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V. ABSTRACT 

Agriculture not only contributes to more than a quarter of all global greenhouse gas emissions but is also 

the number one anthropogenic source of nitrogen emissions and a danger to nearly half of threatened 

terrestrial species. Organic agriculture has been proposed as a possible solution to reduce environmental 

impacts due to agricultural practices, since it prioritizes environmental protection and animal welfare 

considerations, prioritizing preventative techniques in order to preserve ecosystems and resources. In 

Europe, it has been legally defined as method of farming since 1991. Organic agriculture has been found 

to be similar or superior to conventional agriculture in terms of environmental performance, using the 

internationally standardized methodology called Life Cycle Assessment (LCA).  It follows a life cycle 

perspective and is widely used due to its holistic vision, including both the whole production chain concept 

and multi-criteria environmental indicators, as well as its quantitative, scientific approach to estimating 

environmental impacts. However, LCA does not always fully reflect organic production systems accurately, 

leaving out important aspects such as ecosystem services like biodiversity. Thus, research was carried out 

to explore how LCA can be improved in order to accurately and comprehensively account for the 

environmental impact of organic agricultural systems. Firstly, life cycle inventory (LCI) datasets from 

current and recommended LCA databases were critically analyzed to see if they accurately reflect organic 

practices. Secondly, current and recommended life cycle impact assessment (LCIA) biodiversity loss 

models were also analyzed and tested using a livestock case study for their scope and context suitability. 

Finally, using the results from that analysis, a model was chosen to develop new LCIA characterization 

factors for potential disappeared fraction of plants due to organic crop land use compared to conventional 

crops in the European Mediterranean biome.  

Through the critical analysis of organic crop LCI datasets, it was found that unrepresentative plant 

protection product (PPP) production and organic fertilizer treatment inventories were the main 

limitations in background processes, due to either the lack of available usage statistics, exclusion from the 

study or use of unrepresentative proxies. Many organic crop LCIs used synthetic pesticide or mineral 

fertilizer proxies, which may indirectly contain OA prohibited chemicals. These critical aspects can be 

transferred to respective LCAs that use this data, potentially yielding unrepresentative results. To improve 

accuracy, new production LCIs were created for three PPPs, as well as recommendations for fertilizer 

treatment LCIs and more precise emission models for PPPs and fertilizers.  
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In regards to biodiversity loss indicators, the currently recommended top-down indicator was found to be 

inadequate for site-specific agricultural practices like organic farming, due to the inability of the 

characterization factors to significantly differentiate between light and minimal management intensity 

and pasture and cropland in our case study. Whereas the bottom-up model was found to be more suitable 

due to its site-specificity. Recommendations were given on how to improve the studied biodiversity LCIA 

models. The new LCIA characterization factors estimating PDF of plants, demonstrated that the potential 

plant species loss on perennial woody organic cropland could not be differentiated from their 

conventional counterparts if the conventional system was quite extensive, but were significantly different 

in intensive systems. Further sub-classes of conventional perennial woody crop systems should be made. 

Significant differences were found between CFs for organic and conventional arable crop systems. 

This thesis provides for the first time, novel critical analysis of organic crop LCIs, new LCIs for PPP 

manufacturing, and testing and guidance on the use of different top-down and bottom-up biodiversity 

LCIA models. Additionally, this thesis presents for the first time new LCIA characterization factors for 

potential disappeared fraction of plants on both organic and conventional cropland. Hence, helping to 

improve the modelling of LCA application to organic production systems. Furthermore, future research 

ideas are proposed at the end of this thesis, such as developing toxicity characterization factors for PPP, 

critical analysis of organic livestock LCIs, and how to include other important aspects of organic livestock 

systems like landscape aesthetics and animal welfare. 
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VI. RESUM 

L'agricultura no només contribueix a més d'una quarta part de totes les emissions mundials de gasos 

d'efecte hivernacle, sinó que també és la font antropogènica número u d'emissions de nitrogen i un perill 

per a gairebé la meitat de les espècies terrestres amenaçades. L'agricultura ecològica s'ha proposat com 

una possible solució per reduir els impactes ambientals deguts a les pràctiques agrícoles, ja que prioritza 

les consideracions de protecció ambiental i benestar animal, prioritzant les tècniques preventives per tal 

de preservar ecosistemes i recursos. A Europa es defineix legalment com a mètode de cultiu des de l'any 

1991. S'ha trobat que l'agricultura ecològica és similar o superior a l'agricultura convencional pel que fa al 

rendiment ambiental, utilitzant la metodologia estandarditzada internacionalment anomenada Avaluació 

del Cicle de Vida (ACV, o LCA en les seves sigles en anglès). LCA segueix una perspectiva de cicle de vida i 

s'utilitza àmpliament per la seva visió holística, que inclou tant el concepte de la cadena de producció com 

els indicadors ambientals multicriteris, així com el seu enfocament científic i quantitatiu per estimar els 

impactes ambientals. Tanmateix, la LCA no sempre reflecteix completament els sistemes de producció 

orgànica amb precisió, deixant de banda aspectes importants com els serveis ecosistèmics com la 

biodiversitat. Així, es va dur a terme una investigació per explorar com es pot millorar la LCA per tal de 

tenir en compte de manera precisa i exhaustiva l'impacte ambiental dels sistemes agrícoles orgànics. En 

primer lloc, es van analitzar críticament els conjunts de dades d'inventari de cicle de vida (ICV o LCI en les 

seves sigles en anglès) de les bases de dades de LCA actuals i recomanades per veure si reflecteixen amb 

precisió les pràctiques orgàniques. En segon lloc, també es van analitzar i provar els models de pèrdua de 

biodiversitat actuals i recomanats de l'avaluació d'impacte del cicle de vida (AICV o LCIA en les seves sigles 

en anglès) mitjançant un estudi de cas de bestiar pel seu abast i adequació al context. Finalment, utilitzant 

els resultats d'aquesta anàlisi, es va escollir un model per desenvolupar nous factors de caracterització 

LCIA per a la possible fracció de plantes desapareguda a causa de l'ús del sòl de cultius orgànics en 

comparació amb els cultius convencionals al bioma mediterrani europeu. 

Mitjançant l'anàlisi crítica dels conjunts de dades d'LCI de cultius orgànics, es va trobar que la producció 

no representativa de productes fitosanitaris (PPP) i els inventaris de tractament de fertilitzants orgànics 

eren les principals limitacions en els processos de fons, a causa de la manca d'estadístiques d'ús 

disponibles, l'exclusió de l'estudi o ús de proxies no representatius. Molts LCI de cultius orgànics 

utilitzaven pesticides sintètics o fertilitzants minerals substitutius, que poden contenir indirectament 

productes químics prohibits per OA. Aquests aspectes crítics es poden transferir a les respectives LCA que 

utilitzen aquestes dades, la qual cosa pot produir resultats poc representatius. Per millorar la precisió, es 
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van crear nous LCI de producció per a tres PPP, així com recomanacions per als LCI de tractament de 

fertilitzants i models d'emissió més precisos per a PPP i fertilitzants. 

Pel que fa als indicadors de pèrdua de biodiversitat, l'indicador top-down recomanat actualment és 

inadequat per a pràctiques agrícoles específiques del lloc com l'agricultura ecològica, a causa de la 

incapacitat dels factors de caracterització per diferenciar significativament entre la intensitat de gestió 

lleugera i mínima i les pastures i les terres de cultiu en el nostre cas pràctic. Mentre que el model bottom-

up es va trobar més adequat a causa de la seva especificitat del lloc. Es van donar recomanacions sobre 

com millorar els models LCIA de biodiversitat estudiats. Els nous factors de caracterització LCIA que 

estimaven el PDF de les plantes, van demostrar que la pèrdua potencial d'espècies vegetals a les terres de 

cultiu orgàniques llenyoses perennes no es podria diferenciar de les seves contraparts convencionals si el 

sistema convencional era força extensiu, però eren significativament diferents en sistemes intensius. 

S'han de fer més subclasses de sistemes de cultius llenyosos perennes convencionals. Es van trobar 

diferències significatives entre els CF per als sistemes de cultius orgànics i convencionals. 

Aquesta tesi ofereix per primera vegada una nova anàlisi crítica dels LCI de cultius orgànics, nous LCI per 

a la fabricació de PPP i proves i orientacions sobre l'ús de diferents models LCIA de biodiversitat top-down 

i bottom-up. A més, aquesta tesi presenta per primera vegada nous factors de caracterització LCIA per a 

possibles fraccions desaparegudes de plantes tant en terres de cultiu orgàniques com convencionals. Per 

tant, ajuda a millorar la modelització de l'aplicació de l'LCA als sistemes de producció ecològica. A més, al 

final d'aquesta tesi es proposen idees de recerca futures, com ara el desenvolupament de factors de 

caracterització de toxicitat per a PPP, l'anàlisi crítica dels LCI de bestiar orgànic i com incloure altres 

aspectes importants dels sistemes de ramaderia orgànica com l'estètica del paisatge i el benestar animal. 
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VII. RESUMEN 

La agricultura no solo contribuye a más de una cuarta parte de todas las emisiones globales de gases de 

efecto invernadero, sino que también es la principal fuente antropogénica de emisiones de nitrógeno y 

un peligro para casi la mitad de las especies terrestres amenazadas. La agricultura orgánica se ha 

propuesto como una posible solución para reducir los impactos ambientales debido a las prácticas 

agrícolas, ya que prioriza la protección ambiental y el bienestar animal, priorizando las técnicas 

preventivas para preservar los ecosistemas y los recursos. En Europa, se ha definido legalmente como un 

método de agricultura desde 1991. Se ha encontrado que la agricultura orgánica es similar o superior a la 

agricultura convencional en términos de desempeño ambiental, utilizando la metodología estandarizada 

internacionalmente llamada Evaluación del Ciclo de Vida (LCA). LCA sigue una perspectiva de ciclo de vida 

y es ampliamente utilizado debido a su visión holística, que incluye tanto el concepto de toda la cadena 

de producción como los indicadores ambientales multicriterio, así como su enfoque cuantitativo y 

científico para estimar los impactos ambientales. Sin embargo, LCA no siempre refleja completamente los 

sistemas de producción orgánica con precisión, dejando de lado aspectos importantes como los servicios 

ecosistémicos o la biodiversidad. Por lo tanto, se llevó a cabo una investigación para explorar cómo se 

puede mejorar el LCA para considerar de manera precisa y completa el impacto ambiental de los sistemas 

agrícolas orgánicos. En primer lugar, se analizaron críticamente los conjuntos de datos del inventario del 

ciclo de vida (LCI) de las bases de datos LCA actuales y recomendadas para ver si reflejan con precisión las 

prácticas orgánicas. En segundo lugar, también se analizaron y probaron los modelos actuales y 

recomendados de evaluación del impacto del ciclo de vida (LCIA) utilizando un estudio de caso de ganado 

para determinar su alcance y adecuación al contexto. Finalmente, utilizando los resultados de ese análisis, 

se eligió un modelo para desarrollar nuevos factores de caracterización LCIA para la posible fracción 

desaparecida de plantas debido al uso de la tierra para cultivos orgánicos en comparación con los cultivos 

convencionales en el bioma mediterráneo europeo. 

A través del análisis crítico de los conjuntos de datos de LCI de cultivos orgánicos, se encontró que la 

producción no representativa de productos fitosanitarios (PPP) y los inventarios de tratamiento de 

fertilizantes orgánicos eran las principales limitaciones en los procesos de fondo, debido a la falta de 

estadísticas de uso disponibles, la exclusión del estudio o uso de apoderados no representativos. Muchos 

LCI de cultivos orgánicos utilizaron sustitutos de pesticidas sintéticos o fertilizantes minerales, que 

indirectamente pueden contener sustancias químicas prohibidas por OA. Estos aspectos críticos se 

pueden transferir a las respectivas LCA que utilizan estos datos, lo que podría generar resultados no 
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representativos. Para mejorar la precisión, se crearon nuevos LCI de producción para tres PPP, así como 

recomendaciones para LCI de tratamiento de fertilizantes y modelos de emisión más precisos para PPP y 

fertilizantes. 

Con respecto a los indicadores de pérdida de biodiversidad, se encontró que el indicador top-down 

actualmente recomendado era inadecuado para prácticas agrícolas específicas del sitio, como la 

agricultura orgánica, debido a la incapacidad de los factores de caracterización para diferenciar 

significativamente entre intensidad de manejo ligera y mínima y pastizales y tierras de cultivo en nuestro 

caso de estudio. Sin embargo, se encontró que el modelo bottom-up era más adecuado debido a su 

especificidad de sitio. Se dieron recomendaciones sobre cómo mejorar los modelos LCIA de biodiversidad 

estudiados. Los nuevos factores de caracterización de LCIA que estiman la PDF de las plantas demostraron 

que la pérdida potencial de especies de plantas en tierras de cultivo orgánicas leñosas perennes no podía 

diferenciarse de sus contrapartes convencionales si el sistema convencional era bastante extensivo, pero 

eran significativamente diferentes en los sistemas intensivos. Deberían crearse otras subclases de 

sistemas de cultivos leñosos perennes convencionales. Se encontraron diferencias significativas entre los 

CF para sistemas de cultivos herbáceos orgánicos y convencionales. 

Esta tesis proporciona, por primera vez, un análisis crítico novedoso de LCI de cultivos orgánicos, nuevos 

LCI para la fabricación de PPP y pruebas y orientación sobre el uso de diferentes modelos LCIA de 

biodiversidad de top-down y bottom-up. Además, esta tesis presenta por primera vez nuevos factores de 

caracterización LCIA para la posible fracción de plantas desaparecidas en cultivos orgánicos y 

convencionales. Por lo tanto, ayuda a mejorar el modelado de la aplicación de LCA a los sistemas de 

producción orgánica. Además, al final de esta tesis se proponen ideas de investigación futuras, como el 

desarrollo de factores de caracterización de toxicidad para PPP, el análisis crítico de LCI de ganado 

orgánico y cómo incluir otros aspectos importantes de los sistemas de ganado orgánico como la estética 

del paisaje y el bienestar animal. 
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VIII. STRUCTURE OF THE THESIS 

The present PhD thesis was structured in six chapters and four annexes, as follows: 

Chapter 1. Introduction 

In this chapter, the necessary background information is provided, including an explanation of organic 

agriculture in Europe and life cycle assessment methodology. An exploration of the state-of-the-art in LCA 

in organic agriculture and its effects on biodiversity was provided. 

Chapter 2. Critical analysis of organic crop life cycle inventories 

An in-depth analysis of the state-of-the-art life cycle inventories in LCA is made, including the effect of 

critical gaps on LCA results, and specific ways to improve LCI of organic crops. 

Chapter 3. Analysis of top-down and bottom-up LCA approaches for modelling biodiversity loss in 

agricultural systems 

Top-down and bottom-up approaches within LCA for modelling biodiversity were critically analyzed. Using 

a livestock case study in Europe, gaps were detected and suggestions for use and improvements were 

given.  

Chapter 4. Development of life cycle assessment characterization factors for agricultural land use 

impacts on biodiversity in the European Mediterranean biome 

Using the analysis from Chapter 3, one LCIA method was chosen to develop life cycle characterization 

factors for land use impacts on biodiversity, specifically for organic and conventional farmland in the 

European Mediterranean biome, including perennial Mediterranean crops like olives and vineyards. 

Chapter 5. Conclusions 

This chapter presents the main conclusions obtained in this thesis. Suggestions for future research related 

to the application of LCA to organic agricultural systems and LCIA biodiversity indicators were provided. 

Chapter 6. Bibliographic references 

Contains a list of all the bibliographical references cited throughout the thesis document. 

Annex A 
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Extra data and information pertaining to Chapter 1: Introduction. 

Annex B 

Extra data and information pertaining to Chapter 2: Critical analysis of organic crop life cycle inventories 

Annex C 

Extra data and information pertaining to Chapter 3: Analysis of top-down and bottom-up LCA approaches 

for modelling biodiversity loss in agricultural systems 

Annex D 

Extra data and information pertaining to Chapter 4: Development of life cycle assessment characterization 

factors for agricultural land use impacts on biodiversity in the European Mediterranean biome 
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CHAPTER 1 

1 INTRODUCTION 

1.1 BACKGROUND 

1.1.1 ORGANIC AGRICULTURE  

Agriculture not only contributes to more than a quarter of all global greenhouse gas emissions 

(Springmann et al., 2016) but is also the number one anthropogenic source of nitrogen emissions (Ward 

et al., 2018) and a danger to an estimated 53% of threatened terrestrial species (Tanentzap et al., 2015). 

Although the green revolution helped feed a growing population, it has also transformed the environment 

completely. For example, nearly 50% of the land area in Europe is used for crop or pastoral farming, of 

which 70% is used for livestock and feed (European Commission, 2016). Thus, what can be done to ensure 

that agricultural land is properly managed to minimize environmental impacts? 

Organic agriculture (OA) is often seen as one possible solution to improve agricultural practices.  Organic 

agriculture places emphasis on the use of more natural products and environmentally friendly techniques, 

preserving ecosystems, conserving resources, and excluding all techniques that can potentially damage 

the quality of the final product. It avoids or largely minimizes the use of synthetic chemical inputs such as 

mineral fertilizers, pesticides and medical products like antibiotics used in a preventative manner. In many 

countries and regions, organic practices are highly regulated, for example, the European Commission has 

strict regulations on what constitutes organically certified products. Food products are considered 

certified organic at the EU level if it complies with Council Regulation (EEC) No 2092/91 and its 

amendments (European Commission, 2008a), which have set up a comprehensive framework for organic 

farming of crops and livestock and for the labelling, processing and marketing of organic products, whilst 

also governing imports of organic products into the EU. For example, Table 1 shows the types of fertilizers 

that are allowed. 
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Table 1. Fertilizers and soil conditioners permitted in organic agriculture in Europe (EC, 2008). 

Fertilizers and soil conditioners  Description 
Farmyard manure Product comprising a mixture of animal excrements and vegetable matter (animal bedding). 

Factory farming origin forbidden 
Dried farmyard manure and dehydrated poultry 
manure 

Factory farming origin forbidden 

Composted animal excrements, including poultry 
manure and composted farmyard manure included 

Factory farming origin forbidden 

Liquid animal excrements Use after controlled fermentation and/or appropriate dilution 
Factory farming origin forbidden 

Composted or fermented household waste Product obtained from source separated household waste, which has been submitted to composting 
or to anaerobic fermentation for biogas production 
Only vegetable and animal household waste Only when produced in a closed and monitored 
collection system, accepted by the Member State Maximum concentrations in mg/kg of dry matter: 
cadmium: 0,7; copper: 70; nickel: 25; lead: 45; zinc: 200; mercury: 
0,4; chromium (total): 70; chromium (VI 

Peat  Use limited to horticulture (market gardening, floriculture, arboriculture, nursery) 
Mushroom culture wastes The initial composition of the substrate shall be limited to products of this Annex 
Dejecta of worms (vermicompost) and insects  
Guano  
Composted or fermented mixture of vegetable 
matter 

Product obtained from mixtures of vegetable matter, which have been submitted to composting or to 
anaerobic 
fermentation for biogas production 

Products or by-products of animal origin as below: 
blood meal, 
hoof meal, horn meal, 
bone meal or degelatinized bone meal, fish meal, 
meat meal, feather, hair and ‘chiquette’ meal, wool 
fur, hair 
dairy products 

Maximum concentration in mg/kg of dry matter of chromium (VI): 0 

Products and by-products of plant origin for 
fertilisers 

Examples: oilseed cake meal, cocoa husks, malt culms 

Seaweeds and seaweed products As far as directly obtained by: (i) physical processes including dehydration, freezing and grinding 
(ii) extraction with water or aqueous acid and/or alkaline solution 
(iii) fermentation  

Sawdust and wood chips Wood not chemically treated after felling 
Composted bark Wood not chemically treated after felling 
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Wood ash From wood not chemically treated after felling 
Soft ground rock phosphate Product as specified in point 7 of Annex IA.2. to Regulation (EC) No 2003/2003 of the European 

Parliament and of the Council (1) relating to fertilisers, 7 
Cadmium content less than or equal to 90 mg/kg of P20 

Aluminium-calcium phosphate Product as specified in point 6 of Annex IA.2. of Regulation 2003/2003, Cadmium content less than or 
equal to 90 mg/kg of P205 
Use limited to basic soils (pH > 7,5) 

Basic slag Products as specified in point 1 of Annex IA.2. of Regulation 2003/2003 
Crude potassium salt or kainite Products as specified in point 1 of Annex IA.3. of Regulation 2003/2003 
Potassium sulphate, possibly containing 
magnesium salt 

Product obtained from crude potassium salt by a physical extraction process, containing possibly also 
magnesium 
salts 

Stillage and stillage extract Ammonium stillage excluded 
Calcium carbonate (chalk, marl, ground limestone, 
Breton 
ameliorant, (marl), phosphate chalk) 

Only of natural origin 

Magnesium and calcium carbonate Only of natural origin e.g., magnesian chalk, ground magnesium, limestone 
Magnesium sulphate (kieserite) Only of natural origin 
Calcium chloride solution Foliar treatment of apple trees, after identification of deficit of calcium 
Calcium sulphate (gypsum) Products as specified in point 1 of Annex ID. of Regulation 2003/2003 

Only of natural origin 
Industrial lime from sugar production By-product of sugar production from sugar beet 
Industrial lime from vacuum salt production By-product of the vacuum salt production from brine found in mountains 
Elemental sulphur Products as specified in Annex ID.3 of Regulation 2003/ 2003 
Trace elements Inorganic micronutrients listed in part E of Annex I to Regulation 2003/2003 
Sodium chloride Only mined salt 
Stone meal and clays  
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As you can see, only organic fertilizers or fertilizers of natural origin are permitted in organic crop 

production, with the aim to preserve soil quality and avoid synthetic manufacturing.  Similarly, only 

natural, non-synthetic plant protection products are permitted for application directly on the plant, with 

the exception of a few permitted synthetic substances such as mineral and paraffin oil, copper-based 

salts, and some minerals like calcium hydroxide, potassium permanganate, potassium bicarbonate, 

ferric phosphate, and lime sulphur (Appendix Table A-1). These are used only as a last resort after 

preventative techniques in pest, disease and weed control have been used, all in order to reduce 

detrimental effects on biodiversity and presence of residues in agricultural products. In regards to 

organically certified animal production in the EU, many variables are taken into consideration such as 

land area (e.g., access to open-air land per head), feed (e.g., mainly organic certified feed), breeds (e.g., 

adapted to environment), disease prevention (e.g., prohibition of preventive use of chemically-

synthesised allopathic medicinal products), housing (e.g., sufficient space, light, ventilation), manure 

deposition (e.g., limited to a certain amount per hectare per year), and treatment (e.g., prohibition of 

mutilations leading to harm). These list only some of the many regulations that are outlined by the 

European Commission. Refer to the Appendix for more information regarding some of the above 

variables (Table A1 – Table A3). 

In general, organic cropland area in EU-27 has been increasing over the past 10 years (Figure 1), and the 

upward trend is planned to continue since the European Green Deal aims to increase organically managed 

agricultural land by 25% by 2030 (European Commission, 2020a). Specifically, many Mediterranean 

countries in Europe like Spain, Italy, Southern France and Greece have some of the largest organic 

cropland areas in the EU-27 (Figure 2), representing between  ~9 – 16% of the total utilized agricultural 

area in those countries as of 2020 (Eurostat, 2022). This demonstrates the importance of analyzing the 

sustainability of organic practices and the need to include these countries in the sustainability analysis of 

this thesis. 
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Figure 1. Organic crop area in the EU-27 from 2012-2020 (Eurostat, 2022). 

 

Figure 2. Organic crop area per country in the EU-27 for the year 2020 (Eurostat, 2022). 
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The main criticism facing the advancement of OA is the yield; in general, organic yields are lower than 

conventional yields and, thus, would require more land to close the yield gap (De Ponti et al., 2012; 

Hoffman et al., 2018; Seufert et al., 2012). However, these studies also exclaim that the yield differences 

are highly contextual, depending on, for example, crop type, pedoclimatic conditions, and management 

practices. A meta-analysis on organic and conventional yield gaps by Seufert et al. (2012) found that 

organic fruits and oilseed crops have a lower organic-to-conventional yield ratio compared to vegetables 

and cereals, as do perennials compared to annuals and legumes compared to non-legumes (Figure 3). 

Within the cereals, maize has a significantly lower yield gap compared to other cereals like barley and 

wheat (Figure 3). Seufert et al. (2012) also found that organic yields were 13% lower than typical 

conventional when best organic practices were used, and 34% lower when organic and conventional 

systems were most comparable (Figure 4). They also found that applying best management practices in 

both systems shows better organic performance (Figure 4). This study also found that organic yields 

increase gradually over time due to increased soil fertility and management skills.  
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Figure 3. Effect of different crop types, plant types and species on organic-to-conventional yield ratios. Values are 

mean effect sizes with 95% confidence intervals. The number of observations in each class is shown in parentheses 

(Seufert et al., 2012). 
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Figure 4. Sensitivity assessment of organic-to-conventional yield ratios. Values are mean effect sizes with 95% 

confidence intervals. The number of observations in each class is shown in parentheses (Seufert et al., 2012). 

This is supported by other studies showing that yield gap approached near closure after 10-13 years of 

conversion from conventional to organic in a crop rotation of potato, peas, leek, barley, sugar beet and 

maize in the Netherlands (Schrama et al., 2018), owing to “…improved soil structure with higher organic 

matter concentrations and higher soil aggregation, a profound reduction in groundwater nitrate 

concentrations, and fewer plant-parasitic nematodes.” The meta-study by Ponisio et al. (2015) found that 

on average organic yields were only 19.2% (±3.7%) lower than conventional yields, which was smaller than 

estimates in other studies. They found no significant difference in yields, “…for leguminous versus non-

leguminous crops, perennials versus annuals or developed versus developing countries.” Instead, the 

main factor that significantly influenced the yield gap was multi-cropping and crop rotation practices when 

applied in organic systems. 

On the other hand, OA is meant to provide more ecosystem services than just the basic one of food 

provision, such as regulation (avoiding erosion, water cycles, nutrients, pollinators, etc.), support 

(biological cycles, fire prevention), and culture (landscape aesthetics). If society were to prioritize the 

other ecosystem services, maximizing yields may become less important, and the yield benchmark may 

be lowered. This argument was analyzed in a study by Wilbois and Schmidt (2019), where they state that 
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current societal values allow for production to exceed ecologically sustainable limits, leading to the 

“traditional yield gap”  between organic and conventional systems, but if new ecologically sustainable 

thresholds were set, the yield gap would shrink, showing the “true yield gap” (Figure 5). This is important 

for LCAs of crop and livestock products since the functional unit used is usually the mass of the product 

(e.g., impact per tonne of apples), thus if the yields were adjusted, the impact per mass unit would change. 

 

Figure 5. The true yield gap between organic and intensive conventional management shrinks when an 

ecologically sustainable threshold is set as a benchmark (Wilbois and Schmidt, 2019). 

 

1.1.2 LIFE CYCLE ASSESSMENT  

LCA is one of the most comprehensive and transparent tools that aims to assess damages due to the 

production of goods and services in three areas of protection: (1) human health, (2) ecosystems and (3) 

natural resources. It is internationally standardized under ISO 14040 (ISO, 2020a, 2006a) and 14044 (ISO, 

2020b, 2017, 2006b) and is currently recommended by United Nations Environment Programme, UNEP 

(Verones et al., 2017) and the European Commission (Environmental Footprint initiative (EF), 

https://eplca.jrc.ec.europa.eu//EnvironmentalFootprint.html) to conduct environmental impact 

quantifications of products and services.  EF’s main goal is to provide a standardised methodology that 

allows environmental comparisons. Currently, EF is under the transition phase, evaluating potential 

methodological improvements. 

During a life cycle assessment, the potential environmental impacts of products and services are evaluated 

over their entire life cycle. Typically, the life cycle consists of raw material extraction (also referred to as 

the “cradle”), production of the product, distribution, use, and end-of-life disposal phases (Figure 6). The 

production includes all upstream activities such as production of inputs consumed in the system, and 

downstream end-of-life waste processes (also referred to as the “grave”) associated with the production. 

https://eplca.jrc.ec.europa.eu/EnvironmentalFootprint.html
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Thus, a full life cycle of a product is from the cradle to the grave, where other possible iterations of life 

cycles can exist depending on if a product is reused, redistributed, remanufactured or recycled in its end-

of-life management (Figure 6). The environmental impact of extracting all relevant inputs from the 

environment (e.g., crude oil, land use, ores, water) as well as all emissions into water, air and soil (e.g., 

nitrogen oxides and carbon dioxide) from all life cycle phases are taken into consideration. 

According to the ISO standards, LCA contains four iterative phases, 1) goal and scope, 2) life cycle 

inventory, 3) life cycle impact assessment, 4) interpretation (Figure 7). 

Figure 6. Scheme of the life cycle of a product (Sieverding et al., 

2020). 
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Figure 7. The four stages of life cycle assessment. 

 

In the goal and scope phase, the features and assumptions of the assessment are defined, including what 

the main aim of the study is (e.g., comparison between two products) and defining the system boundaries. 

A clear, initial goal definition is hence essential for correct interpretation of the results. This includes 

ensuring that the results of the LCA study cannot be unintentionally and erroneously used or interpreted 

beyond the initial goal and scope. The scope should be sufficiently well defined to ensure that the breadth, 

depth and detail of the study are compatible and sufficient to address the stated goal. The boundaries of 

the system to be studied can include temporal (e.g., 1 year), spatial (e.g., in Spain) and life cycle boundaries 

(cradle-to-grave or cradle-to-factory or farmgate). In the present thesis, LCA system boundaries were set 

from cradle to farm gate since the focus of this thesis were the farming practices of organic production 

systems. When estimating the environmental impacts of the whole life cycle of a food product, the (farm) 

production stage often dominates the results, contributing 61% to food’s GHG emissions (this figure 

changes to 81% if deforestation is included), 79% to acidification, and 95% to eutrophication and covers 

~37% of the world’s ice- and desert-free land (Poore and Nemecek, 2018), demonstrating the importance 

of deeply analyzing this stage. This means that all upstream processes of the farm are included such as 

raw material extraction and manufacturing (e.g., of diesel, machinery, plant protection products (PPP), 

infrastructure and other materials used on the farm), as well as all activities performed on the farm (e.g., 

fertilizer and PPP application emissions, enteric emissions, diesel combustion from machinery operations, 

organic residue treatment), until the product is transported to the farm gate (e.g., storage facility or 
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slaughterhouse). This constitutes only the “raw material” and “production” stages of the normal life cycle 

of a product (Figure 6), where stages after the farm gate such as “distribution”, “use” and “disposal” were 

excluded.   

An example of life cycle system boundaries for crop and animal production from cradle to farm gate is 

shown in Figure 8, where everything within the system boundary lines are analyzed in the LCA (sourced 

from Nemecek et al. 2015). 

 

 

Figure 8. Typical example of life cycle system boundaries of crops and animal products (Nemecek et al., 2015). 
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Additionally, in the goal and scope stage, the functional unit is also defined; it is a measure of the function 

of the studied system and it provides a reference to which the inputs and outputs, and the final results 

can be referenced to. For example, the inputs, outputs and environmental impact could be quantified per 

kg of product if the function is to produce high yields of foodstuffs. This also allows comparability between 

products, where assessments can be made on a common basis with the same functions. 

The second stage of LCA, the life cycle inventory stage (LCI), is where all the inputs and outputs of a 

product’s system are quantified according to a reference flow or functional unit, hence, an “inventory” is 

made of this data. It involves collection of the data necessary to meet the goals of the defined study. For 

example, inputs may include elementary flows derived from nature, product flows and energy flows, 

whereas outputs may include the final product(s), emissions to air, water or soil and waste flows (See 

Figure 9 as an example). 

  

Figure 9. Scheme of the life cycle inventory stage. 

 

The third phase of LCA, the Life Cycle Impact Assessment (LCIA) phase, is aimed at understanding and 

evaluating the magnitude and significance of the potential environmental impacts of a production system. 

Impact models are used to calculate characterisation factors or impact factors that can be used to connect 

elementary flows (emissions and resource consumptions) to the corresponding environmental impacts in 

different categories. Each impact model quantitatively calculated the characterisation factors based on 

the scientific analysis of the relevant environmental processes. 
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Due to the proliferation of different impact models, several initiatives seek to strengthen and harmonise 

methods to be applied. Among these initiatives, I would highlight those conducted by the FAO-Livestock 

Environmental Assessment and Performance (FAO, 2020), UNEP-SETAC Life Cycle Initiative (UNEP-SETAC, 

2019) and the European Platform for Life Cycle Assessment (Fazio et al., 2018b). Due to the EU scope of 

the thesis and the Organic-PLUS project, I followed recommendations in relation to impact assessment 

models to be applied from the Environmental Footprint (EF) initiative (Fazio et al., 2018b), which is derived 

from the International Life Cycle Data system, ILCD scheme (European Commission -- Joint Research 

Centre -- Institute for Environment and Sustainability, 2010) and guidance from the aforementioned 

initiatives. EF’s main goal is to provide a standardised methodology that allows environmental 

comparisons. Currently, EF is under the transition phase, evaluating potential methodological 

improvements. Table 2 lists the current environmental impact categories to be considered and presents 

the recommended methods for each impact category according to the EF initiative. This table also includes 

level of robustness for each impact category, which gives an idea of the certainty of the method.  

Robustness corresponds to EF’s level of recommendation, based on scientific judgement performed 

across the different existing methods. It ranges from level I for models and characterisation factors which 

are recommended for all types of life cycle-based decision support, to level III (interim), which is 

recommended but only with caution given the considerable uncertainty, incompleteness or other 

shortcomings, aspects that need to be considered when performing an LCA. Being aware of the 

importance of biodiversity indicators for organic production systems but lack of assessment methods we 

have deepened the present study by proposing a set of potential biodiversity indicators in this thesis. 
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Table 2. Recommended Impact categories, indicator, units, default Impact assessment models and level of 

robustness (Fazio et al., 2018b). 

Impact category  Indicator  Unit  Recommended default 
impact model  

Robustne
ss 

Climate change  Radiative forcing as Global 
Warming Potential 
(GWP100)  

kg CO2 eq  Baseline model of 100 years 
of the IPCC (IPCC, 2013) 

I 

Ozone 
depletion  

Ozone Depletion Potential 
(ODP)  

kg CFC-11eq  Steady-state ODPs as in 
(WMO, 1999)  

I 

Human toxicity, 
cancer effects  

Comparative Toxic Unit for 
humans (CTUh)  

CTUh USEtox model (Rosenbaum 
et al., 2008)  

III/interim 

Human toxicity, 
non- cancer 
effects  

Comparative Toxic Unit for 
humans (CTUh)  

CTUh USEtox model (Rosenbaum 
et al., 2008)  

III/interim 

Particulate 
matter/Respira
tory inorganics  

Human health effects 
associated with exposure 
to PM2.5  

Disease 
incidences  

PM model recommended by 
UNEP (Fantke et al., 2016) 

I 

Photochemical 
ozone 
formation  

Tropospheric ozone 
concentration increase  

kg NMVOC eq  LOTOS-EUROS (van Zelm et 
al., 2008) as applied in 
ReCiPe 2008  

II 

Acidification  Accumulated Exceedance  mol H+ eq  Accumulated Exceedance 
(Posch et al., 2008)  

II 

Eutrophication, 
terrestrial  

Accumulated Exceedance  mol N eq  Accumulated Exceedance 
(Posch et al., 2008)   

II 

Eutrophication, 
aquatic 
freshwater  

Fraction of nutrients 
reaching freshwater end 
compartment (P)  

kg P eq  EUTREND model (Struijs et 
al., 2008)  

II 

Eutrophication, 
aquatic marine  

Fraction of nutrients 
reaching marine end 
compartment (N)  

kg N eq  EUTREND model (Struijs et 
al., 2008) 

II 

Ecotoxicity 
(freshwater)  

Comparative Toxic Unit for 
ecosystems (CTUe)  

CTUe USEtox model, (Rosenbaum 
et al., 2008)  

III/interim 

Land use  Soil quality index (Biotic 
production, Erosion 
resistance, Mechanical 
filtration and Groundwater 
replenishment  

Points (Pt), 
Dimensionless
, aggregated 
index of: (kg 
biotic 
production, kg 
soil,  
m3 water, m3g 
water)/ (m2*a)  

Soil quality index based on 
LANCA (Bos et al., 2016) 

III 

Water scarcity  User deprivation potential 
(deprivation-weighted 
water consumption)  

kg world eq. 
deprived  

Available Water Remaining 
(AWARE) in (Boulay et al., 
2016) 

III 

Resource use, 
minerals and 
metals  

Abiotic resource depletion   kg Sb eq (kg 
Antimony eq) 

CML (van Oers et al., 2002) III 

Resource use, 
energy carriers  

Abiotic resource depletion 
– fossil fuels  

MJ  CML (van Oers et al., 2002) III 
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In the interpretation phase, the identification of the significant issues based on the results of the LCI and 

LCIA phases are conducted. Identification shall be done among processes, impact categories (normalised 

and weighted values), potential bottlenecks, limitations and finally evaluating the initial goal and scope of 

the study (e.g., comparing the performance of two products) from an environmental perspective.  

Table 3 provides the main substances/flows relevant to agriculture, which usually represent the major 

contributors for each impact category. 
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Table 3. Main agricultural cradle-to-farm-gate flow contributors for each environmental impact category 

(excluded Human Toxicity impact categories due to long list). List of substances derived from (Rosenbaum et al., 

2018). 

Impact category  Units Substances 

Climate change  kg CO2 eq  Carbon dioxide, CO2. fossil 
Dinitrogen monoxide, N2O 
Methane, CH4 

Ozone depletion  kg CFC-11eq  CFCs 
HCFCs 

Particulate matter/Respiratory 
inorganics  

Disease 
incidences  

Ammonia, NH3 

Nitrogen oxides, NOx 
Particulates, < 2.5 um 
Particulates, > 2.5 um, and < 10um 
Sulphur dioxide, SO2 

Photochemical ozone formation  kg NMVOC 
eq  

Carbon monoxide, CO 
Sulphur dioxide, SO2 
Methane, CH4 

Acidification  mol H+ eq  Ammonia, NH3 
Nitrogen oxides, NOx 
Sulphur dioxide, SO2 

Eutrophication, terrestrial  mol N eq  Ammonia, NH3 

Eutrophication, aquatic 
freshwater  

kg P eq  Phosphorus, P 

Eutrophication, aquatic marine  kg N eq  Ammonia, NH3 
Nitrogen oxides, NOx 
Nitrate, NO3 

Ecotoxicity (freshwater)  CTUe Copper 
Sulphur 
Pesticides 
Heavy metals  
Oil crude 

Land use  Pt Crop/Pasture field Occupation 
Peat 

Water scarcity  kg world eq. 
deprived  

Water consumption (Irrigation) 
Hydropower electricity 

Resource use, minerals and 
metals  

kg Sb eq  Copper 
Phosphate Rock 
Sulphur 

Resource use, energy carriers  MJ  Coal 
Gas, natural 
Oil crude 
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1.1.3 ORGANIC-PLUS PROJECT  

The work presented in this thesis is part of the Organic-PLUS project, “Pathways to phase-out contentious 

inputs from organic agriculture in Europe,” under the European Commission’s Horizon 2020 Programme 

(Grant agreement 774340). The overall aim of the Organic-PLUS project was “…to provide high quality, 

trans-disciplinary, scientifically informed decision support to help all actors in the organic sector, including 

national and regional policy makers, to reach the next level of the EU’s organic success story” 

(https://organic-plus.net/). Organic agriculture is endorsed by the European Commission’s Green Deal, 

aiming to have at least 25% of the EU’s agricultural land under organic farming by 2030 (European 

Commission, 2020b). However, this sustainability needs to be proven, considering the different aspects 

included in sustainability. One of the objectives of the project was to conduct the environmental 

assessment of relevant contentious and alternative products and production systems studied in the 

Organic-PLUS project.  

In particular, the environmental assessment was conducted following a life cycle perspective, therefore 

using Life Cycle Assessment and the recommended EF LCIA impact category methods (Table 2). However, 

organic production systems are overlooked in the EF initiative, which makes it challenging to assess 

environmental effects of converting to such production.  In fact, several criticisms (Meier et al., 2015; van 

der Werf et al., 2020) were made on LCA studies when applied to organic production systems in particular 

because several aspects (e.g., biodiversity indicators, multifunctional system) may not be accounted for. 

Therefore, being aware of its potential, but also the limitations of the tool, it was my ambition to take 

advantage of the holistic vision of LCA, for both the whole production chain concept and multicriteria 

environmental indicators, and to contribute to improve the methodology to make it more suitable for 

organic production systems.  

