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Abstract

This thesis investigates primordial black holes and their observational consequences. First,
we examine the behavior of domain walls produced during inflation, and their subsequent
collapse, leading to the formation of PBHs. The repulsive gravitational field of large spherical
domain walls drives gravitational collapse with an unusual spacetime structure, which leads
to the formation of a baby universe connected to the parent universe by a wormhole. In this
cosmological setup we study the energy-momentum tensor of a quantum field to elucidate the
behaviour of Hawking radiation in this peculiar geometry. We find that the energy density,
pressure and fluxes proceed smoothly and without pathologies thoughout the entire evolution.
In the second part of the thesis, we examine the observational consequences of primordial black
holes produced by generic mechanisms, such as large curvature perturbations. More precisely,
we investigate the merger rate of binaries and its impact on the stochastic gravitational wave
background. Using a phenomenological model, we constrain the merger rate to redshifts around
z ⇠ 4 based on data from the LIGO/Virgo-O3 run. We discover distinctive features in the
gravitational wave signal at intermediate frequencies for steep merger rates. Our findings have
implications for future experiments such as the Einstein Telescope, LISA, and PTA, covering
a wide frequency range. Additionally, we highlight the importance of direct observations of
the merger rate to break degeneracies in the stochastic background, and provide constraints
on the abundance of primordial black holes.

Resum

En aquesta tesi investigem els forats negres primordials les seves conseqüències observacionals.
Primerament, examinem el comportament de parets de domini produides durant inflació i el
seu subseqüent col·lapse, que condueix a la formació de forats negres primordials. El camp
gravitatori repulsiu de parets de domini esfèriques grans, porta a una forma de col·lapse
gravitatori amb una estructura d’espai-temps inususal, que condueix a la formació d’un univers
nadó connectat a l’univers matern mitjançant un forat de cuc. En aquest escenari cosmològic,
estudiem el tensor d’energia-moment d’un camp quàntic per aclarir el comportament de
la radiació de Hawking en aquesta geometria peculiar. Trobem que la densitat d’energia,
pressió i fluxos es comporten de manera suau i sense patologies durant tota l’evolució. En la
segona part de la tesi, estudiem les conseqüències observacionals de forats negres primoridals
produits per mecanismes genèrics, com perturbations de curvatura. En concret, investiguem
el ritme de fusió de binàries i el seu impacte en el fons estocàstic d’ones gravitacionals.
Utilitzant un model fenomenològic, restringim l’exponent en el ritme de fusió fins a redshifts
d’aproximadament z ⇠ 4 basant-nos en dades de l’observació LIGO/Virgo-O3. Descobrim
característiques distintives en el senyal d’ones gravitacionals a freqüències intermèdies per
a ritmes de fusió amb elevat pendent en funció del redshit. Els resultats obtinguts tenen
implicacions per a futurs experiments com el Einstein Telescope, LISA i PTA, que cobreixen
un ampli rang de freqüències. A més, destaquem la importància de les observacions directes
del ritme de fusió per a trencar degeneracions en el fons estocàstic i proporcionar restriccions
sobre l’abundància de forats negres primordials.
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Introduction

The mysterious nature of dark matter, the origins of supermassive black holes, and
the occurrence of black hole merger events have recently captivated the attention of
the scientific community. Primordial black holes (PBHs) have emerged as compelling
candidates that could potentially address these enigmatic phenomena. They have
been proposed as a fraction or even the entirety of dark matter [5–9], as potential
seeds for the supermassive black holes at the centers of galaxies, or as contributors to
observed black hole merger events [10–12]. The formation of PBHs can occur through
various mechanisms, either as a consequence of significant irregularities following phase
transitions or as a result of primordial seeds generated during inflation. This thesis
primarily focuses on investigating the production of such primordial black holes and
studying their observational consequences.

The thesis is divided into two parts. In part one, we study the possibility of PBH
production by active relics such as false vacuum bubbles or domain walls, which
persisted from an earlier inflationary epoch [13–15]. In particular, we concentrate on
closed and large domain walls as potential seeds of PBHs. Walls may be produced
by quantum tunneling with an initial size of the order of the Hubble radius and are
subsequently stretched to very large sizes by the inflationary expansion. Such scenarios
and their observational consequences have been discussed in Refs. [16–23].

Shortly after inflation, the universe is described by a homogeneous Friedmann-Lemaître-
Robertson-Walker (FLRW) background spacetime with small perturbations. Domain
walls are characterized by a tension � generating a repulsive gravitational field that
makes them naturally expand at a rate proportional to �. At early times, t ⌧ (G�)�1,
the gravitational influence of the domain wall tension is negligible compared to the
surrounding matter. Domain walls that fall within the cosmological horizon during this
period experience contraction due to their internal tension, and may either dissipate
their energy by producing bosons or persist as metastable remnants if the pressure
exerted by matter within their interior can counterbalance the surface tension. The fate
of these remnants is inherently model-dependent. Here, we are interested in the fate
of large supercritical domain walls which are still outside the horizon at t ⇠ (G�)�1.
For such walls, the repulsive gravitational field they generate becomes dominant before
falling within the horizon. This leads to a peculiar form of gravitational collapse,
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where instead of shrinking under its tension, the wall starts inflating within a region
that eventually separates from the parent universe, thereby giving rise to a baby
universe. The global spacetime structure associated with the supercritical collapse
exhibits a more intricate configuration than in ordinary scenarios. The black hole
spacetime incorporates two future event horizons: one facing the parent universe and
the other facing the baby universe. This unconventional structure motivates us to
assess the semiclassical stability by studying the propagation of a quantum field in this
background and computing the expectation value of its energy-momentum tensor.

The structure of part one goes as follows. In Chapter 1 we review some basics of
de Sitter spacetime which models the inflationary epoch and the nucleation of domain
walls by quantum tunneling. Moreover we discuss the dynamics of such domain
walls in de Sitter and Schwarzschild backgrounds. The gravitational collapse of large
supercritical domain walls and the construction of the resulting spacetime is explained
in detail in Chapter 2. We dedicate Chapter 3 to calculate the stress-energy tensor for
a massless scalar field in the resulting spacetime of the domain wall collapse. Finally,
in Chapter 4 we describe the observations made by different geodesic observers moving
in the spacetime.

The second part of the thesis deals with observational consequences of a population
of PBHs produced by generic mechanisms. The direct detection of gravitational waves
(GWs) by the LIGO/Virgo collaboration has opened up a new era of gravitational
wave astronomy, revolutionizing our understanding of the dynamics and properties of
black hole binary mergers. The GWTC-3 catalog of LIGO/Virgo [24, 25] represents a
significant milestone in the field, reporting the direct detection of 63 binary black hole
(BBH) mergers spanning a wide range of redshifts, from approximately z ' 0.1 up to
z ' 0.8. These observations have also provided valuable information about the merger
rate density of binaries as a function of redshift.

Usually it is assumed that the merger rate density R(z) follows a power law
R(z) = R0(1 + z)↵, determined by the present merger rate R0 and the exponent
↵. The analysis of the LIGO/Virgo data has allowed us to constrain the value of ↵,
with a measurement of 2.7+1.8

�1.9
, and estimate the present merger rate within the range of

9� 35 Gpc�3yr�1 [24, 25]. However, these constraints are limited to the redshift range
accessible to the current observations, with the so-called horizon distance defining the
maximum redshift at which a certain binary merger could be detected. For BBHs
with a typical mass of ⇠ 30M�, the horizon distance is approximately zhor ' 1 for
LIGO/Virgo. This raises an important question: can relevant information about BBH
mergers at redshifts larger than zhor be inferred from GW observations? The answer to
this question is affirmative.

In addition to the direct detections of individual BBH mergers, GW detectors have the
potential to detect a stochastic background of graviational waves (SBGW) generated

2
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by the cumulative effect of past mergers that may not be individually distinguishable.
This stochastic background is directly related to the integrated merger rate over
cosmic time and could provide valuable insights into the evolution of the merger rate
at redshifts beyond the reach of single detections. Despite extensive searches, the
stochastic background has not been detected yet. However, this absence of detection
has been utilized to constrain the abundance of BBHs and to investigate various
models of binary merger rate evolution [26–36]. While previous works have investigated
this direction [34, 35], we complemented and extended these results by taking a more
phenomenological approach. The goal is to determine more precisely the maximum
redshift at which the merger rate can be constrained based on the (non)observations
of the stochastic background.

The merger rate history is very highly model dependent. For instance, histories of
stellar black holes follow a power law up to some redshift and then they decay. For
PBHs evolving from an initial Poissonian distribution, the exponent ↵ of the merger
rate, depends on the abundance of PBHs and the range of redshift considered. For
small abundances and redshifts below z < 1, the exponent is found to be ↵ = 1.1, while
for large redshifts, the value of ↵ increases to ↵ = 1.4. The behaviour of the merger rate
history becomes more complex for larger abundances and clustered distributions due to
the effects of N-body dynamics and an enlarged set of parameters [3, 32, 37–39]. Given
the significant uncertainty in the allowed merger histories, we adopt a phenomenological
approach to investigate the consequences of changes in the merger rate slope at specific
redshifts.

The goal here is to understand how the non-detection of the stochastic gravitational
wave signal by the LIGO/Virgo collaboration can provide constraints on the changes
in the merger rate. By analyzing the absence of the stochastic background, we can
infer constraints on the changes in the merger rate slope beyond the horizon redshift
zhor. Furthermore, we explore the potential of future experiments such as the Einstein
Telescope (ET), operating in the same frequency band as LIGO/Virgo, as well as
experiments at lower frequencies, including LISA and pulsar timing array (PTA)
observatories such as NANOGrav and SKA [40–43].

The structure of part two is organized as follows. In Chapter 5, we review the
dynamics of the formation of primordial black hole binaries as well as the calculation
of their merger rate. We also review the basics on the detection of the SBGW. This
serves as an introduction of the machinery used in Chapter 6, where the main result is
presented.

3
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Part I

Domain walls and primordial black
holes

5





Chapter

1
Inflation and domain walls

In this chapter, we provide a self-contained review of de Sitter spacetime and domain1

walls which is needed for understanding the gravitational collapse of domain walls2

in a post-inflationary epoch. De Sitter spacetime plays a pivotal role in modeling the3

expanding universe during inflation. In particular, we emphasize the different coordinate4

systems that will be useful for our discussion in connection with the description of5

domain wall dynamics.6

7

Next, we introduce domain walls as topological defects that can arise during phase8

transitions in the early universe. We investigate their nucleation process in de Sitter9

spacetime and examine their subsequent dynamics. Also, we extend our study to the10

dynamics of domain walls in a Schwarzschild spacetime since this will be needed later11

in Chapter 2.12

1.1 de Sitter space

De Sitter space (dS) is a solution of Einstein’s field equations with a positive13

cosmological constant. It serves as a valuable theoretical model for the early universe,14

characterized by a period of cosmic inflation marked by a constant expansion rate H.15

De Sitter space possesses distinctive geometric properties, including maximal symmetry.16

17

A four-dimensional spacetime, dS can be mathematically described as a hyperboloid18

with constant curvature H�1 embedded in a five-dimensional Euclidean space:19

X2

0
+X2

1
+X2

2
+X2

3
+X2

4
= H�2 . (1.1)

This highlights the inherent symmetry of dS, known as O(4, 1). However, alternative20

parameterizations exist, which we will review in the following subsections. These are21

essential for our subsequent analysis.22



1.1. de Sitter space 8

1.1.1 Global coordinates
The first parametrization of the de Sitter space metric can be found by performing the23

change of variables24

X0 = H�1 sinh (HT )

Xi = H�1 cosh (HT ) sin�ni , i = 1, 2, 3

X4 = H�1 cosh (HT ) cos�

(1.2)

where ni are unit vectors describing a two-sphere S2. 1. Then the metric reads

ds2 = �dT 2 +H�2 cosh2 (HT )
�
d�2 + sin�d⌦2

3

�
(1.3)

where T runs from (�1,1) and � from (0, ⇡). Such global coordinates cover the
maximal extension of the de Sitter space as can be seen in Figure 1.1. From Eq. (1.3) we
see that it can be viewed as a contracting and then expanding three dimensional sphere
of radius H�1 cosh(HT ). This parametrization allows us to draw a Carter-Penrose
diagram for de Sitter space which is shown in the left diagram of Figure 1.1. To do so,
we can rewrite Eq. (1.3) using the conformal time ⌘̃ given by tan (⌘̃/2) = tanh (HT/2),
turning the metric into

ds2 =
H�2

cos2 ⌘̃

�
�d⌘̃2 + d�2 + sin�d⌦2

2

�
(1.4)

where ⌘̃ 2 [�⇡/2, ⇡/2].

1.1.2 Flat coordinates
In cosmology, it is quite common to slice de Sitter spacetime is by using cosmological
coordinates. We can find it by performing the change of variables

X0 = H�1 sinh (Ht) +
1

2
H|~x|2eHt

Xi = xie
Ht , i = 1, 2, 3

X4 = H�1 cosh (Ht)�
1

2
H|~x|2eHt

(1.5)

1
The unit vectors on a D � 1-dimenisonal sphere SD�1

are given By

n1 = cos ✓1

n2 = sin ✓1 cos ✓2

· · ·nD = sin ✓1 . . . sin ✓D�1

and the line element is

d⌦2

D�1
= d✓2

1
+ sin2 ✓1d✓

2

2
+ · · ·+ sin2 ✓1 · · · sin

2 ✓D�1d✓
2

D�1

8



9 Chapter 1. Inflation and domain walls

which results in the metric

ds2 = �dt2 + e2Htd~x2ds2 == dt2 + e2Ht
�
dr2 + r2d⌦2

2

�
(1.6)

with r = |~x|. This chart includes only one half of the full de Sitter space, with ⌘̃ � ��⇡/2
in the global chart (see Figure 1.1).

1.1.3 Domain wall adapted coordinates
Let us now parametrize the hyperboloid coordinates as follows

X0 = H�1 sin (H⇢) sinh (H ⌧̂)

Xi = H�1 sin (H⇢) cosh (H ⌧̂) ni , i = 1, 2, 3

X4 = H�1 cos (H⇢)

(1.7)

with ni the normal vector components of a two-sphere, and the other coordinate ranges
are �1 < ⌧̂ < 1, 0  H⇢  ⇡. By using these coordinates, the metric can be written
as

ds2 = d⇢2 + sin2 (H⇢)
⇥
�d⌧̂ 2 +H�2 cosh2 (H ⌧̂) d⌦2

2

⇤
(1.8)

The part within the brackets is a three-dimensional de Sitter space in the global
representation. This representation is usually called “dS-slicing”. Note that by definition,
|X4|  H�1, so this set of coordinates do not cover all de Sitter space but just a
half, in particular the diamond shaped region 0 < � ± ⌘̃ < ⇡ in the global chart
(see Figure 1.1). It is useful to write it in terms of the spatial coordinate ⇠ given by
sin (H⇢) = 1/ cosh (H⇠). Then the metric reads

ds2 =
1

H2 cosh (H⇠)

⇥
d⇠2

� d⌧̂ 2 +H�2 cosh2 (H ⌧̂) d⌦2

2

⇤
(1.9)

where �1 < ⇠ < 1.

1.2 Domain walls

Domain walls are two-dimensional topological defects that may arise from the
spontaneous breaking of a discrete symmetry [44]. Take for instance a scalar field
 whose potential Ṽ ( ) has a Z2 symmetry, with two degenerate minima which we
shall denote as + and � respectively (see Figure 1.2). This will result in different
regions with either a positive or negative vacuum for the field  . Moving from a region
in the positive vacuum to one with the negative vacuum requires passing through the
potential maximum, where a domain wall will be formed, separating both regions.

This field may be part of the inflaton sector, but for simplicity we shall consider
the case where  and the inflaton field � are completely decoupled from each other,

9



1.2. Domain walls 10

Global coordinates Flat coordinates Domain wall coordinates

Figure 1.1: Embedding diagrams of de Sitter spacetime in Euclidean space and the
corresponding Penrose diagrams. We also show how the global, flat and domain wall adapted
coordinate cover the full or part of de Sitter space. Shaded in gray we show the regions that
are not cover by the corresponding coordinates. Left: Red lines correspond to � = constant
surfaces and blue lines correspond to ⌘̃ = constant surfaces for the metric Eq. (1.3). Center:
Red lines correspond to |~x| = constant surfaces and blue lines correspond to t = constant
surfaces for the metric Eq. (1.6). Right: Red lines correspond to ⇢ = constant surfaces and
blue lines correspond to T = constant surfaces for the metric Eq. (1.9).

10



11 Chapter 1. Inflation and domain walls

+-

Figure 1.2: Scalar field potential Ṽ ( ) with a discrete symmetry. During inflation, assuming
the field is initially in the + vacuum, a Hubble-sized region can transit to the � vacuum by a
quantum fluctuation. The region in the � vacuum will be separated from the ambient space
in the + vacuum by a domain wall, which is then conformally stretched by expansion.

interacting only gravitationally. As inflation proceeds, the field  in a Hubble patch
may ocasionally transit from one of the symmetry breaking minima to the other. The
transition between vacua can proceed either by quantum diffusion or by tunneling,
depending on whether the curvature of the potential between the minima, |Ṽ 00

|, is small
or large compared to the square of the Hubble rate H2 [44–47]. Here we concentrate
on the case of quantum tunneling, in the regime where this is suppressed by a large
instanton action [13, 48]. In this case, the region in the new vacuum is approximately
spherical and bounded by a domain wall separating the two phases. Walls are then
conformally stretched by expansion.

Domain walls are characterized by a finite surface energy density � and a tension
(negative pressure) with equal magnitude. This negative pressure generates a repulsive
gravitational field that makes domain walls naturally expand. When inflation ends,
the walls that formed earlier on will be exponentially larger than the ones that formed
near the end of inflation. Note that this does not require any specific features in the
inflaton potential V (�), which can be of the standard slow-roll type, with nearly scale
invariant dynamics.

1.3 Domain wall nucleation in a de Sitter spacetime

In this subsection we shall describe the nucleation process of a domain wall in a dS and
the resulting spacetime. For simplicity, we assume a situation where, during inflation,
the slow roll parameters are so small that we can approximate the metric by that of
dS spacetime. A conformal diagram is given in the left panel of Figure 1.3.

11



1.3. Domain wall nucleation in a de Sitter spacetime 12

We are not in fact interested in the full de Sitter space, but only in an expanding
segment of it covered by the flat chart Eq. (1.6). In practice, inflation only lasts from
an initial time tinitial to a final time, which we will call t⇤. Eq. (1.6) represents the
spacetime metric before the wall nucleates. The nucleation process can be thought of
as a quantum transition from this classical solution, where the field sits in the + valley,
to another classical solution where the expanding universe contains a spherical domain
wall, enclosing a region of the � vacuum [13]. The quantum transition is described
by the so-called Coleman de Lucia (CdL) instanton [48], which is a solution to the
Euclidean equations of motion with appropriate boundary conditions. This represents
the classically forbidden underbarrier field evolution. Quantum mechanically, the
probability of tunneling is proportional to e�SE , where SE is the instanton action.
This semiclassical approximation is valid for SE � 1. The analytic continuation of the
instanton to Lorentzian signature corresponds to the classical solution after tunneling.
This is given by the right panel of Figure 1.3.

