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Abstract

Deep-learning models have revolutionized state-of-the-art technologies in many
research areas, but their black-box structure makes it difficult to understand
their inner workings and the rationale behind their predictions. This may
lead to unintended effects, such as being susceptible to adversarial attacks or
the reinforcement of biases. As a consequence, there has been an increasing
interest in developing deep-learning models that provide explanations of their
decisions, a field known as interpretable deep learning. On the other hand,
in the past few years, there has been a surge in developing technologies for
environmental sound recognition motivated by its applications in healthcare,
smart homes, or urban planning. However, most of the systems used for these
applications are deep-learning-based black boxes and, therefore, can not be
inspected, so the rationale behind their decisions is obscure. Despite recent
advances, there is still a lack of research in interpretable machine learning in
the audio domain. This thesis aims to reduce this gap by proposing several
interpretable deep-learning models for automatic sound classification and event
detection.

We start by describing an open-source software tool for reproducible research
in the sound recognition field, which was used to implement the models and
run experiments presented in this document. We then propose an interpretable
front-end based on domain knowledge to tailor the feature-extraction layers of
an end-to-end network for sound event detection. We then present a novel
interpretable deep-learning model for automatic sound classification, which
explains its predictions based on the similarity of the input to a set of learned
prototypes in a latent space. We leverage domain knowledge by designing a
frequency-dependent similarity measure. The proposed model achieves results
comparable to state-of-the-art methods. In addition, we present two automatic
methods to prune the proposed model that exploits its interpretability. This
model is accompanied by a web application for the manual editing of the
model, which allows for a human-in-the-loop debugging approach. Finally, we
propose an extension of this model that works for a polyphonic setting, such
as the sound event detection task. To provide interpretability, we leverage the
prototype network approach and attention mechanisms.

The tools for reproducible research and the interpretable deep-learning models,
such as those proposed in this thesis, can contribute to developing a more
responsible and trustworthy Artificial Intelligence in the audio domain.
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Resum

Els models de deep learning han revolucionat les tecnologies d’última gene-
ració en moltes àrees de recerca, però la seva estructura black-box fa difícil
entendre el seu funcionament intern i la lògica darrere de les seves predicci-
ons. Això pot conduir a efectes no desitjats, com ara ser susceptible a atacs
adversos o el reforç de biaixos. Com a conseqüència, hi ha hagut un interès
creixent en el desenvolupament de models de deep learning que proporcionen
explicacions de les seves decisions, un camp conegut com a deep learning in-
terpretable. D’altra banda, en els últims anys, s’ha produït un augment en
el desenvolupament de les tecnologies per al reconeixement de so ambiental
motivat per les seves aplicacions en l’assistència sanitària, les llars intel·ligents
o la planificació urbana. No obstant això, la majoria dels sistemes utilitzats
per a aquestes aplicacions són black-boxes basades en el deep learning i, per
tant, no poden ser inspeccionades, de manera que la raó de les seves decisions
és confusa. Malgrat els avenços recents, encara hi ha una manca d’investigació
en el deep learning interpretable en el domini d’àudio. Aquesta tesi té com a
objectiu reduir aquest buit proposant diversos models de deep learning per a
la classificació automàtica del so i la detecció d’esdeveniments.

Comencem descrivint una eina de programari de codi obert per a la investi-
gació reproduïble en el camp del reconeixement de so, que es va utilitzar per
implementar els models i executar experiments presentats en aquest document.
A continuació, proposem un front-end interpretable basat en el coneixement
del domini per adaptar les capes d’extracció de característiques d’una xarxa
d’extrem a extrem per a la detecció d’esdeveniments sonors. Llavors presentem
un nou model interpretable de deep learning per a la classificació automàtica
del so, que explica les seves prediccions basades en la similitud de l’entrada a
un conjunt de prototips apresos en un espai latent. Aprofitem el coneixement
del domini dissenyant una mesura de similitud dependent de la freqüència. El
model proposat aconsegueix resultats comparables als mètodes més moderns.
A més, presentem dos mètodes automàtics per a reduir el model proposat
que explota la seva interpretabilitat. Aquest model està acompanyat per una
aplicació web per a l’edició manual del model, que permet una formulació
de depuració human-in-the-loop. Finalment, proposem una extensió d’aquest
model que funcioni per a un entorn polifònic, com la tasca de detecció d’es-
deveniments sonors. Per proporcionar interpretabilitat, aprofitem l’formulació
de la xarxa prototip i els mecanismes d’atenció.

Les eines per a la investigació reproduïble i els models interpretables de deep-
learning, com els proposats en aquesta tesi, poden contribuir al desenvolupa-
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ment d’una intel·ligència artificial més responsable i fiable en l’àmbit de l’àudio.
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CHAPTER 1
Introduction

1.1 Motivation

The popularization of deep learning has led to significant advances in a wide
range of scientific fields and practical problems (LeCun et al., 2015; Goodfellow
et al., 2016), most notably in computer vision (Krizhevsky et al., 2012) and
natural language processing (Peters et al., 2018), but also in the audio domain,
improving the state of the art of several tasks, such as speech recognition (Hin-
ton et al., 2012) and music recommendation (Schedl, 2019). Despite the recent
progress, it is often hard to provide insights into the decision-making process of
deep neural networks (DNNs). Their deep recursive structure and non-linear
transformations allow DNNs to learn relevant representations of the data but,
simultaneously, make it difficult to trace which aspects of the input drive their
decisions. This black-box nature of DNNs may lead to unintended effects,
such as reinforcing inequality and bias (Zhang et al., 2018; Chen et al., 2019b;
Menon et al., 2020), and makes it difficult to extract the knowledge about the
problem that the model captured in a way that humans can understand (Mol-
nar, 2019). Particularly, in applications that impact human lives—such as in
healthcare—the lack of transparency and accountability can have serious con-
sequences (Rudin, 2019). It can be argued that the difficulty of understanding
these models is not problematic in many successful applications of DNNs (Ras
et al., 2022; Krishnan, 2020). However, high-probability prediction does not
guarantee that the model always behaves as expected. For instance, it has
been shown in image recognition that DNNs can be fooled with certain ease in
classification tasks by adversarial attacks (Szegedy et al., 2014)—see (Carlini
& Wagner, 2018; Qin et al., 2019) for examples in speech.

Integrating such algorithms into our daily lives requires wide social acceptance,
but the unforeseen malfunctioning and side effects mentioned above undermine
trustworthiness. Such concerns emerge in the new artificial intelligence (AI)
regulations, like the legal notion of a right to explanation in the European
Union’s General Data Protection Regulation (GDPR) (Goodman & Flaxman,

1



2 CHAPTER 1. INTRODUCTION

2017). In consonance with this, there is a recent surge of research on machine
learning models that provide explanations of their decisions in some level of de-
tail, a field that is commonly known as interpretable machine learning (Gilpin
et al., 2018; Molnar, 2019). Moreover, models that can be interpreted can be
better debugged and audited in order to devise defense methods, foresee mal-
functions, discover edge cases, or detect biases (Zhang & Zhu, 2018; Molnar,
2019).

In recent years, there has been an interest in developing technologies for Envir-
onmental Sound Recognition (ESR). These technologies are used for different
applications, for instance, related to identifying sound sources in urban (Bello
et al., 2018) and residential areas (Mesaros et al., 2016b) for noise mitiga-
tion, healthcare applications (Drugman et al., 2012), bioacoustic monitoring
systems (Stowell, 2018; Cramer et al., 2020), assistance to people affected in
their hearing capabilities (Hüwel et al., 2020; Messner et al., 2020), acoustics
surveillance for security (Crocco et al., 2016; Sánchez-Hevia et al., 2017), or
systems for industrial applications (Morrison & Pardo, 2019). Most of these
systems are based on the application of signal processing and machine learn-
ing techniques to address the automatic generation of high–level descriptions
of the environment, including detecting sound sources. However, most of the
systems used for these applications are deep-learning-based black boxes and
therefore can not be inspected, so the rationale behind their decisions is ob-
scure. Notwithstanding some recent advances, there is still a lack of research
in interpretable machine learning in the audio domain.

In this thesis, we propose interpretable machine learning methods for sound
event detection and classification. The main focus is on environmental sound
recognition since that, under real-world conditions, it is a challenging case of
study with very relevant applications. However, the proposed approaches can
be applied to other audio-related problems, such as music-related tasks.

1.2 Environmental sound recognition

The Environmental Sound Recognition field aims to study computational meth-
ods for the automatic analysis and understanding of environmental sound in
different contexts. For example, sound event detection and classification tasks
aim to identify the sounds occurring in our daily lives and assign a label within
a target set of sound classes. In recent years, there has been an increasing in-
terest in developing technologies for monitoring and diagnosing urban sound
environments, which can facilitate the planning and management of the city to
control noise pollution (Bello et al., 2018; Daniel Steele & Guastavino, 2013).
The proposed systems are usually based on distributed sensor networks over
the Internet of Things (IoT) technologies that provide sound pressure level
estimates throughout the city in real-time (Bello et al., 2018; Mydlarz et al.,
2015, 2014). Furthermore, based on the application of signal processing and
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machine learning techniques, some recent works (Bello et al., 2018; Salamon
et al., 2014; Salamon & Bello, 2015b) have addressed the automatic generation
of high–level descriptions of the sound environment, including the detection of
sound sources. This information can help city councils to implement corrective
policies or develop monitoring plans.

Environmental sound recognition can be tackled in different ways (Virtanen
et al., 2018). A possible approach, called sound classification, aims to identify
the predominant sound source at each audio signal time. A more complex
approach, called Sound Event Detection (SED), is defined as the task of finding
individual sound events by indicating the onset time, the duration, and a text
label describing the type of sound.

Under real conditions, for instance, in urban environments, these problems
can be very challenging. Moreover, the acoustic features of each class can have
great diversity, given by the intrinsic variability of sound sources of the same
type (e.g., cars) and the influence of the acoustic environment (e.g., reverber-
ation, distance). Besides, the temporal overlapping of the sound events makes
the classification task harder. There are other issues, such as the influence of
the microphone’s response (Virtanen et al., 2018).

The Detection and Classification of Acoustic Scenes and Events (DCASE)
Challenge and Workshop (Mesaros et al., 2018a) are annual venues that pro-
mote research in ESR tasks, including evaluating algorithms in standard pub-
licly available datasets. The number of participants and authors has risen in
the last years, illustrating this research area’s relevance. In the context of this
thesis, we have collaborated to this research community by developing soft-
ware tools for reproducibility (Chapter 3 of this thesis and Zinemanas et al.
(2020), Fuentes et al. (2021)), publishing datasets (Zinemanas et al., 2019b;
Fuentes et al., 2022) and proposing novel interpretable methods (Chapter 5 of
this thesis and Zinemanas et al. (2021b)).

1.3 Paradigm shift

During the past few years, advances in computing power, optimization al-
gorithms, and available data have led to the generalized use of deep-learning
models for audio-related problems. This process is usually known as a paradigm
shift in the sense of Kuhn (1970) “The structure of scientific revolutions.” In
machine learning, Khun’s paradigms can be associated with the model types,
for instance, decision trees, support vector machines, or deep-learning mod-
els (Dotan & Milli, 2020; Pelillo & Scantamburlo, 2013). Machine learning
researchers committed to a paradigm focus on increasing the scope and preci-
sion of that model type. Based on Kuhn’s paradigms, Dotan & Milli (2020)
argue that model types guide the research of the community members commit-
ted to them. Moreover, as happened in the last few years, when many people
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commit to the same model type, the discipline changes; there is a paradigm
shift.

The number of papers referring to deep-learning models within a community
can illustrate this paradigm shift. For instance, Figure 1.1 depicts the percent-
age of deep-learning related papers in the proceedings of the DCASE workshop
over the years, showing that these models have become ubiquitous. The mass
commitment to deep learning reinforces the predominance of this model type.
For example, the deep-learning paradigm shift has promoted the availability of
data, computing power, and the development of GPUs, which are pre-requisites
for deep learning, reinforcing the paradigm (Dotan & Milli, 2020).

Figure 1.1: Percentage of papers referring to shallow and deep-learning models
within the DCASE Workshop Proceedings over the last few years. For the calcu-
lation, we do not consider papers non-related to machine learning models, such as
presenting datasets, challenges or software tools.

However, this paradigm shift is also value-laden because it implicates political
and social values. For instance, the dependency on massive datasets and ex-
pensive hardware (like GPUs and powerful computers) favor the concentration
of power of big companies in rich countries. Besides, the most used evaluation
criteria for comparing models, such as accuracy or precision, are also value-
laden since possible social or racial biases are not considered (Dotan & Milli,
2020). Deep-learning models trained on unbalanced datasets usually repres-
ent better the majority group achieving lower performances for the minority
groups. For instance, this issue has been studied in tasks such as facial recog-
nition (Xu et al., 2020) and criminal justice (Tolan et al., 2019). Other studies
investigate different types of bias in Automatic Speech Recognition systems
in English (Koenecke et al., 2020), French (Garnerin et al., 2019), and Arabic
(Abushariah & Sawalha, 2013).

On the other hand, interpretable models can be used or devised to find and
mitigate biases in deep-learning systems (Lee et al., 2019; David et al., 2020).
Therefore the development of interpretable models in the audio domain can be
helpful to mitigate the problems of deep-learning systems, such as algorithmic
biases.
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1.4 Interpretable Machine Learning

Several terms, such as interpretability, explainability, intelligibility, compre-
hensibility, and transparency, are used in this field to broadly refer to the
capability of understanding how the model works, i.e. the process that led to
its output (Lipton, 2016). Naturally, this does not mean a low-level mechan-
istic understanding of the model’s inner workings but a rationale behind its
predictions in a way that the user can interpret (Gilpin et al., 2018). The lack
of agreement on the terms is misleading, and it mainly arises from their lack
of precise meanings when applied to algorithms (Krishnan, 2020).

A problematic aspect of interpretability is that it is a domain-specific notion;
therefore, there is no single definition of what attributes render models in-
terpretable (Rudin, 2019). Interpretability is often materialized into a set of
application-specific constraints on the model, dictated by domain knowledge,
such as causality, monotonicity, or sparsity. In this thesis, we apply domain
knowledge to extract more interpretable audio representations in end-end deep-
learning models (Chapter 4). We also propose intrinsic interpretable models
for classifying and detecting events based on prototypes (Chapter 5) and atten-
tion maps based on local prototypes (Chapter 6). These interpretable models
should be able to produce explanations in terms of sound prototypes.

Another critical issue is that interpretability can be accomplished at different
degrees, from a fully transparent to a mildly constrained model (Rudin, 2019;
Gilpin et al., 2018). The design of fully-transparent machine learning models is
very challenging, so we instead include constraints and layers based on domain
knowledge to bring some interpretability to the deep-learning models.

In light of the above, it is not surprising that there are a lot of different ap-
proaches to explaining DNNs (Guidotti et al., 2018; Ras et al., 2022; Gilpin
et al., 2018; Molnar, 2019). Most of them focus on explaining how the data are
processed or represented by the network, namely a post-hoc explanation, as it
pertains to an existing opaque model. Another approach is to create architec-
tures designed to produce explanations or facilitate the interpretation of the
network behavior, namely explanation-producing or inherently/intrinsically in-
terpretable models.

The challenge in intrinsically interpretable machine learning is to create mod-
els that fit the data accurately while uncovering the types of patterns that
the user would find interpretable. However, there is a widespread belief that
interpretability and accuracy stand in conflict, assuming that the most accur-
ate models must be inherently complex and, hence, uninterpretable (Gilpin
et al., 2018). However, some evidence suggests that such a trade-off does not
necessarily hold since, for instance, certain forms of interpretability have been
integrated into deep neural networks for computer vision without losing ac-
curacy (Li et al., 2018a; Chen et al., 2019a). On the contrary, the ability to
interpret the model can reveal the weaknesses of the data or the processing,
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which can lead to performance improvements if adequately addressed.

1.4.1 Post-hoc explanations

Concerning post-hoc interpretability, the fundamental challenges in explaining
large neural networks are the high number of parameters and the stacked non-
linear operations involved. This can be tackled by training a linear proxy
model that imitates the input-output behavior of the original opaque model,
but it is easier to interpret (a white box). One of the classical methods of this
kind is the local interpretable model-agnostic explanations (LIME) (Ribeiro
et al., 2016), which learns a linear model as a local approximation of the
black-box model in the neighboring space of an input data point. Other proxy
models attempt to replicate the behavior across the entire dataset while using
decision trees or rule extraction techniques (Gilpin et al., 2018). However, a
proxy model is a linear approximation of a non-linear model and may be an
inaccurate representation in some parts of the input space. Thus, the proxy
models are often not reliable (Rudin, 2019).

Another type of post-hoc explanation focuses on studying the representation
of the data inside the network. These methods try to explain the role of the
layers (Yosinski et al., 2014), individual units (Zhang & Zhu, 2018), or other
helpful representations (Kim et al., 2018). Besides, some visualization methods
highlight the input characteristics that strongly influence the output (Ras et al.,
2022). Among the most common ones are the saliency maps, which identify
input features that cause a maximum response or portions where changes would
most affect the output (Simonyan et al., 2014). They can be helpful to reverse-
engineer importance values or sensitivities of inputs but do not disclose how
this relevant information is being used so that they can produce unreliable
explanations (Adebayo et al., 2018).

1.4.2 Intrinsic interpretability

For already trained models, post-hoc explanations may be the only option.
However, an inherently interpretable model provides explanations faithful to
what the model actually computes (Rudin, 2019). Several different approaches
may be taken for designing interpretable or explanation-producing neural net-
works (Gilpin et al., 2018). For instance, DNNs can be trained to learn dis-
entangled latent representations (Narayanaswamy et al., 2017) explicitly or
to create generative explanations. Besides, attention mechanisms that proved
very effective in natural language processing and computer vision provide a dis-
tribution over input units indicating their relative importance, which can be
considered a form of explanation. However, more research is needed to assess
whether attention mechanisms can provide reliable explanations (Wiegreffe &
Pinter, 2019).
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Recent approaches for designing interpretable neural network architectures
based on explanations through prototypes and concepts, which have been
mainly applied to the classification of images, are of particular relevance to our
work (Li et al., 2018a; Alvarez Melis & Jaakkola, 2018; Hase et al., 2019; Chen
et al., 2019a, 2020). Prototype classification is a classical form of case-based
reasoning. Hence, it is an appropriate approach for interpretability grounded
on how domain experts explain the reasoning processes behind complicated
classification tasks in the visual domain. The architecture proposed in (Li
et al., 2018a) appends a particular prototype layer to the network. Those pro-
totypes are learned during training, and the network’s predictions are based
on their similarity to input in the latent space. Thus, the explanations that
are given by the network are the prototypes and corresponding distances. Sub-
sequently, in (Hase et al., 2019), this is extended to use hierarchically organized
prototypes to classify objects in a predefined taxonomy, and in (Chen et al.,
2019a), to learn parts of the training images as prototypes of each class. Fi-
nally, the approaches in (Alvarez Melis & Jaakkola, 2018; Chen et al., 2020)
can be regarded as generalizations beyond similarities to prototypes into more
general interpretable concepts.

1.5 Interpretability of audio-based models

Deep-learning based systems for audio classification can be illustrated as in
Figure 1.2. Signal processing methods are used to extract an input repres-
entation from the audio waveform by computing some perceptually-motivated
hand-crafted features that are inherently interpretable (such as energy distri-
bution across different frequency bands). Then, a deep-learning model maps
the input space into the output space by predicting one of the classes.

Audio
Input

Representation PredictionsFeature
Extractor

Deep-learning
model

Figure 1.2: Diagram of a deep-learning-based system. First stage is devised to
extract an input representation from the audio signal. Then the deep-learning model
makes the prediction based on this input representation.

As mentioned in the previous section, post-hoc methods can be used to inter-
pret the functioning of the black boxes or to explain local predictions. However,
in this thesis, we focus on designing intrinsic interpretable models for classific-
ation and sound event detection. We include domain knowledge in the design
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process to make the models more interpretable and accurate. In Chapter 5,
we propose an interpretable deep-learning model for sound classification based
on prototypes. We show that this model can be both interpretable and ac-
curate for environmental sound, music instrument, and speech classification.
However, the characteristics of this model make it unsuitable for a polyphonic
setting, such as the sound event detection task, so we propose an extension for
this problem using local prototypes and attention maps in Chapter 6,

Interpretable
Front-end

Back-end

PredictionsDeep-learning
model

Audio

PredictionsAudio Interpretable

Representation

Figure 1.3: Diagram of a end-to-end deep-learning based system (top). In this case,
the predictions are made directly from de waveform. First layers (front-end) of the
model can be devised to extract interpretable features (bottom).

