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 Abstract. 

 Our  everyday  actions  are  sequential  and  chained  towards  accomplishing  goals. 

 As  an  adaptive  strategy,  our  tasks  are  divided  and  organised  in  stages  leading  up  to 

 an  ultimate  objective,  which  is  specified  by  reaching  progressive  sub-goals.  We 

 create  hierarchies  in  order  to  streamline  our  decision-making  anytime  an  action  has 

 to  be  selected.  Previous  research  has  demonstrated  that  people  chose  alternatives 

 with  higher  pseudo-rewards  in  order  to  achieve  a  sub-goal.  As  a  behavioural 

 strategy  to  reduce  complexity,  individuals  break  down  routines  in  simpler  stages  and 

 the  completion  of  such  intermediate  states  is  reinforcing  itself.  Therefore,  sub-goals 

 are  set  hierarchically  and  their  achievement  act  as  pseudo-feedbacks  that  drives 

 learning  and  influences  decision-making.  Still,  this  remarkable  preference  for 

 pseudo-reward  predictive  stimuli  has  not  been  elucidated  as  a  potential  factor 

 involved  in  sub-optimal  choice  behaviour.  The  goal  of  the  present  thesis  is  to 

 investigate  the  behavioural  and  neural  correlates  of  pseudo-feedback 

 processing  in  sub-optimal  decisions  .  To  reach  this  goal,  three  studies  are 

 presented.  In  the  first  behavioural  study,  226  university  students  participated  in  two 

 experiments  to  test  the  hypothesis  that  pseudo  rewards  bias  decisions.  The  task 

 consisted  of  two  alternatives,  presented  as  two  figures  that  were  associated  with 

 different  probabilities  of  obtaining  pseudo-rewards.  The  results  of  this  experiment 

 revealed  that  people  preferred  the  more  pseudo-rewarding  option  even  when  this 

 implied  a  reduction  in  the  final  global  reward.  In  the  second  study,  EEG  was 

 recorded  from  twenty-four  healthy  subjects  who  participated  in  a  version  of  the 

 two-step  task  used  in  the  experiment  2  of  Study  1.  In  particular,  in  this  task,  the 

 probability  of  final  reward  decreased  for  the  most-selected  option  (usually  the  one 

 that  provided  more  pseudo-rewards,  as  shown  in  study  1).  Three  different 

 reinforcement  learning  approaches  were  used  to  model  the  behavioural  data,  and 

 their  results  were  used  to  study  the  oscillatory  activity  associated  with  reward  and 

 pseudo-reward  prediction  errors.  Results  showed  that  frontal  theta  oscillatory  was 

 associated  with  both  reward  and  pseudo-reward  prediction  errors.  Finally,  in  the 

 third 
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 study,  we  examined  the  role  of  the  Ventral  Striatum  in  reward-  and  pseudo-reward 

 prediction  errors  during  decision-making  in  sub-optimal  settings.  Nineteen 

 university  students  participated  in  a  functional  Magnetic  Resonance  study 

 performing  a  modified  version  of  the  two-step  monetary  task.  Results  showed  that 

 Ventral  Striatum  was  involved  in  the  computation  of  the  prediction  errors  of 

 feedbacks  and  pseudo-feedbacks  and  that  the  preference  for  the  most 

 pseudo-rewarding  option  was  related  to  the  activity  of  this  area  with  pseudo-reward 

 prediction  errors.  Overall,  the  three  studies  showed  that  the  attainment  of  sub-goals 

 is  reinforcing  and  might  bias  decisions  towards  sub-optimal  choices.  In  addition,  we 

 have  demonstrated  the  critical  involvement  of  the  reward  network  (ventral  striatum) 

 and the theta oscillatory activity in hierarchical reinforcement learning. 
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 Resumen. 

 Nuestras  acciones  cotidianas  son  secuenciales  y  están  encadenadas  para  lograr 

 objetivos.  Como  estrategia  de  adaptación,  nuestras  tareas  se  dividen  y  organizan  en 

 etapas  que  conducen  a  un  objetivo  final,  el  cual  se  consigue  alcanzando  metas 

 secundarias  progresivas.  En  este  contexto,  la  creación  de  jerarquías 

 comportamentales  permite  agilizar  la  toma  de  decisiones  cada  vez  que  se  debe 

 seleccionar  una  acción.  Investigaciones  anteriores  han  demostrado  que  las  personas 

 eligen  alternativas  con  pseudo-recompensas  más  altas  para  lograr  una  meta 

 secundaria.  Como  estrategia  conductual  para  reducir  la  complejidad,  los  individuos 

 descomponen  las  rutinas  en  pasos  más  simples  y  la  finalización  de  tales  estados 

 intermedios  es  gratificante  en  sí  mismo.  Por  lo  tanto,  los  subobjetivos  se  establecen 

 de  forma  jerárquica  y  su  consecución  actúa  como  pseudo-retroalimentación,  lo  cual 

 impulsa  el  aprendizaje  e  influye  en  la  toma  de  decisiones.  Aún  así,  esta  notable 

 preferencia  por  los  estímulos  predictivos  de  pseudo-recompensa  no  se  ha  dilucidado 

 como  un  factor  potencial  involucrado  en  el  comportamiento  de  elección 

 subóptimo.El  objetivo  de  la  presente  tesis  es  investigar  los  correlatos  conductuales  y 

 neuronales  del  procesamiento  de  pseudo-feedback  en  decisiones  subóptimas.  Para 

 alcanzar  este  objetivo,  se  presentan  tres  estudios.  En  el  primer  estudio  de 

 comportamiento,  226  estudiantes  universitarios  participaron  en  dos  experimentos 

 para  probar  la  hipótesis  de  que  las  pseudo  recompensas  sesgan  las  decisiones.  La 

 tarea  constaba  de  dos  alternativas,  presentadas  como  dos  formas  que  se  asociaban 

 con  diferentes  probabilidades  de  obtener  pseudo-recompensas.  Los  resultados  de 

 este  experimento  revelaron  que  las  personas  preferían  la  opción  con  más 

 pseudo-recompensa  incluso  cuando  esto  implicaba  una  reducción  en  la  recompensa 

 final  global.  En  el  segundo  estudio,  se  registró  EEG  de  veinticuatro  sujetos  sanos 

 que  participaron  en  una  versión  de  la  tarea  de  dos  pasos  utilizada  en  el  experimento 

 2  del  Estudio  1.  En  particular,  en  esta  tarea,  la  probabilidad  de  recompensa  final 

 disminuyó  para  la  opción  más  seleccionada  (generalmente  la  que  proporcionó  más 

 pseudo-recompensas,  como  se  muestra  en  el  estudio  1).  Se  utilizaron  tres  modelos 

 de aprendizaje por refuerzo 
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 diferentes  para  explicar  los  datos  comportamentales  y  sus  resultados  se  usaron  para 

 estudiar  la  actividad  oscilatoria  asociada  con  errores  de  predicción  de  recompensas 

 y  pseudo-recompensas.  Los  resultados  mostraron  que  la  oscilación  theta  frontal  se 

 asoció  con  errores  de  predicción  de  recompensa  y  pseudo-recompensa.  Finalmente, 

 en  el  tercer  estudio,  examinamos  el  papel  del  Estriado  Ventral  en  los  errores  de 

 predicción  de  recompensas  y  pseudo-recompensas  durante  la  toma  de  decisiones  en 

 entornos  subóptimos.  Diecinueve  estudiantes  universitarios  participaron  en  un 

 estudio  de  Resonancia  Magnética  funcional  realizando  una  versión  modificada  de  la 

 tarea  monetaria  de  dos  pasos.  Los  resultados  mostraron  que  dicha  estructura  estuvo 

 involucrado  en  el  cálculo  de  los  errores  de  predicción  de  feedbacks  y 

 pseudo-feedbacks,  y  que  la  preferencia  por  la  opción  que  ofrecía  más 

 pseudo-recompensa  estaba  relacionada  con  la  actividad  de  esta  área  con  errores  de 

 predicción  de  pseudo-recompensa.  En  general,  los  tres  estudios  mostraron  que  el 

 logro  de  los  subobjetivos  es  un  refuerzo  y  podría  sesgar  las  decisiones  hacia 

 elecciones  subóptimas.  Además,  hemos  demostrado  la  participación  crítica  de  la  red 

 de  recompensas  (en  particular,  el  estriado  ventral)  y  la  actividad  oscilatoria  theta  en 

 el aprendizaje por refuerzo jerárquico. 
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 Chapter 1 : Introduction 

 Decision-making  is  a  vital  skill  for  everyday  living,  adjustment  to  the 

 environment,  and  autonomy,  as  it  is  the  capacity  to  pick  between  two  or 

 more  possibilities  to  accomplish  one  or  more  goals  (Broche-Perez  et  al., 

 2016).  Most  cognitive  activity  can  be  related  to  a  decision  of  some  kind,  and 

 at  a  time,  such  association  might  be  translated  into  actions.  Therefore,  brain 

 functioning  is  related  to  behaviour,  permanently  striving  to  adapt  to  the 

 environment  and  its  changes  (Morelli  et  al.,  2021).  Our  behaviour,  in 

 general,  depends  on  the  decision-making  processes  that  are  carried  out  daily 

 to  cover  our  needs  and  goals.  Considered  from  this  point  of  view,  the 

 neuroscience  of  decision  making  (NDM)  provides  information  on  the  brain 

 mechanisms  that  underlie  cognition  during  our  choices,  allowing  a  better 

 understanding  of  the  foundational  elements  of  cognition  and  its  impact  on 

 our behaviour (Doya, 2012; Marchau et al., 2019). 

 Most  of  the  decisions  that  can  be  represented  experimentally  involve 

 some  observable  behaviour  that  indicates  that  one  alternative  has  been 

 chosen  over  the  others.  In  fact,  most  of  the  theory  about  the  brain  processes 

 that  underlie  decision-making  brain  function  comes  from  studying  the  neural 

 substrate  during  the  selection  or  planning  of  actions,  either  as  perceptual 

 responses  to  a  stimulus  or  as  a  result  of  goal  pursuance  (Doya,  2012). 

 Actually,  decision-making  is  a  broad  topic  that  has  been  studied  under 

 multiple  approaches,  including  philosophy,  neuroeconomics,  computational 

 science,  learning,  and  psychophysics.  However,  there  is  a  giant  distance 

 between  a  single  decision  and  a  committed  behavioural  preference. 

 Depending  on  the  complexity  of  decisions,  they  might  involve  a  variety  of 

 processes,  including  combining  evidence  over  time,  filling  information 

 threshold,  giving  value  to  different  decisions,  combining  multiple  sources  of 
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 information  and  learning  associations,  among  many  others.  This  might  also 

 yield  to  a  variety  of  decision  types.  For  example,  value-based  decisions 

 emphasise  the  weighting  of  alternatives  according  to  their  expected  utility 

 (Polania  et  al.,  2014;  Machau  et  al.,  2019),  perceptual  responses  can  explain 

 cases  that  depend  on  the  stimuli’s  features  and  the  reaction  to  the 

 environment,  and  phenomena  such  as  commitment  and  complex  learning  are 

 observed  in  the  case  of  more  elaborate  behavioural  routines  (Diuk  et  al., 

 2013a). 

 Studies  on  valuation  and  reward  processing  have  the  potential  to  describe 

 behavioural  preference  and  learning  strategies  that  maximise  reward  (Sutton 

 and  Barto,  2019).  Therefore,  the  ability  to  weigh  options  based  on  the 

 outcome  is  considered  a  sophisticated  mechanism  to  approach  desirable 

 results.  In  addition,  it  is  hypothesised  that  the  brain  mechanisms  that  support 

 this  reward  processing  also  facilitate  learning.  In  fact,  many  studies  on 

 decision-making  have  relied  heavily  on  reinforcement  learning  (RL)  theory. 

 RL  is  based  on  calculations  relating  reward  to  behavioural  'state'  and  a 

 number  of  alternative  actions.  For  instance,  while  many  decisions  are 

 reactive  and  almost  automatic,  individuals  often  spend  time  and  energy 

 thinking  about  the  possible  outcomes  from  different  options  and  their  relative 

 value  (Dulac-Arnold,  2019;  Dayan,  2002).  Under  this  vision, 

 decision-making  is  refined  due  to  learning  through  individual  actions 

 (Pateria et al., 2021; Deco et al., 2013). 

 However,  this  perspective  continues  to  be  limited  to  understanding 

 complex  actions,  as  it  is  the  case  of  an  activity  that  depends  on  a  long 

 sequence  of  steps  (e.g.,  paying  the  bills  online  requires  multiple  steps  from 

 turning  on  the  laptop  to  completing  the  payment).  Yet,  the  brain 

 representation  of  decision-making  has  been  approached  by  involving  more 

 10 



 primitive  mechanisms  and  statistical  learning.  Therefore,  decision-making 

 requires  the  involvement  of  intricate  brain  networks  underlying  complex 

 computational  representations  (Pateria  et  al.,  2021;  Rushworth  et  al.,  2011; 

 Botvinick et al., 2012). 

 Decision Making and Learning  . 

 The  concepts  of  learning  and  decision-making  are  inextricably 

 intertwined.  Typically,  individuals  are  able  to  check  into  the  precise  result  of 

 their  decision  only  after  they  have  already  taken  it.  These  outcomes  operate 

 as  insights  and  provide  the  individuals  with  a  more  detailed  understanding  of 

 the  features  of  their  chosen  alternatives.  Therefore,  this  valuation  helps  to 

 influence  their  subsequent  decisions  under  the  same  or  similar  conditions 

 (Gebhardt  et  al.,  2021;  Diuk  et  al.,  2013a).  Despite  this  inherent  link  between 

 decision-making  and  learning  processes,  many  of  the  decision-making 

 theories  do  not  contain  or  adequately  stress  a  learning  component  (Pleskac, 

 2008  ;  Hassall, 2019). 

 Individuals  strive  to  find  a  way  to  optimise  their  chances  of  acquiring  the 

 resources  necessary  for  survival  while  decreasing  their  chances  of  meeting 

 conditions  that  may  cause  loss  or  damage.  To  address  this,  individuals 

 develop  a  number  of  strategies,  such  as,  as  previously  stated,  accumulating 

 evidence  from  previous  interactions  with  the  environment  to  build 

 knowledge  about  their  odds.  This  story  of  interchange  allows  the  individuals 

 to  predict  and  examine  new  findings  to  enhance  learning  and  upgrade  their 

 ability  to  deal  with  uncertainty.  Therefore,  different  systems  help  monitor  the 

 results  of  decisions.  These  different  systems  coexist,  as  shown  by  various 
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 neuroimaging  studies  (O’doherty  et  al.,  2017;  Decker  et  al.,  2016).  Among 

 others,  two  main  strategies  to  control  behaviour  have  been  identified:  those 

 in  which  actions  are  guided  by  the  characteristics  of  the  stimulus  (i.e.,  cue 

 learning)  and  those  guided  by  the  features  of  the  reward  (goal-directed 

 behaviours;  Decker  et  al.,  2016).  In  the  first  case,  the  actions  are  determined 

 by  the  reaction  to  the  occurrence  of  an  external  stimulus  (stimuli  driven), 

 while  the  goal-directed  behaviours  seem  to  be  motivated  towards  a  specific 

 reward  (Nachum  et  al.,  2018;  Valentin  et  al.,  2007).  These  strategies  have 

 also  been  distinguished  and  are  dissociable,  referred  to  as  habitual 

 decision-making  and  objective-oriented  decision-making.  These  two  distinct 

 sorts  of  evaluative  processes  can  influence  one's  choices  and  are 

 distinguished  and  represented  differently  by  theoretical  models  (Daw  et  al., 

 2005;  2011).  Stimuli-driven  behaviours  have  been  sometimes  referred  to  as 

 habitual  behaviours  where  monitoring  and  error  detection  systems  are  not  so 

 embedded as in goal-directed behaviours (Decker et al., 2016). 

 In  any  case,  the  stimuli-driven  strategy  has  been  linked  to  decision-making 

 and  statistical  learning  (Polania  et  al.,  2014;  Mormann  and  Russo,  2021).  In 

 this  theory,  the  individual  responses  highly  depend  on  the  magnitude  and  the 

 salience  of  a  stimulus,  and  consequently,  this  response  might  be  matched  to  a 

 reward.  In  a  stimulus-driven  behaviour,  decision-making  occurs  more 

 quickly  and  automatically  and  would  be  closer  to  primitive  adaptive 

 mechanisms.  Hence,  under  this  strategy,  the  interchange  with  the 

 environment  is  more  reactive,  making  it  very  difficult  to  be  used  in  more 

 complex behaviours where the salience of the stimuli is not the central factor. 

 On  the  other  hand,  a  goal-guided  strategy  proposes  a  proactive  approach 

 to  foraging  the  exchange  between  individuals  and  their  environment. 

 Therefore,  regarding  this  strategy,  individuals  seek  the  best  options  and  tend 
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 to  repeat  those  actions  associated  with  rewards  and  reduce  those  actions  that 

 move  them  away  from  a  desirable  result  (Osband  et  al.,  2019).  Therefore, 

 this  learning  strategy  is  progressive  and  allows  the  control  of  responses, 

 associating  decision-making  with  the  value  given  to  the  reward  and  not  to 

 the  stimulus.  A  slower  goal-directed  approach  examines  possible  actions  and 

 their  expected  outcomes,  while  a  faster  and  more  automatic  habitual  process 

 connects  rewards  with  cues,  allowing  for  the  reflexive  repeating  of 

 previously  successful  activities  (O’Doherty  et  al.,  2017).  More  interestingly, 

 these  strategies  (stimulus-driven  and  goal-directed)  appear  to  work  together 

 and  coexist,  as  shown  in  rodents  (Dickinson  et  al.,  1995)  and  human 

 (Valentin  et  al.,  2007)  experiments.  In  fact,  their  parallel  presence  in  learning 

 and  decision-making  may  indicate  that  both  complement  each  other  to 

 facilitate  access  to  resources  and  meet  survival  needs.  Therefore,  in  both 

 strategies,  individuals  use  adaptive  mechanisms  to  being  able  to  reduce 

 uncertainty and make beneficial decisions. 

 As  explained,  individuals  pursue  goals  to  increase  their  benefits,  and  this 

 ability  to  direct  behaviour  towards  goals  requires  the  capacity  to  track 

 rewards,  their  likelihood  of  occurrence,  and  additional  related  characteristics 

 (e.g.,  risk,  magnitude,  valence).  The  term  "value"  is  used  in  the  literature  to 

 refer  to  the  manner  in  which  these  characteristics  are  integrated.  Therefore  a 

 ‘value  function’  is  a  way  of  operationalisation  of  such  adaptive  strategy, 

 where  we  can  foresee  a  potential  connection  with  RL  schemes  and 

 computational  modelling  such  as  temporal  difference.  In  the  literature, 

 different  types  of  value  functions  have  been  proposed.  Among  the  most  used, 

 some  of  them  are  linked  to  the  value  of  the  available  actions,  Q(s,  a)  (being  s 

 the  available  states  and  the  actions,  see  below)  and  others  associated  with  the 

 value  of  achieving  certain  state  V(s),  also  known  as  state  value  function  . 

 Both  the  action  selection  and  the  value  function  are  determined  by  the  total 
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 amount  of  rewards  after  achieving  a  final  state  or  receiving  feedback  (Sutton 

 and  Barto,  1998;  2018).  This  idea  resembles  the  choice  theory  (Gardner  et 

 al.,  2019;  Shiv  et  al.,  2005),  which  proposes  that  the  anticipated  value  of  an 

 option  or  action  is  an  additive  function  of  its  various  reward  outcomes, 

 which  means  that  it  represents  learning  through  a  record  of  previous  choices. 

 Along  with  the  choice  behaviours,  every  option  is  weighted  by  its  chance  of 

 occurrence.  This  approach  to  choice-based  behaviours  is  coherent  with  the 

 "prospect  theory"  developed  by  Kahneman  and  Tversky,  which  was 

 successful  in  predicting  a  variety  of  human  behaviours.  Particularly,  the 

 prospective  theory  explains  the  deviance  from  the  predictions  of  classical 

 decision  theory,  and  it  provided  a  strong  impetus  for  research  on  value-based 

 decision  making  (O’Doherty,  2017;  D'Acremont  and  Bossaerts,  2008; 

 Glöckner  and  Pachur,  2012;  Takahashi,  2012).  This  connection  is  evidence 

 that  Learning  and  Decision  Making  are  intertwined  in  a  permanent  bias  yet 

 not  always  clarified.  However,  neuroscience  and  computational  models  have 

 shed  light  on  the  neural  and  behavioural  substrates  that  compound  such 

 adaptive mechanisms encompassing decision-making and learning. 

 Reinforcement Learning (RL) 

 When  we  think  about  the  nature  of  learning,  the  notion  that  we  learn 

 through  interacting  with  our  environment  is  usually  the  first  that  comes  to 

 mind.  Even  though  it  can  be  approached  as  an  abstract  concept,  there  have 

 been  diverse  computational  efforts  to  address  it  from  a  more  measurable 

 perspective.  RL  constitutes  one  of  the  most  widespread  and  well-founded 

 approaches  to  addressing  instrumental  learning,  especially  in  explaining  the 
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 interactions  of  an  agent  with  the  environment.  RL  describes  learning  in  an 

 incremental  way,  where  individuals  collect  evidence  on  a  trial-and-error 

 basis  to  get  closer  to  a  desirable  reward  (Dulac-Arnold  et  al.,  2019).  RL  aims 

 to  understand  goal-directed  learning  and  decision-making  in  a  specific  time 

 frame  through  computational  methods.  Unlike  other  formal  models,  RL 

 seeks  to  describe  the  interaction  of  an  agent  with  its  environment  in  a 

 deterministic  way,  giving  a  predominant  role  to  the  agent's  choices  and 

 attempting  to  maximise  future  rewards.  Therefore,  the  agent  is  not  just  a 

 passive  learner  but  a  decision-maker.  In  fact,  the  conceptualisation  of  a  more 

 active  learner  constitutes  a  pioneering  method  in  addressing  computational 

 difficulties  such  as  learning  involving  long-term  goals  acquisition  (Sutton 

 and  Barto,  1998).  Moreover,  RL  constitutes  a  theoretical,  scientific,  and 

 computational  framework  that  defines  the  interaction  of  an  agent  with  the 

 ability  to  learn  with  its  environment  in  terms  of  states,  actions  and  rewards 

 (Sutton and Barto, 1998; Dayan, 2002; Moerland et al.; 2020). 

 Indeed,  RL  focuses  on  the  agent's  actions  concerning  its  environment, 

 considering  that  the  environmental  variables  could  change  over  time  along 

 with  its  own  expectations  of  the  reward.  Then,  goals  and  actions  are  valued 

 every  time  the  agent  exchanges  with  the  environment  and  weighted  in 

 relation  to  previous  decisions.  Therefore,  this  approach  is  based  on 

 goal-directed  behaviour,  where  the  agent  consciously  strives  for  a  desirable 

 outcome.  As  a  formal  method,  RL  attempts  to  explain  learning  by 

 considering  the  characteristics  of  the  environment  (states),  the  behaviour 

 motivated  by  an  expectation  (actions)  and  the  impact  of  the  behaviour 

 chosen  to  obtain  a  result  (rewards,  see  Figure  1,  Sutton  and  Barto,  1998  ). 

 These  characteristics  imply  an  awareness  of  causality  between  actions  and 

 rewards,  an  intention  to  reduce  uncertainty,  and  the  presence  of  declared 

 goals  that  guide  behaviour  and  expectation.  RL  uses  a  rational  approach, 
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 beginning  with  a  fully  developed,  interactive,  goal-seeking  agent  trying  to 

 maximise its gain (Solway and Botvinick, 2012; Levine, 2018). 

 Figure  1.1  Representation  of  a  standard  RL  model,  where  the  agent  has  full  access  to  the 
 reward  history  and  learns  continuously  and  cyclically.  This  scheme  is  known  as  the 
 Markovian  Decision  Process  (MDP).  These  models  propose  a  rational  agent  in  an 
 environment  in  which  outcomes  might  be  probabilistic  but  also  depend  partially  on  its 
 decisions,  which  improves  its  capacity  to  access  rewards  permanently  and  refines  its  actions. 
 The  agent  increases  its  ability  to  take  benefits  from  the  environment  in  a  progressive  manner 
 by  collecting  evidence  from  previous  actions  (Botvinick,  2009).  Reproduced  from  Sutton 
 and Barto (2015) with permission. 

 Therefore,  in  the  RL  framework,  the  agent  is  the  component  that 

 determines  what  action  to  perform.  The  agent  can  use  any  observation  from 

 the  environment  and  any  internal  rule  that  it  possesses  to  pick  an  available 

 action.  To  clarify,  the  agent  could  be  a  human  individual,  animal,  robot,  a 

 local  network  or  any  decision-maker  capable  of  learning  (Sutton  and  Barto, 

 2018;  Osband  et  al.,  2019).  The  mapping  between  states  and  actions  is 

 known  as  policy.  After  the  first  state  is  provided  by  the  environment  to  the 

 agent,  internal  rules  are  updated  following  a  Markovian  chain.  As  a  result, 

 the  agent  processes  each  state  using  a  policy  function  that  determines  what 

 action  to  take  based  on  the  value  of  each  action.  Yet,  this  policy  function  is 

 updated  every  time  the  action  consequence  is  resolved.  In  addition,  RL 

 methods  are  determined  by  how  an  agent  responds  to  a  reward  signal  and 
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 feedback-related  cues  (information  available  in  the  environment).  Therefore, 

 it  is  essential  to  understand  how  to  optimise  goal-directed  behaviours  and 

 maximise  the  desirable  reward  in  the  future  (refinement  process).  To 

 accomplish  this,  the  agent  gathers  information  about  the  actions  taken  in  the 

 past  and  uses  it  to  improve  the  policy  for  the  future.  Furthermore,  RL  models 

 are  based  on  the  conception  of  scalar  learning,  where  primary  information 

 comes  from  the  difference  between  the  expected  rewards  and  the  actual 

 repercussions  of  the  agent's  actions.  This  contrast,  known  as  Prediction  Error 

 (PE),  is  the  basis  of  the  behavioural  refinement  process  and  leads  to  the 

 attempt  to  close  that  gap  between  what  is  expected  and  what  is  obtained  in  a 

 new  state  (Botvinick,  2012).  PEs  are  commonly  considered  the  engine  of 

 learning,  as  they  are  used  to  update  expectations  in  order  to  make  predictions 

 more  accurate.  Thus,  the  speed  of  adjustment  to  the  PE  and  the  improvement 

 in  the  accuracy  of  the  decisions  might  be  a  critical  indicator  to  describe  the 

 agent's  learning  process.  When  prediction  errors  are  refined  and  adjusted  in 

 relation  to  a  reward  and  its  representation  and  expectation,  they  are  known  as 

 Reward Prediction Errors (RPE). 

 As  mentioned,  RL  models  include  the  interaction  between  a 

 decision-maker  and  its  environment,  in  which  the  agent  attempts  to  achieve  a 

 goal  despite  environmental  uncertainty.  Therefore,  RL  is  also  a  model 

 capable  of  describing  a  process  of  adaptation  to  environmental  demands, 

 gaining  certainty  about  the  effectiveness  of  their  actions  to  access  favourable 

 results  (Dayan  and  Balleine,  2002;  Moerland  et  al.;  2020).  In  fact,  the  agent's 

 actions  might  include  altering  the  future  state  of  the  environment,  thus 

 influencing  the  available  options  and  possibilities  in  the  future.  For  instance, 

 a  driver  that  explores  a  new  route  to  get  to  the  same  destination  or  a  surgeon 

 that  explores  a  new  procedure  to  retire  a  subdermal  tumour  are  examples  of 

 agents  that  influence  the  action  selection  process.  Thus,  decisions  gain 
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 precision  as  a  result  of  estimating  the  consequences  of  actions,  which  may 

 involve  foresight  or  preparation.  At  the  same  time,  RL  assumes  the  results  of 

 the  actions  cannot  be  fully  predicted  in  any  case;  consequently,  the  agent 

 must  frequently  check  its  environment  and  react  appropriately  in  order  to 

 adjust its behaviour. 

 The Markovian Decision Process (MDP) 

 As  expressed  before,  MDP  is  a  representation  of  the  environment's 

 "dynamics",  or  how  the  environment  will  react  to  probable  actions  taken  by 

 the  agent  in  a  particular  state.  More  formally,  an  MDP  is  supplied  with  a 

 transition  function  ,  which  outputs  a  probability  of  moving  to  any  of  the 

 subsequent  stages  given  the  present  state  and  an  action  taken  by  the  agent 

 among  the  pool  of  available  actions  (Otterlo  and  Wiering,  2012). 

 Additionally,  an  MDP  has  a  reward  function.  The  reward  function, 

 intuitively,  generates  a  reward  or  punishment  in  response  to  the  present  state 

 (and,  possibly,  an  action  taken  by  the  agent  and  the  next  state  of  the 

 environment).  The  combination  of  such  functions  is  referred  to  as  the  model 

 of  the  environment  ,  and  the  whole  knowledge  of  this  model  might  allow  the 

 agent  to  foresee  an  accurate  representation  of  the  upcoming  outcomes.  So, 

 the  MDP  is  the  problem  that  an  agent  needs  to  address  through  learning 

 strategies  and  the  policy  that  predicts  future  rewards  is  the  solution  (Dayan 

 and Niv, 2008). 

 Nevertheless,  in  most  cases,  particularly  the  naturalistic  ones,  the  agent 

 does  not  have  accumulative  evidence  to  have  a  full  model  of  the  environment 

 (MDP  associated  with  the  environment).  As  a  result,  the  agents  cannot 
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 accurately  estimate  a  policy,  which  is  uncertain  and  depends  on  the  further 

 exploration  and  exploitation  of  the  available  actions  and  the  immediately 

 previous  and  future  outcomes.  Notably,  the  main  difference  remains  in  the 

 access  to  the  transition  and  reward  functions  associated  with  the 

 environment.  The  sooner  these  functions  are  estimated  and  approximated, 

 the  sooner  the  agents  can  use  them  to  find  an  optimal  policy  (Sutton  and 

 Barto,  1998;  Osband  et  al.,  2019).  To  determine  the  best  strategy,  the  agent 

 must  observe  them  and  interact  with  the  environment.  This  reinforcement 

 learning  problem  requires  that  the  agent  must  estimate  a  policy  by 

 refining/updating  its  assumptions  about  the  environment's  dynamics.  The 

 agent  gradually  gains  an  understanding  of  how  the  environment  reacts  to  its 

 actions and may thus begin to estimate an optimal policy. 

 Model-based vs Model-free algorithms. 

 Two  basic  categories  of  RL  models  have  been  proposed,  the  Model-free 

 RL  and  Model-based  RL  (Daw  et  al.,  2005;  Daw,  2015;  Decker  et  al.,  2016). 

 In  model-free  RL,  trial  and  error  outcomes  are  used  to  adjust  an  action  value 

 related  to  a  stimulus,  taking  observations  directly  from  experience  without 

 estimating  a  whole  map  of  the  environment  (model  of  the 

 world/environment).  This  method  encourages  the  re-enactment  of  previously 

 learned  behaviours,  this  is,  repeating  every  action  that  derived  in  a  positive 

 reward  without  or  just  partially  knowing  the  transition  function  and  reward 

 function.  Therefore,  the  agent  follows  his  trial-and-error  experience  for 

 setting  up  the  optimal  policy,  which  might  combine  possibly  erroneous 

 estimates  or  beliefs  about  state  values  since  the  model  of  the  environment  is 

 not  fully  known  (Dayan  and  Niv,  2008).  Model-based  RL,  on  the  other 

 hand,  uses  a  flexible  but  computationally  intensive  procedure  to  make 
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 judgments  by  assigning  a  "decision  tree",  which  consists  of  links  between 

 state  transitions  and  outcomes  (known  as  the  transition  function  and  the 

 reward  function,  Huang  et  al.,  2020).  In  Model-based  RL,  the  agent  builds  an 

 internal  model  of  the  environment's  transitions  and  the  imminent  outcomes 

 based  on  available  information  on  the  possible  actions.  Therefore, 

 model-based  RL  is  more  statistically  efficient  than  model-free  RL,  but  both 

 accomplish  the  general  purpose  of  any  RL  model,  which  is  policy 

 optimisation. 

 In  this  context,  a  model-based  RL  estimates  the  best  policy  by  utilising  a 

 model  of  the  environment.  The  agent  has  access  to  an  approximation  of  the 

 transition  and  reward  functions,  which  have  been  learnt  from  the 

 environment  or  provided  to  the  agent.  In  general,  because  the  agent  knows  an 

 estimate  of  the  transition  function,  it  may  theoretically  forecast  the  dynamics 

 of  the  environment  faster  and  more  accurately  than  in  model-free  RL. 

 However,  it  is  worth  noting  that  the  agent's  transition  and  reward  functions 

 enhance  his  estimate  of  the  optimum  policy  by  approximations  of  the  "real" 

 functions.  In  contrast,  a  model-free  RL  determines  the  best  policy  relying  on 

 guessing  the  environment's  dynamics  (transition  and  reward  functions).  In 

 practice,  a  model-free  RL  algorithm  either  estimates  a  "value  function"  or  a 

 "policy"  directly  from  experience  (the  agent's  interaction  with  his 

 environment)  without  employing  a  prior  knowledge  or  learning  phase  that 

 provides a model of the environment. 

