Any variant that did not meet these criteria was
considered a FP. All the variants present in the reference samples that were not
detected by the callers were classified as FN.
In the case of SVs, we classified a variant as a TP if (i) it overlapped with the
position reported in the in silico sample within the window range used for each
variant caller; (ii)  the type of SV matched the  in silico sample, and; (iii)  the
length of the variant reported by the caller varied by no more than 80% from
the length of the variant in the in silico sample. Any variant that did not meet
these  criteria  was  considered  a  FP.  All  the  variants  present  in  the  in  silico
sample that were not detected by the callers were classified as FN.
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Using this  strategy,  we calculate the recall,  precision,  and F-score for  each
variant caller.  Additionally,  for SVs, we estimated these metrics for each SV
type in different variant length intervals, including [30-50bp], [50-75bp], [75-
100bp],  [100-125bp],  [125-150bp],  [150-300bp],  [300-500bp],  [500-1000bp],
[1000,2000bp], [2000,3000bp], and [> 3000bp].

1.4.2 Variant genotyping evaluation
We assessed the genotyping accuracy of each variant caller for SNVs, INDELs,
and SVs by analyzing whether the genotype of the detected variants matched
the genotype of the variants present in the reference samples. We classified a
variant  as  TP  when  its  genotype  matched  the  genotype  reported  in  the
reference sample, while a variant was considered FP if the genotypes did not
match.
After evaluating the detection and genotyping accuracy of the variant callers,
we decided to discard Varscan2 and Platypus due to their poor performance
compared to the other three variant callers detecting SNVs and INDELs, as well
as  their  longer  run time.  As  for  SVs,  all  the variant  callers  included in  the
benchmarking were deemed suitable for the study. Thus,  we performed the
study including a total of 12 variant callers, consisting of three variant callers
for the detection of SNVs and INDELs, and nine for the detection of SVs.

1.5  Development  of  models  for  combining  calling  results  and  for
filtering out low-quality variants
Upon executing the three variant callers for detecting SNVs and INDELs in the
in silico sample  and in the NA12878 sample, and the nine variant callers for
detecting SVs in the in silico sample, the next step was to merge the outcomes
of each variant caller into a final file that contained all the calls. To accomplish
this, we utilized two distinct approaches depending on the type of variant.

1.5.1 Logical criterion model to combine SNVs and INDELs calls
Due  to  the  high  performance  of  each  variant  caller  for  SNVs  and  INDELs
detection, we decided to use a logical criterion model to merge and filter the
results. This strategy involved retaining only SNVs and INDELs called by at least
two out of three callers (Haplotype caller, Deepvariant, and Strelka2) with the
same position and alleles. As was done in the benchmarking process, INDELs
calls  were  normalized  in  order  to  have  a  consensus  between  the  different
variant callers and to be able to combine the calls appropriately. Then, for each
variant, we reported the consensus genotype among the callers that detected
the variant. If a variant was detected by two variant callers, but they did not
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report the same genotype, the variant was considered as missing genotype
“./.”.

1.5.2 Logistic Regression Models for SVs
Regarding SVs, to combine the results from the variant callers, we established
a set of criteria to determine if a variant detected by different callers could be
considered the same. Our strategy consisted of considering that two variants
called by different  tools  were the same if  (i)  the position ± the breakpoint
detection deviation window of each caller coincided; (ii) the variant type was
the same; (iii) the size of the variant detected by both callers did not vary by
more than 80%. In this way, one file was generated per SV type, which included
all the combined calls from the variant callers that were able to detect that
type of variant.
Once we combined the results from the variant callers, we design a filtering
strategy to  remove low-quality  variants  by  using  logistic  regression models
(LRMs). A total of five LRMs were created, one model per SV type excluding
MEIs, which were detected by only one variant caller and there was no need to
combine the calls. To filter variants, we chose LRMs strategy due to the limited
number of features and the large number of variants that needed to be filtered.
We used the R packages  caret (version 6.0-85) and  e1071 (version 1.7-3) to
develop the LRMs. The function to train the LRMs was:

train(PASS ~ independent variables, data=database70, method="glm",
family="binomial", trControl= ctrl)

The models were trained using predictors including the presence or absence of
detection by each variant caller, the size of the detected variant, the number of
variant callers detecting the variant, the number of strategies detecting the
variant, and the breakpoint resolution of each caller. The output of the model
was a binary variable (PASS or NO PASS) indicating whether a variant should be
filtered or kept.
To  train  the  models,  we  used  10-fold  cross-validation  for  a  random set  of
variants (70%) from the in silico sample and tested them using the remaining
set  of  variants  (30%).  In  addition,  Receiver  Operating  Characteristic  (ROC)
curves and area under the ROC curve of the LRMs were computed for the test
sets of each SV type using the "ROCR" R package.
After training the models, we applied each model to the combined call file of
each SV type, retaining only those variants that received a PASS output.
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1.5.3 Strategy to report SVs position, length, and genotype
Once the results of the variant callers were combined and the different LRMs
were applied to obtain the final set of variants detected in the in silico sample,
consensus was necessary to determine the position, size, and genotype of each
variant.  To determine the position of  each variant,  we reported the position
provided  by  the  variant  caller  with  the  best  accuracy  among  those  that
detected the variant, as determined during the benchmarking. To determine
the size of each variant, we calculated the median of the sizes reported by the
variant callers who detected the variant. Finally, regarding the genotype, the
reporting strategy was different depending on the type of SV:

• Deletions  and  Insertions:  We  reported  the  most  frequent  genotype
between all the variant callers which call the variant. If a consensus was
not  possible  because a  genotype was not  called  more often than the
others, the variant was considered as missing genotype “./.”.

• Duplications:  Due  to  the  low  accuracy  of  individual  variant  callers  in
genotyping duplications, we developed a genotyping method based on
BAM information. We calculated the total coverage of the region where
the duplication was located. Then, we obtained the number of split-reads
altered in that region, sequencing reads where the read is split into two
or more segments that map to different regions of the genome, indicating
the  presence  of  a  structural  variant.  To  obtain  that  number,  first  we
discarded Hard-clipped reads and those containing insertions or deletions
in the Concise Idiosyncratic Gapped Alignment Report (CIGAR).
Finally, we calculated the ratio of altered reads over the total coverage. If
the proportion was ≤ 0.2, we discarded the variant; if it was between 0.2
and 0.8, the genotype was 0/1; and if the ratio was ≥ 0.8, the genotype
was 1/1. The script for genotype duplications is at https://github.com/gcat
biobank /GCAT_panel/tree/main/genotyping/Duplication_genotyping.

• Inversions: The reported genotype was determined by the variant caller
that showed the highest accuracy in estimating the genotype during the
benchmarking  process.  Based  on  the  results  obtained  in  the
benchmarking the order of priority was:

1. Lumpy 2. Pindel 3. Whamg 4. Delly2 5. Manta

• Translocations: We adopted a strategy similar to that used for duplication
genotyping based on the BAM file information. We counted all the reads
covering the breakpoint to obtain the total coverage, while the number of
altered reads was determined by considering all reads with a mapping
quality ≥ 20, a CIGAR label different from 151M, and by discarding hard-
clipped reads. Finally, we calculated the proportion of altered reads to the
total coverage, and based on this ratio, the variant was either discarded
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if  the  proportion  was  ≤  0.2,  genotyped  as  0/1  if  the  proportion  was
between 0.2 and 0.8, or genotyped as 1/1 if the ratio was ≥ 0.8. The
script  for  translocation  genotyping  can  be  found  at
https://github.com/gcatbiobank/GCAT_panel/tree/main/genotyping/Translo
cation_genotyping.

1.5.4 Comparison of LRMs variant filtering against other strategies
To evaluate the effectiveness of our SV filtering strategy, we compared it with
the method used by  the Genome of  the Netherlands (GoNL)  project,  which
aimed to sequence the whole genomes of 250 Dutch parent-offspring families
and build a haplotype map including SVs. The GoNL project filtered SVs using a
similar criterion to our logical criterion for filtering SNVs and INDELs (described
in  section  1.4.1),  considering  a  variant  valid  if  at  least  two  variant  callers
detected it.
In  addition  to  the  comparison  with  the  GoNL  strategy,  we  conducted  two
additional studies where we varied the minimum number of callers required to
consider  a  variant  valid  to  three  and  four  callers.  Using  our  variant  set
generated  from the  variant  calling  of  the  in  silico sample,  we  applied  the
different filtering strategies and estimated the accuracy and recall of each one
comparing them with the metrics obtained by using LRMs.

2 Development of the GCAT reference panel

2.1 The GCAT cohort
The  GCAT  project  aims  to  study  the  genetics  behind  complex  diseases.  It
consists of 19,267 volunteers recruited in the region of Catalonia (Spain). It is a
cohort  of  unrelated participants  aged 40-65 years  and mainly  of  Caucasian
origin (16 % non-Caucasian)190. 
The  genetic  data  available  from  this  project  includes  Single  Nucleotide
Polymorphism (SNP)  array  data  (N=5,459;  56% female)  and whole  genome
sequencing (WGS) data (coverage= 30X, N=808, 50.6% female). 71% of the
WGS samples (n=570) were also analyzed in the SNP array set.
WGS  data  were  generated  at  the  Germans  Trias  I  Pujol  Health  Sciences
Research  Institute,  Badalona,  Spain,  using  paired-end  synthesis  (SBS)
sequencing  on  an  Illumina  HiSeq  4000  sequencer  (Illumina,  San  Diego,
California, USA).  These data were obtained in FASTQ format and converted to
BAM file format, aligning the reads against the hs37d5 reference genome.
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2.2 Quality control

2.2.1 Alignment quality control

Alignment quality control was performed applying the GATK Best Practices, a
set  of  recommended procedures  for  processing  high-throughput  sequencing
data to produce accurate and reliable variant calls. In this step, one sample
was discarded from further analysis as it was not within the metrics required to
pass quality control. (Table 3)

Quality Control metrics required
Fraction purified reads > 0.90

Fraction read aligned in pairs > 0.95
0.495 < Strand balance < 0.505

250bp < Mean insert size < 350bp
Standard deviation of insert size < 50bp

Fraction of duplicated reads < 0.1
27X < Mean Coverage < 37X

Fraction of paired reads mapped in the same chromosome > 0.88

Table 3. Alignment Quality control metrics required

2.2.2 Contamination analysis
In this step, we aimed to verify the absence of cross-contamination among the
807 WGS samples, which refers to the presence of  genetic material  from a
different  individual  or  sample  in  the  sequenced  sample.  We  conducted  a
contamination  study  using  the  VerifyBamID  tool191.  VerifyBamID  can  detect
contamination  and  sample  swaps  using  two  different  approaches:  the
sequence+array method, which compares external genotype information with
sequence  reads,  and  the  sequence-only  method,  which  estimates
contamination by modeling the sequence reads as a mixture of two unknown
samples using allele frequency information in the VCF file.
First, we performed variant calling with Haplotype Caller following the strategy
outlined in the benchmarking (section 1.2).  Using the resulting VCF file, we
then ran VerifyBamID with the command:

 VerifyBamID --best --ignoreRG --maxDepth 30 --precise run
We first  analyzed the samples for  which SNP array data was also available
(n=570).  For  this  analysis,  the  thresholds  used to  determine contamination
were  [CHIPMIX]  ≥  0.02  and  [FREEMIX]  ≥  0.02.  [CHIPMIX]  is  the  estimated
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proportion of contaminated sequence reads in the BAM file, while [FREEMIX] is
the estimated proportion of contaminated genotypes based on array data. If
2%  or  more  of  non-reference  bases  were  observed  in  reference  sites,  the
sample was considered contaminated. Next, we analyzed samples for which
genotyping  information  was  not  available  (n=237)  using  the  sequence-only
method.  For  this  analysis,  the  thresholds  used  to  determine  contamination
were [FREEMIX] ≥ 0.03 and [FREELK1] - [FREELK0], as recommended by the
developers. None of the 807 samples showed contamination.

2.2.3 Population structure analyses
To ensure a homogeneous cohort  and remove samples with a high level  of
genetic  relatedness,  we  conducted  several  steps.  First,  we  performed  two
principal component analyses (PCAs) using reference populations with known
ancestry  to  identify  potential  outliers,  the  1000Genomes  project  and  the
Population  Reference Sample Project  (POPRES).  We used the  variant  calling
results from the contamination analysis and filtered variants based on minor
allele frequency (MAF) > 0.01 and linkage disequilibrium (LD) r² < 0.2 using
PLINK  (version  1.9).  We  matched  the  list  of  variants  obtained  with  the
1000genome  data  and  retained  the  variants  that  were  present  in  both
datasets, resulting in a final subset of 1 million variants. Then, we estimated
the PCs based on known ancestries using 1000 Genomes data and projecting
the  GCAT  data  onto  these  principal  components.  This  analysis  led  to  the
removal of 16 GCAT samples. After removing those 16 samples, we repeated
the process using the Population Reference Sample Project (POPRES) as the
reference  sample.  This  PCA  was  performed  using  the  LASER  project
webserver192, resulting in the removal of an additional two GCAT samples. In
total, 18 GCAT samples of non-Iberian ancestry were discarded in this step.
Next, we performed Identity by Descent (IBD) analysis to detect and discard
samples  with  at  least  a  3rd  degree of  genetic  relatedness  using the PLINK
software. We estimated IBD probabilities in the remaining 789 GCAT samples
and identified one full-sibling pair with probabilities of sharing 0, 1, and 2 IBD
alleles  equal  to  (0.3,  0.48,  0.22)  and  one  first-cousin  relationship  with
probabilities of (0.78, 0.22, 0). For each related pair, we kept the sample with
the lowest proportion of missing genotypes.

Finally,  we conducted an additional PCA without reference populations using
the 1M variant subset on the remaining 787 samples. This analysis resulted in
the removal of two additional GCAT samples as they were found to be outside
of the generated cluster. 

In total, we removed 22 samples, resulting in a final set of 785 WGS samples
used in subsequent steps of the project.
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2.3 GCAT cohort variant calling

We conducted the variant calling process on the 785 WGS samples that passed
the quality checks. This process was divided into two parts: calling of SNVs and
INDELs, and calling of SVs.

2.3.1 SNVs and INDELs detection
Strelka2 and DeepVariant were executed following the steps outlined in section
1.3.  However,  for  Haplotype  Caller,  the  availability  of  a  large  number  of
samples in the cohort allowed us to utilize additional modules to improve the
accuracy  of  the  variant  calling.  Initially,  we  utilized  the  GenomiDBimport
module to merge individual VCFs from each of the 785 samples into a single
file,  grouping  variants  into  1MB  batches.  After  merging  the  results,  we
genotyped  all  variants  using  the  GenotypeGVCF  module.  We  then  ran  the
VariantRecalibrator and ApplyVQSR modules to recalibrate the score provided
by  the  software  for  each  variant  and  regenotyped  the  variants  using  the
CalculateGenotypePosteriors module. Finally, we filtered out variants with a low
genome  quality  score  (<20)  using  the  VariantFiltration  module.

2.3.2 SVs detection
We performed SV detection on the 785 samples by executing the selected 11
variant callers as explained in section 1.3. However, using a sample set instead
of an individual sample enabled running the variant calling of certain tools in
multi-sample mode. This approach allowed for analyzing all samples at once,
thereby reducing the runtime. The software tools that supported this capability
included  Delly2,  which  permits  the  use  of  the  FILTER  module  to  discard
redundant calls between samples after variant calling; Pindel; Lumpy, which
also  enables  the discarding of  redundant  variants  with its  lsort  and lmerge
modules; and MELT, which involves an additional step after individual analysis,
where group analysis was conducted to enhance the accuracy of the calls.
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2.4  Selection of  the definitive  set  of  variants  by filtering out  non-
reliable calls
We combined the results of variant calling for both SNVs, INDELs and SVs for
each sample using the strategy outlined in section 1.5. After combining the
results, as explained previously variants that were deemed low-quality were
filtered out. 
As explained in section 1.5.1, for SNVs and INDELs, variants were discarded if
at  least  two  variant  callers  did  not  detect  the  variant,  or  if  there  was  no
majority  consensus  on  the  genotype  reported  by  the  variant  callers  that
detected  the  variant.  This  resulted  in  a  VCF  file  containing  the  combined
variants from the three variant callers used for SNV and INDEL detection for
each sample. Finally, the individual files for each sample were merged into a
final file. In order for a variant in one sample to be considered the same as a
variant detected in another sample, they had to match in chromosome, base
pair resolution position, and alleles.
Regarding SVs,  after  combining the  outputs  of  each variant  caller  for  each
sample, we applied the different LRMs generated for each SV type to identify
and discard those considered low quality  as  described in  section  1.5.2.  We
retained only those variants that were labeled as "PASS" by the LRMs. Then, for
each  variant,  we  reported  its  position,  length,  and  genotype,  following  the
strategies outlined in section 1.5.3 for each SV type. Finally, we combined all
samples into a single file by (i)  variant type, (ii)  chromosome, (iii)  position,
using  the  maximum value  of  the  callers  that  detected the  variant  in  each
individual as the breakpoint error, and (iv) requiring a reciprocal overlap of the
variant ≥ 80% between individuals. We then applied a second filtering process
by calculating the PASS rate of each variant across all samples, based on the
number of times it obtained a PASS label from the LRM. Variants with a PASS
rate greater than 50% passed the filter, while those with a lower rate were
discarded.  For  the set of  valid  variants  generated,  we reported the median
length  and  median  position  of  all  samples  presenting  the  variant.  This
information was used as size and position data for each SV, generating a final
VCF. In this VCF, we also provided for each variant the allelic count (AC), the
Minor Allelic count (MAC), and the Minor Allele Frequency (MAF). 
Lastly, we combined the set of SVs and the set of SNVs and INDELs into a
single VCF file. Subsequently, we performed a final quality control by filtering
out variants that were not in Hardy-Weinberg equilibrium (Bonferroni correction
p-value < 5x10-8) and variants with missing calls of ≥ 10% across the entire
cohort. The GCAT catalog with all variants accepted after the filtering step is
deposited at http://cg.bsc.es/ GCAT_BSC_iberianpanel/. The GCAT catalog with
genotype  information  is  deposited  at  https://ega-archive.org/
studies/EGAS00001003018).
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2.5 Variant validation

We conducted a validation to check the reliability of our final set of variants.
Initially,  we  performed  a  comparative  validation  using  public  datasets  by
comparing our list of variants with sets of variants from similar projects that
have been previously described. Subsequently, we carried out an experimental
validation for SV types that were more sensitive to false positives.

2.5.1 Experimental validation

• SNVs and INDELs

We used the GCAT SNP array to validate the accuracy of our methodology to
call SNVs and Indels. To this aim, we selected the 570 samples that had both
SNP array and whole-genome sequencing data available.  The SNP array set
included 732,978 SNPs and 1,168 indels in chromosomes 1-23. We determined
the number of variants from this set that were present in our final set of SNVs
and INDELs, as well as their genotype concordance.

• Inversions
We assessed  the  accuracy  of  our  methodology  for  detecting  inversions  by
comparing  our  results  to  the  experimentally  validated  inversions  from  the
InvFEST project193 as  a  reference.  This  validated set  included  64 inversions
mediated by Non-Homologous (NH) mechanisms that lacked inverted repeats
at  their  breakpoints.  We  compared  our  inversion  set  against  the  InvFEST
dataset, taking into account the variant position, size, and frequency in three
major continental ancestries (Africa, Europe, and East Asia).

• Copy Number Variations (CNVs)
We performed a comparative genomic hybridization (CGH) analysis to validate
large  deletions  and  duplications  (size  >  20kb).  We  randomly  selected  five
samples  from  the  GCAT  cohort  and  the  NA12878  sample194 from  the
1000Genomes project as a reference sample, for which the list of CNVs has
been  previously  described  (https://bmcgenomics.biomedcentral.com/articles/
10.1186/s12864-017-3658-x#Sec21).
We  collaborated  with  QGenomics  (https://qgenomics.com/)  to  conduct  this
analysis. They carried out the hybridization process on both sets of samples,
with a probe added every 3kb to cover the entire genome. This enabled us to
detect  changes  in  probe  intensity  when  the  GCAT  sample  gained,  or  lost
information compared to the reference sample. An increase in probe intensity
corresponded to duplications while a decrease in probe intensity corresponded
to deletions. Through this strategy, we validated variants that were present in
both the reference and GCAT samples, which did not show a change in probe
intensity, as well as GCAT-specific variants that produced a change in probe
intensity.
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2.5.2 Public datasets comparative analyses

➢ SNVs and INDELs

We compared our final set of SNVs and INDELs with the NCBI dbSNP Build 153
database,  which we downloaded from https://ftp.ncbi.nlm.nih.gov/.  To merge
the  datasets,  we  considered  a  variant  to  be  the  same  between  the  two
datasets if it shared the same chromosome, position at base-pair resolution,
and  alleles.  By  performing  this  comparison,  we  determined  the  number  of
variants in our dataset that were also present in dbSNP and the number of
GCAT-specific variants.

➢ SVs

We compared the final set of SVs to various reference projects to determine the
number of variants already reported and the number of variants identified for
the first time in the GCAT cohort. The reference projects we used were: (i) The
Genome  Aggregation  Database  (gnomAD.v.2)  downloaded  from
https://gnomad.broadinstitute.org/downloads,  (ii)  the  Database  of  Genomic
Variants  (DGV)  available  at  http://dgv.tcag.ca/dgv/app/downloads?
ref=GRCh37/hg19, (iii) the Human Genome Structural Variation Consortium set
(HGSVC)  downloaded  from  http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data_collections/hgsv_sv_discovery/working/2520181025_EEE_SV-Pop_1/
VariantCalls_EEE_SV-Pop_1/),  (iv)  the  Hall-lab  dataset  available  at
https://github.com/hall-lab/sv_paper_042020, (v) the 1000 Genomes (Phase3)
dataset available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/, and (vi)
the GoNL (release 6.2) dataset.

We considered a variant from different projects to be the same as the variant
reported in the GCAT cohort if they shared (i) variant type, (ii) chromosome, (iii)
position  with  a  window of  ±1000  bp,  and  (iv)  if  the  length  of  the  variant
reported in a project varied by no more than 80% from the length of the variant
reported in the GCAT cohort. Variants found in at least one of the reference
projects were considered already described, while all variants found only in the
GCAT cohort were considered novel.

2.6 Phasing of the GCAT variant set
The final step to obtain a haplotype reference panel involved phasing the final
VCF file containing all the variants identified for the 785 WGS samples of the
GCAT  project.  We  employed  ShapeIt4195 (version  4.1.3)  and  WhatsHap196

(version 0.18) software tools to perform phasing. We used WhatsHap to extract
phasing informative reads (PIRs), which improves the efficiency of the phasing
process for SNVs and Indels. To speed up the computation, we ran the process
by chromosome in  parallel.  Finally,  we merged all  the chromosomes into  a
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single VCF file annotated with the information obtained from WhatsHap. We
then compressed with bgzip and indexed with tabix the entire annotated VCF
file. Finally, we ran Shapeit4 including the PIRs information obtaining a phased
VCF by chromosome. 
To  convert  the  phased  VCFs  file  into  .hap,  .legend,  and  .sample  files,  we
executed the BCFtools module. We built a haplotype panel for each autosomal
chromosome and X chromosome. To generate the haplotype-resolved panel of
chromosome X, we separated chromosome X into pseudo-autosomal regions 1
and 2 (PAR1 and PAR2) and non-pseudo-autosomal regions (NOPAR). Then, for
male samples, we coded the heterozygous genotypes in NOPAR as “./.”.
(GCAT|Panel  is  deposited  at  https://ega-archive.org/studies/EGAS0
0001003018).

2.7 Analysis and performance of imputation
To evaluate the quality  of  the GCAT reference panel,  we conducted several
imputation analyses using SNP-genotyping arrays from two different sources:
the GCAT dataset and the 1000 Genomes Project dataset.  We assessed the
accuracy  of  the  imputation  by  measuring  the  concordance  between  the
imputed genotype and the genotype obtained from the array or variant calling.

2.7.1   Imputation analysis using the GCAT data  
We utilized  95  randomly  selected  samples  from the  GCAT  reference  panel,
which had available SNP-genotyping array data. Firstly, we conducted a quality
control (QC) analysis on the SNP-genotyping array data using PLINK software197.
During the QC, we removed variants with missing calls ≥ 10%, monomorphic
variants, and INDELs. We also aligned the variants in the forward strand and
standardized alternate and reference alleles as A1 and A2, respectively. As a
result, we obtained a dataset comprising 754,593 high-quality variants.
Subsequently, we excluded those 95 samples from the GCAT panel, creating a
modified panel consisting of 690 samples. We then performed imputation on
the 95 samples using IMPUTE2198 with the modified reference panel, in batches
of 5MB.
We utilized  the  WGS variant  calling  of  the  same 95  GCAT individuals  as  a
reference and evaluated the genotype concordance of the imputed variants
(info score ≥ 0.7) and the WGS-called genotypes.
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2.7.2 Imputation analysis using 1000genomes array data
We used the  1000genomes array  data  from  ftp://ftp.1000genomes.ebi.ac.uk
/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.chip.omni_broad_
sanger_combined.20140818.snps.genotypes.vcf.gz.  This  dataset  included
2,318  samples  and  2,458,861  variants  from  19  populations  and  5  main
ancestries199.
First, we applied sample filtering removing those with unknown gender (n=41),
related  samples  (≥2nd-degree  relatedness,  n=395),  and  unrepresented
populations (Masai population, n=2). Then, we split the samples by population,
and we performed an additional QC. We used PLINK software to filter variants
for genotype missingness > 0,1, we discarded A-T, C-G sites, variants that were
not  in  Hardy-Weinberg  equilibrium (Bonferroni  correction  p-value  <  5x10-8),
individuals with an excess of heterozygosity (± 2 standard deviation) and with
missing call rate ≥0.1, obtaining a total of 1,880 samples. For chromosome X,
we separated males  and females  and divided the  chromosome in  PAR and
NONPAR regions. 