Alternatively, end-to-end models can be trained to obtain the predictions dir-
ectly from the waveform signal (See Figure 1.3). In this case, the first layers of
the deep-learning model are intended to do the feature extraction. For example,
it has been shown that the first layers of end-to-end convolutional neural net-
works that learn representations from raw audio data extract features similar
to the spectrogram or energies in mel-frequency bands (Thickstun et al., 2017;
Lee et al., 2018; Tax et al., 2017). Additionally, some works have addressed
the design of the first layers of these networks to tailor interpretable feature
extraction stage using parametric filters (Loweimi et al., 2019; Pan et al., 2020;
Won et al., 2020). In Chapter 4 we propose to include trainable hand-crafted
kernels in the first layers of the network and use parametric normalization to
make end-to-end networks more interpretable.

1.6 Reproducibility and interpretability

Another side effect of the deep-learning paradigm shift is that most modern
signal processing methods and models are considerably more complex than a
decade ago and heavily rely on the data and software used for their implement-
ation (McFee et al., 2019). Besides, implementation details can profoundly
affect the reported performance of a method (Vandewalle et al., 2009; Raffel
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et al., 2014; Six et al., 2018). Therefore, it has become increasingly challenging
to reproduce the findings or to compare a new method to earlier ones based
only on the description of research systems found in publications (McFee et al.,
2019; Six et al., 2018). This can slow down progress in the research community
due to the effort devoted to reimplementing methods and dealing with all de-
tails of different software packages and datasets. For the optimal reuse of
scientific research, numerous authors and institutions are advocating not only
for open-access publications and data but also for the release of software and
models that can be of use across a variety of domains (Colom et al., 2015;
McFee et al., 2019; Bjornson, 2019). This poses several challenges, such as
the development of best practices guidelines to stick to, the need for long-term
funds for those initiatives, and the coordination of research efforts–which is
crucial to the quality of research (Leonelli & Ankeny, 2015).

Fortunately, some scientific communities, such as DCASE, are increasingly
endorsing transparency and best practices for reproducible research. The
DCASE Challenge provides an annual benchmark of methods for different tasks
(Mesaros et al., 2018a, 2019), and since 2019 it has given specific awards for
open–source and reproducible methods. In addition, there are numerous read-
ily available datasets (Piczak, 2015; Salamon et al., 2014; Mesaros et al., 2017,
2018c; Fonseca et al., 2018; Cartwright et al., 2019; Zinemanas et al., 2019b;
Heittola et al., 2020) and various authors publicly release software tools as well
as easily usable and well-documented implementations of their methods (Sala-
mon et al., 2017; Salamon & Bello, 2017; Mesaros et al., 2016a; Bilen et al.,
2020).

While all such resources are of great value for the progress of the field, there
are still several opportunities to improve research reproducibility. For instance,
usability aspects have to be considered (e.g., documentation and installability)
so that a piece of code is functional rather than simply available. In addition,
when trying to compare the results of a new method with earlier methods, it is
often the case that researchers have to reimplement those baselines or manage
to find and modify an existing implementation. This is time-consuming and
implies dealing with various coding conventions and software tools. With the
intrinsic complexity of deep–learning methods, delving into a given DCASE
problem can be tricky, especially for newcomers.

Furthermore, both interpretable models and reproducible experiments are cru-
cial to fostering a more responsible and trustworthy AI (High Level Expert
Group on Artificial Intelligence, 2019; Barredo Arrieta et al., 2020). There-
fore, a framework for the reproducible development and use of such systems
would be beneficial in the context of interpretable deep learning for audio-
related problems.

In the light of the above, in the context of this thesis, we have developed
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DCASE-models1, an open-source Python library whose main goal is to facil-
itate the development of deep-learning models for DCASE-related tasks such
those tackled in this dissertation (Chapter 3). All deep-learning methods used
in this thesis (Chapters 4, 5 and 6) are implemented using this library.

1.7 Scope and goals

This thesis focuses on the design of interpretable models for environmental
sound classification and detection. We use domain knowledge to design parts
or layers of the networks that are intrinsically interpretable. In Chapter 4
we show how we devise the first layers of an end-to-end deep-learning model
to extract meaningful feature representations. In Chapter 5 we propose a
prototype-based neural network for sound classification. In Chapter 6 we ex-
tend this prototype-based model by adding an attention mechanism to work
in a polyphonic setting such as the sound event detection task. We also show
that reproducible research is fundamental for fostering interpretable models,
and this thesis presents a Python library for reproducible development of deep-
learning models for environmental sound recognition (Chapter 3).

Since there is a lack of research on interpretable deep-learning models in the
audio domain, this thesis aims to promote this type of model in these research
communities. Furthermore, given that this thesis focuses on environmental
sound recognition, we mainly contribute to the DCASE community. Therefore,
the specific goals of this thesis are:

1. To develop an open-source software library for the reproducible use and
development of machine learning models in the context of the DCASE
community.

2. To design interpretable deep-learning representations that are suitable
for different audio-related problems.

3. To devise intrinsic interpretable deep-learning models for classifying sources
and detecting events in the context of environmental sounds.

4. To contribute to the research community in curating data and developing
software tools to ease the use of publicly available datasets.

Objectives 1 to 3 are covered in this document, as explained in the next sec-
tion. Objective 4 includes other contributions and collaborations not included
in this document. In the context of the DCASE community, we also contrib-
uted to developing a dataset for sound event detection in urban environments
(Zinemanas et al., 2019b). We have also collaborated to curate a dataset for

1https://github.com/MTG/DCASE-models
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audio-visual scene understanding, specially devised for training self-supervised
models (Fuentes et al., 2022). Another relevant collaboration is the develop-
ment of soundata2, an open-source Python library for downloading, validating,
and loading common sound datasets (Fuentes et al., 2021).

1.8 Outline of the thesis

In this section, we describe the structure of the thesis and provide a brief
description of each chapter, including the main goals and the achievements
reported. Figure 1.4 shows a diagram of outline of the thesis in relation with
the main topics and the specific goals defined previously.

Interpretability
for SED and classification

Reproducibility

Interpretable
Front-end (O2)

Interpretable
Back-end (O3)

Chapter 4
End-to-end SED

Chapter 2
Background

Chapter 5
Classification

Chapter 6
SED

Chapter 7
Conclusions

Tools for ML 
Pipeline (O1)

Datasets and tools 
for datasets (O4)

Chapter 3
DCASE-models

(Zinemanas et al., 2019b)
(Fuentes et al., 2021)
(Fuentes et al., 2022)

Figure 1.4: Diagram of the thesis outline in relation with the topics and the specific
objectives defined in Section 1.7. We also include contributions outside this thesis.

Chapter 2 summarizes the background to support the topics covered in this
thesis. It includes a literature review of the fields involved in this thesis.
We first define the tasks of environmental sound recognition tackled in the
dissertation. We then explain the most commonly used input representations
for deep-learning-based ESR systems. We include a description of the most
relevant deep learning models and a summary of the available datasets and
the evaluation metrics we used. We follow the chapter with a comprehensive
literature review of the field of interpretable deep learning. We review both
post-hoc and intrinsic interpretable methods. We finish the chapter with a
literature review of interpretable models used for audio-related tasks.

In Chapter 3 we describe DCASE-models, an open-source Python library de-
vised to alleviate the development of deep-learning-based systems for ESR. We
first explain the design principles and the practices we followed to devise the

2https://github.com/soundata/soundata

https://github.com/soundata/soundata


12 CHAPTER 1. INTRODUCTION

library. We then describe how the library is organized to include all steps in
the typical pipeline of an ESR system. Finally, we finish the chapter by show-
ing a few examples of how using the library facilitates the development of such
models. This chapter is mainly based on the following publication:

• Zinemanas, P., Hounie, I., Cancela, P., Font, F., Rocamora, M., Serra
X. DCASE-models: A Python library for computational environmental
sound analysis using deep-learning models. 5th Workshop on Detection
and Classification of Acoustic Scenes and Events (DCASE 2020), Novem-
ber 2020.

In Chapter 4 we propose an end-to-end deep-learning architecture for SED
whose first layers are devised to extract meaningful features from the audio
signal. We first describe how we calculate the mel-spectrogram in the model
and compare it with a previously proposed method. We then show how we
adapt PCEN, a parametric per-channel normalizer, to scale the input repres-
entations. We finish the chapter with experiments and the results obtained,
including a comparison with the baseline systems. Finally, we show how we use
the insights from the interpretable layers to reduce the number of parameters.
The contributions of this chapter were published in:

• Zinemanas, P., Cancela, P., Rocamora, M. End-to-end convolutional
neural networks for sound event detection in urban environments. 24th
Conference of Open Innovations Association (FRUCT 2019), March 2019.

Chapter 5 presents an interpretable deep learning model for sound classification
based on prototypes, namely APNet. We first define the main contributions
of this chapter and present the proposed model. We then describe the data-
sets, baselines, and training strategy used in this work. We also present the
experiments and the results obtained. We show that the model is success-
ful in addressing different audio classification tasks, including speech, music,
and environmental sound. We also include the analysis of the interpretable
parameters, including the learned prototypes. We then show how we use the
insights of the interpretable layers to refine and prune the network. Finally,
we finish the chapter by discussing the main conclusions. The content of this
chapter is based on the following journal paper:

• Zinemanas, P., Rocamora, M., Miron, M., Font, F., Serra, X. An Inter-
pretable Deep Learning Model for Automatic Sound Classification. Elec-
tronics 10 (7:850) 2021, https://doi.org/10.3390/electronics10070850

In Chapter 6 we discuss the limitations of APNet for representing overlapping
sound sources in the latent space, like in the sound event detection task. There-
fore, we propose a solution based on attention maps and local prototypes. We

https://doi.org/10.3390/electronics10070850
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first define the proposed model and the objective function used to optimize the
model. We then show the experiments and the results, including an analysis
of the learned prototypes and the explanations the model provides based on
the attention maps. This chapter is based on the following publication:

• Zinemanas, P., Rocamora, M., Fonseca, E., Font, F., Serra X. Toward in-
terpretable polyphonic sound event detection with attention maps based
on local prototypes. 6th Workshop on Detection and Classification of
Acoustic Scenes and Events (DCASE 2021), November 2021.

We include a summary and discussion of the key results and takeaways at the
end of each chapter. Additionally, we finish this thesis with Chapter 7 by
presenting an overall summary and the conclusions. We also discuss future
perspectives to develop the interpretable deep learning field within the audio
research community.





CHAPTER 2
Background

2.1 Introduction

This chapter provides the description and relevant background about the topics
covered in this thesis, along with the related literature. Specifically, in Section
2.2, we further introduce the problem of environment sound recognition. We
define the main tasks involved in this problem, the most popular input repres-
entations, and how those are used in the shallow learning paradigm context.
We discuss the fundamentals of the deep-learning models applied to the sound
event detection task and the most relevant works using these models. We also
review the datasets for environmental sound recognition and present the evalu-
ation metrics used in this thesis. Then, in Section 2.3, we survey the literature
on interpretable deep learning including post-hoc and intrinsic methods. Fi-
nally, Section 2.4 presents the literature review of interpretable models used
in the context of audio-related problems. Altogether, these literature reviews
provide the related work for Chapters 4, 5, and 6. Throughout this chapter,
we also define the scope of this thesis and motivate some of the choices made.

15
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2.2 Environmental sound recognition

Environmental sound recognition involves machine listening systems that gen-
erate high-level semantic descriptors. These descriptors can be in different
forms. We commonly use the following taxonomy to categorize them: classi-
fication, tagging, and sound event detection. Figure 2.1 illustrates the output
obtained in each of these systems. Environmental sound classification is the
task of classifying the predominant source present in an audio excerpt. Audio
tagging refers to the multi-label classification of an audio snippet. A tag-
ging system can provide all sound sources in an audio file and other high-level
descriptors, such as the acoustic scene. A more complex approach, commonly
known as Sound Event Detection (SED), aims to detect all sound sources in
the audio file, including the onset time and the duration of each of them.

Sound
Classification

Input

car

Sound Event
Detection

time

car

motorcycle

bus

Audio
Tagging

car

bus

street

System

Output

Figure 2.1: Diagrams of the three different approaches of environmental sound re-
cognition: sound classification, audio tagging and sound event detection.

2.2.1 Input representations

Spectrograms

Usually, audio signals are transformed into a time-frequency representation
that better characterizes the variation of its frequency components over time
compared to the audio waveform. The most direct way to do this is using
the Short-time Fourier Transform (STFT). Let x[n] be the audio signal in the
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time domain, the STFT for the frequency component f , and the frame t is
calculated by:

X[t, f ] =
N∑

m=0

w[m]x[th+m] exp

(
−j2πfm

N

)
, (2.1)

where w[m] is the analysis window, N is the window length, and h is the hop
size between frames. The spectrogram is calculated as the magnitude of the
STFT for each time-frequency point. Even though the spectrogram has been
used for sound event detection, for instance, as input of recurrent (Zöhrer
& Pernkopf, 2016) or convolutional neural networks (Adavanne & Virtanen,
2017), other perceptually motivated variants are more popular.

Mel-spectrograms

Mel-spectrograms are arguably the most popular representation used for audio-
based classification tasks. This representation is based on a non-linear warping
of the frequencies into the mel-frequency scale, which motivated by auditory
perception. The mel frequency scale is defined as:

mel(f) = 2595 log10

(
1 +

f

700

)
. (2.2)

The mapping to the mel-frequency scale is obtained by applying a bank of
triangle filters whose center frequencies are distributed linearly in the mel
scale and whose bandwiths are almost constant until 1000 Hz and constant in
the mel scale for higher frequencies. The bandwidth of the filters and their
logarithmic distribution are inspired in the human auditory perception.

E[i, l] =
∑
k

|Hl[k]X[i, k]|2, l = 0, . . . , L− 1, (2.3)

where Hl[k] is the frequency response of the l-th filter, and L is the total
number of filters. Again, this energy distribution is calculated for each frame
of the signal.

Most works on SED use the energy on mel bands as input features, in conjunc-
tion with Recurrent Neural Networks (RNNs) (Adavanne et al., 2016; Vu &
Wang, 2016; Gorin et al., 2016; Zhou, 2017), Convolutional Neural Networks
(CNNs) (Salamon et al., 2017; Jeong et al., 2017) or Convolutional Recurrent
Neural Networks (CRNNs) (Cakir et al., 2017; Adavanne & Virtanen, 2017).

Mel–Frequency Cepstral Coefficients (MFCC)

The Mel–Frequency Cepstral Coefficients (MFCCs) were originally devised to
describe the spectral content of speech signals by decomposing them into an
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excitation (carrier signal) and a frequency response (modulation) (Davis &
Mermelstein, 1980). Therefore speech signals are modeled by the signal gen-
erated in the glottis and a filter representing the effects of the vocal tract.
The MFCCs represent the frequency response so those are useful to recognize
speech and the speaker. These features have been used in music-related tasks
such as singer identification (Kim & Whitman, 2002) or instrument recognition
(Herrera-Boyer et al., 2006). MFCCs have also been used for SED as features,
with Gaussian mixture models (GMM) (Mesaros et al., 2016b), decision trees
(Elizalde et al., 2016; Salamon & Bello, 2015b,a) and DNNs (Kong et al., 2016;
Wei et al., 2016; Wang et al., 2017a; Lu & Duan, 2017).

The MFCCs are defined as the Discrete Cosine Transforms (DCTs) of the
energy in the mel bands:

MFCC[i,m] =

L−1∑
l=0

log(E[i, l]) cos

(
2π

L
lm

)
, m = 0, . . . ,M − 1, (2.4)

where M is the number of cepstral coefficients (Davis & Mermelstein, 1980).

Although MFCCs are the most common cepstral representations used for sound
classification, other cepstral representations, such as the Gammatone feature
cepstral coefficientss (GFCCs), have also been applied for sound scene analysis
(Valero & Alias, 2012).

Energy normalization

Generally, the mel–spectrogram, E[i, l], is converted into decibels as follows:

EdB[i, l] = 10 log10 (E[i, l]), (2.5)

where i is the hop index, and l is the frequency channel (mel filter index).
This normalization is widespread in the SED problem (Salamon et al., 2017;
Cakir et al., 2017). A new approach, called Per-channel energy normaliza-
tions (PCENs), was recently proposed to increase the robustness to loudness
variations on speech detection systems (Wang et al., 2017b). The static log-
arithmic function is replaced with a dynamic range compression (DRC) and
adaptive gain control (AGC) with temporal integration. This integration is
performed with a low-pass filter ϕT , in a temporal scale of T , as follows:

EPCEN [i, l] =

(
E [i, l]

(ϵ+M [i, l])α
+ δ

)r

− δr, (2.6)

where M [i, l] =
(
Et ∗ ϕT

)
[i, l], while α, ϵ, r and δ are positive constants and ∗

denotes convolution (Lostanlen et al., 2019). The low-pass filter is implemented
as a first order IIR filter:

M [i, l] = (1− s)M [i− 1, l] + sE [i, l] , (2.7)
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where s is a smoothing coefficient (Wang et al., 2017b).

Figure 2.2 shows the comparison of the logarithmic scale versus the PCEN
using the parameter values suggested in (Wang et al., 2017b) for an example
audio file from the URBAN-SED dataset.
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Figure 2.2: Comparison of energy normalization with logarithmic function (top)
and using PCEN (bottom). PCEN is calculated using librosa implementation with
parameters α = 0.8, δ = 10, r = 0.25, T = 0.06, ϵ = 10−6.

Values for the PCEN parameters have been proposed according to asymptotic
studies (Lostanlen et al., 2019), but it is interesting to note that the function
is differentiable; thus, those parameters could be learned by neural network
models (Wang et al., 2017b). In Chapter 4, we explore this in more depth.

Other perceptually-motivated representations

Other perceptually-motivated representations for environmental sound recog-
nition are based on the critical-band frequency mapping and the Constant-Q
transform (CQT) (Brown, 1991). The former describes the bandwidth of the
auditory filters in the cochlea (Fletcher, 1940). The equivalent rectangular
bandwidth scale (ERB) estimates the frequency and bandwidth of these fil-
ters. The latter is a time-frequency representation where the frequencies are
logarithmically spaced.
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Multi-scale representations, such as wavelets, have also been used for sound
recognition. Those functions integrate to zero and can form a basis by applying
translation and dilation transformations.

Most of the representations presented above try to characterize the speech or
music signals. These have been used for several tasks such as speech recogni-
tion, speaker identification, and instrument classification. However, features
such MFCCs can capture global spectral envelope properties that are also use-
ful for sound recognition tasks (Serizel et al., 2018). Some other works try to
design special features for sound scene classification and event detection. For
instance, Chu et al. (2009) proposed a matching pursuit-based method to ob-
tain time-frequency representations. This method uses a dictionary for feature
selection producing an interpretable set of features.

2.2.2 Shallow learning approach

The shallow-learning approach was the predominant paradigm before the ir-
ruption of deep learning In this approach, features extracted from the audio
signal are the input of a shallow machine learning model that makes predic-
tions to perform classification, tagging, or detection. A great deal of machine
learning models have been applied for environmental sound recognition.

For instance, discriminative models, such as linear models or Support vector
machines (SVM), try to predict the class from the input without explicitly
modeling the input space (McFee, 2018). This type of models have been used
for sound recognition tasks along with MFCCs (Vikaskumar et al., 2016), mel-
spectrograms (Sena Mafra et al., 2016), CQT (Bisot et al., 2016) and Wavelets
(Kun et al., 2017; Waldekar & Saha, 2018; Qian et al., 2017).

On the other hand, generative models, for instance, Gaussian mixture models
(GMM) and Hidden Markov models (HMM), approximate the data generating
process by modeling the joint distribution over the input and output spaces
(McFee, 2018). For example, GMMs have been used for ESR with MFCCs
(Mulimani & Koolagudi, 2016) and CQT (Abrol et al., 2017) as input repres-
entation. Moreover, HMMs were used to model temporal sequences using an
ERB-based spectrogram as input (Benetos et al., 2016).

Moreover, decision-tree-based models, such as Random Forest, attempt to pre-
dict the output based on decision rules learned from the training data. These
models have been used along with MFCCs (Salamon et al., 2014) for sound
classification.

2.2.3 Deep-learning approach

As mentioned in Section 1.3, the DCASE community faced a paradigm shift
from the design of handcrafted features to the deep learning approach. In
this thesis, we focus on discriminative deep-learning models. These models in-
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clude non-linear transformations over the input and a classifier to discriminate
between classes, and both are fit simultaneously during the training process
(McFee, 2018). In the following, we present some architectures and examples
of these models used for SED and classification.

Multi-Layer Perceptron

The most simple neural network is the Multi-layer Perceptron (MLP) based
on Rosenblatt’s neuron model (Rosenblatt, 1958). It consists of a combination
of intercalated affine transformations and non-linear activations. The affine
function and the activation form one layer. Therefore for each layer i, let us
define:

fi (x;Wi, bi) = ρi
(
W T

i x+ bi
)

(2.8)

where x is the input; Wi ∈ Rdi−1×di and bi ∈ Rdi are the layer’s weights and
bias respectively; and ρi is the activation function (Goodfellow et al., 2016;
McFee, 2018). The dimension of each layer is di and each function fi maps the
space Rdi−1 into Rdi .

An MLP model includes several functions like fi concatenated. Therefore, the
output of the model for an input x is:

f (x;θ) = (f1 ◦ f2 ◦ · · · fm) (x) (2.9)

where θ = (Wi, bi, ρi)
m
i=1 is the set of parameters of the model.