 To  summarise,  the  conceptualisation  of  model-free  and  model-based  RL 

 depends  on  whether  the  agent  employs  predictions  about  the  environment's 

 reaction  when  learning  or  behaving.  The  agent  can  use  a  single  prediction 

 from  the  model  of  the  future  reward  and  state  (model-free),  or  it  can  query 

 the  whole  model  for  the  predicted  next  reward  or  the  whole  distribution  of 
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 next  states  and  next  rewards  (model-based).  These  predictions  can  be 

 generated  completely  independently  of  the  learning  agent,  for  example,  by  a 

 computer  code  or  another  agent  that  knows  the  rules  of  the  environment.  For 

 instance,  in  a  board  game,  an  agent  would  go  through  model-free  RL  when 

 evaluating  a  policy  from  his  own  interaction  with  the  game;  this  is  if  his 

 plays  succeeded  or  not.  Instead,  in  model-based,  the  agent  would  have  a  full 

 or  approximate  understanding  of  the  rules  behind  the  game.  Some  standard 

 RL  approaches  propose  a  division  between  two  components  of  a  learning 

 system  or  agent:  an  actor  that  selects  actions  based  on  their  weighted 

 associations  with  the  current  state  of  the  world  (policy)  and  a  critic  that 

 generates  an  estimate  of  the  reward  associated  with  the  environment  (value 

 function).  Both  the  actor's  policy  and  the  critic's  value  function  are  learnt  via 

 experience.  However,  standard  versions  of  these  actor-critic  schemes  seem  to 

 fail  in  predicting  learning  in  more  complex  situations.  We  will  take  a  closer 

 look  at  the  actor-critic  approach  when  discussing  the  hierarchical 

 reinforcement  learning,  elucidating  how  this  combination  can  outline  the 

 existence  of  different  systems  during  action  selection  and  feedback 

 processing. 

 Reinforcement Learning (RL) and its link to Decision Making (DM). 

 RL  is  an  approach  to  describe  the  adaptation  in  which  an  agent  uses  prior 

 experience  to  enhance  future  results.  The  RL  theories  have  contributed  to  the 

 development  of  value-based  choice  theories,  therefore,  have  shed  light  on  the 

 bridge  between  Learning  and  DM,  given  its  capacity  to  operationalise  the 

 relationship  between  individuals  and  the  environment.  As  stated  above,  in 
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 RL,  actions  are  chosen  based  on  their  value  functions  ,  which  represents  the 

 predicted  future  reward  associated  with  each  available  action.  The  exposition 

 of  punishments  and  rewards  and  the  role  of  the  environment  in  every 

 interaction  may  affect  these  values,  updating  them  to  be  used  in  the  future. 

 Thus,  decision-makers  refine  their  choice  by  collecting  evidence  and  using  it 

 to  adjust  the  policy,  the  value  of  each  option  and  the  expected  value  of 

 rewards  (Lak  et  al.,  2020;  Lee  et  al.,  2012;  Niv,  2009).  How  individuals 

 value  different  options  and  pick  their  choice  among  a  pool  of  options  has 

 been  in  the  spot  of  different  disciplines  such  as  economics,  psychology,  and 

 neuroscience.  Tracing  back  to  the  Decision-Making  concept,  among  others, 

 there  have  been  two  main  traditions  that  have  hoarded  the  attention;  these  are 

 the  normative  perspective  (von  Neumann  and  Morgenstern,  2007)  and  the 

 prospect  theory  (Kanheman  and  Tversky,  1983;  Solaki  et  al.,  2021). 

 Economical  normative  theories  emphasise  the  concept  of  utility,  where 

 individuals  always  choose  the  action  with  the  best  return  in  benefits.  This 

 approach  considers  that  after  identifying  well-defined  criteria,  individuals 

 can  determine  the  most  optimal  course  of  action  (Malecka,  2020;  Baron  et 

 al., 2004). 

 Nevertheless,  this  framework  fails  to  explain  more  naturalistic  schemes 

 where  the  environment  and  the  expectations  change  constantly.  Furthermore, 

 an  idealised  set  of  conditions  with  all  the  information  revealed,  prospect 

 theories  bring  the  idea  of  a  decision-making  process  based  on  heuristics, 

 which  points  out  an  individual  who  self  discovers  how  the  environment 

 operates  by  trial  and  error.  This  approach  is  particularly  efficient  in 

 describing  an  agent  gaining  control  over  uncertain  conditions  while  relevant 

 information  associated  with  rewards  needs  to  be  discovered  (Kahneman  and 

 Tversky,  1979;  Solaki  et  al.,  2021).  Besides  these  two  perspectives  being 

 fundamental  in  the  scientific  exploration  of  the  neural  correlates  of  Decision 
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 Making,  none  of  them  involves  the  issue  of  learning,  which  in  theory  must 

 take  place  any  time  an  agent  develops  a  preference  or  establishes  a  choice 

 behaviour. 

 For  instance,  normative-economic  theories  stand  that  individuals  weigh 

 their  options  regarding  their  utility,  choosing  any  time  the  option  with  the 

 greatest  value,  therefore,  the  most  optimal  one.  Although  this  paradigm  is 

 especially  successful  when  all  the  criteria  involving  the  decision  are  known, 

 it  does  not  consider  aspects  such  as  exploration  or  sub-optimal  decision 

 making  (Lee  et  al.,  2012;  van  der  Meer  and  Redish,  2010;  Lak  et  al.,  2020). 

 It  is  clear  that  all  individuals  pursue  to  maximise  their  rewards,  but  from  the 

 normative  perspective,  the  mechanisms  underlying  the  value  functions  are 

 either  evolutionary  aspects  or  determined  by  individual  experience.  In  fact, 

 individuals'  mechanisms  involved  in  adjusting  for  the  immediate  subsequent 

 decision  are  overlooked  and  sealed  as  a  non-observable  variable  (Lee  et  al., 

 2012).  On  the  other  hand,  RL  describes  how  an  agent  updates  its  value 

 function  anytime  it  enters  in  contact  with  the  environment  and  gets  an 

 outcome  from  its  actions.  Therefore,  RL  provides  greater  scope  to  the  NDM 

 anytime  the  interaction  between  an  agent  and  the  environment  influences 

 choice behaviour. 
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 Figure  1.2.  According  to  economic  theories,  decision-making  refers  to  picking  the  action 
 with  the  highest  benefit.  In  reinforcement  learning,  actions  are  selected  probabilistically 
 (i.e.,  softmax)  based  on  their  value  functions.  In  addition,  value  functions  are  modified 
 based  on  the  outcome  (reward  or  punishment)  of  the  agent’s  selected  action.  Reproduced 
 from Lee et al. (2012) with permission. 

 As  in  the  cases  of  the  normative  theories,  RL's  objective  is  to  maximise 

 future  rewards.  Similarly,  individuals  value  the  utility,  but  in  RL,  the  value 

 function  lies  on  the  expected  value  of  the  rewards  and  is  usually  estimated  on 

 the  bases  of  trial  and  error.  This  standard  RL  idea  is  very  efficient  in 

 understanding  feedback  processing  when  the  reward  is  not  so  distant  from 

 the  actions  (Niv,  2009;  FitzGerald  et  al.,  2012;  Adkins  and  Lee,  2021).  This 

 central  idea  of  a  value-based  choice  is  not  just  pivotal  for  an  RL  agent 

 exploring  the  world,  but  also  it  is  coherent  with  the  idea  of  an  individual  who 

 reckons  for  optimality.  Perhaps  the  most  important  insight  of  this 

 convergence  is  that  the  value  function  happens  in  a  specific  time  frame  or 

 temporal  resolution  where  the  delivery  of  the  reward  is  expected.  As  shown 
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 in  the  graph,  the  RL  agent  accounts  for  a  heuristic  to  progressively  discover 

 the action with the greatest value as a result of collecting evidence. 

 Neural Correlates of Reward Processing. 

 Several  studies  have  been  conducted  to  ascertain  the  neurological 

 substrates  of  value  and  reward-related  behaviour  (goal-oriented  behaviour). 

 While  causal  relationships  are  not  always  obvious  due  to  the  variety  of 

 components  involved  in  such  processes,  decision-making  can  be  separated 

 into  stages  involving  several  brain  regions.  These  stages  are  the  creation  of  a 

 representation,  the  choosing  of  options/action  selection,  the  monitoring  of 

 such  selections,  and  the  processing  of  feedback  (Morelli  et  al.,  2021;  Ernst, 

 2005).  Importantly,  the  reward  network  plays  a  role  in  these  stages.  The 

 reward  circuit  is  composed  of  multiple  cortical  and  subcortical  areas  that 

 collaborate  to  mediate  various  elements  of  incentive  learning,  resulting  in 

 adaptive  behaviours.  This  circuit  is  centred  on  the  cortical–Basal  Ganglia 

 network.  In  this  intricate  network,  the  prefrontal  cortex  (PFC)  and  the  Basal 

 Ganglia  are  involved  in  learning  and  in  the  formation  of  goal-directed 

 behaviours and action plans (Haber, 2017). 

 Therefore,  while  exerting  a  goal-directed  strategy,  the  reward  circuit  is 

 fundamental  to  building  a  behavioural  reaction  to  external  environmental 

 stimuli,  motivation  and  reward  information  related  to  a  goal.  In  other  words, 

 merely  desiring  to  succeed  or  access  a  reward  is  not  enough  to  prompt 

 learning.  For  instance,  to  play  a  tennis  match,  a  player  needs  to  understand 

 the  game's  rules,  the  available  options  and  so  on.  Thus,  developing  action 

 plans  aimed  at  achieving  a  goal  requires  a  blend  of  reward  processing, 
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 cognitive,  and  motor  control  mechanisms.  However,  cortical–Basal  Ganglia 

 processing  models  have  stressed  the  separation  of  functions,  emphasising 

 distinct  and  parallel  pathways  such  as  error  detection  and  statistical  encoding 

 of available information. 

 For  instance,  Schultz  demonstrated  (1998)  that  dopaminergic  neurons  of 

 the  Ventral  Tegmental  Area  (VTA)  compute  not  just  reward  but  also  reward 

 prediction  error.  VTA  is  located  close  to  the  substantia  nigra  in  the  midbrain. 

 Although  it  contains  a  variety  of  different  types  of  neurons,  it  is  primarily 

 defined  by  its  dopaminergic  neurons,  which  project  from  the  VTA 

 throughout  the  brain,  and  are  particularly  well-known  for  their  primary  link 

 to  the  Nacc/VS  and  amygdala,  serving  as  a  critical  component  of  the  reward 

 neural network. 

 Importantly,  Schultz  et  al.  (1998)  demonstrated  that  when  a  stimulus  is 

 reliably  connected  with  a  reward  (e.g.,  in  a  classical  conditioning  setting), 

 VTA  neurons  initially  fire  in  response  to  the  reward  delivery,  but  later  they 

 fire  in  response  to  the  predictive  or  conditioned  stimulus.  Alternatively 

 stated,  VTA  neurons  encode  the  history  and  the  prediction  of  the  reward. 

 Additionally,  when  the  experienced  outcome  deviates  from  what  is  expected, 

 the  same  neurons  activate.  This  signal  is  referred  to  as  prediction  error 

 (which  is  central  in  the  computation  of  reinforcement  learning  models),  and 

 it  is  capable  of  encoding  both  positive  and  negative  deviations  from  the 

 anticipated  outcomes  (positive  and  negative  prediction  errors).  This  evidence 

 paved  the  road  for  a  collaborative  research  commitment  spanning  the 

 domains  of  neurophysiology,  neurobiology,  and  psychology  to  elucidate  the 

 role  of  VTA  input  to  cortical  and  subcortical  brain  regions  in  the  neural 

 representation  of  value  and  reward  prediction  (Haber  and  Knutson,  2010; 

 Haber, 2017; Silvetti, Fias, and Verguts, 2014). 
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 While  reward-responsive  cells  are  found  throughout  the  brain,  the 

 cortical–basal  ganglia  circuit  lies  at  the  heart  of  the  reward  system.  The 

 medial  prefrontal  cortex  (mPFC),  the  ventral  striatum  (VS),  the  ventral 

 pallidum  (VP),  and  the  midbrain  dopamine  neurons  have  been  proposed  to 

 be  critical  regions  in  this  network.  Additionally,  other  regions,  such  as  the 

 dorsal  prefrontal  cortex  (dPFC),  lateral  habenular  nucleus,  amygdala,  and 

 thalamus,  contribute  significantly  to  the  regulation  of  the  reward  circuit 

 (Harber,  2017).  Through  connectivity  between  these  locations,  a  complex 

 neural  network  is  formed  that  is  topographically  ordered,  ensuring  functional 

 continuity  along  the  corticobasal  ganglia  circuit.  However,  the  reward  circuit 

 is  not  self-contained.  Additionally,  the  network  has  particular  locations 

 where  convergent  pathways  offer  an  anatomical  basis  for  functional  domain 

 integration (Haber, 2017). 

 Figure  1.3.  Connections  of  the  main  components  of  the  reward  circuit.  The  grey-highlighted 
 areas  reflect  the  regions'  basic  linkages.  Amygdala;  dACC,  dorsal  anterior  cingulate  cortex; 
 DPFC,  dorsal  prefrontal  cortex;  DS,  dorsal  striatum;  hypo,  hypothalamus;  LHb,  lateral 
 habenula;  MD:  mediodorsal  thalamic  nucleus;  OFC,  orbital  frontal  cortex;  PPT, 
 pedunculopontine  nucleus;  STN,  subthalamic  nucleus;  VTA,  ventral  tegmental  area;  SN, 
 substantia nigra. Reproduced from Haber (2017) with permission. 
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 A  key  structure  of  this  network  is  VS.  The  VS  is  critical  for  appetitive 

 behaviour  and  reward  anticipation  (Huang  et  al.,  2020),  encoding  value  at  the 

 time  of  reward  processing  and  promoting  value-based  learning  (Diekhof  et 

 al.,  2012).  Striatal  activity  is  often  correlated  with  individual  preferences  and 

 the  value  placed  on  a  particular  stimulus  by  participants  (Castegnetti  et  al., 

 2021; Levy and Glimcher, 2011; Sabatinelli et al., 2007). 

 Additionally,  the  mPFC  has  been  linked  to  several  elements  of  value 

 processing,  such  as  reward  prediction  and  outcome  value  coding.  Indeed,  in  a 

 meta-analysis  by  Oldham  et  al.  (2017)  with  22  neuroimaging  studies  using 

 monetary  incentive  tasks,  they  studied  the  brain  substrates  of  reward  and  loss 

 processing,  specifically  to  determine  whether  these  processes  were  governed 

 by  a  distinct  or  generalised  system  or  a  distinguishable  one.  The  authors 

 found  that  both  reward  and  loss  anticipation  stimulated  the  striatum, 

 thalamus,  amygdala,  and  insula,  showing  that  a  generalised  system  is 

 activated  during  this  processing  phase  (Figure  1.4).  This  mechanism  almost 

 certainly  plays  a  critical  part  in  creating  motivated  responses  that  allow  for 

 the achievement of an optimal outcome. 
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 Figure  1.4  .  Meta-analysis  on  (a)  reward  anticipation,  (b)  loss  anticipation  and  (c)  reward 
 outcome (consummatory phase). Reproduced from Oldham et al. (2017) with permission. 

 Unlike  some  earlier  studies,  the  findings  did  not  implicate  the 

 OFC/vmPFC  during  anticipation,  suggesting  that  it  only  participates  in 

 reward  anticipation  when  several  choices  are  available  (not  binary  paradigms 

 and/or  go-no  go  tasks)  or  when  outcomes  are  extremely  certain,  in  this  case, 

 a  more  model-free  RL  algorithm  for  instance.  These  results  from  the  ALE 

 meta-analyses  aligned  with  previous  findings  where  passive  rewards  and 

 reward  outcomes  were  linked  to  the  role  of  the  ventral  striatum  during 

 reward  processing  (Diekhof  et  al.,  2012;  Daw,  2015).  Functional 

 neuroimaging  studies  have  also  demonstrated  magnitude  and  likelihood 

 signals  associated  with  expected  outcomes  in  the  human  striatum  (Haber  and 

 Knutson  et  al.,  2010)  and  midbrain  (D’Ardenne  and  Hennigan,  2015), 

 paralleling  the  results  from  single-cell  dopaminergic  neurons  (Schultz, 

 1998),  which  increase  activity  in  proportion  to  both  the  amount  and 

 likelihood  of  the  expected  reward.  While  the  aforementioned  fMRI  studies 

 support  the  assumption  that  these  regions  encode  a  single  choice  variable 

 that  encompasses  both  probability  and  magnitude  (Palminteri  et  al.,  2015), 
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 some  studies  have  revealed  a  spatial  breakdown  of  probability  and 

 magnitude information within the striatum (Kahnt and Tobler, 2017). 

 Different  brain  areas  have  been  implicated  in  the  coding  of  value  in 

 model-based  (goal-directed)  and  model-free  behaviour.  Within  the  striatum, 

 separation  of  these  distinct  value  signals  has  been  demonstrated,  with 

 activity  in  the  caudate  nucleus  coding  for  model-based  value  signals  (Chiu  et 

 al.,  2017)  and  activity  in  the  putamen  coding  for  model-free  value  signals 

 (Lee  et  al.,  2014).  Both  areas,  however,  are  functionally  connected  to  the 

 mPFC,  where  they  can  be  combined  to  facilitate  value-based 

 decision-making.  This  is  consistent  with  the  aforementioned  findings 

 demonstrating  activity  associated  with  value  during  value-based  choosing 

 (Kahnt  and  Tobler,  2017).  Importantly,  depending  on  the  task  settings  and  the 

 characteristics  of  the  stimuli,  different  neural  correlates  could  be  elicited 

 (Wunderlicha  et  al.,  2009;  Lee  et  al.,  2012).  Therefore,  Multiple  brain  areas, 

 including  the  posterior  parietal  cortex,  have  been  connected  with  neural 

 activity  related  to  action-value  functions,  according  to  research.  (Platt  and 

 Glimcher  1999;  Gold  and  Shadlen,  2007;  Padoa-Schioppa  et  al.,  2017; 

 Noppeney,  2021),  dorsolateral  prefrontal  cortex  (Morris  et  al.,  2014,  Lin  et 

 al.,  2020)  and  premotor  cortex  among  others  (Lüscher  and  Janak,  2021; 

 Gremel  and  Costa,  2013;  Cai  et  al.  2011).  Additionally,  the  state  value 

 function  has  also  been  identified  and  tracked  in  various  brain  regions,  being 

 related  to  the  activation  of  the  posterior  cortex  and  the  dorsal  striatum  (Seo  et 

 al.,  2009;  Cai  et  al.,  2011;  Schultz,  2013).  Distinctly,  neurons  that  encode 

 state  value  functions  are  also  located  in  the  ventral  striatum  (Kim  et  al., 

 2009;  Cai  et  al.,  2011),  anterior  cingulate  cortex  (Seo  and  Lee,  2007;  Kolling 

 et  al.,  2016;  Soltani  and  Izquierdo,  2019),  and  amygdala  (Seo  and  Lee,  2007; 

 Jenison et al., 2011; Malvaez et al., 2019). 
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 Oscillatory Activity. 

 As  stated  in  previous  sections,  the  reward  network  is  crucial  for  learning 

 and  decision-making  processes.  The  VTA,  the  ventral  and  dorsal  striatum, 

 and  the  ventromedial  prefrontal  cortex,  among  others,  have  been  reported  as 

 components  of  reward  processing  mechanisms,  therefore  implied  in  learning 

 from  feedback  encoding.  To  accomplish  the  goals  of  accessing  limited 

 resources,  the  different  regions  of  the  reward  network  interact  with  other 

 areas,  which  are  involved  in  cognitive  and  emotional  processing  (Watts  and 

 Bernat,  2019).  In  order  to  synchronise  the  different  areas  of  the  reward 

 network  and  their  association  with  other  areas,  some  neural  mechanisms 

 have  been  proposed  (Cavenagh  et  al.,  2010).  Among  others,  oscillatory 

 activity  seems  to  be  a  suitable  mechanism  for  the  communication  of  distant 

 brain  regions  (Lega  et  al.,  2011;  Andreaou  et  al.,  2017).  Therefore,  neural 

 oscillations  of  variable  frequency  are  a  feasible  candidate  for  the  mechanism 

 behind the reward system's flexible communication (Cohen, 2017). 

 Some  electroencephalography  (EEG)  investigations  have  established  that 

 distinct  reward-related  stimuli  elicit  frequency-specific  responses.  First, 

 researchers  have  identified  that  positive  outcome  processing  is  mostly 

 connected  with  oscillations  in  the  beta-gamma  frequency  during  gambling 

 tasks  (Marco-Pallarés  et  al.,  2015).  Beta  oscillatory  activity  is  a 

 time-frequency  component  (20–35  Hz),  which  is  commonly  recorded 

 200–600  ms  after  reward  feedback  at  central  and  frontal  midline  locations 

 (Glazer  et  al.,  2018),  although  other  studies  find  beta  to  be  lateralised  (Van 

 de  Vijver  et  al.,  2011).  Beta  is  sensitive  to  both  performance  and  rewards 

 evaluation  during  feedback  processing,  with  research  indicating  that  positive 

 feedback  increases  beta  power  while  negative  feedback  desynchronises  its 
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 signalling  (Marco-Pallarés  et  al.,  2009;  Van  de  Vijver  et  al.,  2011;  Glazer  et 

 al.,  2018).  Gain-related  beta  activity  is  associated  with  activity  in 

 reward-related  regions  such  as  the  ventral  striatum  (VS)  and  orbitofrontal 

 cortex  (Mas-Herrero  et  al.,  2016).  In  addition,  other  studies  have  described 

 beta  power  during  reward  anticipation,  particularly  during  cue  evaluation, 

 implying  a  probable  association  with  changes  in  dopaminergic  activity 

 (Apitz and Bunzeck, 2014). 

 On  the  other  hand,  theta  oscillatory  activity  is  linked  to  loss  processing 

 and  reward  prediction  error  (4–8  Hz;  RPE;  Glazer  et  al.,  2018, 

 Marco-Pallarés  et  al.,  2015;  2016),  with  a  typical,  detected  activity  at 

 frontal-midline  regions.  The  majority  of  research  studying  midfrontal  theta 

 activity  has  focused  on  reward  outcomes  using  typical  measurement 

 windows  ranging  from  200  to  500  ms  after  the  exposition  to  a  stimulus 

 (Cohen  and  Cavanagh,  2011).  Some  evidence  suggests  that  theta  may  also  be 

 involved  in  reward  anticipation,  particularly  in  connection  to  RPE  encoding 

 (Gruber  et  al.,  2014;  Cohen,  2017).  Theta  activity  following  feedback  might 

 serve  as  a  mechanism  for  communication  across  distal  brain  areas  within  the 

 same  network,  for  instance,  the  reward  pathways  (Cavanagh  et  al.,  2010). 

 Midfrontal  theta  elicitation  is  sensitive  to  performance  and  reward 

 evaluation,  with  increased  power  after  receiving  negative  feedback  (Bernat  et 

 al.,  2015;  Cavanagh  et  al.,  2010),  particularly  regarding  monetary  losses, 

 behavioural  adjustments  in  response  to  losses  (Cavanagh  et  al.,  2010)  and 

 learning rate (Mas-Herrero and Marco-Pallarés, 2014). 

 Theta  oscillations  also  play  a  role  in  the  formation  of  Feedback  Related 

 Negativity  (FRN;  Marco-Pallarès  et  al.,  2008).  To  support  this  view, 

 converging  evidence  indicates  that  both  the  FRN  and  theta  are  generated  in 

 the  medial  prefrontal  cortex,  including  the  ACC  (Gehring  and  Willoughby, 
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 2002,  Mas-Herrero  and  Marco-Pallarés,  2016).  Additionally,  theta 

 oscillations  are  sensitive  to  reward  probability,  updating  and  enhancing  the 

 predictive  power  of  individuals  towards  more  optimal  behaviours  (Cohen 

 and  Cavanagh,  2011).  These  findings  land  the  hypothesis  that  both  the  FRN 

 and  theta  activity  may  be  used  to  measure  and  understand  reward  prediction 

 errors and anticipatory behavioural responses (Marco-Pallarés et al., 2008). 

 While  some  studies  have  found  a  link  between  theta  activity  and  reward 

 magnitude  (Hajihosseini  et  al.,  2012;  Gheza  et  al.,  2018),  others  have  not 

 (Marco-Pallarés  et  al.,  2008).  Additionally,  some  research  suggests  that  theta 

 activity  is  insensitive  to  performance  assessment  and  is  instead  influenced  by 

 breaches  of  reward  expectation  (Cavanagh  et  al.,  2011;  Mas-Herrero  and 

 Marco-Pallarés,  2014),  but  others  find  that  no  such  link  exists  between  theta 

 and  reward  expectation  (Watts  et  al.,  2017).  For  instance,  in  research 

 conducted  by  Mas-Herrero  and  Pallarés  (2014),  a  one-step  decision  task  was 

 proposed  where,  in  each  trial,  participants  were  compelled  to  choose  between 

 two  geometric  figures.  Participants  were  required  to  determine  the  most 

 favourable  figure  using  trial-and-error  feedback.  The  most  rewarding  figure 

 changed  in  each  block  of  approximately  20  trials  without  knowledge  from 

 participants.  The  results  evidenced  the  association  of  theta  activity  with  RPE 

 both  in  positive  and  negative  feedbacks,  suggesting  a  role  of  this  oscillatory 

 response  in  the  computation  of  the  absolute  value  of  reward  prediction  error 

 (surprise, Mas-Herrero and Marco-Pallarés, 2014). 
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 Figure  1.5.  Time-frequency  power  changes  for  negative  and  positive  feedback  in  trials  with 
 three  different  reward  prediction  error  magnitudes:  high  (left),  medium  (mid)  and  low 
 (right).  Note  that  in  both  positive  and  negative  feedback,  the  theta  activity  increases  with 
 RPE. Reproduced from Más-Herrero and Marco-Pallarés (2014) with permission. 

 Beta  and  theta  band  oscillations  respond  differently  to  feedback  stimulus 

 characteristics.  Andreaou  et  al.  (2017)  employed  single-trial  coupling  of 

 concurrent  fMRI  and  EEG  data  to  analyse  networks  associated  with 

 oscillatory  responses  to  feedback.  They  detected  distinct  connections 

 between  theta  and  high-beta  oscillations  and  non-overlapping  brain 

 networks.  In  particular,  increased  beta  power  in  response  to  positive 

 feedback  was  related  to  activation  of  the  core  reward  network  regions.  In 

 comparison,  a  rise  in  theta-band  power  following  a  loss  was  related  to  the 

 activation  of  a  frontoparietal  network  that  included  the  ACC.  These  findings 

 imply  that  positive  and  negative  feedback  might  be  partially  related  to 

 distinct  brain  networks  and  that,  within  these  networks,  the  communication 

 is  mediated  by  distinct  oscillatory  activity.  Alternatively,  these  results  could 

 suggest  different  functional  roles  for  these  two  oscillatory  components,  being 
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 theta  activity  associated  with  the  computation  of  (absolute  value  of)  reward 

 prediction  errors  (Mas-Herrero  and  Marco-Pallarés,  2014,  2016)  and 

 beta-gamma  activity  related  to  highly  relevant  or  unexpected  positive  events 

 (Marco-Pallarés et al. 2015). 

 Hierarchical  Reinforcement  Learning  (HRL)  and  the  problem  of 
 dimensionality 

 The  RL  models  have  impacted  various  disciplines  such  as  neuroscience 

 and  computational  science,  being  a  widely  extended  model  with  exuberant 

 empirical  validity.  Although  they  theoretically  allow  behaviour  to  be  tracked 

 over  time,  very  often,  this  seems  to  be  the  case  only  in  simple  behavioural 

 schemes.  Therefore,  despite  their  descriptive  capacity,  RL  models  have  been 

 confined  to  experimental  designs  that  fall  short  when  describing  complex 

 situations  (Hengst,  2012).  Sometimes  called  the  curse  of  dimensionality,  RL 

 models  lack  the  ability  to  operationalise  routines  of  actions  that  require 

 multiple  choices  (Botvinick,  2012;  Eickstein  and  Collins,  2020).  Thus, 

 computational  efficiency  deteriorates  as  the  size  of  the  learning  problem 

 increases  and  the  chains  of  actions  necessary  to  achieve  a  goal  extend.  This 

 problem  of  scale  has  obvious  relevance  for  the  applications  of  RL  within  the 

 DMN  since  daily  life  learning  problems  are  notoriously  larger  and  more 

 complex  than  the  typical  RL  experimental  designs  since  multiple 

 environmental  states  and  action-reward  relationships  are  involved 

 (Botvinick, 2011). 

 A  proposed  solution  to  overcome  the  limitations  of  RL  models  in 

 describing  more  realistic  situations  might  come  from  the  hierarchical 

 organisation  of  behaviour.  For  instance,  to  reduce  complexity  and 
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 uncertainty,  individuals  set  a  goal  and  divide  it  into  sequences  of  steps,  with 

 all  the  actions  necessary  to  achieve  the  final  goal.  Therefore,  this  set  of 

 individualised  actions  would  be  hierarchically  organised  to  achieve  a  reward; 

 thus,  an  action  could  be  subordinate  and  guided  towards  a  higher  ordinal 

 level  and  closer  to  an  expected  result.  In  fact,  actions  are  organised  into 

 chains  of  sub-tasks  that  fit  together  to  achieve  a  general  goal.  This  is  how 

 hierarchical  reinforcement  learning  (HRL)  is  introduced,  where  the 

 functionality  of  the  standard  RL  model  is  modified  to  incorporate  pre-states 

 necessary  to  access  a  final  reward  (Hengst,  2012).  Therefore,  HRL  refers  to  a 

 computational  model  that  aims  to  describe  temporally  more  abstract  learning 

 processes and behaviours involving sub-tasks and sub-objectives. 

 Figure  1.6.  Relationship  between  the  standard  TD  model  and  the  HRL  framework.  The 
 agent  meets  a  new  state  and  picks  an  action  in  each  section.  Each  state  is  associated  with  a 
 value  (v),  and  each  action  is  associated  with  a  policy  (pi),  which  the  agent  uses  to  forecast 
 future  states  and  actions.  The  agent  generates  a  reward  prediction  error  after  reaching  the 
 resulting  state  (s=i)  and  collecting  the  primary  reward  (last  box). Reproduced  from 
 Botvinick (2012) with permission. 

 HRL  algorithms  seek  to  solve  this  scalability  challenge  by  grouping  states 

 and  actions  to  build  higher-level  behavioural  plans.  These  ordinal  enchained 
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 sequences  consist  of  organised  single  actions  aimed  at  specific  sub-goals.  As 

 a  consequence,  options  can  be  learnt  even  if  there  are  middle  states 

 (pre-states)  towards  the  ultimate  objective.  Thus,  a  shorter  concatenate 

 temporal  resolution  of  such  pre-states  results  in  decreasing  the  task 

 complexity  and  resolving  the  dimensional  problem  of  extensive  behavioural 

 schemes  (Figure  1.6).  Importantly  in  HRL  models,  learning  takes  place  by 

 simple  extensions  of  conventional  RL:  action  selection  that  results  in  better 

 than  expected  outcomes  is  reinforced,  whilst  successful  completion  of  a 

 selected  option  acts  as  a  pseudo-reward  that  reinforces  previous  lower-level 

 actions  based  on  the  same  RL  principles.  The  learning  challenge  is  addressed 

 at  several  levels  of  abstraction  at  the  same  time,  discovering  both  low-level 

 actions  and  high-level  options  that  most  effectively  achieve  their  respective 

 goal or sub-goal. 

 Therefore,  while  a  conventional  RL  agent  chooses  between  concrete  and 

 straightforward  actions,  the  HRL  agent  requires  the  implementation  of 

 sub-routines,  each  of  which  has  its  own  characteristics  and  associated 

 policies,  which  are  used  to  achieve  sub-goals.  Therefore,  TD  mechanisms 

 and  RPEs  encoding  allow  the  agent  to  learn  which  subroutines  could  be 

 appropriate  for  each  state  and  sub-goal  (Hengst,  2012).  By  including 

 temporal  abstraction  in  each  subroutine,  the  dimension  or  scalability  problem 

 described above is greatly alleviated. 

 Additionally,  this  MDP  installed  in  each  sub-routine  allows  that  upon 

 reaching  a  sub-goal,  the  learning  is  updated.  Notably,  unlike  top-level 

 objectives,  relevant  sub-goals  are  generally  not  associated  with  primary 

 rewards.  This  complicates  the  challenge  of  sub-goal  setting  and  its  incidence 

 in  TD  mechanisms,  which  is  probably  the  most  challenging  in  HRL 

 (Botvinick,  2012;  Wiering  and  van  Otterlo,  2012).  Beyond  the  definition  of 
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 the  sub-goals,  there  are  expected  results  for  each  sub-task,  and  therefore 

 prediction  errors  are  generated,  known  as  pseudo  reward  prediction  errors 

 (PRPE).  Presumably,  as  in  standard  RL,  goal  achievement  has  a  motivational 

 effect,  and  this  is  potentially  the  case  with  sub-goals.  Accordingly,  as  with 

 rewards,  obtaining  these  pseudo-rewards  by  completing  sub-tasks  might 

 guide learning and influence decision-making. 

 Neural networks of sub-goals and HRL 

 HRL  was  designed  to  outperform  typical  RL  techniques  in  computing 

 efficiency  by  describing  learning  during  long  sequences  of  actions,  offering  a 

 more  naturalistic  approach.  This  is  particularly  relevant  when  describing 

 realistic  day-to-day  life  actions,  which  require  a  higher  level  of  complexity 

 rather  than  a  single  choice.  HRL  contains  the  notion  of  consecutive  choices, 

 which  describe  action  plans  composed  of  sequences  of  simple  actions 

 (Chiang  and  Wallis,  2018;  Botvinick  et  al.,  2009;  Holroyd  and  Yeung,  2012). 

 As  an  example,  a  set  of  actions  might  consist  of  the  individual  steps  required 

 to  drive  a  bike  (unleashing  a  padlock,  taking  it  out  of  the  parking  lot, 

 pedalling  for  ten  minutes,  and  so  on).  In  contrast,  an  option  might  consist  of 

 the sequence of actions that leads the biker to a specific park in the town. 