2.7.3 Imputation performance against different panels of genetic variability 
To  assess  how well  the  GCAT reference  panel  performs  compared  to  other
widely  used  reference  panels,  we  utilized  IMPUTE2  to  impute  the  GCAT
genotyping array data (n=4,988) using various population reference panels:
1000G phase326, GoNL-SV140, UK10K30, and HRC131. Initially, we conducted a QC
analysis to eliminate samples with a missing call rate ≥ 0.10 (n=3). We then
removed samples that had available array data and were included in the GCAT
reference panel (n=537). Following this QC procedure, we obtained a final set
of 4,448 samples. We retained variants imputed by each reference panel that
had MAF > 0.001 and info score ≥ 0.7. Then, we compared the number of
unique variants  imputed  by  the  different  panels.  For  SNVs  and INDELs,  we
considered two calls as the same variant between panels if their chromosome,
position, and alleles matched. For SVs, we consider that two variants were the
same if the type coincide and they match in position using a window of ±1,000
bp.
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2.8 Genome-wide Association Study using the GCAT|Panel
We  performed  a  genome-wide  association  study  (GWAS)  using  the  GCAT
imputed  data  (n=4,988).  Phenotype  data  included  only  chronic  conditions
defined by Electronic Health Records from the cohort registry (20112-2017),
considering ICD-9 codes and descriptions200,201. We analyzed phenotypes with
more than 50 cases,  resulting in  70 binary traits.  Genome-wide association
tests  were  done  with  PLINK  2.0  software  for  autosomal  chromosomes,
assuming an additive model for allelic effects and using as co-variates age, sex,
and the first five principal components (PCs) obtained from previous QCs. In
addition,  gender-specific  traits  were  analyzed  only  for  the  specific  gender.
Finally, we plotted a Locus Zoom for those specific regions where we found a
signal  below  the  suggestive  p-value  threshold  (1e⁻⁰⁵),  obtained  after  a
Bonferroni correction.
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Recovering the role of  the X chromosome in  complex
diseases

3. Development of a strategy for the systematic inclusion of the
X chromosome in complex trait association analyses

3.1 Data collection
We selected two different genetic data sources, from which we obtained SNP
genotyping array data, the database of Genotypes and Phenotypes (dbGaP)24

and the UK Biobank cohort122. We opted to use two types of data sources due to
the differences in the sample recruitment process.
These differences are primarily related to study design and sampling strategy.
Biobanks are typically designed to collect data from a more general population
and encompass a broader range of phenotypes, whereas phenotype-specific
cohorts, such as those included in dbGaP, concentrate on a particular disease
or  trait  of  interest,  and  have  stricter  inclusion  criteria.  This  can  result  in
biobanks having a larger and more diverse participant pool, while phenotype-
specific cohorts may have a more homogeneous population concerning certain
characteristics such as age or health status. 
3.1.1 The database of Genotypes and Phenotypes
The dbGaP database was developed to archive and distribute the data and
results  from  studies  that  investigate  the  interaction  of  genotype  and
phenotype. The cohorts were requested through different projects fulfilling the
needs  and  requirements  of  dbGaP.  In  total  169  cohorts  were  applied  for,
including more than 90 phenotypes spread over 13 projects.
3.1.2 UK Biobank
The  UK  Biobank  is  a  population-based  cohort  study  that  comprises  around
500,000  individuals  aged  between  40-69  years  in  2006-2010  from  various
regions  of  the  United  Kingdom.  Participants  provided  biological  samples,
including  blood,  urine,  and  saliva,  for  genetic  analysis.  They  also  provided
comprehensive  information  on  their  health,  lifestyle,  and  medical  history
through  touch  screen  questionnaires,  face-to-face  interviews,  and  medical
examinations. Moreover, the UK Biobank collected additional phenotypic data,
which  includes  electronic  health  record  data  and  information  from national
health registries. A major part of the phenotypic data relies on International
Classification of Diseases, 10th Revision (ICD-10) codes, which is a standardized
coding system employed to classify medical conditions and diseases.
Under application ID 85085, we obtained and downloaded genotype data for
422,178 individuals and nearly 7,000 phenotypes from the UK Biobank.
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3.2 Data selection, preliminary screening, and harmonization

3.2.1 The database of Genotypes and Phenotypes (dbGaP)
To select the cohorts for our analysis, we used specific criteria. Firstly, we only
included cohorts for which phenotypic information and genotypic information
on the X chromosome was available. Additionally, we solely considered binary
traits for the analysis, and a phenotype was deemed eligible for the analysis
only  if  genotypic  and  phenotypic  data  were  available  for  at  least  4,000
individuals, with a minimum of 1,000 cases across all cohorts for that particular
trait.  Phenotypes  that  did  not  meet  these  criteria  were  excluded  from the
analysis.
All the cohorts that passed the initial screening underwent a formatting process
to  obtain  genetic  information  in  PLINK  format.  Subsequently,  we  filtered
individuals for each cohort by removing those without genetic or phenotypic
data available.
3.2.2 UK Biobank
In the case of UK Biobank, data was for each phenotype obtained from different
sources highlighting diagnosis data (ICD10 codes, Data field 41202) and self-
reported information (Data  field  20001,20002).  We decided  to  analyze  only
binary  traits  with  at  least  1000  cases  for  each  trait  to  ensure  adequate
statistical power for detecting association. This screening process resulted in a
final selection of 564 different binary traits for analysis of UK Biobank.
For each phenotype, we filtered the controls by excluding individuals with traits
similar to those defined in the cases. If controls have similar traits to the cases,
there is a risk of misidentifying individuals as controls when they should be
classified  as  cases,  leading  to  a  biased  analysis.  Therefore,  by  excluding
individuals  with  similar  traits  to  those  defined  in  the  cases,  the  risk  of
misclassification is reduced, increasing the likelihood of identifying true genetic
associations with the phenotype of interest.

3.3 Data quality control
To ensure the quality of the data in our project, we implemented a rigorous
sample-level and variant-level quality control processes for each of the cohorts
included.
Initially, using PLINK we removed duplicated variants as our first step, then we
filtered out variants based on genotype missingness (>0.05), MAF (≤0.01), and
variants that were not in Hardy-Weinberg equilibrium (Bonferroni correction p-
value < 1x10-20). After filtering, we split the cohort into cases and controls, and
applied  the  same filters  to  each subset  independently.  Lastly,  both  subsets
were merged to create a single cohort.
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We also performed a sample filtering step to exclude low-quality samples that
may introduce bias into the dataset. Specifically,  we removed samples with
gender inconsistencies, discrepancies in the reported gender of an individual in
the sample and their  actual  genetic sex as determined by their  genotyping
data, and samples with high levels of missingness (missing genotypes <0.02).
We then applied a quality control step to remove samples with ancestry and
relatedness outliers to define a homogeneous population with similar ancestry.
Firstly,  we  merged  each  cohort  with  1000genomes  (Phase3),  keeping  only
variants that were common to 1000genomes and the cohort. Then, we applied
a quality control step to remove variants based on genotype missingness (>
0.001), minor allele frequency (≤0.01), and variants that were not in Hardy-
Weinberg equilibrium (Bonferroni correction p-value < 1x10-6). We performed
LD pruning using the PLINK software, using a windows size of 1000kb, a step
size of 100 variant count, and 0.2 as the r² threshold.
With the resulting dataset, we constructed the distance matrix to evaluate the
genetic  relatedness  among  individuals  in  a  dataset.  We  used  the  triangle
algorithm of PLINK1.9 to generate a lower-triangular matrix. We then estimated
the multidimensional (MDS) scale coordinates and generated PCs to remove
ancestry outliers from each cohort.
Next, we generated a genetic relationship matrix (GRM), which quantifies the
genetic  similarity  or  relatedness  between individuals  in  a  dataset  based on
their  genotypes.  We  discarded  individuals  with  a  relatedness  >  0.125  to
remove  close  relatives  from  the  dataset.  Finally,  we  performed  PCA  using
SmartPCA package and removed additional outliers.
Then, we performed a second variant filtering step using the same criteria as in
the first on the dataset generated after sample filtering.
An additional step was implemented specifically for the X chromosome in order
to ensure the quality of the data. For this step, we performed a filtering process
separately  for  the  two  sexes.  Variants  were  filtered  based  on  minor  allele
frequency (MAF) (≤0.01) and genotype missingness (≥0.05%). Next, variants
not  in  Hardy-Weinberg  Equilibrium  (p-value  <  1x10-20)  were  filtered  out  in
female  non-affected  samples.  Finally,  variants  that  showed  differences  in
frequency and genotype missingness between non-affected males and females
were excluded (p-value < 1x10-6).
It  is  worth noting that during the QC process of the UK Biobank cohort,  we
chose not to perform sample filtering based on relatedness and ancestry. This
decision  was  made  based  on  our  selection  of  the  Scalable  and  Accurate
Implementation  of  Generalized  mixed  model  software  (SAIGE)111 for  the
association analysis, which can effectively account for family structure within a
dataset  and  adjust  for  population  stratification,  mitigating  the  potential
confounding  effects  of  ancestry  in  the  association  analysis.  This  decision
allowed  us  to  include  a  larger  number  of  individuals  in  the  study,  which
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ultimately increased the statistical power of our analysis by providing a larger
sample  size  and  increasing  the  likelihood  of  identifying  true  genetic
associations.

3.4 Phasing, imputation and association

3.4.1 Phasing, imputation, and association in dbGaP cohorts
The  phasing,  imputation  and  association  steps,  which  comprise  the
chromosome X wide association analysis (XWAS), on the cohorts obtained from
dbGaP were performed using GUIDANCE154. This tool consists of an integrated
framework that is able to perform haplotype phasing, genotype imputation and
association testing of large datasets in a single execution, as well in a modular
way with  optional  user  intervention.  For  each of  the aforementioned steps,
GUIDANCE allows the use of different software. Additionally, one of the major
advantages of this tool is that it allows to use multiple reference panels for the
phasing and imputation process and to finally obtain the combined results.
In addition to its flexibility, a major advantage of GUIDANCE is that it allows for
the distribution of all steps into different modules. For our XWAS analysis, we
utilized two modules:

• The first module includes the data pre-processing and phasing processes.
The  software  selected  for  phasing  was  Shapeit2202 (v2.r727).  For  this
process, 4 nodes with 48 CPUs were used for those cohorts containing
both  male and female samples.  For  single-sex cohorts,  we required 5
nodes with 48 CPUs due to scalability considerations in GUIDANCE.

• The  second  module  includes  the  processes  of  imputation,  post-
imputation  QC  and  association.  First,  to  overcome  potential
computational  limitations,  we  adopted  a  strategy  of  splitting
chromosome X into 1MB chunks for imputation. We used the IMPUTE2
(v2.3.2)  with  five  reference  panels;  1000G  phase326,  GCAT1,  HRC  131,
GoNL140 and UK10K30. After imputation, we performed a post-imputation
quality control step and only considered imputed variants with infoscore
≥0.7 and MAF >0.001 for the association analysis. Finally, the association
process was performed using SNPtest software133,144 (v2.5),  considering
an additive model, sex, and year of birth as covariates. In addition, for
cohorts  with  both  female  and  male  individuals,  imputation  and
association was performed separately in the two sexes. For this process,
10  nodes  with  48  CPUs  were  used  for  cohorts  with  less  than  10,000
individuals. Cohorts with a larger sample size were analyzed using 50
nodes with 48 CPUs.
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3.4.2 Phasing, imputation and association in UK Biobank database
Due to the vast size of the UK Biobank cohort, implementing the analysis with
GUIDANCE was infeasible because of the significant computational demands of
such a large dataset, including memory issues and extensive computing time.
For the UK Biobank analysis, we initially separated the cohort by gender and
then performed all subsequent steps separately for males and females. We first
performed the  haplotype  phasing  process  using  Shapeit4195 (v4.2.0),  a  tool
designed for the efficient analysis of large-scale biobanks. For imputation, first
we split chromosome X into 1MB chunks, then we used IMPUTE2 and the five
reference panels listed above. As in the post-imputation quality control of the
dbGaP cohorts, only imputed variants with info score ≥0.7 and MAF >0.001
were considered for association. Then, we performed a merge of the chunks to
obtain a final imputation file for each of the sexes. Finally, we estimated which
variants were not in Hardy-Weinberg equilibrium (Bonferroni correction p-value
< 1x10-6). These variants and those that gave missing call in the imputation
were removed from both the male and female imputation data.
Single  variant  association  test  was performed using SAIGE (version  0.43.2).
This  tool  uses  saddle  point  approximation  to  account  for  case-control
imbalance, a very common characteristic in large-scale datasets, and is also
able to take into account relatedness by creating a genetic relationship matrix.
The SAIGE association process involved two main steps, which were executed
separately for males and females. In the first step, the null logistic mix model
was fit to generate a genetic relationship matrix (GRM) using genotypic data in
PLINK format (.bim, .bed, .fam) and a phenotype file containing sample IDs and
co-variates. The results produced a Generalized linear Mixed Model Association
Test (GMMAT) file in .rda format and a variance ratio file in .txt format, which
were both essential  for the second step.  The first  step was executed using
default  parameters,  4  CPUs  per  execution,  and  with  the  leave-one-
chromosome-out (LOCO) option set to false. 
In the second step, single-variant association tests were conducted for each of
the 564 phenotypes analyzed in our UK Biobank study. To have the necessary
formats to execute the SAIGE association analysis, we converted our imputed
date  into  .bgen  format  using  QCTOOL  software  (v2.0.6).  This  conversion
process  required as  input  file  the imputed data and a  sample file  with  the
identifiers (IDs) of each sample. Before conversion, we performed a hard-calling
process to obtain genotypes from the genotype probabilities generated by the
imputation step using a hard-call-threshold of 0.49 in the PLINK software. Then,
since the conversion process involved very high computational resources, we
split  each of  the  imputed data  files  into  eight  chunks.  The conversion  was
performed  with  QCTOOL203 using  default  parameters  and  the  flags  --infer-
ploidy-from sex and  --asume-chromosome X, indicating that the chromosome
to be converted was the X chromosome, generating .bgen files in 8-bits format.
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Subsequently,  we  merged  the  eight  chunks  for  each  sex  back  into  a
single .bgen file format using cat-bgen module included in the BGEN library
package203.  Finally,  each  file  was  indexed  using  the  bgenix  module  as
recommended  by  its  developer,  obtaining  a  .bgen  file  and  a  bgen.bgi  file
including the imputed data for each of the sexes.
Using the step2_SPAtests.R SAIGE package, we conducted the association test
separately for both sexes and 564 phenotypes, using 3 CPUs per execution.
The input files for the analysis  were the .bgen and .bgi  files,  a sample file
containing phenotypic information, and the GMMAT model and variance ratio
files generated in step 1. The minor allele frequency threshold was set to 0.001
and the minimum number of allele count was set in 3 in order to filter out
variants. The additional --IsOutputAFinCaseCtrl=TRUE –LOCO=FALSE flags were
use in the process. 

3.5 Meta-analysis
We conducted a meta-analysis of summary statistics from different cohorts for
the same complex trait,  obtained in  the previous step,  using Genome-Wide
Association  Meta-Analysis  software  (GWAMA)204 (v2.2.2).  Male  and  female
summary statistics  from the same cohort  were treated as independent and
meta-analyzed.  GWAMA was  executed  using  the  –sex flag,  running  gender-
differentiated and gender-heterogeneity analysis and –indel_alleles, allowing to
include INDELs in the analysis using 10 CPUs per task. 
Two scenarios  were  considered in  building  the  meta-analysis  statistics:  i)  a
given genetic variant has the same disease risk effect in both sexes; ii) a given
genetic  variant  may  have  different  effects  in  males  and  females,  including
unique sex-specific effects, effects of different magnitudes, or opposite effects.
In both scenarios, we assumed that the effects were fixed across the different
cohorts.

3.6 Calling of significant loci
To determine the significance of a signal found in the X chromosome, we first
established a  significance threshold  (p-value).  We estimated the p-value  by
correcting for the number of independent tests performed using the Bonferroni
method to account for multiple testing. The number of tests was equivalent to
the total number of loci or independent recombination blocks present on the X
chromosome.
To  calculate  the  number  of  independent  tests,  we  performed  LD  pruning
(r²=0.8) on the imputed data from three cohorts in dbGaP and the imputed
results  from  UK  Biobank  using  PLINK  software.  To  be  as  conservative  as
possible in the generation of our threshold, we selected the largest number of
independent blocks, which was obtained by analyzing the UK Biobank data.
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To  validate  the  methodology  employed  in  our  X  chromosome  analysis,  we
carried out the same process at the whole-genome level, using the imputed
array data from the GCAT project (section 2.1).  We obtained the number of
independent blocks by performing LD pruning (r²=0.8) on the imputed data
using  PLINK  software  and  calculated  the  whole-genome-wide  significance
threshold. We then compared this threshold to the standard threshold used in
GWAS (5x10-8) to determine if they were equal.
The  chromosome X  p-value  threshold  that  we  calculated  was  used  as  the
overall threshold for calling significant loci in the entire project We identified
four different types of loci: loci from significant variants in both sexes, loci from
significant variants in males only, loci from significant variants in females only,
and  loci  from significant  variants  in  both  sexes  with  different  directions  of
effect. Loci were built taking the lead variant, the variant with the lowest p-
value, and adding a window of 125,000 bp upstream and downstream from its
position. 

3.7 Replication of the obtained loci
The next step was to determine whether the disease-associated loci discovered
(i) had been previously described and reported in the GWAS Catalog database;
(ii) had been found in previous UK Biobank analyses; (iii) could be replicated
between the same phenotypes from dbGaP and UK Biobank.

3.7.1 Loci discovered against the GWAS Catalog database
We used the GWAS Catalog database205 (version 1.0, release 25-02-2021), a
consistent, searchable, displayable and freely available database of SNP-trait
associations.
First,  we generated a list of proxies (r²≥0.2) for each statistically significant
variant  present  in  our  summary  statistics  using  Ldlink  software
(https://ldlink.nci.nih.gov).  Then, as GWAS Catalog is annotated on the hg38
reference genome and our analysis was done on hg19, we performed a liftover
of the obtained proxies to enable the match to be feasible. The liftover process
was carried out using the liftover tool available in the University of California
Sant  Cruz  (UCSC)  Genome  Browser  (https://genome.ucsc.edu/cgi-bin
/hgLiftOver).
We  then  matched  the  proxies  against  the  GWAS  Catalog  and  determined
whether the trait to which the variant was associated in the GWAS Catalog was
the same or directly related, considering the phenotype description, to the one
analyzed in our project. If the signal and the phenotype matched, we noted the
locus as previously described. If not, we noted it as a new discovery.
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3.7.2 UK Biobank loci vs PankUKBB project
We compared our  findings  in  UK Biobank with  the PanUKBB project206.  This
project conducted genome-wide association studies using UK Biobank on over
7,000 phenotypes, including binary and quantitative traits, generating publicly
available  summary  statistics.  The  summary  statistics  were  downloaded  as
explained by their developers (https://pan.ukbb.broadinstitute.org/downloads).

First, we curated the phenotypes present in the PanUKBB project's summary
statistics and matched the phenotypes studied in our analysis with the binary
phenotypes  from  PanUKBB,  using  their  phenotype  code,  phenotype  source
(ICD10 codes, verbal interview, touchscreen surveys), and description.

To generate the list of loci from the summary statistics of the PanUKBB project,
we  followed  the  same  strategy  as  in  our  project  (section  3.6).  Since  the
PanUKBB project is a whole-genome analysis project, the significance threshold
correcting  for  multiple  testing  must  take  into  account  the  number  of  tests
performed, including the entire genome. Therefore, we used the standard p-
value used in GWAS (5x10-8) as the threshold. After obtaining all the significant
variants from the summary statistics and creating the loci, we compared them
with our findings in the UK Biobank analysis.

To  compare  the  list  of  PanUKBB  loci  with  our  results,  we  used  genomic
coordinate overlap between loci  to  determine whether  they were the same
locus. This allowed us to identify the number of loci that overlapped in both
projects, the number of loci found exclusively in PanUKBB, and the number of
loci found only in our project. Finally, for loci present in PanUKBB but not in our
discovery list, we checked whether there were differences in the number of
samples analyzed in each project for that phenotype.

3.7.3 UK Biobank and dbGap discoveries replication

To determine whether there was replication between the results obtained for
the same phenotype present in both the UK Biobank and dbGap cohorts, we
followed several steps. Firstly, we matched the phenotypes of each database
based on their description and characteristics. Next, we matched all the loci
discovered in these phenotypes based on their genomic coordinates. Finally,
we  considered  a  locus  to  be  replicated  if  its  positional  range  overlapped
between the two sources for the same phenotype.
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4 Fine mapping and gene-mapping analyses

4.1 Fine mapping analysis

We performed a fine mapping analysis in order to obtain a credible set for each
of the loci found. This process consists of generating a list of variants among
which the causal variant is statistically very likely to be found. For our study,
we used a threshold of a 95% probability of containing the causal variant to
define the credible set of variants for each locus.
The first step consisted of creating a correlation matrix of the variants present
in each of the summary statistics obtained from the meta-analysis. To do this,
we used the LDstore2 software207 (v2.0), which allows us to store and estimate
linkage disequilibrium correlations. This process requires as input a master file
containing  (i)  a  file  with  the  variants  present  at  the  locus  using  a  1.5  MB
window  downstream  and  upstream  of  the  lead  variant,  their  genomic
coordinates  and  allele  information;  (ii)  an  imputed  cohort  from  which  to
establish the correlation matrix in .bgen format and its index in .bgi format; (iii)
the  number  of  samples  present  in  the  cohort;  (iv)  a  sample  file  with  the
identifiers of each of the samples. We used the imputed data from UK Biobank
as the reference cohort for the estimation of the matrix, regardless of whether
the locus came from a dbGaP analysis or from UK Biobank.

LDstore was run with –write-bcor, --read-only-bgen and –bcor-to-text commands
using 48 CPUs per task. As output, a bcor file (v1.1) which consists of binary
files that store SNP correlations together with information about the SNPs in the
same  file;  and  LD  file,  which  contains  SNP  correlation  matrices,  were
generated.
The second step was to create the credible sets from the files generated in the
previous  step  for  each  of  the  loci  identified  using  the  Finemap  software207

(v1.4). This software allows us to identify causal SNPs by applying a shotgun
stochastic  search  algorithm.  The  process  requires  as  input  a  master  file
containing (i) a file with the same variants that have been used in the process
of creating the correlation matrix,  including the id of  the variants,  genomic
coordinates, alleles, MAF, beta and standard error; (ii) the LD file generated in
the previous step; and (iii) the number of samples. As output we obtained (i) a
CONFIG  file,  which  contained  the  posterior  summaries  for  each  causal
configuration  and  each  independent  variant  one  per  line  ordered  by  the
posterior probability of that configuration being the causal configuration; and
(ii) a CRED file including the 95% credible sets for each causal signal in the
genomic region.
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4.2 Gene mapping

Based on  the  results  obtained  in  the  fine mapping,  we carried  out  a  gene
mapping process with the purpose of linking each locus discovered to a gene.
First, we filtered the different credible sets for each locus, retaining the credible
set  or  configuration  with  the  highest  posterior  probability  of  containing the
causal variant. These configurations were ranked in the first position and could
include between 1 to 5 variants.
These  variants  were  then  assigned  to  a  gene  using  three  different
methodologies to ensure robustness, complementary, and cross-validations of
the results:  (i)  using the g:SNPense module of  gprofiler (https://biit.cs.ut.ee/
gprofiler/snpense);  (ii)  using  Variant  Effect  Predictor,  from  Ensembl
(http://www.ensembl.org/Tools/VEP), with an upstream/downstream annotation
distance  of  50kb  from  the  variant;  (iii)  checking  each  variant  manually  in
Ensembl208 with an overlap window of 50kb. In the case that the variants of one
credible set mapped more than one gene, the gene that had been mapped by
more variants was selected. If the number of variants was the same, the gene
containing the variant with the highest individual probability of being causal
was selected.

5 Preliminary sex differences analyses

During the process of identifying loci associated with the X chromosome, we
found that some of them were only significant in one of the two sexes. In this
analysis, we will study this phenomenon from two points of view.

5.1  Impact  of  heterozygous  genotypes  in  females  on  association
analysis.

The impact of heterozygous genotypes in females during association analysis is
an  important  factor  to  consider  in  X  chromosome  studies.  Unlike  the
autosomes, where both sexes have two copies of each chromosome, females
have two copies of the X chromosome while males have only one. This is due to
the fact that males inherit one X chromosome from their mother and one Y
chromosome from their father, while females inherit one X chromosome from
each  parent.  As  a  result,  males  are  hemizygous  for  X  chromosome,  while
females  are  homozygous  or  heterozygous  depending  on  whether  their  X
chromosomes carry the same or different alleles, respectively.

We  investigated  the  impact  of  heterozygous  genotypes  in  females  by
conducting  a  simulation  analysis  using  the  imputed  data  from  the  female
cohort in UK Biobank. In this analysis, we replaced all heterozygous genotypes
(0/1) with a missing call (./.), simulating the scenario observed in males. We
then repeated the association analysis using SAIGE (as described in section
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3.4.2) for each of the 564 phenotypes previously analyzed in UK Biobank. Loci
were called as outlined in section 3.6, and the resulting loci were compared to
those obtained in our standard analysis to evaluate the impact of heterozygous
genotypes in females on the association results.

During the comparison, we evaluated (i) the disappearance of significant loci
found only in females in the standard analysis; (ii) the discovery of any new loci
not previously identified in the standard analysis; and (iii) the identification of
any significant loci found in males but not in females in the standard analysis
that were now significant in females in the new analysis.

5.2 Pathway enrichment analyses

First, we divided the genes obtained during gene mapping (section 4.2) into
three lists depending on whether the locus was significant only in females, only
in males or in both sexes. Next, we determined whether there were biological
pathways that were enriched in these gene lists. We performed the enrichment
analysis  process  with  the  g:GOST  module  of  g:Profiler
(https://biit.cs.ut.ee/gprofiler/gost).  For  this,  we  used  a  custom gene  matrix
transposed file (GMT) including only the genes present on the X chromosome
and all the biological pathways present in g:Profiler database. A value of 0.05
was  used  as  threshold  and  Benjamini-Hochberg  false  discovery  rate  (FDR)
method was used for multiple testing correction. Biological pathways that were
significant with the gene listing of one sex and not with the listing of the other,
or  both  sexes  together,  were  determined  to  be  pathways  that  were
differentially affected between sexes.
In addition, we determined if there was any relationship between the significant
signals  found  only  in  one  sex  and  the  X-chromosome  escape  inactivation
phenomenon in females. To do this, we first created a list of genes that have
been reported to escape X-chromosome inactivation by different studies162,166.
We then created an "artificial'' biological pathway in GMT format including this
list of genes. Finally, we determined if this artificial pathway was enriched in
this list gene more than would be expected by chance. To do this, we used
g:GOST with the same parameters above mentioned.

Finally, in order to increase the power of our analysis, we decided to rerun the
study including the genes obtained from the loci that met the following criteria;
(i)  the  p-value  obtained  in  the  meta-analysis  of  males  and  females  was
significant (p-value < 2.5x10-07), (ii) the p-value obtained from looking for sex
differences was suggestively  significant  (p-value < 1x10-05),  and (iii),  the p-
value from the separate sex analysis was suggestively significant in one sex
but not in the other (male/female p-value < 1x10-05).
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1 Development of a comprehensive structural variant haplotype
map from high-coverage whole-genome sequencing (GCAT|panel)

This section contains the results of the first of the two main blocks of this thesis
and covers the identification and classification of germline variants (including
SVs) within a population cohort of Iberian individuals, to then phase them and
generate  the  first  comprehensive  haplotype  reference  map  of  the  Iberian
population  from whole  genome sequencing  (WGS).  This  study  was  done  in
close collaboration with Dr. Valls from our group and Dr. Galván member of
Rafael de Cid's group at the Germans Trias i Pujol Research Institute (IGTP),
which whom I share co-first authorship in the resulting article1. 
In brief, I here describe the main results of this study, focusing on the parts
where I most contributed. These parts, as explained in thesis trajectory block,
include  the  design,  benchmark,  and  development  of  a  comprehensive
methodology  for  the  calling  of  all  types  of  germline  variants  from  whole
genome;  followed  by  the  generation  of  the  final  genotypes;  and  the  final
construction of  the haplotype reference panel.  Each one of these steps has
several rounds of validation and testing. 