The last layer’s activation function must be chosen according to the task.
For single-label multi-class tasks, such as sound classification, the softmax
activation is commonly adopted, which forces all per-class output predictions
to sum one. For multi-label classification tasks, such as sound event detection,
the final activation is typically a sigmoid function per output channel, thus
forming independent classifiers for each class. In this case, the labels are defined
as a binary vector y ∈ {0, 1}C , where C is the number of classes (McFee, 2018).

Training

The training of a neural network is performed by updating the network weights
in order to minimize a loss function, L(x, y; θ), that expresses the divergence
between the predictions ŷ = f (x;θ) and the target labels y. The most
commonly-used loss function for multi-class classification is the Categorical
Cross-Entropy (CCE) loss:

LCCE(ŷ, y) = −
C∑
c=1

yc log ŷc, (2.10)

where yc and ŷc are the c’th element of the target label and the predictions,
respectively. Since y is a one-hot encoded vector, only one term of the sum-
mation contributes to the loss, and the rest of the classes are ignored. In
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multi-label classification, such as sound event detection, the network’s output
is composed of C independent binary classifiers. In this setting, binary classi-
fication loss functions are typically adopted. They consider positive examples
and also negative ones. For example, BCE is the most commonly used loss
function for this setting:

LBCE(ŷ, y) =

C∑
c=1

−yc log ŷc − (1− yc) log(1− ŷc). (2.11)

Usually, the model parameters are fitted by a variation of the gradient descent
method. This method is an iterative algorithm that can be described by:

θ(t+1) = θ(t) − η∇θL(x, y; θ(t)) (2.12)

where η > 0 is the learning rate and ∇θ denotes the gradient with respect to
parameters θ (Bishop, 2006; McFee, 2018). Since the L function involves the
composition of a series of differentiable functions, its gradient can be calculated
using the Chain Rule. This method is called error backpropagation since the
errors in the last layers are backpropagated to the first layers (Bishop, 2006).

Stochastic methods are used to avoid calculating the loss function over the
whole training set and to avoid local minima. Instead, the gradient is calcu-
lated over a random sample of the training set. This method is called stochastic
gradient descent (SGD) (Bishop, 2006). Adagrad (Duchi et al., 2011), Adadelta
(Zeiler, 2012), and Adam (Kingma & Ba, 2014) are other variants of optim-
izers that are adapted to the relative change of the parameters, reducing the
dependency on the learning rate selection.

MLP for Sound Event Detection

MLP models have been used for SED and sound classification. Figure 2.3 shows
the diagram of the MLP proposed by (Mesaros et al., 2017). The model’s input
is a vector of dimension d0 = 200. This vector is formed by the logarithm of the
energy in 40 mel bands from 0 to 22050 Hz of five frames of audio, including
the central one, the two previous ones, and the two later ones. The analysis
window is 40 ms, and the frames are overlapped by 50 %. The model includes
two hidden layers of 50 units each.

Note that the network’s predictions use a small amount of context information
(120 ms). For non-stationary signals, the lack of context can be problematic.
For instance, the two consecutive frames can be different. Besides, this type
of architecture does not take advantage of the implicit structure of the audio
signals in time or frequency (McFee, 2018). In the next section, we show that
Convolutional Neural Networks can overcome this issue.

MLP models have been used for environmental sound recognition with other
features as input, such as the spectrogram (Foleiss & Tavares, 2017) and the
CQT (Bisot et al., 2017).
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Figure 2.3: Diagram of the MLP model proposed by (Mesaros et al., 2017). It is
formed by three fully-connected (FC) layers. It has two hidden layers of 50 units each
and FC layer to map the predictions of K classes.

Convolutional Neural Network

Convolutional Neural Networks can be one-dimensional (for instance, wave-
form as input), two-dimensional (time-frequency representation as input), or
of higher dimensions (video input or multiple time-frequency representations).
In this thesis, we focus on two-dimensional CNN since those are the most used
for the tasks of SED and classification.

The operation that defines one layer of convolution is the following:

fi (X;Wi, bi) = ρi (Wi ∗X + bi) , (2.13)

where X ∈ RTi−1×Fi−1×di−1 is the layer’s input, Wi ∈ Rni×pi×di−1×di is the
layer’s kernel and bi ∈ Rdi is the bias. The output of the function fi lies at
the space RTi×Fi×di . Note that Ti and Fi are the spatial dimensions (time and
frequency respectively) of the input of layer i; di is the number of filters; and
ni and pi are the dimensions of the convolutional kernel (Goodfellow et al.,
2016; McFee, 2018).

If the model’s input is a time-frequency representation, such as the spectro-
gram, the dimensions T0 and F0 are the number of frames and the frequency
bins of the map respectively. The number of input channels is d0 = 1 for
monophonic inputs, d0 = 2 for stereo signals, or d0 > 1 if more complex
representation are used, for instance the combination of several feature maps.

Typically, the convolution operations are used in the first layers of the network.
Then, fully-connected (dense) layers, such as the ones from Equation (2.8), are
used for the upper layers. The model proposed by Salamon & Bello (2017)
is an example of this type of network. Figure 2.4 shows the diagram of this
model. It has three convolutional layers and three fully-connected layers. The
final layers has sigmoid activation over K classes to perform the multi-label
classification.
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Figure 2.4: Diagram of the CNN model proposed by (Salamon & Bello, 2017).

Other CNNs have been used for environmental sound recognition with different
types of inputs, such as mel-spectrogram (Sakashita & Aono, 2018; Dorfer
et al., 2018), gammatone filters (Perez-Castanos et al., 2020), wavelets (Li
et al., 2018b) and the audio waveform (Purohit & Agarwal, 2018; Pajusco
et al., 2020).

Recurrent Neural Network

Recurrent Neural Network (RNN) integrate temporal information and are used
to model sequential data. In the most simple recurrent layer, a state vector,
h[t] ∈ Rdi−1 , is defined by:

h[t] = ρ
(
W Tx[t] + V Th[t− 1] + b

)
, (2.14)

where x[t] ∈ Rdi−1 is the layer’s input, W ∈ Rdi−1×di is the weight matrix, V ∈
Rdi−1×di is the recurrent weight matrix, and b ∈ Rdi is the bias (Goodfellow
et al., 2016; McFee, 2018).

The layer’s output is the sequence formed by the state vectors:

fi (X;Wi,Vi, bi) = (h[t])Tt=1 . (2.15)

The function fi maps the space Rdi−1 into Rdi . Normally, more complex recur-
rent layers are used, such as Gated Recurrent Unit (GRU) (Cho et al., 2014)
or Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997).

The model proposed by Adavanne et al. (2016), which obtained the best result
of the DCASE 2016 task 3 challenge (sound event detection in real life audio),
is an example of this type of network. The input is the energy in 40 mel-
frequency bands. The network has two hidden layers with 32 units each. Figure
2.5 shows the diagram of this model. Note that in this case, the predictions
are made at the frame level, and the output has shape (T,K) instead of (K).
Therefore, the predictions of the CNN at the frame level are aggregated to
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make a classification at a chunk of several frames; 1-second resolution in the
case of the model proposed by (Salamon & Bello, 2017).

Output
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LSTM
32

LSTM
K

Figure 2.5: RNN proposed by (Adavanne et al., 2016)

Convolutional-Recurrent Neural Network (CRNN)

The model proposed by Cakir et al. (2017) is an example of how convolutional
and recurrent layers can be combined. This model includes three convolutional
layers, three recurrent layers, and one fully-connected layer. The convolution
layers extract temporal features from the input integrated using the recurrent
layers. Figure 2.6 shows the diagram of this model.
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Figure 2.6: CRNN proposed by (Cakir et al., 2017)

Other CRNN models were proposed for SED and classification specially using
mel-spectrograms as inputs (Ebbers & Häb-Umbach, 2019; Harb & Pernkopf,
2018; Lim et al., 2018, 2017).

2.2.4 Datasets

Publicly available datasets for ESR are of crucial importance to foster the de-
velopment of the field as they encourage reproducible research and fair compar-
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ison of algorithms. In this respect, the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenge, held for the first time in 2013 and re-
peated every year since 2016, has established a benchmark for sound event
detection and acoustic scene classification using open data (Mesaros et al.,
2018a, 2019).

Two of the datasets used in the DCASE challenge for SED in urban envir-
onments are part of the TUT database (TUT Sound Events 2016 and 2017),
which was collected in residential areas in Finland by Tampere University of
Technology (TUT) and contain overlapping sound events manually annotated
(Mesaros et al., 2016b). The classes were defined during the labeling process.
In a first step, the participants were asked to mark all the sound events freely,
and later the labels are grouped into more general concepts. In addition, the
tags must be composed of a noun and a verb, such as engine accelerating
or brakes squeaking (Mesaros et al., 2016b).

Datasets for SED usually include a limited amount of annotated audio, primar-
ily due to the amount of time that annotating multiple overlapping sounds
takes. For instance, TUT Sound Events 2017 dataset (Mesaros et al., 2017) is
formed by two hours of recordings in residential areas and only includes seven
classes. MAVD dataset (Zinemanas et al., 2019b) has four hours of annotated
audio in urban environments focusing on traffic noise. On the other hand, the
SINGA:PURA (Ooi et al., 2021) dataset has more than 18 hours of annot-
ated audio following the taxonomy of urban sounds proposed in SONYC-UST
(Cartwright et al., 2020).

Using weak labels that only indicate the presence of the source without time
boundaries alleviates the work involved in the manual annotation. For ex-
ample, FSD50K (Fonseca et al., 2022) and Audioset (Gemmeke et al., 2017)
datasets have weak labels to describe the audio files. These are much bigger
datasets and intend to be more general in terms of target classes. Audioset
follows a hierarchical ontology of sound events formed by 632 categories. The
audio files are 10-second slices from Youtube videos. However, the annotations
can be noisy since those are based on the user tags. FSD50K dataset includes
a subset of 200 categories from Audioset ontology and has more than 50 thou-
sand files. The SONYC-UST dataset also has weak labels of more than 50
hours of recordings from 60 different acoustic sensors.

Another option is to create synthetic audio mixtures using isolated sound
events. This approach was adopted in the URBAN-SED dataset (Salamon
et al., 2017), which contains synthesized soundscapes with sound event an-
notations generated using Scaper (Salamon et al., 2017) (a software library
for soundscape synthesis). The original sound events are extracted from the
UrbanSound8K dataset (Salamon et al., 2014), where a taxonomic categoriz-
ation of urban sounds is proposed. At the top level, four groups are defined:
human, natural, mechanical and musical, which have been used in pre-
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vious works. The most frequent noise complaints in New York City from 2010
to 2014 were used to define the lower levels (Salamon et al., 2014).

Other datasets of urban sounds include only traffic noise (Abeßer et al., 2021),
synthesized soundscapes from FSD50K (Abeßer, 2021), and acoustic scenes
(Mesaros et al., 2018c) without information about sound sources. Datasets of
environmental sound in other context have been also published for bioacoustic
classifiers (Cramer et al., 2020), SED in domestic environments (Serizel et al.,
2020), Audio captioning (Drossos et al., 2020) and machine monitoring (Tanabe
et al., 2021). For a complete list of datasets, refer to https://dcase-repo.
github.io/dcase_datalist/.

2.2.5 Evaluation metrics

Classification

Classification systems are typically evaluated using accuracy. Classification
accuracy measures the number of correctly classified examples divided by the
total amount of examples in the evaluation set (Mesaros et al., 2018b). This
metric has been widely used in environmental sound classification (Salamon
et al., 2014) and other related multi-class tasks such as acoustic scene classi-
fication (Mesaros et al., 2018b).

Sound event detection

The F-score (F1) and the Error Rate (ER) are the performance measures
usually reported for SED systems (Salamon et al., 2017; Adavanne et al., 2016;
Cakir et al., 2017), compared with ground-truth annotations on one–second
length segments. For each segment, the False Positives (FP ), False Negatives
(FN) and True Positives (TP ) rates are calculated; and then the precision and
recall are computed as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
. (2.16)

F1 is the harmonic mean of P and R:

F1 =
2PR

P +R
. (2.17)

The ER is calculated in terms of insertions (I), deletions (D) and substitutions
(S). A substitution is defined as the case when the system detects an event
on a segment, but with the wrong label. This is equivalent to have a FP and
a FN in the same segment. After counting substitutions, the rest of FP are
counted as insertions and the rest of FN as deletions. The ER measure is
calculated as the integration of this values on the total number of segments K,
as follows:

ER =

∑K
k=1 S(k) +

∑K
k=1D(k) +

∑K
k=1 I(k)∑K

k=1N(k)
, (2.18)

https://dcase-repo.github.io/dcase_datalist/
https://dcase-repo.github.io/dcase_datalist/
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where N(k) is the number of active classes in the ground–truth at the segment
k (Mesaros et al., 2016b,a).

2.3 Interpretable deep learning

In this section, we present the literature review of methods for interpretable
deep learning. We first define a taxonomy of methods based on previous works.
We then explore the main proposed methods in each category in the taxonomy.

2.3.1 Taxonomy

Gilpin et al. (2018) propose a taxonomy of interpretable deep-learning meth-
ods. They define three different categories at the top level: explanations of
the network processing, explaining network representations, and explanation-
producing systems. The first two methods are post-hoc and aim to explain how
the data is processed and represented in the neural network. Finally, the last
type of method provides faithful explanations by devising models that are in-
terpretable by design. Some other taxonomies propose to differentiate post-hoc
and intrinsic methods (Barredo Arrieta et al., 2020). Besides, concept-based
methods have gained much attention in the last few years, but those are not
included explicitly in these taxonomies. These methods are devised to repres-
ent concepts in the latent space and can be both post-hoc and intrinsic. For
example, post-hoc concept-based methods, such as Concept Activation Vectors
(CAVs) (Kim et al., 2018), try to illustrate relevant concepts as vectors in the
pre-trained latent space. On the other hand, intrinsic interpretable concept-
based methods, such as Concept Whitening (Chen et al., 2020), are devised
for aligning the latent space dimensions with pre-defined concepts.

Therefore we follow the taxonomy illustrated in Figure 2.7. Note that concept-
based methods are in both parts of the diagram, post-hoc and intrinsic. Also,
we included the case-based reasoning category within intrinsic methods since
those methods are especially relevant in the context of this thesis, in particular
prototype-based systems. Finally, note that we do not intend to present a
complete taxonomy of interpretable deep-learning methods, but to combine
the most used taxonomies in the research community to organize the literature
review.

2.3.2 Post-hoc methods

Saliency maps

Saliency maps are the most used post-hoc methods for explaining the model’s
behavior for a particular instance. For example, the first proposed visualization
methods (Simonyan et al., 2014) compute the gradients of the score predictions
of the black-box CNN. Then, they use these gradients to find the portion inputs
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Figure 2.7: Alternative taxonomy of Interpretable Deep Learning. Extended from
(Gilpin et al., 2018)

(pixels in images) that contribute most to the prediction. Unfortunately, the
results of these methods are usually noisy, and therefore several works intend
to improve the quality of the saliency maps by reducing the noise. For instance,
DeConvNet (Zeiler & Fergus, 2014) and Guided Backprop (Springenberg et al.,
2015) methods address this by guiding the gradients to emphasize the portions
that positively improve the network’s predictions.

Other methods integrate the gradients over some choices for the input im-
age to better measure the pixel’s contribution to the prediction. Given that
gradients do not necessarily encode relevant information about the models’
behavior, other approaches propagate other quantities through the network.
For instance, Layer-wise Relevance Propagation (LRP) (Bach et al., 2015) and
DeepLIFT (Shrikumar et al., 2017) methods propagate a relevance signal in-
stead of a gradient. On the other hand, the Class Activation Maps (CAM)
(Zhou et al., 2016) method linearly combines the activation of the last layer
using the weights from the fully connected layer. Grad-CAM (Selvaraju et al.,
2017) extends this method using the last layer’s gradient instead of its weights.

Linear proxy models

Local interpretable model-agnostic explanation (LIME) learns a linear model to
approximate the system’s behavior for perturbations of a given input (Ribeiro
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et al., 2016). This linear model serves as a proxy for the black-box model in
the space around the input. This method identifies the input regions that most
influence the predictions across different models and domains.

Decision trees

Another proxy method to explain the model’s decisions is disentangling neural
representations into decision trees. CRED algorithm (Sato & Tsukimoto, 2001)
transforms each output unit of a shallow neural network (with one hidden
layer) into a decision tree. DeepRED (Zilke et al., 2016) extends the CRED
algorithm to an arbitrary number of layers. In Zhang et al. (2019), decision
trees quantitatively explain the logic for each prediction. These explanations
are in the form of feature relevance.

Rule extraction

Like decision trees, automatic rule extraction is another well-studied approach
to explaining neural networks (Gilpin et al., 2018). This type of method gen-
erates rules to characterize the model’s behavior. The rules can take the form
of simple if-then conditions or more complex combinations. These approaches
provide both local (i.e., explaining a single prediction) and global explana-
tions (i.e., explaining global patterns) (Barredo Arrieta et al., 2020). However,
these methods, commonly called decomposition methods, have some limita-
tions. For instance, most of them work only on shallow architectures (Andrews
et al., 1995). The recently proposed ECLAIRE (Zarlenga et al., 2021) method
tackles this issue by means of a two-step process that efficiently uses the latent
space to guide its rule extraction.

Role of units and layers

Several post-hoc methods intend to explain the role of individual units or con-
volutional filters (Gilpin et al., 2018). They create a visualization of input
patterns that maximize the response of a simple unit. Such works use data-
sets or generated instances to illustrate what activates a filter. For example,
Zeiler & Fergus (2014) show the image patches from the dataset that most
activate a given filter. Units can also be tested by their ability to solve a task.
For example, the network dissection method (Bau et al., 2017) uses an annot-
ated dataset of semantic concepts to quantify units’ ability to segment these
concepts.

Instead of using a datasets instance that activates a given filter or unit, (Si-
monyan et al., 2014) use optimization strategies to generate an input instance
that highly activates the output of a given class. This technique is gener-
ally known as activation maximization. On the other hand, feature inversion
methods (Mahendran & Vedaldi, 2015) generate input instances that match an
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intermediate activation hidden representation of the reference input. Besides,
generative networks can be used to create images that explain the role of each
layer (Nguyen et al., 2016; Ulyanov et al., 2020).

Moreover, Gilpin et al. (2018) argue that it is possible to obtain the role of
a whole layer by testing its ability to solve different tasks from the one to
which the network is an expert. This method is usually called transfer learn-
ing. Yosinski et al. (2014) propose a framework to quantify transfer learning
capabilities. This quantitative approach estimates the feature generality or
specificity.

Concept-based methods (role of other representations)

Instead of explaining the role of units or layers, concept-based methods intend
to explain the role of another type of representation in the latent space. The
idea is to represent other directions in the representation vector formed by the
linear combination of individual units. For example, Concept Activation Vec-
tors (CAVs) (Kim et al., 2018) are learnable vectors that represent high-level
concepts in the latent space. A dataset with annotated concepts is used to
learn linear classifiers in the latent representation. The vector representing a
concept in the latent space is normal to the hyperplane separating examples
with and without the concept. The interpretable Basis Decomposition (Zhou
et al., 2018) method measures how different concepts contribute to a classific-
ation task.

However, Chen et al. (2020) show that these methods representing concepts as
unit vectors may not work. They argue that to separate the concepts correctly,
they should be near orthogonal in the latent space. They proposed an intrinsic
interpretable method to solve this problem by making the latent space mean-
centered and decorrelated.

2.3.3 Intrinsically interpretable methods

Concept-based methods

As previously mentioned, Chen et al. (2020) propose Concept Whitening (CW),
a method to learn a mean-centered and decorrelated latent space to avoid the
issues representing concepts as unit vectors. After centering and decorrelat-
ing the latent space, they apply a rotation to align the dimensions with the
concepts. This method can be applied in every layer as a replacement for
batch normalization. These transformations are learned during training using
datasets of pre-defined concepts.

Other concept-based explanations methods use an intermediate representation
to represent the concepts (Koh et al., 2020). These methods are known as
concept bottlenecks. Given an input, the concept bottleneck model predicts a
set of pre-defined concepts and then makes the predictions only based on that
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concepts. Ramaswamy et al. (2022) try this method in the context of image
scene classification using semantic attributes present in the training dataset
as concepts. They show that these attributes are not enough to explain the
model behavior, so they propose to include a low-rank feature representation
from the model’s latent space.

Representation disentanglement

Concept-based methods disentangle the latent space by aligning hidden di-
mensions to pre-defined concepts. However, other methods for latent space
disentanglement have been proposed (Gilpin et al., 2018). Latent space disen-
tanglement is an old problem that has been tackled using techniques such as
Principal Component Analysis (Jolliffe, 1986), Independent Component Ana-
lysis (Hyvärinen & Oja, 2000), and Nonnegative Matrix Factorization (Berry
et al., 2007). However, deep neural networks can be tuned to learn disen-
tangled representations. For instance, Beta-VAE (Higgins et al., 2017) is an
autoencoder architecture that shows remarkable results. It is also possible to
train generative adversarial models with an objective function to ensure disen-
tanglement. For example, InfoGAN (Chen et al., 2016) maximizes the mutual
information between the dimensions and the image observation. The experi-
ments on MNIST dataset show that the latent space can encode the digit type,
the rotation, and the width of the digits.