 Importantly,  each  choice  and  policy  carry  the  specified  sequence  of 

 activities  and  the  complete  collection  of  steps  that  chart  different  alternatives 

 to  reach  the  target  state.  As  it  happens  in  standard  RL,  choices  are  defined  by 

 their  association  with  goals  and  the  available  information  of  the  states.  In 

 RL,  the  stimuli  salience  and  state  policies  map  the  transitions  from  initiation 

 to  goal  states.  Moreover,  HRL  enables  option  levels  (such  as  going  to 
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 another  park)  and  single-action  levels  (such  as  taking  the  Diagonal  Avenue 

 and stopping by a friend's house to share a coffee). 

 Botvinick  and  colleagues  (2011)  explored  which  neural  networks  could  be 

 involved  in  HRL.  Particularly,  the  effort  of  bringing  together  cognitive 

 neuroscience  and  HRL  started  by  fitting  the  concept.  Both  cognitive 

 neuroscience  and  computational  disciplines  aim  to  discover  the  set  of  actions 

 between  stimuli  and  responses,  intrinsically  assuming  a  task-dependent 

 behaviour  (Niv,  2009).  While  early  findings  suggested  a  predominant  role  of 

 the  prefrontal  cortex  in  selecting  options  but  also  in  monitoring  actions,  more 

 recent  developments  defend  a  division  between  agent  and  critic  with  their 

 respective neural correlates (Holroyd and Yeung, 2012; Pezzulo et al., 2018). 

 Elaborating  on  the  idea  of  learning  impacting  decision  making,  and 

 particularly  from  a  model-based  (goal-oriented)  behaviour,  there  are  different 

 systems  running  in  parallel  to  encompass  the  whole  reward  circuit  dynamics. 

 Indeed,  in  a  more  suitable  approach  to  the  idea  of  the  actor-critic  in 

 model-based  learning  and  diving  into  the  neural  representation  of  learning 

 through  contingencies,  the  dorsolateral  prefrontal  cortex  (DLPFC)  and 

 motor-related  components  in  the  dorsal  striatum  (which  comprise  the  actor) 

 execute  the  different  options,  and  the  orbitofrontal  cortex  and  the  ventral 

 striatum  (which  comprise  the  critic)  evaluate  progress  toward  the  options' 

 goal states (O'Doherty et al., 2004). 
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 Figure  1.7.  Relationship  between  ordinary  actions  (  Section  c  )  ,  Hierarchical  Reinforcement 
 Learning  framework  (S  ection  a),  and  Neural  correlates  (  Section  c  ),  following  the  actor-critic 
 architecture  .  In  Section  b  ,  the  dorsal  striatum  implements  the  actor,  whereas  the  ventral 
 tegmental  region  (VTA)  and  the  ventral  striatum  (VS)  collaborate  to  implement  the  critic. 
 Reproduced from Holroyd and Yeung (2012) with permission. 

 Therefore,  under  this  architecture  (see  Figure  1.7),  the  dorsal  striatum 

 carries  out  the  actor's  policy  while  the  ventral  striatum,  which  is  at  the  main 

 substrate  of  the  critic,  monitors  and  weights  current  events'  accuracy  to 

 anticipate  future  rewards  (Van  der  meer  and  Redish,  2010;  Cohen  and  Frank, 

 2009).  In  addition,  DLPFC  sends  top-down  biasing  signals  to  the  dorsal 

 striatum  that  update  the  current  policy,  and  the  orbitofrontal  cortex  provides 

 information  about  higher  hierarchical  goals  to  the  ventral  striatum  (Caligiore 

 et  al.,  2019;  Houk  et  al.,  1995;  O’Doherty  et  al.,  2004).  Finally,  although 

 there  are  different  proposals  on  its  role,  ACC  would  be  mainly  involved  in 

 action  selection  (Holroyd  et  al.,  2016;  2017)  or  would  play  a  more 

 integrative approach (Diuk et al., 2013b). 

 Another  important  aspect  when  trying  to  uncover  the  brain  networks 

 involved  in  HRL  is  the  role  of  sub-goals.  The  theory  of  HRL  is  based  on  the 
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 claim  that  while  learning  to  attain  a  goal  through  a  sequence  of  actions, 

 therefore  agents  chunk  into  sub-tasks  and  evaluate  if  an  alternative  meets  a 

 particular  sub-goal.  (Behrens  and  Jocham,  2011).  HRL's  important 

 innovation  is  divided  into  two  components.  First  the  assumption  that 

 sub-goals  main  purpose  is  fulfilling  an  overarching  task  goal,  which  requires 

 a  hierarchical  representation  of  a  foreseen  sequence  of  actions.  Second  is  the 

 assumption  that  all  sub-goals  serve  as  previous  states  toward  the  ultimate  or 

 overall goal. 

 Achieving  a  sub-goal  would  result  in  attaining  a  pseudo-reward. 

 Nevertheless,  it  is  central  to  differentiate  pseudo  rewards  as  previous  and 

 different  to  the  final  primary  reward. In  contrast  to  the  Reward  Prediction 

 Errors  (RPE)  elicited  by  primary  or  secondary  rewards,  which  indicate  the 

 encoding  of  such  interaction  between  agent  actions  and  a  consequence 

 (achieving  or  not  a  final  goal),  pseudo-reward  prediction  errors  (PRPEs)  in 

 HRL  are  distinct  and  indicate  the  various  levels  of  a  pertinent  sub-goal  and 

 its  association  to  specific  pseudo-rewards  (Botvinick  et  al.,  2009).  As 

 reviewed  above,  previous  research  has  delineated  the  role  of  diverse  brain 

 areas  such  as  the  Anterior  Cingulate  Cortex,  Pre-Frontal  Cortex  and  Ventral 

 Striatum  in  the  experience  of  learning,  particularly  within  the  scheme  of  RL 

 (Niv,  2009).  Furthermore,  during  the  last  decade,  some  studies  have 

 supported  the  relevance  of  pseudo-rewards  in  guiding  goal-directed 

 behaviour.  The  advent  of  a  more  naturalistic  and  efficient  approach  in  HRL 

 also  raised  questions  about  the  neural  correlates  underlying  the  encoding  of 

 PRPEs. 

 In  this  line,  Botvinick  et  al.  (2009)  assessed  the  parallelism  between 

 aspects  of  the  actor-critic  architecture  for  RL  and  certain  brain  areas 

 previously  connected  to  the  brain  activity  during  RL  experimental  paradigms 
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 (Sutton  and  Barto  1998).  Botvinick  et  al.  (2009)  investigated  what  additions 

 or  changes  had  to  be  made  to  extend  the  actor-critic  assumptions  to  suit  HRL 

 conventions.  Some  research  proposed  that  just  a  few  changes  were  required, 

 and  each  of  them  was  consistent  with  proven  previous  neuroscientific 

 discoveries (Botvinick et al. 2009). 

 In  this  study,  an  important  computational  requirement  of  HRL  was  the 

 maintenance  of  representation  of  the  currently  selected  choice.  In  other 

 words,  every  state  operates  individually  as  a  single  RL  standard  problem,  but 

 it  is  linked  to  overarching  hierarchies.  This  particularity  suggested  the 

 involvement  of  the  DLPFC  and  other  frontal  regions,  such  as  the 

 pre-supplementary  motor  area  (pre-SMA).  Furthermore,  neurons  in  different 

 frontal  regions  have  been  found  to  signal  for  specific  sequential  actions  in 

 the  same  way  as  alternatives  do  in  HRL.  Prior  findings  also  suggest  that 

 frontal  cortical  regions  signal  actions  at  several  and  nested  levels  of  temporal 

 assembly  (Diuk  et  al.,  2013a;  Badre,  2008;  Koechlin  et  al.,  2003),  similar  to 

 how  HRL  representations  arrange  activities  into  hierarchies,  with  policies  for 

 one choice and one state. 

 Ribas-Fernandes  et  al.  (2011)  tested  the  presence  of  specific  neural 

 correlates  of  PRPE  by  using  a  video  game  named  Courier  Task  (Figure  1.8). 

 This  task's  primary  purpose  was  to  expeditiously  perform  a  "package 

 delivery".  Participants  were  told  that  there  would  be  three  stimuli  (truck, 

 box,  and  house)  on  the  screen  and  were  instructed  to  use  the  joystick  to  steer 

 the  vehicle  to  first  pick  up  the  package  and  then  deliver  it  to  the  house.  The 

 relationship  between  these  three  locations  in  the  courier  task  provided  a 

 hierarchical  structure,  where  the  delivery  was  the  overarching  goal.  The  main 

 manipulation  was  called  the  package’s  jump  event  ,  which  caused  the  package 

 to travel to a random, unexpected position before the trunk could reach it. 
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 Figure  1.8.  The  design  of  the  Courier  task  is  displayed  in  the  left  panel.  In  both 
 reinforcement  learning  and  hierarchical  reinforcement  learning,  the  right  panel  displays  the 
 instances  in  which  reward  and  pseudo-reward  prediction  errors  are  produced.  Before  a  jump 
 event  happens,  grey  bars  show  the  preceding  time  step.  Reproduced  from  Ribas-Fernandes 
 (2011) with permission. 

 According  to  RL,  a  jump  event  may  induce  a  positive  or  negative  RPE 

 based  on  the  decrease  and  increase  in  the  overall  distance  required  to  deliver 

 the  box.  In  addition,  HRL  implies  that  a  jump  event  may  induce  positive  or 

 negative  PRPEs,  in  this  case,  depending  on  how  close  the  truck  is  in 

 reference  to  the  new  location.  On  the  basis  of  these  hypotheses,  converging 

 findings  from  EEG  and  fMRI  experiments  revealed  that  a  jump  event  that 

 increased  a  sub-goal  distance  without  affecting  the  total  distance  evoked  a 

 negative  PRPE  and  that  the  features  of  this  neural  signal  were  formed  in  the 

 anterior cingulate cortex (ACC) (Ribas-Fernandes et al., 2011; 2019). 

 These  findings,  and  particularly  the  contribution  of  the  mPFC,  have  been 

 tested  and  validated  later  on.  For  example,  Ribas-Fernandes  et  al.  (2011) 

 focussed  on  sub-goals  with  negative  outcomes,  but  in  a  further  experiment, 

 Ribas-Fernandes  et  al.,  2018  showed  that  ACC  was  also  involved  in  positive 

 PRPE  (Ribas-Fernandes  et  al.,  2018).  In  another  study  with  primates,  Chiang 

 and  Wallis  (2018)  trained  two  rhesus  monkeys  to  complete  an  adapted 

 version  of  the  delivery  task.  They  measured  the  electrical  activity  of  neurons 
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 in  the  ACC,  lateral  prefrontal  cortex,  and  orbitofrontal  cortex  during  this 

 task.  Their  results  showed  that  a  small  group  of  neurons  in  the  ACC  encoded 

 PRPEs,  supporting  the  key  role  of  this  area  in  HRL.  Therefore,  these  studies 

 support the critical role of ACC in HRL. 

 However,  given  the  importance  of  the  reward  network  in  RL  processing, 

 it  is  reasonable  to  suppose  that  areas  of  this  circuit  should  also  be  involved  in 

 HRL.  In  order  to  investigate  this  topic,  Diuk  et  al.(2013b)  employed 

 functional  neuroimaging  to  calculate  prediction  error  signals  in  people 

 undertaking  a  hierarchical  task  that  required  simultaneous  encoding  of  not 

 just  a  global-unitary  RPE  but  PRPEs.  They  designed  a  task  with  two  levels, 

 where  intermediate  states  were  needed  to  meet  the  final  goal  of  winning  a 

 casino (Figure 1.9). 

 Figure  1.9  .  The  task  design  of  Diuk  et  al.  2013b.  It  involves  picking  between  options  at  two 
 distinct  levels.  In  the  initial  phase  of  each  trial,  the  participant  must  select  one  of  two 
 casinos.  The  selected  casino  then  displays  four  different-coloured  slot  machines.  Next,  the 
 participant  must  select  one  of  the  four  machines  displayed;  for  instance,  the  participant  plays 
 the  slot  machine  in  the  upper  left  corner,  and  the  points  gained  on  that  machine  are  indicated 
 by  a  green  bar.  The  red  bar  represents  the  expected  amount  of  points,  while  the  yellow  bar 
 represents  the  actual  number  of  points  earned  .  Reproduced  from  Diuk  et  al.  (2013b)  with 
 permission 
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 This  task  was  created  to  induce  learning  on  two  levels.:  first,  the  level 

 where  participants  selected  a  casino  and  then  the  level  where  they  selected  a 

 slot  machine.  After  playing  the  slot  machine  (whichever  was  chosen),  two 

 unique  and  coincidental  prediction  errors  should  occur  when  the  outcome  of 

 that  machine  was  presented  concurrently  with  the  casino's  overall  win/loss 

 conclusion.  When  compared  to  several  other  feasible  alternative  models, 

 they  found  that  the  HRL  model  best  described  the  participants'  behaviour  and 

 that  both  RPEs  and  PRPEs  activated  VS.  These  findings  have  two  main 

 ramifications:  The  first  is  that,  as  needed  by  HRL,  the  human  brain  can 

 calculate  prediction  errors  that  span  several  states  and  actions  in  time 

 (Botvinick  et  al.  2009).  In  contrast  to  prior  research,  which  was  focused  on 

 the  computation  of  a  single  prediction  error  signal,  the  second  conclusion  is 

 that  numerous  prediction  error  signals  may  be  formed  and  employed  for 

 learning in the brain (Schultz et al., 1997). 

 In  recent  research,  Mas-Herrero  et  al.  (2019)  studied  if  pseudo-rewards 

 could  bias  decision  behaviour  in  situations  in  which  obtaining  more 

 pseudo-rewards  did  not  imply  a  higher  final  reward  and  whether  this  bias 

 could  represent  striatal  sensitivity  to  pseudo-rewards.  To  test  these 

 predictions,  they  devised  an  fMRI  learning  task  in  which  participants  were 

 needed  to,  in  the  first  place,  complete  a  sub-goal  (opening  a  padlock)  to  get  a 

 probabilistic  monetary  reward.  Participants  demonstrated  a  considerable 

 inclination  for  the  key  that  unlocked  more  boxes  (i.e.,  the  box  that  delivered 

 more  pseudo-rewards),  despite  the  fact  that  it  did  not  result  in  an  increase  in 

 monetary  reward.  Then,  fMRI  data  revealed  a  parallel  ventral  striatum 

 activation  not  just  for  the  reward  but  also  for  the  pseudo-reward  prediction 

 errors  encoding  (Figure  1.10).  Additionally,  individual  variations  in 

 behavioural  preference  for  the  most  pseudo-rewarding  option  were  predicted 
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 by  the  striatal  sensitivity  to  the  prediction  errors  coming  from  processing  the 

 pseudo rewards. 

 Figure  1.10.  Results  of  the  contrast  for  the  different  prediction  errors  in  Mas-Herrero  et  al. 
 2019.  They  demonstrated  that  both  RPEs  and  PRPEs  are  encoded  concurrently  in  the  ventral 
 striatum.  This  conclusion  is  justified  on  the  grounds  that  the  striatum  is  required  for 
 computing  prediction  errors  at  multiple  hierarchical  levels.  Reproduced  from  Mas-Herrero  et 
 al. (2019) with permission. 

 Importantly,  and  as  stated  above,  the  findings  by  Mas-Herrero  et  al. 

 (2019)  demonstrate  a  bias  in  participants’  decisions,  which  is  induced  by  a 

 preference  for  pseudo-rewards.  However,  this  bias  cannot  be  considered 

 sub-optimal  because  both  alternatives  were  rewarded  exactly  in  the  same 

 proportion,  and  hence  the  bias  for  one  alternative  was  not  linked  with  a  cost, 

 meaning  fewer  rewards  if  there  would  have  been  a  bias.  But,  would  the  same 

 preference  for  pseudo-rewards  continue  even  at  the  cost  of  the  final  reward 

 leading  to  a  sub-optimal  decision?  This  will  be  one  of  the  key  questions  of 

 the present thesis. 
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 Sub-optimal Decision Making 

 Regardless  of  the  capacity  of  pseudo  rewards  to  guide  behaviour  in  a 

 goal-directed  setting,  it  is  unclear  if  the  individual’s  engagement  toward 

 pseudo-feedback  acquisition  could  derive  from  a  sub-optimal  pattern.  To 

 understand  the  potential  incidence  of  pseudo-rewards  in  sub-optimal 

 decision-making,  it  is  crucial  to  explore  the  idea  of  sub-optimal  choice 

 behaviour and maladaptive behaviours. 

 For  instance,  conventional  approaches  of  Decision  Theory,  such  as  the 

 foraging  theory  (Stephen  and  Krebs,  2019)  and  rational  choice  theory  (Scott, 

 2000),  propose  that  a  person  should  pick  choices  that  maximise 

 reinforcement  with  the  least  effort  possible.  Therefore,  any  learning  of  the 

 information  present  in  the  environment  would  only  contribute  to  building  up 

 an  optimal  decision.  Indeed,  any  significant  deviance  from  the  most 

 favourable  alternative  is  an  indicator  of  sub-optimal  choice  behaviours,  also 

 known  as  maladaptive  decision-making  (Zentall  and  Stagner,  2011; 

 Swintosky  et  al.,  2021).  Sub-optimal  choice  behaviour  has  been  studied  in 

 human  pathologies  such  as  gambling,  substance  abuse,  and  eating  disorders 

 (Bechara  and  Damasio,  2002;  Brogan  et  al.,  2010).  For  example,  in  gambling 

 disorders,  research  has  provided  large  evidence  of  risk-taking  behaviour 

 underlying sub-optimal choices (Swintosky et al., 2021). 

 Despite  the  negative  consequences  associated  with  the  choices  made, 

 maladaptive  decision-making  can  be  persistent  and  recurrent,  limiting  the 

 individual’s  chances  to  exploit  an  available  and  more  optimal  option. 

 Importantly,  some  traditional  theories  failed  to  explain  behaviour  that  was  far 

 from  rational  decisions.  To  explain  the  nature  of  such  behaviour,  different 

 accounts  proposed  that  they  could  be  related  to  various  factors  such  as  the 
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 differential  impact  of  the  salience  of  wins  vs  losses  (Tversky  and  Kahneman, 

 1985)  or  misperception  of  probability  (Sanbonmatsu  et  al.,  1997).  However, 

 beyond  pathology  and  even  given  these  factors,  there  is  still  debate  on  the 

 factors  underlying  some  sub-optimal  decision-making  behaviours  and  their 

 underlying neural mechanisms. 

 As  discussed  before,  individuals  make  decisions  by  weighing  the  value  of 

 options  available  to  choose  between  them.  Certain  options,  such  as  whether 

 to  get  more  or  less  reward,  are  straightforward,  and  optimal  decision-makers 

 should  pick  the  best  option,  but  these  decisions  might  be  more  difficult  when 

 more  options  with  different  properties  (e.g.,  different  probabilities  of  reward, 

 magnitudes,  expected  values)  are  available.  In  any  case,  individuals  reckon 

 for a trade-off between risk and increased reward (Smith et al., 2017). 

 However,  these  decisions  are  also  highly  influenced  by  individual 

 differences.  Therefore,  animal  models  have  been  useful  to  better  identify  the 

 processes  underlying  sub-optimal  choice  behaviour  (Zentall,  2016;  Zentall 

 and  Case,  2018).  In  this  regard,  one  commonly  used  experimental  scheme 

 that  has  been  successful  in  this  quest  is  to  give  animals  a  choice  between  two 

 options,  each  of  which  leads  to  a  distinct  stimulus  reward,  with  one  option 

 being  sub-optimal  in  comparison  to  the  other,  and  then  to  examine  the 

 decisions made (Figure 1.11). 
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 Figure  1.11.  The  graph  shows  a  paradigm  in  which  pigeons  choose  between  two  options. 
 One  alternative  provides  colour  with  p=0.8,  but  then  pellets  are  not  provided,  and  another 
 colour  with  p=0.2  and  then  ten  pellets  are  delivered.  The  other  alternative  presents  different 
 colours  with  the  same  probability  as  the  previous  alternative,  but  in  this  case,  the  two 
 colours  deliver  three  pellets.  Pigeons  prefer  the  first  alternative,  even  when  this  choice  is 
 sub-optimal. Reproduced from Zentall et al. (2011) with permission. 

 Using  such  a  technique,  McDevitt  et  al.  (2016)  and  Zentall  et  al.  (2011) 

 have  shown  that,  under  certain  conditions,  pigeons  exhibit  a  sub-optimal 

 preference  for  the  option  that  provides  less  reinforcement  over  an  alternative 

 that  provides  more  reinforcement.  Indeed,  such  behavioural  bias  might  signal 

 cues  that  indicate  the  availability  of  reinforcement  without  altering  the 

 overall  likelihood  of  reward,  therefore  without  modifying  their  evaluation  of 

 final  rewards.  For  instance,  pigeons  will  step  on  a  treadle  solely  to  register  a 

 discriminative  stimulus  indicating  the  effect  on  action.  In  other  words,  seeing 

 outcomes  alter  the  RL  scheme.  In  fact,  pigeons  prefer  an  alternative  that 

 generates  discriminative  stimuli  (i.e.,  a  light  linked  with  100% 

 reinforcement)  over  an  option  that  generates  stimuli  related  to  a  probability 

 of  either  being  reinforced  or  not,  the  two  alternatives  being  reinforcement 

 (Stagner  and  Zentall,  2010).  Furthermore,  the  effects  exhibited  by  the 

 sub-optimal  choice  technique  in  pigeons  have  been  replicated  in  human 

 participants  (Molet  et  al.,  2012;  McDevitt  et  al.,  2019),  suggesting  that 

 decision-making  might  be  influenced  by  maladaptive  behaviours.  This 
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 deviation  from  optimality  has  prompted  questions  about  how  choice 

 behaviour  has  evolved  in  relation  to  the  decision-making  mechanisms 

 (Monteiro and Kacelnik, 2015; Swintosky et al., 2021). 

 Another  proposal  is  that  feedback-predictive  cues  and,  in  general, 

 reward-related  informative  cues  have  a  disproportionate  effect  on  the 

 decision  in  the  sub-optimal  choice  because  they  give  information  about 

 availability,  and  this  amount  of  information  acts  as  a  conditioned  reinforcer 

 (Zentall,  2016).  The  difficulty  in  clarifying  sub-optimal  choice  with  regard  to 

 conditioned  reinforcement  is  determining  how  these  stimuli  function  act  as 

 conditioned  reinforcers  and  the  reason  why  the  sub-optimal  option's 

 conditioned  reinforcer  would  be  favoured  above  the  ideal  alternative. 

 (Vonder Haar, 2019; Cunningham, 2020). 

 Different  accounts  have  tried  to  explain  these  behaviours.  The  Signals  for 

 Good  News  hypothesis  (McDevitt  et  al.,  2016)  proposes  that,  similarly  to  the 

 delay  discounting,  the  value  of  a  conditioned  reinforcer  is  proportional  to  the 

 delay  of  cue  signals.  Therefore,  if  a  cue  suggests  the  presence  of  a  reward,  it 

 can  bias  choice  even  when  it  is  not  leading  to  a  greater  benefit  than  the  other 

 options  with  less  signalling  or  cues.  As  in  the  observing  behaviours 

 described  in  pigeons,  McDevitt  (2016)  hypothesised  that  anytime 

 reward-related  information  appears,  it  tends  to  generate  a  preference  over 

 those  alternatives  that  bring  uncertainty  and  do  not  always  yield  to  a  reward, 

 even  when  probabilistically  they  are  more  beneficial.  Another  approach 

 suggested  by  Beierholm  and  Dayan  (2010)  claims  that  sub-optimal  choice 

 behaviour  might  come  from  disengagement  during  reinforcement.  Therefore, 

 the  sub-optimal  choice  would  occur  when  animals  disengage  or  stop  paying 

 attention  to  lower-valued  conditioned  stimuli  that  are  actually  leading  to  a 

 larger  outcome.  According  to  this  proposal,  when  there  are  different 
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 available  options,  but  there  is  more  valuable  predictive  information  about  the 

 alternative  that  happens  to  be  less  optimal,  individuals  might  engage  and 

 exploit  it.  Therefore,  there  would  be  a  forgetting  ratio  on  the  feedback 

 processing  coming  from  the  options  that  provide  less  information  linked  to  a 

 final  reward,  even  when  they  are  overall  better  options.  In  consequence, 

 when  disengagement  to  lower-valued  cues  occurs,  the  individuals  decimate 

 the  chance  of  learning  from  the  reinforcer.  In  the  described  situation,  one  cue 

 is  more  predictive  of  reward;  at  the  same  time,  one  option  is  more  predictive 

 of  non-reward  but  does  not  necessarily  provide  fewer  benefits.  Consequently, 

 individuals  undervalue  feedback  processing  coming  from  those  cues  with 

 less  predictive  value  since  they  are  unable  to  correlate  any  output  and  its 

 correspondent  predictive  signal  (Beierholm  and  Dayan,  2010).  In  this 

 scenario,  individuals  do  not  disengage  from  the  cue  related  to  the  most 

 positive  reward  (more  predictive  of  reward),  even  if  it  is  not  the  best 

 available  overall  option.  Hence,  individuals  acquire  a  bias  of  the  overall 

 probabilities,  ignoring  the  learning  from  those  outcomes  coming  after  cues 

 less  related  to  reward  (McDevitt  et  al.,  2016).  As  a  result,  individuals  may 

 demonstrate  a  preference  for  the  most  signalled  option,  even  when  it  is  less 

 advantageous. 

 Finally,  interesting  differences  appear  when  comparing  habitual  and 

 goal-directed  behaviour.  Therefore,  habitual  processes  are  frequently  viewed 

 as  the  underlying  mechanisms  of  a  variety  of  sub-optimal  behaviours 

 (Decker  et  al.,  2016).  Therefore,  if  habitual  behaviours  are  those  mostly 

 driven  by  the  stimulus  salience  and  goal-directed  behaviour  are  those 

 oriented  to  a  specific  objective,  the  former  might  be  more  prone  to  be 

 associated  with  the  choice  of  the  least  beneficial  option  due  to  the  force  of 

 the  habit.  Following  this  idea  of  two  competing  decision-making  systems, 

 the  values  determined  using  model-based  RL  for  goal-directed  behaviours 
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 and  model-free  RL  for  habitual  behaviour  are  both  reasonable  yet  not  always 

 identical  (Niv,  2019).  Indeed,  given  that  these  systems  compute  action  values 

 using  distinct  algorithms,  they  are  each  uniquely  sensitive  to  situational 

 factors,  such  as  cues  and  feedback-related  information,  that  might  result  in 

 inefficient  or  seemingly  sub-optimal  behaviours  (Decker  et  al.,  2016; 

 O’Doherty et al., 2017). 

 In  the  case  of  habitual  behaviours,  the  brain  uses  both  learning  strategies 

 (  stimulus-driven  and  goal-oriented  ).  Despite  this,  the  cognitive  demands  of 

 such  decision-making  need  the  exclusive  use  of  limited  resources,  precluding 

 the  performance  of  several  tasks.  Besides,  habitual  behaviours  and 

 model-free  reinforcement  learning  mechanisms  are  always  ready  to  preserve 

 the  behavioural  strategy  of  multitasking.  Therefore,  the  two-level  tasks 

 typically  used  to  explain  hierarchical  learning  might  be  the  tip  of  the  iceberg 

 to  understanding  sub-optimal  behaviour  as  a  transition  from  habitual 

 behaviour to goal-directed behaviour (Decker et al., 2016). 

 To  summarise  the  information  presented  so  far,  our  daily  actions  are 

 distributed  in  sequences  in  order  to  achieve  objectives.  We  divide  and 

 organise  our  tasks  in  steps  prior  to  a  final  goal,  which  in  turn  defines 

 sub-goals.  We  hierarchise  in  the  process  of  simplifying  our  decision-making. 

 Previous  studies  have  also  provided  evidence  of  HRL  and  its  correlates,  yet 

 under  the  pivotal  assumption  that  behaviour  is  progressively  getting  refined 

 to  be  more  optimal,  but,  at  the  same  time,  they  have  shown  that  people 

 choose  options  with  more  pseudo  rewards  due  to  sub-goal  attainment  when 

 different  options  lead  to  the  same  final  reward.  But,  could  the  engaging 

 power  of  pseudo-feedbacks  bring  individuals  into  sub-optimal  choice 

 patterns?  And  if  so,  what  would  be  the  underlying  neural  mechanisms  of 

 such sub-optimal behaviours? 

 52 



 53 



 54 



 , 

 55 



 Chapter 2: Research aims 

 The  current  doctoral  thesis'  main  objective  is  to  investigate  the 

 behavioural  and  neural  correlates  of  pseudo-feedback  processing  in 

 sub-optimal  decisions  .  Given  previous  studies  showing  the  preference  of 

 people  for  options  that  yield  more  pseudo-rewards,  we  hypothesise  that  the 

 accomplishment  of  sub-goals  might  bias  decisions  towards  sub-optimal 

 behaviours  and  that  the  brain  mechanisms  underlying  such  bias  will  be  those 

 involved  in  the  computation  of  reward  and  pseudo-reward  prediction  errors. 

 Therefore, the specific objectives of the present thesis are: 

 Specific  Objective  1.  To  examine  whether  the  preference  for 

 pseudo-rewards might lead to sub-optimal decisions  . 

 Previously,  tasks  with  secondary  goals  have  been  used  to  minimise  overall 

 task  complexity  (Ribas-Fernandes  et  al.,  2011;  Diuk  et  al.,  2013b; 

 Mas-Herrero  et  al.,  2019),  finding  that  intermediate  phases  have  an  impact 

 on  learning.  Therefore,  sub-goals  drive  learning  while  offering  stronger 

 predictive  values  for  pre-states  that  anticipated  a  final  reward.  Furthermore, 

 these  pseudo-feedback  prediction  errors  engagement  might  induce 

 sub-optimal  choice  behaviours  as  individuals  guide  their  behaviours  from 

 one  sub-goal  to  the  next  one  due  to  accomplish  an  over-arching  goal.  We 

 hypothesise  that  the  current  information  on  intermediate  processes  may  lead 

 to  poorer  decision-making  as  a  result  of  learning  from  pseudo-feedback, 

 leading  to  sub-optimal  behaviour.  We  will  develop  this  goal  in  all  the  studies, 

 but  particularly  in  Study  1,  which  will  contain  two  different  experiments. 

 The  experiment  1  will  act  as  a  stress  test  of  a  previously  reported  paradigm 

 (Mas-Herrero  et  al.,  2019);  therefore,  different  versions  of  a  two-step 
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 hierarchical  task  will  be  displayed.  The  likelihood  of  receiving  that 

 pseudo-feedback  will  be  tested  to  validate  whether  or  not  participants  show 

 the  preference  for  the  most  pseudo-rewarding  option  when  the  probability  of 

 accessing  pseudo-feedback  is  more  or  less  evident.  The  experiment  2  will 

 use  a  mobile  probability  trying  to  determine  the  point  of  subjective 

 equivalence  (PSE),  at  which  individuals  make  a  trade-off  between  pursuing 

 pseudo-reward  and  maximising  the  ultimate  reward.  We  hypothesise  that 

 participants  will  prefer  the  most  pseudo-rewarding  option  even  when  it  leads 

 to lower final rewards. 

 Specific  Objective  2.  To  explore  the  computational  and  brain  oscillatory 

 mechanisms involved in sub-optimal behaviour driven by pseudo-rewards  . 

 To  reach  this  goal,  we  will  perform  an  EEG  experiment  to  describe  the  brain 

 oscillations  underlying  the  pseudo-reward-prediction  error  (PRPE).  We 

 hypothesise  that  theta  oscillatory  activity  has  been  associated  with  activation 

 of  the  anterior  cingulate  cortex  (ACC)  and  encoding  of  prediction  errors 

 (Holroyd  and  Yeung,  2012;  Gruber  et  al.,  2013;  Mas-Herrero  and  Pallarés, 

 2016;  Shahnazian  et  al.,  2018),  will  also  be  involved  in  the  computation  of 

 pseudo-reward  prediction  errors  and  in  the  bias  towards  sub-optimal 

 behaviours  driven  by  the  preference  for  sub-goals.  Importantly,  in  order  to 

 study  reward  and  pseudo-reward  prediction  errors,  we  will  develop  an  RL 

 computational  model  to  account  for  the  complexity  of  the  task,  and  that 

 should  be  able  to  demonstrate  the  parallel  learning  at  both  action  levels  of 

 the two-step task. 
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 Specific  Objective  3.  To  explore  the  brain  regions  involved  in 

 pseudo-feedback  processing  under  sub-optimal  behaviour  and  its 

 relationship with a Hierarchical Reinforcement Learning model. 

 It  is  well  known  that  striatum-projected  dopaminergic  neurons  play  a  critical 

 role  in  the  Reward  Prediction  Errors  computation  (Schultz  et  al.,  1998). 

 Furthermore,  given  that  value  functions  can  vary  because  of  reward 

 attainment,  as  well  as  pseudo-feedback  processing,  we  hypothesise  that  both 

 RPE  and  PRPE  will  present  similar  ventral  striatum  contributions,  probably 

 suggesting  that  the  brain  encodes  them  in  parallel  in  order  to  reach  not  only 

 the  history  of  rewards  but  also  to  the  pseudo-feedback  encoding 

 (Ribas-Fernandes  et  al.,  2011;  Diuk  et  al.,  2013b;  Mas-Herrero  et  al.,  2019). 

 To  test  this  hypothesis,  we  will  use  the  two-step  task  in  an  fMRI  setting  and 

 explore  the  brain  correlates  of  RPE  and  PRPE  computed  using  an  RL 

 computational model. 
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 Chapter 3. Study 1. Sub-optimal Choice Behaviour is 
 driven by pseudo-reward sub-goal attainment 

 Summary 

 Our  daily  actions  are  distributed  in  sequences  in  order  to  achieve  objectives.  We 

 divide  and  organise  our  tasks  in  steps  prior  to  a  final  goal,  which  in  turn  defines 

 sub-goals.  We  hierarchise  in  the  process  of  simplifying  our  decision-making. 