Work conducted under this task could be summarized as: 

• Assessment of baseline scenarios, which contain contentious inputs currently used in organic 

farming, with a focus on the Mediterranean regions. 

• Create calculations tools to conduct current and further environmental assessments. 

• Assessment of alternatives to contentious inputs within each baseline scenarios. 

• Critical analysis of LCA tools used to assess organic production systems (challenges and proposals 

when conducting an LCA on organic farming, datasets, emission modelling, and impact 

categories). 

https://organic-plus.net/
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• Review state-of-the-art biodiversity indicators and propose an indicator for application in organic 

production systems. 

Through this work conducted, many challenges were faced when developing the life cycle inventory of 

baseline crop scenarios, such as finding suitable inputs for plant protection products and organic 

fertilizers, calculating their relevant application emissions, and finding suitable crop datasets as proxies or 

for comparison. Therefore, it was found that the life cycle inventory of organic crops needed to be further 

researched.   

1.2 STATE OF THE ART 

Since LCA is able to quantitatively address multiple impact categories and is recommended by many 

international governing bodies (European Commission, UNEP, FAO), it is a suitable methodology in 

comparative assessments (e.g., organic vs. conventional) as some systems may perform better in some 

categories than others, thus offering a more comprehensive view of any burden-shifting between 

categories. Therefore, the main aim of this thesis was to analyse the capabilities of LCA methodology to 

analyze OA systems and products and ways to improve it. The following sections will explain the state-of-

the-art research in the application of LCA to OA and biodiversity. 

1.2.1 ENVIRONMENTAL IMPACT OF ORGANIC AGRICULTURE  

Many studies have used LCA methodology to quantify the environmental impact of OA, these previous 

studies will be discussed here. A study by Aguilera et al. (2015a, 2015b) found that product-based GHG 

emissions can be reduced by 39% in fruit trees and by 36-65% in herbaceous crops when under organic 

management compared to conventional. Smith et al. (2019) also found that lower GHG emissions under 

OA were largely due to replacement of mineral N fertilizer with biological N fixation in leys, resulting in 

less CO2 and N2O from fertilizer manufacture and less N2O per unit of production. The same was found in 

(Pieper et al., 2020) where organic plant-based foodstuffs had lower GHG emissions and hence climate 

change potential per kg of product than conventional, resulting in lower external climate costs. However, 

the opposite was found for animal-based products due to the higher land area per animal prescribed by 

organic regulations compared to conventional. Muller et al. (2017) substantiate that GHG emissions are 

lower for OA systems and can reduce N-surplus and pesticide use, but on the other hand uses more land 

area. Compared to integrated farming systems in Switzerland, OA have been found to be similar or 

superior in regards to ecotoxicity, biodiversity and resource conservation (Nemecek et al., 2011).  
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Other non-LCA, studies found that OA systems perform superior to CA in terms of increased soil organic 

matter due to higher soil sequestration from cover- or inter-crops and manure application (Blanco-Canqui 

et al., 2017; Scialabba and Mller-Lindenlauf, 2010).  

Meta-studies that use LCA to model the environmental performance of OA compared to CA, found that 

the environmental performance of OA is not always the clear winner - its performance can be higher or 

lower than conventional products depending on the impact category studied and the functional unit (FU) 

used, such as yield or cultivated area (Clark and Tilman, 2017; Meier et al., 2015; Tuomisto et al., 2012). 

Tuomisto et al. (2012) found that LCAs modelling global warming potential, eutrophication of waterbodies 

and soil and air acidification, tend to have higher impacts in OA compared to CA per product unit but 

lower impacts per land area due to larger areas used in OA. On the other hand, OA products perform 

better in human toxicity and eco-toxicity as well as non-renewable resource depletion potential than CA 

products due to the fact that synthetic pesticides and mineral fertilizers are not used in OA (Meier et al., 

2015; Tuomisto et al., 2012). Clark and Tilman (2017) found that OA may tend to cause more 

eutrophication, emit similar GHG quantities as CA, require more land, but use less energy. In general, 

impacts per product unit may be higher in OA compared to CA due to the higher yields in CA (De Ponti et 

al., 2012; Seufert et al., 2012) and significantly lower temporal yield stability in OA (Knapp and van der 

Heijden, 2018), but results were highly dependent crop groups and regions. However, a study by Hayashi 

(2013) found that the utilization of product-oriented FU’s like product weight or land-oriented FU’s like 

hectares within the context of organic conversion, must be used complementarily, because the use of one 

or the other would not allow the practitioner to conclude if the conversion minimized impacts per area 

unit and per product unit. In other words, using land-oriented FU will allow practitioners to work out if 

there have been trade-offs between impact per area unit and yield per area unit or if it had been a win-

win, lose-lose situation. Using product-oriented FU will allow practitioners to work out if the conversion 

was efficient (low impact per product unit) or inefficient (high impact per product unit). Hence, employing 

a combination of both can determine if the system had trade-offs and was efficient or inefficient. Hayashi 

(2013) also recommended that besides the utilization of FUs, decision criteria should even be used. 

Specifically, decisions should be made with regard to two important criteria, minimize impacts per area 

unit and maximize yield per area unit.  

Although these meta-studies as well as a plethora of other organic crop and animal LCA case studies exist 

worldwide, only a few studies discuss the limitations in applying LCA methodology to OA (Meier et al., 

2017; Tuomisto et al., 2012; van der Werf et al., 2020). These studies focused mainly on the importance 
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of including biodiversity and ecosystem indicators when assessing organic systems and the lack of 

functional units (other than solely yield-focused) that represent the multi-functionality of organic systems 

such as preserving ecosystem quality. However, these critical aspects are not only applicable to LCA for 

OA, but more so for agricultural LCAs in general since the same land and its surroundings would be 

affected by any type of land use activities. To the best of our knowledge, no publication has analyzed the 

limitations more specific to OA, such as the life cycle inventories of organic crop products, nor biodiversity 

indicators specific for organic or conventional practices. The certainty and robustness of LCA results are 

based both on the certainty of the life cycle inventory data collected and the life cycle impact models 

used, or even a combination of both, such as having available inventory data but lacking sufficient impact 

pathways/models for it. In these cases, focus on the LCIA phase would be important. Yet if inventory data 

is not available (which is often the case in organic agriculture), but impact pathways and models exist, 

then priority should be given to the inventory phase. Therefore, research into improving both the 

inventory and LCIA stage is direly needed.  

1.2.2 LCA AND BIODIVERSITY  

According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 

(IPBES), biodiversity can be defined as, “the variability among living organisms from all sources including 

terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are a part. 

This includes variation in genetic, phenotypic, phylogenetic, and functional attributes, as well as changes 

in abundance and distribution over time and space within and among species, biological communities and 

ecosystems” (https://ipbes.net/glossary/biodiversity). Therefore, biodiversity is a multi-scale concept, 

consisting of different organizational scales (ecosystem, species, genes), spatial scales (global, regional 

and local), and administrative scales (government, UN, companies, communities, farmers and land 

owners), all across a temporal scale (Henle et al., 2014; Wu, 2006), making it difficult to assess it. 

Additionally, there are multiple pressures that can cause biodiversity loss, complicating its protection, 

where the main five pressures include: invasive and non-native species, pollution, climate change 

associated with global warming, habitat loss through land use, and overexploitation (extreme hunting and 

fishing pressure) (IPBES, 2019). Additionally, biodiversity is important not only because of its intrinsic 

value, but also in the provision of ecosystem services.  

Biodiversity loss has become a major environmental concern closely linked to land use impacts and 

unsustainable production and consumption patterns. One of the main drivers of current and projected 
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future biodiversity loss is habitat change, as a result of land use and land use change. This is exceptionally 

important in agriculturally intensive regions such as Europe with nearly 50% (European Commission, 2016) 

land occupied by farmland, where 71% (European Commission, 2016) of this is used to feed livestock, 

causing 50% (Kristensen, 2003) of all species to become dependent on agricultural habitats. Agricultural 

practices such as nutrient input, pesticide use, field operations and field cover, are closely linked with soil 

quality and biodiversity. Thus, OA has become a suggested solution due to its commitment to the use of 

more natural and preventative agricultural techniques, and prohibition of synthetic pesticides and mineral 

fertilizers which have been found to affect biodiversity (Knudsen et al., 2019). Therefore, it is becoming 

more and more pertinent to develop and improve approaches for measuring and modeling biodiversity 

loss due to land use pressures, such as the land required for organic production. 

In agriculture, the transformation and occupation of land is the main pressure causing biodiversity loss 

(IPBES, 2019). One of the main debates surrounding biodiversity conservation is whether or not we should 

be ‘land-sparing’ by reducing farm sizes through intensification, or ‘land-sharing’ the farm with natural 

habitats to create a more complex landscape. In agricultural settings, land-sharing would promote 

ecosystem services, whilst land-sparing would retain critical areas to protect those species that are 

incompatible with agriculture, showing the complementary benefits (Feniuk et al., 2019; Fischer et al., 

2014; Grass et al., 2019; Valente et al., 2022). These studies also say management of landscapes is only 

successful if context-specific land-sparing and land-sharing measures are conducted with high spatial 

connectivity between them, in addition to flexible options for farmers vulnerable to growing conditions, 

heterogeneous markets and landscape contexts. Van der Werf et al. (2020) state that some LCA studies 

have assigned additional GHG emissions to organic food production due to the need for more land to 

compensate for low yields. This justification would therefore favour the ‘land sparing’ concept, where by 

implementing high-yield farming systems, we can spare land for nature (Fischer et al. 2014). Van der Werf 

et al. (2020) explain that it is difficult to predict if farmers would indeed ‘spare’ land if they increase 

intensification, or if it would encourage expansion due to higher financial gain. The cause-effect 

mechanisms of land use transitions are hard to predict as it is highly dependent on social behaviours. 

However, from an environmental perspective, it can be argued that if we favour the land sparing concept, 

the agricultural land would then be thought of as part of the technosphere (man-made environment, as 

opposed to the ecosphere, i.e., natural environment) because we are weighing the land spared higher 

than cultivated land, indirectly rendering any emissions or effects on agricultural land less important than 

the land spared. Although ‘land spared’ could hold more species than cultivated land, and could be 
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weighed more, it is important to also consider agricultural land with equal weight as it represents 50% of 

the worlds habitable land and will continue to increase as time goes on (FAO, 2020). This presents a large 

problem as nature does not see nor can follow these boundaries, and any animal or resource (e.g. 

rainwater, soil) that comes through or is part of the agricultural land can be affected by its anthropogenic 

activities. This does not hold true to the agroecological principle of OA, where the farmed land should be 

treated as one with the ecosystem, allowing all resources, including the soil, water and animals in it to co-

exist symbiotically. 

The European Commission (European Commission -- Joint Research Centre -- Institute for Environment 

and Sustainability, 2010; European Commission, 2017, 2003) recommended LCA as one of the main 

methods to estimate and compare the environmental impacts of products, and the FAO-LEAP Partnership 

(FAO, 2020) also recommended LCA especially for biodiversity impacts due to livestock land use. This 

Partnership aims to provide guidelines and recommendations on which indicators could be suitable to 

account for the effects of livestock activity on biodiversity. Furthermore, an extensive review of 

biodiversity indicators in European livestock science by (Kok et al., 2020), found that LCA methodology is 

suitable for estimating biodiversity loss in livestock production chains as it includes all stages of production 

including feed production. This is particularly important because the majority of terrestrial biodiversity 

loss in livestock systems is often attributed to feed production (Leip et al., 2015). Yet, Biodiversity 

indicators are not often reported in many LCAs of organic products as there is no consensus on which 

model to use.  

Biodiversity was found to be one of the most important and distinguishing indicators between organic 

and conventional systems in LCA (van der Werf et al., 2020) thus, this aspect was addressed in this thesis. 

For example, OA systems have been found to have higher species richness at field level than their 

conventional counterparts (Bengtsson et al., 2005; Hole et al., 2005). More recent analyses of species 

richness and abundance illustrated significant positive effects of OA at the field scale, but to a much lower 

extent when expanded to farm scale (Nascimbene et al., 2012; Schneider et al., 2014). Nevertheless, 

negative effects of high pesticide applications and mineral fertilization on species richness and abundance, 

and positive effects of hedges and other unproductive habitats, were widespread (Lüscher et al., 2017). 

Furthermore, a review of 94 studies concluded that OA increases species richness at field level by ~30% 

compared to conventional, where the result has been consistent over the last 30 years of peer-reviewed 

studies (Tuck et al., 2014). 



 

48 

 

Recent developments made by the UNEP-SETAC Task Force resulted in the recommendation of global LCA 

characterization factors (Chaudhary and Brooks, 2018). This model calculates land use intensity-specific 

global characterization factors for biodiversity damage potential (BDP) for five broad land use types 

(managed forests, plantations, pasture, cropland, urban) under three intensity levels (minimal, light, and 

intense use) in each of the 804 terrestrial eco-regions. This method is excellent for high-level hotspot 

analysis at the ecoregion level. However, it cannot distinguish between organic and conventional land use 

practices, and lumps together all types of land use classes into one “cropland” or “pasture” class, and, 

hence, do not reflect the real impact of the activities assessed. The aggregation of land use classes into 

broad classes is often a consequence of using models that rely on secondary data sources. Therefore, it is 

essential to use characterization factors that can distinguish between farming practices when performing 

LCA’s of OA products, but would require much more data. Though this model is recommended by UNEP-

SETAC, it has not been tested for its feasibility. 

The study by Kuipers et al. (2021), also applies the countryside-SAR approach, but integrates 

fragmentation effects, using the species-habitat relationship (SHR). It provides a set of characterisation 

factors were developed for 702 terrestrial ecoregions, four land-use types (urban, cropland, pasture, 

forestry) and four vertebrate taxonomic groups (birds, reptiles, amphibians, mammals, plus the aggregate 

of these groups). This model may be recommended in the upcoming guidance report by the Global Life 

Cycle Impact Assessment Method (GLAM) Taskforce (https://www.lifecycleinitiative.org/category/glam/), 

supported by United Nations Environment Programme (UNEP) and the Society of Environmental 

Toxicology and Chemistry (SETAC). They are working on improving the Kuipers et al. (2021) model to apply 

it across all impact categories, in order to upscale regional or local losses (PDF) to global extinctions in a 

comparable and consistent manner. In other words, they would recommend to use the same biodiversity 

loss model in each impact category that would feed into the Ecosystem Quality Area of Protection 

endpoint. This would be useful especially for species that are more globally threatened with extinction 

(e.g. endemic species, small-ranged species, critically endangered species) than other species (e.g. 

widespread species, least concern species). However, as mentioned in Chapter 3, top-down models may 

not be suitable for local/specific-contexts, and more suitable for high-level hotspot analysis along the 

value chain. Care must be taken when integrating the biodiversity model into existing indicators and using 

them for endpoint analysis, in terms of double counting or impact dilution. Although research is pushing 

ahead to test and address the “new” version of the Kuipers et al. (2021) model, the performance of the 

current model has not been tested, to the best of my knowledge. 
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Regarding the biodiversity LCIA models that can distinguish between organic and conventional agriculture, 

only five exist (Jeanneret et al., 2014; Knudsen et al., 2017; Koellner and Scholz, 2008; Mueller et al., 2014; 

Schryver and Goedkoop, 2010).  

The model proposed by Schryver and Goedkoop (2010) estimates the relative change in plant species 

richness for land occupation compared with a reference situation - the semi-natural woodland that would 

occur without human interference. The limitations of this model include its geographical coverage 

(specific to the UK) and the use of field edges of intensive farms as a proxy for organic arable areas, and 

field centers as conventional areas.   

Jeanneret et al. (2014) does not provide specific CFs for OA, but can account for differences between 

relevant land use practices such as intensive or extensive pesticide and fertilization use. However, this 

model is only valid for arable and grassland systems in Switzerland and surrounding regions, and would 

require more specific data collection for other regions. 

Knudsen et al. (2017), Koellner and Scholz (2008), Mueller et al. (2014) were the only other studies found 

that provided CFs that distinguish between organic and conventional agriculture and are valid over a 

larger region. A limitation of the first two aforementioned models is the use of secondary data from 

different studies, which use different sampling methods. Robust and reliable CFs should be validated 

against or better yet, based on field data and national case studies (Souza et al., 2015).  

Knudsen et al. (2017) filled this gap by developing CFs for organic and conventional agricultural 

production, based on standardized sampling of plant species richness in organic and conventional farms 

across six countries in Europe within the temperate broadleaf and mixed forest biome and hence, would 

be a well recommended method for calculating plant biodiversity impacts for OA in that biome. The data 

covered Austria, Germany, Switzerland, France, Hungary and Wales. Characterization factors were 

developed for arable crops, mixed pastures, grass-dominated pastures and hedges using vascular plants 

as a proxy for biodiversity. The six case study areas provide a good representation of variations in the 

biome.  

However, the high site-specificity of these CFs make them inapplicable to other biomes like the 

Mediterranean and their specific crops like olives and vineyards. The Mediterranean is the most plant 

biodiverse biomes in the world outside of the tropics (Cowling et al., 1996; Gerstner et al., 2017; Rundel 

et al., 2016), hence why this thesis aimed to expand CFs for this biome.  
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1.3 MOTIVATION AND OBJECTIVES OF THE THESIS 

Land managed using organic practices has been on the rise due to its use of more natural and preventative 

techniques with the aim to conserve the environment. However, it is not clear whether organic agriculture 

can actually reduce environmental impacts as the LCA methodology used to evaluate impacts have many 

methodological limitations in its ability to model the practices. Therefore, this thesis aimed to answer one 

important and overarching research question: 

How can LCA be improved in order to accurately and comprehensively account for the environmental 

impact of organic agricultural systems? 

Through the revision of state-of-the-art research in organic agriculture and LCA in the above sections, 

many gaps were found specifically in the LCI of organic crops, especially when attempting to build LCIs for 

organic food products in the Organic-PLUS project (Section 1.1.3). When researching how to overcome 

the challenges related to the lack of inventory data, we found that, to our best knowledge, no previous 

studies have analyzed the life cycle inventory modelling of organic food products. The LCI stage is one of 

the main determinates in the reliability and completeness of the final life cycle impact results of the 

product(s) (in addition to the life cycle impact stage), hence the importance to study this stage. We also 

found that the LCIA stage could also be further developed, where one of the main indicators that 

distinguishes organic from conventional agricultural systems is biodiversity loss. However, as mentioned 

in the aforementioned state-of-the-art sections 1.2.2, research is still needed regarding the testing of 

currently recommended models, and to understand which models may be more suitable for certain 

contexts like organic agriculture. In addition, the Organic-PLUS project called for the development of 

biodiversity indicators for organic agricultural land use, thus, research was done to decide which indicator 

may be more suitable and, furthermore, use it to develop characterisation factors for organic crops in 

highly diverse biomes like the Mediterranean. Therefore, this doctoral thesis aims to answer the research 

question posed above by focusing on improving the life cycle inventory stage and the life cycle impact 

assessment models for biodiversity loss through the following objectives and corresponding sub-research 

questions: 

1. Critical analysis of state-of-the-art organic crop LCI datasets, analyzing the gaps and suggesting 

improvements. 

a. What are the challenges in state-of-the-art life cycle inventory modelling of organic food 

products?  
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b. How can LCI modelling be improved? 

2. Enhancing life cycle impact assessment methodology for biodiversity assessments due to 

agricultural land use. 

a. What are the challenges and strengths of currently recommended LCIA biodiversity loss 

models for evaluating the environmental impact of food products like livestock products? 

b. How can currently recommended LCIA biodiversity loss models be used in different spatial 

modelling contexts, like top-down and bottom-up scaling approaches? 

c. What further research is required to improve these models? 

3. Develop characterization factors for organic and conventional agricultural land use types in the 

European Mediterranean biome using bottom-up modelling techniques. 

a. Using the findings from objective 2 above, what bottom-up model would be most suitable 

to develop characterization factors for organic and conventional agricultural land use 

types? 

b. What is the potential species loss of organisms due to organic and conventional 

agricultural land use types for European Mediterranean crops like olives, vineyards and 

cereals? 

c. What further research is required to improve this model? 
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CHAPTER 2 

2 CRITICAL ANALYSIS OF ORGANIC CROP LIFE CYCLE INVENTORIES  

 

This chapter has already been published as: 

Montemayor, E., Andrade, E.P., Bonmatí, A., Antón, A., 2022. Critical analysis of life cycle inventory 

datasets for organic crop production systems. International Journal of Life Cycle Assessment. 27, 543–563. 

https://doi.org/10.1007/s11367-022-02044-x 

 

  

https://doi.org/10.1007/s11367-022-02044-x
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2.1 ABSTRACT 

Organic agriculture has gained widespread popularity due to its view as a more sustainable method of 

farming. Yet OA and conventional agriculture (CA) can be found to have similar or varying environmental 

performance using tools such as life cycle assessment (LCA).  However, the current state of LCA does not 

accurately reflect the effects of OA, thus the aim of the present study was to identify gaps in the inventory 

stage and suggest improvements. 

This chapter presents for the first time, a critical analysis of the life cycle inventory (LCI) of state-of-the-

art organic crop LCIs from current and recommended LCA databases ecoinvent and AGRIBALYSE®. The 

effects of these limitations on LCA results were analyzed and detailed ways to improve upon them were 

proposed.  

Through this analysis, unrepresentative plant protection product (PPP) manufacturing and organic 

fertilizer treatment inventories were found to be the main limitations in background processes, due to 

either the lack of available usage statistics, exclusion from the study or use of unrepresentative proxies. 

Many organic crop LCIs used synthetic pesticide or mineral fertilizer proxies, which may indirectly contain 

OA prohibited chemicals. The effect of using these proxies can contribute between 4 – 78% to resource 

and energy-related impact categories. In a foreground analysis, the fertilizer and PPP emission models 

utilized by ecoinvent and AGRIBALYSE® were not well adapted to organic-authorized inputs and used 

simplified modelling assumptions. These critical aspects can be transferred to respective LCAs that use 

this data, potentially yielding unrepresentative results for relevant categories. To improve accuracy and 

to contribute novel data to the scientific community, new manufacturing LCIs were created for a few of 

the missing PPPs, as well as recommendations for fertilizer treatment LCIs and more precise emission 

models for PPPs and fertilizers. 

The findings in the present chapter add much needed transparency regarding the limitations of available 

OA LCIs, offers guidance on how to make OA LCIs more representative, allow for more accurate 

comparisons between conventional and OA, and help practitioners to better adapt LCA methodology to 

OA systems. 
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2.2 INTRODUCTION 

In the life cycle inventory stage (LCI), data collection and modelling of the system is carried out in line with 

the goal and scope of the study. This stage typically demands the most time and effort in an LCA, as all 

the inputs and outputs in the system need to be quantified per a reference flow or functional unit. The 

quality of the data in the inventory is a main determinate in the reliability and completeness of the final 

life cycle impact results of the product(s). LCA databases such as ecoinvent (referred to as EI hereafter) 

(Wernet et al., 2016) are widely used and accessible as background and foreground inventory data in LCA 

studies, along with other important agricultural databases such as AGRIBALYSE® (referred to as AG 

hereafter) (AGRIBALYSE, 2020) and ESU World Food LCA database (ESU, 2012). For example, foreground 

inventory data would encompass all the inputs and outputs required to produce 1 tonne of tomatoes as 

the product, and the background data for this may include fertilizer or diesel production processes. To the 

best of our knowledge, no publication has analyzed the inventory limitations more specific to OA, such as 

the life cycle inventories of organic crop products. Given the planned increase in OA in Europe, it is 

pertinent that the inventory stage is critically examined. Critical limitations on the inventory level within 

datasets in databases such as EI or AG can be potentially transferred to any respective LCA study that uses 

them, showing the importance of analyzing state-of-the-art LCA databases and their effects on LCIA 

results.  

Only a few studies discuss the limitations in applying LCA methodology to OA (Meier et al., 2017; Tuomisto 

et al., 2012; van der Werf et al., 2020). These studies focused mainly on the importance of including 

biodiversity and ecosystem service indicators when assessing organic systems and the lack of functional 

units (other than solely yield-focused) that represent the multi-functionality of organic systems such as 

preserving ecosystem quality. However, these critical aspects are not only applicable to LCA for OA but 

more so for agricultural LCAs in general since the same land and its surroundings would be affected by 

any type of land use activities. Therefore, this study presents a novel in-depth critical analysis of the life 

cycle inventory (LCI) choices of available OA crop datasets and how these limitations can affect life cycle 

impact assessment (LCIA) results and, furthermore, specific ways to improve these limitations. 

Practitioners should be fully aware of the limitations presented here, as well as suggestions on how to 

advance in these aspects. 

This study aims to improve the preparation of LCI’s for organic crop production systems, where the 

specific goals were: 
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1.   Explore and document currently available state-of-the-art crop LCI data for OA 

2.   Analyze gaps in existing datasets and their possible consequent effects on LCA results 

3.   Suggest recommendations for improving OA LCI datasets 

2.3 METHODS 

In order to assess the accuracy of current organic crop LCIs, existing databases were searched for organic 

crop datasets, then background data and emission modelling were analyzed, with special emphasis on 

fertilizers and plant protection products (PPPs). 

2.3.1 EXISTING ORGANIC AGRICULTURAL DATASETS  

The Global LCA Data access network (GLAD, https://www.globallcadataaccess.org/) was used to find 

existing European LCA organic crop datasets. The databases ecoinvent v3.8 (Wernet et al., 2016), 

AGRIBALYSE® v3.0 (AGRIBALYSE, 2020), ESU (ESU, 2012) and Agri-footprint v5.0 (van Paassen et al., 2019) 

were found to be the most comprehensive and up-to-date agricultural LCA databases for crops in Europe. 

However, not many datasets are available for a wide range of organic products nor geographic locations 

for use as background or foreground data, with only ecoinvent v3.8, AGRIBALYSE® v3.0 and ESU being the 

only databases that contain organic datasets for crop and/or animal products in Europe, where a summary 

of the datasets can be found in Table 4. Crops ranged from cereals, to vegetables and perennial fruits. 

Therefore, a critical analysis of organic crop datasets from ecoinvent v3.8 and AGRIBALYSE® v3.0 were the 

focus of the present study, excluding animal and animal feed products. The EI system model “allocation, 

cut-off by classification” was used for the critical analysis. The ESU database was not included due to its 

similarities with ecoinvent (both based on data in Switzerland), the extra cost required for download, and 

the fact that it is only compatible with background databases ecoinvent v2.2 or v3.2, whereas in this study 

v3.8 was used. The organic crop datasets in EI and AG are publicly available for use, hence critical issues 

could be passed on to any respective studies that use these datasets, showing the importance of the 

present study. 

https://www.globallcadataaccess.org/
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Table 4. State-of-the-art LCA databases that include organic agricultural products. 

Database Crop type  Livestock  Country Year 
 Cereals Vegetabl

e / 
legumes 

Fruit Oil 
Seed 

Inter
crop 

Animals  Feed   

ecoinvent 
v3.5 

11 3 0 1  0 7 a Switzerlan
d 

1996-
2011b  

AGRIBALY
SE® v3.0 

47 8 / 28 7 5 14 40 12 France 2011-
2015 

ESU 12 30 16 0  16 15 Switzerlan
d 

1997 -
2012c 

a excluding nested datasets and conventional soy production 

b most up to 2002 

c most up to 2009 

 

Since a particular trait of organic production systems is the use of ‘natural’ PPPs and fertilizers (as opposed 

to synthetic or mineral ones used in conventional production systems), the background and foreground 

processes relevant to PPP products and fertilizers were the main focus of the present study. Thus, a 

selection of organic crops from EI and AG that had PPPs and fertilizers in their LCIs was made.  Moreover, 

only those datasets that were representative of the country or region were selected. Some organic crop 

datasets in AG represent a typical case and are not representative of a national or regional average (such 

as barley, winter wheat, fava, wine grape and soybean). We wanted to analyze those datasets that were 

representative at a larger scale, since the aim of the present study is to analyze LCI of OA in general, thus 

those “typical cases” were excluded from the present study. There were two datasets for organic 

sunflower available, one for the Gers region and one for Pays de la Loire. The Gers dataset was chosen 

because it contained more fertilizer inputs for us to analyze. In addition, survey data from organic farms 

in the European Horizon 2020 project Organic-PLUS (Grant agreement 774340) (called ORG+ hereafter) 

helped us to identify other requirements for background PPP and fertilizer LCI data. The final selection of 

organic crops and their relevant data from EI, AG and ORG+ analyzed in this study are listed in Table B-1. 

It must be noted that for the orchards and vineyards in AG, the main production stage, “full production” 

was assessed, excluding the stages seedling, plantation and destruction, and first production years. This 

stage had the highest impacts out of all the stages and spanned most of the lifetime of the orchard, thus 

allowed us to focus on the main inputs required for cultivation.  
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In summary, the organic crop LCIs were analyzed in regards to two main aspects, the PPPs and fertilizers 

used in the LCIs, thus the Results and Discussion were divided into these two main areas. They were 

analyzed according to their compliance with European OA regulations (European Commission, 2008a), 

representativeness of background fertilizer and PPP manufacturing datasets and representativeness of 

foreground emissions modelling for fertilizer and PPP application. 

The data quality of relevant PPP and fertilizer background datasets were discussed using a weighted 

average data quality rating (W-DQR). The indicators used to calculate the DQR were reliability, 

completeness, temporal and geographical correlation, and further technological correlation using the 

pedigree matrix approach from Weidema (1998), and modified in  Weidema et al. (2013, refer to pg. 76 

for explanation) and the Product Environment Footprint, PEF (European Commission, 2017). A score of 1 

means excellent data quality, 2 good quality, 3 fair quality and 4-5 poor quality.  The initial scores for each 

LCI dataset were provided by the LCA database providers. Using these scores, a W-DQR was calculated in 

the present study by first averaging the initial DQR of each input/output within a dataset (e.g., electricity 

in the kaolin LCI, DQRelectricity = 3), then weighted each of these DQRs by its contribution to the total impact 

for each category (e.g., 47% in climate change), then averaged across all categories to get a final W-DQR 

(e.g., 3.0, fair). According to the PEF data quality requirements (European Commission, 2017), 90% of 

environmentally relevant data within an LCI shall be at least of fair quality, hence the importance of using 

a W-DQR average. Details on the information used to calculate the average W-DQR can be found in 

Supplementary material of the published article Montemayor et al. (2022;Tables S4 – S20). 

2.3.2 EFFECT OF CRITICAL ASPECTS ON LCA RESULTS  

To demonstrate how and to what degree the identified limitations in organic crop LCI datasets, namely 

the choices in PPP and fertilizer datasets and their on-field emissions, affect LCA results, life cycle impact 

assessments were conducted using the Environmental Footprint v3.0 (EF) characterization method (Fazio 

et al., 2018a) as implemented in the software SimaPro v. 9.1.1.7. The midpoint impact categories climate 

change potential (CCP, kg CO2 eq), ozone depletion potential (ODP, kg CFC-11 eq), terrestrial acidification 

(ADP, mol H+ eq), freshwater eutrophication (FEP, kg P eq), marine eutrophication (MEP, kg N eq), 

resource energy carrier use (REP, MJ), and resource mineral and metal use (RMP, kg Sb eq) were selected 

because of their relevance to agricultural production and energy-related processes. Respiratory inorganics 

and water scarcity midpoint impact categories were not analyzed due to insufficient data flows in the AG 

database. Toxicity categories were also not included due to the lack of impact characterization factors for 

many PPPs used in the datasets (discussed in the Results and Discussion). 
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Since the focus of the study was to demonstrate to what degree the limitations in PPP and fertilizer 

datasets and their on-field emissions have on the LCA results of each crop, a contribution analysis of each 

input was carried out. Inputs included machinery, on-field emissions, land and water use, fertilizer 

production, PPP production, transport, seed production, mechanical weeding, infrastructure and 

transport of workers, where applicable. The absolute value results were not reported as comparing 

impacts between products was not the aim of our study. 

2.3.3 RECOMMENDATIONS FOR IMPROVEMENT  

Recommendations on how to improve aspects of the LCI stage in application to OA were suggested, in 

order to reflect OA practices more accurately and to allow a fairer comparison between OA and CA. In 

respect to improving PPPs, a search was conducted in Google Scholar to find studies that could model LCIs 

for microbial-derived products used as PPPs in OA, such as Bacillus subtilis, B. thuringiensis and Spinosad, 

using the keywords “life cycle assessment” AND “inventory” AND “microbial products”. The study by 

Harding (2008) and Harding and Harrison (2016a, 2016b) was found to be the most relevant and practical 

study that provided a tool to calculate LCIs for microbial products called, the CeBER Bioprocess Modeller 

(Centre for Bioprocess Engineering Research at the University of Cape Town, Department of Chemical 

Engineering). This model estimates the life cycle inventory needs of industrial microbial processes such as 

material and energy balances and equipment volumes and utility needs. This would include both the 

microbial growth and product formation as well as any downstream processing such as separation and 

filtration techniques.  

Additional LCIs were suggested for other types of PPPs that already had available LCI datasets (Bordeaux 

mixture, copper oxide, copper sulphate, essential plant oils, kaolin, pyrethrin) by searching in the 

databases EI or AG, or if only their precursors were available in EI or AG, the proper ratios were suggested 

(which was the case for mineral oil, and potassium soap). Other PPPs such as chitosan and neem oil did 

not have any available LCI datasets, thus new ones were suggested by searching Google Scholar for studies 

that supplied data regarding their industrial manufacturing, resulting in Pighinelli (2019) and Said Al 

Hoqani et al. (2020) for chitosan and (Kumar et al., 2021) for neem oil. 

In terms of suggestions for improving organic fertilizer emissions modelling used in EI and AG, the meta-

study by Andrade et al. (2021) was used to determine which model may be more sufficient, as well as 

expert opinion (Angel Avadí, French National Institute for Agricultural Research, personal 
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communication). Specific PPP emission modelling problems with copper can be found in the Results 

section 2.4.1.2, as its explanation was more suitable for the Results. 

 

2.4 RESULTS  

2.4.1 CRITICAL ANALYSIS OF PPPS USED IN ORGANIC DATASETS  

2.4.1.1 BACKGROUND PPP MANUFACTURING 

Upon inspection of the LCIs for organic crops in EI and AG (Table B-1), the relevant PPP manufacturing 

datasets that are available in LCA databases include copper oxide, copper sulphate, sulfur, and kaolin 

(Table 5), which are some of the most prevalent ones used in OA. The only biological control agent (BCA) 

that had some input regarding its manufacturing was Trichogramma in the EI maize crop dataset, where 

the electricity required for manufacturing was accounted for. Ecoinvent stated that no further details on 

Trichogramma could be incorporated due to data confidentiality.  

Furthermore, it was found that several of the PPPs were only inventoried as output emissions to soil, 

without having inventoried them as inputs. This was largely due to a dire lack of manufacturing LCIs, 

especially for botanical PPPs and BCAs (Table 5). Although this allows for transparency regarding the PPPs 

that were actually used, no mass balance was achieved. For example, the botanical and microbial derived 

PPPs Rotenone, Pyrethrin and Spinosad were used in organic crops apple, peach and grape in AG 

(inventoried only as output emissions), but no manufacturing datasets were available for them. Thus, 

impacts regarding their manufacturing would be excluded from any assessment that use these crop 

datasets from these databases. It is recommended to include them as inputs in the LCI even as “empty” 

processes for greater transparency to users, with a disclaimer noting that the inventory is unknown. 

Through the ORG+ project, it was found that many BCAs were used as natural insecticides in the 

cultivation of aubergine and tomatoes and botanical PPPs, such as Pyrethrin or plant essential oils are also 

widely used in organic agricultural pest management (Andrivon et al., 2019, a report from the ORG+ 

project). 
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Table 5. List of plant protection products used in organic crop cultivation in Europe and corresponding 

availability of manufacturing datasets and data quality information. 

Type PPP / CAS No. Use(s) Manufacturi
ng dataset 
available? – 
Database? 

Average W-DQR, weighted 
by impact contribution to 
total 

M
e

ta
l/

M
in

e
ra

l-
b

as
e

d
 

Copper gluconate / 527 09 
3 

Fungicide No  

Copper oxide / 
1317-38-0 

Fungicide Yes - 
ecoinvent 

W-DQRCuO = 4.67 (i.e., poor) 
across all processes. 
W-DQRCu= 4.8 (i.e., poor)  

Copper oxychloride / 
1332-40-7 

Fungicide No  

Copper sulphate /  
7758-98-7 

Fungicide Yes- 
ecoinvent 

W-DQR= 3.26 (i.e., fair) 

Kaolin (aluminium silicate) 
/ 1332-58-7 

Repellent Yes- 
ecoinvent 

W-DQR = 3.0 (i.e., good) 

Lime sulphur /  
1344-81-6 

Acaricide, Fungicide, 
Insecticide 

No  

Paraffin oil / 8042-47-5 Acaricide, Insecticide Yes- 
ecoinvent 

W-DQR = 3.57 (i.e., poor) 

Potassium hydrogen 
carbonate / 298-14-6 

Fungicide No  

Potassium soap  Insecticide No  
Sulphur / 7704-34-9 Acaricide, Fungicide, 

Repellent 
Yes- 
ecoinvent 

W-DQR = 2.4 (i.e., good) 

B
o

ta
n

ic
al

 

Cinnamon oil (a.i. 
cinnamaldehyde) / 104-
55-2 

Repellent Yes – 
AGRIBALYSE
® 3.0  

Proxy used: Conventional 
vanilla production, 
Madagascar, ecoinvent v3. 
W-DQRVan = 1.84 (i.e., very 
good), reported DQRVan = 
2.7 (good) 

Citrus oil (a.i. limonene 
active ingredient) /5989-
27-5 

Fungicide, Insecticide No  

Eucalyptus oil (a.i. 1, 8 – 
cineole) / 470-82-6 

Pesticide  No  

Neem oil (a.i. azadiractin) 
/  
11141-17-6 

Insecticide No  

Oregano essential oil (a.i. 
carvacrol) / 499-75-2 

Anti-microbial, 
Insecticide 

No  

Pyrethrin / 8003-34-7 Insecticide  Yes - 
ecoinvent 

W-DQR = 3.4 (i.e., fair) 

Thyme essential oil (a.i. 
thymol) / 89-83-8 

Fungicide Yes - 
AGRIBALYSE
® 

Proxy used: Conventional 
mint production in India. 
Reported DQR = 2.7 (i.e., 
good) 

Rotenone / 83-79-4 Insecticide No  

M
i

cr o
b

ia
l-

d
e

ri
v

e
d

 Bacillus subtilis / 68038-
70-0 

Bactericide, 
Fungicide 

No  
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Bacillus thuringiensis / 
68038-71-1 

Insecticide No  

Nesidiocoris tenuis 
(predatory insect) 

Insecticide No  

Reynoutria sachalinensis 
extract (giant knotweed) 

Fungicide No  

Spinosad /  
168316-95-8 

Insecticide No  

Trichoderma harzianum /  
67892-31-3 

Insecticide No  

Trichogramma pretiosum /  
41198-08-7 

Insecticide No  

 

In regards to whether the crop datasets follow the EU regulations for organic production (European 

Commission, 2008), EI datasets followed strictly with OA principles, in that only organic-authorized PPPs 

were used. On the other hand, AG applied a general rule to use the “pesticide, unspecified” background 

dataset from EI as a proxy for unavailable PPP manufacturing datasets, and in the case of organic crops, 

this was a proxy for the insecticide Spinetoram, an analogue of Spinosad (Grasselly et al., 2017). This 

“pesticide, unspecified” manufacturing dataset represents a European average of all 78 synthetic PPPs, 

some of which are not authorized in European OA regulations, such as glyphosate (European Commission, 

2008a), hence indirectly including impacts from synthetic PPP manufacturing. Petrol was also used as a 

proxy for mineral oil production and low voltage electricity was a proxy for Bacillus thuringensis 

production, which may or may not be better than not including it at all, but more adequate manufacturing 

datasets are needed. 

Additionally, Rotenone is no longer permitted in OA in Europe, with its final authorization withdrawn in 

2011 (European Commission, 2008b). In AG v1.3 the reference period for all crops and animal products, 

was from 2005 – 2009, thus Rotenone was still permitted in France during that time period. Therefore, if 

one wishes to use these datasets, it is important to check if the reference period and the PPPs inventoried 

are similar to the system under investigation and follows local OA regulations.  