The CdL instanton is O(4) symmetric, and its analytic continuation has the O(3, 1)
symmetry. Geometrically, the domain wall breaks the homogeneity of de Sitter space.
Nonetheless, the field configuration after tunneling still respects a group of rotations
and Lorentz boosts that leave the worldsheet of the domain wall invariant. To construct
the solution after tunneling, we may use coordinates adapted to the residual symmetry,
and write the dS metric as in Eq. (1.9), This chart covers the diamond shaped region
in Figure 1.3, with 0 < � ± ⌘̃ < ⇡. The ⇠ = const. hypersurfaces (two of which are
represented by dashed lines in the figure) are the orbits of the residual O(3, 1) symmetry
group, which is in fact the isometry group of the 2+1 dimensional de Sitter subspaces
at fixed ⇠, spanned by coordinates (⌧̂ ,⌦) .

Here, and for the rest of this thesis, we treat the domain wall as a distributional
source with energy per unit surface equal to the wall tension �. Away from the wall, the
metric is given by Eq. (1.9). However, through Einstein’s equations, the wall tension
causes a discontinuity in the extrinsic curvature of the worldsheet as seen from both
sides, leading to the well know Israel matching conditions, which are discussed in
Appendix A. By O(3, 1) symmetry, the trajectory of the wall is on a ⇠ = ⇠±

w
= const.

hypersurface, where the values of ⇠±
w

correspond to the position of the wall as seen from
the outside or from the inside respectively. These are determined by Eq. (A.5) as

tanh ⇠±
w
= ±�0, (1.10)

where
�0 = (1 +H2t2

�
)�1/2 . (1.11)

and
t� ⌘ (2⇡G�)�1 . (1.12)

12



13 Chapter 1. Inflation and domain walls

The point ⌘̃ = � = 0 (corresponding to ⇠ ! �1 and finite ⌧̂) is a fixed point. We label
it C in the diagram, and we shall refer to it as the "center of symmetry". 2

�̃

-�/2

�/2

0 �

�=-1 �=1t=0C

�

Before tunneling

Interior (-) Exterior (+)

�̃

-�/2

�/2

0 �

�=-1 �=1C

�

After tunneling

Figure 1.3: The left pannel shows a conformal diagram of de Sitter space in the global
chart (⌘̃,�), where the metric is given by Eq. (1.4). Angular coordinates are suppressed. The
flat chart (1.6) covers only the region above the dotted blue diagonal, which corresponds to
t ! �1. The dot dashed lines in blue represent two t = const. hypersurfaces in the flat
chart. The lower one corresponds to t = 0 and the upper one has t > 0. The chart Eq. (??)
is adapted to O(3, 1) symmetry, and covers the diamond shaped region at the center of the
diagram. Represented in black dashed lines are two hypersurfaces of constant ⇠. The analytic
continuation of the Euclidean instanton solution, describing the evolution after tunneling, is
represented in the right panel. The red lines at ⇠ = ± tanh�1 �0 represent the trajectory of
the domain wall as seen from the exterior and the interior respectively. The two red lines are
identified with each other, after excising the region between them. Note that in the (⌘,�)
diagram, the radius of the spere is R = H�1 sin�/ cos ⌘̃. The red lines are symmetric relative
to � = ⇡/2, and hence the size of the wall is the same when ⌘̃ is the same. In other words,
points on the two red lines are identified horizontally in the diagram. In particular, this means
that the exterior t = 0 hypersurface matches with a t = �H�1 log(1 + 2�0) > 0 hypersurface
in the interior, so that the metric is continuous on the worldsheet of the domain wall.

2
There is another fixed point at the antipodal point, ⌘̃ = 0,� = ⇡, but since this is not included in

the flat chart, we will not need to refer to it in what follows .

13



1.4. Domain wall evolution during inflation in the flat chart 14

1.4 Domain wall evolution during inflation in the flat

chart

While the chart (1.9) is nicely adapted to the symmetry of wall nucleation, we also
need to consider the description of the wall evolution in the flat chart (1.6). The reason
is that in the next Chapter we will intend to match the inflationary evolution to a post-
inflationary flat FLRW dust dominated universe. Besides, the flat chart description
offers a new perspective. In the global chart, the spatial sections are a closed 3-sphere,
and there is ambiguity in what we call the interior and the exterior of a domain wall
in such compact space. On the other hand, flat spatial sections are infinite, and the
notion of interior and exterior is clearly defined.

After the wall nucleates, the line element is still given by Eq. (1.6), although the
time and radial coordinates t± and r± of a point on the worldsheet will be different on
either side. For a domain wall spontaneously nucleating in de Sitter space, the evolution
of thee physical area radius can be obtained by converting the condition (1.10) into the
flat chart [13]

R(t) = eHtr = H�1[e2Ht + 1 ± 2�0e
Ht]1/2, (1.13)

where �0 was introduced in (1.11).

Although the wall can actually nucleate around any point, here we choose it to
be centered at the origin of spatial coordinates r = 0. Likewise, (1.13) corresponds to
the case when the center of symmetry C of the solution, which we can roughly think
of as the nucleation event, is on the hypersurface t = 0. The replacement

t ! t� tnuc,

gives the solution with any arbitrary time of nucleation tnuc. Continuity of the area
radius accross the wall requires R(t+) = R(t�), which leads to

e2Ht
+
+ 2�0e

Ht
+
= e2Ht

�
� 2�0e

Ht
�
. (1.14)

In particular, the exterior hypersurface t+ = 0 matches continuously with the interior
hypersurface

t� = �H�1 log(1 + 2�0) .

Note also that, according to Eq. (1.14), the rate at which times t+ and t� advance on
both sides of the worldsheet will be different. This is to be expected, because, as we
discuss below, the speed at which the cosmological congruence moves relative to the
wall is different on both sides, and so the associated clocks tick at different rate.

Note also that the physical area radius R increases monotonically from R ⇠ H�1 at
t ⇠ H�1 to an exponentially much larger size, R ⇠ H�1eN , provided that the number

14



15 Chapter 1. Inflation and domain walls

N of e-foldings of inflation after nucleation is large. Thus, R can be used to parametrize
the time evolution on the worldsheet. Let us now determine the relative speed between
the wall and co-moving observers in the flat chart, as a function of R. The 4-velocity
of a comoving observer is given by Uµ = (1, 0, 0, 0), while an observer at fixed angular
coordinates on the wall has 4-velocity W µ = (1, dr/dt, 0, 0)/

p
1� a2(dr/dt)2. The

mutual relativistic gamma factor is then given by � ⌘ �gµ⌫UµW ⌫ = Hr(1 � �2

0
)�1/2,

and using r = R (
p
�2

0
+H2R2 � 1± �0)�1 we have

� =
1

1� (HR)�2

h
⌥(H2t�R)�1 +

p
1� (HR)�2 + (Ht�)�2

i
. (1.15)

For R � t� � H�1 we have � ⇡ 1 + (1/2)(Ht�)�2, and the relative velocity is small
v ⇠ (Ht�)�1

⌧ 1. The sign of the wall velocity is given by

sign(dr/dt) = sign(�e�Ht
⌥ �0). (1.16)

From the outside we always have dr/dt < 0, so the wall is shrinking away from co-
moving observers. From the inside, the velocity changes from negative to positive at
the time tc = �H�1 log �0 when the physical radius of the wall has the value R(tc) = t�.

1.5 Spherical domain walls in vacuum

In this section we will study the spacetime of a spherical domain wall evolving in
vacuum, as it will be important in Chapter 2 on the discussion about the gravitational
collapse of supercritical domain walls.

The spacetime is constructed as follows. Since the wall is spherical and it is propagating
in vacuum, the solution at each side (which we denote by + and �) of the wall must
be given by the Schwarschild metric,

ds2 = �

✓
1�

R

2GM

◆
dT 2 +

✓
1�

R

2GM

◆�1

dR2 +R2d⌦2

2
, (1.17)

with the same mass parameter M at both sides. The full solution is then constructed
by gluing these two patches of Schwarzschild along the domain wall worldsheet, by
imposing Israel’s matching conditions. Continuity of the angular components of the
metric, implies that the proper radius of the wall as a function of the proper time,
R(⌧), must be the same as seen from both sides. On the other hand, the wall tension
causes a discontinuity in the extrinsic curvature of the worldsheet proportional to t�1

�

(see Appendix B). This implies that the temporal coordinate at both sides must have
the same value with opposite sign, T+(⌧) = �T�(⌧).

15



1.5. Spherical domain walls in vacuum 16

Figure 1.4: The casusal diagram of the spacetime of a spherical domain wall evolving in
vacuum. It consists in two patches of Schwarzschild spacetime glued across the domain wall.
The domain wall joints the two asymptotically flat regions I and III.

The discontinuity in the extrinsic curvature defines the equations of motion for
the domain wall [49]

Ṙ2 =
2GM

R
+

✓
R

t�

◆2

� 1 , (1.18a)

Ṫ = ±

✓
1�

2GM

R

◆�1 R

t�
(1.18b)

where the dot means derivative with respect to ⌧ . A causal diagram of the resulting
spacetime is shown in Figure 1.4. Note that since T+(⌧) = �T�(⌧) and R+(⌧) = R�(⌧),
the motion of the wall as seen from the + side is a mirror image of the motion as seen
from the � side. The ± in Eq. (1.18b) depends on wether the wall moves to the right
or to the left of the diagram.

Note that Eq. (1.18a) is analogous to the equation of motion for a non-relativistic
particle of zero energy in a static potential

W (R) = 1�
2GM

R
�

✓
R

t�

◆2

, (1.19)

This potential has a single maximum at R3

max
= GMt2

�
and its value is

W (Rmax) = 1 � 3 (GM/t�)
2/3. This may lead to three possible fates for the domain

wall depending on the value of its tension. In the case where t� <
p
27GM , then

the potential will be always negative, thus the radius will expand without any bound
towards infinite size. In Ref. [15] these were dubbed supercritical domain walls. On the
other hand, subcritical domain walls are characterized by t� >

p
27GM . In this case,

the maximum of the potential is positive, so at some radius R < Rmax - the first real
root of the potential -, it will bounce and recollapse at a black hole singularity. Finally,

16



17 Chapter 1. Inflation and domain walls

the critical case corresponds to the specific value of t� =
p
27GM , then the radius

of the domain wall gets frozen at a value of R = 3GM . In Figure 1.5 we depict the
evolution of the radius of domain walls with different values of t�. For the rest of the
thesis, we will focus only on supercritical domain walls.

We are interested in studying the evolution of the domain wall in all spacetime.
Also, in Chapters 2 and 3 we will need to work with light rays, which are better
characterized by the use of null coordinates. For this reason we will use Kruskal-
Szekeres null coordinates to describe the motion of the wall, since they cover all
Schwarzschild spacetime and are regular at the horizon. These are defined in terms of
the Schwarzschild coordinates as3

U ⌘ �U exp

✓
R� T

4GM

◆s����
R

2GM
� 1

����

V ⌘ �V exp

✓
R + T

4GM

◆s����
R

2GM
� 1

����

(1.22)

where the factors �U and �V are just signs that depend on which region of the
Schwarzschild spacetime are defined. In Figure 1.4 we see that the maximal extension
is divided in four regions: regions I and III correspond to asymptotically flat spaces,
region II correspond to the black hole region and regions IV to the "white hole" region.
The coordinate U is negative at regions I and IV, and positive at regions II and III,
while V is negative at regions III and IV and positive at regions I and II.

For supercritical domain walls, one can combine Eqs. (1.18) into a single differential
equation,

dU

dV
=

U

V

✓
1⌥ ✓(R, t�)

1± ✓(R, t�)

◆
, (1.23)

where we have defined the function

✓(R, t�) =

✓
R

2GM

◆3/2
 ✓

R

2GM

◆3

�
Rt2

�

(2GM)3
+

✓
t�

2GM

◆2
!�1/2

. (1.24)

3
We can invert the relations (1.22) as

R

2GM
= 1 + W (�UV/e) ,

T

2GM
= � log

✓����
U

V

����

◆
(1.20)

where W (x) is the Principal Lambert W -function. With this coordinates the metric Eq. (1.17) reads

ds2 = �
32(GM)3e� R

2GM

R
dUdV + R2(U, V )d⌦2

2
(1.21)

17



1.5. Spherical domain walls in vacuum 18

Here R has to be seen as a function of U and V by Eqs. (1.20). The signs in Eq. (1.23)
depend on whether the wall moves to the right/left on the causal diagram in Figure 1.4.
Solving Eq. (1.23) with the apropriate intitial conditions will describe the trajectory of
the domain wall in the U � V plane 4 . The constants of integration of Eq. (1.23) can
be fixed by imposing conditions on the product and ratio of U and V , which essentially
define the initial value for the R coordinate and fix the origin of the T coordinate,
which in order to have symmetrical solutions, will be set to zero. Note that from Eq.
(1.23) we have that the left and right trajectories in Figure 1.4 are related by swapping
the U and V coordinate. Eq. (1.23) will be used in the following chapters to describe
the propagation of light rays across the spacetime.

Although in the following chapters we will solve Eq. (1.23) numerically, an approximate
solution can be found as follows. The proper radius of the wall R(⌧) as a function of the
proper time ⌧ is given by Eq. (1.18a). Finding a full solution is not possible by using
only elementary solutions, and requires the use of elliptical functions. However, for the
case of large supercritical domain walls, with t� ⌧ 2GM , good enough approximations
can be found, at least for a specific range of R. Notice that if only consider soltutions
R � t�, then the second term in Eq. (1.18a) is always larger than one. The first term
is only comparable or smaller to one when R & 2GM , but at this point the second
term is already dominating the dynamics, so we can safely ommit the minus one term
in Eq. (1.18a). Then the solution reads

R(⌧) = 2GM

✓
t�

2GM

◆2/3

sinh2/3

✓
3

2

⌧

t�
+ C

◆
(1.26)

where the contant of integration C has to be fixed by imposing initial conditions.

1.5.1 Dust particle in Schwarschild spacetime
Here we briefly discuss the geodesic motion of a particle of dust in a Schwarzschild
background. In Figure 1.4 we show with a dashed line the trajectory of a dust particle.
For a particle with the escape velocity, like the ones which correspond to the flat FLRW
congruence, the equations of motion are

Ṙ2 =
2GM

R
, Ṫ = ±

✓
1�

2GM

R

◆�1

. (1.27)

4
Alternatively, since for supercritical walls, the radius R is monotonically increaing, we can use it

as parametrization of the trajectory of the wall. We can formally solve Eq. (1.18b) in terms of the

radius R, leading to

T (R) = ±2GM

Z R
2GM

0

dz
z5/2

(z � 1)
q

z3 � z
�

t�
2GM

�2
+
�

t�
2GM

�2 + logwi . (1.25)

The integral is an elliptic integral and cannot be solved in terms of elementary functions. The ± sign

in Eq. (1.25) depends on whether the wall moves to the right or the left of the causal diagram in Figure

1.4. The factors wi = (wU , wV ) are just constants of integration that essentialy shift the origin of the

T coordinate. The trajectory in the U � V plane is therefore given by Eqs. (1.22) by replacing T by

Eq. (1.25). The signs �U and �V in Eqs. (1.22) are fixed depending on the direction the wall moves: if

the wall moves to the left, then �U = sgn(R � 2GM) and �V = �1, whether if it moves to the right,

then �U = �1 and �V = sgn(R � 2GM).

18



19 Chapter 1. Inflation and domain walls

Figure 1.5: Here we show the evolution of the proper radius of the wall and dust particles
as a function of the proper time, R(⌧). The red solid lines correspond to supercritical values.
From more to less steep, the values for t� are t� = 0.01, 2.4 in units of 2GM . The blue solid
lines correspond to subcritical domain walls, with t� = 2.6 and 3 in units of 2GM . The purple
solid line corresponds to the critical domain wall case, with t� =

p
27GM , in this case the

domain wall radius is frozen at the value of R = 3GM .The solid black line corresponds to
the radius evolution of a dust particle. Both dust particle and wall start from the white hole
singularity at R(0) = 0.

where the ± refers to whether the dust particle moves to the right or to the left in the
causal diagram. As in the case of the domain wall, we can combine Eqs. (1.27) to obtain
the equation for the trajectory in the U � V plane,

dU

dV
=

U

V

✓
1⌥ �(R)

1± �(R)

◆
, (1.28)

where �(R) =
p

R/2GM , and R = R(U, V ) by Eqs. (1.20). The signs in Eq. (1.28)
depend on whether the dust particle moves to the right/left on the causal diagram in
Figure 1.4. Solving Eq. (1.28) gives the trajectory of the dust particle in the U � V
plane5 . As in the domain wall case, the constants of integration are determined by

5
Similarly to the domain wall case, we can parametrize the motion of the dust particle by its physical

radius R. In this case, the solution for T (R) can be written as

T (R) = ±2GM

2

42

3

✓
R

2GM

◆2/3

+ 2

r
R

2GM
� log

0

@

������

1 +
q

R

2GM

1�
q

R

2GM

������

1

A

3

5+ log di (1.29)

where di = (dU , dV ) are just constants of integrations, and the ± depends on whether the particle

moves to the right or left of the causal diagram in Figure 1.4. The trajectory in the U � V plane is

given by Eqs. (1.22) by replacing T with Eq. (1.29). The signs �U and �V depend on the regions that

the particle covers. In the next Chapters, we will consider dust particles that only move to the right

of the causal diagram, so the signs will be fixed to be �U = �1 and �V = sgn(R � 2GM).
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1.5. Spherical domain walls in vacuum 20

fixing the product and the ratio of the U ,V coordinates. Eq. (1.28) will be used in the
following chapters.

Unlike in the domain case, here we can solve for the radius R in terms of the proper
time ⌧ in terms of elementary functions,

R(⌧) = 2GM

✓
3

2

⌧

2GM
+ C

◆2/3

(1.30)

where the constant of integration C has to be fixed by imposing initial conditions. A
plot for the time evolution can be seen in Figure 1.5, drawn in a black line.

1.5.2 Relative velocity between the wall and the particle
From Eqs. (1.18) and Eqs. (1.27) it is straightforward to compute the relative Lorentz
factor between the domain wall and a dust particle at the edge of the matter dominated
region,6

� =

✓
1�

R

2GM

◆�1

2

4 ⌥
R

2GM

R

t�
+

s

1�
R

2GM
+

R

2GM

✓
R

t�

◆2

3

5 (1.31)

where the ⌥ refers to the inside or the outside.

Notice that the Lorentz factor in Eq. (1.31) coincides with the Lorentz factor given in
Eq. (1.15), if we set R to be

R3

⇤ =
2GM

H2
(1.32)

showing that the relative velocity between the domain wall and a co-moving observer
does not change between a transition from de Sitter to Schwarzschild if this occurs when
the radius of the wall is equal to R⇤.