1.1  Generation  of  a  comprehensive  variant  identification  and  filter
strategies

We have designed, evaluated, and implemented a comprehensive strategy for
detecting, classifying, and genotyping a broad range of germline variants from
short-read  Illumina  sequencing  data.  Our  approach  particularly  emphasizes
identifying and sub-classifying SVs, including deletions, insertions, inversions,
duplications, translocations, and mobile element insertions (MEIs).
As outlined in the methods section, in order to select the most suitable variant
callers for our study, we conducted several  comparative analyses to assess
their accuracy and recall in detecting and genotyping germline variants. We
then integrated a logistic regression model (LRM) to combine the results of the
variant callers, maximizing both precision and recall.
During  this  process  we  employed  two  reference  samples  to  evaluate  the
performance of the variant callers. The first sample was an  in silico sample
containing  a  controlled  set  of  variants,  while  the  second  was  the  GIAB
Consortium sample NA12878, which has a set of validated variants.
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1.1.1 Benchmark of variant callers detecting SNVs and INDELs

We carried  out  a  thorough  evaluation  of  five  different  variant  calling  tools
(methods section 1.2.1) to identify the most reliable and efficient combinations.
Our  assessment  was  based  on  several  metrics,  including  precision  and
sensitivity, as well as computational requirements. For this, we executed the
five tools on the GIAB sample and calculated their corresponding precision and
recall. After analyzing these results, we selected the three top performers, as to
call efficiency and better use of computing resources. We excluded Platypus
and Varscan2 software from our selection as they demonstrated the lowest
performance during our benchmarking analysis.
After  identifying  the  most  appropriate  variant  callers  to  use,  we  devised  a
strategy  by  combining  the  results  of  all  three  software.  This  method  was
designed to consider a variant as valid only if it was detected by at least two of
the three selected software. The application of this filter allowed us to minimize
the number of false positives and enhance the precision of our variant calls
(Table 4).

Table 4. SNVs and INDELs benchmark using different variant callers and combination
strategies. a)  Variant calling metrics in SNVs detection using Genome in a Bottle Sample
(GIAB) as a gold standard.  b) Variant calling metrics in INDELs detection using Genome in a
Bottle Sample (GIAB) as a gold standard

1.1.2 Benchmark of variant callers detecting SVs

Whereas the detection of SNVs and INDELs is fairly solved, the detection of SVs
proved to be a more challenging task due to the nature of the variant, the
difficulty  in  mapping  affected  reads,  and  the  limitation  of  callers  to  detect
those. Our analysis showed that SVs were detected by different combinations
of variant callers as shown in Figure 10, making it essential to combine the
results of different tools for optimal results.
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Variant caller metrics from 
GIAB sample analysis 

(SNVs)

Variant caller metrics from 
GIAB sample analysis 

(INDELs)
Recall Precision

Variant caller  (%)     (%)
Haplotype Caller 91,90    96,92
Deepvariant 95,50    95,93
Strelka2 95,30    96,88
Platypus 84,86    97,15
Varscan2 95,49    96,76
Combination top 3 95,50    96,93

Recall Precision
Variant caller   (%)      (%)
Haplotype Caller 88,15    95,82
Deepvariant 89,16    96,02
Strelka2 88,00    95,93
Platypus 66,91    70,05
Varscan2 83,27    58,22
Combination top 3 89,25    95,94

a) b)



Figure 10. Structural variant detection patterns according to the programs used.
Detections  were  estimated  using  the  in  silico sample  as  gold  standard.  Only  the  first  30
patterns with more coincident SV calls are shown. Lines and dots indicate the programs used
and  bars  the  number  of  overlapping  calls  resulting  from  that  combination.  Right  colored
horizontal bars indicate the total number of SVs detected by each caller.

Initially, we evaluated the performance of 11 variant callers, but two of them,
Pamir  and  Genome  Strip,  were  excluded  due  to  computational  difficulties
during their execution. In order to maximize the detection of SVs, we designed
a LRM that combined the results of the remaining nine variant callers. The LRM
approach was utilized to exploit the individual strengths of each variant caller
and  filter  out  results  based  on  a  score  derived  from  multiple  parameters,
including the precision and recall of each variant caller, the size and type of
variant detected, and the number of software that detected the break-point. By
integrating the results of multiple variant callers through this LRM, we were
able  to  significantly  improve  the  overall  accuracy  and  precision  of  our  SV
detection (F-score=0.9) compared to other filtering methods which consisted of
considering a variant as valid when it was detected by at least two (F-score =
0.83), three (F-score = 0.79), or four (F-score =0.72) variant callers. (Figure
11a). Additionally,  we estimated the F-score for each strategy based on the
variant size, observing that the LRM remained the strategy with a higher F-
score in all size windows (Figure 11b).
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Figure  11.  Overview  of  the  detection  performance  of  different  strategies  and
filtering results from multiple SV callers. a)  Each strategy is plotted according to the
recall and precision ratios (F = F-score) using the  in silico sample as benchmarking dataset.
The LRM, with a F-score of 0.9, outperformed other commonly used strategies that are based
on the number of coincident callers. The confidence interval for each case is represented by
colored area of each strategy. b)  Comparison of performances (F-score) of different merging
and filtering strategies according to SV size.

1.1.3 Benchmark of the genotyping process

Having  high  genotyping  accuracy  is  crucial  when  creating  a  haplotype
reference panel because it  directly impacts the quality and reliability of the
results obtained from subsequent genetic analyses. With the aim to achieving
high genotyping performance, we evaluated the genotyping accuracy of each
variant caller and the LRM combination approach. To achieve this, we employed
the in silico sample as a reference, which comprises variants with established
genotypes, and contrasted the genotype calls from each software against those
found  in  the  sample.  While  the  genotyping  process  for  SNVs  and  INDELs
exhibited a low error rate (≈ 5%), this was not the case for genotyping SVs
(Figure 12a). In the case of SVs, once the performance of each independent
variant caller in the genotyping process was established, we integrated these
results into the previously designed LRM. In this way, the model prioritizes and
combine  variant  callers  with  higher  individual  accuracy  in  determining  the
correct genotype. This approach resulted in a reduced genotyping error rate
(5%)  compared  to  other  filtering  methods,  which  involved  considering  a
genotype as valid if it was called by at least two (error = 14%), three (error =
12%), or four (error = 11%) variant callers (Figure 12b).
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Figure 12. Comparative overview of the genotyping accuracy. a)  Genotype error  of
each individual SV caller. b) Genotype error from the LRM and strategies based on the number
of  coincident  callers.  LRM  showed  a  lower  genotype  error,  outperforming  the  number  of
coincident callers’ strategies.

1.2 Evaluation of the GCAT cohort data quality

The development of the haplotype reference panel was a collaborative effort
with the GCAT-Genomes for life project. The project provided us with two types
of genetic data: 5,489 genotyping samples and, 808 Illumina whole-genome
sequencing (WGS) samples at high coverage (30X), from which we generated
the  final  haplotype  map.  The  GCAT  cohort  was  constructed  by  gathering
volunteers  from  different  regions  in  Catalonia  and  ensuring  a  balanced
representation of genders.
To obtain a high quality and homogeneous cohort, we first performed a quality
control of the BAM files, resulting in the exclusion of one sample as it failed to
meet the alignment quality control metrics (methods section 1.2.1). Next, we
conducted  a  principal  component  analysis  (PCA)  to  remove  samples  from
populations  genetically  distant  from the  Iberian  population.  In  this  filtering
process, we removed 18 samples identified as belonging to another population
(Figure 13a and 13b). To avoid including samples with familial relatedness that
could cause deviations in the subsequent analysis, we performed an Identity by
Descent  (IBD)  test.  We identified  two pairs  of  related samples,  one pair  of
siblings and one pair of first cousins and eliminated the sample with lowest call
rate  from  each  pair  (Figure  13c).  Lastly,  as  a  final  analysis  to  ensure  a
homogeneous cohort, we conducted a final PCA on the remaining samples and
removed two samples using the mean ± 4sd criteria (Figure 13d).
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Figure  13.  Evaluation  of  GCAT  cohort  data  quality.  Samples  labeled  with  X  were
discarded samples.  a)  Principal  component  analysis  (PC1,  PC2,  PC3)  of  the  GCAT samples
against  1000  Genomes.  b)  Principal  component  analysis  (PC1,  PC2)  of  the  GCAT  samples
against PROPES project.  c) Identity by Descent plot.  d)  Principal component analysis to test
GCAT cohort homogeneity. 
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1.3 Description of the GCAT variant set

Following the application of quality control measures to the GCAT cohort, we
retained for analysis 785 WGS samples, on which we applied our variant calling
strategy explained above. As a reminder, this strategy encompassed a multi-
variant calling process designed to enable the detection of SNVs, INDELs, and
SVs,  along  with  the  use  of  LRMs  to  filter  out  false  calls  and  enhance  the
accuracy  of  the  variant  calls  while  simultaneously  reducing  the  genotyping
error.
By  executing  this  strategy,  we  obtained  a  final  file  containing  the  set  of
variants  after  applying  the  filtering  rules  of  the  LRM model  (variants  were
considered positive when the score was > 0.5),  along with the genotype of
each sample for each variant contained in the set. (Table 5)

Table 5. Total count of variants for each variant type in both the raw and final sets.
The raw set column includes the number of variants detected for each type without applying
the filtering strategy. The final set column contains the number of variants of each type after
applying the LRM to keep those variants considered as valid (score > 0.5).

Upon application of the logistic regression model filtering process, the final set
was composed of a total of 35,431,441 variants, including 30,325,064 SNVs,
5,017,199 INDELs,  and 89,178 SVs (Figure 14).  SVs were found to exhibit  a
broad range of sizes, with an average size of 291 base pairs and a diverse
distribution depending on the specific type of variant (Figure 15). Moreover, in
terms of population frequency, these variants showed a varying distribution,
with 21% of them being classified as common variants (MAF > 0.05), 10.12%
as low-frequency variants  (MAF > 0.01),  and 69% as rare variants  (MAF <
0.01).  Among these rare variants,  singletons (MAF < 0.0125) accounted for
42.3% of the total, while doubletons (MAF < 0.025) represented 7.88% of the
total number of variants.
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Variant type RAW set (n) Final set (n)
SNVs 58,529,907 30,325,064
INDELs 10,452,204  5,017,199
DEL  1,359,594   33,244
DUP   674,817    6,269
INS   352,939   12,782
INV   228,091   10,115
MEI   170,735   18,779
TRA   117,048    7,989



Figure 14. Pass rate of detected variants by variant type. Each bar represents a variant
type. The lower part of the bar shows the total number of valid variants. The upper part of each
bar shows the percentage of variants that have been accepted against the total number of
variants detected (pass rate).

Figure 15. Distribution of SV type according to their genomic sizes. MEI are mainly
found between 100bp and 10kb. Deletions are similarly distributed from 1kb to 10kb in size,
with the number of variants decreasing with increasing size, reaching a maximum of almost
1Mbp.
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The results  of  our study aligned with what has been previously reported in
other  large-scale  whole-genome  sequencing  projects.  Although  we  cannot
discard that this distribution derives from the methodology used, we found that
deletions  were  the  most  frequent  type  of  SVs,  accounting  for  37.3% of  all
variants, followed by MEIs at 21.1%, insertions at 14.3%, inversions at 11.4%,
translocations at 8.8%, and duplications at 7.1%. (Figure 16)

Figure 16. Comparative overview of the SV type number and distribution across the
GCAT, 1000G, GnomAD and GoNL catalogs.  The average number of SVs per genome is
similar  between  the  GCAT (30x  coverage),  GnomAD-SV  (30x  coverage)  and  GoNL  (11-13x
coverage) projects. This number is lower in the 1000G project (3-5x coverage). In reference to
the type of variant detected, the percentage of insertions and deletions is similar to that of
GnomAD-SV, while the difference in the percentage of MEI observed is due to the fact that
GnomAD-SV does not include this type of variant in its analysis.

Regarding the number of  variants per genome, we identified an average of
3.52M  SNVs  (SD=24,983),  606,336  INDELs  (SD=8,060)  and  6,393  SVs  (SD
=222) per individual, demonstrating consistency across the cohort. Regarding
the  distribution  of  allele  frequency  in  an  individual  genome,  the  most
represented  were  common  variants  at  85.28%,  followed  by  low-frequency
variants at 8.43% and rare variants at 5.21%.
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1.4 Validation of the GCAT variant set

To  validate  the  variants  detected,  as  well  as  the  number  of  new  variants
contributed  by  our  study,  we  performed  comparative  and  experimental
approaches.
We employed two different validation strategies to ensure the accuracy and
reliability of SNVs and INDELs. Firstly, we cross-checked our variant calls with
those obtained in the genotyping array analysis (n= 2x106 variants) of a subset
of 570 samples also included in our initial 785. By comparing the results of our
variant  calls  to  the  genotyping  array  data,  we  were  able  to  confirm  the
presence  of  the  variants  in  both  datasets,  as  well  as  determine  the
concordance of genotypes for each variant. The comparison showed that our
method had a detection concordance of 96% and 87% for SNVs and INDELs,
respectively. Moreover, our method displayed high genotyping accuracy, with
97% for SNVs and 96% for INDELs.
For our second validation strategy, we conducted a comparison of the SNVs
and INDELs included in the GCAT variant set (35.3M) with those present in the
dbSNP database  (Build  153.v).  We performed  this  comparison  by  matching
variants based on their chromosome, position, alternative allele, and reference
allele. This comparison revealed that 19.18% (≈ 6,78M) of our SNVs and INDELs
were  previously  unclassified  in  dbSNP.  Among  these  unclassified  variants,
84.32% were rare variants. Singletons and doubletons were the most frequent,
representing  34.25% and  22.32%,  respectively.  Interestingly,  we  found that
12.84%  of  common  SNVs  and  INDELs  were  not  yet  included  in  dbSNP,
potentially due to population-specific variants. (Figure 17a)
For the validation of  the accuracy and reliability of  SVs calls,  although it  is
particularly  challenging,  we  applied  two  specific  experimental  validation
strategies targeting deletions, duplications, and inversions. First, we employed
a Comparative Genomic Hybridization Array (CGH) methodology to analyze the
accuracy  in  detecting  large  deletions  and  duplications  (>20kb),  which  are
among the  most  challenging variant  types to  detect  using short  reads.  We
performed this analysis by randomly selecting five samples from our cohort
and using the NA1287 sample as a reference sample, as its list of deletions and
CNVs has been reported.  This  CGH analysis  revealed that  we were able  to
validate 76% of the detected deletions and 19% of the duplications in the five
selected samples.
Regarding  inversions,  we  compared  our  list  of  inversions  to  the  recent
benchmark dataset of the InvFEST193 project, which includes 59 inversions that
were experimentally validated in the European population. Our analysis showed
that 84% of the inversions present in InvFEST were also present in the GCAT
variant set, matching in both allele frequency and size.
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In order to study in  more depth the contribution of  our  set of  variants,  we
conducted a comparative analysis of the GCAT SVs set against various public
databases, including gnomAD-SV, 1000G, GoNL, HGSVC, DGV, and dbVar. This
analysis allowed us to determine the number of previously identified variants in
other databases and the number of new variants provided by the GCAT, based
on variant type and population frequency.
Our results showed that 61% (49,333) of the SVs in the GCAT set were new.
Deletions (n=32,697) had the lowest proportion of novel variants, with a total
of  13,057  (39.9%)  previously  unclassified  variants.  On  the  other  hand,
inversions (n=10,116) had the highest proportion of novel variants, with a total
of 9,652 (88.7%) new variants. (Figure 17b)
In  terms  of  population  frequency,  the  vast  majority  (88.3%)  of  the  novel
variants were rare (MAF < 0.01). As expected, the percentage of novel variants
with  common  frequency  (MAF  >  0.05)  was  the  lowest  in  the  comparison.
(Figure 17c)

Figure  17.  GCAT  variant  contribution  in  comparison  to  popular  datasets. 
a) Proportion of new and described SNVs and INDELs against dbSNP (v.153). Variants were
matched  considering  both  genomic  coordinates  and  alleles.  b) Proportion  of  new  and
previously  described  SVs  against  popular  datasets  distributed  by  SV  type.  Variants  were
matched by genomic coordinates considering a breakpoint error of ±1000 bp, SVs type and if
the size was available, 80% of reciprocal overlap. c) Proportion of new and previously described
SVs compared to popular datasets distributed by variant frequency.
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Finally,  in  order  to  determine  the  potential  to  provide  new variants  in  the
imputation process, and therefore the value of the GCAT SV set as a reference
panel, we compared the list of SVs in the GCAT set against the 1000genomes
and  GoNL  reference  panels.  This  comparison  showed  that  6,523  common
variants (MAF > 0.05), 5,913 low-frequency variants (0.01 > MAF > 0.05), and
63,722 rare variants  (MAF < 0.01)  included in  the  GCAT set  had not  been
previously described by any of the reference panels used in the comparison.
This represents a contribution of 76,158 new SVs to reference panels ready for
imputation.

1.5 Development of phasing and imputation strategies
With all  the  final  genotypes  generated for  all  the  785 individuals,  we next
defined haplotypes by phasing all the variants. To determine the most effective
phasing strategy, we established a cross-validation framework that relied on
imputation  results  as  the  evaluation  metric,  by  focusing  on  identifying  the
phasing strategy that would generate a haplotype panel capable of imputing
the highest number of variants with a high imputation quality (info score ≥
0.7).
In order to identify the optimal phasing strategy for the Iberian-GCAT catalog,
we generated several test reference panels of chromosome 22, including SNVs,
INDELs,  and  SVs.  To  achieve  this,  we  applied  different  phasing  strategies,
including  Shapeit2,  Shapeit2+MVNcall,  Shapeit2+PIRs+MVNcall,  Shapeit4,
Shapeit4+MVNcall, and Shapeit4+WhatsHap.
After  evaluating  all  the  mentioned  strategies,  we  determined  that  the
combination of Shapeit4 and WhatHap, which employs phase informative reads
(PIRs),  was  the  optimal  approach  for  phasing  SVs.  This  resulted  in  a  high-
quality haplotype panel that enabled the imputation of 98% of common SNVs,
92% of INDELs, and 90% of SVs observed in the variant calling of the same
samples imputed.
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1.6 Imputation performance and comparison against main reference
panels
Using  the  phasing  and imputation  approaches  mentioned,  we were  able  to
generate a complete and operational panel of Iberian haplotypes that includes
all variants detected in our 785 individuals.
To assess the performance and benefits of the GCAT haplotype reference panel
in enhancing genetic association studies, particularly in the case of SVs, we
conducted  a  preliminary  study.  First,  we  selected  95  samples  from  the
reference panel that also had genotyping data available. Then, we removed
these  95  samples  from  the  GCAT  haplotype  reference  panel,  obtaining  a
haplotype reference panel with 690 samples. Next, we imputed the genotyping
data  of  the  95  removed  samples  using  the  690-sample  panel.  Finally,  we
compared the imputation results of the 95 samples with the variant calling data
previously obtained for the same samples.
With this strategy, the median number of imputed SVs was 5,120 (SD = 50),
from a maximum of 6,393 SVs estimated per individual in the variant calling,
resulting in a 80% of imputation rate (variants imputed / variants called). Our
analysis showed a high level of genotyping concordance for common imputed
variants, with 99% (SD = 0.4) for SNVs, 97% (SD = 0.6) for INDELs, and 98%
(SD = 1.2) for SVs. (Figure 18a).
Additionally, to evaluate the imputation capability of the whole GCAT reference
panel in the context of other similar resources, we compared it against several
other reference panels, including 1000G, GoNL, HRC, and UK10K. To achieve
this,  we  imputed  the  GCAT  genotyping  array  with  the  different  haplotype
reference panels and compared the results of the imputation.
Our  analysis  revealed  that  the  GCAT  panel  was  able  to  impute  a  total  of
14,383,907 high-quality variants (info score ≥ 0.7) and MAF > 0.001. As shown
in figure 18b, in general, all the reference panels performed well in imputing
SNVs and INDELs, with the GCAT panel demonstrating a particularly high ability
to  impute  rare  INDELs.  However,  for  SNVs,  1000Genomes  and  HRC
demonstrated  the  highest  performance,  imputing  the  greatest  number  of
variants, including rare SNVs.
Regarding SVs,  the GCAT panel  was able to impute a total  of  23,179 high-
quality  variants.  Our  comparison  against  other  reference  panels  containing
SVs, 1000G and GoNL, showed that the GCAT panel outperformed both panels,
resulting  in  a  1.6,  2.7,  and  1.3-fold  increase in  the  number  of  high-quality
imputed  SVs  compared  to  1000g,  GoNL,  and  both  panels  combined,
respectively (Figure 18c).
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Figure 18. Imputation performance of the GCAT reference panel. a) Ternary diagram
showing the accuracy of genotype imputation by variant type and frequency, using genotype
calling  as  the  reference.  Each  genotype  state  per  sample  is  evaluated  using  three  dots.
Samples  with  high  concordances  between  genotype  imputation  and  genotype  calling  are
located at the vertices of the diagram.  b)  Bar graph showing the number and frequency of
imputed SNVs and INDELs (info score ≥ 0.7) using different reference panels and combined
approaches. c) Bar graph showing the number and frequency of imputed SVs (info score ≥ 0.7)
using different reference panels and combined approaches.

We further assessed the efficacy of the GCAT reference panel in imputing SVs
in various ethnic groups. To achieve this, we employed the publicly available
1000G genotyping array and selected 1880 individuals from 19 distinct ethnic
groups, grouped into four unique regions as defined in the 1000G data: Europe,
Asia, Latin America, and Africa.
Our results showed that while the European population had the highest number
of imputed SVs, as expected, the GCAT panel was also capable of imputing a
significant fraction of SVs in other ethnicities (Figure 19). Notably, the Latin
American population had the highest number of imputed variants compared to
Asia and Africa, largely comprised of low-frequency variants (MAF < 0.05) due
to its  mixed origins.  In  contrast,  most of  the imputed variants in  the other
populations  were  common  (MAF  >  0.05).  The  African  population  had  the
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highest number of imputed common variants, while the Asian population had
the lowest number of  imputed variants.  In general,  the results demonstrate
that although the GCAT haplotype reference panel is composed of European
samples, it exhibits a high imputation capability in more distant populations,
making  it  a  very  valuable  tool  in  imputation  studies,  regardless  of  the
population origin of the cohort.

Figure 19. SVs imputation performance of the GCAT reference panel across different
ethnic  groups. Consistent  with  expectations,  the  European  population  had  the  greatest
number of imputed variants. The Latin American population had the second-highest number of
imputed variants, with a significant proportion of low-frequency and rare variants. The African
population showed the highest number of imputed common variants. In contrast, the Asian
population had the lowest number of imputed variants, reflecting its greater genetic distance
from the Iberian population.

1.7 Preliminary association tests
Finally, using the GCAT array (n=4,448), we collaborated with Natalia Blay, a
member of Rafael de Cid's group at the Germans Trias i Pujol Research Institute
(IGTP), to conduct a preliminary genome-wide association study (GWAS) across
70  chronic  conditions  (number  of  cases  >  50).  First,  we  performed  the
imputation process with the generated reference panel and kept variants with
an imputation quality info score > 0.7. Then we performed the association step
obtaining 46 SV loci with a suggestive association after Bonferroni correction
(p-value < 1 x 10-6). The most remarkable finding was a rare AluYa5-element in
chr3  (g.49494276 49494600ins  (hs37d5),  MAF = 0.0013),  located  near  the
dystroglycan  gene  (DAG1)  and  associated  (P-value  =  9.84  ×  10−7)  with
Mononeuritis of lower limb (ICD-9 355) (Figure 20a). This variant was imputed
only  with the GCAT reference panel  (info  score = 0,98)  and experimentally
confirmed by Natalia Blay in all carrier individuals through PCR analysis (Figure
20b).
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Figure  20.  Genome-wide  association  analysis  using  GCAT  reference  panel  and
experimental  validation  of  the  AluYa5-element. a)  Locus  zoom  plot  of  the  signal
associated with mononeuritis of lower limb (ICD-9 355) (p-value = 9.84 × 10−7), showing the
lead  variant  in  purple.  b) Experimental  validation  of  the  AluYa5-element,  agarose  e-gel
electrophoresis of PCR products after amplification of Alu-insertion-specific DNA fragments from
blood DNA. Column 1: 100 bp DNA ladder marker (Life Technologies). Columns 2–5: Alu carriers
(EGA 04200, EGA 01901, EGA 13378, EGA 03940). Column 6: control sample (EGA 01399).
Electrophoresis analysis of Alu carriers show two-band amplicons (515 bp and 848 bp) detected
in Alu carriers (lanes 2–5) and one-band amplicon (515 bp) in control non-Alu allele individuals
(lane 6).

116



2 Recovering the role of the X chromosome in complex diseases

This section corresponds to the second part  of  my thesis,  where we aim to
recover and study the role of the X chromosome in complex diseases, which
has  been  mainly  neglected  due  to  methodological  issues.  This  study  was
conducted  alongside  Dra.  Salvoro,  with  whom  I  am  collaborating  on  the
preparation of an article that includes the results explained in this part.
In summary,  this  section will  present the main findings,  which include data
selection  and  screening  for  the  study,  the  development  of  a  strategy  for
chromosome X-wide association analysis (XWAS), and the comparison of results
against public databases and previous analyses. In this XWAS strategy, we will
use, among others, the haplotype map generated above in order to capture a
wider range of variability,  mostly through SVs and INDELs. Additionally,  this
section  features  a  preliminary  functional  analysis  through fine-mapping and
gene-mapping, enabling us to conduct a pathway enrichment analysis with the
goal of identifying differences between sexes.