In respect to the data quality for those PPPs with available manufacturing datasets (Table 5, refer to the 

supplementary material in the publication Montemayor et al. (2022) for detailed calculation of DQRs), 

kaolin and sulphur were found to have good data quality ratings between 2 and 3. Copper oxide had poor 

W-DQR (4.8, i.e., poor) mainly due to the market for copper metal production; this process contributes to 

>90% of the total impact of copper oxide, hence demonstrating its relevance and importance. Specifically, 

the completeness, temporal and geographical correlation, and further technological correlation, had poor 



 

62 

 

quality ratings that should be improved. Copper sulphate had fair W-DQR due to the poor quality of the 

copper oxide manufacturing dataset nested within that dataset, accounting for 64 – 99% of the total 

impact across all categories. Paraffin oil had a poor W-DQR (3.6) due to the poor quality of the chemical 

factory data (4.8) and fair quality of the heat data from sources other than natural gas (3.2). Specifically, 

the chemical factory data had poor reliability, completeness, temporal and geographical correlation and 

further technological correlation, whereas the heat data had poor ratings only for the first three 

indicators. Therefore, the aforementioned datasets do not comply with the PEF data quality requirements 

(European Commission, 2017) where 90% of environmentally relevant data within an LCI shall be at least 

of fair quality. 

Thyme and cinnamon production had good W-DQR’s (both 2.7), however, they both used proxies for their 

production, which in reality would result in a very low DQR. The thyme in particular uses a conventional 

mint proxy cultivated in India, which would not be a suitable proxy for European or organic contexts, as 

some of the inputs used are not permitted in Europe nor in organic systems, in addition to the fact that 

thyme and mint can be grown in Europe. Cinnamon and vanilla on the other hand, cannot be grown in 

European climates, thus, vanilla could be considered a good proxy. Therefore, more research is needed to 

improve the DQR of these existing datasets. 

In regards to more specific organic pest management techniques, OA focuses mainly on preventative 

measures that relies on maintaining a healthy soil biology and overall biodiversity. This may include 

providing a habitat for beneficial organisms, diverse rotations, using resistant varieties, intercrops, proper 

soil and nutrient monitoring and management, among others. When such preventative measures are 

insufficient to prevent or control pests, diseases and weeds, the addition of permitted PPPs would 

normally be the last resort. Such preventative techniques are difficult to account for in LCA and were not 

included in the EI and AG organic crop datasets, except crop rotations and intercrops to some extent in 

AG, where they allocate PPP and fertilizer manufacturing, emissions from PPP and fertilizer applications 

and diesel consumption among the crops in that sequence. Mechanical weeding was also accounted for 

in some of the AG crop datasets (Table B-1). The other preventative measures that require diverse 

ecological structures to increase biodiversity and habitats for beneficial organisms, which may also be 

referred to as ecosystem services, are difficult to account for in LCA as they are difficult to quantify and/or 

reach a consensus as to how to measure it. However, some studies aim to for example, estimate the 

vascular plant biodiversity in organic and conventional cropland in Europe (Knudsen et al., 2017; Koellner 

and Scholz, 2008; Mueller et al., 2014; Schryver and Goedkoop, 2010), which may be a good start. 
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2.4.1.2  PPP EMISSION MODELLING 

The main critical aspect found to be relevant to environmental assessments of OA, was that the total PPP 

dose in compound form (e.g., CuSO4) was often used as the emission output rather than the active 

ingredient (e.g., Cu ion). 

Copper-based PPPs are one of the most widely used and most generously applied PPP in OA and CA, 

especially in fruit trees and grape vines (Agrios, 2005). Since OA cannot use other synthetic pesticides, 

organic farmers depend greatly on copper PPPs, and thus copper emissions are relevant and important. 

However, it seems there is confusion surrounding how to calculate emissions from copper-based PPPs; in 

AG, they used the mass of the compound (e.g., copper sulphate, copper oxide, etc.) as the on-field 

emission output, instead of using the mass of the active ingredient, Cu ion. This can consequently over-

estimate toxicity results due to the higher, total mass used, especially when applied in solution or in acidic 

environments where the Cu is more likely to be a free ion. For example, the total input dose used in the 

organic apple dataset in AG was 109.871 kg Cu/ha, which was equal to the total sum of output emissions 

(41.072 kg copper sulphate/ha and 68.799 kg copper oxychloride/ha), showing that the total dose was 

used instead of the amount of Cu active ingredient.  

2.4.1.3 EFFECT OF PPP CRITICAL ASPECTS ON LCIA 

Figure 10 shows the contribution of processes to the total impact for those organic crop datasets in EI and 

AG where relevant criticisms regarding PPP inputs were reflected in the life cycle impact assessment. This 

demonstrates how and to what degree the limitations discussed in the previous section affect LCA results, 

in order to show the importance these limitations have on current and future LCA studies.  
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Figure 10. Contribution of relevant cultivation processes in organic crops from databases AGRIBALYSE® (AG) and 

ecoinvent (EI) to potential impact categories climate change (CCP), ozone depletion (ODP), acidification (ADP), 

marine (MEP) and freshwater (FEP) eutrophication, resource energy carrier use (REP), and resource mineral use 

(RMP). Machinery includes field work such as tillage, planting, harvesting, irrigation, PPP and fertilizer 

application, and the production of diesel, electricity and machinery required to carry out these operations. 

*Mechanical weeding was only present in walnut, pear, chicory, peach, apple, wine grape and carrot. 

*Infrastructure was only present in chicory, squash, tomato and melon. *Transport of workers was only present 

in wine grape, apple and peach. 

Perennial fruit and nut production in AG, used more PPPs than the other crops, which was clearly reflected 

in the results where PPP production notably contributed between 4 – 30% to ozone depletion (ODP), 6 – 

11% to acidification (ADP), 7 – 64% to freshwater eutrophication (FEP), 7 – 55% to resource energy carrier 

use (REP) and 22 – 78% to resource mineral use (RMP) (Figure 10). These PPPs constituted copper and 
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sulfur fungicides, kaolin, pesticide unspecified proxy for Spinetoram, petrol proxy for mineral oil, and 

electricity proxy for Bacillus thuringensis. Of these values, copper-related PPP production was the main 

contributor to FEP due to upstream phosphate emissions and RMP due to depletion of resources, whereas 

sulfur production was the main contributor to REP, demonstrating the energy-intensiveness of its 

production (Figure B-1). Therefore, it is important that adequate copper datasets are chosen when 

carrying out an LCA of crops that use copper, and it is pertinent that the data quality of these copper 

datasets are improved or are discussed in the LCA. However, this is based on the assumption that the 

copper used in the EI database is of virgin origin, whereas in reality 40 – 50% of all pre-manufactured 

copper is sourced from recycled copper scrap (Davenport et al., 2002). However, in regards to the 

characterization of the impacts due to these copper compound emissions, the characterization method 

EF 3.0 (used in this study) and even another commonly used method ReCiPe 2016 (Huijbregts et al., 2017) 

do not have toxicity CFs for these compounds or they are not properly accounted for in SimaPro. Thus, 

the toxicity impacts of copper oxide, copper sulfate and copper oxychloride emissions would not be 

accounted for, which is why toxicity impact categories were not included in this study. Therefore, if EF 3.0 

or ReCiPe is the characterization method of choice, it is recommended to use copper (CAS Number 

007440-50-8) as the output emission, since these impact methods assign the CFs for the oxidized form of 

copper (Cu(II)) to the metallic form. Therefore, this change is important for crops that use large amounts 

of copper fungicides, potentially affecting categories that are affected by copper emissions to soil, i.e., 

freshwater ecotoxicity and human toxicity non-cancer. In summary, it is recommended to i) use the 

amount of active ingredient (e.g., Cu ion) as the output emission in crop LCIs, instead of the compound 

(e.g., copper sulphate), if applicable, and ii) use copper (CAS Number 007440-50-8) as the output emission 

instead of the compound (e.g., copper sulphate). 

Of the AG crops that inventoried pesticide unspecified as a proxy for Spinetoram (Table B-1), peach had 

the highest amount of pesticide unspecified applied with 51.48 kg/ha followed by carrot with 13 kg/ha 

(other crops were in the range of 0.00702 kg – 7.6 kg/ha). Looking at these two crops, it is evident that 

these high amounts of pesticide unspecified can sway the results away from copper and sulfur impacts, 

causing high contributions in FEP (15%) and REP (13%) (Figure B-1). Since the amount of “pesticide 

unspecified” used in peach production is relatively smaller compared to copper (1.3x lower) or sulfur 

inputs (36x lower), these results indicate that even a small amount of this PPP can greatly influence LCA 

results.  
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The impact of mechanical weeding was estimated apart from machinery processes, in order to separately 

account for other methods of weed removal that may be used in OA instead of herbicides. Mechanical 

weeding was used in the AG perennial crops datasets (wine grape, apple, peach, pear, walnut), and 

carrots. Since mechanical weeding consisted of the use of a tractor and its implements, it was found to 

potentially contribute 3 – 15% to CCP, 2 – 20 % to ODP, 3 – 14% to ADP, 3 – 15% to MEP, 2 – 15% to REP, 

and 2 – 9% to RMP (Figure 10). Therefore, it is important to separately account for this when carrying out 

an OA LCA. 

2.4.2 CRITICAL ANALYSIS OF FERTILIZERS USED IN ORGANIC CROP DATASETS  

2.4.2.1 BACKGROUND FERTILIZER MANUFACTURING DATASETS 

Organic fertilizers are essential in OA, due to the prohibition of mineral fertilizers. Thus, after analyzing 

the OA datasets it was found that the main LCI modelling issue regarding the manufacturing of organic 

fertilizers and amendments was the exclusion of treatment and storage processes of the fertilizers (e.g., 

composting, anaerobic digestion) and the use of mineral fertilizer proxies (Table 6). This was likely due to 

the lack of usage statistics for organic fertilizer for the treatment to be included. For example, in AG and 

in EI, most crops had “organic farm or manure empty processes” to represent animal manure- or slurry-

based fertilizers thus they were assumed to carry zero environmental burden from the animal production 

system. However, further valorization treatments of processes were not included in most of the crop 

datasets, with the exception of sunflower, rapeseed, tomato, squash and chicory. Given the dependence 

of OA on organic fertilizers and the growing number of organic farms and market for organic products in 

Europe (Eurostat, 2022), organic residue treatment may shift from mere treatment to economic 

valorization and entry into the market, showing the importance to include this in future LCAs. 

With respect to the use of mineral fertilizers proxies in AG, average French P2O5 or K2O mineral fertilizers 

were inventoried in organic grape, carrot, sunflower and pea, in addition to average European N mineral 

fertilizers in grape (Table B-1), which are not authorized in OA. Only crude or rock phosphate and organic 

fertilizers are permitted (all authorized fertilizers for organic production are listed in Table 1 (European 

Commission, 2008a).  

In regards to the data quality for those fertilizers with available manufacturing datasets (Table 6), green 

manure, compost, all three average mineral fertilizers of N, P2O5 and K2O and potassium chloride had good 

W-DQRs between 2 – 3. Poultry manure had fair W-DQR between 3 – 4, due to poor completeness and 

temporal correlation ratings across all inputs and outputs. EI stated that this dataset is a rough estimation 
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extrapolated from literature sources, and that it is recommended to update this dataset as soon as 

possible. Horn meal also had a fair rating due to poor temporal correlation across all inputs and outputs, 

especially electricity and heat processes, possibly due to the extrapolation of data from 1993 to 2019. 

Table 6.  List of fertilizers and amendments used in organic crops from EI and AG databases and the ORG+ 

project, and corresponding availability of manufacturing datasets and data quality information. 

Fertilizer Manufacturing/treat
ment dataset 
available? – 
Database? 

Average W-DQR weighted by impact contribution to 
total 

Liquid and solid farmyard manure (empty 
process, only accounted for in terms of 
direct field emissions) 

N/A N/A 

Digestate Yes - AG v3.0 2.60a 
Composted farmyard manure with and 
without substrates 

Yes - AG v3.0 2.60a  

Green manure Yes – EI 2.04 
Horn meal Yes – EI 3.20 
Compost (type not specified) Yes – EI and AG 2.17 
Average P2O5 mineral fertilizer Yes – EI 2.32 (based on Phosphate fertilizer, as P2O5, 

monoammonium phosphate production as it was the 
input with the highest proportion) 
2.36 (based on Phosphate fertilizer, as P2O5 triple 
superphosphate production) 

Average K2O mineral fertilizer Yes – EI 2.81 (based on Potassium chloride production, as K2O 
as it was the input with the highest proportion) 

Average N mineral fertilizer Yes – EI 2.23 (based on ammonium nitrate production, as N as 
it was the input with the highest proportion) 

Poultry manure  Yes – EI 3.07 
Potassium chloride Yes – EI 2.81 
Magnesium oxide Yes – EI 4.04 
Potassium sulphate Yes – EI 2.33 
Commercial liquid fertilizer (Calcium (7) 
and magnesium) 

No N/A 

Commercial pelletized cow manure No N/A 
Commercial liquid vegetable-based 
fertilizer 

No N/A 

aThis is not a weighted DQR, this could not be weighted due to unavailable DQR for each individual input for that dataset, thus, 
the average of the quality assessments given in (Avadí et al. 2020, Table 4, from which these LCIs were derived) are shown here. 
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2.4.2.2 FERTILIZER EMISSION MODELLING 

Fertilizer application emissions can affect acidification, eutrophication, climate change and toxicity 

potential, and are calculated first and foremost as a function of nutrient and heavy metal content (e.g., 

0.55 TAN in dairy cattle manure applied, European Commission, 2017), as well as other factors such as 

climate and application technology. Thus, we highlight three main limitations that can greatly influence 

impacts in regards to fertilizer application emission modelling in not only OA but also any agricultural 

production system that uses organic fertilizers: 

(1) No differentiation is made between the nutrient content for manure derived from OA and CA systems.   

(2) Fertilizer emission models such as those used by AG and EI (and hence used by the European 

Commission (2017)) are too simple for accounting nutrient balance and heavy metal emissions from 

organic (and conventional) fertilizer application. 

(3) Use of averages for nutrient content composition for organic fertilizers can yield unrepresentative 

emissions due to high variability 

The average nutrient composition of organic fertilizers used in EI and AG were based on manure from all 

types of agricultural systems, such as from CA and OA. However, due to the higher number of 

conventionally managed farms in Europe compared to OA, the nutrient content is often based only on 

manure from CA. This is an issue for two main reasons, 1) use of manure from factory farming as fertilizer 

is prohibited under EU OA regulations, 2) N-content in manure from CA can be higher than OA due to 

higher protein content in the feed. The latter is rarely ever considered in LCA inventories and may be an 

important explanation for unaccounted N surplus in LCAs of organic products, especially for animal 

products (Meier et al., 2015). Thus, Meier et al. (2015) state that ammonia emission models should be 

adapted to different farming systems, such as taking the diet-related N-flows into account, to allow more 

accurate estimates for acidification, terrestrial eutrophication and climate change potential, especially 

within comparative LCAs of animal products.  

In respect to the second limitation, the fertilizer application emission modelling in AG and EI did not take 

into consideration the application method by which fertilizers, whether organic or not, are applied when 

estimating ammonia emissions. This is extremely applicable to OA since some organic fertilizers emit more 

ammonia than mineral fertilizers (e.g., default air emission factor for organic fertilizer is 0.24 kg NH3/kg N 

applied and 0.12 kg NH3/kg N applied for synthetic fertilizers, European Commission, 2017). Moreover, 
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misrepresenting NH3 emissions can also affect NOx emissions generated through nitrification and N2O 

emissions through denitrification. AG state that lack of fertilizer application data in France made it 

impossible to create correction factors for ammonia. In the estimations for EI data, it was assumed that 

no additional measures were taken to reduce ammonia emissions. AG also explain that their nitrate 

emissions were estimated using the COMIFER-Tailleur model (Tailleur et al., 2012), which does not take 

into account the dose of nitrogen supplied, and the time at which it made the contribution. Additionally, 

AG and EI used the SALCA-P model which does not take into account the fact that P balances are not 

always balanced, with exports being stronger than inputs. For example, AG state that this is a limitation 

in their study since successions with alfalfa export a lot of P, thus without adapted agricultural practices, 

P stocks in soil are likely to decrease (Nitschelm et al., 2020). 

Heavy metal (HM) contaminants can be found in both organic and mineral fertilizers, however, higher 

levels have been found in organic fertilizers and/or are more readily available, although uptake may be 

lower due to organic matter content in the fertilizers (Ugulu et al., 2021; Zaccone et al., 2010). Therefore, 

HM emission modelling is a very critical aspect to consider. For both AG and EI, the SALCA-heavy metal 

soil emission methodology (Prasuhn, 2006) was applied; a balance between heavy metals (HM) inputs 

into soil (seeds, fertilizers, pesticides and deposition) and outputs from the soil (exported biomass, 

leaching and erosion) was made, resulting in either positive or negative emissions. One major difference 

between AG and EI fertilizer emissions modelling is that AG includes the effects of crop rotation on 

emissions, but these have resulted in negative net HM emissions. AG state that a negative emission means 

a net export of HM to water bodies or to the harvested product such as food, feed or straw through uptake 

or residue. However, the uptake values were based on average HM contents of specific crops and specific 

fertilizer types for France or Switzerland. AG further stated that trace HM leached to aquifers is strongly 

linked to the geology of the soil, so the values they used from Switzerland (the average amount of HM 

leached per ha per year) should be used with care when applying it to other countries. Furthermore, AG 

adds a disclaimer that considering the uncertainties of these parameters, a negative balance should not 

be interpreted as complete export of HMs from the field, but mainly as a result of uncertainty in input and 

output data. Therefore, LCA practitioners must bear this in mind when interpreting emission results that 

use balancing methods like SALCA-HM emissions modelling in the LCI, and it is recommended to report 

results with and without negative HM emissions (i.e., zero emissions if the value is negative). 

In regards to the third limitation, information regarding nutrient content in organic fertilizers is often 

unavailable or reported only as the total amount of fertilizer applied. Thus, proxies or national weighted 
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averages based on market data are often used, but may not be representative of the region or fertilizer 

type under investigation, and could lead to under- or over-estimation of emissions. However, therein lies 

the limitation, it is difficult to create proxies for organic fertilizers due to the large number of fertilizer 

types available and high variability in nutrient content among them. For example, from the data gathered 

for the ORG+ reference scenarios, pelletized fertilizers, or commercial liquid vegetable fertilizers were 

used on-field, but no representative nutrient contents nor emission fractions could be found for these 

fertilizers. Thus, if emissions are to be estimated, proxies would need to be used which can increase 

uncertainty of results. For instance, pelletized fertilizer usually has lower emission rates than solid manure 

or digestate (Pampuro et al., 2018).  

The variability of nitrogen content among organic fertilizers is quite high depending on the database or 

source chosen (Figure 11). Koch and Salou (2016) for AG had the lowest variability and Flisch et al. (2009) 

for EI had the highest variability, illustrated by the size of the boxplots in Figure 11. If an average is taken 

(e.g. 11 kg N/ton in Flisch et al., 2009), there is a 50% chance that the actual nutrient content of a specific 

fertilizer may be more than double the average (e.g. >22 kg N/ton). Another important point that can be 

derived from Figure 11 is that the “outliers” all represent nutrient values for poultry manure, hence 

showing that this type of fertilizer is statistically different from the rest. 

 

 

Figure 11 Comparison of nutrient content (kg N, P2O5 and K2O per m3 or ton) in different types of organic 

fertilizer derived from animal and sewage waste from Catalonia, Spain (Sío et al., 2013) in blue, ecoinvent (Flisch 

et al., 2009) in orange, AGRIBALYSE® (Koch and Salou, 2016) in grey. Each boxplot shows the median of all values 

(line through the box), mean (cross), flanked by the first (bottom) and the third (top) quartiles (limits of the box) 

and first (bottom) and ninth (top) deciles (whiskers), outliers are plotted as individual points. This graph is based 

on data from Table B-2. 

 

2.4.2.3 ALLOCATION OF MANURE 
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One other important point regarding inventory modelling of organic fertilizers is how to allocate organic 

residues (e.g., manure) that are exported off-farm. Since this study also aims to guide LCA practitioners in 

applying LCA to OA products, we will discuss how current literature and databases deal with allocation, 

so that future LCA studies can allocate with more consistency. The allocation of manure is one aspect that 

can be part of either the animal or crop production system, and because it is at the interface of both, it is 

important to have a clear and consistent approach as to where the manure should be allocated. This is 

especially relevant to OA due to the strict use of organic fertilizers, but also relevant to conventional 

agriculture that may use a mixture of organic and mineral fertilizers. This is a crucial aspect that must be 

properly and consistently assessed seeing as manure management processes can represent high 

contributions to impact categories such as climate change, acidification, particulate matter and 

eutrophication, due to methane and nitrogen-related emissions.  

The Livestock Environmental Assessment and Performance (LEAP) Partnership by the Food and 

Agriculture Organization of the United Nations (FAO 2016; 2018) offers clear and robust guidance for the 

allocation of manure. This Partnership is a multi-stakeholder global initiative that seeks to improve the 

environmental sustainability of the livestock sector through harmonized methods, metrics, and data, 

particularly guiding the use of LCA in livestock systems. The LEAP Partnership recommends to first classify 

the organic residue as either a co-product (of the producing system), a residual or a waste. This allows the 

system to be separated into two areas, where all post-farm emissions from manure use are assigned to 

that use, while all on-farm management is assigned to the main product(s) from the farm (e.g., milk, 

manure, live animals, draught power). 

Table 7 summarizes how to classify an organic residue as a co-product, residual or waste, where and how 

to allocate any further treatments, and any associated criticisms. The LEAP guidelines state that the 

application of consequential modelling by system expansion and substitution is not supported by the 

guidelines so that greater harmonization among the different guidelines may be achieved. The allocation 

methods described therein are to be used for attributional LCAs but system expansion may be used in the 

context of including expanded functionality, though it is a conventional approach. Seeing as the LCI 

datasets used in the current study were created using an attributional approach, i.e., an average 

technology mix as opposed to the consequential marginal technology approach, the attributional 

approach is discussed here for greater consistency.  

Manure can be classified as a co-product if it can be sold as a source of revenue for the farmer, similar to 

the other outputs of the farm (e.g., milk, live animals, wool). Since there is more than one product that 
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exits the animal farm, a biophysical or economic allocation method can be used. However, it is important 

that the same allocation method is used throughout the supply chain for consistency. Please refer to (Food 

and Agriculture Organization, 2016) for specific steps on how to carry out the allocation. Manure is 

classified as a waste when is has no value nor is reused, such as in the following two situations, i) 

deposition in a landfill, incineration or treatment facility, or ii) when applied to the field in excess of crop 

requirements, and emissions from deposition and field application are allocated to the animal product(s). 

If a LCA on animal production is being carried out, it is pertinent that the most accurate dataset for 

disposal method is chosen or modified to suit the actual situation. For accurately estimating how much of 

the manure is in excess, the LEAP guidelines provide the steps required (Food and Agriculture 

Organization, 2016). Finally, a manure is considered to be residual if the manure is of no value to the 

farmer, but exported off-farm for value-added processes or application to crop fields within crop nutrient 

requirements. This follows the “cut-off” system separation, where the manure does not contribute any 

burdens to the animal product(s) nor to the off-farm processes, they come “burden-free” from the animal 

system to subsequent uses. Therefore, any burdens associated with off-farm processes such as value-

added processes (e.g., anaerobic digestion, composting to make a fertilizer) are allocated to the system 

consuming it (e.g., crop system consuming it as fertilizer). It is essential that the value-added processes 

are not double-counted in both the animal system and crop system when carrying out a livestock LCA. 
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Table 7. Summary of LEAP guidelines on allocation procedures of manure exported off-farm (Food and Agriculture Organization, 2016). Additionally, these 

guidelines have a decision tree to aid the decision-making process. 

 
Definition Method for allocation Critical aspects to consider 

Co-
product 

It is a coproduct when manure is a 
valuable output of the farm, and if 
the system of manure production 
cannot be separated from the 
animal production system. The full 
animal supply chain to the farm gate 
is shared between all the co-
products (e.g., milk, live animal, 
manure). 

1) Biophysical: based on the energy required 
for digestion to utilize nutrients and create 
manure. 
2) Economic: based on a value:quantity ratio. 
Used if energy content of feed is unknown 
and if function of product is not for energy 
(e.g., fertilizer instead). 

Recommended to use the same 
allocation method throughout the 
supply chain, if inconsistencies occur, 
practitioners must transparently report 
possible impacts of this on the results.  

Waste Classified as a waste in two 
situations: 

1) When disposed in a landfill, 
incineration without energy 
recovery, or sent to a treatment 
facility 
2) When applied in excess of crop 
nutrient requirements 

1) All emissions associated with disposal 
technique are assigned to animal product(s). 

2) Fraction that is in excess of crop 
requirements are classified as waste, thus 
field application emissions or disposal are 
assigned to the animal product(s).  

Fraction of manure applied that meet crop 
needs are defined as residual. 

Choosing the most suitable dataset for 
disposal techniques 

Accurately estimating how much of the 
manure is in excess, guidance is given in 
LEAP (Food and Agriculture 
Organization, 2016). 

Residual 

 
 
 
 
 
 
  

When manure is of no value to the 
animal farmer and is exported in the 
condition in which they were 
created. This classification is 
equivalent to the “cut-off” system 
separation, where the manure 
comes “burden-free” from the 
animal system as the boundary was 
cut-off after its transport off-farm. 

Value-added processes and associated 
emissions as well as field application 
emissions are assigned to the system 
consuming it, e.g., crop system consuming it 
as a composted fertilizer. 

Must ensure no double counting of 
manure management in both the animal 
and feed systems if carrying out a 
livestock LCA. 
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In both EI and AG crop datasets, farmyard manure was classified as residual, thus came “burden-free” 

from the animal production system. However, only the field application emissions were accounted for in 

the crop datasets and no value-added processes were included. It was not clear in the EI and AG 

documentation if this was because the manure was applied raw without further value-added treatment, 

but since no extra value-added processes were included in the LCI it can be assumed that raw application 

was used. In the European Regulations on organic food and labelling (European Commission, 2008a), the 

composting or treatment of raw manure before application on field is preferable to reduce contaminants, 

pathogens and aid decomposition. Thus, crop datasets that include value-added processes for manure 

would be useful or should be added to the LCI at the practitioner’s discretion. 

In the potato and legume EI datasets, green manure was treated as a residual, therefore, the production 

of the green manure in the rotation was allocated to the main crop under study (potato and legume). EI 

also treated horn meal, dried poultry manure and compost as residuals, where methodological documents 

for EI (Nemecek and Kägi, 2007) state that the treatment and recycling of organic by-products, and 

transport to and including regional storage are normally included in the datasets of these types of organic 

fertilizers, but under greater inspection of the LCIs, only transport to the farm was inventoried in the cut-

off processes of these datasets. 

Another novel approach to manage the allocation of burdens associated with recycling of organic residues 

is the Circular Footprint Formula (CFF). It is an end-of-life modelling formula that accounts for benefits 

and burdens for recycling, energy recovery and the use of secondary materials, from the European 

Commission’s Product Environmental Footprint Category Rules (European Commission, 2017). This could 

be used if the practitioner would like to comply with the PEFCR, especially for European products, but 

currently, there is no adapted CFF for the use of by-products for organic fertilizer use.  

 

2.4.2.4 EFFECT OF FERTILIZER CRITICAL ASPECTS ON LCIA 

The fertilizer production contributions in Figure 10 includes both mineral and organic fertilizer 

manufacturing datasets, where applicable (see Table B-1 for further information). Focusing on the mineral 

fertilizer manufacturing impacts, the sunflower, maize, winter rapeseed and pea datasets in AG all used 

average mineral fertilizers K2O and P2O5, which the sum of the two contributions to the total impact 

resulted in combined contributions between 2 – 8% to CCP, 4 – 10% to ODP, 1 – 8% to ADP, 2 – 7% to FEP, 

2 – 15% to REP, 10 – 51% to RMP, and most notably 70 – 107% to freshwater ecotoxicity (FEx), except for 
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maize (Table B-4). The freshwater ecotoxicity impacts were due to the upstream emissions of sulfur to 

river water from the production of potassium chloride, a precursor of K2O. Carrot in AG inventoried ~10x 

more average K2O and P2O5 mineral fertilizer than the other relevant crops, thus had higher contributions 

to CCP (11%), ADP (10%), FEP (26%), and RMP (11%) (Table B-5), demonstrating the influence mineral 

fertilizer production proxies can have across these categories. 

In regards to the fertilizers permitted in OA and used in AG, horn meal, lime, quicklime, compost, 

potassium chloride, wheat straw, magnesium oxide, industrial biowaste compost, and inorganic chemical 

production (proxy for other organic fertilizers), had upstream burdens allocated to it in terms of 

treatment, transport and infrastructure, where applicable. Horn meal was used in soft wheat, sunflower 

grains, apple, walnut and pear crops, but looking only at soft wheat where horn meal was the only input 

besides machinery, transport and seeds, it can be clearly seen that the most relevant categories for horn 

meal were CCP, ODP, FEx, REP and RMP, with contributions of 11.64%, 15.94%, 33.53%, 23.61%, 11.26%, 

respectively (Table B-4). The other four crops had many other fertilizers and/or PPP inputs, thus the 

impacts for horn meal were lower as the overall impacts were more spread among them, however, the 

same pattern of the relevant categories for these crops can also be seen (Table B-4 and Table B-6). Since 

these categories were the most affected, it shows the energy intensiveness of horn meal processing.  

Quicklime was used in the cauliflower, chicory root production and tomato datasets, but similar to horn 

meal in soft wheat production, quicklime was the only input in the cauliflower dataset besides machinery, 

transport and seeds, hence showing high contributions to CCP (21%), ODP (17%), FEx (15%), REP (14%) 

(Table B-5), compared to chicory and tomato (contributions between 0.007% - 3% across all categories, 

Table B-6). 

Average compost, from green waste, biowaste, sludge, manure, slurry, was used in sunflower, squash and 

tomato AG datasets, where the most relevant categories were CCP, ODP, ADP, MEP, and REP with 

contributions between 10 – 25%, 6 – 19%, 6 – 25%, 0.83 – 21% (mean 12.54%), and 9 – 12%, respectively 
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Table B-4, Table B-5, Table B-6). This shows the importance treatment processes may contribute to the 

life cycle assessment of crops. 

Potassium chloride was used as K2O fertilizer in carrot, tomato and apple AG datasets, and had low 

contributions across all categories between 0.03 – 6%, except FEx with 34% in carrot, 17% in tomato and 

2% in apple (Table B-5, Table B-6). 

Biowaste industrial compost and inorganic chemical organic fertilizer proxy had low contributions across 

all categories in the relevant crop datasets in AG, with values between 0.05 – 6%, showing its possible low 

importance overall (Table B-5, Table B-6). 

Magnesium oxide and lime had very low contributions across all categories in the relevant crop datasets 

in AG, with values between 0.001% - 0.58% (Table B-6). 

Wheat straw was used as mulch for carrot production in large quantities (20,000 kg/ha), and had high 

contributions between 24 – 32% to CCP, ODP, ADP, MEP, REP, RMP (Table B-5), as this flow includes baling 

and transport from the cultivating area, showing its possible high importance overall. 

The only organic fertilizers with upstream production burdens in the EI database were green manure in 

soybean, fava bean, pea, potato, maize in EI, where it included all activities related to its cultivation. Green 

manure had similar contributions in all related crops, with high average contributions to CCP (23%), FEP 

(30%), MEP (39%) and RMP (10%) (Figure 10). Also, poultry manure in palm cultivation included upstream 

production burdens, but only the transport to the farm, and as expected, the transport had between 0 – 

1% contributions across all categories. 
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2.5 DISCUSSION 

The discussion was divided into two topics, spread over four sections, the first topic and section explains 

general criticisms about the EI and AG database (Section 2.5.1), and the second topic includes 

recommendations for improving organic crop LCIs, with respect to fertilizer inventories (Section 2.5.3) and 

PPP inventories (Section 2.5.1). Finally, a summary of the main recommendations is given in Section 2.5.4. 

The purpose of these recommendations is to provide proxies, guidance, as well as oriented prioritization 

of further research. 

2.5.1 GENERAL ANALYSIS OF THE EI AND AG DATABASES  

The organic datasets made by AG, were based on “a typical case” from one or a few case farms, as well as 

expert opinion, and thus do not represent average data for France, as stated in the methodological 

document by Nitschelm et al. (2020). Due to this, organic datasets cannot be used in the same way as the 

data in CA in the AG database, thus, cannot be used to make comparisons between OA and CA, without 

explicitly highlighting the limits of such a comparison. However, they can be used to: “…characterize part 

of the diversity of organic farming systems and some of their environmental impacts; identify areas for 

improvement and carry out eco-design work; perform sensitivity analyses; or even make system choices 

in a given context” (Nitschelm et al., 2020, Pg. 8). The EI organic crop datasets were based on statistics, 

pilot networks, documents from extension services, information provided by retailers and expert 

knowledge, and represent regional data, though only for cases in lowland Switzerland, thus, could be used 

in comparative contexts. In general, we found that the inventory for AG included more information that 

was readily available in the LCI itself. Particularly useful was the inclusion of emissions even for those 

inputs that did not have manufacturing LCIs (e.g., PPPs like biological control agents), as well as comments 

on what that input was used for (e.g., plant protection), allowing for more transparency. AG also provides 

specific methodological documents on OA (Grasselly et al., 2017), whereas EI provides only general 

methodology guidelines, none specific to OA.   
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2.5.2 PLANT PROTECTION PRODUCT INVENTORY IMPROVEMENTS  

In regards to the lack of manufacturing LCIs for many organic-authorized PPPs (Section 2.4.1.1), 

improvements were suggested in the form of new LCIs for Spinosad and Bacillus subtilis (Table B-8, Table 

B-9), using the CeBER Bioprocess Modeler (Harding and Harrison, 2016a, 2016b) for building LCIs for 

microbial-derived products. The energy and carbon source requirements for their production (major 

hotspots in production, Harding, 2008) and available proxies are summarized in 

. The authors state that the data was drawn from various industrial norms and academic sources, as well 

as stoichiometrically calculated values, and hence can be the source of inventory variations from other 

literature studies. The model is quite robust and complete in generating LCIs for microbial processes, as 

seen upon testing and comparing to literature studies (Harding, 2008), but the authors state that if LCA 

comparison results are within 5 % of each other, they may not be significantly different owing to 

uncertainty in the inputs and LCA inventory datasets. To generate the LCI for Bacillus subtilis, the CeBER 

model already contained an LCI for B. subtilis, thus default values were cross-referenced and updated, if 

necessary, with literature data (Korsten and Cook, 1996; Posada-Uribe et al., 2015; Rowe and Margaritis, 

2004). The same was done for Spinosad using the literature data in Table 8. 

These two new LCIs were judged to have an average DQR of 1.8 (derived from pedigree matrix values of 

1,1,2,4,1, reliability, completeness, temporal correlation, geographical correlation, further technological 

correlation, respectively).  

A new LCI was also created for Chitosan, a natural sugar-based pesticide and plant growth enhancer 

derived from the shells of crustaceans, using industrial production data from Pighinelli (2019) and Said Al 

Hoqani et al. (2020), where summarized data can be found in Table 8 and detailed data in Table B-10. 

Table 8 also provides information on PPPs that already have LCI datasets, and where further research is 

still needed. 

This data could be a first step towards making a more suitable proxy for organic-authorized PPPs in 

Europe, rather than the use of “pesticide unspecified” default datasets, as done in AGRIBALYSE®. This 

proxy could be created by calculating a weighted average of all organic-authorized PPPs used in Europe. 

However, further research is needed on market data and new manufacturing datasets for other missing 

and prevalent PPPs (Table 8).  
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Table 8. Prevalent plant protection products (PPPs) used in organic agriculture (OA) in Europe in alphabetical 

order and their subsequent manufacturing datasets or suggested inputs (electricity and/or other significantly 

impacting inputs) that can be used as a proxy. 

Prevalent PPPs used 
in OA 

Suggested LCI for  
manufacturing of PPP 

Reference 

Bacillus subtilis Electricity: 1.41 MJ/kg B. subtilis 
Glucose: 0.064 g/kg B. subtilis 
(These are the most impacting inputs, refer to 
Table B-9 for full LCI) 

Model: (Harding and 
Harrison, 2016a, 2016b) 
Data used for model: 
(Korsten and Cook, 1996; 
Posada-Uribe et al., 2015; 
Rowe and Margaritis, 2004) 

Bacillus thuringiensis Proxy: B. subtilis data from above  
Bordeaux mixture ecoinvent Bordeaux mixture (Wernet et al., 2016) 
Chitosan Electricity: 5957.6 kWh/kg chitosan 

(This is the most impacting input, refer to Table 
B-10 for full LCI) 

(Pighinelli, 2019; Said Al 
Hoqani et al., 2020) 

Copper oxide ecoinvent Copper oxide (Wernet et al., 2016) 
Copper oxychloride Proxy: ecoinvent Copper oxide (Wernet et al., 2016) 
Copper sulphate ecoinvent Copper sulphate (Wernet et al., 2016) 
Essential plant oils 
(e.g., cinnamon) 

AGRIBALYSE® 3.0 (AGRIBALYSE, 2020) 

Kaolin ecoinvent Kaolin (Wernet et al., 2016) 
Mineral oil ecoinvent Paraffin oil. 

Other: kerosene oil has similar production 
processes and has been used in LCAs (Niccolo et 
al., 2018). 
For output emission proxy: Petrol, low sulfur 
production, used by AG for output" 

(Wernet et al., 2016) 

Neem seed oil Diesel: 17.3 L/ha/y 
Electricity: 5.56 MJ/kg neem seed 

(Kumar et al., 2021) 

Nesidiocoris tenuis 
(predatory insect) 

Needs further research  

Potassium soap ecoinvent potassium hydroxide (KOH) + 
sunflower/vegetable oil (ratio of 100grams 
KOH:50mL oil) 

(Wernet et al., 2016) 

Pyrethrin Proxy: ecoinvent pyrethroid-compound 
production 

(Wernet et al., 2016) 

Reynoutria 
sachalinensis (giant 
knotweed) extract 

Needs further research  

Spinosad Electricity: 10.49 MJ/kg Spinosad  
Glucose: 0.055 g/kg Spinosad 
(These are the most impacting inputs, refer to 
Table B-8 for full LCI) 

Model: (Harding and 
Harrison, 2016a, 2016b) 
Data used for model: (Lu et 
al., 2017; Xue et al., 2013) 
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With respect to accounting for the correct amount of copper active ingredient emission to the ecosphere 

(Section 2.4.1.2 and Section 2.4.1.3 for effects on LCA results), stoichiometry can be used to calculate the 

copper active ingredient mass from the dose of the copper compound. Table 9 shows the percent of 

copper in each relevant compound used as fungicides in agriculture. To calculate the amount of copper 

a.i. emitted, multiply the percent Cu by the dose of copper compound applied. For the apple example 

(Section 2.4.1.2), 41.072 kg copper sulphate/ha and 68.799 kg copper oxychloride/ha were applied on-

field. To calculate the amount of copper a.i., multiply the dose by their corresponding % Cu in Table 9 

(39.813% and 59.509%, respectively), to get 16.351 kg Cu and 40.941 kg Cu, respectively. Hence, by 

accurately accounting for copper emissions, freshwater toxicity results may be reduced since the amount 

of copper emitted to the soil has decreased. 

Table 9. Percent of copper, Cu, (w/w) in each type of compound using stoichiometric ratios. 

Copper compound Percent (%) Cu 
Copper (II) sulphate 39.813 
Copper (II) oxide 79.887 
Copper oxychloride 59.509 
Copper (II) gluconate 14.003 

 

2.5.3 FERTILIZER INVENTORY IMPROVEMENTS  

In order to improve organic fertilizer LCI proxies (Section 2.4.2.1), organic fertilizer LCIs should be used 

instead of mineral fertilizer proxies, such as those from Avadí et al. (2020) which were based on secondary 

data in France, follow a gate-to-gate scope, and resulted in an important step forward.  A summary of 

default values for the average electricity, heat and water needed for the treatment of organic residues 

under different treatment processes are shown in Table 10 derived from Avadí et al. (2020) and EI 

database. One may choose to adapt these processes to the country/region of the case study if data is 

available, or use them as a proxy (and transparently reporting this and the possible uncertainties). 

However, adaptation is prioritized over the use of proxies, since variability in nutrient content and 

emissions from the manufacturing process and field application is very high, as we have seen in Section 

1.1.1.1 and further supported by these studies (Hayashi, Nagumo, and Domoto 2016; Montemayor et al. 

2019; Avadí 2020). Thus, an example of a methodology to create more representative organic fertilizer 

LCIs include the methodology proposed by Avadí (2020) and Avadí et al. (2020) could be used, and is 

specific to organic fertilizers. Additionally, Koch and Salou (2016) outline a methodology for creating 
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average mineral fertilizer datasets, and could be used for organic fertilizer if usage and nutrient statistics 

are available for each organic fertilizer in that region.  

Table 10. Average of main resources needed for different organic treatments, data are reported per 1 kg fresh 

mass input (own elaboration based on Avadí et al. (2020) and ecoinvent database). 