6
This expression corrects some typos in Eq. (67) of Ref. [15].
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Chapter

2
Gravitational collapse of

large supercritical domain

walls

In this chapter, we shall review the construction of the classical solution, describing the
gravitational collapse triggered by a supercritical domain wall [15]. A conformal diagram
of this spacetime is depicted in Figure 2.1, where the angular directions are suppressed.
The lower part of the figure represents an inflationary phase (in blue), during which
a domain wall forms by the quantum tunneling process described in Figure 1.2. The
upper part corresponds to the post-inflationary evolution during which a primordial
black hole forms, embedded in an otherwise homogeneous FLRW evolution. We now
describe these two phases of evolution in detail.

2.1 Inflationary evolution of domain walls

After the nucleation of the domain wall, detailed in Section 1.3, its subsequent evolution
is governed by Eq. (1.13). This phase is illustrated by the lower section of Figure 2.1,
shaded in blue. It is important to note that the transition from the de Sitter solution
depicted in the left panel of Figure 1.3 to the solution with a domain wall in the
right panel is not a classical process, and thus cannot be accurately represented in a
classical spacetime diagram. Rather, the left and right panels represent the initial and
final semiclassical states, before and after the transition (the underbarrier evolution is
described by the Coleman-de Lucia instanton [48]). In the limit of a thin wall, the metric
remains continuous across the nucleation hypersurface labeled as t = tnuc, indicated by
a dashed line.1. The wall expands until inflation ends.

2.2 Post-inflationary evolution

So far we have concentrated on the evolution during inflation, corresponding to the
blue shaded region in the lower part of the diagram in Figure 2.1. Let us now discuss

1
While this fact holds true, its significance may be limited. Generally, the scalar field will be

discontinuous if we attempt to match the solution before tunneling with the solution after tunneling.
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Figure 2.1: Causal diagram of the black hole spacetime produced by a large supercritical
domain wall. The lower panel, shaded in blue, represents a de Sitter spacetime before and
after the nucleation of a domain wall at time tnuc. The nucleation of the wall separates de
Sitter in two regions which we call interior and exterior of the wall. The inflationary phase
is matched with a dust FLRW universe at time t⇤, shaded in green at the diagram. At that
time, the large domain wall starts inflating and develops a transient wormhole connecting two
regions, the baby universe (left of the diagram) and the parent universe (right of the diagram).
After a time ⇠ 2GM , the wormhole pinches off, leaving behind a black hole with two horizons,
one facing the parent universe, and the other facing a baby universe. The parent universe will
consist of a FLRW expanding dust universe with a black hole inside it. The baby universe will
consists of a vacuum region with an inflating domain wall with a ball of expanding dust inside
it. In the upper panel we used the parameters t� = 20H�1 and R⇤ = 60H�1.
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23 Chapter 2. Gravitational collapse of large supercritical domain walls

in some detail the post-inflationary evolution, which is represented in the upper panels
of that diagram.

After inflation ends, at time t = t⇤, walls with superhorizon size R � H�1 will
be moving with the Hubble flow (see Eq. (1.15)). Depending on their size at time t�,
their evolution will be different.

Supercritical walls are larger than the cosmological horizon at the time t�,

R(t�) & t�. (2.1)

and their energy starts to be dominant relative to the surounding matter in a Hubble
patch. At that time they start inflating, and in doing so, they create a transient
wormhole connecting the parent universe with a baby universe. After a time of order
tM ⇠ 2GM , where M is the mass of matter inside the spherical domain wall, the
wormhole pinches off, leaving behind a primordial black hole with two horizons, one
facing the parent universe, and the other facing a baby universe, where the domain
wall continues to inflate forever [15].

On the other hand, subcritical walls are smaller than the cosmological horizon at
the time t�. In this case, they collapse under their own tension into a black hole.The
collapse of a spherically symmetric subcritical domain wall in a dust dominated universe
was studied in [14], taking into consideration the motion of matter that flows from
the interior to the exterior as the domain wall shrinks under its tension. In this thesis,
we are interested in the supercritical case Eq. (2.1), where large domain walls start
inflating, instead of shrinking under their tension, before the black hole forms.

In a realistic cosmology, the end of inflation should be matched to a hot Big Bang,
dominated by radiation. This process has been studied numerically in [16] for the
case of supercritical walls. In general, this process is complicated by the fact that
the radiation fluid moves accross the wall, which does not allow for a simple analytic
description. Since we are interested in an analytical treatment, here we will assume
that at the time inflation ends, the energy density ⇢ in the inflaton field is dumped into
pressureles-matter. We also assume this process to be instantaneous, which is consistent
with the conservation of the energy momentum tensor provided that the energy density
is matched with continuity accross t⇤ (even if the pressure is discontinuous, jumping
from p = �⇢ to p = 0).

Moreover, for simplicity and following [15], we will require a stronger condition on
the size of the domain wall at the end of inflation,

R⇤ ⌘ R(t⇤) > t� . (2.2)
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2.3. Propagation of light rays across the spacetime 24

The condition (2.2) greatly simplifies the dynamics, since it implies that at time t⇤ the
large domain wall is already receding from matter2. This allows us to construct the
resulting spacetime by gluing together different pieces of simpler solutions.

The spacetime is constructed as follows. At time t⇤, the spacetime is divided in
two regions, delimited by the worldsheet of the domain wall. The exterior consists of
dust dominated flat FLRW universe. If Eq. (2.2) is satisfied, the wall repels the ambient
matter and it gets surounded by vacuum in its immediate vicinity, with matter at a
finite distance and moving away. Thus, as explained in Section 1.5, the metric in this
layer consist in a segment of the extended Schwarzschild black hole solution. As time
progresses, this segment becomes wider and turns out to contain the bifurcaton surface
where two future event horizons meet. A spacelike surface containing the bifurcation
surface has the geometry of a wormhole connecting two distinct regions with aereal
radius R > 2GM . As for the interior region, it consists of an expanding ball of dust
which is initially adjacent to the domain wall, at the time t = t⇤. But, again, the wall
recedes from matter, and a growing layer of vacuum with the Schwarzschild metric
develops between the expanding ball of matter with a flat FLRW metric, and the
domain wall. In the region surrounding the interior expanding ball of dust, the mass
parameter is given by

M =
4⇡

3
R3

⇤⇢(t⇤) (2.3)

The parameter M is also the mass of the cavity which is carved out of the dust
dominated parent FLRW universe. As argued in [15], consistency requires that the line
element in the exterior empty layer is also given by (1.17) with (2.3). The resulting
geometry is illustrated in Figure 2.2, showing show a time slice section which consist
in a wormhole connecting the parent universe with the baby universe.

To illustrate the effect of the condition (2.1), we compare in Figure 2.3 the evolution of
the proper radius of the domain wall and the radius of the empty cavity as seen from
a co-moving observer. We show different scenarios depending on the choice of R⇤ and
t�. In the case when the domain wall is not large, R⇤ < t�, we see that it enters the
Hubble radius before t� and there is a shell crossing between the dust and the wall. On
the contrary, if R⇤ > t�, just after t⇤, the wall already expands faster than the edge of
the empty cavity.

2.3 Propagation of light rays across the spacetime

In the preceding section, we described the collapse of a supercritical domain wall and
the resulting spacetime. Here we will study how light rays are propagated across this

2
Pressureles matter is co-moving. From Eq. (1.16), we see that if Eq. (2.2) the velocity of the wall

will be negative as seen from the exterior of the wall, and negative as seen from the inside, so it always

moves away from co-moving observers.
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25 Chapter 2. Gravitational collapse of large supercritical domain walls
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Figure 2.2: Spatial section of a spacetime representing gravitational collapse triggered by
a sufficiently large spherical domain wall, depicted here as a red circle in the upper panel,
where only the azimuthal and radial directions are represented. This slice corresponds to the
blue dashed line on the causal diagram of the lower panel, restricted to the equatorial plane
(✓ = ⇡/2). For the Friedmann regions of the parent and baby universes (the green flat-looking
pieces) we have chosen a constant cosmological time slice, while for the wormhole section we
have chosen a slice of constant Kruskal time. The wormhole structure is transient, and the
baby universe to the left eventually pinches off from the parent universe on the right. The
domain wall drives the dynamics of the baby universe, which expands thereafter.
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R⇤ > t� and t� > H�1 R⇤ > t� and t� < H�1

R⇤ < t� and t� > H�1 R⇤ < t� and t� < H�1

Figure 2.3: Here we show diffent the proper radius evolution of a supercritical domain wall
with the choice of different parameters R⇤ and t�. The transition from dS to Schwarzshild
occurs at time t⇤, which is showed as a gray dashed line. We also show the time t� as a dashed
line. In solid blue, we draw the radius of the domain wall, while in red we draw the radius of
the empty cavity.
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27 Chapter 2. Gravitational collapse of large supercritical domain walls

spacetime, since it will be necessary for the calculations of the stress-energy tensor in
Chapter 3.

2.3.1 Propagation of light rays from dS to FLRW
After the domain wall is nucleated in de Sitter space, this is separated in two parts, which
we refer as to exterior and interior of the wall. We match the interior and exterior regions
with the dust FLRW universes at t⇤3 by imposing continuity of the metric and continuity
of the Hubble parameters at the t⇤ surface.Conitnuity of the Hubble parameters requires
that at t⇤ , HdS = HFRW. For a matter-dominated universe a = (t/t⇤)2/3, therfore it
implies

t⇤ =
2

3
H�1 (2.4)

In the other hand, continuity of the metric implies a relation between the time and
radial coordinates, thus the same type of relation holds for null trajectories.

2.3.2 Propagation of light rays between FLRW and
Schwarzschild

In this section we will calculate how the continuation of light rays from a dust FLRW
to a Schwarzschild.

Recall that the metric for the FLRW cosmology is given by
ds2 = �a(⌘)2

�
d⌘2 + dr2 + r2d⌦2

�
, (2.5)

where ⌘ is the conformal time4, and a(⌘) is the scale factor. For a dust FRW cosmology,
the scale factor is given by a(⌘) = (⌘/⌘⇤)

2, where ⌘ is the conformal time, and ⌘⇤ is the
conformal time at the matching surface between dS and the dust universe. Note that
by using Eq. (2.4) we can write ⌘⇤ = 2H�1.

A dust particle at the edge of the empty cavity follows the comoving geodesic, r = r⇤.
As seen from the Schwarzschild side, this corresponds to a timelike geodesic following
the edge of the empty cavity. Continuity of the metric across the geodesic implies that
the proper radius of the cavity as seen as from both sides has to be the same. This,
along with Friedmann equations5 and evaluating at t⇤, we obtain the relation

R3

⇤ =
2GM

H2
(2.7)

3
In the FLRW region, we normalize the scale factor at t⇤, so aFRW(t⇤) = 1

4
This is related to the cosmic time t -and the proper time of comoving observers- by a(⌘)d⌘ = dt,

impliying ⌘ ⇠ t1/3

5
The Friemann equation are: ✓

1

a2

da

d⌘

◆2

=
8⇡G

3
⇢m (2.6)
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2.3. Propagation of light rays across the spacetime 28

Figure 2.4: Here we show V (X+) and U(X�) solutions of Eqs. (2.11).

Note that according to Eq. (1.32), at this radius the relative velocity between comoving
observers and the wall is the same. Also, the large domain wall condition Eq. (2.1),
requires that three scales - the Schwarzschild radius of the black hole 2GM , the
inflationary rate H�1 and the expansion rate of the wall t�1

�
- satisfy

2GM

H2t3
�

> 1 (2.8)

Now we are in position to obtain how light rays are propagated across the mathing
surface r⇤. In the FLRW, incoming and outgoing light rays can be describe by constant
null coordinates

X�
⌘
⌘ � r

r⇤
, X+

⌘
⌘ + r

r⇤
(2.9)

respectively. Note that in this coordinates, the empty cavity lies at X+
�X� = 2. On

Schwarzschild spacetime, null geodesics can be described by constant Kruksal-Szekeres
null coordinates (1.22), and the trajectory of the edge of the empty cavity is given by
Eq. (1.28) (we pick the signs such that it moves to the right on the causal diagram
Figure (1.4)). The matching of the two metrics implies that light rays must satisfy the
following differential equations 6

dU

dX� =
U

8

(1 +X�)3

3 +X�
,

dV

dX+
=

V

8

(X+
� 1)3

X+ � 3
(2.11)

6
The solution to these equations results in

U(X�) = �
d�1

U

2
(X� + 3) exp

⇥
P3(�X�)

⇤
, V (X+) = +

dV

2
(X+

� 3) exp
⇥
P3(X

+)
⇤

(2.10)

where we have defined the polynomial P3(z) ⌘ z3/24 + 3z/8 � 5/12 and di are the constants of

integration. Note that, these transformations are only valid in the range X±
⇤ < X± < 1, where X±

⇤
are the null lines that intersect t⇤ with r⇤. The constants of integration di are fixed such that at the

lines X±
⇤ the R(U, V ) = R⇤ and T (U, V ) = 0.
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29 Chapter 2. Gravitational collapse of large supercritical domain walls

Figure 2.5: Here we show the solution of Eqs. (2.13) for different parameters of t� and R⇤. The
red line corresponds to t� = 20H�1, R⇤ = 60H�1, the blue line to t� = 20H�1, R⇤ = 35H�1

and the black line to t� = 10H�1, R⇤ = 21H�1.

In Figure 2.4 we show the solution of Eqs. (2.11).

2.3.3 Propagation of light rays across the domain wall
As shown in Section 1.5, the trajectory as seen from the inside is just a mirror image
of the trajectory as seen from the interior (see Figure (1.4)). Denoting by a subscript
"in" or "ext" the Kruskal coordinates in the interior or exterior regions respectively,
this means that Uin = Vout and Vin = Uout, evaluated at the wall trajectory Eq. (1.23).
Therefore light rays are propagated according to

dUin

dUout

=
Uin

Uout

✓
1� ✓(R, t�)

1 + ✓(R, t�)

◆
,

dVin

dVout

=
Vin

Vout

✓
1 + ✓(R, t�)

1� ✓(R, t�)

◆
(2.12)

where R is the radius of the domain wall in terms of the coordinates Uin, Uout (or
Vin, Vout) by Eqs. (1.20).

2.3.4 Propagation of light rays from the interior to exterior
FLRW universes

Finally, since it will used in the calculations of Chapter 3, we will show how light rays
from the exterior FLRW region are propagated to the interior FLRW region.

In the following, we denote the null Friedmann coordinates defined in the interior
and exterior FLRW regions by the "in" and "ext" subscripts. By applying the chain
rule and combining Eqs. (1.23), (2.11) and (2.12), it can be shown that light rays need
to satisfy

dX±
out

dX±
in

=
(X±

in
⌥ 1)3

(X±
out ⌥ 1)3

X±
out ⌥ 3

X±
in
⌥ 3

✓
1⌥ ✓(R, t�)

1± ✓(R, t�)

◆
(2.13)
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where R is defined at the trajectory of the domain wall7 and ✓(R, t�) is defined in Eq.
(1.24). The initial conditions for Eqs. (2.13) are fixed given that X±

in
= X±

out at t⇤. In
Figure 2.5

7
In this case R is has to be seen as a function of X±

in/out
in the following sense. First R is given in

terms of U or V implicitely by combining Eqs. (1.23) and (1.20). Then U and V can be expressed in

terms of X±
in/out

by using Eqs. (2.10).
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Chapter

3
Energy-momentum tensor in

the collapse of a supercritcal

domain wall

3.1 Energy-momentum tensor for quantum fields

In the cosmological setting described in the previous Chapter (and illustrated in Figure
2.1), a black hole forms which has two future event horizons, one facing the parent
universe and the other the baby universe. Our next task is to study Hawking radiation,
and more generally the expectation value of the energy momentum tensor of quantum
fields hTµ⌫i. In general, this is a difficult task, and we shall not attempt it in 3+1
dimensions. Instead, we will consider the 1+1 dimensionally reduced metric where
the angular directions are ignored. In this case, the explicit form of hTµ⌫i can be
found by using the expression of the trace anomaly, the conservation of energy and
momentum, and suitable conditions on an initial Cauchy surface [50]. As mentioned
in the introduction, we can think of the dimensionally reduced geometry as the 1+1
dimensional worldsheet of a test string of negligible tension at fixed angular coordinates.
Zero modes along the string will carry energy flux away from the black hole to infinity,
at a rate which is, on dimensional grounds, comparable to the rest of bulk fields.

By using suitable coordinates (X0, X1) any two dimensional metric can be written
as a Weyl factor times the flat metric,

ds2 = ⌦2(�dX2

0
+ dX2

1
) = �⌦2dX+dX�. (3.1)

Here, we have introduced the advanced and retarded null coordinates X± = X0 ±X1,
and ⌦(X+, X�) is the conformal factor. Consider a massless field in 1+1 dimensions. Its
classical action is invariant under conformal rescalings, which would result in a vanishing
trace of the energy momentum tensor. Renormalization of the quantum effective action,
however, leads to a non-vanisihing anomalous trace (see e.g. [51, 52])

hT ↵

↵
i =

R

24⇡
(3.2)

where R = 8⌦�2@+@� log⌦ is the Ricci scalar of the metric (3.1). Note that the trace
is independent of the quantum state of the scalar field, and it is given solely from
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geometric invariants. The tensor hTµ⌫i is also convariantly conserved,

r
µ
hTµ⌫i = 0, (3.3)

which follows from diffeomorphism invariance.

From (3.2) and (3.3), the components of the expectation value of Tµ⌫ in null coordinates
can be expressed as [50]

T�� = �
1

12⇡
⌦@2

�⌦
�1 + F (X�),

T++ = �
1

12⇡
⌦@2

+
⌦�1 +G(X+),

T+� = �
⌦2

4
T = �

1

12⇡
@+@� log⌦.

(3.4)

Here, and in what follows, we drop the h i symbol to express expectation values. For
completeness, the relations (3.4) are rederived in Appendix C. The funcions F (X�) and
G(X+) are independent of ⌦, and they appear when integrating (3.3). Physically, they
will be determined by imposing boundary conditions on an initial a Cauchy surface,
and they encode the freedom in choosing the quantum state in which we are computing
the expectation value.

Our strategy will be the following. First, we will determine the functions F and
G in the inflating region. After that, we will propagate the energy-momentum tensor to
the post-inflationary epoch. Note that the different regions in Figure 2.1 have different
coordinate systems adapted to their symmetries. As we cross from one region to the
next, we must relate the components of the stress tensor in one coordinate system
to the components in another coordinate system, accross the boundaries. Consider,
for definiteness, a change of coordinates {X+, X�} ! {Y+, Y�}. Since Tµ⌫ transforms
covariantly, we have

T Y

±± =

✓
dX±

dY±

◆2

TX

±± , T Y

+� =

✓
dX+

dY+

◆✓
dX�

dY�

◆
TX

+�, (3.5)

where the X and Y superindices refer to which set of coordinates we are using. The
metric is also a tensor, and so the conformal factor changes as

⌦2(X±) ! ⌦2(Y±) =

✓
dX+

dY+

◆✓
dX�

dY�

◆
⌦2(X±). (3.6)

Hence, the functions F (X�) and G(X+) themselves transform to (see Appendix C for
details)

F (Y�) =

✓
dY�

dX�

◆�2 
F (X�) +

1

24⇡
{Y�, X�}

�
,

G(Y+) =

✓
dY+

dX+

◆�2 
G(X+) +

1

24⇡
{Y+, X+}

�
,

(3.7)
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33 Chapter 3. Energy-momentum tensor in the collapse of a supercritcal domain wall

where {A,B} is the Schwarzian derivative, defined as

{A,B} =

✓
dA

dB

◆�1 ✓d3A

dB3

◆
�

3

2

✓
dA

dB

◆�2 ✓d2A

dB2

◆2

(3.8)

In the Appendix D we enumerate some properties of the Schwarzian derivative that will
be useful for the calculations in the next section.