 Previous  findings  have  shown  that  people  choose  options  with  more  pseudo  rewards 

 due  to  sub-goal  attainment.  In  the  present  study,  226  university  students  participated 

 in  two  experiments  to  test  the  hypothesis  that  pseudo  rewards  bias  decisions.  The 

 task  consisted  of  two  alternatives,  presented  as  two  shapes  in  two  steps.  The  results 

 of  this  experiment  revealed  that  people  preferred  the  more  pseudo-rewarding  option, 

 assuming  the  cost  of  a  lower  final  reward.  This  study  demonstrates  that  people 

 consistently  prefer  pseudo-rewards,  which  affects  their  decisions  and  leads  to 

 sub-optimal  behaviour.  These  findings  open  up  possibilities  in  the  study  of 

 pseudo-reward stimuli and their influence on behaviour. 

 Introduction 

 In  our  daily  lives,  we  constantly  make  decisions  based  on  anticipating  and 

 receiving  rewards.  Often,  achieving  a  goal  requires  delaying  gratification  in 

 favour  of  decisions  that  will  bring  agents  closer  to  the  ultimate  desired 

 outcome.  These  extended  behavioural  strategies  are  essential  for  reducing 

 uncertainty  in  a  temporal  frame,  and  they  require  breaking  down  tasks  into 
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 progressive  steps  whose  completion  signifies  getting  closer  to  a  reward. 

 Agents  use  sub-goals  to  determine  the  correctness  of  their  actions  prior  to 

 reaching  the  end  of  a  sequence  when  the  final  objective  is  distant  in  time  or 

 requires  multiple  decisions.  The  division  of  the  task  into  a  series  of  steps 

 with  their  corresponding  feedback  regarding  the  correctness  of  the  actions 

 (pseudo-feedbacks,  Botvinick,  2012;  Mas-Herrero  et  al.,  2019)  decreases  the 

 uncertainty  of  the  overall  chained  action  and  may  decrease  biased  behaviours 

 (Brandtstädter and Rothermund, 2002). 

 In  fact,  the  information  received  after  the  correctness  or  incorrectness  of 

 each  intermediate  step  (pseudo-feedback)  is  beneficial  for  accelerating  the 

 learning  process.  Previous  research  has  shown  that  the  processing  of 

 prediction  errors  in  pseudo-feedbacks  engages  similar  neural  mechanisms  as 

 final  feedback  (Ribas-Fernandes  et  al.,  2018;  Mas-Herrero  et  al.,  2019)  and 

 that  the  achievement  of  such  pre-states  and  informative  cues  related  to  the 

 reward  can  be  intrinsically  rewarding  (Clark  and  Gilchrist,  2018).  On  the 

 other  hand,  numerous  studies  have  demonstrated  that  cues  signalling  the 

 presence  of  unconditional  stimuli  (e.g.,  food)  may  attract  the  attention  of 

 animals,  thereby  becoming  motivational  and  resulting  in  maladaptive 

 behaviour. 

 For  instance,  pigeons  may  peak  a  key  light  that  has  been  paired  with  food 

 delivery,  even  if  this  action  has  no  effect  or  if  this  action  prevents  them  from 

 receiving  the  food  (Hearst  and  Jenkin,  1974;  Dorfman  and  Gershman,  2019). 

 While  this  sign-tracking  phenomenon  has  been  extensively  described  in 

 animal  models,  recent  research  has  revealed  a  similar  pattern  of  behaviour  in 

 humans  who  have  undergone  Pavlovian  conditioning  (Garofalo  and 

 Pellegrino, 2013, Colaizzi et al., 2019). 
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 Therefore,  it  appears  that  signals  indicating  the  possibility  of  a  reward  are 

 reinforcing  themselves  (either  because  they  have  been  paired  with  them  or 

 because  they  inform  about  the  correctness  of  a  necessary  action  to  attain 

 them).  Despite  the  fact  that  available  information  may  improve  behaviour,  it 

 may  also  lead  to  maladaptive  behaviours.  Numerous  studies  have 

 demonstrated  that  animals  exhibit  observing  behaviour,  i.e.,  a  preference  for 

 richer  sources  of  information  that  can  predict  rewards  while  failing  to 

 accurately  encode  other  alternatives  (Dayan  and  Beirholm,  2010).  This 

 attempt  to  find  a  trade-off  between  information  seeking  and  optimal 

 decision-making  may  result  in  sub-optimal  behaviour  due  to  the  rewarding 

 properties  of  cues'  utility  (Fu  and  Gray,  2006;  Wickens  and  McCarley,  2019). 

 Therefore,  agents  may  decide  to  engage  in  options  that  provide  more 

 information,  even  if  doing  so  incurs  costs  (Eliaz  and  Schotter,  2010; 

 Morrison  et  al.,  2015;  Zentall,  2016).  However,  it  is  still  unknown  to  what 

 extent  pseudo-reward  feedback  could  act  similarly,  i.e.,  to  what  extent 

 receiving  positive  feedback  regarding  the  correctness  of  an  intermediate 

 action  could  bias  performance  towards  the  acquisition  of  positive 

 pseudo-feedbacks rather than final rewards. 

 In  the  present  study,  we  will  investigate  this  question  by  modifying  an 

 earlier  two-step  paradigm.  In  the  original  version  of  this  paradigm 

 (Mas-Herrero  et  al.,  2019),  participants  were  required  to  choose  between  two 

 keys  that  could  or  could  not  unlock  a  padlock,  which  could  yield  a  reward. 

 One  key  was  more  likely  to  open  the  padlock,  but  it  delivered  the  reward  less 

 frequently,  whereas  the  other  key  opened  the  lock  less  frequently  but 

 delivered  the  reward  more  frequently.  This  experiment  demonstrated  that 

 participants  preferred  the  key  that  opened  the  padlock  more  frequently, 

 despite  the  fact  that  both  options  had  an  equal  chance  of  receiving  a  final 

 reward.  As  a  result,  the  event  of  unlocking  the  padlock  (pseudo-feedback) 
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 proved  to  be  sufficiently  rewarding  to  create  an  association  between  this 

 particular  key  and  the  ultimate  objective.  In  fact,  this  study  was  able  to 

 demonstrate  a  preference  for  the  pseudo-rewarding  option  when  there  was  no 

 cost  associated  with  the  final  reward;  that  is,  this  preference  did  not  result  in 

 fewer  benefits.  Therefore,  the  hypothesis  that  positive  pseudo-feedbacks  may 

 lead to sub-optimal decision patterns has not yet been tested. 

 The  purpose  of  this  study  was  to  investigate  the  preference  for 

 pseudo-rewards  in  two  separate  experiments.  In  the  first  experiment,  we 

 attempted  to  replicate  and  extend  the  findings  of  Mas-Herrero  et  al.  (2019), 

 specifically  regarding  the  preference  for  the  most  pseudo-rewarding  options 

 in  similar  experimental  designs.  In  the  second  experiment,  we  manipulated 

 the  probabilities  of  the  selected  options  in  order  to  examine  this  preference 

 for  pseudo-feedbacks,  with  the  less  preferred  option  presenting  a  greater 

 probability  of  final  reward.  We  hypothesised  that  participants  would  show  a 

 clear  preference  for  the  most  pseudo-rewarding  option  when  the  two  options 

 had  the  same  expected  value  of  the  final  reward  (experiment  1)  and  that  they 

 would  exhibit  sub-optimal  behaviour  toward  the  most  pseudo-rewarding 

 option even when it yielded fewer final rewards (experiment 2). 

 Methods 

 Experiment 1. 

 Participants. 

 One  hundred  eight  healthy  students  from  the  Faculty  of  Psychology  of  the 

 University  of  Barcelona  (M  =  21.5  years,  SD  =  4.1,  25  men)  participated  for 

 course  points  in  the  experiment.  Participants  were  divided  into  three  groups 
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 of  36  individuals  each,  corresponding  to  different  task  versions.  All 

 participants  gave  written  informed  consent,  and  the  University  of  Barcelona's 

 Ethical Committee approved all procedures. 

 Experimental procedure 

 Figure  3.1  .  Task  design.  Two  figures  were  associated  with  different  probabilities  of 
 obtaining  pseudo-rewards  (coloured  figures;  p1)  and,  after  them,  obtaining  the  final  reward 
 (green  tick,  p2).  PS+  refers  the  option  that  delivers  pseudo-feedback  more  often,  while  PS- 
 indicates the option that delivers pseudo-feedback less often. 

 We  used  a  hierarchical  reinforcement  learning  task  adapted  from 

 Mas-Herrero  et  al.  (2019)  (Figure  3.1).  Participants'  main  goal  was  to 

 accumulate  as  many  points  as  possible  in  a  2-step  task.  In  the  first  step, 

 participants  had  to  choose,  in  less  than  2  seconds,  between  two  shapes 

 (triangle  or  square)  by  pressing  either  the  left  (index  finger)  or  right  button 

 (middle  finger)  of  a  response  pad.  Then,  1200  ms  after  the  selection,  the 

 figure  turned  out  into  a  colour  (pseudo-feedback).  Half  of  the  participants 

 were  instructed  that  the  blue  colour  could  lead  to  points  (pseudo-reward), 

 66 



 while  the  green  colour  was  always  associated  with  no  points.  The  other  half 

 of  the  participants  received  the  opposite  instructions.  Then,  500  ms  after  the 

 pseudo-feedback  was  delivered,  the  selected  shape  randomly  came  out  on 

 either  the  left  or  the  right  side  of  the  screen.  Participants  were  compelled  to 

 indicate  the  position  by  pressing  the  corresponding  pad  button  as  rapidly  as 

 possible  (time  limit  of  1000  ms).  This  step  was  designed  to  avoid  central 

 tendency  bias  or  participants  unwilling  to  answer  with  extreme  responses. 

 Finally,  if  the  shape  turned  to  the  positive  pseudo-feedback  colour  (pseudo 

 reward,  first  step)  and  the  participant  correctly  responded  to  the  position  of 

 the  shape  (second  step),  they  could  be  rewarded  (25  points)  with  a  certain 

 probability  (p2).  The  feedback  image  (tick  or  cross)  stayed  on  the  computer 

 screen  for  1000  ms,  and  after  a  fixation  point  of  2000  ms,  the  next  trial 

 started (Figure 3.1). 

 In  Experiment  1,  the  two  shapes  had  the  same  probability  of  final  reward. 

 One  shape  (PS+)  was  associated  with  higher  pseudo  reward  probability  (  p  1 
 PS+ 

 =  0.6  for  group  1;  p  1 
 PS+  =  0.7  for  group  2;  p  1 

 PS+  =  0.8  for  group  3  )  but  lower  final 

 reward  probability  after  obtaining  a  positive  pseudo-feedback  (  p  2 
 PS+  =  0.4  for 

 group  1;  p  2 
 PS+  =  0.3  for  group  2;  p  2 

 PS+  =  0.2  for  group  3;  Figure  1  ).  In  contrast,  the 

 other  shape  (PS-)  presented  the  opposite  pattern:  less  probability  of  obtaining 

 pseudo-feedback  (  p  1 
 PS-  =  0.4  for  group  1;  p  1 

 PS-  =  0.3  for  group  2;  p  1 
 PS-  =  0.2  for 

 group  3  ),  but  higher  probability  of  final  reward  after  obtaining  a  positive 

 pseudo-reward  (  p  2 
 PS-  =  0.6  for  group  1;  p  2 

 PS-  =  0.7  for  group  2;  p  2 
 PS-  =  0.8  for  group 

 3  ).  It  is  important  to  note  that  the  two  shapes  yielded  to  the  same  probability 

 of  obtaining  a  final  reward  (  p  reward  =  .24  for  group  1;  p  reward  =  .21  for  group  2; 

 p  reward  = .16 for group 3  ). 

 The  task  had  204  trials,  among  which  68  were  free-choice,  so  participants 

 had  to  select  between  one  of  the  two  shapes.  The  rest,  136,  were 
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 forced-choice  trials,  in  which  only  one  shape  was  presented  on  one  of  the 

 sides  of  the  screen  (forced-choice  trials).  These  forced-choice  trials  were 

 included to ensure that the two options were sampled equally. 

 Experiment 2 

 Participants. 

 One  hundred  eighteen  healthy  university  students  from  the  Faculty  of 

 Psychology  of  the  University  of  Barcelona  (M  =  22.7  years,  SD  =  6.1,  28 

 men)  participated  in  the  experiment  for  course  points.  All  participants  gave 

 written  informed  consent,  and  the  Ethical  Committee  approved  all 

 procedures of the University of Barcelona). 

 Experimental procedure 

 In  Experiment  2,  we  used  the  same  task  structure,  number  of  trials  and 

 time  framing  between  the  two  steps  as  in  experiment  1.  However,  we  wanted 

 to  determine  to  what  extent  people  were  able  to  select  the  most 

 pseudo-rewarding  shape  (PS+)  at  the  cost  of  obtaining  fewer  final  rewards. 

 Group  A  (N  =  56)  and  group  B  (N  =  62)  started  with  different  initial 

 probabilities  to  get  points.  Therefore,  the  probabilities  of  p1  and  p2  were 

 different  for  each  group.  Group  A  started  with  p  1 
 PS+  =  0.7,  p  1 

 PS+  =  0.3  /  p  2 
 PS-  = 

 0.3,  p  2 
 PS-  =  0.7  and  group  B  with  p  1 

 PS+  =  0.8,  p  1 
 PS+  =  0.2  /  p  2 

 PS-  =  0.2,  p  2 
 PS-  = 

 0.8.  The  p1  probability  of  each  shape  changed  after  receiving  a  reward  in 

 free-choice  trials  (1/3  of  the  total  trials).  After  obtaining  a  final  reward,  p1  of 

 the  selected  shape  was  reduced  by  0.02,  and  p1  of  the  non-selected  shape 

 was  increased  by  the  same  amount  (Figure  1).  All  in  all,  the  bias  for  a  shape 

 increases  the  chances  of  success  by  the  less  selected  one.  It  is  important  to 

 remark  that  the  p2  did  not  change  along  with  the  task.  Therefore,  the  total 
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 probability  of  obtaining  a  final  reward  (p(reward))  changed  with  the  change 

 of  p1  (p(reward)  higher  in  the  less-chosen  option).  This  manipulation  of  the 

 probabilities was not revealed to participants. 

 Behavioural analysis 

 Experiment 1 

 We used a Hierarchical Bayesian Model (HBM) proposed  in Krusche 

 (2014) with the STAN R package to determine participants' preferences in 

 experiment 1. HBM models are used to describe the probability of 

 occurrence of a dichotomous event that has multiple dependencies or 

 co-dependencies and links parameters by common distributions. Therefore, 

 the posterior distribution for a parameter is influenced by the results in other 

 parameters and vice versa (Krusche, 2014; Gelman, 2006). In the present 

 experiment, we used three hierarchies of interrelated dependencies. At the 

 bottom, the probability of each participant selecting the less 

 pseudo-rewarding shape in the free-choice trials (θs) was modelled, for each 

 group, using a beta distribution (beta(α  g  , β  g  ))  with a given mode (ω  g  ) and 

 concentration (κ  g  = α  g  + β  g  )). In addition, the model  assumed that all the 

 results of the different experiments came from a global beta distribution (at 

 the top of the hierarchy) with its corresponding mode (ω  0  ). A prior beta 

 distribution with parameters α = 4 and β = 4 was used, representing an 

 equivalent preference for the two options. κ used a prior gamma distribution 

 that assumes a low uncertainty between the parameters of the model (s= 

 6.25; r = .125). We used κ to detect extreme preferences among the 

 participants and give consistency to the MCMC during the burn-in period 

 (period of convergence). We ran four MCMC with 2000 iterations, each in 

 22000 burning steps. 
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 Experiment 2 

 In  the  second  experiment,  the  probability  of  obtaining  the  final  reward 

 changed  with  the  preference  for  one  or  another  figure.  Therefore,  we  wanted 

 to  determine  to  what  extent  people  assumed  a  cost  of  selecting  the  most 

 pseudo-rewarding  option  by  reducing  its  probability  of  final  reward.  In  case 

 of  not  being  biassed  towards  one  of  the  two  options,  people  should  select 

 them  in  an  equivalent  way,  leading  to  similar  values  of  p1  at  the  beginning 

 and  at  the  end  of  the  experiment.  In  contrast,  if  people  had  preferences  for 

 one  of  the  two  options,  this  would  be  reflected  in  a  decrease  of  p1  for  this 

 shape  and  an  increase  for  the  opposite  (e.g.,  a  preference  for  PS+  would 

 decrease  p1  for  this  figure  and  increase  it  for  PS-),  leading  to  a  differential 

 probability  of  final  reward  for  the  two  options.  In  order  to  study  this 

 phenomenon,  we  computed  the  point  of  subjective  equivalence  (PSE)  as  the 

 p1  probability  for  PS-  at  which  the  two  options  were  equally  selected.  If  PSE 

 was  higher  than  the  initial  p1(PS-)  (0.3  in  group  A  and  0.2  in  group  B),  this 

 would indicate a preference for the most pseudorewarding shape. 

 We  used  a  Robust  Bayesian  Logistic  Model  as  proposed  in  Krusche  et  al. 

 (2014)  with  the  JAGS  R  package  to  compute  this  value.  The  data  was 

 composed  of  the  binary  response  of  choosing  between  PS+  and  PS-  and  the 

 current  probability  of  getting  a  pseudo  reward  at  selecting  PS-  as  a  predictor. 

 Therefore,  we  used  a  logistic  model  with  an  intercept  (β0)  using  a  normal 

 prior  (µ  =  logistic  (β  ~  dnorm  (M=-0.4,  S=0.5)),  and  a  slope  (β1,  weakly 

 informative  prior,  normal  distribution  in  the  form  of  µ  =  logistic  (β  ~  dnorm 

 (M=0,  S=1),  Krushke,  2014).  We  also  introduced  a  third  parameter 

 ("guessing"  coefficient,  α)  from  a  beta  distribution  prior  to  controlling  for  the 

 outliers  under  the  assumption  that  extreme  values  would  be  very  unlikely  (α 

 ∼  dbeta  (a=1,  b=6),  Krushke,  2014;  Wu  and  Jermaine,  2007).  Monte  Carlo 
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 Markovian  Chains  (MCMC)  were  run  with  20000  iterations,  each  in  22000 

 burning steps. 

 Results 

 Experiment 1 

 Figure  3.2.  Preference  across  the  groups.  A.  Distribution  of  posterior  probabilities  for  the 
 preference  towards  the  PS-  figure  for  the  three  groups.  In  all  the  cases,  95%  of  the  highest 
 density  intervals  are  below  .5  and  did  not  include  0,  indicating  that  participants  consistently 
 selected  fewer  times  the  less  pseudo-rewarding  figure.  B.  Comparison  between  the 
 preferences for the PS- figure among the three groups. 

 The  hierarchical  model  was  feasible  (see  Supplementary  Materials  in 

 ANNEX)  and  showed  a  lower  preference  for  PS-  in  all  groups  (Figure  3.2). 

 The  bias  for  the  most  pseudo-rewarding  shape  was  presented,  revealed  by  a 

 significant  probability  of  selecting  PS-  less  than  0.5  for  group  1  (M  =  .43, 

 HDI  =  .37:.49),  group  2  (M  =  .41,  HDI  =  .34:.48)  and  group  3  (M  =  .33,  HDI 
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 =  .19:.42).  In  all  groups,  95%  of  the  highest  density  interval  (HDI)  was 

 below  .5,  indicating  that  participants  consistently  select  the  most 

 pseudo-rewarding  shape  PS+.  In  other  words,  participants  preferred  the 

 option  that  delivered  more  pseudo-feedback  even  when  the  final  reward  was 

 the same for the two options. 

 When  the  groups  were  compared,  the  differences  were  especially  notable 

 in  the  comparisons  between  group  1  vs  group  3  and  group  2  vs  group3. 

 Therefore,  even  when  all  the  HDI  contained  the  0  value,  in  the  former, 

 94.6%  of  the  HDI  showed  a  higher  preference  for  PS+  than  for  PS-  in  group 

 3  compared  to  group  1,  suggesting  an  increased  effect  in  those  conditions 

 with higher differences between p1 and p3. 

 Experiment 2 

 Figure  3.3  .  Probability  of  obtaining  pseudo-reward  for  the  PS-  figure  across  free  trials. 
 PS-  refers  the  option  that  delivers  pseudo-rewards  less  often.  P  1  of  the  less  pseudo-rewarding 
 figure  increased  0.02  each  time  participants  received  a  reward  in  the  PS+  and  decreased 
 when  they  received  a  reward  in  PS-.  The  increase  in  P1  shown  in  the  two  groups  indicates 
 that participants consistently selected PS+ throughout the duration of the task. 
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 The  results  of  figure  3.3  show  a  sustained  increase  in  the  probability 

 assigned  to  the  PS-  figure  (p  1 
 PS-  )  for  groups  A  and  B,  indicating  that,  as  in 

 Experiment  1,  participants  consistently  preferred  the  PS+  option.  Thus,  at  the 

 end  of  the  free  trials,  the  probability  of  final  reward  (p  reward  )  for  option  PS- 

 was  higher  than  PS+.  These  results  suggest  that  people  preferred  the  option 

 with  more  pseudo-feedback  (PS+),  even  when  it  implied  a  less  optimal 

 alternative. 

 Figure  3.4.  Point  of  subjective  equivalence  (PSE).  Bayesian  logistic  regression  across 
 participants  in  Group  A  and  B  showed  the  PSE  where  participants  selected  indifferently 
 between  both  options  according  to  p  1 

 PS-  .  In  the  two  groups,  PSE  was  higher  than  the  initial 
 p  1 

 PS-  (where  the  two  options  were  equally  rewarding),  showing  that  participants  are  willing 
 to assume a cost to select more often the PS+ figure. 

 The  logistic  regression  for  groups  A  and  B  allowed  the  determination  of 

 the  point  of  subjective  equivalence  (PSE)  between  both  options  (Figure  3.4). 

 This  point  (PSE)  indicates  a  moment  where  there  is  no  biased  behaviour 

 toward  a  particular  shape  (p  =  0.5  for  selecting  the  two  figures).  In  group  A 

 PSE  was  p  1 
 PS-  =  .36  (HDI  =  .34:.38)  and,  in  consequence  p  1 

 PS+  =  .64  (HDI  = 

 .62:.66).  Given  that  p  2  remained  constant  throughout  all  the  experiments,  the 
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 total  probability  (p  reward  )  for  PS-  was  0.252,  while  for  PS+  was  0.192, 

 showing  that  participants  were  willing  to  pay  a  cost  to  select  the  PS+  figure. 

 For  Group  B,  the  probability  of  selecting  the  less  pseudo-rewarding  figure 

 was  p  1 
 PS-  =  .32  (HDI=  .30:.34).  This  yielded  a  final  probability  of  reward  of 

 p  reward  =  0.256  for  PS-  and  0.136  for  PS+.  Again,  in  this  case,  participants 

 assumed a cost to bias their decisions towards PS+. 

 Discussion 

 In  the  present  study,  we  aimed  to  determine  if  pseudo-rewards  could  lead 

 to  sub-optimal  choice behaviours.  In  a  series  of  experiments,  we 

 demonstrated  that  individuals  prefer  the  most  pseudo-rewarding  options, 

 even  if  they  are  not  optimal  in  terms  of  ultimate  rewards.  In  simple 

 paradigms,  these  results  demonstrate  conclusively  that  information 

 in intermediate  states is  reinforcing  and  may  lead  to  biased  behaviour. 

 Intriguingly,  a  preference  for  the  most  pseudo-rewarding  figure  was  found  in 

 all  of  our  experiments,  both  when  the  two  options  led  to  the  same  final 

 reward  (Experiment  1)  and  when  the  selection  of  this  figure  led  to  a 

 reduction in the probability of receiving the final reward (Experiment 2). 

 Experimental  settings  with  secondary  goals  can  be  used  to  observe  how 

 the  overall  complexity  of  a  task  is  addressed  by  leading  the  individual's 

 attention  to  a  smaller  set  of  subroutines  that  pile  up  sequentially  towards  a 

 goal.  The  decision  bias  reported  in  this  study  outlines  the  importance  of 

 information  on  the  different  steps  required  to  complete  a  task  or  obtain  a 

 final  reward,  as  it  has  previously  been  highlighted  as  a  determinant  during 

 decision  making  and  learning  (Mas-Herrero  et  al.,  2019;  Mc  Delavitte, 
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 2016).  Similar  to  the  intermediate  steps  considered  in  the  current  experiment, 

 these  sub-goals  could  potentially  improve  the  predictive  values  for  the 

 pre-states  that  anticipate  a  final  reward,  therefore  speeding  up  learning  and 

 helping  to  excel  goal-oriented  behaviours  (Diuk  et  al.,  2013a).  Importantly,  it 

 has  been  demonstrated  that  the  prediction  errors  associated  with  these 

 pseudo-feedbacks  engage  regions  of  the  reward  network  such  as  VS  in  a 

 manner  similar  to  reward  prediction  error  (Ribas-Fernandes  et  al.,  2011; 

 Diuk  et  al.,  2013b,  Mas-Herrero  et  al.,  2019),  supporting  their  reinforcing 

 properties  and  justifying  their  engaging  nature,  which  may  lead  to  such 

 sub-optimal  behaviours.  In  this  line  of  research,  Mas-Herrero  et  al.  (2019) 

 discovered  that  the  activation  of  the  Ventral  Striatum  with  pseudo-rewards 

 correlated  with  the  preference  for  PS+  choices,  indicating  that  individual 

 differences  in  the  preference  for  PS+  may  be  related  to  the  differential 

 impact of pseudo-rewards in the reward neural circuitry. 

 Different  explanations  assert  that  people  are  directed  by  statistically 

 optimum  decision-making  (Bogacz,  2007),  but  the  results  of  the  current 

 study  imply  that  information  on  intermediate  steps  may  bias  decisions 

 toward  poorer  decisions.  These  findings  are  coherent  with  prior  research  that 

 has  demonstrated  sub-optimal  choice  behaviours  and  maladaptive 

 decision-making  in  pigeons  (Stagner,  and  Zentall,  2010;  Spetch  et  al.,  1990), 

 rats  (Chow  et  al.,  2017;  Lesaint  et  al.,  2015),  and  humans  (Colaizzi  et  al., 

 2019).  In  all  these  cases,  the  subjects  were  studied  while  making  decisions 

 involving  more  salient  stimuli  or  decisions  with  higher  predictive  value  at 

 early  states  in  the  task,  which  presumably,  could  lead  to  obtaining  lower 

 rewards.  Therefore,  the  sub-optimal  behaviours  demonstrated  by  the  current 

 experiment's  participants  suggest  that  pseudo-feedbacks  operate  as 

 discriminative  stimuli  that  overshadow  other  possibilities,  making  the 

 information  of  Ps+  more  prominent  and  omitting  the  information  coming 
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 after  picking  PS-.  Considering  pseudo-feedbacks  as  necessary  informative 

 cues,  present  results  suggest  that  sub-goals  might  acquire  a  leading  role  in 

 inducing  decisions  throughout  the  task.  In  this  sense,  pseudo-feedbacks 

 would  be  desirable  in  a  similar  way  as  the  conditioned  stimulus  in 

 sign-tracking  procedures,  not  only  because  they  are  needed  for  the 

 accomplishment  of  the  final  goal,  but  because  they  become  attractive  and 

 elicit  approach  behaviours  towards  them.  In  this  sense,  pseudo-feedbacks 

 would  be  valued  in  the  same  manner  as  the  conditioned  stimulus  in 

 sign-tracking  procedures,  not  only  because  they  are  necessary  for  the 

 achievement  of  the  ultimate  goal  but  also  because  they  become  attractive  and 

 motivate approach behaviours. 

 Indeed,  different  animal  (Bromberg-Martin  and  Hikosaka,  2009, 

 Anderson  et  al.,  2015)  and  human  (Eliaz  and  Schotter,  2010)  studies  have 

 proposed  that  information  is  rewarding  per  se  and  that  some  biases  or  even 

 sub-optimal  behaviours  might  be  explained  by  the  preference  for  informative 

 over  non-informative  stimuli.  While  it  could  be  argued  that  participants 

 preferred  the  PS+  stimulus  due  to  its  informative  value,  both  PS+  and  PS- 

 provided  the  same  amount  of  information.  In  addition,  in  most  situations, 

 PS-  resolved  earlier  the  uncertainty,  discarding  the  role  of  uncertainty 

 avoidance  (Kreps  and  Porteus,  1978;  Sharot  and  Sunstein,  2020)  in  the 

 preference  for  PS+.  In  addition,  the  fact  that  the  time  needed  to  obtain  the 

 final  reward  was  the  same  in  the  two  options  (even  in  the  case  of  a  negative 

 pseudo-feedback)  also  discarded  the  possibility  of  a  preference  for  one 

 option  due  to  temporal  delay  discount  (Kirby  et  al.  1999;  Rung  and 

 Madden).  Finally,  participants'  preferences  cannot  be  related  to  imbalances  in 

 the  presentation  of  the  stimuli  (Niv  et  al.,  2002).  Therefore,  even  when 

 participants  had  a  clear  preference  for  the  most  pseudo-rewarding  figure,  as 

 shown  in  the  two  experiments,  they  had  access  to  the  contingencies  of  the 
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 two  options  in  the  forced-choice  trials  (1/3  of  trials  for  each  shape). 

 Therefore,  participants  were  exposed  to  the  contingencies  of  the  two  keys  a 

 similar  number  of  times,  avoiding  the  possibility  of  biases  due  to  different 

 expositions to the stimuli. 

 In  conclusion,  the  current  study  demonstrates  that  pseudo-rewards  have  a 

 reinforcing  nature,  which  can  lead  to  sub-optimal  decision-making  during  the 

 experimental  task.  Future  research  examining  the  limits  of  this  bias  utilising 

 more  extreme  probability  differences  is  required  to  comprehend  the  capacity 

 of pseudo-reward to influence decisions. 
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 Chapter 4. Study 2. Theta Oscillatory activity during 
 sub-optimal choice behaviours 

 Summary 

 Individuals  divide  complex  behavioural  routines  into  a  series  of  steps  to  facilitate 

 learning.  Each  step  might  provide  information  about  their  accomplishment.  These 

 pseudo-rewards  might  bias  the  decisions  towards  them,  leading  to  maladaptive 

 behaviour.  However,  the  oscillatory  components  underlying  these  sub-optimal 

 decisions  are  poorly  understood.  To  study  this  phenomenon,  EEG  was  recorded 

 from  twenty-four  healthy  subjects  who  participated  in  a  two-step  task.  In  this 

 experimental  paradigm,  participants  could  select  between  two  options,  one 

 providing  more  pseudo-rewards  than  the  other  one  but  with  the  same  probability  of 

 obtaining  the  final  reward.  However,  as  the  task  advanced,  the  probability  of 

 obtaining  the  final  reward  from  the  most  selected  option  decreased.  Three  different 

 reinforcement  learning  models  were  used  to  model  the  behavioural  data,  and  their 

 results  were  used  to  study  the  oscillatory  activity  associated  with  reward  and 

 pseudo-reward  prediction  errors.  Results  showed  that  participants  consistently 

 selected  more  the  most  pseudo-rewarding  option,  even  when  this  yielded  to  a 

 sub-optimal  behaviour  in  the  form  of  less  final  rewards.  In  addition,  theta 

 oscillatory  activity  at  frontal  electrodes  was  associated  with  both  reward  and 

 pseudo-reward  prediction  errors.  This  data  provide  evidence  for  the  critical  role  of 

 theta activity in sub-optimal behaviours. 
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 Introduction 

 Decision-making  and  learning  interact  across  time  and  are  essential 

 in  human  behaviour.  In  day-to-day  life,  individuals  decide  among  a  set  of 

 options  based  on  their  situation  and  previous  learning.  The  outcomes  of  such 

 decisions  impact  future  choices,  updating  the  value  of  each  option  and 

 allowing  a  flexible  adaptation  of  behaviour  (O'doherty  et  al.,  2017;  Glimcher 

 and  Fehr,  2013).  Under  the  Reinforcement  Learning  framework  (RL;  Sutton 

 and  Barto,  1998),  this  update  is  performed  using  the  prediction  error  (PE)  of 

 the  performed  actions,  that  is,  the  difference  between  the  expected  and 

 obtained  results  in  a  specific  time  frame  (Diuk  et  al.,  2013a).  Therefore, 

 successful  selection  action  to  get  positive  outcomes  would  reinforce  the  same 

 decision,  and  negative  outcomes  would  encourage  the  search  for  alternative 

 choices.  Therefore,  the  standard  RL  framework  and  its  correspondent 

 behavioural  models  have  been  demonstrated  to  be  a  reliable  approach  to 

 explaining  human  behaviour  in  simple  settings.  However,  complex  (and 

 more  realistic)  scenarios  involve  sequences  of  actions  necessary  to  get  the 

 final  reward  and  are  challenging  for  standard  RL  algorithms  (Botvinick  et 

 al.,  2009).  Such  a  series  of  actions  are  taken  to  reach  different  steps  which, 

 when  carried  out  correctly,  lead  to  a  final  reward.  Standard  RL  considers  a 

 single  level  of  decisions,  with  a  direct  link  between  action  and  reward,  but 

 might  fail  to  appropriately  model  these  situations  where  multiple  choices 

 might  interact  for  an  expected  outcome  (Botvinick  and  Weinstein,  2014; 

 Threadgill  and  Gable,  2018),  yielding  to  a  limitation  of  these  approaches  to 

 explain more naturalistic phenomena (Botvinick et al., 2015). 