Treatment process Output (kg) Electricity 
(kWh) 

Heat (MJ) Water 
(kg) 

Composting 4.40E-01 4.57E-03 3.99E-03 5.70E-03 
Pelletizing 4.42E-04 4.87E-02 2.29E-01  
Digestate 9.30E-01 6.00E-03 1.28E-01  
Coffee processing (hulls, spent grounds)  6.60E-01 8.46E+00 8.57E+00 
Olive processing  3.80E-01 0.00 3.28E+00 
Pomace processing  3.00E-02 3.83E+00 0.00 
Rendering of animal by-products  1.60E-01 4.37E+00 0.00 

 

Additionally, Table B-3 provides suggestions regarding which LCI datasets from AG and EI could be used 

for each type of organic fertilizer or amendment permitted in OA in Europe. This work could be improved 

by the inclusion of other common commercial organic fertilizers and amendments such as, pelletized cow 

manure and liquid vegetable-based fertilizers (based on our ORG+ surveys, see Table 6). For instance, 

adapting the process for pelletizing poultry manure in EI to other types of pelletized animal manure, or 

use it as a proxy. 

Additionally, a list of organic fertilizers and their nutrient content (Table B-2) adds variability to which the 

user can find suitable proxies or compare nutrient composition data for common organic fertilizers. If 

applying LCA on a case-by-case basis, instead of at national or high level, it is important that the 

practitioner knows at the very least, the type/source of fertilizer used (e.g., cattle manure, poultry 

manure, digestate), and use only the values for these types of fertilizers due to the high variability in 

nutrient content among organic fertilizers. This will ensure that accurate nutrient values and, 

consequently, accurate emissions are estimated. Nutrient compositions given in Avadí et al. (2020) can 

also be used as a proxy if the production and use of organic fertilizers in France is similar to the 

practitioner’s case study. 

In terms of advancing fertilizer application emission modelling (Section 1.1.1.1), many dynamic emissions 

models exist that may be suitable for organic fertilizers, such as Daisy (Hansen, 2000) and Animo (Rijtema 

and Kroes, 1991) which can be more dynamic than the SALCA model used by EI. These models have been 

reviewed in (Andrade et al., 2021) for their robustness and applicability in LCA, among other 
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characteristics, and the practitioner can decide which is more suitable for their case. Indigo v3.0 

(Bockstaller et al., 2022) is another model that looks at all types of emissions from fertilizers (N, P, K and 

HMs). It takes into account crop, climate and soil characteristics, mineral and organic fertilizer 

characteristics, and a wide range of organic fertilizers and their nutrient content at the global scale, 

making it more versatile than SALCA and the model used by AG, as they are only applicable in Switzerland 

and France. The integration of the Indigo v3.0 model into the modelling used in AG is planned for the 

future. In regards to ammonia emission modelling from fertilizer application, correction factors are 

available (Table B-7) and can be applied according to the weather conditions, fertilizer application 

machinery used (e.g. hoses, injection) and the time between fertilizer deposition and incorporation 

(Bittman et al., 2014; Brentrup et al., 2000; Søgaard et al., 2002). An example of its site-specific adaptation 

and use can be found in Montemayor et al. (2019). By changing the application technique of liquid slurry, 

the ratio of N-NH3 emitted per total ammoniacal nitrogen (TAN) can range from 0% N-NH3/kg TAN by 

injection to 48% N-NH3/kg TAN emissions by broad sprayer, not incorporated, both in favourable weather 

conditions (Table B-7). 

2.5.4 SUMMARY OF RECOMMENDATIONS FOR IMPROVEMENTS  

Table 11. summarizes critical arguments and our recommendations for improving organic LCI datasets. 
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Table 11. Summary of critical analysis within LCA when assessing organic agriculture (OA) and the relevant recommendations and further research needed 

to advance in these aspects. 

Aspect Critical aspects Rationale for criticality Recommendation(s) 

Fe
rt

ili
ze

r 
m

an
u

fa
ct

u
ri

n
g 

d
at

a 

Production of organic fertilizers 
(treatment and recycling) often 
not included in LCA of organic 
crops 

Additional processing flows need to be taken 
into account for representativeness and for 
fair comparison with mineral fertilizer 
production. 

Classify manure according to LEAP guidelines. Include 
upstream treatment and storage of organic residues 
in the life cycle of the product, using LCIs or 
methodology from Avadí et al. (2020), summarized in 
Table 10, and datasets suggested in Table B-3. 

Average mineral fertilizer 
production datasets were used 
in AGRIBALYSE® due to 
unavailable proxy for organic 
fertilizer production 

Mineral fertilizers are prohibited in OA, and 
inclusion can cause high impacts in energy-
related impact categories 

Include only organic fertilizers to comply with OA 
regulations. Follow methodology from Avadí et al. 
(2020) or (Koch and Salou, 2016). If organic fertilizer 
is the same as those in AG (Avadí et al., 2020), they 
can be used as proxies. 

Fe
rt

ili
ze

r 
e

m
is

si
o

n
 m

o
d

e
lli

n
g 

No additional technical 
measures to reduce NH3 
emissions are considered when 
modelling NH3 emissions. 

Can under- or over-estimate NH3 emissions 
and potential acidification and climate 
change if other more mitigating techniques 
are used. This can also affect NOx 
(nitrification) and N2O (denitrification) 
emissions.  

Account for fertilizer application techniques in NH3 
emissions modelling, using correction fractions such 
as in (Table B-7, derived from (Bittman, S., Dedina, M., 
Howard C.M., Oenema, O., Sutton, 2014; Brentrup et 
al., 2000; Erica Montemayor et al., 2019; Søgaard et 
al., 2002). Regulations on how fertilizers are applied 
to the field should be made. 

Nutrient content for manure-
based organic fertilizers is not 
adapted to OA. 

Manure used as fertilizer from factory 
farming is prohibited in OA. 
N-content in conventional manure is higher 
than organically sourced manure due to high 
protein feed. 

Take into account the diet-related N-flows in the 
organic animal farm to increase representativeness.  
Further research is needed on N-content of organic 
farm-derived manure (or general difference between 
organic and conventionally-derived manure). 

Negative heavy metal (HM) 
emissions 

Swiss Agricultural LCA (SALCA) methodology 
was used in AGRIBALYSE® (AG) and EI, but in 
AG, this caused negative toxicity impacts, 
practitioners may interpret this as 
advantageous.  

Negative HM emissions and toxicity scores should not 
be interpreted as complete export of HMs from the 
field, but rather as a result of uncertainty LCI data. 
Impact results should be reported separately from 
the total toxicity results. Further research needed in 
reducing uncertainty. 
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Unbalanced P in inventory and 
poor accounting of nitrate 
emissions 

SALCA-P model used for P emissions, but 
often results in unbalanced P in inventory. 
The COMIFER-Tailleur model used for NO3

- 
emissions in AG, does not take into account 
dose and time of application. 

Practitioners can use other more dynamic models 
that take these aspects into account: Indigo v3.0 
(Bockstaller et al., 2022), Daisy (Hansen et al., 2000) 
and Animo (Rijtema and Kroes 1991), with meta-
study by (Andrade et al., 2021). 

P
la

n
t 

p
ro
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ct
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n

 p
ro

d
u
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s 

(P
P

P
) 

“Pesticide unspecified” dataset 
was used as a proxy for 
unavailable PPP production 
datasets 

This contains synthetic pesticides that are not 
authorized by OA regulations in Europe. 

More research needed to create a regional “average 
OA-authorised PPP” dataset to replace “average 
pesticide, unspecified” 

Lack of PPP manufacturing 
datasets  

Possible exclusion of relevant burdens from 
manufacturing. 

New LCIs for a few PPPs have been created in the 
present study, or use suitable proxies for 
missing/prevalent OA-authorized PPPs given in Table 
8. 

Rotenone inventoried as 
emission output in 
AGRIBALYSE® 

Though rotenone was permitted in France 
during the reference period of the datasets 
that use it, it is now prohibited since 2011 in 
Europe. 

Remove this emission output from the LCI if your 
reference period is after 2011 or if your crop does not 
use rotenone. 

The total compound dose (e.g., 
copper sulphate) is often used 
as the emission, rather than the 
active ingredient Cu 

Could over-estimate toxicity results, as the 
mass of e.g., copper sulphate is 2.5x higher 
than the mass of copper within the 
compound 

Use stoichiometry to calculate the amount of copper 
within the compound as the output emission (Table 
9), especially if applied in solution or in acidic 
environments.  
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2.6 CONCLUSION 

LCA presents some gaps in the adequate assessment of organic land management practices and their 

effects on agroecosystems, as there is a lack of background inventory datasets for the manufacturing of 

organic fertilizers and plant protection products and insufficient emission modelling. Therefore, it is 

important that the users of organic agricultural product datasets such as those from ecoinvent and 

AGRIBALYSE®, understand what limitations exist, as these can greatly affect the final LCA results. 

Practitioners should be fully aware of the limitations presented here, which are not clearly reported in the 

methodological documents of the databases. Users should account and adapt to regional differences 

including differences in organic agricultural policies such as prohibited practices and organic fertilizer 

composition. In the present study, the shortcomings of state-of-the-art OA LCI methodology were 

highlighted and suggestions on how to advance were given, such as: 

• Creation of new LCIs for plant protection products used in OA 

• Suggestions and examples on how to create more representative organic fertilizer LCIs 

• Improve organic fertilizer and plant protection product emission modelling using recommended 

studies 

The findings in the present chapter add much needed transparency regarding the limitations of available 

OA LCIs, offers guidance on how to make OA LCIs more representative, allow for more accurate 

comparisons between conventional and OA, and help practitioners to better adapt LCA methodology to 

OA systems. Further research is still needed in the creation of other plant protection product 

manufacturing datasets and regional organic fertilizers. LCA is an appropriate methodology to perform 

environmental assessment due to its comprehensive and system-based scope but it should be improved 

to better reflect organic agricultural practices. 
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CHAPTER 3 

3 ANALYSIS OF TOP-DOWN AND BOTTOM-UP APPROACHES FOR MODELLING 

BIODIVERSITY LOSS IN AGRICULTURAL SYSTEMS USING LIFE CYCLE ASSESSMENT: A 

CASE STUDY OF LIVESTOCK PRODUCTION IN EUROPE  

 

This chapter has been submitted as: 

Montemayor, E., Bonmatí, A., Andón, M., Antón, A. Analysis of top-down and bottom-up approaches for 

modelling biodiversity loss in agricultural systems using life cycle assessment: a case study of livestock 

production in Europe. Submitted to the journal Environmental Science and Technology. Under Review. 

 

Brief background: 

Biodiversity has been found to be a chief distinguishing factor between organic and conventional 

agricultural systems, but research is still needed regarding the testing of currently recommended models 

for estimating biodiversity loss on farmland. This chapter is dedicated to researching some of the currently 

recommended LCIA biodiversity loss models, as well as one other model, to see which ones many be more 

suitable in specific contexts, for example, scale of data used to model biodiversity loss; top-down or 

bottom-up.   
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3.1 ABSTRACT 

The need for better biodiversity loss modelling is becoming more and more pertinent due to increased 

pressures like land use change due to agriculture. Life cycle assessment (LCA) is an internationally 

standardized methodology to assess the environmental impacts of products across its entire life cycle. 

There are two general approaches that life cycle impact assessment (LCIA) models follow to estimate 

biodiversity loss due to land use pressures, top-down (prediction-based approach at ecoregion level), and 

bottom-up (field-measurement-based approach at local or regional level). This study aims to assess top-

down models proposed by these international bodies, as well as models following a bottom-up approach 

by testing their performance as biodiversity indicators using lamb production case studies in Spain and 

Norway. It was found that the top-down models were sufficient for hotspot analysis in these cases since 

characterization factors (CFs) were available for all relevant ecoregions in the livestock supply chain. They 

were also able to identify plants, amphibians and reptiles as taxa that may be most at risk of extinction. It 

was also seen that fragmentation can have a large effect on mobile species like birds. However, top-down 

approaches could not statistically differentiate between land use types like cropland and pasture, nor 

minimal and light intensity classes. The CFs were mainly influenced by the area of the land use type rather 

than species or management characteristics, showing that it cannot be applied at more site-specific levels. 

The bottom-up models looked at potentially disappeared fraction (PDF) of plants due to more specific 

agricultural practices and land use types, based on real field measurements of species richness, which 

may make it more suitable for the foreground analysis. These models can potentially be applied to all 

spatial levels and can be parameterized with different land use and management types as long as there is 

data available. As the model currently stands, it cannot be used for background biodiversity loss modelling 

nor hotspot analysis as no CFs are available outside of Europe. It was also found that the semi-natural 

forest reference situation in the bottom-up model analyzed may not be suitable for comparisons with 

extensive pasture grazing, instead natural grasslands should be used as these promote biodiversity 

specific to this land use type. In general, a mixture of the two approaches could also be done; top-down 

approaches could be used for hotspot analysis, especially for background systems, and bottom-up for 

foreground systems. The choice between approaches or the combination of the two is driven by, 1) the 

goal and scope of your study, 2) the data available. If only hotspot, high-level or national assessments are 

needed or data is available only at this level, then top-down assessments would be suitable. If the goal is 

to study local biodiversity loss due to agricultural land use on a particular farm or area, then bottom-up 

approaches would be suitable. Therefore, if we are to transition towards sustainable agricultural practices, 
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management practices need to be focused on and captured better in LCIA methods for biodiversity loss 

due to land use pressures. 

 

3.2 INTRODUCTION 

In LCA, we find that there are two general approaches that life cycle impact assessment (LCIA) models 

follow to estimate biodiversity loss due to land use pressures, i) top-down approach, and ii) bottom-up 

approach. The difference between the two approaches is not only the scale in which the data was based 

upon, but also the way in which the modelling was approached, either based on predictions or field data. 

For example, this was previously defined in Curran et al. (2016) where they focus on the transformation 

of data for modelling; top-down approaches are process-driven where parametric functions were fitted 

to diversity data “…based on a predefined mechanistic relationship describing an observed process. The 

SAR is particularly common [SAR is the species area relationship in ecology demonstrating that as land 

area increases so does the number of species].” They describe bottom-up approaches as “…based on 

extracting statistical relationships from different types of empirical data at various scales (e.g., meta-

analysis of comparative land use studies).” Curran et al. (2016) also explain that they are not mutually 

exclusive within a single model and are frequently used in combination. Thus, in order to define a clearer 

distinction between the two approaches, we classify approaches based mainly on the scale of data 

collection. We define top-down as a prediction-based approach where species extinction predictions were 

estimated by transforming regional species richness data using factors to reflect land use types, intensity 

levels, vulnerability of species, etc. In other words, biodiversity loss was estimated by extrapolating data 

from the “top” and applying it to lower scales (e.g., cropland within an ecoregion). We define and use the 

word “bottom-up” to reflect the fact that the characterization factors (CFs) used to estimate biodiversity 

loss are not predictions, but based on real species richness data from that particular farm or area, 

inherently accounting for geographical, managerial, and crop factors. The data starts at a local or 

“bottom” scale, which can then be extrapolated to higher levels.  

Many land-use-based LCIA terrestrial biodiversity loss models exist which are listed in the review by 

Crenna et al. (2020), where almost all the recent models address the species aspect of compositional 

biodiversity, and only a few addresses the functional or ecosystem aspects.  Only one model is recognized 

and recommended preliminarily by the European Commission’s (EC) Environmental Footprint Technical 

Advisory Board (European Commission, 2022) and the LEAP-FAO Partnership (FAO, 2020), the model by 
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Chaudhary and Brooks (2018). Another model by Kuipers et al. (2021) is projected to be recommended by 

the technical advisory board in the near future (personal communication). These two models are endpoint 

methods which assess environmental impacts at the end of the cause-effect chain of an impact pathway 

which link the midpoint environmental impact to damages to areas of protection that are important to 

society (ecosystem quality, natural resources and human health), as opposed to midpoint methods which 

assess environmental impacts earlier in the cause-effect chain. These two models would be classified as 

top-down approaches according to not only our definition of top-down, but also Curran et al. (2016), 

seeing as they are based on predefined mechanistic relationships describing an observed process like SAR 

and data collection on species richness is done at higher regional scales (ecoregions).  

In regards to models adopting a bottom-up approach as defined in Curran et al. (2016) and according 

to our classification, only one provides global midpoint CFs (Elshout et al., 2014), whereas the others focus 

on Germany and Switzerland (Koellner and Scholz, 2008, 2007) and the UK and Switzerland (Mueller et 

al., 2014). One main limitation across all the aforementioned bottom-up models is the fact that they are 

all based on meta-studies of species richness, gathering data from multiple studies with different species 

richness measurement techniques and sampling areas. Since 2016, one model by Knudsen et al. (2017) 

addressed this limitation by providing CFs based on species richness on cropland and pasture using 

standardized measurement techniques across six European countries in the Temperate broadleaf and 

mixed forests biome, making them inherently certain in terms of predicting species richness and 

applicable across a larger geographical area.  

Both the EC Environmental Footprint Technical Advisory Board (European Commission, 2022) and the 

FAO-LEAP (FAO, 2020) call for case studies to test the performance of indicators. Therefore, this study 

aims to critically analyze the feasibility and applicability to livestock production systems of both top-down 

and bottom-up approaches by testing their performance as biodiversity indicators using case studies. The 

top-down models recommended by FAO-LEAP (FAO, 2020) and the EC Environmental Footprint Technical 

Advisory Board (European Commission, 2022), Chaudhary and Brooks (2018) and Kuipers et al. (2021), 

were analyzed as well as the bottom-up model Knudsen et al. (2017) since the CFs are more certain (in 

terms of their basis on standardized measurement techniques) and were based in the same biome as the 

case studies we used.  We chose three different lamb production systems, one that grows nearly all its 

feed on-site in Norway, one that grows a small amount of feed on-site in Spain, and one that uses only 

compound feed in Spain. Livestock was chosen as a case study since it is one of the most important 
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industries in terms of land use and economic gain in Europe (Greenpeace, 2019) and because it has a large 

value chain where top-down approaches may be useful.  

Though many other critical analyses of LCIA biodiversity loss models exist (Crenna et al., 2020; Curran et 

al., 2016; FAO, 2020; Gabel et al., 2016; Gaudreault et al., 2020; Hayashi, 2020; Koellner et al., 2013; Kok 

et al., 2020; Lindqvist et al., 2016; Myllyviita et al., 2019; Souza et al., 2015; Teixeira et al., 2016; Winter 

et al., 2017), to the best of our knowledge, no other critical review has done the following: 1) reviewed 

these specific models recommended by experts (Chaudhary and Brooks, 2018; and Kuipers et al., 2021); 

2) compared these to another model (Knudsen et al., 2017) in terms of scale of data collection, defined as 

top-down and bottom-up approaches, where Knudsen et al. (2017) would be defined as a bottom-up 

approach, and Chaudhary and Brooks (2018) and Kuipers et al. (2021) would be defined as a top-down 

approaches; 3) analyzed and tested all three models to a greater depth using livestock case studies in 

Europe. In doing this, important gaps came to light and suggestions for their application, as well as 

improvements and further research were provided. Specifically, no previous review has analyzed the 

model by Kuipers et al. (2021) due to its recent publication last year. Some of the studies (Curran et al., 

2016; Gabel et al., 2016; Gaudreault et al., 2020; Myllyviita et al., 2019; Winter et al., 2017) reviewed the 

model by Chaudhary et al. (2015), which is a previous version of Chaudhary and Brooks (2018). The study 

by Lindquist et al. (2016) and Souza et al. (2015) analyzed an even earlier version by de Baan et al. (2013a). 

Crenna et al. (2020) included Chaudhary and Brooks (2018) in their study, but only to a superficial depth, 

meaning no case study testing was done and only a general mention of what the model does or already 

known general criticisms were reiterated. Similarly, the review by Kok et al. (2020) analyzed some gaps in 

Knudsen et al. (2017) but at a very high-level with no testing done. The study by Hayashi (2020) tested the 

Chaudhary and Brooks (2018) model, but did not compare it to other models (although they compared it 

to field-scale measurements but for rice paddies in Japan). Most did not focus on the applicability of the 

models for agricultural land use pressures, and the only ones that did were Kok et al. (2020), FAO (2020) 

and Gabel et al (2016). As mentioned previously, Kok et al. (2020) did not conduct an in-depth review and 

Gabel et al. (2016) did not review the most updated version of the model, Chaudhary and Brooks (2018). 

The report by FAO (2020) recommended the use of Chaudhary and Brooks (2018) for biodiversity loss due 

to livestock production systems given the wide range of characterization factors available for almost all 

ecoregions around the world, allowing the whole supply chain (mostly imported feed) to be accounted 

for, and given that land use intensity classes were included. However, no case studies were published to 

test its performance in this report. Koellner et al. (2013) and Teixeira et al. (2016) provided general 
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guidelines on how biodiversity assessments should be carried out using LCA methodology, thus no review 

of the three relevant models were completed. 

Ultimately, this study brings new light and research on specific top-down life cycle impact assessment 

models currently recommended by experts, as well as other models that estimate biodiversity loss from 

the bottom-up, using case studies of livestock production systems in Europe.  

 

3.3 MATERIALS AND METHODS 

3.3.1 OVERVIEW OF LCIA METHODS FOR BIODIVERSITY LOSS IN AGRICULTURAL 

SYSTEMS  

First, the literature review by FAO-LEAP (FAO, 2020) and the experts in the EC Environmental Footprint 

Technical Advisory Board (European Commission, 2022) were consulted in order to identify, the 

currently recommended LCIA models that could be used to estimate biodiversity loss due to livestock 

production in Europe. This resulted in three main LCIA models summarized in  

Table 12, categorized as top-down or bottom-up approaches. All methods use “land use” as the 

elementary flow to estimate biodiversity loss.  

The Chaudhary and Brooks (2018) model uses the countryside species-area relationship (c-SAR) to 

calculate global characterization factors (CFs) in the units potential species loss per m2 (PSL) due to land 

use associated with a product or service’ life cycle. This model projects PSL of five taxa (mammals, birds, 

amphibians, reptiles, plants) due to five broad land use types (managed forests, plantations, pasture, 

cropland, urban), under three intensity levels (minimal, light, intense) across 804 terrestrial ecoregions.   

The model by Kuipers et al. (2021) adapted the c-SAR applied in Chaudhary and Brooks (2018) to include 

not just land occupation and transformation, but also fragmentation effects, using the species-habitat 

relationship (SHR). Fragmenting natural habitat has been found to reduce the viability of the natural 

species community (Bartlett et al., 2016; Crooks et al., 2017; Newbold et al., 2015) hence the importance 

to include it in biodiversity assessments. A new set of characterisation factors were developed for 702 

terrestrial ecoregions, four land-use types (urban, cropland, pasture, forestry) and four vertebrate 

taxonomic groups (birds, reptiles, amphibians, mammals, plus the aggregate of these groups). 
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With respect to the bottom-up approach, the Knudsen et al. (2017) model was analysed. This model 

developed CFs for organic and conventional agricultural production, based on standardised sampling of 

plant species richness in organic and conventional farms across six countries in Europe within the 

temperate broadleaf and mixed forest biome, thus is applicable across a much larger region than the other 

studies. Characterisation factors (CFs) were developed for arable crops, mixed pastures, grass-dominated 

pastures and hedges using vascular plants as a proxy for biodiversity. This was the only LCIA model that 

was based on real species richness measurements using standardized techniques, making them inherently 

certain in terms of predicting species richness, hence is a good candidate for estimating biodiversity loss 

due to pasture-based livestock production from the bottom-up. 

Table 12. Top-down and bottom-up LCIA Models estimating biodiversity loss. 

Appr
oach 

LCIA method Spatial 
resolution 
of impact 
assessmen
t 

Endpoint 
(E) or 
Midpoint 
(M) 

Impact 
categories 
for 
biodiversit
y 

Metric/indic
ator of 
impact 

Relation to 
categories 
of EBVs 

Taxa 
coverage 

To
p

-d
o

w
n

 

Countryside-
SAR with 
Land-use 
intensities 
(Chaudhary 
and Brooks, 
2018) 

country, 
ecoregion, 
global 

E Land use PDF·m−2 
(occupation)
; 
PDF·year·m−

2 
(transformat
ion) 

Community 
composition 

Plants 
Mammals 
Amphibians 
Reptiles 
Birds 

Species-
habitat 
relationship 
(Kuipers et al., 
2021) 

Global, 
ecoregion 

E Land use PDF·m−2 
(occupation)
; 
PDF·year·m−

2 
(transformat
ion) 

Ecosystem 
level 

Birds 
Mammals 
Amphibians 
Reptiles 

B
o

tt
o

m
-u

p
 

LU impacts on 
plant species 
in Temperate 
Broadleaf and 
Mixed forest 
biome 
(Knudsen et 
al., 2017) 

Biome, 
country, 
region, 
local 

M Land use PDF·m−2 
(occupation) 

Community 
composition 

Plants 

3.3.2 CASE STUDY DATA  

Second, case study data was gathered for lamb meat production from the Organic-PLUS research 

project (H2020 Grant agreement 774340, https://organic-plus.net/) and the Institute of Agri-food 

https://organic-plus.net/
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Research and Technology (IRTA) in Spain. Data from the Organic-PLUS project yielded one case study farm 

for organic lamb production in Vanse, Norway (will be called NO1 hereafter), and data from IRTA yielded 

two case study farms for conventional lamb production in Spain. These case studies were chosen due to 

data availability and the fact that they are all based in the same biome, Temperate broadleaf and mixed 

forests biome, which is useful when applying the Knudsen et al. (2017) model which have CFs for this 

biome, allowing for greater consistency between the studied LCIA models. Details of each case study can 

be found in Table 13 and extra details in Table C-1. The NO1 case study produces certified organic meat 

from old Norwegian short tail landrace and Norwegian White Sheep breeds with winter housing and 

purchased feed and on-site fodder production, and summertime grassland grazing. The study area has a 

mean annual temperature of 7.1°C and an annual precipitation of 1280 mm. The soil group is cambisol 

and leptosol and the altitude is 6 m.a.s.l. 

The two case studies in Spain are in the same province (Lleida) within 20 km straight-line distance of 

each other, one in Anás, Lleida (ES1) and one in Castellbó, Lleida (ES2), differing greatly in land occupation 

and feed types, thus making them good case studies for comparing effects CFs on biodiversity damage 

potential without confounding effects of pedoclimatic parameters. ES1 produces meat from Xisqueta and 

Aranesa sheep breeds with winter housing and alpine meadow grazing, with no feed produced on-site, 

only purchased feed is consumed. ES2 produces meat from the Barbarina breed with winter housing and 

purchased feed and on-site fodder production, and summer grazing mainly on alpine meadows and bushy 

areas. The altitude of ES1 is 1078.4 m.a.s.l. and 802 m.a.s.l. in ES2, and both have cambisol soil.  

The type and quantity of the feed in each case study was based on real data from each farm.  However, 

the ecoregion origin (where the feed was cultivated) of imported feed was not known in case studies ES1 

and ES2, thus estimates were made based on data from Subdirectorate General for International 

Merchandise Trade (2019), Ministry of agriculture fisheries and food (2019), and the Secretary of State 

for Trade statistics on foreign trade in goods of Spain (Secretary of State for Trade statistics, 2022) (Table 

C-2).  To calculate the kg/ha of each feed (e.g., wheat production in Spain or soy in Brazil), national yield 

statistics from the United Nations Food and Agriculture Organization (FAOSTAT) (Food and Agriculture 

Organization, 2022) was used. An average was taken over five years from 2015 – 2020 for those relevant 

countries (Table C-2). For the NO1 case study, information was provided by the farmers regarding which 

feed ingredients were locally produced and which were imported (all were local except soy and 

sugarcane). The origin of imported feed was unknown, thus, FAOSTAT (Food and Agriculture Organization, 

2022) data was used to determine the main countries from which Norway imports soy (Brazil and Canada 
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accounted for 97% of all soy imports) and sugarcane (Mozambique, India, Guatemala, Pakistan and Sudan 

account for 81%, the remaining percentage was distributed among nine other countries contributing 

between 0.0002-6% to the total, thus were not included). FAOSTAT (Food and Agriculture Organization, 

2022) was also used to determine the yield in kg/ha for both local and imported feed for NO1, taken as 

an average over five years 2015 – 2020 (Table C-3).
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Table 13. Details of case study farms used to test the performance of biodiversity loss models. More detailed information can be found in Table C-1 in the 
Appendix. 

Farm details ES1 ES2 NO1 
Number of ewes, age >517 
days (heads·year-1) 

55 280 59 

Number of lambs, age 30-75 
days (heads·year-1) 

38 220 124 

Lamb yield, live weight 
(ton·farm-1·year-1) 

0.85 4.5 1.92 

Ewe yield, live weight 
(ton·farm-1·year-1) 

0.15 1.5 0.21 

Wool yield (ton·farm-1·year-1) - - 0.275 
Stocking rate (number of 
animal heads·m-2) 

0.0002 0.0002 0.0019 

Land use type Area 
(m2·head-

1·year-1) 

Ecoregion Area 
(m2·head-

1·year-1) 

Ecoregion Area 
(m2·head-

1·year-1) 

Ecoregion 

Pasture 2.01E+03 Pyrenees conifer and 
mixed forests 

1.17E+03 Pyrenees conifer and mixed 
forests 

2.05E+02 Sarmatic mixed forests 

Stable for animals 8.46E-01 Pyrenees conifer and 
mixed forests 

2.24E-01 Pyrenees conifer and mixed 
forests 

2.71E+00 Sarmatic mixed forests 

Stable for farming equipment 1.69E+00 Pyrenees conifer and 
mixed forests 

- - - - 

Feed grown on-site 0 - 3.60E+01 Pyrenees conifer and mixed 
forests 

1.53E+02 Sarmatic mixed forests 

Purchased complementary feed for ewes, rams and gimmers Purchased feed for all animals 
Maize 3.48E+00 East European Forest 

steppe 
3.05E+00 East European Forest 

steppe 
- - 

3.22E+00 Cerrado 2.82E+00 Cerrado - - 
6.86E-01 Northeastern Spain & 

Southern France 
Mediterranean forests 

6.01E-01 Northeastern Spain & 
Southern France 

Mediterranean forests 

- - 

Barley 1.64E+01 Iberian sclerophyllous 
and semi-deciduous 

forests 

8.99E-01 Iberian sclerophyllous and 
semi-deciduous forests 

5.51E-02 Sarmatic mixed forests 

Purchased compound feed for lamb - - 
Oat - - - - 4.77E-01 Sarmatic mixed forests 
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Maize 4.66E-02 East European Forest 
steppe 

3.77E-02 East European Forest 
steppe 

- - 

4.32E-02 Cerrado 3.49E-02 Cerrado - - 
9.19E-03 Northeastern Spain & 

Southern France 
Mediterranean forests 

7.43E-03 Northeastern Spain & 
Southern France 

Mediterranean forests 

- - 

Wheat 3.25E-01 Iberian sclerophyllous 
and semi-deciduous 

forests 

2.63E-01 Iberian sclerophyllous and 
semi-deciduous forests 

5.45E-01 Sarmatic mixed forests 

Barley 3.17E-01 Iberian sclerophyllous 
and semi-deciduous 

forests 

2.56E-01 Iberian sclerophyllous and 
semi-deciduous forests 

- - 

Soy 1.71E-01 Cerrado 1.38E-01 Cerrado 7.73E-01 Cerrado 
1.11E-02 Central forest/grasslands 

transition zone 
1.07E-01 Central forest/grasslands 

transition zone 
2.15E-01 Southern Great Lakes 

forests 
Palm oil 1.07E-04 Sumatran peat swamp 

forests 
8.62E-05 Sumatran peat swamp 

forests 
- - 

Rye - - - - 2.34E-01 Sarmatic mixed forests 
Peas - - - - 5.95E-02 Sarmatic mixed forests 
Green beans - - - - 2.92E-02 Sarmatic mixed forests 
Sugarcane - - - - 2.54E-03 Maputaland coastal 

forest mosaic 
- - - - 1.13E-03 Upper Gangetic Plains 

moist deciduous forests 
- - - - 6.45E-04 Central American dry 

forests 
- - - - 1.27E-03 Northwestern thorn 

scrub forests 
- - - - 7.33E-04 Sahelian Acacia savanna 
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3.3.3 ESTIMATION OF BIODIVERSITY LOSS DAMAGE  

Third, we calculated the biodiversity loss due to land use of each case study, in three different 

ways, applying relevant characterization factors (CFs) from Chaudhary and Brooks (2018), Kuipers 

et al. (2021) and Knudsen et al. (2017) (See Appendix Table C-4, Table C-5, Table C-6 for a list of all 

the relevant CFs used in the present study). Sensitivity analyses comparing the use of different CFs 

were also carried out to observe the influence they may have on the biodiversity loss damage 

potential. Specifically, the sensitivity of different management intensities in both Chaudhary and 

Brooks (2018) and Knudsen et al. (2017). The global average occupation CFs were used from 

Chaudhary and Brooks (2018) and Kuipers et al. (2021), since these also accounted for vulnerability 

scores and global extinction probability, respectively. Additionally, impacts due to land 

transformation were not estimated since, to the best of our knowledge, no transformation of land 

has occurred in at least the last 10 years in each case study. Included in the scope of the LCA was 

the land area used for feed production on- and off-site, pasture grazing, and stables. The area 

m2·head-1·year-1 of each land use type and the yield of co-products in each case study can be found 

in Table 13 and the area in ha·farm-1·year-1 as well as other information can be found in Table C-1 

(Appendix), where the latter was used to estimate the potential biodiversity damage of each case 

study per farm per year. All foreground pasture, on-site fodder production and urban stables was 

set to “minimal” intensity, whereas the land use intensity for feed varied (Table C-1); these 

intensities were chosen according to the classification described in Chaudhary and Brooks (2018). 

For example, organic production may be classified as “minimal” since little to no inorganic fertilizer 

nor pesticides are added in this class. However, Chaudhary and Brooks (2018) also state that organic 

farms in developed countries often fall within the “light” intensity class, but this would mean that 

pesticides or inorganic fertilizers would be added though to a smaller extent compared to intense 

use.  

Then, to estimate the potential biodiversity damage of lamb meat, a functional unit of 1 kg lamb 

live weight (LW) was used and economic allocation was utilized to attribute impacts amongst 

multiple co-products in the system where values can be found in Table 14.  Allocation based on 

physical attributes like mass was excluded due to the very different characteristics of meat and 

wool. Therefore, economic allocation was considered as the most reasonable way to distribute the 

environmental impact between co-products.  
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Table 14. Commercial prices per kg of animal live weight (LW) used for the economic allocation of 

biodiversity damage potential impacts. 

Products Price  
 ES1 (€/kg) ES2(€/kg) NO1 

(NOK/kg) 
Lamb LW 2.87 2.87 48 
Ewe LW 1.15 1.15 21 
Ram LW 2.04 2.04 - 
Wool - - 20 

 

Throughout this chapter, we highlight major limitations in each model in the way that they 

quantify impacts on biodiversity, and the suitability of each approach and model according to 

different goals and scopes, using the results from the case studies. Recommendations for 

improvements and further research were suggested. 

 

3.4 RESULTS 

3.4.1 HOTSPOT ANALYSIS  

 

Using the two top-down models (Chaudhary and Brooks, 2018; Kuipers et al., 2021) to conduct a 

hotspot analysis, pasture land use was found to be the most contributing factor to PSL in both Spain 

and Norway (Figure 12). Despite using only purchased and imported feed in case study ES1, this feed 

only contributed 0.1% and 0.3% to the total PSL, using Chaudhary and Brooks (2018) and Kuipers et 

al. (2021), respectively, due to the small amount of land area required to produce the feed 

consumed compared to the pasture area (~300x more) (Table C-1).  The Kuipers et al. (2021) model 

did not have any available CFs for urban land use in the ecoregion PA0433, thus, could not be 

accounted for in the contribution analysis (Figure 12B and Figure 12D). Nevertheless, using the 

urban CFs in the Chaudhary and Brooks (2018) model, land use for stables contributed very little 

overall, amortized over a 50 year lifespan (0.003%,  0.0001%, and 0.01% in ES1, ES2, NO1, 

respectively).  Case study ES2 consumed both purchased feed and on-site fodder, yet, the on-site 

fodder only contributed 3.91% using the Chaudhary and Brooks (2018) model and 3.11% using the 
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Kuipers et al. (2021) model. These low percentages were due to the small land area used to cultivate 

the fodder (6 ha·farm-1·year-1) compared to the land area used for pasture (195 ha·farm-1·year-1). 

In case study NO1, the land area used for pasture (7.2 ha·farm-1·year-1) and on-site fodder 

production (5.4 ha·farm-1·year-1) was similar in quantity, resulting in a higher proportion of on-site 

fodder contribution to PSL compared to ES2 using both the Chaudhary and Brooks (2018) and 

Kuipers et al. (2021) models with 36.44% and 43.69%, respectively (Figure 12E and Figure 12F). The 

purchased feed in NO1 also had higher contributions to the total farm PSL compared to ES2 with 

2.62% and 6.35% for the Chaudhary and Brooks (2018) and Kuipers et al. (2021) models, 

respectively. These contributions were mainly due to soybean cropland use in Brazil, where 271.6 

m2·farm-1·year-1 is required. Using the Chaudhary and Brooks (2018) model, the contribution of 

pasture land use was 24.49% larger than on-site fodder production. However, using the Kuipers et 

al. (2021) model the difference was much smaller, 6.26%. This incongruency was due to the 

difference in CFs between pasture and crop land use; in Chaudhary and Brooks (2018), the CF for 

minimal pasture land use was higher than the minimal cropland use, whereas the opposite was 

found in Kuipers et al. (2021).  Moreover, the difference between the CFs is much smaller in Kuipers 

et al. (2021) (1.72E-17 PSL/m2) compared to Chaudhary and Brooks (2018) (2.52E-15 PSL/m2) (Table 

C-4, Table C-5 in the Appendix).  
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Figure 12. Contribution of different land uses to total aggregated mean potential species loss on sheep 
farms using the model by Chaudhary and Brooks (2018) in the first column case studies ES1 (A), ES2 (C) 
and in NO1 (E), and the model by Kuipers et al. (2021) in ES1 (B), ES2 (D) and in NO1 (F). Not all LCIA 
models had available CFs for all land use types, thus a legend was provided for each graph. 
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3.4.2 TOP-DOWN: CHAUDHARY AND BROOKS (2018) 

Figure 13 shows the mean PSL per kg of lamb (LW) by taxa, using the Chaudhary and Brooks (2018) 

model for each case study. All impact scores across all case studies were statistically different from 

zero since the 97.5% confident interval did not cross the CF = y-axis. 
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Figure 13. Potential species loss per kg of lamb live weight (LW) and 97.5% confidence interval by taxon 

using the model by Chaudhary and Brooks (2018) in case studies ES1, ES2 and NO1, and a comparison 

between the taxa aggregated PSL scores across all case studies (ES1, ES2, NO1). 

In case studies ES1 and ES2, the impact of land use on PSL was significantly higher (statistically) for 

the plant taxon compared to the other taxa, as the 97.5% confidence interval did not overlap with 

the impact score of the other taxa (Figure 13). The high PSL of plants was mainly due to this taxon 

bearing the highest CFs amongst all relevant ecoregions and land use types. Following after plants, 
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amphibians may also be highly impacted by pasture and on-farm fodder land use with high CFs 

mainly in the ecoregion NT0704 in Brazil. Reptile PSL were also on the same magnitude as 

amphibians, with the mean PSL being slightly lower, though the 97.5% confidence interval 

overlapped between the two taxa. The bird taxon had statistically the lowest PSL/kg lamb in the 

Spanish case studies compared to the other taxa, as the 97.5% confidence interval did not overlap 

with the impact score of any of the other taxa. The order from highest to lowest PSL by taxa can be 

explained by the CFs, which follow the same exact trend (Table C-4). Plants, amphibians and reptiles 

presented the most vulnerable characterization factors, which could guide us towards some 

compensatory protection policy of protection of said species. 

In case study NO1, plants still had the highest mean PSL per kg lamb (LW) using the Chaudhary and 

Brooks (2018) model, although the 97.5% confidence interval overlaps with the mammal and bird 

taxon, showing that it is not significantly higher than these two taxa, but can be significantly higher 

than amphibians and reptiles (Figure 13). Differing from the trend of impact scores by taxa in Spain, 

birds were the second highest affected taxon, followed by mammals, although as previously 

mentioned, the PSL of plants, birds and mammals could not be statistically differentiated. The 

impact score of amphibians and reptiles were significantly lower statistically than the other taxa, 

where reptiles had the lowest impact score, even statistically different from amphibians. The order 

from highest to lowest PSL by taxa can be explained by the CFs, which follow the same exact trend. 