3.2 Energy-momentum tensor in a gravitational col-

lapse caused by a domain wall

In this Section we compute the Tµ⌫ in the geometry described in Chapter 2. Before
proceding, let us introduce some notation. In order to use Eqs. (3.4) we need to use
null coordinates, that are the suited ones to describe light rays. In the two patches
of Schwarzschild spacetime we will use the Kruskal-Szekeres null coordinates, {U, V }

introduced in Eq. (1.22). In the FLRW regions, we will use {X�, X+
} defined in Eq.

(2.9). Finally, in the dS region, we can define analogous coodrinates as Eq. (2.9) in
the flat chart, denoted by {x�, x+

}, with x± = H(⌘ ± r)1. To distinguish between
interior and exterior regions of the wall, we will use the subscript “in” and “out”. For
the arbritary functions F and G in the stress-energy tensor we will use a subscript to
denote the regions at which they are computed.

Moreover, we define X�
out,⇤, the outgoing null surface intersecting the surfaces t = t⇤

and r = r⇤ in the FRW dust expanding universe, which has the value of R⇤. For the
inside region of the wall, we define X+

in,⇤ and X�
in,⇤ to be the ingoing and outgoing null

surfaces intersecting t = t⇤ and r = r⇤ in the ball of expanding dust. Also, we define
X�

in,� as the continuation of the null X+

in,⇤ when it reflects to r = 0, and by Uin,� its
continuation through the dust particle trajectory at r = r⇤. Finally, we denote by X�

in,0

the outgoing null surface that intersects t⇤ and r = 0. Note that X�
in,⇤ = X�

out,⇤. Also, it
can be checked that for both interior and exterior regions X±

in/out,⇤ = ±1 + 2(HR⇤)�1.

A detailed diagram of the spacetime, ommiting the inflationary epoch, is depicted
in Figure 3.1. In the next subsections we compute the stress-energy tensor in each one
of the regions.

1
With this coordinates, the dS metric in the flat chart reads

ds2 = �
4

H2(x+ + x�)2
dx�dx+

(3.9)
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Figure 3.1: A more detailed diagram of the spacetime resulting from the collapse of a supercritical domain wall. We define X�
out,⇤,

the outgoing null surface intersecting the surfaces t = t⇤ and r = r⇤ in the FLRW dust expanding universe. For the inside region of
the wall, we define X+

in,⇤ and X�
in,⇤ to be the ingoing and outgoing null surfaces intersecting the surfaces t = t⇤ and r = r⇤ in the ball

of expanding dust, and by X�
in,0

the outgoing null surface that intersects t⇤ and r = 0. Also, we denote by X�
in,� the continuation of

the null X+

in,⇤ when it reflects to r = 0, and by Uin,� its continuation through the dust particle trajectory at r = r⇤. On the diagram,
X�

in,⇤ is not drawn but has the same value as X�
out,⇤.
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35 Chapter 3. Energy-momentum tensor in the collapse of a supercritcal domain wall

3.2.1 Energy-momentum tensor in de Sitter and initial condi-
tions

The energy-momentum tensor of a scalar field in the de Sitter vaccum is given by [53]

T dS

µ⌫
=

1

48⇡
Rgµ⌫ (3.10)

where R = 2H2, which in x± coordinates its components read

T dS

++
= T dS

�� = 0 , T dS

+� = +
1

12⇡ (x+ + x�)2
. (3.11)

Using the terminology from the previous section, it can be stated that the de Sitter
vacuum is characterized by setting the functions FdS(x�) and GdS(x+) to be zero.

It turns out that in the presence of a domain wall, the stress-energy tensor is still
the same2. This can be argued as follows. Suppose a ray comming from a time surface,
t̃ < tnuc before the nucleation of the wall. At that time, the stress-energy tensor is given
by Eq. (3.10). When the domain wall nucleates, the spacetime splits into two regions,
the interior and the exterior of the wall, and the ray will be in one of these regions. The
functions F and G change only at the transition from one region to the other, since
this is when a change in coordinates occurs.

It can be shown that null interior and exterior coordinates are related by 3

x�
int

=
x�

out � �0

1� x�
out�0

, x+

int
=

x+

out � �0

1� x+

out�0

(3.12)

Since these are Möbius transformations, it’s Schwarzian derivative is zero (see Eq. (D.1))
so the FdS and GdS remain unchanged and are still zero at any time after the nucleation.

Moreover, we can observe that the transition to the post-inflationary epoch preserves
2
This is not the case in general. In the four dimensional case, the stress-energy tensor changes after

the nucleation of the wall.
3
This can be obtained as follows: from the continuity equation Eq. (1.14), we can solve a second

degree equation for ⌘± = �H�1e�Ht± , leading to

⌘+ = (⌘�1

� � 2�2)
�1 .

Moreover, since r± =
q
1⌥ 2�0⌘± + ⌘2

±, we can combine it with the previous equation and get the

relation

r� =
r+

1� 2�0⌘+
.

From here and using the definition for x�
int

and x�
out

we get the Möbius relation. A similar reasoning

can be done for x+
.
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3.2. Energy-momentum tensor in a gravitational collapse caused by a domain wall 36

the values of the functions FdS(x�) and GdS(x�). As described in 2.3, the relation
between coordinates during the transition is linear, resulting in a vanishing Schwarzian
derivative. Consequently, we can set to zero the functions FFRW(X�) and GFRW(X+)
for all rays originating directly from the t⇤ surface.

3.2.2 Energy-momentum tensor in the parent universe
We now compute the stress-energy tensor for the parent universe (PU). In this region,
the conformal factor is given by ⌦2 = (GM)2/64 (X+ +X�)4. Therefore, according to
Eqs. (3.4), the stress-energy tensor in null coordinates (2.9) reads

TPU

�� = �
1

2⇡(X+

out +X�
out)2

+ FPU(X
�
out

)

TPU

++
= �

1

2⇡(X+

out +X�
out)2

+GPU(X
+

out
)

TPU

+� =
1

6⇡(X+

out +X�
out)2

(3.13)

The calculation of FPU(X
�
out) can be done by tracking the outgoing rays. Note that

those with X�
out < X�

out,⇤ originate at the surface t⇤ in the parent universe, so we can
impose initial conditions there. This implies that

FPU(X
�
out

) = 0 , for X�
out

< X�
out,⇤ (3.14)

For the outgoing rays with X�
out > X�

out,⇤, the situation is more complex. When we
trace back these rays, we need to cross the domain wall. Some of them hit the t⇤ surface
directly inside the baby universe, while others reflect first at r = 0. For the later, it
may be tempting to consider a ray coming from the parent universe that enters the
baby universe, reflects at r = 0, and then returns to the parent universe. However, this
situation cannot occur. The earliest ray that reflects at r = 0 and can be traced back to
the parent universe is at X�

in
= X�

in,
, and its continuation to the vacuum interior region

is the line Uin = Uin,�. Defining Uin,1 as the null surface at which the domain wall hits
I

+ as seen from the inside, it can be checked that for supercritical walls, Uin,1 < Uin,⇤,
thus proving that all outgoing rays with X�

out > X�
out,⇤ come from the t⇤ surface in the

baby universe. Therefore, by using Eq. (3.7) we can write

FPU(X
�
out

) = �
1

24⇡
{X�

in
, X�

out
} , for X�

out
> X�

out,⇤ (3.15)

where we have used the property Eq. (D.2) and simplified by putting FBU(X
�
in
) = 0. The

remaining Schwarzian derivative can be evaluated through multiple applications of the
chain rule (D.3). The analytical form of FPU(X

�
out) is long and somewhat cumbersome

so we leave the full expression in Eq. (E.4) of Appendix E.1.
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The function FPU(X
�
out) is not continuous through the line X�

out = X�
out,⇤, with in

terms of R⇤ can be written as X�
out,⇤ = �1 + 2(HR⇤)�1. In the case where t� � H�1

and R⇤
� H�1, the jump is

�FPU(X
�
out,⇤) ⇡

1

4⇡

HR2

⇤
t�

(3.16)

The full expression for �FPU(X
�
out,⇤) is written in Eq. (E.5) in the Appendix E.1.

Note that by the condition Eq. (2.8), the magnitude of the jump �FPU is large. This
discontinuity is a direct contribution from the formation of the wormhole, and it will
have important consequences on the observed fluxes and energy densities. For large
X�

out, the function grows as FPU(X
�
out) ⇠ �

�
X�

out

�4

/3072⇡.

The calculation of GPU(X
+

out) is straightforward. All incoming rays come from the
t⇤ surface in the parent universe itself, so there is no mixing between “in” and “out”
coordinates. Therefore

GPU(X
+

out
) = 0 (3.17)

for all X+

out.

3.2.3 Energy-momentum tensor in the baby universe
Here we compute the Tµ⌫ in the baby universe (BU). The conformal factor is the same
as in the parent universe, with just a relabeling of the coordinates. Therefore, the stress
energy tensor is given by the same expressions as in Eqs. (3.13) but now the functions
F and G are different. For the calculation of the function GBU(X

+

in
) we need to trace

back the incoming rays. Light rays with X+

in
< X+

in,⇤ proceed from the t⇤ surface inside
the baby universe, so

GBU(X
+

in
) = 0 , for X+

in
< X+

in,⇤ , (3.18)

On the other hand, rays with X+

in
> X+

in,⇤ proceed from the t⇤ in the parent universe,
so GBU(X

+

in
) has to be computed using Eqs. (3.7). Since GPU(X

+

out) = 0, we use Eqs.
(3.7) to write

GBU(X
+

in
) = �

1

24⇡

�
X+

out
, X+

in

 
, for X+

in
> X+

in,⇤ . (3.19)

The full expression for GBU(X
+

in
) can be found in Eq. (E.8) of the Appendix E.2, where

we have applied the chain rule Eq. (D.3) to expand the Schwarzian derivative in terms
of simpler Schwarzian derivatives that can be computed explicitely.

For large X+

in
it can be checked that it decays to zero quadratically, GBU(X

+

in
) ⇠

1/6⇡
�
X+

in

�2. At the line X+

in,⇤, the function GBU(X
+

in,⇤) has also a discontinuity, and it
coincides with the same value as in the case of FPU(X

�
out), which for t� � H�1 and

R⇤ � H�1 is just

�GBU(X
+

in,⇤) ⇡
1

4⇡

HR2

⇤
t�

(3.20)
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In order to compute FBU(X
�
in
) we trace back the outgoing rays. All light rays with

X�
in
< X�

in,� proceed directly from the t⇤ surface in the baby universe (rays with X�
in,0

<
X�

in
< X�

in,� reflect at r = 0 first). Therefore,

FBU(X
�
in
) = 0 , for X�

in,⇤ < X�
in
< X�

in,� . (3.21)

The case of light rays with X�
in

> X�
in,� needs more care. These reflect at r = 0, cross

the domain wall and eventually hit the t⇤ surface in the parent universe. After the
reflection, the rays need to be treated as incoming rays, so

FBU(X
�
in
) = GBU(X

+

in
! X�

in
) , for X�

int
> X�

int,�. (3.22)

with GBU(X
+

in
) given by Eq. (3.19). This also implies a discontinuity at the line X�

int,⇤.

3.2.4 Energy-momentum tensor in the exterior vacuum
Here we compute the Tµ⌫ in the the exterior vacuum (EV) region of the domain wall.
The conformal factor in this Schwarzschild region is given by ⌦2 = 32(GM)2e� R

2GM /R,
so the Tµ⌫ reads

TEV

�� =
w(R)

48⇡U2

out

+ FEV(Uout)

TEV

++
=

w(R)

48⇡V 2

out

+GEV(Vout)

TEV

+� = �
4(GM)4e� R

2GM

3⇡R4

(3.23)

where we have defined the funcion w(R) = 1 � 4(2GM/R)3 + 3(2GM/R)4 and R is
given in terms of the Kruskal coordinates by Eq. (1.20).

To compute the function GEV(Vout), we need to trace back the incoming light rays.
From the diagram in Figure (3.1), it can be seen that all incoming rays come from the
t⇤-surface in the exterior universe. Since GPU(X

+

out) = 0, by using Eq. (3.7) we have

GEV(Vout) =
1

24⇡

✓
dVout

dX+

out

◆�2 �
Vout, X

+

out

 
(3.24)

for all Vout. The full expression is given in Eq. E.10 of the Appendix E.3.

To calculate FEV(Uout), we can note that all the outgoing rays entering the vacuum
region originate from the baby universe. Incoming rays born at the parent universe
that cross the wall, enter the baby universe and reflect at r = 0, ultimately reach I+
in the interior vacuum region and do not cross the wall again. Since FBU(X

�
int
) = 0, the

expression for FEV(Uout) simplifies to

FEV(Uout) =
1

24⇡

✓
dUout

dX�
int

◆�2 �
Uout, X

�
int

 
(3.25)
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39 Chapter 3. Energy-momentum tensor in the collapse of a supercritcal domain wall

The remaining calculations can be done by applying the chain rule for the Schwarzian
derivative Eq. (D.3). The full expression for FEV(Uout) is written in Eq. (E.12) in the
Appendix E.4. Note that FEV(Uout) is regular at the past horizon H�1, corresponding
to Uout = 0. Moreover, for large Uout, it decays to zero as FEV(Uout) ⇠ �1/48⇡U2

out
.

3.2.5 Stress tensor in the interior vacuum
Here we compute the Tµ⌫ for the interior vacuum region (IV), inside the domain wall.
The conformal factor is the same as the one in the exterior vacuum, so the stress-energy
tensor is given by Eqs. (3.23) with just a relabeling of the coordinates. The funcion
GIV(Vint) can be calculated by tracing the incoming rays. Observe in the diagram of
Figure 3.1 that all incoming rays, Vint = constant, come from the t⇤-surface in the
parent universe. Therefore, by Eqs. (3.7) we have

GIV(Vint) =
1

24⇡

✓
dVint

dX+

out

◆�2 �
Vint, X

+

out

 
(3.26)

where we have used the fact that GPU(X
+

out) = 0. The evaluation of the Schwarzian
derivative can be done by expanding it in simpler derivtives by using the chain rule.
The resulting expression for GIV(Vint) is long and it can be found in Eq. (E.14) the
Appendix E.5.

The computation of the function FIV(Uin) is a bit more involved than the one for
GIV(Vin) and has some subtleties. Note that there are three types of outgoing rays
that will enter the interior vacuum region. The first ones start at the t⇤-surface in the
baby universe and go outwards directly. These have X�

int,⇤ < X�
int

< X�
int,0

, that in the
interior vaccum region translate to the condition Uint < Uint,�. The second ones are the
ones that have X�

int,0
< X�

int
< X�

int,�, and start at the t⇤-surface being incoming rays
X+

int
= constant, reflect at r = 0 and become outgoing rays with some X�

int
= constant.

Finally, outgoing rays with X�
int

> X�
int,�, or equivalently Uint > Uint,�, will start at the

t⇤-surface in the parent universe as an ingoing ray, enter to the baby universe, reflect
at r = 0 and turn into an outgoing ray. In general, the expression for FIV(Uint) is given
by Eq. (3.7),

FIV(Uint) =

✓
dUint

dX�
int

◆�2 ✓
FBU(X

�
int
) +

1

24⇡

�
Uint, X

�
int

 ◆
. (3.27)

The rays of first and second type cross only the FLRW-Schwarzschild boundary, and
Eq. (3.27) can be simplified by setting FBU(X

�
int
) = 0. For the third type of rays we

need to take more care. The form of FIV(Uint) remains the same as Eq. (3.27), but
since the rays proceed from the parent univers, FBU(X

�
int
) is not zero. An outgoing light

ray with X�
int

constant, becomes an incoming ray X+

int
with the same constant when

it reflects at r = 0, therefore FBU(X
�
int
) has the same functional form as GBU(X

+

int
)

with the replacement X+

int
! X�

int
. A full expression for FIV(Uint) can be found in Eqs.
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3.2. Energy-momentum tensor in a gravitational collapse caused by a domain wall 40

(E.15) and (E.16) of the Appendix E.6.

In Figure 3.2 we show a heatmap for the fluxes, energy density and pressure measured
by Friedmann comoving observers (within the FLRW regions) and by Kruskal observers
(whithin the Schwarzschild regions). A deeper study on these measured quantities is
done in Chapter 4.
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Energy flux

Energy density

Pressure

Figure 3.2: A heatmap of the fluxes, energy density and pressure measured by Friedmann
and Kruskal observers, defined as X+

� X� = constant and V � U = constant respectively.
Friedmann observers are defined in the FLRW regions, while Kruskal observers are defined in
the Schwarzschild regions. The flux for such observers is defined as � = ⌦�2 (T�� � T++),
where ⌦ is the conformal factor of the region it is calculated.The energy density is given by
⇢ = ⌦�2 (T�� + T++ + 2T+�). Finally, the pressure reads p = ⌦�2 (T�� + T++ � 2T+�).
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Chapter

4
Energy density, pressure and

fluxes

In the preceding chapter, we calculated the stress-energy tensor Tµ⌫ of a massless
scalar field as it propagates through the spacetime resulting from the collapse of a
supercritical domain wall. In this Chapter, we examine the history of different types of
observers moving through the spacetime by computing their mesured energy density,
flux and pressure, all of which can be extracted from the stress-energy tensor.

Consider an observer with trajectory xµ(⌧) parametrized by its proper time ⌧ , and let
us denote its 4-velocity by uµ(⌧). Additionally, we introduce the normal vector to the
trajectory, denoted as nµ, which satisfies nµuµ = 0 and nµnµ = 1. For such observer,
we define the measured energy density ⇢ = Tµ⌫uµu⌫ , the pressure p = Tµ⌫nµn⌫ , and
flux density of energy � = �Tµ⌫uµn⌫ . In order to make use of the results of Chapter
??, we consider 1+1 trajectories defined in terms of null coordinates A±. In this case,
the 4-velocity and normal vector are given by uµ(⌧) = (Ȧ+, Ȧ�) and nµ(⌧) = (Ȧ�, Ȧ+)
respectively. Therefore we can write

⇢ = T++Ȧ
2

+
+ T��Ȧ

2

� + 2T+�Ȧ�Ȧ+

p = T++Ȧ
2

+
+ T��Ȧ

2

� � 2T+�Ȧ�Ȧ+

� = T��Ȧ
2

� � T++Ȧ
2

+

(4.1)

Let us recall for the sake of comparison that the energy density of a scalar field at the
Hawking temperature in a 1+1 spacetime is given by 1

⇢bh =
1

768⇡(GM)2
.