 However  in  situations  in  which  long  chains  of  decisions  are  needed  to 

 reach  a  final  goal,  critical  information  which  speeds  up  learning  is  the 
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 knowledge  of  the  correctness  of  the  different  actions  taken  in  each  step  or 

 sub-goal  (O’Doherty  et  al.,  2015).  Therefore,  in  order  to  reduce  uncertainty, 

 individuals  break  down  the  tasks  into  progressive  steps  or  states  until  the 

 final  goal  attainment.  This  implies  that  as  the  task  unfolds,  individuals  must 

 reach  a  series  of  sub-goals  hierarchically  organised  (Balaguer  et  al.,  2016; 

 Ribas-Fernandes,  Niv  and  Botvinick,  2011),  receiving  in  every  one  of  them, 

 information  (pseudo-feedback)  about  whether  they  have  accomplished  this 

 sub-task.  The  process  of  learning  by  action  selection  stages  has  been  coined 

 hierarchical  reinforcement  (HRL),  and  it  proposes  a  solution  to  the  temporal 

 problem  of  strictly  fixed  experimental  conditions.  HRL  works  by  escalating 

 and  grouping  by  levels  of  the  different  options  and  steps,  assigning  PEs  and 

 predictive  values  to  each  condition  at  each  state  (Botvinick  et  al.,  2012; 

 Holroyd and Yeung, 2012; Konidaris and Barreto, 2009). 

 The  study  of  the  neural  correlates  of  the  prediction  errors  generated  in  the 

 different  sub-steps  of  the  task  (so-called  Pseudo  Reward  Prediction  Errors, 

 PRPE)  has  revealed  the  involvement  of  similar  brain  regions  to  those 

 computing  reward  prediction  errors  (Ribas-Fernandes  et  al.,  2011;  2018; 

 Mas-Herrero  et  al.,  2017),  including  anterior  cingulate  cortex  (ACC; 

 Ribas-Fernandes  et  al.,  2011;  Alexander  and  Brown,  2019),  ventral  striatum 

 (VS;  Balleine  and  Delgado,  2007;  Schönberg  et  al.,  2007;  Garrison  et  al., 

 2013)  and  medial  prefrontal  cortex  (mPFC;  Chiang  and  Wallis,  2018; 

 Collins,  2018;  Holroyd  and  Yeung,  2012;  Ribas-Fernandes  et  al.,  2019).  In 

 addition,  previous  studies  have  also  described  an  important  role  of  theta 

 oscillatory  activity  in  the  computation  of  reward  prediction  errors  (Cavanagh 

 et  al.  2010,  Mas-Herrero  et  al.  2016),  advocating  the  notion  that  this  activity 

 would  be  a  predictor  of  learning.  However,  little  is  known  about  the 

 oscillatory  neural  activity  of  PRPE  and  whether  theta  oscillatory  activity  is 

 the main neurophysiological mechanism involved in its processing. 
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 The  increased  number  of  studies  on  the  computational  properties  of  HRL 

 and  the  associated  neural  correlates  of  PRPE  and  RPE  notwithstanding,  less 

 attention  has  been  devoted  to  one  of  the  most  striking  properties  of 

 pseudo-rewards,  the  capacity  to  bias  agents'  behaviour  by  focussing  on 

 pseudo-rewards  rather  than  rewards.  Indeed,  given  that  accomplishing 

 sub-goals  is  a  prerequisite  for  a  final  reward,  obtaining  pseudo-rewards 

 might  end  up  being  a  goal  by  itself.  Such  a  phenomenon  might  be  possible  if 

 every  time  there  is  an  adjustment  to  PRPE,  there  is  a  reinforcement  of  a 

 stable  preference  for  alternatives  that  facilitate  the  attainment  of  sub-goals. 

 In  a  recent  study,  Mas-Herrero  et  al.,  2019  showed  that,  when  faced  with  two 

 decisions  with  the  same  probability  of  final  rewards,  people  prefer  the  one 

 with  more  pseudo-rewards.  Therefore,  the  engaging  properties  of 

 pseudo-rewards  could  bias  the  decision,  even  in  conditions  when  they  would 

 lead  to  the  worst  outcome  or  in  situations  where  sub-goals  are  more  difficult 

 to  acquire  but  closer  to  the  final  rewards  (Collins,  2018;  Ribas-Fernandes  et 

 al.,  2019:  Mas-  Herrero,  et  al.,  2019).  The  engagement  with  positive 

 pseudo-feedbacks  might  stop  the  exploration  of  new  options  in  a  sort  of 

 attentional  bottleneck  and  information  avoidance  (McGovern  and  Barto, 

 2001;  Pateria  et  al.,  2021).  Thereby,  a  persistent  bias  for  alternatives  that 

 deliver  more  pseudo-feedback  might  mean  that  individuals  could  assume  a 

 cost to the point of lessening their chances of obtaining a final reward. 

 The  goal  of  the  present  research  is  to  study  the  oscillatory 

 mechanisms  underlying  the  processing  of  pseudo-reward  prediction  errors. 

 We  used  a  modification  of  the  experimental  paradigm  of  Mas-Herrero  et  al. 

 2019,  in  which  participants  face  a  two-step  task  with  different  probabilities 

 of  obtaining  a  pseudo-reward.  Importantly,  as  the  task  unfolds,  the  final 

 reward  of  the  most  selected  option  will  decrease,  allowing  the  study  of  the 

 neural  mechanisms  underlying  the  bias  towards  the  most  pseudo-rewarding 
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 option.  We  hypothesise  that  theta  oscillatory  activity  will  play  a  key  role  in 

 the  processing  of  both  reward  prediction  errors  and  pseudo-reward  prediction 

 errors. 

 Methods 

 Participants. 

 Twenty-four  healthy  university  students  from  the  Faculty  of  Psychology 

 of  the  University  of  Barcelona  (M  =  22.7  years,  SD  =  3.1,  9  men) 

 participated  in  the  experiment  for  20  €  an  extra  monetary  reward  based  on 

 their  performance  in  the  task.  Every  successful  trial  added  0.20  €  real  money 

 to  the  final  amount.  All  participants  gave  written  informed  consent,  and  the 

 Ethical Committee of the University of Barcelona approved all procedures. 

 Task 

 Figure  4.1.  Decision-making  task  used.  The  task  consisted  of  two  steps.  First,  a  certain 
 colour  (orange  in  the  present  example)  had  to  be  obtained  to  have  the  opportunity  to  gain 
 money  in  the  next  step  (green  tick).  In  free-choice  trials,  participants  had  to  choose  between 
 two  options,  one  figure  (PS+),  which  had  a  higher  probability  of  obtaining  pseudo-rewards 
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 (p  1 
 PS+  )  but  a  lower  probability  of  obtaining  final  rewards  after  positive  pseudo-feedback 

 (p  2 
 PS+  ).  The  other  figure  (PS-)  had  the  opposite  pattern.  Initially,  the  two  figures  had  the 

 same  probability  of  obtaining  a  final  reward,  but  p  1  changed  along  with  the  task,  leading  to 
 differences  in  the  final  reward  probability  (p  1  x  p  2  ).  In  free-choice  trials  (1/3  of  the  choices), 
 participants  could  select  between  the  two  figures.  In  the  rest  of  the  trials  (2/3, 
 forced-choice), only one figure was presented on the screen. 

 A  decision  task  adapted  from  Mas  Herrero  (2019)  was  used  (Figure  4.1). 

 This  experimental  paradigm  contains  two  hierarchical  levels,  where  a  first 

 sub-goal  needs  to  be  accomplished  (pseudo-feedback)  to  reach  the  final 

 reward  (feedback).  The  participants  were  instructed  to  try  to  get  as  many 

 final  rewards  as  possible  to  increase  their  final  pot.  At  the  beginning  of  each 

 trial,  the  participants  chose  between  two  geometric  shapes  within  two 

 seconds  (Shape  1  or  Shape  2).  The  choice  was  made  by  pressing  the  right  or 

 left  button  on  a  pad.  Each  figure  was  assigned  an  initial  probability  p  1  to 

 provide  a  positive  (PS  +)  or  negative  (PS-)  pseudo-feedback  represented  by 

 the  chosen  figure  painted  in  a  particular  colour.  If  participants  received  a 

 certain  colour  (blue  or  orange  in  half  of  the  participants,  green  or  purple  in 

 the  other  half),  they  had  the  chance  to  win  money  at  the  end  of  the  trial 

 (pseudo-reward).  If  they  received  the  other  colour  (green  or  purple,  or  blue 

 or orange figure respectively), they would lose the trial for sure. 

 After  this,  the  shape  appeared  on  the  left  or  the  right  side  of  the  screen, 

 and  the  participant  had  to  select  the  correct  side  by  pressing  the 

 corresponding  button.  In  all  the  cases  in  the  whole  Block  A,  there  was  a 

 colour  associated  with  the  probability  of  obtaining  points  and  another  to  get 

 no  points.  The  combination  of  colours  randomly  changed  at  the  beginning  of 

 Block  B.  Finally,  if  the  participants  had  received  positive  pseudo-feedback  in 

 the  first  step,  they  had  a  certain  probability  (p  2  )  of  obtaining  a  reward  (0.2  €, 

 green  tick)  or  no  reward  (1-  p  2  ,  red  cross).  In  contrast,  in  the  case  of 

 receiving  a  negative  pseudo-feedback  in  the  first  step,  the  final  feedback  was 
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 always  no  reward  (red  cross).  The  feedback  remained  on  the  screen  for  1000 

 ms,  and  then  a  fixation  point  was  presented  for  2000  ms  before  the  next  trial. 

 The  experiment  was  divided  into  two  blocks  (A  and  B)  in  which  the 

 participants  performed  the  same  task  twice,  but  with  different  probabilities, 

 shapes  and  colours.  Figures  and  colours  were  counterbalanced  within 

 participants and blocks. 

 At  the  beginning  of  each  block,  the  two  shapes  had  the  same  chance  of 

 winning  at  the  end  of  each  trial  (p  1  x  p  2  ).  Shape  1  (PS  +)  was  associated  with 

 a  higher  probability  of  receiving  colour  PS+  (p  1  (PS+)  =  0.7  for  block  A; 

 p  1  (PS+)  =  0.8  for  block  B),  but  a  lower  probability  of  rewarding  feedback 

 after  receiving  a  positive  pseudo-feedback  (p  2  (PS+)  =  0.3  for  block  A; 

 p  2  (PS+)  =  0.2  for  block  B;  Figure  4.1).  In  contrast,  Shape  2  (PS-)  presented  a 

 lower  probability  of  receiving  positive  pseudo-feedback  (p  1  (PS-)  =  0.3  for 

 block  A;  p  1  (PS-)  =  0.2  for  block  B),  but  higher  probability  of  rewarding 

 feedback  after  receiving  a  positive  pseudo-feedback  (p  2  (PS-)  =  0.7  for  block 

 A;  p  2  (PS-)  =  0.8  for  block  B;  Figure  4.1).  Therefore,  in  the  two  blocks, 

 participants  began  the  task  with  the  same  probability  of  receiving  a  final 

 reward  regardless  of  their  preference  for  a  shape  (p(reward)  =  .21  for  Block 

 A;  p(reward)  =  .16  for  Block  B).  However,  the  probability  p  1  of  each  shape 

 changed  after  receiving  a  final  reward  in  the  Free  Choice  trials,  decreasing 

 0.02  for  the  chosen  form  and  increasing  0.02  for  the  non-chosen  form.  This 

 manipulation  allowed  us  to  study  to  what  extent  participants  would 

 perseverate  in  one  of  the  options,  even  when  the  final  probability  of  reward 

 (p  1  x  p  2  )  was  reduced  for  this  shape  and  increased  for  the  alternative  one.  The 

 participants were not informed about this manipulation. 

 The  task  consisted  of  204  trials  in  each  block.  In  68  trials,  participants  had 

 to  select  one  of  the  two  shapes  (free  choice  trials).  In  the  remaining  136  trials 
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 (forced  trials),  only  one  shape  was  presented  on  one  side  of  the  screen,  and 

 the  participant  had  to  select  it  by  pressing  the  corresponding  button  (68  trials 

 for  each  shape).  The  order  of  the  forced  and  free  trials  was  randomised. 

 Thus,  the  participants  had  the  chance  to  learn  the  probabilities  of  the  two 

 shapes independently from their decisions in the free-choice trials. 

 Temporal difference Models 

 We  tested  three  different  temporal  difference  learning  models  (TD0)  in 

 order  to  find  the  one  that  better  suits  the  behavioural  evidence.  First,  we 

 tested  a  model  with  fixed  values  for  learning  rate  (no  free  parameters,  = α   

 0.5  for  pseudo-feedbacks  and  feedbacks,  model  1).  Second,  we  used  a  model 

 with  two  learning  rate  parameters,  one  for  pseudo-feedbacks  α  1  and  another 

 one  for  final  feedback  (α  2  ,  model  2).  Finally,  in  the  third  model,  we 

 considered  three  different  free  parameters,  two  learning  rates  and  a 

 parameter  that  indexed  the  value  of  pseudo-feedbacks  (model  3).  All  models 

 included  an  extra  parameter  beta,  which  was  the  one  to  adjust  the  model  due 

 to a softmax function (see below). 

 The  action  values  of  the  model  were  based  on  the  history  of 

 pseudo-feedbacks  (  )  and  feedbacks  (  )  and  updated  according  to  the  𝑉 
 1 

 𝑉 
 2 

 reward  prediction  errors.  Two  RPEs  were  computed  in  this  experiment:  when 

 the  pseudo-feedback  was  delivered  (RPE1)  and  when  the  final  outcome  was 

 achieved  (RPE2).  RPE1  was  modulated  by  the  pseudo-feedback,  indicating 

 whether  the  sub-goal  had  been  accomplished  or  not.  In  parallel,  the  final 

 reward  and  determine  RPE2,  and  along  with  the  trials.  All  the  𝑉 
 1 , 𝑡 

       𝑉 
 2 , 𝑡 

 parameters and variables were calculated per subject. 
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 RPE1.  The  action  value  at  trial  t  of  each  shape  (PS+;  PS-)  was  updated     𝑉 
 1 , 𝑡 

 when the pseudo-feedback was presented: 

 (3.1)     𝑉 
 1 , 𝑡 + 1 

=     𝑉 
 1 , 𝑡 

+    α
 1 

*     𝑅𝑃𝐸  1 
 𝑡 

 being  ,  the  learning  rate  associated  with  the  Pseudo-feedback.  As  stated α
 1 

 above,  in  the  case  of  Model  1,  the  learning  rate  was  the  same  for  RPE1  and 

 RPE2  fixed  at  ,  while  for  the  Models  2  and  3,  was  a  free α
 1 

=  0 .  5 α
 1 
      

 parameter  (for  details  on  parameter  optimisation,  see  below).  RPE1  was 

 computed as: 

 (3.2)     𝑎 )       𝑅𝑃𝐸  1 
 𝑡 

=  𝑉 
    2 , 𝑡 

   −  𝑉 
    1 , 𝑡    

                                           →  𝑀𝑜𝑑𝑒𝑙     1     𝑎𝑛𝑑     2 

                            𝑏 )       𝑅𝑃𝐸  1 
    𝑡 

=  𝑉 
    2 , 𝑡 

   +     𝑝𝑟    −  𝑉 
 1 , 𝑡 

          →  𝑀𝑜𝑑𝑒𝑙     3    

 in  case  of  positive  pseudo-feedbacks,  and  for  all  the  models     𝑅𝑃𝐸  1 
 𝑡 

=−  𝑉 
    1 , 𝑡    

 in  case  of  negative  pseudo-feedback.  The  parameter  pr  included  in  model  3 

 represented  a  fixed  value  of  receiving  positive  pseudo-feedback  and  was 

 introduced  as  a  free  parameter  and  fitted  individually  for  each  participant. 

 The  variable  represents  the  action  value  of  each  figure,  and  the     𝑉 
    𝑖 , 𝑡    

      

 subscript  t  represents the trial number. 
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 RPE2.  The  action  value  of  each  shape  delivering  positive  𝑉 
    2 , 𝑡 

   

 pseudo-feedback  was  updated  when  the  feedback  was  presented,  while  the 

 value for negative pseudo-feedback remained constant: 

 (3.3)  𝑉 
 2 , 𝑡 + 1 

=     𝑉 
 2 , 𝑡 

+    α
 2 
   *        𝑅𝑃𝐸  2 

 𝑡 
   

 The  action  values  of  the  two  figures  had  the  same  initial  value  for  the  two 

 shapes.  In  the  case  of  Model  1,  was  fixed  as  a  learning  rate  =  0.5,  while α
 2 

 for  the  model,  the  two  learning  rates  were  the  same  (  )  and  were  free α
 2 

= α
 1 

 parameters.  In  the  case  of  model  3,  and  were  independent  free α
 1 

α
 2 

 parameters. RPE2 was computed as: 

 (3.4)           𝑅𝑃𝐸  2 
 𝑡 

=     𝑟    −     𝑉 
 2 , 𝑡 

                                                 →     𝑀𝑜𝑑𝑒𝑙     1 ,     2     𝑎𝑛𝑑     3 

 Where  r  was  +1  or  0  depending  on  whether  the  subject  received  money  or 

 not. 

 Model Fitting 

 In  order  to  fit  each  model  to  subject  behaviour,  we  assumed  that  subjects 

 made  their  choices  stochastically  according  to  a  soft-max  function, 

 dependent on the experienced value. 
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 (3.5)  𝑃  𝑟𝑒𝑠𝑝 
 𝑡 

^
=  𝑗 ( ) =  𝑒𝑥𝑝 (β 𝑉  𝑗 

 1 , 𝑡 
) / 

 𝑖 
∑  𝑒𝑥𝑝 (β 𝑉  𝑖 

 1 , 𝑡 
)

 where j corresponds to the different shapes. The value of the parameter  β  ® 

 specifies the steepness of the decision function. The value of  β  was assigned 

 individually to subjects and was, along with other model parameters, found 
 by maximising the log-likelihood of the model performing the same response 
 as the subject across all  n  trials 

 (3.6) θ
^

=  𝑎𝑟𝑔𝑚𝑎𝑥    
 𝑡 = 1 

 𝑛 

∑  𝑙𝑜𝑔     𝑃 ( 𝑟𝑒𝑠𝑝 
^

 𝑡 
=  𝑟𝑒𝑠𝑝 

 𝑡 
)   

 where the set of individually optimised parameters was  θ  ={} for model 

 1,  θ  ={  } for model 2 and  θ  ={  ,  and pr} for model 3. In addition, α
 1 
,    α

 2 
α

 1 
   α

 2 

 the  β  value was fitted. The optimisation was done  using Matlab’s fminsearch 

 function (Mathworks, Massachusetts). 

 EEG recording and analyses 

 Electroencephalogram  (EEG)  was  recorded  using  a  BrainAmp  amplifier 

 (Brain  Products  GmbH;  band-pass  filter:  0.01–100  Hz,  with  a  notch  filter  at 

 50  Hz  and  250  Hz  sampling  rate)  with  tin  electrodes  mounted  in  an  elastic 

 cap  with  29  electrode  standard  positions  (Fp1/2,  Fz,  F7/8,  F3/4,  FCz,  FC1/2, 

 Fc5/6,  Cz,  C3/4,  T7/8,  Cp1/2,  Cp5/6,  Pz,  P3/4,  P7/8,  Po1/2,  Oz).  Throughout 
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 the  experiment,  electrode  impedances  remained  below  5  kOhms.  Four 

 external  electrodes  were  employed,  including  one  electrode  placed  at  the 

 lateral  outer  canthus  of  the  right  eye  used  as  an  online  reference,  one 

 electrode  placed  at  the  infraorbital  ridge  of  the  right  eye  to  control  eye 

 movements,  and  two  electrodes  in  left  and  right  mastoids.  Participants  were 

 instructed  to  not  blink  while  receiving  either  feedback  or  pseudo-feedback 

 and  to  try  to  blink  during  the  fixation  periods.  Epochs  with  the  different 

 pseudo-feedback  and  feedback  conditions  were  extracted  from  −2000  ms 

 before the feedback stimuli to 2000 ms after it. 

 Trials  with  amplitudes  higher  than  ±100  μV  between  –100  ms  and  1000 

 ms  were  excluded.  Three  subjects  presented  more  than  30%  of  the  trial 

 rejection  rate  across  the  whole  task  and  were  excluded  from  the  analyses.  In 

 order  to  analyse  the  time-frequency  of  the  signals,  trials  were  convolved  with 

 complex  Morlet  wavelet  analyses  for  the  different  epochs,  scaling  them  from 

 1  to  40  Hz.  Changes  in  time-varying  power  respect  baseline  (100  ms  before 

 stimuli)  were  computed  for  each  trial  and  averaged  for  each  subject;  then,  a 

 grand average was performed. 

 Statistical Analysis. 

 We  analysed  the  power  changes  at  the  Fz  electrode,  which  has  been 

 shown  to  be  maximal  in  the  frontocentral  theta  activity  associated  with 

 positive  and  negative  feedback,  as  well  in  RPE  computation  (Mas-Herrero 

 and  Marco-Pallarés,  2014).  Repeated-measures  ANOVA  was  computed  with 

 three  within  factors:  valence  (positive  or  negative  feedback  or 

 pseudo-feedback),  shape  (PS+  or  PS-  figure)  and  block  (A  or  B).  In  addition, 
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 in  order  to  study  the  relationship  between  theta  power  and  RPE  or  PRPE,  we 

 computed  two  Linear  Mixed  Effect  Model  (LMM)  using  as  independent 

 variables  the  Reward  Prediction  Errors  RPE1  and  RPE2  produced  by  the 

 temporal  difference  model  introduced  to  explain  learning  and  decision  along 

 with  the  task.  We  assumed  different  random  intercepts  for  each  subject  and 

 trial  and  considered  both  trial  and  subject-level  variance  in  the  participants' 

 performance.  The  model  selection  was  based  on  the  Akaike  criterion  (AIC) 

 using the lmer R package (Bates et al., 2017) 

 Results 

 Behavioural results 

 Participants  presented  on  average  a  preference  for  the  PS+  figure  during 

 the  Block  A  (M  =  0.65,  STD  =  0.14),  which  was  significantly  above  the 

 randomness  scenario  of  0.50  (t(23)  =  5.0,  p  <  0.001)),  and  was  replicated  in 

 the  Block  B  (M  =  0.64,  STD  =  0.13),  which  was  significantly  above  the 

 randomness  scenario  of  0.50  (t(23)  =  5.3,  p  <  0.001)).  This  result  shows  how 

 the  bias  towards  the  figure  which  delivered  pseudo  rewards  with  higher 

 frequency  was  present  across  trials  and  the  blocks.  On  average,  the  number 

 of  rewarded  trials  was  similar  in  Block  A  (M  =  28.6,  STD  =  4.6)  and  Block 

 B  (M  =  28.4,  STD  =3.9),  which  meant  a  monetary  compensation  of  €5.73 

 and €5.68, respectively. 

 These  final  results  suggest  overall  probabilities  of  getting  a  reward 

 ((p(reward))  of  0.14  and  0.13  for  Block  A  and  B,  respectively.  However, 
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 compared  with  an  optimal  scenario  for  the  task  where  participants  would 

 hold  constant  odds  to  obtain  final  rewards  (p(reward)  =  .21  for  Block  A; 

 p(reward)  =  .16  for  Block  B),  the  behavioural  data  showed  a  significant 

 sub-optimal  behaviour.  Indeed,  block  A  was  significantly  lower  than  the 

 optimal  scenario  (t(23)  =  -15.1,  p  <  0.001),  as  well  as  for  block  B  (t(23)  = 

 -5.3,  p  <  0.001).  The  behavioural  data  indicates  how  the  preference  for  PS+ 

 was  prominent  even  at  the  cost  of  earning  less  rewarded  trials,  therefore  less 

 money. 

 Model Comparison 

 Figure  4.2.  Reinforcement  Learning  Models.  Differences  between  the  V1  value  between 
 PS-  and  PS+  and  the  difference  between  probability  choices  provided  by  model  1  (A), 
 model  2  (B)  and  model  3  (C).  Parameters  for  the  models  were  fitted  to  individual  subject 
 data,  and  an  average  parameter  set  was  used  for  the  plot.  Simulations  of  choices  are  done 
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 10000  times  for  each  model  (204  trials  per  simulation),  and  the  plots  were  averages  (+- 
 standard  error).  2D)  Simulation-based  on  model  3  (C  above),  with  parameters  fitted  to 
 individual choices based on real subject behaviour. 

 In  order  to  compare  the  three  models,  the  parameters  for  each  model  were 

 fitted  to  individual  subject  data,  and  an  average  parameter  set  was  used 

 (Figure  4.2).  Simulations  of  choices  were  done  10000  times  for  each  model 

 with  204  trials  per  simulation  as  in  real  experiments.  As  can  be  seen  in 

 Figure  4.2,  the  inclusion  of  two  learning  rates  (  and  )  in  model  3,  in α
 1 

α
 2 

 contrast  to  a  fixed  value  for  model  1  (Figure  4.2A)  and  the  same  values  for 

 two  learning  rates  in  model  2  (Figure  4.2B),  slowed  down  the  returning  to 

 the  equal  selection  to  the  two  options.  In  addition,  the  inclusion  of  a  value 

 for  the  pseudo-reward  (pr  in  model  3)  maintained  a  preference  for  PS+  along 

 with  all  the  tasks  (Figure  4.2C),  which  was  similar  to  the  one  observed  in  the 

 participants  (Figure  4.2D).  The  parameters  that  best  fitted  the  behavioural 

 results  for  model  3  were  Pr  =  0.47  ±  0.07,  =  0.43  ±  0.19  ;  =  0.39  ± α
 2 

α
 1 

 0.09. 

 Therefore,  this  model  better  reflected  the  behavioural  evidence  regarding 

 the  preference  and  bias  for  the  shape  that  delivers  positive  pseudo-feedback 

 more  often.  The  Figure  2D  shows  the  parameters  of  model  3  based  on  real 

 subject  behaviour.  In  addition,  we  compared  the  three  models  (A,  B  and  C) 

 using  a  Bayesian  model  comparison  (Penny  et  al.,  2010)  to  test  the  models' 

 fit.  This  analysis  outputs  an  exceedance  probability  to  the  event  that  one 

 model  accounts  better  for  behavioural  responses  than  the  others.  Model  3 

 received  the  highest  exceedance  probability  (xp  =  0.91),  thus  being  the  most 

 likely  to  describe  the  log  evidence  in  a  subject-by-subject  approach  (M  = 

 32.78; SD = 6.1). 
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 Figure  4.3.  Power  Increased  after  pseudo-feedback  (0-600ms).  The  time  frequencies 
 were  presented  per  valence  (Positive  or  negative  pseudo-feedback)  and  figure  (PS+  or  most 
 pseudo-rewarding,  PS-  least  pseudo-rewarding).  The  left  panel  indicates  the  oscillatory 
 activity  for  the  Block  A,  and  the  right  panel  the  Block  B.  The  upper  figures  highlight  a 
 significant  theta  oscillatory  activity  between  4  Hz  to  8  Hz.  Main  effects  are  shown  on  the 
 right  side.  The  top  right  side  shows  the  main  effect  of  valence  in  the  4-8  Hz,  100-400  ms 
 time-frequency  range.  The  bottom  right  side  shows  the  main  effects  of  valence  in  the  two 
 different blocks in the same time-frequency range. 

 Figure  4.3  shows  the  time  frequency  for  the  different  pseudo-feedback 

 conditions  at  the  Fz  electrode.  All  of  them  showed  a  clear  theta  increase  (4-8 

 Hz)  between  100  and  400  ms.  Repeated  measures  ANOVA  with  valence 

 (positive  vs  negative  pseudo-feedback)  figure  (PS+  vs  PS-)  and  the  block  (A 

 vs  B)  revealed  only  a  main  effect  of  valence  (F(1,20)  =  12.64,  p  =  0.002), 

 being  the  negative  pseudo-feedbacks  larger  than  the  positive  ones  (Figure 

 3B). 
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 Figure  4.4.  Power  Increased  after  feedback  (0-600ms).  Time  frequencies  for  gains  and 
 losses  after  positive  pseudo-feedback  per  figure  (PS+  most  pseudo-rewarding,  PS-  less 
 pseudo-rewarding)  and  block.  The  main  effects  are  shown  on  the  right  side.  The  top  right 
 side  graph  shows  the  main  effect  of  the  interaction  between  figure  and  valence  in  the  4-8  Hz 
 100-400  ms  time-frequency  range.  The  bottom  right  side  graph  shows  the  main  effect  of  the 
 interaction between figure and block in the same time-frequency range. 

 In  addition,  Figure  4.4  shows  the  activity  after  positive  and  negative  final 

 feedback  in  those  conditions  in  which  participants  had  previously  received  a 

 positive  pseudo-feedback.  Similarly  to  previous  results,  all  conditions 

 showed  an  increase  in  theta  power  in  a  similar  time  range  to  the 

 pseudo-feedback.  Repeated-measures  ANOVA  using  the  same  three  factors 

 revealed  a  significant  valence  x  figure  interaction  (F(1,20)  =  14.1,  p  = 

 0.0012).  Power  values  of  Figure  4B  show  a  reversed  pattern  in  the  two 

 shapes,  with  an  increase  of  power  for  gains  compared  to  losses  in  the  most 

 pseudo-rewarding  figures  and  a  decrease  in  the  less  pseudo-rewarding  one. 

 In  addition,  rm-ANOVA  also  revealed  a  significant  and  figure  x  block 

 interaction  (F(1,20)  =  5.95,  p  =  0.024).  The  figure  on  the  right  side  bottom 

 shows  that,  while  theta  power  decreased  in  the  block  A  (70-30  condition),  it 

 did not for the block B (80-20 condition) 
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 In  order  to  study  the  relationship  between  theta  power  and  prediction  errors 

 (calculated  from  model  3),  two  different  LMMs  were  computed  for  the 

 pseudo-feedback  and  feedback  conditions.  Results  showed  a  significant 

 relationship  of  theta  power  with  the  pseudo-reward  prediction  error  (  t  (7704) 

 =  2.47,  p  =  0.013)  and  reward  prediction  errors  (  t  (5698)  =  6.34,  p  <  0.001) 

 computed  using  RL  model  3,  supporting  the  role  of  theta  activity  in  the 

 computation  of  the  discrepancy  between  expected  and  real  outcomes  both  in 

 the intermediate and final steps of the task. 

 Finally,  we  also  explored  the  possibility  of  the  existence  of  a  relationship 

 between  theta  activity  and  individual  differences  in  the  parameters  of  the 

 model.  To  this  end,  we  conducted  correlations  between  the  theta  power  of  the 

 different  conditions  and  the  ,  and  pr  parameters.  No  significant α
 1 

   α
 2 

 differences were found for any of these correlations. 

 Discussion 

 The  present  experiment  aimed  to  observe  the  effect  of  pseudo-feedback  in 

 biased  decision-making  and  its  corresponding  brain  oscillatory  activity 

 through  an  experimental  paradigm  based  on  an  HRL  approach.  To  this  end,  a 

 temporal  difference  model  was  proposed  to  explain  the  behavioural 

 tendencies  of  the  participants  and  their  possible  relationship  with  the 

 oscillatory  theta  activity.  The  present  results  show  the  involvement  of  theta 

 oscillatory  activity  both  in  the  processing  of  pseudo-feedbacks  and 

 feedbacks,  as  well  as  for  the  computation  of  pseudo-reward  and  reward 

 prediction errors, reinforcing the key role of this oscillatory activity in HRL. 
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 The  first  main  result  of  the  present  study  was  the  preference  for  the 

 option  which  provided  pseudo-feedback  more  often  (PS+).  Although  this 

 was  previously  shown  in  the  original  paradigm  (Mas-Herrero  et  al.,  2019),  in 

 the  present  study,  the  repeated  selection  of  one  option  led  to  a  reduced  final 

 reward.  These  findings  are  consistent  with  the  proposition  that 

 pseudo-rewards  modulate  learning  and,  consequently,  participants'  choices 

 (Ribas-Fernandes  et  al.,  2019;  Mas-Herrero  et  al.,  2019).  In  fact,  the 

 rewarding  properties  of  positive  pseudo-feedbacks  could  be  explained  by  an 

 observation  effect  (Beierholm  et  al.,  2010)  and,  therefore,  PS+  option  would 

 generate  a  motivational  effect  towards  its  selection,  prevailing  even  to  the 

 larger  probability  associated  with  the  PS-  final  reward.  Hence,  beyond  the 

 possibilities  of  the  sole  policies'  impact  in  benefiting  PRPE  accuracy  and 

 temporal  abstractions  to  enhance  high-level  learning  (Konidaris  and  Barreto, 

 2009;  Collins  and  Cockburn,  2020),  the  findings  in  this  research  suggest  a 

 whole  behavioural  trajectory  directed  by  pseudo-feedback  that  are  not 

 attributed to conventional temporal difference processing. 

 Interestingly,  among  the  three  models  tested,  the  one  that  best  fitted  the 

 behavioural  data  was  model  3,  which  included  two  different  learning  rates 

 (one  to  update  the  values  at  the  pseudo-feedback  level  (  )  and  the  other  for α
 1 

 the  rewards,  ),  and  a  third  parameter  which  gave  a  value  to  the α
 2 

 pseudo-reward.  This  value  was  0.47,  indicating  that  the  positive 

 pseudo-feedback  receives  a  specific  weight  different  from  the  final  reward. 

 In  addition,  such  preference  for  PS+  supports  the  idea  that  the  more  the  value 

 given  to  the  positive  pseudo-feedback,  the  more  the  selection  to  the  most 

 pseudo-rewarding  option,  even  at  the  cost  of  obtaining  a  less  final  reward. 

 Therefore,  as  hypothesise,  the  observed  sub-optimal  behaviour  would  be 

 explained  by  the  fact  that  pseudo-rewards  also  have  a  particular  value  (given, 
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 in  the  case  of  our  model,  by  the  pr  parameter)  and,  therefore,  participants' 

 behaviour is not only guided by actual rewards. 