The CFs for plants were between one to three orders of magnitude higher than the other taxa in 

both pasture and crop land use types (Table C-4). The pasture CFs for birds was also between one 

to three orders of magnitude higher than the other taxon. For cropland, bird CFs were higher than 

the other taxon (except plants) across all intensities albeit of the same order of magnitude as 

mammals and amphibians. Reptiles had the lowest CFs of all taxa, differing by 1-3 orders of 

magnitude.  

Using the taxa aggregated CFs from Chaudhary and Brooks (2018), the PSL/kg lamb LW of case study 

NO1 was significantly lower statistically than case studies in Spain (Figure 13). The mean PSL for ES2 

was lower than ES1, but not statistically different. This follows the same trend as the land area used 

for feed and pasture, from lowest to highest, NO1 (695 m2·head-1·year-1), ES2 (1217 m2·head-1·year-

1) and ES1 (2044 m2·head-1·year-1) (Table 13). 

Additionally, a sensitivity assessment was carried out to test the sensitivity of the CF’s intensity 

classes in Chaudhary and Brooks (2018) across all case studies. Since pasture and on-farm fodder 
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production were the most impacting land use types (Figure 12), only these were tested for intensity 

sensitivity. They may be classified as either minimal or light, thus, results are only shown for these 

two classes (Figure C-1). The 97.5% confidence interval of minimal intensity overlapped with that of 

light intensity across all species groups and taxa aggregated score, meaning there was no statistical 

difference between the impact score of the two intensity classes (Figure C-1). 

In regards to the ability of the Chaudhary and Brooks (2018) model to differentiate between land 

use types, case study NO1 was used since the land area of pasture and fodder were similar. The 

97.5% confidence interval of mammals, amphibians, reptiles, plants and the taxa aggregated score 

overlapped when comparing pasture and fodder land use, meaning there was no statistical 

difference in the impact score between the two land use types (Figure 14). Birds was the only taxon 

where the confidence interval did not overlap, thus, was significantly different between the two 

land use types. 

 

 

Figure 14. Potential species loss (PSL) per kg lamb live weight (LW) for pasture and fodder land use in case 

study NO1, using the Chaudhary and Brooks (2018) model. 
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3.4.3 TOP-DOWN: KUIPERS ET AL. 2021 

Figure 15 shows the PSL per kg lamb (LW) by species type using the model by Kuipers et al. (2021), 

in case studies ES1, ES2 and NO1. This model does not have CFs for plants, and furthermore, no CFs 

at the lower and upper limit of confidence intervals were provided, thus, statistical differences 

between impact scores could not be discussed.  
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Figure 15. Potential species loss (PSL) per kg of lamb live weight (LW) by taxon using the model by Kuipers 

et al., (2021) in case studies ES1, ES2 and NO1. 
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In case studies ES1 and ES2, the PSL by taxa from highest to lowest were amphibians, mammals, 

birds and reptiles (Figure 15). In case study NO1, the mean PSL by taxa from highest to lowest 

were mammals, birds, amphibians and reptiles. This differs quite substantially from the trend seen 

using Chaudhary and Brooks (2018), where the mean impact scores from highest to lowest were 

plants, amphibians, reptiles, mammals and birds. However, taking into account the 97.5% 

confidence interval in Chaudhary and Brooks (2018), the PSL of reptiles overlaps with amphibians 

and mammals (but not between amphibians and mammals) thus PSL of reptiles could be above or 

below the other two taxa. On the other hand, the 97.5% confidence interval of amphibians does 

not overlap with mammals (nor birds in fact) and thus should be higher than mammals and birds, 

which is consistent with Kuipers et al. (2021). The only important inconsistency between the two 

LCIA models was the impact score for birds. According to Chaudhary and Brooks (2018) the impact 

score for birds had statistically the lowest PSL than all other taxon, however, in Kuipers et al. 

(2021) it was second to last, and instead reptiles had the lowest PSL. This was due to the reptile 

CFs for ecoregion PA0433 in Kuipers et al. (2021) having a value of zero PSL/m2. Kuipers et al. 

(2021) state that a CF = 0 indicates no effect of the land use type on species richness, where the 

affinity of the species group equals 1, meaning that the land use does not decrease local species 

richness. This is the case when all species within the ecoregion are documented to occur in that 

land use type, according to the International Union for Conservation of Nature (IUCN) data 

(Personal communication).   

Both top-down models Chaudhary and Brooks (2018) and Kuipers et al. (2021), were consistent in 

their ranking of the case studies in terms of PSL/kg lamb LW; ES1 > ES2 > NO1. 

3.4.4 BOTTOM-UP: KNUDSEN ET AL. (2017) 

The model by Knudsen et al. (2017) only evaluates one taxon, vascular plants, hence only the PDF 

of plants will be discussed here. Knudsen et al. (2017)  provides CFs for intensive and extensive 

farming in both organic and conventional fields in the Temperate Broadleaf and Mixed Forests 

biome. The CFs from Knudsen et al. (2017) used to estimate the biodiversity damage in each case 

study are listed in Table C-6. The foreground pasture and on-farm fodder production of all case 

studies were located in this biome. However, CFs were not available for 11 out of 13 different feed 

types in ES1 and ES1, and 7 out of 13 feed types in NO1, since they did not originate from this biome 

(Table C-1).  
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In general, from highest to lowest PDF plants/kg lamb LW, the case studies are ranked NO1 >ES2 > 

ES1 when using pasture conventional extensive CFs for ES1 and ES2 and organic extensive CFs in 

NO1. This is the opposite of the ranking seen in the top-down models analyzed previously. This was 

mainly due to the CFs having a negative sign, indicating beneficial biodiversity effects. Hence, the 

more land used in these land use types with negative CFs, the lower the biodiversity damage, and 

the more beneficial it may be on plant biodiversity. The ranking of land area used for pasture and 

on-site fodder production was, from lowest to highest, NO1, ES1 and ES2, explaining the general 

ranking seen for the PDF plants/kg lamb LW. However, the ES1 and ES2 were not specifically 

consistent with the PDF results due to ES2 having higher yield (~5x higher). 

Since pasture was the main contributor across all case studies and LCIA models (Figure 12), a 

sensitivity analysis was carried out to determine two specific effects that pasture land use can have 

on the PDF of plants: 1) the effect of choosing CFs of different farming practices (organic or 

conventional), 2) the effect of choosing CFs of different intensities. Although case studies ES1 and 

ES2 were not certified organic, the results shown in Figure 16 was a simple exercise to demonstrate 

the difference between CFs for organic and conventional farms. Yet, almost all practices in ES1 and 

ES2 were compliant with the European Commission’s regulations on organic livestock 

farming(European Commission, 2008a), except for the origin of the feed which was not from organic 

farms. 
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Figure 16. Potential disappeared fraction (PDF) of vascular plants per kg of lamb live weight (LW) for case 

studies ES1, ES2 and NO1, using CFs from the model Knudsen et al. (2017) 

In regards to the first point, organic CFs for pasture land use were lower than their conventional 

counterparts (when comparing intensive with intensive and extensive with extensive on the biome-

level, Table C-6), resulting in lower PDF of plants per kg of lamb LW in both ES1 and ES2 case studies 

(Figure 16).  
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The CF for conventional extensive pastures was lower than that for organic intensive pastures, 

resulting in lower PDF per kg of lamb LW, illustrating the importance of including intensity sub-

classes within organic and conventional classes, as organic farms may not always have higher species 

richness. However, it must be mentioned that the “intensive” class only covered Germany (16 farms 

surveyed) in Knudsen et al. (2017), whereas the extensive pasture data covered four European 

countries (54 farms surveyed), therefore, data may not be as reliable. As exemplified in Figure 5, 

choosing extensive CFs over intensive ones can result in impact scores ~5x less in organic farms or 

can even have the opposite sign in the case of conventional farms where intensive had positive 

impact scores and extensive had negative scores, across all case studies. Therefore, it is important 

to properly classify the intensity of the farm being studied. 

3.5 DISCUSSION 

This study was conducted to initiate research on the application of biodiversity loss indicators to 

agriculture, where, currently, there are no other studies that allow the results to be compared. A 

priori, the comparison between the three case study farms could lead us to conclude that NO1 had 

lower PSL impact per FU followed by ES2 and ES1, due to lower land use, using the two top-down 

models (Figure 12, Figure 14Figure 13). This occurred despite lower lamb yield in NO1 compared to 

ES2 (~2x lower), showing that the difference in land use was sufficient enough to cancel out the 

effects of lower yield on PSL. On the contrary, using the bottom-up model by Knudsen et al. (2017), 

ES1 had lower PSL per FU followed by ES2 and NO1, due to the differences in yield, showing that 

yield can influence the results in this case. The fact that the top-down and bottom-up models do 

not yield the same trends when comparing livestock products demonstrates the need to adequately 

choose which model is more suitable to the goal and scope of the study, keeping in mind the goal 

and scope of the models themselves and their limitations. Therefore, the discussion has been 

divided into three sections: 3.5.1 Top-down, 3.5.2 Bottom-up and 3.5.3 Further research. 

3.5.1 TOP-DOWN 

In general, the top-down indicators recommended by the EC Environmental Footprint Technical 

Advisory Board(European Commission, 2022) and LEAP-FAO(FAO, 2020) can help highlight hotspots 

and general trends, for example, that plant species, amphibians and reptiles are the taxa with the 

highest risk in the studied areas, hence policies in this regard should be prioritized. Moreover, these 

indicators can be used to check the broad difference between PSL due to different land uses within 
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specific ecoregions or countries, by looking at the trends in CFs. For example, in ecoregion PA0433, 

minimal pasture has the lowest mean taxa aggregated CF out of all agricultural and forestry land use 

types, in both Chaudhary and Brooks (2018) and Kuipers et al. (2021).  

As previously discussed, the production of feed and complements may have very low importance 

when grassland livestock is defined as the foreground system of study (Figure 12). The main 

contributor to biodiversity loss in these case studies were pasture and on-farm fodder production, 

due to the high amount of land required compared to compound feed. This correlates with the 

findings in other livestock studies where pasture and on-farm fodder production was the main 

contributor to livestock products in Europe rather than the feed (Kok et al., 2020; Leip et al., 2015). 

Since the complementary and compound feed consumed was a mixture of various ingredients from 

many different countries, the land use required to grow that specific ingredient was very low 

compared to pasture land use, e.g., in ES1, 0.0032 ha/farm/year of soy from Brazil or 0.022 

ha/farm/year of maize grain from Ukraine compared to 50 ha/farm/year of pasture. If fodder is 

grown on the farm using land area similar to that of pasture (of the same order of magnitude), then 

fodder can have similar PSL to pasture use, as seen in case study NO1. If the area of the fodder is 

significantly lower than the pasture area (of different orders of magnitude, e.g., 2), or non-existent, 

then compound feed may contribute maximum ~4% to the total biodiversity loss impact, such as in 

case studies ES1 and ES2.  In addition, the Chaudhary and Brooks (2018) CFs for minimal pasture 

intensity in ecoregion PA0433 were generally higher than all other relevant CFs for cropland, except 

those for cropland in ecoregion IM0160 for mammals, birds and taxa aggregated. Hence, both the 

high land area and CFs for pasture yielded higher PSL for minimal pasture use in PA0433 compared 

to cropland use, though the CFs played a much smaller role due to similar orders of magnitude in 

CFs in some ecoregions. Therefore, this shows that background processes such as feed in livestock 

systems cannot be captured very well due to the land use areas being distributed among many 

ingredients, resulting in very low land use areas and hence low PSL. What is actually being shown in 

Figure 12 is a fraction of the PSL that is occurring in, e.g., Brazil due to soy production, where the 

fraction represents the amount consumed on the livestock farm. Since these land areas are not 

actually representative of the real land used for, e.g., soy feed in Brazil, and if our goal is to also find 

out the extent of the damage there, we would need to analyze soy production as the foreground 

system. Since our goal here is to estimate the PSL due to lamb production in Spain or Norway, only 

the fraction of PSL due to feed is shown.  
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To find out which ingredient in the feed is the most important, a hotspot contribution analysis 

should be done on the different feeds themselves, excluding the foreground system. In ES1, the 

barley grain from Spain would be the most important in the complementary feed (63%), and as for 

the fattening lamb feed, Brazilian soy (33%), Spanish wheat (27%) and Spanish barley (27%) would 

be the most important in terms of PSL on the farm, using the model by Chaudhary and Brooks (2018) 

(Figure C-2). In ES2, Brazilian maize grain would be the main hotspot in the complementary feed 

(68%, the remaining contribution split among the other three ingredients), and as for the lamb feed, 

the same trend was seen as in ES1 (Figure C-2). In NO1, Brazilian soy was the main hotspot (81%) 

with the remaining contribution split among the other nine ingredients (Figure C-2). The same 

trends were seen using the Kuipers et al. (2021) model (Figure C-3). Thus, these two top-down 

models can be a great indicator for hotspot analysis, keeping in mind that it only shows just that, 

which land use contributes the most to the total PSL of that product, and not that one feed crop in 

the system may be more damaging than the other (e.g., Brazilian soy vs. Spanish wheat); for this 

comparison, a foreground analysis must be done for both products.  

It is also interpreted that the differences between the characterization factors for the different 

land uses and corresponding intensities are relatively low and what really influences PSL is the 

amount of occupied area. In Chaudhary and Brooks (2018) and Kuipers et al. (2021) this was  due to 

the fact that they depend too much on the proportion of area of a specific type of land use, and not 

enough on the taxonomic affinity or the intensity of management (in the case of Chaudhary and 

Brooks (2018)). Specifically, regional land occupation CFs in Chaudhary and Brooks (2018) are 

calculated by multiplying an allocation factor by the projected species loss for a specific species in 

that ecoregion, divided by the area of that land use type in that ecoregion. The allocation factor 

(denoted as ai,j in their study, where i is the land use type and j is the ecoregion) represents the area 

share of a specific land use type (e.g., cropland) within a specific ecoregion (e.g., Pyrenees conifer 

and mixed forests). Since the area of any land use type compared to the total area of an ecoregion 

would usually yield an extremely small value, the final allocation factors ai,j would also be extremely 

small. These allocation factors are much smaller than the other variables that the CF depends on, 

such as taxon affinity (usually between -1 and -3 orders of magnitude) or proportion of land use 

type under a specific management intensity (-1 order of magnitude). This is the main reason why 

the CFs in Chaudhary and Brooks (2018) were consistently low on orders between -6 and -18. For 

example, in ecoregion AA0103, the area share of pasture would be 2.75x10-8, leading to a regional 

land occupation CF for amphibians of 4.56x10-10 in Chaudhary and Brooks (2018). Therefore, the CFs 
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in Chaudhary and Brooks (2018) rely much too heavily on the area share of a specific land use type, 

and not enough on taxon or habitat affinity or management intensity. This leads to the fact that, 

according to results in Chaudhary and Brooks (2018), it would be more important to save one m2 of 

land use, than implement changes in management intensity, an aspect that could discredit the need 

for development of specific factors, so it could be deduced that the classification into six land uses 

and three intensities is still quite general and it would be interesting to have a more detailed 

approximation of different practices. In Kuipers et al. (2021), a similar allocation factor is used, called 

a distribution factor (denoted as qg,i,j) to attribute the impacts on taxon g in region j to land use type 

i. The distribution factor is dependent on the habitat suitability and the area weighted by the 

suitability of land use type i to the taxon g in region j, relative to the total suitability weighted area 

of the land use types. Since average occupation CFs are calculated by dividing the PDFg,j by the total 

regional amount of LU and multiplied by qg,i,j, it is the qg,i,j that largely determines the magnitude of 

the CFs, causing them to have orders of magnitude between -11 and -19 (or CF=0).  Specifically, 

within the equation to calculate qg,i,j, it is the Ai(lu)j variable (area of LU type i in region j) that 

influences these low orders of magnitude, again showing that, similar to Chaudhary and Brooks 

(2018), the CFs rely very heavily on area of a specific land use type. However, the global extinction 

probability (GEP) variable can also influence global CFs in Kuipers et al. (2021)  due to the high 

variability of GEPs (between 0 and -10 orders of magnitude). The GEP indicates the potential 

contribution of regional species loss to global species extinctions by considering endemism and the 

threat status of the regional species pools (Kuipers et al., 2021).  Kuipers et al. (2021)  do not have 

CFs for different management practices which means it is less suitable for agricultural LCAs, 

however, including them may not yield very different results unless the CFs were developed at 

higher resolution. Furthermore, the CFs in Kuipers et al. (2021)  were not statistically distinct 

between different land use types, unless they are in different ecoregions. In Chaudhary and Brooks 

(2018), the CFs for agricultural land use types, pasture and cropland were also not well 

distinguished, stating that future studies should include further land use classes, but new high-

resolution, harmonized and validated land use maps with different intensity types are needed. 

Kuipers et al. (2021)  also state that, in regards to some of their CF = 0, that it is an artefact of the 

way they quantified the species affinities (i.e., based on the fraction of species in the ecoregion that 

are documented to occur in the land use type relative to the total number of species in the 

ecoregion). The carrying capacity or ecosystem quality (e.g., cropland habitat is lower than that of 

primary vegetation, even though the species is documented to occur in both habitats), is something 
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that their method does not currently capture (Personal communication). Therefore, both top-down 

approaches may not be suitable for differentiating agricultural products from one another (e.g., 

cropland vs pasture, or minimal pasture vs. light pasture within the same ecoregion).  

Another aspect to highlight is the variability of the characterization factors makes it difficult to 

clearly establish significantly better options. As the methods Chaudhary and Brooks (2018) and 

Kuipers et al. (2021)  are based on characterization factors estimated at the ecoregion level, applying 

and extrapolating these factors to local levels has its limitations. It cannot explain the different 

microclimates, nor the local/regional values of species richness, taxa affinity and vulnerability. 

Therefore, these methods are mainly useful for comparisons at the ecoregion level e.g., for national 

or global assessments or companies, but not suitable for assessing other more qualitative changes 

such as the impacts of over- or under-grazing within an ecoregion, in corroboration with the 

guidelines given in the LEAP-FAO documents (FAO, 2020). This is supported by the review by 

(Gaudreault et al., 2020) who tested the CFs from a previously recommended biodiversity loss LCIA 

model published in 2015 by (Chaudhary et al., 2015) using corrugated cardboard as a case study. 

The model by Chaudhary and Brooks (2018) was based on the study by Chaudhary et al. (2015). 

Gaudreault et al. (2020) found that, “the local effect on species of forest management is likely to be 

misrepresented by the average number of species in a given ecoregion. Successful consideration of 

biodiversity response in the context of forest management would require the integration of other 

approaches, such as site-specific studies.” This criticism would still be applicable to the Chaudhary 

and Brooks (2018) model since they the same methods like countryside-SAR and the same datasets 

for total species richness at ecoregion level. Gaudreault et al. (2020) also recommend that 

Chaudhary et al. (2015) be improved by including management practices, which Chaudhary and 

Brooks (2018) integrated into their model, but judging by the results in the present study, the CFs 

still are not at a high enough resolution to give meaningful or representative results.  

According to both top-down models, plants were the species most affected by land use pressures 

being statistically higher than the other taxa (except in case study NO1). Following plants are 

amphibians and reptiles. This is rational seeing as plants and other less mobile taxa are strictly reliant 

on soil or plant conditions, compared to highly mobile taxa like birds(Puig-Montserrat et al., 2017), 

thus would be most affected by land use practices. Moreover, they create and shape terrestrial 

ecosystems and its diversity correlates highly with other species groups' diversity (Duelli and Obrist, 

1998). This supports the use of plants as a proxy for biodiversity loss in Knudsen et al. (2017). 
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However, many other less mobile taxa, such as invertebrates and arthropods, can be affected by 

land use practices to a greater extent(Puig-Montserrat et al., 2017; Rey et al., 2019) and new CFs 

should be made for these taxa in the future in all LCIA models. Taxon like birds have been found to 

rely more on landscape complexity of the farm than management intensity(Rey et al., 2019), thus, 

Kuipers et al. (2021)  may be more suitable for this taxon since the model includes the effect of 

landscape fragmentation on PSL, and may be useful for any other taxa with high mobility and 

dispersal. Further limitations in the Chaudhary and Brooks (2018) model are discussed in Chapter 

3.6. 

3.5.2 BOTTOM-UP  

In general, bottom-up approaches like in Knudsen et al. (2017), are much more certain in regards 

to biodiversity loss compared to top-down approaches since they are based on real field 

measurements of species richness in their respective land use types. The CFs are an actual reflection 

of species occurrence and inherently include the effects of management practices (e.g., organic or 

conventional farming) on species richness. In the top-down approaches studied here, an inference 

is made on potential species loss using ecoregion-level data which needs to be validated against real 

data, and its performance evaluated using different goodness fit metrics, although the authors state 

that the predicted endemic extinctions per ecoregion compare well with the species threatened 

with extinction in the IUCN Red List (International Union for Conservation of Nature and Natural 

Resources: Cambridge UK, 2022). For agricultural land use types, the framework by Knudsen et al. 

(2017) would be most suitable seeing as the CFs are based on real field measurements of species 

richness on pastures and cropland, unlike the top-down models. The Knudsen et al. (2017) model, 

among others (Elshout et al., 2014; Koellner and Scholz, 2008; Mueller et al., 2014; Schryver and 

Goedkoop, 2010), are the only ones that have CFs for conventional and organic crops and pastures, 

where the Knudsen et al. (2017) model is the only one with standardized measurement techniques. 

This is an important step forward for estimating the biodiversity impact of OA since the European 

Commission aims to have at least 25% of the EU’s agricultural land under organic management by 

2030 (European Commission, 2020a). 

Due to the highly localized data in Knudsen et al. (2017), the uncertainty of bottom-up CFs 

increases when extrapolated to larger scales, like regions outside of Europe since only countries 

within Europe were taken into account . Nevertheless, many countries were covered in the biome 

of concern, thus may be quite certain in terms of estimating biodiversity loss in the Temperate 
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broadleaf and mixed forest biome, but only in Europe. This is similar to the uncertainty in CFs for 

top-down approaches when applied to local situations due to their high resolution and inability to 

account for specific practices. The exact location nor the ecoregion from which the species richness 

data was gathered was not mentioned in Knudsen et al. (2017), thus, the CFs could not be 

differentiated by ecoregion level (there are seven ecoregions in this biome in the relevant 

countries). Therefore, this model cannot be used for hotspot analysis since there are no CFs for 

countries or ecoregions outside of Europe such as Brazil for soy-based feed, and as mentioned 

previously in section 3.4.4, CFs were not available for 11 out of 13 different feed types in ES1 and 

ES1, and 7 out of 13 feed types in NO1, since they did not originate from this biome. Moreover, no 

CFs were available at country level for Norway in Knudsen et al. (2017), though it is in the same 

biome. Vascular plant species richness in Norway may be higher than those found in Knudsen et al. 

(2017) for grassland pastures and in forested areas and the difference between the two are also 

similar(Kapfer et al., 2022; Myklestad and Sætersdal, 2004), thus the CFs for PDF may be lower in 

Norway. In the future, more data would be needed to develop CFs at ecoregion and biome level 

with higher certainty.  

The review by (Kok et al., 2020) also describes some limitations in the Knudsen et al. (2017) model, 

but only at a high level without any in-depth testing. They found that since the model does not 

provide data on total plant species richness (only local species richness is given), landscapes that 

have many ecological structures like natural forest and pasture would have lower biodiversity 

damage scores than just pasture, whereas a mixture of both ecosystems would result in the highest 

total species richness, penalizing having such structures.  

3.5.3 FURTHER RESEARCH  

New CFs can be easily developed using the framework by Knudsen et al. (2017) if sufficient species 

richness data is available, and can be parameterized according to the types of land uses under study, 

and can even be applied across all geographical scales if more data becomes available. On the other 

hand, top-down approaches cannot be applied to local levels, since too many inferences would be 

made to reach each level, accumulating more uncertainty along the way. As Souza et al. (2015) state, 

robust and reliable CFs should be validated against or better yet, based on field data and national 

case studies. However, data availability is an important limitation in bottom-up approaches, thus, 

more investment in data gathering should be done if more certain assessments are to be made. 

Hayashi (2020) suggested that simple biodiversity field monitoring would be useful and compatible 
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with bottom-up approaches, such as automatic species identification using machine learning. In 

general, a mixture of the two approaches could also be done; top-down approaches could be used 

for hotspot analysis, especially for background systems, and bottom-up for foreground systems. The 

choice between approaches or the combination of the two is driven by, 1) the goal and scope of 

your study, 2) the data available. If only high-level or national assessments are needed or data is 

available only at this level, then top-down assessments would be suitable. If the goal is to study local 

biodiversity loss due to agricultural land use on a particular farm or area, then bottom-up 

approaches would be suitable. 

The top-down approaches studied here could not differentiate very well between cropland and 

pasture CFs, consequently leading to similar PSL in both LU types. Broad LU classes like cropland and 

pasture are not helpful when comparing specific agricultural products like annual or permanent 

crops, which have been seen to differ in plant species richness (Lüscher et al., 2016). Furthermore, 

the CFs for cropland do not differ much across the three intensity levels in Chaudhary and Brooks 

(2018), and as we have seen, they may sometimes be redundant since the CFs rely heavily on the 

area share of each LU type.  Hence, these models could be improved by increasing the resolution 

and harmonization of the data, where specific suggestions were given in this chapter regarding how 

to include, for example, organic and conventional management practices. The CFs in Kuipers et al. 

(2021)  depend on a couple of other factors than just the area share of each LU type (i.e., GEP and 

PDF), since the CFs were calculated using the Species habitat relationship (SHR), instead of the 

countryside-SAR (species-area-relationship) model adopted in Chaudhary and Brooks (2018). 

However, Kuipers et al. (2021) could be improved further by including management intensities, as 

it would be interesting to see if this would cause a greater difference between characterization 

factors for cropland and pasture. In order to establish more sustainable agricultural production 

practices, we must focus more on biodiversity impacts due to management practices rather than 

due to land use within an ecoregion.  

Kuipers et al. (2021)  could be very useful if the goal is to study the effect of land use and 

fragmentation on highly mobile taxa such as birds or mammals, where fragmentation would be a 

key factor (Rey et al., 2019). This study could be improved by including other mobile taxa like 

arachnids (e.g., spiders), insects especially pollinators (e.g., butterflies, bees), and plants (e.g., 

sexually reproducing plants). 
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Knudsen et al. (2017) treated all species as equal in weight, thus critically threatened species were 

not taken into account, unlike in Chaudhary and Brooks (2018) and Kuipers et al. (2021). The 

incorporation of threatened plant species would allow the CFs to be differentiated between land 

use types that have similar total species numbers but different number of threatened species. For 

example, the CFs in Knudsen et al. (2017) could underestimate the ecological value of ecosystems 

that have overall low species richness but carry many species with threatened status.  The current 

methodology to account for threatened plant species in, for example, Chaudhary and Brooks (2018) 

and Kuipers et al. (2021), is through a calculation of vulnerability scores; the summed proportion of 

the range size for each species present in an ecoregion and weighted by their extinction risk 

classification using the IUCN Red List. Kuipers et al. (2021) take this further by incorporating the 

extent of occurrence, endemic richness, and range rarity, to calculate Global Extinction Probabilities 

(GEP). One bottom-up model by Koellner and Scholz(Koellner and Scholz, 2008, 2007) also 

incorporates threatened plant species by calculating species richness-based CFs (called ecosystem 

damage potentials, EDP) relative to a reference for both non-threatened and threatened plant 

species. These three aforementioned methods are based on the assumption that all threatened 

species present within each ecoregion or area will inevitably become extinct due to the applied land 

use pressure, meaning that the ecoregions or areas with threatened species are penalized and have 

higher CFs than those without threatened species. However, an important criticism to keep in mind 

is that these threatened species may exist in some areas compared to others due their affinity 

towards them and their favorable conditions, thus, possibly reducing extinction (Hobohm et al., 

2021; Teixeira et al., 2016). Therefore, further research is needed on threatened species affinity 

towards specific land use types, and by extension, a focus on γ-diversity to compare local species 

richness in a smaller land use type to the broader land use type (useful for the three aforementioned 

methods). This will help validate or reduce the uncertainty of the assumption to penalize areas with 

threatened species. Nevertheless, these methods would still be a good proxy to predict threatened 

species loss patterns at the global scale, but not particularly useful at local scales as more specific 

data would be needed (e.g., threatened species affinity, a focus on γ-diversity). For example, both 

top-down models Chaudhary and Brooks (2018) and Kuipers et al. (2021), cautioned that the global 

CFs should be interpreted as a measure of potential regional or global species extinction and not as 

explicit predictions. 

Other more general limitations across all models studied in this chapter, is the fact that they only 

cover one of the pressures that drive biodiversity loss, land use. They do not include other direct 
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pressures such as climate change, invasive and non-native species, pollution, use of water bodies, 

direct exploitation of organisms, nor indirect pressures such as people’s disconnect with nature and 

lack of value and importance of nature (IPBES, 2019). Moreover, all models will show that the more 

space per lamb, the higher the biodiversity damage, but this does not take into account the animal 

welfare, which increases as more area is made available. This is currently no considered in LCA in 

general. Additionally, all the models are based on the compositional aspect of biodiversity, species 

richness, when biodiversity is also composed of functional, genetic and ecological diversity. Possibly, 

the Kuipers et al. (2021) model can be adapted to create CFs for invasive species since a key factor 

in the spread of invasive species is often transport/dispersal distances(Essl et al., 2020).  Distribution 

data can be found from IUCN’s global invasive species database (http://www.iucngisd.org/gisd/) 

and a study by these studies (Rejmánek and Richardson, 2013; Turbelin et al., 2017). Habitat 

preference and dispersal would require more specific research but an example of invasive plant 

species dispersal data or models can be found here (Caton et al., 2022; Coutts et al., 2011; Davies 

and Sheley, 2007; Gosper et al., 2005; Higgins et al., 1996; Lee et al., 2022; Merow et al., 2011), but 

demographic factors (e.g., fecundity, survivorship and/or age of maturity (Coutts et al., 2011)) may 

also play an important role and may need to be included.  

Furthermore, the total allocation of pasture land to the animal production system may be flawed, 

pastures may cover other functions related to ecosystem services apart from the basic one of 

providing food, such as regulation (avoiding erosion, water cycles, nutrients, pollinators, etc.), 

support (biological cycles, fire prevention), and culture (landscape aesthetics). Especially in 

mountainous regions, pastures may cover all of these functions, for example providing natural areas 

that are important for certain animals and plants that require grazing to proliferate, and landscape 

aesthetics. Kok et al. (2020) also explain that livestock can have many functions in different farms 

or areas around the world including food production, conservation/ecological intrinsic value, a mix 

of the two, or even cultural and financial functions. However, as the function of livestock in LCA is 

often food production, a life cycle approach is unlikely to be suitable for conservation functions, as 

it is difficult to quantitatively relate all flows in the inventory to a reference value for conservation. 

One example of how to account for the multi-functionality of sheep farming systems was done in 

Ripoll-Bosch et al. (2013) where services such as biodiversity and landscape conservation were 

valued based on EU agri-environmental subsidies and allocated GHG emissions per kg of lamb LW 

among the sheep farming systems. Focusing on other functions than just yield may help shift 

agricultural practices towards more sustainable ecological limits and lower the yield benchmark, 

http://www.iucngisd.org/gisd/
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leading to the “true yield gap” between organic and conventional food products (Seufert et al., 

2012) discussed in the general introduction, section 1.1.1. 

In all the models analyzed, the reference situation was either semi-natural woodland (Knudsen et 

al., 2017) or natural area before human intervention (Chaudhary and Brooks, 2018; Kuipers et al., 

2021), however, as stated above extensive grazing is needed to promote grassland biodiversity and 

suppress forest succession (Kapfer et al., 2022; Wilson et al., 2012). Therefore, natural grassland or 

meadows may be a better reference situation than forest, for example, if the goal and scope of the 

study is to conserve natural grassland.  

Another way to include ecosystem services for multi-functional systems like pasture-based 

livestock, would be to use the territorial LCA approach. Territorial LCAs aim to grasp all on-site and 

off-site endpoint impacts (damage to human health, ecosystem quality and resources) linked to the 

production and consumption in that territory as a whole, in order to ultimately identify the scenarios 

that provide the most services for each unit of impact (eco-efficiency)(Loiseau et al., 2014; 

Nitschelm et al., 2016). A territory would include not only a geographic dimension but also societal 

and economic dimensions, or as stated in Loiseau et al. (2018), “a territory can thus be described as 

a multifunctional system through the territorial functions that provide goods and services 

depending on the nature of the land and the way it is exploited (from material functions including 

provision of food or housing to intangible types such as landscape quality or cultural heritage)”. 

Therefore, these top-down models may also be useful for territorial LCAs, where larger “territories” 

are being studied and hotspots can be identified across many ecoregions and land use types around 

the world, helping identify both on- and off-site production impacts. They can also be particularly 

applicable to large value chain, multi-functional systems like pasture-based livestock since their 

value chains often have on- and off-site impacts. 

We recognize that more examples and comparisons with other indicators are necessary in order to 

attain more certain and detailed information on the influence of a certain activity on biodiversity. 

There are many other indicators available in and outside LCA (Crenna et al., 2020), in addition to 

other top-down approaches like Lindner et al. (2019) that include parameterization of other more 

local factors such as fertilization, soil conservation, pest control, as well as non-LCA approaches such 

as pressure-state response indicators, recommended in the FAO-LEAP guidelines (FAO, 2020) for 

local-scale assessments.  
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3.6 CONCLUSION 

The present study provides a first step in testing current and recommended LCIA biodiversity loss 

models and some suggestions for improvements. Overall, top-down approaches have been proven 

to be useful to conduct hotspot analysis for supply chains where many different ecoregions may be 

involved such as livestock and their feed. However, they may not be useful when comparing the 

same product at different management intensities, or comparing crop products to pasture-based 

livestock products. The CFs were mainly influenced by the area of the land use type rather than 

species or management characteristics, showing that it cannot be applied at more site-specific 

levels. In order to properly estimate biodiversity loss due to agricultural LU types and practices, 

especially for local case studies, bottom-up approaches can be more certain if CFs are available in 

that region. Additionally, bottom-up approaches may be more suitable for comparisons between 

agricultural products since the CFs for arable crops and pasture are statistically significant from each 

other, in addition to the fact that they are based on real field data from farmland and management 

practices are therefore included. These models can potentially be applied to all spatial levels and 

can be parameterized with different land use and management types as long as there is data 

available. Ultimately, the choice between approaches or the combination of the two is driven by, 1) 

the goal and scope of your study, 2) the data available. If only hotspot, high-level or national 

assessments are needed or data is available only at this level, then top-down assessments would be 

suitable. If the goal is to study local biodiversity loss due to agricultural land use on a particular farm 

or area, then bottom-up approaches would be suitable. 
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CHAPTER 4 

4 LIFE CYCLE ASSESSMENT CHARACTERIZATION FACTORS FOR LAND USE 

IMPACTS ON BIODIVERSITY IN ORGANIC AND CONVENTIONAL FARMLAND IN 

THE EUROPEAN MEDITERRANEAN BIOME 

 

This chapter has been submitted as: 

Montemayor, E., Knudsen, M.T., Bonmatí, A., Antón, A. Life cycle assessment characterization 

factors for land use impacts on biodiversity in organic and conventional farmland in the European 

Mediterranean biome. Submitted to the Journal of Cleaner Production. Under Review. 

 

 

Brief background: 

As mentioned in Section 1.1.1, many Mediterranean countries in Europe like Spain, Italy, Southern 

France and Greece have some of the largest organic cropland areas in the EU-27, with plans to 

increase in the future. In addition, the Mediterranean is the most biodiverse regions in the world 

after the tropics. Thus, it is important to verify if organic practices can actually reduce biodiversity 

loss compared to conventional in the Mediterranean. Therefore, using the findings from Chapter 3, 

the most suitable model was chosen to develop characterisation factors for biodiversity loss due to 

organic crop land occupation in the Mediterranean.   
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4.1 ABSTRACT 

Agriculture is one of the main drivers for biodiversity loss. This is especially apparent in agriculturally 

intensive countries such as those in Europe, with nearly half of the land occupied by farmland, 

causing half of all European species to become dependent on agricultural habitats.  OA is seen as 

one possible solution due to its use of preventative and natural techniques. However, there remains 

much difficulty in assessing biodiversity due to its complexity, inter-dependence and high specificity 

on a local scale. An internationally standardized methodology called life cycle assessment (LCA) can 

address this complexity, but many models only approach it from a global perspective, taking into 

account broad land use types like cropland or pasture and broad management intensities, where 

organic practices cannot be distinguished from conventional ones.  

Some LCA literature offer biodiversity loss characterization factors (CFs) for arable crops and 

pastures under organic and conventional management, via a bottom-up, field-data-driven 

approach. However, these studies were limited to the temperate and mixed forest biomes in 

Europe, and no biodiversity CFs are available for perennial organic crops nor for OA products in 

Mediterranean regions south of the temperate broadleaf and mixed forest biome. To fill this gap, 

new vascular plant biodiversity CFs were estimated for organic arable and perennial woody crops in 

European Mediterranean regions. It was found that the potential plant species loss on perennial 

woody organic cropland could not be differentiated from their conventional counterparts if the 

conventional system was quite extensive, but were significantly different in intensive systems. 

Further sub-classes of conventional perennial woody crop systems should be made. Significant 

differences were found between CFs for organic and conventional arable crop systems. The 

performance of the new CFs developed using the methodology by Knudsen et al. (2017) was tested 

on two crop production systems within Europe and suggestions were given regarding model 

improvements, including an in-depth comparison between bottom-up and top-down approaches to 

modelling biodiversity loss in LCA. 
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4.2 INTRODUCTION 

The Mediterranean is the most plant biodiverse biomes in the world outside of the tropics (Cowling 

et al., 1996; Gerstner et al., 2017; Rundel et al., 2016), hence the importance in measuring and 

identifying important drivers in order to conserve its biodiversity. Additionally, the planned policy 

to increase OA in Europe and the rise in demand, will lead to conversions or expansions in organically 

managed land all over Europe including Mediterranean regions and Mediterranean crops. Thus, it 

is important that biodiversity loss due to organically managed land in the Mediterranean is properly 

assessed and compared to conventional. However, which model would be most suitable to estimate 

biodiversity loss due to organically managed land in the Mediterranean? As mentioned in Chapter 

3, bottom-up approaches may be more reliable in terms of local, site-specific studies on biodiversity 

loss, for example, organic and conventional crops in European Mediterranean regions. Moreover, 

according to the results obtained in Chapter 3, the framework developed in Knudsen et al. (2017) is 

quite reliable for foreground assessments, being the only bottom-up study that describes a method 

to calculate CFs based on species richness measurements on cropland and pasture using 

standardized techniques, and is based on the ecological species-area relationship (Rosenzweig, 

1995), making them inherently certain in terms of predicting species richness. The method for 

calculating CFs is easy to apply as long as species richness data is available on the land use type of 

concern. Therefore, the model by Knudsen et al. (2017) was chosen to evaluate the biodiversity loss 

due to land use by organically managed crops. However, these CFs are highly region-dependent, 

thus making the CFs based on the temperate broadleaf and mixed forest biome inapplicable to other 

biomes like the Mediterranean, and inapplicable to important Mediterranean crops like olives and 

vineyards.  

Thus, CFs for the Mediterranean biome were estimated using the methods described in Knudsen et 

al. (2017) and secondary plant richness data from organic and conventional farms in Spain, Italy, 

France and Greece, for common Mediterranean perennial crops such as grapes, olives, as well as 

annual arable crops such as wheat. The performance of these new CFs was tested using organic crop 

production case studies from the Mediterranean. To the best of our knowledge, no other study has 

developed CFs for potential biodiversity loss due to organic and conventional land use types in the 

Mediterranean and their native crops. 
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4.3 MATERIALS AND METHODS 

4.3.1 PLANT SPECIES DATA ACQUISITION  

Plant species richness data for organic croplands in the Mediterranean were collected from 

published literature studies using Google Scholar. The keywords “organic” AND “Mediterranean” 

AND “farm OR agriculture” AND “plant species richness OR biodiversity” were used. This resulted in 

2,770 hits. The summaries of each were checked in order to select those that provide data on plant 

species richness on organic and conventional cropland in the Mediterranean using the quadrat 

sampling method, yielding six studies and a total of 744 data points in Mediterranean countries such 

as Spain, Italy, Greece and Southern France. Information on crop type, sampling method and period, 

sample number, farm management (fertilization, pesticide use, mechanical field operations), and 

location (country, region, coordinates) were listed in Table 15, if reported.  