2.1 Data collection and preliminary cohort screening

The  data  collection  and  preparation  processes  are  essential  steps  in  an
association study. Although the size of the cohort used is an important factor
that can affect the ability to detect associations, there are other characteristics,
such as the recruitment strategy of the samples analyzed, that can also play a
crucial  role.  This  is  why  we  have  made  a  deliberate  effort  to  incorporate
cohorts  from  different  sources  and  different  recruitment  strategies  in  our
project to avoid such biases.
The data used in this study were obtained from two primary sources: dbGaP
(https://www.ncbi.nlm.nih.gov/gap/)  and  UK  Biobank  (https://www.ukbio
bank.ac.uk/).  As explained in the methods section,  dbGaP contains genomic
and phenotypic data from disease-specific studies that have been diagnosed,
while UK Biobank is a large-scale population-based study that includes more
than 500,000 participants and obtains phenotypic information through surveys,
diagnoses, or self-reporting by individuals.
By  incorporating  a  range  of  cohorts  with  varying  recruitment  methods,  we
aimed to ensure that our results are robust and reliable and guarantee that are
not affected by inherent biases in recruitment strategies.
2.1.1 dbGaP cohorts
In  order  to  encompass  a  wide range of  phenotypes,  we initially  chose 169
dbGaP cohorts,  covering 90 distinct binary traits.  However,  as cohorts  were
produced by different research centers and could contain varying information,
we retained only those cohorts that fulfilled specific criteria. For example, we
ensured  that  the  genetic  data  contained  the  X  chromosome,  and  that  the
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phenotypic data were available. Cohorts that did not meet these criteria were
excluded.
In addition, because a large sample size is crucial for obtaining reliable results
in the association process, we determined that each phenotype should have a
combined sample size of over 4,000 individuals, including around 1,000 cases,
from all cohorts covering that phenotype.
After  carefully  scrutinizing all  the cohorts,  we selected a total  of  46 dbGaP
cohorts  covering  36  complex  traits  that  met  these  requirements  and  were
deemed suitable for our subsequent analysis (Table 6).

Phenotype Cohorts n Cases n Controls n total
Alcohol

dependency
phs000091; phs000125;

phs000425 3,980 2,710 6,690
Allergic Rhinitis phs000788 13,828 38,080 51,908

Alzheimer phs000168; phs000219;
phs000372; phs000496 5,009 3,982 8,991

Amyotrophic
Lateral Sclerosis phs000788 9,143 1,939 11,082

Asthma phs000788 9,192 38,080 47,272
Bladder Cancer phs000366 5,682 4,268 9,950

Breast Cancer
phs000147; phs000812;
phs000929; phs000975;
phs000305; phs001265

40,169 38,157 78,326

Cardiovascular
disease phs000788 14,997 10,457 25,454

Colorectal cancer phs001315; phs001415;
phs001856 22,834 21,328 44,162

Depression phs000788 7,244 43,817 51,061
Dermatophytosis phs000788 7,656 32,255 39,911
Type 2 Diabetes phs000788 6,957 16,565 23,522

Dyslipidemia phs000788 30,204 13,770 43,974
Gastrointestinal

cancer phs000361 3,316 1,948 5,264
Glioma phs000652; phs001319 5,261 6,455 11,716

Hemorrhoids phs000788 9,076 47,303 56,379
Hypertension phs000788 28,357 10,941 39,298

Hernia phs000788 6,274 28,425 34,699
Insomnia phs000788 3,959 40,330 44,289

Iron deficiency phs000788 2,444 53,935 56,379
Irritable bowl phs000788 3,066 43,732 46,798

Lung cancer
phs00093; phs000336;

phs000629; phs000716;
phs000753; phs001210

15,316 15,459 30,775

Lymphoma phs000801 3,627 1,485 5,112
Macular

degeneration phs000788; phs001039 20,778 35,216 55,994
Osteoarthritis phs000788 20,206 9,809 30,015
Osteoporosis phs000788 5,404 33,555 38,959

Pancreatic cancer phs000206; phs000648 8,562 7,021 15,583
Parkinson phs000126; phs000196;

phs000918; phs001172 8,963 9,188 18,151
Pharynx cancer phs001202 5,534 3,578 9,112
Prostate cancer phs000207; phs000306;

phs000487; phs00733;
23,426 21,599 45,025
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phs000812; phs000838;
phs000882; phs001120

Renall cell
carcinoma phs000351 1,166 3,219 4,385

Peripheral vascular
disease phs000788 4,321 11,054 15,375

Peptic ulcers phs000788 908 55,471 56,379
Psychiatric
diseases phs000788 8,583 41,644 50,227
Stress phs000788 4,276 38,969 43,245

Varicose Veins phs000788 2,476 53,903 56,379

Table 6. List of phenotypes included in the selected cohorts in dbGaP after quality
control. Table includes ID of the cohorts covering each phenotype, number of cases, number
of controls and total number of samples.

2.1.2 UK Biobank 
UK  Biobank  initially  consisted  of  a  total  of  7,000  phenotypes  which  were
obtained  from various  sources  including  electronic  health  record  data  from
national  health  registries,  self-reported  annotations  through  touch  screen
questionnaires or face-to-face interviews and medical examinations. 
First,  we  decided  to  limit  our  study  to  binary  case-control  phenotypes,
removing all  continuous phenotypes from the dataset. Next, with the aim to
reduce biases due to unbalanced case-control ratios, as well as trying to avoid
including phenotypes for which we do not have enough statistical  power to
detect a signal, we filtered the remaining list of binary traits by excluding those
with fewer than 1,000 cases.
Then, to ensure the least possible contamination of risk alleles within controls,
we meticulously selected cases and controls within the UK Biobank cohort. We
carefully  cleaned  controls  eliminating  samples  that  were  cases  for  other
diseases associated with the case definition. This meticulous selection aimed to
prevent the inclusion of individuals categorized as controls but presenting a
similar trait to the cases, which can lead to masking of signals.
After this thorough cleaning and screening process, a total of 564 binary traits
distributed  in  19 disease groups  were  deemed suitable  for  inclusion  in  our
analysis. (Figure 21)
Lastly, we performed a comparative check of the phenotypes from UK Biobank
to determine the total number of unique phenotypes that would continue for
downstream analyses. In this way, we determined if there were duplicate or
overlapping phenotypes within the cohort based on the phenotype description.
This  task  was  key  and  posed  a  challenge  due  to  the  differences  in  data
collection protocols, phenotype definitions, and study inclusion criteria.
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This observation led us to estimate that our study collectively, including dbGaP
and UK Biobank, encompassed a total of 477 unique binary traits. Regarding
overlapping phenotypes between dbGaP and the UK Biobank, we chose to treat
them as independent during the subsequent analyses given the distinct nature
of  their  recruitment  processes.  This  approach  ensures  that  potential
discrepancies  between  cohorts  do  not  compromise  the  overall  validity  and
consistency of our findings.
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Figure 21. Trait groups and their distribution in terms of number of phenotypes in
each group.  Each color represents a group of traits whose total number of phenotypes per
group can be seen in a pie chart.

2.2 Development of the XWAS strategy and loci identification

In  order  to  identify  loci  on  the  X  chromosome  associated  with  complex
diseases, we designed an XWAS strategy. This included a tailored data quality
control for the X chromosome (as described in Methods section 3.3), followed
by phasing, imputation, and association procedures outlined in Methods section
3.4. The techniques employed for these stages varied based on whether the
analysis was conducted on a dbGaP cohort, primarily using GUIDANCE154, which
encompassed  all  steps  in  a  single  run  (methods  section  3.4.1),  or  the  UK
Biobank,  where  phasing,  imputation,  and  association  were  executed  as
independent steps (methods section 3.4.2). (Figure 22)
With  the intention  to  be able  to  study potential  sex  differences,  the XWAS
strategy was  executed separately  for  males  and females,  treating  them as
independent  cohorts,  and  obtaining  summary  statistics  for  each  phenotype
analyzed for each sex. Subsequently, to combine and synthesize the results
from different  cohorts  for  the  same  phenotype  (in  dbGaP)  and  merge  the
results from each sex, we conducted a meta-analysis of the summary statistics
allowing us to increase the statistical power (methods section 3.5).
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90 Phenotypes 7000 PhenotypesPhenotype 
screening

36 Phenotypes 564 Phenotypes

Data Quality control
1st variant filtering in whole cohort  1st variant filtering in each subset 
Duplicated variants  Duplicated variants
Genotype missingness (> 0.05)  Genotype missingness (> 0.05)
MAF (≤0.01)  MAF (≤0.01)
HWE (pvalue < 1x10-20)   HWE (pvalue < 1x10-20)

Sample filtering
Gender inconsisencies
Genotype missingness > 0.02
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2nd variant filtering in whole cohort
Genotype missingness (> 0.05)
MAF (≤0.01)
HWE (pvalue < 1x10-20)

Chr X specific variant filtering separately for the two sexes
Genotype missingness (> 0.05)
MAF (≤0.01)
HWE (pvalue < 1x10-20)
Variants showing differences in frequency and genotype missingness between non-affected males 
and females ((pvalue < 1x10-06)

we split the cohort into male/female

        Phasing   +       Imputation
(Shapeit 2 and 4)   (IMPUTE2)

Sex splitted XWAS

HRC

        Association
Linear regression 

association analysis

Scalable and Accurate 
Implementation of 

Generalized Mixed Models(SNPtest) (SAIGE)

SUMMARY STATISTICS      SUMMARY 

STATISTICS         Meta-Analysis

Significance Threshold estimation  =  2.5x10-07

41 associations in 
both sexes 14 associations in 

sex-specific traits
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analysis

Figure 22. XWAS strategy. Utilizing this approach with both dbGaP cohorts 
and the UK Biobank, we successfully identified 96 significant associations. 
Among these, 41 were significant in both sexes after conducting a meta-
analysis of the summary statistics; 41 were significant exclusively in one of 
the two sexes; and 14 were significant in sex-specific traits.



With the aim to ensure the reliability of  the associations obtained from our
XWAS  strategy,  we  first  established  a  threshold  for  correcting  for  multiple
testing. While the standard p-value used in association studies is 5x10-8, this
threshold  is  typically  applied  in  genome-wide association studies  where the
number of tests is much higher. However, since our XWAS analysis was limited
to the X chromosome only, we needed to estimate a specific threshold that
would be appropriate for this analysis. As explained in methods section 3.6, we
estimated  the  p-value  by  correcting  for  the  number  of  independent  tests
performed using the Bonferroni method to account for multiple testing.
Given that our data came from different sources and dbGaP included a large
number of cohorts, to ensure a representative sample of cohorts, we randomly
selected three cohorts from dbGaP and the UK Biobank cohort. The number of
LD blocks and the significance threshold to be applied in the analysis for each
cohort was calculated for each of the four cohorts (Table 7).

Cohort Number of
variants (chr X)

Nº of LD blocks p-value
threshold

dbGaP phs000336 198,740 22,801 2.19x10-6

dbGaP phs000346 252,360 35,246 1.42x10-6

dbGaP GERA 328,346 64,878 7.71x10-7

UK Biobank 445,498 169,370 2.5x10-7

Table 7.  P-value threshold estimation values. UK  Biobank  cohort  showed the  highest
number of variants imputed in the X chromosome, leading in a higher number of LD blocks
(association tests) and, therefore a more stringent p-value threshold.

In order to be conservative and determine a single p-value threshold for the
entire project,  we chose the most restrictive threshold,  which was obtained
from the number of recombination blocks estimated in the UK Biobank cohort.
Based on this information, we determined that a p-value threshold of 2.5x10-7

was necessary to identify statistically significant findings.
Finally,  to ensure that our strategy was correctly applied,  we replicated the
process at the whole genome level. We observed that the p-value obtained for
a genome-wide association study was approximately 5x10-8 when only common
variants were included and 3x10-9 when lower frequency variants were also
taken into account, obtaining the orders of magnitude expected for this type of
analysis209. 
In  order  to  determine significant  loci,  we applied  the significance threshold
calculated in the meta-analyzed summary statistics generated for each of the
phenotypes studied. After applying the corrected p-value threshold that we had
established, we identified a total of 96 associations across 77 complex traits.
These associations were further categorized into three groups: 41 associations
were detected in both sexes, 14 were detected in sex-specific traits, and 41
were detected through sex-specific analysis (Figure 23).
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2.3 Validation of the loci obtained and comparison against public data

2.3.1 Comparison of our findings with the GWAS catalog
Upon identifying 96 associations, our first step was to determine which of these
had been previously reported. To achieve this, we compared our results with 
the associations documented in the GWAS catalog205. Through this analysis, we 
found that 22 out of the 96 associations (23%) had been previously reported 
(Table 8, Figure 23b).

Phenotype Chromoso
me Position rsID Ref allele Alt allele p-value

C61 X 9818715 rs5933768 A G 2,31E-08
Asthma X 13023741 rs850637 A G 1,97E-08

I83 X 38009121 rs35318931 A G 1,67E-07
K40 X 38009121 rs35318931 A G 4,76E-15
K40 X 45634577 rs56976399 A C 6,28E-11

Asthma X 49129023 rs4824747 T G 5,21E-08
Prostate cancer X 51202466 rs5945609 A C 2,20E-13

C61 X 51277134 rs6614433 T C 1,84E-12
D25 X 70117012 rs771835697 ATT A 9,33E-09

Uterine
problem X 70148590 rs5936604 C T 1,31E-10

E03 X 78212886 rs5912197 C G 8,84E-11
Hypothyroidism

myxoedema X 78441167 rs2152772 C A 1,34E-14

C44 X 108194346 rs1531061 A C 2,26E-08
C44 X 108480095 rs79370791 T C 3,65E-09

Dyslipidemia X 109693274 rs67648651 C T 2,47E-10
E78 X 109765216 rs5942642 T C 9,99E-19
K40 X 115180215 rs140303061 T A 5,01E-11
E66 X 117929190 rs10126587 G A 1,08E-08
E11 X 117934682 rs5910417 T C 3,62E-09
D25 X 131251326 rs5933079 T C 4,85E-15
I48 X 137418967 rs1891095 A C 2,55E-08
E11 X 152902768 rs4898432 T G 3,12E-17

Table 8. Associations from the project already described in GWAS catalog. For each
loci the table comprises the phenotype, genomic coordinates, rID, alleles, and the lowest p-
value obtained following the meta-analysis of the association process.

In  contrast,  74  associations  (77%)  were  identified  for  the  first  time  in  our
analysis. Among these, we noticed that some of them overlapped with known
findings for traits related or similar to those in which we found the association.
Notable examples include the rs5933688 variant, which was associated with
Primary  Essential  Hypertension  in  our  study  and  has  been  predicted  to  be
linked  to  increased  creatinine  levels,  suggesting  kidney  damage  as  a
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consequence  of  high  blood  pressure210.  Another  instance  is  the  variants
rs79869612 and rs7065158, both associated with Hyperplasia of Prostate and
recognized for their relation to prostate-specific antigen levels211. Finally, the
variant  rs181497961,  associated  with  Jaundice,  has  been  connected  to
Alcoholic  Chronic  Pancreatitis212,  a  condition  where  jaundice  is  a  typical
manifestation.
2.3.2 Analysis of our study’s nobel contribution in UK Biobank
As one way of validating our findings, we compared the results from our UK
Biobank analysis to those obtained in the PanUKBB project. After curating the
phenotypes present in the PanUKBB project's summary statistics and matching
them with those defined in our analysis, we found that 530 phenotypes were
common to both studies.
We  applied  our  strategy  in  order  to  identify  loci  on  the  PanUKBB project's
summary statistics. As this project was conducted at the whole-genome level,
we used a threshold of 5x10-8 to consider an association significant following
standard procedure. Using this threshold, we identified 37 significant loci, of
which 30 were present in phenotypes analyzed in both sexes and seven were
associated with sex-specific phenotypes. In contrast, for those 530 phenotypes
in our UK Biobank analysis,  we found 84 loci:  35 in  traits  common to both
sexes, 13 in sex-specific phenotypes, and 36 sex-specific loci, which were only
significant in one of the sexes.
Of the 35 loci detected in phenotypes common to both sexes, 20 (58%) were
also found by the PanUKBB project. One significant difference lies in the sex-
specific loci identified in our project; the PanUKBB project did not perform an
analysis splitting sexes, meaning that the potential benefits in the results that
this  type of  analysis  can generate are not  present  in  the PanUKBB project.
Consequently, of the 36 sex-specific loci identified in project X, only three of
them matched with loci found in the PanUKBB summary statistics, which in this
project were shown to be significant in both sexes. Of the 37 loci identified in
the  PanUKBB project,  29  were  also  discovered  in  our  study  (Table  9).  The
remaining eight were associated with traits with different sample sizes for the
same phenotype between projects, highlighting the impact of the sample size
on the association process.

Total Loci (n) Loci detected in both
sexes (n)

Single Sex Loci (n) Sex Specific Loci (n)

Chr X project 84 35 13 36
PanUKBB project 37 30 7 Not analyzed
Chr X project loci
found in PanUKBB 29 20 6 3

Chr X project loci not
found in PanUKBB 55 15 7 33

Table  9.  Comparison  of  loci  detected  in  UK  Biobank  using  530  binary  traits  on  the  X
Chromosome between the X Chromosome Project and the PanUKBB Project.
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The results  show that  our  approach to  analyzing  the  X chromosome yields
higher loci count than that obtained with the PanUKBB data. In our analysis, we
placed  emphasis  on  cleaning  the  controls  to  ensure  the  least  possible
contamination of risk alleles within controls, applying a specific QC tailored for
the X chromosome, and conducting a stratified analysis by analyzing males and
females  separately,  processes  not  carried  out  in  the  UKBB  analysis  by
PanUKBB. The results suggest that the application of this approach produced a
loci  count  more  consistent  with  expectations,  similar  to  observations  for
chromosome 7, which has a size comparable to the X chromosome. Conversely,
the results of the PanUKBB analysis, which were obtained without splitting the
sexes and analyzing the entire cohort, display a loci count below expectations.

Figure 24. Trait groups and their distribution in terms of number of phenotypes in
each group.  Scatter-plot showing the relationship between chromosome size (bp) and the
number of loci detected (in 530 traits) for each chromosome. The points are labeled with their
respective chromosome names.  Points  representing "chrX_project"  and "chrX_PanUKBB" are
highlighted in dark green and dark orange and represent the number of loci found in each
project respectively. A linear regression line (dark blue) is added to the plot to visualize the
overall trend in the data.
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2.3.3 Replication between dbGaP and UK Biobank
Finally, we assessed the replication between the results obtained for the same
or a related phenotype present in the two sources examined in this project, UK
Biobank  and  dbGaP.  We  found  that  24  binary  traits,  encompassing  22
significant loci from the UK Biobank, corresponded with 14 dbGaP phenotypes,
which included nine significant loci.  The correspondence involved either the
direct comparison of the same phenotype (e.g., Asthma, referred to as such in
both  sources),  or  the  examination  of  directly  related  phenotypes  (e.g.,
Abdominopelvic Hernia in dbGaP, equivalent to ICD10 codes K40, K42, K43,
and  K44  in  UK  Biobank,  representing  various  types  of  hernias  in  the
abdominopelvic region).
Out of the 31 loci present in traits that matched in both sources, 4 of them
demonstrated replication  between the  two analyses.  Firstly,  rs5945609 and
rs6614433  were  significant  for  Prostate  Cancer  in  dbGaP  and  Malignant
neoplasm  of  prostate  (C61)  in  the  UK  Biobank,  respectively.  Secondly,
rs5942642 and  rs67648651 were  significant  for  Dyslipidemia  in  dbGaP and
Disorders  of  lipoprotein  metabolism  and  other  lipidaemias  (E78)  in  the  UK
Biobank.

2.4 Evaluation of sex-specificity thorough allelic selection
One of the most striking findings in our exploration of the X chromosome was
the discovery  of  significant  associations  in  only  one sex but  not  the  other,
which could be identified as sex differences. As seen in the comparison with
data from the PanUKBB project (Section 2.3.2),  that project did not conduct
separate  analyses  for  each  sex,  leading  to  a  much  smaller  number  of
significant  associations compared to our analysis  of  the UK Biobank.  In  our
case,  adding  this  sex-specific  analysis  allowed  us  to  find  a  number  of
associations much closer to the expected number for a chromosome the size of
the X chromosome (Figure 24).
These  results  opened  up  a  series  of  questions  about  whether  these
associations were truly sex-specific, or if they could be attributed to a lack of
statistical power in one sex or to how the methodology and tools used in the
association process deal with the biological differences that exist between men
and women in the X chromosome.
The  primary  distinction  between  males  and  females  regarding  the  X
chromosome, which is absent in autosomes, is the existence of two copies in
females  and  a  single  copy  in  males.  This  results  in  the  presence  of
heterozygous genotypes (0/1) in females, which could potentially impact the
outcomes of association studies. In fact, as explained earlier, although one of
the two copies in females is silenced, there are genes that escape inactivation,
which could also have consequences in the differences observed between both
sexes.
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To explore the influence of female heterozygous genotypes (0/1) on association
analyses, we replaced them with missing calls (./.) in the UK Biobank imputed
data. In this way we were mimicking the male-specific situation and conducting
the association test again. Subsequently, we identified loci using the summary
statistics  produced  after  performing  the  association  analysis  with  female
heterozygotes removed.
Eliminating  heterozygotes  restricted  the  number  of  variants  available  for
analysis due to the new frequency distribution resulting from their  removal.
Consequently,  a  significant  number  of  variants  failed  to  surpass  the  MAF
threshold necessary for their inclusion in the association test (MAF > 0.0001).
In  the standard analysis,  approximately  450,000 variants  were evaluated in
females for each phenotype; however, this value decreased to an average of
245,000 variants in the analysis without heterozygotes. As a result, the findings
were  affected not  only  by  a  reduced sample  size  but  also  by  a  decreased
number of variants.
In  the  standard  analysis,  70  significant  loci  were  identified in  the  analyzed
phenotypes for both genders. However, due to the reduced number of variants
examined in the analysis without heterozygous genotypes, only 52 of these loci
could be evaluated. After excluding female heterozygotes and conducting the
analysis  again,  37 loci  were re-identified from the initial  52.  Notably,  11 of
these  37  loci  exhibited  differences  in  the  analyses  that  deemed  them
significant; for example, rs5912197 was significant in both, the independent
female analysis and the male-female meta-analysis in the standard evaluation,
but  only  after  the  meta-analysis  in  the  updated  analysis.  In  contrast,
rs147238402, initially significant solely in males, achieved significance after a
meta-analysis  with  females  without  heterozygotes,  suggesting  that  the
presence  of  these  genotypes  added  noise  to  the  analysis,  hindering  the
detection of this association in females as well.
The most noteworthy result  of  this  analysis  lies in the identification of  four
novel  loci  that  were  not  deemed  significant  in  the  standard  analysis.  This
discovery  holds  considerable  importance  as  three  of  these  loci  were
determined to be significant in the meta-analysis of males and females, while
they  were  only  suggestively  significant  (p-value  <  1x10-5) in  the  standard
analysis. The fourth detected locus (rs945030728) was entirely new, displaying
a p-value of 6.91 x10-08 in the female analysis, in contrast to its original p-value
of 0.1 (Table 10).
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Analysis without heterozygous females Standard analysis

phenotype variant All
p-value

Male
p-value

Female
p-value

Genderdif
p-value

Genderhet
p-value

All
p-value

Male
p-value

Female
p-value

Genderdif
p-value

Genderhet
p-value

R07 X:111628623
_AT_A

1.76x10-7 1.00x10-6 0.065 1.15x10-6 0.872 4.28x10-5 1.00x10-6 0.823 6.13x10-6 0.007

E83 X:22600410_
G_GGTGT

0.154 0.8131 6.91x10-8 4.59x10-7 1.91x10-7 0.278 0.813 0.102 0.26 0.214

I83 X:43822590_
T_C

9.21x10-8 6.3x10-5 0.0004 5.72x10-7 0.689 2.67x10-7 6.03x10-5 0.001 1.63x10-6 0.700

N39 X:69951298_
G_A

1.84x10-7 0.001 9.14x10-7 9.14x10-7 0.446 4.44x10-7 0.0013 7.80x10-5 2.33x10-6 0.524

Table  10.  New  loci  discovered  in  the  analysis  without  heterozygous  females
compared to the standard analysis. All p-value refers to the value obtained after meta-
analyzing males and females; male and female p-value is the value obtained in the analysis of
males  and females  separately,  respectively;  genderdiff  p-value  refers  to  significant  signals
considering different effects between sexes; genderhet p-value refers to significant differences
between the  analysis  of  both  sexes.  Four  loci  were  found  as  new in  the  analysis  without
heterozygotes, of which three were found to be suggestively significant (p-value < 1x10 -5) in
the standard analysis, while one of them is completely new and far from being significant in the
standard analysis.

To further investigate these critical findings, we employed positional mapping
to identify genes overlapping with these four loci, obtaining a relation of one
gene per locus. With the aim of determining if any of the identified genes were
known as genes that escape the process of  X chromosome inactivation,  we
compared them with previous literature that has studied which genes escape
this inactivation process  162,166. Through this comparison, we determined that
none of the four genes showed an overlap with escape genes, indicating that
these associations discovered by removing heterozygous genotypes in females
do  not  have  a  direct  relationship  with  the  phenomenon  of  escape  from
inactivation. In fact, this analysis and these results could even also point to
other still unknown genes that might escape inactivation.

2.5 Functional interpretation

Finally, to delve deeper into potential functional sex differences, we decided to
conduct a functional interpretation of the associations identified in the project.
This functional interpretation involved an initial fine-mapping of the detected
associations,  gene-mapping  of  the  obtained  credible  sets  to  establish  a
relationship  of  one  gene  per  detected  loci  in  the  project,  and  ultimately  a
pathway enrichment analysis. In this way, our goal was to determine if there
were metabolic pathways enriched in one sex but not in the other, which could
be interpreted as sex differences in the X chromosome.
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2.5.1 Fine mapping and gene mapping of the identified loci

We performed fine mapping analysis to obtain a credible set for each of the loci
identified in the project. The credible set consisted of a set comprising between
one and five variants with a high statistical likelihood of including the causal
variant (likelihood threshold = 0.95).
Using the results of the fine mapping, we performed gene mapping for each
credible  set  found.  This  analysis  enabled  us  to  identify  potential  candidate
genes associated with the binary traits being investigated. We employed three
different strategies (see Methods section 4.2) to map the credible sets.  If a
credible  set  mapped  to  multiple  genes,  we  chose  the  gene  with  the  most
variants mapped to it. If the number of variants was equal, we selected the
gene derived from the variant with the highest likelihood of being causal. This
was done to obtain a single gene for each credible set and, thus, each locus
identified in our study.
The genes obtained were categorized based on their origin: whether they came
from significant loci in both sexes, significant loci in only one sex (known as
sex-specific loci), or loci obtained from phenotypes studied exclusively in one
sex (known as single-sex traits). (Table 11).

