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Presentation 

 

This thesis has been the result of a colaboration between the University Rovira i Virgili (URV) 

and the Institute of Agrifood Research and Technology (IRTA). The research center in Mas 

Bové (Constantí, Tarragona) is one of the several IRTA centers in Catalonia and includes 

facilities such as monogastric experimental farms, a feed factory and an analytical laboratory. A 

key research line at IRTA Mas Bové is carried out by the IRTA-Animal Nutrition (IRTA-AN) 

program on monogastric nutrition. An important part of the research consists of studying how 

diets are digested by monogastric animals and how they affect animal productivity, health and 

waste generation. In order to simplify these studies as much as possible and reduce the 

laboratory load, IRTA acquired a benchtop NIR instrument (FOSS NIR DS2500) in 2020. The 

expertise of the Chemometrics, Qualimetrics and Nanosensors group at the URV was applied 

to develop, apply and validate the NIR multivariate calibration models for the determination of 

the nutrient content of different types of samples generated during in vivo assays. This thesis 

involves the use of stored feed, faeces, excreta and ileal digesta contents from research projects 

that have been carried out at IRTA in the recent past or during the development of this thesis. 

The analytical reference data from these samples was provided by the analytical laboratory at 

IRTA. I also did a research stay of three months in Viborg (Denmark) in the Department of 

Animal and Veterinary Sciences, AU Viborg research centre Foulum. This agri-food research 

centre belongs to the Aarhus University and has research lines like those of IRTA.  
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Summary 

 

To maximize the productivity of monogastric animals (e.g. poultry and swine) while avoiding 

nutritional excesses or deficiencies, it is essential to adopt a formulation approach that 

incorporates not only accurate values of nutrient content and the energy provided by the feed 

but also the digestibility of the nutrients and the metabolizable or digestible energy. In-vivo 

assays are the preferred method to obtain information about digestibility, although they are 

expensive, laborious, and generate a large number of samples (faeces, excreta and/or intestinal 

contents) for analysis. These samples are traditionally analysed by wet chemistry analytical 

methods. Near-infrared spectroscopy (NIRS) coupled with chemometrics presents several 

advantages against wet chemistry, such as rapidness, cleanliness, and the fact that it is a non-

destructive, multi-parametric technique. The proven ability of NIRS to determine the nutrient 

content (protein, fat, fibre, and others) of feedstuffs and animal diets has promoted the routine 

use of this technique in the agri-food sector. We have confirmed the applicability of NIRS to 

determine the nutrient content of compound feeds and demonstrated that NIRS is also a reliable 

tool to characterize the carbohydrate and lignin fraction (gaining importance in today's 

formulations) of a variety of feedstuffs included in monogastric diets. We have shown that 

global Vis-NIR calibration models (involving a wide range of experimental variability) predict 

the nutrient composition of poultry excreta and pig faeces accurately. We have also developed 

accurate calibration models for protein and most amino acids in poultry ileal digesta. A fast and 

inexpensive access to the nutrient content of all these samples will help reduce the cost of 

digestibility studies and improve the search for optimal feeds. 

 

Animal nutrition research involves testing different diets (containing new ingredients, new 

proportions of ingredients, additives, etc.) on animals that may vary their digestive capacity from 

one in-vivo assay to another (e.g. different breed or different age). Therefore, new samples from 

compound feeds, faeces, excreta, or ileal digesta can introduce sources of variability that were 

not modelled during the calibration development. We have presented two strategies to 

incorporate these new sources of variability into the models. The first strategy was applied to 

compound feeds and involved identifying the most interesting samples from their spectra using 

the model diagnostic measures Hotelling’s 𝑇2 and 𝑄 residuals. It has been proven that models 

periodically updated with these samples improve their robustness and predictive ability over 

time. The second strategy was applied to pig faeces. We have developed a sample selection 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



algorithm based on D-optimality, which efficiently selects a reduced number of new samples 

from a large batch that is used to update the model. This way, the remaining samples from the 

batch can be predicted accurately, and the model incorporates new information that can be 

useful to predic samples from other batches in the future. 

 

An additional drawback regarding in-vivo assays is the ethical problems related to animal 

experimentation. Therefore, there is a tendency to simplify or minimize them as much as 

possible. In the last part of this thesis, we explored different strategies involving NIRS to predict 

the digestibility of nutrients and the metabolizable or digestible energy with the ultimate aim of 

replacing in-vivo assays. We achieved varying degrees of success for the studied parameters and 

strategies, laying the groundwork for future studies in this field. 
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1.1. Objectives 

 

The main objective of this thesis is to develop, validate and implement multivariate calibration 

models based on near-infrared spectroscopy (NIRS) or visible-near infrared spectroscopy (Vis-

NIRS) to obtain the nutrient content of samples related with in-vivo assays with farm animals, 

concretely poultry and swine. The fast and inexpensive access to the nutrient content of these 

samples, that ultimately inform about the feed and how has been digested by the animal, may 

have applications in the agri-food sector among them the reduction of the cost of nutritional 

in-vivo assays and the easier identification of optimal diets for monogastric animals. This main 

objective gave rise to three specific objectives.  

 

Specific objective 1. The development of methods based on NIRS or Vis-NIRS as an alternative 

to the routine wet chemistry analytical methods used to determine the nutrient content of 

feedstuffs, compound feeds, excreta, faeces and intestinal contents involved in in-vivo assays of 

poultry and swine. The purpose is to reduce the cost and increase the speed of the analytical 

determinations and avoid the drawbacks of wet chemistry analysis.  

 

Specific objective 2. The development of strategies to maintain and update some of the 

calibration models developed in Specific objective 1. Calibration models used in routine 

determinations can fail with samples having unmodelled sources of variability. The purpose of 

these strategies is to detect those situations and update the models to maintain their predictive 

ability over time.  

 

Specific objective 3. The study of different approaches based on NIRS for the determination of 

energy and digestibility. The purpose is to investigate whether NIRS can help simplify in-vivo 

assays even to the point of reducing the use of animals in nutritional studies focused on the 

determination of these nutritional parameters.  
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1.2. Structure 

 

This thesis has six chapters. Chapter 1 contains the objectives and the structure. Chapter 2 

introduces the analytical technique and the field of application. Chapters 3 to 5 contain the main 

experimental results and Chapter 6 has the conclusions and indicates future perspectives.  

 

Chapter 1: Objectives and structure. This chapter. 

 

Chapter 2: General introduction. It has three sections. Section 2.1 introduces the context of this 

thesis that is monogastric animal nutrition. Section 2.2 explains some theoretical aspects of near-

infrared spectroscopy (NIRS), that is the main analytical technique used in this thesis, and 

multivariate calibration. Section 2.3 is a literature review of applications of NIRS in monogastric 

animal nutrition. 

 

Chapter 3: Replacing wet chemistry by NIRS to improve feed formulation and reduce the costs of in-vivo assays. 

This chapter is related to the first objective and focuses on the development and validation of 

NIR calibration models to determine relevant parameters and nutrients in various types of 

samples related to nutritional in-vivo assays. Section 3.1 introduces the topic. The following five 

sections contain the main developments written in publication format (*). Section 3.2 studies 

the capability of NIRS to characterize carbohydrate and lignin fractions of a large variety of 

ingredients often included in monogastric diets. Section 3.3 deals with the development and 

validation of NIR calibration models for the nutrient content (crude protein, fat, crude fibre, 

gross energy, ash and phosphorus) of monogastric compound feeds and compares the 

performance of these models (global) with commercial and specific calibrations. Section 3.4 

evaluates the usefulness and accuracy of Vis-NIR calibration models in the prediction of the 

nutrient content (organic matter, protein, fat, gross energy, uric acid and phosphorus) of poultry 

excreta (broilers, laying hens and turkeys) comparing global and specific calibrations. Section 

3.5 deals with the development of Vis-NIR calibration models for the nutrient content (organic 

matter, protein, fat, gross energy, CF, NDF, ADF, lignin and phosphorus) of pig faeces. Finally, 

section 3.6 deals with the evaluation of the potential of NIRS to determine total protein content 

and 17 amino acids in poultry ileal digesta. 
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Chapter 4: Maintenance of NIR calibration models. This chapter is related to the second objective of 

this thesis and deals with the actions required to maintain and update some of the NIR and vis-

NIR calibration models developed in Chapter 3. Section 4.1 introduces the topic. Section 4.2 

describes a strategy to maintain calibration models for monogastric compound feeds (crude 

protein, fat, crude fibre and ash). Section 4.3 describes a strategy to update calibration models 

for pig faeces (phosphorus). These last two sections are written in publication format. 

 

Chapter 5: Strategies based on near-infrared spectroscopy to predict digestibility of monogastric animal diets. 

This chapter is related to the third objective of this thesis and compares different strategies 

based on NIRS to obtain apparent metabolizable energy for broilers, apparent digestible energy 

for pigs, and apparent ileal digestibility of phosphorus for broilers. This chapter contains a single 

section written in publication format. 

 

Chapter 6: Conclusions and perspectives. This chapter contains the conclusions of the thesis. It also 

comments on some future perspectives that can be explored based on the findings and 

implications presented throughout the thesis. 

 

Appendix A lists the scientific contributions published by the author of this thesis and the 

presentations in national and international congresses. Appendix B lists the research stay and 

training courses attended.  

 

(*) Note that the main experimental sections have been formatted as a publication to give this part of the thesis a 
uniform format, but not all correspond to actual publications.  

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



7 

 

 

 

 

 

 

 

Chapter 2.  

General introduction 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



8 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



9 

 

2.1. Monogastric nutrition 
 

Introduction 

 

Precision farming is a modern farming management concept that takes advantage of digital 

technology to monitor and optimize farming production processes. Different from traditional 

farming, precision farming uses a data driven approach to choose the most adequate settings 

for each production stage [1]. This concept covers many aspects from crops (sowing, growth 

control and harvesting) to the production of animals for meat, eggs, and milk (feeding, sanitary 

control and performance). The most advanced production methods in these fields constitute 

some type of precision farming even though they are not always explicitly called as such.  

 

The need of evolving from traditional farming to precision farming has been recognized in 

foresight studies from the European Parliamentary Research Service [2,3] which stress the future 

challenges of farming. These are, basically, the demand of sustainably feeding an expanding 

world population, with less soil and water available, while combating soil pollution and climate 

change and ensuring food safety and economic growth. So far, the increasing demand for food 

has been met by increasing supply and improving production efficiency sometimes with not 

sustainable practices. The next step in the necessary evolution is precision farming. The 

production of monogastric animals is not an exception.   

 

This thesis focuses on monogastric animals, specifically swine and poultry which are the most 

important production animals in the European Union [4]. Production of swine was 23.4 million 

tons in 2021 in the EU. The production has increased by 6% in the last 10 years. In Spain, the 

increase has been much more pronounced in this period (53%) until reaching in 2021 the first 

position as European producer surpassing Germany [5]. Poultry production rose to 13.5 million 

tons in 2021 in the EU. It increased by approximately 33% in the last 10 years both in the EU 

and in Spain that it is the second European producer behind Poland. Broiler chicken is the most 

produced poultry meat by far (more than 80% of poultry meat) followed by hen and turkey [6].  

 

A key research subject in precision farming of monogastric animals is optimal feedstuff 

formulation. Feedstuff represents the major production cost, estimated to be between 60% and 

70% of the total costs of swine [7] and poultry [8]. Feed is the key factor influencing the growth, 
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health and waste production and, consequently, the profit and environmental impact of this 

industry.  

 

Feedstuff formulation criteria have evolved over the years. The classical approach is to 

formulate for total content of nutrients, such as total protein content. Compositional tables of 

the main ingredients (wheat, maize …) and their recommended levels for each animal species 

and age are used to decide the percentage of each ingredient in the formulation [9]. A 

disadvantage is that the listed values of nutrients are average values that may not correspond to 

the actual ingredient being used, whose properties vary depending on the origin (production 

conditions, climate …), transport and storage conditions. Additionally, raw ingredients are 

mainly purchased based on price and not based on the required proportion of nutrients for the 

feedstuff being formulated. This obliges the feed industry to determine the properties of the 

ingredients that are available at each moment with costly chemical analyses and continuously 

reformulate the combination of ingredients in the feedstuff seeking a compromise between the 

product’s cost and nutritional properties.  

 

Advances on optimal feedstuff formulation arrived by replacing wet-chemistry analytical 

methods (e.g., Kjeldahl method) by others based on faster techniques such as near-infrared 

spectroscopy (NIRS). NIRS is a fast, reliable and non-destructive analytical technique that is 

well suited for the analysis of organic constituents from plant and animal origin. The 

applications of NIRS to the agri-food industry have extended remarkably, in hand with the 

development of chemometric methods that are required to analyse the NIR spectra. NIRS has 

proved to be a better tool to formulate than table values and allows maintaining the desired 

amount of nutrients for each batch ensuring the quality of each manufactured diet [10,11]. 

 

Other important advances arrived by redefining the performance criteria that feedstuff must 

meet. In this sense, industry and animal research centres moved from total protein content to 

formulations based on amino acid content since the relative proportion of amino acids is a major 

factor affecting the animal development [12]. Another advance is the growing use of enzymes 

like carbohydrase and phytase in the diets, that has made necessary the determination of 

constituents traditionally ignored like non-starch polysaccharides (NSP) or phytic phosphorus 

[13]. Moving a step forward into precision farming, the next trend is formulation based on 

available content, which considers how the nutrients are digested and metabolized by the animal. 

When the same content of protein or amino acids can be obtained with different combinations 
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of raw ingredients, one is interested in the most cost-effective formulation that results in the 

highest digestibility. The combination of ingredients, the animal species and their age affect how 

the ingredients are effectively digested, so a variety of indicators such as the digestibility 

coefficients of the main nutrients (energy, fat, protein and amino acids) are used to guide the 

feedstuff formulation. 

 

The main deterrent for the routine use of digestibility values is that they are not readily available. 

They must be obtained from extensive (and expensive) carefully planned in-vivo assays, where 

animals are fed different diets of perfectly known composition and their faeces or excreta (in 

poultry, the combination of faeces and urine) and/or intestinal contents are analysed to 

determine the effectiveness of the diet. For example, digestible energy is determined in in-vivo 

assays by subtracting the gross energy of the faeces from the gross energy of the feed. Therefore, 

in addition to the logistics and infrastructure required to work with animals fulfilling legal and 

ethical considerations, in-vivo assays require well-equipped analytical laboratories able to 

accurately determine the chemical composition of feedstuffs, compound feeds, faeces or excreta 

and intestinal contents [14]. Running such a variety of analytical methods is not only slow and 

costly but also has an environmental impact that cannot be ignored, because they use solvents 

and generate chemical waste that must be processed properly. 

 

Different approaches have been studied to replace in-vivo assays. Tabular values [15], empirical 

models based on the chemical composition of feed [16], in-vitro methods [17] and NIRS [18] 

have been applied to estimate digestible energy of swine and poultry. The estimation of the 

digestibility of nutrients has been also studied although it is still generally based on in-vivo 

assays.  

 

Feedstuffs in monogastric nutrition  

 

In Spain, the total production of animal feed reached almost 40 millions of tonnes in 2020 of 

which 18 millions were for the swine sector and 7 for the poultry sector. The average proportion 

of feedstuffs used for feed production was 62% for cereals, 17% for oilseed co-products 

(protein-rich feedstuffs), 7% for cereal co-products, 3% for minerals such as calcium carbonate 

and 2% for sources of fat such as animal fat or vegetal oils. The remaining 9% were products 

or co-products from legumes, tubers and roots, non-oil seeds, forages or silages, other plants 
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and animal by-products [19]. The cereals are used so extensively because they are widely 

available, easy to transport and handle, readily consumed by the animal and provide a large 

amount of energy, mainly through the digestion of the starch. The most employed cereals are 

corn, barley and wheat. Corn is the main cereal used in monogastric animal feeds. Barley is more 

often used in swine diets than in poultry diets and wheat is quite used in cold regions [20]. In 

the context of circular economy, the use of cereal co-products in the diets is increasing, 

especially flours, middlings and cereal brans from the previously mentioned cereals and by-

products from distillery and brewery (DDGS) [21]. Since cereals and cereal co-products contain 

low amounts of essential nutrients such as protein, fat or minerals, protein sources and typically 

low amounts of fat and minerals are also included to prepare balanced diets. The quintessential 

source of protein is soybean meal because it has a high protein content with an adequate amino 

acid profile and a stable nutrient composition. This crop, however, has undesirable 

environmental impact such as the emission of nitrous oxide from the fields, the land-use change 

or the transport of the product to areas far from the producers [22]. As an alternative, sunflower 

and rapeseed meal are sometimes used in EU as home-grown protein-rich feedstuffs and 

nowadays more and more research is being conducted about the use of new sources of protein 

such as insects [23] or algae [24]. The nutritional profiles and the importance of the principal 

ingredients for poultry and swine nutrition can be found in references [9] and [25], respectively. 

 

Controlled parameters in feedstuffs  

 

Figure 1 shows the parameters that are commonly considered when a diet is formulated. The 

parameters that are determined more often in the agri-food industry are those belonging to the 

proximate system of feed analysis by Weende [26]. This system has been used for more than 

150 years and consists of the analysis of dry matter (DM), crude protein (CP), fat, crude fibre 

(CF) and ash. Nowadays, however, it is not possible to formulate an adequate diet based only 

on these parameters.  
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Figure 1. Parameters that are commonly controlled in feedstuffs and diets. 

Swine and poultry have specific amino acid (AA) requirements. The AAs that usually lack in 

conventional ingredients are known as limiting AAs. Lys, followed by Met and Cys (the 

sulphured AAs) and Thr are the main limiting AAs for poultry and swine diets [27,28]. 

Depending on the composition of the diet, other AAs could be limiting, e.g. Trp in corn based 

diets or Val in wheat based diets. Traditionally, feeds have been formulated with high levels of 

CP to ensure that the animal receives the required amount of each AA. The formulation based 

on the AAs profile (supplementing some AAs if needed) makes it possible to reduce the CP 

content of the feed and thus reducing the environmental impact caused by an excess of nitrogen 

in the diets [22]. Diets can be further improved by considering the available protein and AAs 

instead of the total amount. The fraction of CP and AAs non-digested by monogastric animals 

is preferably measured before the microbial degradation of AAs and the synthesis of AAs in the 

hindgut. In the case of poultry, it is also important to avoid the interfering influence of urine on 

AA digestibility. Because of that, it is more precise and repeatable to determine the non-digested 

CP and AAs in the ileal digesta than in faeces or excreta samples [29]. The digestibility calculated 

using the ileal digesta is called apparent ileal digestibility (AID). However, ileal digesta contains 

also AAs of endogenous origin that are called ileal endogenous AA losses and can be divided 

into basal and specific. True ileal digestibility (TID) is the most reliable way to consider the AA 

digestibility because it includes both types of endogenous losses in the calculations but these 
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values are rarely available. Standardized ileal digestibility (SID), that takes into account only the 

basal endogenous losses is often used to formulate because SID values are much easier to obtain 

and because, unlike TID values, they are additive when a diet is formulated [30].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Partitioning of AA digestibility for feedstuffs and diets. 

 

Feed contains large amounts of different carbohydrates that can be grouped in 
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analyses to characterize the carbohydrate fraction described by Bach Knudsen 1997 [37] lead to 
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determination of starch and the use of simplified and approximate methods to determine the 

fibre fraction. In the poultry industry, crude fibre (CF) is the most widely used fibre-related 

parameter when formulating a diet and represents variable portions of insoluble NSP, including 

cellulose and some hemicellulose. Neutral detergent fibre (NDF), which is a measure of 

hemicellulose, cellulose, and lignin, and acid detergent fibre (ADF), which includes only 

cellulose and lignin, are the most widely used fibre-related parameters in swine alimentation [38].  

 

Phosphorus (P) is a constituent that is attracting attention from the animal production sector. 

In conventional feedstuffs, P is mainly in the form of phytic P, which is poorly digestible by 

poultry and swine. In consequence, unused P accumulates in animal waste impacting the 

environment and inorganic P must be supplemented to the diet to satisfy the animal’s 

physiological needs. The inclusion of phytase doses in the diets improves the digestibility of 

phytic P reducing the P in animal waste and the amount of inorganic P supplemented [39]. 

Hence, in addition to total P, phytic P need to be determined in feedstuffs and diets when 

phytase is going to be used. 

 

Energy is a key parameter to consider when formulating animal diets. The amount of feed 

consumed by the animal depends on its energetic needs. Therefore, it is possible to predict feed 

consumption if the energy concentration of a diet is accurately provided and essential nutrients 

are not lacking. This information is the basis of diet formulation [40]. Gross energy (GE) is 

defined as the total chemical energy measured upon complete combustion of the feed in a 

calorimeter bomb. However, GE alone is not a good energy indicator because the animal does 

not retain all of it. There are losses in the faeces and urine and as gases and heat. Different 

energy systems have been proposed depending on which of these losses are considered (Figure 

3). Digestible energy (DE) is the difference between the GE in the feed and the energy losses 

found in the faeces, that is the GE of the faeces. Metabolizable energy (ME) also considers the 

losses in urine and gases from digestive fermentation. Net energy (NE) considers the increase 

in heat in addition to all the above. In poultry, since faeces and urine are excreted together, ME 

is the most determined energy form while DE is the most common for swine. DE and ME are 

also referred to as apparent DE (ADE) and apparent ME (AME), respectively. In poultry, AME 

values are often corrected on a nitrogen basis (AMEN) to account for the part of N that remains 

as tissue protein or egg protein or that is converted to uric acid and excreted [41]. Another 

energy system, the so-called true ME (TME) was developed for poultry [42]. In this case, the 

GE in the excreta is corrected by subtracting the endogen energy losses that are calculated as 
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the GE of the excreta during long periods of fasting. TME was used especially in North America 

but has been progressively abandoned due to the difficulty in estimating endogenous losses [43]. 

NE should be a more accurate estimate than DE or ME of the actual energy used by the animal 

but is more expensive and ethically problematic to obtain since the animals must be kept in 

respiration chambers to estimate the heat increment. The use of NE is more established in swine 

than in poultry industry. According to Van der Klis & Jansman 2019 [44] the efficiency of the 

AME system compared with the NE system depends less on the nutrient contents of the 

feedstuffs for poultry than for swine. Therefore, the NE system for poultry would not have a 

clear benefit over the AME system. Noblet et al. 2022 [45] have recently reviewed how the 

different energy parameters are obtained and which are the benefits or limitations of using one 

or another to formulate swine and poultry diets. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Partitioning of energy for feedstuffs and diets. 

 

In-vivo assays to obtain digestibility 

 

In-vivo assays measure the animal response to variations in the diets. They are the most reliable 

methods to determine the digestible energy and the digestibility of nutrients [46]. The faecal 

digestibility coefficient of energy and nutrients (𝐷𝑁𝑢𝑡(%)) is obtained as GE or nutrient in the 

feed consumed minus GE or nutrient in the faeces and is equal to: 

Gross energy (GE)  

Faecal gross energy 

Digestible energy (DE) 

Urinary and gas energy 

Metabolizable energy (AME) 

Endogen energy losses 

True metabolizable energy (TME) Net energy (NE) 

Heat increment 
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where [𝑁𝑢𝑡]𝑓𝑒𝑒𝑑 and [𝑁𝑢𝑡]𝑓𝑎𝑒𝑐𝑒𝑠  are the amount of GE or the concentration of the nutrient in 

feed or faeces, respectively, 𝐹𝑒𝑒𝑑𝑖𝑛𝑡𝑎𝑘𝑒 is the weight of feed fed to the animal and 𝐹𝑎𝑒𝑐𝑒𝑠𝑒𝑥𝑐𝑟𝑒𝑡𝑒𝑑 

is the weight of faeces collected.  

 

For the ileal digestibility coefficients, the nutrient in the ileal digesta is used instead of the 

nutrient in faeces.  

 

In-vivo assays are conducted keeping the animals in digestibility pens or cages. Before starting 

the measure of feed intake and faeces collection the animal needs time to adapt to the location 

and to the feed. The adaptation time varies depending on the specie, the diet and the weight of 

the animal. At least 3 days are necessary for poultry and 5 days for swine in the growth phase, 

but longer periods are recommended for adult animals or when fibre-rich diets are used. After 

that, pig faeces are typically collected for 2-10 days and poultry excreta for 2-5 days [45].  

 

Confining animals in digestibility pens/cages is an animal welfare issue and measuring feed 

intake and faecal excretion over long periods of time is laborious. As a solution, indigestible 

markers are now used in most in-vivo assays. The marker is added to the feed and remains in 

the faeces. It is assumed that the marker is completely indigestible, distributes evenly in the feed 

and faeces, and can be measured accurately even at low concentrations [29]. Then: 

 

𝐹𝑒𝑒𝑑𝑖𝑛𝑡𝑎𝑘𝑒[𝑀𝑎𝑟𝑘𝑒𝑟]𝑓𝑒𝑒𝑑 = 𝐹𝑎𝑒𝑐𝑒𝑠𝑒𝑥𝑐𝑟𝑒𝑡𝑒𝑑[𝑀𝑎𝑟𝑘𝑒𝑟]𝑓𝑎𝑒𝑐𝑒𝑠                                                                                   (2) 

 

where [𝑀𝑎𝑟𝑘𝑒𝑟] is the concentration of the indigestible marker in feed or faeces, 𝐹𝑒𝑒𝑑𝑖𝑛𝑡𝑎𝑘𝑒 is the 

weight of feed fed to the animal and 𝐹𝑎𝑒𝑐𝑒𝑠𝑒𝑥𝑐𝑟𝑒𝑡𝑒𝑑 is the weight of faeces collected.  

 

Eq. 1 can now be rewritten as: 

 

𝐷𝑁𝑢𝑡(%) = 100 × (
[𝑁𝑢𝑡]𝑓𝑒𝑒𝑑 × 𝐹𝑒𝑒𝑑𝑖𝑛𝑡𝑎𝑘𝑒 − [𝑁𝑢𝑡]𝑓𝑎𝑒𝑐𝑒𝑠 × 𝐹𝑒𝑐𝑒𝑠𝑒𝑥𝑐𝑟𝑒𝑡𝑒𝑑

[𝑁𝑢𝑡]𝑓𝑒𝑒𝑑 × 𝐹𝑒𝑒𝑑𝑖𝑛𝑡𝑎𝑘𝑒

)                                               (1) 

𝐷𝑁𝑢𝑡  (%) =  100 ×  
[𝑁𝑢𝑡]𝑓𝑎𝑒𝑐𝑒𝑠 × [𝑀𝑎𝑟𝑘𝑒𝑟]𝑓𝑒𝑒𝑑

[𝑁𝑢𝑡]𝑓𝑒𝑒𝑑 × [𝑀𝑎𝑟𝑘𝑒𝑟]𝑓𝑎𝑒𝑐𝑒𝑠

                                                                                                   (3) 
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where [𝑁𝑢𝑡] is the amount of GE or the concentration of the nutrient in feed or faeces and 

[𝑀𝑎𝑟𝑘𝑒𝑟] is the concentration of the indigestible marker in feed or faeces. 

 

Therefore, knowing the concentration of marker in the feed and in the faeces/excreta, it is not 

necessary to measure the feed intake and collect all the faeces, and the animals can be kept under 

conventional husbandry conditions.  

 

Some studies have compared the accuracy of the total collection method with the marker 

method using different markers [47,48]. In brief, the repeatability with the marker method is 

lower than with the total collection method but there is no systematic difference between them 

and between markers. The most used markers are acid-insoluble ash (silicon dioxide), titanium 

dioxide and chromium oxide. The inclusion of titanium dioxide in animal diets has been recently 

restricted in UE [49]. Animals fed diets with titanium dioxide cannot be used for consumption 

and must be slaughtered at the end of the in-vivo assay. Some alternatives such as the use of 

yttrium and ytterbium oxide are being considered. The use of an indigestible marker is even 

more necessary in in-vivo assays whose objective is the determination of ileal digestibility 

because the total collection of ileal digesta is more complex than that of faeces. Among the 

methods for collecting ileal digesta, collection from the ileum after euthanasia of animals is the 

most common practice in poultry. For swine, a through surgically fitted simple T-cannula is 

commonly used [50]. 

 

There are many factors affecting the digestibility values obtained by in-vivo assays. The particle 

size of the feed and the way the animal is fed are important mainly for poultry. Pelleted feed is 

used in the first weeks of life because consumption increases, and mash feed when the animal 

is older, as it is believed to positively affect the development of the gastrointestinal tract [43]. 

Although there are ways to control the feed that the animal intakes, ad libitum feeding is the 

most recommendable if indigestible markers are used. Differences in the digestive capacity of 

the animals lead to different digestibility values. It cannot be assumed that the digestibility values 

of an ingredient or diet obtained in an in-vivo assay for an animal from one species or breed 

will be the same as those obtained for an animal from other species or breed. Adult animals 

digest feed nutrients better, so the digestibility values obtained depend on the growth phase in 

which the animals are. Sex can also produce slight differences in digestibility [51]. Possible 

interactions between nutrients is another factor that may alter the digestibility values obtained. 

Formulation assumes that the nutrients are additive but the presence of one nutrient can affect 
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the digestion of the others. The best-known example is the extra-caloric effect of the fats that 

may produce a higher than expected DE, possibly due to its interaction with the non-starch 

polysaccharides (NSP) [52]. Other factors such as thermal processing of the feed, anti-

nutritional factors, the addition of feed additives such as enzymes, probiotics and prebiotics, or 

environmental conditions can also make the digestibility values vary [43]. 

 

To obtain reliable digestibility values, the key is to control as much as possible the mentioned 

sources of variation and to use replicate units. This means groups of animals of the same breed, 

age, and sex receiving exactly the same diet under the same conditions. Digestibility is then 

calculated for each replicate unit and averaged. 

 

Determining the digestibility of an ingredient is more complicated than that of a diet. The most 

widely used experimental design to obtain digestibility values of ingredients is called basal 

substitution. A basal diet is formulated to be balanced in nutrients and energy. Then a portion 

of the diet is substituted with the test ingredient to produce a test diet. The test animals are 

separated into two groups, one is fed the basal diet and the other is fed the test diet. Digestibility 

values are determined for each group and the digestibility of the test ingredient can be calculated 

considering the substitution ratio of the test ingredient using the following equation: 

 

where 𝐷𝑁𝑢𝑡 is the digestibility coefficient of energy or nutrients.  

 

The included amount of the test ingredient in the test diet can vary at graduated levels of 

inclusion. In this case, the digestibility of the test ingredient is obtained by extrapolation on a 

regression line formed by the digestibility values at different ingredient inclusion levels. It is also 

possible to calculate the digestibility of various ingredients by applying multiple linear regression 

(MLR). It consists of using multiple diets with several test ingredients at different levels and 

measuring the digestibility values of each of them. The number of diets must be greater than 

the number of test ingredients. The coefficients of the regression equation will correspond to 

the digestibility value of each of the tested ingredients [53]. 

 

 

𝐷𝑁𝑢𝑡  𝑡𝑒𝑠𝑡 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡 =  𝐷𝑁𝑢𝑡  𝑏𝑎𝑠𝑎𝑙 𝑑𝑖𝑒𝑡 − 
𝐷𝑁𝑢𝑡  𝑏𝑎𝑠𝑎𝑙 𝑑𝑖𝑒𝑡 − 𝐷𝑁𝑢𝑡  𝑡𝑒𝑠𝑡 𝑑𝑖𝑒𝑡

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡 
                                         (4) 
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Alternative methods to determine digestibility 

 

In-vivo assays are the reference method to study the animal’s response to the diets. 

Nevertheless, in-vivo assays are time demanding, require dedicated personnel, need facilities to 

house and keep the animals in conditions suitable for testing, require a large amount of feed 

that must be administered to all animals participating in the assay and require the analysis of a 

large number of samples including feeds, faeces/excreta and/or intestinal contents. These 

analyses are traditionally done by wet chemistry methods that are usually slow, expensive, 

require reagents and produce waste. An additional concern is society’s prejudice towards animal 

experimentation [54]. These limitations have made in-vivo assays not a highly desirable option 

for routine evaluation of feed digestibility and institutions, companies and research centres are 

searching for other methodologies. This section summarizes some alternative methods to 

determine in a more economical and rapid way the digestibility of nutrients and the digestible 

energy of feedstuffs and diets for monogastric animals. These include tabulated values, in vitro 

analyses and prediction models from the chemical composition of the feed. The use of near-

infrared spectroscopy (NIRS), the subject of this thesis, is explained in Sections 2.2 and 2.3.   

 

Tabulated values 

 

Under most practical situations, published values are the basis of feed formulation [43]. 

Organizations worldwide (e.g. NRC, CVB, FEDNA, INRA) provide the nutrient content of 

diverse ingredients. For the most commonly used parameters (DM, CP, fat, CF, ash, starch) the 

values derive from large number of samples analysed by laboratories associated with the 

organization or by trusted laboratories. To formulate a diet the desired concentration of 

nutrients is introduced in a software package like Brill Formulation ® together with the 

nutritional profile of the ingredients found in the tables. Based on this information and in the 

price of the ingredients the software provides the most cost-effective diet that has the desired 

concentration of nutrients. Values of digestible energy and of some nutrients digestibility also 

appear in some tables and can be used to formulate the diets but the average values come from 

a lower number of measurements than for the total nutrient composition and the variability 

between values of different tables is high. The complexity of in-vivo assays and the lack of 

standardization is the cause. Mateos et al. 2018 [43] compared table values of several important 

institutions in animal nutrition such as CVB, Evonik, WPSA, Premier Atlas, INRA or FEDNA. 
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They found a wide variability in the case of the energy values of many ingredients and concluded 

that this uncertainty limits the applicability of table values, and that nutritionists should be aware 

of the procedures used by the research institutions for feed evaluation. 

 

Other important drawback of formulating based on tables is that the ingredient nutrient profile 

is an average and may not correspond to the actual ingredient being used, whose properties vary 

depending on the origin (production, conditions, climate …), transport and storage conditions.   

 

In vitro analyses 

 

In vitro analyses are used to estimate the digestibility of constituents such as DM, OM, CP and 

others. In vitro techniques have been developed for swine [55–57] and have been recently 

reviewed for poultry [58]. These techniques employ enzymes and other substances or chemical 

products trying to imitate the reactions of the digestive processes. The obtaining of in-vitro 

digestibility values is cheaper and faster than in-vivo, but still requires expensive equipment and 

reagents, as well as long reaction times. Another drawback is that in-vitro values are sometimes 

higher than in-vivo mainly due to minimal, or lack of, endogenous losses of nutrients in the in 

vitro digestibility [54]. Because of that, the data provided by in vitro analyses is typically used to 

develop specific regression equations for prediction of ileal or total tract digestibility of nutrients 

and energy [59]. 

 

Prediction models  

 

Empirical prediction models relate the nutrient content of the feed obtained by chemical 

analysis or the in-vitro digestibility values with the digestibility of the nutrients or energy 

determined by in-vivo assays. Mathematical models have been developed to relate the nutrient 

content of feeds and diets to their ADE value for swine [16,60–62] and to their AME value for 

poultry [53,63–65]. The predictors of the models for AME in poultry are generally CP, fat, ash, 

starch and sugars and in a lesser extent CF or NDF. For DE in swine NDF is usually included 

together with CP, ash and fat. Other authors have tried to predict the digestibility of nutrients 

such as CP, fat, starch [66] or AA [67] but they did not find a strong relationship between the 

digestibility and the proximal composition. 
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Most of the models to predict energy are obtained by multiple linear regression (MLR). MLR is 

an extension of simple linear regression for multiple predictors in order to predict a single 

variable [68]. The model has the form:  

 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽𝑗𝑥𝑗 … + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀                                                                                                              (5) 

         

where 𝑥𝑗 is the 𝑗𝑡ℎ predictor, 𝛽𝑗  is the regression coefficient for 𝑥𝑗 , 𝑦 is the response and 𝜀 is 

error term that represents the variability that cannot be explained by the model.  In our case, 𝑦 

is the energy (AME, ADE or other form of energy) and the 𝑥𝑗′𝑠 are the values of the parameters 

we want to use, for example, CP, EE or CF.  

 

To obtain the best model, several models are created stepwise. Models are developed adding 

variables sequentially to the first model, keeping each time the variable that produces the greatest 

improvement in model quality (decreasing the prediction error). After adding each new variable, 

the method can also remove variables that do not improve the model fit. These models are well 

explained in reference [68] for example. 

 

MLR assumes a linear relationship between the predictors and the response. In some studies, 

non-linear models such as Artificial Neural Networks (ANN) have performed better in 

predicting digestibility [69–71].  
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2.2. Near-infrared spectroscopy and multivariate analysis 
 

NIRS fundamentals 

 

Near-infrared spectroscopy (NIRS) is a type of vibrational spectroscopy in the wavelength range 

from 700 to 2500 nm. Molecular vibrations produce the fundamental absorption bands in the 

mid-infrared (MIR) range. In the NIR region, the absorption bands are 10 to 1000 times weaker. 

They correspond to overtones whose frequencies are multiples of the frequencies of the 

fundamental absorption bands and to combinations of the fundamental absorption bands [1].  

 

Figure 1 shows the typical location of the NIR absorption bands.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Near-infrared absorption bands (adapted from Harris and Altaner, 2013 [2]).     

 

The NIR spectrum has three main overtone regions with a fourth being very weak and normally 

ignored. These overtones correspond to the absorptions of groups with elements attached to 

the hydrogen atom and from the C=O groups. The first case includes the absorptions of C-H 

(methyl, methylene, methoxy, aromatic and carbonyl associated), N-H (amides, amines and 

amine salts), O-H (water and alcohols) and S-H. Combination bands are vibrational 

combinations of these chemical groups formed by interactions between molecular vibrational 

frequencies, overlapped information from Fermi resonances and inactive MIR bounds among 

Wavelength (nm) 
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other phenomena. A comprehensive account of the theory of NIR absorption bands is 

explained in references [1,3,4]. 

 

Measurement modes in NIRS 

 

When NIR radiation hits a sample (Figure 2) the light is scattered (i.e., randomly redirected in 

all directions when it encounters a rough or particulate surface), transmitted through the 

material, reflected and/or absorbed. The proportions vary with the wavelength of the light and 

the composition and physical characteristics of the sample. Light reflection can be specular or 

diffuse. The specular reflection has only one direction and does not provide relevant chemical 

information since its contact with the sample is very low. Diffuse reflection occurs when light 

slightly penetrates the sample, scatters within the sample, and returns to the surface in any 

direction [5]. 

 

The two main measurement modes in NIRS are transmission and diffuse reflection. Absorbance 

is related to transmittance and diffuse reflectance as follows: 

 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 = log (
𝑃0

𝑃
) = log (

1

𝑇
)                                                                                                              (1) 

 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 = log (
1

𝑅𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

) = log (
𝑅𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑅𝑠𝑎𝑚𝑝𝑙𝑒

)                                                                   (2) 

 

 

where 𝑃0 is the initial radiation power, 𝑃 is the radiation passing per unit area, 𝑇 is transmittance 

and 𝑅 is reflectance. 

 

The NIR instrument used in this thesis works in diffuse reflection mode that is more appropriate 

than the transmission mode to analyse ingredients, compound feeds or animal faeces due to 

several reasons. Firstly, unlike in transmission mode the position of the sample and the changes 

in its geometry do not critically affect the measurements in reflection mode. This flexibility 

allows for easier handling of solid samples and better repeatability in the analysis of agri-food 

samples that can be very heterogeneous. Secondly, diffuse reflection induces less heat compared 

to transmission mode. This is particularly beneficial when analysing thick and dense feed 

samples. Moreover, the versatility of the reflection mode makes it well-suited for remote sensing 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



31 

 

or field applications like the use of NIR sensors for on-site and real time monitoring of dry 

matter, yield, nitrogen, pest and diseases in cereal crops [6]. 

 

Transmission mode is used mainly for the analysis of liquids. In the agri-food sector, for 

example has been employed to determine nutritive parameters in cow’s milk [7]. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Interaction between solid particles in a sample and near-infrared radiation. A) Specular reflection, B) 
Diffuse reflection, C) Absorption, D) Transmission, E) Refraction, F) Scattering.   

 

Instrumentation in NIRS 

 

The three most common configurations of NIR instruments are pre-dispersive configuration, 

post-dispersive configuration and Fourier Transform (FT) [8]. Pre-dispersive and post-

dispersive configurations (Figure 3) have a light source (usually a tungsten halogen lamp), a 

wavelength selector or monochromator (provided by a grating that diffracts the incident light 

at different degrees converting it in discrete wavelengths) and the detector (usually a silicon 

detector (Si) to work in the wavelength range between 400 and 1100 nm and a lead sulphide 

(PbS) detector to work between 1100 and 2500 nm, or a combination of both to cover a wide 

wavelength range). FT-NIR instruments do not have a grating since the measurements are made 

in time domain to obtain an interferogram that is processed with the Fourier transform to obtain 

the spectrum [9].  

 

Pre-dispersive and FT-NIR configurations are commonly used in benchtop instruments 

because they offer high linearity, accuracy, and sensibility. On the other hand, post-dispersive 

configurations are preferred for in-line or portable instruments because they have faster 

A)                 B)                     C)                     D)                     E)                   F) 
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scanning times, thanks to a set of detectors placed in array. Additionally, they are less affected 

by external factors like vibrations or temperature because they have fewer moving parts 

compared to pre-dispersive or FT-NIR instruments. In this thesis, due to the type of samples 

(ingredients and compound feeds, excreta, faeces or ileal digesta) and the accuracy required in 

the determination of the nutritional parameters it has been used a pre-dispersive benchtop 

instrument able to work from 400 to 2500 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Pre-dispersive (above) and post-dispersive (below) configurations illustrating the position that the 
detectors would have in transmission or diffuse reflection mode. 

 

Advantages and disadvantages of NIRS 

 

Two of the main advantages of NIRS as analytical technique is that it is fast and non-destructive. 

Three factors contribute to the rapidness. First, scans are acquired quickly, which results in 

spectra being recorded sometimes in less than a minute and highly skilled personnel are not 

needed. Second, NIRS is a multi-parametric technique. This means that, for example, using 

NIRS we can determine simultaneously humidity, protein, fat and fibre in a feedstuff by 

recording only one spectrum while the alternative would be to use four different analytical 
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methods to determine these parameters. And third, sample treatments other than grinding or 

drying (and not always) are rarely needed since NIRS can measure solids in diffuse reflection 

mode. This is particularly beneficial when samples are solid, complex and challenging-to-handle, 

such as faeces or excreta. In addition, the absence of chemical treatments means that chemical 

reagents are not needed, thus reducing the cost and the environmental impact of the analysis. 

As NIRS is non-destructive it can also be used to perform on-line analyses during mixing of 

compound feeds to adjust the ingredient proportions to have the required chemical composition 

[10].   

 

An important drawback of NIRS is its lower sensitivity compared to other analytical techniques 

such as HPLC or GC although the most common nutritional constituents (protein, fat, fibre, 

ash, starch,…) analysed to formulate a compound feed or to check the quality of an ingredient 

are not at low concentrations (their concentrations are in the order of g/100g). Other limitations 

are related to the calibration process. Firstly, the development and maintenance of the 

calibration models require skilled personnel. Secondly, databases containing a large number of 

spectra and reference values are needed to develop a reliable calibration. The obtaining of the 

spectra of the samples is fast but to obtain the reference values often slow and costly wet 

chemistry methods are needed. Furthermore, the maintenance and update of the calibrations 

might require the periodical analysis of extra samples. Lastly, transferring calibrations between 

instruments can be challenging. 

 

Spectra and data analysis 

 

The understanding and use of a NIR spectrum to analyse or classify samples based on their 

chemical features requires overcoming the inherent complexity associated with the 

interpretation of the spectrum. A NIR spectrum consists of several overlapped bands, with 

strong collinearity. In addition, several factors can produce baseline fluctuations, low signal-to-

noise ratios and poor reproducibility. The most influential one for solid samples is light 

scattering, which is associated to variations in particle size. Other factors such as variations in 

temperature or humidity and instrument-related factors (e.g. instrumental drift) also affect [3]. 

To minimize the effect of these sources of variability, that are not related to the chemical 

composition of the sample, the spectrum can be mathematically corrected. Multivariate analysis 
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contribute also to minimize these effects and allow overcoming the lack of selectivity and the 

high information redundancy contained in the sample spectrum [5].  