In order to assess the impact of agricultural land occupation on plant species richness, data from 

the natural reference or baseline situation of each cropland location was required. Similar to the 

study by Knudsen et al. (2017), woodland forest was chosen to be the baseline land use type seeing 

as it would be the land use type that would arise without human influence (Koellner, 2000). Only 

the publication by Lüscher et al. (2016) provided plant species richness data on woodland forest 

present near the cropland of each farm using standardized sampling methods for Spain and France, 

but not for Italy. Thus, this data was used as the baseline species richness values in this study with 

a standardized area of 100 m2. The plant species richness data for the baseline woodland was similar 

between Spain and France, and coincided with publications in other Mediterranean European 

countries such as Portugal (Bugalho et al., 2011; Proença et al., 2010). The type of trees in semi-

natural areas were also similar between all countries and studies researched.  
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Table 15. Characteristics of studies used for vascular plant species richness data in organic and conventional cropland within four European countries in the 

Mediterranean biome.  

Study Sampling method Sampli
ng 
period 

Location: 
Ecoregion / 
Country / 
Region 

Crop 
type 

Manag
ement 
type 

No. 
sam
ples 

 Farm management 
Mean 
species 
richness 
(95% C.I.) 
or SD 

Fertilizati
on 

Herbicide 
applications 
(appl. ha-1, unless 
stated otherwise) 

Fungicide 
(applications 
ha-1, unless 
stated 
otherwise) 

Insecticide (appl. 
ha-1, unless stated 
otherwise) 

No. 
mechanic
al field 
operatio
ns 

(Lüscher 
et al., 
2016) 

One survey of 10 x 
10 m quadrat in 
centre of selected 
site. 

2010 Iberian 
sclerophyllous 
and semi-
deciduous 
forests / Spain / 
Extremadura 

Olives ORG 14 31.33 
(27.78 – 
34.89 

69.5±48 
kg N/ha 

0  0.59±0.84  0 3.99±2.2
8 No. /ha 

CON 14 30.67 
(24.92 – 
36.41) 

54±38 kg 
N/ha 

0  0.49±0.52 0 4.08±1.6
7 No./ha 

Northeast Spain 
and Southern 
France 
Mediterranean 
forests / France 

Cereals ORG 29 18.62 
(16.42 – 
20.82) 

43.6±17.
9 kg N/ha 

0  0 0 5.38±1.1
6 No./ha 

CON 45 12.29 
(10.44-
14.14) 

113.5±36
.1 kg 
N/ha 

1.72±0.99  0.55±0.6 0.23±0.34 8.16±2.2
2 No./ha 

2011 Italian 
sclerophyllous 
and semi-
deciduous 
forests / 
Italy / 
Veneto 

Vineyard ORG 7 32 (26.14-
37.86) 

15.2±17.
3 kg N/ha 

0  12.31±4.18 4.73±6.35 22.14±8.
66 
No./ha 

CON 9 25.11 
(21.41-
28.81) 

30.4±32.
8 kg N/ha 

1.84±1.50  12.93±4.20 1.51±5.60 21.02±5.
60 
No./ha 

(Puig-
Montserr
at et al., 
2017) 

Sampled in 
randomly 
assigned quadrats 
of 16 m2 (8 × 2 m) 
in April 2013 and 
May 2014. 

April 
2013 
and 
May 
2014 
 

Northeast Spain 
and Southern 
France 
Mediterranean 
forests / Spain / 
Priorat  

Vineyard ORG 22 
 
 
 
 
 
 
 

19.86 
(16.49-
23.24) 

No info. 
given 

0 Sulfur: 3-4 
times/year 
Cu: 0-2 
times/y 

Bt & Spinosad: 0-2 
times/y 
(treatment 
prevented when 
sexual confusion is 
used) 
Sexual confusion: 
0-1 times/y 

 0 – 3  
times / 
year 

CON 20 11.70 (8.52-
14.88) 

No info. 
given 

0 – 2 times/year 
(Glyphosate) 

Sulfur: 4 
times/year 
Cu: 0-2 
times/y 

Bt & Spinosad: 0-2 
times/y 
(treatment 
prevented when 
sexual confusion is 
used) 
Sexual confusion: 
0-1 times/y 

0 – 3  
times / 
year 
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Chlorpyrifos & 
Methyl 
Chlorpyrifos: 0-1 
Fenoxicarb & 
Tebufenocide: 0-1 

(Nascimb
ene et 
al., 2012) 

Plants were 
sampled within a 
single 10 x 10 m2 
plot placed in the 
centre of the 
cultivated area. 

April 
15th - 
May 
10th, 
2010 

Italian 
sclerophyllous 
and semi-
deciduous 
forests / 
Italy / 
Veneto 
 

Vineyard ORG 
 

9 32 total 
Annual:14 
(11-16) 
Perennial: 
17 (14-22) 

88±36 
(50-130) 
kg/ha 

2±1.4 (1-4) appl. / 
year 

15.3±4.5 (9-
21) appl. / 
year 

2±2.4 (0-7) appl. / 
year (copper 
hydroxide, 
Bacillus 
thuringiensis, and 
pyrethroid) 

2 
times/ye
ar 

CON 9 25 total 
Annual: 13 
(10-16) 
Perennial: 
12 (10-13) 

82±50 
(36-160) 
kg/ha 

0 appl./year 12.8 ± 4.2 
(10–20) appl. 
/ year 

1.4±1.1 (0-3) appl. 
/ year 
(Fenamidone, 
Mancosin, 
Tebufenozide) 

2 
times/ye
ar 

(Solomo
u and 
Sfougaris
, 2011) 

The sampling of 
herbaceous 
vegetation was 
carried out in May 
2007 in randomly 
selected plots of 
0.25m2 (0.5 x 0.5 
m) 

May 
2007 

Aegean and 
Western Turkey 
sclerophyllous 
and mixed 
forests / Greece 
/ 
Magnesia 
Prefecture 

Olive 
groves 

ORG 120 10 years 
after 
conversion: 
38 
Six years 
after 
conversion: 
31 

50 
kg/tree 
(10 y, 
none for 
6y) 
Potassiu
m: 1-1.5 
kg/tree.y 
Borax: 
200 
g/tree.y 

0 No info given No info given No info 
given 

CON 180 Sprayed 
with 
herbicide: 
15 
Not 
sprayed: 25 
No data on 
C.I. 
available 

Calcifero
us nitric 
ammonia
: 2 
kg/tree.y
r 

Yes (no specific 
information given) 

No info given No info given No info 
given 

(Ponce et 
al., 2011) 

A25 cm×25 cm 
quadrat was 
thrown randomly 
20 times in each 
field, avoiding the 
edges and their 
proximities, May 
2008. 

May 
2008 

Iberian 
sclerophyllous 
and semi-
deciduous 
forests / Spain / 
Madrid 

Dryland 
cereals 
(wheat, 
barley, 
oat)  

ORG 20 9.4±4.0 
(SD) 

0 kg N/ha None (weed 
ploughing only) 

No info given No info given 1 – 2 
times per 
year 

 CON 20 3.4±1.8 
(SD) 

NPK: 
350±72 
kg/ha.  
 

Weed ploughing  
Clorsulfuron (7%): 
2–2.5 gha−1. April, 
May and July  

No info given No info given 2 – 4 
times per 
year 



 

 128 

CAN 
(27%): 
168±26kg
/ha 

Clortoluron (50%): 
3–4 l ha−1  
Gardel: 0.2 l ha−1  
Foramsulfuron: 
10gha−1. April, 
May and July 
Primafuron: 
20gha−1 

(Caballer
o-López 
et al., 
2010) 

In each field an 
80m transect was 
made diagonally 
across the centre 
of the field, 
starting at 55m 
from the edge. 
Within each 
transect, five 
1m×1m plots at 
20m intervals 
were surveyed. 

May - 
June 
2004 

Northeast Spain 
and Southern 
France 
Mediterranean 
forests / Spain / 
Barcelona  
 

Arable 
cereals 
(wheat, 
barley, 
legume) 
 
(but 60% 
of land 
dominate
d by 
woodlan
ds) 

ORG 40 8.12 (7.60-
8.65) 

<160 kg 
N/ha 

Mechanical  None None 2 – 3 
times per 
year, 20 
cm depth 

CON 40 3.05 (2.67-
3.43) 

~180 kg 
N/year 
pig slurry, 
<100 kg 
mineral N 
at times 

Glyphosate, 
glycine at 2.5 
Lha−1) and 2-4-D 
(2,4-
dichlorophenoxya
cetic at 1.3 Lha−1). 
Splendor 25 SC 
(Tralkoxidin at 1.6 
Lha−1). Oxytril 
(ioxinil, 
bromoxinil, plus 
mecoprop at 
2Lha−1) 

None None 3 times 
per year, 
15 cm 
depth 
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4.3.2 CALCULATION OF OCCUPATION CF FOR POTENTIAL PLANT SPECIES LOSS 

FROM LAND USE IN THE MEDITERRANEAN  

The same framework used in Knudsen et al. (2017) for estimating the impact of land occupation on plant 

species loss, expressed as Biodiversity Damage Potential (BDP), was used in the current study. In general, 

BDP can be calculated according to Eq. 1: 

 

BDP = CF × t × A                (Eq. 1) 

 

where CF is the characterization factor representing the potential disappeared fraction (PDF) of plant 

species richness under the specific land use compared to a reference scenario, t is the time frame under 

study, and A is the area under the specific land use. More detailed information on how CFs were estimated 

can be found in Knudsen et al. (2017).  

 

As a simplified explanation, the occupation CF expressing PDF was calculated as the relative loss in species 

richness, c, (Schryver and Goedkoop, 2010): 

 

𝐶𝐹 =  
𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒− 𝑐𝑖

𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
         (Eq. 2) 

 

The species richness factor c, can be estimated using the species number S in sample plot size A, and z is 

the species accumulation factor, based on the species-area relationship (Rosenzweig, 1995) 

𝑐 =  
𝑆

𝐴𝑧           (Eq. 3) 

 

Combining Eq. 2 and Eq. 3, occupation CFs for every land use type were calculated within every study and 

for every plot, i or baseline, using Eq. 4 

  

𝐶𝐹 = 1 − (
𝑆𝑖

𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 ×  

𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑧   

𝐴𝑖
𝑧 )        (Eq. 4) 
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Since the sampling area varied greatly among studies, the sampled species richness (Si) needed to be 

standardized to the same area. Eq.4 already does just this; it standardizes the Si to an area of 100 m2 by 

inherently incorporating the transformed power model of the species-area relationship proposed by Kier 

et al. (2005) and also used in Mueller et al. (2014) (Eq. 5), since the same baseline area was used across 

studies (100m2).  

𝑆100𝑚2 = 𝑆𝑆𝑎𝑚𝑝𝑙𝑒𝑑  × (
𝐴100𝑚2

𝐴𝑆𝑎𝑚𝑝𝑙𝑒𝑑
)

𝑧

       (Eq. 5) 

In regards to which z factor to use, De Schryver and Goedkoop (2010) recommended the use of a z value 

that varies with the area occupied and type of land use, in other words a variable z, in order to decrease 

model uncertainty. However, knowledge on these two parameters is often difficult to acquire. Otherwise, 

the model could be simplified by using a constant z value of 0.25, at the cost of increasing model 

uncertainty due to high variation in generic z values reported in literature. For example, (Schryver and 

Goedkoop, 2010) state that under the hierarchist cultural theory perspective, the z factor and its inherent 

variability is responsible for more than 80% of the parameter uncertainty. However, since the land area 

was not always available in the selected studies, nor were z values available in Schryver and Goedkoop 

(2010) for arable or perennial crops with plot samples of less than 100 m2 (some studies in Table 15 had 

plots less than this size), the constant value of 0.25 was chosen for z in the present study, similar to 

Knudsen et al. (2017). Nevertheless, the advantages of using a constant z value include: a more robust 

model that is independent of the LCI, CFs become more dependent on the difference between the cbaseline 

and ci (as opposed to land use type-independent and high sensitivity to regional effects), and can result in 

a higher number of significantly different CFs when using a constant z compared to a variable z (Schryver 

and Goedkoop, 2010). Furthermore, this constant z value is similar to those used in Koellner and Scholz 

(2008) to calculate CFs (z = 0.21), as well as z values for the Mediterranean forests, woodlands and scrub 

biome (z = 0.20, Kier et al., 2020). 

 

When plant species richness data were available per agricultural plot of the same crop within one study, 

plot-level CFs were calculated and averaged to give one CF for that land use type and country. Hereafter, 

the crops that were studied were aggregated into two crop groups, arable and perennial crops. The first 

crop group included wheat, barley, oat and entomophilic and/or bee attracting annual crops, and the 

second crop group included vineyards and olive trees.  
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4.3.3 STATISTICAL ANALYSIS  

Linear mixed-effects models were used to test the main effects - country, land use type (olives, vineyards, 

arable crops, hedges, grass strips), management (organic or conventional) and crop longevity (annual and 

perennial) – on corresponding CFs. A significant interaction between management and longevity would 

imply a differential response to management of annual versus perennial crops. The lme function 

implemented in the ‘‘nlme’’ package using a restricted maximum likelihood estimation procedure 

(Pinheiro et al., 2022) in R (R Development Core Team 2008, version 2.8.0) was used. To retrieve the p-

values associated with the F-values, ANOVA in the form of the function “anova-lme” (Pinheiro and Bates, 

2000) was used, where a p-value < 0.05 was considered significant. 

 

When data were available on management practices per plot in both organic and conventional fields (e.g., 

Lüscher et al., 2016), an independent two-sample t-test assuming unequal variances was used to check if 

the management practices (total average N input per ha, number of pesticide, herbicide, fungicide, 

insecticide applications per ha, number of mechanical field operations per ha) were significantly different 

between organic and conventional management per crop type. This data can be found in Table C-1. 

Otherwise, the average and range were used for comparison between management practices in the other 

studies. 

4.3.4 COMPARISON WITH OTHER STUDIES  

The only other recent study that had CFs for the Mediterranean biome was Chaudhary and Brooks (2018). 

However, this study did not have CFs for organic and conventional practices, but instead used three 

intensity levels, minimal, light and intense. Since minimal may correspond more closely to organic 

practices, and intense to conventional these levels were used in our comparisons. The only studies found 

that provided CFs for both organic and conventional production were Knudsen et al. (2017), Koellner and 

Scholz (2008), Mueller et al. (2014), De Schryver and Goedkoop (2010), and thus, were compared with the 

CFs in the current study. However, those studies were conducted in a different biome (Temperate 

Broadleaf and Mixed Forests) than the current study, and thus, absolute values could not be fully 

comparable, but the overall trends (if organic or conventional had higher CFs) were studied.  
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4.3.5 APPLICATION EXAMPLE  

The applicability of the newly calculated CFs for PDF of vascular plants in Mediterranean agricultural fields 

was demonstrated using the same studies from which the CFs were calculated in order to compare their 

effects on biodiversity damage. Only Caballero-López et al. (2010) and Solomou and Sfougaris (2011) had 

data for crop yields, hence these were used as application examples. The characteristics of each case study 

are summarized in Table 16. The biodiversity damage potential caused by 1 ton of crop cultivated in either 

organic or conventional management practices in the Mediterranean was calculated using the different 

CFs developed. 

 

Table 16. Characteristics of case studies used in the application example to calculate the Biodiversity Damage 

Potential per ton of crop yield. 

Country Spain Greece 

Study Caballero-López et 

al., 2010 

Solomou and Sfougaris, 

2011 

Location Montblanquet 

(41◦29'0.9''N, 

1◦7'16.4''E) 

Western Magnesia 

Prefecture (39°06'54.80"N, 

22°55' 16.32''E) 

Crop type Arable Olives  

Year data collected 2004 2007 

Time under land use type 

(yr) 

Org & Conv: 1 year Org & Conv: 10 years 

Mean yield (tons/ha) Org: 2.1 

Conv: 4.05 

Org: 10.3±0.79 

Conv: 11.4±0.2 

Land area (ha) Org: 2.19±0.3 

Conv: 4.08±0.8 

Org: 31.00 ±12.74a 

29.25 ±18.64b 

Conv: 43.00 ±21.11c 

39.25 ±20.95d 

Mean annual Temperature 

(°C) 

13 18.8 

Precipitation (mm) 450 350.3 

Soil type unknown metamorphic schist 

Altitude (m) 627 m.a.s.l. 50 m.a.s.l. 

a Measurements taken in farms that have been certified organic for 10 years. 

b Measurements taken in farms that have been certified organic for 6 years. 

c No herbicide spray applied 

d Herbicide spray applied 
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The objective of this simple example was to show the comparison of land occupation biodiversity impacts 

due to differing management practices (organic vs. conventional), calculated using the new CFs from the 

present study. 

Eq. 1 was used to calculate the BDP as a function of the CF, time, t, and area, A, under the specific land 

use, i, for each study. 

To estimate potential biodiversity damage per ton of crop yield, the product from Eq. 1 was divided by 

corresponding crop yields in each example study (Yi,study) for each land use type, i, using Eq. 6 

𝐵𝐷𝑃𝑠𝑡𝑢𝑑𝑦 =  
𝐶𝐹𝑠𝑡𝑢𝑑𝑦,𝑖 × 𝑡 × 𝐴𝑠𝑡𝑢𝑑𝑦,𝑖

𝑌𝑠𝑡𝑢𝑑𝑦,𝑖
 (Eq. 6) 

4.4 RESULTS 

4.4.1 LAND USE OCCUPATION CFS FOR PDF OF VASCULAR PLANT SPECIES  

Table 17 shows the average CFs calculated for each study, by land use type and management practice 

(organic or conventional). Through the statistical analysis, the CFs from the Lüscher et al. (2016) dataset 

showed significant effects for country (Spain, Italy, France) in the common land use types hedges (F2,35 = 

12.43, p = 0.0001) and grass strips (F1,35 = 11.91, p = 0.0015). However, there were no significant effects 

of management nor the interaction between management and country in these two land use types 

(hedges and grass strips). Significant effects were found for longevity (perennial or annual, F1,124 = 93.52, 

p < 0.0001) when analyzing the CFs for all crops.  

In regards to the CFs calculated for crop lines, the CFs for French arable crops showed significant effects 

of management (F1,14=18.74, p = 0.0007) and the interaction between land use type (hedges, grass strips 

and crop lines) and management (F2,132=5.57, p = 0.0047). Supporting these results, the CFs calculated 

from Caballero-López et al. (2010) for arable crops in Spain showed more pronounced significant effects 

of management (F1,75=242.92, p<0.0001).  

With respect to the CFs for perennial crops, the CFs for Spanish olives and Italian vineyards from Lüscher 

et al. (2016) data showed no significant effects of land use type (hedges, grass strips or crop lines) nor 

management (organic or conventional). Contradictory to these results, the CFs calculated from Puig-

Montserrat et al. (2017) for Spanish vineyards did show significant effects of management (F1,67=6.07, 

p=0.0163).  
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The studies by Nascimbene et al. (2012) for Spanish vineyards and Ponce et al. (2011) for Spanish cereals, 

did not have plot level data available, and thus no statistical tests could be performed. Nevertheless, both 

studies stated that a significant difference in vascular plant species richness was found between 

management practices, and plant richness was found to be influenced by the management type, vineyard 

or cereal cover and their interaction. Nascimbene et al. (2012) also found that the number of perennial 

plant species was higher in the grassland strips under ORG than CONV farming, while annual plant species 

richness was not affected by management. These two studies had similar CF values to the other studies 

with the same land use type, where Nascimbene et al., 2012 had exactly the same CFs as the Italian 

vineyards using (Lüscher et al., 2017) data and Ponce et al., 2011 was within the same range as the arable 

crop CFs in the studies by Caballero-López et al. (2010) and Lüscher et al. (2017).  

The CFs calculated using data from Solomou and Sfougaris (2011) for Greek olive production did not fall 

within the range of the other crop land use types, but were in fact much lower, even negative, meaning 

the average number of plant species was higher than the baseline land use type, indicating that it had 

higher biodiversity quality (with the exception of conventional farms sprayed with herbicide). This may be 

due to the baseline species richness count used; it may be useful for Spain, France and Italy, but possibly 

not for Greece which could have higher species richness counts in semi-natural areas. This region in 

Greece has a different type of ecoregion, Aegean and Western Turkey sclerophyllous and mixed forests, 

compared to the other selected studies in Table 15, where they were either Mediterranean forests or 

semi-deciduous forests, which may also explain the difference in CFs. 

Therefore, the analysis demonstrated that there was an overall effect of management (organic or 

conventional) in arable crop systems (CFs were highest under conventional management), but effect of 

management in perennial crops varied from one study to the next. 
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Table 17. Characterization factors (PDF/m2) for potential disappeared fraction of plant species in the different 

crops and management systems (organic or conventional) in four European Mediterranean countries  using the 

LCIA framework by Knudsen et al. (2017). Mean (95% confidence interval, where sample data was available). 

Study used for species 
richness data 

Country Land use type CF Organic CF Conv 

Lüscher et al. (2017) 
 

Spain Olives 0.14 (0.04-
0.24) 

0.10 (-0.05-
0.26) 

Lines of Tree & Scrub 0.54 (0.47-
0.61) 

0.47 (0.38-
0.56) 

France Arable 0.50 (0.44-
0.55) 

0.67 (0.62-
0.72) 

Lines of Tree & Scrub 0.54 (0.47-
0.61) 

0.47 (0.38-
0.56) 

Grass & Herbaceous strips 0.54 (0.49-
0.59) 

0.55 (0.47-
0.63) 

Italy Vineyards 0.13 (-0.02-
0.29) 

0.32 (0.22-
0.42) 

Hedges 0.65 (0.23-
1.07) 

0.62 (0.58-
0.66) 

Grass strips 0.28 (0.09-
0.47) 

0.47 (0.39-
0.55) 

Puig-Montserrat et al. 
(2017)  

Spain Vineyard 0.15 (0.01-
0.29) 

0.50 (0.46-
0.64) 

Grass strips -0.02 (-0.15-
0.11) 

0.30 (0.06-
0.54) 

Nascimbene et al. (2012) Italy Vineyards 0.13 0.32 

Solomou and Sfougaris 
(2011) 

Greece Olives -0.65a 
-0.22b 

-0.09c 
0.41d 

Ponce et al. (2011) Spain Arable, wheat and barley 0.24 0.72 

Caballero-López et al. 
(2010) 

Spain Arable, wheat 0.30 (0.26-
0.34) 

0.74 (0.71-
0.77) 

a Measurements taken in farms that have been certified organic for 10 years. 

b Measurements taken in farms that have been certified organic for 6 years. 

c No herbicide spray applied 

d Herbicide spray applied 

 

In regards to land use types in Lüscher et al. (2016), significantly higher CFs were found for lines of trees 

and scrub compared to olive crop lines in organically managed fields (p<0.05). However, there was no 

significant difference between these land use types in the conventionally managed fields, but this may be 

due to the low sample size from the lines of trees and scrub sites (n=5). For the arable farms in France, 

significantly higher CFs were found for arable crop lines compared to grass and herbaceous strips in CONV 
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management (p<0.05). No significant difference was found between land use types in the ORG fields. For 

the vineyards in Italy, significantly higher CFs were found for grass and herbaceous strips and hedges 

compared to the vineyard crop lines (p<0.05) in CONV managed fields. No significant difference was found 

between land use types in the ORG fields.  

Comparing CFs between crop systems, olive groves had lower CFs than vineyards in both ORG and CONV 

farms (p<0.05), and arable crops had higher CFs than both olive groves and vineyards in both ORG and 

CONV (p<0.05).  

In regards to the CFs calculated using data from Puig-Montserrat et al. (2017), no significant difference 

was found between the vineyard crop lines and grass strips. 

In general, the perennial crops tended to have lower CFs compared to arable crops, especially for the ORG 

farms, but to a lesser extent in the CONV farms studied. 

4.4.2 COMPARISON WITH OTHER STUDIES  

Table 18 and Table 19 show characterization factors for the land use types presented in this study 

compared to five other studies (Chaudhary and Brooks, 2018; Knudsen et al., 2017; Koellner and Scholz, 

2008; Mueller et al., 2014; Schryver and Goedkoop, 2010). Not all land use types are represented in the 

other studies. In general, all studies estimated lower CFs for ORG fields compared to CONV, similar to the 

present study. 

The organic and conventional arable crop CFs in the present study (Table 17) were similar to the studies 

by Koellner and Scholz (2008), Schryver and Goedkoop (2010), but higher than those in Mueller et al. 

(2014) (Table 18). The values are also comparable to the average values for intensive (ORG and CONV) 

agricultural production in Austria and Germany by Knudsen et al. (2017), but less comparable to the 

extensive production in Wales and, Hungary.  

Only Koellner and Scholz (2008) had CFs for perennial woody crops, where their values for vineyards were 

higher than in the present study, whereas olive groves had similar CFs to the olives in Spain, but higher 

than the olives in Greece in the present study. 

The CFs for hedges were much higher than in Knudsen et al. (2017), due to not only the higher baseline 

species richness in the present study but could also be due to the fact that some of the farms sampled in 

their study were managed quite extensively. However, direct comparisons cannot be made regarding 
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specific management practices between farms in the present study and Knudsen et al. (2017) since 

information regarding this was not available in their study. 

On the contrary, these CFs (as well as all the other CFs from the other studies) were much higher than the 

studies by Chaudhary and Brooks (2018), lying well outside their range (Table 19). Specifically, they were 

lower by an order of negative nine. This is mainly due to the inherent difference in modelling the PDF 

damage potential; Chaudhary and Brooks (2018) is a model for high-level ecoregion scale assessments, 

whereas the method used in the present study is useful for regional or site-level assessments. What 

caused the CFs in Chaudhary and Brooks (2018) to be much lower mathematically, is how they calculated 

their regional land occupation CFs, they multiplied an allocation factor by the projected species loss for a 

specific species in that ecoregion, divided by the area of that land use type in that ecoregion. The 

allocation factor (denoted as ai,j in their study, where i is the land use type and j is the ecoregion) 

represents the area share of a specific land use type (e.g., cropland) within a specific ecoregion (e.g., 

Northeast Spain and Southern France Mediterranean forest). Since the area of any land use type 

compared to the total area of an ecoregion would always be extremely small (even compared to the other 

variables that the CF depends on such as taxon affinity or management intensity), the final allocation 

factors ai,j would also be extremely small. This is the main reason why the CFs in Chaudhary and Brooks 

(2018) were consistently low on orders between -6 and -18. For example, in ecoregion AA0103, the area 

share of pasture would be 2.75x10-8, leading to a regional land occupation CF for amphibians of 4.56x10-

10. Therefore, the CFs in Chaudhary and Brooks (2018) rely much too heavily on the area share of a specific 

land use type, and not enough on taxon affinity or management intensity. 

Table 18. Average characterization factors (PDF/m2) for potential disappeared fraction of plant species in other 

studies. The studies that did not have available CFs for that land use type are represented with a hyphen (-). 

Land use type  Knudsen 
et al. 
(2017) 

Schryver 
and 
Goedkoop 
(2010) 

Mueller 
et al. 
(2014) 

Koellner 
and 
Scholz 
(2008) 

Arable crops Organic 0.29a 0.36 0.15 0.36 
 Conv. 0.68a 0.79 0.60 0.74 
Vineyards Organic - - - 0.42 

Conv. - - - 0.57 
Orchards/Groves Organic - - - 0.10 

Conv. - - - 0.13 
Hedges Organic -0.15 - - - 
 Conv. -0.02 - - - 

a Values based on Austria and Germany in Knudsen et al. (2017). 
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Table 19. Global land occupation characterization factors (97.5% confidence interval values) for plants on 

cropland per ecoregion and intensity type from Chaudhary and Brooks (2018). 

Ecoregion CF for cropland as potential species loss/m2 
per intensity type 
Minimal Light Intensive 

Mediterranean woodlands and 
forests 

5.76E-11 6.15E-11 6.15E-11 

Northeastern Spain & Southern 
France Mediterranean forests 

5.72E-10 6.11E-10 6.12E-10 

Southwest Iberian 
Mediterranean sclerophyllous 
and mixed forests 

6.52E-10 6.96E-10 6.97E-10 

Aegean & Western Turkey 
sclerophyllous and mixed 
forests 

3.61E-10 3.85E-10 3.86E-10 

 

4.4.3 APPLICATION EXAMPLE  

Using the yield data provided in the species richness studies used to calculate the CFs in the present study 

(Table 16), the biodiversity damage (BDP) potential was calculated for each respective study and 

management type using Eq. 6, shown in Figure 17 below. Not all studies provided yield data, thus the BDP 

was calculated only for those that did (Greek olives and Spanish cereals).  

 

Figure 17. Biodiversity damage potential for ORG (checker green) and CONV (blue lines) A) Spanish arable crops 

and B) Greek Olives using data from (Caballero-López et al., 2010; Solomou and Sfougaris, 2011), respectively. 

The ORG data from Solomou and Sfougaris, 2011 were from ORG farms 10 years after conversion and the CONV 

data were from farms sprayed with herbicide. 

 

The arable crops in Spain had lower BDP per ton in organic compared to conventional farms using data 

from (Caballero-López et al., 2010), despite CONV having higher yield. The same was found for the olive 
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production in Greece, the CONV production had higher yield, but the BDP was still lower for ORG practices 

(Figure 17), showing both were more dependent on the CF than on yield. 

Therefore, this simple example shows that the new CFs calculated from Caballero-López et al. (2010) and 

Solomou and Sfougaris (2011) were able to distinguish between the impact caused by different 

management practices in perennial crops in the European Mediterranean region. 

  

4.5 DISCUSSION 

4.5.1 MANAGEMENT PRACTICE  

To explain why there was no significant difference between the ORG and CONV CFs for perennial crops 

(Spanish olives and Italian vineyards) in the Luscher et al. (2016) data, the specific management practices 

were analyzed (Table D-1 in the Appendix). It was found that the CONV farms in both crops were quite 

extensively managed, with no significant difference between ORG and CONV farms in terms of fungicide 

and herbicide application, total N input and ploughing (p<0.05). The exception was herbicide application 

in Italian vineyards, where a significant difference in herbicide applications per ha was found between the 

ORG and CONV. However, the CONV farms that applied 0 or 1 applications per ha (compared to 2-4 

applications per ha in the other CONV farms) had the lowest CFs, hence lowering the overall mean for the 

CONV Italian vineyard CF. 

Additionally, many of the ORG (11/13) and CONV (13/18) olive farms in Luscher et al. (2016) were already 

covered with herbaceous vegetation or mid-phanerophytes as opposed to bare ground, thus adding to 

the fact that the CONV management was quite extensive. 

On the contrary, the CONV management practices in Nascimbene et al. (2012) and Puig-Montserrat et al. 

(2017) were quite intensive compared to ORG farms, where chemical herbicides were added in CONV 

2±1.4 glyphosate appl. per year and 0-2 times/yr in each study, respectively, compared to zero appl. per 

year in ORG (Table 15). Solomou and Sfougaris (2011) also used herbicides in CONV farms but no specific 

quantity or type was mentioned. The ORG farms in these three studies did not add any herbicide, opting 

only for mechanical weeding, sheep grazing or no treatment at all (Table 15). This explains the significant 

difference between ORG and CONV plant species richness within the studies themselves and in the CFs 

found in the results. 
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Thus, for the application of the new CFs, it is recommended that the practitioner find out if CONV practices 

(e.g., herbicide application, tillage, etc.) in perennial crops in the Mediterranean are significantly different 

from ORG, and if so, one can use CFs from Nascimbene et al. (2012), Puig-Montserrat et al. (2017), and 

Solomou and Sfougaris (2011). However, if the practices are similar (meaning CONV regimes are quite 

extensive), then CFs derived from the (Lüscher et al., 2016) study could be used. 

Additionally, the oversimplification of management practices into binary variables (ORG and CONV) and 

their interaction with continuous CF measures could have underestimated the effects of farming practices 

in perennial crops. The CFs may be more useful for perennial crops if non-binary variables were used to 

account for more levels of intensity. For example, in (Solomou and Sfougaris, 2011) they differentiated 

between CONV olives sprayed with herbicide and CONV not sprayed with herbicide, resulting in 

significantly different plant species richness. Additionally, tillage intensity has also been found to be an 

important factor for plant species richness in both perennial forage and annual crops (Martin et al., 2020) 

as well as in woody crops (Rey et al., 2019). Thus, till or no-till could be further land use sub-classes to 

include. Overall, the CFs developed in Table 17 are recommended for use in the Mediterranean, since they 

are based on real field measurements of multiple farms throughout the biome, and if the goal of a study 

is to look at the potential plant species loss for these crops at high-level across the Mediterranean, an 

average may be taken. However, it must be transparently reported the aforementioned points regarding 

differences in intensity where sometimes organic may be similar to conventional if the conventional 

practices are extensive. 

In terms of other indices for biodiversity management analyzed in the studies in Table 15, Puig-Montserrat 

et al. (2017) found that vegetation density was higher in ORG vineyards than CONV, where greater 

differences were found in grass strips compared to crop lines. In Italian vineyards, (Nascimbene et al., 

2012) found that overall species composition did not differ between ORG and CONV practices, and plant 

assemblages were also similar. In the olive groves in Greece, Solomou and Sfougaris (2011) found that 

beta diversity of herbaceous and woody plant species and density and cover of woody plants tended to 

be higher in ORG (after 10 years of conversion) compared to CONV. For arable crops in Spain, not only 

was weed richness higher in ORG compared to CONV, but also plant cover and abundance (Caballer-Lopez 

et al., 2010; Ponce et al., 2011). Ponce et al. (2011) found that the differences between ORG and CONV 

weed species richness found in their study were higher than those in northern latitudes, due to the overall 

richer weed flora in the Mediterranean region, and higher weed seed availability due to the 2-year 

rotation system typical practiced in Iberian dry cereal farmland. 
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Another trend worth mentioning is that the number of years after conversion to organic has been found 

to affect plant species richness in perennial crop fields, where richness was significantly higher after 10 

years of conversion to organic olive groves compared to six years (Solomou and Sfougaris, 2011), hence, 

affecting the CFs calculated from this data. This demonstrates that the number of years after conversion 

may be an important factor to consider when analyzing PDF in organic fields, and would require more 

research. Additionally, as mentioned in section 1.1.1, the yields of organic food products approach those 

of conventional ones as the time after conversion increases. Therefore, the increase in plant species 

richness compounded with the smaller yield gap between organic and conventional as time after 

conversion passes, could reduce the BDP of organic products even further. 

4.5.2 COMPARISON WITH OTHER APPROACHES  

In general, though the method used in the present study (based on Knudsen et al., 2017) was derived 

from the classic species-area-relationship (SAR) model (S=cAz), it still addresses important gaps in the 

classic model. These gaps include i) its inability to capture biodiversity change, ii) that it can 

over/underestimate results, iii) assumes that all natural areas converted to human-dominated areas 

become completely hostile to biodiversity, iv) it does not account for taxon affinity to land use types, and 

v) it does not account for habitat heterogeneity or vi) land use intensity. The method in Knudsen et al. 

(2017) addresses gap i by calculating species loss relative to semi-natural areas. Moreover, the classic-SAR 

model was found to be suitable and useful in the present study since real field measurements were used 

to estimate CFs for potential disappeared fraction of plants in organic and conventional fields, thus little 

inference is made regarding the actual PDF in the land use types assessed. Due to this bottom-up 

approach, the model in Knudsen et al. (2017) inherently addresses points ii, iii and iv, where these 

assumptions now become fact; the results are an actual reflection of real biodiversity measurements and 

not an over- or underestimation, and in the majority of the cases studied here, agriculture was hostile to 

biodiversity and plants had an affinity to grow in organic fields in general. Finally, it is able to account for 

gap vi) land use intensity, in the form of organic compared to conventional practices, as well as extensively 

or intensively managed conventional fields. However, the Knudsen et al. (2017) model cannot address gap 

v) landscape heterogeneity, which is further discussed in Section 4.5.5.  

A general intrinsic issue with top-down approaches such as in Chaudhary & Brooks (2018) is that the model 

always needs to be validated by real biodiversity data, whereas, bottom-up approaches such as that taken 

in Knudsen et al. (2017) is already bottom-up, thus inherently validated for those specific regions. In the 

case of Chaudhary & Brooks (2018), they model extinction predictions which needs to be validated against 
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real data, and its performance evaluated using different goodness fit metrics. Additionally, agricultural 

land use types are aggregated into broad classes, cropland and pasture. This is the proportion of the total 

area of cropland or pasture in a particular ecoregion, thus is a mixture of many types of crops, e.g., 

vegetables, perennial and arable crops, and different pastures, e.g., monocots and mixed. However, 

according to our results, some organic CFs for biodiversity loss can be significantly different or similar to 

conventional CFs depending on the type of crop (arable or perennial). This would need to be disaggregated 

into crop groups in order to attain more robust CFs for different management systems such as organic 

and conventional agriculture. A previous version of the model (Chaudhary et al., 2015) did include further 

land use classes (e.g., annual, perennial, organic farms, etc.) by translating country-level proportions of 

annual and perennial crops to ecoregion level. However, this upscaling can introduce further unknown 

amounts of uncertainty, thus the updated model (Chaudhary and Brooks, 2018) opted to use broader 

intensity classes that were based on direct, unscaled data. Chaudhary and Brooks (2018) state that future 

studies should include further land use classes, but new high-resolution, harmonized and validated land 

use maps with different intensity types are needed. Field management practices are aggregated into three 

intensity levels, minimal, light and intense use per ecoregion. They state that organic farms in developed 

countries as well as high-intensity farms in developing countries would often fall under the light intensity 

category. However, the light intensity category may include the addition of mineral fertilizers and 

synthetic pesticide application, which is not authorized in the EU organic regulations, and which are 

important parameters that could affect plant species richness and subsequent under-estimation of CFs. 

Again, it must be noted that the model by Chaudhary and Brooks (2018) was meant to be used for global, 

high-level assessments, and should be used as so, and site-level assessments should use models such as 

in the present study or those in Table 18. 

In relation to plant species loss, the Chaudhary and Brooks (2018) model did not calculate taxon affinity 

to specific land use intensity types (referred to as variable h in their study) due to a lack of data for all 

plant species in the IUCN Habitat Classification Scheme (International Union for Conservation of Nature, 

2015). Instead only the fractional relative richness from Newbold et al. (2015) was used as a proxy, which 

was based on a limited number of field studies, hence adding more uncertainty to this variable. 

Another limitation relevant to management practices was that the fractional relative richness factors 

(referred to as variable fRR) were taxa and region generic. This means that this variable did not take into 

account the sensitivity of one taxon to different intensity levels, and the authors mention that this may 

be the reason why the CFs calculated in their study do not differ much across the three intensity levels.  
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Therefore, top-down approaches are useful for global metrics, showing high-level trends, whereas, 

bottom-up approaches are useful for field-level metrics.  

If a mix of the two approaches were to be made, the Chaudhary and Brooks (2018) model could be 

adapted to include organic and further crop land use types, where the most important variables that 

would need to be recalculated include: 

• 𝑝𝑖,𝑗
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

 (Proportion of total broad land use area under a particular intensity level (minimal, light or 

intense use). To adapt this to the proportion of total arable or perennial cropland area under organic 

or conventional management, FiBL, the Swiss Research Institute of Organic Agriculture, or FAOSTAT 

(https://www.fao.org/faostat/en/) could provide such data. 

• f-RR (fractional relative richness, the local species richness in a specific land use type and intensity 

divided by the average local species richness in the corresponding broad land use type): studies such 

as the ones used in the present study could be used (Table 15), especially Lüscher et al. (2016) which 

collected data across 13 European countries using standardized measurement methods. However, 

further research and data would be needed to apply this to other regions outside of Europe.  

The study proposed by Lindner et al. (2019) provides a biodiversity LCIA framework that can 

differentiate between specific management practices in more detail and could contribute to defining 

intensity levels more accurately. However, it is a top-down method that generalizes biodiversity loss 

and the biodiversity variable they estimate is not inherently testable, meaning the values they 

calculate cannot be proved with on-field measurements. Testing was planned for this method in this 

thesis, however, the data requirements are very high (14 metrics from diversity of weeds, structures, 

and soil conservation measures, material and PPP inputs), or the metric/units were not very clear or 

well explained (e.g., existence of rarer species in units of %time, crop rotation in units of points). Also, 

it was not clear to me how some variables in their study were calculated, for example, how they decide 

on the hemeroby levels (LU max, LU min), i.e. which ranges should be used for which LU types, and 

how Qmin and Qmax are calculated calculated, and when to use the “AND” operation (equation 2 in 

their work) or the “OR” operation (equation 3) when calculating z(y). More guidance would be helpful 

in the application of this model.  
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4.5.3 BASELINE SITUATION  

In general, the Mediterranean biome has the highest plant species richness in the world outside of the 

tropics, being higher than temperate regions (Cowling et al., 1996; Gerstner et al., 2017; Rundel et al., 

2016). Furthermore, negative biodiversity responses to land use change were found to be strongest in 

tropical and Mediterranean biomes globally, where the average reduction in species richness for 

harvested croplands (woody plantations and herbaceous croplands) compared to primary vegetation, 

were between 20 and 40% (Newbold et al., 2020). This study also found that species richness loss 

increases with greater human disturbance, which is therefore particularly applicable to the EU-27 where 

humans continue to dominate the land with over 47% (EC, 2007a) used as arable or pastoral farming. This 

would account for the higher species richness found in the baseline scenario in the present study 

compared to the other LCA studies that calculated CFs for ORG and CONV farms (Knudsen et al., 2017; 

Mueller et al., 2014; Schryver and Goedkoop, 2010). Thus, it is especially important to monitor and provide 

estimates for biodiversity change in the Mediterranean given its ecological importance and sensitivity to 

land use change, in which the present study intended to address and provide insight into what types of 

land use may lower biodiversity damage. 