Phenotype Locus origin Credible set Consensus gene
K26 Only male X:3151814_T_C | X:3090684_T_C | X:2700608_C_T ENSG00000124343
D18 Only female X:4004245_C_T | X:5534797_A_T |X:5912489_T_C

X:4737290_T_G | X:4587308_G_A ENSG00000183943
Psychiatric disease Both sexes X:5989782_A_G ENSG00000146938

T85 Both sexes X:7184763_A_G | X:7025770_G_A | X:6772737_GA_G
X:7559466_TA_T | X:8438454_A_G ENSG00000101846

Chronic degenerative
neurological problem Only male X:8243524_G_A | X:7373907_G_C | X:8445173_A_T

X:6864400_C_G | X:8865654_G_T ENSG00000205642
I10 Only male X:8880680_A_G ENSG00000285896
K40 Both sexes X:8888591_T_C ENSG00000285896
C61 Single sex trait X:9818715_G_A ENSG00000146950
K63 Only female X:11538045_G_A ENSG00000047648
N73 Single sex trait X:12073195_A_G ENSG00000169933

Asthma Both sexes X:13023741_G_A ENSG00000205542
Prostate problem no

cancer Single sex trait X:16792837_G_GAAAG ENSG00000169895
N40 Single sex trait X:16874665_A_AAAC ENSG00000102054
R55 Both sexes X:18543509_G_A | X:18869524_C_T | X:18399062_T_C ENSG00000008086
T83 Both sexes 1 X:20459167_T_A | X:18141412_A_G | X:20505404_A_G

X:18762364_C_T | X:17633301_AT_A ENSG00000086717

Pancreatic cancer Only male X:21229743_G_A | X:21255192_AG_A | X:21162050_T_G
X:21146076_T_C | X:19958394_AT_A ENSG00000173681

Z09 Both sexes X:21472903_C_T | X:21153502_G_T | X:21744914_A_T
X:21240504_C_G | X:21407839_A_G ENSG00000149970

Prostate problem no
cancer Single sex trait X:24098069_A_G ENSG00000130741

N40 Single sex trait X:24109619_A_G ENSG00000130741
R59 Both sexes X:23840016_A_C | X:23382189_G_T | X:23415657_G_A

X:23444605_T_C | X:24041906_T_C ENSG00000174010

R25 Only male X:24197650_G_A | X:24495753_C_A | X:25118033_C_A
X:23016084_A_C | X:23106033_G_A ENSG00000005889

I65 Only female X:25715948_C_T | X:25433783_T_C | X:26322537_C_T
X:24445073_C_G | X:24321825_G_T ENSG00000223611

Large bowel cancer and
colorectal cancer Only male

X:25953128_C_A | X:26990881_T_C
X:27738438_CAAAGTT_C | X:27227481_C_T

X:28070796_C_T 
ENSG00000176774

W19 Both sexes X:27095594_A_C | X:27480000_G_A | X:26832792_G_C
X:28264085_G_A ENSG00000224960

S62 Both sexes X:29950884_CTCT_C | X:30040824_TTAC_T
X:30365927_C_G | X:30606616_C_T | X:32462963_A_AT ENSG00000169297

Type2Diabetes Only male X:32766396_G_A | X:33092319_G_A | X:32653928_T_C
X:31723735_T_C | X:32059752_C_A ENSG00000198947

Both sexes X:31888516_G_T | X:32461239_T_C ENSG00000198947
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Gout
L02 Only female X:31278576_G_A | X:31079346_C_A | X:32807911_T_G

X:31304172_G_A | X:32797117_C_A ENSG00000198947
Peripheral nerve

disorder Both sexes X:34846466_A_T | X:34076543_T_C | X:34819477_G_A
X:34424882_TTTA_T | X:35065534_T_C ENSG00000189132

Z43 Gender differentiated X:34439541_G_A | X:34711995_C_T | X:34285504_T_C
X:35673003_C_T | X:35500698_G_C ENSG00000147027

K40 Both sexes X:37405039_T_C | X:37252435_C_G | X:39242085_T_C
X:39229907_A_G | X:39358150_T_A ENSG00000236747

I83 Both sexes X:38009121_G_A ENSG00000101955
Psoriasis Only female X:37757650_C_G | X:37508035_A_G | X:39026070_G_A

X:38554463_C_CAT | X:39030419_T_C ENSG00000250349
Cardiovascular Only female X:42111359_G_T | X:42016573_T_C | X:41973293_T_C ENSG00000147044

K12 Both sexes X:44003701_T_C | X:44175541_C_G | X:44565588_C_T
X:43872746_C_G | X:42907496_G_T ENSG00000183690

W19 Only male X:44970788_G_A | X:44785770_T_C | X:45556805_A_G
X:44892922_C_T ENSG00000147050

Arthritis Only female X:45522820_A_G Unmapped
K40 Both sexes X:47108144_T_G | X:47106374_C_T | X:46945765_T_A

X:44912294_G_T | X:44846113_T_C ENSG00000147050
Throat or larynx

disorder Only female X:47350035_T_G | X:45933214_T_A | X:46839591_G_A
X:47265649_G_A | X:48743290_GC_G ENSG00000102221

Peripheral vascular
disease Only female X:47441089_G_A | X:47158487_C_T | X:46557595_G_A  |

X:47430688_C_T | X:48732666_A_C ENSG00000008056

Back pain Both sexes X:47486217_C_T | X:48754724_G_A | X:47333344_T_C
X:48624003_A_G | X:47584496_TC_T ENSG00000126759 

Asthma Both sexes X:49129023_G_T |  X:48595301_C_A ENSG00000049769
Hay-fever Both sexes X:49129023_G_T | X:49366437_C_T ENSG00000049769

Hay-fever and allergic
rhinitis Both sexes X:49200938_G_A ENSG00000275113

Prostate cancer Single sex trait X:49753723_G_A | X:49944745_A_T | X:49726526_G_A
X:50343251_T_G | X:49899450_C_G ENSG00000268668

C61 Single sex trait X:51277134_C_T ENSG00000196368
K61 Only male X:55023615_T_C | X:54805480_A_C | X:53774406_C_T

X:55593706_CA_C | X:54000969_G_A ENSG00000158571

Y95 Only female X:55120069_T_C | X:56511875_G_T | X:56964420_C_T
X:55897218_C_T | X:55827184_T_C ENSG00000204271

I25 Only male X:65673693_G_A ENSG00000235892
I70 Gender differentiated X:69389240_C_G | X:69318842_G_T | X:69454709_C_T

X:67644715_A_G | X:67453430_T_G ENSG00000079482
D25 Single sex trait X:70117012_A_ATT ENSG00000120498
N40 Single sex trait X:70129087_G_A ENSG00000120498

Uterine problem Single sex trait X:70148590_T_C ENSG00000165349
M72 Only male X:76156017_G_A ENSG00000280870
E03 Both sexes X:78212886_G_C | X:78112989_C_A ENSG00000078589

Hypothyroidism
myxedema Both sexes X:78479522_A_G | X:78234986_T_G ENSG00000147138

I63 Gender differentiated X:80218437_G_A | X:80955776_G_C | X:80683069_T_C
X:80561709_A_G | X:80177203_G_A ENSG00000131171

R93 Only male X:87737812_G_A | X:88018635_CAA_C | X:87069659_T_G
X:87794187_G_T | X:88855130_C_A ENSG00000147183

Hyperthyroidism
thyrotoxicosis Only male X:90389321_G_C | X:91757984_A_G | X:89356042_G_A

X:90649144_T_C | X:91636075_A_G ENSG00000102290

N23 Both sexes X:90667995_C_T | X:90695584_A_G | X:90883302_G_A
X:90669708_T_C | X:89911752_C_T ENSG00000174740

Cancer general Only male X:91582544_G_A | X:92890167_G_C |
X:90762608_CAAAGACT_C ENSG00000102290

G35 Only female X:92082667_C_T | X:92060444_G_A | X:93639734_C_T
X:92371828_T_C | X:92703048_A_T Unmapped

I69 Only male X:93947495_T_C | X:94006137_T_C | X:94499609_A_G
X:93994502_G_A | X:94714030_A_C Unmapped

M67 Both sexes X:93865619_G_A | X:93809585_G_A | X:94140670_G_T
X:94474126_T_G | X:93902156_C_T Unmapped

Z35 Single sex trait X:99062092_G_A Unmapped
R17 Both sexes X:106782380_C_A | X:106929203_T_C | X:106465807_C_T

X:106441705_C_T | X:106493019_T_C ENSG00000198088

I77 Only female X:106549312_C_T | X:108304371_C_T | X:109013924_G_T
X:109234075_T_C | X:106701873_A_T ENSG00000157600

C44 Both sexes X:107959392_A_G |  X:106769495_G_A | X:108480095_C_T ENSG00000147234
C44 Both sexes X:108480095_C_T | X:108736347_T_A Unmapped

Insomnia Only male X:108051036_A_G | X:108533517_G_A | X:109447142_C_T
X:108402912_C_T | X:108302592_G_A ENSG00000101935

Dyslipidemia Both sexes X:108348068_C_T | X:108381092_A_C | X:109693274_T_C ENSG00000243978
E78 Both sexes X:109765216_C_T | X:109826248_C_T | X:109823107_A_C ENSG00000225366
K40 Both sexes X:111051010_C_G | X:111251842_A_T | X:109867437_A_T

X:110606543_C_T | X:110871440_G_A ENSG00000077279

Helicobacter pylori Only female X:110354055_C_T | X:110328485_G_A | X:110117185_C_T
X:111381402_A_G | X:110538777_C_T ENSG00000077279

K40 Both sexes X:115180215_A_T ENSG00000231371
K82 Only female X:115457230_C_T | X:114638688_T_G | X:115569541_T_C

X:115460721_G_T | X:116225768_C_T ENSG00000268104
Breast cancer Single sex trait X:117331280_A_G ENSG00000003096

I10 Both sexes X:117837501_CT_C | X:118091385_G_A ENSG00000175556
E66 Both sexes X:117097235_T_C | X:117162121_T_G | X:118680017_T_C ENSG00000003096
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E66 X:117929190_A_G 

E11 Both sexes X:116817434_G_A | X:116484814_C_A | X:116637036_A_G
X:116598031_T_C | X:117934682_C_T ENSG00000174460

K20 Only female X:118169700_C_T | X:118929766_C_T | X:119069900_G_T
X:117428599_G_A | X:118626504_C_T ENSG00000101882

Insomnia Only female X:119384771_G_C | X:119042496_T_G | X:117022912_G_A
X:119402013_G_T | X:117850088_G_C ENSG00000177485

H26 Both sexes X:117634121_C_T | X:117551627_C_T | X:118496486_C_T ENSG00000147251
R59 Both sexes X:121474259_G_A | X:121383804_CATT_C

X:122548724_A_G | X:121927598_T_A | X:122541353_A_C ENSG00000125675

M72 Both sexes X:127898758_T_G | X:128031104_T_C | X:130145554_T_G |
X:128077995_T_C | X:130629000_G_A ENSG00000228659

D25 Single sex trait X:131251326_C_T ENSG00000165694
Z80 Both sexes X:131919257_C_T | X:131492415_AC_A ENSG00000171004

Osteoporosis Only male X:135938553_C_T | X:135768806_C_T | X:135811787_G_A
X:135768800_TAC_T | X:135853380_C_T ENSG00000129675

I48 Both sexes X:137418967_C_A Unmapped
Irritable bowel Only male X:138398721_C_T | X:138386026_T_TAC | X:140393565_A_G

X:138443366_T_G | X:140560506_A_G ENSG00000198021
R00 Only male X:140067636_G_A ENSG00000227234
R93 Only female X:144817981_A_G | X:144724916_C_A | X:145333346_G_A

X:145305194_G_A | X:146304165_C_T ENSG00000185985
Z12 Only male X:147861213_G_A | X:146463678_G_A ENSG00000155966

Hernia abdominopelvic Only female X:148975998_A_G | X:147629091_A_G | X:149125169_C_T
X:147855237_A_G | X:149115193_A_G ENSG00000155966

E11 Both sexes X:152902768_G_T | X:152891709_T_C | X:153402410_A_AC
X:153561609_G_A ENSG00000130829

Asthma Both sexes X:153744507_C_G ENSG00000071889

Table 11. Fine-mapping and gene-mapping results for each locus. The first column lists
the name or ICD10 code of the phenotype where the locus has been identified. The second
column indicates the origin of the locus, including both sexes (significant in both sexes), only
females  or  only  males,  analyzed  in  both  sexes  but  significant  only  in  females  or  males,
respectively;  and single  sex  trait,  phenotypes only  present  in  one of  the  sexes.  The  third
column displays the credible sets for each locus, which contain between one and five variants
with their position and alleles. The last column reports the consensus gene identified using the
three  strategies.  If  no  gene  has  been  mapped  according  to  the  criteria  explained  in  the
methods section 4.2, the label "Unmapped" is assigned.

2.5.2 Pathway enrichment analysis

Once we got a list of genes from our association in the X chromosome, we
compared the genes obtained from the gene mapping step specific to males
and females  with  the  aim to  identify  possible  significant  differences  in  the
biological  pathways  that  those  genes  are  affecting.  Our  objective  was  to
determine if certain pathways were enriched by genes in one sex but not the
other, resulting in possible functional differences between the sexes.
The gene mapping process linked each locus to a single gene, resulting in a list
of  19  genes  coming  from a  signal  only  significant  in  males  and  16  genes
coming  from  a  signal  only  significant  in  females  (Table  11).  In  order  to
determine whether the observed differences were specific to either males or
females,  we used the genes obtained from significant associations found in
both sexes as a control group. 
We  performed  the  enrichment  analysis  using  the  g:GOST  module  of  the
g:Profiler tool (methods section 5.2), including only the genes present on the X
chromosome and the biological pathways in the g:Profiler database. To ensure
the reliability of our results, we corrected the enrichment outcomes using the
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Benjamini-Hochberg FDR correction method with a significance threshold value
of 0.05.
Our  analysis  revealed  that  seven  pathways  were  specifically  enriched  with
female-mapped genes,  while no pathways were enriched with male-mapped
genes.  Furthermore,  none  of  the  seven  female-enriched  pathways  were
detected as pathways enriched using the control group of genes (Figure 25),
which means that the enrichment of these pathways is exclusive to females,
thereby indicating potential gender differences. 

Figure 25. Scatter plot representation of pathway enrichment results using genes
from female-specific loci.  Each  dot  on  the  scatter  plot  symbolizes  a  biological  pathway
influenced by  genes  located on  the  X  chromosome.  The seven highlighted and numbered
points depict the pathways that have achieved significant enrichment (using the Benjamini-
Hochberg  FDR correction  with  a  0.05  threshold).  The  accompanying table  provides  details
about  each  of  these  seven  pathways,  including  their  names  and  the  adjusted  p-values
obtained.

Some notable female-enriched pathways include "Sensory Processing of Sound
by Inner Hair Cells of the Cochlea" and "Sensory Processing Sound Pathways,"
which have been previously documented as gender-based differences in sound
processing213. Additionally, other enriched pathways that have been reported to
display  sex-based  differences214 are  the  "Neuronal  System",  "Dopamine
Neurotransmitter  Release  Cycle",  "Neurotransmitter  Release  Cycle",  and
"Transmission Across Chemical Synapses."
Additionally,  we  explored  the  potential  relationship  between  sex-specific
significant signals and the phenomenon of X-chromosome escape inactivation
in females. To achieve this, we compiled an extensive list of genes (n=337)
previously reported to evade X-chromosome inactivation162,166 and created an
"artificial" biological pathway comprising these genes. Our analysis indicated
that  the  pathway  formed  from  this  gene  list  was  not  recognized  as  a
significantly enriched pathway in either male or female significant signals.
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3 Impact of the GCAT reference panel on X-chromosome analysis
In addition to the two projects outlined in this thesis and to conclude the results
section, we aimed to study the relationship between the projects developed
and  explained  herein  by  examining  the  benefits  of  incorporating  the  GCAT
haplotype reference panel,  created in  the first  block of  the thesis,  into the
analysis of the X chromosome, corresponding to the second block.
To accomplish this, we conducted an analysis to determine the impact of the
GCAT panel on the imputation process and, subsequently, on the number of
associations discovered in the X chromosome. This analysis involved identifying
the number of imputed variants that would be lost if we did not use the GCAT
and relied  solely  on the other four  reference panels  (GoNL,  1000 Genomes
Phase 3, HRC, and UK10K). These panels were generated with samples of lower
coverage than the GCAT, which is an important factor for obtaining high-quality
INDELs and SVs in the panel and enabling their imputation.
We randomly  selected five cohorts  from our  study and calculated the total
number  of  imputed  variants  (info  score  >  0.7)  by  combining  all  reference
panels.  We  then  estimated  this  number  again  without  including  the  GCAT
reference panel.
Our findings revealed that removing the GCAT as a reference panel would lead
to an average reduction of 7.1% (SD=0.4) in the number of variants imputed.
Regarding the type of variant, SNVs would be least affected, losing an average
of 3.8% (SD =0.5) of them. In contrast, we observed a more significant loss for
INDELs and SVs,  with 28.7% (SD=1.22) and 81% (SD=1.5)  of  variants lost,
respectively. (Table 12)

Cohort Total
variants

SNVs INDELs SVs Total
variant

lost

SNVs
lost

INDELs
lost

SVs lost

phs001315 238,362 205,619 32,390 353 17,517
(7.3%)

7,827 
(3.8%)

9,403
(29.0%)

287 
(81.3%)

phs000788 476,459 409,740 65,963 756 36,042
(7.6%)

14,780
(3.6%)

20,6551
(31.3%)

611 
(80.8%)

phs001202 266,581 235,019 13,798 340 19,785
(7.4%)

10,499
(4.5%)

9,003
(28.8%)

283 
(83.2%)

phs001039 377,177 324,566 22,178 583 24,486
(6.5%)

9,886 
(3.0%)

14,139
(27.2%)

461 
(79.1%)

phs001319 395,942 340,656 23,701 591 26,916
(6.8%)

11,082
(3.3%)

15,364
(28.1%)

470 
(79.5%)

Table 12. Imputed variant lost removing the GCAT reference panel from the study.
The first four columns display the total number of imputed variants using GUIDANCE, which
includes  five  reference  panels  (GCAT,  1000genomes  Phase3,  GoNL,  UK10K,  and  HRC).
Subsequent columns show the number of variants lost without GCAT and the percentage of the
total that represents.
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These  findings  suggest  that  while  the  GCAT  reference  panel  does  not
significantly affect SNVs imputation in comparison to other reference panels, it
has a considerable impact on the imputation of INDELs and SVs. Without using
the GCAT reference panel, a big proportion of INDELs and the majority of SVs
would be lost, highlighting its significance compared to other publicly available
panels in terms of including these types of variants in GWAS.
The impact of GCAT in our study is also evident when examining the significant
loci obtained. Out of the 96 loci identified, two of them would not have been
detected without GCAT. Both loci present a single significant variant, which, in
both cases, are INDELs that were imputed only with the GCAT reference panel.
These signals are rs766284533, associated with Multiple sclerosis (ICD10 code
G35)  in  women  (p-value  =  2.2x10⁻7),  and  rs201807380,  associated  with
Localized enlarged lymph nodes (ICD10 code R59) in both sexes (p-value =
1.8x10-7).
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In  recent  years,  the  genetics  field  has  increasingly  emphasized  the
identification  and  characterization  of  genetic  factors  involved  in  complex
diseases, alongside environmental factors. In the effort to study the genetic
and molecular basis of these diseases and identify risk predictors for clinical
prevention,  GWASs  are  employed  as  a  primary  tool,  analyzing  extensive
genetic  and  phenotypic  data  from  numerous  individuals  to  detect  genetic
variations associated with specific traits. In this thesis, I present the results of
two  studies  addressing  current  limitations  in  GWAS,  contributing  to  the
understanding of the genetic basis of complex diseases.
Over the past years, GWASs have led to the identification of thousands of loci
linked to a wide range of complex traits. Despite the significant progress, there
is still much to uncover regarding the genetic basis of these diseases, leading
to  a  large  portion  of  heritability  (variance  explained  by  genetic  factors)
remaining unexplained. One of the main reasons is that GWAS have historically
relied on the use of genotyping array data, which analyze a limited number of
variants, mainly SNVs, and with a common frequency in the population. This
results  in  low frequency,  rare  variants,  or  larger  genetic  variants  and their
possible associations remaining elusive.
Ideally, the logical move  to gain discovery power in GWAS would be to evolve
from  genotyping  array  technology  to  whole-genome  next-generation
sequencing, which would allow for the inclusion of these types of variants in
GWAS effectively. However, considering the sample size normally used in GWAS
(in  the  order  of  thousands  or  hundreds  of  thousands  of  individuals),  the
economic cost of sequencing and the extensive downstream analysis required
is still prohibitive and not realistic. This makes the transition difficult to achieve
without sacrificing sample size, and therefore statistical power, at the expense
of having a larger number of variants to analyze. In any case, we do expect
that the use of whole-genome sequencing for GWAS will become standardized
and regularized, enabling the identification of rarer risk variants that are likely
to have a greater impact on diseases than common variants. 
Hence, in this context, generating haplotype reference maps remains essential,
as  they  enable  the  expansion  and  enrichment  of  discovery  possibilities  by
imputing (predicting) a large number of variants from genotyping data. During
the  last  decade,  large  projects  have  emerged  with  the  goal  of  generating
haplotype  reference  panels  from  hundreds  to  thousands  of  whole-genome
sequenced  samples  representative  of  one  or  more  populations.  As
demonstrated  in  this  thesis,  creating  these  panels  has  facilitated  the
identification of variations (specifically, SVs, INDELs, and SNVs) associated with
diseases that could not have been detected solely from genotyping data. Thus,
when WGS is not yet an option, it is crucial to generate comprehensive and
precise reference panels for studying complex diseases.
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One of the major limitations of existing haplotype reference is the range and
types  of  variants  considered,  which  is  directly  translated  into  a  limited
discovery  power.  When  looking  at  the  associations  described  to  date,  for
example in catalogs like the GWAS catalog, two observations become evident.
First, almost all associations derive from SNVs and INDELs, although it is known
that  SVs  can  have  a  significant  impact  on  the  development  of  complex
diseases.  The  lack  of  SV-driven  associations  primarily  stems  from  their
exclusion in genotyping arrays and haplotype panels, nearly eliminating the
study  of  their  role  in  complex  diseases.  Currently,  available  haplotype
reference  panels  only  contain  a  testimonial  amount  of  structural  variants,
resulting in these not being imputed and therefore not being analyzed in the
association process. 
Another significant limitation of GWAS studies corresponds to the systematic
exclusion  of  the  X  chromosome,  leading  to  a  situation  where  our  current
knowledge  represents  only  about  10%  of  what  we  would  expect  if  this
chromosome had been considered. The exclusion of the X chromosome from
GWAS is not based on scientific grounds, but rather on practical decisions to
simplify  the  study.  While  the  small  number  of  associations  on  the  Y
chromosome is understandable due to its low gene content, the absence of
associations on the X chromosome is expected to have a greater impact given
its size and genetic content. In fact, this thesis demonstrates that there is still
potential  for  new  discoveries  within  the  X  chromosome,  even  when  using
previously analyzed data.
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1 Development of a comprehensive structural variant haplotype
map from high-coverage whole-genome sequencing (GCAT|panel)

The generation of the GCAT haplotype panel described in this thesis, not only
has provided a valuable tool and resource for a wide range of GWAS and eQTL
studies, for example, but has also highlighted many relevant aspects about the
limitations  and  the  opportunities  in  the  area  of  genome  analysis  and  its
application to disease.  I below highlight the most relevant points. 
 
1.1 The use of in silico samples to evaluate the performance of variant
callers
A primary  challenge in  creating haplotype reference panels  is  the  accurate
identification of  variants.  Currently,  there are more than 150 variant callers
available, which are computational tools designed to detect genetic variants
from NGS data52.  Each  tool  has  distinct  features  and  detection  algorithms,
resulting  in  varying  performance  levels,  which  makes  selecting  the  optimal
variant calling pipeline a challenge.
The  considerable  heterogeneity  of  solutions  presents  a  challenge  for  the
community in designing and implementing pipelines for variant identification.
Choosing tools that maximize precision and recall in our pipelines necessitates
extensive benchmarking and tuning of available options. Part of my work in this
thesis  addresses  the  implementation,  benchmarking,  and  tuning  of  a
comprehensive pipeline for variant identification from high-coverage WGS data,
which was used to generate the GCAT haplotype panel.
One of the major issues for the benchmarking of variant callers is the overall
lack of datasets with validated variants, particularly of SVs, which limits the
possibilities of assessing the performance of each caller. While there are a few
samples available for the benchmarking of SNVs and INDELS (e.g. NA12787,
Methods section 1.1), the situation is more critical with SVs. In our study, we
partially solved this problem by generating a in silico sample (a complete BAM)
where we can insert and control all the variation we want (work developed by
Dr. Valls).
However, while  in silico samples offer valuable advantages for evaluating the
performance of variant callers, they also have some limitations.  One of the
main drawbacks of  in  silico samples is  that they may not fully  capture the
complexity and diversity present in real biological samples. Simulated data sets
are generated based on known models and assumptions, which may not always
accurately represent the true biology or sequencing errors present in real data.
Consequently, the performance of a variant caller on in silico samples may not
always  translate  to  the  same  level  of  performance  on  real  samples.
Furthermore, in silico samples may not be able to account for all the intricacies
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of  the  sequencing  process,  such  as  library  preparation,  biases,  and  batch
effects,  which  can have a  significant  impact  on variant  calling outcomes215.
Nevertheless,  despite  their  limitations,  based  on  our  experience  and  the
orthogonal validations we generated, we demonstrate that  in silico genomes
are indeed a valuable and useful alternative to real data.
In conclusion, while in silico samples offer a valuable tool for benchmarking and
enhancing variant callers, it is essential to supplement these analyses with real
biological  samples  to  ensure  that  findings  can be generalized to  real-world
situations. This underlines the importance of creating a real sample containing
validated SNVs, INDELs, and SVs for optimal benchmarking of variant callers.