Additionally, in a de Sitter space, since T dS

µ⌫
/ gµ⌫ , the energy density measured by any

observer is
⇢dS = �

H2

24⇡
,

1
This can be easily obtained by recalling that the energy density of a two-dimenisonal bosonic gas

at temperature T is

⇢ =
1

2⇡

Z 1

0

!

e!/T � 1
d! =

⇡

12
T 2

and for a Schwarschild black hole, the Hawking temperature is T = (8⇡M)�1
.
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Figure 4.1: Depicted are the trajectories of the observers described in Section 4.1.

the pressure has the same magnitude but with opposite sign and no fluxes are observed.

4.1 Comparing observations along different geodesics

In this section we compare the experiences of five different observers whose wordlines
are very similar during the inflationary epoch, but whose fate is different once inflation
ends. This will give us an overall picture of the distribution of energy, pressure and
fluxes in different regions of spacetime. Three of these observers move exactly at the
escape velocity Unfortunately, the forth one does not (with severe consequences). The
fifth observer rides along the wall into future null infinity. The trajectories of these
observers are depicted in the causal diagram of Figure 4.1.

Observer A (The Parent)
This observer follows the edge of the empty cavity within the parent universe. In
this sense, it represents FLRW observers which are in the vicinity of the PBH at
the time of formation. Its trajectory is described in terms of the proper time ⌧ by
xµ

A
= (X�

A
(⌧), X+

A
(⌧)), where X±

A
(⌧) = (6⌧/GM)1/3

± 1 for ⌧ > t⇤. Its path is
represented in Figure 4.1 as a dark blue line.

The flux measured by this observer will be

�A(⌧) =
4

(GM)2

✓
GM

6⌧

◆4/3

FPU

�
X�

A
(⌧)

�
(4.2)

where FPU

�
X�

A

�
is given in Eq. (E.4). Just after inflation, this observer measures an

outgoing flux at ⌧ = t⇤, due to the discontinuity of the function FPU (X�) in Eq. (3.16).
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45 Chapter 4. Energy density, pressure and fluxes

For large supercritcal domain walls with R⇤ � H�1 and t� � H�1, this flux has a
magnitude of

�A(t⇤) ⇡
1

4⇡

H

t�
+O

�
t�2

�

�
(4.3)

which depends only on the tension of the wall and H. The magnitude of such flux is
smaller, about a factor ⇠ 6(Ht�)�1, than the typical energy density it measures during
inflation. However, it is much larger, about a factor ⇠ (2GM)2H/t�, than the Hawking
radiation of a black hole of mass M . After crossing the past event horizon (the white
hole horizon) the parent escapes towards i+

A
. At that time, it observes a constant flux

�A = ⇢bh emanating from the future event horizon of the black hole, corresponding to
Hawking radiation at the expected temperature.

As for the energy, note that it satisfies the relation

⇢A(⌧) = �A(⌧)�
1

54⇡⌧ 2
, (4.4)

where the last term is just an effect of the expansion of the universe. This implies that
when the parent reaches i+

A
, it measures an energy density with same value as the flux.

A more interesting behaviour happens at ⌧ = t⇤. For large supercritical walls, with
t� � H�1 and R⇤ � H�1, the energy density is approximately

⇢A(t⇤) ⇡ ⇢dS +
H

4⇡t�
, (4.5)

where the last term corresponds to the effect of the domain wall. The pressure is related
to the energy density by the equation of state

⇢A(⌧)� pA(⌧) =
1

54⇡⌧ 2
. (4.6)

The difference only depends on the trace of the energy-momentum tensor, which is
proportional to the Ricci scalar. At i+

A
, the trace term vanishes and the pressure tends

to equate the energy density as it in the case of radiation in 1+1 dimensions. At the
moment just after the end of inflation, for t� � H�1 and R⇤ � H�1, the pressure goes
like

pA(t⇤) ⇡ 2⇢dS +
H

4⇡t�
(4.7)

In Figure 4.2 the measurements of the parent along its history are depicted as a
dark blue line.

Observer B (The Explorer)
The second observer is a mirror version of the parent. This one ventures across the
wormhole into the baby universe, while remaining this side of the domain wall. From
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one side, the explorer is exposed to fluxes which may emanate from the future event
horizon facing the baby universe, and from the opposite side it is exposed to the possible
effect of the domain wall. The fate of this observer is to reach future infinity i+

B
, as

it is depicted in Figure 4.1 by the green line. Its trajectory can be parametrized as
xµ

B
= (UB(⌧), VB(⌧)), where UB(⌧) and VB(⌧) are given by combining Eqs. (1.22) with

Eqs. (1.30) and (1.29) (the T coordinate in this case is negative).
Similar to the parent, the explorer observes a constant flux �B(1) = �⇢bh when it
reaches i+

B
. This correponds to radiation coming from the future event horizon facing

the baby universe, corresponding to Hawking radiation at the expected temperature.
At the time ⌧ = t⇤, this observers measures a different flux than the parent due to
the asymmetry of the spacetime. In the limit where R⇤ � H�1 and t� � H�1 it
approximately goes to the value

�B(t⇤) ⇡
1

4⇡

H

t�
�

1

2⇡

H

R⇤
(4.8)

If the domain wall is large, R⇤ � t�, then the parent and the explorer measure the
same flux.

As for the energy density and pressure, the explorer measures the same as the parent.
The evolution of these quantities are shown as a green curve in Figure 4.2.

Observer C (The Child)
Had the domain wall not pushed them appart, this observer would have remained
close to observer A. Its trajectory tracks the dust particle, from the Schwarzschild side,
moving along the edge of the expanding ball of dust in the baby universe. Its path is
shown with a cyan line in Figure 4.1, ending at a different future infinity i+

C
.

At the time ⌧ = t⇤, the child measures a flux towards the expanding ball of dust
with the same magnitude as the one measured by the parent. They are unaware that
their experience in the future will be completely different. Actually, the communication
between the child and the parent turns out to be very difficult because of the small
window of time the child has to send signals to the parent.

Just after the horizon crossing, ⌧ ⇡ ⌧d + O(R�1

⇤ H�2) with ⌧d = 4GM/32, it measures
a transient outgoing flux which is a remnant of the one expelled at t⇤ towards the
expanding ball of dust. When the child reaches i+

C
, unlike the previous observers, does

not measure any flux at all.

As for the energy and pressure, before the horizon crossing the observer measures
the same energy and pressure as the parent and the explorer. Just after the horizon

2
This corresponds to the intersection between the null geodesic X�

int,� and the child’s trajectory.

46



47 Chapter 4. Energy density, pressure and fluxes

crossing, a discontinuity appears for both pressure and energy. Ultimately, they decay
to zero as the child approaches i+

C
.

We show in Figure 4.2 the evolution of the flux, energy density and pressure measured
by the child observer.

Observer E (The Forth One)
The forth observer does not move with escape velocity and at a finite time it
enters the black hole region. Eventually, it hits the singularity. It corresponds to an
observer moving with zero Kruskal radial coordinate. More precisely, its trajectory is
characterized by xµ

E
= (UE(⌧), VE(⌧)) ,where UE(⌧) = VE(⌧) = TK(⌧), TK is the Kruskal

time coordinate. The expression for TK(⌧) is given implicity by3

⌧

2GM
= sign(TK)

 s
RE

2GM

✓
1�

RE

2GM

◆
+ sin�1(

r
1�

RE

2GM
)

!
+
⇡

2
(4.10)

with RE = 2GM (1 +W (�T 2

K
/e)). The forth observer enters the black hole at a time

⌧k = ⇡GM and reaches the singularity at ⌧s = 2⇡GM .

As shown in Figure 4.2, before the observer enters the black hole, the measured
flux, energy density and pressure are quite similar to the ones measured by the parent
and the explorer observers. Once in the black hole, the flux decays to zero at a higher
rate.

As for the energy density and pressure, they satisfy the equation of state

⇢E(⌧)� pE(⌧) = �
GM

6⇡R3

E

. (4.11)

where the last term is the trace of the energy-momentum tensor, which is proportional
to the Ricci scalar. As the forth observer approaches the singularity at R = 0, both
energy density and pressure diverge. This is because their evolution is dominated by
the curvature term, which scales as RE(⌧)�3

⇠ (2⇡GM � ⌧)�2.

Observer W (The Wall)
The last observer is the one who rides the wall. In this sense, it describes the same
trajectory as the domain wall Eq. (1.23), represented in Figure 3.1 by the brown line.
Unlike the rest of observers, this one ends up at null infinity I

+.
3
It follows from solving the differential equation

dTK

d⌧
=

e
RE
2GM

q
RE

2GM

4GM
. (4.9)
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As it can be seen in Figure 4.2, the flux, energy density and pressure meaured by this
observer decay at much faster rate than the ones measured by the rest of observers.
After the time ⌧ = t�, the decay rate is exponentially fast. This decay is dominated
by the Ricci scalar of the Schwarzschild spacetime, which as written in Eq. (4.11),
scales like R�3, with R given by the solution of Eq. (1.18a). For times larger than t�,
R(⌧) ⇠ e⌧/t� , so the flux, energy density and pressure vanish exponentially fast with
rate t�1

�
.

The wall observer crosses the horizon at a time4 of

⌧w ⇡
2

3
t� log

✓
4GM

t�

◆
. (4.12)

After the horizon crossing, the observer practically does not detect anything. It just
moves towards null infinity, leaving everything behind.

4
In this case we can use the approximate solution Eq. (1.26). The constant C is set to (Ht�)�1

�

arcsinh
�
(Ht�)�1

�
so that R(t⇤) = R⇤. Also, the expression in Eq. (4.12) assumes R⇤ � t�.

48



49 Chapter 4. Energy density, pressure and fluxes

10
�5

10
�4

10
�3

10
�2

10
�1

10
0

10
1

10
2

⌧/2GM

�10
9

�10
6

�10
3

�10
0
0

10
0

10
3

10
6

10
9

�
/
�
b
h

t⇤ t� ⌧w ⌧d ⌧k

⇢dS

10
�5

10
�4

10
�3

10
�2

10
�1

10
0

10
1

10
2

⌧/2GM

�10
9

�10
6

�10
3

�10
0
0

10
0

10
3

10
6

10
9

�
/
�
b
h

10
�5

10
�4

10
�3

10
�2

10
�1

10
0

10
1

10
2

⌧/2GM

�10
9

�10
6

�10
3

�10
0
0

10
0

10
3

10
6

10
9

p
/
�
b
h

Obs. A Obs. B Obs. C Obs. E Obs. W

Figure 4.2: From top to bottom: we show the flux �(⌧), energy density ⇢(⌧) and pressure
p(⌧) in units of ⇢bh, measured by several types of observers as a function of proper time ⌧ . The
lines ⌧w, ⌧d and ⌧k respresent the moment when observers W, A to C and E cross the horizon,
respectively. The red dotted line correspond to the time when observer E hits the singularity.
The horizontal light gray lines correspond to ±⇢bh and ⇢dS.

49



4.1. Comparing observations along different geodesics 50

50



51

Part II

Primordial black holes and
gravitational waves

51





Chapter

5
Primordial black holes

Fifty years ago, it was proposed that rare curvature perturbations in the early Universe1

could lead to the formation of primordial black holes (PBH) during the radiation era2

[54, 55]. With the recent detection of gravitational waves (GWs) from merging black3

hole binary systems, there is growing interest in the possibility that PBHs could be a4

viable component of Dark Matter (DM).5

6

Various mechanisms have been proposed for the formation of PBHs, either as a7

result of large inhomogeneities in the aftermath of phase transitons, or as the result of8

primordial perturbations of inflationary origin. One possible scenario is based on an9

enhancement of the curvature perturbations at the lengthscale corresponding to the10

PBH horizon. This can be caused by a specific feature in the inflationary potential,11

such as an inflection point or a small barrier on the slope of the potential, that results12

in a transient departure from slow roll, which leads to the required enhancement13

at that scale. Another mechansim is the collapse of relic topological defects, such as14

false vacuum bubbles or domain walls produced by the breaking of a discrete symmetry.15

16

Understanding the formation mechanisms of PBHs not only enables us to make accurate17

predictions about their statistical properties but also has important observational18

consequences. A precise estimate the merger rate of PBH binaries provides valuable19

insights into the abundance and dynamics of PBH populations, allowing us to20

constrain the formation scenarios. Moreover, the indirect detection of gravitational21

waves from PBH mergers provides another method for probing their existence. While22

the direct detection of individual PBHs remains challenging, a stochastic background23

of gravitational waves (SBGW) emmited by numerous mergers may be detectable.24

This background carries valuable information about the population of PBH binaries,25

including their mass distribution, merger rates, and formation mechanisms.26

27

The structure of this chapter is the following. In Sections 5.1 and 5.2 we provide28

a brief overview of the formation of PBH binaries and the subsequent merging process.29

In Section 5.3 we delve into the calculation of the stochastic background of gravitational30

waves resulting from the merger events of PBH binaries. This will serve as a groundwork31



5.1. Formation of PBH binaries 54

for Chapter 6. In this chapter and the subsequent one, we will adopt the use of natural32

units where G = c = 1.33

5.1 Formation of PBH binaries

In this section, we consdier the formation of PBH binaries [56, 57]. Our focus is on two34

randomly picked black holes that have been formed in deep in the radiation era. Let35

us denote their respective masses as M1 and M2, and consider the comoving distance36

x between them.37

38

A binary will form when the two black hole system decouples from the Hubble39

flow. The time of decoupling (i.e the formation time of the binary), denoted by tdec, is40

related to the comoving distance between the black holes by the following argument.41

The two-body system of physical size a(t)x will decouple when the energy density42

created by a binary at such distance becomes larger than the background energy43

density, that is44

MT

(a (tdec) x)
3
& ⇢back(tdec) . (5.1)

where MT = M1 +M2 is the total mass of the system. In order for this to be satisfied,45

the decoupling has to happen in radiation dominated era, since ⇢back ⇡ ⇢eq/(2a4(t))1.46

This implies that2
47

x .
✓
MT

2⇢eq

◆ 1
3

a
1
3 (tdec) , (5.2)

The saturation of Eq. (5.2) implicitly defines the decoupling time tdec by means of the48

comoving distance x. Also, the relation (5.2) inherits an important consideration, and49

has to do with the maximum size of a binary that participates in mergers at tobs, which50

will be denoted by xmax. One can see that this maximum size will be given by the latest51

time a binary can decouple. Once Eq. (5.2) is satisfied, a binary will form.52

53

This new system can be described basically by four parameters: the masses of the54

black holes3, the initial size of the binary corresponding to the physical distance55

rx = a(tdec)x between the black holes at the moment of decoupling. Alternative we can56

use the comoving distance which, using condition Eq. (5.2) is related to rx by57

rx ' x4

✓
2⇢eq

MT

◆
(5.3)

1
Here we choose the scale factor a(t) = 1 at matter-radiation equality, which is a standard convention

in this context.
2
Note that if the mass distribution for the PBH distribution is not too broad, we may assume

MT /2 ⇡ M , with M the mean mass of the black holes.
3
The evolution and dynamcs of the binary is determined not by the masses individualy but by a

combination of them. More specifically, on the total mass MT = M1 + M2, and on the so-=-called

reduced mass ratio µ = M1M2/MT .
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Finally, since the binary is immersed in a local tidal field, created by other PBHs and58

density perturbations, this will exert a torque on the binary providing it with some59

orbital angular momentum, This orbital angular momentum will prevent the head-60

on collision of the PBHs, and make the elliptical orbit have some excentricity. The61

excentricty e and the orbital angular momentum are related by e =
p

1� j2 where62

j = `/
p
GMrx, with ` the orbital angular momentum per unit reduced mass.63

5.2 Merger rate of PBH binaries

In this section we shall derive an expression for the merger rate of PBHs binaries [57].64

For simplicity, let us assume a monochromatic mass distribution of PBHs. Let us denote65

by dNtwo(x, j) the comoving number density of configuration of binaries with comoving66

size within (x, x + dx) and angular momentum within (j, j + dj). Only a fraction of67

such binaries will merge at the present epoch. First, the number of binaries that will68

be produced are the configurations satifying Eq. (5.2). Also, if we want these binaries69

to merge at some time tobs we need to impose a constraint on x and j such that the70

merging time tm coicides with this observation time. Therefore the number of binaries71

merged per observed time and per comoving volume is just72

dR(tobs)

dtobs

=

Z Z
dNtwo(x, j)�(tobs � tm(j, x))⇥ (xmax � x) (5.4)

This defines the merger rate per comoving time at time tobs. We can further write73

dNtwo(x, j) as74

dNtwo(x, j) =
⇣nPBH

2

⌘
dxdjPJ(j, x) (5.5)

with nPBH/2 is the number density of binaries (the two avoids double counting). We75

also introduce the probability density PJ(j, x)dxdj to find two randomly selected PBHs76

with j and x. Inserting Eq. (5.5) in Eq. (5.4) we find77

dR(tobs) =
nPBH

2

Z
dxdj PJ(j, x)�(tobs � tm(j, x))⇥ (x� xmax) . (5.6)

Obtaining an expression for the density distribution PJ(j, x) is not easy, since as we78

shall see in the next section, it depends fully on the PBHs spatial distribution. In79

general, the angular momentum induced to binary will come from the tidal field created80

by cosmological perturbations and its neighbouring black holes ~j = ~jCP + ~jPBH
4. We81

4
The expression for ~jPBH is given by

~jPBH =
NX

p=2

~jp , ~j=
3

2

x3

x3
p

(x̂ · x̂p)(x̂ ⇥ x̂p) (5.7)

with ~x is the vector size of the binary, ~yp is the distance to the p-neighbour and the hat means unitary

vector.
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will neglect the cosmological perturbations and concentrate only on the effect of the82

neighbouring PBHs [31, 58]. Since ~jPBH is a function of all the distances between black83

holes, we can write the distribution PJ(j, x) as a function of the so-called N -neighbour84

distribution which we denote by QN(x1, . . . , xN ; x0)85

PJ(j, x) =

Z
dx2 . . . dxNQN(x, x2, . . . , xN)�(j � j(x, x2, . . . , xN)) (5.8)

The distribution QN(x1, . . . , xN ; x0) tells us the probability of, given a PBH at position86

x0, which by homogeneity we can choose it to be the origin, having the first negihbour87

at distance x1, the second one at x2, etc. This quantity only depends on the (comoving)88

spatial distribution of the PBHs and is specified by the mechanism of formation.89

The computation of Eq. (5.8) is unfeasible in general, and only in some cases can90

be computed analytically, for instance if the case where the PBHs are spatially91

uncorrelated. Inserting Eq. (5.8) into Eq. (5.6), we write the merger rate density as92

dR(tobs) =
nPBH

2

Z
dx d~xi QN(x, ~y)�(tobs � tm(j(x, ~y), x))⇥ (xmax � x) (5.9)

with ~y = (y2, . . . , yN). The computation of Eq. (5.9) can be simplified a bit if we assume93

that the main contribution to the torque comes from the nearest PBH to the binary,94

and so j(x, y) ⇡ (x/y2)3. In this case, the delta function in Eq. (5.9) eliminates one95

integral and together with the condition x < xmax, introduces a minimum comoving96

distance participating in a merger at time tobs, xmin(tobs). Thus, Eq. (5.9) reduces to97

dR(tobs) =
nPBH

2

Z
xmax

xmin

dx Q2(x, ỹ(x, tobs))