4.5.4 CROP TYPE  

In general, it was found that perennial crops had lower CFs than arable crops, which is substantiated in 

Martin et al. (2020), where higher biodiversity was found in perennial crops compared to annual, 

however, more pronounced if perennial crops were untilled and annual crops tilled.  This is likely due to 

the fact that perennial crops, such as olives and vineyards are subject to lower levels and lower need of 

disturbance and is more stable over time than annual crops (Asbjornsen et al., 2014). Perhaps this may 

change for fruit trees if they are cultivated more intensively. Nevertheless, perennialization, the practice 

of incorporating small amounts of perennial vegetation in strategic locations within fields dominated by 

annual crops, is a recommended practice that can increase a wide variety of ecosystem services, such as 

biodiversity, hydrologic services, pollination, control of pests, prevent erosion, and provide a wide variety 

of food and fuel (Asbjornsen et al., 2014). However, it must be kept in mind that a monoculture of 

perennial or perennial crops can have a larger detrimental effect compared to diverse mixtures of 

perennial species interplanted with other crops or cover, as the latter offers more habitat types for 

predators that attack pests. Thus, although perennial crops may have lower PDF of plant species 

compared to arable, it could be improved by making the cropland more ecologically diverse. 
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4.5.5 LIMITATIONS  

Since the data used in the present study was so localized, the uncertainty of the CFs increases when 

extrapolated to larger scales, like the Mediterranean biome. This is similar to the uncertainty in CFs for 

top-down approaches when applied to local situations. Thus, the CFs estimated in the present study 

should be carefully used, and applied up to the ecoregion level (ecoregions given in Table 15), but in the 

future more data would be needed to be able to apply CFs at biome level with higher certainty. 

The CFs used in the present study were created using a constant z value, and because there is high 

uncertainty associated with constant z values due to high variability (between 0.12 and 1.00), the CFs 

should only be used for relative or comparative studies, and not be used as absolute values and in 

weighting or normalizing steps. This was recommended by Schryver and Goedkoop (2010) in their article 

analyzing the uncertainties in choosing different z values on biodiversity assessments.  

Unlike in Knudsen et al. (2017), data used in the present study was not gathered via a standardized 

sampling method, rather it was based on secondary data from different studies, using different 

techniques. However, the data from Lüscher et al. (2016) were all gathered using the same standardized 

sampling method as in Knudsen et al. (2017). The data from Lüscher et al. (2016) is quite valuable in this 

aspect, as well as having data for many other countries and regions other than the Mediterranean and 

Temperate Broadleaf and Mixed Forest biome (studied in Knudsen et al., 2017). Therefore, more CFs may 

be calculated using their dataset and the bottom-up method proposed by Knudsen et al. (2017) and since 

biodiversity is becoming a more popular and pertinent issue, more data will become available in the 

future. Nevertheless, the meta-study by Tuck et al. (2014) found that ORG increases biodiversity by ~30% 

compared to CONV, and this was consistent even across sampling scales. 

Another limitation associated with the CFs developed in this study, as well as the other LCA studies that 

also developed PDF CFs (listed in Table 18) is that the complexity and diversity of the ecological structures 

in the landscape, or in other words, landscape heterogeneity was not accounted for. Farmland 

heterogeneity can have similar or larger effects on field biodiversity than management practices used in 

the crop fields (Martin et al., 2020). For example, structures like hedges can increase local plant, pollinator 

and bird biodiversity (Hole et al., 2005; Puig-Montserrat et al., 2017; Rey et al., 2019; Vickery et al., 2009), 

and play an important role in protection of natural predators of pests. Specifically for olive groves in Spain, 

plant species richness was higher in extensive compared to intensive management and increased with 

landscape complexity in both types of management. In fact, no saturation point was found for plant 
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species richness as landscape complexity increased, as it can support more plant niches (Rey et al., 2019). 

Therefore, intensively managed olive groves in simple landscapes suffer a more significant loss of 

biodiversity compared to complex landscapes, consistently across different groups of organisms. This is 

particularly relevant to Spain, where the current Common Agricultural Policy (CAP) assumes that woody 

croplands like olive groves are inherently semi-natural, thus requirements to achieve biodiverse 

landscapes in this type of cultivation are quite relaxed, which is evidently inadequate in terms of 

biodiversity (Rey et al., 2019). These authors also found that ORG olive cultivation in Spain is often of 

lower productivity within complex landscapes, and infrequently found in highly productive systems within 

simple and intermediate landscapes, where the latter could enhance biodiversity more efficiently. Thus, 

more data would be needed with plant species richness measurements in farms with varying landscape 

complexity (e.g., simple, intermediate, complex), to create CFs that can differentiate between levels of 

heterogeneity. An example of a model that does account for habitat heterogeneity is Kuipers et al. (2021), 

but as mentioned previously in Chapter 3, this is only done from the top-down. 

The authors of the present study recognize that current methods in LCA, including the methods used here, 

are based on indicators that reflect changes in compositional aspects of biodiversity, namely species 

richness. However, biodiversity is also physical organization of elements and ecological and evolutionary 

process acting among elements (i.e., functional biodiversity). Thus, further research (and data) is needed 

to include these other aspects of biodiversity in the framework. 

Finally, the present study used plants as a proxy for biodiversity, as they create and shape terrestrial 

ecosystems and its diversity correlates highly with other species groups' diversity (Duelli and Obrist, 1998). 

Specifically, arthropod richness and abundance was higher in ORG compared to CONV arable crop fields 

due to the higher plant species richness in ORG fields (Caballero-López et al., 2010; Ponce et al., 2011). 

Moreover, plants and other less mobile taxa are most affected by ORG practices as they are strictly reliant 

on soil or plant conditions, compared to highly mobile taxa like birds (Puig-Montserrat et al., 2017). 

However, we recognize that many other less mobile taxa, such as invertebrates and arthropods, should 

be considered and new CFs should be made for these taxa in the future.   
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4.6 CONCLUSION 

The impact of ORG compared to CONV farming on local plant biodiversity in the Mediterranean can be 

differentiated in arable crops, but could not be differentiated in perennial crops such as olive and 

vineyard, based on the available studies, since they were highly dependent on intensity of management 

practices, despite if the farm was ORG or CONV. Further research is needed to create more land use sub-

classes for woody perennial crops to account for other important drivers such as herbicide application 

levels and tillage intensity, especially in CONV, as well as landscape heterogeneity in both ORG and CONV. 

Nevertheless, CFs derived, bottom-up, from real field measurements of species richness ensures higher 

certainty of the results, thus this method would be recommended for use to develop new CFs for those 

land use types lacking CFs. Though this may be data intensive, more and more data on biodiversity is 

becoming available, so in the future, development of more CFs is viable, even with further land use sub-

classes. 
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CHAPTER 5 

5 MAIN CONCLUSIONS OF THE THESIS 

5.1 GENERAL CONCLUSIONS 

This thesis highlights some methodological issues in LCA, specifically in application to organic agricultural 

production systems. For example, when carrying out a LCA of organic products, the typical issues usually 

come to light, where the impacts are very high compared to conventional using product-based functional 

units, and the reverse using land-based functional units. However, I found through my PhD research that 

the picture is not so black-and-white, due to methodological limitations of LCA. There is a grave lack of 

data or high variation of data in general regarding inputs used for organic products. In addition, datasets 

for important inputs like plant protection products and organic fertilizers, and their associated emission 

outputs are deficient. Not accounting for these in LCA shows that the inventories may not be fully 

representative. In addition, biodiversity indicators are not often reported in many LCAs of organic 

products as there is no consensus on which model to use, and the currently recommended models have 

not been tested or no clear guidance has been given on their use. Properly including ecosystem services 

like biodiversity may help decrease the “yield gap” between organic and conventional agriculture (refer 

to section 1.1.1), since it would help paint a larger picture of impacts. Therefore, returning to the initial 

research question, “how can LCA been improved in order to accurately and comprehensively account for 

the environmental impact of organic agricultural systems?” (Section 1.3) I believe this thesis provides a 

first step in improving LCA through the improvement of LCIs for organic crops, provides guidance on LCIA 

biodiversity model use and provision of new CFs for organic crops in the Mediterranean. 

More specifically, the following sections describe how the original objectives of the thesis (Section 1.3) 

were achieved, by organizing them into three main sections based on chapters 2, 3 and 4:  

1. Critical analysis of state-of-the-art organic crop LCI datasets, analyzing the gaps and suggesting 

improvements. 

2. Enhancing life cycle impact assessment methodology for biodiversity assessments due to 

agricultural land use. 

3. Develop characterization factors for organic and conventional agricultural land use types in the 

European Mediterranean biome using bottom-up modelling techniques. 
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Furthermore, general future research ideas that came out as a result of this these are found in the last 

section 5.5. 

5.2 CRITICAL ANALYSIS OF STATE-OF-THE-ART ORGANIC CROP LCI DATASETS, 

ANALYZING THE GAPS AND SUGGESTING IMPROVEMENTS.  

Objective 1a: What are the challenges in state-of-the-art life cycle inventory modelling of organic food 

products?  

• Unrepresentative plant protection product manufacturing and organic fertilizer treatment inventories 

in ecoinvent and AGRIBALYSE® databases were found to be the principal limitations in the LCIs of 

organic crop products. This was due to the use of unrepresentative proxies, lack of available usage 

statistics or were excluded from the study all together. Use of unrepresentative proxies like mineral 

fertilizers or synthetic pesticides can contribute between 4 – 78% to resource and energy-related 

impact categories. 

• It was found that emissions from fertilizer and plant protection product application were modelled 

using simplified modelling assumptions, such as the exclusion of application technique (e.g., injection 

or broadspray) when modelling ammonia emissions to air. 

• These crucial aspects can be transferred to respective LCAs that use these LCI datasets, thus, this 

chapter informs practitioners of these significant limitations. 

Objective 1b: How can LCI modelling be improved? 

• New manufacturing LCIs were provided for some widely used plant protection products in organic 

farming (e.g., Bacillus thuringiensis, chitosan, Spinosad), as well as recommendations for fertilizer 

treatment LCIs and more accurate emission models. 

5.2.1 FURTHER RESEARCH  

• Many manufacturing LCIs are still required for other natural plant protection products used in OA, 

such as mineral oil, predatory insects like Nesidiocoris tenuis, plant oil extracts like Reynoutria 

sachalinensis or oregano. 

• The fate of application emissions of biological control agents and other natural PPPs need further 

research. 
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• A consensus must be made on how manure is allocated between livestock farm and field application, 

especially when it is converted into a valuable product. 

• More regional LCIs for organic residue treatment need to be developed for more certain LCAs for OA.  

5.3 ENHANCING LIFE CYCLE IMPACT ASSESSMENT METHODOLOGY FOR 

BIODIVERSITY ASSESSMENTS DUE TO AGRICULTURAL LAND USE.  

Objective 2a: What are the challenges and strengths of currently recommended LCIA biodiversity loss 

models for evaluating the environmental impact of food products like livestock products? 

• The top-down approaches were influenced more by the area of the land use type than the species 

affinity or management practices for example, therefore, seems that it is more important saving land 

area than changing land use practices. Nevertheless, if we are to transition towards sustainable 

agricultural practices, we should use models that are able to estimate the impacts due to practices, 

and not broad land use types within an ecoregion.  

• Bottom-up models rely on good quality and quantity of data, with it being very data intensive. More 

often than not, not enough data is available to use these models to yield sufficiently reliable CFs. 

Objective 2b: How can currently recommended LCIA biodiversity loss models be used in different spatial 

modelling contexts, like top-down and bottom-up scaling approaches? 

• Top-down approaches are useful for global value chains such as livestock production, due to their 

global-based data and characterization factors (CFs) on ecoregion level. These are useful if the goal 

and scope of the study is a general hotspot analysis of both the value chain and species type, however, 

should not be applied at local or farm level, as the uncertainty would greatly increase. The CFs are 

based on extinction predictions; thus, biodiversity loss is inferred. 

• Bottom-up approaches may be more suitable for comparisons between agricultural practices since 

the CFs for arable crops and pasture are statistically significant from each other, in addition to the fact 

that they are based on real field data from farmland and management practices are included. 

However, more data is needed to apply this to many spatial scales due to its high site-specificity. 
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5.3.1 FURTHER RESEARCH  

Objective 2c: What further research is required to improve these models? 

• The study by Kuipers et al. (2021) would benefit by integrating management practices into the CFs, as 

well as CFs for plants as this taxon is often the most affected. These would make this model much 

more well-rounded and results would be able to be compared more precisely to Chaudhary and 

Brooks (2018). 

• Site-specificity needs to be improved for both top-down models, Chaudhary and Brooks (2018) and 

Kuipers et al. (2021), especially because they could not differentiate well between cropland and 

pasture CFs. 

• More investment in data collection must be made if more certain assessments via bottom-up 

approaches are to be made, such as automatic species identification using machine learning. 

• Other pressures on biodiversity loss besides land use should be integrated into LCIA such as climate 

change, invasive and non-native species, pollution, use of water bodies, direct exploitation of 

organisms, and indirect pressures such as people’s disconnect with nature and lack of value and 

importance of nature. 

• Instead of semi-natural forests, different reference states should be used for pasture land use types 

such as natural grassland or meadows since extensive grazing is needed to promote grassland 

biodiversity and suppress forest succession. 

• Specifically for livestock products, the system is multi-functional especially for organically managed 

systems where they may function to supply ecosystem services such as food production, 

conservation/ecological intrinsic value, and cultural and financial functions. These are often not 

included in LCA, and should be embedded somehow, where some suggestions were given. 

• This may be a useful tool for the land-sparing/land-sharing debate, where more research can be done 

to include landscape complexity and interconnectivity between natural “spared land” and agricultural 

land (found to be complementary to conserving biodiversity, discussed in the introduction section 

1.2.2) , whereas as the model stands, only fragmentation is assessed rather than interconnectivity of 

landscapes.  
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5.4 DEVELOP CHARACTERIZATION FACTORS FOR ORGANIC AND CONVENTIONAL 

AGRICULTURAL LAND USE TYPES IN THE EUROPEAN MEDITERRANEAN BIOME 

USING BOTTOM-UP MODELLING TECHNIQUES.  

Objective 3a: Using the findings from objective 2 above, what bottom-up model would be most suitable 

to develop characterization factors for organic and conventional agricultural land use types? 

• The model by Knudsen et al. (2017) was chosen as it is based on the ecological relationship, the 

species-area-relationship, was easy to use practically (not very data intensive), inherently includes 

management practice effects as two different practices were tested (ORG vs CONV) and are based on 

field measurements of species richness. This ensures higher certainty of the results, where no validity 

tests need to be done. However, these CFs are quite localized and care must be taken if applying them 

to a higher geographic scale. Another limitation is that it does not account for habitat fragmentation 

unlike the SHR in Kuipers et al. (2021) or heterogeneity. 

Objective 3b: What is the potential species loss of organisms due to organic and conventional 

agricultural land use types for European Mediterranean crops like olives, vineyards and cereals? 

• The developed characterization factors (CFs) for organic arable crops were significantly lower than 

conventional arable crops in all countries studied. 

• Some of the CFs for perennial crops, however, could not be distinguished between organic and 

conventional practices, unless these practices were further subdivided into subclasses of organic 

intensive/extensive and conventional intensive/extensive, due to the conventional practices being 

quite extensive in general. The CFs for organic extensive perennial crops could not be differentiated 

from conventional extensive, whereas, organic intensive could be differentiated from conventional 

intensive. From this, also comes the idea that the issue may lie in defining what “conventional” 

agriculture is, should “extensive conventional” be categorized with organic since PSL values are very 

similar, even though it is not actually certified organic? This would require more research into the 

other impact categories to see if there is no significant difference between them as well. Thus, better 

terminology that could be used is organic compared to “non-organic” since organic systems have very 

clear regulations in place. 

• Using two case studies, one for arable crops in Spain and one for olives in Greece, organic crops had 

lower biodiversity damage potential than conventional in both case studies, despite the conventional 
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farms having higher yield. This shows that the CFs had a greater influence on the impact than the 

yield. 

5.4.1 FURTHER RESEARCH  

Objective 3c: What further research is required to improve this model? 

• More biodiversity data must be collected for this model to be used and applied to other countries and 

scales due to its high site-specificity. The data collection techniques should be standardized to 

increase consistency and comparability. Automatic biodiversity monitoring would aid the collection 

of data such as machine learning for species identification. 

• Integrate critically threatened or common species into the framework, so that the BDP could be 

distinguished among land use types that have similar species numbers but different number of 

threatened species. 

• Research into how to include landscape complexity such as fragmentation in the model, such as 

including further land use subclasses like organic, extensive, complex/simple/mixed. 

• CFs for pasture in different Mediterranean ecoregions also need to be developed using bottom-up 

approaches like Knudsen et al. (2017). 

• Develop more CFs for different taxon using this model, especially those that have a high affinity for 

agricultural land use types and that are highly affected by agricultural practices, such as invertebrates 

and arthropods. 

5.5 GENERAL FUTURE RESEARCH IDEAS 

The main research question posed can be quite broad, and through my PhD research, many other 

limitations that could not be addressed came to light. Thus, here I will discuss other important future 

research ideas, on how LCA can be improved in order to accurately and comprehensively account for the 

environmental impact of organic agricultural systems? 

One of the other pressures that contribute to biodiversity loss is pollution, due to the toxicity effects it 

has on organisms exposed to it. The principal model used for toxicity impacts in LCA is the USEToxTM model 

(Rosenbaum et al. (2008), https://usetox.org/), specifically for freshwater ecotoxicity and human toxicity. 

Since the main differences between organic and “non-organic” systems are the use of synthetic pesticides 

and fertilizers, it would be important to explore toxicity effects of these in the future.  Initially, work was 

planned to research this, especially in developing new characterization factors for plant protection 
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products that have missing CFs. For example, in the project Operationalising Life Cycle Assessment of 

Pesticides (OLCA-Pest) with the Danish Technical University 

(https://www.sustainability.man.dtu.dk/english/research/qsa/research/research-projects/olca-pest), it 

was planned to assess many PPPs used in OA such as plant-derived essential oils, or biological pest controls 

in the Deliverable 2.2, of which I am co-author 

(https://www.sustainability.man.dtu.dk/english/research/qsa/research/research-projects/-

/media/2B43946E542C49EEB3F8E6B20753034E.ashx). 

Similar to this, LCA focuses only on one pressure that causes biodiversity loss, land use. It does not include 

the other pressures such as invasive species and non-native species, climate changes associated with 

global warming, and overexploitation (extreme hunting and fishing pressure). The taskforce Global Life 

Cycle Impact Assessment Method (GLAM, https://www.lifecycleinitiative.org/category/glam/) are 

currently working on integrating climate change pressures into biodiversity loss models, but further work 

is still needed on invasive and non-native species as well as over exploitation. 

Another important aspect that is extremely important to consider is the critical analysis of organic 

livestock inventory and how to include various ecosystem services into the LCA. Main differences between 

organic and “non-organic” livestock systems is the space and quality of the space given to the animals 

(higher ha per animal, and must be clean and have access to outdoors), the use of antibiotics, general 

welfare is also taken into account, among many others mentioned in Chapter 3. It would be interesting to 

see if/how these are modelled and how they may contribute to the LCA results. Currently, pharmaceutical 

products such as hormones and antibiotics, veterinary treatment and artificial insemination are not 

included in the LCI of many databases like AGRIBALYSE and ecoinvent, either due to no available 

secondary datasets for the pharmaceutical products and/or there are no LCIA methods to manage the 

impacts of the flow, which has been found to be one of the major gaps in the LCA of PhACs (Emara et al., 

2019). This is one of the main differences between OA and CA, where the use of PhACs is limited to 

treatment and limited in quantity in OA, whereas in CA it is used for control, prevention and treatment, 

and sometimes as growth promoters. The livestock sector is estimated to account for 70-80% of total 

PhAC consumption worldwide (calculated from (Boeckel et al., 2017; Walpole et al., 2012), demonstrating 

its significance. Life cycle inventories for production and impact pathways for emissions should be 

included as their highly specialized production can be associated with higher energy consumption and 

related impacts from synthesis processes than other chemicals (Wernet et al., 2010) and their emission 

could have impacts on the environment and human health, having been found in waterways (Arikan et 

https://www.sustainability.man.dtu.dk/english/research/qsa/research/research-projects/olca-pest
https://www.sustainability.man.dtu.dk/english/research/qsa/research/research-projects/-/media/2B43946E542C49EEB3F8E6B20753034E.ashx
https://www.sustainability.man.dtu.dk/english/research/qsa/research/research-projects/-/media/2B43946E542C49EEB3F8E6B20753034E.ashx
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al., 2008; Daghrir and Drogui, 2013), and as residues left in meat products, causing anti-microbial 

resistance in the environmental and in humans as well as allergic reactions (Almashhadany et al., 2022; 

Manyi-Loh et al., 2018; O’Niell, 2016).  

Life cycle inventories have been created for select pharmaceutical products (Cespi et al., 2015; De Soete 

et al., 2014) and can serve as a guide on how to build more LCIs. A review on state-of-the-art PhAC 

inventory, emissions modelling and life cycle impact characterization modeling was conducted in Emara 

et al. (2019), with suggestions proposed for PhAC inclusion. Additionally, 27 new CFs for many PhACs have 

been created (Ortiz et al., 2017) which add to the 60 already available CFs in the USEToxTM characterization 

model used in the EF LCIA method for toxicity, which can also spur the inclusion of PhACs in LCA. 

Furthermore, other factors or functions should be taken into consideration for livestock husbandry due 

to their inherent importance, impact and stark difference between OA and CA - landscape complexity, 

grassland biodiversity, aesthetics and animal welfare. OA can have clear advantages in these indicators in 

grassland farming in Germany for example, as more grassland species were found, aesthetics are more 

appealing according to German standards, and welfare is managed better, although a wide range of 

indices were found for these categories and are partly independent of the farming system e.g. the use of 

hedges (Haas et al., 2001). Mattsson et al. (2000) also states that in Sweden, the use of grassland as 

opposed to only feed concentrate, is viewed positively as it “promotes the domestic environmental goals 

of biodiversity and aesthetics,” but also shows that this category can be subjective to cultural values. 

Including these somehow in either the functional unit, or LCIA modelling would be essential, and may help 

reduce the “yield-gap” between OA and CA. 
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A. APPENDIX 

 

Table A-1. Plant protection products authorised under Regulation (EEC) No 2092/91 and carried over by Article 

16(3)(c) of Regulation (EC) No 834/2007 (European Commission, 2008a). 

Name Description, compositional requirement, conditions for use 

Azadirachtin extracted from 

Azadirachta indica (Neem tree 

Insecticide 

Beeswax Pruning agent 

Gelatine Insecticide 

Hydrolysed proteins Attractant, only in authorized applications in combination 

with other appropriate products of this list 

Lecithin Fungicide 

Plant oils (e.g., mint oil, pine oil, 

caraway oil) 

Insecticide, acaricide, fungicide and sprout inhibitor 

Pyrethrins extracted from 

Chrysanthemum 

cinerariaefolium 

Insecticide 

Quassia extracted from Quassia 

amara 

Insecticide, repellent 

Microorganisms (bacteria, 

viruses and fungi) 

 

Spinosad Insecticide Only where measures are taken to minimize the 

risk to key parasitoids and to minimize the risk of 

development of resistance 

Diammonium phosphate Attractant, only in traps 

Pheromones Attractant; sexual behaviour disrupter; only in traps and 

dispensers 

Pyrethroids (only deltamethrin 

or lambdacyhalothrin) 

Insecticide; only in traps with specific attractants; only 

against Bactrocera oleae and Ceratitis capitata Wied 

Ferric phosphate (iron (III) 

orthophosphate) 

Molluscicide 

Copper in the form of copper 

hydroxide, copper oxychloride, 

Fungicide. up to 6 kg copper per ha per year 
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(tribasic) copper sulphate, 

cuprous oxide, copper 

octanoate 

For perennial crops, Member States may, by derogation 

from the previous paragraph, provide that the 6 kg copper 

limit can be exceeded in a given year provided that the 

average quantity actually used over a 5-year period 

consisting of that year and of the four preceding years does 

not exceed 6 kg 

Ethylene Degreening bananas, kiwis and kakis; Degreening of citrus 

fruit only as part of a strategy for the prevention of fruit fly 

damage in citrus; Flower induction of pineapple; sprouting 

inhibition in potatoes and onions 

Fatty acid potassium salt (soft 

soap) 

Insecticide 

Potassium aluminium 

(aluminium sulphate) (Kalinite) 

Prevention of ripening of bananas 

Lime sulphur (calcium 

polysulphide) 

Fungicide, insecticide, acaricide 

Paraffin oil Insecticide, acaricide 

Mineral oils Insecticide, fungicide; only in fruit trees, vines, olive trees 

and tropical crops (e.g., bananas); 

Potassium permanganate Fungicide, bactericide; only in fruit trees, olive trees and 

vines. 

Quartz sand Repellent 

Sulphur Fungicide, acaricide, repellent 

Calcium hydroxide Fungicide Only in fruit trees, including nurseries, to control 

Nectria galligena 

Potassium bicarbonate Fungicide 
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Table A-2. Minimum surface areas indoors and outdoors and other characteristics of housing in the different 

species and types of production referred to in Article 10(4) for Bovines, equidae, ovine, caprine and porcine 

(European Commission, 2008a). 

 Indoors area (net area available to animals) Outdoors area 

(exercise area, 

excluding pasturage) 

Animal type Live weight minimum 

(kg) 

m2/head m2/head 

Breeding and 

fattening bovine and 

equidae 

Up to 100 1.5 1.1 

Up to 200 2.5 1.9 

Up to 350 4.0 3 

Over 350 5 with a minimum of 

1 m2/100 kg 

3.7 with a minimum 

of 0.75 m2/ 100 kg 

Dairy cows  6 4.5 

Bulls for breeding  10 30 

Sheep and goats  1.5 sheep/goat 2.5 

  0.35 lamb/kid 0.5 

Farrowing sows with 

piglets up to 40 days 

 7.5 sow 2.5 

Fattening pigs Up to 50 0.8 0.6 

Up to 85 1.1 0.8 

Up to 110 1.3 1 

Piglets Over 40 days and up 

to 30 kg 

0.6 0.4 

Brood pigs  2.5 female 1.9 

 6 male If pens are 

used for natural 

service: 10 m2/boar 

8.0 
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Table A-3. Minimum surface areas indoors and outdoors and other characteristics of housing in the different 

species and types of production referred to in Article 10(4) for Poultry (European Commission, 2008a). 

 Indoors area (net area available to animals) Outdoors area 

(m2 of area 

available in 

rotation/head) 

Animal type No animals/m2 cm 

perch/animal 

nest 

Laying hens 6 18 7 laying hens 

per nest or in 

case of 

common nest 

120 cm2/bird 

4, provided that 

the limit of 170 

kg of N/ha/year 

is not exceeded 

 Fattening 

poultry (in fixed 

housing) 

10 with a 

maximum of 21 

kg 

liveweight/m2 

20 (for guinea 

fowl only) 

 4 broilers and 

guinea fowl  

4.5 ducks  

10 turkeys  

15 geese 

In all the 

species 

mentioned 

above the limit 

of 170 kg of 

N/ha/year is 

not exceeded 

Fattening poultry in 

mobile housing 

16 (1) in mobile 

poultry houses 

with a 

maximum of 30 

kg 

liveweight/m2 

  2.5, provided 

that the limit of 

170 kg of 

N/ha/year is 

not exceeded 

(1) Only in the case of mobile houses not exceeding 150 m2 floor space. 
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B. APPENDIX 

For information regarding the calculation of DQR ratings of PPPs, refer to Tables S4 to S20 in the Supplementary Material Excel file from the 
open access article,  Montemayor et al. (2022). 

 

Table B-1. Organic crop production data from ecoinvent (EI, Wernet et al., 2016), AGRIBALYSE® (AG, AGRIBALYSE®, 2020) life cycle inventory datasets and 
primary data from the Organic+ project (ORG+). 

Crop Location Yield Fertilizer PPPs inputs Source 

Arable      

Maize 

grain 

Switzerland 7777 kg/ha  Liquid and solid cattle and pig manure 

Green manure (rapeseed) 

Trichogramma  EI 

 

Grain 

Maize 

France, 

Aquitaine 

6000 kg/ha Average P2O5 mineral fertilizer 

Average K2O mineral fertilizer 

Organic or farm manure1 as N, P2O5, K2O 

Organic manure mix as N, P2O5, K2O (type not specified) 

None AG 

Soft wheat 

grain, after 

fava beans, 

Central 

Region 

France 4000 kg/ha/yr 

 

Organic or farm manure1 as N and P2O5 

Horn meal 

None AG 

Sunflower 

grain, Gers 

France 1900 kg/ha Organic or farm manure1 as N, P2O5, K2O 

Horn meal 

Compost (average from green waste, biowaste, sludge, 

manure) 

Average P2O5 mineral fertilizer 

Average K2O mineral fertilizer 

None 

 

 

AG 

Winter 

Rapeseed 

France 2200 kg/ha Organic or farm manure1 as N, P2O5, K2O 

Compost (average from green waste, biowaste, sludge, 

manure) 

Average P2O5 mineral fertilizer 

Average K2O mineral fertilizer 

None AG 

Fruits      

Palm Global 7281kg/ha 

 

Poultry manure  Kaolin 
Sulfur 

EI 

Apple (full 

production 

dataset) 

France 450500 kg/ha 

for 17 

production 

years  

Potassium chloride 
Organic or farm manure1 as N, P2O5, K2O 
Horn meal 
Quicklime 

• Copper oxide 

• Sulfur 

• Bacillus thuringiensis (electricity used as 
proxy for production) 

AG 
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 • Rotenone (Pesticide unspecified2 used as 
proxy for production) 

• Lime 

• Mineral oil (Petrol used as proxy for 
production) 

• Mechanical weeding 
Grape (full 

production 

dataset) 

France 

(Languedoc-

Roussillon) 

291000 kg/ha 

for 30 

production 

years  

Average K2O mineral fertilizer  
Magnesium oxide 
Organic or farm manure1 as N, P2O5, K2O  

• Copper 

• Sulfur 

• Pyrethrin (pesticide unspecified2 used as 
proxy for production) 

AG 

Peach (full 

production 

dataset) 

France 224000 kg/ha 

for 14 

production 

years  

Organic manure mix as N, P2O5, K2O (type not specified) • Copper 

• Sulfur 

• Kaolin 

• Mineral oil (Petrol used as proxy for 
production) 

• Bacillus thuringiensis (electricity used as 
proxy for production) 

• Rotenone (Pesticide unspecified2 used as 
proxy for production) 

• Spinosad (Pesticide unspecified2 used as 
proxy for production) 

• Mechanical weeding 

AG 

Pear (full 

production 

dataset) 

France 1269000 kg/ha 

for 40 years 

Horn meal • Copper  

• Bacillus thuringiensis (electricity used as 
proxy for production) 

• Kaolin 

• Lime 

• Spinosad (pesticide unspecified2 used as 
proxy for production) 

• Sulfur  

• Mechanical weeding 

AG 

Walnut 

(traditional

, full 

production

) 

France 63000 kg/ha for 

48 years 

Horn meal • Mechanical weeding 

• Copper oxide 

• Bacillus thuringiensis (electricity used as 
proxy for production) 

AG 

Tomato 

(greenhous

e) 

France 103700 kg/ha • Compost (average from green waste, biowaste, 

sludge, manure) 

• Industrial biowaste compost 

• Copper oxide 

• Bacillus thuringiensis (electricity used as 
proxy for production) 

• Lime 

AG 
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• Organic manure mix as N, P2O5, K2O (type not 

specified) 

• Potassium chloride as K2O 

• Spinosad (pesticide unspecified2 used as 
proxy for production) 

• Sulfur 

Melon France 22000 kg/ha Organic manure mix as N, P2O5, K2O (type not specified) • Copper oxide 

• Sulfur 

AG 

Aubergine Turkey 34538 kg/ha Cow manure 

Green manure 

• Trichoderma harzianum rifai 

• Reynoutria spp. 

• Neem oil 

ORG+ 

Tomato 

(greenhous

e) 

Spain 50000 kg/ha • Sheep manure 

• Commercial liquid fertilizer (Calcium (7) and 
magnesium) 

• Potassium sulphate 

• Neem oil 

• Potassium soap 

• Bacillus thuringiensis 

• Copper oxychloride 

• Sulphur 

• Trichogramma 

• Nesidiocoris 

ORG+ 

Lemons Sicily 30000 kg/ha • Commercial pelletized cow manure 

• Commercial liquid vegetable-based fertilizer 

• Mineral oil 

• Bordeaux mixture 

ORG+ 

Vegetables      

Potato Switzerland 22908 kg/ha at 

a moisture 

content at 

storage of 78%. 

Organic farm cattle and pig manure 

Green manure (rapeseed) 

Copper oxide EI 

Carrot France 42500 kg/ha/yr  Average K2O mineral fertilizer 

Average P2O5 mineral fertilizer 

Potassium chloride 

• Copper oxide 

• Sulfur 

• Copper sulfate 

• Biological pest controls (Pesticide 
unspecified2 used as proxy for production)  

• Mechanical weeding 

AG 

Spring 

Squash 

(tunnel) 

France 70000 kg/ha Organic or farm manure1 as N, P2O5, K2O 

Compost (average from green waste, biowaste, slude, 

manure) 

Sulfur AG 

Cauliflower France 13500 kg/ha Organic or farm manure1 as N, P2O5, K2O 

Quicklime 

None AG 

Chicory 

(root 

production 

France 20000 kg/ha Organic fertilizer (inorganic chemical production used as 

proxy for production) 

Quicklime 

• Bacillus thuringiensis (electricity used as 
proxy for production) 

• Copper oxide 

• Sulfur 

• Mechanical weeding 
 

AG 

Legumes      
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Fava beans Switzerland 3384 kg/ha at a 

moisture 

content at 

storage of 13%. 

Organic farm cattle and pig manure 

Green manure (rapeseed) 

None EI 

 

Peas Switzerland 

 

3044 kg/ha, 

moisture 

content 13%. 

Organic farm cattle and pig manure  

Green manure (rapeseed) 

None EI 

France 2500 kg/ha/yr Organic farm manure1  

Average P2O5 mineral fertilizer 

Average K2O mineral fertilizer 

None AG 

Soybean Switzerland 2806 kg/ha 

moisture 

content  11%. 

Organic farm cattle and pig manure  

Green manure (rapeseed) 

None EI 

1The type of manure was not clearly specified in the methodology, though most likely from cattle, as the composition of average organic French manure is mostly from cattle manure (>60%) (Koch and 
Salou, 2016). 

2Pesticide unspecified is a background dataset from ecoinvent which is a European average of all available pesticide datasets in ecoinvent, thus indirectly includes synthetic pesticides not approved in 

OF in Europe. 

Table B-2. Nutrient content of typical organic fertilizers in kg per m3 or ton of organic fertilizer from three different sources, in Catalonia from Sío et al. 

(2013), in the ecoinvent database (Flisch, R., Sinaj, Sokrat, Charles, R., Richner, 2009) and in the AGRIBALYSE database from methodological document 

(Koch & Salou, 2016). A hyphen (-) indicates that the source does not have any relevant organic fertilizers for that category. 

Type of 
animal 

Type of 
manure  

Stage/ 
production 
system 

kg N/ m3
 or t kg P2O5 /m3

 or t kg K2O/m3
 or t 

      Sío et al., 
(2013) 

Flisch et al. 
(2009) 

Koch & 
Salou 
(2016) 

Sío et al., 
(2013) 

Flisch et al. 
(2009) 

Koch & 
Salou 
(2016) 

Sío et al., 
(2013) 

Flisch et 
al. (2009) 

Koch & Salou 
(2016) 

Pig Slurry  Fattening  5.7 6a 5.8b 3.6 3.8a 3.2b 4.2 4.4a 4.8b 

Breeder  2.9 4.7 - 2.1 3.2 - 3.6 3.2 - 

Piglets (6-
20 kg) 

3.4 - - 2.6 - - 1.7 - - 

Cull sow  3.4 - - 2.4 - - 2.5 - - 

Mixed/ 
general pig 
slurry 

- 7.8 3.5 - 7 2.1 - 8.3 2.5 
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Cow Slurry  Dairy cow  3.3 4.3 - 1.5 1.8 - 3.4 8 - 

Fattening 
calf  

5.2 - 1.5c 1.7 - 0.4c 3.6 - 2.4c 

Diluted 
cattle 
slurry (AG) 

- - 1.6 - - 0.8 - - 2.4 

Undiluted 
cattle 
slurry 

- 4.9 3.5 - 1.2 1.2 - 11.6 3.8 

Average 
cattle 
slurry 

- - 2.6 - - 1.0 - - 3.1 

Manure  Dairy cow  5.5 4.3 - 2 1.8 - 7.9 8 - 

Beef cow  3 4.3d - 2 1.7d - 5 5.2d - 

Fattening 
calf  

6 5.3 - 5 2.3 - 6 5.5 - 

Average 
cattle 
manure 

- - 5.5 - - 2.3 - - 7.9 

Poultry Hen  Turkey  32.4e/24.
9f 

28 18.5 25.8 23 12.9 20 13 13.8 

Broiler 
chicken  

29.6e/22.
8f 

- 19.1 21.1 - 13.9 17.7 - 18.4 

Laying hen  16.3e/12.
5f 

- 15.0 10.4 - 21.9 8.0 - 18.2 

Breeding 
hen 

22.6e/17.
4f 

- - 33.9 - - 23.6 - - 

Replaceme
nt hen 

25.4e/19.
5f 

- - 45.8 - - 25.5 - - 

Chicken 
manure 

- 34.0 - - 20.0 - - 28.0 - 
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Hen 
droppings 
(manure 
belt) 

- 21.0 - - 17.0 - - 11.0 - 

Hen dung 
manure pit  

- 27.0 - - 30.0 - - 20.0 - 

Sheep 
and 
Goats 

Manure  Meat 
Sheep 

9.4 - - 5.0 - - 10.0 - - 

Dairy 
sheep 

8.1 - - 3.2 - - 8.6 - - 

sheep 
manure  

- - 6.7 - - 4.0 - - 12.0 

Goat 9.4 8.0g 6.1 5.0 3.3g 5.2 9.0 16.0g 7.0 

Slurry Dairy 
sheep 

7.3 - - 3.4 - - 7.1 - - 

Horses Manure Horse 
(fresh) 

5.7 4.4 4.8 2.1 2.5 3.0 8.2 9.8 8.5 

Rabbit Slurry   - - 7.6 - - 11.8 - - 5.9 

Manure  Rabbit 8.4 - - 10.3 - - 9.5 - - 

Others   Manure 
compost 

12 - i - h 15.6 - i - h 12.5 - i - h 

Sewage 
sludge 
compost  

18.8 7.0 23.3 7.0 6.2 1.5 

Sludge 
from 
treatment 
plant k 

10.5 - 13 - 1.2 - 

Slurry 
digestate  

3.5 - 1.4 - 1.3 - 

Pig 
manure 
solid 
fraction 

5.3 - 13.6 - 2.3 - 
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a Mast fed pigs 

b Refers to pig slurry from outdoor runs 

c Beef calf slurry, assumed similar to fattening calf 

d Flisch et al. (2009) states it’s for fattening, full manure, it is assumed to be similar to "beef" category 

e Sample taken from the hen building or cage except in the case of layers which have been taken from the conveyor belt 

f Sample taken from manure pit 

g Represents values for both sheep and goat 

h See table X of organic fertilizers not included in our values 

i Flisch et al. (2009) states that the values should only be used for fertilizer design instead of guide values as the nutrient levels fluctuate 
considerably with different starting materials 

j There is high variability for these types of organic fertilizers due to the different primary materials used in each industrial plant. 

k Only agricultural treatment sludge that has been previously treated can be used for agricultural purposes. 

 

 

 

 

 

Table B-3. Fertilizers and soil conditioners authorized under European organic agriculture regulations (European Commission, 2008) and their 

possible LCI dataset from available LCA databases. 