1.2 Factors limiting the identification of variants
The accurate identification of variants is essential in genomic research and in
medicine, as it usually provides the initial layer of information from which the
scope and accuracy of the rest of the study and application will depend. While
this  is  relatively  critical  for  research,  precise  variant  calling  will  become
increasingly essential when applied to clinical decisions, such as selecting a
treatment  based  on  the  presence  or  absence  of  a  mutation.  However,  the
variant calling process and the genotyping of variant calls remain challenging
and can be influenced by various factors.
Among these factors, as shown in this thesis, the coverage at which genomes
are  sequenced  strongly  determines  the  accuracy  and  reliability  of  variant
calling. Having a high sequencing coverage for the generation of the haplotype
reference panel in our case has allowed us to identify up to three times more
SVs  than  previous  studies  (e.g.  1000G)  that  relied  on  lower  sequencing
coverage. Higher coverage improves the chances of accurately identifying true
genetic variants while minimizing the risk of false positives216. For instance, it
allows for better identification and filtering of sequencing errors, which might
otherwise  be  misclassified  as  variants.  Sequencing  at  high  coverage  also
provides more reads covering targeted variant breakpoints during SV calling,
aiding  in  their  resolution.  These  regions  are  particularly  challenging,  as  SV
breakpoints often occur in genomic regions with a higher content of repetitive
sequences. Furthermore, these breakpoints typically have additional sequence
deletions or additions, making the mapping of these reads onto the reference
genome (without the variation) very challenging.   
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Another  crucial  factor  that  determines  the  design  and  implementation  of
variant  calling  pipelines,  and  ultimately,  their  overall  accuracy,  is  the
significant heterogeneity  that exists  among various variant callers,  even for
those  targeting  the  same  variant  type.  Moreover,  there  is  considerable
discrepancy in defining the coordinates and the nature of the variation. From
our experience, detecting SNVs and INDELs is relatively consistent across the
different solutions available. However, identifying and classifying SVs proved to
be  more  challenging,  as  we  observed  discrepancies  in  structural  variant
detection when comparing results from different variant callers for the same
sample. Due to these differences, and because each variant caller has its own
optimal detection range, the community agrees that variant calling pipelines
should incorporate multiple variant calling programs. The final results can then
be derived from the analysis and filtering of the combined calls produced. In
this  case,  the  disagreement  of  these  callers  regarding  the  variant  position
introduces additional issues. Furthermore, the integration of calls from multiple
variant callers to generate a final set of rules and lists of variants also depends
on how each caller classifies the variant.
Lastly,  another  commonly  observed  difference  is  the  discrepancies
encountered when inferring the genotype for SVs from the sequencing data.
Although two variant callers may find the variant in the same position and of
the same type, we have observed discrepancies in the genotyping process,
where one tool considers the variant homozygous and another heterozygous.
This is a key factor, as accurate genotyping is essential in creating a reference
panel and its use in further analysis.
The  challenges  in  variant  detection  and  genotyping,  especially  for  SVs,  as
previously  explained,  primarily  stem  from  different  callers  utilizing  unique
algorithms and statistical models to identify genetic variations. This results in
variations among the detected variants, making it  difficult  to determine the
most accurate set of variants.
To address this issue, we proposed a merging and acceptance model of variants
based on an LRM. This model enabled us to determine the genomic position,
variant type, variant size and genotype most likely to be accurate, which were
reported in the final variant set. By leveraging the strengths of each variant
caller used in the project, we obtained a set with the highest possible quality of
variants.  With  this  approach,  we  reduced  the  initial  number  of  variants
obtained from individual  variant callers,  from 58,529,907 variants (including
2,903,224 SVs), where we expect a high number of false positives, to a final set
of 3,325,064 variants (including 89,178 SVs) with minimized number of false
positives  and  maximized  recall.  The  effectiveness  of  this  strategy  was
demonstrated  by  achieving  much  higher  F-score  values  (F-score  =  0.9)
compared to using the software individually (average F-score = 0.65) and  a
higher genotyping accuracy, with a genotype error rate of 5% as in contrast to
the individual variant caller's average of 15%.
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Thus, in this project, we demonstrated that by using a large number of variant
callers and by applying robust statistical frames to merge and filter out their
results, can generate a high-quality set of variants, reducing and mitigating the
previously explained limitations.

1.3 Comparison of results against other databases and validation
limitations
Another  significant  challenge I  faced during my thesis  was  the  difficulty  in
validating and comparing the results with other existing sources of information.
When validating our set of variants, we opted for two strategies. The first one
consisted of a comparative approach against public  databases to determine
how many of our variants had already been described and how many were
new. In this way, we found that 9.18% ( 6.78 million) of our SNVs and INDELs
were previously unclassified using dbSNP  (v.153) as a reference, and 61% of
the  SVs  we  reported  (49,333)  had  not  been  previously  described,  using
gnomAD-SV, 1000G, GoNL, HGSVC, DGV, and dbVar as references.
In the case of SNVs and INDELs, as explained when discussing the limitations of
variant  calling,  this  type  of  comparisons  are  more  straightforward.  We
compared the chromosomal coordinates and reference and alternative alleles
to determine if a variant was new or had already been described.
For SVs, this comparison was more complex. As explained, some of the main
limitations we encountered in the SV variant calling process are the breakpoint
resolution where the variant is located, as well as the type of variant reported,
both influenced by the software and coverage used.  Each of  the databases
used  for  comparison  followed  a  different  strategy  for  detecting  SVs,  which
requires us to make various decisions on when to consider two variants as the
same. This, together with the different coverages used by these other studies,
also challenged our overall comparison and validation. 
Because  of  these  limitations,  we  also  opted  for  complementary  validation
strategies to complement our validation process, which consisted of validating
different sets of variants from our catalog using experimental methodologies. 
In the case of SNVs and INDELs, we used genotyping array data from 570 of the
785 samples used197. We decided to use this methodology because its cost is
affordable,  and it  has  a low error  rate (≈0.8%)80,  as well  as allowing us to
validate both the presence of the variant and its genotype. In the case of SVs,
the methodologies for validating these types of variants are less accurate and
more economically  costly.  The main one is  validation  by PCR; however,  we
considered that validating a large number of SVs with this strategy is not viable
from  an  economic  standpoint.  In  our  case,  we  limited  our  experimental
validation  of  SVs  to  three  of  the  most  prevalent  types  in  our  variant  set:
deletions,  duplications,  and inversions (Results  section 1.4).  However,  these

144



strategies were very limiting due to the small number of variants that could be
tested for each of the types.
In conclusion, we made a significant effort to validate our variant set in the
best possible way to ensure that our variant set was of high quality. However,
due to  the  lack  of  techniques  that  allow validating  a  large  number  of  SVs
quickly and economically feasible, this process only allowed us to determine
that our detection approach was well-focused and that most of our variants,
primarily those with high frequency and of greater value for a reference panel,
were correct, as they also had already been reported in European populations
or validated by other projects.

1.4 Including SVs in reference panels, is software ready?
In  recent  years,  there  has  been  a  significant  push  to  develop  haplotype
reference panels for use in genetic data analysis, particularly in the context of
GWAS  and  eQTLs,  utilizing  them  for  phasing  and  imputation  processes.
Reference  panels  can  be  diverse,  including  those  that  encompass  multiple
populations, such as the 1000 Genomes Project (1000G), HRC, and TOPMed217,
or those that are specific to a particular population like GoNL, UK10K or the
GCAT reference panelpresented in this thesis.
As previously mentioned, a common objective in these efforts is the focus on
creating  a  high-quality  catalog  of  SNVs  and  INDELs,  while  SVs  are  often
deprioritized  or  even  excluded.  The  identification  of  SVs  has  significantly
improved in recent years, and the increased coverage of newer projects allows
for the generation of high-quality variant sets. However, developing a reference
panel  requires  more  than  just  producing  a  list  of  high-quality  variants.  As
detailed in this thesis, phasing must be applied to assign each variant to one of
the  two  alleles  and  construct  the  haplotypes  that  will  later  be  used  in
imputation to predict new variants based on linkage disequilibrium patterns.
During  the  development  of  the  GCAT  reference  panel,  we  tested  various
phasing strategies  in  order to achieve the best  possible  imputation results,
which entails imputing a larger number of high-quality variants (r2>0.7). In our
case, the most effective strategy combined Shapeit4 with WhatHap, which uses
Phase Informative Reads (PIRs) to enhance phasing quality. With this approach,
our  panel  was  able  to  impute  98% of  SNVs,  92%  of  INDELs,  and  90% of
common  SVs  observed  in  the  variant  calling  for  the  same  samples.  This
deliberate effort in carrying out efficient SV variant calling, as well as selecting
a  strategy  that  allows  us  to  obtain  the  most  comprehensive  phasing  and
imputation results, enabled us to outperform both the 1000G and GoNL, two
panels  that  include  SVs.  As  a  result,  we  achieved  a  1.6,  2.7,  and  1.3-fold
increase in the number of high-quality imputed SVs compared to 1000G, GoNL,
and both panels combined, respectively.
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However,  we  observed  that  our  phasing  strategy  treated  SVs  as  point
mutations, meaning they were treated like SNVs regardless of their actual type
and size.  Consequently, we identified some inconsistencies, such as imputing
homozygous deletions (1/1) at a specific position while also imputing SNVs at
positions  that  would  be  within  the  deletion  due  to  its  size.  This  led  us  to
question the ability of phasing and imputation software to properly handle SVs.
To  date,  we  have  not  discovered  any  tools  that  can  both  methodologically
perform phasing  and  imputation  of  SVs  correctly  and  interpret  the  biology
behind SVs, which is essential if we aim to study and systematically include
these types of variants in reference panels and association studies.

1.5 The present value of haplotype reference panels
As  WGS  becomes  increasingly  standardized  and  accessible,  the  value  of
haplotype reference panels is being called into question for GWAS and eQTL
analysis. Traditionally, haplotype reference panels have been used for imputing
missing genotype data, an essential step in genetic data analysis. However,
with  WGS providing  more  comprehensive  genomic  information,  some argue
that haplotype reference panels will soon be obsolete. Therefore, it is important
to critically assess their current value.
It is true that the cost of genomic sequencing has decreased significantly over
the past decade, making WGS a more attractive option for researchers and
clinicians  alike218.  However,  it  is  important  to  recognize  that  WGS  is  still
relatively expensive compared to genotyping arrays, which are often used in
conjunction with haplotype reference panels. For large-scale studies or those
with limited budgets, these panels can provide a cost-effective alternative to
WGS,  allowing for  the analysis  of  genetic  data without  incurring prohibitive
costs.
Even if sequencing any sample becomes economically affordable, there is an
issue that  is  often  overlooked  when claiming that  WGS is  the  present:  the
computational resources and the complexity usually associated with the variant
calling  219. WGS generates a large amount of data, which requires significant
computational resources for the identification of variants. For example, in the
GCAT project we used ~3.5M CPU/hours in the variant calling process for 785
WGS  samples,  which  equates  to  €820,000  in  electricity  and  computational
costs. In comparison, using haplotype reference panels with genotyping arrays
involves less data, smaller size, and lower computational needs for analysis,
directly impacting the economic cost of this type of analysis. This makes the
combination  of  genotyping  arrays  and  haplotype  reference  panels  a  more
feasible option for researchers with limited computational resources.
On the other hand, there are methodological criticisms of imputation. Critics
argue  that  imputation  accuracy  can  be  affected  by  factors  such  as  the
reference panel's  representativeness of  the population under study and the
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quality of the genotyping data220. As a result, there is potential for biases and
inaccuracies in imputed data. However, in our experience, imputation has been
shown to work effectively. Using the GCAT haplotype reference panel, we were
able to impute a total of 14,383,907 high-quality variants (info score ≥ 0.7) and
MAF  >  0.001.  Moreover,  our  analyses  have  demonstrated  that  the  GCAT
reference  panel  allows  for  high-quality  imputation  of  variants  in  distant
populations,  even if  they are not  represented in the panel.  In this  way, we
found  that  although  the  European  population  had  the  highest  number  of
imputed  SVs,  the  GCAT  panel  was  also  capable  of  imputing  a  significant
fraction of SVs in other ethnicities, including African, Latin American, and Asian
populations.
In  addition,  critics  contend  that  WGS-based  GWASs  provide  a  more
comprehensive view of the genome, including structural  variations and rare
variants  that  may  not  be  captured  by  haplotype  reference  panels  and
genotyping arrays, both of which play an important role in diseases and other
phenotypes64.  While  it  is  true  that  recovering  low-frequency  variants  using
reference panels is limited, in the GCAT project, we made an effort to include
SVs, imputing an average of 5,120 SVs (SD=50) per sample out of an average
of 6,393 SVs (SD=62) obtained from variant calling, resulting in an imputation
rate  of  80%.  This  demonstrates  that  this  reference  panel  can  consistently
include SVs, making the advantage of WGS in this area not as significant.
In conclusion, while the world is moving towards the standardization of WGS,
haplotype reference panels still hold value for many types of genetic research.
Their lower economic cost, reduced computational resource requirements, and
high  imputation  accuracy  make  them a  viable  option  for  researchers  with
budgetary or computational constraints. However, it is essential to recognize
the limitations of imputation and the potential benefits of WGS in uncovering
the full spectrum of genomic variation. As technology advances and the costs
of  WGS  continue  to  decline,  the  balance  between  the  use  of  haplotype
reference panels and WGS may shift, but for now, haplotype reference panels
remain a valuable tool.

1.6 The future of SVs analysis with long-reads integration
In the development of the GCAT haplotype reference panel, we have focused
our efforts on achieving effective and comprehensive characterization of SVs.
To  do  this,  as  mentioned,  we  have  combined  different  variant  callers  with
various  detection  algorithms  and  an  LRM  for  filtering  the  variant  set  to
generate a high-quality set,  capitalizing on the strengths of each tool used.
Finally, we have followed a phasing strategy that, although it does not consider
the type of SVs and treats them as variants affecting a single nucleotide, allows
us  to  impute  them  correctly,  thereby  creating  a  high-quality  haplotype
reference panel.
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Our  entire  strategy  has  been  applied  to  samples  obtained  from short-read
sequencing, a technology that, although it allows for the detection of SVs, is
limiting due to  the  read size48.  In  recent  years,  sequencing technology has
rapidly  evolved,  with  long-read  sequencing  gaining  traction  as  a  promising
alternative to short-read sequencing221.  This  technology,  as explained,  is  an
NGS method that generates significantly longer DNA reads compared to short-
read sequencing technologies.
The advantages of long-read sequencing include improved detection of SVs, as
long-read  sequencing  can  span  larger  genomic  regions,  allowing  for  more
accurate  identification  of  SVs,  which  are  often  missed  or  incorrectly
characterized by short-read sequencing11. Long-read sequencing also provides
enhanced resolution of repetitive regions, which are difficult to resolve using
short-read sequencing due to their repetitive nature. Long-read sequencing can
span these regions, enabling a more accurate assembly and characterization of
these complex genomic regions11.  These advantages can be observed when
looking  at  the  results  of  variant  calling  obtained  from this  technology.  For
example, in a recent study, the analysis of nine long-read sequencing samples
identified  and  validated  93,852  SVs70,  compared  to  the  89,178  total  SVs
detected in the GCAT project using 785 short-read sequencing samples.
Despite these advantages, long-read sequencing also has some limitations in
terms  of  cost  and  the  type  of  results  they  offer.  Economically,  long-read
sequencing technologies, such as Pacific Biosciences and Oxford Nanopore, are
still  expensive  compared  to  short-read  sequencing  platforms,  making  their
systematic inclusion in studies less affordable.
In terms of performance, long-read sequencing technologies tend to have a
higher error rate compared to short-read sequencing, particularly in detecting
SNVs and INDELs48,  which are the basis  of  haplotype reference panels. This
means that, despite their high accuracy in detecting SVs, this technology is
limited when it comes to detecting smaller variants.
Therefore,  in  my opinion,  combining long-read technology,  which  allows  for
accurate detection of SVs, and short-read technology, for the precise detection
of SNVs and INDELs,  would enable the creation of  the most comprehensive
reference panel to date. This panel would significantly impact evolutionary and
biomedical studies at different levels, directly increasing the chances of variant
discovery, as well as their functional interpretations.
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2 Recovering the role of the X chromosome in complex diseases

Personalized medicine is an expanding field that aims to customize healthcare
interventions based on each individual's distinct genetic, environmental, and
lifestyle factors. A critical aspect of personalized medicine is understanding the
genetic  foundations  of  complex  diseases  to  ensure  its  proper  application.
However,  our  understanding of  the genetic  architecture underlying complex
diseases remains incomplete, with a considerable knowledge gap regarding the
role of the X chromosome.
The X chromosome, being the 8th largest human chromosome and containing
almost 5% of the genome, holds significant importance not only for its size and
genetic content but also for its unique biological characteristics156. While males
have one copy of this chromosome, females have two, but one of the copies is
theoretically inactivated to balance the difference in dosage158; however, the
phenomenon  of  escape  from inactivation  may  occur,  potentially  leading  to
differences in gene expression patterns between females160. These distinctive
features make the X chromosome a prime candidate for investigating not only
its  importance  in  complex  diseases  but  also  its  impact  in  potential  sex
differences in genetics and disease. The importance of these sex differences in
personalized  medicine  cannot  be  overstated,  as  accounting  for  these
differences  is  crucial  for  providing  more  accurate,  tailored,  and  effective
healthcare interventions222.
Despite its importance, the X chromosome has been systematically excluded
from GWAS studies primarily due to the extra methodological costs associated
with its analysis172. Aiming to fill up this gap, we developed a specific strategy
to be able to properly analyze this chromosome in GWAS studies. The strategy
and results  presented in  this  thesis  not only show the identification of  new
genetic  markers  associated  with  various  complex  diseases  on  the  X
chromosome, but also offer the scientific community methodological insights
and  guidance  to  encourage  the  inclusion  of  this  chromosome's  analysis  in
ongoing and future genetic studies.

2.1 Development of a strategy to analyze the X chromosome
Genetic associations between diseases and markers are commonly identified
using GWAS, which rely on case-control study designs. These designs compare
genotype frequency distributions between cases and controls, determining if a
variant is more prevalent in one group than in another and thereby associated
with the disease. While GWAS is well-established for autosomes, the techniques
used for autosomal genotype data are not directly applicable to X-chromosome
analysis  due  to  potential  statistical  inaccuracies.  This  has  led  to  the  X
chromosome's systematic exclusion from GWAS.
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This specific behavior of the X chromosome in GWAS studies derives from the
unique biological features of the X chromosome, which includes males having
one copy and females having two alleles, but only one active. This is due to the
X-chromosome inactivation  (XCI)223.  In  addition,  it  is  also  known  that  some
regions of  the inactivated copy escape this process and become functional.
Therefore, whereas in males there is genetically and functionally one single
copy,  the  situation  in  females  is  more  complex,  as  although  they  are
genetically diploid for the X chromosome, they are actually also functionally
haploid, except for those regions that partially escape the inactivation.
These  factors  necessitate  accounting  for  genetic  imbalances  between  the
sexes and expected XCI during X chromosome analysis224–226. Despite this, the
scientific community has not prioritized developing methodologies or strategies
for proper X chromosome study. This is, in my opinion, likely because it has
been easier to obtain significant publications or generate interesting scientific
results  without  the  need to  study or  incorporate  the X chromosome in  the
analysis227.  However,  recent  projects  have emphasized the  X chromosome's
importance  and  suggested  strategies  specific  to  X  chromosome  genetic
analysis to address these unique challenges177.
In this thesis, I have presented a strategy that identifies and tests associations
between a disease and X chromosome genetic markers by analyzing genetic
data in a sex-stratified manner. We analyzed each sex separately including all
project steps, from initial quality control to association, and ultimately meta-
analyzing the results obtained. In this way, this approach is also particularly
relevant for analyzing sex differences, where we observed signals exclusive to
one  sex  or  signals  with  different  effects  between  males  and  females.
Furthermore, by using this approach, we did not have to deal with problems
arising from genotype coding, as the X chromosome is analyzed separately in
males and females without requiring assumptions about XCI228.
Applying  this  strategy  has  allowed  us  to  discover  previously  not  described
significant  associations  and  find  new  associations  using  public  cohorts
previously  analyzed  with  other  approaches.  Among  the  most  noteworthy
results is the comparison of our UK Biobank analysis with that of the PanUKBB
project. When comparing our results to the prior UK Biobank analysis by the
PanUKBB project, we found similar numbers of associations from the "standard
analysis"  (males  and  females  analyzed  together)  between  projects.  The
differences lay in the sex-specific associations resulting from the sex-stratified
analysis. Considering sex-specific associations, we obtained twice the number
of total associations as the PanUKBB project, yielding a figure much closer to
the expected number assuming a direct relationship between the number of
associations on a chromosome and its size, using autosomes as reference.
This  demonstrates  that  our  strategy  enables  the  accurate  study  of  the  X
chromosome and equates it to autosomes in terms of associations discovered
per chromosome size.  Additionally,  this strategy has helped identify genetic
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variants associated with diseases in only one sex and variants with different
effect between sexes, leading to the discovery of potential sex differences. 
However,  this  strategy  also  presents  some  limitations.  For  example,  sex
stratification reduces the sample size and, consequently, the statistical power
to detect associations228. Additionally, the differences observed in the signals
obtained  from  sex-specific  analyses  do  not  provide  enough  information  to
determine if a signal is unique to one sex and is, therefore, a sex difference, or
if  it  has not been found in the other sex due to lack of  power.  This invites
alternative  analyses  to  determine  when  a  result  truly  represents  a  sex
difference.

2.2 Constraints when exploring gender specificity
As previously mentioned, one of the advantages of conducting a sex-stratified
analysis is the ability to subsequently combine the summary statistics of each
sex to look for sex differences, either due to the presence of a signal in one sex
but not the other, or because the direction of the signal's effect is different
between  sexes,  resulting,  for  example,  in  a  risk  variant  in  males  but  a
protective variant in females.
However, with the obtained results, one of the main issues we have observed is
determining whether these associations were genuinely sex-specific or if they
could be attributed to a lack of  statistical  power in  one sex or  to how the
methodology and tools used in the association process deal with the biological
differences that exist between males and females in the X chromosome.
In this context, as mentioned before, it is important to note that while males
are hemizygous, females have two copies of the chromosome, leading to the
presence  of  heterozygous  genotypes.  Theoretically,  one  of  the  two
chromosomes is silenced to achieve dosage compensation, but the inactivation
process is not captured by the genotypes. Moreover, there is the phenomenon
of escape from XCI, which adds another layer of complexity to the analysis.
In our case, to further explore signals showing sex differences and the impact
of heterozygous genotypes in females on the discovery of these signals, we
have proposed a simulation in which we remove all heterozygous genotypes in
females, mimicking what we observe at the biological level in males.
Our hypothesis  was to determine if  signals  found only  in females remained
significant once heterozygous genotypes were removed, or if we found any new
significant signals, determining if heterozygous genotypes had any effect on
the signal or added noise to the analysis. In other words, to see if we could
recover  some  new  signals  that  were  masked  by  noise,  assuming  random
inactivation, or to determine that the different effects we were seeing between
sexes can be due to inactivation escape.
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However, applying this strategy does not allow us to efficiently compare the
initial results with those obtained by removing heterozygotes, mainly due to a
decrease in both the number of interrogated variants and the sample size, by
removing heterozygous samples for each variant. Despite this, it did give us
indications of the impact of heterozygous genotypes, finding that 72% of loci
that  could  be  compared  were  rediscovered  after  removing  heterozygotes.
Notably, four new loci were found in this analysis, showing that the presence of
heterozygotes does have an impact, which should be studied in more depth.
Currently, various projects are emerging proposing different models to study
the  X  chromosome  and  possible  sex  differences,  as  well  as  dealing  with
inactivation  phenomena in  different  cases,  assuming  complete  escape from
inactivation, assuming random inactivation, or assuming skewed inactivation177.
Therefore, it would be interesting to expand the study presented here using
these strategies, complementing the results presented from the sex-stratified
analysis.

2.3 Dealing with multiple testing correction in GWAS
One of the main challenges inherent in the use of statistical methods in the
association analysis step is the issue of multiple testing. Given that thousands
or  even  millions  of  genetic  markers  are  examined,  the  probability  of
encountering false positive associations increases substantially. To account for
this,  stringent  significance  thresholds  are  imposed.  Nonetheless,  this  strict
threshold  may  inadvertently  result  in  false  negatives,  whereby  true
associations are overlooked.
Currently,  the  most  widely  accepted  and  applied  threshold  in  the  scientific
community is the p-value threshold of 5x10-8. This value was estimated in 2005
by estimating the number of common independent variants in the genome and
applying the Bonferroni correction116. However, as sequencing technologies and
genetic data analysis have evolved, GWAS have incorporated variants of lower
frequency, leading the scientific community to question whether the use of this
threshold is still appropriate today209.
In  our  study  of  the  X  chromosome,  we  decided  to  determine  our  own
significance threshold based on the number  of  independent tests  analyzed,
which we obtained from the imputed data of the X chromosome in different
cohorts aiming to use a threshold more suitable for the type of analysis and
data we were using. We estimated our significance threshold considering that
our study was conducted solely on the X chromosome, rather than using the
whole genome, which implies a smaller number of tests and therefore a better
adjusted threshold. As a result, we were able to identify associations that would
not have reached the level of significance using a p-value threshold of 5x10 -8

and would have been otherwise overlooked.
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With this, I considered that the systematic application of this strategy in GWAS
studies,  obtaining a specific threshold for  the project  based on the type of
analysis  or  the  type  of  analyzed  data,  would  help  avoid  potential  biases
resulting from the use of a standardized threshold calculated nearly 20 years
ago, in which for example, low-frequency variants, or  variants such as INDELs
or SVs, now included in most studies, were not considered.

2.4 The value of replication in current GWAS studies
One of our main decisions in the analysis of the X chromosome was to work
with  genetic  data  obtained  from  large-scale  biobanks  and  disease-specific
cohorts. This way,  we could increase the number of phenotypes analyzed but
also analyze some phenotypes in both types of cohorts, taking advantage of
the benefits of  each. In addition,  analyzing the same phenotype in the two
sources  we  could  determine  if  we  were  able  to  replicate  the  significant
associations found, i.e.,  validating the association discovered from one data
source independently in the other. However, discrepancies in the findings may
arise not only due to differences in recruitment and classification protocols or in
sample sizes between biobanks and disease-specific cohorts, but also due to
differences  in  genotyping  platforms38 and  statistical  methods218 used  in  the
analysis of the two data sources. 
This leads us to question whether the lack of replication of an association in the
same phenotype between the two data sources sheds light on the validity of
the  association.  In  fact,  in  our  study,  we determined how many significant
associations present in phenotypes found in both the UK Biobank and dbGaP
could be replicated. In this  way, only 13% (4/31) of  associations present in
traits that matched in both sources demonstrated replication between the two
analyses. This would imply that, if we were extremists, we should not believe
the other 27 associations since they were not replicated in another cohort with
the same phenotype.
I agree that the replication of GWAS findings helps establish robustness and
validity for those genetic associations that are replicated229. However, I do not
think that associations that fail to be replicated in another cohort should be
dismissed  or  lose  credibility  because  the  replication  process  is  plagued  by
challenges229. To address these issues, I believe that the scientific community
should  question  the  current  importance  of  replication  studies,  adopt
standardized methodologies that take into account the differences between the
cohorts  analyzed,  or  not  consider  replication as  a fundamental  criterion for
determining whether an association is true or not, but rather use replication as
one more point when assessing the validity of an association.
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2.5 From GWAS to clinical application
In  this  thesis,  by  analyzing  the  X  chromosome,  we  have  made  significant
contributions to our understanding of  the genetic underpinnings of  complex
traits  and  diseases,  adding  a  chromosome that  until  now has  been mostly
neglected. However, it is essential to critically assess the real value of GWAS
findings in terms of advancing human health and personalized medicine.
One of the primary goals of GWAS is to improve our understanding of disease
mechanisms  and  identify  potential  therapeutic  targets.  Our  discovery  of
genetic associations in the X chromosome, along with our fine-mapping and
pathway  enrichment  analysis  process,  can  shed  light  on  the  biological
pathways and molecular mechanisms underlying the diseases studied, thereby
providing  valuable  information  for  developing  treatment  strategies230.
Furthermore, the identification of sex differences can also add significant value
in early disease prediction and prevention, allowing for targeted interventions
and lifestyle modifications to mitigate disease risk according to the sex of the
individual231.
Another promising application of GWAS findings lies in predicting an individual's
genetic risk of disease development. By integrating individual genetic data with
GWAS results,  polygenic  risk  scores  (PRS)  can  be  generated.  These  scores
estimate an individual's  genetic  predisposition to specific diseases or  traits,
using summary statistics from GWAS. PRS have shown promise in predicting
risks for various conditions, such as coronary artery disease232, breast cancer233,
and psychiatric disorders234. However, the clinical utility of PRS is still a topic of
debate,  as  their  predictive  accuracy varies  across  populations  and sexes235.
Here, performing a sex-stratified analysis, not only for the X chromosome as we
have done but also for autosomes, would enable the generation of data for
each  sex  independently.  This  approach  could  help  address  some  of  the
limitations associated with using PRS in risk prediction.
In  conclusion,  the  real  value  of  GWAS  lies  in  their  ability  to  advance  our
understanding of  complex traits  and diseases,  identify  potential  therapeutic
targets, and inform personalized medicine. However, translating GWAS findings
into practical applications is a complex process fraught with challenges. To fully
realize the potential  of  GWAS,  it  is  imperative  to  address  these limitations,
conduct  more  inclusive  studies  like  the  one  presented  in  this  thesis,  and
develop rigorous methodologies to ensure the robustness and clinical relevance
of genetic discoveries.
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1) We  have  designed  and  implemented  a  comprehensive  strategy  for  the
identification of  germline variants  from Whole Genome Sequencing Data.
This strategy is  particularly efficient in the discovery and classification of
Structural Variants.