Attention mechanisms

Attention-based mechanisms are weighting functions that provide relative rel-
evance to some parts of the input representation or features in hidden spaces
(Gilpin et al., 2018). These mechanisms have proved very effective for nat-
ural language (Vaswani et al., 2017), computer vision (Woo et al., 2018), and
audio-related (Won et al., 2019) problems. Although the output of an attention
layer can be considered a form of explanation, it has been proved that these
explanations are not necessarily reliable (Wiegreffe & Pinter, 2019). However,
attention-based functions can be trained to explicitly extract the desired ex-
planations (Gilpin et al., 2018; Ross et al., 2017). We follow this approach
to use an attention mechanism in a sound event detection model to locate
prototypes in the latent representations (see Chapter 6).

Case-based reasoning (prototype learning)

Case-based reasoning AI is based on the idea that a new experience can be
model by representing, indexing, and organizing past cases (Aamodt & Plaza,
1994; Slade, 1991; Kim et al., 2014). This approach has been applied in the
health sciences (Bichindaritz & Marling, 2006) and finances (Li & Sun, 2008).
Prototype classification is a classical form of case-based reasoning, which is con-
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sistent with how humans explain their decision-making process, for instance,
in complicated visual classification tasks (Kim et al., 2014).

Learning through prototypes is an approach that can provide inherent inter-
pretability to deep neural networks. Decision are based on a few relevant
examples known as prototypes that serve as a distillation of the data and have
a high interpretable value (Bien & Tibshirani, 2011; Kim et al., 2014). A pro-
totype is a vector that is close or identical to an instance of the training set.
Deep neural networks can learn those prototypes in a flexible latent space.
For example, the interpretable network proposed by Li et al. (2018a) for im-
age classification is based on prototypes. The architecture appends a special
prototype layer and uses an autoencoder. The prototypes are learned in the
low-dimensional latent space produced by the encoder, and they can be recon-
structed by applying the decoder. The predictions are based on the distance
from the data instance to each prototype in the latent space. Thus, the ex-
planations are the prototypes and the distances to them, which are the actual
computations of the model to generate the output. This approach can be ex-
tended to hierarchical (Hase et al., 2019) and local prototypes that represent
part of the images instead of the whole input (Chen et al., 2019a).

In Chapter 5 we extend this approach to audio classification. There, we pro-
pose the Audio Prototype Network (APNet) and show compelling results when
applied to speech, music, and environmental audio, for problems with a single
class label per audio clip. However, in a polyphonic setting (i.e multi-label
SED), an input instance corresponding to several classes should be simultan-
eously close to prototypes of those classes in the latent space. Unfortunately,
learning such latent space proved challenging in practice, thus motivating the
alternative approach proposed in Chapter 6. This approach uses a combination
of local prototypes and attention maps. Some other models combine attention
mechanisms and prototypes. For instance, ProtoAttend (Arik & Pfister, 2020)
selects input-dependent prototypes based on a relational attention mechanism
that connects the encoded representation and the prototype candidates. In
this case, the prototypes are instances from the training data. However, other
methods use mean vectors as prototypes for few-shot learning (Sun et al.,
2019).

2.4 Audio-based interpretable models

This section reviews previous research in explainable deep neural models for
audio in relation to our work. Although the research in explainable machine
learning is quickly expanding, the existing work that focuses on the audio do-
main is quite limited. Most of this research follows a post-hoc approach for
explaining black-box models, and only a few works deal with intrinsically inter-
pretable network architectures. Figure 2.8 shows a summary of the literature
review. We separate the methods that aim to explain or interpret the first
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layers (front-end) from those that explain the back-end or the full model.
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Figure 2.8: Summary of interpretable models used in the audio domain.

2.4.1 Post-hoc methods

Regarding visualization methods for explainability, saliency maps were applied
in (Cakir et al., 2017) to a convolutional-recurrent network trained for poly-
phonic sound event detection. The authors show that convolutional filters
recognize specific patterns in the input and that the complexity of these pat-
terns increases in the upper layers. A gradient-based approach was proposed
in (Muckenhirn et al., 2019) for visualizing heat maps in raw waveform convo-
lutional neural networks. Also, rules about relevance (Becker et al., 2018) and
deep Taylor decomposition (Schiller et al., 2019) have been used to propagate
the model’s prediction backward. In contrast to the visualization methods, the
explanations of the methods proposed in Chapters 5 and 6 come in the form
of examples, which are easier to interpret by end-users of the model that may
have no machine learning knowledge.

With regards to post-hoc methods that create proxy models, a variation of
the LIME algorithm for audio content analysis—called SLIME—was proposed
(Mishra et al., 2017; Mishra et al., 2020). It can generate explanations in
the form of temporal, frequency, and time-frequency segmentation, and it was
applied to singing voice detection. However, this kind of segmentations might
not be suitable to represent harmonic or overlapping sounds; thus, Haunschmid
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et al. (2020) propose another adaptation of LIME, audioLIME, where the ex-
planations are in the form of estimates from a source separation algorithm.
In contrast, the models proposed in Chapters 5 and 6 are designed to be
interpretable, and we do not generate explanations for black-box models. Fur-
thermore, the time-frequency representations used as input for these models
cannot be interpreted as simple images. We argue that example-based explan-
ations are better suited for these audio representations than local pixels areas
that do not always define sound objects.

The model internals, weights, neurons, and layers may also be explained. In the
audio domain, such an approach using transfer learning was applied to study
the capability of the layers of a pre-trained network to extract meaningful
information for music classification and regression (Choi et al., 2017). The
role of each layer in end-to-end speech recognition systems has been studied in
(Li et al., 2020). The main idea is to synthesize speech signals from the hidden
representations of each layer. The results show that specific characteristics
of the speaker are gradually discarded in each layer, along with the ambient
noise. Similar to these approaches, the network architectures proposed in this
thesis are designed to generate prototypes by reconstructing representations
that were learned in a latent space.

Concept-based methods have also been used in the audio domain. For in-
stance, CAV vectors have been used to extract musical concepts describing
the characteristics of a piece (Foscarin et al., 2022) or hierarchical concepts
from playlists (Afchar et al., 2022). Moreover, Parekh et al. (2022) propose to
use Non-negative Matrix Factorization (NMF) to obtain meaningful high-level
listenable audio objects.

2.4.2 Intrinsic interpretable models

Regarding intrinsic interpretable network architectures, learning a disentangled
latent space has been applied to learn interpretable latent factors that are re-
lated to pitch and timbre (Luo et al., 2020)—in the context of musical instru-
ment recognition—and related to chord and texture (Wang et al., 2020)—in
the context of generative models of polyphonic music. In addition, mid-level
features (Chowdhury et al., 2019) and source separation (de Berardinis et al.,
2020) have been used to improve the model interpretability for the problem
of music emotion recognition. In (Kelz & Widmer, 2019), invertible networks
(Ardizzone et al., 2019) have been applied for interpretable automatic poly-
phonic transcription. Similar to (Agrawal & Ganapathy, 2020), we use domain
knowledge to design several parts of the network to learn interpretable repres-
entations for speech and audio signals.

The first models that used attention mechanisms in the audio domain applied
them in conjunction with recurrent networks for speech recognition (Chorowski
et al., 2014; Chan et al., 2016). Nowadays, attention mechanisms are widely
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used for speech, music, and other audio-related problems because of their abil-
ity to capture long-term temporal information. Self-attention mechanisms are
used instead of recurrent layers to integrate temporal information; for instance,
they were applied for music emotion recognition (Chaki et al., 2020; Jalal et al.,
2020), music generation (Huang et al., 2019), and tagging (Won et al., 2019).
Attention mechanisms can also be used for weighting the frequency dimension
to create interpretable adaptive filter banks (Agrawal & Ganapathy, 2020).
Recently, a visualization tool was proposed in (Yang et al., 2020) for under-
standing the attention mechanisms in self-supervised audio transformers. In
contrast, our proposed model in Chapter 6 does not use attention maps to
weight input’s features. Instead, we use them as the only information to clas-
sify sound sources. Furthermore, since we devise the attention maps for proper
reconstruction from the local prototypes, they are interpretable by design.

Prototypical learning has been applied to audio problems but not necessarily
looking for interpretability. For example, prototypical networks (Snell et al.,
2017) have been used for audio classification with little data (Pons et al.,
2019) and bioacoustic few-show sound event detection (Nolasco et al., 2022).
However, these systems are not intended to be interpretable, so one can not
reconstruct the prototypes to the input space. In contrast, APNet, the model
proposed in Chapter 5, and the model we propose in Chapter 6 allow for
reconstructing the prototypes to the input space through the decoder and
mapping them to the audio domain. A recent approach consists in learning
the audio prototypes in the input space instead of the latent space and learn
transformations (e.g., pitch shifting) to allow the signal reconstruction with
few prototypes (Loiseau et al., 2022).

Interpretable front-end

In terms of interpretable network architectures, several parts of the network
may be designed to target particular tasks, such as feature computation or sig-
nal decomposition. For instance, as shown in Section 1.5, the front-end of the
network can be designed to extract interpretable representations. For example,
it has been shown that the first layers of end-to-end convolutional neural net-
works that learn representations from raw audio data extract features that are
similar to the spectrogram or energy in mel-frequency bands (Thickstun et al.,
2017; Lee et al., 2018; Tax et al., 2017; Tokozume & Harada, 2017).

Additionally, some works have addressed the design of the first layers of these
networks to tailor the feature extraction stage. For instance, parametric band-
pass filters (sinc functions) have been used for speaker recognition (Ravanelli &
Bengio, 2018) and for detecting neurodegenerative disorders (Pan et al., 2020).
Moreover, Loweimi et al. (2019) extend this approach to other filters such as
triangle filters (sinc2 functions), gammatone, and gaussian kernels. Complex
filters can be also used to obtain interpretable representations (Peng et al.,
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2021). Besides, parametric filters have been designed to extract harmonic-
aware representations (Won et al., 2020).

On the other hand, trainable hand-crafted kernels can be designed to extract
meaningful information (Cakır & Virtanen, 2018). In Chapter 4, we follow
this approach to devise an end-to-end CNN for SED that extracts the energy
of mel bands from the audio signal using a simple 1D convolutional layer.
Furthermore, we show that these filters can be trained to obtain insights into
the data.





CHAPTER 3
A library for reproducible
sound recognition research

3.1 Introduction

As discussed in Section 1.6, most modern deep-learning models are consid-
erably more complex than shallow models and heavily rely on the data and
software used for their implementation (McFee et al., 2019). Therefore, it has
become increasingly challenging to reproduce the findings or to compare a new
method to earlier ones based only on the description of research systems found
in publications (McFee et al., 2019; Six et al., 2018). For the optimal reuse of
scientific research, numerous authors and institutions are advocating not only
for open-access publications and data but also for the release of software and
models (Colom et al., 2015; McFee et al., 2019; Bjornson, 2019).

Furthermore, both interpretable models and reproducible experiments are cru-
cial to fostering a more responsible and trustworthy AI (High Level Expert
Group on Artificial Intelligence, 2019; Barredo Arrieta et al., 2020). There-
fore, a framework for the reproducible development and use of such systems is
beneficial in the context of interpretable deep learning for audio-related prob-
lems.

In the light of the above, this chapter introduces DCASE-models, an open-source
Python library developed in the context of this thesis work, whose main goal is
to facilitate various aspects of the typical research pipeline of DCASE related
problems with a particular emphasis on deep–learning models. The library
has a careful design for easy extension and integration with other software
tools. It offers an abstraction to common tasks, such as data preparation,
data augmentation, feature extraction, model training, and evaluation. This
allows for rapid prototyping of new methods and simplifies the efforts needed
to release (and maintain) the code of a new model. Furthermore, the lib-
rary aims to provide reference implementations of several baselines—including
already trained models—to facilitate the comparison of methods. In this way,

39
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we strive for a low barrier to entry for students and researchers new to the
field. Whenever possible, the library leverages from the original authors’ im-
plementations and existing software tools, such as sed_eval (Mesaros et al.,
2016a) or VGGish (Hershey et al., 2017).

The package includes thorough documentation that covers the usage of the
resources already available and describes the steps needed for extending the
library, for instance, with new datasets, features and models. It also con-
tains Python scripts, Jupyter Notebooks and a web interface, to illustrate the
usefulness of the library.

3.2 Design principles and practices

The library provides a simple and lightweight set of basic components that are
generally part of a computational environmental audio analysis system. Users
can exploit the library functions to tackle various tasks—such as acoustic scene
classification, sound event detection, and audio tagging—while experimenting
with improvements or extensions of its components.

Apart from a collection of functions for dataset handling, data preparation, fea-
ture extraction, and evaluation (most of which rely on existing tools), DCASE-
models includes a model interface to standardize the interaction of machine
learning methods with the other system components. This also provides an
abstraction layer to make the library independent of the backend used to im-
plement the machine learning model (e.g. Keras,3 PyTorch,4 TensorFlow,5

Scikit-learn6). The standardized behavior of the machine learning method
implementation allows the comparison of different models in a straightforward
manner. The library currently includes Keras implementations of several deep–
learning models reported in the literature, which are ready to use with minimal
effort. As a result, one can get an application with a few lines of code (see
Section 3.4).

Regarding the usability of the library, the design and implementation are aimed
to make it easy to learn and use. It is organized in a flat package layout with
classes that define concise interfaces. All functions are thoroughly documented
and include example code that demonstrates their usage. Besides, we follow
PEP-8 recommendations to make sure code is readable and easy to follow.
The documentation of the library is prepared using Sphinx and includes clear
instructions on how to extend different components. The latest stable release
can be smoothly installed from PyPI and only has requirements of other well-
known, portable and tested packages.

3https://keras.io
4https://pytorch.org
5https://www.tensorflow.org
6https://scikit-learn.org

https://keras.io
https://pytorch.org
https://www.tensorflow.org
https://scikit-learn.org
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Considering the sustainability and maintainability of the library, we strive for
adopting modern open–source software development practices, as suggested
in McFee et al. (2019). The code is released under the MIT license and all
development is conducted on GitHub. This makes the project readily accessible
for the community to use, test, contribute, and bring support. It also helps
the release of updates by keeping a record of the changes and versions and
incorporate other software development services, such as continuous integration
testing.

3.3 Library organization and description

Figure 3.1 shows a diagram of DCASE-models main classes, which also includes
some specializations of each base class that are available. Next, a description
of the main classes and functionalities is presented, following the order of the
typical pipeline: dataset preparation (3.3.1); data augmentation (3.3.2); fea-
ture extraction (3.3.3); data loading (3.3.4); data scaling (3.3.5); and model
handling (3.3.6).

3.3.1 Dataset

This is the base class designed to manage a dataset, its paths, and its internal
structure. It includes methods to download the data, resample the audio files,
and check that both processes succeed.

The library covers several publicly available datasets related to different tasks.
At the moment, these are: ESC (Piczak, 2015) and UrbanSound8k (Salamon
et al., 2014) for audio classification; TAU Urban Acoustic Scenes 2019 and
2020 (Mesaros et al., 2018c; Heittola et al., 2020) for acoustic scene classifica-
tion; URBAN-SED (Salamon et al., 2017), TUT Sound Events 2017 (Mesaros
et al., 2017) and MAVD-traffic (Zinemanas et al., 2019b) for sound event detec-
tion; and FSDKaggle2018 (Fonseca et al., 2018) and SONYC-UST (Cartwright
et al., 2019) for audio tagging. In next releases of the library other relevant
datasets will be included.

Each dataset is implemented in the library as a class that inherits from Data-
set. This design provides a common and simple interface to work with any
dataset. For instance, to use the UrbanSound8k dataset, it is enough to ini-
tialize its class with the path to the data folder, as follows.

>>> dataset = UrbanSound8k(DATASET_PATH)

Then, the following methods are used to download the dataset and change its
sampling rate (to 22050Hz).

>>> dataset.download()
>>> dataset.change_sampling_rate(22050)
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Most of the datasets devised for research include a fold split and a correspond-
ing evaluation setup (e.g. 5–fold cross–validation). This fold split is generally
carefully selected to avoid biases and data contamination (Witten & Frank,
2005). In order to keep the results comparable to those reported in the liter-
ature, DCASE-models uses, whenever available, the predefined splits for each
dataset. However, the user may define different splits or evaluation setups if
needed.

3.3.2 AugmentedDataset

The previously defined dataset instance can be expanded using data augment-
ation techniques. The augmentations implemented so far are pitch–shifting,
time–stretching, and white noise addition. The first two are carried out by
means of pysox (Bittner et al., 2016).

An augmented version of a given dataset can be obtained by initializing an in-
stance of the AugmentedDataset class with the dataset as a parameter, as well
as a dictionary containing the name and parameters of each transformation.

>>> augmentations = [
{’type’: ’pitch_shift’, ’n_semitones’: -1},
{’type’: ’time_stretching’, ’factor’: 1.05},
{’type’: ’white_noise’, ’snr’: 60}

]
>>> aug_dataset = AugmentedDataset(

dataset,
augmentations

)

After initialization, the following method will perform the actual augmentation
and create new audio files for every dataset element according to the type and
parameters of each augmentation.

>>> aug_dataset.process()

The augmented dataset is indeed an instance of Dataset, so it can be used as
any other dataset in the following steps of the pipeline.

3.3.3 FeatureExtractor

This is the base class to define different types of feature representations. It
has methods to load an audio file, extract features, and save them. It can also
check if the features were already extracted.
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Four types of feature representations have been implemented as specializa-
tions of the base class, namely Spectrogram, MelSpectrogram, MFCCs, VG-
Gish (Hershey et al., 2017), and Openl3 (Cramer et al., 2019). The first three
are classic time–frequency representations (see Section 2.2.1) which are im-
plemented using librosa functions. The last two are pre–trained neural–
network–based models that extract embeddings from the audio signal. Openl3
is a recently proposed neural network trained on audio–visual information. VG-
Gish is a deep convolutional neural network trained on the Audioset dataset
that is also used as a feature extractor.

A FeatureExtractor is initialized with some parameters. For instance, to
define a Spectrogram feature extractor the parameters are: length and hop in
seconds of the feature representation analysis windows (model’s input); window
length and hop size (in samples) for the Short-time Fourier Transform (STFT)
calculation; and the sampling rate. If the audio files are not sampled at this
frequency, they are converted before calculating the features.

>>> features = Spectrogram(
sequence_time=1.0,
sequence_hop_time=0.5,
audio_win=1024,
audio_hop=512,
sr=22050

)

After initialization, the following method computes the features for each audio
file in the dataset.

>>> features.extract(dataset)

Once the features are extracted and saved to disk, they can be loaded using
DataGenerator as explained in the following.

3.3.4 DataGenerator

This class uses instances of Dataset and FeatureExtractor to prepare the
data for model training, validation and testing. An instance of this class is
created for each of these processes.

>>> data_gen_train = DataGenerator(
dataset,
features,
train=True,
folds=[’train’]

)
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>>> data_gen_val = DataGenerator(
dataset,
features,
train=False,
folds=[’val’]

)

At this point of the pipeline, the features and the annotations for training the
model can be obtained as follows.

>>> X_train, Y_train = data_gen_train.get_data()

Additionally, instances of DataGenerator can be used to load data in batches.
This feature is especially useful for training models on systems with memory
limitations.

3.3.5 Scaler

Before feeding data to a model, it is common to normalize the data or scale
it to a fixed minimum and maximum value. To do this, the library contains
a Scaler class, based on scikit-learn preprocessing functions, that includes
fit and transform methods.

>>> scaler = Scaler("standard")
>>> scaler.fit(X_train)
>>> X_train = scaler.transform(X_train)

In addition, the scaler can be fitted in batches by means of passing the Data-
Generator instance instead of the data itself.

>>> scaler.fit(data_gen_train)

It is also possible to scale the data as it is being loaded from the disk, for
instance, when training the model. To do so, the Scaler can be passed to the
DataGenerator after its initialization.

>>> data_gen_val.set_scaler(scaler)

3.3.6 ModelContainer

This class defines an interface to standardize the behavior of machine learning
models. It stores the architecture and the parameters of the model. It provides
methods to train and evaluate the model, and to save and load its architecture
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and weights. It also allows the inspection of the output of its intermediate
stages (i.e. layers).

The library also provides a container class to define Keras models, namely
KerasModelContainer, that inherits from ModelContainer, and implements
its functionality using this specific machine learning backend. Even though the
library currently supports only Keras, it is easy to specialize the ModelCon-
tainer class to integrate other machine learning tools, such as PyTorch.

Each model has its own class that inherits from a specific ModelContainer,
such as KerasModelContainer. The models currently implemented using Keras
are: Multi–layer Perceptron (MLP), SB-CNN (Salamon & Bello, 2017), SB-
CNN-SED (Salamon et al., 2017), A-CRNN (Adavanne et al., 2017), MST (Tax
et al., 2017), SMel (Zinemanas et al., 2019a) and VGGish (Hershey et al., 2017).
Other models are in preparation for inclusion in next releases of the library.