����
dỹ(x, tobs)

dtobs

���� (5.10)

where ỹ(x, tobs) is given by tobs = tm(x, y)98

5.2.1 The coalesence time of a binary
The only ingredient left n the calculation of Eq. (5.9) is the coalesence time of the99

binary as a function of the size of the binary and its angular momentum.100

101

There are two effects that might play an important role in the case of early time102

mergers, in particular for those happening before matter radiation equality. The first103

one has to do with with the fact that the so-called Peters time does not provide an104

accurate description for very eccentric mergers. This approximations tells us that the105

time to collapse from the moment of decoupling is given by [59]106

tp(j, rx) =
3

85

r4

x

⌘M3

T

j7 , (5.11)

where ⌘ = M1M2/M2

T
= µ/MT , is the so-called symmetric mass ratio. While this is a107

good description for binaries with small eccentricities, it fails for very eccentric orbits. A108
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57 Chapter 5. Primordial black holes

binary that decouples at time tdec and has a very large eccentricity might merge in ‘no109

time’ according to Peters formula. Of course this is incorrect, since the time of merger110

is at least equal to the free falling time, t↵ , which is given by111

t↵(rx) =

✓
r3

x

MT

◆ 1
2

. (5.12)

Therefore, Peters approximation will fail for configurations having tp < t↵ . Taking into112

account this consideration we can write the merging time tm in which a binary merges113

tm(j, rx)� tdec(rx) = tp(j, rx) + t↵(rx) . (5.13)

As we will see in the next subsection, the addition of this free falling time will have114

relevant consequences for early mergers.115

The merger rate for a Poissonian distribution

Here we show the merger rate for a Poissionan distributed population of PBHs. We116

assume that the angular momentum is only induced by the closest black hole to the117

binary, so we can use calculate the merger rate as in Eq. (5.10). In this case,118

Q2(x, y) = 16⇡2n2x2y2 exp(�
4⇡n

3
y3)⇥(y � x) , (5.14)

The limit xmax in Eq. (5.10) is determined as follows. Since binaries can only decouple119

in radiation dominated era, for systems merging at tobs > teq + t↵ , the maximum size a120

binary can have is a constant given by121

xmax =

✓
MT

2⇢eq

◆ 1
3

, tobs > teq + t↵ (5.15)

For mergers happening before that time, the latest time it can decouple and merge at122

time tobs is tmax

dec
= tobs � t↵ . After some calculations it can be found that123

xmax(tobs) ⇡

✓
MT

2⇢eq

◆ 1
3 ⇥

tobs
2⇢eq

⇤1/12

, tobs < teq + t↵ (5.16)

which is explicitly time dependent.124

125

The last piece that we need to determine is xmin, the minimum comoving distance126

participating in a merger at time tobs. This is given by the distance such that a circular127

merger (the configuration having the largest merging time) with such semi-axis merges128

at time tobs. This implies that all binaries separated by a distance x < xmin would have129

merged in a time t < tobs, for all the possible eccentricities. From inverting Eq. (5.13)130

and using x < xmax, this is approximately given by131

xmin(tobs) =

✓
85M3

T
tobs

12x4
max

◆1/16

xmax , (5.17)
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5.3. Stochastic background of gravitational waves 58

with here xmax given as in Eq. (5.15). We can then perform the integral (5.10),132

considering xmin as given in Eq. (5.17) and xmax as given by either (5.15) or (5.16)133

depending on whether the observed time is after o before matter radiation equality.134

The function ỹ(x, tobs) in Eq. (5.10) is given by inverting Eq. (5.13) [60]135

ỹ(x, tobs) =

 
12

85M3

T
(f

1
3 x̄)12

!1/21

x37/21

(tobs � tdec(x)� t↵(x))
1/21

(5.18)

Note that this function diverges at x⇤ = xmin(tobs), which defines the free falling136

configuration (x, y) = (x⇤,1). Let us now consider, for a fixed observation time137

tobs, binaries of sizes up to x0 = �x⇤(tobs), for some � . 1. This takes into account138

configurations with finite y, so we avoid the free fall configuration. The extremal139

configuration (x0, y(x0)) gives us, for the Peters, free fall and decoupling time140

tp = (1� �6)tobs , t↵ + tdec ⇡ �6tobs (5.19)

So, for � > 0.9, the mergers will be dominated by the free fall time. In Fig. 5.1 we show141

the resulting merger rate. Before matter-radiation equality, the merger rate follows the142

typical scaling of the Poissonian case, with R(z) / (1 + z)1.4. However, after matter-143

radiation equality, at high redshifts, the merger rate increases as R(z) / 1 + z, mainly144

due to the contribution of the free falling orbits. When considering only the contribution145

of mergers involving binaries with a torque, such as those within a size range up to146

0.9x⇤, the merger rate drops as R(z) / (1 + z)�1/2 as a result the shrinking maximum147

comoving distance allowed for mergers, Eq. (5.16). As shown in Figure 5.1, even when148

considering binaries within the range of sizes from 0.9x to x⇤, the merger rate still149

exhibits a decreasing trend with redshift, although it becomes more apparent at larger150

redshifts.151

5.3 Stochastic background of gravitational waves

The most recent catalog from the LIGO/Virgo experiment has reported direct152

detections of binary black hole mergers up to a redshift of approximately z ' 1.153

However, these detectors are not only capable of detecting these mergers directly154

but also have the potential to indirectly observe merger events that occurred at155

much larger redshifts through their sensitivity to the stochastic gravitational wave156

background generated by past mergers.157

158

The typical merger process for such a configuration consists of three stages: the159

inspiral phase, the merger phase, and the ringdown phase. The inspiral phase begins160

shortly after the formation of the binary. If the initial size of the binary is large161

enough, the two black holes will start moving toward each other in an elliptical orbit,162

gradually losing energy during this phase. The post-Newtonian formalism is employed163

58



59 Chapter 5. Primordial black holes

Free fall 
dominated

Torque 
dominated

Figure 5.1: Merger rate for a Poissonian initial distribution. Before z = zeq, the rate follows
the typical scaling / (1 + z)1.4. After z = zeq, the merger rate increases because of the
contribution of the free falling orbits. However, if most of the mergers are dominated by tp,
the merger rate drops because of the shrinking of xmax. The dashed black line corresponds to
the merger rate accounting for binaries of all sizes. The solid lines correspond to merger rates
accounting for binaries of size up to �x⇤, for � = 0.9, 0.99, 0.999 and 0.9999 corresponding to
the black, blue, orange and green colors.

to model this phase, with the requirement that the distance between the black holes164

is large enough5. For closer distances, where the gravitational field becomes stronger165

and relativistic effects become significant, the solution requires the use of Numerical166

Relativity or an effective one-body (EOB) approach. This stage encompasses the actual167

merger of the binary. The ringdown phase occurs after the merger has occurred. The168

computation of the ringdown phase can be performed by using numerical relativity169

simulations, perturbation theory, or EOB models. In Figure 5.2, we show ther typical170

strain of GWs.171

172

During the process of merger, a significant amount of energy is released in the173

form of gravitational waves. The collective sum of these signals results in a stochastic174

background of gravitational waves. The magnitude of such stochastic background175

⌦GW(⌫obs) is reported in terms of its energy density per logarithmic frequency interval176

5
To apply the post-Newtonian formalism we require the distance between the PBH to be r �

10GMT , when the velocity of the rotating system v2
⇠ GMT /r is not relativistic and the post-

Newtonian expansion doesn’t fall apart. At closer distances, the gravitational field gets stronger and

we need Numerical Relativity to solve it
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Figure 5.2: Typical waveform of the GW spectrum released by a PBH binary. The red dashed
line shows the moment when the binary has size ⇠ 2GMT

⇢GW(⌫obs) with respect to the critical density of the universe today,177

⌦GW(⌫obs) ⌘
1

⇢c

d⇢GW

d log ⌫obs

, ⇢c =
3H2

0

8⇡G
(5.20)

where H0 ⇡ 67.7 km s�1 Mpc�1 is the Hubble constant today, and ⌫obs is the frequency178

of the gravitational waves observed today. The total energy of gravitational radiation179

will be given by the sum of all energy released by the mergers at all redshifts. It can180

be checked that the contribution coming from early formed binaries can be expressed181

as (see e.g. [29])182

⌦GW(⌫) =
⌫obs

⇢cH0

Z
zmax

0

dz
R(z)

(1 + z)E(z)

dEGW

d⌫s

(⌫s) (5.21)

Here dEGW/d⌫s is the energy emmitted in gravitational waves during a single merger183

event, and ⌫s is the frequency in the source frame, related to the observed frequency as184

⌫s = (1+z)⌫obs. The function RPBH(z) is the merger rate in Eq. (5.9) with tobs = tobs(z),185

and E(z) ⌘ H(z)/H0 = [⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤]1/2. Finally, the upper limit186

zmax corresponds to the maximum redshift at which we include mergers in our analysis.187

In principle, we should consider all possible mergers, including those at extremely188

high redshifts. For example, in the case of black holes with masses around 102 M�,189

the maximum redshift could reach approximately z ⇠ 1012, corresponding to the190

time when these black holes were formed. However, in practice, the inclusion of such191

high-redshift mergers is often limited by observational constraints and the capabilities192

of the detectors. We will discuss this further in the next chapter.193

194

The energy released as GWs dEGW/d⌫s can be deduced from the waveforms. This195

has been modeled for the inspiral, merger, and ringdown phases, and fitted through196

numerical simulations [61, 62]. For non-precessing binaries, as it is the case for solar197
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Figure 5.3: Typical waveform of the GW spectrum released by a merger of highly excentric
binary. The red dashed line shows the moment at which the binary has size ⇠ 2GM . We thank
Tomás Andrade for providing us this plot.

mass PBHs [63–65], it takes the following form (see also [66, 67])198

dEGW

d⌫s

(⌫s) =
⇡2/3M5/3

c

3

8
>>>><

>>>>:

⌫�1/3

s for ⌫s < ⌫1

!1⌫
2/3

s for ⌫1  ⌫s < ⌫2

!2

�
4
⌫
2
s

(�2+4(⌫s�⌫2)
2)

2 for ⌫2  ⌫s < ⌫3

0 for ⌫3  ⌫s

(5.22)

where ⌫i ⌘ (⌫1, ⌫2, �, ⌫3) = (ai⌘2 + bi⌘ + ci)/(⇡M), M = m1 + m2 is the total mass,199

Mc is the chirp mass (M5/3

c = m1m2M�1/3), and ⌘ = m1m2M�2 is the symmetric200

mass ratio. The parameters ai, bi and ci can be found in [61], and (!1,!2) are chosen201

such that the spectrum is continuous. In (5.22) the three regimes corresponds, towards202

larger frequencies, to the inspiral, merging and ringdown phases, and for 30M� they203

correspond to ⌫i = (135, 271, 79, 387) Hz.204

205

The derivation of Eq. (5.22) assumed that the black holes started from an infinite206

distance and underwent an elliptical orbit, beginning with the inspiral phase. However,207

in the case of early mergers, the black holes start much closer than a period and208

are likely to collide in an almost head-on manner. In Figure 5.3 we show the typical209

waveform of GW for an almost head on merger. In these scenarios, one could argue210

that there is no significant inspiral phase, and since most of the energy is released211

during this phase, the spectrum of the stochastic gravitational wave background might212

be negligible. Nevertheless, due to the large number of mergers occurring during early213

epochs, it is possible that these events still contribute significantly, or at least non-214

negligibly, to the overall spectrum of the stochastic gravitational wave background.215

This will be studied in the future, since further numerical simulations are required to216

confirm these assumptions.217
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Chapter

6
Constraining the merger rate

history of PBH binaries

In this chapter we shall discuss how current and future experiments can constrain the218

merger history of PBH binaries. The direct detection of 63 binary black hole (BBH)219

mergers from redshifts z ' 0.1 up to z ' 0.8 in the GWTC-3 catalog of LIGO/Virgo220

[24] provides valuable information for constraining the merger rate density of black221

hole binaries as a function of redshift. In particular, for a merger following a power law222

distribution223
dNmerg

dtdV
⌘ R(z) = R0(1 + z)↵, (6.1)

the factor ↵ is found to be 2.7+1.8

�1.9
[24] for a present merger rate R0 = 9�35 Gpc�3yr�1.224

These constraints are evidently only sensitive up to the largest redshift at which the225

merger of a certain binary might be detectable. This is the so-called horizon distance,226

and for BBH of ⇠ 30M�, zhor ' 1 for LIGO/Virgo. The law distribution in Eq. (6.1)227

agrees with a population of Poissionian distributed PBHs. This disribution can emerge228

when the underlying field producing the black holes follows a Gaussian dstribution with229

a peaky power spectrum at the scale of the size of the PBH. However, non-Poissonian230

distributions can also lead to that power law at least for small redshift but change the231

scaling at large and until now unobserved redshifts.232

233

Additionally, the detection of a stochastic background of gravitational waves sourced234

from past mergers provides a way to indirectly infer information about the merger rate235

at redshifts beyond the zhor. Although the stochastic background has not been detected236

yet, its absence has been used to constrain the abundance of BBHs [26–36]. Here, we237

will focus on using this lack of observation of the stochastic background to contrain238

the merger rate.239

240

In general, it is assumed that the merger rate histories of PBH binaries has either241

the form of a power law as in Eq. (6.1) with a positive exponent, or by a power law up242

to a certain redshift and later decay. These two families of models roughly correspond243

to primordial and stellar black holes respectively. Either way, even assuming the form244

in Eq. (6.1), the determination exponent ↵ is highly model depent. For instance, in the245
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case of PBH originating from an initial Poissonian distribution1, it becomes possible to246

determine ↵ of the merger in Eq. (6.1). For low abundances (fPBH . 0.01) and small247

redshifts (z < 1), the exponent is found to be ↵ = 1.1. However, for higher redshifts, ↵248

takes a value of ↵ = 1.4. For large abundances, the behaviour of the merger rate with249

redshift remains uncertain, since N-body effects need to be taken into account2[32, 37].250

251

Despite these dificulties, some interesting results have been obtained in determining252

the merger rate for some families of clustered distributions, with the use of numerical253

simulations [38, 39]. For example, black hole binaries merging inside globular clusters254

can exhibit ↵ = 2.3+1.3

�1.0
[39]. Other studies focusing on non-Gaussian initial distributions255

of PBHs -but having neglected the effects of N-body disruption of binaries- have shown256

that the merger rate of PBH binaries can have a very complex dependence on redshift,257

in particular, with an interpolation of various slopes at intermediate redshifts [3]. These258

results are a clear motivation for exploring a larger set of BBHs merger histories. Given259

that there is still a large uncertainty in the class of allowed merger histories, we adopt260

a phenomenological approach and consider the consequences of a change in the slope261

of the merger rate at some particular redshift.262

263

The structure of the chapter is as follows. In Section 6.1, we discuss the merger264

rate in clustered distributions of black holes, highlighting the diverse range of binary265

merger histories that can arise. This serves as a motivation to adopt a phenomenological266

model for the rate. The resulting stochastic background generated by this model is267

examined in Section 6.2. Finally, in Section 6.3 we present the constraints derived from268

the non-observation of the SBGW and calculate the minimum SNR ratio required for269

future experiments to detect it.270

6.1 The model

As discussed in the introduction, there are reasons to explore a wide range of merger271

rate histories. Here, we present some examples of merger stories that may arise from272

different formation mechanisms, serving as motivation for the specific template we273

will use in the following sections. In particular, we will discuss the case of a clustered274

distribution of PBHs, as investigated in Ref. [3].275

276

In Chapter 5, we discussed the merger rate for isolated black hole binaries, where277

the dominant torque contribution comes from the nearest black hole. To compute the278

rate Eq. (5.10), it is necessay to calculate the probability density Q2(x, y) of finding the279

first and second nearest neighbors at comoving distances x and y, respectively, given280

the presence of a black hole at the origin. This probability density, in principle, depends281

1
This distribution is the one resulting from seeds of curvature fluctuations that follow a Gaussian

distribution with a peaked power spectrum at the scale of black holes [68–70]
2
N-body effects may also play an important role for low abundances [58]
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on the N -point correlation functions that dictate the probability of finding N PBHs.282

This is because when we aim to find only two black holes (or any number) within a283

specific volume, we must account for the probability of not finding N � 2 black holes284

within that volume. Consequently, determining this probability in a general setting285

becomes more challenging. However, there are at least two simple cases where it can286

be easily determined, which are the Poissonian and the so-called “separable" case3. In287

such cases, the probability Q2(x, y) takes the form288

Q2(x, y) = 16⇡2x2y2n(x)n(y) exp


�4⇡

Z
y

RBH

n(z)z2dz

�
⇥(y � x) . (6.4)

where n(r) is the local comoving number density of PBHs, given by289

n(r) = n̄(1 + g2(r)) (6.5)

where n̄ is the mean comoving number density of PBHs. Usually the correlation function290

g2(r) decays to zero at large distances, so the comoving number densitiy inside an infinite291

volume coincides with n̄. The case of a Poissonian distribution corresponds to g2(r) = 0.292

The form of g2(r) is determined by the underlying physical mechanism governing the293

distribution of the black holes. To demonstrate its impact on the merger rate, we will294

examine a simple functional form where the correlation is approximately constant up295

to a scale kL and then decays to zero for larger scales. In particular, we consider the296

following expression:297

g2(r, g0,↵, kL) = g0

e⇥(r,kL,↵)
� 1

e� 1
with ⇥(r, kL,↵) =

1

1 + e2↵ log(k
�1
L r)

. (6.6)

The correlation g2(r) is nearly constant with amplitude g0 up to the scale L = k�1

L
,298

and then decays to zero with a slope determined by ↵.299

300

In the left panel of Figure 6.1 we show the correlation function in Eq. (6.6), while in301

the right panel we see its resulting merger rate history. Note that if the correlation302

function varies around the scales xmin and xmax, then we get important changes on303

the slope of the history, which in the examples presented, happen around redshifts304

2 to 4. For completeness, in Figure 6.1 we also show the case of a Poissonian distribution.305

3
This is the particular case when the n-particle correlation functions gN , defined as

gn(r1, .., rn�1) ⌘
Pn(r1, .., rn�1)

Pn

1

� 1 (6.2)

follow the simple law [70, 71],

1 + gn(r1, .., rN�1) =
n�1Y

i=1

(1 + g2(ri)) , (6.3)
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Figure 6.1: Left: Three different two-point correlation functions, as a function of comoving
distance x, resulting in different merger rate histories. In blue and orange we show correlation
functions given by Eq. (6.6), with parameters (g0,↵, kL) given by (3⇥ 105, 30, 0.00887 ks) and
(3⇥ 105, 30, 0.00959 ks) respectively. In red, we show the correlation function for a Poissonian
distribution, where g2(r) = 0. Here 1/ks is the size of 30 solar mass PBHs. The comoving scales
xmin and xmax are evaluated at t = t0. Right: Normalized merger rates for the correlations
shown in the left pannel.