2) The  application  of  this  strategy  to  785  high-coverage  short  read  whole-
genome sequencing samples from the GCAT cohort allowed us to identify an
average of about 4 million variants per individual, including 6,393 structural
variants.

3) From these variants and from the phasing of their derived genotypes, we
also generated a comprehensive haplotype map for the Iberian population.
With this map, we are able to impute up to 14,3 Million SNVs and INDELs and
23 thousand SVs, even in genetically distant populations. This represents a
2.7-fold increase for SVs, compared with commonly used genetic variability
panels.

4) We have also designed and implemented a comprehensive strategy for the
efficient  analysis  of  the  X-Chromosome  within  association  studies.  We
applied  this  strategy  to  600  disease  across  800  thousand  individuals,
allowing us to identify up to 74 new significant genetic associations in this
chromosome.

5) The separate analysis of males and females within our strategy has provided
36  new  associations  when  compared  to  the  results  obtained  by  other
projects  without  applying  this  approach.  It  proves  the  importance  of
adapting genetic strategies to particular genetic and biological scenarios.

6) Preliminary  functional  analyses  of  these  sex  specific  associated  variants
show different female-enriched pathways that agree with already reported
sex differences in phenotypes.
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ABSTRACT

The combined analysis of haplotype panels with phe-
notype clinical cohorts is a common approach to ex-
plore the genetic architecture of human diseases.
However, genetic studies are mainly based on sin-
gle nucleotide variants (SNVs) and small insertions
and deletions (indels). Here, we contribute to fill this
gap by generating a dense haplotype map focused
on the identification, characterization, and phasing
of structural variants (SVs). By integrating multiple
variant identification methods and Logistic Regres-
sion Models (LRMs), we present a catalogue of 35 431
441 variants, including 89 178 SVs (≥50 bp), 30 325
064 SNVs and 5 017 199 indels, across 785 Illumina

high coverage (30x) whole-genomes from the Iberian
GCAT Cohort, containing a median of 3.52M SNVs,
606 336 indels and 6393 SVs per individual. The
haplotype panel is able to impute up to 14 360 728
SNVs/indels and 23 179 SVs, showing a 2.7-fold in-
crease for SVs compared with available genetic varia-
tion panels. The value of this panel for SVs analysis is
shown through an imputed rare Alu element located
in a new locus associated with Mononeuritis of lower
limb, a rare neuromuscular disease. This study rep-
resents the first deep characterization of genetic vari-
ation within the Iberian population and the first oper-
ational haplotype panel to systematically include the
SVs into genome-wide genetic studies.
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INTRODUCTION

One of the central aims of biology and biomedicine has been
the characterization of genetic variation across humans to
answer evolutionary questions and to explain phenotypic
variability in relation to disease. From the first genotyp-
ing and sequencing efforts, scientists have been gradually
identifying specific genomic regions that vary within and
across different populations, elaborating the first maps of
human genetic variation (e.g. the HapMap Phase I (1)).
Next-generation sequencing (NGS) technologies are now
allowing to systematically evaluate the genetic variability
across the entire genome of hundreds and thousands of
individuals. This has increased >200-fold the number of
known genomic variants over the past 10 years, resulting in
much richer reference catalogues of genetic variability. One
example is HRC (2) or Trans-Omics for Precision Medicine
(TOPMed) (3), listing more than 39.2M and 410M poly-
morphic positions, respectively, from several human popu-
lations. The extensive genetic and phenotypic characteriza-
tion of cohorts using rich variability reference panels is now
fuelling up Genome-Wide Association Studies (GWAS). A
total of 151 703 unique genetic variants are already re-
ported to be associated across 5193 unique traits (GWAS
catalog, version1.0.2 release 05/05/2021, https://www.ebi.
ac.uk/gwas/). Despite these advances, a large fraction of the
genetic variability underlying complex diseases still remains
unexplored, as studies have been mostly restricted to single
nucleotide variants (SNVs) and small insertions and dele-
tions (indels) (<50 bp). Large structural variants (SVs) are
known to play an important role in disease (4–7) and could
actually explain part of the well-known missing heritability
paradox (8,9). However, the technical and methodological
challenges associated with the identification and classifica-
tion of this type of variation from whole-genome sequences
(WGS) have left this type of variation out of GWASs.

Large-scale efforts combining improved sequencing
methodologies are now identifying a much larger and richer
spectrum of structural variation in humans. For exam-
ple, by increasing the sequencing coverage and sample size
across different populations, the gnomAD-SV project (10)
detected a median of 7439 SVs per individual, generating
one of the most extensive catalogues of structural variation
so far. Other whole-genome studies have gone a step further
by phasing the variants and constructing haplotype panels,
such as the 1000 Genomes project (1000G) (11), becoming
a reference within the GWAS community. However, the SVs
are less represented in the current 1000G phase3, including
a median of 3441 SVs per individual (11). The use of costly
family trios and an increase in the sequencing coverage, al-
lowed the Genome of the Netherlands consortium (GoNL)
to increase a median of 7006 SVs per individual (12). In par-
allel, the recent inclusion of long-read sequencing technolo-
gies has made it possible to uncover many new SVs, reach-
ing >20 000 per individual (13–16), including repeat-rich re-
gions, where short-read sequencing has traditionally shown
low call rates.

Genome-wide imputation from SNP-genotyping array
data is still the most practical and powerful strategy to pre-
dict SVs, and test them for association with particular phe-
notypes. Current haplotype reference panels allow a high-

quality imputation (info score ≥ 0.7) of ∼9000–14 000 SVs
(≥50 bp), but considering the ranges of SVs that the com-
munity is now reporting across individuals, this is still in-
complete. Therefore, it is necessary to generate improved
variability reference panels of controlled populations by in-
cluding SVs in the discovery and functional interpretation
of associated variants to power-up current genetic studies.

In this study, we contribute to fill this gap by generat-
ing a new SV-enriched haplotype reference panel of human
variation, through the analysis of whole-genome sequences
(30×) of Iberian individuals from the GCAT|Genomes for
Life Cohort (www.genomesforlife.com) (17,18). For this, we
developed and applied a comprehensive genomic analysis
pipeline based on the weighted integration and orthogonal
validation of the results of multiple variant callers to gen-
erate a robust catalogue of genetic variability that covers
from SNVs to large SVs. These variants were further phased
and converted into haplotypes that can be incorporated into
GWAS. This study represents an important step towards the
completion of the annotation and characterization of the
human genome and provides a unique resource for the in-
corporation of SVs into genetic studies.

MATERIALS AND METHODS

Benchmarking samples

To benchmark our variant calling strategy, an in-silico sam-
ple genome was generated, by inserting a controlled set of 5
334 669 variants into the hs37d5 reference genome (exclud-
ing telomeres and centromeres). These variants cover from
single nucleotide variants (SNVs) to large structural varia-
tions (SVs). The majority of them correspond to variants
identified in real samples of the 1000G (11) and the ICGC-
PanCancer (19) projects. In addition, to have a wider and
more complex range of benchmarking variants, we designed
and inserted randomly an additional set of 3925 Structural
Variants (SVs) (Supplementary Table S2), reinforcing the
support for insertions and translocations, among others
(Supplementary Figure S1). We then used the in-silico se-
quencing ART software (ART-Illumina version 2.5.8) (20)
to obtain simulated FASTQ files (Supplementary Table S1)
that were further aligned to the hs37d5 reference genome
using BWA (21) (version 0.7.15-r1140) and Samtools (22)
(version 1.5). Best Practices of GATK (23) were followed
for marking duplicates (PICARD version 1.108) and recal-
ibrating Base Quality Scores of the BAM file with the Vari-
antRecalibrator and ApplyVQSR modules of GATK4 (ver-
sion 4.0.11). A detailed description is available at Supple-
mentary Information Material.

The sample NA12878 from the genome in a Bottle
(GIAB) Consortium (24) and the in-silico were used to val-
idate SNVs and indels detection. BAM files were recon-
structed using the hs37d5 reference genome and following
the GATK Best Practices guidelines.

Variant calling

We originally selected 17 candidate programs for variant
identification and classification, representing different call-
ing algorithms and strategies: Split Read, Discordant Read,
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de novo Assembly and Read-depth. Variant callers were
Haplotype Caller (25) (version 4.0.2.0), Deepvariant (26)
(version 0.6.1), Strelka2 (27) (version 2.9.2), Platypus (28)
(version 0.8.1), and VarScan2 (29) (version 2.4.3) for SNVs
and indels and Delly2 (30) (version 0.7.7), Manta (31) (ver-
sion 1.2), Pindel (32) (version 0.2.5b9), Lumpy (33) (version
0.2.13), Whamg (34) (version v1.7.0-311-g4e8c), SvABA
(35) (version 7.0.2), CNVnator (36) (version v0.3.3), PopIns
(37) (version damp v1-151-g4010f61), Genome Strip (38)
(Version 2.0), Pamir (39) (version 1.2.2), AsmVar (40) (ver-
sion 2.0) and MELT (41) (version 2.1.4) (Supplementary in-
formation section 3) for SVs. To keep consistency on the
type of variables provided by these callers that will later
be used by the Logistic Regression Model (LRM), we have
only considered mapping-based methods, despite mapping-
free methods can also identify SV efficiently.

Recall, precision, and F-score metrics were calculated to
evaluate the performance of each variant caller for each
variant type. The NA12878 sample was used as a gold stan-
dard to calculate performance metrics for SNVs and indels,
and the in-silico was used to benchmark SVs. For SNVs
and indels, a variant was considered a true positive when
the calling matched with the exact position and alternative
allele shown on the benchmarking set. The criteria to clas-
sify SVs as true positives were: (i) the chromosome and the
breakpoint position ± the breakpoint-error of the variant
caller overlaps with the gold standard (Supplementary Ta-
ble S4), (ii) the SV type label matched with the gold stan-
dard, and (iii) the variant length reported by the caller has
a ≥80% reciprocal overlap with the variant length in the
gold standard sample. In addition, for SVs, we also captured
information from the callers regarding breakpoint resolu-
tion, the size effect on variant calling, and the genotyping
accuracy. Platypus, Varscan2, Genome Strip, Pamir and As-
mVar (Supplementary Information section 4.2) were finally
discarded due to either technical incompatibilities with our
computing environment or the low performance in bench-
marking, leaving 12 final variant callers to be applied to the
GCAT–WGS samples.

The effect of the coverage on the variant calling was done
by read downsampling of a group of 10 randomly selected
individuals from our cohort, reproducing 5×, 10×, 15×,
20× and 25× coverage. We applied the complete variant
calling strategy to the resulting samples.

Logistic regression model

Logistic Regression Model (LRM) was used on indels and
SVs to merge and filter the results from all callers, generat-
ing a final set of high-quality variants with the highest re-
call and precision values. This method is proposed as an im-
proved alternative to other strategies based on the number
of coincident callers, which were also included for compar-
ison and evaluation purposes. As discriminative variables,
LRM used variant and calling-related parameters, like size,
reciprocal overlap and breakpoint resolution (Supplemen-
tary Table S5).

Logistic regression model for indels. LRM was trained us-
ing indels of the NA12878 sample and tested using the in-
silico sample. The LRM input was a merged dataset of the

VCF outputs from all included callers, a matrix of unique
variants and variant callers together. The criteria to obtain
this dataset is described in the ‘Variant calling, filtering and
merging’ section. True positive detection of the variants was
assessed via logistic regression as follows: Y ∼ Xc1 + Xc2
+ . . . + Xcn, where Y is the presence (true positive) or ab-
sence (false positive) of the variant in the training set, and
Xc1, Xc2, .., Xcn are the genotypes reported by each variant
caller respectively. Predictions derived from the LRM were
converted into a binary variable, indicating if the variant
was considered a true (PASS, if predicted probability ≥ 0.5)
or a false positive (NO PASS). The genotype considered in
the LRM is a consensus genotype reported by Haplotype
caller, Deepvariant, and Strelka2 (Supplementary informa-
tion section 5.1). The LRM was developed using R software
(version 3.3.1) and the ISLR package.

Logistic regression model for SVs. For SVs, we randomly
splitted the in-silico sample into training, with 70% of the
variants, and the test set, with the rest. True positive de-
tection of the variants was assessed via logistic regression
using 10-fold cross-validations as follows: Y ∼ Xc1 + Xc2 +
. . . + Xcn + G1 + G2 + G3 + G4, where Y is the presence
(true positive) or absence (false positive) of the variant in
the training set Xc1, Xc2, .., Xcn are the genotypes reported
by each variant caller; and G1, G2, G3 and G4 are the ge-
nomic covariates such as size, number of callers, number of
strategies and reciprocal overlap (Supplementary Table S5).
Similar to indels, the input of the LRM for SVs is a merged
dataset of the VCF outputs from the callers (‘Variant call-
ing, filtering and merging’ section). Prediction is a binary
variable depending on the predicted probability (PASS, if
predicted probability ≥ 0.5; NO PASS otherwise). Using
stepwise backward criteria for determining which genomic
covariates contribute to the true positive detection of the
variants, we fitted an LRM for each SV type using the caret
(version 6.0–85) and e1071 (version 1.7–3) R packages. Fi-
nally, to determine the performance of the model, the re-
ceiver operating characteristic (ROC) curves and area un-
der the curve (AUC) of the LRM were computed for the
test sets of each SV type using the ‘ROCR’ R package. The
largest AUC values correlate with the highest F-scores sug-
gesting that the LRM predictions are close to the 0 (false
positive) and 1 (true positive) values.

The strategy to determine the position of a variant in
the LRM was different for each SV type. First, variant
callers were ranked according to the accuracy in resolv-
ing the breakpoint (with an interval of error of ±10 bp;
Supplementary Table S6) and the number of variants de-
tected. This was used to select unique variants according
to the position of the caller for that particular variant. In
the case that a variant was not detected by the best-ranked
algorithms (Supplementary Table S6), the final position of
the variant was considered as the median position and the
length reported by the rest of the callers.

The strategy to determine the genotype of a variant in the
LRM was adapted to each SV type (Supplementary Fig-
ure S3). For Deletions and Insertions, we selected the fi-
nal genotype based on the highest recurrence across callers
that identified a particular variant. For Inversions, we di-
rectly reported the genotype obtained from the caller with
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the smallest genotyping error in the benchmarking analysis.
For Duplications and Translocations, which show the low-
est genotyping accuracy in the benchmarking, we applied a
customised genotyping method strategy. This is based on
the proportion of altered reads from the in-silico sample
around the breakpoint: if the proportion of altered reads
was <0.20, the genotype was 0/0; if the proportion was be-
tween 0.20 and 0.80, the genotype was 0/1; and if the pro-
portion was > 0.80, the genotype was 1/1 (Supplementary
information section 5.2.3).

Quality control

The GCAT Cohort is a prospective cohort study that in-
cludes 19 267 volunteers from Catalonia, in the North-
east of Spain (http://www.genomesforlife.org/). The partic-
ipants were recruited from the general population (2014–
2017) with the only restriction to live at least five years
in Catalonia and aged between 40 and 65 years. All par-
ticipants who agreed to be part of the study provided in-
formed consent and were asked to sign a consent agree-
ment. Whole-genome sequencing data from 808 individu-
als using HiSeq 4000 sequencer (Illumina, 30× coverage,
read length 150 bp, insert size 600 bp) was obtained in
FASTQ format (Supplementary Tables S7 and S8). BAM
files were built using the hs37d5 reference genome and fol-
lowing the GATK Best Practices (Supplementary Figure
S4). FASTQ and BAM files corresponding to these samples
were deposited to the European Genome-Phenome Archive
(EGA, EGAS00001003018). The GCAT cohort protocol,
including sampling and processing, data generation and
health status is described elsewhere (www.genomesforlife.
com) (17,18).

Quality control was applied by assessing the quality
alignment of the BAM files, the presence of contamina-
tion traces, possibly swapped samples, population struc-
ture and relatedness (Supplementary information section
6.3). Alignment quality was analysed using PICARD (ver-
sion 2.18.11), Biobambam (42) (version 2–2.0.65), and Al-
fred (43) (version 0.1.16). Contamination or swapped ID
samples was determined by VerifyBamID (44) (Supplemen-
tary Table S9 and Figure S6). Population structure was as-
sessed using reference ancestry populations. Identity by de-
scent (IBD) estimates was used to remove up to third-degree
relatives.

The GCAT sample was characterized by Principal Com-
ponent Analysis (PCA). Firstly, we ran the Haplotype
Caller tool and only PASS variants from the VCF file were
retained. Then, SNVs with minor allele frequency (MAF)
>0.01 and independent variants (LD, r2 < 0.2) were selected
with PLINK (version 1.90b6.7 64-bit). Finally, on retained
variants (∼1M) we ran PCs together with reference samples
of known ancestry (i.e. 1000G project sample and the Pop-
ulation Reference Sample (45) (POPRES)). The genetic ho-
mogeneity of the GCAT sample was confirmed by PCA in
the retained cohort samples (Figure 1 and Supplementary
Figure S7).

Variant calling, filtering and merging

Each of the 12 selected variant callers was first executed
independently on all samples (Supplementary information

section 7, Supplementary Figure S8), then merged by call
and individual according to our benchmarking strategy to
produce the VCF.

SNVs and indels calls were merged by (i) the chromo-
some, (ii) position and (iii) REF/ALT allele. SVs were
merged by (i) variant type, (ii) chromosome, (iii) position,
considering the breakpoint error estimated for each vari-
ant caller (Supplementary Table S4) and finally (iv) recip-
rocal overlap ≥80% between callers (Supplementary infor-
mation section 8.2) and individuals (Supplementary infor-
mation section 8.3). Given the consistently high accuracy
in detecting SNVs for most callers, we considered one of
these variants as a true positive if it was detected by at least
two callers. For indels and SV, we applied LRM consider-
ing a variant as true positive if the prediction probability
was ≥0.5.

We calculated the true positive proportion for each vari-
ant determined by the LRM prediction in all GCAT sam-
ples. We referred to this proportion as the quality score of
the merged variant. Then, we considered a variant as PASS
if the quality score was ≥0.5. We reported the length and
position of each SV as the median length and median po-
sition of all the samples that have that SV (Supplemen-
tary methods). Finally, monomorphic variants, variants out
of Hardy-Weinberg equilibrium (Bonferroni correction P-
value < 5 × 10−8), and variants with ≥10% of missingness
were excluded from subsequent analysis. Data and Code
availability is described below. Summarized later at the re-
source availability section.

Variant validation

Comparison with public datasets. SNVs and in-
dels from the GCAT dataset were compared with
the NCBI dbSNP database (46) (Build version 153)
(https://ftp.ncbi.nlm.nih.gov) to determine the number
of unique/shared variants between them. GCAT SVs
were compared with the following public databases:
(i) The Genome Aggregation Database (gnomAD.v.2)
(10) (https://gnomad.broadinstitute.org/downloads),
(ii) the Database of Genomic Variants (DGV) (http:
//dgv.tcag.ca/dgv/app/downloads?ref=GRCh37/hg19) (47),
(iii) the Human Genome Structural Variation Consortium
set (HGSVC) (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data collections/hgsv sv discovery/) (13), (iv) the Ira M
Hall dataset (https://github.com/hall-lab/sv paper 042020)
(48), (v) the 1000G project (Phase3) (ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/phase3/) (11) and (vi) GoNL (release
6.2) (on request) (12). Finally, we determine the number
of shared variants between the GCAT and at least one
other public dataset and the number of unique vari-
ants in the GCAT derived (Supplementary Information
section 9.1.2).

We also carried out a comparison with the emerging
long-read sequencing technologies. We analysed with our
pipeline 30× short-read sequencing information from a
1000G sample (id: NA12878) that had been also indepen-
dently sequenced and analysed using long-read technolo-
gies. We ran our variant calling and filtering strategies in
this sample and matched the results obtained with those re-
ported in Audano’s study (15) (long-read sequencing) and
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Figure 1. Overview of data and overall strategy. (A) Distribution of genetic data (SNVs) based on principal component analysis (PCA) (adapted from
Novembre et al. (45)). The PC grouped by geographic localization (coloured in grey) the individuals of the GCAT cohort (blue dots) with Iberian samples
from 1000G (asterisk) and POPRES (letters) projects in the context of other European samples. (B) Flowchart of the overall strategy followed in this
study, covering from the quality control of the initial data, to the final generation of the GCAT haplotype panel, with particular focus on SVs. Overall,
the complete strategy consumed ∼3.5 million CPU/hour, which highlights part of the computational challenges associated with this type of analysis
(Supplementary Table S11) (See also Supplementary Figure S7).

1000G Phase 3 (3–7× coverage), obtaining the number of
variants shared between projects.

Experimental validation. The validation of SNV and in-
del calling was performed using the SNP-array data avail-
able from 570 of the 785 individuals analysed in this study.
We include QCed genotypes generated in the GCAT cohort
with the Infinium Expanded Multi-Ethnic Genotyping Ar-
ray (MEGAEx) (ILLUMINA, San Diego, CA, USA) as
described elsewhere (18) (i.e. 732 978 SNPs and 1168 in-
dels). Genotypes from both strategies were compared by (i)
chromosome and position at base-pair resolution and (ii)
REF/ALT alleles; the recall and genotype concordance for
each individual sample was calculated.

Inversions were validated using a recent benchmark
dataset, consisting of 59 validated human polymorphic in-
versions from the InvFEST project (49). Allele frequency
(using CEU and TSI European populations) and length
concordance was determined using an overlapping window
of ±1 kb around the inversion breakpoints. Accuracy of
inversion genotyping was assessed for the 785 WGS sam-
ples, using the available reference panel of experimentally-

resolved genotypes (49). GCAT genotypes were imputed
with IMPUTE2 (50) with a genotype posterior probabil-
ity ≥0.8 and classified as missing otherwise. Missing geno-
types were recovered if they had a perfect tag SNP in the
reference panel (r2 = 1).

Comparative genomic hybridization (CGH) method was
used to validate deletions and duplications using the
NA12878 sample from 1000 Genomes project as reference,
for which the lists of variants had been previously described
(51). For each sample, we determined gains and losses and
compared them with those reported from our variant call-
ing analysis.

Phasing and imputation performance

In order to analyse the performance of the phasing and im-
putation processes, all 785 GCAT samples were divided into
two subsets, (i) a subset including 690 samples were first
used to construct a pilot reference panel and (ii) the remain-
ing 95 samples, with WGS and SNP-genotyping array data
available, were then used as a test sample in the different
analyses.
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The evaluation of phasing strategies was carried out by
determining the imputation accuracy of SVs, using the
genotypes independently generated by WGS and imputa-
tion techniques across the 95 test GCAT samples, and with
the pilot reference panel of 690 individuals (Supplemen-
tary Information section 10.1). Accuracy was determined
for chromosome 22, and the quality score of imputed vari-
ants was considered as a validation proxy of the best phas-
ing strategy. Each phasing strategy was evaluated by count-
ing the number of variants with an info score ≥0.7, and
by calculating the genotype concordance between imputed
data and the calling. The phasing algorithms evaluated were
ShapeIt2 (52) (version v2.r904), MVNcall (53) (version 1.0),
ShapeIt4 (54) (version 4.1.3) and WhatsHap (55) (version
0.18). We used IMPUTE2 (50) (version 2.3.2) for imputa-
tion analysis (Supplementary methods).

In order to evaluate the imputation performance of the
GCAT|Panel for distant ethnicities, we used the 1000G
SNP-genotyping array data covering 2318 samples from 19
populations (56) (Supplementary Table S13). First, quality
control was applied to the 1000G SNP-genotyping array per
population by removing variants the met the following cri-
teria: (i) ≥10% of missingness; (ii) matching A–T, C–G sites;
(iii) in Hardy–Weinberg disequilibrium (P-value < 0.05);
and by discarding samples with (i) ≥10% of missing, (ii)
Kinship coefficient ≥0.05 and (iii) an excess of heterozy-
gosity ±2SD, obtaining finally 1880 individuals covering
19 populations. Each population group was pre-phased
with ShapeIt4 and imputed separately using IMPUTE2.
Then, we compared the allele frequency, type of variant
distribution, and the quality of the imputed SVs across
populations.

To evaluate the imputation of SVs, we used as refer-
ence the Audano et al. (15) study that includes SVs identi-
fied using long-read sequencing. Imputed SVs with an info
score ≥0.7 were compared considering a window of ±50 bp
around the breakpoint. Furthermore, we evaluated the con-
cordance of SV type and SV length error reported by WGS
calling. On the other hand, we also evaluated the concor-
dance of the genotype of our imputed SVs, using the SV list
generated on the same samples, by Hickey et al. (57).

Benchmarking different panels of genetic variability

QCed genotypes generated in the GCAT cohort with
the Infinium Expanded Multi-Ethnic Genotyping Array
(MEGAEx) (i.e. 756 773 SNVs) were used to impute 4448
individuals (e.g. excluding those 785 with WGS) using the
GCAT|Panel and the publicly available 1000G phase3 (11),
GoNL-SV (12), UK10K (58) and HRC (2) reference pan-
els. Multiple reference panel imputation was conducted us-
ing GUIDANCE (59). For comparative purposes, we con-
sidered imputed variants with info imputation score ≥0.7
and MAF >0.001. For SNVs and indels, variants were con-
sidered coincident when the position and change matched.
For SVs, matching variants were considered if their posi-
tions were within a ±1 kb window, and the variant type
was the same. Since allele frequency impacts imputation,
we calculated the average of the info imputation score (r2)
by frequency categories: rare (MAF < 0.01), low frequency
(0.01 ≤ MAF < 0.05), and common (MAF ≥ 0.05).