 

Multivariate analysis methods 

 

Some multivariate methods that are used to relate a NIR spectrum and the composition of a 

sample assume a linear relationship between the analyte or property to be predicted and its 

absorbance following Lambert-Beer’s law. In inverse multivariate calibration, the analyte 

concentration is modelled against the response as: 

 

𝑐𝑘 =  𝑏0,𝑘 + ∑ 𝑟𝑗
𝐽
𝑗=1 𝑏𝑗,𝑘 + 𝑒𝑘                                                                                                                       (3) 

 

where 𝑐𝑘  is the analyte concentration, 𝑏0,𝑘 the constant term, 𝑟𝑗 the response at sensor 𝑗, 𝑏𝑗,𝑘 is 

the model coefficient for the response at sensor 𝑗 and 𝑒𝑘  is the error. In matrix notation, the 

model for the training set can be written as (Figure 4): 

 

𝐜 = 𝐑𝐛 + 𝐞                                                                                                                                                                           (4) 

 

 

 

 

 

 

 

Figure 4. Equation 4 in matrix notation for the training set, where 𝐜 is the vector of analyte concentrations for the 
𝐼 calibration samples, 𝐑 is the matrix of spectra in rows, adapted for the form of the model (it has a row of ones at 
the beginning due to the constant term 𝑏0,𝑘), 𝐛 is the vector of regression coefficients and 𝐞 the error vector. 

 
The regression coefficients vector can be obtained by: 

 

𝐛 = 𝐑+𝐜                                                                                                                                                                           (5) 

 

where 𝐑+ is the pseudoinverse of 𝐑. In inverse least squares 𝐑+ is estimated as: 

 

𝐑+ = (𝐑T𝐑)−1𝐑T                                                                                                                                                              (6) 
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that requires that the number of calibration samples 𝐼 be greater than number of variables 𝐽, 

that is, the number of wavelengths used in the analysis. Using many wavelengths would require 

analysing a large number of samples, and, moreover, the collinearity among the wavelengths 

would degrade the quality of the estimated coefficients that is affected by the stability of the 

inverse of 𝐑T𝐑. It is said that the matrix 𝐑T𝐑 is ill-conditioned when its determinant is very 

close to zero, which happens due to the high collinearity among the wavelengths. In this case, 

small variations due to random error in the measurement of the spectrum can lead to big 

changes in (𝐑T𝐑)
−1

and, in consequence, large variance in the estimated coefficients and the 

predictions. Furthermore, changes in the correlation structure within 𝐑 would negatively affect 

the prediction of new samples that do not have the same correlation structure as the training 

samples [11].  

 

There are several strategies to reduce the problem of collinearity in the spectral data. One of 

them is to combine inverse least squares with wavelength selection. The objective is to select a 

reduced number of wavelengths related to the analyte to be predicted. These methods have 

been recently reviewed by Yun et al. in 2019 [12]. It must be noticed that wavelength selection 

is also used with other modelling strategies because it may improve the predictive ability and 

interpretability of the model [13]. Other approaches for finding 𝐛 are principal components 

regression (PCR) and partial least squares regression (PLSR), that decompose 𝐑 in orthogonal 

factors. These methods approximate 𝐑 as a product of a scores matrix, 𝐓 and a loadings matrix 

𝐏 as follows: 

 

𝐑 = 𝐓𝐏T + 𝐄                                                                                                                                                                     (7) 

 

 

 

 

 

 

 

Figure 5. Equation 7 in matrix notation where R is the response matrix (the spectra), T the scores matrix, P the 
loadings matrix and E the error matrix.  
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The information in 𝐑 is condensed in a smaller set of orthogonal variables called factors or 

latent variables in general and principal components in PCR. The scores capture the relationship 

between samples and the loadings the relationship between variables. The loadings can be used, 

for example to study the influence of the variables used to build the model (the wavelengths) 

and the scores to detect outliers or clusters within the dataset.  

 

There are two main diagnostics for outlier detection in multivariate models [14]: the leverage, 

that measures the distance of a sample to the centre of the model, and the spectral residual that 

measures the orthogonal distance between a sample and the model. In this thesis we use 

Hotelling’s 𝑇2 as a measure of leverage and 𝑄 residuals for the spectral residuals [15].  

 

Hotelling’s 𝑇2 represents a measure of the variation in each sample within the model and for 

PCR is calculated as follows: 

 

𝑇𝑖
2 =  𝐭𝑖𝛌

−1𝐭𝒊
T= 𝐱𝑖𝐏A𝛌−1𝐏A

T𝐱𝑖
T                                                                                                                       (8) 

 

where 𝑇𝑖
2 is the value of the Hotelling’s 𝑇2 statistic for the 𝑖 sample,  𝐭𝑖 is the 𝑖𝑡ℎ row of the 

scores matrix T, 𝛌 is the matrix containing the eigenvalues corresponding to 𝐴 factors, 𝐱𝑖 is the 

response vector for the 𝑖 sample and 𝐏A is the matrix of loadings for A factors.    

 

𝑄 residuals are a lack-of-fit statistic calculated as follows: 

 

𝑄𝑖 = 𝐞𝐢𝐞𝑖
T =  𝐱𝑖(𝐈 − 𝐏𝐀𝐏𝐀

T)𝐱𝑖
T                                                                                                                                    (9)                               

 

where 𝑄𝑖  is the value of the 𝑄 residuals statistic for the 𝑖 sample, 𝐞𝑖 is the 𝑖𝑡ℎ row of the error 

matrix E, 𝐏𝐀 is the matrix of 𝐴 loadings and 𝐱𝑖 is the response vector for the 𝑖 sample. 

 

A sample whose spectrum has high 𝑄𝑖 may show the presence of features that were not 

accounted for in the calibration set, whereas a sample whose spectrum has a high Hotelling’s 

𝑇2 may indicate the presence features that, even if accounted for in the calibration set, are more 

extreme. 
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References [16–18] show how PCR and PLSR decompose 𝐑 and calculate 𝐑+. PCR decomposes 

𝐑 in an unsupervised way and generates principal components, which are the directions that 

explain most of the variability in 𝐑. These directions, however, may not be the best for 

predicting the analyte concentration. PLSR find directions that better explain both the response 

and the predictors so that the scores are as closely correlated with the response as possible. 

Because of this, PLSR generally uses less factors than PCR to achieve a similar predictive ability 

[19]. Nowadays PLSR is the preferred method for NIR calibration. The factors in PLSR are 

ranked. The first factors describe mainly systemic variation which is necessary to predict. The 

subsequent factors describe more and more random variation in the spectrum. One must 

include enough factors to capture most of the systemic variation while avoiding the inclusion 

of factors that model too much noise [20]. Cross-validation (CV) is one of the most widely used 

methods to estimate the optimal number of factors and can be used to guide wavelength 

selection and verify the performance of a model when a test set is not available. This approach 

consists of randomly dividing the data set into k groups, or folds, that have the same size. All 

folds except one are used to create the model, the remaining fold is used to validate it. This 

process is repeated 𝑘 times using a different fold each time, and the average prediction error is 

calculated. When 𝑘 is equal to the number of samples, the method is called leave-one-out cross-

validation (LOOCV) [21]. 

 

PCR and PLS can accommodate non-linearities to some degree, but their performance degrades 

[22]. When non-linearities predominate, calibration methods such as Artificial Neural Networks 

(ANN) are recommended [23,24]. The application of ANN and other non-linear algorithms to 

the NIR spectrum in food analysis was reviewed by Zareef et al. in 2020 [25].  

 

Calibration process 

 

There are five stages in the development and use of a NIR-based calibration model once the 

spectra have been obtained: selection of samples, pretreatment of the spectra, calculation of the 

multivariate model, validation of the model and maintenance of the calibration. The process is 

iterative and it is usual to come back to previous stages and modify the initial settings. For 

example, once the model has been calculated, some samples may be detected as outliers and 

must be removed and the model recalculated.  
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The objective of sample selection is to obtain a calibration set that is representative of the 

chemical and physical characteristics of the population being analysed [5]. Typically, principal 

components analysis (PCA) or clustering are used to find groups of samples and detect spectral 

outliers. If samples are clearly separated in a few groups, then one may attempt specific 

calibrations for each group, and these may perform better than a single calibration with the 

whole dataset. Samples far away are considered spectral outliers and removed prior to sample 

selection and model calculation, as they would alter these stages and the predictive ability of the 

model. When the dataset is large and/or when the samples have similar characteristics (which 

translated into a low spectral variance) some samples might provide redundant information to 

the model. In those cases, analysis of the entire dataset by reference methods may be 

unnecessary and algorithms can be applied to select a small subset of samples that is 

representative of the dataset [26]. Two widely used algorithms with this purpose are Kennard-

Stone’s algorithm [27] and the duplex [28] algorithm. They try to uniformly cover the 

multidimensional spectral space by selecting the samples with the maximum distance 

(commonly Euclidean distance) between the selected samples. Sample selection is discussed in 

more detail in Chapter 4 in the context of model updating.  

 

Spectra are usually preprocessed to minimize the effects of the sources of spectral variability 

that are not related to the property being predicted, and filter noise [29]. Rinnan et al. 2009 [30] 

reviewed some common pretreatments used in NIRS. They can be divided into two groups: 

methods that minimize the light scattering such as standard normal variate (SNV) [31] or 

multiplicative signal correction (MSC) [32] and methods that minimize the baseline variations 

such as Savitzky-Golay (SG) polynomial derivative filters [33]. Methods that minimize the 

scattering also can correct baseline shifts. SNV centres and scales each spectrum individually to 

have a mean equal to 0 and a standard deviation equal to 1. MSC depends on the full dataset. 

The average spectrum is regressed against each spectrum and the slope and intercept are used 

to correct that spectrum. The slope represents the multiplicative correction factor and the 

intercept the additive effect of light scattering. The derivative methods use a smoothing of the 

spectra before the derivative is calculated in order to decrease the detrimental effect on the 

signal-to-noise ratio that derivatives would have. The first derivative removes only the baseline 

while the second removes also the linear trend. SG uses a polynomial function of a specific 

degree to smooth a window of spectral points. When the parameters of this polynomial are 

calculated, the derivative of any order of this function is applied to the central point of the 

window. This operation is applied to each point in the spectrum [30]. The polynomial degree 
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and the window size need to be carefully selected. If high-degree polynomials and small window 

sizes are used, the function can fit very well the data, but the noise is barely reduced, leading to 

poor smoothing. Conversely, a low-degree polynomial and a large window size can smooth the 

data too much and information-bearing spectral features dissipates. It is not frequent to apply 

higher-degree derivatives other than the second. Other spectral preprocessing methods less used 

in NIRS are those that make use of the y-values in addition to the spectra. Orthogonal signal 

correction (OSC) [34] and generalized least squares weighting (GLSW) [35] are methods that 

remove the spectral information that is orthogonal to variations of the property values.  

 

The next stage after preprocessing is the calculation of the multivariate model. As explained, 

PLS is the most used regression model in NIRS and specifically to determine the nutrient 

content of feedstuffs, compound feeds or animal faeces. Every model has a corresponding 

calibration error that is a measure of how well the model fits the calibration data. It quantifies 

the differences between the predicted values obtained from the model and the reference values. 

Although this statistic is not optimal to assess the performance of the model since calibration 

data might be overfitted, it can be used to find reference outliers (those samples that have a 

much larger calibration error than the average of the samples). Cross-validation (CV) allows the 

model to be tested on data that it has not been trained on and therefore the CV error provides 

a more realistic assessment than the calibration error. However, the best way to verify the actual 

performance of a model is to use a test set. This test set can be selected during the sample 

selection stage or can be created with new samples measured once the model is calculated.  

 

The most commonly used statistics to check the model performance are the coefficient of 

determination (𝑅2),  

 

𝑅2 =  
(∑ �̂�𝑖𝑦 −𝑛

𝑖=1 ∑ �̂�𝑖 ∑ 𝑦𝑖/𝑛)𝑛
𝑖=1

𝑛
𝑖=1

2

(∑ �̂�𝑖
2 −𝑛

𝑖=1 (∑ �̂�𝑖)
2/𝑛)𝑛

𝑖=1 (∑ 𝑦𝑖
2 −𝑛

𝑖=1 (∑ 𝑦𝑖)2/𝑛)𝑛
𝑖=1

                                                                          (10) 

 

the standard error of prediction (SE), 

 

SE =  √
∑ (�̂�𝑖 − 𝑦𝑖 − 𝑏𝑖𝑎𝑠)2𝑛

𝑖=1

𝑛 − 1
                                                                                                                                (11)   

 

 and the root mean standard error of prediction (RMSE) 
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where �̂�𝑖  is 𝑖
𝑡ℎ validation sample predicted value, 𝑦𝑖 is 𝑖

𝑡ℎ validation sample reference value and 

𝑛 is the number of samples in validation set. 

 

To a lesser extent, the ratio of performance of deviation or relative predictive determinant 

(RPD) and bias (𝑏). 

 

RPD =  
sy

SE
                                                                                                                                                                    (13) 

 

𝑏 =  
∑ (�̂�𝑖 − 𝑦𝑖)𝑛

𝑖=1

𝑛
                                                                                                                                                      (14) 

 

where 𝑠𝑦 is the standard deviation of reference values from the validation set. 

 

NIRS repeatability is usually omitted because actual NIR instruments are very repeatable with 

homogenous samples. When measuring heterogeneous samples, such as whole grain or wet 

forage, repeatability may decrease and it is recommended to use more than one subsample [36]. 

RMSE, SE and bias have the same units as reference values while 𝑅2 and RPD are unitless.  

 

𝑅2 is an estimate of the percentage of explained variance of the reference values. SE provides 

information about the precision of the model. Since it is corrected for the bias, if this statistic is 

reported the bias must be reported as well. RMSE is similar to SE but accounting for bias 

(RMSE2 = SE2 + b2). When bias is low, RMSE≈SE. RPD is related to the capacity of the model 

to predict future samples in relation to the initial variability of the data [5]. All these statistics 

can refer to the calibration data, in which case are typically written as 𝑅𝐶
2, SEC, RMSEC, RPDC; 

to cross-validation (𝑅𝐶𝑉
2 , SECV, RMSECV, RPDCV) or to an external validation set (𝑅𝑃

2, SEP, 

RMSEP, RPDP). 

 

The next section reviews applications of NIRS in monogastric animal nutrition. To compare 

results of published works we use the coefficient of determination of cross validation (𝑅cv
2 ) and 

the coefficient of variation of cross validation (CVcv) reported by those authors or calculated 

RMSE =  √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
                                                                                                                                       (12) 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



41 

 

from their data (the standard error of cross validation (SECV) and the mean of the calibration 

set). CVcv enables correction for differences in the means of the calibration sets used in the 

various studies [38]. Because of RPD is fairly close related with 𝑅2 [37] for simplicity we used 

only 𝑅2. RPDCV is only shown in a few cases when 𝑅cv
2  was not reported. Even though, criteria 

to assess the quality of a calibration cannot be generalized to all types of products or all NIR 

instruments, according to Shenk & Westerhaus, 1995 [39] the fit of a calibration may be 

considered excellent if 𝑅2>0.90, good if 𝑅2=0.70-0.90 and insufficient if 𝑅2<0.70. For RMSEP, 

SECV or CV the criteria is that it should not be much larger than the SEC and than the standard 

error of the laboratory method used to obtain the reference data (SEL). If RMSEP or SECV 

are much larger than SEL then the model is not modelling well all the sources of variation and 

if they are much larger than SEC probably the model is overfitted and it cannot predict properly 

new samples [40].  

 

According to ISO 12099:2017 [41], to accept a NIR calibration model it must pass three 

statistical tests: a t-test on bias, a t-test on slope and a F-test on SEP. The aim of these tests is 

to affirm with a specific level of significance (typically 𝛼=0.05) that the bias can be considered 

negligible, that the slope of the predicted vs measured line can be considered one and that the 

RMSEP can be considered similar to the SEC. 

 

A successfully validated model should ideally be used to predict new samples for an extended 

period. However, samples and instruments do not necessarily remain stable over time. Unseen 

variability in samples or measurements can affect the predictions and render calibrations invalid. 

Model maintenance have to be periodically applied to preserve the predictive capability and 

improve the models over time with the least amount of cost and effort [42]. This topic will be 

discussed in Chapter 4. 
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2.3. Near-infrared spectroscopy in monogastric nutrition 
 

History 

 

The first study about the NIR region dates back to 1800 when Herschel dispersed the sunlight 

using a glass prism and measured the rising of the temperature beyond the red end of the visible 

spectrum. During the following decades, MIR was the infrared region that received most 

attention from the scientific community and the NIR region was considered to lack relevant 

chemical information. In 1960s, Karl Norris of the United States Department of Agriculture 

began to study the optical properties of dense, light scattering biological materials [1] and he 

and his team were capable to determine the moisture content from seed extracts using the NIR 

spectrum and multivariate calibration [2]. The use of multivariate analysis to obtain information 

of the spectra promoted NIR region to have practical uses. Firstly, in the grain industry where 

Williams in Canada in 1975 [3] and Hunt et al. in USA in 1977 [4] gave NIR spectroscopy the 

status of official protein testing method for wheat. Afterwards, its expansion continued with 

methods to determine protein and oil in ground and whole soybean and protein in small grains. 

In the agriculture and animal feed sector, NIRS is currently consolidated as alternative to wet 

chemistry methods since it allows fast determinations with hardly any sample treatment.  

 

Predicting the nutrient content of feedstuffs and diets by NIRS 

 

After the first NIRS practical applications [2–4], in the ninety’s, companies and public 

organizations began to develop NIR calibrations for feedstuffs using large datasets [5]. 

Nowadays, NIR instrument manufacturers (e.g. FOSS) and specialized companies (e.g. Evonik) 

sell calibration models for the most frequently determined parameters in the agri-food industry 

(e.g. dry matter, ash, fat, crude protein and crude fibre). In the market, there are also handheld 

NIR instruments for quality control of feedstuffs and diets. Although handheld instruments are 

not as accurate as benchtop instruments, they are cheaper and enable in-situ determinations, 

eliminating the need of sample collection, conservation and transport to the laboratory [6]. 

Haughey et al. 2015 [7] and Modroño et al. 2017 [8] showed the benefits of using handheld 

instruments instead of benchtop instruments for the proximate analysis of compound feeds.  
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Table 1 summarizes the publications about the use of NIR calibrations for the proximate 

analysis of feedstuffs and diets from 2000 to the present. In addition to dry matter (DM), ash, 

fat, crude protein (CP) and crude fibre (CF), the nutritional parameters traditionally determined 

in feedstuffs and diets, other important parameters for animal nutrition have also been studied 

such as gross energy (GE), acid detergent fibre (ADF), neutral detergent fibre (NDF) or 

phosphorus (P). 

  

Table 1. Near-infrared (NIR) calibration models to predict the nutrient content of feedstuffs and diets for swine 
and poultry described in the literature from 2000. Type of sample, analyte or constituent predicted, coefficient of 

determination cross validation (𝑅cv
2 ), coefficient of variatio of cross validation (𝐶𝑉𝑐𝑣) and reference (Ref). 

 

 

1 RPDcv values instead of 𝑅cv
2  

 

CP and DM are commonly the best predicted parameters in feedstuffs and compound feeds. 

The coefficient of variation of cross validation (𝐶𝑉𝑐𝑣) was in most of the cases lower than 4% 

for CP with several models yielding values lower than 2%. For DM the values were lower than 

Sample Analyte 𝑅𝑐𝑣
2  𝐶𝑉𝑐𝑣 (%) Ref 

Wet corn DM, CP, Ash, ADF 0.75, 0.72, 0.81, 0.88 5.3, 6.9, 19.1, 21.4 [14] 

Wet corn DM, CP, ADF, NDF 0.85, 0.91, 0.86, 0.84 7.9, 8.5, 7.5, 10.3 [15] 

Corn 
DM, CP, Ash, Fat, ADF, 
NDF 

0.98, 0.96, 0.95, 0.93, 0.92, 0.92 
0.32, 2.0, 11.4, 9.6, 28.0, 
2.6 

[16] 

Corn CP, Ash, Fat  0.99, 0.81,0.72 4.4, 11.7, 13.7 [17] 

Wheat DM, CP, Ash, Fat, GE 0.93, 0.88, 0.93, 0.65, 0.47 0.29, 4.1, 3.5, 5.1, 0.59 [11] 

Wheat CP, NDF, GE 0.98, 0.50, 0.76 1.6, 6.4, 0.28    [9] 

Cereal and co-
products 

CP, Ash, Fat, CF, NDF, 
ADF 

1.00, 0.97, 0.95, 0.95, 0.96, 0.91 
3.8, 10.3, 23.5, 12.2, 11.0, 
16.7 

[18] 

Oil seeds and 
by-products 

CP, Ash, Fat, CF, NDF, 
ADF, GE 

0.99, 0.79, 0.99, 0.98, 0.98, 0.98, 
0.99 

1.9, 6.7, 11.3, 8.2, 7.9, 9.7, 
0.77 

[19] 

Soybean CP, Ash, Fat 0.81, 0.63, 0.71 5.9, 7.8, 6.9 [20] 

Rapeseed DM, CP 0.95, 0.93 0.33, 1.6 [21] 

Barley DM, CP 0.95, 0.98 0.39, 2.0 [22] 

Triticale DM, CP 0.95, 0.98 0.39, 2.0 [22] 

Sunflower DM, CP 0.97, 0.96 0.28, 2.8 [21] 

Field peas DM, CP 0.97, 0.94 0.34, 2.2 [21] 

Fish meal CP, Ash, Fat 0.84, 0.90, 0.90 0.86, 2.6, 4.6 [12] 

Meat meal DM, CP 0.94, 0.96 0.33, 2.3 [21] 

Poultry meal DM, CP 0.87, 0.92 0.39, 2.6 [21] 

Fava bean CP, Fat 0.94, 0.66 1.2, 14.2 [10] 

Broiler diets 
Moisture, CP, CF, Fat, Ca, 
P 

0.84, 0.95, 0.82, 0.95, 0.75, 0.95 2.0, 2.1, 10.0, 5.6, 7.0, 4.5 [23] 

Laying hens 
Moisture, CP, CF, Fat, Ca, 
P 

0.89, 0.95, 0.82, 0.92, 0.73, 0.91 2.1, 3.4, 10.0, 6.7, 17.9, 8.0 [23] 

Ostrich diets 
DM, CP, Ash, Fat, CF, 
ADF, NDF, GE  

0.57, 0.97, 0.67, 0.89, 0.94, 0.89, 
0.95, 0.80 

0.31, 5.3, 13.6, 18.2, 8.0, 
11.7, 7.5, 1.8 

[24] 

Poultry diets DM, CP, Fat, CF, Ash 5.5, 4.2, 6.3, 4.5, 5.8, 2.6 
1
 0.35, 3.6, 6.1, 8.3, 15.2 

[25] 
 

Poultry diets Moisture, CP, Fat, CF, Ash 0.88, 0.98, 0.94, 0.94, 0.79  [26] 

Pig diets Moisture, CP, Fat, CF, Ash 0.82, 0.97, 0.86, 0.95, 0.91  [26] 

Pig diets DM, CP, Fat, CF, ash 0.96, 0.90, 0.95, 0.96, 0.81 0.23, 3.2, 7.1, 9.4, 5.9 [27] 

Pig and poultry 
diets 

CP, CF 0.95, 0.96 3.9, 11.5 [28] 
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1%. The coefficients of determination of cross validation (𝑅cv
2 ) were higher than 0.8 and higher 

than 0.9 in many cases. It should be noted that the worst predictions were obtained in high 

moisture corn and wet whole maize. This highlights that a high humidity in the samples worsens 

the predictions. The values given in the table from the Owens et al. 2009 work [9] were in dry 

wheat samples. They predicted the same parameters in undried wheat samples, obtaining worse 

results. The differences in particle size between samples can also affect the predictions, in most 

cases the samples are ground before the analysis. Owens et al. 2009 [9] and Wang et al. 2014 

[10] obtained better predictions in powder than in intact seeds. The quality of the ash predictions 

varied among authors. Garnsworthy et al. 2000 [11] and Cozzolino et al. 2002 [12] predicted ash 

very well, with low 𝐶𝑉𝑐𝑣 and high 𝑅cv
2  but the rest of the predictions were poor. Ash is difficult 

to predict because it does not have characteristic NIR absorption bands. Its prediction is 

possible because the mineral material is correlated with organic components and form salts that 

affect the hydrogen bonds in the samples [13]. The fat content or ether extract was better 

predicted in oil seeds, fishmeal and in compound feeds than in cereals due to the low average 

values and narrow interval that cereals have. CF predictions in general had good determination 

coefficients (𝑅cv
2 >0.90) but high errors (𝐶𝑉𝑐𝑣≥10%), probably due to the reference method to 

determine CF that involves two successive digestions [29]. Something similar occurs in most 

cases when ADF or NDF are used instead of or in addition to CF. GE is not a chemical species, 

but it can be predicted by NIRS because it is highly correlated with some nutrients, especially 

fat content and starch. GE was very well predicted in terms of 𝐶𝑉𝑐𝑣 values, but the 𝑅cv
2  values 

were low when the dataset contained only one type of feedstuff. This could be due to the small 

variability in energy that feedstuffs such as wheat have. One major constraint of 𝑅2 is its 

dependence on the range of reference values in the calibration set and their uncertainty [30]. 

Losada et al. 2010 [19] used a dataset with different oil seed and by-products and Kays & Barton, 

2002 [31] (not shown in the table) included different cereal species. With this larger variability, 

their calibration models had very good 𝐶𝑉𝑐𝑣  and 𝑅cv
2 . Tahir et al. [32] developed specific total P 

and phytic P calibrations for corn, soybean meal, DDGS or wheat, among others. The results 

were better for phytic P (𝑅p
2>0.70) than for total P (𝑅p

2<0.70). This could be expected because 

phytate is an organic molecule with C-H and O-H bonds that show up in the NIR region while 

the determination of total P, like the determination of ash is related to the correlations between 

the constituent and the organic molecules. Aureli et al. [33] predicted total P and phytic P by 

merging several feedstuffs (cereals, cereal by-products, legumes seeds and oil meals) into a single 

dataset. They obtained more robust models with higher determination coefficients (𝑅cv
2 >0.90). 

The errors were high (𝐶𝑉𝑐𝑣>15%) compared to the total P predictions made by Khaleduzzaman 
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et al. 2017 [23] in broiler and laying hen diets (𝐶𝑉𝑐𝑣<10%). It should be considered that the 

amount of P and phytic P in some feedstuffs is very small (e.g., total P<0.30% and P-

phytic<0.20% in corn and wheat) while the concentration of P in a diet is normally higher than 

0.50% and can be higher than 1%. Generally, the lower the concentration, the greater the 

reference method error and the more difficult it is to obtain accurate NIR predictions. In the 

same work, Khaleduzzaman et al. predicted also calcium with poor results. Ikoyi & Younge 

2020 [34] tried to predict minerals in plant materials but obtained a low accuracy (𝑅cv
2 <0.75 and 

𝐶𝑉𝑐𝑣>10%). This is attributed to the fact that minerals do not absorb in the NIR region. The 

addition of correctors with vitamins to animal feeds is a common practice. González-Martín et 

al. 2005, 2006 [35,36] determined vitamin E in the form of α-, (β+γ)- and δ-tocopherol obtaining 

acceptable results in compound feeds (𝑅cv
2 >0.75 and 𝐶𝑉𝑐𝑣<25%) and good results for alfalfa 

(𝑅cv
2 >0.90 and 𝐶𝑉𝑐𝑣≈10%) considering the low concentration of these species (<1 g/kg). 

 

Prediction of amino acids in feedstuffs and diets by NIRS 

 

The first studys focused on the prediction of the limiting AAs for swine and poultry (See Section 

2.1). Rubenthaler and Bruinsma 1978 predicted Lys in a variety of cereals [37] and Gill et al. 

1979 in barley of different breeds [38]. Williams et al. 1984 [39] predicted Lys, Met, Thr and Trp 

in wheat. The prediction errors were relatively low (𝐶𝑉𝑐𝑣<8%) for all except Met (𝐶𝑉𝑐𝑣=13%). 

In the same work, they predicted 14 AAs in barley with high coefficients of determination for 

all of them (𝑅cv
2 >0.90) except again Met (𝑅cv

2 =0.81). The reason could be the narrow range of 

Met concentration in barley and the higher error of the Met analysis due to oxidative losses 

during sample preparation. The following year they were more successful in predicting Met 

(𝑅cv
2 >0.90) in peas [40]. Table 2 shows the coefficient of determination (𝑅cv

2 ) of AA calibrations 

published in the last 20 years. 

 

The quality of the AAs predictions can vary due to different factors. An important one is the 

correlation between AAs and protein. This relationship is well known and served to build linear 

or non-linear regression models that predicted relatively well highly correlated AAs with protein 

in feedstuffs using the protein content as predictor [41,42]. Fontaine et al. 2001, 2002 [21,22] 

and Kovalenko et al. 2006 [43] developed linear regression models from the protein content 

and compared them with NIR models. They showed that NIR models outperformed linear 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



49 

 

regression models from protein and that the NIR predictions were better the higher the 

correlation between the AA and protein.  

 

Table 2. Near-infrared (NIR) calibration models to predict amino acids in feedstuffs and diets for swine and 

poultry described in the literature from 2000. Type of sample, coefficient of determination of cross validation (𝑅cv
2 ) 

and reference (Ref). 

 

Sample 𝑅𝑐𝑣
2 <0.70 0.70<𝑅𝑐𝑣

2 <0.90 𝑅𝑐𝑣
2 >0.90 Ref 

Soybean seeds 
Asp, Ser, Ala, Met, 
Cys, Lys, His 

Glu, Thr, Gly, Pro, Val, Arg, Ile, 
Leu, Phe, Tyr 

 [47] 

Soybean meal  Met, Cys Lys, Thr, Trp, Arg, Ile, Leu, Val [21] 

Rapeseed meal Thr  Met, Cys, Lys, Arg, Ile, Val, Trp Leu [21] 

Sunflower   Met, Cys, Lys Thr, Trp, Arg, Ile, Leu, Val [21] 

Field peas Met, cys Lys, Thr, Trp, Ile, Leu, Val Arg  [21] 

Wheat  Lys, Trp, Arg Met, Cys, Thr, Ile, Leu, Val [22] 

Barley  Met, Cys, Lys, Trp Thr, Arg, Ile, Leu, Val [22] 

Corn  Met, Cys, Lys, Trp, Arg Thr, Ile, Leu, Val [22] 

Triticale  Met, Cys, Lys, Trp Thr, Arg, Ile, Leu, Val [22] 

Wheat bran  Cys, Trp Met, Lys, Thr, Arg, Ile, Leu, Val [22] 

Rice bran  Cys 
Met, Lys, Thr, Trp, Arg, Ile, Leu, 
Val 

[22] 

Sorghum  Met, Cys Lys, Thr, Trp, Arg, Ile, Leu, Val [22] 

Milled rice Cys, Met, His 
Thr, Ser, Ala, Val, Ile, Tyr, Lys, 
Pro 

Asp, Glu, Gly, Leu, Phe, Arg  [48] 

Soybeans Trp, Cys, Met, Ser  
Ala, Glu, Ile, Pro, Thr, Val, Arg, 
Asp, Gly, His, Leu, Lys, Phe, Tyr 

 [43] 

Soybeans  
Ala, Cys, Gly, His, 
Lys, Met, Trp, Tyr 

Arg, Asp, Glu, Ile, Leu, Phe, Pro, 
Ser, Thr, Val 

 [49] 

Animal diets Lys Asp, Glu, Gly, Pro, Val Phe, Tyr [50] 

Poultry diets  Lys, Met+Cys  [51] 

Brown rice Cys, Met  Lys, Pro, Tyr 
Asp, Thr, Ser, Glu, Gly, Ala, Val, 
Ile, Leu, Phe, His, Arg 

[52] 

Rapeseed Val Cys, Met, Pro, Ala, Tyr 
Asp, Thr, Ser, Glu, Gly, Ile, Leu, 
Phe, Lys, His, Arg 

[53] 

DDGS Arg, Trp, Val His, Ile, Lys, Thr, Phe Leu, Met [54] 

Quality protein 
maize  

Ser, His, Thr, Cys, 
Met, Lys, Ile 

Glu, Gly, Pro, Tyr, Met, Phe Asp, Arg, Ala, Leu [55] 

Cereals Lys, Met, Leu, Trp,  
Phe, Glu, Gly, Pro, Ser, Tyr, Cys, 
Thr, Ile, His, Val, Arg, Ala, Asp 

 [56] 

Supplemental 
feed 
ingredients 

 Trp 
Lys, Met, Cys, Thr, Ile, Leu, His, 
Phe, Val, Arg, Ala, Asp, Glu, Gly, 
Pro, Ser, Tyr 

[56] 

Pig diets 
Lys, Met, Thr, His, 
Arg, Tyr 

Ile, Leu, Phe, Val, Trp, Ala, Asp, 
Gly, Cys, Glu, Pro, Ser 

 [56] 

 

The accuracy of the reference method of analysis is another factor that could affect the accuracy 

of the predictions. The official method of analysis consists of an acid hydrolysis of proteins 

followed by HPLC analysis [44]. Met and Cys are determined separately, and a peroxidation step 

is carried out before the hydrolysis. This extra step increases the standard error of the laboratory 
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(SEL) of Met and Cys as it can be seen in references [21,22,43]. Furthermore, according to 

Fontaine et al. [21,22] the chromatographic peak of Cys usually suffers from baseline 

interferences that make the integration of the peak difficult. Hence, the poor predictions of Met 

and Cys in most of the presented works is not unexpected. To determine Trp, an alkaline 

hydrolysis instead of acid hydrolysis is carried out [45]. Although this does not increases the 

SEL significantly, the predictions for Trp are generally worse than for other AAs. The low 

concentration and range of values in most feedstuffs (it is the AA least abundant) could be the 

reason. The rest of the AAs could exhibit also large errors due to incomplete hydrolysis in the 

case of the stable AAs (the aliphatic) and degradation in the case of unstable AA (those with 

functional groups) [46]. However, as Table 2 shows many AAs have been predicted well 

(𝑅cv
2 >0.90) or good (0.70< 𝑅cv

2 <0.90) in many feedstuffs. 

 

As stated in Section 2.1 the trend now to avoid unnecessary costs and reduce environmental 

impacts is to formulate based on available CP and AAs instead of totals. Very few authors have 

developed NIR calibrations for digestible AAs probably due to the high cost of the in-vivo 

assays needed to obtain the reference values. Van Kempen & Bodin 1998 [57] predicted the 

ileal digestibility of Lys, Met and Thr. It was determined in caecectomized cockerels for samples 

of soybean meal (𝑛=21) and for samples of wheat (𝑛=23). Due to the low number of samples 

only results of calibration were shown. The coefficients of determination were not very 

satisfactory in soybean meal (0.60<𝑅c
2<0.70). They were better in wheat for Met (𝑅c

2=0.84), 

similar for Thr (𝑅c
2=0.69) and worse for Lys (𝑅c

2=0.55). Even though these calibrations could 

not be considered accurate, they outperformed nitrogen-based regression equations. Pujol et al. 

2007 [58] developed NIR calibrations to predict the pig ileal digestibility of Lys, Met and Cys in 

barley. The prediction statistics were promising (𝑅P
2=0.97 for Lys, 𝑅P

2=0.95 for Met and 𝑅P
2=0.85 

for Cys), although they only used 15 samples to calibrate and 5 to validate. Recently, Noel et al. 

2021 [56] presented calibrations for predicting the pig ileal digestibility of 18 AAs. The dataset 

(𝑛=38 for Trp, 𝑛≈100 for the rest) contained cereals, cereal by-products, protein-rich feedstuffs, 

fibre-rich feedstuffs and others. The coefficients of determination were good for most of the 

AAs (𝑅cv
2 >0.70) and low errors (𝐶𝑉𝑐𝑣<5%) were found. Trp had worse statistics due to the 

reduced number of samples and lower concentration of this AA in the samples. No calibrations 

for the standardized ileal digestibility (SID) of AAs have been presented so far although it is a 

topic that it is attracting the attention of the most important agri-food research centres in 

Europe. They are collaborating since 2021 in the framework of a long-term European project 

about sustainable pig production called PIGWEB [59]. One of the main tasks within this project 
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is the development of NIR calibrations to predict SID of AAs for pigs. To do this, the 

participating research centres are providing SID values and spectra of different feedstuffs and 

diets to create a large dataset.  

 

NIRS to predict carbohydrates and lignin 

 

Starch, the principal source of energy for poultry and swine, has been predicted well in feedstuffs 

like corn [16], wheat [9,11] or faba bean [10]. Nieto-Ortega et al. 2022 [60] used a set that 

included different cereal and cereal by-products and Losada et al. 2009 [18] included cereal, 

cereal by-products and peas. For a single feedstuff, the calibrations were accurate (𝐶𝑉𝑐𝑣<3%) 

but the coefficient of determination was not very good (𝑅cv
2 <0.90) while in the works where 

different feedstuffs are included in the dataset the calibrations presented higher 𝐶𝑉𝑐𝑣>3% but 

very high 𝑅cv
2 ≈0.99. The increasing in the variability and the wider concentration intervals 

caused that. Losada et al. 2009 [18] proved that NIRS is capable also to predict sugars (the sum 

of monosaccharides and disaccharides) with a high coefficient of determination (𝑅cv
2 =0.94) but 

a higher error than starch (𝐶𝑉𝑐𝑣=12%) probably due to the fact that sugars are found in small 

amounts in feedstuffs and the SEL might be high. Oligosaccharides (OS) have not received 

much attention. Hollung et al. 2005 [61] predicted α-galactosides (raffinose, stachyose and 

verbascose) in soybean meals. These are the most important OS in protein-rich feedstuffs. They 

only used 16 samples and only obtained 𝑅cv
2 >0.50 for raffinose, not for stachyose or verbascose. 

Regarding non-starch polysaccharides (NSP), Blakeney et al. 2005 [62] employed a cereal sample 

set and predicted cellulose, some non-cellulosic polysaccharide (NCP) residues (arabinose, 

xylose and glucose) and the total NSP content showing also results for the insoluble and soluble 

fractions. They obtained acceptable results for the total and the insoluble fractions (𝑅cv
2 >0.80, 

10%<𝐶𝑉𝑐𝑣<25%) considering that the SEL for these constituents is high. The soluble fraction 

was poorly predicted (𝑅cv
2 <0.70, 𝐶𝑉𝑐𝑣>30%). The reason is that the soluble fraction is not 

obtained by chemical analysis, but it is obtained by subtracting the insoluble content from the 

total content. The prediction error of the soluble fraction is influenced by the accumulation of 

analytical errors derived from the combination of the two determinations. Blakeney et al. 2005 

[62] also predicted the total content of β-glucan. They obtained a good coefficient of 

determination (𝑅cv
2 =0.93) but a high error (𝐶𝑉𝑐𝑣=29%). Bellato et al. 2011 [63] and more 

recently, Meenu et al. 2022 [64] developed β-glucan calibrations for naked oats. Their dataset 

variability was considerably low. Because of that, they obtained lower prediction errors 
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(𝐶𝑉𝑐𝑣<10%) but worse coefficients of determination (𝑅cv
2 <0.70). Gomes et al. 2020 [65] divided 

a large dataset into cereals, protein- and fibre-rich feedstuffs and developed accurate, specific 

calibrations (0.86<𝑅cv
2 <0.97) for most of the total and insoluble NCP residues (xylose, 

arabinose, glucose, galactose and mannose) and for the total and insoluble NSP content 

(0.91<𝑅cv
2 <0.97). Nieto-Ortega et al. 2022 [60] used a dataset containing cereals and cereal by-

products and accurately predicted most of the total and insoluble NCP residues, cellulose, lignin 

and NSP. The 𝑅cv
2  values for cellulose, total and insoluble arabinose, xylose and glucose and for 

total and insoluble NSPs were excellent with 𝑅cv
2  ranging from 0.97 to 0.98 and 𝐶𝑉𝑐𝑣 from 10% 

to 25%. The lignin prediction was also quite good (𝑅cv
2 =0.93, 𝐶𝑉𝑐𝑣=22%). Worse results were 

found for total galactose (𝑅cv
2 =0.87, 𝐶𝑉𝑐𝑣=38%) and mainly total mannose (𝑅cv

2 =0.54, 

𝐶𝑉𝑐𝑣>100%). This is a consequence of the low concentrations of galactose (mean=2.1 g/kg) 

and mannose (mean=1.7 g/kg) in cereals and cereal by-products. 

 

NIRS to obtain the digestibility of energy and nutrients  

 

Digestible energy and the digestibility of the nutrients (e.g. digestibility of CP) are the parameters 

that best reflect the quality and adequacy of an ingredient or diet (see Section 2.1). These values 

are obtained by in-vivo assays that are associated to high costs and ethical problems related to 

the use of animals. Different strategies involving NIRS have been used to reduce the costs of 

in-vivo assays, although only the prediction of digestibility from the feed spectra would avoid 

the use of animals. These strategies are summarized in Figure 1.  

 

As it was shown in Section 2.1, other alternatives in addition to NIRS exist to obtain the 

digestibility values. In a very recent work, Paternostre et al. 2023 [66] compared the performance 

of feed tables, empirical models based on chemical composition with or without the inclusion 

of in-vitro digestibility of nutrients, and NIRS to predict NE of pig diets. They found that the 

NE values calculated from feed tables approximated the expected value unless diets contained 

some uncommon ingredients such as beet pulp. The empirical models were more precise than 

the use of feed tables with the drawback that the samples must be analysed by wet chemistry 

methods. The inclusion of in-vitro digestibility parameters like organic matter digestibility as 

predictors in empirical models improved the predictions with the extra costs that in-vitro 

analysis entail. The use of the NIR feed spectrum resulted in worse predictions than the 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



53 

 

empirical models using in-vitro digestibility parameters. To obtain more accurate predictions 

based on NIRS they had to use both the spectra of feed and faeces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Different ways to obtain digestibility values involving NIRS. Green via: direct prediction from the feed 
spectra. Brown via: direct prediction from the digestion product (faeces, excreta or ileal digesta) spectra. Blue via: 
calculation from the nutrient content in feed and in digestion product determined by NIRS. Red via: prediction 
from the combination of both spectra, feed and digestion product. This combination could be a concatenation, a 
subtraction, a mean spectra, a combination of PCA or PLS scores and others.  

 
 

Prediction of digestibility from the NIR feed spectra 

 

Predicting digestibility using the feed spectra has the great advantage of avoiding the use of 

animals. Table 3 shows the cross-validation statistics of the works where digestible energy and 

digestibility of nutrients for pig and poultry are predicted from the feed spectra. Same approach 

was investigated for other animals such as cattle [78] or sheep [79]. The results shown in the 

table vary but there are several calibrations that could be considered very satisfactory (𝑅cv
2 >0.90 

and 𝐶𝑉𝑐𝑣<5%). The calibrations to predict AME or TME for poultry were generally better than 

those for DE or ME for pigs. Perhaps, it could be due to chickens are genetically similar and 

big differences in their digestive capacity are not expected while pigs show more differences 

between individuals [80]. Since only feed spectra are being considered to predict, the source of 
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variation associated to the digestive process cannot be modelled when the calibration is 

developed. It is interesting that the calibrations for wheat samples were the worst and the fact 

that Valdes & Leeson 1992 [68] considered the samples of wheat as outliers but more studies 

would be necessary to affirm that there are ingredients in which is more difficult to predict 

digestible energy than others. Probably the results of the predictions depend primarily on how 

the in-vivo assays have been carried out and how the laboratory works in each case. Moreover, 

the variability and range of values in the data set that can be obtained by testing just one 

ingredient is vastly different compared to a multi-ingredient or compound feed database. The 

low number of samples used in most studies (𝑛<100) also affects the quality of the calibrations 

and the predictions. 

 

Table 3. Near-infrared (NIR) calibration models to predict the digestible energy (DE, AME, TME or NE) and the 
digestibility of nutrients in feedstuffs and diets for poultry and swine described in the literature. Type of sample, 
analyte or constituent predicted, coefficient of determination (𝑅cv

2 ) and coefficient of variation of cross validation 
(𝐶𝑉𝑐𝑣) and reference (Ref). 