306

The examples shown in the previous section serve as a motivation for consider a307

merger rate given by a broken power law model,308

R(z) =

8
><

>:

R0(1 + z)↵ for z  z⇤

C(1 + z)� for z⇤  z  zmax

0 for z � zmax

, (6.7)

where C is a constant chosen so that the merger rate is a continuous function. This309

template introduces several novel aspects compared to previous works. First, it allows310

positive values for both ↵ and �, which, as demonstrated in the previous section, is311

feasible within a population of PBHs, and could also serve as a template for modeling312

the merger of astrophysical black hole binaries.313

314

The parameter R0 represents the number of mergers observed today, so according to315

the events dected by LIGO/Virgo, we will fix it to be around 9� 35 events/(Gpc3 yr)316

[24]. Additionaly we will assume a monochromatic distribution of PBHs with mass317

around M = 30M�.318

319

Additionaly we will fix the parameter zmax to be zmax = zeq, where zeq is the redshift of320

matter-radiation equality. This specific cutoff is selected because we will consider only321

mergers that involve a circularly inspiraling phase at some point during their evolution.322

As shown in section 5.2.1 in the previous chapter, mergers that take place before323
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zeq tend to be highly eccentric, and their contribution to the stochastic background324

may differ from what we will consider in our analysis (see section ??). It should be325

noted that observable quantities relevant to frequencies within the range detectable326

by LIGO/Virgo are primarily sensitive to redshifts around z ⇠ 10. Therefore, the327

predictions made in this context should remain robust against any variations in the328

merger rate occurring at higher redshifts.329

330

With R0 and zmax set, the model is characterized by three parameters (↵, �, z⇤).331

In the following sections, we comment on additional constraints (section 6.3.1) and332

priors (section 6.3.2) on these parameters.333

6.2 The stochastic background of past mergers

In this section, we describe the resulting stochastic background of gravitational waves334

resulting form the merger history defined in Eq. (6.7). As introduced in Chapter 5,335

given a merger rate history R(z), the magnitude of the stochastic background ⌦GW(⌫)336

is given in Eq. (5.21). Here, we will take the upper limit of the integral in Eq.(5.21) to337

be frequency dependent. In particular, we take zsup = min(zmax, ⌫3/⌫ � 1), where ⌫3 is338

the cutoff frequency of the energy spectrum in Eq. (5.22). This way, for z � zsup, either339

the merger rate or the energy spectrum are zero.340

341

Depicted in Figure 6.2 is the gravitational wave signal associated with the merger rate342

described by Eq. (6.7) across a range of parameter values (↵, �, z⇤). Additionally, it is343

shown the corresponding ⌦GW behavior derived from a Poissonian distribution of initial344

PBHs. In the Poissonian case, we observe the familiar ⌫2/3 scaling at lower frequencies345

followed by a posterior decay at higher frequencies. However, when considering other346

sets of parameters, the family of possible spectra expands.347

348

In general, ↵ and � set the overall amplitude at large and small frequencies349

respectively, and the frequency of the transition, ⌫⇤, is controlled by z⇤ (more precisely350

⌫⇤ = ⌫3/(1+ z⇤)). For ⌫ � ⌫⇤, the only contribution to ⌦GW comes from redshifts up to351

z⇤. Therefore, the exponent ↵ alone dictates the behaviour of ⌦GW for this frequency352

range. On the other hand, for ⌫  ⌫⇤, all redshifts z  zsup contribute. For very small353

frequencies the main contribution comes from redshifts z � z⇤, so it is the exponent354

� that governs the behaviour of ⌦GW. In principle, the infrared (IR) tail of the signal355

follows the scaling356

⌦IR

GW
(⌫, zmax ! 1) ⇠

(
⌫2/3 , � < 7

3

⌫3�� , � �
7

3

(6.8)

where the value �th = 7/3 comes from the fact that the integral in Eq.(5.21) does not357

converge at large redshifts for � > �th. However, in our model we do not see this scaling,358

due to the cutoff of the merger rate at zmax = zeq. Since the signal is however tending to359
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Figure 6.2: Left: Gravitational wave background for the merger rate as given by the broken
power law model, for BHs of 30M�, and varying parameters (↵,�, z⇤). Here we show the
LIGO/Virgo range of frequencies. The parameters for these curves are R0 = 9, ↵ 2 (0.8, 3),
� 2 (�5, 2.7), and z⇤ = 3.5. The arrows indicates the effect of varying these parameters. The
red curve has ↵ = 1.1, � = 1.4 and z⇤ = 1, and describes the case of an initial Poisson
distribution of BHs with no binary disruption. Right: Gravitational wave background with
the same parameters, expanded to include the LISA frequency range. For the values of z⇤
under consideration, the signal in the LISA region follows the ⌫2/3 scaling with an amplitude
depending on (↵,�, z⇤). Let us note that at LISA scales there might be additional contributions
to the stochastic background coming from extremely eccentric orbits (where the merger time
is given by the free-fall time) that we do not consider here.

this limit, there is an intermediate region not necessarily given by the well known ⌫2/3
360

scaling of the IR. Moreover, even when the ⌫2/3 scaling is achieved, the amplitude of361

the signal in this region is dependent on �. The strong dependence of the SGWB on the362

parameters describing the merger rate shows that these might be strongly constrained.363

6.3 The signal-to-noise ratio and the abundance cri-

terion

To determine the detectability of the gravitational wave signal, the commonly used364

criterion relies on the signal-to-noise ratio (SNR) generated in a detector. The SNR365

quantifies the ratio between the measured signal magnitude and the inherent noise366

originating from the detector itself, which primarily depends on its construction and367

technical details. The SNR can be expressed in terms of the frequency-dependent368

⌦GW(⌫) as369

SNR =

s

Tobs

Z
⌫max

⌫min

d⌫

✓
�(⌫)2

⌦GW(⌫)

⌦exp(⌫)

◆2

, (6.9)
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where Tobs represents the observation time, �(⌫) denotes the overlap reduction function370

between two detectors4, and ⌦exp(⌫) is the noise energy density. This is given in terms371

of he critical density by [73]372

⌦exp(⌫) =
2⇡2⌫3Sn(⌫)

3H2

0

, (6.10)

where Sn(⌫) is the experimental strain expressed in units of strain/Hz. It is related373

to the effective amplitude spectral density h1,2

e↵
(⌫) of detectors 1 and 2 through the374

equation h1

e↵
(⌫)h2

e↵
(⌫) = Sn(⌫).375

376

For our analysis, we consider the amplitude spectral density data of Hanford and377

Livingston detectors from the third run of LIGO/Virgo (O3) [74]. Also, we use the378

fact that no stochastic background was detected during a time interval of 205.4 days379

of coincident observations between the Hanford and Livingston detectors [75]. For380

the analysis on the constraints for future experiments, we use the Advanced LIGO381

(aLIGO) design configuration, the Einstein Telescope (ET), LISA, and SKA. The382

amplitude spectral density data for these experiments, except for LISA and SKA, are383

obtained from [74]. The data for SKA is obtained from [76], while for LISA we follow384

the procedure outlined in [77]. In the case of LISA, the noise energy density ⌦exp(⌫) is385

given by:386

⌦exp(⌫) = ⌦I(⌫)
4⇡2⌫3

3H2

0

, with ⌦I(⌫) =
p
2
20

3


f1(⌫)

(2⇡⌫)4
+ f2(⌫)

� "
1 +

✓
⌫

4⌫?/3

◆2
#
,

(6.11)
with ⌫? = c/2⇡L and L = 2.5 ⇥ 106 km. The functions f1(⌫) and f2(⌫) are given by387

f1(⌫) = 5.76⇥ 10�48

⇣
1 +

�
⌫̄

⌫

�2
⌘

Hz3 and f2(⌫) = 3.6⇥ 10�41Hz�1, where ⌫̄ = 0.4 mHz,388

and the effective observation time is set to Tobs = 3 years.389

390

With all these considerations in mind, we can determine the SNR for the aforementioned391

experiments5. In our analysis, we set the detection threshold at SNR = 2 and initially392

use the absence of a signal detection in LIGO/Virgo O3 to constrain the triplets393

(↵, �, z⇤) that would yield an SNR > 2.394

6.3.1 The abundance constraint
Additionally to the SNR constraint, another one arises from the observation that the395

total energy density of PBHs must not exceed the total energy density of dark matter.396

4
In order to detect a stochastic background, it is necessary to utilize two separate detectors to

overcome the noise present. The overlap function can be found in Ref. [72]
5
It is important to note that there are expected to be numerous sources of gravitational waves

acting as foregrounds to this signal, thus a more detailed estimation of the SNR should also consider

the ability to separate these components [78, 79].
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By analyzing the merger rate history R(z), we can determine the total number of black397

holes in binary form. Let fb represent the fraction of black holes in binaries and fbh398

denote the total amount of dark matter in the form of black holes. Then the number399

density of black holes in binaries is given by400

Z
zmax

0

R(z)

H0(1 + z)E(z)
dz = fbfBH

nDM

2
. (6.12)

where nDM represents the number density of dark matter. Typically, the fraction of black401

holes in binaries, fb, is expected to be quite small. Simulations of black hole clusters402

have shown values on the order of fb ' O(10�3) [38]. Assuming this as a fiducial value403

and because fBH  1, we can establish that404

Z
zmax

0

R(z)

H0(1 + z)E(z)
dz  0.001nDM , (6.13)

This equation allows us to constrain the possible values of (↵, �, z⇤).405

6.3.2 Priors for the model parameters
Exploring the entire parameter space is computationally extensive, so we will focus on406

a restricted parameter range of interest.407

408

We will only consider values for the transition redshift z⇤ � 0.8. This ensures that409

the change in the merger rate slope occurs at redshifts higher than the most distant410

directly observed binary merger, maintaining the validity of the current constraints on411

↵ from direct observations. As for the range of ↵, we will choose the interval (0, 5),412

keeping in mind that values below ↵ < 0.8 lie outside the 90% confidence level obtained413

from the analysis of direct observations [24]. Since our focus is to explore new merger414

histories for PBHs, we will allow � > 0. For positive � values, the abundance criteria415

given by Eq. (6.13) leads to the restriction � . 2.3, roughly independent of ↵ and416

z⇤ (for z⇤ ⌧ zmax). We will also consider case with � < 0, since it describes well the417

merger history astrophysical black hole binaries [80]. With these considerations, we will418

set �5 < � < 5.419

420

Taking a conservative position, we will finaly set R0 as the minimum allowed by421

direct detection, specifically R0 = 9. Therefore, the constraints presented here serve422

as a lower bound on the SNR within this model. By choosing R0 consistent with the423

current merger rate, we implicitly assume that the sum of all black holes (astrophysical424

and primordial) follows such a power law. Consequently, the change in the slope at425

z⇤ could also represent a transition in the binary population, such as a shift from426

astrophysical to primordial binaries.427
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6.4 Results

In this section we present contours of the SNR as a function of the parameters ↵, � and428

z⇤. Note that since the shape of the signal (and not just the overall amplitude or scale)429

changes with the varying parameters, it is probably not very accurate to compare our430

model with a single integrated sensitivity curve (which is constructed assuming a signal431

with a single power law), as can be done e.g. in [81, 82]. For the baseline cosmological432

model we use the results of the Planck satellite [83].433

6.4.1 LIGO/Virgo - O3 run - Present Constraints
In Figure 6.3 we show the SNR for the LIGO/Virgo O3 run. The region in grey434

corresponds to sections of the parameter space where SNR> 2, and thus can be435

considered ruled out by the non-observation of a stochastic background. The green436

dashed line shows the equality of the abundance constraint Eq. (6.13), so all the437

parameters above that line are also ruled out.438

439

From these results we can see that LIGO/Virgo O3 is sensitive to the changes in440

the stochastic background coming from the evolution of the merger rate at large441

redshift (4 > z > 0.8). On the other hand, the SGWB is not very sensitive to changes442

in the merger rate happening at redshift z⇤ > 4. This shows that using the stochastic443

background we can constrain the merger rate at redshifts larger than the horizon444

redshift for the detection of individual mergers, zhor ' 1.445

446

In general, we find that the non detection of a stochastic background largely restricts447

the allowed parameter space. We find that for any � and for z⇤ > 0.8, ↵ < 3.7. The448

maximum allowed value for ↵ decreases as the redshift of transition increases. For449

z⇤ > 4, we found ↵ < 1.3, which combined with the direct observation constraint450

implies that ↵ lies in the small range 0.8 < ↵ < 1.3. As for �, we found that it is also451

greatly constrained. For transitions happening at redshift z⇤ < 1.6, we find � < 2.3452

from the non-detection of a SGWB. For transitions happening at larger redshifts,453

larger values of � are allowed from the perspective of the SGWB, but then either the454

abundance constraint or the direct detection constraint on ↵ is not satisfied.455

6.4.2 The Poissonian PBH case
An interesting case is when the merger rate is given by a population of PBHs following456

an initial Poissonian distribution. The simplest way to constrain this scenario is457

with the total number of events. For R0 = 9 � 35 Gpc�3yr�1, this implies that458

0.001 < fPBH < 0.001 � 0.003 (considering R0 as the maximum possible number of459

PBH binary mergers)6. Interestingly however, the stochastic background provides a460

6
In this case, an analytical expression for the merger rate can also be obtained [8, 31].
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Figure 6.3: SNR for LIGO/Virgo O3 run and for our model. At the top left z⇤ = 1 (where we
highlight in red the Poissonian case, ↵ = 1.1 and � = 1.4), while at the top right z⇤ = 2 and
at the bottom z⇤ = 4. The SNR becomes independent of � when the transition z⇤ happens
for z > 4. For z⇤ < 4, the constraints on the high redshift evolution (�) are similar to the low
redshift evolution (↵). The green line is the equality of the abundance criterion, given in Eq.
(??) and with zmax = zeq (practicaly the same bound is found for zmax > zeq) and the yellow
band is the exclusion of ↵ coming from direct measurements.

competitive constraint on the abundance (see [29] for a previous analysis along these461

lines). In this case, ↵ = 1.1, � = 1.4 and z⇤ = 1 (shown in red in Figure 6.2 for462

R0 = 9 Gpc�3yr�1). For these parameters SNR < 2 implies R0 < 8, which from the463

expression above implies fPBH < 0.001. This shows that the constraints coming from464

the stochastic background are of the same order, or even stronger, than the constraint465

coming from direct observations.466

6.4.3 Future constraints in LIGO/Virgo and LISA band.
While the O3 constraints still leave some part of the parameter space viable, future467

runs of LIGO/Virgo/Kagra and future GW experiments operating at frequencies larger468
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that 10�4 Hz should be able to detect a signal for this family of merger rates. In Figure469

6.4 (left pannel, black curve) we show the smallest SGWB background from this model470

that is allowed by O3 (i.e ↵ = 0.8, � = �5, R0 = 9, z⇤ = 1)7.471

472

For any allowed parameter, the signal should thus be visible by future runs473

of LIGO/Virgo, and also by LISA, which operates at smaller frequencies than474

LIGO/Virgo, around (10�4, 10�1) Hz. This interplay between observations in475

LIGO/Virgo and LISA bands has already been discussed for PBHs [30, 84–86].476

477

Even though at intermediate frequencies, ⌫ 2 (0.1, 10) Hz, the slope of the SGWB478

shows large deviations with respect to the canonical ⌫2/3 scaling, in the LISA frequency479

range this scaling is recovered. The amplitude at these scales however depends on the480

parameters (↵, �).481

482

These considerations imply that if we only consider observations in the LISA band483

there might be a degeneracy between (↵, �) and the mass of the binary system, since484

BBHS with larger masses results in spectra radiating at smaller frequencies. This485

degeneracy is however broken by comparing the signal at both LIGO/Virgo and LISA486

bands.487

488

Naturally, experiments planned at frequencies between LISA and LIGO/Virgo, as489

Einstein Telescope [40], DECIGO [87] and TianQin [88] will also contribute in a similar490

direction. These experiments have the advantage of being sensitive in the range of491

frequencies where the signal deviates from the ⌫2/3 scaling.492

6.4.4 Pulsar Timing Arrays
The infrared tail of the SGWB might be largely enhanced with respect to the Poissonian493

case and thus there might be consequences for observables at very small frequencies.494

In particular, it is interesting to compute the predictions at pulsar timing array scales,495

lying in a frequency interval ⌫ 2 (10�9, 10�6) Hz.496

497

The signal detected by the NANOGrav collaboration [42] has already been shown498

to be accommodated by the IR tail of the stochastic background coming from mergers499

of super (or "stupendously") massive BHs, either of astrophysical [89] or primordial500

origin [2]. We found however that for BBHS of 30M� the enhancement is not so501

pronounced to neither explain the NANOGrav signal nor being detectable by SKA502

(and at the same time being consistent with LIGO current bounds and the abundance503

7
For small �, the SGWB becomes independent of �. In this sense � = �5 is very similar to

considering a sharp cutoff (� ! �1).
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Figure 6.4: Left: SGWB for two different models generating a very similar stochastic
background and characterized by the following parameters. Model 1 (blue): ↵ = 0.5, � = 0.25
and zmax = 0.8 and Model 2 (orange): ↵ = 0.25, � = 0.5 and zmax = 0.8. In black we show the
smallest stochastic background generated by this class of models (R0 = 9, ↵ = 0.8, � = �5
and z⇤ = 0.8). This means that the signal should be observed among other observatories, by
LIGO/Virgo design configuration, ET and LISA. Right: Number of expected mergers, for the
same value of the parameters. While the stochastic background are nearly degenerated, there
are large differences in the expected number of events in the ET.

constraint) 8. It might be possible however that for BBH of larger masses, the signal at504

these scales is large enough to be detectable.505

6.4.5 A joint analysis with direct detection: Einstein Telescope
Here we discuss in more detail the prospects for making a joint observation of the506

stochastic background and individual sources. For mergers of this mass, the Einstein507

Telescope (ET) should detect individual mergers, up to redshifts z ' 10 [90].508

509

In order to better assess its constraining power, lets take two sets of parameters510

having the same SNR in the stochastic background in the LIGO experiment, for511

example (↵, �)=(0.7,0.2) and (↵, �)=(0.2,0.7), with z⇤ = 0.8 in both cases. These two512

sets of parameters generate an almost identical stochastic background, as can be seen513

in Figure 6.4. However they could be distinguishable if the merger rate as a function514

of redshift can be inferred from direct observations. We can estimate the number of515

8
Note that since we are extrapolating to very small frequencies, the first thing is to determine

the smallest possible frequency generated by a merger. In particular, for a spectrum of the form

given by Eq.(5.22), it is assumed that the frequency spectrum has a tail ⌫�1/3
in the IR, without

any additional cutoff. We should however consider that at any time there is a minimum frequency

at which a binary can radiate, given by the maximum distance at which they could be separated.