Functional impact of structural variants

Variant annotation. Functional, regulatory, and clinical
annotations of SVs were predicted using AnnotSV (60). The
functional impact of SVs was evaluated by considering (i)
the level of overlap with known genes, (ii) the level of over-
lap with regulatory regions (61), (iii) the predicted loss of
function intolerance (pLI) effect and (iv) the reported dis-
ease association studies. In addition, we used SVFX (62),
a mechanism-agnostic machine learning-based workflow,
to evaluate the potential pathogenicity of large deletions
and duplications (>50 bp), in four major cardiometabolic
conditions from the GCAT cohort; diabetes, obesity, car-
diovascular diseases, and hypertension. SVs were classified
using the annotations of the SVFX tool into pathogenic
(SV pathogenic score ≥ 0.9) or benign (SV pathogenic
score ≤ 0.2). Finally, SNVs and indels (up to 50 bp) were
annotated using SnpEff (63) and SnpSif (64) (v5.0e) tools,
covering LoF and pathogenicity descriptors from ClinVar
(65) and CADD (66) resources.

Comparison with the GWAS catalog. GWAS catalog ver-
sion 1.0.2 (r2021-05-05) was downloaded from https://www.
ebi.ac.uk/gwas/docs/file-downloads. First, we selected 106
906 variant-phenotype associations of 72 849 unique au-
tosomal entries identified in European ancestry. Second,
we intersected with PLINK2.0 (67) 68 323 unique variant-
phenotype associations (MAF > 0.01) with the GCAT
dataset (∼30M variants) by breakpoint coordinates. Fi-
nally, we identified 1374 unique SVs (MAF > 0.01) in strong
linkage disequilibrium (r2 > 0.80) with variant-phenotype
associations in 1Mb window (Supplementary Figure S27).
From these 1374 SVs, we evaluated the SV type, as well as
the overlap with genes and regulatory regions.

Genome-wide association analysis. Association analysis
was performed by 70 independent GWAS of chronic con-
ditions. Phenotype selection was derived from the Elec-
tronic Health Records registry from the cohort (2012–
2017) and chronicity was defined using public guidelines
for chronic condition definitions (68), and the Chronic
Condition Indicator (CCI) (http://www.hcup-us.ahrq.gov/
toolssoftware/chronic/chronic.jsp) (69,70), then grouped
considering ICD-9 codes and chapter descriptions. Condi-
tions with more than 50 cases were retained for the GWAS
analysis (i.e. 70). Each association test was performed as
independent logistic regression for each cohort, under the
assumption of an additive model for allelic effects, with
adjustments made for age, sex and the first five principal
components. Gender-specific conditions were analysed only
for a specific gender. The analysis was performed using
PLINK2.0 (67) for autosomal chromosomes. A Bonferroni
correction accounting for the 10 ICD-9 categories used (i.e.
body systems) was applied. Locus Zoom was derived for
specific regions, and suggestive tower profiles were analysed,
based on LD patterns and gene-centered impact.

Experimental validation of the Alu element. PCR ampli-
con analysis was designed using Primer 3.0 software us-
ing the hg19 dna range = chr3:49 492 813–49 496 062 se-
quence, including the Alu element. Sequence primers are
for F-primer (5′CATTGACTCATTCAGCAAGCA 3′) and
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for R-primer (5′AAATTAAGCCCCACCCTAG3′). Using
standard conditions (35×, Tm = 60ºC) in a Veriti™ 96-Well
Thermal Cycler (Thermo Fisher Scientific), we obtain a 515
bp fragment corresponding to the control-allele and an 848
bp one for the Alu-allele. Fragments were resolved by e-
agarose gel, in a TapeStation (Agilent). Further, the am-
plicon of a non-ALU allele carrier was analysed by Sanger
Sequence Method to verify the insertion point (i.e. at hg19
Chr3:49 494 280) and the ALU sequence insertion (324 bp).

Statistical analyses

R software was used for data visualization and statistical
analyses. 95% confidence intervals (CI) for recall, preci-
sion, and genotype error metrics were assessed as point es-
timation ±1.96SD. Risk ratios with 95% CI and two-tailed
P-values from the functional enrichment of common and
rare SVs were calculated using the risk ratio function from
the epitools R package. Pearson correlation coefficient with
95% CI and two-tailed P-value were estimated using the
cor.test() function implemented in R.

RESULTS

Evaluation of cohort data quality and consistency

From the GCAT cohort (17) we randomly selected 808 indi-
viduals (gender-balanced) for new Illumina whole-genome
sequencing at 30× coverage. Twenty three samples were ex-
cluded based on sequence quality, ethnicity, and related-
ness parameters (see Methods, Supplementary Table S10).
Principal component analysis (PCA) on the remaining 785
individuals identified a unique and separated cluster com-
pared with neighbouring populations (Figure 1A, Supple-
mentary Figure S7), in agreement with their geographic
origin (45).

Generation of a comprehensive variant identification strategy

We designed, benchmarked, and implemented a compre-
hensive strategy for capturing, classifying, and phasing a
wide range of germline variants from short-read Illumina
sequences, with particular efforts devoted to the identifica-
tion and subclassification of larger structural variants (Fig-
ure 1B). Using sequencing data from an in-silico genome
(Supplementary information 1, Supplementary Table S2),
and a real sample (NA12878, from the Genome In A Bottle
(GIAB) project (24)), we assessed the performance (i.e. re-
call, precision and F-score metrics) of 17 variant callers cov-
ering SNVs, small indels (<50 bp), and large SVs (≥50 bp)
(see Materials and Methods), and retained the best twelve
(Supplementary Table S3). SNVs were first filtered based
on a minimum constraint of having the support from at
least two callers, which provided high recall (>95%) and
precision (>96%) values. On the other hand, for the fil-
tering of small indels and SVs, which show high levels of
discrepancy across individual callers and their combina-
tions (Figure 2A), we built a Logistic Regression Model
(LRM), to prioritize caller results through a reliability score
from the weighted combination of different calling param-
eters (Figure 2B, Supplementary Figure S2) (see Materials

and Methods), accordingly higher F-scores correlated with
larger AUC values (Supplementary Figure S30). This ap-
proach outperformed other typical curation strategies over
the entire spectrum of SV sizes (Figure 2C, Supplementary
Figure S5). Furthermore, because accurate genotype calling
is also key for downstream analyses, on top of this LRM, we
prioritized those callers that best resolved the heterozygos-
ity (i.e. genotypes) (see Materials and Methods), resulting in
a lower rate of genotype error (<6%) across all variant types
when compared to the in-silico sample (Figure 2D, Supple-
mentary Figure S3).

Genome-wide variation analysis of the GCAT cohort

The application of this strategy to the selected 785 whole-
genome Illumina sequences (30×), let us identify 35 431 441
unique variants across the cohort. Of these, 85.6% corre-
spond to SNV, 14.1% to indels (<50 bp) and 0.3% (n = 89
178) to SVs (≥50 bp) (Figure 3A). Median values of vari-
ants per individual were 3.52M SNVs (SD = 24 983), 606
336 indels (SD = 8060) and 6393 SVs (SD = 222), show-
ing good consistency across the cohort (Figure 3B). SV
sizes ranged from 50 bp to 197MB (duplication), with me-
dian values of 291 bp and a different distribution for each
type of variation (Figure 3C), affecting globally a median of
7% of the entire genome per individual. Frequency ranges
across all SVs were in agreement with other public WGS-
based studies (Figure 3D), with 31% of them being com-
mon or low-frequency (MAF ≥ 0.01), and 69% being rare
(MAF < 0.01), including a large fraction (50%) present only
in one or two individuals (i.e. MAF ≤ 0.0025).

The robustness of these results was evaluated using com-
parative and experimental approaches. A large fraction
of SNVs and indels (i.e. >79% and >93% respectively)
matched with dbSNP (Build 153.v) (46) entries (Supple-
mentary Figure S9a, b). Regarding SVs, the comparison
against different public databases (i.e. gnomAD-SV (10),
1000G (11), GoNL (12), HGSVC (13), DGV (47), dbVar
(47), Ira M. Hall Lab dataset (48); see Materials and Meth-
ods) highlighted 49,333 novel SVs (i.e. 61% of all SVs),
of which 27% were present in more than two individuals
(Supplementary Figure S9). As to the type, 26% of these
novel variants correspond to deletions, 8% to duplications,
20% to insertions, 20% to inversions, 4% to LINEs, 1% to
SVAs, and 21% to Alu elements. The comparison of our
results with array-based genotypes in a fraction of our co-
hort (n = 570 individuals) validated 96% and 87% of SNVs
and indels, respectively, with a genotype concordance of
97% and 96% (Supplementary Figure S10). Furthermore,
we also used a benchmarking set of 59 manually-curated
and experimentally-genotyped inversions with MAF >0.01
from the InvFEST project (49) to evaluate this type of
variants within our catalogue. Of these 59 inversions, we
detected 51 (86%), with concordant size and allele fre-
quency values (Supplementary Figure S11a, b; see Materi-
als and Methods). This validates ∼38 000 of ∼40 000 inde-
pendent inversion calls across the entire cohort, with an av-
erage genotype concordance of 95% (Supplementary Figure
S11c). In addition, we have applied CGH, which best targets
duplications, as well as large deletions (>20 kb). Using this
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Figure 2. Benchmarking of the structural variant identification and classification pipeline. (A) Structural variant (SV) detection patterns according to the
programs used. Lines and dots indicate the programs used and bars the number of overlapping calls resulting from that combination. The first 30 patterns
with more coincident SV calling are shown. Right coloured horizontal bars indicate the total number of SVs detected by each caller. Variant callers that
detect all SV types and sizes tend to recover more SVs than those that detect specific SV types (i.e. CNVnator) and smaller SVs (i.e. Strelka2). (B) Overview
of the detection performance of different strategies and filtering results from multiple variant callers. Each strategy is plotted according to the recall and
precision ratios (F = F-score) using the benchmarking dataset. The logistic regression model (LRM), with a F-score of 0.9, outperformed other commonly
used strategies that are based on the number of coincident callers (logical rules). The confidence interval for each case is represented by coloured area
of each strategy. (C) Comparison of performances (F-score) of different merging and filtering strategies according to the size of the structural variant.
(D) Comparative overview of the genotype error, associated to each strategy for each allelic state. Error values and their intervals were inferred from the
benchmarking dataset (see supplementary Figures S2, S3 and S5 for the information across the different SV types).

technique, we could validate 76% of our deletions, as well
as 20% of the duplications (Supplementary Table S16). Fi-
nally, we contextualized our results in the frame of other SV
identification efforts, through the analysis of the NA12878
sample from the 1000G project that has been sequenced and
analysed using long and short read technologies at differ-
ent coverages. From all SVs identified with long-read tech-
nology (15), our strategy was able to identify 24% of them
when applied to NA12878 at 30× short-read sequence. This
overlap is different across different SV types, as we detected
14% of the insertions and duplications, but up to 48 and
57% of the inversions and deletions, respectively. The same
comparison using the 1000G annotation of NA12878 at 3–
7× coverage showed a coincidence with long-read results
of 4, 2 and 0.1% for deletions, inversions, and duplications
respectively (Supplementary Table S17), showing a signifi-
cant detection improvement when using higher coverages,
identifying between a 2- and 7-fold the number of variants
with 30× coverage, compared with 15× and 5× coverages,
respectively (Supplementary Figure S31).

Predicted functional impact of SVs

A first assessment of the potential functional impact and
pathogenicity of our SVs was obtained using AnnotSV
(60). 46% of all SVs overlapped with genes, affecting a
median of 2868 per individual, whereas 18% overlapped
with gene regulatory regions (see Data and Code Avail-
ability at the resource availability section for the corre-
sponding gene lists). While the majority (88%) of gene-
overlapping SVs mapped within intronic regions (Supple-
mentary Figure S24a), 9% of them affected coding sequenc-
ing regions (CDS). In agreement with known variant fixa-
tion patterns within populations, we observed that rare SVs
(MAF < 0.01) tend to be more disruptive, compared to
common variants (MAF ≥ 0.05), as 13% of rare SVs are
overlapping coding regions, compared to 5% of the com-
mon ones (RR = 0.13/0.054 = 2.4, 95% CI = [2.14,2.69], P-
value = 2.6 × 10−67, Supplementary Table S15a, b). Of the
affected genes, 28% (10 600 SVs) are related to disease, as
indicated by the predicted loss-of-function intolerance pa-
rameter (pLI) (71) (Supplementary Figures S25a, S26 and
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Figure 3. Overview of the GCAT variant catalogue. (A) Table with the numbers of identified and accepted variants after applying the filters ‘at least two
callers detecting the same variant’ for SNVs, the LRM for indels and SVs, Hardy–Weinberg equilibrium, and discard monomorphic variants and those
with >10% missingness within the GCAT cohort, according to their class. (B) Overview of the variant distribution within an average individual in the
GCAT cohort, according to their observed minor allele frequency (MAF). (C) Distribution of SV type according to their genomic sizes. (D) Comparative
overview of the SV type number and distribution across the GCAT, 1000G, GnomAD and GoNL catalogues.

Table S14). Additionally, when we analysed the putative
causal role of our SVs variants across multiple phenotypes,
we observed that 1374 SVs (MAF ≥ 0.01) are in strong link-
age disequilibrium (LD) (r2 ≥ 0.8) with loci associated with
human traits from the GWAS Catalog (version1.0.2 release
05/05/2021), tagging mainly deletions (Supplementary Fig-
ure S27), with more than half of them (799) directly overlap-
ping genes or regulatory regions. Finally, we further refined
these results with annotations from the SVFX tool (62) for
four major cardiometabolic conditions; obesity, cardiovas-
cular traits, hypertension, and diabetes. Our analysis iden-
tified 106 GWAS catalog (P-value < 10−8) hits (i.e. 8% of
total hits) that overlap with pathogenic annotated variants
in the four analysed traits; 55% variants overlap with obe-
sity and related obesity traits, 20% with diabetes, 16% with
cardiovascular-related diseases and 9% with Hypertension
and related traits. Of these, 95% were common and 5% were
low-frequency variants. We observed a ratio of pathogenic
to benign deletions of 0.95, 1.93, 1.85 and 0.40 for dia-
betes, hypertension, obesity, and cardiovascular traits, re-
spectively. In the case of duplications, these ratios were 2.06,
4.42, 4.06 and 0.82 for diabetes, hypertension, obesity, and

cardiovascular traits, respectively, suggesting that duplica-
tions are twice more likely to be involved in these traits.

From the annotation obtained using SnpEff (63) we ex-
tracted 2855 variants that were classified as LoF and ob-
tained their pathogenicity using ClinVar (65) and CADD
(66) data. ClinVar data was available for 243 variants 70 of
which were reported as pathogenic or likely pathogenic, and
CADD data was available for 2850 variants, 2330 of which
were classified as deleterious (CADD PHRED score > 20).

Iberian Haplotypes estimation

As a resource for the enrichment of SVs within genome-
wide association studies, we built a haplotype reference
panel by phasing together all the variants identified within
all GCAT samples. We first generated a cross-validation
framework to identify the best available phasing strategy
for SV (see Materials and Methods), using downstream
imputation results as the evaluation and ranking criteria
(Supplementary Figures S12 and S13 and Table S12). In
our hands, the combination of ShapeIt4 (54) and What-
sHap (55), which include phase informative reads (PIRs),
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Figure 4. Phasing and Imputation performance of the GCAT|Panel. (A) Ternary diagram of the genotype imputation accuracy by variant type and fre-
quency, considering the genotype calling as reference. Three dots evaluate each genotype state per sample. The samples with high concordances between
genotype imputation and genotype calling were located at ternary diagram vertices. (B) Number of SNVs and indels imputed (info score ≥ 0.7) using dif-
ferent reference panels and combining their imputation results. More indels were recovered by GCAT|Panel. (C) Number of SVs imputed (info score ≥ 0.7)
using different panels, and combining the imputation results with and without GCAT|Panel. (See also Supplementary Figure S21).

provided the best results. Using this protocol (Supplemen-
tary Figure S14), the resulting haplotype panel allowed the
imputation (info scores > 0.7) of 98%, 92%, and 90% of
our common SNVs, indels and SVs, respectively, recover-
ing a median of 5120 SVs (SD = 50), from a maximum of
6393 SVs estimated per individual. While the best impu-
tation results came from de novo insertions and deletions,
with 96% and 95% recovery rates, respectively, duplications
and translocations were imputed at lower rates, i.e. 48% and
19%, respectively (Supplementary Figure S15). Overall we
imputed common SNVs, indels and SVs with a genotyping
concordance of 99% (SD = 0.4), 97% (SD = 0.6) and 98%
(SD = 1.2) (Figure 4A), respectively. The lowest values were
observed for duplications and translocations, with genotype
concordances of 84% (SD = 9.2) and 73% (SD = 27.6), re-
spectively (Supplementary Figure S16).

As the possibilities of accurately imputing SVs are ex-
pected to correlate with the number of neighbouring SNVs
and indels in LD, we next analysed the variation context
of our SVs. Using one megabase window, we observed that
the number of SNVs and indels in strong LD (r2 ≥ 0.8)

with common deletions, insertions, inversions, and mobile
element insertions (MEIs) was in the range of 39–42, in
contrast to duplications and translocations, which showed
mean values of 12 and 8 variants respectively (Supplemen-
tary Figure S17a). In fact, as expected, a positive significant
correlation was observed between the number of variants
in LD and the score of imputation for common SVs (Pear-
son’s r = 0.38, 95% CI = [0.37, 0.40], P-value < 2 × 10−16)
(Supplementary Figure S17b), and for all SV types (except
translocations) (Supplementary Figure S18).

Imputation performance of the haplotype panel

Following this strategy, we generated a complete and op-
erational panel of Iberian haplotypes, with all the variants
of our 785 individuals. To assess the value and benefits of
the resulting GCAT|Panel, as an imputation resource for
enriching genetic association studies with SVs, we first im-
puted the genotyping array data of 4448 GCAT individuals
and compared the results with those of other reference pan-
els, such as 1000G (11), GoNL (12), HRC (2), and UK10K
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Figure 5. Genome-wide association analysis using GCAT|Panel and experimental validation of an AluYa5-element. (A) Locus zoom plot of the lo-
cus associated with mononeuritis of lower limb (ICD-9 355) (P-value = 9.84 × 10−7), showing the lead variant in purple. The AluYa5-element
(g.49494276 49494600ins (hs37d5) maps in an enhancer element upstream of the DAG1. (B) Experimental validation of an AluYa5-element, agarose e-gel
electrophoresis of PCR products after amplification of Alu-insertion-specific DNA fragments from blood DNA Lanes: 1, 100 bp DNA ladder marker
(Life Technologies), expected sizes of both states are shown to the left; 2–5 Alu carriers (EGA 04200, EGA 01901, EGA 13378, EGA 03940); six control
individual (EGA 01399). The numbers to the left refer to the size (bp) of marker DNA fragments. Electrophoresis analysis of Alu carriers show two-band
amplicons (515 bp and 848 bp) detected in Alu carriers (lanes 2–5) and one-band amplicon (515 bp) in control non-Alu-allele individuals (lane 6) (See also
Supplementary Figure S29).

(58). With IMPUTE2 (50), the GCAT|Panel was able to
impute a total of 14 383 907 variants with MAF > 0.001
and high quality (info score ≥ 0.7). Across different refer-
ence panels, the overall imputation performance for SNVs
and indels (<50 bp) was generally high (Figure 4B), with
slight overperformances of the GCAT|Panel on indels, and
of 1000G and HRC panels on SNVs. While HRC and
1000G recovered rarer SNVs, likely because of their larger
sample sizes, the GCAT|Panel was able to recover rarer
indels (Figure 4B). At the structural variation level, the
GCAT|Panel was able to impute a total of 23, 179 SVs
with info scores ≥0.7, resulting in a 1.6-, 2.7- and 1.3-fold
increase, compared with the 1000G, the GoNL, and both
panels combined, respectively (Figure 4C). For common
SNVs/Indels (MAF > 0.05) the GCAT|Panel showed simi-
lar performance as HRC, 1000G, GoNL and UK10K refer-
ence panels (mean r2 > 0.96, Supplementary Figure S21a).
For common SVs, the GCAT|Panel outperformed (mean
r2 = 0.91, SD = 0.15) 1000G (mean r2 = 0.80, SD = 0.21)
and GoNL-SV reference panels (mean r2 = 0.82, SD = 0.21,
Kruskal–Wallis P-value < 2.2 × 10−16, Supplementary Fig-
ure S21b).

In an exploratory analysis, structural variants imputed by
the GCAT|Panel were also tested (together with SNV and
indels) for association across 70 identified chronic condi-
tions within the cohort. Conservatively, only structural vari-
ants with an info score >0.7 and conditions with >50 cases
were included in this analysis. Forty six SV loci showed sug-
gestive association with 26 conditions after Bonferroni cor-
rection (P-value ≤ 1 × 10−6) (Supplementary Figure S28).
Of all these associations, 63% could potentially be function-
ally explained through SVs, as they either lead the associa-
tion (37%) or are in strong LD (r2 ≥ 0.8) with the lead vari-
ant (26%). A notable example is a rare AluYa5-element in
chr3 (g.49494276 49494600ins (hs37d5), MAF = 0.0013),
located near the dystroglycan gene (DAG1) and associated
(P-value = 9.84 × 10−7) with Mononeuritis of lower limb
(ICD-9 355) (Figure 5A). The presence of this Alu element,
imputed only with the GCAT|Panel (info score = 0.98), was
experimentally confirmed in all carrier individuals (Figure
5B, Supplementary Figure S29).

Finally, we evaluated the portability of the GCAT|Panel
to infer SVs across 19 different ethnic groups using 1880
individuals from the 1000G project. While the imputation
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Figure 6. Structural Variant imputation performance using GCAT|Panel across all continents. European and Latin American populations recover more
low frequency and rare SVs at high info scores (≥0.7) than African and Asian populations (see also Supplementary Figures S22 and S23).

quality of SVs was higher within the European populations
(Supplementary Figure S22), the GCAT|Panel was also able
to impute a large fraction of SVs across all other ethnici-
ties (Figure 6, Supplementary Figure S23a). Of nearly 50K
unique SVs imputed across all groups, 25%, 35% and 40%
of them were detected within the Asian, African and Latin
American populations, respectively (Figure 6, Supplemen-
tary Figure S23). In agreement with the mixed origin of
Latin Americans, nearly half of all imputed variants within
this group showed low-frequency values (MAF < 0.05),
compared with other non-European groups, where the im-
putation covered predominantly common variants (Figure
6). In addition, 73% of all the structural variants identi-
fied and genotyped in previous studies, using long and short
WGS (15,57) were also imputed by our panel on the same
individuals, with 88% of matching genotypes (Supplemen-
tary Figures S19b and S20a).

DISCUSSION

Here, we present the GCAT|Panel, the first Iberian Hap-
lotype reference panel derived from high-coverage whole-
genome sequencing. The strategy developed for variant
identification, classification, and phasing, has provided a
comprehensive and high-quality catalogue of genetic vari-
ants, with low rates of false-positive calls and genotyping
errors for all variant types, including SVs. This is due to the
combination of high sequencing coverage (30×) with a com-
prehensive analysis strategy that integrates multiple variant
callers and a Logistic Regression Model for maximzing re-
call and precision for each SV type and size.

Increasing the sequencing coverage to 30× allowed us to
resolve a large fraction of SVs and accurately define the
genotypes that cannot be properly defined with lower se-
quencing depths. In addition, while previous projects in-
ferred SVs into phased haplotype scaffolds (11,12), our se-
quencing coverage allows us, for the first time, to phase SVs
together with biallelic SNVs and indels, and to use phase in-
formative reads (PIRs), which are expected to improve the
imputation of rare variants (72). With this sequencing tech-

nology, we also expect a slight detection bias against low
complexity (repeated) regions of the genome, where short-
read sequencing tends to be less informative, in contrast
to long-read sequencing technology (13–16). This is further
highlighted by the high portion (54%) of our SVs affecting
genes or regulatory regions, which also tend to be within the
non-repetitive portion of the genome.

Given the increasing incorporation of whole-genome se-
quencing into genetic studies, it is crucial to highlight the
importance of accurately identifying and resolving SVs with
the correct genotype, to then obtain robust and meaningful
results during the imputation in a different cohort. Here, we
found a positive correlation between the number of neigh-
bouring variants in LD with SVs and their quality of im-
putation, suggesting that variants with a high genotyping
error show a lower number of variants in LD, which trans-
lates into a lower imputation accuracy for those variants
(Supplementary Figure S17). On the other hand, software
limitations (PLINK or ShapeIt4), can translate into poor
estimations of haplotypes and LD, directly hampering the
association test, which relies on accurate counts of vari-
ant allele frequencies and states. Improved variant calling
strategies that can accurately identify and define complex
structural variation events are still needed, together with
new and dedicated analysis frames (e.g. phasing and LD) for
SVs, where the actual size and type of the variant is consid-
ered, in contrast to the current scenario where SVs are taken
as SNVs.

In our cohort, the GCAT|Panel led to the identifica-
tion of potential risk SV, including those within the rare
spectrum. Here, we highlight the identification of a rare
polymorphic 324 bp-long AluYa5 element in chromosome
3 (g.49494276 49494600, MAF = 0.0013) associated with
Mononeuritis of the lower limb (ICD-9 355). This SV is
located within a multi enhancer-elite element (GeneCards)
(73), proximal to DAG1, a gene involved in pathways re-
sponsible for neuromuscular diseases, and already causing
severe limb-girdle muscular dystrophy type 2P (LGMD2P)
through missense point mutations (74). Further studies are
now needed to validate the resulting hypothesis, in which
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this Alu element could be affecting the expression of the
DAG1 gene in this disease.

This study also provides detailed guidance for the com-
prehensive analysis of whole-genome sequences, including
the identification, classification, and phasing of SVs. We ex-
pect that this type of analysis will soon become the stan-
dard within large genetic studies that are already incor-
porating whole-genome Illumina sequences and combining
them with existing genotyping array information.

Taken together, the availability of a high-quality haplo-
type panel, including a comprehensive fraction of struc-
tural variability, will significantly impact evolutionary and
biomedical studies at different levels. The possibility of
enriching current genome-wide association studies (e.g.
GWAS and eQTL) with SVs through imputation, directly
increases the chances of variant discovery, as well as of their
functional interpretations. Our analysis evidence the poten-
tial of using population-matched reference panels, for the
identification of rare structural variants involved in disease,
and the important contribution to the understanding of the
underlying genomic architecture of genetic diseases.
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Miguel-escalada,I., Carey,C.E., Cole,J.B., Rüeger,S., Atkinson,E.,
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