 

 

Digestibility predictions based on models for feed and digestion product 

 

In-vivo assays usually involve the analysis of many replicate digestion product (faeces, excreta 

and/or ileal digesta) samples per diet trying to minimize external effects such as temperature 

Sample Analyte 𝑅𝑐𝑣
2  𝐶𝑉𝑐𝑣 (%) Ref 

Poultry digestibility 

Poultry diets AMEn 0.92 2.0 [67] 

Poultry feeds AMEn 0.93 3.3 [68] 

Feed fats  AMEn 0.77 3.6 [69] 

Barley  TME 0.95 1.5 [70] 

Wheat  AME, TME 0.45, 0.74 9.9, 2.7      [11] 

Cereals  AME 0.83    3.7      [71] 

Wheat  AME 0.59 2.4      [9] 

Cereals AMEn 0.82 5.8      [18] 

Oil seeds  AMEn 0.95 7.1      [19] 

Poultry diets AME, dDM, dCP, dStarch 0.74, 0.76, 0.50, 0.33 3.8, 4.3, 4.5, 2.9     [72] 

Pig digestibility 

Cereals  DE 0.87 2.8   [73] 

Wheat  DE 0.17 2.5      [11] 

Barley  DE 0.79 1.9      [74] 

Corn  DE, ME 0.87, 0.86 0.34, 2.2 [75] 

Sorghum  DE, ME 0.88, 0.86 1.2, 1.3      [76] 

Pig diets NE, dCP, dFat, dNSP, dCF, dOM 0.79, 0.76, 0.61, 0.61, 0.72, 0.73   3.2, 3.5, 5.5, 8.6, 5.6, 3.2    [27] 

Cereals  ME, dDM, dOM, dCP, dFat, dCF 0.75, 0.82, 0.85, 0.64, 0.51, 0.35    2.5, 2.0, 1.8, 4.3, 16, 39    [77] 

Supplemental 
ingredients  

ME, dDM, dOM, dCP, dFat, dCF  0.89, 0.89, 0.92, 0.68, 0.33, 0.61   7.4, 7.9, 6.9, 7.0, 26, 32  [77] 

Pig diets ME, dDM, dOM, dCP, dFat, dCF  0.71, 0.80, 0.83, 0.64, 0.63, 0.43   5.1, 3.4, 3.0, 4.5, 13, 35    [77] 
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and humidity in the farm or the particular digestion differences between animals of the same 

species, age and gender. As shown in the previous sections, it is possible to obtain the nutrient 

content of feedstuffs and diets from the NIR spectra. The use of calibration models to predict 

the nutrient content of the digestion product samples would be also very useful to reduce the 

costs of in-vivo assays. As far as we know, there are no published papers where ileal digesta 

samples are analysed by NIRS. Several authors focused on the use of the faeces/excreta as 

fertilizer and developed calibrations for OM, N (total, organic and ammoniacal) and P among 

others [81]. Table 4 shows the prediction statistics of NIR calibrations for the nutrient content 

of poultry excreta and pig faeces. All the excreta calibrations were developed for broilers. GE 

was well predicted in most of the works. These results for GE were better than those obtained 

in feedstuffs maybe due to a higher variability of GE in the digestion product compared to 

feedstuffs. The fat predictions showed 𝑅cv
2  values in the order to those found for feedstuffs and 

diets although presented higher 𝐶𝑉𝑐𝑣 because, unlike for feedstuffs, the reference method 

includes an acid extraction [82]. 

 

Table 4. Near-infrared (NIR) calibration models to predict the nutrient content of broiler excreta and pig faeces 
described in the literature. Type of sample, analyte or constituent predicted, coefficient of determination of cross 
validation (𝑅cv

2 ), coefficient of variation of cross validation (𝐶𝑉𝑐𝑣) and reference (Ref). 
 

 

1 𝑅𝑃𝐷𝑐𝑣  values instead of 𝑅cv
2  

2 Values obtained for a test set instead of CV 

 

Uric acid (UA) had high 𝐶𝑉𝑐𝑣 (>5 %) justified by the fact that SEL for this determination is the 

highest [90]. CP was worse predicted in terms of 𝐶𝑉𝑐𝑣 than in feedstuffs and diets probably due 

to the method of analysis that consists of precipitating the proteins by lead acetate and that 

introduces some approximations [91]. P was predicted better in excreta that in feedstuffs and 

compound feeds. The reason could be that P in excreta is mainly in the form of phytate that it 

is the undigested fraction of P. These results reveal that it is possible to predict properly several 

Sample Analyte 𝑅𝑐𝑣
2  𝐶𝑉𝑐𝑣 (%) Ref 

Broiler excreta Moisture, N, GE, P, Ca 0.96, 0.88, 0.86, 0.91, 0.84 3.1, 3.5, 1.8, 9.3, 8.8 [83] 

Broiler excreta GE, Starch, Fat, N, CP 9.7, 10.2, 10.2, 4.3, 4.4 
1
 0.69, 7.7, 4.0, 5.0, 5.0 [84] 

Broiler excreta N, CP, UA 4.3, 4.4, 5.2 
1
 5.0, 5.0, 5.8 [85] 

Broiler excreta 
Ash, GE, Starch, Fat, N, 
UA, CP 4.3, 8.9, 13.7, 9.5, 4.2, 4.1, 5.0 

1
 5.1, 1.0, 5.5, 5.2, 3.2, 7.8, 4.0 [86] 

Broiler excreta GE 0.92 1.0 [87] 

Pig faeces GE 0.97 1.1 [87] 

Pig faeces OM, CP, NDF, ADF, CF 0.73, 0.74, 0.90, 0.94, 0.90 1.6, 8.5, 6.2, 6.8, 7.6 [88] 

Pig faeces OM, CP, GE, Fat, NDF 0.92, 0.88, 0.92, 0.69, 0.94 7.9, 11.1, 8.2, 17.0, 23.0 [89] 

Pig faeces DM, CP, Fat, Ash, CF, OM 0.92, 0.90, 0.91, 0.90, 0.84, 0.90 0.5, 4.2, 6.2, 5.1, 7.2, 1.1 [27] 
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of the most important nutritional parameters in the digestion product. Therefore, it would be 

possible to calculate the energy and the digestibility of the nutrients using the predicted values 

obtained from the NIR spectrum of feeds and digestion products. 

 

Prediction of digestibility from the NIR faeces spectra 

 

Another approach investigated is whether it is possible to directly predict the digestibility in the 

feed from the digestion product spectra. According to Bastianelli et al. 2005 [92] this would 

avoid the need to use and determine an indigestible marker or precisely measure feed intake and 

faecal output thereby simplifying the experimental work. GE digestibility for poultry was well 

predicted in this work from the excreta spectrum (𝑅cv
2 =0.98, 𝐶𝑉𝑐𝑣=3.0%). The diet was the 

same, but the animals had different genetics and digestive capacities. They published another 

work in which DE and digestibility of DM, OM and CP were predicted from pig faeces [93]. 

Again, the diet was the same for all the animals but in this case, the variation in the animals was 

moderate. Hence, it is not unexpected that they obtained lower errors (𝐶𝑉𝑐𝑣<2.0%) but worse 

coefficients of determination (𝑅cv
2 <0.70). These works proved that the faeces/excreta spectrum 

reflects how the animal digests the feed. Other authors used datasets containing pig faeces that 

came from different animals but also different diets [27,88,89]. Although the variability was very 

high in these datasets the coefficients of determination were generally poor (𝑅cv
2 <0.80) and the 

errors were higher than those reported in the Bastianelli’s works. These unsatisfactory 

predictions indicate that although the composition of the digestion product is feed-dependent, 

to obtain accurate calibrations valid for different type of diets the digestion product spectrum 

is not enough.  

 

Prediction of digestibility from the combination of feed and digestion product NIR spectra 

 

A promising approach to reduce the cost of the in-vivo assays is to combine both the feed and 

the digestion product spectra. This would avoid the use of any wet chemistry method and the 

need to use and determine an indigestible marker or precisely measure feed intake and faecal 

output. Coulibaly et al. 2013 [72] showed that concatenating the spectra of feeds and poultry 

excreta the SECV values for AME and dDM were two times lower than the errors obtained 

from only the feed spectrum. In the case of dStarch, SECV was four times lower. These three 

parameters presented 𝑅cv
2 >0.95 that can be considered exceptional. dCP prediction statistics 
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improved significantly but not as much as AME, dDM and dStarch did. Recently, Paternostre 

et al. 2021 [27] observed also an important improvement when spectra are concatenated in the 

predictions of NE and nutrient content digestibility in pigs. Predicting only from the feed or 

the faeces spectra they obtained 𝑅cv
2 <0.80 and merging them 𝑅cv

2 >0.80 with parameters such as 

dOM and NE with 𝑅cv
2 >0.90. Similar conclusions were drawn from the prediction of 

digestibility in ruminants [94] and rabbits [95]. The improvement in the predictive ability of 

models that combine feeds and digestion product spectra in comparison to those that used only 

the feed spectrum or the digestion product spectrum is expected. By combining both spectra, 

the original composition of the feed is being considered as well as the variation associated to 

the digestive process. 
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Chapter 3.  

Replacing wet chemistry by NIRS 
to improve feed formulation and 
reduce the costs of  in-vivo assays 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



69 

 

3.1. Introduction 

 

The initial stage in formulating a diet involves conducting the nutritional analysis of the available 

ingredients. Once the compound feed has been produced it must be analysed to ensure that it 

has been accurately prepared at the feed mill and that the animal will receive the intended 

nutrients. This process is a standard practice in the majority of farms and compound feed 

manufacturing facilities. The agri-food industry moves tones and tones of ingredients and 

compound feeds and their traceability must be controlled at all times to avoid buying, producing 

or selling feeds with unwanted property values [1]. Research centres or companies that seek for 

optimal diets and conduct digestibility in-vivo assays must analyse the nutrient content of faeces 

or excreta and/or intestinal contents in addition to ingredients and compound feeds. Although 

wet chemistry methods are accurate and extensively used for the analysis of these types of 

samples they present disadvantages, including the high cost of some of them, the need for 

chemical reagents or for a tedious sample preparation. Therefore, there is a need in developing 

rapid, non-destructive, and chemicals-free methods, as NIRS, that can predict quantitative 

parameters with similar accuracy as the traditional methods [2].  

 

IRTA is an agri-food research centre whose research line in monogastric animal nutrition 

conducts primarily efficacy studies of different additives and enzymes included in compound 

feeds. IRTA has an experimental feed factory that produces a considerable high amount of 

different compound feeds that must be analysed before they are given to the animals. However, 

IRTA is not a typical feed producer. Although the variety of ingredients used may be high, the 

number of batches of ingredients purchased per year is low. Because the conduction of 

nutritional in-vivo assays is common in IRTA, a large number of faeces, excreta and ileal digesta 

samples need to be also analysed.  

 

Within the framework of this thesis, in 2020 IRTA purchased a NIRS FOSS DS2500 together 

with a set of commercial calibrations for moisture, CP, Fat, CF, ash and starch in raw materials 

and another set for the same parameters in compound feeds. As mentioned in Section 2.2, the 

costumer must verify that the commercial calibrations work as intended in their own type of 

samples and otherwise, update them or develop new calibrations with their own samples. The 

commercial calibrations for raw materials were tested with IRTA samples and often the 

predictions were unsatisfactory. Regrettably, there were not enough samples of raw materials to 
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develop new NIR calibrations. The dataset employed in Section 3.2 to determine the 

carbohydrate and lignin content in raw materials belongs to the Department of Animal and 

Veterinary Science of Aarhus University. For compound feeds, IRTA did have enough samples 

to develop new calibrations. In Section 3.3 the commercial calibrations for compound feeds 

and calibrations developed in-house are compared. In addition, calibrations for important 

parameters for IRTA research for which there were not commercial calibrations such as GE 

and P are presented. The use of NIRS to predict the nutrient content of poultry excreta (Section 

3.4), pig faeces (Section 3.5) and intestinal contents (Section 3.6) has received relatively little 

attention, resulting in a lack of commercial calibrations. This may be attributed to the limited 

number of research centres or companies focusing on these types of samples compared to the 

extensive number of companies engaged in the production, sale, or purchase of raw materials 

and compound feeds. The possibility of determining the nutrient content of all these samples 

by NIRS would reduce considerably the costs of in-vivo assays, making them more accessible 

for who wants to obtain information about how the feed has been digested, ultimately helping 

to identify optimal diets for monogastric animals. 
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Abstract 

 

Carbohydrates (CHO) are the principal constituents of the diets given to monogastric animals 

around the world. They supply the largest part of the energy to the animal, despite the fact only 

monosaccharides, disaccharides and starch are absorbed by the animal. Oligosaccharides (OS), 

resistant starch, non-starch polysaccharides (NSP) and lignin compose the so-called dietary fibre 

that it is not absorbed. The soluble fraction of fibre is mainly fermentable and causes benefits 

to the gastrointestinal tract while the insoluble is not and therefore lead to a decrease in nutrient 

and energy digestibility. The CHO fraction and its composition is highly variable among feed 

ingredients but also amongst the different varieties of the same ingredient. To improve the 

nutrient utilization and to formulate animal diets that are more efficient it is necessary to 
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characterize the CHO fraction of the ingredients. In addition, with the growing use of 

supplementary enzymes, such as xylanase, β-glucanase or mannanase to mitigate the anti-

nutritive effect of fibre the determination of the CHO components is essential. To make a full 

account of the CHO and lignin constituents, several wet chemical enzymatic, chromatographic 

and gravimetric methods need to be employed, which are expensive and time-consuming. Near-

infrared spectroscopy (NIRS) overcomes these limitations because it is a rapid, non-destructive, 

multi-parametric technique and requires minimal sample preparation. In this work, around 300 

samples of animal feedstuffs, consisting of cereals, cereal co-products, protein-rich and fibre-

rich feedstuffs were used to develop and validate near-infrared (NIR) partial least square 

regression (PLSR) models. Spectral pretreatment optimization, sample selection and outlier 

detection were considered for each model. Robust predictions (𝑅p
2>0.90) were obtained for 

digestible carbohydrates (sugars and starch) and for most of the total or insoluble components 

of dietary fibre (lignin, NSP, cellulose, β-glucan, non-cellulosic polysaccharides (NCP), 

arabinose, xylose, galactose, rhamnose and uronic acids).  The OS, fructans were well predicted 

in cereals (𝑅P
2=0.94) and linearity (𝑅CV

2 >0.70) was also found for α-galactosides (raffinose, 

stachyose and verbascose) in protein-rich feedstuffs. The obtained results were in general very 

satisfactory and demonstrate that NIRS is a reliable tool to characterize the carbohydrate 

fraction of a variety of feedstuffs. 

 

Keywords 

 

Cereals, protein feedstuff, multivariate calibration, dietary fibre, non-starch polysaccharides, 

sugars 

 

Introduction 

 

Carbohydrates (CHO) are the principal constituents of monogastric animal diets accounting for 

approximately two thirds of the dry matter consumed [1]. The CHO group includes compounds 

with very different chemical structures and properties that define how they are used by the 

animal. Only monosaccharides are directly absorbed in the small intestine, but monogastric 

animals have endogenous enzymes that are able to hydrolyze disaccharides and most of the 

starch making them available for absorption. Sugars, found in low concentration in plant 

materials along with abundant starch, represent the main energy source of a typical monogastric 
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diet [2]. However, the high specificity of the endogenous enzymes results in a significant fraction 

of CHO along with the non-carbohydrate component lignin not being digested by the 

endogenous enzymes in the small intestine. This fraction, commonly referred to as dietary fibre 

(DF) can be fermented to some extent by the microbiota in the large intestine and includes: 

oligosaccharides (OS), resistant starch (RS), non-starch polysaccharides (NSP) and lignin [3]. In 

plant materials, OS consist mainly of α-galactosides (raffinose, stachyose and verbascose) and 

fructans. RS is the non-digestible starch fraction and for most of the feedstuffs, it is present in 

very low concentration. The NSP group is the main constituent of the DF and includes cellulose, 

β-glucan and non-cellulosic polysaccharides (NCP) whose monomers are arabinose, xylose, 

glucose, galactose, mannose, rhamnose, fucose and uronic acids [4]. Lignin is not a 

carbohydrate, but it is present in most of the plant materials to a greater or lesser extent and is 

usually treated together with CHO because it is tightly linked to NSP and commonly used 

analytical methods for fibre determination include lignin [5]. 

 

The solubility of the fibre compounds affects their functionality. OS and NCP are fully or 

partially soluble and the microbiota inhabiting the gastrointestinal tract of monogastric animals 

can ferment the OS and NCP in a way that is related to how the molecules are organized. This 

has a positive impact on the intestinal health of the host, increasing the microbial diversity, 

increasing the mucin production and providing valuable metabolites with functional roles such 

as short-chain fatty acids [6]. β-glucan is another important partially soluble constituent, mainly 

found in cereal grains. It can be fermented by the microbiota and may stimulate immune activity 

[7]. On the other hand, insoluble NCP together with cellulose and lignin represent a fraction of 

the diet that is not digested or fermented and lead to less digestibility of nutrients and energy 

[8]. Nowadays, in order to mitigate the anti-nutritive effects of NSP, supplementing feeds with 

carbohydrases such as xylanase, β-glucanase or β-mannanase is a common practice in the swine 

and poultry industry [9-10].  

 

The CHO fraction and its composition is highly variable between feed ingredients but also 

between varieties of the same ingredient. Genetic variability, environmental conditions, harvest 

and post-harvest processing or storage conditions can influence the CHO content [11]. To 

improve nutrient utilization and formulate more efficient animal diets it is necessary to 

characterize the CHO fraction of the ingredients. In addition, according to European Food 

Safety Authority the companies and research centres that test and use supplementary enzymes 
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such as the aforementioned carbohydrases must demonstrate their usefulness by analysing their 

enzymatic activity and also the presence of their substrates [12].  

 

To make a complete account of the CHO and lignin constituents, several wet chemical 

enzymatic, chromatographic and gravimetric methods need to be employed, which are 

expensive and time-consuming. Near-infrared spectroscopy (NIRS) overcomes these 

limitations because it is rapid, non-destructive, multi-parametric and requires minimal sample 

preparation. The proven ability of NIRS to determine the nutrient content of a multitude of 

feedstuffs has promoted this technique for routine analysis in the agri-food sector [13-15]. 

However, few authors have presented NIR calibration models to determine CHO content 

beyond starch and most of those who did, focused on one type of feedstuff (e.g. cereals) or with 

limited CHO fractions (e.g. NSP) [11,16-17]. The objective of this work is to study the capability 

of NIRS to characterize all CHO and lignin fractions of a wide variety of feedstuffs for 

monogastric animals. Partial least squares (PLS) calibration models for sugars, starch, DF and 

its components (OS, NSP and lignin) were developed on a dataset containing cereals, cereal co-

products, protein-rich feedstuffs and fibre-rich feedstuffs.  

 

Materials and methods 

 

Samples 

 

The feedstuff dataset (304 samples) consists of the dataset described by Bach Knudsen 1997 

[18] plus samples that have been included in other publications [19] and analysed by essentially 

the same analytical methods. The samples represent common and not so common feedstuffs 

for monogastric animals. The feed samples were collected since 1988 and come from the Danish 

and European feedstuffs market. Samples were grouped according to their characteristics and 

consisted of whole grain cereals (168 samples; barley, corn, wheat, oat, rice, rye, sorghum and 

triticale; cereal co-products (58 samples; barley husk, brewers spent grain, corn flour, maize 

bran, maize gluten, oat hull, oat meal, rice flour, rye bran, rye meal, wheat bran, wheat aleurone 

and wheat pericarp/testa; protein-rich feedstuffs (44 samples; soybean meal, sunflower meal, 

rapeseed meal and cake, fava beans, peas, lupins, red clover, rye grass, cotton seed cake, coconut 

cake, flaxseed cake and palm cake) and fibre-rich feedstuffs (34 samples; alfalfa, grass meal, 

apple pomace, pea hull, sugar beet pulp and potato pulp). A summary of the principal 
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constituents (dry matter, crude protein, fat, crude fibre and ash) determined for each group of 

samples (Table S1) is given in the Supplementary material.  

 

Reference analysis 

 

The CHO and lignin constituents determined with wet chemistry methods are illustrated in 

Figure 1. Not all the parameters were analysed in all the samples and some CHO were present 

at very low concentrations. For instance, β-glucan were only tested in cereals and cereal co-

products while α-galactosides were only relevant in protein-rich feedstuffs. Sugars and α-

galactosides were extracted together and detected using a colorimetric assay (sugars) or HPLC 

(α-galactosides) [20]. Fructans were determined separately by an enzymatic assay described by 

Starch was analysed by Larsson and Bengtsson [21] and the enzymatic-colorimetric method 

described by Bach Knudsen 1997 [18], resistant starch by the enzymatic-colorimetric method of 

McCleary and Monaghan 2002 [22] and β-glucan by the enzymatic-colorimetric method of 

McCleary and Glennie-Holmes 1985 [23]. Total and insoluble NSP constituents (cellulose, and 

NCP residues) were determined as alditol acetates by gas-liquid chromatography for neutral 

sugars and by colorimetry for uronic acids using a modification of the Uppsala [24] and Englyst 

et al. 1982 [25] procedures as described by Bach Knudsen and Laerke 2018 [2]. Lignin (Klason 

lignin) was determined gravimetrically as the residue resistant to hydrolysis by 2 mol/L H2SO4 

[24]. 

 

Cellulose was calculated as difference between the determination of glucose after swelling the 

cellulose with 12 mol/L H2SO4 (cellulose and monomer glucose present in the sample) and after 

the hydrolysis with 2 mol/L H2SO4 when only the monomer glucose is present:  

 

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 =  𝑁𝑆𝑃
𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (

12𝑚𝑜𝑙
𝐿

𝐻𝑆𝑂4)
− 𝑁𝑆𝑃

𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (
2𝑚𝑜𝑙

𝐿
𝐻𝑆𝑂4)

                                                      (1) 

 

The total or insoluble non-cellulosic polysaccharides (T-NCP or I-NCP) were obtained as 

 

𝑁𝐶𝑃 = 𝑟ℎ𝑎𝑚𝑛𝑜𝑠𝑒 + 𝑎𝑟𝑎𝑏𝑖𝑛𝑜𝑠𝑒 + 𝑥𝑦𝑙𝑜𝑠𝑒 + 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑒 + 𝑚𝑎𝑛𝑛𝑜𝑠𝑒 + 𝑔𝑙𝑢𝑐𝑜𝑠𝑒

+ 𝑢𝑟𝑜𝑛𝑖𝑐 𝑎𝑐𝑖𝑑𝑠                                                                                                              (2) 

 

The soluble NCP was calculated as  
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𝑆_𝑁𝐶𝑃 = 𝑇_𝑁𝐶𝑃 − 𝐼_𝑁𝐶𝑃                                                                                                                           (3) 

 

and dietary fibre was calculated as  

 

𝐷𝐹 = 𝑇_𝑁𝑆𝑃 + 𝐿𝑖𝑔𝑛𝑖𝑛 + 𝑂𝑆 + 𝑅𝑆                                                                                                   (4)                             

 

with oligosaccharides calculated as 

 

𝑂𝑆 =∝ −𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑖𝑑𝑒𝑠 (𝑟𝑎𝑓𝑓𝑖𝑛𝑜𝑠𝑒 + 𝑠𝑡𝑎𝑐ℎ𝑦𝑜𝑠𝑒 + 𝑣𝑒𝑟𝑏𝑎𝑠𝑐𝑜𝑠𝑒) + 𝑓𝑟𝑢𝑐𝑡𝑎𝑛𝑠                      (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
*Lignin is not a carbohydrate but it is treated together with non-starch polysaccharides because it is strongly linked 
to this component in the cell walls.  

 
Figure 1. Carbohydrates in feedstuffs. Digestible carbohydrates are represented by sugars and starch. Dietary fibre 
is represented by non-starch polysaccharides, lignin, oligosaccharides and resistant starch.  
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Near-infrared analysis 

 

Feedstuff samples were ground, passed through a 1 mm sieve and stored at -20°C in airtight 

containers until needed. The samples were dried at 60°C in a forced air oven for 48 hour before 

scanning to prevent moisture buildup in the containers that could ruin the samples on thawing. 

Dried and ground samples were left at room temperature for a minimum of 48 hours to reach 

the ambient humidity levels. Samples were scanned using a Foss NIRS DS2500 feed analyser 

(Foss NIR Systems, Denmark) which recorded data every 0.5 nm from 400 to 2500 nm. Samples 

were scanned in duplicate with a 7 cm diameter cup where 30 g approximately were introduced 

each time and the spectra were then averaged. 

 

Calibration model development and validation 

 

PLS toolbox software (PLS_Toolbox, 2016, Eigenvector Research, Inc., Manson, WA, USA) 

running in Matlab (MATLAB, Version R2020a, The MathWorks Inc., Natick, MA, USA) was 

used to carry out all the chemometric calculations. Principal component analysis (PCA) was 

used in the first instance to study the spectral distribution of the sample set and discover possible 

groups of samples. Partial least squares regression (PLSR) was used to develop the calibration 

models for the carbohydrates and lignin. Common spectral pretreatments were tested including 

normalization, standard normal variate (SNV) [26], multiplicative scatter correction (MSC) [27] 

and 1st and 2nd order derivatives [28] using different window widths. Different wavelength ranges 

were evaluated for modelling. The sample set was divided into a calibration set (75% of the 

samples) and a validation set (25% of the samples) using the Duplex algorithm applied to the 

pretreated spectra, that retains the spectral distribution [29]. It should be noted that the 

calibration and validation sets varied from one model to another because sample selection 

depended on the number of reference samples available and the chosen pretreatment. A five-

fold venetian blind cross validation (CV) was used to choose the optimal pretreatments, the 

optimal wavelength range and the optimal number of latent variables for each model. One 

round of outlier removal was performed where the cutoff values for the spectral outliers were 

high leverage (Hotelling’s 𝑇2 reduced > 3) or a high percentage of residual spectral variance (𝑄 

residuals reduced > 3). A large difference between the predicted and the reference value 

(Studentized residuals (t) > 3) was considered indicative of reference outliers [30]. 
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The performance of the models was evaluated from the coefficient of determination of the 

regression of predicted versus reference values (𝑅p
2) and the root mean square error of prediction 

(RMSEP). To compare the calibrations developed for the different constituents and also with 

the results found in the literature, the coefficient of variation of prediction (𝐶𝑉𝑝) was used. 𝐶𝑉𝑝 

allows considering the differences in the means of the data sets between different constituents 

and different studies [31]. 

 

Results  

 

Carbohydrate and lignin variation in the feedstuffs 

 

The carbohydrate distribution across the four feedstuff groupings is shown in Table 1. Sugar 

levels were higher in cereal co-products and protein-rich feedstuffs. Coconut cake had the 

highest sugar level (12.0 g/100g, as fed). Only sugar beet pulp samples contained high levels of 

sugars (mean=4.1 g/100g, as fed) among the fibre-rich feedstuffs. Starch was found in high 

concentrations in cereal samples, as expected. Among protein- and fibre-rich feedstuffs, only 

peas, pea hulls, and potato pulp had sugar concentrations more than 5%. Although some starch 

is resistant (RS) to digestion in the small intestine due to physical entrapment or steric hindrance, 

this amount was determined to be minimal in all samples except potato pulp (not shown).  

 

Table 1. Carbohydrate fraction by group of feedstuffs. Number of samples (𝑁), mean and standard deviation (𝑆𝐷). 

 

 

The most abundant oligosaccharides (OS) in animal feedstuffs are α-galactosides (raffinose, 

stachyose, verbascose), which are present predominately in protein-rich feedstuffs, and fructans, 

 

Cereals Cereal co-products Protein-rich feeds Fibre-rich feeds 

𝑁 
Mean ± 𝑆𝐷 

(g/100g, as fed) 
𝑁 

Mean ±  𝑆𝐷 
(g/100g, as fed) 

𝑁 
Mean ±  𝑆𝐷 

(g/100g, as fed) 
𝑁 

Mean ±  𝑆𝐷 
(g/100g, as fed) 

Sugars 136 2.0 ± 1.1 52 3.4 ± 2.5 42 4.0 ± 3.0 34 2.0 ± 2.0 

Starch 76 66 ± 6.9 58 28 ± 25 44 10 ± 16 34 10 ± 12 

Raffinose 54 0.3 ± 0.2 16 0.8 ± 0.8 31 1.0 ± 1.2 6 0.2 ± 0.2 

Stachyose 21 0.2 ± 0.1 15 0.3 ± 0.2 41 1.4 ± 1.5 3 0.0 ± 0.0 

Verbascose 0 - 0 - 16 1.3 ± 1.4 0 - 

Fructans 136 1.2 ± 1.0 50 1.4 ± 1.1 10 1.0 ± 1.4 21 0.4 ± 0.3 

β-glucan 129 1.6 ± 1.3 25 1.9 ± 1.6 - - - - 

T-NCP 160 10.8 ± 3.2 49 27.5 ± 10.9 42 14.8 ± 7.1 27 35.1 ± 11.0 

I-NCP 160 7.4 ± 2.0 51 23.7 ± 9.6 42 10.2 ± 6.6 34 14.2 ± 4.3 

Cellulose 168 2.0 ± 1.1 54 7.8 ± 5.8 37 6.1 ± 2.6 34 27.3 ± 12.2 

T-NSP 164 12.7 ± 3.6 57 31.8 ± 16.0 43 18.4 ± 7.6 34 60.4 ± 16.4 

I-NSP 168 9.1 ± 3.0 58 29.2 ± 16.7 44 15.8 ± 8.1 34 41.5 ± 13.4 

Lignin 163 2.1 ± 1.8 52 7.2 ± 4.0 33 7.1 ± 5.1 32 4.3 ± 3.8 

DF 166 15.4 ± 4.4 57 39.6 ± 19.8 44 28.7 ± 9.0 34 67.6 ± 15.4 
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which have the highest concentration in cereals and cereal co-products. The number of OS 

values in the dataset varied because the quantity of some OS in some feedstuffs was below the 

quantification limit. For instance, verbascose was only found in significant amounts in peas and 

soybean meal, stachyose was virtually absent in triticale samples and in several wheat, maize and 

barley samples, and fructans were negligible in most of the protein-rich feedstuffs. Non-starch 

polysaccharides (NSP) are a class of non-digestible polysaccharides found mostly in plant cell 

walls. It is made up of the soluble and insoluble portions of non-cellulosic polysaccharides 

(NCP) as well as cellulose. Because it is a calculated fraction generated by subtracting the 

insoluble content from the total content, the soluble fraction is not presented. The highest 

concentration of NSP was found in fibre-rich feedstuffs due to the greater content of NCP and, 

in particular, the high content of cellulose (up to four times higher than in the other groups). 

High levels of NSP and its constituents were also found in bran and hull fractions of the cereal 

co-products. Protein-rich feedstuffs had nearly the same cellulose content as cereal co-products, 

but far fewer NCP residues. Cereals had the lowest concentrations of NSP, NCP residues, and 

cellulose. The β-glucan content of cereals and cereal co-products was similar. Because β-glucan 

is not found in protein and fibre-rich feedstuffs, they were not tested for it. Each set of 

feedstuffs had various levels and proportions of the NCP residues (Table 2).  

 

Table 2. Non-cellulosic polysaccharides (NCP) residues by group of feedstuffs. Number of samples (𝑁), mean 
and standard deviation (𝑆𝐷). 

  

 

For cereal and cereal co-products arabinoxylans represented 70% of the total NCP with an 

arabinose/xylose ratio of 0.60 and glucose was the third most abundant NCP, largely 

represented as β-glucan. Protein- and fibre-rich feedstuffs, had lower levels of glucose and 

 

Cereals 
Cereal  
co-products 

Protein-rich feeds Fibre-rich feeds 

𝑁 

Mean±SD 
(g/100g, as 

fed) 
𝑁 

Mean±SD 
(g/100g, as 

fed) 
𝑁 

Mean±SD 
(g/100g, as fed) 

𝑁 

Mean±SD 
(g/100g, as 

fed) 

Arabinose 
Total 165 2.8 ± 0.7 58 7.0 ± 3.8 44 2.9 ± 1.5 34 8.4 ± 7.2 

Insoluble 159 2.0 ± 0.5 48 6.7 ± 2.5 42 1.9 ± 1.1 34 4.1 ± 4.3 

Xylose 
Total 168 4.5 ± 1.3 58 12.7 ± 6.4 44 2.3 ± 0.4 34 4.0 ± 3.2 

Insoluble 159 3.5 ± 1.1 52 12.3 ± 5.7 42 1.9 ± 1.7 34 3.7 ± 3.0 

Mannose 
Total 164 0.4 ± 0.1 55 0.5 ± 0.2 38 0.8 ± 0.4 34 0.8 ± 0.4 

Insoluble 146 0.3 ± 0.1 46 0.4 ± 0.2 36 0.5 ± 0.3 33 0.5 ± 0.3 

Galactose 
Total 168 0.4 ± 0.1 57 0.9 ± 0.4 44 2.0 ± 1.4 25 3.0 ± 1.9 

Insoluble 146 0.2 ± 0.1 48 0.8 ± 0.3 42 1.2 ± 0.8 34 1.8 ± 1.1 

Glucose 
Total 168 2.4 ± 1.8 58 3.5 ± 2.0 44 1.5 ± 1.9 34 1.5 ± 0.4 

Insoluble 159 1.3 ± 0.7 52 2.8 ± 1.8 34 1.4 ± 2.0 28 1.1 ± 3.2 

Rhamnose 
Total 113 0.0 ± 0.0 48 0.1 ± 0.0 43 0.2 ± 0.1 34 0.8 ± 0.3 

Insoluble 100 0.0 ± 0.0 38 0.0 ± 0.0 31 0.2 ± 0.1 33 0.3 ± 0.1 

Uronic acids 
Total 168 0.3 ± 0.1 58 1.4 ± 1.2 44 3.7 ± 1.9 34 12.8 ± 4.2 

Insoluble 159 0.2 ± 0.1 51 1.2 ± 1.0 42 2.0 ± 1.3 34 3.0 ± 0.7 
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xylose residues. Mannose, galactose (<1 g/100g, as fed) and rhamnose (<0.1 g/100g, as fed) 

concentrations were very low in cereal and cereal co-products. Uronic acids were also present 

in low concentrations in cereals although they were higher in cereal co-products as part of the 

arabinoxylans complex in brans and hulls. In protein- and fibre-rich feedstuffs, uronic acids are 

the most abundant NCP and the NCP residue marker for pectin polysaccharides. The solubility 

of NCP was high only in fibre-rich feedstuffs (>50%), whereas insoluble NCP predominated 

(70% of the total) in cereals and protein-rich feedstuffs. The solubility of NCP in cereal co-

products was even lower (<15%). Arabinose and rhamnose, being part of pectin 

polysaccharides, were much more soluble in fibre-rich feedstuffs, whereas xylose and glucose, 

markers for arabinoxylans and β-glucan respectively, were relatively more soluble in the cereals 

group. Lignin is a phenolic polymer, not a carbohydrate. However, it is linked to cellulose and 

NCP and affects the physicochemical properties and degradation of polysaccharides in the 

gastrointestinal tract [1]. Therefore, it is included in the calculation of the dietary fibre fractions. 

For some groups (e.g., protein-rich feedstuffs) the contribution of lignin and OS was 

considerable, reducing the contribution of NSP to the non-digestible fraction whereas for other 

groups (e.g., fibre-rich feedstuffs) NSP accounted for most of DF by far. 

 

Near-infrared analysis 

 

The raw mean Vis-NIR spectrum for each of the four groups of feedstuffs is shown in Figure 

2. Despite the offset, significant differences were found in the visible region (400-800 nm) and 

in some NIR regions of the spectrum. Ground samples of cereals and cereal co-products were 

light in colour and barely absorbed in the visible region, whereas ground samples of protein-

rich feedstuffs such as soy bean meal, rapeseed, or sunflower and fibre-rich feedstuffs such as 

sugar beet pulp or alfalfa were darker, orange or brown. In the NIR region, some spectral bands 

are linked to specific structures according to Osborne and Fearn (1988) [32]. As expected, 

protein-rich feedstuffs exhibited higher intensity in protein-related regions such as the N-H 

stretching first overtone (1510 nm) and the three prominent peaks of protein in the NH 

combination region at 1980, 2050, and 2180 nm, corresponding to the asymmetrical stretching 

+ amide II, symmetrical stretching + amide II and 2 × amide I + amide III, respectively. Cereals 

and to a lesser extent cereal by-products and fibre-rich feedstuffs had well defined peaks in 

regions related to starch, such as the O-H stretching second overtone (990 nm), the O-H 

stretching first overtone (1440-1450 nm) and the combination band 2 × O-H deformation + 2 

× C-O stretching (2100 nm). Fibre-rich feedstuffs showed some peaks related with cellulose 
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more clearly than the rest of feedstuff groups, such as the peak that encompasses the C-H 

stretching first overtone (1780 nm) and the combination band O-H stretching + 2 × C-O 

stretching (1820 nm) and the peak that encompasses the combination band C-H stretching + 

C-H deformation (2336 nm) and the C-H deformation second overtone (2352 nm). 

 

 

Figure 2. Mean raw spectrum of the samples grouped by type of feedstuff with band assignment for starch, protein 
and cellulose.  

 

The variability of the samples can be observed in the PCA scores (Figure 3) for spectra 

preprocessed with the first derivative (second-order polynomial and window width of 15 points) 

and mean centring. The cereals formed a relatively homogeneous group whereas the other 

feedstuffs exhibited more variability. Many protein-rich feedstuffs, some fibre-rich feedstuffs 

and cereal co-products were far from the cereals and some of these were detected as outliers 

when developing the models. These are very heterogeneous groups with feedstuffs containing 

different DF and protein composition. The inclusion of all the groups of samples in the model 

was studied separately for each constituent and will be discussed for each calibration. 

 

The selection of the spectral pretreatment, the number of latent variables and the removal of 

outliers were performed simultaneously. Pretreatment of the spectra using derivatives and mean 
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centring significantly improved all models. There were only minor differences in the root mean 

square error of cross-validation (RMSECV) when utilizing the first or the second derivative, as 

well as when using SNV and MSC or none of them. The selected pretreatment is specified in 

the model performance tables (Tables 3 and 4).   

 

 

Figure 3. Score plot of the PCA model showing the four groups of feedstuffs. 

 

For most of the modelled constituents, a considerably large number of latent variables (ranging 

from 10 to 16) was necessary to accommodate all the sources of variability. This was expected 

considering the wide variety of feedstuffs in the dataset.  

 

In the datasets, there were some uncommon feedstuffs for which only one or very few examples 

were available (e.g. palm cake or red clover). Detailed information of the samples is provided in 

the Supplementary material (Tables S2-9). When these uncommon feedstuffs were included in 

the calibration set they were often flagged as spectral outliers. This is exemplified in Figure 4 

that shows the spectral outliers (Hotelling’s 𝑇2 reduced > 3, 𝑄 residuals reduced > 3) found for 

the NSP calibration. Some protein-rich feedstuffs (palm cake, red clover (2)), fibre-rich 

feedstuffs (potato pulp and sugar beet pulp (2)) and cereal co-products (maize gluten) were 
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identified as outliers. When these unusual samples were in the validation set, they were predicted 

with large errors. In addition to the spectral outliers, some outlying reference values were also 

found when the models were developed. Both spectral and reference outliers were removed 

since we were unable to re-measure these reference values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Q-residuals reduced versus Hotelling’s 𝑇2 reduced for total non-starch polysaccharide content (T-NSP) 
calibration. Calibration samples (blue) and calibration spectral outliers (red). 

 

The performance of the NIR models predicting carbohydrates is shown in Table 3. For sugars, 

fibre-rich feedstuffs and the sample of coconut cake with a very high total sugar content were 

not included. The samples used in the final calibrations are shown in Table S2. The predictions 

obtained with the developed model for sugars were good (𝑅p
2=0.91, 𝐶𝑉𝑝=23%). Starch 

calibration was developed mostly using cereal and cereal co-products groups, although peas, pea 

hulls and potato pulp samples were also included (Table S3). The model was developed with 

starch concentrations ranging from 5% to 90%. The variation from potato pulp and peas 

samples helped stabilize the model, improving the predictions that are shown in Table 3 

(𝑅p
2=0.98, 𝐶𝑉𝑝=7) by adding samples with concentrations ranging from 20 to 30 g/100g, as fed 

Rye Grass 

Palm Cake 

Red Clover 

Sugar Beet Pulp 

Red Clover 

Sugar Beet Pulp 

Maize Gluten 

Potato Pulp 
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and 40 to 50 g/100g, as fed respectively. The accuracy of this calibration is illustrated in Figure 

5.A where the reference values for starch are plotted against the predicted values.  

Regarding OS, α-galactosides (raffinose, stachyose and verbascose) were predicted using 

protein-rich feedstuffs while fructans were predicted using cereals and cereal co-products. The 

samples used in the final calibrations are shown in Table S4 (raffinose), Table S5 (stachyose), 

Table S6 (verbascose) and Table S7 (fructans). Due to the low number of reference values for 

α-galactosides, leave-one-out cross-validation (LOOCV) rather than a separate test set was used 

when evaluating the models. As expected, and as shown in Table 3, the calibration for 

verbascose with only 16 samples was unacceptable (𝑅cv
2 =0.71, 𝐶𝑉𝑐𝑣=50%). The calibration 

models for raffinose and stachyose performed very well (𝑅c
2>0.98 and low RMSEC values) but 

the cross-validation results (𝑅cv
2 <0.90 and high RMSECV) suggests that these calibrations were 

not robust enough and that more samples would be needed to account for the sources of 

variability in the different feedstuffs. As it can be observed in Table 3, the measured values for 

raffinose and stachyose had standard deviations that are quite similar to their mean values. 

Fructans were predicted with a low RMSEP and a high 𝑅p
2. As shown in Figure 5.B two groups 

of samples can be distinguished: all cereals have less than 2 g/100g, as fed of fructans with the 

exception of rye samples which are grouped on the right-hand side of the plot.  

 

Table 3. Statistics of the calibration models developed for the carbohydrate fraction. Dataset for sugars included 
cereals, cereal co-products and protein-rich feedstuffs. Dataset for starch contained cereals, cereal co-products, 
peas, pea hull and potato pulp samples. The dataset for α-galactosides (raffinose, stachyose, verbascose) included 
only protein-rich feedstuffs. Fructans and β-glucan dataset included cereals and cereal by-products. The rest of 
calibrations were developed with the entire dataset. Number of samples used for calibration (𝑁𝑐) and validation 
(𝑁𝑣), mean, standard deviation (𝑆𝐷) and range of calibration, pretreatment used (Pret.), number of latent variables 
(𝐿𝑉), coefficient of determination of calibration (𝑅c

2) and prediction (𝑅p
2), root mean square error of calibration 

(RMSEC) and prediction (RMSEP) and variation coefficient of prediction (𝐶𝑉𝑝). 

 

 
*These values are not obtained from a test set but by leave-one-out cross-validation (LOOCV). 

 𝑁𝑐 𝑁𝑣 

Mean±𝑆𝐷 
(g/100g, as 

fed) 

Range 
(g/100g, 
as fed) 

Pret. 𝐿𝑉 𝑅c
2 

RMSEC 
(g/100g, 
as fed) 

𝑅p
2 

RMSEP 
(g/100g, 
as fed) 

𝐶𝑉𝑝  

(%) 

Sugars 135 49 2.7±2.1 0.5-8.9 1d 11 0.96 0.37 0.91 0.62 23 

Starch 109 41 46±2.5 5.3-92 MSC 1d 16 1.00 1.61 0.98 3.03 7 

Raffinose 31 - 1.0±1.2 0.2-5.4 2d 10 0.98 0.17 0.82* 0.46* 46* 

Stachyose 41 - 1.4±1.5 0.0-5.0 SNV 2d 11 1.00 0.07 0.90* 0.48* 34* 

Verbascose 16 - 1.3±1.4 0.0-4.2 MSC 2d 2 0.80 0.59 0.71* 0.72* 55* 

Fructose 89 34 1.3±0.9 0.0-3.5 1d 13 0.98 0.15 0.94 0.23 18 

β-glucan 108 37 1.6±1.4 0.0-5.3 MSC 1d 16 0.98 0.2 0.92 0.4 25 

T-NCP 184 64 17±11 1-51 SNV 2d 16 0.99 0.95 0.96 2.3 14 

I-NCP 186 69 12±8 0.1-36 SNV 1d 16 0.98 1.1 0.94 2.3 19 

Cell 201 74 6.6±9.2 0.0-53 SNV 1d 15 0.99 0.80 0.99 1.0 15 

T-NSP 194 75 23±18 5.6-85 SNV 1d 16 0.99 1.9 0.96 3.9 17 

I-NSP 204 75 18±15 0.4-73 SNV 1d 16 0.99 1.4 0.97 2.7 15 

Lignin 189 74 3.8±3.8 0.1-15 2d 10 0.95 0.73 0.93 1.1 29 

DF 201 74 28±20 4.2-87 SNV 2d 12 0.98 2.81 0.92 6.00 21 
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To develop the NIR calibrations for DF, lignin, total and insoluble NSP, cellulose, total and 

insoluble NCP and all the individual NCP residues both total and insoluble, the entire dataset 

was used (See Table S8 for a detailed description). The predictions for total NCP (𝑅p
2=0.91, 

𝐶𝑉𝑝=15%) and insoluble NCP (𝑅p
2=0.94, 𝐶𝑉𝑝=17%) were satisfactory (Table 3, Figure 5.C). 