A model’s container has to be initialized with some parameters.

>>> model_cont = SB_CNN(**model_params)

These parameters vary across models, among which the most important are:
input shape, number of classes, and evaluation metrics. Specific parameters
may include the number of hidden layers or the number of convolutional layers,
among others. The ModelContainer class has a method to train the model.

>>> model_cont.train(
(X_train, Y_train),
**train_params

)

Training parameters can include, for example, number of epochs, learning rate
and batch size. To train the model in batches, the DataGenerator object can
be passed to the train method instead of the pre–loaded data.

>>> model_cont.train(data_gen_train, **train_params)

Performing model evaluation is also simple. For instance, the following code
uses the test set for evaluating the model.

>>> data_gen_test = DataGenerator(
dataset,
features,
train=False,
folds=[’test’]

)
>>> X_test, Y_test = data_gen_test.get_data()
>>> results = model_cont.evaluate((X_test, Y_test))
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The results’ format depends on which metrics are used. By default, the evalu-
ation is performed using metrics available from the sed_eval library (Mesaros
et al., 2016a). Therefore, the results are presented accordingly. Nevertheless,
DCASE-models enables the use of others evaluating frameworks such as psds_-
eval (Bilen et al., 2020), or the use of user–defined metrics in a straightforward
way.

When building deep–learning models it is common practice to use fine–tuning
and transfer learning techniques. In this way, one can reuse a network that
was previously trained on another dataset or for another task, and adapt it to
the problem at hand. This type of approach can also be carried out with the
ModelContainer.

3.4 Application examples

The Python package of the library includes a set of examples, organized into
three different categories, which illustrate the usefulness of DCASE-models for
carrying out research experiments or developing applications. These examples
can also be used as templates to be adapted for implementing specific DCASE
methods.

Firstly, some Python scripts are provided, that perform each step in the typ-
ical development pipeline of a DCASE task, i.e downloading a dataset, data
augmentation, feature extraction, model training, fine–tuning, and model eval-
uation. See the documentation of the library for a tutorial that follows all these
examples.

Secondly, several Jupyter Notebooks are also included whose aim is to replicate
some of the experiments reported in the literature using DCASE-models, in
particular those in (Adavanne et al., 2017; Salamon & Bello, 2017; Salamon
et al., 2017; Zinemanas et al., 2019b,a). For instances, the following script
shows that the experiments from (Salamon & Bello, 2017) can be performed
in few lines of code:

>>> from dcase_models.data.data_generator import DataGenerator
>>> from dcase_models.data.datasets import UrbanSound8k
>>> from dcase_models.data.scaler import Scaler
>>> from dcase_models.data.data_augmentation import AugmentedDataset
>>> from dcase_models.data.features import MelSpectrogram
>>> from dcase_models.model.models import SB_CNN

>>> dataset = UrbanSound8k(DATASET_PATH)
>>> dataset.download()

>>> semitones = [-2, -1, 1, 2]
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>>> params_augmentation = [
{’type’ : ’pitch_shift’, ’n_semitones’: s } for s in semitones

]
>>> sr = 44100

>>> aug_dataset = AugmentedDataset(
dataset,
sr,
params_augmentation

)
>>> aug_dataset.process()

>>> params_features = {
"mel_bands": 128,
"n_fft": 1024
"audio_hop": 1024,
"audio_win": 1024,
"sequence_hop_time": 1.0,
"sequence_time": 3.0,
"sr": sr

}

>>> features = MelSpectrogram(**params_features)

>>> if not features.check_if_extracted(aug_dataset):
features.extract(aug_dataset)

>>> folds_train, folds_val, folds_test = evaluation_setup(
’fold1’,
dataset.fold_list,
"cross-validation"

)
>>> data_gen_train = DataGenerator(

aug_dataset,
features,
folds=folds_train,
train=True,
scaler=None

)

>>> scaler = Scaler(normalizer="standard")
>>> scaler.fit(data_gen_train)
>>> data_gen_train.set_scaler(scaler)
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>>> data_gen_val = DataGenerator(
aug_dataset,
features,
folds=folds_val,
train=False,
scaler=scaler

)

>>> features_shape = features.get_shape()
>>> n_frames_cnn = features_shape[1]
>>> n_freq_cnn = features_shape[2]
>>> n_classes = len(dataset.label_list)

>>> model_container = SB_CNN(
n_classes=n_classes,
n_frames_cnn=n_frames_cnn,
n_freq_cnn=n_freq_cnn

)

>>> params_train = {
batch_size=128,
epochs=100

}
>>> data_train = data_gen_train.get_data()
>>> data_val = data_gen_val.get_data()
>>> model_container.train(

data_train,
data_val,
label_list=dataset.label_list,
weights_path=exp_folder,
**params_train

)

Finally, a web interface for sound classification is also included as a proof of
concept of the potential of DCASE-models to build high–level applications for
computational environmental audio analysis. It gives access to most of the
library’s functionalities through a graphical user interface. Besides, it provides
visualization tools to explore the dataset and to inspect the errors made by
the model. It is also possible to listen to the audio files of the dataset and
to test the model on an audio file provided by the user. Figure 3.2 shows a
screenshot of the web application. The HTML front–end is developed with the
dash library: https://plotly.com/dash/.

https://plotly.com/dash/
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3.5 Discussion

This chapter describes DCASE-models7, a Python library developed during this
thesis work. This open–source library provides a number of classes useful for
rapid prototyping solutions for DCASE related problems, with a particular
emphasis on deep–learning models. The library has a flat and light design that
allows easy extension and integration with other existing tools. The design also
provides an abstraction layer that seeks to mitigate the impact of changes in
the backends used for implementing the machine learning models. We put
considerable effort into the usability aspects of the library to encourage its
adoption by the DCASE community. In particular, we hope it turns out helpful
for those students and researchers new to the field. In this sense, we look
forward to other researchers’ feedback and contributions. Additionally, we
believe that the library could simplify the process of releasing and maintaining
the code of new models. This, in turn, could improve research reproducibility
and simplify methods comparison. To this respect, the package includes a
set of application examples, some of which replicate a number of experiments
reported in the literature. Besides, a web interface for sound classification is
provided as a proof of concept of the usefulness of the library for developing
high–level applications for computational analysis of acoustic scenes and sound
events.

In addition to the applications presented in this chapter, the DCASE-models
library has been a very useful software tool for this thesis. For instance, it
has been used for developing and training the models of Chapters 5 and 6.
The experiments of Chapter 4 were performed using ad-hoc implementations,
but the models are available in the DCASE-models library. Besides, the web
interface for sound classification included in the library, was the base for the
visualization tools proposed in Chapter 5. Moreover, this library has eased
the development of refining and debugging methods for the model presented
in Chapter 5.

7https://github.com/MTG/DCASE-models

https://github.com/MTG/DCASE-models




CHAPTER 4
An interpretable front-end

4.1 Introduction

As mentioned in Chapter 1, end-to-end models can be trained to obtain the
predictions directly from the waveform signal (Section 1.5). These models have
been applied to speech recognition (Tüske et al., 2014; Zeghidour et al., 2018;
Sainath et al., 2017), speaker recognition (Valenti et al., 2018), automatic music
labeling (Lee et al., 2018; Dieleman & Schrauwen, 2014), music audio tagging
(Pons et al., 2018), and automatic notes transcription (Thickstun et al., 2017).
But, even though end-to-end image processing has brought excellent results
to the image classification task (e.g. AlexNet (Krizhevsky et al., 2012), VGG
(Simonyan & Zisserman, 2015), and GoogLeNet (Szegedy et al., 2015)), the
results yielded by end-to-end audio processing are not better than those of the
models whose input is a time-frequency representation (Tax et al., 2017).

In end-to-end neural networks, feature extraction is usually done by the first
convolutional layers. As mentioned in Chapter 1, generally, these models are
black boxes, intending to make the network learn the acoustic features that
better discriminate the classes. However, it is possible to use domain knowledge
to tailor the feature-extraction layers of the network to a particular problem.
For instance, parametric band-pass filters (sinc functions) have been used for
speaker recognition (Ravanelli & Bengio, 2018) and for detecting neurodegen-
erative disorders (Pan et al., 2020). Moreover, Loweimi et al. (2019) extend this
approach to other filters such as triangle filters (sinc2 functions), gammatone,
and gaussian kernels. Complex filters can also be used to obtain interpretable
representations (Peng et al., 2021). Besides, parametric filters have been de-
signed to extract harmonic-aware representations (Won et al., 2020).

The mel-spectrogram transformation (MST) model is another example of this
approach (Tax et al., 2017), in which the input is one second of the audio signal
and the target output is the log-mel-spectrogram. If this model is concatenated
with a neural network whose input is a time-frequency representation, it forms
an end-to-end neural network. The first layers of the network can still be

53
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trained to adapt the feature extraction to a particular problem, but starting
at an initial condition that has proved to be effective for the problem domain.
As a result, the training may also need a smaller amount of data and fewer
training epochs. On top of this, the first layers of the network (either with the
initial values or after training) could be applied to other similar tasks in audio
processing.

This chapter aims to apply the end-to-end approach to the SED problem by in-
corporating interpretable layers devised using domain knowledge. To achieve
this, we propose a novel scheme, SMel, to compute the energy of the mel-
spectrogram using a neural network architecture. We show that the proposed
SMel scheme yields better results than the MST model (Tax et al., 2017).
Then, we concatenate the SMel model with a state-of-the-art CNN for urban
sound event detection (Salamon et al., 2017) to form the end-to-end architec-
ture. A similar approach based on end-to-end neural networks to tackle the
SED problem was proposed in (Cakır & Virtanen, 2018). It uses a learned
time-frequency representation as the input of a convolutional-recurrent net-
work. However, in that work, the feature extraction network is implemented
by calculating the real and the imaginary parts of the discrete Fourier trans-
form. Besides, the focus of that work is not urban environments.

In this chapter, we also implement PCEN (see Section 2.2.1) as a neural net-
work layer, and we study its applicability to the SED task. We show how
the network can learn the PCEN parameter values and how the mel-frequency
filter bank changes after training.

4.2 Calculating the log-mel-spectrogram

This section presents a novel model to calculate the log-scaled mel-spectrogram
based on a simple mel filter bank. First, we present a recently published work
on this topic and then explain our proposed model. Finally, we compare both
architectures. The input of both models are one-second length non-overlapping
slices of the audio signal, and the output is the log-scaled mel-spectrogram.

4.2.1 MST model

MST model is a CNN architecture devised to calculate the log-scaled mel-
spectrogram of an audio slice (Tax et al., 2017). The architecture is formed
by three convolutional layers of 512, 256 and Nmels filters respectively, where
Nmels is the number of mel bands. Fig. 4.1a shows the diagram of the MST
model for Nmels = 128, window length of 1024 points, a hop of 512 points, and
sampling rate fs = 22050 Hz.
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Figure 4.1: Block diagram of (a) MST model and (b) the proposed model for Nmels =
128, fs = 22050, window length of 1024 points and hop of 512 points. In convolution
layers the parameters showed are the number of filters, the size of the kernels and the
stride value in that order. Above the arrows are shown the signals’ dimensions.

4.2.2 Proposed model (SMel)

We propose a simpler approach, namely the SMel model, which is based on
the fact that all the steps to calculate the mel-band energy are differentiable
functions. Therefore, those steps can be implemented as layers of a neural
network. The input of our network is a matrix whose columns are the frames
of the audio signal multiplied by a Hann window. The first layer of the network
is a time-distributed (TD) convolution of Nmels filters and it is initialized with
a mel filter bank. Therefore, the output of the first layer is the result of the
filter bank applied to each signal frame. In the next layers, the energy of each
band is calculated by an element-wise square function; a mean value function;
and a logarithmic function to convert energy values to decibels (see Fig. 4.1b).

The mel filter bank is formed by Nmels filters with triangular frequency re-
sponse centered in the mel-scale frequencies and overlapped by half of their



56 CHAPTER 4. AN INTERPRETABLE FRONT-END

bandwidth. Therefore, the frequency response of filter l is:

Hl(f) = Λ

(
f − fl
∆fl

)
for f ≥ 0, (4.1)

where fl is the central frequency and ∆fl = fl+1−fl is half bandwidth. There-
fore, we design impulse responses for each filter as follows:

hl(t) = 2∆flsinc2(t∆fl) cos(2πflt)w(t), (4.2)

where w(t) is a Hann window.

4.2.3 Comparing models

To compare both models, we train them with the same dataset and parameters.
The dataset used is the URBAN-SED, that contains audio files with urban
sound events. This dataset includes 6000 files of 10 seconds for training, and
2000 files for validation and test (Salamon et al., 2017). It is devised for
polyphonic urban SED and includes ten classes from mechanical (e.g. air
conditioner, engine idling), human (e.g. children playing), musical (e.g. street
music), and natural (e.g. dog bark) categories.

We down-sample the audio files to a sampling rate of 22050 Hz, just to decrease
the computational cost, assuming this provides a sufficient bandwidth for the
problem at hand. We process the audio signal in short-time windows of length
N = 1024 samples and using a hop size of 512 samples. The target function
(ground truth of the mel-spectrogram) is calculated using librosa (McFee et al.,
2015) with 128 mel bands from 0 Hz to 11025 Hz.

To train the MST model we use the same strategy proposed by its authors (Tax
et al., 2017). To train our model it is especially important to carefully choose
the learning rate because the logarithmic function has a large gradient close
to zero. We use the gradient descent equation to estimate the learning rate
for the worst case. As the librosa function used to convert power to decibels
saturates on −100 dB (power equal to 10−10), that is our worst case. So, we
estimate the learning rate to have a small relative change on x = 10−10.

We train both models for 100 epochs using Adam optimizer and a mean squared
loss function. Although theoretically, with the initialized parameters, SMel ex-
tracts the mel-spectrogram almost exactly, it is interesting to see the variation
of the loss function for each model, as shown in Fig. 4.2. It is clear that
the approximation of our model is better than MST. Furthermore, due to the
initialization of the filters, the convergence of the proposed model is faster.
Fig. 4.3 shows the output of each model for a randomly selected file of the val-
idation set. Note that the output of MST model is more blurry, particularly
at high frequencies.
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Figure 4.2: Variation of the loss function value for SMel and MST in training.

4.3 Energy Normalization

We implement PCEN (see Eq. 2.6) with neural network layers including
frequency-dependent parameters:

EPCEN [i, l] =

(
E [i, l]

(ϵ[l] +M [i, l])α[l]
+ δ[l]

)r[l]

− δ[l]r[l], (4.3)

where M [i, l] =
(
Et ∗ ϕT

)
[i, l], while α[l], ϵ[l], r[l] and δ[l] are the frequency-

dependent positive constants. The low-pass filter is implemented as a first
order IIR filter as follows:

M [i, l] = (1− s[l])M [i− 1, l] + s[l]E [i, l] , (4.4)

where s[l] is a frequency-dependent smoothing coefficient (Wang et al., 2017b).

M [i, l] is calculated using a recurrent layer that implements the IIR filter that
has been proposed in Wang et al. (2017b). The rest of the operations are
implemented in a layer that has two inputs E [i, l] and M [i, l]. Fig. 4.4 shows
the diagram of this implementation.

In the next section, we show the benefits of using the SMel model and the
PCEN normalization for sound event detection in urban environments.
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Figure 4.3: The mel-spectrogram ground-truth calculated using librosa implement-
ation, and the outputs of the MST and SMel models for an example file from the
validation set.

4.4 Experiments and Results

In order to show how it is possible to use the proposed model, we concatenate
it to a network that uses the mel-spectrogram as input. We use the CNN
described on URBAN-SED article (Salamon et al., 2017) as the baseline. This
network has three 2D convolutional layers followed by three fully-connected
layers. The final layer is a sigmoid of 10 units that perform the classification
task.

We train three networks: (CNN) the baseline (mel-spectrogram from librosa
as input) (Salamon et al., 2017); (MST+CNN) the MST model concatenated
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Figure 4.4: Diagram of PCEN implementation with neural network.

to the baseline CNN; and (SMel+CNN) the proposed model also concatenated
to the CNN. All models are implemented using keras (Chollet et al., 2015)
library with Tensor Flow as backend. This scheme implies that the temporal
resolution of the detected sound events is one second.

4.4.1 Training strategy

In order to train the CNN, we use the same strategy as presented in Salamon
et al. (2017) and the parameter values presented in Section 4.3. To train the
MST+CNN and SMel+CNN networks we use a strategy inspired by Branch
Training for hierarchical classification (Zhu & Bain, 2017). The training pro-
cess is performed with two loss functions; mean squared for mel-spectrogram
(l0) and binary cross entropy for classification (l1). The final loss function (l)
is a weighted sum of the two losses:

l = w0l0 + w1l1, (4.5)

where [w0, w1] is a pair of weights. We set w0 with a small value, as a way to
regularize the mel-spectrogram training, and w1 = 1− w0.

4.4.2 Classification results

We train the three networks for 100 epochs using the strategies proposed pre-
viously and using Adam optimizer. Fig. 4.5 shows the variations of F1 value
on the validation set for the three networks. We save the network’s weights on
the epoch for which the F1 value on the validation set is maximum. Fig. 4.6
shows the best attained F1 values per class on the test set for each model.
Table 4.1 shows the overall detection results.
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Figure 4.5: Variation of the F1 value in the validation set for each model.

Air
conditioner

Car
horn

Children
playing

Dog
bark

Drilling Engine
idling

Gun
shot

Jackhammer Siren Street
music

0

10

20

30

40

50

60

70

80

F1
(%

)

CNN

MST+CNN

SMel+CNN

Figure 4.6: F1 values per class on test set for each model.

4.4.3 Energy normalization

In this section, we present the experiments related to PCEN. The SMel model
whose outputs are normalized with PCEN is called SMel_P. Firstly, the CNN
is trained with the input data also normalized with PCEN using the librosa
implementation and the same parameters used in Section 2.2.1. This model is
called CNN_P. Then, the concatenated network SMel_P+CNN_P is trained
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Table 4.1: Results of F1 and ER values on the test set (in bold the best results).

Network F1(%) ER

CNN 56 0.53
MST+CNN 43 0.61
SMel+CNN 57 0.50

with the same loss function of equation (4.5). In this experiment, we study
how do the filters Hl[k] change, thus w0 is set to zero to avoid regularization.
PCEN parameters are initialized with the same values as in CNN_P. Fig. 4.7
shows the parameter values after the training process. The only parameter
that changed significantly is r which defines how the DRC works (see Section
2.2.1). For high frequencies, the r value decreases, and the compression in-
creases (Lostanlen et al., 2019). Analogously, the compression is small for low
frequencies. This could be because in this dataset most meaningful information
for classification is in the lower frequencies.

Table 4.2: Results of F1 and ER on test set for networks CNN, CNN_P and SMel_-
P+CNN_P.

Network F1(%) ER

CNN 56 0.53
CNN_P 54 0.56

SMel_P+CNN_P 51 0.60

Table 4.2 shows the performance results for CNN, CNN_P and SMel_P+CNN_-
P networks. Note that PCEN normalization does not improve the perform-
ance of CNN. Also, training SMel_P in conjunction with CNN_P, does not
improve the results, but it is interesting to see in the Fig. 4.8 how the Hl[k]
filters change.

For high frequencies, the result seems to be very noisy, in particular above
4000 Hz. This suggests that the information in this frequency band does not
contribute substantially in the classification. It is interesting to note that
this result is similar to the one reported in (Cakır & Virtanen, 2018). To
corroborate this finding, we explored re-sampling the dataset at 8000 Hz and
calculating the energy on 64 mel bands in the range from 0 to 4000 Hz. Notice
that effectively the results of ER and F1 do not change significantly working
with a sampling rate of 8000 Hz, while the number of parameters decreases
considerably (see Table 4.3). This result could have been obtained by other
means, for instance, changing the dataset sampling rate by trial and error.
However, the proposed feature extraction network can learn task specific filters
when faced to other problems.
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enced to initial values trained with SMel_P+CNN_P. Dash lines mark initial values.

Table 4.3: Results of F1 and ER test set and number of parameters of networks
CNN_P and SMel_P+CNN_P trained with URBAN-SED dataset re-sampled to
22050 Hz and 8000 Hz.

fs(Hz) Red F1(%) ER # params (M)

22050
CNN_P 54 0.56 ∼ 2.48

SMel_P+CNN_P 51 0.60 ∼ 2.55

8000
CNN_P 52 0.55 ∼ 0.99

SMel_P+CNN_P 49 0.56 ∼ 1.01
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Figure 4.8: Hl[k] filters learned by SMel_P+CNN_P network.

4.5 Discussion

This chapter presents a novel approach for sound event detection in urban en-
vironments using end-to-end neural networks, that is obtained by concatenat-
ing two networks: one for feature extraction and another one for classification.
This two-stage architecture facilitates the introduction of domain knowledge
and improves the interpretability of what the networks learn.