 In  addition,  time-frequency  results  showed  that  theta  oscillatory  activity 

 was  critically  involved  in  the  feedback  processing  in  the  present  study.  This 

 activity  has  been  proposed  to  be  generated  in  the  Anterior  Cingulate  Cortex 

 (ACC)  and  is  related  to  the  encoding  of  reward  prediction  errors  (Holroyd 

 and  Yeung,  2012;  Gruber  et  al.,  2013;  Mas-Herrero  and  Pallarés,  2016; 

 Shahnazian  et  al.,  2018).  However,  to  our  knowledge,  no  previous  studies 

 have  been  devoted  to  studying  oscillatory  activity  associated  with 

 pseudo-reward  prediction  errors.  Indeed,  in  our  study,  theta  activity  was 

 larger  for  negative  than  for  positive  pseudo-feedbacks  (Figure  4.3)  and  was 

 related  to  RPE1.  Given  that  PS+  was  associated  with  higher  probabilities  of 

 receiving  positive  pseudo-feedbacks  (and  PS-  with  less  changes  of  receiving 

 it),  it  is  worth  considering  the  reason  why  the  two  figures  presented  similar 

 behaviour  in  theta  activity.  Therefore,  at  first  glance,  one  might  consider  that 

 a  positive  pseudo-feedback  in  PS-  should  always  be  associated  with  a 

 positive  prediction  error,  as  most  pseudo-feedbacks  are  negatives.  However, 

 in  contrast  to  RPE2,  which  only  takes  into  account  the  final  outcome  and  the 

 V2  value,  RPE1  not  only  takes  into  account  the  pseudo-feedback  but  also  the 

 action  value  of  the  final  feedback.  Therefore,  being  most  of  the  final 

 outcomes  negative,  the  prediction  error  in  the  pseudo-feedback  dynamically 

 changes  on  the  bases  of  the  history  of  rewards  and  pseudo-rewards. 

 Importantly,  as  stated  above,  theta  power  was  also  found  to  be  associated 

 with  the  pseudo-reward  prediction  error.  Therefore,  the  increased  activity  for 

 the  negative  compared  to  the  positive  pseudo-feedback  is  compatible  with 

 the  role  of  theta  in  prediction  error  computation  (Cavanagh  et  al.,  2011, 
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 Mas-Herrero  et  al.,  2014)  and,  in  addition,  fits  well  with  previous  literature 

 showing  theta  increase  with  negative  feedbacks  and  loss-related  learning  (see 

 Glazer et al. 2018 for a review). 

 Results  on  the  final  feedback,  in  contrast,  revealed  an  interaction  between 

 outcome  (gain  vs  lose)  and  figure,  with  increased  power  in  gains  vs  loss  in 

 PS+  and  the  opposite  pattern  in  PS-.  Again,  this  result  goes  in  line  with  the 

 role  of  theta  activity  indexing  reward  prediction  error.  Therefore,  given  that 

 the  probability  of  obtaining  final  reward  (after  a  positive  pseudo-reward)  is 

 much  lower  in  PS+  than  in  PS-,  gains  are  unexpected  in  PS+,  and  losses  are 

 unexpected  in  PS-.  Theta  activity  follows  the  same  pattern  and,  in  addition, 

 correlates  with  prediction  error  in  the  two  figures.  Overall,  both  in  the 

 pseudo-feedbacks  and  feedback,  results  show  a  clear  relationship  between 

 theta  activity  and  prediction  error,  as  previously  reported  using  other 

 paradigms (see, for example, Cavanagh et al. 2011, Mas-Herrero et al. 2014). 

 Importantly,  these  results  also  support  the  critical  role  of  ACC  in  the 

 temporal  abstraction  of  HRL  (Balaguer  et  al.,  2016;  Holroyd  et  al.,  2018; 

 Ribas-Fernandes  et  al.,  2019),  although  its  exact  role  is  still  under  debate. 

 Several  accounts  have  been  proposed  to  explain  the  role  of  this  area  (and  its 

 associated  neural  correlates,  in  particular,  theta  activity)  in  performance 

 monitoring.  Our  data  could  fit  well  with  those  accounts  relating  this  activity 

 to  a  surprise  of  an  event  (PRO  model,  Alexander  and  Brown,  2011)  or  those 

 suggesting  the  involvement  of  ACC  in  reward  prediction  error  (Holroyd  et 

 al.,  2016),  but  not  by  theories  proposing  a  role  of  this  area  only  in  errors  or 

 negative  (worse  than  expected)  prediction  errors  (Holroyd  and  Coles,  2002). 

 However,  it  is  not  clear  whether  this  oscillatory  activity  plays  a  role  in  the 

 bias  towards  the  most  pseudo-rewarding  option,  as  similar  activations  have 

 been  found  in  other  studies  with  unbiased  or  optimal  choices  (Cavanagh  et 
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 al.,  2010;  Gruber  et  al.,  2014;  Cohen,  2017).  Indeed,  we  found  no  significant 

 differences  between  the  theta  power  and  the  parameters  of  the  model.  This 

 might  suggest  that  this  mechanism  is  related  to  the  performance  monitoring 

 mechanisms  but  not  to  those  implied  in  the  bias  towards  pseudo-rewarding 

 options.  In  contrast,  in  an  fMRI  study,  Mas-Herrero  et  al.  2019  showed  that 

 the  activation  of  the  ventral  striatum  with  pseudo-reward  prediction  errors 

 was associated with the preference for PS+ in a non-biased scenario. 

 In  conclusion,  these  results  suggest  that,  even  when  these  different 

 structures  (ventral  Striatum  and  ACC)  compute  pseudo-feedback  prediction 

 errors,  they  might  play  different  roles  in  HRL.  Indeed,  in  the  classical 

 actor/critic  architecture  (Takahashi  et  al.,  2008;  Hayden  and  Niv,  2021),  the 

 ventral  striatum  would  play  the  role  of  the  critic,  evaluating  the  goodness  of 

 the  selection  in  the  long  run  on  the  bases.  This  information  would  be  used  by 

 the  actor  (dorsal  striatum  and  dorsolateral  prefrontal  cortex)  to  select  the 

 appropriate  action.  However,  the  role  of  ACC  in  this  model  is  less 

 clear/straightforward.  Some  accounts  have  proposed  that,  under  this 

 architecture,  ACC  would  be  related  to  the  selection  among  different  options 

 and  the  maintenance  of  the  task.  Therefore,  ACC  would  be  responsible  for 

 the  learning  of  high-level  options  (using  and  integrating  the  information 

 provided  by  the  critic  ,  probably  via  VTA/SN)  in  contrast  to  the  striatum, 

 which  would  be  more  oriented  to  respond  to  the  value  of  the  different  events 

 (Holroyd  and  Yeung,  2012;  Holroyd  and  Umemoto,  2016).  Therefore,  under 

 this  premise,  it  would  be  reasonable  to  assume  that,  while  both  VS  and  ACC 

 (indexed  by  theta  power)  activities  reflected  both  pseudo-reward  and  reward 

 prediction  errors,  only  the  critic  would  be  related  to  the  value  given  to  the 

 pseudo-rewards.  All  in  all,  the  present  results  support  the  capacity  of 

 pseudo-rewards  to  bias  behaviour  towards  sub-optimal  choices  and  the 
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 critical  role  of  theta  power  activity  in  the  computation  of  both  pseudo-reward 

 and reward prediction error. 
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 Chapter 5: Study 3. Striatal Contribution during 
 Sub-optimal Decision Making: A hierarchical 
 reinforcement learning approach 

 Summary 

 Rewards  can  be  defined  as  desired  results  that  influence  and  encourage  the 

 behaviour.  It  is  critical  to  understand  how  our  brain  encodes  our  reward  history, 

 resulting  in  the  formation  of  habits  that  influence  goal-directed  behaviour.  The  more 

 steps  required  to  obtain  the  reward,  the  more  difficult  it  is  to  explain  the  behaviour. 

 Algorithms  based  on  Hierarchical  Reinforcement  Learning  (HRL)  suggest 

 progressive  learning  in  phases,  breaking  down  decision  chains  into  individual 

 actions.  This  method  simplifies  the  behaviours  by  stating  that  completing  each  step 

 results  in  the  attainment  of  a  final  reward.  However,  completing  these  stages  would 

 represent  an  objective  itself,  generating  expectations  about  the  outcome,  and  no 

 previous  studies  have  been  conducted  on  the  neural  networks  involved  in  the  ability 

 of  sub-goals  to  direct  learning  toward  sub-optimal  decision-making.  Research  has 

 suggested  that  activation  of  the  striatum  is  critical  for  concurrent  processing  of  both 

 reward  prediction  errors  and  pseudo-reward  prediction  errors.  The  purpose  of  this 

 study  was  to  examine  the  ventral  striatal  representations  (VS)  that  underpin 

 pseudo-feedback  processing  during  decision-making  in  sub-optimal  settings. 

 Nineteen  university  students  participated  in  an  fMRI  study  in  a  two-step  task  in 

 which  participants  could  choose  between  two  options,  one  delivering  more 

 pseudo-rewards  than  the  other.  At  the  beginning  of  the  task,  the  two  options  were 

 equally  rewarded,  but  the  probabilities  changed  as  the  task  unfolded,  decreasing  for 

 the  most  selected  option.  The  results  indicated  that  people  preferred  the  most 

 pseudo-rewarding  option,  even  when  it  yielded  less  final  reward.  In  addition, 

 activity  in  the  VS  correlates  with  not  just  reward  prediction  errors  but  also  pseudo 
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 reward  prediction  errors  and  with  the  preference  for  the  most  pseudo-rewarding 

 option. 

 Introduction 

 Rewards  are  desired  outcomes  that  have  an  effect  on  and  motivate 

 behaviours.  Individuals  analyse  their  reward  history  to  determine  and  choose 

 between  alternative  courses  of  action;  therefore,  the  information  provided  by 

 the  incentives  is  crucial.  The  significance  of  prior  knowledge  suggests  that 

 our  behaviour  is  influenced  by  the  outcomes  of  our  previous  actions,  whether 

 they  were  done  to  obtain  some  benefit  or  to  avoid  punishment  (Sutton  and 

 Barto,  1998;  Shteingart  and  Loewenstei  n,  2014).  Individuals  attempt  to 

 increase  the  frequency  and  intensity  of  activities  that  result  in  rewards  for  a 

 variety  of  reasons,  such  as  satisfying  a  need  or  avoiding  undesirable 

 consequences.  In  fact,  the  way  in  which  feedback  influences  goal-directed 

 behaviours  results  in  behavioural  changes  and  influences  brain  processing. 

 Therefore,  it  is  essential  to  comprehend  how  the  history  of  rewards  is 

 encoded  in  the  brain,  leading  to  the  formation  of  goal-directed 

 behaviours-guiding  learning  habits  (Lak  et  al.,  2021;  Lee  et  al.,  2012;  Niv, 

 2009).  Reinforcement  learning  (RL)  is  a  framework  that  upholds  trial  and 

 error  as  a  learning  mechanism,  bridging  reward-based  learning  and 

 decision-making.  Most  RL  theories  focus  on  reinforcing  behaviours  based  on 

 rewards  prediction  errors  (RPEs),  which  seek  to  describe  whether  actual 

 outcomes are better or worse than anticipated (Sutton and Barto, 1998). 

 O'Doherty  et  al.  (2017)  demonstrated  that  the  computational  principles 

 underlying  standard  RL  theories  have  extensive  experimental 

 correspondence  in  simple  learning  tasks  but  have  limited  efficacy  in  complex 
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 settings  (Botvinick,  2009;  Ribas-Fernandes  et  al.,  2019).  The  more  steps  that 

 precede  access  to  the  reward,  the  more  challenging  it  is  to  explain  the 

 behaviour  (Botvinick,  2012;  Ribas-Fernandes  et  al.,  2011).  Different 

 accounts  assume  that  individuals  divide  expansive  routines  into  simpler 

 behavioural  units,  thereby  creating  a  hierarchical,  progressive  partition  that 

 seeks  to  obtain  a  reward.  These  behavioural  dynamics  form  the  basis  of 

 Hierarchical  Reinforcement  Learning  (HRL),  a  computational  algorithm  that 

 has  evolved  to  address  the  difficulty  of  explaining  extensive  behavioural 

 pathways  (Botvinick,  2012;  Hengst,  2012).  As  a  result,  HRL  algorithms 

 propose  progressive  learning  in  multiple  stages,  thereby  simplifying 

 decision-making  and  learning.  This  strategy  reduces  the  complexity  of  the 

 behaviours  by  arguing  that  the  completion  of  each  step  brings  the  subject 

 closer  to  the  ultimate  reward.  However,  the  pursuit  of  completing  these 

 stages  would  be  an  objective  itself,  and  as  a  result,  it  would  generate 

 expectations  regarding  its  outcome  (Botvinick  et  al.,  2009).  Therefore,  the 

 disparity  between  the  anticipated  and  actual  outcome  would  generate  its  own 

 prediction  error  (Botvinick  et  al.,  2012;  Diuk  et  al.,  2013b).  If  feedbacks 

 facilitate  learning,  then  this  class  of  pseudo-feedback  display  in  intermediate 

 states would also be able to influence behaviour. 

 Therefore,  RL  is  a  form  of  adaptation  in  which  an  individual  uses  past 

 experience  to  improve  future  decisions,  and  well-differentiated  neural 

 substrates  have  been  reported  to  be  activated  during  this  process  (Lee  et  al., 

 2012;  Shteingart  and  Loewenstein,  2014;  Holroyd  et  al.,  2017).  Extensive 

 research  indicates  that  the  human  ventral  striatum  is  a  crucial  component  of  a 

 circuit  that  is  activated  during  learning,  weighing  the  value  of  the  current 

 outcome  in  order  to  make  better  decisions  in  the  future  (O'doherty,  2004; 

 Montague  et  al.,  2006;  Rangel  et  al.,  2008).  Indeed,  it  is  well  established  that 

 striatum-projected  dopaminergic  neurons  play  a  crucial  role  in  RPE 
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 computation  and  encoding  (Schultz  et  al.,  1997;  Delgado,  2007;  Heekeren, 

 2007).  Moreover,  given  that  value  functions  can  change  in  response  to 

 rewards  and  punishments,  as  well  as  pseudo-feedback  processing,  they  might 

 present  distinct  brain  correlates.  In  fact,  the  striatal  contribution  extends  to 

 RPEs  generated  after  receiving  pseudo-feedback,  indicating  that  the  brain 

 encodes  parallel  RPEs  to  adjust  not  only  to  the  history  of  rewards  but  also  to 

 the  pseudo-feedback  evidence  collected  (Ribas-Fernandes  et  al.,  2018). 

 However,  the  involvement  of  these  mechanisms  is  still  not  well  understood. 

 In  the  present  study,  we  modified  the  experimental  paradigm  of  Mas-Herrero 

 et  al.  (2019)  by  presenting  participants  with  a  two-step  task  with  varying 

 probabilities  of  receiving  a  pseudo-reward  but  the  same  initial  probability  of 

 final  reward.  Importantly,  as  the  task  progresses,  the  final  reward  of  the  most 

 selected  option  will  decrease,  allowing  the  neural  mechanisms  underlying  the 

 preference  for  the  most  pseudo-rewarding  option  to  be  studied.  We 

 hypothesised  that  activation  of  the  ventral  striatum  is  essential  for  the 

 parallel  processing  of  reward  prediction  errors  and  pseudo-reward  prediction 

 errors, even during sub-optimal decisional behaviour. 

 Participants 

 The  experiment  included  twenty  right-handed  people  (M  =  23.95  years 

 old,  SD  =  4.13,  16  women).  All  participants  provided  written  informed 

 consent  and  were  compensated  at  a  rate  of  10€  per  hour.  Two  participants 

 were  dismissed  one  because  the  recordings  were  severely  distorted  and  the 

 other  because  he  decided  to  withdraw  from  the  experiment  during  the 

 execution. The local ethical committee approved all procedures. 
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 Task Design 

 Figure  5.1.  Decision-making  task.  The  task  involved  two  steps.  In  order  to  earn  money  in 
 the  subsequent  step,  it  was  necessary  to  first  obtain  a  specific  colour  (orange  in  this  case) 
 (green  tick).  In  free-choice  trials,  participants  were  required  to  choose  between  two  options, 
 one  of  which  (PS+)  had  a  higher  probability  of  obtaining  pseudo-rewards  (p1PS+)  but  a 
 lower  probability  of  obtaining  final  rewards  after  positive  pseudo-feedback  (p2PS+).  The 
 other  figure  (PS-)  displayed  the  opposite  pattern.  Initially,  the  two  figures  had  the  same 
 probability  of  obtaining  the  final  reward.  However,  as  the  task  progressed,  p1  changed, 
 resulting  in  differences  in  the  final  reward  probability  (p1  x  p2).  In  free-choice  trials 
 (one-third  of  the  options),  participants  could  choose  between  the  two  figures.  In  the 
 remaining trials (two-thirds, forced-choice), only one figure was displayed. 

 A  paradigm  introduced  by  Mas  Herrero  et  al.  (2019)  was  adapted  to  the 

 purpose  of  this  research.  This  experimental  design  proposes  a  sequence  of 

 two  hierarchical  stages  per  trial,  with  the  first  step  providing 

 pseudo-feedback  and  the  second  step's  result  providing  feedback  to  raise 

 their  final  pot.  The  participants  were  instructed  to  get  as  many  rewards  as 

 possible.  Participants  had  to  choose  between  two  informative  geometric  cues 

 within  one  second  at  the  start  of  each  trial  by  pressing  right  or  left  pads. 

 Right  after  the  selection,  a  fixation  point  was  displayed  for  1200  ms.  Then, 
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 either  stimuli  had  a  probability  p1  of  providing  a  positive  pseudo-feedback, 

 which  was  represented  by  a  figure  painted  in  blue  or  green  presented  in  the 

 centre  of  the  screen  for  1000  ms,  followed  by  a  fixation  point  jittered  for  500 

 ms.  Participants  who  got  a  certain  colour  (blue  in  half  of  the  participants, 

 green  in  the  other  half)  could  potentially  win  money  at  the  next  stage.  They 

 would  certainly  lose  the  trial  if  they  were  given  the  wrong  colour  (green). 

 After  that,  the  figure  was  displayed  on  the  left  or  right  side  of  the  panel;  then, 

 the  participant  had  to  press  the  suitable  button  to  indicate  its  position  within 

 1000  ms.  1200  ms  after  the  response,  participants  received  the  final 

 feedback.  After  receiving  positive  pseudo-feedback  (e.g.,  blue  cue),  the 

 individual  had  a  probability  (p2)  of  receiving  a  reward  (0.2  €,  green  tick)  or 

 no  reward  (1-  p2,  red  cross).  The  participants  would  surely  lose  the  trial 

 every  time  they  were  given  the  wrong  colour  (e.g.,  green)  at  the  first  stage; 

 therefore,  a  red  cross  was  always  presented  in  this  situation.  The  outcome, 

 either  cross  or  stick,  was  presented  in  the  centre  of  the  screen  for  1000ms. 

 Right  after,  a  fixation  point  was  presented  until  the  total  trial  lasted  11 

 seconds.  Finally,  a  jitter  of  mean  1500  ms  (randomly  jittered  between  500 

 and 2500 ms, with 400 ms increments) was introduced before the next trial. 

 In  the  beginning,  the  two  cues  had  an  equal  probability  of  winning  each 

 task  (p1  x  p2).  One  Cue  (PS+)  was  linked  to  a  higher  likelihood  of  receiving 

 colour  (p1(PS+)  =  0.7)  but  a  lower  likelihood  of  receiving  input  after 

 receiving  positive  pseudo-feedback  (p2(PS+)  =  0.3).  The  other  cue  (PS-)  had 

 a  lower  chance  of  obtaining  positive  pseudo-feedback  (p1(PS-)  =  0.3)  but  a 

 higher  chance  of  receiving  feedback  after  receiving  positive  pseudo-feedback 

 (p2(PS-)  =  0.7).  As  a  result,  participants  started  the  task  invariantly  with  the 

 same  overall  chance  of  achieving  a  final  reward  (p(reward)=.21).  This 

 paradigm  consisted  of  144  trials  where  participants  were  required  to  choose 

 between  the  cues  in  48  trials  (free  choice  trials).  In  the  remaining  96  trials 
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 (forced  trials),  one  cue  was  shown  on  one  side  of  the  board,  and  the  subject 

 had  to  choose  it  by  clicking  the  appropriate  button  (48  trials  for  each  shape). 

 As  a  result,  the  participants  had  the  opportunity  to  accumulate  evidence  of 

 the  probabilities  for  the  two  shapes  without  having  to  rely  on  their 

 free-choice choices. 

 The  task  was  changing  its  probability  along  with  the  trials  regarding  the 

 participant's  choices.  After  obtaining  a  final  reward  in  the  Free  Choice  trials, 

 p1  of  each  cue  changed,  with  the  chosen  form  decreasing  0.02  and  the 

 non-chosen  form  increasing  0.02.  This  manipulation  helped  to  determine  to 

 what  extent  participants  would  stick  to  one  of  the  choices  even  though  the 

 final  incentive  likelihood  (p1  x  p2)  was  lower  for  a  cue  and  higher  for  the 

 other. This manipulation was not explained to the participants. 

 fMRI data acquisition 

 fMRI  was  performed  on  a  3-Tesla  Siemens  magnetic  resonance  scanner  at 

 The  Mind,  Brain  and  Behaviour  Research  Center  in  Granada,  Spain.  In  order 

 to  acquire  a  T2*-weighted  echo-planar  imaging  (EPI),  a  sequence  was  used, 

 with  a  repetition  time  (TR)  of  2000  ms  (three  runs  of  275  scans  each)  and  35 

 descendent  slices  with  a  thickness  of  3.5  mm  3  (echo  time  =  25  ms;  flip  angle 

 =  80º;  voxel  size  =  3.5x3.5x3.5  mm  3  ;  matrix  size  =  68  x  68).  Slices  were 

 aligned  at  30º  to  intersect  the  anterior  and  posterior  commissures  due  to 

 control  artefacts  in  the  OFC  and  the  anterior  ventral  striatum.  Therefore,  the 

 fMRI  was  optimised  to  reduce  susceptibility-induced  BOLD  sensitivity 

 losses  (Weiskopf  et  al.,  2006).  High  resolution  T1-weighted  anatomical 

 images  were  obtained  after  the  functional  task  (192  slices;  image  matrix  256 
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 x  256;  voxel  size  =  1  mm3;  repetition  time  =  2500  ms;  echo  time  =  3.69  ms, 

 flip  angle  =  7°).  Participants'  heads  were  padded  inside  the  head  coil  to 

 prevent unnecessary movement. 

 Temporal difference Model (TD0) 

 We  used  a  temporal  difference  learning  model  (TD0)  to  estimate  RPEs 

 associated  with  feedback  and  pseudo-feedback.  We  fitted  four  different 

 parameters:  one  that  modulates  the  role  of  pr  (PS),  the  other  related  to  how 

 random  subjects  performed,  and  two  different  learning  rates:  one  for 

 pseudo-feedback  processing  and  the  other  for  feedback  processing.  The 

 negative  log-likelihood  was  minimised  to  optimise  the  four  parameters.  We 

 used  temporal  difference  learning  (TD0)  to  predict  RPEs  related  to  both 

 feedback  and  pseudo-feedback.  The  action  values  were  dependent  on  the 

 history  of  pseudo-feedback  and  feedback.  In  this  experiment,  two  RPEs  were 

 computed:  when  the  pseudo-feedback  was  delivered  (RPE1)  and  when  the 

 feedback  was  achieved  (RPE2).  The  pseudo-feedback  modulated  RPE1, 

 signalling  whether  the  sub-goal  had  been  met  or  not.  RPE2  and  the  action 

 values  were  determined  in  tandem  by  the  final  reward.  The  action  value  was 

 updated  when  the  pseudo-feedback  was  presented.  The  model  included  the 

 parameter  PS,  which  was  calculated  by  minimising  the  negative 

 log-likelihood  using  the  fminunc  function  in  MATLAB,  modulating  the 

 weight  of  the  pseudo-reward  in  an  individual  bias.  In  study  2  of  the  current 

 thesis,  it  was  determined  that  model  3  (see  Chapter  4)  accurately  described 

 the  decision  pattern  throughout  the  hierarchical  task;  therefore,  it  was  used  to 

 calculate RPE1 and RPE2 (see Study 2 for details on the model). 
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 fMRI analyses 

 The SPM12 Matlab toolbox 

 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was used to pre-process 

 the whole-brain images. An image from averaging was generated after slice 

 timing correction and realignment (descending order, sinc-interpolation, 

 reference slice 17). The T1 image was co-registered with this mean image 

 and then was segmented. Following that, data was normalised using 

 fourth-degree B-spline interpolation. Finally, we smoothed the normalised 

 volumes using an 8-mm 'full width at half maximum' kernel. 

 Regarding the preparation of the data, the presentation of the figures, the 

 delivery of pseudo-feedback and the final reward were included in the 

 model, as well as the choice of left or right on the keyboard to minimise 

 directionality bias. To achieve a regular scale of the output regression 

 parameters, the parametric regressors of RPE1 and RPE2 were standardised 

 using a mean of 0 and a standard deviation of 1 (Erdeniz et al., 2013; 

 Mas-Herrero et al., 2019) and were entered as covariates in a first-level 

 analysis. A 128 s high pass filter was applied to the time series. 

 Two contrasts were proposed for the first-level analysis, one for RPE1 

 and the other for RPE2. Using one-sample t-tests, these contrast images were 

 entered into independent second-level group analyses. Two analyses were 

 performed, a whole-brain analysis at a voxel level threshold of p <.001 and 

 an ROI at VS based on a bilateral Nucleus Accumbens mask extracted from 

 Hammers' probabilistic atlas (p < .05). 
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 Results 

 Behavioural results 

 Participants  had  a  consistent  preference  for  the  Cue  1  along  the 

 experiment  (M  =  0.57,  STD  =  .09),  which  was  significantly  above  the 

 randomness  scenario  of  0.50  (t(17)  =  4.3,  p  <  0.001).  Thus,  we  conducted 

 individual  binomial  tests  for  preference  for  PS  +,  finding  that  7  of  19 

 subjects  showed  a  significantly  higher  preference  (p  <0.05)  for  Cue  1.  In 

 comparison,  only  one  individual  showed  a  significantly  higher  preference  for 

 Cue  2.  The  preference  for  Cue  1  validates  the  influence  of  pseudo  rewards 

 when  choosing  an  option  that  delivers  positive  pseudo-feedback  more  often. 

 On  average,  participants  won  in  one  of  every  seven  trials  (M  =  20.1,  STD  = 

 3.7), which meant an additional monetary compensation of €4.02. 

 fMRI results 

 Table 5.1. Brain Activity correlated with RPEs 

    Region  # Voxels  T  x  y  Z       
                           
    Pseudo-Feedback                      
                     
    Right Ventral Striatum  227   6,298  14  14  -4       
    Left Ventral Striatum  102   4,953  -8  12  -4       
    Feedback                      
    Ventral Striatum  385                   
    Right Ventral Striatum     7,018  8  16  -6       
    Left Ventral Striatum     7,933  -6  8  -6       
                           
    Left Superior Frontal 

 Gyrus  1073  6,454  -18  38  44       

 Right Superior Frontal 
 Gyrus  209  6,243  22  38  44 

                        
 *All the correlations between brain activity and the RL model with a significance of p 
 (uncorrected) < 0.001 at a peak-voxel level. 
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 The  table  5.1  shows  the  results  for  the  whole  brain  analysis  for  RPE1  and 

 RPE2.  We  found  bilateral  ventral  striatum  activation  for  the  RPEs  after 

 receiving  both  pseudo-feedback  (RPE1,  p  <  .001  uncorrected;  right:  x  =  14,  y 

 =  14,  z  =-4;  le  ft:  x  =  -8,  y  =  12,  z  =  -4)  and  the  final  feedback  (RPE2,  p  < 

 .001  uncorrected;  right:  x  =  8,  y  =  16,  z  =  -6;  left:  x  =  -6,  y  =  8,  z  =  -6). 

 Also,  we  found  an  activation  of  the  SFG  in  the  left  and  right  hemisphere,  but 

 just  in  the  case  of  the  feedback  (RPE2,  p  <  .001  uncorrected;  left:  x  =  -18,  y 

 =  38,  z  =  44;  right:  x  =  22,  y  =  38,  z  =  44).  All  of  these  clusters  were  FWE 

 corrected at a cluster-level (p<0.05), except the left VS in the RPE1 contrast. 

 Figure 5.2. Nucleus Accumbens Activity of RPEs.  Activation of NAcc RPE (p < 0.05 
 FWE correction) based on an anatomical mask of the bilateral Nucleus Accumbens 
 (Hammers et al., 2003) for RPE1 (left), RPE2 (mid) and the conjunction of the two contrasts 
 (right). 

 Figure  5.2  shows  the  brain  activity  in  the  ventral  striatum  based  on  the 

 anatomical  mask  of  the  bilateral  NAcc  related  to  RPEs  (p  <  0.05  FWE 

 correction).  More  specifically,  the  T-maps  depict  the  brain  regions  where  a 

 positive  relationship  between  BOLD  activity  and  the  RPE1 
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 (pseudo-feedback)  and  RPE2  (feedback)  was  observed  across  trials.  As 

 displayed,  the  last  panel  on  the  right  depicts  the  conjunction  of  the  two 

 preceding  relationships  (RPE1  and  RPE2),  and  exposed  a  common  activation 

 in  both  the  left  and  right  ventral  striatum  (p  <  .05  FWE;  right:  x  =  14,  y  = 

 10, z = -4; left: x = -8, y = 10, z = -4). 

 Figure 5.3. Brain-behaviour relationship.  S  catter  plots depicting the correlations between 
 NAcc activity (delimited using the Hammers et al. 2003 atlas) and the preference for the 
 most pseudo-rewarding figure (top) and the Ps parameter of the RL model (bottom) for the 
 left and right areas. In the centre, the T-maps of whole-brain activity at p < 0.001 
 (uncorrected) for RPE1 (blue), RPE2 (orange) and the NAcc mask (red) are shown for 
 visualisation purposes. 

 The figure 5.3 shows the correlation between the activation of the NAcc 

 defined by the Hammers et al. (2003) atlas and the Ps parameter of the RL 

 model. Results showed a significant relationship with PS parameter in both, 
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 the left VS (r (17) = 0.57, p = .01), and the right VS (r (17) = 0.49, p = .03). 

 In addition, the other parameters of the RL model did not show a significant 

 correlation with the striatal representation. Moreover, we also assessed such 

 VS sensitivity in relation to the proportion of the selection of the option that 

 delivered pseudo-rewards more often. We found a correlation in the left VS 

 (r (17) = .51, p = .02) and a marginal correlation for the right VS (r (17) = 

 0.42, p = 0.073). 

 Discussion. 

 The  aim  of  this  study  was  to  determine  the  neural  substrates  of  the 

 processing  of  pseudo-rewards  when  they  generate  a  preference  towards 

 them,  even  when  this  bias  implies  a  cost  and  reduces  the  possibility  of 

 obtaining  rewards.  To  test  these  predictions,  we  used  a  learning  task  whose 

 original  version  was  designed  by  Mas-Herrero  (2019),  which  is  composed  of 

 two  levels.  Participants  needed  to  obtain  positive  pseudo-feedback  to  have 

 the  possibility  of  accessing  a  monetary  reward.  Participants  developed  a 

 preference  for  the  option  that  provided  pseudo-rewards  more  frequently,  as 

 has  been  identified  in  other  investigations  (Ribas-fernandes  et  al.,  2019; 

 Mas-Herrero  et  al.,  2019).  However,  each  time  this  option  was  chosen  in  the 

 present  study,  the  option  that  delivered  fewer  pseudo  rewards  increased  its 

 chances  of  delivering  the  final  reward.  Thus,  such  imbalance  implied  that  the 

 participants  maintained  their  preference  for  engaging  in  sub-optimal 

 behaviour.  We  demonstrated  parallel  processing  of  prediction  errors  as 

 indicated  in  the  literature  (Schultz,  1997),  and  we  evidenced  its  correlation 

 with  the  activation  of  the  ventral  striatum  (VS).  Moreover,  RPEs  produced  at 
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 both  moments,  after  receiving  pseudo-feedback  and  after  the  final  feedback, 

 have  a  representation  in  VS.  At  the  same  time,  it  was  evidenced  that  the 

 activation  of  this  area  is  related  to  the  decisions  and  the  value  given  to  the 

 pseudo rewards by each participant. 

 Results  of  the  present  study  show  that  the  VS  encodes  both  RPE1  and 

 RPE2.  These  results  support  the  notion  that  PEs  related  to  sub-goals  and 

 final  goals  involve  the  same  brain  correlates  (Mas-Herrero  et  al.,  2019; 

 Ribas-Fernandes  et  al.,  2011,  2019;  Diuk  et  al.,  2013b;  Shahnazian  et  al., 

 2018;  2019).  In  addition,  they  emphasise  the  role  of  the  striatum  in 

 calculating  prediction  errors  and  learning  the  value  of  stimuli  (Peters  et  al., 

 2021;  Marche  et  al.,  2017;  Ma  et  al.,  2014),  as  well  as  the  fact  that 

 dissociable  PEs  are  incorporated  within  the  same  behavioural  transition 

 (Daw  et  al.,  2011;  Diuk  et  al.,  2013b).  Different  studies  have  previously 

 investigated  the  relationship  between  hierarchical  RL  and  decision-making 

 with  different  levels  of  complexity  (Doya,  1999;  Dezfouli  and  Balleine, 

 2012;  Diuk  et  al.,  2013b).  We  adopted  a  standard  TD0  approach  similar  to 

 Diuk  et  al.  (2013b)  and  Mas-Herrero  (2019),  where  every  bit  of  information 

 delivered  between  the  initial  decision  and  the  outcome  could  result  in  an 

 RPE,  therefore  used  to  update  reward  expectations.  However,  in  our  case, 

 RPE1  and  RPE2  are  mediated  by  different  learning  rates  (  and  ),  which α
 1 

α
 2 

 would  indicate  how  individuals  learn  at  a  different  speed  and  if  they  process 

 RPEs  in  a  particular  way.  Moreover,  an  additional  parameter  weighted  the 

 value of pseudo-feedback in an individual bias. 