The calibrations for total NCP residues were generally slightly better than those for insoluble 

contents as shown in Table 4.  

 

Table 4. Statistics of the calibration models developed for the non-cellulosic polysaccharides (NCP) residues. All 

the calibrations were developed with the entire dataset. Number of samples used for calibration (𝑁𝑐𝑎𝑙) and 

validation (𝑁𝑣𝑎𝑙), mean, standard deviation (𝑆𝐷) and range of calibration, pretreatment used, number of latent 

variables (𝐿𝑉), coefficient of determination of calibration (𝑅c
2) and prediction (𝑅p

2), root mean square error of 

calibration (RMSEC) and prediction (RMSEP) and variation coefficient of prediction (𝐶𝑉𝑝). 
 

 

The 𝑅p
2 values of the models for insoluble contents were similar to those of total contents in 

most of the cases but the 𝐶𝑉𝑝 was lower for the total contents. Although the structural features 

of water extractable NCP residues are very similar to those of the non-extractable residues, they 

are not the same [5]. The most important NCP residues of cereals and cereal co-products 

(arabinose and xylose) and of protein and fibre-rich feedstuffs (uronic acids) were predicted well 

with high coefficients of determination (𝑅p
2>0.95) and relatively low prediction errors 

(𝐶𝑉𝑝<30%) considering the complexity of the reference analyses for these constituents, which 

usually involves significant analytical errors [25]. However, for glucose, another important NCP 

residue, the prediction was not accurate and large differences were found between the models 

for total (𝑅p
2=0.81, 𝐶𝑉𝑝=36%) and insoluble fraction (𝑅p

2=0.62, 𝐶𝑉𝑝=51%). The reason could 

be that NCP glucose is representing different polysaccharides in protein- and fibre-rich 

feedstuffs. Nevertheless, calibration models based solely on cereals, where glucose primarily 

represents β-glucan, did not significantly improve. The models for galactose performed well, 

 𝑁𝑐 𝑁𝑣 

Mean±𝑆𝐷 
(g/100g, as 

fed) 

Range 
(g/100g, 
as fed) 

Pret. 𝐿𝑉 𝑅c
2 

RMSEC 
(g/100g, 
as fed) 

𝑅p
2 

RMSEP 
(g/100g, 
as fed) 

𝐶𝑉𝑝  

(%) 

Arabinose 
T 204 75 4.2±3.7 0.1-21 SNV 2d 13 0.98 0.47 0.95 0.93 22 

I 190 72 3.1±2.6 0.3-14 2d 13 0.99 0.48 0.96 1.00 32 

Xylose 
T 204 79 5.7±4.7 0.1-21 2d 16 0.99 0.51 0.95 1.2 21 

I 195 77 4.9±4.5 0.1-21 2d 16 0.99 0.48 0.96 1.53 31 

Mannose 
T 198 75 0.5±0.3 0.2-1.6 2d 16 0.93 0.06 0.75 0.15 30 

I 177 64 0.3±0.2 0.1-1.0 MSC 1d 11 0.80 0.07 0.77 0.09 30 

Galactose 
T 192 72 1.0±1.1 0.1-5.9 MSC 1d 11 0.99 0.11 0.95 0.26 26 

I 182 66 0.7±0.8 0.0-3.5 SNV 2d 12 0.96 0.12 0.90 0.22 31 

Glucose 
T 201 71 2.4±1.9 0.3-11 MSC 2d 15 0.86 0.63 0.81 0.87 36 

I 186 68 1.5±4.7 0.0-11 1d 12 0.79 0.51 0.62 0.77 51 

Rhamose 
T 159 49 0.2±0.3 0.0-1.3 SNV 1d 15 0.99 0.03 0.94 0.05 25 

I 135 44 0.1±0.1 0.0-0.6 SNV 2d 11 0.97 0.02 0.93 0.04 40 

Uronic 
acids 

T 202 68 2.4±4.2 0.1-20 MSC 2d 15 1.00 0.20 0.98 0.57 24 

I 191 68 1.0±1.2 0.0-5.2 MSC 2d 14 0.99 0.10 0.95 0.27 27 
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especially for the total content (𝑅p
2=0.95, 𝐶𝑉𝑝=26%). Contrary to this, the model for mannose 

had a poor coefficient of determination (𝑅p
2≈0.75) and larger errors (𝐶𝑉𝑝=30%) and the 

rhamnose model had a 𝑅p
2>0.90 but a large error for the insoluble fraction (𝐶𝑉𝑝=40%). NIRS 

appears to be not sensitive enough for modelling mannose and insoluble rhamnose contents, 

which are found at very low concentrations (mean<0.5 g/100g, as fed). Models were also 

developed to predict the soluble fraction of NCP (not shown in the table) but their performance 

was notably worse (𝑅p
2<0.80 and 𝐶𝑉𝑝>30% of the mean) for most of the NCP residues. The 

generally higher prediction error for the soluble components was influenced by the aggregation 

of analytical errors deriving from total and insoluble components. Only the calibration for 

uronic acids content (the most abundant soluble component) exhibited a good coefficient of 

determination (𝑅p
2=0.95) although the RMSEP was high (𝐶𝑉𝑝=42%). As previously mentioned, 

β-glucan models were derived from only cereals and cereal co-products. The samples used in 

the final calibration for β-glucan are detailed in Table S9. In terms of quality, the prediction of 

β-glucan (𝑅p
2=0.92, 𝐶𝑉𝑝=25%) was comparable to total and insoluble NCP residues.  A separate 

calibration for the cluster of samples with contents between 0 and 1 % (wheat, maize, triticale, 

maize flour and maize gluten) (Figure 5.D) was tested, but these models did not outperform the 

calibration created with all the samples. Cellulose (𝑅p
2=0.99, 𝐶𝑉𝑝=15%) (Figure 5.E), total NSP 

(𝑅p
2=0.96, 𝐶𝑉𝑝=17%), insoluble NSP (𝑅p

2=0.97, 𝐶𝑉𝑝=15%) and lignin (𝑅p
2=0.93, 𝐶𝑉𝑝=29%) 

were well predicted. Like for T-NSP, DF calibration was obtained with a wide range of reference 

values and had high coefficients of determination (𝑅p
2>0.90) shown in Figure 5.F. However, the 

𝐶𝑉𝑝 for DF was slightly higher than the one for NSP (21% vs. 15%), which could be expected 

since DF, unlike NSP, is not a parameter determined directly by chemical analysis.  
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Figure 5. Predicted vs measured values for selected calibrations developed for carbohydrates: A) Starch, B) 
Fructans, C) Total non-cellulosic polysaccharides, D) β-glucan, E) Cellulose and F) Dietary fibre.  

 

Discussion 

 

The feed industry requires prompt and precise methods to determine the nutritional value of 

feed ingredients for creating optimal diet formulations. It is essential to lower expenses by 

avoiding excessive use of costly ingredients and to maintain high standards for the prepared 

diets. Presently, diets are designed using table values for chemical composition of the individual 

feedstuffs. Nonetheless, the entire carbohydrate fraction does not appear in these tables. Most 

tables, only refer to starch and to the traditional measurements of fibre (crude fibre (CF), neutral 

detergent fibre (NDF) or acid detergent fibre (ADF)). However, these parameters are not 

enough to understand the fibre fraction. The CF values do not represent the true fibre levels in 
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feedstuffs and both NDF and ADF fail to account for most, or almost all, soluble NSP in the 

feed. Moreover, is not totally clear what these fractions represents and hence relevance of these 

values for monogastric animal nutrition is called into question [33]. Examining the individual 

sugars, lignin and solubility of structural carbohydrates provides a more comprehensive insight 

into the dietary fibre makeup of feedstuffs. Unfortunately, the analysis methods to characterize 

the fibre fraction in this way are quite laborious, and expensive and, as a result, very few data 

are available in the literature [2]. In addition, as it has been shown CHO and lignin may be highly 

variable between and within different feedstuffs, hence it is not recommended to assume that 

an individual batch of feedstuff will have the same fibre profile as another.  

 

For the current study, we have analysed sugars, starch, RS, OS (raffinose, stachyose, verbascose 

and fructans), cellulose, β-glucan, NSP, NCP residues, lignin and DF of around 300 samples 

from common and no so-common feedstuffs used to formulate monogastric diets. The 

distribution of these carbohydrates and lignin in the groups of feedstuffs studied (cereals, cereal 

co-products, protein-rich feedstuffs and fibre-rich feedstuffs) were in agreement with previous 

works [34-37]. 

 

Focusing on the NIR calibrations developed in this work, prior research revealed the capacity 

to predict certain CHO in feed components although our database contained more feedstuffs 

and with greater variation than the vast majority of them. Our results for sugars and starch were 

similar to those obtained by Losada et al. 2009 [38] who used a dataset that included different 

cereal and cereal co-products. As far as we know no NIR calibrations for fructans have been 

reported and only Hollung et al. 2005 [39] predicted α-galactosides in soybean meal where only 

raffinose showing a good correlation between the reference and the predicted values. Gomes et 

al. 2020 [17] divided a large dataset into cereals, protein- and fibre-rich feedstuffs and developed 

accurate, specific calibrations (𝑅cv
2 >0.86) for most of the total and insoluble NCP residues. 

Nieto-Ortega et al. 2022 [11] used a dataset that contained cereals and cereal co-products and 

accurately predicted (𝑅cv
2 >0.90 and 𝐶𝑉𝑐𝑣<25%) starch and most of the total and insoluble NCP 

residues, cellulose and NSP. Like in our investigation, they obtained the worst results for 

mannose (𝑅cv
2 =0.54, 𝐶𝑉𝑐𝑣>100). Blakeney and Flinn 2005 [16] employed a cereals sample set 

and predicted cellulose, β-glucan, arabinose, xylose, glucose and total, insoluble and soluble 

fractions of NSP. Like in our research, the models for the soluble NSP fraction were much 

worse (𝑅cv
2 <0.70, 𝐶𝑉𝑐𝑣>30) than for the total and insoluble fractions (𝑅cv

2 >0.80, 𝐶𝑉𝑐𝑣<25). In 

general, the performance of our calibration models was similar to those published by Gomes et 
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al. 2020 [17] and Nieto-Ortega 2022 [11] for all NCP residues except for glucose but better than 

those reported by Blakeney and Flinn (2005) [16]. In none of these works, they developed 

models for rhamnose, uronic acids or NCP as the sum of all residues, which to the best of our 

knowledge they are for the first time described in this work. Archibald and Kays (2000) [40] 

predicted DF well in cereals for human consumption although the parameter might not be 

considered the same since the reference method used for the analysis was different and they did 

not account for OS and RS content in the DF calculation. For the moment, there are no 

calibrations reported for DF in feedstuffs used in monogastric animal diets.  

 

The use of NIRS can help the community to access information about the CHO and lignin 

content of feedstuffs in a much cheaper and faster way than chemical analysis. This can lead to 

a deeper understanding of the fibre fraction enabling a better formulation of monogastric diets 

and the development of nutritional strategies such as the use of carbohydrases, which can 

stimulate fibre fermentation by microbiota, resulting in a positive impact on host metabolism.  

 

Conclusions 

 

NIR calibration models proved to be useful to predict the CHO that are digested by 

monogastric animals (sugars and starch) and most of those which are part of dietary fibre from 

a variety of feedstuffs used in animal feeding. We predicted accurately DF, lignin, T-NSP, I-

NSP, cellulose, T-NCP, I-NCP, β-glucan, fructans and the total and insoluble content of the 

NCP residues: arabinose, xylose, galactose, rhamnose and uronic acids. The models for 

mannose, glucose, especially insoluble glucose and α-galactosides, especially verbascose were 

not good enough to consider them for routine analysis. Even though not all the feedstuffs were 

included in all prediction models (e.g. α-galactosides calibrations contained only protein-rich 

feedstuffs and fructans contained only cereals) the calibrations were developed for the feedstuffs 

for which the specific carbohydrates are important. The excluded samples were, in most cases, 

unusual feeds or feeds with very low carbohydrate content whose values are not strictly 

necessary to know when formulating diets. Even so, it would be convenient to expand the 

dataset especially with more protein- and fibre-rich samples to improve some calibrations or to 

develop specific calibrations for each group of feedstuffs. This may be investigated in the future 

when new relevant samples become available. 
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Supplementary material 

 

The supplementary material contains the results of the determination of the principal 

constituents (dry matter, crude protein, fat, crude fibre and ash) for each one of the four groups 

of samples in which the feedstuffs were classified in the current research: cereals, cereal co-

products, protein-rich feedstuffs and fibre-rich feedstuffs. It also contains detailed information 

on the samples used to develop and validate the calibrations for carbohydrates: starch, sugars, 

raffinose, stachyose, verbascose, fructans, DF, lignin, T-NSP, I-NSP, T-NCP, I-NCP, cellulose, 

β-glucan, total and insoluble arabinose, xylose, glucose, mannose, galactose, rhamnose and 

uronic acids.  

 

Table S1. Results (mean, standard deviation (SD) and range) of the determination of the principal constituents 
(dry matter (DM), crude protein (CP), fat, crude fibre (CF) and ash) per group of samples (cereals, cereal co-
products, protein-rich feedstuffs and fibre-rich feedstuffs) obtained by wet chemistry analytical methods.    

 

Table S2. Type and number of feedstuff samples used to develop the NIR calibration models for sugars. 

Sample type Group Number of samples 

Barley Cereal 23 
Barley husk Cereal co-products 1 
Cottonseed cake Protein-rich feedstuffs 2 
Faba beans Protein-rich feedstuffs 1 
Flax seed cake Protein-rich feedstuffs 1 
Maize Cereal 3 
Maize bran Cereal co-products 1 
Maize flour Cereal co-products 3 
Maize gluten feed Cereal co-products 2 
Oat Cereal 1 
Oat hulls Cereal co-products 1 
Oat meal Cereal co-products 1 
Palm cake Protein-rich feedstuffs 1 
Peas Protein-rich feedstuffs 6 
Rapeseed cake Protein-rich feedstuffs 1 
Rapeseed meal Protein-rich feedstuffs 8 
Red clover Protein-rich feedstuffs 2 
Rye Cereal 33 
Rye bran Cereal co-products 10 
Rye grass Protein-rich feedstuffs 2 
Rye meal Cereal co-products 1 

 
Cereals Cereal co-products Protein-rich feedstuffs Fibre-rich feedstuffs 

Mean SD Range Mean SD Range Mean SD Range Mean SD Range 

DM 
(%) 

87.0 1.5 
83.8-
90.7 

92.1 3.2 
85.8-
98.4 

92.5 3.2 
86.5-
99.4 

92.6 2.3 
87.5-
97.9 

CP 
(%) 

12.1 2.1 
7.4-
16.0 

18.7 5.0 
6.7-
25.3 

36.0 10.6 
17.8-
65.8 

9.5 3.1 
5.1-
18.4 

Fat 
(%) 

3.2 1.0 
1.4-
6.3 

7.5 3.8 
1.8-
12.5 

5.6 3.7 
0.4-
15.6 

1.9 1.0 
0.1-
4.4 

CF 
(%) 

4.0 2.3 
0.3-
11.8 

10.8 6.7 
1.0-
23.4 

11.6 5.5 
3.6-
30.2 

28.7 11.7 
19.3-
55.0 

Ash 
(%) 

2.0 0.7 
0.5-
3.5 

4.8 1.9 
0.4-
11.4 

8.5 6.6 
2.9-
30.5 

4.4 2.0 
2.8-
11.5 
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Soybean meal Protein-rich feedstuffs 6 
Sunflower seed cake Protein-rich feedstuffs 1 
Sunflower seed meal Protein-rich feedstuffs 2 
Triticale Cereal 31 
Wheat Cereal 43 
Wheat aleurone Cereal co-products 1 
Wheat bran Cereal co-products                                              16 
Wheat husk Cereal co-products 1 

 

Table S3. Type and number of feedstuff samples used to develop the NIR calibration models for starch. 

Sample type Group Number of samples 

Barley Cereal 13 
Barley husk Cereal co-products 1 
Brewers spent grain Cereal co-products 7 
Maize Cereal 3 
Maize bran Cereal co-products 1 
Maize flour Cereal co-products 3 
Maize gluten feed Cereal co-products 3 
Oat Cereal 1 
Oat hulls Cereal co-products 1 
Oat meal Cereal co-products 1 
Peas Protein-rich feedstuffs 6 
Pea hull Fibre-rich feedstuffs 8 
Potato pulp Fibre-rich feedstuffs 9 
Rice Cereal 1 
Rice meal Cereal co-products 1 
Rye Cereal 13 
Rye bran Cereal co-products 10 
Rye meal Cereal co-products 1 
Sorghum Cereal 1 
Triticale Cereal 12 
Wheat Cereal 24 
Wheat bran Cereal co-products                                              16 
Wheat husk Cereal co-products 1 

 

Table S4. Type and number of feedstuff samples used to develop the NIR calibration models for raffinose. 

Sample type Group Number of samples 

Coconut cake Protein-rich feedstuffs 1 
Cottonseed cake Protein-rich feedstuffs 3 
Faba beans Protein-rich feedstuffs 1 
Flax seed cake Protein-rich feedstuffs 1 
Palm cake Protein-rich feedstuffs 1 
Peas Protein-rich feedstuffs 6 
Rapeseed meal Protein-rich feedstuffs 8 
Soybean meal Protein-rich feedstuffs 6 
Sunflower seed cake Protein-rich feedstuffs 1 
Sunflower seed meal Protein-rich feedstuffs 2 

 

Table S5. Type and number of feedstuff samples used to develop the NIR calibration models for stachyose. 

Sample type Group Number of samples 

Coconut cake Protein-rich feedstuffs 1 
Cottonseed cake Protein-rich feedstuffs 3 
Faba beans Protein-rich feedstuffs 1 
Flax seed cake Protein-rich feedstuffs 1 
Peas Protein-rich feedstuffs 6 
Rapeseed cake Protein-rich feedstuffs 1 
Rapeseed meal Protein-rich feedstuffs 8 
Red clover Protein-rich feedstuffs 4 
Rye grass Protein-rich feedstuffs 4 
Soybean meal Protein-rich feedstuffs 7 
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Sunflower seed cake Protein-rich feedstuffs 1 
Sunflower seed meal Protein-rich feedstuffs 2 
   

 

Table S6. Type and number of feedstuff samples used to develop the NIR calibration models for verbascose. 

Sample type Group Number of samples 

Cottonseed cake Protein-rich feedstuffs 2 
Faba beans Protein-rich feedstuffs 1 
Peas Protein-rich feedstuffs 6 
Rapeseed meal Protein-rich feedstuffs 2 
Soybean meal Protein-rich feedstuffs 5 

 

Table S7. Type and number of feedstuff samples used to develop the NIR calibration models for fructans. 

Sample type Group Number of samples 

Barley Cereal 21 
Barley husk Cereal co-products 1 
Maize Cereal 3 
Maize bran Cereal co-products 1 
Maize gluten feed Cereal co-products 1 
Oat Cereal 1 
Oat hulls Cereal co-products 1 
Rye Cereal 33 
Rye bran Cereal co-products 10 
Rye meal Cereal co-products 1 
Triticale Cereal 27 
Wheat Cereal 43 
Wheat aleurone Cereal co-products 1 
Wheat bran Cereal co-products                                              16 
Wheat husk Cereal co-products 1 

 

Table S8. Type and number of feedstuff samples used to develop the NIR calibration models for dietary fibre 

(DF), lignin, total non-starch polysaccharides (T-NSP), insoluble non-starch polysaccharides (I-NSP), cellulose, 

total non-cellulosic polysaccharides (T-NCP), insoluble non-cellulosic polysaccharides (I-NCP), total and insoluble 

arabinose, xylose, glucose, mannose, galactose, rhamnose and uronic acids. 

Sample type Group Number of samples 

Apple pomace Fibre-rich feedstuffs 1 
Barley Cereal 30 
Barley husk Cereal co-products 1 
Brewers spent grain Cereal co-products 10 
Coconut cake Protein-rich feedstuffs 1 
Cottonseed cake Protein-rich feedstuffs 3 
Faba beans Protein-rich feedstuffs 1 
Flax seed cake Protein-rich feedstuffs 1 
Grass meal Fibre-rich feedstuffs 2 
Lucerne Fibre-rich feedstuffs 3 
Maize Cereal 3 
Maize bran Cereal co-products 1 
Maize flour Cereal co-products 3 
Maize gluten feed Cereal co-products 3 
Oat Cereal 1 
Oat hulls Cereal co-products 1 
Oat meal Cereal co-products 1 
Palm cake Protein-rich feedstuffs 1 
Peas Protein-rich feedstuffs 6 
Pea hull Fibre-rich feedstuffs 10 
Potato pulp Fibre-rich feedstuffs 9 
Rapeseed cake Protein-rich feedstuffs 1 
Rapeseed meal Protein-rich feedstuffs 8 
Red clover Protein-rich feedstuffs 4 
Rice Cereal 1 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



97 

 

Rice meal Cereal co-products 1 
Rye Cereal 33 
Rye bran Cereal co-products 10 
Rye grass Protein-rich feedstuffs 4 
Rye meal Cereal co-products 1 
Sorghum Cereal 1 
Soybean meal Protein-rich feedstuffs 7 
Sugar beet pulp Fibre-rich feedstuffs 10 
Sunflower seed cake Protein-rich feedstuffs 1 
Sunflower seed meal Protein-rich feedstuffs 2 
Triticale Cereal 32 
Wheat Cereal 59 
Wheat aleurone Cereal co-products 1 
Wheat bran Cereal co-products                                              16 
Wheat husk Cereal co-products 1 

 

Table S9. Type and number of feedstuff samples used to develop the NIR calibration models for β-glucan. 

Sample type Group Number of samples 

Barley Cereal 19 
Barley husk Cereal co-products 1 
Maize Cereal 3 
Maize bran Cereal co-products 1 
Maize flour Cereal co-products 3 
Maize gluten feed Cereal co-products 3 
Oat Cereal 1 
Oat hulls Cereal co-products 1 
Oat meal Cereal co-products 1 
Rice Cereal 1 
Rice meal Cereal co-products 1 
Rye Cereal 31 
Rye bran Cereal co-products 3 
Rye meal Cereal co-products 1 
Sorghum Cereal 1 
Triticale Cereal 32 
Wheat Cereal 42 
Wheat aleurone Cereal co-products 1 
Wheat bran Cereal co-products 6 
Wheat husk Cereal co-products 1 
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3.3. Development of near-infrared calibration models for 
the nutrient content of poultry and swine compound feeds 
 

Abstract 

  

Animal feed manufacturers and their customers have a shared interest in checking the nutrient 

content of compound feeds. Near-infrared spectroscopy (NIRS) offers a more efficient and 

environmentally friendly alternative to traditional analytical methods. This study has found that 

commercial calibrations for determining crude protein, fat, crude fibre and ash in compound 

feeds may not be accurate enough (with RMSEP 6.4 g/kg, 5.7 g/kg, 7.9 g/kg and 11.8 g/kg, 

respectively) for a research institution needs and that calibrations must be developed in-house. 

Global calibrations were created from a calibration set that contained 1056 feed samples of 

broiler chickens, laying hens, broiler turkeys, pigs and sows, showing excellent performance in 

predicting crude protein, fat, and crude fibre (with RMSEP equal to 3.7 g/kg, 2.4 g/kg and 3.6 

g/kg, respectively). Gross energy and ash predictions had acceptable prediction errors (with 

RMSEP of 46 kcal/kg and 4.9 g/kg, respectively) comparable to the standard error of the 

laboratory (SEL=40 kcal/kg and SEL=5 g/kg, respectively) but they were slightly biased when 

compound feeds for single species were predicted due to lower variability in reference data and 

indirect relationships with NIR spectra. Phosphorus prediction was unsatisfactory (𝑅𝑝
2<0.50 and 

high RMSEP). Although specific calibrations were developed for broiler chickens and pigs, the 

global models were more widely applicable and are recommended.  

 

Introduction 

 

Both animal feed manufacturers and purchasers need to check the chemical composition of 

compound feeds. Compliant feed samples contribute to the health and correct development of 

the animals in their different stages of growth. On the contrary, noncompliant feeds can result 

in nutritional disorders, poor productive performance and increase the environmental impact 

of animal waste [1].  

 

Animal feed inspection has been based for decades on the proximate system of feed analysis by 

Weende, which consists of the analysis of dry matter (DM), crude protein (CP), fat, crude fibre 
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(CF) and ash [2]. With the determination of these and other constituents by near-infrared 

spectroscopy (NIRS), the use of time-consuming, expensive and polluting wet chemical 

analytical methods can be reduced to a minimum. With NIRS, these methods are only needed 

to acquire reference values for the development of NIR models, to periodically verify that the 

model is working as intended and to analyse atypical feed formulations that the models fail to 

predict [3].  

 

Compound feeds are spectrally complex due to the wide variety of ingredients and proportions 

in which they can be combined. To develop acceptable calibrations, it is necessary to use many 

samples with a variation of ingredients as large as possible [4]. Due to the difficulty in creating 

such large datasets, most feed producers or purchasers opt for using the calibration models 

provided by the NIR instrument manufacturers (e.g. FOSS) or specialized companies (e.g. 

Evonik) instead of developing their own. However, when the producers or purchasers have 

atypical ingredients and mixtures, which is very common in research institutions on animal 

nutrition, these calibrations do not always work well and must be updated with their own 

samples. Alternatively, the producer can opt for developing fresh in-house calibrations [5]. This 

latter is also the only choice for parameters that have traditionally received little attention but 

are gaining importance, such as phosphorus (P), gross energy (GE) or specific carbohydrates. 

 

In this work, the performance of commercial calibrations in a NIRS DS2500 (Foss NIR 

Systems, Denmark) for predicting CP, fat, ash and CF in compound feeds for broilers, pigs, 

sows, laying hens and turkeys is evaluated and compared with models developed in-house with 

own samples. For other less common parameters (GE, P) only the calibrations developed with 

in-house samples are presented. Finally, the global models are compared with the specific 

calibrations trained using one animal species.   

 

Materials and methods  

 

Samples 

 

The dataset contained compound feed samples produced from 2018 to 2021 at the Institute of 

Agrifood Research and Technology (IRTA), Constanti, Spain. The models were developed with 

the samples from 2018 to 2020 and validated with the samples of 2021. The calibration set 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



101 

 

contained 1056 samples of compound feeds for broilers (618), pigs (289), sows (58), laying hens 

(30) and turkeys (61). The validation set contained 443 samples of compound feeds for broilers 

(261), pigs (126), sows (27) and laying hens (29). The validation set did not contain turkey feeds 

since they were not produced in 2021 in this research institute. CP, fat, CF, ash and P were 

determined according to the AOAC, 2016 methods 925.09, 968.06, 978.10, 942.05 and 965.17 

respectively [6]. GE was determined by calorimetry using an adiabatic calorimeter (C2000, IKA, 

Staufen, Germany) according to the DIN 51900 (2005) norm. For the six parameters studied in 

this work the standard error of the laboratory (SEL) was 4 g/kg for CP, 3 g/kg for fat, 5 g/kg 

for CF, 5 g/kg for ash, 40 kcal/kg for GE and 0.4 g/kg for P The spectrum of approximately 

100 grams of sample was measured on a NIRS DS2500 (Foss NIR Systems, Denmark) with a 

10.2 cm diameter cup in reflectance mode from 800 to 2499.5 nm every 0.5 nm and averaging 

8 scans per sample. Not all analytical parameters were determined in all the samples because the 

compound feeds spanned four years of studies, each with a particular list of required analytical 

parameters. 

 

Commercial calibrations  

 

According to the information provided by the manufacturer of NIRS DS2500, the purchased 

calibrations consisted of artificial neural networks (ANN) models from a sample set of around 

2000 compound feeds corresponding to different animals including broiler chickens, pigs, sows, 

laying hens, broiler turkeys, cows and rabbits. There were two different calibrations for ash: one 

for compound feeds of laying hens whose ash content is usually higher (4.5-17.5 g/kg) and one 

for the rest whose ash content is lower (3-8.5 g/kg). 

 

Data analysis 

 

The spectra and the score plots of principal component analysis (PCA) were checked for sample 

distribution. Samples were labelled as spectral outliers and thus discarded when the leverage was 

too high (Hotelling’s 𝑇2reduced > 3) or the percentage of residual spectral variance of the 

sample was too high (𝑄 residuals reduced > 3). Partial least squares regression (PLSR) was used 

to develop the in-house calibration models for CP, fat, CF, ash, GE and P with the samples 

produced from 2018 to 2020. Common spectral pretreatments were tested including 

normalization, standard normal variate (SNV) [7] multiplicative scatter correction (MSC) [8] and 

1st and 2nd order derivatives using different window widths [9]. A five-fold venetian blind cross 
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validation was used to choose the optimal pretreatment and the optimal number of latent 

variables (LVs) for the models. Calibration samples were labelled as reference outliers when the 

difference between the predicted and the reference value was too high (|prediction error| > 

3×RMSEC of the model). PLS toolbox software (2016, Eigenvector Research, Inc., Manson, 

WA, USA) running in Matlab R2020a (The MathWorks Inc., Natick, MA, USA) was used to 

perform the chemometric calculations. The performance of the commercial and the in-house 

calibrations was compared using the test set that contained the broiler chicken, pig, sow, and 

laying hen compound feed samples collected during 2021. Additionally, validation was 

performed on compound feeds specific to each animal category by selectively extracting the 

respective samples from the test set. Because the sample set contained sufficient compound 

feeds for broilers and pigs, we studied whether the models developed for a single species could 

predict better than the global models that combined the compound feeds for broilers, pigs, 

sows, laying hens and turkeys. Three statistical tests were applied to check the validity of the 

predictions: a t-test on slope of the predicted versus reference regression line, a t-test on the 

bias of the predicted values and a F-test on standard error of prediction (SEP) according to ISO 

12099:2017 procedure, whose object is to guide the development and maintenance of NIR 

calibrations in the agri-food sector [5]. 

 

Results  

 

Figure 1 shows the distribution of the reference values for each parameter for each animal 

species. Compound feeds for turkeys contained more protein, followed by broilers and pigs. 

These three groups of compound feeds had also more fat and GE. Sow feeds were very rich in 

fibre and laying hen feeds in ash content. P was not determined in turkey feeds and was slightly 

higher in broiler and laying hen feeds than in pig and sow feeds. Growing animals (pigs, broiler 

chickens and turkeys) need more energy and protein to increase their body weight. Laying hens 

need large amounts of calcium for eggshell formation thus their feeds are rich in calcium 

carbonate, resulting in a higher ash content when the feed is analysed. Regarding fibre, several 

studies have shown that a high content of fibre in sow feed enhances the animal welfare by 

increasing satiety and improving reproductive efficiency [10].    
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Figure 1. Box and whisker plot of the measured parameters of the five groups of compound feeds: broiler chickens, 
pigs, sows, laying hens and turkeys. 
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Figure 2.A shows the mean NIR spectra of the compound feeds of the five animal species. 

Spectra were all similar in shape and the intensity differences were mainly an offset. The 

pretreated spectra with SNV and the 1st derivative removed the offset, showing better the 

differences between compound feeds that cannot be observed from the raw spectra (Figure 

2.B). Since the NIR bands overlap to a large extent, it is difficult to find direct correlations 

between the spectra and the components of the compound feeds. Protein is correlated with C-

H and N-H bands. The first overtone at 1900 nm and the combination band at 2100 nm are 

overlapped with the O-H band. The second overtone around 1500 nm would be more easily 

assignable. The principal bands related to fat would be those for C-H, whose first overtone 

appears around 1700 nm, the second at 1200 nm and the combination bands around 2300 nm. 

Gross energy content correlates with fat content, so the C-H bands are also representative of 

this parameter. Ash and phosphorus can be determined through their association with organic 

components such as the phytate molecule in the case of phosphorus [11].  

 

PCA was applied after preprocessing the spectra with SNV followed by first derivative and 

mean centring. 34 of the 1499 samples were considered spectral outliers because they had high 

Hotelling’s 𝑇2 and/or high 𝑄 spectral residuals and were removed from subsequent discussions. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2. Mean NIR spectra of the compound feed samples for broiler chickens, pigs, sows, laying hens and broiler 
turkeys. A) Raw spectra. B) Spectra pretreated with standard normal variate (SNV) and the first derivative. 

 

PCA scores (Figure 3) show the variability within and between the groups of compound feeds 

by animal species. Broilers and pigs are heterogeneous groups and overlap, although pig feeds 

are located towards the top-right of the graph while broiler feeds are at the bottom-left. As 

A) 
B) 
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expected, due to similarity between species, turkeys appeared together with the broiler chickens. 

The absence of clear separation between groups indicates that a model that combines these 

three groups of samples could work well. Most of the compound feeds for sows and laying hens 

were located far from the centre of the graph, indicating that they present different sources of 

variability than the compound feeds for pigs, broilers and turkeys. Feed for laying hens and 

sows is not intended for the growth or fattening of the animal but for reproductive efficiency. 

As it was shown (Figure 1), their feed contains less CP, fat and GE than those of broiler 

chickens, turkeys or pigs, more ash in the case of laying hens and more fibre in the case of sows. 

However, the low number of samples from sows and laying hens did not allow us to develop 

specific models for them. Therefore, so far, the only way to predict parameters for sow and 

laying hens is to use the commercial models or to include sow feeds and laying hen feeds along 

with samples from the other three groups to develop global calibrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Score plot of the PCA model showing the five groups of compound feeds. 

 

Performance of commercial models  

 

The commercial models were used to predict CP, fat, CF and ash in the test set made of samples 

collected in 2021 (Table 1). The CP model had a prediction error for all the samples of the test 

set and for the samples divided by animal species (RMSEP<8 g/kg) that was lower than two 

times the SEL (4 g/kg), which is the common acceptance criterion [12], and the coefficients of 

determination were high (𝑅𝑝
2>0.80). However, the predictions were largely biased according to 
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the t-test on bias. Predictions of fat, in addition from being biased, were also skewed as the 

slope of the predicted versus measured regression lines show. The CF model did not present a 

significant bias but the coefficients of determination and the slope of the predicted versus 

measured regression lines were poor. Ash was not well predicted for any animal.   

 

Table 1. Performance of the commercial models for the test set. Number of predicted samples (𝑁), coefficient of 
determination of prediction (𝑅𝑝

2), root mean square error of prediction (RMSEP), bias and slope of the predicted 

vs measured regression line.  

 
Test set N 𝑅𝑝

2 RMSEP Bias Slope 

Protein (g/kg) 

All 433 0.92 6.4 -1.2 1.01 

Broiler 257 0.85 7.2 -1.3 1.02 

Pig 123 0.89 5.3 -1.5 0.99 

Sow 27 0.97 5.2 -3.8 1.03 

Laying hen 28 0.79 6.1 3.3 0.80 

Fat (g/kg) 

All 386 0.90 5.7 -3.5 0.79 

Broiler 228 0.86 6.5 -4.3 0.68 

Pig 111 0.65 4.9 -2.4 0.79 

Sow 19 0.90 2.1 -1.6 0.83 

Laying hen 29 0.97 4.3 -2.7 0.85 

Crude fibre (g/kg) 

All 122 0.46 7.9 0.3 0.79 

Broiler 12 0.47 6.8 0.7 0.77 

Pig 90 0.22 8.4 -0.5 0.66 

Sow 20 0.71 5.9 1.3 0.68 

Ash (g/kg) 

All 414 0.84 11.8 -6.1 0.63 

Broiler 246 0.18 7.0 -3.5 0.51 

Pigs 117 0.20 8.6 -4.2 0.50 

Sow 17 0.88 8.6 -8.5 1.00 

Laying hen 32 0.46 33.3 -31.6 0.48 

 

Performance of the global models 

 

Table 2 shows the descriptive and calibration statistics for the global models based on PLSR. 

Of the different preprocessing methods tested, SNV followed by the 1st derivative and mean 

centring performed the best for CP, fat, CF and ash, while MSC instead of SNV was preferred 

for phosphorus and the use of the 1st derivative without any scatter correction pretreatment was 

the best for gross energy. The optimal number of latent variables was high (14-16) for all the 

models, which indicates the high variability within the calibration set due to the inclusion of 

compound feeds for various animals (broilers, pigs, sows, hens and turkeys) and over three years 

(2018 to 2020). The statistics for calibration and cross-validation were very good with 

coefficients of determination ranging from 0.84 for phosphorus to 0.98 for CP and low 

RMSECV compared to the SEL of the determinations. Table 3 shows the prediction 

performance of the PLSR models for the 2021 samples. The global calibration predicted well 
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CP in the test set and in smaller test sets of specific animals (Figure 4.A). The prediction errors 

(RMSEP≈4g/kg) were similar to the SEL for CP (4 g/kg) and were close to the RMSEC and 

the RMSECV of the model (3.5 g/kg and 3.7 g/kg, respectively). Bias was negligible and the 

slope was comparable to 1 with a level of significance α=0.95 according to the t-tests mentioned 

previously. Prediction of fat was also successful (RMSEP<4g/kg, 𝑅𝑃
2>0.90, RMSEP<4 g/kg 

being SEL= 3g/kg) for all the groups of samples and all the statistical tests were passed except 

the one on slope when sow compound feeds were predicted (Figure 4.B). The CF global model 

showed good performance (𝑅𝑃
2≈0.80 and RMSEP≈3.5 g/kg being SEL=5 g/kg) and all the 

statistical tests were passed in the prediction of the entire dataset and in the prediction of pig 

feed separately (Figure 4.C). 

 

Table 2. Descriptive statistics and calibration statistics for the global models combining broiler chickens, pigs, 
sows, laying hens and turkeys, and the specific models for broilers and pigs. Number of samples to calibrate (𝑁𝐶), 
pretreatment used, in brackets the window width for the derivative, number of latent variables (𝐿𝑉), coefficient of 

determination of calibration (𝑅𝐶
2) and cross-validation (𝑅𝐶𝑉

2 ), root mean square error of calibration (RMSEC) and 
root mean square error of cross validation (RMSECV). 

 

 

CF was determined only in 12 broiler feeds and 20 sow feeds, and it was not determined in any 

laying hen feed. These few samples of broilers were accurately predicted (2.5 g/kg) but 

Model 𝑁𝐶 Pretreatment 𝐿𝑉 𝑅𝐶
2 RMSEC 𝑅𝐶𝑉

2  RMSECV 

Protein (g/kg) 

Global 1049 SNV 1d (15) 16 0.98 3.5 0.98 3.7 

Broiler 617 SNV 1d (15) 14 0.97 3.1 0.96 3.4 

Pig 287 SNV 1d (15) 16 0.97 2.9 0.96 3.6 

Fat (g/kg) 

Global 934 SNV 1d (15) 14 0.98 2.3 0.97 2.4 

Broiler 538 MSC 1d (15) 11 0.97 2.2 0.97 2.3 

Pig 268 MSC 1d (15) 13 0.98 1.9 0.97 2.3 

Crude fibre (g/kg) 

Global 360 SNV 1d (15) 16 0.92 3.3 0.88 3.9 

Broiler 109 MSC 1d (15) 14 0.87 2.0 0.69 3.1 

Pig 188 MSC 1d (15) 16 0.93 2.2 0.88 3.0 

Ash (g/kg) 

Global 993 SNV 1d (15) 16 0.93 5.7 0.90 6.1 

Broiler 573 SNV 1d (15) 16 0.95 2.2 0.94 2.6 

Pig 189 SNV 1d (15) 16 0.97 2.7 0.95 3.6 

Gross energy (kcal/kg) 

Global 641 1d (31) 16 0.92 33 0.90 36 

Broiler 341 1d (31) 14 0.90 27 0.86 32 

Pig 166 1d (31) 16 0.93 22 0.88 29 

Phosphorus (g/kg) 

Global 283 MSC 1d (15) 16 0.89 0.40 0.84 0.48 

Broiler 165 1d (31) 16 0.97 0.24 0.94 0.34 

Pig 92 1d (31) 15 0.93 0.23 0.79 0.40 
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presented bias, and a slope (0.78) far from 1. The ash model predicted well the entire test set. 

The coefficient of determination was high (𝑅𝑃
2=0.95), the RMSEP (4.9 g/kg) was even lower 

than the RMSEC (5.7 g/kg) and the RMSECV (6.1 g/kg) of the model and all the statistical 

tests were successfully passed. However, when the prediction performance is studied for each 

animal species, low 𝑅𝑃
2 are found for feeds of broilers and pigs (𝑅𝑃

2<0.70), bias is too high (>1 

g/kg) for broilers, sows and laying hens and the slope for sows (1.49) is too different to 1 (Figure 

4.D). GE models behaved similarly to ash models. Predictions looked well when the entire 

dataset was used but worsened when the individual species were considered (Figure 4.E). The 

global model for P that was promising based on calibration and cross validation statistics, failed 

when new samples were predicted (Figure 4.F).  

 

Table 3 Performance of the global models that included samples from broiler, pig, sow, hen and turkey feeds. 

Samples in the test set (𝑁𝑃), coefficient of determination (𝑅𝑃
2) and root mean square error (RMSEP) of prediction, 

bias and slope of the predicted vs measured regression line. 
 
 

 
 
 

Test set 𝑁𝑃 𝑅𝑃
2 RMSEP Bias Slope 

Protein (g/kg) 

All 433 0.97 3.7 0.3 0.97 

Broiler 257 0.94 4.0 0.3 0.97 

Pig 123 0.95 3.4 -0.2 0.98 

Sow 27 0.99 3.2 0.2 0.90 

Laying hen 28 0.92 3.4 0.8 0.96 

Fat (g/kg) 

All 386 0.97 2.4 0.2 0.96 

Broiler 228 0.97 2.1 -0.1 0.93 

Pig 111 0.91 2.3 0.1 0.98 

Sow 19 0.93 3.3 0.3 1.25 

Laying hen 29 0.97 4.0 -0.2 1.08 

Crude fibre (g/kg) 

All 122 0.84 3.6 -0.3 0.91 

Broiler 12 0.76 2.5 1.9 0.78 

Pig 90 0.79 3.4 -0.2 0.99 

Sow 20 0.62 6.7 -0.3 0.66 

Ash (g/kg) 

All 414 0.95 4.9 0.1 0.92 

Broiler 246 0.63 4.3 1.0 1.05 

Pig 117 0.66 4.6 -0.3 0.98 

Sow 17 0.78 3.6 1.8 1.49 

Laying hen 32 0.88 8.8 -6.9 1.05 

Gross energy (kcal/kg) 

All 254 0.91 46 6 0.87 

Broiler 133 0.81 33 12 0.89 

Pig 81 0.63 46 -18 0.78 

Sow 15 0.42 42 -35 0.47 

Laying hen 29 0.92 103 95 0.71 

Phosphorus (g/kg) 

All 125 0.42 1.0 0.4 0.72 

Broiler 76 0.55 1.0 0.7 1.03 

Pig 42 0.43 1.0 -0.3 0.73 
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Figure 4. Predicted vs measured values of A) crude protein, B) fat, C) crude fibre, D) ash, E) gross energy and F) 
phosphorus obtained with the global calibrations and coloured for type of compound feed in the test set: broiler 
chickens (blue), pigs (red), sows (yellow) and laying hens (purple). The dashed line is the 1:1 line and the dashed 
red line is the fitted straight line. 
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Performance of specific models for broilers and pigs 

 

Specific calibrations for broiler compound feeds and pig compound feeds were developed to 

check whether predictions would improve. The number of LVs for these models was lower 

than for the global models because sample sets had less samples and spectral variability was 

lower. The lower calibration and cross-validation errors obtained for the specific models 

suggested a better predictive ability (Table 2). However, these specific calibrations did not 

improve the predictions of the test set that were similar to or worse than the predictions from 

the global calibrations (Table 4).  