For the first network, that is devised to extract the mel-spectrogram, we pro-
pose a simple approach based on a mel-frequency filterbank. We show that the
proposed model achieves better results (smaller loss function value) than those
of the recently proposed MST model. We also show that the classification
results of the concatenated end-to-end network are similar to those of a state-
of-the-art CNN. However, the proposed model offers a better interpretability
regarding the output of the first layers of the network.

Also, we implement the recently proposed PCEN energy normalization as a
neural network layer and we train its parameters in conjunction with those of
the rest of the network. We find that the only parameter that significantly
changes in the training is r, that determines the amount of dynamic range
compression of the signal.

We also study how the filters of the first layer change with the training. The
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results suggest that for the URBAN-SED dataset, the most relevant inform-
ation is below 4000 Hz and this is confirmed by obtaining similar results for
a 8000 Hz sub-sampled version of the dataset. We conclude that models with
less parameters could be used.

The main advantage of designing interpretable front-end as the proposed SMel
method, is that it can be used for other audio-related tasks. However, the au-
dio representation extracted using SMel, similar to the mel-spectrogram, is a
low-level acoustic representation. Therefore interpretable models and backends
can be designed to discriminate between classes and extract higher level rep-
resentations. The following chapters explore this more in depth.



CHAPTER 5
An interpretable model for

sound classification

5.1 Introduction

In this chapter, we present a novel explanation-producing neural network for
sound classification, with the aim of contributing to the development of in-
terpretable models in the audio domain. The proposed network architecture
is based on the interpretable model for image classification introduced in (Li
et al., 2018a). The input in our case is a time-frequency representation of the
audio signal. The network learns a latent space—by means of an autoencoder—
and a small set of prototypes in this latent space. The ability to learn a latent
space is the most powerful trait of DNNs and it proved to be a key factor
for achieving high performance in the different sound classification tasks ad-
dressed. The predictions of the network are based on the similarity of the input
to the prototypes in the latent space. We leverage audio domain knowledge to
design a frequency-dependent similarity measure and consider different time-
frequency resolutions in the feature space, both of which contribute to better
discrimination of the sound classes. By applying the decoder function of the
autoencoder, a prototype can be mapped from the latent space to the time-
frequency input representation and then to an audio signal. The model is
constrained to produce good quality audio from the time-frequency represent-
ation. This allows for the aural inspection of the learned prototypes and their
comparison to the audio input. It is this approach that renders the explainab-
ility of the proposed model: the explanation is the set of prototypes—mapped
to the audio domain—and the similarity of the input to them.

The conducted experiments show competitive results when compared to that
of the state-of-the-art methods in automatic sound classification for three dif-
ferent application scenarios involving speech, music, and environmental audio.
Moreover, the ability to inspect the network allows for evaluating its perform-
ance beyond the typical accuracy measure. For this reason, some experiments

65



66
CHAPTER 5. AN INTERPRETABLE MODEL FOR SOUND

CLASSIFICATION

are devised to explore the advantages of the interpretability property of the
model. To do so, we propose two automatic methods for network refinement
that allow reducing some redundancies, and suggest how the model could be
debugged using a human-in-the-loop strategy.

The implemented model and the software needed for reproducing the exper-
iments are available to the community under an open source license from:
https://github.com/pzinemanas/APNet.

Our main contributions can be summarized, as follows.

1. We propose a novel interpretable deep neural network for automatic
sound classification—based on an existing image classification model (Li
et al., 2018a)—that provides explanations of its decisions in the form of
a similarity measure between the input and a set of learned prototypes
in a latent space.

2. We exploit audio domain knowledge to improve the discrimination of the
sound classes by designing a frequency-dependent similarity measure and
by considering different time-frequency resolutions in the feature space.

3. We rigorously evaluate the proposed model in the context of three dif-
ferent application scenarios involving speech, music, and environmental
audio, showing that it achieves comparable results to those of state-of-
the-art opaque algorithms.

4. We show that interpretable architectures, such as the one proposed, allow
for the inspection, debugging, and refinement of the model. To do that,
we present two methods for reducing the number of parameters at no
loss in performance, and suggest a human-in-the-loop strategy for model
debugging.

The rest of this chapter is organized, as follows. Section 5.2 presents our
proposed model. Section 5.3 details the datasets and baseline methods that
are used in the experiments reported in Section 5.4. Section 5.5 finalizes the
paper with the main conclusions and ideas for future work.

5.2 Proposed Model

The proposed model —called Audio Prototype Network (APNet)—has two
main components: an autoencoder and a classifier. The input to the model
is a time-frequency representation of the audio signal. The purpose of the
autoencoder is to represent the input into a latent space of useful features that
are learned during training. The encoded input is then used by the classifier
to make a prediction.

https://github.com/pzinemanas/APNet 
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The diagram shown in Figure 5.1 represents the network architecture of APNet.
The classifier consists of: a prototype layer, a weighted sum layer, and a fully-
connected layer. The prediction of the classifier is based on the similarity—
computed in the latent space—between the encoded input and a set of pro-
totypes, which are learned during training to be representatives of each class.
The weighted sum layer controls the contribution of each frequency bin—in
the latent space to—the similarity measure. Finally the fully connected layer
takes the weighted similarity measure as input and produces the output predic-
tion. The decoder function of the autoencoder is used to map the prototypes
from the latent space to the time-frequency input representation—and then to
the audio domain using signal processing. In the following, the main network
components are thoroughly described.

5.2.1 Input Representation

The log-scale mel-spectrogram is used as the time-frequency representation of
the audio input. This representation is widely used in sound classification, as
well as other audio-related problems.

We define the ith input as Xi ∈ RT ×F where T and F are the number of
time hops and the frequency bins, respectively. Hence, let {(Xi,Yi)}Ni=1 be the
training set, where Yi ∈ RK are the one-hot encoded labels, and N and K are
the number of instances and classes, respectively.

5.2.2 Autoencoder

The encoder function f(·) is used to extract meaningful features from the
input. Therefore, the encoder transforms the input into its representation in
the latent space,

Zi = f(Xi), (5.1)

where Zi is three-dimensional tensor of shape (T, F,C), T and F are the time
and frequency dimensions after the encoding operations, and C is the number
of channels used in the encoder’s last layer. On the other hand, the decoder
function, g(·), is devised to reconstruct the input from the latent space,

X̃i = g(Zi) ∈ RT ×F . (5.2)

The autoencoder that is proposed in (Li et al., 2018a) is devised for image
processing. We designed the autoencoder of our model to deal with a time-
frequency representation as input. In particular, the encoder is suitable for
audio feature extraction, and the decoder provides good audio quality in the
reconstruction.

Figure 5.2 shows a diagram of the proposed autoencoder. It has three convo-
lutional layers in the encoder and three transpose convolutional layers in the
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decoder. Besides, we apply max-pooling layers after the first two convolutional
layers in order to capture features at different time-frequency resolutions. Note
that max-pooling is a non-invertible operation and, thus, there is not an up-
sampling operation that is suitable for the decoder stage. To overcome this
problem, we use the solution that was proposed by Badrinarayanan et al.
(2017). This implies saving the indexes used in the max-pooling operations in
the form of masks and then using them in the decoder. This mask is set to
1 at the position that maximizes the max-pooling and to 0 otherwise. In the
decoder, the mask is applied to the result of a linear upsampling. The next
transpose convolutional layer learns how to upsample the masked input.

Figure 5.2: Diagram of the proposed autoencoder. Filled arrows represent convolu-
tional (both normal and transpose) layers. The unfilled arrows point out max-pooling
(in the encoder) or upsampling (in the decoder) layers. Dashed line arrows illustrate
connections.

A leaky ReLu is the activation after each convolutional layer (Maas et al.,
2013), except for the last one, which is an hyperbolic tangent in order to limit
the reconstruction to the range [−1, 1].

Note that we use padding for all convolutional layers, so that the output has
the same shape as the input. Besides, max-pooling operations use a 2 × 2
window and, therefore, the shape of the encoder’s last layer (i.e. the dimension
of the latent space) is (T, F,C) = (T /4,F/4, C).

For the decoding process to have enough audio quality, it is necessary to op-
timize the autoencoder by minimizing its reconstruction error. To accomplish
this, we use a L2 mean square loss function over its inputs and outputs, as

lr =
1

N

N∑
i=1

∥∥∥Xi − X̃i

∥∥∥2
2
. (5.3)

5.2.3 Prototype Layer

The prototype layer stores a set of M prototypes that we want to be repres-
entatives of each class: {Pj}Mj=1. These prototypes are learned in the latent
space and, thus, the shape of Pj is also (T, F,C).
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In order to learn the prototypes, we used the same loss function as in the
original model (Li et al., 2018a). First, we calculate D ∈ RN×M , whose values
are the squared L2 distance from each data instance to each prototype in the
latent space:

Dij = ∥Zi − Pj∥22 , (5.4)

and then we calculate the following cost function:

lp =
1

N

N∑
i=1

min
j

{Dij}+
1

M

M∑
j=1

min
i
{Dij}. (5.5)

The minimization of this loss function would require that each learned proto-
type is similar to at least one of the training examples in the latent space; and,
vice versa, every training example to be similar to one prototype (Li et al.,
2018a). Therefore, training examples will cluster around prototypes in the
latent space. Besides, if we choose the decoder to be a continuous function,
we should expect that two close instances in the latent space to be decoded
as similar instances in the input space, as noted in (Li et al., 2018a). Con-
sequently, we should expect the prototypes to have meaningful decodings in
the input space.

The output of this layer is a similarity measure that is based on the distance
from each encoded data instance Zi to each prototype Pj , as described in the
next section.

5.2.4 Similarity Measure and Weighted Sum Layer

Unlike images, the dimensions of the time-frequency representation have dif-
ferent meanings and they should be treated differently (Pons et al., 2016). For
this reason, we propose a frequency-dependent similarity that assigns a dif-
ferent weight to each frequency bin in the latent space. This allows for the
comparison of inputs and prototypes to be based on those frequency bins that
are more relevant, for instance, where the energy is concentrated.

The similarity measure computation has two steps: (1) the calculation of a
frequency-dependent similarity and (2) the integration of the frequency di-
mension by means of a learnable weighted sum.

The frequency dependent similarity is calculated as a squared L2 distance,
followed by a Gaussian function. Therefore, the output of the prototype layer,
S, is obtained by:

Sij [f ] = exp

(
−

T∑
t=1

C∑
c=1

(Zi[t, f, c]− Pj [t, f, c])
2

)
. (5.6)

Note that S is a three-dimensional tensor whose shape is (N,M,F ), and that
we use both sub-indexes and brackets to denote tensor dimensions. Sub-indexes
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denote the i-th data instance and the j-th prototype; and, brackets denotes
the time, frequency, and channels dimensions.

Subsequently, the frequency dimension is integrated, to obtain the matrix Ŝ ∈
RN×M , while using the following weighted sum:

Ŝij =
F∑

f=1

Hj [f ]Sij [f ] (5.7)

where H = {Hj [f ]} ∈ RM×F is a trainable kernel. Note that this is similar
to a dot product with a vector of length F for each prototype. We initialize
H with all values equal to 1/F (equal weight, mean operation), but we let the
network learn the best way to weight each frequency bin for each prototype.
The kernel is particularly useful to discriminate between overlapping sound
classes by focusing on the most relevant frequency bins for each prototype.

5.2.5 Fully-Connected Layer

The fully-connected layer is devised to learn the decisions to transform the sim-
ilarity measure Ŝ into the predictions. Given that the network is intended for
a classification task, we use softmax as the activation of this layer. Therefore,
the predictions are calculated as:

Ỹ = softmax(Ŝ ·W ), (5.8)

where W ∈ RM×K is the kernel of the layer and Ỹ = {Ỹik} ∈ RN×K . Note
that we do not use bias in order to obtain more interpretable kernel weights.
We expect that for a given output class, the network gives more weight to the
prototypes related to this class. For instance, in a problem with K classes and
one prototype per class (M = K), we expect to learn a fully-connected layer
with a kernel close to the identity matrix, W = IK (Li et al., 2018a). The loss
function to train this layer is a categorical cross-entropy,

lc = − 1

N

N∑
i=1

K∑
k=1

Yik log Ỹik. (5.9)

Finally, note that, since the prototypes can be converted from the latent
space to the time-frequency input representation by applying the decoder
function, g(Pj) ∈ RT ×F is the mel-spectrogram representation of the j-th
prototype. Hence, we can illustrate the prediction process while using the mel-
spectrograms of data instances and prototypes, even though this is actually
performed in the latent space. Figure 5.3 shows an example of this illustration
in the context of a classification task with three classes and using one prototype
per class (M = K = 3).
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Figure 5.3: Illustration of how the model makes its predictions. This is an example
with three classes: siren, air conditioner, and car horn. The input Xi is compared to
three prototypes (one per each class) to get the frequency-dependent similarity Sij [f ].
This similarity is integrated in the frequency dimension using the weighted sum layer
to obtain Ŝij . The final step in the reasoning process is to calculate the prediction
(Ỹik) by projecting the similarity using a fully-connected layer. Note that gray scale
in the fully-connected arrows denote the strength of the connection.

5.3 Materials and Methods

In this section, we describe the sound classification tasks addressed, the pub-
licly available datasets, the evaluation methodology, and the baselines that
were used for performance comparison.

5.3.1 Sound Classification Tasks

We aim to study the performance of APNet when considering sounds of differ-
ent nature, such as speech, music, and environmental sounds. To do that, we
address three different audio classification tasks: urban sound classification,
musical instrument recognition, and keyword spotting in speech.

As show in Chapter 1, in this work, we refer to sound classification as the
task of assigning a sound category to an audio segment, from a previously
defined set of options. We differentiate this from sound detection, which also
involves locating the sound event within the audio in terms of onset and offset
time instant; and, from audio tagging, in which multiple labels can be assigned
to an audio segment indicating the presence of instances from several sound
classes (Mesaros et al., 2016b).

Simple application scenarios have a single sound event per audio segment.
This is the case of the keyword spotting task in speech addressed in this work,
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in which each audio segment has only one short word. Subsequently, a more
complex scenario is the presence of a sequence of non-overlapping sound events
of the same kind, such as the stem of a single instrument in a multi-track music
recording session. The musical instrument recognition task is an example of
this kind, despite the fact that some of the instruments (e.g., piano, violin) can
simultaneously produce several sounds. The environmental sound scenarios
are one of the most complex settings because they typically involve multiple
temporally overlapping sound events of different types, and the sounds present
often have considerable diversity. This is the kind of problem that is addressed
in the urban sound classification task.

Further information regarding the tasks is provided in the following description
of the datasets.

5.3.2 Datasets

UrbanSound8k

For the urban sound classification task we use the UrbanSound8K dataset (Sala-
mon et al., 2014). It has more than 8000 audio slices that are extracted from
audio recordings from Freesound (Font et al., 2013). Each audio slice is tagged
with one of the following ten labels: air conditioner, car horn, children playing,
dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street music.
The length of the audio slices is variable, with a maximum value of 4 s. The
audio format is the same as the one originally uploaded to Freesound.

We use the 10-fold cross-validation scheme that was provided by the dataset
complying with the following methodology: (1) select a test fold (e.g., fold 1);
(2) select a validation set as the next fold (e.g., fold 2); (3) train the model
on the rest of the folds (e.g., folds 3 to 10) using the validation set for model
selection; and, (4) evaluate the model on the test set. Finally, repeat for the
ten folds and average the results.

Medley-Solos-DB

For the music instrument recognition task, we use the Medley-solos-DB data-
set (Lostanlen & Cella, 2016). It contains single-instrument samples of nine
instruments: clarinet, distorted electric guitar, female singer, flute, piano, tenor
saxophone, trumpet, and violin. Audio clips are three-second length, sampled
at 44,100 Hz.

It has a training set extracted from the MedleyDB dataset (Bittner et al., 2014)
and a test set from the solosDB dataset (Joder et al., 2009). The training set
also includes a split for model validation.
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Google Speech Commands

For the keyword spotting task in speech we use the Google Speech Commands
V2 dataset (Warden, 2018). It consists of more than 100.000 audio files of one-
second length, sampled at 16,000 Hz, each one containing a single short word.
Although the dataset is devised for the detection of a small set of commands
(e.g., up, down, left, right) and to distinguish them from other short words,
we use the complete set of 35 words: backward, bed, bird, cat, dog, down, eight,
five, follow, forward, four, go, happy, house, learn, left, marvin, nine, no, off,
on, one, right, seven, sheila, six, stop, three, tree, two, up, visual, wow, yes, and
zero. The audio files are organized in three folds for model training, validation,
and testing.

5.3.3 Baselines

We compare the performance of APNet to that of three different state-of-
the-art opaque models: a Convolutional Neural Network designed for environ-
mental sound recognition in urban environments (SB-CNN) (Salamon & Bello,
2017); a Convolutional Recurrent Neural Network with an attention mechan-
ism devised for speech classification (Att-CRNN) (de Andrade et al., 2018);
and, a pre-trained embedding extractor model based on self-supervised learn-
ing of audio-visual data (Openl3) (Cramer et al., 2019).

The SB-CNN model is a neural network that is composed by three convo-
lutional layers followed by two dense layers. The Att-CRNN model con-
sists of two horizontal convolutional layers, two bidirectional Long Short-Term
Memory (LSTM) recurrent layers, an attention mechanism to integrate tem-
poral dimension, and three dense layers.

Openl3 is a pre-trained embedding extractor model that is based on the self-
supervised learning of audio-visual data. The parameters used to calculate the
input representation are fixed, and different flavours of the model are available
based on the embedding space dimension, the number of mel bands, and the
type of data used for training (music or environmental). We use an embedding
space of 512 and 256 mel bands for the three datasets. For the urban sound
classification task, we select the model trained on environmental data, and the
model trained on music for the other two tasks. We use Openl3 as a feature
extractor and train a Multi-layer Perceptron (MLP) for each classification task.
This network has two hidden layers of 512 and 128 units, respectively, with
ReLu activation and dropout with rate 0.5. The dimension of the last layer
corresponds to the number of classes in each case.

The three baseline models and APNet use log-scaled mel-spectrograms rep-
resentation as input, but with different set of parameters. These parameters
are also dataset dependent and, therefore, we summarize all combinations in
Table 5.1. For instance, in the case of APNet trained on UrbanSound8K, we
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extract the time-frequency representation with F = 128 bands from 0 to 11,025
Hz, while using a spectrogram calculated with a window length of 4096 and
hop size of 1024. Each input corresponds to a 4-seconds slice of the audio
signal; hence, the number of time hops is T = 84.

Table 5.1: Mel-spectrogram parameters for each model and dataset: sampling rate
in kHz (fs); window length (w) and hop size in samples (h); number of mel-bands
(m); and, audio slice length in seconds (l).

UrbanSound8K Medley-Solos-DB
fs m w, h l fs m w, h l

APNet 22.05 128 4096, 1024 4.0 44.1 256 4096, 1024 3.0
SB-CNN 44.1 128 1024, 1024 3.0 44.1 256 1024, 1024 3.0

Att-CRNN 44.1 128 1024, 1024 3.0 44.1 256 1024, 1024 3.0
Openl3 48.0 256 512, 242 1.0 48.0 256 512, 242 1.0

Google Speech Commands
fs m w, h l

APNet 16.0 80 1024, 256 1.0
SB-CNN 16.0 80 1024, 256 1.0

Att-CRNN 16.0 80 1024, 256 1.0
Openl3 48.0 256 512, 242 1.0

5.3.4 Training

We train APNet and the baseline models from scratch, without the use of
pre-trained weights, except for feature extraction in Openl3. For the three
baselines, we optimize a categorical cross-entropy loss over the predictions and
the ground-truth, as shown in Equation (5.9). While training APNet, we
optimize the weighted sum of all function losses defined previously, Equations
(5.3), (5.5), and (5.9):

l = αlc + βlp + γlr (5.10)

where the weights (α, β, and γ) are real-valued hyperparameters that adjust
the ratios between the terms. Other important hyperparameters are the num-
ber of channels used in the convolutional layers C, the number of prototypes
M , and the batch size B. See Table 5.2 for the values of the hyperparameters
for each dataset. We train APNet and the baseline models while using an
Adam optimizer with a learning rate of 0.001 for 200 epochs. We select the
network weights that maximize the accuracy in the validation set.

5.4 Experiments and Results

First, we evaluate the performance accuracy of the proposed model in the three
classification tasks considered, and then compare it with that of the baseline
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Table 5.2: APNet hyperparameters for each dataset: number of prototypes (M),
number of channels in convolutional layers (C); training hyperparameters (α, β, and
γ); and, batch size (B).

M C (α, β, γ) B

UrbanSound8K 50 32 (10,5,5) 256
Medley-solos-DB 40 48 (10,5,5) 96

Google Speech Commands 105 48 (2,1,1) 128

models. All of the experiments were conducted using the DCASE-models lib-
rary (Zinemanas et al., 2020). This simplifies the process of reproducing the
experiments, as well as the development of the proposed model. After training
and validating all of the models, we evaluate them on the test sets of each data-
set. Table 5.3 shows the performance results and the number of parameters of
APNet and the three baselines for the three sound classification tasks. These
results show that APNet is a very competitive algorithm in all of the tasks,
with accuracy values that are comparable to that of the baseline models.