 Furthermore,  we  show  that  the  behaviour  of  individuals  is  related  to  the 

 BOLD  signal  identified  in  the  VS.  In  fact,  a  higher  striatal  sensitivity  to 

 RPEs  was  related  to  a  higher  choice  of  the  most  pseudo-rewarding  option. 

 This  finding  validates  and  extends  the  results  provided  by  Mas-Herrero  et  al. 
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 (2019)  and  Daw  et  al.  (2011),  where  a  model-free  determined  the  elections 

 and  their  representation  in  VS  as  opposed  to  a  model-based.  Our  findings 

 imply  that  the  ventral  striatum  stores  learning  signals  and  that  these  learning 

 signals  play  an  essential  role  in  decision-making.  However,  the  possibility 

 that  the  striatum  can  store  numerous  concurrent  predictive  error  messages 

 raises  the  question  of  how  these  learning  signals  differ.  This  critical  issue, 

 which  was  previously  introduced  by  Diuk  et  al.  (2013b)  and  Daw  et  al. 

 (2011),  will  require  more  future  research.  Rather  than  having  a  role  in 

 learning  per  se,  one  idea  is  that  the  striatum  is  implicated  in  integrating 

 predictive  error  signals  to  direct  behaviour.  This  reasoning  is  consistent  with 

 previous  research  indicating  that  the  ventral  striatum  is  not  only  crucial  for 

 recording  reward  prediction  errors  but  also  for  determining  the  behavioural 

 relevance  of  events  (Klein  Flugge  et  al.,  2011;  Iglesias  et  al.  al.,  2013;  De 

 Lange  et  al.,  2018).  For  example,  Klein-Flugge  et  al.  (2011)  found  that  the 

 ventral  striatum  responds  predominantly  to  events  relevant  to  behavioural 

 orientation,  in  contrast  to  midbrain  activity  that  represents  RPE  signals  in  the 

 absence  of  a  behavioural  policy.  In  fact,  in  our  research,  the  representation  of 

 RPE1  in  brain  maps  was  concentrated  in  VS,  while  RPE2  was  also  related  to 

 other  areas,  in  concrete,  the  Superior  Frontal  Gyrus.  Furthermore,  some 

 authors  hypothesised  that  striatal  activity  might  influence  feedback 

 processing,  thus  increasing  the  relevance  of  those  events  and  their  related 

 behaviours  for  future  decisions,  particularly  when  an  event  gains  special 

 attention (Den Ouden et al., 2012; Berridge, 2007; Friston, 2009). 

 In  this  study,  Cue  PS+  provided  more  pseudo-rewards  which  could  be 

 interpreted  as  additional  information  connected  with  the  monetary  reward. 

 This  imbalance  potentially  had  a  motivating  influence  on  their  selection.  It 

 can  be  argued  that  there  is  a  preference  for  the  source  that  provides 

 additional  information  on  the  reward  as  a  result  of  an  observational  effect 
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 (Beierholm  and  Dayan,  2011).  This  preference  for  positive  pseudo-feedback 

 relegated  the  feedback  processing  of  the  final  reward,  which  was  more 

 favourable  for  the  other  option  in  most  of  the  participants.  Therefore,  this 

 study  shows  a  complete  behavioural  trajectory  guided  by  pseudo-feedback, 

 despite  leading  to  sub-optimal  behaviour,  which  may  be  due  to  participants 

 not  paying  attention  to  the  value  of  the  conditioned  reinforcer  without  taking 

 into  account  the  stimulus  that  predicts  the  lack  of  reinforcement  (Zentall, 

 2016). 

 In  conclusion,  the  findings  on  the  relationship  between  prediction  errors 

 and  VS  activation  indicate  the  potential  of  pseudo-feedback  as  a  learning 

 accelerator  and  its  effect  on  decision-making.  In  addition,  these  brain 

 mechanisms  would  be  present  in  sub-optimal  situations  in  which  individuals 

 would  remain  in  a  lost  pattern,  demonstrating  that  the  propensity  for 

 pursuing sub-goals can result in undesirable behaviour. 
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 Chapter VI: General Discussion. 

 Introduction. 

 Three  studies  were  conducted  in  this  thesis  to  investigate  the  behavioural, 

 computational  and  neural  correlates  of  sub-goal-oriented  behaviour  during 

 sub-optimal  decision  making.  On  the  one  hand,  we  researched  the 

 behavioural  substrates  of  sub-goals  as  a  driver  of  learning,  even  when  their 

 guidance  can  lead  to  maladaptive  choice  behaviour.  On  the  other  side,  we 

 investigated  the  brain  correlates  to  pseudo-feedback  processing  in  Studies  2 

 and  3,  diving  into  the  oscillatory  activity  and  the  BOLD  signals 

 underpinning  the  Pseudo  Reward  Prediction  Errors'  encoding.  Summarising 

 and  over-viewing  the  individual  findings  from  each  research,  we  will  revise 

 the  major  findings  from  the  studies  that  compose  this  thesis.  By  combining 

 them  into  a  more  holistic  picture,  we  will  be  able  to  discuss  this  evidence  at 

 the  light  of  the  research  aims  and  existing  literature.  Nevertheless,  each 

 study's  related  section  has  a  more  extensive  description  of  the  findings 

 (chapters 3, 4 and 5). 

 Summary of the findings 

 The  purpose  of  the  study  1  was  to  determine  if  pseudo-rewards  may 

 influence  choices  to  induce  sub-optimal  behaviours.  By  using  a  series  of  a 

 modified  version  of  a  two-step  hierarchical  task,  we  established  that 

 individuals  favour  the  most  pseudo-rewarding  alternatives,  even  if  they  are 
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 not  the  most  advantageous  in  terms  of  ultimate  rewards.  These  findings 

 demonstrate  that  intermediate  information  on  decision-making  is 

 self-reinforcing  and  may  result  in  sub-optimal  choice  behaviours,  at  least  in  a 

 hierarchical  setting.  Interestingly,  we  observed  a  preference  for  the  more 

 pseudo-rewarding  option  throughout  all  of  our  tests,  both  when  the  two 

 alternatives  resulted  in  the  same  final  reward  (Experiment  1)  and  when 

 choosing  this  figure  resulted  in  a  decrease  in  the  probability  of  obtaining  the 

 final  reward  (Experiment  2).  Tasks  with  secondary  goals  have  previously 

 highlighted  the  relevance  of  information  on  the  different  stages  necessary  to 

 accomplish a task or achieve a final reward (Ribas-Fernandes et al., 2011). 

 The  purpose  of  the  study  2  was  to  determine  the  influence  of 

 pseudo-feedback  on  biased  decision-making  and  its  associated  brain 

 oscillatory  activity.  For  this  purpose,  different  temporal  difference  models 

 were  presented  to  explain  participants'  behaviour  and  their  association  with 

 oscillatory  theta  activity,  which  is  related  to  prediction  error  encoding.  The 

 model  best  adjusted  to  the  behavioural  evidence  was  the  one  that  proposed 

 two  different  learning  processes,  one  for  each  stage  of  the  task.  In  addition, 

 theta  oscillatory  activity  increased  after  getting  pseudo-feedback  and 

 feedback.  These  findings  of  theta  oscillations  on  the  mid-frontal-  cortex  are 

 aligned  with  previous  findings  of  ACC  activity  and  prediction  error  encoding 

 (Holroyd  and  Yeung,  2012;  Gruber  et  al.,  2013;  Mas-Herrero  and  Pallarés, 

 2016;  Shahnazian  et  al.,  2018).  Also,  as  in  this  study  2,  sub-goals  are 

 supposed  to  allow  improved  prediction  of  pre-states  that  lead  to  ultimate 

 rewards,  even  with  two  independent  systems  running  in  parallel,  as  in  Diuk 

 et al. (2013b), but with independent Learning Rates per task level. 

 The  goal  of  the  study  3  was  to  identify  the  neural  correlates  of  processing 

 pseudo-rewards  that  induce  a  preference  for  them,  even  though  this  bias 
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 diminishes  the  likelihood  of  receiving  rewards.  The  study's  key  finding  was 

 the  statistically  substantial  connection  between  BOLD  signals  in  the  Ventral 

 Striatum  (VS)  and  prediction  errors.  Consequently,  VS  activations  are 

 implicated  in  both  action  levels;  therefore,  we  found  that  predicted  values  of 

 distinct  forms  of  feedback  are  encoded  on  a  similar  scale  and  activated  in  the 

 VS.  Furthermore,  these  PRPEs  engage  the  reward  network  in  similar  ways  to 

 RPE  (Diuk  et  al.  2013b,  Mas-Herrero  et  al.  2019),  supporting  their 

 reinforcing  properties  which  would  justify  their  engaging  nature  which  could 

 lead to such sub-optimal behaviour. 

 The Reinforcing potential of pseudo-feedback. 

 The  relevance  of  goal-related  information  about  the  stages  required  to 

 accomplish  a  task  or  achieve  a  final  reward  has  already  been  demonstrated 

 (Ribas-Fernandes  et  al.,  2018;  Lou  et  al.,  2021).  The  sub-goals  serve  a  major 

 purpose  and  are  the  key  to  sub-goal-directed  behaviour,  as  it  is  a  behavioural 

 strategy  to  lower  the  task's  overall  complexity  and  direct  attention  and 

 resources  to  a  simpler  set  of  subroutines  (Mas-Herrero  et  al.,  2019).  These 

 sub-goals  enable  a  more  accurate  prediction  of  the  pre-states  that  precede  a 

 final  reward,  as  it  has  been  extensively  presented  by  Botvnick  and 

 collaborators  (2011;2013).  Particularly  the  experimental  design  proposed  by 

 Diuk  et  al.  (2013b)  is  comparable  to  the  two-step  task  employed  in  this  thesis 

 ever  since  it  employed  a  parallel  prediction  error  computation  at  different 

 levels.  Notably,  it  has  been  demonstrated  that  the  prediction  errors  associated 

 with  these  pseudo-feedbacks  engage  areas  of  the  reward  network,  such  as  the 

 ventral  striatum  (VS;  Diuk  et  al.  2013b,  Mas-Herrero  et  al.,  2019),  implying 
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 that  their  reinforcing  properties  justify  their  engaging  nature,  which  may 

 result  in  such  sub-optimal  behaviour.  Mas-Herrero  et  al.  (2019)  discovered  a 

 correlation  between  Ventral  Striatum  activity  and  preference  for  positive 

 pseudo-feedback,  indicating  that  individual  variance  in  terms  of  preference 

 may  be  connected  to  the  influence  of  pseudo-rewards  on  the  reward  network 

 and  our  goal-directed  behaviour.  So,  first  of  all,  it  is  clear  that  the  assumption 

 of  brain  areas  involved  in  the  reward  circuitry  could  justify  the  fact  that 

 sub-goals  have  a  reinforcing  potential  in  choice  behaviour.  Particularly  in  the 

 study  1  /  experiment  1,  this  behavioural  preference  for  pursuing 

 pseudo-feedback was stressed and validated. 

 Therefore,  the  hierarchical  organisation  of  behaviour  might  imply  a 

 relationship  between  goal-directed  behaviour  and  other  systems  which  aim  to 

 decompose  task  units  in  simpler  settings.  For  the  purpose  of  the  discussion, 

 we  could  name  it  sub-goal-directed  behaviour  as  a  subordinate  concept  to  the 

 mainstream  theory  of  goal-directed  behaviour  (Polania  et  al.,  2014).  Still,  the 

 reinforcing  nature  of  pseudo-feedback  had  not  been  tested  in  the  light  of 

 risking optimality, particularly within an RL approach. 

 Pseudo-feedbacks as drivers of sub-optimal choice behaviour 

 While  several  theories  show  that  people  are  directed  by  statistically 

 optimum  decision-making  (Bogacz,  2007),  the  results  of  experiment  2  of 

 study  1  suggest  that  information  about  intermediate  stages  may  influence 

 judgments  toward  poor  choices.  These  findings  corroborate  previous 

 research  demonstrating  sub-optimal  choice  behaviours  or  maladaptive 

 decision-making,  where  learning  from  the  information  available  in  the 
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 environment  might  mislead  individuals  to  limit  their  access  to  an  ultimate 

 reward  (Stagner  and  Zentall,  2010,  Chow  et  al.,  2017;  Colaizzi  et  al.,  2019). 

 In  a  more  behaviourist  approach  to  the  learning  theories,  agents  might  be 

 biased  when  exposed  to  more  salient  stimuli  or  when  confronted  with 

 decisions  with  a  higher  predictive  value  that  results  in  a  predilection  for  these 

 inter-linked  cues  that  guide  one's  actions  (Colaizzi  et  al.,  2019).  Thus,  the 

 sub-optimal  choice  behaviours  indicate  that  pseudo-feedbacks  act  as  a 

 probable  discriminative  stimulus,  which  provides  information  with  a  positive 

 predictive  value  (McDevitt  et  al.,  2016;  Sears  et  al.,  2022).  The  sub-optimal 

 imbalance  between  options  in  respect  to  the  point  of  subjective  equivalence 

 (PES) remarks this bias toward pseudo-rewards. 

 Adding  an  additional  layer  to  the  discussion,  it  has  been  reported  that 

 individuals  exhibit  a  preference  towards  stimuli  that  have  previously  related 

 to  a  reward;  therefore,  they  trust  such  signals  to  guide  their  behaviour.  This 

 approach  has  been  coined  as  the  well-known  sign-tracking  effect  (Amaya  et 

 al.,  2020;  Lesaint  et  al.,  2015;  Meyer  et  al.,  2012).  Results  of  the  current 

 thesis  show  that,  given  that  pseudo-feedbacks  are  perceived  as  required 

 informative  cues,  sub-goals  play  a  significant  role  in  generating  sub-optimal 

 preferences.  This  suggests  that  when  any  information  linked  to  an  ultimate 

 response  is  assumed  as  a  mandatory  announcement  of  a  stimuli  appearance, 

 individuals  search  for  these  signs  and  avoid  other  alternatives  that  might  not 

 contain  the  informational  cue.  In  this  view,  pseudo-feedbacks  would  act  as 

 the  conditioned  stimulus  in  sign-tracking  techniques,  becoming  appealing 

 and  inducing  approaching  behaviours  toward  them.  For  instance,  various 

 animal  (Bromberg-Martin  and  Hikosaka,  2009;  Anderson  et  al.,  2015)  and 

 human  (Eliaz  and  Schotter,  2010)  studies  have  suggested  that  information  is 

 intrinsically  rewarding  and  that  certain  biases  or  even  sub-optimal 

 behaviours  may  be  explained  by  a  preference  for  informative  over 
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 non-informative  stimuli.  However,  while  one  might  argue  that  participants 

 preferred  a  more  pseudo-rewarding  option  because  it  was  more  informative, 

 in  our  experimental  designs,  the  available  options  delivered  the  same  amount 

 of  information,  or  at  least  with  the  same  frequency.  Another  possible 

 interpretation  of  these  sub-optimal  biases  would  be  on  the  bases  of  the 

 temporal  delay  between  feedback  and  pseudo-feedbacks.  Still,  the  role  of 

 uncertainty  is  unclear  because,  in  all  the  paradigms,  forced  trials  were 

 included  to  unfold  all  the  information  available.  Additionally,  the  fact  that 

 the  time  required  to  achieve  the  ultimate  reward  was  the  same  in  both 

 alternatives  ruled  out  the  idea  of  a  preference  for  one  option  owing  to 

 temporal  delay  discounting  (Kirby  et  al.  1999).  Finally,  participants' 

 preferences  cannot  be  attributed  to  inconsistencies  in  the  stimuli's 

 presentation  since  they  were  equally  exposed  to  the  different  options,  and 

 these features were counterbalanced across participants (Niv et al., 2002). 

 Is  a  sub-goal-directed  behaviour  a  trade-off  along  with  habitual 
 behaviours? 

 Results  of  study  1  show  that  sub-goals  have  an  impact  on  learning, 

 perhaps  because  of  their  capacity  to  orient  fewer  demanding  actions  into  a 

 larger  routine  towards  a  goal,  and  that  pseudo-feedback  pursuance  can  derive 

 from  motivated  behaviours  towards  their  acquisition.  Considering  that 

 individuals  seek  to  maximise  their  chances  of  getting  the  essential  resources 

 to  survive,  it  is  unclear  why  sub-goal-directed  behaviours  can  land  into 

 sub-optimal  choice  behaviour.  However,  it  is  important  to  note  that 

 individuals  have  a  variety  of  techniques  to  manage  ambiguity,  including 
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 gathering  information  from  prior  encounters  with  the  environment  in  order  to 

 create  knowledge  about  their  odds  of  accessing  the  resources.  This  exchange 

 enables  individuals  to  forecast  and  assess  new  data  to  improve  their  learning 

 and  their  capacity  to  deal  with  uncertainty.  As  a  result,  several  mechanisms 

 aid  in  monitoring  the  outcomes  of  decisions,  those  that  primarily  respond  to 

 the characteristics of the stimuli and those that anticipate future actions. 

 Two  primary  strategies  for  behaviour  control  have  been  identified  and 

 coined  as  habitual  behaviour  and  goal-directed  behaviour.  In  the  first  case, 

 actions  are  guided  by  an  unanticipated  external  stimulation 

 (stimulus-driven),  whereas  goal-directed  behaviours  appear  to  be  motivated 

 by  a  specific  reward  that  has  been  spotted  and  accounted  as  a  probable 

 outcome  (Nachum  et  al.,  2018).  These  two,  apparently,  separate  types  of 

 interaction  with  the  environment  and  value-based  learning  have  the  potential 

 to  impact  individuals'  decisions  in  different  ways.  One  potential  source  of 

 sub-optimality  might  be  those  behaviours  that  have  been  referred  to  be 

 habitual  because  they  lack  the  inherent  monitoring  and  error  detection 

 mechanisms seen in goal-driven behaviours (Decker et al., 2016). 

 People's  reactions,  according  to  this  idea,  are  strongly  dependent  on  the 

 amplitude  and  salience  of  a  stimulus,  and  this  could  partially  explain  the 

 attraction  toward  positive  pseudo-feedback  instead  of  focusing  on  the  final 

 reward,  as  has  been  stated  in  all  the  studies.  Therefore,  in  our  experimental 

 setting  in  study  1,  pseudo-feedback  would  indicate  a  certain  probability  of 

 getting  a  monetary  incentive,  but  still,  participants  would  keep  their 

 preference  to  pursue  this  pseudo-reward  rather  than  focus  on  the  most 

 optimal  strategy  to  get  a  final  beneficial  outcome.  Perhaps  the 

 pseudo-feedback's  salience  was  enough  to  capture  the  individual's  attention 

 in  a  look-alike  habitual  behaviourist  setting.  As  stated  above,  similar 
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 behavioural  responses  can  be  observed  in  sign-tracking,  where  individuals 

 guide  their  behaviour  based  on  external  influences  (stimuli  features)  while 

 assuming  a  reactive  position.  Decision-making  occurs  more  swiftly  and 

 automatically  in  a  stimulus-driven  behaviour,  which  is  closer  to  basic 

 adaptive  processes.  As  a  result,  the  interaction  with  the  environment  is  more 

 reactive,  making  it  harder  to  employ  in  more  complicated  behaviours  where 

 the stimuli's salience is not the primary element. 

 Yet,  the  argument  of  habitual  learning  as  a  central  explanation  for 

 sub-optimality  is  not  enough  to  describe  the  evidence  of  learning  and  the 

 proactive  behaviour  towards  pseudo-feedback  found  in  Studies  1,  2  and  3. 

 Therefore,  we  have  proven  that  sub-goals  and  their  respective  pseudo-reward 

 prediction  errors  are  encoded  similarly  and  in  parallel  to  the  ultimate 

 rewards,  which  could  indicate  a  somewhat  mediate  stage  between  habitual 

 and  goal-directed  behaviours.  Before  digging  further  into  a  more 

 computational  modelling  discussion  and  its  place  in  the  RL  framework,  it  is 

 crucial  to  observe  that  a  goal-directed  process  assesses  various  actions  and 

 their  predicted  consequences,  whereas  a  quicker  and  more  automatic  habitual 

 process  connects  rewards  with  signals,  enabling  repetition  of  previously 

 successful activities (O'doherty et al., 2017). 

 However,  even  when  traditionally  habitual  and  goal-directed  behaviours 

 have  been  assumed  as  independent  monitoring  processes  underlying 

 decisions,  their  interaction  in  learning  has  been  demonstrated  in  rats 

 (Dickinson  et  al.,  2002;  Chow  et  al.,  2017)  and  humans  (Valentin  et  al., 

 2007),  where  both  strategies  (habitual  and  goal-directed)  appear  to  act  in 

 combination  and  coexist.  Indeed,  their  concurrent  existence  in  learning  and 

 decision-making  may  indicate  that  they  work  in  tandem  to  promote  resource 

 access  and  survival  demands.  A  point  of  convergence  between  these  two 
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 behavioural  approaches  may  help,  to  some  extent,  to  explain  why 

 pseudo-feedback  leads  individuals  into  sub-optimal  habits  and 

 decision-making biases. 

 Indeed,  not  just  habitual  learning  but  also  goal-directed  learning  has  its 

 own  computational  representation  within  the  RL  theories.  For  instance,  all 

 the  experimental  designs  that  took  place  in  this  thesis  included  the  principle 

 of  progressive  learning  to  favour  an  individual's  search  for  rewards,  yet  the 

 evidence  of  sub-optimal  choice  behaviour  was  consistent  with  the  different 

 studies.  These  findings  of  a  persistent  bias  have  been  challenging  since 

 learning  suppose  to  happen  in  an  incremental  manner,  and  in  principle, 

 hierarchical  tasks  (two-step  tasks)  should  be  able  to  facilitate  the  learning  of 

 optimal behavioural strategies. 

 Oscillatory activity and pseudo-feedback processing. 

 One  of  the  main  findings  of  the  second  study  was  the  presence  of  theta 

 activity  in  all  conditions  suggesting  that  similar  brain  systems  are  recruited 

 during  both  pseudo-feedback  and  feedback.  Midfrontal  theta  activity  has 

 been  associated  with  activation  of  the  anterior  cingulate  cortex  (ACC) 

 (Holroyd  and  Yeung,  2012;  Gruber  et  al.,  2013;  Mas-Herrero  and  Pallarés, 

 2016;  Shahnazian  et  al.,  2018).  Furthermore,  assuming  that  common  brain 

 processes  are  used  to  calculate  prediction  errors  at  both  action  levels, 

 predicted  values  for  various  forms  of  feedback  are  encoded  on  a  similar  scale 

 and  activate  common  brain  regions  (Diuk  et  al.,  2013b;  Levy  and  Glimcher, 

 2012).  This  would  also  be  compatible  with  earlier  results  about  the 

 correlations  between  hierarchical  temporal  abstraction  and  the  mPFC 
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 (Balaguer  et  al.,  2016;  Holroyd  et  al.,  2018;  Ribas-Fernandes  et  al.,  2019).  It 

 is  important  to  note,  however,  that  oscillatory  activity  was  greatly  increased 

 while  processing  feedback  linked  with  the  most  pseudo-rewarding  option. 

 Thus,  the  apparent  preference  for  the  most  pseudo-rewarding  figure  implies  a 

 sub-optimal  bias,  considering  that  the  most  optimal  option  was  predefined 

 for the least pseudo-rewarding figure, yet the most beneficial. 

 Additionally,  there  were  substantial  changes  in  the  elicited  mid-frontal 

 power  for  theta  band.  The  variations  in  theta  power  increase  found  in  this 

 study  were  consistent  with  earlier  findings  regarding  gain-loss  comparisons 

 (Sambrook  and  Goslin,  2015)  and  expected  and  unexpected  reward 

 dissociation  (Paul  et  al.,  2020).  While  there  is  a  significant  difference  in  gain 

 between  the  available  options,  gain  from  PS+  was  always  more  surprising, 

 therefore  generating  a  conventional  reaction  to  novelty,  similar  to 

 feedback-related  negativity  (FRN).  In  normal  settings,  participants  would 

 gradually  redirect  themselves  to  the  most  ideal  choice  (Balaguer  et  al.,  2016), 

 but  this  does  not  seem  to  be  the  case  in  any  of  the  three  studies.  It  has  been 

 suggested  that  frontal-midline  theta  oscillations  (4-8  Hz)  are  a 

 complementary  correlate  of  the  event-related  error  monitoring  process 

 (Hajihosseini  et  al.,  2013),  linking  RPE  signals  with  cognitive  control 

 implementation  (Cavanagh  and  Frank,  2014;  Holroyd  and  Umemoto,  2016). 

 Increased  frontal-medial  theta  power  occurs  during  error  processing,  as  well 

 as  in  response  to  temporal  differences  and  unexpected  events  during  reward 

 processing (Gheza et al., 2019). 

 Cavanagh  and  Frank  (2014)  proposed  that  prediction  errors  in  an  RL 

 environment  are  associated  with  behavioural  adaptation  and  learning 

 (Cavanagh  et  al.,  2010),  probably  through  signalling  the  requirement  for 

 greater  cognitive  control  in  response  to  prediction  error  updating.  Indeed, 
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 theta  activity  demonstrated  a  stronger  behavioural  link  with  changes  in 

 prediction  error  updating  and  reward  processing.  Additionally,  theta  activity 

 may  be  capable  of  capturing  the  neurological  impacts  of  long-distance 

 connections  between  the  medial  and  lateral  prefrontal  cortex  and  the  striatum 

 (Smith  et  al.,  2015;  Gheza  et  al.,  2019).  By  exploiting  these  properties, 

 assessing  the  induced  front-medial  theta  rhythms  throughout  varied  HRL 

 contexts  provides  unique  insights  into  neural  mechanisms  underlying 

 pseudo-reward-based learning and decision making. 

 Additionally,  theta  oscillatory  activity  and  its  association  with  PRPE 

 encoding,  as  identified  in  study  2,  confirmed  a  neural  correlate  in  the 

 midfrontal  cortex  during  sub-optimal  decision  making,  implying  the 

 necessity  to  broaden  the  scientific  ground  regarding  theta  oscillations  during 

 RL.  Indeed,  the  association  between  prediction  errors  and  theta  activity  in 

 the  midfrontal  cortex  verifies  the  pseudo-feedback  scope  as  a  predictor  of 

 learning  not  only  in  conventional  decision-making  schemes  but  also  in 

 sub-optimal settings in which individuals remain in a losing pattern. 

 The  Ventral  Striatum  in  an  Actor/Critic  architecture  during 
 sub-optimal choice behaviour. 

 The  findings  in  study  3  suggest  that  the  VS  encodes  in  parallel,  both  the 

 PE  coming  from  pseudo-feedback  (PRPE)  and  reward  processing  (RPE). 

 fMRI  results  support  the  idea  that  PEs  for  sub-goals  and  final  goals  are 

 processed  in  the  same  areas  (Mas-Herrero  et  al.,  2019;  Ribas-Fernandes  et 

 al.,  2011,  2019;  Diuk  et  al.,  2013b;  Shahnazian  et  al.,  2018;  2019).  Also,  as  a 

 result  of  the  study  3  findings,  the  Ventral  Striatum  (VS)  representations  are 
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 suggested  as  a  predictor  of  learning  during  sub-optimal  choices.  In 

 sub-optimal  conditions,  when  people  continue  to  lose,  these  brain  processes 

 would  be  still  present  as  it  happens  in  optimal  choice  behaviour,  where  the 

 behavioural  strategies  are  adjusted  to  avoid  biases.  An  approach  that  might 

 provide  insights  to  interpret  current  results  is  the  actor-critic  architecture  of 

 RL  models.  This  architecture,  which  has  been  widely  used  to  characterise 

 decision-making  and  RL's  brain  processes,  establishes  a  differentiation 

 between  learning  about  states  and  actions  (Cohen  and  Frank,  2009;  Niv, 

 2009;  Liakoni  et  al.,  2022).  To  clarify,  and  as  detailed  in  the  introduction,  the 

 actor  carries  out  the  action,  and  the  critic  provides  feedback  on  the  actor's 

 effectiveness  while  performing  a  task.  A  critic  learns  and  makes  predictions 

 about  the  value  of  states  and  computes  prediction  errors  when  the  agent 

 transits  between  states.  Therefore,  the  prediction  errors  are  used  to  update 

 not  just  the  critic's  state-values  but  also  the  actor's  policy  (Liakoni  et  al., 

 2022),  that  is,  the  function  that  maps  states  to  actions.  As  a  result,  the  actor 

 selects  actions  in  accordance  with  its  learnt  policy.  The  interest  in  the 

 actor-critic  model's  relevance  for  understanding  neural  RL  stems  from  the 

 hypothesis  that  the  differentiation  between  the  ventral  and  dorsal  striatum 

 may  widely  transfer  onto  the  actor-critic  model's  actor-critic  distinction 

 (Averbeck  and  O'Doherty,  2022;  Van  der  meer  and  Redish,  2011).  The  actor  , 

 which  has  been  reported  to  correlate  with  activity  in  the  dorsal  striatum  and 

 dorsolateral  prefrontal  cortex  (dPFC),  links  sensory  inputs  to  motor  outputs 

 (Holroyd  et  al.,  2011;  Van  der  Meer  and  Redish,  2011;  Liakoni  et  al.,  2022). 

 Simultaneously,  the  critic  component  of  a  computational  model,  which  is 

 implemented  by  the  orbitofrontal  cortex  (OFC)  and  ventral  striatum  (VS), 

 gets  sensory  input  to  weigh  the  value  of  reinforcers.  In  this  way,  the  critic 

 gathers  information  regarding  reinforcements  and  computes  the  value  of 

 ongoing  events  via  temporal  difference  mechanisms  (Padoa-Schioppa,  2011), 
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 as  well  as  reward  prediction  error  signals  indicating  whether  the  values  were 

 worse or better than expected (Holroyd et al., 2016; 2017). 

 These  signals  are  then  transmitted  to  the  dopamine  system's  neural  targets 

 (Ventral  Tegmental  Area)  as  phasic  increases  or  decreases  in  dopamine 

 activity  (Schultz,  2013),  where  they  are  used  by  the  actor  to  improve 

 performance  on  the  task  and  by  the  critic  to  optimise  its  predictions  of  future 

 reward  (Sutton  and  Barto,  1998).  Therefore,  the  results  of  study  3  would 

 support  a  key  role  of  VS  as  the  critic  not  only  of  final  outcomes  (as 

 traditionally  reported)  but  also  for  the  intermediate  steps  needed  to  complete 

 a  task.  In  addition,  this  role  could  be  on  the  bases  of  the  maintenance  of 

 sub-optimal  preferences.  Interestingly,  in  study  3,  we  found  BOLD  signals  in 

 the  VS  related  to  individual  behaviours.  Striatal  sensitivity  to  PRPEs  was 

 linked  to  a  preference  for  the  most  pseudo-rewarding  option  but  was  also 

 activated  while  processing  the  ultimate  reward.  This  finding  might  indicate 

 that  the  VS  has  a  role  as  a  critic  and  influence  the  actor's  task  performance 

 during RL. 

 This  intervention  of  the  critic  during  intermediate  states  or  pre-states  is 

 an  evident  indicator  of  disturbance  of  the  conventional  optimal 

 action-selection  process.  Such  a  prominent  role  of  the  VS  in  the  Actor/Critic 

 architecture  could  be  in  line  with  the  proposal  of  Niv  et  al.  (2015),  where  a 

 clear  selection  bias  for  some  choices  might  contribute  to  decaying  other 

 alternatives  while  stopping  exploration  of  other  options.  As  hypothesised  in 

 this  thesis,  participants  would  prioritise  the  most  reward-informative  cues 

 with  a  higher  pseudo-rewarding  value  and  target  its  features  (i.e.,  colour, 

 shape),  implying  that  participants  were  learning  in  parallel  about  all  levels  of 

 the  selected  stimuli  but  having  a  greater  impact  on  the  reward  prediction 

 mechanisms  for  those  selected  more  frequently.  Indeed,  dopaminergic 
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 prediction  errors  may  have  had  an  effect  on  the  strengthening  or  weakening 

 of  corticostriatal  connections  encoding  the  characteristics  of  the  regularly 

 selected  stimulus  at  the  expense  of  other  possibilities.  In  general,  as  the 

 preference  for  particular  options  increased,  the  learning  associated  with 

 unchosen  stimuli  began  to  decline  consistently,  as  in  a  passive  forgetting 

 process (Beierholm and Dayan, 2010). 

 However,  previous  studies  have  suggested  that  not  only  the  VS  might 

 play  a  role  in  this  processing,  and  different  proposals  have  been  made  to 

 understand  the  brain  processes  underlying  hierarchical  reinforcement 

 learning  (HRL;  Botvinick  et  al.,  2009;  Ribas-Fernandez  et  al.,  2011). 

 Holroyd  et  al.  (2017)  have  proposed  that  ACC  could  be  in  charge  of 

 selecting  the  action  policy,  sometimes  known  as  task  or  option.  These 

 authors  propose  that  different  options  might  be  geared  toward  a  certain  goal 

 and  perform  adjustments  after  receiving  dopaminergic  projections  from  the 

 midbrain.  In  other  words,  the  ACC  would  determine  what  to  do;  then,  the 

 actor  would  do  the  task,  while  the  critic  would  monitor  the  result  of  these 

 actions.  So  the  options  would  be  selected  after  being  judged  by  RPE  signals 

 transmitted  from  the  critic  to  the  ACC  via  the  midbrain  dopamine  system 

 (Holroyd  et  al.,  2017;  Frank  and  Badre,  2012).  This  would  be  in  line  with  the 

 fronto-central  theta  activity  found  in  study  2,  which  tracks  PEs  and  has  been 

 related  to  activity  in  ACC  and  pre-SMA,  among  others  (see,  e.g., 

 Mas-Herrero  et  al.  2016).  In  addition,  this  interpretation  would  explain  why 

 ACC was not found as be related to RPE or PRPE in study 3. 