 

Table 4. Performance of the specific models for broiler compound feeds and pig compound feeds. Number of 

samples in the prediction set (𝑁𝑃), coefficient of determination of prediction (𝑅𝑃
2), root mean square error of 

prediction (RMSEP), bias and slope of the predicted vs measured regression line. 

 

Test set 𝑁𝑃 𝑅𝑃
2 RMSEP Bias Slope 

Protein (g/kg) 

Broiler 257 0.94 4.2 0.5 0.95 

Pig 123 0.93 4.0 -0.4 0.93 

Fat (g/kg) 

Broiler 228 0.95 2.6 -0.1 0.95 

Pig 111 0.92 2.0 0.5 0.94 

Crude fibre (g/kg) 

Broiler 12 0.75 12.8 1.9 0.78 

Pig 90 0.65 4.9 -0.2 0.99 

Ash (g/kg) 

Broiler 246 0.43 4.5 1.0 1.05 

Pig 117 0.68 4.9 -0.3 0.98 

Gross energy (kcal/kg) 

Broiler 133 0.53 50 12 0.89 

Pig 81 0.61 50 -18 0.78 

Phosphorus (g/kg) 

Broiler 76 0.66 0.9 0.7 1.03 

Pig 42 0.68 0.9 -0.3 0.73 

 

Discussion 

 

For the type of samples used in this research institution commercial calibrations were inaccurate. 

In the case of CP and fat the reason was a large bias that could be produced by differences 

between the reference method used by the commercial and the reference method used in the 

IRTA’s laboratory (e.g. we used the Dumas method to determine the nitrogen that after is 

related to protein while the commercial used the Kjeldahl method that usually gives lower values 

of nitrogen). Although strategies to correct calibrations for bias exist [13] we accumulated 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



111 

 

representative samples until a sufficiently large data set was available and developed in-house 

calibrations that proved to work better than commercials to predict CP, fat, CF and ash.  

 

The developed global calibrations performed well for CP, fat and CF although predictions of 

the test samples belonging to sows and laying hens generally were predicted worse. The reason 

might be the lower number of compound feeds from these animals included in the calibration 

and prediction sets. A few calibration samples from a group are less likely to have sufficient 

influence during the calculation of the model that will tend to model the most representative 

groups better. Therefore, one may expect poorer predictions for incoming samples from these 

underrepresented groups. In addition, since there are also fewer samples in the prediction set, a 

few larger errors from a few samples significantly dominate the prediction statistics and not 

represent well the future performance of the model. 

 

The global calibrations for ash and GE performed well when predicting the entire test set, 

although they showed lower coefficients of determination and higher bias when predicting the 

test sets of compound feeds of single-species. This is the consequence of two situations. Firstly, 

the concentration interval of the predicted property was narrower for single-species. For ash, 

the concentration interval for broilers, pigs and sows goes approximately from 35 to 70 g/kg 

while with the inclusion of laying hens it is extended to 160 g/kg. For GE, the concentration 

interval for broilers and pigs is only from 4000 to 4300 kcal/kg but whit the inclusion of laying 

hens and sows the concentration interval increased and was from 3400 to 4300 kcal/kg. It is 

known that, given similar prediction errors, the coefficient of determination decreases as the 

concentration interval decreases. The narrowness of the concentration interval should be 

compared with the SEL. It is generally said that to achieve acceptable coefficients of 

determination the range should be at least 10 times the SEL [14]. In the case of GE, the range 

for broiler and pig compound feeds is only 300 kcal/kg and the SEL is 40 kcal/kg. 

 

Secondly, the fact that GE and ash (different from CP, fat and CF), are predicted based on 

correlations with other constituents. GE is not a chemical entity although it can be predicted 

from a NIR spectrum because the energy-yielding nutrients of feeds absorb in the NIR region 

[15]. Ash is a mineral material that does not absorb in the NIR region, and it is predicted thanks 

to the correlation between mineral material and organic components which form salts that affect 

the hydrogen bonds in the samples [11]. These models are more sensitive to new variations in 

the samples because any change that affects one of the several constituents from which the 
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property is predicted can affect the final prediction [16]. P presented these two situations (low 

range (4 g/kg) compared to SEL (0.4 g/kg) and indirect prediction) and others that may worsen 

the performance of the model such as low concentrations (P<10 g/kg) and fewer samples than 

in the calibrations for other parameters. Therefore, the model for P was expected to be the 

worst in prediction. Specific calibrations for broiler and pig compound feeds showed better 

calibration statistics although similar or even worse predictive ability than global models. This 

fact could be explained by a trade-off between accuracy and robustness [17]. Global models 

were built with a larger number of informative samples. Hence, to predict a certain property the 

PLS model coefficients must be orthogonal to a larger number of sources of variability, often 

by requiring more latent variables. This decreases the net analyte signal of the property to be 

predicted, worsening the signal-to-noise ratio and, hence, the accuracy of the model. However, 

at the same time, this allows the model to account for more sources of spectral variability and 

make the models less sensitive to changes in future samples. This translates into lower RMSEP 

for the test sets. Hence, there is a trade-off between including more sources of spectral variability 

in the model, to make it more robust, and decreasing the net signal-to-noise ratio. From the 

results of this work, it was found that global calibrations for compound feeds are recommended. 

This fact, however, may not be always generalizable. For the gain in robustness to outweigh the 

loss in accuracy, samples from different groups must exhibit a certain level of similarity in their 

characteristics. The compound feeds for some animals and others were different because the 

requirements of each animal species are different but they were produced in the same feed mill, 

using the same processing methods and essentially using the same battery of ingredients. If the 

samples were very different (e.g. all the compound feeds for pigs were made from corn and all 

for broilers from wheat) and a calibration is developed joining both types of sample the loss of 

accuracy would be high. Moreover, the robustness would not increase because the inclusion of 

samples of a type would not serve the model to better recognize samples of the second type. 

What is generally true is that when datasets contain only a few samples (that is, do not 

encompass enough variability), including different types of samples to develop global 

calibrations tends to work better than developing specific calibrations. However, when data sets 

contain a large number of samples that encompass enough variability for each of the sample 

types, specific calibrations may work better [18]. As can be seen (Table 3 and 4), the largest 

difference in prediction performance between global and specific calibrations was found for CF, 

whose calibration set contained in total only 360 samples compared to CP (1049), fat (934) or 

ash (993).   
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To the best of our knowledge, there are no comparisons between commercial, global, and 

specific calibrations in the prediction of compound feeds in the literature, although some 

models, both global and specific, have been presented. Fernández-Ahumada et al. 2008, [19] 

developed global models that included cattle, lamb, pig, poultry, rabbit and pet compound feeds. 

Bastianelli et al. 2005 [20] and Molognoni et al. 2020 [21] developed calibrations for poultry 

without specifying which poultry species included in the calibration set. Paternostre et al. 2021 

[22] developed specific models for pig feeds and Khaleduzzaman et al. 2017 [23] for broiler 

chickens. Our coefficients of determination and prediction errors of cross-validation were in 

the order of the presented by these authors. In these works, for CP and fat the 𝑅𝐶𝑉
2  were higher 

than 0.90 and the RMSECV ranged from 3.7 to 7.0 for protein and from 2.7 to 3.9 for fat. For 

CF, 𝑅𝐶𝑉
2  ranged from 0.80 to 0.95 and RMSECV from 4.1 to 7.7. For ash the 𝑅𝐶𝑉

2  ranged from 

0.78 to 0.81 and the RMSECV from 3.2 to 7.4. GE was only predicted by Paternostre et al. 2021 

[22] with a 𝑅𝐶𝑉
2 =0.94 and a RMSECV=24 kcal/kg and P by Khaleduzzaman et al. 2017 [23] 

with a 𝑅𝐶𝑉
2 =0.95 and a RMSECV=0.30 g/kg. From all these works only Molognoni et al. 2020 

[21] used the calibrations to predict an external dataset. Like in the current research, from the 

properties they studied (CP, fat, CF and ash) they obtained the worst results for ash in terms of 

RPD (similar interpretation to 𝑅2).  

 

Conclusions 

 

We have shown that commercial calibrations to determine the nutrient content of compound 

feeds may not work correctly and therefore the development of calibrations using own samples 

may be necessary. First, global calibrations including compound feeds for different animals 

(broiler chickens, pigs, sows, laying hens and broiler turkeys) were developed. The validation 

with an external dataset revealed that these models had a great performance in the prediction of 

protein, fat and crude fibre. Gross energy and ash showed some bias when compound feeds for 

specific animals were predicted. These properties were harder to predict due to the lower 

variability that the reference data for each type of compound feed showed and the fact that 

these properties are related to the NIR spectra in an indirect way. Probably the inclusion of 

more representative samples will reduce bias in future predictions. Phosphorus could not be 

predicted satisfactory. Specific calibrations for broiler chicken and pig compound feeds were 

also developed but they did not outperform global models in the prediction of broiler 
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compound feeds and pig compound feeds, respectively. Therefore, global models that are more 

widely applicable are recommended from the results obtained in this work.   
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Abstract 

 

Nowadays optimal feed formulation for poultry is sought for available content, which takes into 

account how the nutrients are digested and metabolized by the animal. The digestibility 

coefficients of the nutrients are usually obtained in in-vivo trials that require feeding the birds 

with different diets of well-known composition and analysing a large number of excreta samples. 

Nutrient excreta composition is usually found by wet analytical methods. This work presents 

visible-near infrared (Vis-NIR) calibrations for organic matter, protein, fat, gross energy, uric 

acid and phosphorus in excreta from bioassays involving broiler chickens, laying hens and 

turkeys carried out between 2017-2020. The Vis-NIR spectra (400-2499.5 nm) were pretreated 

by generalized least squares weighting (GLSW) and partial least squares regression (PLSR) was 

used to obtain the prediction models. The six parameters were properly predicted with the 

values of ratio of performance of deviation (RPD) and coefficient of determination of 

prediction (𝑅𝑃
2) of the validation set ranging from 3.7 to 4.6 and from 0.91 to 0.95 respectively. 

All but one of the calibrations passed the statistical tests for fit for purpose described in ISO 

12099:2017. Despite the global calibrations provided satisfactory results, specific calibrations 
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for broiler chickens excreta and for laying hen excreta were developed to check if their 

predictions could be even better but the results did not improve. Finally, the root mean square 

error of prediction (RMSEP) of the global calibrations was compared with the standard error 

of the reference methods employed for the analysis of these parameters, confirming their high 

performance and direct applicability.  

 

Keywords  

 

Poultry excreta, nutrient content, Vis-NIR spectroscopy, global calibrations, specific 

calibrations  

 

Introduction 

 

Feedstuff is the largest contribution in the cost of poultry production and is a key factor in the 

animal growth and health. While the traditional formulation of feedstuff has been based on total 

content of nutrients, nowadays optimal formulations are sought for available content, which 

takes into account how the nutrients are digested and metabolized by the animal. There are 

different indicators related to feed digestion. The most important in poultry studies are the total 

tract digestibility coefficients of the main nutrients (protein, fat or amino acids) and the 

metabolizable energy (usually determined as apparent metabolizable energy, AME). Other 

important parameters are the assimilation of calcium and phosphorus because they are needed 

for the correct formation and maintenance of the skeleton.  

 

The digestibility coefficients of the nutrients and AME are usually obtained through in-vivo 

assays where birds are fed with different diets of well-known composition [1]. These trials 

require the collection and analysis of many replicate excreta samples per dietary treatment, trying 

to minimize external effects such as temperature and humidity in the farm.  

 

Near infrared spectroscopy (NIRS) is a fast analytical technique that may replace the costly wet 

analytical methods for determining the nutrient content of excreta. Its most important 

characteristics are the speed, the absence of sample treatment, the null use of solvents and no 

generation of waste, and the fact that is a multi-parametric technique, that is, a spectrum can be 

used to predict various parameters simultaneously. 
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NIR instrument manufacturers commercialize pre-installed “universal calibrations” that are 

advertised to work well for the routine analysis of the most common raw materials and 

compound feeds. Nevertheless, commercial calibrations for poultry excreta do not exist 

currently and only a few calibrations have been reported in the literature. Throughout their 

different works, Bastianelli et al. [5] presented calibrations for protein, gross energy, fat, uric 

acid and starch. Smith et al. 2001 [6] and De la Roza-Delgado et al. 2015 [7] developed also 

calibrations for gross energy, a key parameter that is required to calculate the metabolizable 

energy of the feedstuff. All these calibrations were applicable only to broiler chickens. 

Phosphorous has been determined by NIRS in some works focused on the use of the poultry 

excreta or manure as fertilizer [8-10], while Xing et al. 2008 [11] also presented a calibration 

model for organic matter.  

 

In summary, there are very few published multivariate determinations from NIR spectra for the 

nutrient content of poultry excreta and none of them are valid for animals other than broiler 

chickens. In this work, we present global calibrations for organic matter, protein, fat, gross 

energy, uric acid and phosphorus developed with excreta samples of broiler chickens, laying 

hens and turkeys. These calibrations are validated by an external dataset and also by statistical 

tests. Finally, they are compared with the specific calibrations developed for each poultry 

species.   

 

Materials and methods 

 

Samples and bioassays 

 

A total of 1025 samples of poultry excreta were collected from 2017 to 2020 at the Institute of 

Agrifood Research and Technology (IRTA) in Constantí, Tarragona, Spain. The samples had 

been obtained from 31 bioassays whose objective was to measure the digestibility of diets 

involving different combinations of raw materials and additives (e.g., enzymes). 17 of the 

bioassays involved male Ross 308 broiler chickens with an age between 22 and 25 days (620 

excreta samples), 11 HyLine Brown laying hens with 18 to 26 weeks of age (306 excreta samples) 

and two male (35 and 42 days of age) and one female (24 days) Aviagen Premium turkeys (99 

excreta samples), respectively. Diets were based on soybean meal and the main cereal was corn, 

wheat or barley. Titanium dioxide (TiO2) was used as indigestible marker in all the studies. The 
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samples of excreta were lyophilized, milled, and stored in sealed bags in a climatic chamber at 

17 ºC until their analysis. The fact that the excreta samples were obtained from animals of 

different digestive capacity and involved very different diets provided a wide range of undigested 

contents of the different nutritional fractions that had to be accounted for by the calibration 

models. 

 

Reference values of nutritional parameters  

 

The excreta samples were analysed in the laboratory with validated methods. Dry matter, 

nitrogen, fat, ash and phosphorus were determined according to the AOAC methods 925.09, 

968.06, 920.39, 942.05, 965.17 respectively [12]. Gross energy was determined by calorimetry 

using an adiabatic calorimeter (C2000, IKA, Staufen, Germany) according to the DIN 51900 

(2005) norm [13]. Uric acid was determined by spectrophotometry following the method 

described by Marquardt (1983). Organic matter was calculated as the difference between dry 

matter and ash contents. Protein was obtained subtracting the uric acid from the total nitrogen 

and multiplying the result by 6.25. For the six parameters studied in this work the standard error 

of the laboratory (SEL) were as follows: organic matter (9 g/kg, as fed), protein (7 g/kg, as fed), 

fat (3 g/kg, as fed), gross energy (40 kcal/kg, as fed), uric acid (5 g/kg, as fed), phosphorus (0.4 

g/kg, as fed). Since the digestibility experiments span different years and had different 

objectives, the number of excreta samples that could be used for modelling was not the same 

for all the analytical parameters.  

 

Visible-near infrared (Vis-NIR) spectra acquisition and data analysis 

 

Freeze-dried excreta samples were scanned on a NIRS DS2500 (Foss NIRSystems, Denmark)   

in reflectance mode with a 7 cm diameter cup where 30 grams approximately are introduced 

each time. Spectra were collected every 0.5 nm from 400 to 2499.5 nm, thus covering the range 

from visible to NIR. PLS toolbox software (PLS_Toolbox, 2016, Eigenvector Research, Inc., 

Manson, WA, USA) running in Matlab (MATLAB, Version R2020a, The MathWorks Inc., 

Natick, MA, USA) was used to carry out all chemometric treatments. 

 

Partial least squares regression (PLSR) was used to develop the calibration models for organic 

matter, protein, fat, gross energy, uric acid and phosphorus. Common spectral pretreatments 

were studied including normalization, standard normal variate (SNV) [14], multiplicative scatter 
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correction (MSC) [15], derivatives ( 1st and 2nd) [16], orthogonal signal correction (OSC) [17] 

and generalized least squares weighting (GLSW) [18]. Cross-validation (CV) was used to choose 

the optimal pretreatments and the optimal number of latent variables for each model. 

 

The spectra and especially the score plots of the PLS models were checked for sample 

distribution. The sample set was divided into a calibration set (75% of the samples) and 

validation set (25% of the samples) using the Kennard-Stone algorithm applied to the spectra, 

that allows to retain the spectra distribution [19]. Calibration samples were labelled as spectral 

outliers and thus discarded when the leverage was too high (Hotelling’s 𝑇2 reduced>3) or the 

percentage of residual spectral variance of the sample was too high (𝑄 residuals reduced>3). 

Samples were labelled as reference outliers when the difference between the predicted and the 

reference value was too high (Studentized residuals (t)>3).  

 

The validity of the predictions from the calibration models was checked with three statistical 

tests: a t-test on bias, a t-test on slope and an F-test on standard error of prediction (SEP) 

according to ISO 12099:2017, whose object is to guide the development and maintenance of 

NIR calibrations in the agri-food sector [20]. 

 

Finally, because the sample set contained a large number of excreta samples from broiler 

chickens and hens, we studied if calibrations developed for a single species could predict better 

than the global calibration that included the three species.  

 

Results  

 

Figure 1 shows the distribution of the reference values for each parameter in the poultry sample 

set, that included the broiler chickens dataset, the laying hens dataset and the turkeys dataset. 

The values for broiler chickens and laying hens only are also shown. The variability reflects the 

large diversity of bioassays that generated the excreta samples. The ranges and the standard 

deviations of the values of protein, fat and phosphorus were much larger in the broiler chickens 

dataset than in the laying hens dataset. Only for organic matter were clearly larger in the laying 

hens dataset. The mean values of the parameters were also quite different in each sample set.   
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Figure 1. Box and whisker plot of the measured parameters of the three sample sets: poultry (broiler chickens, 
laying hens and turkeys), broiler chickens and laying hens. In parentheses the number of samples. 
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Figure 2 shows the mean Vis-NIR spectra of the excreta of the three poultry species. Spectra  

presented some differences in magnitude in the region from 400 nm to 1200 nm (which includes 

the visible region and the beginning of the NIR region) but they were all similar in shape and 

intensity in the NIR region from 1200 nm to 2499.5 where the most characteristic bands related 

with the nutrient content are found. Since the NIR bands are highly-overlapped it is difficult to 

find correlations between the spectra and the components of complex samples such as the 

excreta samples. Organic matter could be correlated with the intensity of the bands 

corresponding to the C-H, N-H and O-H bonds. The principal bands related to fat would be 

those for C-H, whose first overtone appears around 1700 nm, the second at 1200 nm and the 

combination bands around 2300 nm. Gross energy content is correlated with fat content, hence 

the C-H bands are also representative for this parameter. Protein and uric acid are correlated 

with C-H and N-H bands. The first overtone at 1900 nm and the combination band at 2100 nm 

are overlapped with the O-H bands. The second overtone around 1500 nm would be more 

easily assignable. Phosphorus can be determined through its association with organic 

components such as the phytate molecule. The spectral differences reflect the differences in the 

metabolism of the three species and the substantial differences in their diets used in the 

bioassays. For example, the diets given to laying hens are less energetic and have a higher 

inorganic content than the diets for broiler chickens. This ultimately affects the composition of 

the excreta.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Mean Vis-NIR spectra of the excreta samples for broiler chickens, laying hens and broiler turkeys.  
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Since the spectra of the different species are similar the calibration models were first developed 

including the three species. Of the different preprocessing methods tested, autoscaling followed 

by GLSW performed the best for all the parameters. No spectral outliers were found in the 

dataset of NDF, ADF and lignin. For the rest of the constituents, between two and five samples 

were clearly identified as spectral outliers and were removed from subsequent analyses because 

of their high values of Hotelling’s 𝑇2 and 𝑄 residuals.  Figure 3 shows the grafic of scores of the 

PLS model for the protein content in the excreta with code color. The scores show that there 

are no clear clusters of spectra due to the species, as already suggested by the spectra in Figure 

2. One can also observe how the values of the property vary with the scores, as it is to be 

expected from a PLS model. Despite the fact that the birds received different diets and their 

digestive performance is different, similar score plots are obtained for the PLS models of the 

other parameters (not shown).  

 

 

 

Figure 3. Score plot of the protein PLS model considering the animal species: broiler chickens (crosses), laying 
hens (circles), broiler turkeys (rhombus) and the concentration of protein measured in each sample (colour bar).   

 

The optimal number of PLS latent variables ranged from 3 in the model for fat to 8 in the model 

for phosphorus. Once the models had been calculated, the following samples were detected as 

clear reference outliers and were removed from subsequent modelling: one sample for protein 

and uric acid, three for fat, four for phosphorus and six for gross energy. Other 11 samples, all 

with the largest values of protein (350-450 g/kg, as fed), were removed from the protein model 
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after being predicted with large errors. Removing these samples from the calibration and 

validation set improved greatly the performance of the calibration for all the other samples. 

Nevertheless, if such high values of protein are found in future assays, one may consider 

reintroducing those samples to expand the calibration range. Removing the part of the spectra 

corresponding to the visible radiation did not improve the performance of the calibration 

models. Therefore, the full spectral range was used in all models. 

 

The performance of the global calibrations for poultry excreta is summarized in Table 1. The 

six studied parameters (organic matter, protein, fat, gross energy, uric acid and phosphorous) 

were well predicted.  

 

Table 1. Statistics of the poultry excreta calibration models: number of samples used to calibrate (𝑁𝐶) and validate 
(𝑁𝑉), root mean square error of calibration (RMSEC) and prediction (RMSEP), coefficient of determination of 

calibration (𝑅𝐶
2) and prediction (𝑅𝑃

2), ratio of performance of deviation in prediction (RPDp), bias and slope of the 
predicted vs measured regression line.  

 

Parameter 𝑁𝐶 RMSEC 𝑅𝐶
2 𝑁𝑉 RMSEP 𝑅𝑃

2 RPDp Bias Slope 

Organic matter (g/kg, as fed) 255 13 0.97 85 14 0.95 4.6 -1.2 1.01 

Protein (g/kg, as fed) 522 9.1 0.96 174 9.2 0.95 4.6 0.7 1.00 

Fat (g/kg, as fed) 159 3.2 0.96 53 4.0 0.94 3.8 -0.4 0.95 

Gross energy (kcal/kg) 513 46 0.94 171 49 0.93 3.7 2.7 0.95 

Uric acid (g/kg, as fed) 294 4.9 0.93 98 5.2 0.91 4.5 0.1 0.94 

Phosphorus (g/kg, as fed)  264 0.6 0.94 83 0.7 0.93 3.9 0.1 0.94 

 

The ratio of performance of deviation (RPD) for the validation set ranged from 3.7 to 4.6 and 

the coefficient of determination of prediction (𝑅𝑃
2) from 0.91 to 0.95. These values were good 

enough to accept the calibrations for routine use. The measured versus predicted values are 

shown in Figure 4. The t-test for the bias concluded that none of the calibrations had a 

significant bias. The t-test for the slope was passed by all the calibrations easily. Lastly, the results 

of the F-test for the standard error of prediction (SEP) suggested that there is not overfit in all 

the models except for the model for fat, probably due to the fact that is the model constructed 

with less samples.   

 

Despite the global calibrations provided satisfactory results, specific calibrations for broiler 

chicken excreta and for laying hen excreta were developed to check if predictions could improve 

(Table 2). The statistics in this case were obtained using cross-validation (CV). In the broiler 

chickens sample set, four of the six studied parameters (protein, fat, gross energy, and 

phosphorous) were well predicted (RPDcv>3 and 𝑅𝐶𝑉
2 >0.90). However, the results of the 
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calibrations for laying hen excreta were poor (RPDcv<3 and 𝑅𝐶𝑉
2 <0.90) in all cases. The results 

of the specific calibrations comparing to the global were much worse in the case of the laying 

hen calibrations and similar or worse for some parameters and much worse for others in the 

case of broiler chickens. 

 

Table 2. Number of samples (𝑁) and performance of the PLS models (SECV, 𝑅𝐶𝑉
2  and RPDcv) for the specific 

calibrations: broiler chickens dataset and laying hens dataset. 

 

Parameter 
Broiler chickens set Laying hens set 

N SECV R2cv RPDcv N SECV R2cv RPDcv 

Organic matter (g/kg, as fed) 77 7.7 0.74 1.9 167 20 0.87 2.7 

Protein (g/kg, as fed) 529 10 0.95 4.8 176 10 0.87 2.8 

Fat (g/kg, as fed) 154 4.1 0.96 4.9 50 5.0 0.34 1.2 

Gross energy (kcal/kg) 440 38 0.90 3.1 195 80 0.73 1.9 

Uric acid (g/kg, as fed) 228 4.7 0.86 2.0 175 7.0 0.74 1.9 

Phosphorus (g/kg, as fed) 178 0.8 0.93 3.8 133 1.0 0.76 1.9 

 

Discussion  

 

Validation and quality of the global calibrations for poultry excreta 

 

The global calibrations for poultry excreta were validated with an external sample set obtaining 

good results (Table 1 and Figure 4). The exception is the model for fat that will require more 

samples to improve the model and obtain a SEP similar to the SEC. Considering the 

implementation of the calibrations for routine analyses, it can be seen that the prediction errors 

(Table 1) are close to those of the reference methods given in the materials and methods section.  
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Figure 4. Predicted vs measured values of organic matter, protein, fat, gross energy, uric acid and phosphorus 
obtained with the poultry (broiler chickens + laying hens + turkeys) data set. The green continuous line is the 1:1 
line and the dashed red line is the fitted straight line. 
 

The calibrations were compared with other calibrations for excreta found in the literature. 

Bastianelli et al. 2010 [4] predicted several parameters related with the nutritional content of 

excreta. Unlike in our work, their sample set only contained broiler chicken excreta. The results 

presented in this work were similar to Bastianelli’s results for protein, slightly worse for fat and 

gross energy and better for uric acid. These authors did not predict organic matter and 

phosphorous. The reason of their better performance on fat and gross energy could be due to 

the fact that their dataset has a larger range of fat and energy values. Smith et al. 2001 [6] 

predicted nitrogen, gross energy and phosphorous among other parameters in broiler chicken 

excreta but their models did not achieve RPD>3 in none of these three cases. De la Roza-

Delgado 2015 [7] developed a gross energy calibration for poultry although no information was 

given about the number of samples or the poultry species in their dataset. Their prediction errors 
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were similar to the results presented here but their 𝑅2 and RPD values were worse. The 

performance of the organic matter calibration reported in our work is better than the single 

study reported so far by Xing et al. 2008 [11]. The current results for phosphorous were also 

better than those that had been presented previously in any type of poultry excreta or manure 

and also better than those reported for raw materials [21] or feedstuffs [22, 23]. The explanation 

for these significant results could be that phosphorus in excreta is mainly in form of phytate 

phosphorus. An important fraction of the phosphorus that raw materials such as corn or wheat 

contain is in this form. Due to the poor availability of phytate in poultry intestine, the percentage 

of phytate phosphorus digested by the animal is small. Thus, the fraction of phosphorus, which 

will be more concentrate in the excreta, should be easier to predict by NIRS since phytate is an 

organic molecule with C-H and O-H bonds that reflect in the near infrared region. 

 

Global calibrations versus specific calibrations 

 

The models developed for protein, fat, gross energy, and phosphorous with the broiler chickens 

dataset would be acceptable (Table 2). However, the predictions of organic matter and uric acid 

are not good enough. In the first case, the small number of samples compared with the other 

parameters and the narrow range of values (Figure 1) could cause the low regression coefficient. 

In the second, the inaccuracy in the reference method, which is quite similar in value to the 

standard deviation of the values in the sample set.  

 

The poor results for the laying hen excreta could be due to the fact that the laying hens sample 

set contains fewer samples and also that they belong to trials were the diets tested were very 

different. Nevertheless, this variability does not translate into a great standard deviation in the 

reference values.  Moreover, the high ash content in these samples is thought that it could affect 

the predictions. However this higher variability in the ash content makes that the calibration for 

organic matter exhibited a regression coefficient higher than the one of the specific calibration 

for broiler chickens because the range of values is wider.  

 

The results suggest that the global calibrations developed with the complete poultry data set, 

besides being the only valid ones for organic matter and uric acid, are preferable over the specific 

calibrations for each poultry species. On one side, global calibration models are based on a larger 

number of samples and include both the spectral variability and the parameter variability found 

in different animals and diets, and are expected to be applicable to a wider variety of future 
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samples than the particular models.  On the other hand, using only a few global calibration 

models will require less effort for monitoring and updating the models than using several 

species-specific calibration models. 

 

Conclusions 

 

We have shown a new series of Vis-NIR calibration models that can replace the slow laboratory 

determinations of organic matter, protein, fat, gross energy, uric acid and phosphorus in poultry 

excreta. This will help to reduce the costs of digestibility studies and improve the discovery of 

optimal feedstuff diets. It was also found that, despite the fact that broiler chickens, laying hens 

and turkeys are different species, the spectra of their excreta could be modelled together. Joining 

the three datasets together increased the range of each parameter that had to be predicted and 

lead to models that are much widely applicable than those that are specific for each species.  
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3.5. Prediction of pig faeces nutrient content by visible-
near infrared spectroscopy 
 

Abstract 

  

Nowadays there is a growing interest in optimizing pig feed formulations based on the available 

nutrient content (that is, how these nutrients are digested and metabolized by the animal). To 

determine the digestibility coefficients of nutrients, in-vivo assays are conducted where pigs are 

fed with different diets of known composition and the faeces are analysed, traditionally, with 

wet analytical methods. This study studies the development of visible-near infrared (Vis-NIR) 

calibrations for various parameters, namely organic matter, protein, fat, gross energy, crude 

fibre, neutral detergent fibre, acid detergent fibre, and phosphorus . The samples were collected 

in in-vivo assays conducted between 2017 and 2020. Vis-NIR spectra were measured between 

400 nm and 2499.5 nm and were preprocessed using generalized least squares weighting 

(GLSW). Partial least squares regression (PLSR) was used to establish the prediction models. 

Protein, gross energy, crude fibre, acid detergent fibre and P were properly predicted with a 

coefficient of determination of prediction (𝑅𝑃
2) ranging from 0.88 to 0.94. These five parameters 

passed the statistical test for fit for purpose described in ISO 12099:2017 for bias and slope, but 

did not pass the F-test that determines whether the root mean square error of prediction 

(RMSEP) is close enough to the root mean square error of calibration (RMSEC). This indicates 

that the models could not be considered robust enough and that they require further 

improvement with new representative samples. Organic matter and lignin (𝑅𝑃
2=0.90) failed also 

the t-test for slope and the t-test for bias, respectively. Fat and neutral detergent fibre showed 

worse predictive statistics (𝑅𝑃
2=0.84) and did not pass any statistical test. These results represent 

a significant step forward in harnessing Vis-NIRS to assess a wide range of nutritional 

parameters in pig faeces. 

 

Introduction 

 

Feed accounts for the largest share of swine production costs and is a key factor in animal 

growth and health [1]. While traditionally feed formulation was based on total nutrient content, 

nowadays formulations are designed for available content, which takes into account how 
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nutrients are digested and metabolized by the animal. There are several indicators of feed 

digestion. The most important in studies with pigs are the total tract digestibility coefficients for 

the main nutrients (protein, fat or fibre) and digestible energy (DE). Other important parameters 

are the intake of calcium and phosphorus, since these are needed for the correct formation and 

maintenance of the skeleton. Digestibility coefficients of nutrients and DE are usually 

determined by in-vivo assays in which pigs are fed different diets of known composition [2]. 

These trials require the collection and analysis of many replicate faecal samples per feed 

treatment, while attempting to minimize external influences such as temperature and humidity 

on the farm. Near-infrared spectroscopy (NIRS) is a rapid analytical technique that can replace 

costly wet analytical methods for determining the nutrient content of faeces. Its main features 

are speed, sample preparation is not necessary (except milling), solvents are not required and, 

therefore, there is no waste. It is also a multiparametric technique since different parameters can 

be predicted simultaneously from one spectrum. Manufacturers of NIR instruments offer 

commercial "universal calibrations" that are expected to be suitable for routine analysis of the 

most common raw materials and compound feeds. Nevertheless, there are currently no 

commercial calibration models for swine faeces, and only a few calibrations for the nutrient 

content have been reported in the literature [3–5]. Other authors, focusing on the use of manure 

as fertilizer, have reported calibrations for, among others, organic matter, nitrogen (total, 

organic, and ammoniacal), and phosphorus [6]. 

 

In this work, we developed calibration models for vis-NIR spectra of pig faeces to predict 

organic matter (OM), crude protein (CP), fat, gross energy (GE), crude fibre (CF), acid detergent 

fibre (ADF), neutral detergent fibre (NDF), lignin and phosphorus (P). The calibrations have 

been tested with an external dataset and their validity was evaluated by means of statistical tests 

and by comparison with the aforementioned bibliography. 

 

Materials and methods 

 

Samples  

 

924 samples of pig faeces were collected from 2017 to 2021 at the Institute of Agri-Food 

Research and Technology (IRTA) in Constantí, Tarragona, Spain. The samples were from 18 

in-vivo assays with pigs aimed at measuring the digestibility of feeds containing different 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



135 

 

combinations of raw materials and additives (e.g., enzymes). The feeds were based on soybean 

meal and the main cereal was corn, wheat or barley. Titanium dioxide (TiO2) was used as an 

indigestible marker in all studies. Faecal samples were freeze-dried, ground, and stored in sealed 

bags in a climate chamber at 17 ºC until analysis. The fact that the faecal samples were from 

animals with different digestive capacities and different diets resulted in a wide range of 

undigested contents of the different dietary fractions that had to be accounted for by the 

calibration models.  

 

Reference values of nutritional parameters  

 

The faeces samples were analysed in the laboratory with validated methods. DM, CP, fat, ash, 

CF and P were determined according to the AOAC (2016) methods 925.09, 968.06, 920.39, 

942.05, 978.10 and 965.17 respectively [7]. GE was determined by calorimetry using an adiabatic 

calorimeter (C2000, IKA, Staufen, Germany) according to the DIN 51900 (2005) norm [8]. 

NDF, ADF and lignin were determined sequentially by gravimetry using detergents following 

the Van Soest method [9]. OM was calculated as the difference between DM and ash contents. 

Because the digestibility trials spanned different years and had different objectives, the number 

of faecal samples that could be used for modelling was not the same for all analytical parameters. 

 

Visible-near infrared spectra acquisition and data analysis 

 

Freeze-dried faecal samples were scanned using a NIRS DS2500 (Foss NIRSystems, Denmark) 

in reflectance mode with a 7-cm-diameter cup into which approximately 30 grams were 

introduced each time. Spectra were acquired every 0.5 nm from 400 to 2499.5 nm, covering the 

range from visible to NIR. PLS Toolbox software (PLS_Toolbox, 2016, Eigenvector Research, 

Inc., Manson, WA, USA) running in Matlab (MATLAB, version R2020a, The MathWorks Inc., 

Natick, MA, USA) was used to perform all chemometric treatments. 

 

Partial least squares regression (PLSR) was used to develop calibration models for OM, CP, fat, 

GE, CF, ADF, NDF and P. Common spectral pretreatments were studied including 

normalization, standard normal variate (SNV) [10], multiplicative scatter correction (MSC) [11] 

1st and 2nd derivatives [12] orthogonal signal correction (OSC) [13] and generalized least squares 

weighting (GLSW) [14]. A five-fold venetian blind cross validation (CV) was used to choose the 

optimal pretreatments and the optimal number of latent variables for each model. The Duplex 
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algorithm was applied to the spectra to divide the data set into a calibration set (75% of the 

samples) and validation set (25% of the samples) [15].  

 

Calibration samples were flagged as spectral outliers and thus discarded if the leverage was too 

high (Hotelling’s 𝑇2 reduced>3) or the percentage of the sample's residual spectral variance was 

too high (𝑄 residuals reduced>3). Samples were classified as reference outliers if the difference 

between the predicted and reference values was too large (Studentized Residuals (t) > 3). 

 

The validity of the predictions from the calibration models was checked with three statistical 

tests: a t-test for bias, a t-test for slope, and an F-test for the standard error of prediction (SEP) 

according to ISO 12099:2017, whose aim is to guide the development and maintenance of NIR 

calibrations in the agri-food sector [16]. 

 

Results and discussion 

 

Table 1 summarizes the results of the reference analyses. The faeces had little variability in OM 

and GE (relative standard deviation (RSD) = 5 and 7%, respectively). The highest variability 

was that of P, followed by CF and ADF. Most samples in which P was determined were from 

in-vivo assays in which the pigs were fed diets containing varying amounts of phytase, which 

have been shown to affect the digestibility of P. Similarly, dietary fibre parameters were obtained 

from in-vivo assays that studied carbohydrases, which have been shown to improve dietary fibre 

digestibility.  

 

Table 1. Statistical overview of reference analysis. Number of samples (𝑁), mean value for the dataset Mean (g/kg, 
as fed), standard deviation (𝑆𝐷) (g/kg, as fed), relative standard deviation (𝑅𝑆𝐷) (%), minimum (Min) (g/kg, as fed) 
and maximum (Max) (g/kg, as fed), standard error of the laboratory (SEL) (g/kg, as fed) and relative standard error 
of the laboratory (RSEL) (%). 

 

*The unit is kcal/kg, as fed instead of g/kg, as fed. 

Property 𝑁 Mean 𝑆𝐷 𝑅𝑆𝐷 Min Max SEL RSEL 

Protein 845 232 32 14 131 321 5 2 

Fat 309 72 16 22 31 116 3 4 

Gross energy* 704 4208 277 7 3616 5228 40 1 

Crude fibre 290 135 35 26 67 214 7 5 

ADF 266 216 53 25 100 320 10 5 

NDF 266 381 69 18 226 593 10 3 

Organic matter 716 749 35 5 644 827 9 1 

Lignin 208 89 28 31 42 151 8 9 

Phosphorus 421 17 6 35 6 34 1 6 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



137 

 

The relative standard error of the laboratory (RSEL) was low for OM, GE and CP. The 

remaining analyses were more complex (involving extractions and/or digestions) and had higher 

errors. The highest error was expected for lignin, as it is the last product determined in the Van 

Soest method [9]. Figure 1 shows the mean Vis-NIR spectrum of the pig faeces samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mean Vis-NIR spectrum of the pig faeces samples. 

 

The assignment of spectral bands to the constituents of complex samples such as the faecal 

samples is not straightforward. Nevertheless, OM is expected to be related to the bands 

corresponding to C-H, N-H and O-H bonds. CF, NDF and ADF are carbohydrates that, along 

with lignin, are poorly digested by the animal and are related to the C-H and O-H bands. The 

most important bands related to fat are the C-H bands, whose first overtone appears at 1700 

nm, the second at 1200 nm, and the combination bands at 2300 nm. GE content is correlated 

with fat content or starch hence the C-H bands may be informative of this parameter. CP is 

correlated with C-H and N-H bands. The first overtone at 1900 nm and the combination band 

at 2100 nm overlap with the O-H bands. The second overtone at 1500 nm would be easier to 

assign. P does not absorb at vis-NIR and may be determined by its association with organic 

components such as the phytate molecule. 

 

Of the various preprocessing methods tested, autoscaling followed by GLSW gave the best 

results for CP, fat, GE, CF, ADF, NDF, and OM. For lignin, the best results were obtained 

with SNV followed by Savitzky-Golay first derivative, interpolating with a second order 
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polynomial and a window width of 15 points, and mean centring. The model for P required 

Savitzky-Golay first derivative, interpolating with a second order polynomial and a window 

width of 17 points. Spectral outliers were not found in the data sets of NDF, ADF, and lignin. 

For the remaining constituents, from two to five samples were clearly identified as spectral 

outliers and removed from subsequent analyses due to their high values of Hotelling’s 𝑇2 and 

𝑄 residuals. The optimal number of latent variables of the PLS models ranged from 3 in the 

model for fat to 14 in the model for P. After the models were calculated, some samples were 

identified as unique reference outliers and removed from further modelling. Concretely, four 

samples for CP and OM, three for fat, GE, and P, and two samples for CF, ADF, NDF and 

lignin. Removing the visible region of the spectra did not improve the calibration models. 

Therefore, the entire spectral range was used in all models. 

 

Table 2 shows the performance of the predictive models for pig faeces. CP, GE, CF, ADF, and 

P were predicted well. The coefficient of determination of prediction (𝑅p
2) ranged from 0.88 to 

0.94 and the RMSEP values were within two times the value of the standard error of the 

laboratory (SEL), which is commonly used as a rule of thumb for the acceptability of NIR 

calibration models [17]. The t-test for bias showed that none of the calibrations had significant 

bias, and the t-test for slope was easily passed by all calibrations. However, the results of the F-

test for the root mean square error of prediction (RMSEP) suggested that these calibrations 

required further improvement by including future representative samples. The calibration 

models can be considered stable if the RMSEP values are close to the corresponding RMSEC 

values [18]. 

 

Table 2. Statistics of the calibration models for pig faeces: number of calibration samples (𝑁𝑐) and prediction (𝑁𝑣), 
coefficient of determination of calibration (𝑅c

2) and prediction (𝑅p
2), root mean square error of calibration RMSEC 

(g/kg, as fed) and prediction RMSEP (g/kg, as fed), bias in the prediction, and slope of the predicted versus 
measured regression line. 
 

 

*The unit is kcal/kg, as fed instead of g/kg, as fed. 

Property 𝑁𝑐 𝑁𝑣 𝑅c
2 RMSEC 𝑅p

2 RMSEP Bias Slope 

Protein 584 251 0.96 6.11 0.94 7.93 -0.14 0.97 

Fat 213 92 0.91 4.98 0.84 6.67 -0.13 0.83 

Gross energy* 486 210 0.96 53 0.94 74 -1.0 0.97 

Crude fibre 200 86 0.94 8.31 0.88 12.39 -0.29 1.00 

ADF 184 79 0.96 10.17 0.89 16.52 -0.41 0.98 

NDF 184 78 0.91 20.44 0.84 25.93 -0.78 0.90 

Organic matter 499 214 0.90 10.82 0.88 12.41 -0.19 0.91 

Lignin 145 60 0.87 10.17 0.88 9.99 3.02 0.93 

Phosphorus 246 83 0.95 1.45 0.94 1.54 -0.05 0.96 
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The measured and predicted values of these five parameters (CP, GE, CF, ADF and P) are 

shown in Figure 2. OM and lignin had 𝑅p
2=0.90 and low RMSEP for these determinations 

compared to SEL. However, they did not pass the t-test for slope, and lignin neither passed the 

t-test for bias. Fat and NDF showed worse predictive statistics (𝑅p
2=0.84 and RMSEP > 2×SEL) 

and did not pass any statistical test, so these two models cannot be used with the dataset 

available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Predicted vs measured values of crude protein, gross energy, crude fibre, acid detergent fibre and 
phosphorus. The green continuous line is the 1:1 line and the dashed red line is the fitted straight line. 
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Calibrations were compared to other reported calibration results for pig faeces. The 

performance of our calibrations for OM, CP, fat, and GE was better than the performance 

reported by Schiborra et al. 2015 [3] and by Nirea et al. 2018 [4] and similar to that of Paternostre 

et al. 2021 [5]. GE was also predicted with similar success by De la Roza et al. 2015 [19]. For 

fibre fractions, CF was predicted with similar accuracy to Schiborra et al. 2015 and slightly better 

than Paternostre et al. 2021. Predictions for NDF and ADF were of the same order of 

magnitude as those of Schiborra et al. 2015. Prediction of lignin in pig faeces are reported for 

the first time in this work. Predictions for P have appeared in some reports where pig faeces 

were studied as manure [20–22]. Our results were much better than those in the literature, 

probably because our samples were faeces from in-vivo assays where P digestibility was the 

target and the P content had a much larger variability than the variability indicated in the 

literature. 