Table 5.3: Mean accuracy (%) and number of parameters (millions) for each model
and dataset.

UrbanSound8K Medley-Solos-DB
Acc. (%) # Params. (M) Acc. (%) # Params. (M)

APNet 76.2 1.2 65.8 4.2
SB-CNN 72.2 0.86 64.7 1.8

Att-CRNN 61.1 0.23 52.0 0.29
Openl3 77.3 9.5 67.3 9.5

Google Speech Commands
Acc. (%) # Params. (M)

APNet 89.0 1.8
SB-CNN 92.1 0.17

Att-CRNN 93.2 0.20
Openl3 70.9 9.5

However, unlike the baseline models, APNet is designed to be an interpretable
deep neural network. This allows for us to carry out further analysis to provide
insight into the inner workings of the network. In particular, the following
sections show how to inspect the network (Section 5.4.1) and how to refine the
network based on the insights provided by the inspection (Section 5.4.2).

5.4.1 Network Inspection

In this section, we examine the functioning of the autoencoder (Section 5.4.1)
and inspect the learned weights from the prototype (Section 5.4.1), fully-
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connected (Section 5.4.1), and weighted sum (Section 5.4.1) layers.

Autoencoder

The autoencoder is devised to extract meaningful features (encoding process)
from the input and to transform back the prototypes from the latent space
to the mel-spectrogram representation (decoding process). We qualitatively
assess the reconstruction of some data instances in order to examine the func-
tioning of the autoencoder. If this reconstruction is not appropriate, then we
can not guarantee that the learned prototypes can be transformed back to the
input space in a meaningful way. Figure 5.4 shows the reconstruction of five
random signals from one of the validation sets of the UrbanSound8K data-
set. The visual comparison of the original and reconstructed mel-spectrogram
representations indicates that the decoding process gives adequate results.

Figure 5.4: Qualitative assessment of the autoencoder. Random instances from the
validation set of the UrbanSound8K dataset in the top row (Xi) and their respective
reconstructions in the bottom row (X̃i).

This is also confirmed by listening to the audio signal that is obtained from
transforming the time-frequency representation to the waveform domain. The
mapping to the audio domain is done by first converting the mel-spectrogram to
an approximate linear-frequency spectrogram, followed by the Griffin-Lim (Griffin
& Lim, 1984) method. This process is implemented while using librosa (McFee
et al., 2015). The audio signals of the examples of Figure 5.4 are available in
https://pzinemanas.github.io/APNet/.

https://pzinemanas.github.io/APNet/


78
CHAPTER 5. AN INTERPRETABLE MODEL FOR SOUND

CLASSIFICATION

Prototypes

We take advantage of the decoder to obtain the reconstructed mel-spectrogram
of the prototypes, g(Pj). Note that, to do that, we need the masks of the
max-pooling operations from the encoder function f(·). However, these masks
are not available since the prototypes were not transformed by the encoder.
However, we can use the masks produced by the instances from the training
data that minimize the distance to each prototype. Given that the prototypes
are learned to be similar to instances from the training data, we assume that
these masks are also suitable for the prototypes. Subsequently, we input these
reconstructed mel-spectrograms to the model and obtain the class prediction
for each prototype, in order to associate each prototype to a sound class.

Figure 5.5 shows one prototype of each class for the UrbanSound8K dataset.
It can be noticed that the mel-spectrograms exhibit the typical traits of the
sound classes that they represent.

We also extract the audio signal from each prototype. By listening to the re-
constructed audio, one can confirm that the prototypes actually represent their
corresponding sound classes. The audio signals of some of these prototypes can
be found in https://pzinemanas.github.io/APNet/.

Fully-Connected Layer

The fully-connected layer transforms the similarity measure Ŝ into the network
predictions. Recall that the weight matrix W of this layer is designed to
be learnable. The analysis of the learned weights of W contributes to the
interpretability of the network. More specifically, we are able to tell, from
the value of the learned weights, which prototypes are more representative of
which class.

Figure 5.6 shows the transposed weight matrix, W T , obtained for the Urban-
Sound8K dataset. The prototypes are sorted by the prediction that is given
by the classifier. Note that most of the prototypes are connected to the corres-
ponding class, with only two exceptions that are related to acoustic similarities.
For instance, the last prototype of air conditioner is connected to engine id-
ling. Besides, there is a strong connection between the first prototype of dog
bark and the output of children playing.

Weighted Sum Layer

The weighted sum layer allows for the network to learn the best way to weight
each frequency bin in the latent space for each prototype. It can be useful to
focus on the bins where the energy is concentrated or to better discriminate
between overlapping sound classes.

Figure 5.7 shows three examples of the learned weights from UrbanSound8K.
For instance, in the case of siren and engine idling prototypes, the weights are

https://pzinemanas.github.io/APNet/
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Figure 5.5: Reconstructed mel-spectrograms of selected prototypes, g(Pj).

Figure 5.6: Transposed weight matrix of last fully-connected layer, W T .

very correlated to the energy envelope; the layer gives more importance to the
low frequencies for engine idling and middle frequencies for siren. However, in
the case of jackhammer, this layer gives greater significance to high frequen-
cies, even though the low frequencies are energy predominant. This can be
explained as a way to distinguish this class from others with high energy in
low frequencies, such as engine idling or air conditioner.

To show the importance of the trainable weighted sum layer, we undertake
the following experiment. We select a data instance that is difficult to classify,
because it has a mix of sound sources (a siren, a women yelling, and an engine)
and the only tagged class (siren) is in the background. We extract the closest
prototypes in two cases: (1) using the learned weighted sum; and, (2) repla-
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Figure 5.7: Examples of the learned kernel, H, of the weighted sum layer from the
similarity function. Note that the weights for each prototype Hj [f ] are upsampled to
compare them in the input space.

cing the weighted sum layer with a fixed mean operation (Hj [f ] = 1/F ∀j, f).
Figure 5.8 shows the mel-spectrogram of the data instance (Xi) to the left,
while, to the right, the three closest prototypes using the mean operation are
depicted in the top row, and the three closest prototypes using the trainable
weighted sum are depicted in the bottom row. Note that the first two proto-
types of the top row correspond to children playing—because the predominant
source present is a women yelling—and only the third prototype corresponds
to the correct class. On the other hand, when the trainable weighted sum is
used, the similarity measure is able to capture the source from the background
by given more weight to the frequency bins where its energy is concentrated.
Note that the first two prototype in the bottom row correspond to the correct
class.

5.4.2 Network Refinement

The architecture of APNet allows designers to refine, debug, and improve the
model. In the following, we propose two automatic methods to refine the
network by reducing redundancy in the prototypes (Section 5.4.2) and the
channels in the encoder’s last layer (Section 5.4.2). Besides, we present a web
application that is devised for the manual editing of the model (Section 5.4.2).

Prototype Redundancy

APNet does not include a constraint on the diversity of the prototypes. As a
result, some of the prototypes can be very similar, producing some kind of re-
dundancy. To evaluate this, we calculate the distance matrix of the prototypes
D ∈ RM×M , while using the L2 squared distance:

Djl = ∥Pj − Pl∥22 . (5.11)

Figure 5.9 shows this distance matrix in the case of the Medley-solos-DB data-
set. Note that some of the prototypes of the same class are very similar. To
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Figure 5.8: Example on the importance of the weighted sum layer. To the left,
the mel-spectrogram, Xi, of an audio slice that includes several sources: siren in the
background along with a women yelling, and an engine in the foreground. Using
a mean operation instead of the weighted sum, the two closest prototypes are from
children playing (top row). However, applying the weighted sum, the two closest
prototypes are from the correct class, siren (bottom row).

reduce this redundancy and, consequently, make the network smaller, we re-
move prototypes that are very close to each other. Formally, we eliminate one
prototype for each pair (j, l) that meet:

Djl < min{Djl}+ mean{Djl}/2 ∀j, l ∈ [1, . . . ,M ] : j ̸= l (5.12)

Note that eliminating these prototypes also implies removing the rows of W
associated with them. For instance, if Pj is deleted, then row j from W should
also be removed.

After eliminating the redundant prototypes, we train the networks for 20 more
epochs using the same parameters from Section 5.4. After this network pruning
process, we improve the classification results from 65.8% to 68.2%; and, reduce
the number of parameters.

Channel Redundancy

The number of channels of convolutional layers within the autoencoder are
usually selected by a grid search method or relying on values used by previous
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Figure 5.9: Distance matrix of prototypes of the Medley-solos-DB dataset sorted
by predicted classes. The labels are clarinet (CL), distorted electric guitar (DEG),
female singer (FM), flute (FL), piano (PI), trumpet (TR), and violin (VI).

research. A high number of channels can produce network overfitting or add
noisy information in the feature space. We take advantage of the prototype
architecture to see whether some channels are redundant. Because the output
of the last convolutional layer of the encoder yields the latent space, we can
use the prototypes to analyze the channel’s dimension. Therefore, if there is
redundant or noisy information in the prototypes, this can be related to the
filters in the last layer of the encoder.

To study this, we undertake the following experiment in the instrument recog-
nition task. We calculate the accumulated distance matrix, C ∈ RC×C , of the
prototypes as a function of the channel dimension:

Ckq =
∑
i,j,t,f

(Pi[t, f, k]− Pj [t, f, q])
2 . (5.13)

Subsequently, we find the eight minimum values of C outside the diagonal and
we delete one channel from each pair (k, q). We delete all of the weights related
to these channels and, as a result, we reduce the number of filters of the last
layer from 48 to 40. We re-train the network for 20 more epochs, because the
decoder part has to be trained again.
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Table 5.4 shows the results that were obtained for the Medley-solos-DB data-
set after both prototype and channel refinement processes, when compared to
Openl3 as the most competitive baseline. After the two refinements the accur-
acy increases by 3.3%, while the number of parameters is reduced by 2.6 M.
Besides, this result improves the Openl3 performance by 1.8%.

Table 5.4: The accuracy and number of parameters for APNet before and after the
refinement processes for the Medley-solos-DB dataset. Openl3 is included as the most
competitive baseline.

Network Accuracy (%) Approx. # Parameters

APNet 65.8 4.2 M
APNet (R. prototypes) 68.2 1.8 M
APNet (R. channels) 69.1 1.5 M

Openl3 67.3 9.4 M

Manual Editing

In the previous sections, we described two automatic methods to refine APNet
that lead to better performance and smaller networks. However, when working
with networks designed for interpretability like APNet, it is also possible to
visualize the models and allow the users to refine them manually. To that
end, we designed a web application that allows for the users to interact with
the model, refine it, and re-train it to obtain an updated model. Figure 5.10
shows a screenshot of the web application. The user can navigate in a two-
dimensional (2D) representation of the prototypes and the training data. It is
also possible to see the mel-spectrograms of prototypes and the data instances
and to play the audio signals. The user can remove selected prototypes and
convert instances to prototypes. Once the prototypes are changed, the model
can be re-trained and evaluated.

Using this tool, manual debugging of the model is also possible. Furthermore,
different training schemes, such as human-in-the-loop strategies, are possible.
For instance, the user can periodically check the training and change the model
after a few numbers of epochs. It is also a good starting point to design
interfaces for explaining the inner workings of deep neural networks to end-
users.
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5.5 Discussion

In this chapter, we present a novel interpretable deep neural network for sound
classification—based on an existing model devised for image classification (Li
et al., 2018a)—which provides explanations of it decisions in terms of a set of
learned prototypes in a latent space and the similarity of the input to them.

We leverage domain knowledge to tailor our model to audio-related problems.
In particular, we propose a similarity measure that is based on a trainable
weighted sum of a frequency-dependent distance in a latent space. Our ex-
periments show that including the trainable weighted sum effectively improves
the model, in particular when classifying input data containing mixed sound
sources.

The proposed model achieves accuracy results that are comparable to that of
state-of-the-art baseline systems in three different sound classification tasks:
urban sound classification, musical instrument recognition, and keyword spot-
ting in speech.

In addition, the ability to inspect the network allows for evaluating its per-
formance beyond the typical accuracy measure and provide useful insights into
the inner workings of the model. We argue that the interpretability of the
model and its reliable explanations—in the form of a set of prototypes and the
similarity of the input to them—increase its trustworthiness. This is important
for end-users relying on the network output for actionable decisions, even in
low-risk applications.

The interpretable architecture of APNet allows designers to refine, debug, and
improve the model. In this regard, we propose two automatic methods for net-
work refinement that eliminate redundant prototypes and channels. We show
that, after these refinement processes, the model improves the results, even
outperforming the most competitive baseline in one of the tasks. Our results
exemplify that interpretability may also help to design better models. This
contrasts with the widely extended assumption that there is an unavoidable
trade-off between interpretability and accuracy.

A limitation of this model is that the prototype loss strongly regularize the
ts latent space. For instance, the prototypes of different classes tend to be
separated to perform sound classification correctly. However, in a polyphonic
setting, i.e., with several sources sounding simultaneous, an instance has to
be close to several prototypes simultaneously. This is not possible in such
regularized latent space. In Chapter 6, we explore how to extend the approach
presented in this chapter to the polyphonic setting, such as the sound event
detection task.

Future work includes using the visualization tool for manual editing to study
different ways of training the network with a human-in-the-loop approach and
creating tools for explaining the inner functionality of the network to end-users.
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We explore these research lines more in-depth in Chapter 7.



CHAPTER 6
An extension for sound event

detection

6.1 Introduction

In the Chapter 5, we proposed a prototype-based method for audio classifica-
tion, namely Audio Prototype Network (APNet). This model showed compel-
ling results when applied to speech, music, and environmental audio, for prob-
lems with a single class label per audio clip. However, in a polyphonic setting
(i.e multi-label), an input instance corresponding to several classes should be
simultaneously close to prototypes of those classes in the latent space. Un-
fortunately, learning such latent space proved challenging in practice, thus
motivating the alternative approach proposed in this chapter.

In this chapter, we propose to extend this method to tackle the problem of
interpretable polyphonic sound event detection. To provide interpretability,
we leverage the prototypes network approach and attention mechanisms. The
network learns local prototypes, i.e. data points in the latent space representing
a patch in the input representation. The approach is similar to that of (Chen
et al., 2019a) for single class image classification, which compares image parts
to learned prototypes. However, we extend the scope to a multi-label set-
ting with promising results in sound event detection. Besides, the proposed
model learns attention maps used for positioning the local prototypes and re-
constructing the latent space properly. Then, the detection is solely based on
the attention maps. Thus, the explanations of the network are in the form of
local prototypes and attention maps.

87
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6.2 Proposed model

Let Xi ∈ RT ×F be the i-th mel-spectrogram where T and F are the number of
time frames and frequency bins, respectively. Therefore we define the training
set as {(Xi,Yi)}Ni=1, where Yi ∈ RK are the one-hot encoded labels, N is the
number of instances and K is the number of classes. APNet is formed by
two main components: an autoencoder and a classifier (see Section 5.2). The
proposed model uses the same autoencoder from APNet, which is represented
in the upper branch of Figure 6.1, and utilizes a novel classifier. The encoder
is aimed at extracting meaningful features from the input:

Zi = f(Xi), (6.1)

where Zi is a tensor of shape (T, F,C) and represents the transformed input in
the latent space. C is the number of channels of the encoder’s last convolutional
layer. The decoder part of the autoencoder is used for reconstructing the mel-
spectrogram:

X̃i = g(Zi) ∈ RT ×F . (6.2)

Both the encoder and the decoder are formed by three convolutional layers
with leaky ReLu activations. The encoder includes two max-pooling layers in-
terspersed between the convolutions and the decoder applies the corresponding
unpooling layers. Please refer to Section 5.2 for more details. The classifier
of APNet is based on the distance from Zi to a set of M prototypes with the
same shape (T, F,C). Therefore, a prototype is a point in the latent space
corresponding to the full mel-spectrogram representation in the input space.
This makes it troublesome for APNet to represent a multi-label input instance
as it should be close to prototypes from different classes.

The model proposed in this work is devised to overcome this limitation, i.e.
it is capable of detecting various simultaneous sound events. The middle and
bottom branches in the diagram of Figure 6.1 show this novel classifier. We
use another encoder, s(·), to extract M attention maps in the latent space:

Si = s(Xi), (6.3)

where Si is a tensor of shape (T, F,M). The encoder s(·) is similar to the
autoencoder’s one, f(·), but with ReLu activations to force a non-negative
output. Each attention map is related to one prototype. Therefore the network
learns a set of M prototypes of shape (1, 1, C). We represent the M prototypes
as a tensor P of shape (1, 1,M,C). Note that each prototype represents one
point in the time-frequency plane in the latent space. Therefore, in the input
space these prototypes represent a patch of shape equal to the receptive field
of the encoder network (32× 32 in this work).

Using the attention maps and the learnable prototypes the model tries to
reconstruct the latent representation Zi. This is done by multiplying each
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Figure 6.1: Diagram of the proposed model.

attention map by its corresponding prototype and then summing all maps.
Note that this is equivalent to a 1× 1 2D convolutional layer:

Ẑi = Si ∗ P , (6.4)

or a dense layer:
Ẑi = Si · Ps, (6.5)

where Ps is the squeezed version of the tensor P with shape (M,C).

Therefore Ẑi has the same shape of Zi and aims to be a reconstruction of
the latent space. In summary the attention maps represent the specific weight
of each local prototype in each time-frequency point in order to have a good
reconstruction of the latent space. Using the decoder g(·) from the top branch,
we can project this reconstructed tensor into the input space,

X̂i = g(Ẑi) ∈ RT ×F . (6.6)

In this way, we can visualize the reconstruction of the latent space in the input
space to inspect it.

Finally, the bottom branch deals with the detection task, which is solely based
on the attention maps. First, we average the time dimension of Si:

S̄i[f,m] =
1

T

T∑
t=1

Si[t, f,m] (6.7)
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where S̄i has shape (F,M) and integrates the attention map for each prototype
and frequency bin in the latent space. Then, a dense layer connects a flattened
version of S̄i with the classification output:

Ỹi = sigmoid(S̄i ·W ), (6.8)

where W ∈ RMF×K is the kernel of the layer and Ỹi = {Ỹik} ∈ R1×K . We
do not use bias in order to keep this layer more interpretable. We seek to
audit how the model connects each prototype and each frequency bin to the
corresponding output.

6.2.1 Objective function

We want the model to be able to detect sound events while maintaining the
interpretability of the parameters and the explainability of the predictions. For
this purpose, we define three losses to train the model. First we have a loss
for learning the detection task. Since this is a multi-label problem, we use
binary cross-entropy, Lc. Then we define a mean squared error loss to have
good reconstruction quality in the autoencoder of the top branch:

Lr =
1

N

N∑
i=1

∥∥∥Xi − X̃i

∥∥∥2
2
. (6.9)

This loss ensures that we can transform the data from the latent space back
to the input space, in particular the learned prototypes.

Finally, we define a loss for enforcing a correct process of reconstruction using
the attention maps and the prototypes. In other words, we let the network
learn how to position the prototypes using the attention maps. In this sense,
we define a mean squared error loss in both latent and input spaces:

Lp =
1

N

N∑
i=1

∥∥∥Zi − Ẑi

∥∥∥2
2
+

1

N

N∑
i=1

∥∥∥Xi − X̂i

∥∥∥2
2
. (6.10)

This loss ensures two assets of the model related to its interpretability. First,
this loss establishes that the attention maps are learned to be an explicit ex-
planation of how the model makes its predictions. Note that the attention
maps are the only information used for the final prediction. And these maps
are interpretable since they show how to position each prototype in the latent
space in order to have a good reconstruction. Moreover this loss ensures that
the prototypes are similar to the data and therefore we can transform them to
the input space and audit them.

Besides, we use l1 regularization to force some sparsity in the attention map:

Rs =
1

N

N∑
i=1

∥Zi∥1. (6.11)
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This is to prevent the network from reconstructing the latent space by mixing
many prototypes. We also apply the same type of regularization to the kernel of
the dense layer that connects the attention maps and the output: Rw = ∥W ∥1.
The idea is that the output for a given class is activated with only a few
points on the attention map, both in the frequency and prototype dimension.
Therefore we keep the explanations as simple as possible.

While training the proposed system, we optimize the weighted sum of all losses
and regularization terms defined previously:

L = αLc + βLr + γLp + δRs + ϵRw (6.12)

where the weights (α, β, γ, δ, ϵ) are real-valued hyperparameters.

6.3 Experiments and results

We train the proposed model by optimizing the objective function defined
in Eq. (6.12). We use Adam optimizer with a learning rate of 0.001 for 50
epochs and we select the model with the top performance in the validation
set. We use the following set of hyperparameters (10, 5, 5, 10−5, 10−6) and a
batch size of 256. The experiments are conducted using the DCASE-models
library (Zinemanas et al., 2020) and the code is available under an open-source
license8.