 The  assumption  of  the  ACC  as  a  mechanism  for  option  selection  may 

 imply  that  the  system  relinquishes  some  control  when  the  actor  develops  an 

 effective  action  performance  toward  a  goal,  particularly  when  the  amount  of 

 effort  required  to  maximise  reward  is  uncertain.  It  is  possible  that  the 
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 enticing  nature  of  pseudo-rewards  creates  a  mental  state  in  which  ultimate 

 rewards  are  attained  by  achieving  predefined  sub-goals.  In  any  case, 

 behaviours  with  a  high  immediate  reward  value  may  be  carried  out 

 independently  of  the  primary  ACC's  goal  of  selecting  the  optimal  option 

 (Holec  et  al.,  2014;  Holroyd  et  al.,  2017).  Perhaps  the  excessive  value 

 ascribed  to  positive  pseudo-feedback  constrains  the  typical  function  of  ACC 

 in  selecting  the  best  alternative,  particularly  when  a  pseudo-reward  is  a 

 necessary pre-state for an ultimate reward. 

 Indeed,  considering  the  neural  basis  of  the  reward  networks  (Niv  et  al., 

 2015),  it  is  conceivable  that  corticostriatal  estimates  are  moulded  to 

 incorporate  sensory  factors  that  are  thought  to  be  important  to  the  task  (i.e., 

 dimensions,  levels,  degrees,  etc.;  Bar-Gad  et  al.,  2000),  for  instance,  through 

 selective  attention  processes  (Corbetta  and  Shulman,  2002),  where  the  actor 

 and  the  critic  hierarchical  representations  prioritise  positive 

 pseudo-feedback.  Therefore,  striatal  circuits  may  also  help  to  emphasise 

 some  inputs  while  ignoring  others,  which  would  mislead  attention  and 

 generate  potential  biases  (Frank  and  Badre,  2012;  Pezzulo  et  al.,  2018).  Such 

 attention  filters,  in  turn,  might  be  constantly  updated  based  on  the  results  of 

 current  choices  instead  of  on  the  options  selected  fewer  times  (Canas  and 

 Jones,  2010),  therefore  providing  a  causal  relation  between  the 

 representation  learning  assumed  by  the  individual  and  the  RL  model  that 

 describes behaviour. 
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 Hierarchical  Reinforcement  Learning  (HRL)  to  cope  with 
 uncertainty. 

 While  a  traditional  reinforcement  learning  agent  selects  between  concrete 

 and  straightforward  actions,  in  HRL,  agents  divide  into  sub-routines,  each 

 with  its  own  set  of  associated  rules,  that  are  utilised  to  accomplish  sub-goals. 

 Thus,  with  the  use  of  Temporal  Difference  (TD)  mechanisms  and  Reward 

 Prediction  Error  (RPE)  encoding,  the  agent  can  determine  which  subroutines 

 are  appropriate  for  each  sub-goal  (Hengst,  2012).  Notably,  relevant  sub-goals 

 are  often  not  connected  with  primary  reward,  in  contrast  to  overarching  goals 

 in  a  hierarchy.  This  exacerbates  the  difficulty  of  sub-goal  setting  and  its 

 prevalence  in  TD  processes,  which  is  perhaps  the  most  difficult  aspect  of 

 HRL (Botvinick, 2012; Wiering and van Otterlo, 2012). 

 Beyond  the  description  of  the  sub-goals,  there  are  predicted  outcomes  for 

 each  sub-task  and  therefore  dubbed  pseudo-reward  prediction  errors  are 

 created.  Indeed,  the  two-step  task  with  a  monetary  incentive  used  in  the 

 present  thesis  assumes  that  behaviour  is  hierarchically  organised  to  reduce 

 ambiguity.  In  contrast,  such  reliability  and  liability  in  TD  mechanisms 

 underlying  RPE  and  PRPE  might  be  the  driving  force  towards  biased  choice 

 behaviour.  One  of  the  purposes  of  study  2  was  to  determine  the  influence  of 

 pseudo-feedback  on  biased  decision-making  while  using  an  HRL  model. 

 Therefore,  a  TD  model  was  presented  to  explain  the  participants'  behavioural 

 inclinations,  which  are  based  on  RPE  and  PRPE  encoding.  We  developed 

 and  evaluated  temporal  difference  models  (TD0)  with  varied  parameter  fits 

 follow-up  the  action  selection  and  learning  at  different  action  levels.  The 

 model  that  was  most  closely  aligned  with  behavioural  data  (model  3) 

 advocated  two  distinct  learning  processes,  one  for  each  step  of  the  task. 
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 Additionally,  the  model  that  best  explained  the  preference  for  PS+ 

 incorporated  two  distinct  learning  rates  (LR):  one  for  updating  values  at  the 

 pseudo-feedback level and another for reward. 

 Additionally,  model  3  introduced  a  third  parameter  that  weighted  positive 

 pseudo-feedback  in  addition  to  the  projected  monetary  incentive.  This  is,  as 

 long  as  a  final  reward  had  a  monetary  specific  value  (€0.2)  and  was  included 

 in  the  TD  models  as  1,  we  reckoned  to  find  the  best  suitable  value  to 

 represent  pseudo-feedback  in  the  model,  which  was  0.47,  indicating  a  weight 

 somewhere  less  than  1.  This  is  fundamentally  different  to  previous 

 computational  models  used  in  HRL,  such  as  in  Diuk  et  al.  (2013b)  and 

 Mas-Herrero  et  al.  (2019).  Due  to  the  fact  that  it  is  not  entirely  based  on 

 actual  rewards  and  that  there  is  a  persistent  participant's  decision  bias, 

 learning  an  optimal  strategy  becomes  more  difficult.  Yet,  in  some 

 circumstances,  using  pseudo-feedback  may  be  useful  due  to  its  ability  to 

 accelerate  learning  and  engage  decision-makers.  Additionally,  the 

 computation  of  two  prediction  errors  demonstrates  the  HRL's  ability  to 

 describe  decisional  paradigms  with  protracted  phases  of  varying  complexity. 

 This  also  indicates  that  pseudo-feedback  has  a  significant  effect  on  learning 

 and  action  selection.  Similarly,  as  Botvinick  (2012),  Ribas-Fernandes  (2017), 

 and  Mas-Herrero  (2019)  have  demonstrated  beforehand,  the  combination  of 

 stimuli in a chain of activities can have a distinct effect on learning. 

 Algorithmic constraints of HRL models and inefficient learning. 

 As  stated  above,  the  model  that  best  matched  the  behavioural  preference  of 

 the  participants  in  study  2  was  the  model  using  two  different  learning  rates 

 142 



 (one  to  update  the  values  at  the  pseudo-feedback  level  and  another  to  update 

 the  values  at  the  reward  level).  This  model  concatenated  TD0  independent 

 designs  for  every  task  level,  suggesting  a  hybrid  approach  under  the 

 assumption  that  parallel  prediction  error  encoding  might  require  independent 

 learning  rates.  The  feasibility  of  such  an  approach  might  bring  back  the 

 typical  constraints  of  flat  RL  algorithms  in  terms  of  dimensionality  and 

 scalability.  Thus,  the  way  of  representing  a  hierarchical  task  decomposition 

 and  the  complex  nature  of  intermediate  states  between  action  and  rewards 

 might  generate  inefficient  learning  (Eckstein  and  Collins,  2020).  Therefore, 

 the  critical  point  is  to  discuss  both  the  limitations  of  the  algorithms 

 themselves  but  also  the  inefficient  learning  process  due  to  the  extent  of 

 behavioural routines. 

 Humans  possess  an  enthralling  capacity  to  accomplish  goals  in  a 

 complicated  and  continuously  changing  world,  still  outperforming 

 sophisticated  algorithms  in  terms  of  consistency  and  speed  of  learning.  It  is 

 widely  agreed  that  a  necessary  component  of  this  skill  is  the  use  of 

 abstractions  and  hierarchical  representations  that  make  use  of  the 

 environment's  structure  to  facilitate  learning  and  decision-making. 

 Nonetheless,  little  is  known  about  how  humans  develop  and  then  use  those 

 hierarchical  representations  (Eckstein  and  Collins,  2020).  According  to 

 cognitive  psychology  and  neuroscience,  human  and  animal  behaviour  are 

 hierarchically  organised  (Botvinick,  2012).  Nevertheless,  depending  on  the 

 architecture  to  be  used,  designing  a  reasonable  hierarchy  requires  domain 

 knowledge  and  precise  engineering  in  order  for  a  method  to  appropriately 

 describe sophisticated behaviours. 

 Imagine  that  your  partner  just  baked  an  extraordinary  orange  cake; 

 therefore,  you  are  interested  in  the  recipe  so  you  can  prepare  it  again.  In 
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 principle,  it  should  be  an  easy  task  to  describe  the  different  steps  of  cooking 

 and  mix  all  the  ingredients.  Still,  even  when  you  transfer  the  same 

 instructions  is  likely,  that  you  will  take  a  few  attempts  to  achieve  something 

 similar  and  as  tasty  and  fluffy.  However,  this  is  not  as  simple  as  it  seems 

 since  it  can  range  from  a  top-level  description  to  a  really  detailed  sequence. 

 At  some  point  in  the  recipe  for,  say,  Mediterranean  orange  cake  ,  one  is 

 instructed  to  cut  four  oranges  into  slices.  While  to  humans,  there  is  no  need 

 to  provide  really  detailed  instructions  (take  a  knife,  sharpen  it;  clean  it  up; 

 place  the  oranges  on  a  wooden  board;  hold  the  knife;  etc.),  for  an  algorithm, 

 the  level  of  task-related  information  might  be  a  big  difference.  Thus,  there  is 

 a  necessary  level  of  granularity  when  sketching  a  course  of  action  for  a 

 system  to  follow  or  a  temporal  difference  model  to  describe  behaviours. 

 Perhaps  it  is  not  yet  a  concern  in  the  models  specified  along  with  all  the 

 studies  of  this  thesis,  but  it  challenges  its  findings.  This  level  of  detail  can  be 

 extremely  challenging  to  integrate  mathematically  speaking  to  represent 

 more elaborated behavioural patterns (Collins and Frank, 2013). 

 In  fact,  evolutionary  and  comparative  psychology  demonstrates  that 

 primates,  children,  and  adults  all  rely  on  similar  cognitive  mechanisms  for 

 learning,  which  is  decomposing  complex  tasks  into  a  simpler  sequence  of 

 steps  (Spelke  and  Kinzler,  2007).  Indeed,  toddlers  use  the  information 

 available  to  establish  sub-goals  while  playing  open-ended  games  such  as 

 building-up  block  constructions.  Toddlers  appear  to  develop  sub-goal-guided 

 behaviours  in  order  to  accomplish  overarching  objectives  (Kulkarni  et  al., 

 2016;  Nachum  et  al.,  201  8).  But,  as  happens  in  the  example  of  the  orange 

 cake  recipe,  the  level  of  information  about  tasks  could  easily  go  from 

 chopping an orange in half to fine slices with a specific kind of knife. 
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 The  level  of  granularity  is  a  central  factor  in  determining  the  complexity 

 and,  therefore,  the  efficiency  of  a  temporal  model  in  describing  behaviours. 

 Once  added  to  RL  models,  this  becomes  fundamental  since,  depending  on 

 the  knowledge  and  domain  of  a  task,  an  agent  would  need  more  or  less  data 

 for  a  supervised  learning  setup  (Arulkumaran  et  al.,  2017).  Finding  the  most 

 efficient  strategy  to  acquire  a  goal  is  a  difficult  task  and  can  be  challenging 

 to  specify  in  computational  terms.  If  granularity  can  be  already  demanding  in 

 controlled  and  conventional  RL  experimental  conditions  it  gets  more 

 demanding  when  you  add  hierarchies  and  more  ecological  settings,  as  can 

 happen  in  a  simple  meal  recipe  (Momennejad  et  al.,  2017).  It  remains  an 

 open  question  whether  the  HRL  algorithm  used  in  Studies  2  and  3  would  be 

 suitable  in  the  experiments  of  the  present  thesis  in  case  of  larger  sessions  or 

 additional  hierarchy  or  task  levels.  Indeed,  the  RL  approach  used  in  the 

 present  thesis  is  relatively  simple  compared  to  sophisticated  RL  approaches, 

 which  have  demonstrated  outstanding  results,  such  as  outperforming 

 humanity's  best  at  Go,  learning  to  play  Atari  games,  and  training  computers 

 in  simulations  or  in  the  real  world  (Silver  et  al.,  2018;  Mnih  et  al.,  2015). 

 These  accomplishments  represent  a  significant  progression  in  trial-and-error 

 learning  but  still  seem  limited  in  describing  human  behaviour.  While  HRL 

 seeks  to  deconstruct  complex  issues  into  smaller  ones  (efficient  learning; 

 Bacon  et  al.,  2017),  there  is  still  a  way  to  scale  up  to  ecological 

 circumstances,  such  as  the  transferable  knowledge  of  baking  an  orange  cake. 

 The  findings  of  this  thesis  strive  in  that  direction,  tracking  down  the  choice 

 behaviour  of  human  agents  trying  to  maximise  rewards  in  a  hierarchical 

 setting. 

 Therefore,  there  is  a  real  challenge  to  generalise  the  temporal  abstraction 

 strategy  of  an  agent  toward  a  specific  task.  The  decomposition  in  sequences 

 could  result  in  extremely  lengthy  pathways  between  the  beginning  and  goal 
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 states.  For  instance,  the  recipe  to  prepare  the  orange  cake  could  be  extremely 

 lengthy  or  really  short;  either  case  would  alter  the  way  an  algorithm  could 

 predict  learning,  therefore,  choice  behaviour.  In  fact,  the  length  of  these 

 sub-tasks  influences  the  cost  of  learning.  Therefore,  the  solution  to  resolve 

 the  dimensionality  curse  might  become  another  limitation  where  learning 

 speeds  up  but  not  necessarily  in  an  efficient  way  towards  an  ultimate  reward 

 (Nachum  et  al.,  2018).  After  revising  the  persistent  findings  of  studies  1,  2 

 and  3,  one  might  consider  that  hierarchical  learning  is  not  a  guarantee  of 

 learning  optimal  behavioural  strategies  since  it  could  potentially  challenge 

 the  conventional  principles  of  optimal  choice  behaviour  and  learning. 

 However,  research  has  demonstrated  that  hierarchical  methods  such  as  HRL 

 can  significantly  reduce  the  computational  costs  associated  with  finding  the 

 optimal behavioural strategies (Botvinick, 2012). 

 Additionally,  there  is  a  substantial  body  of  work  on  sub-goal  discovery 

 (Schmidhuber  and  Wiering,  1996),  intrinsic  drive  (Oudeyer  and  Kaplan, 

 2009),  and  induced  curiosity  (Fruit  and  Lazaric,  2017).  Nonetheless,  there  is 

 still  a  lack  of  a  standard  way  for  incorporating  hierarchies  into  the  efficient 

 RL  algorithms,  given  that,  depending  on  the  framework  being  used, 

 manually  creating  a  decent  hierarchy  needs  domain-specific  expertise  and 

 careful  engineering  for  an  algorithm  to  accurately  represent  complex 

 behaviours (Collins and Frank, 2013; Eickstein and Collins, 2020). 

 To  choose  an  acceptable  hierarchy  structure  to  represent  a  task,  one  must 

 first  consider  the  availability  of  domain  knowledge.  Besides  this  potential 

 mathematical  constraint,  the  other  side  of  the  coin  might  be  that  HRL  is  good 

 at  describing  complex  behaviours,  and  probable  consequences  of  hierarchical 

 abstraction  (inefficient  learning  and  sub-optimal  choice  behaviours)  are,  to 

 some  extent,  reflected  in  the  computations.  Therefore,  an  imperfect 
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 algorithm  just  describes  a  non-optimal  behaviour  of  agents  striving  to 

 maximise  rewards  and  relying  on,  perhaps  excessively,  auxiliary  tasks  to 

 achieve  a  superordinate  goal.  In  this  sense,  more  research  needs  to  be 

 conducted  to  identify  the  individual  differences  between  agents  in  a  specific 

 environment  (humans  of  different  ages,  animals  of  different  species,  robots 

 with  different  purposes,  etc.).  Therefore,  in  order  to  ensure  accuracy  and  an 

 ecological  algorithmic  architecture,  we  would  attend  more  tailor-made 

 algorithms  rather  than  standardised  criteria  to  predefined,  for  instance, 

 learning and decision making (Eckstein and Collins, 2020). 

 Limitations and Future Directions 

 The  main  results  of  this  thesis  corroborated  the  importance  of  sub-goals 

 and  pseudo-feedback  processing  in  Learning  and  Decision  Making.  Indeed, 

 the  studies  have  presented  the  immense  potential  of  pseudo-feedback  to 

 speed-up  learning  and  guide  behaviours,  even  in  scenarios  where  the 

 pursuance  of  sub-goals  might  lead  to  a  sub-optimal  choice  behaviour  pattern. 

 In  the  following,  we  will  discuss  ideas  to  embrace  future  research  on  this 

 matter. 

 To  start,  it  is  important  to  remark  that  in  addition  to  learning  how  to 

 respond  to  diverse  circumstances  and  then  deciding  to  pick  a  course  of 

 action,  humans  learn  to  arrange  their  experiences  into  mental  representations 

 that  help  future  behaviours  (Radulescu  et  al.,  2021).  This  representation 

 learning  approach  encompasses  attention  and  memory  as  drivers  of  how  an 

 individual  explores  the  world,  and  frequently,  such  interaction  brings 

 attentional  bias  (Ma  et  al.,  2018).  Indeed,  humans  depend  on  multiple  types 
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 of  statistical  inference  to  organise  prior  experiences,  and  this  inference 

 process  gives  birth  to  compact  representations  of  tasks  that  guide  behaviours 

 in  complicated  situations.  The  potential  intersection  between  HRL  and  the 

 representation  learning  theories  could  be  addressed  as  both  fields  of  work 

 trying  to  understand  how  individuals  break  down  problems  into  simple  and 

 achievable tasks (Radulescu et al., 2021). 

 Along  with  the  studies  1,  2  and  3,  the  data  collection  was  conducted 

 with  a  very  specific  population,  university  students.  The  bias  towards  the 

 most-pseudo  rewarding  options  was  consistent,  even  when  the  tasks  were 

 lessening  the  final  rewards  for  such  preference  but  has  not  been  contrasted 

 with  other  populations.  For  instance,  research  on  addictions  demonstrates  an 

 increased  proclivity  for  "impulsive"  behaviour,  as  well  as  increased 

 susceptibility  to  rewards  of  different  kinds  (Coffey  et  al.,  2003;  Roesch  et  al., 

 2007).  Indeed,  relying  on  a  prediction  error  that  is  dominated  by  immediate 

 rewards  might  enhance  impulsivity,  potentially  as  it  happens  with 

 pseudo-feedback  along  with  the  whole  thesis,  but  also  as  it  has  been  reported 

 in  patients  with  addiction  to  cocaine  (Ma  et  al.,  2018).  According  to  Hester 

 and  Luijten  (2014),  drug  abuse  could  lead  to  reducing  the  typical  activity  of 

 the  Anterior  Cingulate  Cortex  (ACC).  There  is  no  concrete  evidence  that  the 

 prefrontal  areas  are  more  important  in  attentional  bias  than  the  reward 

 regions  such  striatum.  Therefore,  the  effect  on  pseudo-feedback  might 

 contribute  to  explaining  the  gap  between  theory  and  human  imaging  research 

 involving  attentional  bias  neural  networks  (Ma  et  al.,  2018).  To  extend  our 

 knowledge  about  the  pseudo-rewards'  role  in  learning  and  decision  making, 

 more  comparative  research  should  be  conducted  on  pathologies  with  deficits 

 in  impulsivity  such  as,  for  example  as  drug-addiction,  attention  deficit 

 hyperactivity  disorder,  borderline  personality  disorder,  gambling  disorders  or 

 bipolar  disorder,  among  others.  For  example,  the  study  of  how  pathological 
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 gamblers  (characterised  as  having  high  levels  of  impulsiveness;  Potenza, 

 2013)  encode  pseudo  reward  prediction  errors  can  be  an  important  line  of 

 research  to  extend  our  knowledge  of  sub-goal-directed  behaviours.  Actually, 

 in  the  clinical  literature,  the  coexistence  between  anxiety  disorders  and 

 addictive  behaviours  is  extensively  recognised.  Psychological  theories  of 

 addictive  and  risky  behaviours  presume  the  presence  of  incidental  factors 

 such  as  appetite  (impulsivity)  and  mood  control  (related  to  anxiety; 

 Raymond  et  al.,  2003;  Gola  et  al.,  2015).  Perhaps  in  the  cases  of  populations 

 with  high  levels  of  anxiety  and  impulsivity,  pseudo-feedbacks  could  generate 

 biases  quicker  than  in  a  normal  population.  Also,  and  departing  from  the  fact 

 that  human  neuroimaging  research  has  examined  dysfunctions  of  the  brain's 

 reward  system,  specifically  the  ventral  striatum  activity  underlying  anxiety 

 and  impulsivity,  further  experiments-  in  neurological  patients,  for  instance, 

 patients  with  damage  in  the  medial  prefrontal  cortex  and/or  ventral  striatum, 

 could  elucidate  the  role  that  pseudo-feedback  could  have  in  clinical 

 treatments and therapeutic strategies (Pujara et al., 2016). 

 Another  limitation  of  the  present  thesis  is  the  proposed  dissociation 

 between  the  roles  of  ACC  and  VS.  Therefore,  in  the  thesis,  it  has  been 

 proposed  that  ACC  would  be  in  charge  of  learning  action  selection  while  the 

 striatum  would  play  a  role  in  learning,  which  would  be  primarily  concerned 

 with  responding  to  the  value  of  the  immediate  reward  (Holroyd  and  Yeung, 

 2012;  Holroyd  and  Umemoto,  2016).  However,  it  is  important  to  note  that 

 both  VS  and  ACC  (as  it  was  indexed  by  theta  power)  activities  reflected  both 

 pseudo-reward  and  reward  prediction  errors.  Therefore,  future  studies  should 

 examine  in  parallel  the  ACC  and  striatum  activity  to  disentangle  more 

 clearly  the  roles  of  these  two  systems  in  HRL.  Perhaps  simultaneous  EEG 

 and  fMRI  recording  could  shed  light  on  the  common  dynamics  and 
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 connection  between  temporal  mechanisms  such  as  the  registered  theta 

 oscillations and the activation of other brain regions. 

 In  the  study  2,  we  used  an  HRL  model  to  describe  the  behavioural 

 patterns  in  terms  of  sub-optimal  choice  behaviour.  Besides  the  proposal  of 

 adding  an  additional  learning  rate  to  each  process  running  in  parallel 

 (encoding  of  reward  prediction  errors  at  different  levels),  additional  research 

 needs  to  be  conducted  to  establish  a  more  suitable  algorithm  to  mirror 

 ecological  hierarchical  behaviours  during  sub-optimal  decision-making 

 (Botvinick  et  al.,  2015).  One  constraint  might  be  that  HRL  models  could 

 suffer  from  flaws  that  impair  learning  and  make  them  unsuitable  for 

 application  in  more  realistic  day-to-day  contexts.  HRL  tries  to  alleviate 

 precisely  learning  difficulty  by  dividing  learning  down  into  more  discrete 

 components  (Bacon  et  al.,  2017).  Indeed,  a  potential  source  of  algorithmic 

 inaccuracy  could  be  that  sub-tasks  and  abstract  actions  can  be  employed  in  as 

 many  tasks  as  the  agent  might  require  based  on  the  history  of  rewards, 

 former  preferences,  and  individual  characteristics,  and  this  embedded 

 variability  could  suppose  a  strong  mathematical  constraint.  Therefore,  more 

 research  should  be  done  on  these  algorithms  to  improve  such  limitations  to 

 be  applied  to  approaches  to  real-life  phenomena.  In  this  sense,  the  fact  that 

 no  significant  individual  differences  were  found  to  be  related  to  the 

 parameters  of  the  proposed  model  would  support  the  idea  that  further 

 refinements  are  needed  to  be  able  to  capture  the  complexity  of  the  studied 

 phenomenon. 
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 Chapter 7: Conclusion 

 In  this  dissertation,  we  present  new  evidence  regarding  the  oscillatory 

 mechanisms  and  brain  activity  involved  in  biased  decision-making  during 

 the  resolution  of  a  hierarchical  task.  In  fact,  behavioural  and  computational 

 evidence  serves  as  the  basis  for  describing  the  choice  behaviour  of 

 participants  from  the  standpoint  of  Reinforcement  Learning.  We  obtained 

 behavioural,  EEG,  and  BOLD  data  regarding  how  participants  pursue 

 sub-goals  and  encode  reward  and  pseudo-reward  prediction  errors.  Overall, 

 the  results  demonstrated  that  pseudo-feedback  is  capable  of  inducing 

 prediction  errors  and  influencing  choice  behaviour,  even  leading  to 

 sub-optimal decision making. 

 Various  conclusions  can  be outlined  after  merging  the  relevant  findings  from 

 the  three  studies.  Firstly,  findings  from  behavioural  and  computational 

 modelling  indicate  that  people  prefer  options  with  greater  pseudo-rewarding 

 properties.  Moreover,  the  findings  demonstrated  that  individuals  might  make 

 sub-optimal  decisions  in  order  to  earn  more  pseudo-rewards  without  properly 

 monitoring  the  costs  of  such  preference.  Consequently,  sub-goals  drive 

 learning  while  providing  more  accurate  predictive  values  for  pre-states  that 

 anticipate  a  final  reward  to  the  extent  that  they  generate  potential  biases  and 

 losses. 

 Also,  the  oscillatory  brain  activity  in  relation  to  theta  power  was  found  to 

 be  associated  with  the  pseudo-reward  prediction  error  in  study  2.  These 

 findings  of  theta  oscillations  on  the  mid-frontal  cortex  suggest  an  active  role 

 of  structures  such  as  the  anterior  cingulate  cortex  (ACC)  in  performance 

 monitoring  and  action  selection,  but  in  this  case,  not  in  error  detection  since 
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 the  participants  choose  a  sub-goal  directed  strategy  even  when  maintaining  a 

 sub-optimal pattern of choice. 

 Finally,  study  3  showed  parallel  processing  of  both  reward  and 

 pseudo-reward  prediction  errors  in  the  Ventral  Striatum.  This  evidence 

 indicates  that  in  a  sub-goal-directed  behaviour  setting  where  optimality  is 

 compromised,  the  VS  plays  a  crucial  role  while  reinforcing  pseudo-feedback 

 attainment. 

 Overall,  we  demonstrated  that  sub-goal-directed  behaviour,  which  emerges 

 when  complex  tasks  are  broken  down  into  simpler  schemes,  can  lead  to 

 inefficient  learning  and  sub-optimal  decision-making.  In  addition,  we 

 showed  that  both  VS  and  ACC  were  involved  in  the  computation  of 

 prediction  errors  at  different  hierarchical  levels  but  played  a  differential  role 

 during  sub-optimal  choice  behaviour.  The  integration  of  results  from 

 electrophysiological,  BOLD  responses,  and  temporal  difference  modelling 

 helps  to  compose  a  wider  picture  of  the  neural  mechanisms  involved  in 

 pseudo-reward  processing  during  sub-optimal  decision-making  in  complex 

 behaviours. 
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 8. Abbreviation List. 

 ACC – Anterior Cingulate Cortex 
 Amyg – Amygdala 
 ANOVA – Analysis of Variance 
 BG – Basal Ganglia 
 BOLD – Blood-oxygen-level dependent 
 DA – Dopamine 
 dlPFC – Dorsolateral Prefrontal Cortex 
 dpMFC – Dorsal Posterior Medial Frontal Cortex 
 EEG – Electroencephalography 
 ERN – Error-related Negativity 
 ERP – Event-related Potentials 
 fMRI – Functional Magnetic Resonance 
 FRN – Feedback-related Negativity 
 HDI – High Density Interval 
 HRL – Hierarchical Reinforcement Learning 
 Hyp – Hypothalamus 
 MDP – Markov Decision Process 
 MEG – Magnetoencephalography 
 OFC – Orbitofrontal Cortex 
 PE – Prediction Error 
 PFC – Prefrontal Cortex 
 pmPFC – Posterior Medial Prefrontal Cortex 
 PRPE – Pseudo Reward Prediction Error 
 RL – Reinforcement Learning 
 ROI – Region of interest 
 RPE – Reward Prediction Error 
 SD – Standard Deviation 
 SE – Standard Error 
 TD – Temporal Difference 
 vmPFC – Ventromedial Prefrontal Cortex 
 VS – Ventral Striatum 
 VTA – Ventral Tegmental Area 
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 10. Supplementary Material. 

 Feasibility of Hierarchical Model in Experiment 1 

 The  values  for  parameters  theta  (SD  =  .05;  MCSE  =  .0005;  EES  =  10652.8), 

 omega  g  (SD  =  .029;  MCSE  =  .0002;  EES  =  11222.9)  and  omega  0  (SD=  0.08;  ESS 

 =  9096.4;  MCSE=  .002)  were  credible  and  not  biased  by  the  initial  values  of  the 

 Markovian  chains.  Besides,  the  variance  between  the  chains  concerning  the  variance 

 within  the  chains  showed  that  MCMC  converged  well  enough.  The  visual  and 

 numerical  assessment  of  MCMC  showed  that  the  parameters  were  representative 

 and  stable  and  converged  throughout  the  range  of  the  retrieval  (burn-in  period)  until 

 reaching  the  posterior  distribution.  In  addition,  Supplementary  Figure  S1  shows  that 

 the  shrink  factor  of  the  model  was  below  1.1,  indicating  a  clear  convergence  of  the 

 model  (Gelman  and  Rubin,  1992;  Rizzo,  2019)  and  high  autocorrelation  function 

 (ACF),  showing  that  the  estimated  values  for  the  parameters  are  stable  among  the 

 chains'  steps.  In  order  to  compute  the  whole  effect  of  the  ACF  across  the  model,  the 

 number  of  steps  divided  by  the  sum  of  each  ACF  compiles  an  effective  sample  size 

 indicator  (ESS).  Values  around  10000  indicate  the  efficiency  of  the  model  and 

 correspond  with  a  small  Markovian  Chain  Standard  Error  (MCSE).  In  the  case  of 

 the  parameters  theta  (ESS  =  10476.6;  MCSE=  .0005),  omega  (ESS  =  10845;  MCSE 

 =  .0003)  and  kappa  (ESS  =  10939.7  ;  MCSE=  .008  )  the  numerical  checks 

 supported the reliability of the model. 

 Feasibility of Hierarchical Model in Experiment 2 

 The  values  for  parameters  B0  (MCSE  =  .00226;  EES  =11485),  B1  (MCSE  = 

 .0006;  EES  =8843)  and  "guessing  coefficient"  (MCSE  =  .0007;  EES  =8506.1)  are 

 credible.  In  addition,  the  shrink  factor  (Gelman  and  Rubin,  1992)  for  every 

 predictor  was  below  1.1.  These  parameters  are  representative,  stable  and  converge 

 till  the  posterior  distribution  (  Supplementary  Figure  S2  ).  The  shrink  factor  was 

 below  1.1  indicating  good  accuracy  of  the  model.  In  addition  the  parameters  Beta1 
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 (ESS  =  13531.1;  MCSE=  .0004),  Beta0  (ESS  =  14317.2;  MCSE  =  .0001)  and  guess 

 (ESS = 11799.9; MCSE=.0006) also supported the reliability of the model. 

 Supplementary  Figure  11.1.  Representativeness  and  accuracy  of  model  1  .  The 

 evaluation  of  the  model  for  experiment  1  can  be  focused  on  two  dimensions:  visual 

 examination  and  numerical  description.  The  left  panels  (1A,  2A,  and  3A)  are  trace 

 plots  that  follow  the  superimposition  of  MCMC  along  with  the  iterations  or  burn-in 

 period.  Regarding  the  graphs  1A,  2A,  and  3A,  the  parameters  theta,  beta,  and  Kappa 

 converged  after  the  Markovian  Chains  were  launched.  When  the  chains  overlap 

 across  the  iterations  means,  they  are  fully  exploring  the  range  of  the  data 

 distribution  and  that  the  initial  values  are  not  misleading  such  trajectories. 

 Considering  the  density  plots  in  the  panels  1D,  2D  and  3D,  for  most  of  the  cases, 

 the  data  coincides  with  the  95  %  credible  intervals  HDI  of  the  posterior  densities. 

 These  density  plots  compare  three  random  samples  of  chains  and  display  them  into 

 smoothed  histograms  delimitated  by  an  individual  HDI.  For  the  three  parameters 

 considered in the model, the three sample chains mostly overlay each other. 
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 Supplementary  Figure  11.2  Representativeness  and  accuracy  of  model  2.  The 

 evaluation  of  the  model  for  experiment  2,  regarding  a  visual  examination  and 

 numerical  description.  The  left  panels  (1A,  2A,  and  3A)  are  trace  plots  for  the 

 parameters  Beta1,  Beta0,  and  Guessing  factor.  These  plots  show  convergence  for 

 MCMC  after  the  Markovian  Chains  are  retrieved.  For  most  of  the  cases,  considering 

 the  density  plots  in  the  graphs  1D,  2D,  and  3D,  the  data  is  within  the  95  %  credible 

 intervals  HDI  of  the  posterior  densities.  For  all  the  parameters  considered  in  the 

 model, the three sample chains mostly overlay each other. 
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