 

Conclusions 

 

We have studied the potential of using Vis-NIR spectroscopy to determine several nutritional 

parameters in pig faeces, namely organic matter, crude protein, fat, gross energy, crude fibre, 

acid detergent fibre, neutral detergent fibre, lignin and phosphorus (P). Although the 

coefficients of determination and the prediction errors were satisfactory for all the parameters 

except fat and neutral detergent fibre, all the calibrations developed failed at least one of the 

three statistical test for fit for purpose described in ISO 12099:2017. This indicates that the 

models, although promising, still need to be improved to replace the laboratory determinations 

of these parameters.  
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3.6. Determination of protein and amino acid 
composition of poultry ileal digesta by near-infrared 
spectroscopy 
 

Abstract  

 

This work presents the use of near-infrared spectroscopy (NIRS) and multivariate calibration 

to determine protein content and 17 amino acids in poultry ileal digesta. The NIR spectra were 

registered between 850 and 2499.5 nm and pretreated by the first derivative. Partial least squares 

regression (PLSR) was used to obtain the prediction models. Protein, 11 out of 17 amino acids 

(glycine, alanine, valine, leucine, isoleucine, phenylalanine, tyrosine, aspartic acid, glutamic acid, 

threonine, proline) and the total of amino acids were well predicted with a coefficient of 

determination of prediction (𝑅p
2) higher than 0.80 and a coefficient of variation of prediction 

(𝐶𝑉𝑝) lower than 10%. For lysine and methionine, proper coefficients of determination 

(𝑅p
2≈0.82) but high prediction errors (𝐶𝑉𝑝≈15%) were obtained. Finally, 4 out of 17 amino acids 

(cysteine, arginine, serine and histidine) were poorly predicted (𝑅p
2<0.70, 𝐶𝑉𝑝>10%). The best 

predicted amino acids were those with the highest correlation with protein. The models 

accounted for the covariance structure of the amino acids content in the calibration samples, 

arising from the nature of the ileal samples. Therefore, although valid for the existing data, the 

models may require updates to predict accurately new samples with a different covariance 

structure. The results demonstrated that NIRS is a reliable technique for assessing the protein 

and amino acids content in poultry ileal digesta. 

 

Introduction 

 

Feed is the factor that more critically affects the growth and health of poultry species. Industry 

and research centres are continuously investigating the formulations that provide the animal 

with the right amount of nutrients while avoiding any excesses that would lead to 

unnecessary costs and environmental problems.  

 

In this sense, modern animal feed formulations tend to be based on amino acid (AA) content 

instead of protein content. One of the benefits of supplementing feed-grade AAs is that low-
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protein diets can be used while continuing to cover animal feed requirements. The benefits of 

low-protein diets are clear from the environmental point of view. For example, nitrogen 

excretion is reduced and less soybean meal is used. This crop is the most important source of 

protein for poultry production and has undesirable environmental impacts such as energy 

consumption, the emission of nitrous oxide from the fields and land-use change [1]. For the 

correct growth of the animals, a diet must contain an adequate AA profile. Some diets, especially 

those with a low-protein profile, may not fully cover the nutritional requirements of the animal, 

if the content of some AAs is limited. If so, they should be supplemented. In current soy-based 

diets used for poultry production, the limiting AAs are lysine, methionine, cysteine, and 

threonine [2]. Tryptophan could also be limiting when corn is the major cereal in the diet and 

valine when it is wheat. A further step to improve diets is to formulate them based on available 

AA contents rather than total AA content.  

 

Traditionally, the parameters related to feed digestion are determined in the animal excreta 

obtained from in-vivo assays. However, the excreta contain urinary nitrogen and AAs that 

should not be taken into account for the calculation of AA digestibility. Moreover, the 

microbiota present in the hindgut influences the AA composition of the excreta due to the 

absorption or synthesis of some of them. Therefore, digestibility calculated from the ileal digesta 

is a better indicator of the real use of protein and AAs by poultry [3]. To obtain the values of 

ileal digestibility, in-vivo assays are conducted as follows: birds are fed with the test diet and, 

after euthanasia, the ileal digesta are collected, processed, and finally analysed, together with the 

diet [4]. Those analyses are currently done in the laboratory using costly reference methods, 

which are mainly based on chromatography. 

 

Near-infrared spectroscopy (NIRS) is a well stablished technique for the routine determination 

of constituents in ingredients and diets [5–7]. Its advantages are that it is fast, reliable and non-

destructive. The determination of protein in cereals was one of the first NIRS practical 

applications [8,9].  Shortly after, the first NIR calibrations to predict AAs appeared. Rubenthaler 

and Bruinsma 1978 [10] predicted lysine in a variety of cereals and Gill et al. 1979 [11] in barley 

of different breeds. Williams et al. 1984 [12] predicted some limiting AAs (lysine, methionine, 

threonine and tryptophan) in wheat and barley. Since then, several authors have published 

methods for most of the AAs in a variety of raw materials [13–22] and also in compound feeds 

[18,23,24]. However, there are very few publications about the use of NIRS to predict 

constituents in digestive contents. Noah et al. 1997 [25] predicted starch in pig digestive contents 
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and Lebzien and Paul 1997 [26] estimated the microbial portion of non-ammonia-nitrogen in 

the duodenum of cows. Nevertheless, there is none about poultry digestive contents, neither 

protein nor AA predictions.  

 

The purpose of this study is to evaluate the potential of NIRS and multivariate partial least 

squares regression (PLSR) to determinate total protein content, 17 AAs including alanine (Ala), 

arginine (Arg), aspartic acid (Asp), cysteine (Cys), glutamic acid (Glu), glycine (Gly), histidine 

(His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline 

(Pro), serine (Ser), threonine (Thr), tyrosine (Tyr), and valine (Val) and the total of AAs (TAA) 

in the ileal digesta of poultry.  

 

Materials and methods 

 

Samples and in-vivo assays 

 

A total of 179 samples of poultry ileal digesta were collected from 2018 to 2020 at the Institute 

of Agrifood Research and Technology (IRTA) in Constantí, Tarragona, Spain. The samples had 

been obtained from four in-vivo assays. Two of them aimed at measuring the digestibility of 

wheat-based diets containing different doses of xylanase. Both involved male Ross 308 broiler 

chickens. The other two consisted of measuring the digestibility of corn-based diets containing 

different doses of manannase. One involved male Ross 308 broiler chickens and the other 

female Aviagen Premium broiler turkeys. At the end of the in-vivo assays (day 24 or 25) both 

types of broilers were euthanized, the intestine removed and the lower half of the ileum was 

gently flushed to remove the ileal contents for digestibility measurements. The ileum is the 

portion of the small intestine extending from the Meckel’s diverticulum to a point 40 mm 

proximal to the ileocecal junction [27]. Ileal digesta samples were freeze-dried, equilibrated at 

ambient temperature for 1 day, weighed, ground and stored prior to analysis.  

 

Reference analyses 

 

Ileal digesta samples were analysed in the laboratory using reference methods. Protein was 

determined by the Dumas procedure using a nitrogen/protein analyser FP-528 (LECO 

Corporation, United States) according to the AOAC (2016) method 925.09 [28]. AAs were 
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liberated from protein by hydrolysis with HCl. To determine Met and Cys, a peroxidation with 

performic acid was done prior to hydrolysis. Sodium metabisulfite was added to decompose 

performic acid. These procedures were carried out according to the AOAC (2016) method 

994.12 [28]. Once the protein hydrolysates were obtained, the AAs were determined by 

precolumn derivatisation with ophthaldehyde (OPA) and 9-fluorenylmethyl chloroformate 

(FMOC) [29] using a HPLC Agilent 1100 coupled with diode array detector (DAD) (Agilent 

Technologies, United States). Norvaline was used as internal standard and the chromatographic 

peaks were integrated manually. Trp, which must be treated separately by an alkaline instead of 

acid hydrolysis, was not determined in this work. TAA was calculated as the sum of the 17 AAs 

determined in each sample.  

 

Near-infrared (NIR) spectra acquisition and data analysis 

 

Freeze-dried and grounded ileal digesta samples were analysed on a NIRS DS2500 (Foss 

NIRSystems, Denmark) in reflectance mode with a 1.8 cm diameter cup where 1 g 

approximately is introduced each time. NIR spectra were collected every 0.5 nm from 850 to 

2499.5 nm. PLS toolbox software (PLS_Toolbox, 2016, Eigenvector Research, Inc., Manson, 

WA, USA) running in Matlab (MATLAB, Version R2020a, The MathWorks Inc., Natick, MA, 

USA) was used to carry out the chemometric treatments. 

 

Partial least squares regression (PLSR) was used to develop the calibration models for protein 

and AAs. Common spectral pretreatments were studied including normalization, standard 

normal variate (SNV) [30], multiplicative scatter correction (MSC) [31] and derivatives (1st and 

2nd) [32] using different window widths. Finally, the first derivative was applied to the raw 

spectra interpolating with a second-order polynomial and an optimized window width for each 

calibration model that varied from 9 to 31 points. A five-fold Venetian blind cross validation 

(CV) was used to choose the optimal pretreatments and the optimal number of latent variables 

for each model. Duplex algorithm was applied to the spectra set to divided into calibration set 

(75% of the samples) and validation set (25% of the samples) allowing to retain the spectral 

distribution [33]. Samples were identified as spectral outliers and therefore discarded when they 

presented large leverage (Hotelling’s 𝑇2 reduced > 3) or a large percentage of residual spectral 

variance (𝑄 residuals reduced > 3). Samples were labelled as reference outliers when the 

difference between the predicted and the reference value was too high (Studentized residuals (t) 

> 3).  
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Results 

 

Reference analyses 

 

Figure 1A shows the chromatogram obtained after acid hydrolysis of a randomly selected 

sample. All the peaks were well resolved. Only alanine exhibited a small signal interference. To 

determine Met and Cys, sample peroxidation and acid hydrolysis were done. The chromatogram 

of the mentioned sample is shown in Figure 1B. The Met and Cys peaks were not as well 

resolved as the AAs shown in Figure 1A. Like in this research, Fontaine et al. 2001 [14] found 

baseline interferences for Met and Cys peaks. In both chromatographic analyses, the norvaline 

peak was used as internal standard (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chromatograms obtained for one of the analysed samples. A) Sample treated with only acid hydrolysis. 
B) Sample treated with peroxidation and after that acid hydrolysis.  
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The standard error of the laboratory (SEL (%)) obtained by dividing the standard error by the 

mean value of the analyte was 3% for protein and less than 5% for the AAs shown in Figure 

1A. The baseline interferences for Met and Cys peaks (Figure 1B) together with the peroxidation 

extra step, increased the SEL for these two determinations. 

 

Table 1 shows several statistics related to the protein and AA content in the ileal digesta. The 

number of samples was slightly lower for the determination of Met and Cys because in some 

cases there were not enough amount of sample to perform both chromatographic procedures. 

In those cases, only the determination with acid hydrolysis was made. Asp and Glu were the 

most concentrated AAs in the ileal digesta samples (13.1 and 14.8 g/kg, as fed respectively), 

while His, Met and Cys were the least concentrated (2.3, 1.8 and 2.6 g/kg, as fed respectively). 

The others ranged from 3 to 8 g/kg, as fed. The variability of the AA content, evaluated by the 

relative standard deviation (𝑅𝑆𝐷), depends on the type of AA considered due to the different 

ingredients and enzymes used to make the nutrients more digestible in some diets. It was 

especially high for Met and Lys (44% and 33%) which are limiting AAs typically supplemented 

in the diet. For the rest, the 𝑅𝑆𝐷 ranged from 10% to 20%.  

 

Table 1. Statistical overview of chemical analysis. Number of samples (𝑁), mean value for the dataset (Mean), 
standard deviation (𝑆𝐷), relative standard deviation (𝑅𝑆𝐷), minimum (Min) and maximum (Max) values. 

 

 𝑁 
Mean (g/kg, as 

fed) 
𝑆𝐷 (g/kg, as 

fed) 
𝑅𝑆𝐷 (%) 

Min (g/kg, as 
fed) 

Max (g/kg, as 
fed) 

Protein 179 131 17 13 87 203 

Aspartic acid 179 13.1 1.6 12 9.2 19.4 

Glutamic acid 179 14.8 2.6 18 9.5 21.6 

Serine 179 6.4 1.1 17 3.6 10.2 

Glycine 179 6.3 0.7 11 4.5 9.0 

Threonine 179 5.2 0.7 13 3.7 8.1 

Arginine 179 7.5 1.6 21 3.6 11.8 

Alanine 179 5.8 1.0 17 4.0 9.9 

Tirosine 179 3.4 0.5 15 2.2 5.6 

Cysteine 157 2.6 0.6 23 1.2 4.3 

Valine 179 4.6 0.8 17 2.9 7.6 

Methionine 157 1.8 0.8 44 0.7 5.8 

Phenylalanine 179 4.2 0.7 17 2.5 7.2 

Isoleucine 179 3.8 0.6 16 2.5 6.9 

Leucine 179 7.3 1.2 16 4.8 12.1 

Lysine 179 5.1 1.7 33 1.9 9.6 

Proline 179 6.5 1.5 23 3.1 10.8 

Histidine 179 2.3 0.4 17 1.2 3.6 

Total AA 179 100 14 14 67 149 
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Near-infrared spectroscopy and multivariate calibration 

 

Figure 2 shows the raw NIR spectra of the ileal digesta samples (Figure 2A) and the NIR spectra 

after applying the first derivative and mean centring (Figure 2B). The NIR spectra of this kind 

of samples are complex. In addition to protein and AAs, other constituents such as fat, sugars 

or water have bonds that absorb in the NIR region. Protein is correlated with C-H and N-H 

bands. AAs are also associated with the O-H bands due to the carboxyl group (-COOH) and 

the -OH group in some of them (Ser, Thr or Phe). The first overtone of the C-H bond appears 

around 1700 nm, the second at 1200 nm and the combination bands from 2300 to 2500 nm 

although the vibration frequencies can vary a little depending on the type of C (primary, 

secondary, tertiary, aromatic…) that is linked to H. Because of that, it is possible to observe 

different peaks overlapped at the mentioned wavelengths. For N-H, the most intense band 

corresponding to the first overtone is placed at 1900 nm but it coincides with the water band. 

The second overtone at 1550 nm or the combination bands around 2150 nm are usually related 

to molecules with N-H bonds. For O-H, in addition to the first overtone (1900 nm) it is possible 

to identify the second around 1400 nm and the combination bands around 2050 nm. The S-H 

bond that is present in Met and Cys also absorbs in the NIR region, but the absorptions are 

weak and only the first overtone that appears typically at 1750 nm and probably overlapped 

with the C-H bond (1700 nm) can be identified.  

 

 

 

 

 

 

 

 

 

 

Figure 2. NIR spectra of the ileal digesta samples: A) raw and B) after first derivative.  

 

PLS calibration models were developed with 127 calibration samples for all constituents except 

for Met and Cys that were developed with 113 samples. A test set of 52 samples (44 samples 

for Met and Cys) was used to validate the models. During the model optimization process, two 

A) B) 
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types of outliers were identified. A sample was identified as a spectral outlier for all the 

constituents except for Lys, Cys and Pro due to its high residual spectral variance (𝑄𝑟𝑒𝑠>3). For 

protein and some AAs, one and sometimes two reference outliers were also found and removed.  

 

Table 2 shows the main PLS performance statistics. The optimal number of latent variables 

ranged from 8 to 12 for protein and all the AAs except Lys (4), Cys (5) and Ser (6). 𝑅2 is an 

indicator of the quality for the predictions. According to Shenk and Westerhaus 1995 [34] the 

fit of a PLS calibration may be considered as: excellent if 𝑅2>0.90, good if 𝑅2=0.70-0.90 and 

insufficient if 𝑅2<0.70. It can be seen that the coefficient of determination of calibration (𝑅c
2), 

cross validation (𝑅cv
2 ) and prediction (𝑅p

2) were higher than 0.90 or than 0.70 for all the 

constituents except Arg, Ser and His (𝑅cv
2  and 𝑅p

2 lower than 0.70). This means that, those last 

three PLS models could not explain the variance of the prediction samples as well as the variance 

of the calibration samples. Finally, Cys had just the 𝑅c
2 lower than 0.70.  

 

Table 2. Statistics of the ileal digesta calibration models: number of calibration samples (𝑁𝐶) and prediction (𝑁𝑉), 
latent variables (𝐿𝑉), coefficient of determination of calibration (𝑅c

2), cross-validation (𝑅cv
2 ) and prediction (𝑅p

2), root 

mean square error of calibration RMSEC, cross-validation RMSECV and prediction RMSEP, bias in the prediction, 
and coefficient of variation of prediction (𝐶𝑉𝑝).   

  

 

As a general trend, the calibration errors were slightly lower than the prediction errors. 

According to Marten et al. 1989 [35] the RMSEP (or the 𝐶𝑉𝑝 if it is scaled) should not be more 

than twice the SEL (or the SEL (%) if it is scaled). As it was stated in the reference analyses 

section, SEL (%) for the current research was 3% for protein and less than 5% for the AAs. 

 𝑁𝐶 𝑁𝑉 𝐿𝑉 𝑅c
2 

RMSEC  
(g/kg, as 

fed) 
𝑅cv

2  

RMSECV  
(g/kg, as 

fed) 
𝑅p

2 
RMSEP  
(g/kg, as 

fed) 

Bias 
(g/kg, 
as fed) 

𝐶𝑉𝑝 

(%) 

Protein 125 51 11 0.95 3.4 0.92 4.5 0.92 5.9 0.13 4.3 

Aspartic acid 126 51 10 0.92 0.42 0.87 0.54 0.81 0.74 0.01 5.6 

Glutamic acid 125 51 10 0.95 0.60 0.91 0.76 0.90 0.86 -0.04 5.7 

Serine 126 52 6 0.73 0.54 0.64 0.62 0.66 0.73 -0.11 11 

Glycine 126 51 9 0.92 0.18 0.89 0.21 0.83 0.30 -0.04 4.7 

Threonine 125 52 9 0.93 0.17 0.88 0.23 0.84 0.31 -0.03 5.7 

Arginine 125 51 12 0.96 0.26 0.87 0.46 0.59 0.78 0.16 11 

Alanine 124 52 8 0.93 0.24 0.90 0.29 0.90 0.33 -0.04 5.4 

Tyrosine 125 52 9 0.91 0.15 0.87 0.18 0.84 0.23 -0.02 6.6 

Cysteine 111 43 5 0.77 0.32 0.70 0.36 0.61 0.37 -0.10 15 

Valine 125 51 10 0.93 0.18 0.88 0.24 0.89 0.27 -0.03 5.6 

Methionine 111 43 8 0.94 0.18 0.91 0.22 0.81 0.29 0.03 15 

Phenylalanine 125 51 10 0.94 0.17 0.89 0.23 0.91 0.25 -0.00 5.9 

Isoleucine 124 51 11 0.95 0.12 0.86 0.20 0.87 0.27 -0.03 6.8 

Leucine 125 51 10 0.94 0.25 0.90 0.32 0.90 0.41 -0.05 5.4 

Lysine 126 51 4 0.83 0.67 0.81 0.72 0.82 0.74 -0.10 15 

Proline 125 52 9 0.88 0.51 0.81 0.63 0.82 0.68 0.13 9.8 

Histidine 125 51 9 0.79 0.19 0.66 0.24 0.64 0.28 -0.03 12 

Total AA 124 51 10 0.95 2.9 0.92 3.7 0.94 4.1 -0.52 4.0 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



151 

 

Hence, in this particular case, the 𝐶𝑉𝑝 should be smaller than 6 for protein and 10 for AAs. To 

clarify the results, Figure 3 shows the 𝐶𝑉𝑝 against the 𝑅p
2 for protein and AAs. Three groups can 

be distinguished in the graph. A group of well-predicted constituents (coloured in green) that 

includes those with 𝑅p
2>0.80 and 𝐶𝑉𝑝<10%. There are the protein, all the aliphatic AAs (Gly, 

Ala, Val, Leu and Ile), the aromatic ones (Phe and Tyr), the acids (Asp and Glu), Thr, Pro and 

TAA. A second group coloured in yellow that is made of Lys and Met with proper correlations 

(𝑅p
2≈0.82) but high prediction errors (𝐶𝑉𝑝≈15%). These models are not accurate enough for 

quantitative analysis but could be useful for semi-quantitative or screening analyses. Finally, a 

third group (AAs coloured in red) made of Cys, Arg, Ser and His that were not predicted well 

enough (𝑅p
2<0.70, 𝐶𝑉𝑝>10%). Their calibration models are not good enough for analytical use. 

 
Figure 3. Coefficient of variation of prediction (𝐶𝑉𝑝) vs coefficient of determination of prediction (𝑅p

2). Colored 

code: green for well predicted, yellow for fair predicted and red for bad predicted variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Additional insight into the PLSR models can be obtained by plotting the reference values 

obtained by chromatography with respect to the NIR predictions. For the sake of simplicity, 

Figure 4 shows the graph for three constituents: protein, one well-predicted AAs (Val and Ile) 

and one no-so-well predicted (Lys). The graphs for the rest of AAs are presented in the 

supplementary material (Figure 1S). Protein and most of the AAs showed high correlations 

between reference and predicted values (see Table 2). The fitted line in this graph should ideally 

be a line with slope 1 and offset 0. The joint test of offset and slope was carried out [36]. The 

values of 𝐹 for all the parameters together with the statistics used to calculate them (slope, offset 
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and residual variance) are presented as supplementary material (Table 1S). The critical 𝐹 value 

ranged from 3.18 to 3.23 due to the slight difference in the number of samples of the validation 

set for each parameter. The 𝐹 statistic was lower than 3 for all the parameters except for Cys 

(3.36), Arg (3.87), Ser (6.44) and His (3.46). As expected, these four AAs (the worst predicted) 

did not pass the test. For the rest, the predictions obtained with the calibration models were 

comparable to the reference values with a level of significance of 0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Predicted vs measured values of: A) protein, B) valine and C) lysine.  
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Discussion 

 

According to the National Research Council (NRC) of the United States (National Research 

Council, 1994), protein and the digestibility of eight AAs (Met, Cys, Lys, Thr, Trp, Ile, Arg and 

Val) should be considered in poultry diet formulation. Other institutions such as the Spanish 

Foundation for the Development of Animal Nutrition (FEDNA) [38] include two additional 

AAs (Leu and Gly). The NIR calibrations developed for the prediction of protein, Thr, Ile, Val, 

Leu and Gly performed well and can be used in routine laboratory. Those of Lys and Met could 

still be used for semi-quantitative or screening analyses. Arg and Cys were poorly predicted, and 

a calibration model was not developed for Trp because there were no reference data available. 

The total AA content (TAA) and other AAs (Ala, Phe, Tyr, Pro, Glu and Asp) that might be 

less important for feed formulation but that could be interesting for other kind of studies were 

also well predicted. Total AA content (TAA) can be used to calculate relative AAs contents and 

TAA/protein ratio in samples, which are important indexes for estimating the quality of diets 

and raw materials [13].  

 

Protein concentration is usually high in feedstuffs and in samples with an animal origin such as 

ileal digesta and the Dumas method to determine protein is reliable and accurate. The 

concentration of a specific AA is much lower than protein. Little concentration changes in some 

AA might be difficult to model if the differences produced in the spectra due to these changes 

are minimal. The three AA less concentrated (Met, Cys and His) were some of the worst 

predicted. The accuracy of the HPLC determination of AAs is significantly worse than the one 

of Dumas method for protein, mainly due to the sample treatments that are necessary to obtain 

the liquid aliquot that is injected in the chromatograph. Usually, the laboratory wants to 

determine all or most of the AAs at the same time, and therefore the sample treatments are a 

compromise approach for all of them and not the optimal one for the determination of each 

one separately. This could mean higher analytical errors for some AAs and in consequence 

worse NIR predictions. The method followed in this work consisted of an acid hydrolysis for 

all AAs except for Met and Cys and a peroxidation followed by an acid hydrolysis for those two. 

Met and Cys were two of the worst predicted AAs. This peroxidation extra step makes the 

analytical error of Met and Cys higher. In addition as Figure 1 showed Met and Cys 

chromatographic peaks suffered from baseline interferences that made difficult the integration 

of the peak. Higher than expected analytical errors could also have caused that other AAs were 
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not well predicted. Under the aggressive conditions of the hydrolysis, some AAs may undergo 

from degradation, which is the main reason for incomplete recovery [39]. For instance, Ser can 

be converted into α-keto acids by β-elimination of water and Arg could be partially degraded to 

ornithine. Agents present in the sample solution or in impure hydrolyzing reagents can react or 

catalyse reactions that affect the quantification of some AAs, including Met and His [40]. 

Aliphatic AA (Gly, Ala, Val, Leu and Ile) that do not have functional groups and are much more 

stable during the hydrolysis were all accurately predicted.  

 

The AAs calibrations reported in the literature have very diverse quality. Fontaine et al. 2001, 

2002 [14,15] developed specific calibrations for several raw materials, including wheat, corn, 

barley, rapeseed and other less common ones. They predicted the most important AAs in 

poultry nutrition according to the aforementioned NRC, obtaining very good correlations 

(𝑅cv
2 >0.90) and low errors (𝐶𝑉𝑐𝑣<5%) in most cases. Overall, the worst results were obtained 

for Met and Cys followed by Lys and Trp. Kovalenko et al. 2006 [17] predicted the same AAs 

as in the current research plus Trp in soybean meals. They obtained correlations (𝑅cv
2 ) ranging 

from 0.70 to 0.90 for all except Trp, Cys, Met, and Ser (𝑅cv
2 <0.70). Zhou et al. 2012 [16] 

developed calibrations for distillers dried grains with solubles (DDGS). Unlike most of the 

revised works they obtained a very good calibration model for Met (𝑅cv
2 =0.92, 𝐶𝑉𝑐𝑣=2.6%). 

They obtained 𝑅cv
2 =0.82-0.89 for His, Ile, Lys, Phe and Thr and 𝑅cv

2 <0.70 for Arg, Trp and Val. 

Recently, Noel et al. 2021 [18] developed global calibrations with a sample set containing cereals, 

cereal co-products, cereal substitutes, protein concentrate, fibre-rich by-products and others. 

Due to the high variability in AA composition that the data set involved they obtained very high 

correlations (𝑅p
2>0.90) but also high errors (𝐶𝑉𝑝>10%). Whereas with a dataset containing only 

cereals, the correlations decreased (𝑅p
2=0.70-0.80 for Cys, Thr, Ile, Leu, His, Val, Arg and 

𝑅p
2<0.70 for Lys, Met, Leu and Trp). From these works, it can be concluded that sulphured AAs 

(Met and Cys) and Trp are usually the worst predicted AAs by NIRS. As in the current research, 

some of them also found difficulty in the prediction of Lys, Ser and Arg.  

 

The results presented for some AA may be worse than others presented previously for raw 

materials but it should be considered that the current dataset contained more sources of 

variation that need to be modelled when developing the PLSR models if these have to be 

generally applicable. Although the composition of the ileal digesta is feed-dependent, it is not 

only affected by the diet given to the animal but also by the type of animal. In particular, the 
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present study contains samples from broiler chickens and broiler turkeys of different digestive 

capacity. Actually, the digestive capacity can even differ among animals of the same species and 

breed. Second, farm conditions such as humidity or temperature affect the feed intake and 

energy consumption or sample extraction. Finally, the storage and presentation that is more 

complex than in the case of raw materials.  

 

Cage of covariance in the prediction of amino acids 

 

Feedstuffs and by extension intestinal contents are multicomponent samples consisting mostly 

of water, protein, fat, carbohydrates and other minor constituents. In this type of samples, like 

in other complex biological samples, the amounts of the specific constituents that make up the 

main constituent (e.g., AAs in “protein”, or fatty acids in “fat”) can be highly collinear. When 

several constituents covary, their spectral contributions also vary at the same time and the 

spectrum behaves as if there was only one main constituent. This has three related 

consequences. Firstly, the model of one particular constituent is using the signal from that 

constituent and from the others that covary with it. Thus, to obtain accurate predictions of this 

one constituent, the other constituents must also be present in the sample and in the same 

concentration ratios as in the training set. This phenomenon has been called cage of covariance 

[41]. Secondly, since the models developed for each constituent will have very similar 

coefficients, they make use of almost the same spectral variations and the predictions of the 

different constituents will be correlated. This may not be worrisome as long as the 

concentrations of the constituents in the future samples to be predicted fall in the cage of 

covariance (i.e., have the same covariance pattern), but it is a limitation if one is mostly interested 

in which samples break the correlation pattern. The correlated predictions will tend to make 

these differences less obvious. Finally, the models developed for each specific constituent may 

not be based on the direct relationship between the constituent and the spectrum, but on 

indirect relationships with the “main” constituent. The use of models based partially or totally 

on indirect relationships easily fails if the correlation structures of new samples do not match 

the ones exhibited by the calibration samples [42]. 

 

Eskildsen et al. 2014, 2016 studied the cage of covariance in the predictive ability and the 

robustness of PLS calibration models in the determination of fatty acids [43] and caseins [44] in 

milk. They found that the individual constituents were predicted relying on indirect covariance 

structures, based on covariation with fat and protein respectively. The models worked well for 
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samples whose correlation structure was similar to those of the training set but failed for samples 

that had different correlation structures. A similar situation happens for AAs. Figure 5 shows 

that the correlation coefficient among AAs and between some AAs and protein can be as high 

as 0.90. The reason behind some AAs (Arg, Met, Ser, Cys, Lys, Pro) present correlation 

coefficients lower than 0.70 is not clear. The aforementioned possible unreality of the reference 

values due to the reference method could affect the correlations in the dataset but also the 

difference in how the AAs interact and are digested in the small intestine of the animal.  

 

Figure 5. Heat map of correlation coefficients between protein and amino acids.  

 

The strong correlations found for several AAs rise questions about whether the prediction of 

the highly correlated AAs is driven by a direct relationship with the spectrum or if it originates 

from indirect correlations caused by the collinearity among the training set constituents.  Figure 

6 shows the results of PCA of the reference concentration of AAs. The first principal 

component (PC) explains c.a. 60% of the variance, and 95% of the variance is explained with 

the first four PCs, in agreement with the observed correlation among the reference values. The 

correlations are even higher in the matrix of predicted concentrations that make the PCs account 

for a higher amount of variance than the reference data case (95% of explained variance is 

reached with only three PCs). This indicates that the covariances are stronger in the predictions 

than in the reference values and that predictions tend to be dependent on each other as a result 

of the lack of orthogonality in the AA concentrations in the training samples. A similar 

behaviour was reported by Eskildsen et al. 2021 [41] in the NIR prediction of fatty acids in 

bovine milk, Atlantic salmon muscle and porcine adipose tissue.  
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The PLS regression vectors of protein, Ala, Gly, Val, Leu, Ile, Phe, Tyr, Asp, Thr and Glu were 

similar (Figure 7), which indicates that the models used very similar spectral patterns. The 

models with the most distinct regression coefficients (His, Pro, Lys, Cys, Ser, Met, and Arg) had 

the worst predictive ability. Covalence et al. 2006 [17] also found that most of the PLS regression 

vectors of NIR models for AAs in soybean meals followed the same trend and suggested that 

the calibrations mostly predicted protein. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Cumulative (%) explained variance as a function of the number of PCs performed on the reference AA 
concentrations and the predicted concentrations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Normalized PLS regression vectors of protein (red), amino acids with correlation coefficients with 
protein higher than 0.70 (blue) and amino acids with correlation coefficients with protein lower than 0.70 (green). 
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The AAs (Ala, Gly, Val, Leu, Ile, Phe, Tyr, Asp, Thr and Glu) that are highly correlated with 

protein (R>0.75) were all well predicted while the ones showing lower correlations (His, Pro, 

Lys, Cys, Ser, Met, and Arg) were predicted less well (Figure 8). Similar results were found by 

Kovalenko et al. 2006 [17] and by Fontaine et al. 2001, 2002 [14,15] during the AAs prediction 

of a variety of feedstuffs by NIRS and PLSR.  

 

 

Figure 8. Coefficient of variation of prediction (𝐶𝑉𝑝) versus correlation coefficient (𝑅) between amino acids and 
protein.  

 

The above results suggest that, as a consequence of the natural correlation between the 

concentrations of AAs in the calibration samples, the AAs are predicted based on indirect 

relationships between them and protein or combined signals from AAs that form the so-called 

“cage of covariance”. Ultimately, this means that the models will be valid for new samples whose 

ratio of concentrations of AAs are very similar to those used for training, but one must be aware 

that the results may be misleading if the concentration ratios in the new samples change. Since 

the correlations are the result of natural process in biological systems, it is difficult to break the 

covariance structure between the AAs in the intestinal content by designing the experiments 

and therefore one may expect that the models, while valid for the present samples, may need 

timely revaluation with new samples until the covariance pattern diminishes. Extending the 

dataset with future ileal samples from animals of different digestive capacity (broilers and 

turkeys) and involving very different diets may contribute to widen the “cage of covariance” 

and make the models more apt for a variety of concentration ratios.  
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Conclusions 

 

NIR calibration models for poultry ileal digesta have been developed for the first time. Protein, 

several amino acids (Gly, Ala, Val, Leu, Ile, Phe, Tyr, Asp, Glu, Thr and Pro) and the total 

content of amino acids (TAA) were well predicted. The NIR determination of all these 

constituents could reduce the cost of digestibility studies and contributing in this way to expedite 

the obtaining of ileal digestibility coefficients of protein and amino acids of feedstuffs and diets. 

The fact that the calibration samples originated from natural processes introduced a covariance 

structure in the concentration ratios of the samples. As a result, the majority of the amino acids 

concentrations were correlated among them and with the protein content. This affected the 

independence of the predicted concentration of amino acids. As a consequence, new samples 

may not be predicted well unless they have the same amino acid profiles as the training data. 

Future research will seek the widening of the cage of covariance by measuring samples in more 

diverse in-vivo assays and update the models accordingly, to make them usable for more diverse 

compositions.  
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Supplementary material  

Table S1. Results of the join test of offset and slope. Slope, ofsett, number of samples (N), residual variance (𝑆𝑒), 

F statistic (𝐹𝑠𝑡𝑎𝑡) and critical 𝐹 (𝐹𝑐𝑟𝑖𝑡) with a level of significance of 0.05. 

 

 Slope Offset N 𝑆𝑒 𝐹𝑠𝑡𝑎𝑡 𝐹𝑐𝑟𝑖𝑡 
Protein 0.96 4.61 51 5.99 1.68 3.19 

Aspartic acid 0.89 1.44 51 0.76 1.44 3.19 

Glutamic acid 0.96 0.60 51 0.87 0.50 3.19 

Serine 0.58 2.57 52 0.74 6.44 3.18 

Glycine 0.89 0.66 51 0.30 2.01 3.19 

Threonine 0.86 0.73 52 0.32 2.83 3.19 

Arginine 0.75 1.95 51 0.81 3.87 3.19 

Alanine 0.93 0.40 52 0.34 1.50 3.18 

Tyrosine 0.88 0.40 52 0.24 2.12 3.18 

Cysteine 0.75 0.54 43 0.38 3.36 3.23 

Valine 0.90 0.44 51 0.27 2.19 3.19 

Methionine 0.87 0.28 43 0.30 1.73 3.23 

Phenylalanine 0.99 0.03 51 0.26 0.01 3.19 

Isoleucine 0.94 0.22 51 0.27 0.99 3.19 

Leucine 0.91 0.60 51 0.42 2.11 3.18 

Lysine 0.86 0.58 51 0.76 2.48 3.19 

Proline 0.86 1.01 52 0.69 2.85 3.19 

Histidine 0.76 0.53 51 0.29 3.46 3.19 

Total of amino acids 0.92 7.50 51 4.23 2.50 3.19 
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Figure S1. Predicted vs measured values of protein and amino acids. 
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Chapter 4.  

Maintenance of  NIR models 
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4.1. Introduction  

 

As it was mentioned in Section 2.2, it is important to adapt calibration models to maintain 

prediction performance despite possible changes. There are two types of changes, either caused 

by ‘product drift’ or caused by ‘instrumental drift’ [1]. In some cases, the boundary of the sample 

population for future analyses may not be known or may change due to controlled or 

uncontrolled factors. An example is the change of supplier in the case of a calibration model 

used for raw materials in a feed factory, so that the raw materials are from a different region and 

have new features. Changes in the instrumental response can be caused by ageing, repair or 

replacement of the instrument used to develop the original calibrations. Generally, instrumental 

drifts are more problematic than product drifts because the first case affects all future 

predictions while the second case will only affect the predictions of the novel samples.  

 

To detect instrumental drifts the ISO 12099:2017 norm [2] recommends using control charts. 

Samples that span the calibration range and the sources of variability included in the calibration 

model are selected (based on the knowledge of the analyst about the samples or using some 

sample selection method such as Kennard Stone), analysed by reference methods, stored and 

measured periodically. Prediction errors out from the alert limit (generally, 3 × RMSEP), biased 

predictions or an excessive variation in results would indicate changes or degradation of the 

instrument performance. Several calibration transfer methods have been proposed to correct 

instrumental drifts [3]. This topic is outside the scope of this thesis since instrumental drifts 

were not detected during the period in which it was carried out.  

 

To detect product drifts, the knowledge of the analyst about unusual characteristics of the new 

samples can warn that a calibration is about to fail although sometimes the factors that affect 

the predictions are not obvious. Conversely, the calibration model could withstand changes that 

one would initially expect to negatively affect prediction performance. A common practice to 

identify unusual characteristics of the samples is the use of outlier diagnostic measures such as 

Hotelling’s 𝑇2 and 𝑄 residuals. Samples with high 𝑇2 value might have extreme concentrations 

or unusual combinations of concentrations but usually retain the same composition as the 

calibration data while samples with high 𝑄 value are often unique samples with new analytes or 

new variations [4]. Samples with 𝑇2 or 𝑄 values beyond the limits flag extrapolation out of the 

calibration and hence predictions cannot be trusted. If only a small number of samples per batch 
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or season exceed the limits, these samples would be considered outliers and would be analysed 

by the reference method. If the new samples present consistently high 𝑇2 or 𝑄 values beyond 

the limits this would indicate a product drift (i.e., a novel product) as long as a sudden instrument 

malfunction has been discarded through the control charts [3]. There exist different methods to 

adapt the calibration to the new situation avoiding a full recalibration. Among them, model 

updating using new samples to expand the domain is probably the most used [1]. Usually, new 

samples may have new redundant information, so the addition of all the new samples to the 

model is not necessary to account for the new sources of variability. In order to reduce costs 

and effort it is convenient to have a joint strategy to monitor and update the model analysing 

the same selected samples.  

 

Strategies to maintain the calibration models for raw materials and compound feeds have been 

presented [5,6]. In Section 4.2 we apply a strategy to maintain compound feed calibrations that 

consists of including the incoming samples that had 𝑇2 or 𝑄 values beyond the limits [7]. In 

Section 4.3 we show a strategy to select reference samples for updating calibration models used 

in the analysis of pig faeces. Both strategies improve the performance of a calibration model for 

new samples by incorporating new variations into the model, but they are applied differently. 

The first strategy is useful when the samples to be measured arrive successively or in small 

batches while the second is applied when the samples come in large batches.  
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4.2. Maintenance of near-infrared calibration models for 
the nutrient content of compound feeds 
 

Abstract 

  

Monitoring and updating calibration models are common maintenance tasks in analytical 

methods based on near-infrared spectroscopy. This work shows the over time performance of 

PLSR models for key constituents in compound feeds, including crude protein, fat, crude fiber, 

and ash. The dataset used encompasses poultry and swine compound feeds produced over 

multiple years. A strategy involving the addition of outlier samples is applied to periodically 

update the models. The performance of the models was evaluated using new samples from each 

subsequent period. By incorporating samples exhibiting new or extreme sources of variations 

(those with Hotelling’s 𝑇2 and/or 𝑄 residuals exceeding the established limits for these statistics) 

the predictive capability of the crude protein, fat, crude fiber, and ash models for incoming 

samples was enhanced. As a result, with the updated models, the presence of outliers and the 

root mean square error of prediction (RMSEP) decreased. This updating approach was proven 

effective in keeping the prediction errors for crude protein and fat within the limits established 

by the laboratory (RMSEP<8 g/kg and <6 g/kg, respectively). In the case of crude fiber, it took 

a longer time to develop a reliable model (RMSEP<10 g/kg) that accurately predicts incoming 

samples. This was primarily due to the smaller number of samples available with crude fiber 

content compared to the other constituents studied. For the ash model, the improvements made 

through the updating process were insufficient to achieve prediction errors lower than the limits 

set by the laboratory (RMSEP>4 g/kg). One possible explanation is that the information 

captured in the NIR spectra does not sufficiently represent the values of ash. Overall, the 

findings of this study highlighted the importance of regular assessment and optimization of 

calibration models to ensure reliable and accurate results in compound feed analysis 

 

Introduction  

 

Compound feed manufacturers, farms, public or private control laboratories and agri-food 

research centres analyse compound feeds on a routine basis. NIRS determinations are fast and 

cheap and for years they have been replacing wet chemistry methods in the nutritional analysis 
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of agricultural and food products [1]. Before a prediction model is implemented, it must be 

validated. Although validation methods such as cross-validation (CV) can be used, the use of an 

independent subset of the data is preferable [2]. Even if the independent test set is representative 

of future samples, ensuring long-term validation remains challenging due to the influence of 

controlled or uncontrolled factors that can affect samples over time. Therefore, it is very 

important to have strategies to ensure confidence in NIR predictions for incoming samples and 

to take appropriate action in case outliers are detected. One approach to verify that NIR 

measurements fall within an ordinary or expected range of variation, accounting for changes in 

the environment or instrument, is by implementing control charts. The spectra of a reference 

sample is measured over time and its prediction value is controlled [3]. Prediction errors out 

from the alert limit (generally, 3 × RMSEP), biased predictions or an excessive variation in 

results indicate the presence of unusual variability in the NIR measurements. Another situation 

concerns when an unknown sample is predicted and its model diagnostic measures (Hotelling’s 

𝑇2, 𝑄 residuals or similar) warn that it is not within the limits of the calibration model [4]. High 

𝑇2 samples have the same directions of variation as the calibration samples although more 

extreme, whereas high 𝑄 samples exhibit new variations. Samples with higher values of these 

statistics than the model confidence limits are identified as spectral outliers, and therefore they 

cannot be predicted with the validated model [5]. These samples should be analysed by reference 

methods and can be added to the calibration model to expand the multivariate calibration space. 

This strategy can enhance the predictive ability of the model for samples with new variations 

[6,7]. Depending on the number of samples and sources of variability covered by the model and 

the possible variability of the incoming samples, more effort will be required to add samples 

until a stable calibration (few outliers and accurate predictions for future samples) is achieved.  

 

This study presents the over time performance of partial least squares regression (PLSR) models 

for key constituents in compound feeds, namely crude protein (CP), fat, crude fiber (CF), and 

ash. The dataset used in this study consists of swine and poultry compound feeds produced 

over multiple years. The effectiveness of a model maintenance strategy involving the addition 

of outlying samples is applied periodically to update the models. The efficacy of this strategy is 

compared across the four constituents mentioned. 
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Materials and methods  

 

Samples 

 

The dataset used contained historical data of compound feed samples for swine and poultry 

produced from 2018 to 2021 in the Institute of Agrifood Research and Technology (IRTA, 

Cosntanti, Spain). All the samples were analysed by reference methods. CP, fat, CF and ash were 

determined according to the AOAC, 2016 methods 925.09, 968.06, 978.10, 942.05 respectively 

[8]. For the four parameters studied in this work the standard error of the laboratory (SEL) was 

as follows: CP (4 g/kg), fat (3 g/kg), CF (5 g/kg) and ash (2 g/kg). The spectrum of 

approximately 100 grams of sample was measured on a NIRS DS2500 (Foss NIR Systems, 

Denmark) with a 10.2 cm diameter cup in reflectance mode from 800 to 2499.5 nm every 0.5 

nm. 

 

To compare the performance of calibration models over time without and with maintenance 

the dataset was split. Initial models were developed using only the samples produced in 2018. 