We compare the performance of the proposed model to that of two different
opaque baselines: (1) a Convolutional Neural Network (CNN) formed by three
convolution layers and two dense layers (Salamon et al., 2017); and (2) a MLP
whose input is the embedding vector extracted from the pre-trained Openl3
model (Cramer et al., 2019). We optimize a binary cross-entropy loss with the
same optimizer and strategy for these baselines as for the proposed model.

We train and evaluate the proposed model and the baselines on the URBAN-
SED dataset v2.0 (Salamon et al., 2017). This is formed by 10-second length
audio files corresponding to synthetic mixtures of sound sources obtained from
the UrbanSound8k dataset. Each sound event is tagged with one of the fol-
lowing classes: air conditioner, car horn, children playing, dog bark, drilling,
engine idling, gun shot, jackhammer, siren, and street music. The three mod-
els use log-scaled mel-spectrogram as input representation, but with different
parameters. Both the CNN and the proposed model uses 128 mel bands and
a sampling rate of 22050 Hz. The proposed model uses a window size of 4096
and hop size of 1024 for calculating the spectrograms. On the other hand,
CNN uses a window size of 512 and hop size of the same length. Openl3 has
predefined parameters (Cramer et al., 2019).

To evaluate the models, we use F-score (F1) and error rate Error Rate (ER) in
a 1-second grid as commonly used for sound event detection (see Section 2.2.5).

8https://github.com/pzinemanas/attprotos

https://github.com/pzinemanas/attprotos
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Figure 6.2: Reconstructed learned local prototypes. The y axis represents the mel
bands where the prototypes were reconstructed.

We run the training 10 times and calculate the mean and standard deviation
of both metrics. Table 6.1 shows the performance comparison of the three
models along with their number of parameters. Note that the performance
of the proposed model is comparable to that of the baselines, but with fewer
parameters.

Table 6.1: Performance comparison of the proposed model and the two baselines.
The performance metrics are the F-score (F1) and the Error Rate (ER). The number
(#) of parameters in millions (M) are also included in the comparison.

Network F1 (%) ER # Params. (M)

CNN 57.3± 0.6 0.568± 0.006 0.5
Openl3+MLP 58.2± 0.3 0.558± 0.004 9.5

Ours 58.8± 0.9 0.572± 0.007 0.15
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Figure 6.3: Example of an input instance from the test set masked by the attention
maps. At the top left plot we show the mel-spectrogram, which includes sound events
of six different classes. The other plots are the same mel-spectrogram but masked by
each of the reconstructed attention maps for the corresponding classes.

6.3.1 Prototypes

The reconstruction of the latent space helps the network to learn prototypes
similar to patches from the training data. We use the decoder part of the
autoencoder, g(·), to reconstruct the learned prototypes in the input space.
We follow a process similar to that performed in APNet for this purpose (see
Section 5.4.1). But in this case, we have to extend the prototypes tensor P
to have the same shape of the latent space, i.e. (M,T, F,C). To this end,
we create a zero tensor of this shape and select a point in the time-frequency
plane where to position each prototype. The time is selected arbitrarily at
the center, and the frequency is selected by minimizing the distance of each
prototype to the data instances. By doing this, we reconstruct the patches in
the frequency bands where the closest data instances have these prototypes
present. Figure 6.2 shows a set of selected prototypes. Note that the network
learns different types of shapes and textures related to environmental sounds
present in the data set.
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6.3.2 Attention maps

For each data instance it is possible to extract the corresponding attention
maps to provide and explanation on how the model makes its predictions. For
a given class k, we follow the following process:

1. Mask the prediction Ỹi ∈ R1×K by a unit vector of the same shape whose
k-th component is the only one equal to 1:

Ỹ
(k)
i = Ỹi ⊙ 1k

2. Get the points of the previous layer that are more connected to the output
k by calculating the gradient:

∇S̄
(k)
i = Ỹ

(k)
i ·W T ∈ R1×FM

3. Reshape the gradient to (F,M), apply a half-wave rectifier to keep only
positive connections and multiply it by the time-averaged attention maps:

S̄
(k)
i = ReLu

(
∇S̄

(k)
i

)
⊙ S̄i.

This represents the attention maps masked by the most important con-
nections to the output k.

4. Find the most connected prototype by maximizing the energy of the
masked attention map:

m̂ = argmax
m∈[1,...,M ]

F∑
f=1

(
S̄
(k)
i [f,m]

)2
5. Extract the frequency-dependent attention function:

S(k)
i [f ] = S̄

(k)
i [f, m̂]

6. Convert the attention function to the input space. To do this, we first
upsample the sequence by a rate of 4 to emulate the two max-pooling op-
erations. Then we apply a moving-average filter to emulate the receptive
field. Thus, the length of the filter is equal to the receptive field (32).

Figure 6.3 shows an example of the attention maps for three different classes.
We multiply the attention maps in the input space by the mel-spectrograms,
similarly to how the model does in the latent space. Note that the model can
detect simultaneous sound events whose energy is concentrated in different
frequency bands. Since the attention maps are designed to reconstruct the
latent space and are the only information used for classification, these represent
the inherent explanation of how the network makes its predictions.
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6.4 Discussion

In this chapter, we present a novel interpretable model for polyphonic sound
event detection. Its predictions are based on attention maps learned for re-
constructing the latent space by positioning a set of local prototypes. The
network also learns the local prototypes as data points in the latent space rep-
resenting a patch in the input representation. The attention maps provide a
form of explanation that is faithful to the model computations and can give
valuable insights into its decision process. Moreover, the prototypes can be
reconstructed and thus can be listened to and audited.

The proposed model achieves encouraging results in urban sound event detec-
tion for a data set of synthetic mixtures, which are comparable to that from two
opaque baselines but with fewer parameters, while at the same time offering
interpretability. This is consistent with some previous work that claims that
it is often possible to incorporate interpretability into deep-learning models to
tackle complex tasks without sacrificing performance (Li et al., 2018a; Chen
et al., 2019a; Rudin, 2019).

Future work includes ablation studies to understand better the impact of the
proposed losses and regularization terms in the final model. In addition, more
experiments are needed to evaluate the effect of some hyperparameter values,
such as the loss weights and the number of prototypes. Besides, we should
evaluate the model with datasets recorded in natural conditions. Finally, we
seek further development of interpretable models to analyze environmental
sounds, including those that learn disentangled representations.





CHAPTER 7
Conclusions and future

perspectives

7.1 Introduction

This thesis has described several interpretable deep-learning models for sound
classification and event detection. We have worked on both interpretable au-
dio representations and discriminators. Given that post-hoc methods for in-
terpretability tend to be less reliable (as noted in Chapter 1) in this thesis we
focus on intrinsic interpretable methods. We have focused on environmental
sound recognition as the downstream task since this is an exciting case study
for applying interpretability in the audio domain. Throughout the thesis, we
have illustrated how we can use the insights obtained from interpretable meth-
ods to give explanations to users, debug and refine models, and understand
the training data better. We have also presented tools to foster reproducibility
and to contribute to the development of open-source machine learning models
in the context of the DCASE community.

We started with an introduction to the motivation of this thesis, interpretable
models, and environmental sound recognition systems (Chapter 1). We contin-
ued by summarizing the background of this thesis, including the literature re-
view on interpretable deep learning and sound event detection and classification
(Chapter 2). We also described DCASE-models, a Python library for improv-
ing the reproducibility of deep-learning-based algorithms within the DCASE
community (Chapter 3). Then we described an interpretable representation for
end-to-end deep-learning systems for sound event detection (Chapter 4). The
following two chapters focused on the design of interpretable deep-learning
architectures for sound classification (Chapter 5) and sound event detection
(Chapter 6).

In this concluding chapter, we first expose the main contributions of this thesis,
including those not directly reflected in this document (Section 7.2). We then
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discuss the strengths and limitations of the intrinsic interpretable methods pro-
posed in this thesis (Section 7.3). Finally, we highlight some possible directions
to improve deep-learning models for audio-related problems (Section 7.4).

7.2 Summary of contributions

This thesis has contributed to advancing the state of the art in the audio re-
search community regarding the development of interpretable deep-learning
models. In particular, it has contributed to the development of intrinsic inter-
pretable methods for sound classification and sound event detection, mainly in
the context of the DCASE community. We also subscribed to open-data and
open-science guidelines and made efforts to develop software libraries to pro-
mote transparent and reproducible research. The main contributions of this
thesis are summarized as follows:

• It comprehensively reviews the environmental sound recognition field,
including the most popular machine learning methods, input represent-
ations, datasets, and metrics.

• It also provides an extensive review of the state of the art of interpretable
deep-learning models, including post-hoc and intrinsic methods. Besides,
it reviews the related work on interpretable deep-learning methods for
sound event recognition.

• It contributes with software tools (DCASE-models and soundata) and
open datasets (MAVD and UrbanSaS) to promote reproducible research
in environmental sound recognition.

• It explores the use of interpretable audio representations in the context
of end-to-end deep-learning systems for sound event detection.

• It proposes an interpretable deep-learning model for sound classification
based on prototypes, including layers devised using domain knowledge.
It also illustrates the use of this framework to design human-in-the-loop
strategies, refining and debugging the model.

• It describes an extension of the interpretable deep-learning model for
sound classification to deal with polyphonic sound event detection. This
model takes advantage of the prototypes to describe the local represent-
ation of the data and attention maps to locate those prototypes.

The research carried out in this thesis gave rise to several publications. We
published the description of the DCASE-models library (Chapter 3) in the
context of the DCASE conference (Zinemanas et al., 2020). In addition, we
published the outcomes from Chapter 4 in a conference paper (Zinemanas et al.,



7.3. DISCUSSION 99

2019a). Furthermore, we published the outcomes from Chapters 5 and 6 in a
journal paper (Zinemanas et al., 2021b) and a conference paper (Zinemanas
et al., 2021a), respectively.

Other contributions related to the topics of this thesis are the creation and re-
lease of a dataset for sound event detection in urban environments (Zinemanas
et al., 2019b), and the collaboration in the development of a dataset for audio-
visual scene understanding (Fuentes et al., 2021) and in the development of a
Python library for working with environmental sound datasets (Fuentes et al.,
2021). The complete list of the author’s publications is provided in Appendix
B.

7.3 Discussion

This section discusses the advantages and limitations of the type of intrinsic in-
terpretable models proposed in this thesis. Post-hoc methods may be preferred
over intrinsic interpretable models because they can explain every black-box
model without retraining or redesigning. However, as explained in Section
1.4, post-hoc methods tend to be not very reliable. For instance, the LIME
method fits a proxy model, which is a linear approximation of a non-linear
model and thus may be an inaccurate representation in some parts of the in-
put space. Besides, confirmation biases can obscure the method evaluation and
produce overfitting for some applications (Nickerson, 1998; Dinu et al., 2020;
Kaur et al., 2020). For instance, saliency methods were tuned to explain CNN
for image classification, so they are not necessarily suitable for audio-based
systems. On the contrary, intrinsic interpretable models are designed so that
their explanations are faithful to what the model computes and hence more
reliable.

For this reason, this thesis focuses on intrinsic interpretable deep-learning mod-
els. However, despite the several advantages of intrinsic interpretable models,
there are also some limitations. In the following, we discuss some of the main
benefits and limitations of the models proposed in this thesis.

7.3.1 Benefits

Since intrinsic interpretable modes are domain-specific, their design process can
leverage domain knowledge to improve their discrimination capacity. Therefore
we can leverage this knowledge to improve the discriminative capacity of the
models. For instance, in APNet (Chapter 5), we propose a similarity measure
based on a trainable weighted sum of a frequency-dependent distance in a
latent space. Our experiments show that including the trainable weighted
sum effectively improves the model, particularly when classifying input data
containing mixed sound sources.
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Besides, interpretable architectures like APNet allow designers to refine, debug,
and improve the model. In this regard, we propose two automatic methods for
network refinement that eliminate redundant prototypes and channels. After
these refinement processes, we show that the model improves the results, even
outperforming the most competitive baseline in one of the tasks.

In light of the above, our results exemplify that intrinsic interpretability may
also help to design more accurate models. This contrasts with the widely exten-
ded assumption that there is an unavoidable trade-off between interpretability
and accuracy.

In addition, inspecting the network allows for evaluating its performance bey-
ond the typical accuracy measure and provides valuable insights into the model’s
inner workings. Finally, we argue that the interpretability of the proposed
models in the form of prototypes (Chapter 5) and attention maps (Chapter 6)
increases their trustworthiness. This is important for end-users relying on the
network output for actionable decisions, even in low-risk applications.

7.3.2 Limitations and challenges

Since intrinsic interpretable models are domain and application-specific, it is
not straightforward to build a model suitable for different applications and do-
mains. For instance, although we evaluate the prototype-based model proposed
in Chapter 5 in three different audio contexts (environmental sounds, music,
and speech), this model is limited in representing sound mixtures. Moreover,
the extension proposed in Chapter 6 to solve this issue is suitable for sound
event detection in urban environments but does not necessarily extend to other
types of audio signals. For example, given the harmonic structure of music sig-
nals, these might not be adequately represented using the local prototypes
proposed in the model. Therefore, a further extension is needed to represent
such signals.

An exciting research line in the audio community is the development of gen-
eral representations that can serve for different downstream tasks. Developing
interpretable representations of this type is especially interesting, but more
research is needed. In Section 7.4, we propose some possible future research
directions in this respect.

Another limitation of intrinsic models is that they are usually architecture
specific. For instance, the models proposed in this thesis are discriminative
CNNs since they are the most used architectures for ESR. However, other rel-
evant systems such as CRNN and Transformers are also used and can produce
excellent results. Also, generative and deep reinforcement models are used in
the context of audio-domain tasks. However, the interpretable mechanisms
proposed in this thesis can not be easily applied to these architectures. There-
fore we foresee the development of layers that can bring interpretability to any
architecture, such as Concept Whitening (Chen et al., 2020).
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7.4 Directions for future research

In this section, we explore potential research directions that are directly related
to this thesis and other promising research directions currently under-explored
in the audio domain. In particular, we believe that pursuing the following
directions would be highly useful for audio researchers and interpretable deep-
learning practitioners:

• Design interpretable models beyond the classic CNN-based discriminat-
ive architecture.

• Study interpretable audio representations that are useful for different
downstream tasks.

• Develop interactive visualizations for human exploration.

• Leverage interpretability to devise human-in-the-loop training strategies.

• Take advantage of interpretability to debug deep-learning models that
have learned spurious correlations.

• Build software tools to facilitate the development and use of interpretable
methods in the audio domain.

In the rest of this section, we discuss these research directions.

7.4.1 Beyond CNNs and discriminative models

In Section 7.3.2, we mentioned the limitations of the proposed models to extend
to other architectures. This limitation widely exists in the interpretability field.
Most work in interpretability research has focused on CNN, particularly for
image classification. The reason is that the excellent results of CNN trained
in large datasets for image classification tasks motivated the deep-learning
paradigm shift. Therefore, standard implementations of these architectures
were available and became trendy very early (Fong, 2020).

However, several other research areas beyond sound classification or sound
event detection could benefit from interpretable models in the audio domain–
for instance, sound localization (Politis et al., 2020), music synthesis (Ramires
et al., 2020), or sound source separation (Chandna et al., 2017). Besides,
DNNs can be trained not to discriminate between classes but to learn high-
level representations suitable for different discriminative tasks. The following
section shows how interpretability could be applied to these models.
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7.4.2 Interpretable deep audio representations

Deep-learning models can extract high-level representations that can lend to
different discriminative tasks, e.g., by training a simple MLP on their em-
beddings (Turian et al., 2022), or even with randomly weighted architectures
(Pons & Serra, 2019). Moreover, these representations can be learned using
self-supervised learning to avoid manual supervision. For instance, meaningful
representations can be learned using contrastive losses over multi-modal cor-
respondence, between audio and tags (Favory et al., 2020; Elizalde et al., 2022),
between video and audio (Cramer et al., 2019), or between audio, image, and
text (Wu et al., 2022). However, the only constraint imposed on these latent
spaces is the correspondence between modalities.

Usually, these models extract representations for each modality and project
them to the same space. Ramaswamy et al. (2022) propose to learn low-
rank subspaces to gain insights into potential concepts learned within these
representations. Furthermore, orthogonalization methods have been used to
regularize the latent space (Lezama et al., 2018) and debiasing CNNs (David
et al., 2020). Chen et al. (2020) demonstrated that these orthogonal spaces
could rotate to align with pre-defined concepts. Thus, it would be interesting
to include similar constraints to learn meaningful interpretable deep audio
representations.

Moreover, these concept-based spaces can be learned using human feedback to
include the users’ intuitive sense of the concepts (Lage & Doshi-Velez, 2020). In
the next section, we propose other methods to include humans in the training
loop using interpretable models.

7.4.3 Human-in-the-loop training strategies

Human-in-the-loop strategies have been mainly focused on feature engineering
(Cheng & Bernstein, 2015) and active data labeling (Monarch, 2021). However,
interpretable machine learning can enable human interaction during training
in order to modify the model. (Lage et al., 2018). For example, Chapter 5
showed how it is possible to design tools to interact with an intrinsic inter-
pretable model (APNet). The user can navigate in a two-dimensional (2D)
representation of the prototypes and the training data where he can remove
selected prototypes and convert instances to prototypes. Then, once the pro-
totypes are changed, the model can be re-trained and evaluated. These tools
allow human-in-the-loop training strategies; for instance, the user can period-
ically check the training and change the model after a few epochs. We believe
this research direction is of interest to the machine learning practitioners work-
ing on audio, especially for problems where expert knowledge is fundamental,
for instance, from musicologists.

As shown in Chapter 5, interactive visualization tools are useful to implement
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human-in-the-loop strategies (Sacha et al., 2017). Also, visual explanations
obtained in Chapter 6 illustrate the relevance of this kind of tools in inter-
pretability research. The following section explores this area in more depth.

7.4.4 Interactive visualization

Several visualization tools have been proposed to interact with different parts
or aspects of a deep neural network, especially CNNs for image classification.
For instance, Fong et al. (2021) present an interactive web tool that highlights
similarities between patches across different images. Moreover, visualization
tools can be devised to illustrate feature inversion methods (Hohman et al.,
2020) or explore the network’s latent representations and feature interaction
(Carter et al., 2019). Finally, several interpretable methods can be treated as
composable building blocks to produce enriched interfaces (Olah et al., 2018).
We believe that similar tools should be developed for explaining and interacting
with models in the audio domain.

Although these tools are of great value to the community, more research is
needed to develop meaningful tools for human interaction with models, par-
ticularly during training. In addition, the methods presented above are for
post-hoc explanations. So, specific visualization tools to interact with intrinsic
models are needed. We consider the visualization tool for APNet as an attempt
in that direction, but more research and development are needed.

7.4.5 Model debugging and refining

Interpretable methods can help to refine and debug a deep-learning model.
For instance, layer-wise relevance methods have been used to detect spurious
correlations in the data (Anders et al., 2019). However, Adebayo et al. (2022)
argue that post-hoc explanations can be used to identify spurious correlations
only for known and visible spurious signals. Moreover, Sun et al. (2020) pro-
posed a layer-wise inference fine-tuning strategy to improve an image caption-
ing model. Interpretable methods can also help to detect and mitigate biases
reproduced or generated by the models (Kim et al., 2018; David et al., 2020).

With regards to model refining, Section 5.4.2 illustrated how intrinsically in-
terpretable layers can help to refine the model either automatically or manu-
ally, reducing the number of parameters and even improving the performance.
In the case of post-hoc explainability, Yeom et al. (2021) propose a network
pruning method to find the model’s most relevant units. Besides, information
theory can be use to prune the networks (Davis et al., 2020). Unfortunately, to
the best of our knowledge, using interpretability to refine, prune or find spuri-
ous correlation has not been studied yet in the audio domain, apart from the
preliminary experiments presented in Chapter 5. For this reason, we foresee
this kind of work as a promising direction for future research.
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7.4.6 Tools for audio interpretability

The development of tools for audio interpretability is another relevant direc-
tion for future research. Interpretable post-hoc methods are usually hard to
implement, and some available implementations are not standardized. Besides,
most of the existing methods and their implementations are devised for image
classification networks. However, audio-related tasks have several specifities
that should be taken into account. For instance, pre-processing steps, such as,
re-sampling, scaling, data augmentation, and feature extraction, are typically
needed before inference. In particular, feature extraction typically involves the
calculation of a time-frequency representation which are very sensitive to the
parameters and implementation details. This calls for specific software tools
that help simplify the development of interpretable deep-learning models in
the audio domain.

For instance, the iNNvestigate library provides a standard interface and out-of-
the-box implementation for many post-hoc explainable methods (Alber et al.,
2019). It would be interesting to develop a similar library for audio the domain,
including methods for sound models such as SLIME. Developing such a tool
would simplify the systematic comparison between interpretable methods.

Regarding intrinsically interpretable methods, building a joint implementation
for several methods is more challenging because each model has its character-
istics and functionalities. However, using a common development framework
such as DCASE-models (Chapter 3) would contribute to the standardization
of the implementation of such models.



Pablo Zinemanas Friet, Barcelona, 20 July 2023.
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