This in turn is given by the radius at which they decouple from the Hubble flow. This is found to be

⌫min(z) = (1 + z)1/3

⇣
M

⇢eqa4
eq

⌘�1/3

, which is smaller than PTA scales for the masses considered.
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mergers observed by the ET by using the expression516

Nobs(z) =

Z
z

0

dz0 R(z0)

✓
dVc

dz0

◆✓
Tobs

1 + z0

◆
PET (z

0) , (6.14)

where we have denoted by Vc the comoving volume given by,517

✓
dVc

dz

◆
= 4⇡

✓
1

H0

◆3 ✓Z z

0

dz0

E(z0)

◆2

E(z)�1 , (6.15)

and we take the probability of observation of these mergers to be PET (z) ⇡ 1 for518

z < 10. Finally, we take the observation time, Tobs, to be 1 year.519

520

Using the expressions above we can find the number of expected mergers as a function521

of redshift. In Figure 6.4 we show the number of sources that ET should detect, showing522

that both models generate large differences in the number count. This means that we523

can use this measurement to break the degeneracy between models whose signal to524

noise ratio for the stochastic background is the same.525
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Conclusions

In the first part of the thesis we studied in detail the dynamics of a domain wall nucleated526

during inflation and its post-inflationary evolution. We paid particular attention to527

the continuity of the metric and of the wall velocity at the surface where inflation528

ends and the decelerating phase starts, and to the jumps of the extrinsic curvature at529

matching hypersurfaces where appropriate. We then proceeded to calculate the energy530

momentum tensor of a conformally coupled scalar field in this background, starting531

from de Sitter invariant initial conditions. For simplicity, the calculation is done in a532

dimensionally reduced 1+1 version, ommiting angular coordinates.533

534

We find that the energy momentum tensor remains finite everywhere during the535

evolution, diverging only as we approach the black hole singularity. The spacetime536

includes a segment of the maximally extended Schwarzschild solution, containing an537

Einstein-Rosen bridge. This is a transient wormhole connecting the parent universe with538

a baby universe. No pathologies occur on the past event horizons of the Schwarzschild539

segment, and Hawking radiation emanates from the two future event horizons facing540

the parent and the baby universe, at the expected temperature. The trace anomaly541

changes abruptly at the end of inflation, causing transient fluxes of radiation towards542

the FLRW regions on both sides of the wall. We have clarified the distribution of543

energy, pressure and fluxes by comparing the experiences of five different observers544

which, from a common origin, end up in diffferent disconnected subsets of the future545

boundary. We conclude that such quantum effects are small and therefore the dynamics546

of PBH formation is semiclassically stable, even when the PBH carries a baby universe.547

548

In the second part of the thesis, we concentrated on constraining the merger rate549

history of PBH binaries from SBGW. Motivated by a clustered distribution of PBHs,550

which can have an increasing merger rate up to large redshifts, we have shown that if551

the rate exhibits changes in its slope, a wide range of possible stochastic backgrounds552

can be generated.553

554

Typically, the magnitude of the SBGW is expected to have a ⌫2/3 scaling at ⌫ ⌧ ⌫3/zmax555

where ⌫3 ⇡ 102Hz for PBH of mass M ⇠ 30M� and zmax is the highest redshift at556

which binary mergers contribute. In particular, we have shown that in a mid-frequency557

range of the SBGW, between ⌫ 2 (⌫3/zmax, ⌫3), the spectra can exhibit slopes that are558



78

different from ⌫2/3. At small frequencies, where the typical ⌫2/3 scaling is recovered,559

the amplitude turns out to be highly dependent on the slope of the merger rate. This560

dependence shows that the SBGW is a powerful probe of the merger history of BBHs.561

562

We have thus analysed to which extent the current non-detection of a SBGW constrains563

the merger rate. We find that, indeed, this constrains the merger rate at redshift as564

high as z ⇠ 4, much larger than the maximum redshift at which binary mergers have565

been detected. We have also shown that future runs of LIGO/Virgo should be able566

to detect such SGWB and that the signal should be visible by LISA for any of the567

considered parameters of the model.568

569

We have finally considered the prospects of Einstein Telescope for determining the570

merger rate through the observations of individual mergers. The expected number of571

BBHs is so large that the existing degeneracies in the stochastic background can be572

broken, meaning that the merger rate can be unambiguously determined.573
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Appendices

A Matching conditions

In this Appendix we review the matching conidtions that allows us to construct more574

complex spacetimes by patching together different solution of Einstein’s equations so575

that resulting spacetime is also a solution. Such matching conditions are given by576

Darmois and Israel (see Refs. [91, 92]) for timelike (or spacelike) hypersurfaces. In577

the next lines, we introduce some notation and definitions, and formulate the matching578

conditions. Consider a 3-dimensional timelike or spacelike hypersurface ⌃ that divides579

the spacetime M in two regions M± with metrics g±
µ⌫

. Let N±
µ

be the normal vector to580

⌃ as seen from each side of the hypersurface. Then we can define the induced metric581

on ⌃ and the extrinsic curvature as582

hµ⌫ ⌘ gµ⌫ � ✏NµNµ , Kµ⌫ ⌘ h↵

µ
r↵N⌫

where ✏ = +1(�1) if ⌃ is timelike (spacelike). Let us introduce the following notation583

for any quantity A584

[A]± ⌘ A(M+)|⌃ � A(M�)|⌃

Then, the Israel’s matching conditions are formulated as585

First condition: [hµ⌫ ] = 0 (A.1a)

Second condition: Sµ⌫ = �
✏

8⇡
([Kµ⌫ ]� [K]hµ⌫) (A.1b)

where Sab is the stress-energy tensor of matter fields in ⌃ and K = Kabhab. The first586

condition (A.1a) impose that the induced metric must be continuous through ⌃. The587

second one (A.1b) relates the jump of the extrinsic curvature with the presence of some588

matter distribution on ⌃.589

A.1 Spherically symmetric spacetimes
Let us now consider spherically symmetric spacetimes590

ds2 = �A(t,�)dt2 +B(t,�)d�2 +R(t,�)2d⌦2 (A.2)

and spherically symmetrical hypersurfaces with 4-velocity591

uµ = (ṫ(⌧), �̇(⌧), 0, 0) (A.3)
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Then, the first junction condition (A.1a) gives us592

⇥
�A(t,�)ṫ2(⌧) + B(t,�)�̇2(⌧)

⇤±
= 0

[R(t,�)]± = 0
(A.4)

If we consider a purely energy matter field on ⌃, with Sµ⌫ = �hµ⌫ , where � is the surface593

energy density then, the (✓, ✓)-component of the second junction condition Eq. (A.1b)594

gives595

[Nµ@µ logR(t,�)]± = �4⇡G� (A.5)

B Evolution of domain walls in Schwarzschild space-

time

Here we describe the construction of the solution presented in Section 1.5. By Birkhoff’s596

theorem, each side of the domain wall has to be a Schwarzschild solution Eq. (??). The597

full solution is then contructed by gluing together both Schwarzschilds. Let us denote598

each side of the wall by + and �. Also, we label the radial and temporal component599

of the trajectory of the wall as seen from each side by R±(⌧) and T±(⌧) parametrized600

by the proper time ⌧ . Since it is a spherically symmetric domain wall, the 4-velocity of601

the trajectory is given by602

Uµ

± = (Ṫ±, Ṙ±, 0, 0) (B.1)
which satisfy UµUµ = �1. The first Israel matching condition Eq. (A.4) implies603

continuity of the radial trajectory, R+(⌧) = R�(⌧) and also Ṫ+(⌧) = ±Ṫ�(⌧).604

605

To apply the second condition, we need to compute the normal vector to the domain606

wall worldsheet. It has to point towards the same direction as seen from both sides.607

Moreover it needs to satisfy NµUµ = 0, NµNµ = 1. Therefore608

Nµ

± =

 ✓
1�

2GM

R

◆�1

Ṙ,

✓
1�

2GM

R

◆
Ṫ±, 0, 0

!
(B.2)

where we have denoted R = R+ = R�. By denoting t� = (8⇡G�)�1, the second Israel’s609

condition Eq. (A.5) implies610

1

R

✓
1�

2GM

R

◆
(Ṫ+ � Ṫ�) = �

2

t�
(B.3)

Since � is not zero, then Ṫ+ = �Ṫ�. This implies611

Ṫ± = ⌥

✓
1�

2GM

R

◆�1 R

t�
(B.4)

From the normalization of the 4-velocity, we obtain612

Ṙ2 =
2GM

R
+

✓
R

t�

◆2

� 1 (B.5)

80



81 Appendices

C Derivation of the stress-energy tensor equations

In this Appendix, we derive the equations (3.4) for the renormalized stress-energy tensor613

Tµ⌫ , using the conservation equations (3.3) and the quantum trace anomaly (3.2).614

By defining the null coordinates X± = X0 ±X1, where X0, X1 are the time and spatial615

coordinates respectively, we can write any 1+1 metric as616

ds2 = �⌦2dX+dX� (C.1)

where ⌦(X+, X�) is the conformal factor. There are only two non-zero Christoffel617

Symbols, which are �+

++ = 2@+ log⌦ and ��
�� = 2@� log⌦.618

By using this, let us now compute the stress-energy tensor conservation equations619

rAT
A

B
= @AT

A

B
+ �A

AC
TC

B
� �C

AB
TA

C
= 0

By putting B = X� we have620

@�T
�
� + @+̄T

+

� + 2 (@+ log⌦)T+

� = 0 (C.2)

This equation can be written in a better and simpler way. First of all, one can observe621

that the following relations hold622

(@+ + 2@+ log⌦)T+

� = ⌦�2@+

�
⌦2T+

�
�
, T ⌘ T a

a
= 2T�+g+�

T�
� = T�+g+� = T/2 , T+

� = �2⌦�2T��
(C.3)

where T denotes the trace of the stress-energy tensor. From that it follows623

@+T�� =
⌦2

4
@�T (C.4)

Similary, for the X+ equation, we have an expression for T++624

@�T++ =
⌦2

4
@+T (C.5)

The other components simply read625

T+� = T�+ = �
⌦2

4
T (C.6)

Recall that the trace anomaly in 1+1 conformally invariant theory is626

T =
R

24⇡
(C.7)

with R the Ricci scalar of the metric. For a 1+1 conformally flat metric, the Ricci scalar627

can be written as628

R = �2⌦�2⇤⌘ log⌦ (C.8)
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with ⇤⌘ = (�@2

0
+ @2

1
) = �4@�@+ is the d’Alambertian in flat space. Therefore, we can629

express the trace T as630

T =
1

3⇡⌦2
@�@+ log⌦ (C.9)

By using this, we can write631

⌦2@±T = �
1

3⇡
@⌥

�
⌦@2

±⌦
�1
�

(C.10)

Introducing Eqs. (C.10) into Eqs. (C.4) and (C.5) and integrating them, the components632

of the stress-energy tensor can be written as633

T�� = �
1

12⇡
⌦@2

�⌦
�1 + F (X�)

T++ = �
1

12⇡
⌦@2

+
⌦�1 +G(X+)

T+� = �
1

12⇡
@+@� log⌦

(C.11)

To show Eq. (??), let us consider two sets of coordinates {A, Ā} and {B, B̄}. Considering634

the unbar coordinates to be the {X�} ones, we can write the T�� component of the635

stress energy tensor in two different ways636

TAA = �
1

12⇡
⌦A@

2

A
⌦�1

A
+ F (A) , TBB = �

1

12⇡
⌦B@

2

B
⌦�1

B
+ F (B) (C.12)

with the conformal factors ⌦A(A, Ā) and ⌦B(B, B̄) related by637

⌦2

B
=

dA

dB

dĀ

dB̄
⌦2

A
(C.13)

By using (C.13), we can write TBB in terms of TAA638

TBB = �
1

12⇡
⌦A@

2

A
⌦�1

A

✓
dA

dB

◆2

+
1

24⇡

"✓
dA

dB

◆�1 ✓d3A

dB3

◆
�

3

2

✓
dA

dB

◆�2 ✓d2A

dB2

◆2
#
+F (B)

(C.14)
Also, since TBB is a tensor, it transforms covariantly, then639

TBB =

✓
dA

dB

◆2

TAA =

✓
dA

dB

◆2 ✓
�

1

12⇡
⌦A@

2

A
⌦�1

A
+ F (A)

◆
(C.15)

By comparing (C.14) and (C.15) we conclude640

F (A) =

✓
dA

dB

◆�2 ✓
F (B) +

1

24⇡
{A,B}

◆
(C.16)

where {A,B} is the called Schwarzian derivative, defined as641

{A,B} =

✓
dA

dB

◆�1 ✓d3A

dB3

◆
�

3

2

✓
dA

dB

◆�2 ✓d2A

dB2

◆2

(C.17)

A similar derivation can be done for G(A).642
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D Some properties of the Schwarzian derivative

Here we enumerate some properties of the Schwarzian derivative that are used to derive643

the results in Section 3.1.644

645

The first property is that if A(B) are related by a Möbius transformation, that646

is647

A(B) =
aB + b

cB + d
, ad 6= bc (D.1)

then the Schwarzian derivative is zero, {A(B), B} = 0, so the functions F and G648

transform covariantly.649

650

The second useful property is the following: given a transformation A(B), then651

the Schwarzian derivative of the inverse B(A) is related by652

{A(B), B} = �

✓
dA

dB

◆2

{B(A), A} (D.2)

653

654

Finally, the last property is the “chain rule” for the Schwarzian derivative. Given655

two transformations A(C) and C(B), then656

{A,B} =

✓
dC

dB

◆2

{A,C}+ {C,B} (D.3)

E Details of the calculation of Tµ⌫

E.1 Calculation of FPU(X
�

out)

Here we show how to calculate Eq. (3.15). We expand the Schwarzian derivative as657

{X�
in
, X�

out
} = {Uout, X

�
out

}�

✓
dX�

in

dX�
out

◆2

{Uin, X
�
in
}+

✓
dUout

dX�
out

◆2

{Uin, Uout} (E.1)

The remaining Schwazian derivatives are easier to compute, since we have and explicit658

form:659

{U,X�
} = �

P6(X�)

128(1 +X�)2
, {Uin, Uout} =

1

U2

out

2✓(R, t�)

(1 + ✓(R, ✏))2
w(R) (E.2)

where ✓(R, t�) is defined in Eq. (1.24), w(R) is defined in the text, and660

P6(z) = z6 + 2z5 + 7z4
� 4z3 + 31z2

� 94z + 825 (E.3)
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The remaining derivatives are given by Eqs. (2.11) and (2.13). Therefore the full661

expression for FPU(X
�
out) reads662

FPU(X
�
out

) = , for X�
out

> X�
out,⇤ (E.4)

The discontinuity at at X�
out,⇤ is given by663

�FPU(X
�
out,⇤) =

H

4⇡

R2

⇤
t�

p
1 + (Ht�)�2 � (HR⇤)�2

⇣
(Ht�)�1 +

p
1 + (Ht�)�2 � (HR⇤)�2

⌘2
(E.5)

E.2 Calculation of GBU(X
+
in)

Here we calculate the full expression of Eq. (3.19). We can expand the Schwarzian664

derivative by applying the chain rule Eq. (D.3),665

�
X+

out
, X+

in

 
=
�
Vin, X

+

in

 
�

✓
dX+

out

dX+

in

◆2 �
Vout, X

+

out

 
+

✓
dVin

dX+

in

◆2

{Vout, Vin} (E.6)

and the remaining Schwarzian derivatives read666

�
V,X+

 
= �

P6(�X+)

128(X+ � 1)2
, {Vout, Vin} =

1

V 2

in

2✓(R, t�)

(1 + ✓(R, t�))2
w(R) (E.7)

Therefore,667

GBU(X
+

in
) =

P6(�X+

in
)

3072⇡
�
X+

in
� 1

�2
�

w(R)

1536⇡

(X+

in
� 1)6

(X+

in
� 3)2

2✓(R, t�)

(1 + ✓(R, t�))2

�
P6(�X+

out)

3072⇡
�
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out � 1
�2

(X+

in
� 1)6

(X+

out � 1)6
(X+

out � 3)2

(X+

in
� 3)2

✓
1� ✓(R, t�)

1 + ✓(R, t�)

◆2

.

(E.8)

Here R = R(X+

in
), corresponds to the radius of the domain wall at the intersection of668

the light ray X+

in
. Also X+

out = X+

out(X
+

in
), obtained from the solution of Eqs. (2.13), is669

the continuation of the light ray X+

in
in the exterior FLRW universe.670

671

At X+

in,⇤, we have672

G(X+

in,⇤) =
1

4⇡

HR
2
⇤

t�

q
1 + Ht�

�2�(HR⇤)�2

⇣
(Ht�)�1 +

p
1 + (Ht�)�2 � (HR⇤)�2

⌘2
(E.9)
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E.3 Calculation of GEV(Vout)

Here we compute the full expression for G(Vout) in Eq. (??). The remaining Schwarzian673

derivative was already computed in the Appendix E.1, so674

GEV(Vout) = �
P6(�X+

out)

48⇡

(X+

out � 3)2

(X+

out � 1)8
1

V 2

out

(E.10)

Here X+

out(Vout) by solving Eq. (2.11).675

E.4 Calculation of FEV(Uout)

Here we compute Eq. (3.25). Expanding the Schwarzian derivative we obtain676

FEV(Uout) = �
1

24⇡
{Uint, Uout}+

1

24⇡

✓
dUout

dX�
int

◆�2 �
Uint, X

�
int

 
(E.11)

The remaining quantites have already been computed. This leads to677

FEV(Uout) = �
w(R)

24⇡U2

out

2✓(R, t�)

(1 + ✓(R, t�))2
�

P6(X
�
int
)

48⇡U2

out

✓
1� ✓(R, t�)

1 + ✓(R, t�)

◆2 (3 +X�
int
)2

(1 +X�
int
)8

(E.12)

Here R = R(Uout) is the radius of the wall at the moment it intersects with the ray Uout.678

Also X�
int

= X�
int
(Uout) is the continuation of the light ray Uout at the FLRW region of679

the baby universe.680

E.5 Calculation of GIV(Vint)

Here we compute Eq. (3.26) By expanding the Schwarzian derivative we get681

�
Vint, X

+

out

 
=

✓
dVout

dX+

out

◆2

{Vint, Vout}+
�
Vout, X

+

out

 
(E.13)

The remaining Schwarzian have been already computed. The end result is682

GIV(Vint) = �
P6

�
�X+

out

�

48⇡V 2

int

(X+

out � 3)2

(X+

out � 1)8

✓
1� ✓(R, t�)

1 + ✓(R, t�)

◆2

�
w(R)

24⇡V 2

int

2✓(R, t�)

(1 + ✓(R, t�))
2

(E.14)
with R = R(Vin) is the radius of the wall at the moment it interects the light ray Vin,683

Uin(Vin) is given by the trajectory of the domain wall, and X+

out = X+

out (Vint) is the684

continuation of the light ray Vint to the FLRW region of the parent universe.685

85



86

E.6 Calculation of FIV(Uint)

Finally we show the full expression for Eq. (3.27) which is given by686

FIV(Uint) = �
P6(X

�
int
)

48⇡U2

int

�
3 +X�

int

�2

(1 +X�
int
)8

, for Uint < Uint,� (E.15)

and687

FIV(Uint) = �
P6(X
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)

48⇡U2

int
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3 +X�

int
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(1 +X�
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! X�
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(E.16)
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