The remaining samples, those produced in 2019, 2020 and 2021, were treated as incoming 

samples. We decided that two stages of maintenance per year would be appropriate considering 

the rate of compound feed production per year (around 500 samples). Therefore, the samples 

produced each year were split into two halves in the order they were produced so there were 6 

sets of incoming samples: 2019a, 2019b, 2020a, 2020b, 2021a and 2021b. We retain the order 

in which the samples were produced to examine the impact of emergent variations on prediction 

performance. In the Supplementary Material the descriptive statistics of CP, fat, CF and ash for 

each dataset are shown (Table S1-4). 

 

Initial models 

 

Partial least squares regression (PLSR) was used to develop the initial calibration models for CP, 

fat, CF and ash using the samples produced in 2018. Common spectral pretreatments were 

tested including normalization, standard normal variate (SNV) [9] multiplicative scatter 

correction (MSC) [10] and 1st and 2nd order derivatives [11] using different window widths. A 

five-fold venetian blind cross validation was used to choose the optimal number of latent 

variables (LVs) for the models. Samples were labelled as reference outliers and removed from 
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the calibration set when their prediction error of cross validation was higher than 3 times the 

RMSECV of the calibration set. 

 

PLS toolbox software (2016, Eigenvector Research, Inc., Manson, WA, USA) running in Matlab 

R2020a (The MathWorks Inc., Natick, MA, USA) was used for the development of the 

prediction models and all the chemometric treatments. 

 

Performance of calibration models without maintenance 

 

The 6 sets of incoming samples (2019a, 2019b, 2020a, 2020b, 2021a and 2021b) were predicted 

with the initial prediction models. The coefficient of determination of calibration (𝑅𝐶
2) and cross-

validation (𝑅𝐶𝑉
2 ) and the root mean square error of calibration (RMSEC) and cross-validation 

(RMSECV) of the initial models were compared with the coefficient of determination of 

prediction (𝑅𝑃
2) and the root mean square error of prediction (RMSEP) for each set of incoming 

samples. The percentage of spectral outliers found for each dataset was also computed but 

spectral outliers were not removed in order to calculate 𝑅𝑃
2 and RMSEP. The samples considered 

spectral outliers were those that had 𝑇2 and/or 𝑄 values greater than 𝑇𝑙𝑖𝑚
2  and/or 𝑄𝑙𝑖𝑚. The 

limits were calculated as the 95% confidence interval for 𝑇2and 𝑄 based on the calibration data. 

It should be considered that 𝑇2 and 𝑄 are reported in units which are sensitive to the number 

of samples, factors and preprocessing. Therefore, in order to compare values reported by 

different models and setting a standard alarm level for all the models, the statistics were 

normalized by dividing them by the confidence limit at 95% for each model [12]. Hence, 

samples with 𝑇2 reduced and/or 𝑄 reduced values higher than 1 were considered spectral 

outliers. 

 

Maintenance strategy 

 

The set of incoming samples from the first half of 2019 (dataset 2019a) was predicted with the 

initial model. The spectral outliers found in the dataset were considered as indicators of 

variability sources not adequately represented by the initial model. The update consisted of 

developing a new model since the beginning including these samples in the initial dataset. This 

means that the selection of the pretreatment, the selection of the number of latent variables and 

the deletion of reference outliers was revaluated. New values of 𝑅𝐶
2, RMSEC, 𝑅𝐶𝑉

2  and RMSECV 
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were computed. After the first update, the updated model was used to predict the next incoming 

samples, that is those from the second half of 2019 (dataset 2019b) and the spectral outlying 

samples from these period were used to update the model for second time. The procedure was 

repeated with the samples from 2020 (datasets 2020a and 2020b) and 2021 (datasets 2021a and 

2021b). When each dataset was predicted the 𝑅𝑃
2, the RMSEP and the percentage of outliers 

were computed and compared with those provided when the models are not maintained.  

 

In a real scenario with incoming samples, as the reference values are not known the flow 

followed to maintain the models would be the shown in Figure 1. This strategy is similar to the 

proposal by Setarehdan et al. 2002 [6] with the difference that we used the PLS score space 

instead of the PCA score space to detect the outliers. According to Dardenne 2010 [13] the PLS 

score space is better than PCA score space to study if a certain model is suitable for the predicted 

samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Block diagram of the maintenance strategy.  

Original calibration data  

Obtain reference 
value and add to 

the calibration set 

Obtain the NIR spectrum of the next 

sample in the sequence  

Project the new spectrum onto the PLS 
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2

 and 𝑄𝑛𝑒𝑤 

Build PLSR model. Optimize data 
preprocessing and number of latent 

variables. Calculate 𝑇𝑙𝑖𝑚
2  and 𝑄𝑙𝑖𝑚 

 

No Yes Is 𝑇𝑛𝑒𝑤
2 < 𝑇𝑙𝑖𝑚

2  
and/or 𝑄𝑛𝑒𝑤<𝑄𝑙𝑖𝑚? 
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Results and discussion  

  

Initial models 

 

Table 1 shows the performance statistics of the initial PLSR models for CP, fat, CF, and ash in 

compound feeds. These models were developed with the samples from 2018 and included 

approximately 160 samples for CP, fat and ash and 70 for CF. The models involved 14 latent 

variables for CP, 6 for fat, 7 for CF and 16 for ash as determined by cross-validation. Overall, 

the models performed well attending to their high 𝑅cv
2  (>0.90) and the fact that the RMSECV 

were within two times the SEL [14]. 

 

Table 1. Characteristics of the initial and updated calibration models developed for crude protein, fat, crude fibre 
and ash. Initial models were developed with the 2018 dataset. The statistics of prediction are shown for the 2021b 
dataset. Updated models in addition to the 2018 samples include also the added samples from the datasets 2019a, 
2019b, 2020a, 2020b and 2021a. Number of samples used for calibration (𝑁𝑐) and prediction (𝑁𝑉). Optimal 
pretreatment: multiplicative scatter correction (MSC), standard normal variate (SNV), derivative (d) and derivative 

window width in brackets. Number of latent variables (LV). Coefficient of determination of calibration (𝑅C
2), cross-

validation (𝑅CV
2 ) and prediction (𝑅p

2). Root mean square error of calibration (RMSEC), cross-validation (RMSECV) 

and prediction (RMSEP). Percentage of outliers in the prediction set.  

 

 

Performance of calibration models without maintenance 

 

Figure 2 shows the performance of the CP model over time in the absence of maintenance. 

Similar behaviour was observed for the other constituents predicted (fat, CF and ash). Since the 

beginning (prediction of dataset 2019a) a lack of model robustness was evident. The RMSEP 

was three times the RMSEC and nearly two times the RMSECV although it remained below 

two times the SEL.  

 

 Crude protein Fat  Crude fibre Ash  

Initial Updated  Initial Updated  Initial Updated  Initial   Updated  

𝑁𝑐  161 541 160 447 66 263 154 537 

𝑁𝑣  263 263 230 230 86 86 235 235 

Pretreatment 
MSC 1d 

(31) 
SNV 1d 

(15) 
SNV 1d 

(15) 
SNV 2d 

(15) 
SNV 1d 

(15) 
SNV 1d 

(15) 
1d (31) 1d (31) 

LV 14 16 6 12 7 8 16 16 

𝑅c
2  0.99 0.98 0.97 0.98 0.98 0.88 0.98 0.89 

RMSEC (g/kg) 2.0 3.7 2.7 2.4 2.4 4.4 1.1 2.5 

𝑅cv
2   0.98 0.97 0.96 0.97 0.95 0.86 0.93 0.84 

RMSECV (g/kg) 3.7 4.6 3.1 2.9 3.8 4.9 2.0 3.0 

𝑅p
2  0.84 0.96 0.86 0.97 0.45 0.89 0.37 0.52 

RMSEP (g/kg) 9.0 4.4 6.8 3.3 11.6 5.3 6.2 4.1 

Outliers (%) 94 11 76 20 33 13 93 27 
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Figure 2. Performance of the CP original model with new data set recorded in different years. Root mean square 
error of calibration (blue bar), cross-validation (orange bar) and prediction (yellow bar). Percentage of outliers 
(purple circle) for the predicted dataset.  
 

 
The RMSEC and the RMSECV gave an over-optimistic idea of the actual performance of the 

model. Although the samples are different, they may have some common aspects during a 

specified period. For example, compound feeds that have been made from the same batch of 

soybean meal, or the fact that some of the compound feed samples were ground, treated, and 

measured on the same day by the same operator. Or a more extreme case: compound feeds that 

are produced for an in-vivo assay whose objective is the evaluation of an additive and therefore 

are very similar in ingredients and nutrient composition. The spectral information carried by the 

samples is not completely independent of each other. Therefore, when cross-validation is 

performed, some predicted samples have a spectrum similar to that of some calibration samples, 

and consequently the prediction error is low. The presence of similarity among the calibration 

samples also impacts the robustness of the model. Although having more than 150 samples 

(such as CP, fat, and ash) is typically considered a sufficient amount of samples for calibration 

development, if many of them share information, it is more likely that future samples will 

introduce sources of variability unknown to the model. This is revealed by the high percentage 
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of samples (64%) that were identified as outliers during the prediction of the 2019a dataset 

because they fell outside 𝑇𝑙𝑖𝑚
2  and/or 𝑄𝑙𝑖𝑚 (Figure 3). Logically, the RMSEP and the percentage 

of outliers increased over time since as time passes the samples that are produced have less in 

common with the calibration samples. From 2020, the RMSEP is higher than two times the 

SEL and therefore the model would be useless.  

 

Figure 3. Q residuals reduced versus Hotelling’s 𝑇2. Samples from the 2019a dataset that stayed within the limits 
at 95% of confidence when they were predicted with the original model (blue). Samples that fell out (red). 

 

Maintenance strategy 

 

The presented strategy was applied to update the models. Each semester the models were 

updated by adding the samples that were considered outliers by the previous model during this 

period. Figure 4 shows how the CP model predicts incoming samples after successive updates. 

Similar behaviour was observed for the other constituents predicted (fat, CF and ash). The 

spectral outliers and the RMSEP decreased with the updates while the RMSEC and the 

RMSECV of the updated models increased. This pattern was already observed by Dardenne et 

al. 2000 [15] when samples from new harvests (all the available samples) were used to update 

PLSR models for CP, CF, starch and organic matter in plant maize samples. Each time new 

sources of variability are included, the PLSR model forces the spectral projection of the analyte 

to be orthogonal to this new variability. Therefore, the net analyte signal decreases leading to 

higher uncertainty [16]. At the same time, the inclusion of emerging sources of variability allows 

for better recognition of newer samples, resulting in fewer spectral outliers and improved 
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predictions for these samples. Calibration models can be considered stable when the RMSEP 

values are close to the corresponding SECV and SEC values as happens for CP after the last 

update (2021a).  

 

 

 

Figure 4. Performance of the successive models after following the model maintenance strategy. Root mean square 
error of calibration (blue bar) and cross-validation (orange bar) of the model and prediction of the test set 
corresponding to the next dataset (yellow bar). Percentage of outliers (purple circle) for the predicted dataset.  

 

Figure 5.A shows the predicted CP content of dataset 2021b with the initial model and Figure 

5.B with the updated model against the reference values, highlighting the importance and 

efficacy of following the maintenance strategy. These results agree with Schoot et al. 2021 [7] 

who also demonstrated that adding only the samples with new variations (those that can be 

considered outliers) the improvement and future performance of the updated models is similar 

to the performance of models updated by adding all the available samples. Therefore, the 

presented strategy can be considered much more cost-effective since only a reduced number of 

samples (and as has been shown, decreasing over time) must be analysed by reference methods 

and used to update the models. 

 

2019a 
2019b 

2020a 

2020b 

2021a 

2021b 
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Figure 5. Predicted vs measured values of CP content for the samples of the 2021b dataset. A) Using the original 

model. B) Using the model updated following the model maintenance strategy.  

 

Table 1 displays the performance of the models in the prediction of incoming samples before 

and after being updated following the proposed strategy. The statistics for prediction 𝑅𝑃
2, 

RMSEP and Outliers (%) were calculated for the furthest dataset (2021b). CF was the model 

that most improved after the successive updates since it was the model that included initially 

less samples and hence was less robust than the others. All the models except the one for ash 

become stable reaching low RMSEP values similar to the RMSEC and the RMSECV. Ash does 

not have characteristic NIR absorption bands and it is predicted indirectly thanks to correlation 

between mineral material and organic components which form salts that affect the hydrogen 

bonds in the samples [17]. The use of models based partially or totally in indirect relationships 

easily fails if the correlation structures of new samples do not match the ones exhibited by the 

calibration samples [18]. To obtain accurate predictions of ash the other constituents must also 

be present in the sample and in the same concentration ratios as in the training set. We obtained 

very good R2 and RMSE for calibration and cross-validation for the initial model because the 

samples of 2018 were quite similar but the accuracy in the prediction of new samples was very 

poor. Without update, ash model predicted much worse new samples (RMSECV=2.0 g/kg and 

RMSEP=6.2 g/kg) than CP model (RMSECV=3.7 g/kg and RMSEP=9.0 g/kg) and fat model 

(RMSECV=3.1 g/kg and RMSEP=6.8 g/kg) including all of them a similar number of samples. 

The increase of the RMSEC (1.1 g/kg to 2.5 g/kg) and RMSECV (2.0 g/kg to 3.0 g/kg) due to 

the update was also more pronounced for the ash model. Samples having different correlation 

A) 
B) 
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structures are likely to be predicted with large errors and when included in the model, contribute 

to breaking the covariance between ash and organics in the calibration set samples. This 

provides more robustness to the model because now it is not necessary to have a rigid covariance 

structure to predict properly the new samples. However, at the same time the accuracy of the 

model is reduced considerably because precisely this correlation was exploited by the model to 

predict ash. It is not possible to predict an analyte if it does not absorb and no correlations exist 

in the calibration samples.  

 

Another aspect that critically affects the performance of the models over time is the number of 

latent variables. Models with many LVs predict well samples similar to those of the calibration 

set but tend to be brittle, and predictions suffer considerably even when samples have minimal 

changes. In comparison, models with fewer LVs tend to predict less well the samples that are 

similar to the calibration samples but are more robust to new samples with slightly different 

characteristics [5]. The initial CP model involved 14 LVs while the fat model that was developed 

with a similar number of samples involved only 6 LVs. In the case of CP, the RMSEP for the 

dataset 2021b was four and a half times the RMSEC of the initial model (0.90% against 0.20%) 

while in the fat case, the RMSEP was less than three times the RMSEC (0.27% against 0.68%). 

The percentage of outliers found for each model was very different, while for CP the 94% of 

the samples of the 2021b dataset were detected as outliers, for fat only the 33% was detected. 

After the update, the model for CP involved 2 LVs more and the model of fat 6 LVs more. As 

the CP model initially involved many LVs, the new variance carried by the incoming samples 

can be partially distributed over them and not many additional LVs were needed. Note that the 

optimal pretreatments have also changed after the update for these two models. Scoot et al. 

2020 [19] proved that a chosen pretreatment can be suboptimal after the introduction of a new 

variation to the calibration data.  

 

Conclusions 

 

In this work, it was shown how prediction models for compound feeds do not predict well 

samples with new sources of variability, as is the case of samples from upcoming years. The 

addition of these samples improved the predictive ability for new samples of the crude protein, 

fat, crude fibre and ash models. Over time, as the size of the calibration dataset increased and 

more variability was included in the models, the number of new samples with unmodelled 
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variations decreased resulting in fewer and fewer samples that needed to be analyzed with the 

reference method. With the model maintenance strategy the crude protein and fat errors 

obtained for new samples were always adequate. In the case of crude fibre, it took longer to 

develop a stable model that predicted well new samples due to the fact that the initial model 

very limited and had been developed with fewer samples. The model for ash, probably due to 

the fact that ash is predicted indirectly from the spectrum could not achieve prediction errors 

below the limits imposed by the laboratory during the studied period. 
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Supplementary material 

 

Table S1. Descriptive statistics of the datasets for crude protein. Number of samples (N), mean, standard 

deviation (SD), minimum (Min) and maximum (Max). 

 N Mean (g/kg) SD (g/kg) Min (g/kg) Max (g/kg) 

2018 161 199 25 138 272 

2019a 123 211 23 170 279 

2019b 124 198 28 123 253 

2020a 272 199 23 137 271 

2020b 274 196 27 126 279 

2021a 262 192 23 126 282 

2021b 263 187 22 126 225 

 

Table S2. Descriptive statistics of the datasets for fat. Number of samples (N), mean, standard deviation (SD), 

minimum (Min) and maximum (Max). 

 

Table S3. Descriptive statistics of the datasets for crude fibre. Number of samples (N), mean, standard deviation 

(SD), minimum (Min) and maximum (Max). 

 

Table S4. Descriptive statistics of the datasets for ash. Number of samples (N), mean, standard deviation (SD), 

minimum (Min) and maximum (Max). 

 

 

 

 N Mean (g/kg) SD (g/kg) Min (g/kg) Max (g/kg) 

2018 160 57 15 18 85 

2019a 119 58 15 32 98 

2019b 120 55 18 18 102 

2020a 231 58 15 19 82 

2020b 232 57 14 21 100 

2021a 228 60 14 22 101 

2021b 230 50 12 20 77 

 N Mean (g/kg) SD (g/kg) Min (g/kg) Max (g/kg) 

2018 66 36 17 22 75 

2019a 41 32 6 19 44 

2019b 43 42 12 23 63 

2020a 84 40 14 21 77 

2020b 86 35 11 20 77 

2021a 85 36 10 24 75 

2021b 86 37 6 24 54 

 N Mean (g/kg) SD (g/kg) Min (g/kg) Max (g/kg) 

2018 124 56 8 40 78 

2019a 112 55 7 44 74 

2019b 114 54 4 45 63 

2020a 217 51 5 33 66 

2020b 218 53 7 38 74 

2021a 233 62 6 40 77 

2021b 235 48 5 38 62 
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Abstract 

 

Monitoring and updating calibration models are common tasks when analytical methods are 

based on near-infrared spectroscopy. This work describes a situation in which a PLS calibration 

model that is used routinely for the determination of phosphorus content in pig faeces in 

digestibility studies had to be updated in order to be used with the faeces collected in a new trial 

with phytases. An approach based on D-optimality is presented that selects a reduced number 

of the new samples to be analysed with the reference analytical method so that the small set is 

used to confirm the need to update the model and validate it. The rest of the new samples that 

had not been selected by the algorithm were accurately predicted with the updated model. The 

updated model maintained its previous performance for the samples in the validation set (an 

RMSEP of 1.58 g kg-1 compared with an RMSEP of 1.54 g kg-1 before the update) and the 

prediction error for the new samples was RMSECV = 1.95 g kg-1, much lower than the RMSEP 

= 11.38 g kg-1 obtained before the model update. In addition, the predictive ability of the 

updated PLS model was significantly better than updated models selecting the reduced dataset 

using other sample selection methods such as Kennard-Stone, a leverage-based selection 

method and random selection. 
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Introduction 

 

Animal nutrition research is a wide field aimed at the efficient and sustainable production of 

food. A large branch of animal nutrition research is devoted to finding optimal formulations for 

the diets of farm animals at the different growth stages and understanding how the ingredients 

interact and enhance nutrient digestibility. This valuable information is obtained in in-vivo trials 

in which ingredients, feeds and faeces must be analysed. Over the years, the traditional time-

consuming analytical methods used to analyse these samples have been replaced by rapid, 

reagent-free, waste-free determinations based on near-infrared spectroscopy (NIRS) and 

multivariate calibration. These models have been shown to predict accurately the nutritional 

content of a variety of ingredients [1-4], feeds [5,6] and faeces [7,8] so NIRS is now widely used, 

not only in animal research but also as a routine analytical technique and legal feed labelling by 

feed producers in the agri-food sector. 

 

To provide accurate predictions, NIRS-based models must be trained on representative samples 

for which the reference parameters have been determined with validated analytical methods, 

usually official methods. This is the longest part of method development since it involves 

collecting and analysing samples from different sources, over long periods of time until all 

probable future sources of spectral variations have been taken into account. In the feed-

production sector, for example, this implies including different raw materials from different 

origins, from various harvests and stored in a variety of conditions. Since model predictions are 

only reliable for samples obtained under the same conditions (within the limits) as the samples 

from the calibration set, the performance of these models must be monitored to uncover 

unmodelled spectral variability. If it exists, then the model must be adapted to the new situation. 

To do that, a lot of calibration transfer or domain adaptation methods have been proposed in 

the literature [9,10]. Among them, the present study focuses on model update with new samples 

to expand the domain [10,11]. How often an update is needed depends on how universal the 

model is. It is less frequent in feed production facilities, which use stable sources of raw 

materials, than in animal research studies, where new combinations of ingredients are regularly 
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being tested. This work describes an example of the latter, in which NIRS-based multivariate 

models are used to predict organic matter, crude protein, fat, neutral detergent fibre, acid 

detergent fibre and phosphorus in pig faeces during digestibility studies carried out at the 

Institute of Agrifood Research and Technology (IRTA) in Constantí, Tarragona, Spain. The 

composition of the studied faeces depends on the weight, age, and genetic background of the 

animal [12] but especially on the type and digestibility of the diet. Therefore, it is not uncommon 

for faeces spectra from a new digestibility trial to show variations not recognized by the current 

model. If that were the case, the model would produce unreliable predictions for these samples 

and therefore they would have to be analysed with the slower analytical method. Alternatively, 

one wishes not to analyse the whole batch of samples but just a reduced representative number 

of them. This subset would be then used to update the calibration model so that the new model 

can be used to predict the rest of the batch as well as all future samples of the same type. 

 

The selection of representative samples is a recurrent topic in the NIRS literature, ranging from 

dividing a dataset into training, validation and test sets [13], to selecting a subset of samples for 

model transfer between instruments or in new conditions [14], as well as the selection of samples 

for updating running models [11]. This work focuses on the latter case. The simplest selection 

method in model updating is to randomly select samples from the new batch. While this method 

is statistically sound, the main drawback is that the selected subset may not expand to the limits 

of the new spectral domain. Hence, some of the samples to be predicted may still appear 

extreme to the updated model, leading to extrapolation problems [15]. To better ensure the 

representativeness of the selected subset and the coverage of the spectral domain, the selection 

can be made with specific algorithms.  

 

Algorithms can be grouped into those that make use of the spectra (X) and the reference values 

(y) and those that only use the spectra. Sample set partitioning based on the joint X-y distances 

(SPXY) is an example of the first group [16]. This algorithm has been shown to select more 

representative subsets than those based solely on the spectra [17]. Other examples are the 

successive projections algorithm (SPA) [18] and the reference value (YR)-based sample selection 

algorithm [19]. The main drawback of these algorithms is that they require analysing all the new 

samples with the reference method. This means that the updated model will only be useful for 

future samples but the batch that just arrived cannot benefit from the update. A more interesting 

approach is to select samples based on the spectra only, which is particularly useful when the 

new batch is large. Once the outlier diagnostics have warned about the likely inaccuracy of the 
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predictions, a few of these samples are selected based on their spectra, are analysed by the 

reference method and are used to update the model. The updated model can be then used to 

predict the rest of the batch. A variety of algorithms can select the samples based solely on the 

spectra. Two popular ones are the Kennard-Stone [20] and the duplex [21] algorithms that try 

to uniformly cover the multidimensional spectral space by selecting the samples with the 

maximum distance (commonly Euclidean distance or Mahalanobis distance) between the 

selected samples.  Other algorithms are those based on leverage or Mahalanobis distance [22,23]. 

More recently, Xu et al. [24] proposed to use the simple interval calculation (SIC) leverage as 

the criterion and Chen et al. [25] developed an algorithm based on isolation forests for outlier 

detection and subset selection (IOS).  

 

The cited algorithms rank the samples by their importance but there is no criterion that indicates 

what is a sufficient number of samples. An optimal subset size can be provided by criteria from 

the field of optimal design of experiments. To decide optimal sets of experimental conditions, 

criteria such as the D-criterion, the G-efficiency criterion and the A-criterion [26] provide 

optimal sets on the basis of Multiple Linear Regression (MLR) models. Ferré and Rius used the 

D-optimality criterion to select samples based on their spectra for different types of 

spectroscopies [27,28]. In their work, the samples were selected from an initial set for building 

a model, but not to update an existing one.  

 

This work presents as a case study the selection of samples for the updating of a partial least 

squares (PLS) model for the prediction of phosphorus content in pig faeces from their NIR 

spectra. The need arose when the spectra of the pig faeces from a new digestibility trial were 

flagged as outliers for the running model. Thus, a reduced subset of samples from the new trial 

was selected, analysed with the reference method and used to update the model. The sample 

selection approach is inspired by the D-optimality criterion used in optimal experimental design. 

Its performance is compared with that of random selection, the Kennard-Stone algorithm and 

based on the leverage.  

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



193 

 

Materials and methods 

 

Samples 

 

The existing model for phosphorus content in pig faeces was built with pig faeces samples 

collected during digestibility studies from 2018 to 2020 at the Institute of Agrifood Research 

and Technology (IRTA) in Constantí, Spain. The faeces samples were lyophilized, ground and 

stored in sealed bags in the refrigerator until analysis. Phosphorus content (expressed as g kg-1 

related to raw product) was determined by UV-VIS spectroscopy using molybdovanadate 

reagent according to AOAC Official Method 965.17 [29]. The spectrum of approximately 30 

grams of sample was measured on a NIRS DS2500 (Foss NIR Systems, Denmark) with a 7 cm 

diameter cup in reflectance mode from 800 to 2499.5 nm every 0.5 nm. The data set was 

randomly divided into 246 training samples and 83 validation samples that were used to develop 

the model running in the laboratory. In 2021, a new batch of 103 samples was collected in a 

digestibility study that investigated the efficacy of different phytases on the performance of 

weaned piglets fed with a complex diet based on wheat-corn and soybean meal. The 

determination of phosphorus in these samples from their spectra using the existing calibration 

model produced outlier detection warnings and hence, an update of the current model was 

required. For this process, the phosphorus content in some selected samples of the new batch 

was needed. This was found with the reference method for phosphorus content mentioned 

above.  

 

Data analysis 

 

Partial least squares regression (PLSR) was used to develop the calibration model for 

phosphorus content. The spectra were pretreated with Savitzky–Golay first derivative 

interpolating with a second-order polynomial and a window width of 17 points [30] and mean-

centered. A five-fold venetian blind cross validation was used to choose the optimal number of 

latent variables (LVs) for the model. PLS toolbox software (2016, Eigenvector Research, Inc., 

Manson, WA, USA) running in Matlab R2020a (The MathWorks Inc., Natick, MA, USA) was 

used to develop the calibration models. The Fedorov algorithm used for sample selection was 

programmed in-house.  
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Selection of samples for model updating 

 

D-optimality is a numerical criterion used in the field of optimal experimental design that defines 

the quality of an experimental design. Standard experimental designs, such as the full factorial 

design, are D-optimal. D-optimality is also used to create experimental designs when the 

experimental domain is irregular, in which case an algorithm such as Fedorov’s algorithm [31] 

or genetic algorithms [32] is used to choose from a list of candidate examples which ones should 

be selected, under the criterion that they should maximize the determinant of the information 

matrix in an MLR model. In the context of multivariate calibration, this idea was used to select 

subsets of calibration samples to obtain models using fewer samples. It was found to perform 

as well as or even better than Kennard-Stone algorithm or random sampling [28,33,34]. 

Different from the Kennard–Stone algorithm, which seeks to maximize the distance between 

the selected samples to uniformly cover the calibration domain, the samples selected with the 

D-optimal criterion tend to be located at the edges of the domain in lineal models where the 

most influential samples are found.D-optimality is also used in experimental design to repair 

designs when some of the planned experiments cannot be executed, or the domain must be 

extended. In that case, the algorithm searches which examples from a list of candidates should 

be added to the existing ones in order to maximize the determinant of the information matrix. 

This use of D-optimality is exploited in this work, where a procedure using Fedorov’s algorithm 

is presented. This algorithm will be used to find which samples from an external trial should be 

added to the existing calibration set to update the original PLS model. 

 

For a working PLS model, let 𝐓 be the 𝑁 × 𝑃 matrix of scores of the calibration samples where 

each row corresponds to a calibration sample and each column corresponds to a latent variable 

of the model. Let 𝐓B be 𝐼 × 𝑃 matrix of the scores of the new batch of samples projected onto 

the latent variable space of the current model. These samples are candidates to being analysed 

and used for model updating. The algorithm starts by creating the matrix 𝐓𝑛 by randomly 

selecting 𝑛 rows of 𝐓B. Then, the determinant Det(𝐓E 
T𝐓E)  is evaluated, where 𝐓E is the matrix 

[
𝐓
𝐓𝑛

] and T indicates transpose. Next, one of the rows of 𝐓𝑛 is exchanged for one of the 

remaining rows of 𝐓B so that the determinant increases as much as possible. The exchanged 

rows are decided following Fedorov’s algorithm to find D-optimal subsets and can be found 

elsewhere [26-28]. This step is repeated iteratively until the determinant no longer improves. 

Since the algorithm can find local maxima, it can be restarted multiple times with a new random 
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set of samples 𝐓𝑛 and the set of 𝑛 samples with the largest determinant is kept as optimal. The 

whole procedure is then repeated to select subsets with a different number of samples 𝑛  and 

the one with a maximum Det ( 
𝐓E 

T𝐓E

𝑛+𝑁
 )

1

𝑃
, which is a measure of the information content per 

sample, is finally selected as the optimal subset to be used for updating the model.   

 

Results and discussion 

 

Detecting the need for model updating 

 

At IRTA, a PLSR model was used to predict the phosphorus content in faeces. Table 1 shows 

the performance measures for this model. The model involved 14 LVs as determined by cross-

validation. This relatively high number was attributed to the fact that the training set included 

faeces from diverse research studies from 2018 to 2020, which involved different diets fed to 

pigs of different ages, sexes and weights. Also notice that different from other nutrients such as 

protein or fat, phosphorus does not present specific absorption bands in the studied spectral 

range. Its prediction is possible thanks to the correlations between this constituent and the 

absorbance of some organic molecules of the sample such as phytate that it is abundant in plant 

materials and hence in pig diets and faeces. This makes the prediction of phosphorus usually 

less accurate than the predictions for main nutrients that have stronger contributions in NIRS. 

Overall, the model performed well with a coefficient of determination of prediction (𝑅𝑝
2) of 0.94 

and a root mean square error of prediction (RMSEP) of 1.54 g kg-1 for the validation set. Thus, 

the model was considered valid for routine use. The routine use of the model included checking 

the sum of squares of the spectral residuals (Q-residuals) and the leverage of the new samples 

to be predicted [35]. These are common diagnostics to flag unmodeled spectral variability in the 

new spectra. Q-residuals and/or leverage larger than those of the training and validation samples 

warn of unreliable predictions. The detected outliers can be the result of erroneous 

measurements but can also indicate unique samples. The analyst’s decision on how to proceed 

next depends on knowledge about the unusual characteristics of the new samples and whether 

they are occasional (so they should simply be analysed with the reference method) or whether 

more samples of the same type are likely to arrive in the future, in which case it may be worth 

updating the model [36].   
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Table 1. Characteristics of the previous and updated calibration models developed for phosphorus content in pig 
faeces (g·kg-1). Number of samples used for calibration (𝑁𝑐) and validation (𝑁𝑣), number of P704 trial samples in 
the D-optimal selected subset (𝑁D−sel), number of samples used to validate the methodology (𝑁𝐷−val), number of 
latent variables (LV), coefficient of determination of calibration (𝑅c

2) and prediction (𝑅p
2), root mean square error 

of calibration (RMSEC) and prediction (RMSEP), bias and slope of the predicted vs measured regression line,  root 
mean square error of prediction of the P704 samples included in the subset (𝑅𝑀𝑆𝐸𝑃D−sel) and used to validate the 
methodology (𝑅𝑀𝑆𝐸𝑃D−val). 

 

1 RMSECV calculated from the cross-validation results that considered only the prediction errors of the P704 
samples in the subset.  

 

In this work, a new batch of pig faeces came from a trial coded P704 that tested a complex diet 

with ingredients that had not been used before. This included rapeseed meal, rice bran and 

sunflower seeds, but also different phytases, which could affect the digestion of the nutrients in 

the feed, mainly phosphorus digestion. Therefore, it was likely that the faeces from this trial 

could be outliers for the current model for phosphorus content. As expected, the faeces spectra 

had significant differences in signal intensity from those used to train and validate the PLS 

model (Figure 1).  

 

 
Figure 1. Mean spectrum (after 1stderivative) of the calibration and validation sets, and that of the new batch of 
samples.  

 Previous model Updated model 

𝑁𝑐  246 271 

𝑁𝑣  83 83 

𝑁D−sel  25 25 

𝑁𝐷−val  78 78 

LV 14 14 

𝑅c
2  0.95 0.93 

RMSEC (g·kg-1) 1.45 1.63 

𝑅p
2  0.94 0.93 

RMSEP (g·kg-1) 1.54 1.58 

Bias 0.24 0.25 

Slope 0.96 0.96 

𝑅𝑀𝑆𝐸𝑃D−sel (g·kg-1) 11.38 1.95 1 

𝑅𝑀𝑆𝐸𝑃D−val (g·kg-1) 10.45 1.66 
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In addition, the entire batch was positioned in the upper right quadrant of the Q-residuals versus 

leverage plot (Figure 2). The unmodeled variability in the new spectra could lead to large errors 

in the predicted phosphorus content. Note that although limits for the leverage and Q-residuals 

can be defined from the training and validation data [35,37], in this case visual inspection of this 

plot was sufficient to reveal the abnormal behavior of the new batch.  

 

 
Figure 2. Q-residuals versus leverage. Calibration samples of the stablished models (blue), validation samples of 
the stablished models (orange) and samples of the new batch (red). 

 

The expected large errors were confirmed by analyzing a subset of the samples of trial P704 

with the reference method. As expected, (Figure 3), the errors were unacceptably large, with an 

RMSEP of 11.38 g kg-1, much higher than the 1.54 g kg-1 that had been accepted for the current 

model.  

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3. Predicted vs measured values of phosphorus content with the current model for the calibration set, 
validation set, the selected samples of Trial P704 and the non-selected samples of Trial P704. 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



198 

 

Since more digestibility studies of the same type were expected in the future, it was more 

convenient to update the model than to exceptionally analyse all the new batch of samples with 

the reference method. Therefore, those same selected samples that had been used to confirm 

that the predictions errors for this batch were unacceptable, were also used to update the model. 

The following sections describe the selection of the subset of samples to be analysed and the 

validation of the updated model. 

 

Subset selection 

 

Once the leverage vs Q-residuals plot flagged all 103 samples of trial P704 as outliers, the model 

scores (𝐓) and the scores of the new trial spectra (𝐓B) were submitted to the selection algorithm 

to select which samples should be analysed with the reference method. The algorithm returned 

the subsets of size 𝑛 =1,…103 that maximized Det ( 
𝐓E 

T𝐓E

𝑛+𝑁
 )

1

𝑃
. Although subsets with very low 𝑛 

are expected to be useless, they serve to understand the evolution of the optimization criterion 

when 𝑛 varies. Figure 4 shows the value of this determinant against the number of samples in 

the subset 𝑛.  

 

 
Figure 4. Number of selected samples used to update the model against the D-criterion. Root mean square error 
of prediction (RMSEP) of the non-selected samples of trial P704. 

 
The large increase in the determinant on the left of the graph indicates that the subsets with low 

𝑛 incorporate informative samples that can improve the model. Adding more samples continues 

to increase the information content of the subset, but the improvement is less and less because 
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the newly selected samples were less unique (that is, their spectra were like the spectra of the 

already selected samples). A plateau is reached for subsets containing 20 to 30 samples, obtaining 

the maximum determinant for all subset sizes with the 25-sample subset. For subsets of more 

than 25 samples, the additional samples did not contribute significant new information per 

sample and the determinant begins to decrease. Therefore, those samples in the subset of 25 

were the most informative and were analysed with the reference method. They were first used 

to confirm the need to update the model (as discussed in the previous section) and to update 

the model.   

 

Model update and validation 

 

The model was recalculated by adding the 25 selected samples from the trial P704 into the 

existing training set. The optimal number of LVs obtained by cross-validation was 14, as in the 

original model. The fact that the inclusion of new sources of spectral variance did not increase 

the number of LVs means that the variance was distributed over the many LVs of the model. 

A similar behavior had been observed by Capron et al. [11], who noted that only one out of 

four models that had been updated required an additional factor while the rest used the same 

number.  

 

The validation of the updated model was as follows. Commonly, the original data sets are 

divided into training, validation and test sets that are used to compute the model (training set), 

select model parameters such as the number of factors or guide wavelength selection (validation 

set) and verify the actual performance of the final model (test set). When the number of samples 

is low, the validation set (and sometimes the test set as well) is replaced by some alternative 

validation method such as cross-validation. In the case of updating a model, the validation of 

the model with an independent set of samples would require analyzing with the reference 

method not only those necessary to update the model (as indicated by the selection algorithm) 

but also a sufficient number to verify that the model can predict the new samples correctly. 

However, the analysis of too many samples reduced the benefit of the presented approach and 

it was decided that no additional samples would be analysed in addition to those selected by the 

algorithm. Therefore, validation was carried out by predicting the existing validation set, to 

confirm that the model maintained the prediction ability for the previous samples, and by cross-

validation. The common cross-validation returns an average prediction error over all the 

samples included in the model (in the form of the root-mean-squared error of cross-validation 
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RMSECV). This obscures the performance of the model for the newly included samples. To 

focus only on the new samples, a variation of the common RMSECV was calculated from the 

cross-validation results that considered only the prediction errors of the samples of the new 

trial. As it can be seen in Table 1, the updated model maintained its previous performance for 

the samples in the validation set (an RMSEP of 1.58 g kg-1 compared with an RMSEP of 1.54 g 

kg-1 before the update) and the prediction error for the new samples was RMSECV = 1.95 g kg-

1, much lower than the RMSEP = 11.38 g kg-1 obtained before the model update. As discussed, 

a fairer comparison of prediction errors could be obtained by analysing extra samples of the 

new trial. However, this additional effort was not considered to be necessary since the 

improvement after the update was significant enough to conclude that the update was 

successful.  The updated model was still valid for predicting the original type of samples and 

also for predicting the rest of the samples of the P704 trial. This finished the model update 

procedure. 

 

Performance of the subset selection approach 

 

Exclusively for this work, the 78 not selected samples from the P704 trial were also analysed 

with the reference method to study the performance of the presented approach. It should be 

clear that this is not part of the model update strategy but was necessary to compare the selection 

strategy with other options. 

 

As it has been shown previously, the need to model was discovered from the outlier diagnostics 

(Figure 2) and confirmed by the prediction errors of a subset of selected samples from the P704 

trial. Figure 3 shows the predicted phosphorus content with the original model for the selected 

subset of samples (25 red dots) but also of the unselected samples (78 red crosses) against their 

reference values. As expected from Figure 2, the prediction errors were large for all samples in 

the P704 trial and confirm the conclusions obtained from only the selected samples. 

 

Figure 4 shows the evolution of the RMSEP of the unselected samples of P704 trial when 

updated models with an increasing number of optimal samples were used to predict them. The 

RMSEP remained high when only a few new samples were used to update the model, since the 

influence of these samples in the calculated model was diluted by the many others in the training 

set. As expected, the RMSEP decreased as more samples of the P704 trial were included in the 

model until it reached a stable value of 1.66 g kg-1 when the 25 new subset samples were added. 
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This means that the model finally accounted for the spectral variability in the new samples and 

was able to accurately predict the rest of the samples of the new batch. This model performance 

correlated well with the information content per sample that was used as a criterion to decide 

the optimal number of samples. The larger reduction of RMSEP occurred when the increments 

of the determinant were large which happens with the small size subsets. The RMSEP then kept 

decreasing as the subset sizes increased while the determinant increased, and the stable RMSEP 

was reached for the subset with the maximum determinant, at 25 samples. This behavior 

suggested that the D-optimal criterion helps to select informative samples to update the model. 

 

Figure 5 shows the predictions of the training samples of the updated model, showing those 

that were part of the original training set, and those that were added from the selection 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 5. Predicted vs measured values of phosphorus content with the updated model for the calibration set, 
validation set, the selected samples of Trial P704 and the non-selected samples of Trial P704. 

 

It can be observed that the selected samples, which were predicted with large errors before the 

update, are now predicted with low errors. This was to be expected, as these samples have now 

been used in the training step. The most relevant results are those of the unselected samples 

(red diamonds). As Table 1 shows, these samples had large prediction errors in the original 

model (RMSEP of 10.45 g kg-1) although this value would never actually be known in the 

proposed approach because the reference values of these samples would not be known.  Now 

they are predicted well, with an RMSEP of 1.66 g kg-1, similar to the 1.95 g kg-1 value obtained 

by cross-validation of the updated model and lower than the maximum accepted error for this 
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model (2 g kg-1). The prediction of the samples that had not been used for the model update 

was one of the objectives of the update.  

 

Figure 6 compares the effectiveness of the proposed approach with other sample selection 

methods, namely random selection, the Kennard-Stone algorithm and the selection of the 

samples with the highest leverage, fixing to 25 the number of samples selected by each method.  

 

 
Figure 6. Cumulative distribution of the RMSEP of 10000 phosphorus models updated using a subset of samples 
selected at random. The RMSEP obtained selecting the samples by the D-optimal criterion, Kennard-Stone and 
sorted leverage are indicated.  

 

To select the samples randomly, it must be considered that any selected subset of 25 samples 

out one of the many possible subsets (5.6 × 1023 combinations) that can be created from 103 

samples. The performance of these subsets can be ranked to see how one approach compares 

to the others. For this purpose, 10.000 models were calculated with 25 randomly selected 

samples from the P704 trial, with the number of LVs selected by cross-validation, and the 

RMSEP of the unselected samples was plotted as a cumulative distribution in Figure 6. On the 

curve one can read the proportion of models that gave an RMSEP less than or equal to a given 

value. It is seen that random sampling can provide updated models with an RMSEP as low as 

1.57 g kg-1 but also as high as 2.91 g kg-1. Considering that the acceptable RMSEP for the 

determination of phosphorus content in the digestion studies is 2 g kg-1, it is seen that the effort 

of updating a model with 25 random samples can sometimes be useless and can end-up with 
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updated models that predict the remaining samples very poorly (although better than without 

updating the model). To ensure the efficiency of the experimental effort, a criterion must be 

sought to guide the selection of the subset so that the RMSEP is as low as possible. The 

proposed algorithm based on the D-optimality criterion selected a subset whose updated model 

was better than 99.5 % of the randomly subsets selected. The subset selected by sorting the 

leverage also performed better than most random selections but worse than the D-criterion. In 

this dataset, the Kennard-Stone algorithm performed the worst. We could not find an 

explanation for such a bad performance, and the usual performance of the Kennard Stone 

algorithm found with models of other properties (results not shown) is usually better than the 

average of random sampling, although still worse than that of D-optimality.   

 

Conclusions 

 

A new sample selection algorithm inspired by the D-optimality criterion was successfully used 

to update a functional PLS model that predicts the phosphorus content of pig faeces from their 

NIR spectra. The selection algorithm used only the information already available, that is, the 

complete set of spectra from a new batch. Those spectra had already been measured since the 

samples were intended to be predicted by the current model. Once outlier detection diagnostics 

had shown the failure of the model for these samples, Fedorov’s algorithm was used to select a 

subset of the batch that was used to update the model. The new model was validated by cross-

validation. The optimal selection of additional samples to be used as a test set to validate the 

updated model was not considered and is the subject of current research. The results showed 

that the predictive ability of the updated model was significantly better than the prediction ability 

of other updated models after selecting the subset by other sample selection methods such as 

random selection, Kennard-Stone and leverage-based selection. 
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Strategies based on NIRS to 
predict digestibility of  

monogastric animal diets 
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5. Strategies based on near-infrared spectroscopy to 
predict digestibility of monogastric animal diets 
 

Abstract 

  

Precise feed formulation is essential for optimizing farm animal productivity while avoiding 

nutritional imbalances. By formulating feeds based on parameters that reflect the digestive 

process of the animal, it is possible to enhance their growth without causing nutritional excesses 

or deficiencies. Digestible or metabolizable energy, as a driving force for animal growth, is often 

considered the primary factor in feed evaluation and diet cost determination. However, the 

digestibility of specific nutrients, such as phosphorus (P), also plays a crucial role in diet 

formulation. Traditionally, digestible energy and the digestibility of nutrients has been assessed 

through in-vivo assays, which involve feeding animals a test diet and collecting a digestion 

product (excreta/faces, and/or ileal digesta) for analysis. However, in-vivo assays are 

controversial due to the use of animals and can be expensive, partly due to the large number of 

samples that need to be analysed. In this work, we evaluate several strategies involving NIRS to 

determine apparent metabolizable energy (AME) for broilers, apparent digestible energy for 

pigs (ADE) and apparent ileal digestibility of phosphorus (AIDP). Five modelling strategies 

using partial least squares regression (PLSR) were compared: A) the use of NIR predictions 

coming from models for feeds and for the digestion product, B) using the feed spectra, C) using 

the digestion product spectra, D) combining feed and digestion product spectra and E) 

including the phytase concentration as an additional predictor variable in strategies B, C and D 

when AIDP is predicted. The coefficient of determination 𝑅𝐶𝑉
2  and the root mean standard error 

of leave one-out cross validation (RMSECV) were used to compare the models. Strategy A 

performed well (𝑅𝐶𝑉
2  for AME=0.98, for ADE=1.00 and for AIDP=0.82) enabling the 

calculation of the parameters without the need for wet chemistry analysis of feed and digestion 

product nutrient contents. ADE for pigs was accurately predicted (𝑅𝐶𝑉
2 =0.96, RMSECV=56 

kcal/kg) from the faeces spectra (strategy C) and AIDP for broilers (𝑅𝐶𝑉
2 =0.80, RMSECV=5.7 

%) from the ileal digesta spectra modelled together with the feed phytase content (strategy E). 

These models simplify in-vivo assays further by eliminating the need for starvation periods, 

indigestible marker use, or precise measurement of the amount of feed intake and the amount 

of digestion product generated. AME for broilers was predicted well (𝑅𝐶𝑉
2 =0.91, RMSECV=61 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



212 

 

kcal/kg) from the feed spectra (strategy B) potentially allowing for the future reduction of 

animal usage to determine this parameter. Combination of spectra (strategy D) did not yield 

significant improvements for any of the studied parameters. 

 

Introduction 

 

Precise evaluation of feed quality holds significant importance, considering that feed constitutes 

two-thirds or even more of the expenses incurred in livestock production and plays a crucial 

role in improving performance and reducing the environmental impact resulting from this 

industry [1].  

 

In the past, feedstuff formulation was conventionally based on the total nutrient content. 

However, modern-day practices prioritize formulations based on the available nutrient content, 

which considers how the animal digests the nutrients. The feed has chemical and physical 

characteristics that give it potential digestibility, while the animal will use it more or less 

efficiently depending on its species, genetic potential, age, etc. 

 

Energy is the primary factor in feed evaluation since it ultimately drives the growth of the animal 

and determines the cost of the diet [2]. Digestible energy (DE) is the difference between the 

gross energy (GE) in the feed, defined as the total chemical energy measured upon complete 

combustion of the feed in a calorimeter bomb and the energy losses found in the faeces by the 

same method. Metabolizable energy (ME) also considers the losses in urine and gases from 

digestive fermentation. In poultry, since faeces and urine are excreted together, ME is the most 

determined energy form while DE is the most common for swine. DE and ME are also referred 

to as apparent DE (ADE) and apparent ME (AME), respectively [3]. In recent years and due to 

environmental concerns, there has been a growing interest in measuring the utilization of 

phosphorus (P), which is the third most expensive nutrient in poultry feed [4]. In poultry, both 

apparent ileal digestibility (AIDP) and apparent total tract digestibility (ATTDP) have been 

common methods for assessing P bioavailability [5]. Nowadays, AIDP is generally preferred 

because the linear relationship between dietary P and AIDP can be observed over a wider range 

compared to ATTDP because of the urinary P present in the excreta [6]. 
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The use of in-vivo assays to obtain AME, ADE or AIDP is controversial due to the use of 

animals and expensive partly because a large number of samples must be analysed, that is the 

feed fed to the animal and the digestion product collected (excreta/faces, and/or ileal digesta). 

Therefore, it is important to establish reliable and more rapid methods to assess the nutritional 

quality of feed ingredients or compound feeds [2]. Near-infrared spectroscopy (NIRS) has been 

widely used to evaluate the nutritional quality of agricultural products [7] and to a lesser extent 

the nutritional quality of pig faeces [8] and poultry excreta [9].  

 

In this work, we evaluate the use of NIRS to determine digestibility using three different 

datasets: 1) AME of broiler diets, 2) ADE of pig diets and 3) AIDP of broiler diets. Four 

modelling strategies using partial least squares regression (PLSR) were compared to predict 

AME of broiler diets and ADE of pig diets: A) the use of NIR predictions coming from models 

for feeds and for the digestion product, B) using the feed spectra, C) using the digestion product 

spectra and D) combining feed and digestion product spectra. Digestibility is affected by various 

factors beyond feed chemical composition, such as physical form, enzymes, and technological 

treatments. However, NIRS can only detect factors with a spectral fingerprint, such as chemical 

composition. The feeds in dataset 3 contained different amounts of phytase that has been 

proved to affect the P digestibility [10]. Therefore, an additional strategy is evaluated to predict 

AIDP: E) including the enzyme concentration as an additional predictor variable in strategies 

B), C) and D).  

 

For the moment some studies have pointed out the potential of NIRS to predict AME for 

broilers and ADE for pigs from the feed spectra [11,12] (strategy B), from the the digestion 

product spectra [13,14] (strategy C) and by combining the spectra from feed and digestion 

product (strategy D) [15,16]. However, the use of NIR predictions coming from models for 

feeds and for the digestion product (strategy A) has not been studied and in this work more 

approaches to fuse the spectra of feed and digestion product are tested (strategy C). The 

feasibility of NIRS to predict AIDP has not been explored before, nor has the inclusion of 

enzyme concentration as an additional predictor variable. Hence, the prediction of AIDP by 

NIRS and the use of this strategy are first appearing in this work. 
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Materials and methods 

 

Datasets  

 

Three datasets were generated from in-vivo digestibility studies performed between 2018 and 

2022 at the experimental farms of the Institute of Agrifood Research and Technology (IRTA, 

Constanti, Spain).  

 

Dataset 1 consisted of feed and broiler excreta samples from 8 in-vivo assays, which were carried 

out with 2 to 12 diets resulting in a total of 56 diets whose AME values were known. Titanium 

dioxide (TiO2) was added as non-digestible marker to all diets in a concentration varying from 

4 to 5 g/kg to allow spot sampling of the excreta instead of total collection for estimation of 

digestibility. Diets were fed to male broiler chickens of the Ross 308 strain housed in cages in a 

room under controlled environmental conditions (temperature and ventilation rate). Overall, 

each diet was administered to 8 cages at the rate of two chickens per cage. Therefore, 8 excreta 

samples were collected per diet. At the end of the in-vivo assay, excreta samples were 

lyophilized, milled, and stored in sealed bags in a climatic chamber at 17 ºC until their analysis.  

 

Dataset 2 consisted of feed and pig faeces samples from 8 in-vivo assays, which were carried 

out with 2-10 diets resulting in a total of 41 diets with known ADE values. Titanium dioxide 

(TiO2) was added as non-digestible marker to all diets in a concentration varying from 3 to 5 

g/kg. Diets were fed to growing pigs ([Large White × Landrace] × Pietrain, mixed sexes) 

distributed by initial weight into blocks that consisted of a certain number of pens (the same 

number as number of diets tested in the in-vivo assay) of 3-4 animals each. Within each block, 

test diets were randomly distributed among the pens. Overall, each diet was administered to 12 

pens. Therefore, 12 pig faeces samples were collected per diet and lyophilized, milled, and stored 

in sealed bags in a climatic chamber at 17 ºC until their analysis. 

 

Dataset 3 consisted of feed and broiler ileal digesta samples from 7 in-vivo assays, which were 

carried out with 6-16 diets resulting in a total of 72 diets with AIDP values. These in-vivo assays 

investigated the efficacy of including in the diets different amounts of phytases from different 

brands and companies. Hence, diets belonging to the same in-vivo assay showed low variability. 

TiO2 was added as non-digestible marker to all diets in a concentration varying from 4 to 5 
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g/kg. Diets were fed to male broiler chickens of the Ross 308 strain housed in cages in a room 

under controlled environmental conditions (temperature and ventilation rate). Overall, each diet 

was administered to 8 cages at the rate of two-three chickens per cage. Therefore, 8 ileal digesta 

samples were collected per diet. At the end of the in-vivo assays, broilers were euthanized, the 

intestine removed, and the lower half of the ileum was gently flushed to remove the ileal 

contents for digestibility measurements. The ileum is the portion of the small intestine extending 

from the Meckel’s diverticulum to a point 40 mm proximal to the ileocecal junction [17]. Ileal 

digesta samples were freeze-dried, equilibrated at ambient temperature for 1 day, weighed, 

ground and stored prior to analysis.  

 

Reference values  

 

Feed, excreta, faeces and ileal digesta samples were analysed in the laboratory with validated 

methods. Gross energy was determined by calorimetry using an adiabatic calorimeter (C2000, 

IKA, Staufen, Germany) according to the DIN 51900 (2005) norm [18]. Phosphorus content 

was determined by UV-VIS spectroscopy using molybdovanadate reagent according to AOAC 

Official Method 965.17 [19]. TiO2 was determined by UV-Vis spectroscopy according to the 

method developed by Short et al. 1996 [20].   

 

AME for broilers was calculated as follows: 

 

𝐴𝑀𝐸 (
𝑘𝑐𝑎𝑙

𝑘𝑔
) = 𝐺𝐸𝑓𝑒𝑒𝑑 −  

𝐺𝐸𝑒𝑥𝑐𝑟𝑒𝑡𝑎  × [𝑇𝑖𝑂2]𝑓𝑒𝑒𝑑

[𝑇𝑖𝑂2]𝑒𝑥𝑐𝑟𝑒𝑡𝑎
                                                                     (1) 

 

where 𝐺𝐸𝑓𝑒𝑒𝑑 is the gross energy in the feed, 𝐺𝐸𝑒𝑥𝑐𝑟𝑒𝑡𝑎 is the gross energy in the excreta, 

[𝑇𝑖𝑂2]𝑓𝑒𝑒𝑑  the concentration of TiO2 in the feed and [𝑇𝑖𝑂2]𝑒𝑥𝑐𝑟𝑒𝑡𝑎 the concentration of TiO2 in 

the excreta. 

 

ADE for pigs was calculated similar to AME by means of Eq. 1 using 𝐺𝐸𝑓𝑎𝑒𝑐𝑒𝑠 instead of  

𝐺𝐸𝑒𝑥𝑐𝑟𝑒𝑡𝑎 and [𝑇𝑖𝑂2]𝑓𝑎𝑒𝑐𝑒𝑠 instead of [𝑇𝑖𝑂2]𝑒𝑥𝑐𝑟𝑒𝑡𝑎. 

 

AIDP for broilers (Dataset 3) was obtained as follows:  
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𝐴𝐼𝐷𝑃(%) = 100 × (1 −  
[𝑃]𝑖𝑑 × [𝑇𝑖𝑂2]𝑓𝑒𝑒𝑑

[𝑃]𝑓𝑒𝑒𝑑 × [𝑇𝑖𝑂2]𝑖𝑑
)                                                                             (2) 

 

where [𝑃]𝑓𝑒𝑒𝑑 is the concentration of P in the feed, [𝑃]𝑖𝑑  the concentration of P in the ileal 

digesta, [𝑇𝑖𝑂2]𝑓𝑒𝑒𝑑 the concentration of TiO2 in the feed and [𝑇𝑖𝑂2]𝑖𝑑 the concentration of TiO2 

in the ileal digesta.  

 

The digestibility values calculated from the same feed and replicate digestion product samples 

should be similar although some outliers were found. Outliers were defined as values larger than 

three times the scaled median absolute deviation (MAD) [21]. In Dataset 1, of the 444 excreta 

samples, 44 outliers were removed from subsequent calculations of AME. In the dataset 2, of 

the 480 faeces samples, 20 were removed from the calculations of ADE. In Dataset 3, of the 

439 ileal digesta samples, 15 outliers were removed from the calculations of AIDP. Most of the 

outliers were due to out-of-range values of TiO2 in the digestion product samples. When a non-

digestible marker is used it is assumed that the marker is completely indigestible, that it 

distributes evenly in the feed and in the digestion product and that can be measured accurately 

even at low concentrations [3]. However, sometimes some of these assumptions, mainly the 

evenly distribution, can fail yielding to unreliable TiO2 values. 

 

NIR spectra acquisition and data analysis 

 

Ground samples of feed, excreta, faeces and ileal digesta were scanned on a NIRS DS2500 (Foss 

NIRSystems, Denmark) in reflectance mode in the range from 800 to 2499.5 nm with steps of 

0.5 nm. The size of the cup chosen to scan the samples depended on the amount of sample 

available. Feed samples were scanned with the large cup (10.2 cm diameter, approx. 100 g of 

sample), excreta and faeces samples with the small cup (7 cm diameter, approx. 30 g of sample) 

and ileal digesta contents with the ring cup (1.8 cm diameter, approx. 1 g of sample). PLS 

toolbox software (PLS_Toolbox, 2016, Eigenvector Research, Inc., Manson, WA, USA) 

running in Matlab (MATLAB, Version R2020a, The MathWorks Inc., Natick, MA, USA) was 

used to carry out all chemometric treatments. 

 

PCA of the mean-centred spectra was carried out after preprocessing the spectra with Savitzky–

Golay first derivative with a second-order polynomial and a window width of 17 points [22]. 

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL APPLICATIONS OF NIR SPECTROSCOPY FOR THE OPTIMIZATION OF MONOGASTRIC ANIMAL DIETS 
Andrés Cruz Conesa 



217 

 

Samples were discarded as spectral outliers when the leverage was too high (Hotelling’s 𝑇2 

reduced > 3) or the percentage of residual spectral variance of the sample was too high (𝑄 

residuals reduced > 3). In Dataset 1, none of the feeds was spectral outlier and 6 excreta samples 

were removed from subsequent analysis. In Dataset 2, one feed sample and 15 ileal digesta 

samples were spectral outliers. In Dataset 3, two feed samples and 20 faeces samples were 

discarded.   

 

After removing reference and spectral outliers, the spectra and the digestibility values 

corresponding to the same diets were averaged to obtain a single digestion product spectrum 

and a single digestibility value per diet. Finally, Dataset 1 contained 56 feed spectra, 56 excreta 

spectra and 56 AME values; Dataset 2 contained 39 feed spectra, 39 faeces spectra and 39 ADE 

values and Dataset 3 contained 71 feed spectra, 71 ileal digesta spectra and 71 AIDP values.  

 

Because datasets contained a few samples (N<80) leave-one-out cross-validation was used to 

select model parameters, the optimal pretreatment and as validation method. 

 

Predictions based on models for feed and for digestion product 

 

Partial least squares regression (PLSR) models were developed to predict GE in the feed and in 

the excreta of Dataset 1. The predicted values of GE were used in Eq. 1 together with the 

reference values of TiO2 to calculate AME. It was impossible to predict TiO2 because this 

inorganic compound does not absorb in the NIR region. It cannot be determined indirectly 

either from the NIR spectrum because it does not interact or correlate with the organic matrix 

of the samples. Similarly, ADE was calculated from predicted GE values of feeds and faeces 

from Dataset 2. To calculate AIDP (Dataset 3), PLSR models for P were developed in feed and 

ileal digesta and inserted together with the TiO2 reference values in Eq. 2.  

 

Calibrations based on feed spectra alone 

 

PLSR calibration models based only on the feed spectra were developed to predict AME for 

broilers (Dataset 1), ADE for pigs (Dataset 2) and AIDP for broilers (Dataset 3).  
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Calibrations based on digestion product spectra alone 

 

PLSR calibration models were developed to predict AME for broilers from the excreta spectra 

(Dataset 1), ADE for pigs from the faeces spectra (Dataset 2) and AIDP for broilers from the 

ileal digesta spectra (Dataset 3). 

 

Data fusion of spectra from feed and digestion product 

 

Feed spectra and excreta spectra were combined to predict AME for broilers (Dataset 1), feed 

spectra and faeces to predict ADE for pigs (Dataset 2) and feed spectra and ileal digesta to 

predict AIDP for broilers (Dataset 3). Data fusion provides a combined response from spectra 

or data from different analytical techniques, but it can be also applied for a single technique to 

combine spectra or data of different type of samples that are related to each other. The fusion 

can be performed at three levels [23]. For this work, we compared several low-level and mid-

level options to combine the data. In the low-level, the spectra of the different type of samples 

were combined sample-wise into a single matrix, from which the prediction models were 

developed. Three combinations of spectra were tested: A) merging the spectra of feed and 

digestion product, B) subtracting the spectra of the digestion product from the feed spectra and 

C) averaging both types of spectra. It was also studied whether pretreating both spectra 

separately before combining them was better than pretreating the joint spectra. Different block 

scaling methods were tested to properly weight the spectra blocks before combining them and 

developing the PLSR models [24]. Mid-level data fusion methods are not affected by the scaling 

problem because the relevant features from each block (e.g. the scores of PCA or PLS) are 

extracted and then combined to a single matrix that is used to develop the prediction models. 

When both, the decomposition of each block and the modelling of the combined scores matrix 

is done by PLSR it has been called Hierarchical PLS (HPLS) method [25]. The principal question 

when these methods are used is how to select the adequate number of factors in which each 

block is reduced. Different approaches can be used but dealing only with two blocks we decided 

to test all the possible combinations between 1 and 20 factors for each block of spectra.  
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Modelling enzyme content to improve the prediction models   

 

The feeds and ileal digesta from Dataset 3 were obtained from studies of the effect of phytase 

in P digestibility. If the enzyme changes significantly the digestibility of the nutrients, then it 

could be interesting to include the enzyme concentration as an additional predictor variable 

since the very small concentration of the enzyme (20-200 ppm) would not cause sufficient 

changes in the NIR spectrum. The scale and size of the enzyme variable (a 𝑛 𝑥 1 vector) is 

different to the scale and size of the spectra matrix (𝑛 𝑥 3287) therefore scaling methods or 

feature extraction were needed to give the enzyme variable an appropriate influence in the 

model. Similar to the fusion of spectra, low-level and mid-level strategies were tested.  

 

Results  

 

Figure 1 shows the mean raw spectra of the samples scanned for this work. Despite the offset, 

all the spectra were similar in shape and intensity for most of the bands. This was expected 

considering that excreta, faeces or intestinal contents are the resulting products of the digestion 

of the feed and hence are constituted by essentially the same components.  

 

 
Figure 1. Mean raw spectra for the samples that conform the Dataset 1 (broiler feed and excreta), the Dataset 2 
(pig feed and faeces) and the Dataset 3 (broiler feed and ileal digesta).  
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Variances in nutrient digestibility can either concentrate or disperse the nutrient in the digestion 

product, resulting in subtle variations in intensity across certain spectral bands. For instance, 

from the carbohydrate fraction, fibre that is mainly non-digestible by monogastric animals will 

be more concentrated in the digestion product than in the feed while starch that is the principal 

source of energy for monogastric animals will be much more concentrated in the feed 

comparing to the digestion product. The fact that absorbance is of the same order of magnitude 

in the various types of samples suggest that when fusing feed spectra with the spectra of the 

digestion product it may not be necessary to apply hard scaling methods prior to combine the 

spectra or make use of mid-level data fusion.   

 

Dataset 1. AME for broilers 

 

Table 1 shows that the mean values and variability of GE in feed were not significantly different 

from those in excreta. This could mean that the variations in the digestive capacity of broilers 

were minimal. On the other hand, there was a higher concentration of TiO2 in the excreta 

compared to the feed leading to increased variability of this parameter in the excreta.  

 

Table 1. Descriptive statistics of AME and the properties from which it is calculated: gross energy (GE) in the 
feed and in the excreta and TiO2 in the feed and in the excreta. Mean, standard deviation (SD), coefficient of 
variation (CV), minimum (Min) and maximum (Max) values.  

 

 Mean SD CV (%) Min Max 

GE feed (kcal/kg) 4048 147 3.6 3504 4174 

GE excreta (kcal/kg) 3631 175 4.8 3192 4074 

TiO2 feed (g/kg) 4.78 0.26 5.4 4.16 5.74 

TiO2 excreta (g/kg) 15.56 1.46 9.4 12.37 18.43 

AME (kcal/kg) 2921 200 6.8 2321 3183 

 

Table 2 shows the results of applying different strategies to predict AME. The models developed 

to predict GE in feed (15 LV) and in excreta (16 LV) performed well (𝑅𝐶𝑉
2 =0.96, RMSECV=27 

kcal/kg and 𝑅𝐶𝑉
2 =0.97, RMSECV=28 kcal/kg, respectively) using first derivative, mean centred 

spectra. The predicted GE values by these models were used together with the reference TiO2 

values to calculate AME, obtaining very good results (Table 2, Figure 2). The calibration based 

on feed spectra alone to predict AME performed better than the calibration based on excreta 

spectra. This indicates that although the composition of the excreta is feed-dependent, not all 

the information necessary to predict AME in the feed was present in the excreta. However, the 

fact that the predictions improve when both spectra are combined proved that there were 

sources of variability in the excreta spectra that were not present in the feed spectra. The 
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combination of both spectra assures that the composition of the feed is being considered as 

well as the way in which the animal has digested the feed. The best combination strategy 

consisted of pretreating the spectra separately using the first derivative and mean centring the 

spectra. After that, pretreated spectra were auto scaled together and averaged. The 2nd Level 

data fusion of spectra did not overperformed 1st Level approaches.  

 

Table 2. Performance of the different strategies applied to predict AME (kcal/kg). Latent variables of the models 

(LV), coefficient of determination of calibration (𝑅𝐶
2) and cross-validation (𝑅𝐶𝑉

2 ), root mean square error of 
calibration (RMSEC) and cross-validation (RMSEC). 

 

Strategy LV 𝑅𝐶
2 RMSEC 𝑅𝐶𝑉

2  RMSECV 

Calculated from NIR predictions 15 + 16 1.00 11 0.98 27 

Predicted from feed spectra 14 0.98 28 0.91 61 

Predicted from excreta spectra 13 0.95 46 0.82 86 

1st Level data fusion of spectra 19 0.99 15 0.92 55 

2nd Level data fusion of spectra 13+8 0.98 27 0.92 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Predicted versus measured regression line for the following strategies to predict AME: A) the use of GE 
predictions coming from NIR models for feeds and excreta; B) using the feed spectra; C) using the excreta spectra 
and D) combining feed and excreta spectra. 

 

A) 

 

B) 

C) D) 
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Dataset 2. ADE for pigs 

 

As Table 3 shows, the range of values and the coefficient of variation of GE in the feed were 

very low. The GE of the faeces and the ADE varied much more. Similar feed samples in terms 

of energy have led to faeces that were highly variable in energy. This suggest that in this dataset 

there were important digestive differences between individuals. 

 

Table 3. Descriptive statistics of ADE and the properties from which it is calculated: gross energy (GE) in the 
feed and in the excreta and TiO2 in the feed and in the excreta.  

 

 Mean SD CV (%) Min Max 

GE feed (kcal/kg) 4021 64 1.6 3855 4095 

GE faeces (kcal/kg) 4198 268 6.4 3806 4731 

TiO2 feed (g/kg) 4.23 0.80 18.9 2.62 5.23 

TiO2 faeces (g/kg) 26.55 8.46 31.9 15.41 40.57 

ADE (kcal/kg) 3281 276 8.4 2554 3601 

 

The models developed to predict GE in feed (11 LV) and in faeces (13 LV) performed well 

(𝑅𝐶𝑉
2 =0.91, RMSECV=11 kcal/kg and 𝑅𝐶𝑉

2 =0.98, RMSECV=42 kcal/kg, respectively) applying 

the first derivative and mean centring the spectra. The predicted GE values of these models 

were used together with the reference TiO2 values to calculate ADE, obtaining very good results 

(Table 4, Figure 3). The calibration based on faeces spectra to predict ADE performed better 

than the calibration based on feed spectra. This is another indicator that the variability in ADE 

was mainly originated by differences in the digestive capacity of the pigs. Faeces reflected 

composition of the feed consumed by pigs as well as the physiological status of the animal. The 

best 1st level data fusion strategy was concatenating the spectra after being pretreated separately 

with the first derivative and mean centring. Combining both spectra improved the results 

obtained from the feed spectra alone but no from the faeces spectra alone. This means that the 

spectral information present in faeces predominated over the spectral information contained in 

feeds. The sources of variability with respect to ADE represented by the feed spectra are also 

represented by the faeces spectra. When the feed spectra are added to the faeces spectra, instead 

of including new sources of variability necessary to predict AME the relevant information is 

diluted. In fact, when the 2nd Level data fusion strategy was performed the best prediction was 

obtained using only 1 PLS factor for the feed spectra and 11 for the faeces spectra.     
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Table 4. Performance of the different strategies applied to predict ADE (kcal/kg).  

 

 

 

 

 

 

 

 

 

 

Figure 3. Predicted versus measured regression line for the following strategies to predict ADE: A) the use of GE 
predictions coming from NIR models for feeds and faeces; B) using the faeces spectra. 

 

Dataset 3. AIDP for broilers 

 

As Table 5 shows, the range of values and the variability of the P content in the feed was low 

comparing to those in the ileal digesta. This might be due to differences in the digestive capacity 

of broilers within and between in-vivo assays but it is more likely that is due to the different 

concentration of phytases in the feeds.  

 

Table 5. Descriptive statistics of AIDP and the properties from which it is calculated: P in the feed and in the ileal 
digesta and TiO2 in the feed and in the ileal digesta. 

 

 

As Figure 4 shows there was a logarithmic relationship between AIDP and phytase activity 

where the greatest improvements in digestibility are seen at low levels of phytase activity, and 

the rate of improvement slows as phytase activity increases further.  

Strategy LV 𝑅𝐶
2 RMSEC 𝑅𝐶𝑉

2  RMSECV 

Calculated from NIR predictions 11 + 13 1.00 10 1.00 17 

Predicted from feed spectra 8 0.90 65 0.90 86 

Predicted from faeces spectra 12 0.99 28 0.96 56 

1st Level data fusion of spectra 7 0.97 48 0.94 68 

2nd Level data fusion of spectra 1+11 0.99 28 0.96 57 

 Mean SD CV (%) Min Max 

P feed (g/kg) 4.0 0.55 1.4 3.3 6.7 

P ileal digesta (g/kg) 3.7 1.8 4.9 0.7 10.2 

TiO2 feed (g/kg) 4.71 0.31 6.6 4.1 5.6 

TiO2 faeces (g/kg) 15.0 2.0 13.3 10.9 20.2 

AIDP (%) 70.6 12.5 17.7 41.0 95.6 

A) B) 
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Figure 4. Variation in the AIDP of the feed when the phytase activity of the enzyme increases. Points connected 
by a line of the same colour correspond to feeds that were formulated to have the same nutrient content and 
different contents of phytase.   

  

The model developed to predict P in feed (16 LV) showed a low coefficient of determination 

(𝑅𝐶𝑉
2 =0.68) but an acceptable prediction error (RMSECV=0.33 g/kg) compared to the standard 

error of the laboratory for P in feed (0.2 g/kg). The model for ileal digesta (16 LV) had a higher 

coefficient of determination (𝑅𝐶𝑉
2 =0.87) and a higher prediction error (RMSECV=0.67 g/kg) 

due to the larger variability of P in the ileal digesta. Before developing both models, the spectra 

were pretreated by the first derivative and mean centred. The use of the predicted P values and 

the reference TiO2 values to calculate AIDP gave rise quite good predictions (𝑅𝐶𝑉
2 =0.82, 

RMSECV=5.5%) considering that P is an inorganic species that is predicted indirectly by NIRS 

(Table 6, Figure 5).  

 

Table 6. Performance of the different strategies applied to predict AIDP (%). 

 

 

It was not possible to predict AIDP from the feed spectra (Table 6). This was expected since 

most of the diets contained similar contents of P and the largest differences in AIDP were 

Strategy LV 𝑅𝐶
2 RMSEC 𝑅𝐶𝑉

2  RMSECV 

Calculated from NIR predictions 16+16 0.97 2.1 0.82 5.5 

Predicted from feed spectra 5 0.22 11.0 0.03 12.9 

Predicted from ileal digesta spectra 11 0.89 4.2 0.73 6.5 

1st Level data fusion of spectra 12 0.91 3.7 0.74 6.5 

2nd Level data fusion of spectra 3+11 0.89 4.1 0.73 6.5 

From feed spectra and phytase 16 0.95 2.6 0.40 10 

From ileal digesta spectra and phytase 10 0.90 3.9 0.80 5.7 
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caused by phytase that does not produce changes in the spectra. The predictions from the ileal 

digesta spectra were much better although they cannot be considered well enough due to the 

low coefficient of determination (𝑅𝐶𝑉
2 <0.80). The improvement by combining feed and ileal 

digesta spectra was negligible, highlighting the scarce information about AIDP that is found in 

the feed spectra. Since the phytase concentration in the feed affects AIDP values, including this 

variable into the feed and the ileal digesta models was studied. The best option to merge the 

spectra and the phytase concentration was to log10 transform the phytase concentration and 

then column autoscale the transformed phytase variable and the spectra. The improvement of 

the model based on feed spectra was notable although insufficient (𝑅𝐶𝑉
2 =0.40). As it has been 

showed, feed spectra explains very little variation related to AIDP, therefore the performance 

of the combined model with phytase is similar to the univariate model that would result from 

regressing AIDP from the feed enzyme content. The model based on ileal digesta spectra 

improved including phytase and reached acceptable coefficient of determination (𝑅𝐶𝑉
2 =0.80) 

and prediction error (RMSECV=5.7 %). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Predicted versus measured regression line for the following strategies to predict AIDP: A) the use of P 
predictions coming from NIR models for feeds and ileal digesta; B) using the ileal digesta and including the phytase 
concentration as an additional predictor variable. 

 

Discussion  

 

The feed industry requires fast and accurate methods for determining the nutritional value of 

diets. This is essential for reducing costs by preventing over-formulation with expensive 

ingredients and ensuring the quality control of the formulated diets. Different approaches have 

been studied to replace in-vivo assays. Most commonly, the nutrient content of diets is 

A) B) 
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calculated from tabulated values containing the chemical composition and digestibility of feed 

ingredients, but tabulated values might exhibit a lack of precision due to the inherent 

characteristics and variability of each specific batch of ingredients. Moreover, tabulated values 

might not exist for no so-common ingredients or for the digestibility of specific nutrients such 

as AIDP. Mathematical models or equations to relate the nutrient content of the feedstuffs and 

diets with its ADE value have been developed for pigs [26] and with its AME value for poultry 

[27]. The disadvantage of these models is that the nutrient content of each sample must be 

determined by wet chemical analysis, which may be costly or time consuming. Other approach 

to estimate digestibility is the in vitro experiments [2,28]. This option is cheaper and faster than 

in-vivo assays but still need the use of expensive equipment and reagents as well as long times 

of reaction. NIRS provides a considerably quicker alternative to in vitro experiments and 

equations based on nutrient content and generally provides more precise results than table 

values. NIRS and the aforementioned methods have been compared in some works [11,29,30] 

obtaining variable results.  

 

From the NIR-based strategies presented in this work, only the prediction based on feed spectra 

alone or modelling the enzyme amount together with the feed spectra would reduce the use of 

animals. From the three datasets tested, only AME for broilers was accurately predicted from 

the feed spectra (Table 2). The model to predict AME in broiler diets performed similar to the 

model developed by Valdes et al. 1992 [31] and better than the one by Coulibaly et al. 2013 [16].  

 

ADE for pigs was predicted well from the faeces spectra (Table 4). These results were better 

than those obtained by other authors [8,13,32]. This approach needs in-vivo assays for faeces 

collection, making it impractical for routine analysis in feed mills. However, it can be a valuable 

tool in research, enabling easy and cost-effective measurement of digestibility, which facilitates 

the investigation of factors that affect digestion (e.g., age, climate, and genetics) and their 

interplay. The measurements could be conducted on a large number of animals, eliminating the 

need for starvation periods, the use of an indigestible marker or precisely measure feed intake 

and faecal output [33].  

 

Good AIDP predictions were obtained by modelling the enzyme content of the feed together 

with the ileal digesta spectra (Table 6). There are no precedents about the prediction of this 

parameter using NIRS. The advantages of this model would be the same as those mentioned 
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earlier for prediction from faeces spectra. However, since the spectra of ileal digesta must be 

collected, broilers should be sacrificed like in the in-vivo assay.  

 

The combination of the spectra resulted in only a slight improvement over direct predictions 

from feed spectra or excreta spectra in the case of AME. For the other two datasets, there was 

no improvement. These results do not agree with previous works [15,16]. Coulibaly et al. 2013 

[16] obtained a RMSECV value for poultry AME two times lower after concatenating the 

spectra of feed and excreta and Paternostre et al. 2021 [15] observed an important improvement 

when spectra are concatenated in the prediction of net energy in pigs. The variability in the 

datasets seems to govern the predictions and it is the key to obtain better results using a strategy 

or another. When the diets vary and the factors affecting digestion such as genetics, age, etc. are 

maintained (the case of AME for broilers), the predictions from the feed spectra are viable and 

the excreta do not contain much additional information describing the digestibility of the feed. 

On the contrary, when the diets show minimal variation (ADE for pigs and specially AIDP for 

broilers) and digestibility is principally affected by factors beyond feed chemical composition 

(animal physiology in the case of ADE and enzymes in the case of AIDP) the feed spectra is 

not suitable to predict the digestibility of the property. Much more useful information to predict 

digestibility was found in the digestion product spectrum than in the feed spectrum in these two 

particular cases.  

 

The best predictions of AME, ADE and AIDP were obtained modelling the property from 

which they come from (GE for AME, and ADE and P for AIDP) in the feed and in the 

digestion product and using the predicted values together with the TiO2 concentrations to 

calculate digestibility. During in-vivo assays, in addition to the feeds it is usual to analyse by wet 

chemistry methods many replicate digestion product samples per diet trying to minimize 

external effects such as temperature and humidity in the farm or the particular digestion 

differences between animals of the same species, age and gender. With the success of this 

strategy, the determination of GE or P in the feed and in the digestion product by wet chemistry 

methods would no longer needed.  

 

Due to the limited size of the datasets (<70 samples) and consequently, the use of cross-

validation to test the strategies, the obtained results could be overly optimistic and may not be 

generalizable. More samples and an independent test set would be necessary to draw general 

conclusions about what strategy one must use for each case. Furthermore, even with a larger 
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dataset, the effectiveness of a particular strategy could vary depending on the construction of 

the dataset, including factors such as feed variability, animal physiology, and enzyme usage, 

among others. Throughout this work, we wanted to show the different possibilities to approach 

digestibility prediction from NIRS using as experimental case three important properties (AME 

for broilers, ADE for pigs and AIDP for broilers) trying to exemplified in which situations and 

for which purposes a strategy, or another may fit better.  

 

Conclusions 

 

The use of NIRS can reduce the costs of the in-vivo assays directed to obtain AME for broilers, 

ADE for pigs and AIDP for broilers. It has been found that NIRS can accurately predict GE 

and P in the digestion product (excreta, faeces or ileal digesta) that, combined with the 

predictions of these parameters in the diets, makes it possible the calculation of AME, ADE 

and AIDP without analysing these parameters by wet chemistry methods. ADE for pigs and 

AIDP for broilers were well predicted from the faeces spectra and the ileal digesta modelled 

together with the feed phytase content, respectively. These models simplify more the in-vivo 

assays than the previous strategy since in addition to avoiding the use of wet chemistry methods 

to determine GE and P, the starvation periods, the use of an indigestible marker or precisely 

measure feed intake and output are no longer needed. AME for broilers was predicted well from 

the feed spectra, hence this is an important step towards reducing the use of animals to obtain 

this property in the future. Combination of spectra did not lead to significant improvements for 

any of the studied properties.  
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Conclusions and perspectives 
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6.1. Conclusions  

 

This chapter summarizes the main findings of this doctoral thesis and puts them in perspective.  

 

The following conclusions can be drawn from Chapter 3. Replacing wet chemistry by NIRS to improve 

feed formulation and reduce the costs of in-vivo assays: 

 

1. It was possible to predict, from a NIR spectrum, most of the carbohydrate and lignin 

fractions in a large variety of feedstuffs (cereals, cereals co-products, protein-rich and 

fibre-rich feedstuffs) that are used to formulate monogastric diets. Predictions were 

accurate for sugars, starch, fructans, dietary fibre, lignin, cellulose, β-glucans, total and 

insoluble non-starch polysaccharides (NSP) and some of the total and insoluble non-

cellulosic polysaccharide (NCP) residues (arabinose, xylose, rhamnose, galactose and 

uronic acids). The predictions for α-galactosides (raffinose, stachyose and verbascose) 

and some NCP residues (glucose and mannose) were not accurate enough.  The number 

of samples with values of α-galactosides were very low to be representative and mannose 

showed low concentrations and a narrow concentration interval.   

 

2. Multivariate calibration models for NIR spectra developed in-house performed better 

than commercial models in the prediction of crude protein (CP), fat, crude fibre (CF) 

and ash in compound feeds for poultry and swine. In our case, commercial models were 

not ready for the specific type of samples that are handled in research institutes such as 

IRTA, where the samples tested are sometimes not common, with novel combinations 

of ingredients. Global models that combined compound feeds for broilers, pigs, sows, 

laying hens and turkeys performed better than specific models of compound feeds for 

a single species, for the prediction of CP, fat, CF, gross energy (GE), ash and 

phosphorus (P). The calibrations of CP, fat and CF had excellent prediction 

performance when an external dataset was predicted. Those for GE and ash were less 

accurate and P was not predicted satisfactorily. The inorganic nature of ash and P and 

the fact that GE is not a chemical entity but it is a property derived from chemical 

composition could be the cause.  
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3. It was possible to predict accurately the nutrient content (organic matter, CP fat, GE, 

uric acid and P) in poultry excreta from its NIR spectrum. Global calibrations (those 

that combined excreta from broilers, hens and turkeys) performed better than specific 

models that were training with excreta from a single species.  

 

4. Promising results were obtained in the prediction of organic matter, CP, GE, CF, acid 

detergent fibre, lignin and P in pig faeces from the NIR spectrum. Fat and neutral 

detergent fibre were predicted less well. The complexity of the reference analysis of 

these constituents could be the cause.   

 

5. It was possible to predict well CP and several amino acids (Gly, Ala, Val, Leu, Ile, Phe, 

Tyr, Asp, Glu, Thr and Pro) in poultry ileal digesta from the NIR spectrum. Met, Lys 

and specially Ser, His, Cys and Arg were predicted poorly. These AAs exhibited weaker 

correlations with protein and the other AAs. 

 

The models developed in this chapter provide evidence that NIRS can to some extent replace 

wet chemistry methods for the determination of the nutrient content of samples used in in-vivo 

assays. The substitution of wet chemistry by NIRS offers significant cost reduction in 

digestibility studies while enhancing the understanding of how the nutritional fractions are 

digested by the animal. This can enable a better formulation of monogastric diets and the 

development of nutritional strategies such as the use of enzymes to enhance the digestibility of 

nutritional fractions. 

 

The following conclusions can be drawn from Chapter 4. Maintenance of NIR calibration models: 

 

1. Prediction models for compound feeds exhibited poor performance when they were 

used to predict incoming samples of feeds manufactured for example, with a different 

combination of ingredients. Prediction models for pig faeces failed when the models 

were used to predict batches of samples coming from in-vivo assays where for example, 

new enzymes that affect the digestibility of the diets were tested.  

 

2. The predictive accuracy of the CP, fat, CF, and ash models in compound feeds notably 

improved after the inclusion of compound feed samples manufactured with a different 

combination of ingredients or using different batches of ingredients. These samples 
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were identified through outlier diagnostic measures (Hotelling’s T2 and Q statistic 

derived from spectral residuals) and analysed by reference methods. As the calibration 

dataset was expanded and encompassed more variability of compound feed 

compositions, the occurrence of new samples with unmodelled variations diminished. 

Consequently, the need for testing with the reference method progressively decreased 

over time.   

 

3. The implementation of a novel sample selection algorithm, inspired by the D-optimality 

criterion, led to a successful update of a functional PLSR model to predict P content in 

pig faeces. The model was updated with a reduced number of samples selected by the 

algorithm from a new batch of samples and was able to predict accurately the rest of the 

samples from the batch. Selecting the samples with the new algorithm lead to an updated 

model with superior predictive ability than alternative models updated by selecting 

samples randomly or based on Kennard-Stone algorithm or a leverage-based algorithm.   

 

The proposed strategies offer effective means for updating models over time with minimal costs 

and effort. As elucidated in Chapter 4, both strategies enhance the performance of calibration 

models in predicting new samples by incorporating novel variations. However, the selection of 

samples, as it has been explained, differ between the two strategies and also their applicability. 

The first strategy, discussed in Section 4.2 for compound feeds, is designed for situations where 

new samples are introduced successively or in small batches while the second is tailored for 

scenarios where samples arrive in large batches.  

 

The following conclusions can be drawn from Chapter 5. Strategies based on near-infrared spectroscopy 

to predict digestibility of monogastric animal diets. 

 

1. It was possible to predict, from a NIR spectrum, the GE in excreta and faeces, and the 

P content in ileal digesta. By complementing the predictions of GE and P in diets, it 

becomes possible to calculate the apparent metabolizable energy (AME) in broiler diets, 

the apparent digestible energy (ADE) in pig diets and the apparent ileal digestibility of 

phosphorus (AIDP) in broiler diets without the need of conducting wet chemistry 

methods to determine GE in the case of AME and ADE and P in the case of AIDP. 
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2. Faecal spectra was highly successful to accurately predict ADE in pig diets. Additionally, 

the utilization of ileal digesta spectra, in combination with feed phytase content, enabled 

accurate prediction of AIDP in broilers diets. These models, when confirmed and 

extensively validated offer a simplified approach to in-vivo assays eliminating the need 

for conducting wet chemistry methods to determine GE in the case of ADE and P in 

the case of AIDP, the application of starvation periods, the use of indigestible markers, 

or the precise measurements of feed intake and output. 

 

3. The feed spectrum served to accurately predict AME in broiler diets. Consequently, the 

utilization of animals to determine this property can be reduced in the future by 

employing this model, once confirmed and extensively validated.  

 

4. The fusion of the feed and the digestion product (faeces, excreta or ileal digesta) spectra 

did not result in noteworthy enhancements for any of the properties (AME, ADE and 

AIDP) investigated. 
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6.2. Perspectives 

 

Looking ahead, improvements in the models can be expected as new samples become available. 

This is particularly important in the calibrations for AME, ADE and AIDP that were based on 

a small number of diets and models of the same kind that were based on in-vivo assays that 

tested the efficacy of the inclusion of enzymes in the diets.  

 

New models could be developed as more samples become available. It is the case of AAs and 

carbohydrates in compound feeds, fat, GE and P in broiler ileal digesta and CP and GE in pig 

ileal digesta. Phytate P, for which calibrations have not been presented in in this thesis could be 

also an interesting parameter to model due to the increasing use of phytases in poultry and swine 

nutrition.  

 

The strategy used to update the calibration models for the nutrient content in compound feeds 

could be also applied to update the models of carbohydrates and lignin content for feedstuffs. 

The developed algorithm used to update the P model for pig faeces could be also applied to 

update other models in pig faeces and also in excreta and ileal digesta since these samples are 

also typically obtained in large batches at the end of in-vivo assays.   

 

The strategies based on NIRS to predict AME, ADE and AIDP could be also applied to predict 

other digestibility parameters such as the apparent total tract coefficient of digestibility of CP, 

OM and fat or the apparent ileal digestibility coefficient of AAs, both for broilers and pigs. The 

success of the inclusion of phytase as an additional predictor in the prediction of AIDP suggest 

that the inclusion of other enzymes could be worth testing. For example the inclusion of 

carbohydrase as an additional predictor in the prediction of the digestibility of fibre.  

 

The prediction of in-vitro digestibilities is another subject whose study deserves attention. 

Although in-vitro methods are not as reliable as in-vivo to determine digestibility, they are more 

and more accurate and their use is growing. In-vitro data are easier and cheaper to obtain than 

in-vivo. This would facilitate the construction of large databases to develop NIR prediction 

models, which could be validated with the growing availability of new samples. 
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