Fertilizers and soil conditioners  Description Possible LCI dataset 
Farmyard manure Product comprising a mixture of animal excrements 

and vegetable matter (animal bedding). 
Factory farming origin forbidden 

Agribalyse: Manure from poultry or cattle, 
stocked in concrete surface or pit. 

Dried farmyard manure and 
dehydrated poultry manure 

Factory farming origin forbidden Ecoinvent: poultry manure, dried 

Composted animal excrements, 
including poultry manure and 

Factory farming origin forbidden Agribalyse: Compost of cattle manure or swine 
slurry and straw 
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composted farmyard manure 
included 
Liquid animal excrements Use after controlled fermentation and/or appropriate 

dilution 
Factory farming origin forbidden 

Agribalyse: digestate, from anaerobic digestion of 
manure and slurry mix 

Composted or fermented 
household waste 

Product obtained from source separated household 
waste, which has been submitted to composting or to 
anaerobic fermentation for biogas production 
Only vegetable and animal household waste Only 
when produced in a closed and monitored collection 
system, accepted by the Member State Maximum 
concentrations in mg/kg of dry matter: cadmium: 0,7; 
copper: 70; nickel: 25; lead: 45; zinc: 200; mercury: 
0,4; chromium (total): 70; chromium (VI 

Agribalyse: Compost of green waste 

Peat  Use limited to horticulture (market gardening, 
floriculture, arboriculture, nursery) 

Ecoinvent: peat moss production 

Mushroom culture wastes The initial composition of the substrate shall be limited 
to products of this Annex 

Not available 

Dejecta of worms 
(vermicompost) and insects 

 Not available 

Guano  Not available 
Composted or fermented 
mixture of vegetable matter 

Product obtained from mixtures of vegetable matter, 
which have been submitted to composting or to 
anaerobic 
fermentation for biogas production 

Not available 

Products or by-products of 
animal origin as below: blood 
meal 
hoof meal horn meal 
bone meal or degelatinized 
bone meal fish meal meat meal 
feather, hair and ‘chiquette’ 
meal wool fur hair 
dairy products 

Maximum concentration in mg/kg of dry matter of 
chromium (VI): 0 

Ecoinvent and Agribalyse: horn meal, blood meal 
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Products and by-products of 
plant origin for fertilisers 

Examples: oilseed cake meal, cocoa husks, malt culms Ecoinvent: sugarcane filter cake, coconut cake, 
soybean meal, flax husks  
ILCD: sunflower meal, soybean hulls, rapeseed 
meal 
Agribalyse: palm kernel meal, coconut fibre 
ESU: wheat meal, pea meal 

Seaweeds and seaweed 
products 

As far as directly obtained by: (i) physical processes 
including dehydration, freezing and grinding 
(ii) extraction with water or aqueous acid and/or 
alkaline solution 
(iii) fermentation  

ecoinvent and Agribalyse: multiple types of 
seaweed 

Sawdust and wood chips Wood not chemically treated after felling Ecoinvent: saw dust & wood chips (but for 
furnace production 

Composted bark Wood not chemically treated after felling Ecoinvent: debarking softwood process, but this 
assumes that the bark is not a by-product 

Wood ash From wood not chemically treated after felling Ecoinvent: treatment of wood ash 
Soft ground rock phosphate Product as specified in point 7 of Annex IA.2. to 

Regulation (EC) No 2003/2003 of the European 
Parliament and of the Council (1) relating to fertilisers, 
7 
Cadmium content less than or equal to 90 mg/kg of 
P20 

Ecoinvent: rock phosphate 
 

 

Aluminium-calcium phosphate Product as specified in point 6 of Annex IA.2. of 
Regulation 2003/2003, Cadmium content less than or 
equal to 90 mg/kg of P205 
Use limited to basic soils (pH > 7,5) 

None available (sodium phosphate is available in 
Ecoinvent) 

Basic slag Products as specified in point 1 of Annex IA.2. of 
Regulation 2003/2003 

Ecoinvent: many types available (from blast 
furnace) 

Crude potassium salt or kainite Products as specified in point 1 of Annex IA.3. of 
Regulation 2003/2003 

Ecoinvent: many types available 

Potassium sulphate, possibly 
containing magnesium salt 

Product obtained from crude potassium salt by a 
physical extraction process, containing possibly also 
magnesium 
salts 

Ecoinvent: potassium sulphate 
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Stillage and stillage extract Ammonium stillage excluded Ecoinvent: ethanol production from different 
cereals, however, an economic allocation would 
need to be done to account for the impacts of the 
stillage itself, derived from this dataset. 

Calcium carbonate (chalk, marl, 
ground limestone, Breton 
ameliorant, (marl), phosphate 
chalk) 

Only of natural origin Ecoinvent: calcium carbonate 

Magnesium and calcium 
carbonate 

Only of natural origin e.g., magnesian chalk, ground 
magnesium, limestone 

Ecoinvent: magnesium carbonate or magnesium 
production 

Magnesium sulphate (kieserite) Only of natural origin None available of “natural origin” 
Calcium chloride solution Foliar treatment of apple trees, after identification of 

deficit of calcium 
ILCD and Ecoinvent: calcium chloride 

Calcium sulphate (gypsum) Products as specified in point 1 of Annex ID. of 
Regulation 2003/2003 
Only of natural origin 

ILCD: Gypsum 
  

Industrial lime from sugar 
production 

By-product of sugar production from sugar beet Ecoinvent: beet sugar production. however, an 
economic allocation would need to be done to 
account for the impacts of the stillage itself, 
derived from this dataset. 

Industrial lime from vacuum 
salt production 

By-product of the vacuum salt production from brine 
found in mountains 

None 

Elemental sulphur Products as specified in Annex ID.3 of Regulation 
2003/ 2003 

Ecoinvent: sulphur 

Trace elements Inorganic micronutrients listed in part E of Annex I to 
Regulation 2003/2003 

None available 

Sodium chloride Only mined salt Ecoinvent 
Stone meal and clays  Ecoinvent: stone meal 
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Figure B-1. Contribution of plant protection product manufacturing datasets (copper (II) oxide (CuO), copper ore (Cu), sulfur, kaolin, pesticide unspecified as 

Spinetoram proxy, electricity as Bacillus thuringensis proxy, petrol as mineral oil proxy) to overall PPP manufacturing impact for organic apple, peach and 

grape, wine grape, pear, walnut and carrots in the AGRIBALYSE database for potential resource mineral use (RMP) and resource energy use (REP), land use 

(LUP), freshwater eutrophication (FEP), air acidification (ADP), and ozone depletion (ODP). Each crop dataset only has the PPPs listed in the legend of each 

corresponding graph. 
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Table B-4. Contribution of fertilizer production within cereal and legume Agribalyse datasets to the total impact for categories climate change (CCP), ozone 

depletion (ODP), acidification (ADP), freshwater (FEP) and marine (MEP) and terrestrial (TEP) eutrophication, freshwater ecotoxicity (FEx), land use (LUP), 

resource energy carrier use (REP), and resource mineral use (RMP). 

 
Soft 

Wheat 

Sunflower Winter Rapeseed Pea Grain maize 

Impact 

Category 

Horn 

meal 

Avg 

Compost 

Horn 

meal 

Avg Min. 

Fert. P2O5 

Avg Min. 

Fert. K2O 

Avg Min. 

Fert. P2O5 

Avg Min. Fert. 

K2O 

Avg Min. 

Fert. P2O5 

Avg Min. 

Fert. K2O 

Avg 

Min. 

Fert. 

P2O5 

Avg 

Min. 

Fert. 

K2O 

CCP 11.64  9.88  2.54  2.26  0.65  1.12  0.58  2.89  2.62  7.15 0.84 

ODP 15.94  6.08  3.65  2.80  0.61  5.85  2.32  2.58  1.79  9.32 0.77 

ADP 4.93  5.74  0.31  1.60  0.27  1.04  0.32  5.12  2.73  4.29 0.27 

FEP 0.76  0.52  0.09  1.79  0.22  4.97  1.13  3.18  1.26  6.42 0.35 

MEP 0.17  0.83  0.06  0.07  0.02  0.08  0.05  0.05  0.05  0.36 0.03 

TEP 3.66  11.84  0.22  0.29  0.09  0.21  0.12  1.08  1.05  1.03 0.09 

FEx 33.53  5.07  0.76  2.09  105.10  0.91  82.53  0.44  69.39  0.49 0.02 

LUP 0.14  0.11  0.04  0.13  0.02  0.20  0.05  0.12  0.05  0.28 0.01 

REP 23.61  9.80  5.27  4.84  0.98  10.68  3.89  4.26  2.72  8.50 0.84 

RMP 11.26  8.98  3.42  5.05  4.98  6.04  10.77  3.09  9.64  48.03 3.52 
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Table B-5. Contribution of fertilizer production within vegetable Agribalyse datasets to the total impact for categories climate change (CCP), ozone 

depletion (ODP), acidification (ADP), freshwater (FEP) and marine (MEP) and terrestrial (TEP) eutrophication, freshwater ecotoxicity (FEx), land use (LUP), 

resource energy carrier use (REP), and resource mineral use (RMP). 

 Cauliflower Carrot Squash Chicory root 

Impact 

Category 

Quicklime KCl, as 

K2O 

Wheat 

straw 

Avg Min. Fert. 

P2O5 

Avg Min. 

Fert. K2O 

Average 

compost 

Inorganic 

chemical 

Quicklime 

CCP 20.63  2.78  28.58  4.13  4.37  25.16  4.95  2.61  

ODP 16.85  1.19  23.57  2.41  1.95  19.16  3.84  1.02  

ADP 1.21  1.59  28.21  5.43  3.37  24.56  4.92  0.38  

FEP 1.99  3.99  9.97  14.78  6.82  7.60  5.05  0.07  

MEP 0.34  0.72  31.87  0.96  1.24  16.27  0.26  0.03  

TEP 0.62  0.83  32.02  1.22  1.39  45.63  2.22  0.22  

FEx 15.10  33.95  1.43  0.27  49.27  1.50  1.50  0.19  

LUP 0.11  0.46  0.80  1.43  0.71  -1.59  0.07  0.00  

REP 13.93  2.30  26.99  5.20  3.86  11.84  4.31  0.87  

RMP 0.49  5.77  23.52  2.68  9.76  1.35  6.32  0.02  
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Table B-6. Contribution of fertilizer production within fruit and nut Agribalyse datasets to the total impact for categories climate change (CCP), ozone 

depletion (ODP), acidification (ADP), freshwater (FEP) and marine (MEP) and terrestrial (TEP) eutrophication, freshwater ecotoxicity (FEx), land use (LUP), 

resource energy carrier use (REP), and resource mineral use (RMP). 

 Tomato Apple Pear Grape Walnut 

Impact 

Category 

KCl, as 

K2O 

Avg 

Compost 

Lime Biowaste 

compost 

Quicklime KCl, as 

K2O 

Horn 

meal 

Lime Horn 

meal 

Lime MgO Avg Min. 

Fert. K2O 

Horn 

meal 

CCP 0.21  16.69  0.02  1.33  0.1563  0.44  0.98  0.026  3.10  0.000  1.11  1.52  4.80  

ODP 0.20  10.84  0.02  0.76  0.0456  0.22  0.80  0.015  2.74  0.000  0.06  1.05  6.47  

ADP 0.14  20.38  0.02  6.10  0.0134  0.18  0.17  0.010  0.56  0.000  0.24  1.36  0.84  

FEP 0.45  5.86  0.04  0.48  0.0042  0.50  0.13  0.053  0.59  0.001  0.19  1.26  0.81  

MEP 0.11  20.51  0.03  1.20  0.0023  0.03  0.04  0.001  0.18  0.000  0.01  0.05  0.50  

TEP 0.06  40.03  0.02  5.34  0.0074  0.09  0.14  0.004  0.44  0.000  0.14  0.49  0.67  

FEx 17.39  3.99  0.12  6.08  0.0015  2.16  0.01  0.001  0.03  0.000  0.03  2.49  1.84  

LUP -0.06  -1.81  -0.04  -0.20  0.0271  2.07  2.49  0.059  10.35  0.001  0.38  11.23  27.38  

REP 0.16  8.71  0.02  0.42  0.0337  0.30  1.00  0.022  2.60  0.000  0.20  1.83  8.27  

RMP 0.12  1.16  0.00  0.05  0.0007  0.49  0.21  0.076  0.69  0.001  0.01  2.22  1.88  
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Table B-7. Ratio of N-NH3 emitted per total ammoniacal nitrogen (TAN) content as a function of fertilizer 

type, machinery employed for application, time between fertilizer deposition and incorporation and 

atmospheric conditions (adapted from Bittman, et al., 2014; Søgaard et al., 2002) 

Atmospheric conditions Unfavourable 
atmospheric 
conditions 
(windspeed > 2m·s-

1, air temperature 
> 18℃) 

Average 
atmospheric 
conditions between 
unfavourable and 
favourable 

Favourable 
atmospheric 
conditions (low 
mean air 
temperature 9°C, 
low wind speed 
<1.6m/s) 

Liquid pig or cow slurry 
or digestate 

NH3/TAN NH3/TAN NH3/TAN 

Broad sprayer, not 
incorporated 

0.827 0.611 0.4800 

Broad sprayer, 
incorporated in 24h 

0.5789 0.4277 0.3360 

Hose, not incorporated 0.477 0.353 0.2770 

Hose, incorporated in 
24h 

0.3339 0.2471 0.1939 

Injection 0 0 0 

Soil manure (Poultry or 
cow) 

NH3/TAN NH3/TAN NH3/TAN 

Surface deposition, not 
incorporated 

0.2481 0.1833 0.1440 

Surface deposition, 
incorporated in 24h 

0.17367 0.12831 0.1008 

 

 

 

Table B-8. Life cycle inventory for 1 kg of Spinosad using the CeBER Bioprocess Modeller (Centre for 

Bioprocess Engineering Research (Harding and Harrison, 2016a, 2016b). The specific species needed for 

Spinosad, Saccharopolyspora spinosa, was not available, thus, erythromycin was used as a proxy as the 

bacteria that produce both substances were from the same genus, Saccharopolyspora. However, model 

parameters were adapted to Spinosad production using data from (Lu et al., 2017). 

INPUTS Quantity Units OUTPUTS Quantity Units 
Saccharopolyspora 
spinosa inoculum 

0.001606 kg Water emissions: 

Distilled water 0.001943 m3 Water 0.00108  
Antifoaming agent 
(propylene glycol) 

0.01386 kg Antifoam 0.0076  

Glucose (Carbon source) 0.0555 kg Saccharopolyspora 
spinosa 

0.02807  

Maltose (Carbon 
source) 

0.0555 kg Glucose 0.303 g 
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Oxygen (aeration) 1.48 kg Maltose 0.303 g 
Nitrogen (aeration) 5.567 kg Yeast extract 0.966 g 
Yeast extract (Nitrogen 
source) 

0.0368 kg Corn Stover 0.966 g 

Corn stover (Nitrogen 
source) 

0.0368 kg Acetone 0.059 kg 

Acetone (purification) 0.0961 kg Spinosad 0.015 kg 
Filter paper (filtration) 0.0426 kg PO4

- 0.731 g 
Electricity 10.49 MJ SO4

- 0.154  
Steam 0.000211 ton Air emissions: 
Chilled water 0.0313 m3 O2 1.332 kg 
   N2 5.567 kg 
   CO2 0.198 kg 
   Solid waste:   
   Filter paper 0.043 kg 
   Chemical Oxygen 

Demand (COD 
0.125 kg 

 

Table B-9. Life cycle inventory for 1 kg of Bacillus subtilis using the CeBER Bioprocess Modeller (Centre for 

Bioprocess Engineering Research (Harding and Harrison, 2016a, 2016b). Model parameters from 

(Pighinelli, 2019; Posada-Uribe et al., 2015) were used to guide types of processes to use in the model. 

INPUTS Quantity Units OUTPUTS Quantity Units 
Bacillis subtilis 
inoculum 

0.00447 kg Water emissions: 

Distilled water 0.00817 m3 Water 0.0074 m3 
Antifoaming agent 
(propylene glycol) 

0.0376 kg Antifoam 0.036 kg 

Glucose (Carbon 
source) 

0.2703 kg Bacillis subtilis 0.0030 kg 

Oxygen (aeration from 
air) 

1.814 kg Glucose 1.547 g 

Nitrogen (aeration 
from air) 

6.6825 kg Peptone 1.635 g 

Yeast extract (Nitrogen 
source) 

0.0358 kg Yeast extract 1.635 g 

Peptone (Nitrogen 
source) 

0.0358 kg PO4
- 1.237 g 

Electricity 1.406 MJ Air emissions:   
Steam 0.000609 ton O2 1.53 kg 
Chilled water 0.0881 m3 N2 6.82 kg 
   CO2 0.389 kg 
   Solid waste: 
   None   
   Chemical 

Oxygen Demand 
(COD 

0.0134 kg 
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Table B-10. Life cycle inventory for 1 kg of Chitosan using data from (Pighinelli, 2019; Said Al Hoqani et al., 

2020). 

INPUTS  Quantity 
(kWh/kg) 

Units 

Processing of seafood waste 
Electricity - Fume hood ventilation of washed 
seafood waste 

1032.47 kWh/kg 

Electricity - Grinding into pieces (for 10 mins) 0.0025 kWh/kg 
Electricity - Drying in hot air oven 25.02 kWh/kg 
Demineralization 
Electricity - Agitation at 250 rpm, 2h 0.015 kWh/kg 
Hydrochloric acid (1M) 0.22 L 
Deproteination  
NaOH 10 L 
Electricity – Agitation, 3h 0.0225 kWh/kg 
Electricity – dried in oven, 50℃, 12h 50.04 kWh/kg 
Discoloration 
H2O2 (30) 10 L 
Chitosan production 
NaOH   
Electricity – reaction in autoclave, 121℃, 15 
mins 

4800 kWh/kg 

Electricity – Dried in oven, 50℃, 12h 50.04 kWh/kg 
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C. APPENDIX 

 

Table C-1. Additional details of case study farms used to test the performance of biodiversity loss models. 

Farm details ES1 ES2 NO1 

Number of 
ewes, age 60 
-365 days 
(heads·year-

1) 

4 31 0 

Number of 
ewes, age 
365 - 517 
days 
(heads·year-

1) 

1 12 21 

Number of 
rams 
(heads·year-

1) 

3 7 2 

Ram yield 
(ton·farm-

1·year-1) 

0.00975 0.13 - 



 

 196 

Pasture use 
for autumn, 
spring, 
summer 
(days) 

275 335 184 

Stable use 
for winter 
and fed feed 
(days) 

90 30 181 

Age of ewe 
at slaughter 
(days) 

>517 >517 1095 

Age of lamb 
at slaughter 
(days) 

75 60 167 

Feed 
consumption 
(days fed 
feed/year) 
(%) 

25% 0.16 0.495 

Land use 
type 

Area 
(ha·farm-

1·year-1) 

Ecoregion Land use 
type, 

intensity 

Area 
(ha·farm-

1·year-1) 

Ecoregion Land use type, 
intensity 

Area 
(ha·farm-

1·year-1) 

Ecoregion Land use 
type, 

intensity 

Pasture 50 Pyrenees conifer 
and mixed 
forests1 

Pasture, 
minimal  

195 Pyrenees conifer 
and mixed 
forests1 

Pasture, 
minimal  

7.2 Sarmatic 
mixed 
forests1 

Pasture, 
minimal  

Stable for 
animals 

0.021 Pyrenees conifer 
and mixed 
forests1 

Urban, 
minimal 

0.03 Pyrenees conifer 
and mixed 
forests1 

Urban, 
minimal 

0.03 Sarmatic 
mixed 
forests1 

Urban, 
minimal 
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Stable for 
farming 
equipment 

0.042 Pyrenees conifer 
and mixed 
forests1 

Urban, 
intense 

- - - - - - 

Feed grown 
on-site 

0 - - 6 Pyrenees conifer 
and mixed 
forests1 

Cropland, 
light 

5.4 Sarmatic 
mixed 
forests1 

Cropland, 
minimal 

Purchased complementary feed for ewes, rams and gimmers Purchased feed for all animals 

Maize 2.21E-02 East European 
forest steppe1 

Cropland, 
intense 

1.01E-01 East European 
Forest steppe1 

Cropland, 
intense 

- - - 

2.04E-02 Cerrado Cropland, 
intense 

9.34E-02 Cerrado Cropland, 
intense 

- - - 

4.35E-03 Northeastern 
Spain & 

Southern France 
Mediterranean 

forests 

Cropland, 
intense 

1.99E-02 Northeastern 
Spain & 

Southern France 
Mediterranean 

forests 

Cropland, 
intense 

- - - 

Barley 1.04E-01 Iberian 
sclerophyllous 

and semi-
deciduous 

forests 

Cropland, 
intense 

2.97E-02 Iberian 
sclerophyllous 

and semi-
deciduous 

forests 

Cropland, 
intense 

1.93E-03 Sarmatic 
mixed 
forests1 

Cropland, 
light 

Purchased compound feed for lamb 

Oat - -   - -   1.68E-02 Sarmatic 
mixed 
forests1 

Cropland, 
light 

Maize 8.63E-04 East European 
Forest steppe1 

Cropland, 
intense 

5.04E-03 East European 
Forest steppe1 

Cropland, 
intense 

- -   

7.98E-04 Cerrado Cropland, 
intense 

4.67E-03 Cerrado Cropland, 
intense 

- -   
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1.70E-04 Northeastern 
Spain & 

Southern France 
Mediterranean 

forests 

Cropland, 
intense 

9.94E-04 Northeastern 
Spain & 

Southern France 
Mediterranean 

forests 

Cropland, 
intense 

- -   

Wheat 6.01E-03 Iberian 
sclerophyllous 

and semi-
deciduous 

forests 

Cropland, 
intense 

3.52E-02 Iberian 
sclerophyllous 

and semi-
deciduous 

forests 

Cropland, 
intense 

1.92E-02 Sarmatic 
mixed 
forests1 

Cropland, 
light 

Barley 5.86E-03 Iberian 
sclerophyllous 

and semi-
deciduous 

forests 

Cropland, 
intense 

3.42E-02 Iberian 
sclerophyllous 

and semi-
deciduous 

forests 

Cropland, 
intense 

- -   

Soy 3.16E-03 Cerrado Cropland, 
intense 

1.85E-02 Cerrado Cropland, 
intense 

2.72E-02 Cerrado Cropland, 
intense 

2.05E-04 Central 
forest/grasslands 

transition zone 

Cropland, 
intense 

1.44E-02 Central 
forest/grasslands 

transition zone 

Cropland, 
intense 

7.56E-03 Southern 
Great Lakes 
forests1 

Cropland, 
intense 

Palm oil 1.97E-06 Sumatran peat 
swamp forests 

Cropland, 
intense 

1.15E-05 Sumatran peat 
swamp forests 

Cropland, 
intense 

- -   

Rye - - - - - - 8.23E-03 Sarmatic 
mixed 
forests1 

Cropland, 
light 

Peas - - - - - - 2.09E-03 Sarmatic 
mixed 
forests1 

Cropland, 
light 

Green beans - - - - - - 1.03E-03 Sarmatic 
mixed 
forests1 

Cropland, 
light 
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Sugarcane - - - - - -   Maputaland 
coastal forest 
mosaic 

Cropland, 
intense 

- - - - - -   Upper 
Gangetic 
Plains moist 
deciduous 
forests 

Cropland, 
intense 

- - - - - -   Central 
American dry 
forests 

Cropland, 
intense 

- - - - - -   Northwestern 
thorn scrub 
forests 

Cropland, 
intense 

- - - - - -   Sahelian 
Acacia 
savanna 

Cropland, 
intense 

1 This ecoregion is within the biome Temperate broadleaf and mixed forest biome.
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Table C-2. Types of feed consumed in case studies ES1 and ES2 (Spain), their origin of cultivation, percent 

imported from that location and yield (FAOSTAT (Food and Agriculture Organization, n.d.)) 

Crop Origin Percent 
imported 
from that 
location 

Comments Yield 
(kg/ha) 

Maize Ukraine 40%   6410 

  Brazil 31%   5340 

  France 11% Others: 
18% 

8670 

Wheat Spain 98%   3190 

Barley Spain 95%   3360 

Soy flour Brazil 51%   3190 

  USA 42% Others:7% 3330 

Wheat 
bran 

Spain 98%   17160 

Palm oil Indonesia 99%   6410 

 

Table C-3. Types of feed consumed in case study NO1, Norway (Compound feed Brand Natura Drov), the 

percent content, and yield (Food and Agriculture Organization, n.d.)) 

Ingredients Origen Percent 
content in 
1 kg of 
compound 
feed 

Yield, 
kg/ha 

wheat (local) Norway 22.0% 4595 

soy (imported) Brazil 21.7% 3194  
Canada 5.4% 2870 

oat (local) Norway 17.0% 4053 

sugarcane Mozambique 1.4% 64641  
India 0.7% 74752  
Guatemala 0.6% 113705  
Pakistan 0.7% 62718  
Sudan 0.5% 80284 

Barley Norway 2.0% 4135 

Rye Norway 10.0% 4863 

Peas Norway 3.0% 7800 

Green beans Norway 2.0% 5739 
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Table C-4. Characterization factors for relevant ecoregions in units PSL/m2 from Chaudhary and Brooks 

(2018). 

Land use Management 
type 

Mammals Birds Amphibians Reptiles Plants Aggregated 

Ecoregion PA0436 

Pasture minimal 5.63E-13 1.11E-
12 

1.27E-13 6.32E-15 1.38E-
12 

1.27E-14 

Cropland minimal 5.97E-13 7.67E-
13 

1.21E-13 7.56E-15 1.65E-
12 

1.01E-14 

light 6.47E-13 8.90E-
13 

1.37E-13 9.60E-15 2.10E-
12 

1.15E-14 

intense 6.56E-13 9.11E-
13 

1.40E-13 9.96E-15 2.18E-
12 

1.18E-14 

Urban 
construction 

minimal 6.62E-13 1.10E-
12 

8.56E-14 1.29E-15 2.81E-
13 

1.29E-14 

Ecoregion PA0433  

Pasture minimal 5,81E-12 1,50E-
12 

1,90E-11 1,68E-11 5,18E-
10 

2,14E-13 

Cropland minimal 5,24E-12 9,23E-
13 

1,85E-11 2,01E-11 6,20E-
10 

2,32E-13 

light 6,02E-12 1,13E-
12 

1,98E-11 2,55E-11 7,87E-
10 

2,84E-13 

intense 6,16E-12 1,17E-
12 

2,01E-11 2,64E-11 8,17E-
10 

2,93E-13 

Urban 
construction 

minimal 6,43E-12 1,38E-
12 

1,77E-11 3,41E-12 1,05E-
10 

1,09E-13 

intense 7.88E-12 1.66E-
12 

2.23E-11 3.2E-11 9.9E-
10 

3.55E-13 

Ecoregion PA1209 

Pasture minimal 1,94E-12 1,81E-
12 

2,60E-12 1,86E-12 7,55E-
11 

4,79E-14 

Crop minimal 1,89E-12 1,55E-
12 

2,76E-12 2,11E-12 8,56E-
11 

4,81E-14 

light 2,02E-12 1,68E-
12 

2,77E-12 2,44E-12 9,88E-
11 

5,29E-14 

intense 2,04E-12 1,70E-
12 

2,77E-12 2,48E-12 1,01E-
10 

5,36E-14 

Urban 
construction 

minimal 2,07E-12 1,80E-
12 

2,76E-12 4,61E-13 1,87E-
11 

3,60E-14 

Ecoregion PA1215 

Pasture minimal 1,59E-12 1,20E-
12 

6,69E-12 1,83E-12 2,48E-
10 

7,09E-14 

Crop minimal 1,55E-12 1,10E-
12 

6,77E-12 2,08E-12 2,81E-
10 

7,53E-14 

light 1,65E-12 1,15E-
12 

6,79E-12 2,40E-12 3,25E-
10 

8,32E-14 

intense 1,66E-12 1,16E-
12 

6,79E-12 2,44E-12 3,31E-
10 

8,43E-14 
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Urban 
construction 

minimal 1,66E-12 1,20E-
12 

6,75E-12 4,54E-13 6,14E-
11 

4,17E-14 

Ecoregion NT0704 

Pasture minimal 5,25E-12 7,31E-
12 

7,96E-12 8,20E-13 5,63E-
12 

1,09E-13 

Crop minimal 5,24E-12 7,31E-
12 

7,96E-12 9,29E-13 6,38E-
12 

1,09E-13 

light 5,25E-12 7,31E-
12 

7,97E-12 1,07E-12 7,37E-
12 

1,10E-13 

intense 5,25E-12 7,31E-
12 

7,97E-12 1,09E-12 7,51E-
12 

1,10E-13 

Urban 
construction 

minimal 5,23E-12 7,32E-
12 

7,97E-12 2,03E-13 1,39E-
12 

1,05E-13 

Ecoregion PA0419 

Pasture minimal 1.18E-12 1.18E-
12 

1.43E-13 2.15E-14 1.83E-
12 

1.7E-14 

Crop minimal 1.24E-12 7.6E-
13 

1.32E-13 2.57E-14 2.19E-
12 

1.4E-14 

light 1.35E-12 9.06E-
13 

1.62E-13 3.27E-14 2.78E-
12 

1.59E-14 

intense 1.37E-12 9.32E-
13 

1.67E-13 3.39E-14 2.89E-
12 

1.63E-14 

Urban 
construction 

minimal 1.41E-12 1.18E-
12 

6.4E-14 4.37E-15 3.73E-
13 

1.79E-14 

Ecoregion IM0160 

Pasture minimal 1.54E-11 2.8E-
11 

1.01E-11 6.1E-12 1.5E-
10 

3.78E-13 

Crop minimal 1.29E-11 2.47E-
11 

1E-11 7.25E-12 1.79E-
10 

3.45E-13 

light 1.36E-11 2.56E-
11 

1.01E-11 9.13E-12 2.25E-
10 

3.7E-13 

intense 1.37E-11 2.58E-
11 

1.01E-11 9.45E-12 2.33E-
10 

3.75E-13 

Urban 
construction 

minimal 1.5E-11 2.74E-
11 

1E-11 1.26E-12 3.11E-
11 

3.37E-13 
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Table C-5. Characterization factors in PDF/m2 for relevant ecoregions from Kuipers et al. (2021). Land use types include: U = urban, C = cropland, P = pasture, 

F = forestry, NA= Not available. 

  Amphibians 
  
  
  

Birds 
  
  
  

Mammals 
  
  
  

Reptiles 
  
  
  

Aggregated 
  
  
  

Ecoregion U C P F U C P F U C P F U C P F U C P F 

East 
European 
Forest 
steppe 

6.71
E-18 

6.71
E-18 

NA 1.34
E-17 

2.71
E-16 

1.95
E-16 

NA 2.87
E-16 

1.00
E-15 

7.08
E-16 

NA 9.22
E-16 

2.40
E-17 

1.89E-
17 

NA 2.02
E-17 

3.26
E-16 

2.32
E-16 

NA 3.11
E-16 

Cerrado 2.80
E-15 

2.89
E-15 

2.39
E-15 

2.88
E-15 

4.21
E-15 

4.05
E-15 

3.97
E-15 

4.10
E-15 

4.06
E-15 

3.84
E-15 

3.84
E-15 

3.87
E-15 

1.05
E-15 

1.04E-
15 

1.05E-
15 

1.05
E-15 

3.03
E-15 

2.96
E-15 

2.81
E-15 

2.97
E-15 

Northeaste
rn Spain 
and 
Southern 
France 
Mediterran
ean forests 

4.37
E-15 

4.13
E-15 

NA NA 9.58
E-16 

7.52
E-16 

NA NA 1.45
E-15 

1.04
E-15 

NA NA 5.45
E-15 

3.87E-
15 

NA NA 3.06
E-15 

2.45
E-15 

NA NA 

Pyrenees 
conifer and 
mixed 
forests 

NA 5.25
E-15 

5.25
E-15 

NA NA 1.01
E-17 

1.25
E-17 

NA NA 9.39
E-16 

6.61
E-16 

NA NA 0.00E+
00 

0.00E+
00 

NA NA 1.55
E-15 

1.48
E-15 

NA 

Central 
forest-
grasslands 
transition 

4.61
E-16 

4.51
E-16 

4.29
E-16 

NA 6.76
E-16 

6.51
E-16 

6.69
E-16 

NA 8.27
E-16 

6.70
E-16 

6.70
E-16 

NA 1.08
E-15 

1.14E-
15 

9.50E-
16 

NA 7.61
E-16 

7.27
E-16 

6.79
E-16 

NA 

Sarmatic 
mixed 
forests 

2.56
E-17 

2.56
E-17 

2.56
E-17 

4.39
E-17 

1.93
E-16 

1.46
E-16 

1.75
E-16 

2.08
E-16 

4.09
E-16 

2.86
E-16 

1.91
E-16 

3.75
E-16 

1.52
E-17 

1.30E-
17 

1.09E-
17 

1.52
E-17 

1.61
E-16 

1.18
E-16 

1.00
E-16 

1.61
E-16 

Scandinavi
an and 
Russian 
taiga 

2.02
E-17 

2.02
E-17 

2.02
E-17 

3.23
E-17 

3.53
E-16 

2.70
E-16 

3.21
E-16 

3.78
E-16 

4.87
E-16 

3.71
E-16 

2.86
E-16 

4.33
E-16 

1.45
E-17 

1.21E-
17 

9.69E-
18 

1.45
E-17 

2.19
E-16 

1.68
E-16 

1.59
E-16 

2.14
E-16 

Southern 
Great Lakes 
forests 

6.17
E-16 

6.17
E-16 

6.37
E-16 

6.58
E-16 

7.81
E-16 

7.77
E-16 

7.77
E-16 

8.76
E-16 

4.95
E-16 

3.68
E-16 

3.58
E-16 

4.32
E-16 

9.43
E-16 

1.04E-
15 

7.86E-
16 

1.01
E-15 

7.09
E-16 

7.00
E-16 

6.39
E-16 

7.43
E-16 
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Maputalan
d coastal 
forest 
mosaic 

3.99
E-15 

2.28
E-15 

2.39
E-15 

4.44
E-15 

4.30
E-15 

3.68
E-15 

4.35
E-15 

4.26
E-15 

6.94
E-15 

6.06
E-15 

6.72
E-15 

6.13
E-15 

3.04
E-15 

2.98E-
15 

2.98E-
15 

3.01
E-15 

4.56
E-15 

3.75
E-15 

4.11
E-15 

4.46
E-15 

Upper 
Gangetic 
Plains 
moist 
deciduous 
forests 

2.02
E-16 

1.34
E-16 

NA NA 1.01
E-15 

7.47
E-16 

NA NA 2.56
E-15 

1.77
E-15 

NA NA 4.95
E-16 

4.51E-
16 

NA NA 1.07
E-15 

7.75
E-16 

NA NA 

Central 
American 
dry forests 

4.21
E-15 

4.50
E-15 

4.06
E-15 

NA 2.69
E-15 

2.66
E-15 

2.55
E-15 

NA 1.06
E-15 

9.45
E-16 

9.97
E-16 

NA 5.66
E-15 

5.17E-
15 

4.74E-
15 

NA 3.40
E-15 

3.32
E-15 

3.09
E-15 

NA 

Northwest
ern thorn 
scrub 
forests 

4.07
E-17 

4.07
E-17 

4.75
E-17 

NA 1.99
E-15 

1.55
E-15 

2.02
E-15 

NA 1.05
E-15 

7.47
E-16 

7.60
E-16 

NA 1.92
E-15 

1.90E-
15 

1.92E-
15 

NA 1.25
E-15 

1.06
E-15 

1.19
E-15 

NA 

Sahelian 
Acacia 
savanna 

1.35
E-16 

9.62
E-17 

NA 1.25
E-16 

2.07
E-15 

1.62
E-15 

NA 2.11
E-15 

2.41
E-15 

1.85
E-15 

NA 2.33
E-15 

6.22
E-16 

5.94E-
16 

NA 6.11
E-16 

1.31
E-15 

1.04
E-15 

NA 1.30
E-15 

Sumatran 
peat 
swamp 
forests 

2.45
E-15 

2.45
E-15 

NA NA 8.40
E-15 

7.71
E-15 

NA NA 9.07
E-15 

7.67
E-15 

NA NA 7.39
E-15 

7.27E-
15 

NA NA 6.83
E-15 

6.27
E-15 

NA NA 
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Table C-6. Characterization factors in units PDF/m2 from Knudsen et al. (2017) 

 Biome Arabl
e 
Crop 
organ
ic 
inten
sive 

Arable 
Crop 
organic 
extensi
ve 

Arable 
Crop 
conven
tional 
intensi
ve 

Arable 
Crop 
conven
tional 
extensi
ve 

past
ure 
orga
nic 
inten
sive 

pastu
re 
orga
nic 
exten
sive 

pasture 
conven
tional 
intense 

pasture 
conven
tional 
extensi
ve 

Temperate 
Broadleaf & Mixed 
Forests 

0.29 0.2033
33333 

0.68 0.3366
66667 

-0.09 -0.42 0.1 -0.28 
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Figure C-1. Potential disappeared fraction (PDF) of species due to land use in case studies ES1, ES2 and 

NO1, showing sensitivity of intensity class on impact scores. 

0

2E-09

4E-09

6E-09

8E-09

1E-08

1.2E-08

1.4E-08

1.6E-08

1.8E-08

2E-08

ES1

Minimum Light

0

2E-09

4E-09

6E-09

8E-09

1E-08

1.2E-08

1.4E-08 ES2

Minimum Light

0

5E-11

1E-10

1.5E-10

2E-10

2.5E-10 NO1

Minimum Light



 

 207 

 

 

 

 

Feed - Maize UKR Feed - Maize BRA Feed - Maize FRA

Feed - Wheat ESP Feed - Barley ESP Feed - Soy flour BRA

Feed - Soy flour USA Feed - Wheat bran Feed - Palm oil IDN

A)

Complements - maize grain UKR Complements - maize grain BRA

Complements - maize grain FRA Complements - barley grain ESP

B)

Feed - Maize UKR Feed - Maize BRA Feed - Maize FRA

Feed - Wheat ESP Feed - Barley ESP Feed - Soy flour BRA

Feed - Soy flour USA Feed - Wheat bran Feed - Palm oil IDN

C)
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Figure C-2. Contribution of different land uses to total aggregated mean potential species loss in sheep 

farms using the model by Chaudhary and Brooks (2018) in case studies ES1 (A, fattening feed, B 

complementary feed), ES2 (C, fattening feed, D complements) and in NO1 (E).  

 

Complements - maize grain UKR Complements - maize grain BRA

Complements - maize grain FRA Complements - barley grain ESP

D)

Cmpd feed - Wheat - NOR Cmpd feed - Soy - BRA Cmpd feed - Soy - CAN
Cmpd feed - Oat - NOR Cmpd feed - Sugarcane - MOZ Cmpd feed - Sugarcane - IND
Cmpd feed - Sugarcane - GTM Cmpd feed - Sugarcane - PAK Cmpd feed - Sugarcane - SDN
Cmpd feed - Barley - NOR Cmpd feed - Rye - NOR Cmpd feed - Peas - NOR

E)
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Complements - maize grain UKR Complements - maize grain BRA

Complements - maize grain FRA Complements - barley grain ESP

A)

Feed - Maize UKR Feed - Maize BRA Feed - Maize FRA

Feed - Wheat ESP Feed - Barley ESP Feed - Soy flour BRA

Feed - Soy flour USA Feed - Wheat bran Feed - Palm oil IDN

B)
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Figure C-3. Contribution of different land uses to total aggregated mean potential species loss in sheep 

farms using the model by Kuipers et al. (2021) in case studies ES1 (A, fattening feed, B complementary 

feed), ES2 (C, fattening feed, D complements) and in NO1 (E). 

Fattening feed - Maize UKR Fattening feed - Maize BRA
Fattening feed - Maize FRA Fattening feed - Wheat ESP
Fattening feed - Barley ESP Fattening feed - Soy flour BRA
Fattening feed - Soy flour USA Fattening feed - Wheat bran ESP
Fattening feed - Palm oil IDN

C)

Complements - maize grain UKR Complements - maize grain BRA

Complements - maize grain FRA Complements - barley grain ESP

D)

Cmpd feed - Wheat - NOR Cmpd feed - Soy - BRA Cmpd feed - Soy - CAN

Cmpd feed - Oat - NOR Cmpd feed - Sugarcane - MOZ Cmpd feed - Sugarcane - IND

Cmpd feed - Sugarcane - GTM Cmpd feed - Sugarcane - PAK Cmpd feed - Sugarcane - SDN

Cmpd feed - Barley - NOR Cmpd feed - Rye - NOR Cmpd feed - Peas - NOR

E)
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D. APPENDIX 

Table D-1. Land management data derived from Lüscher et al. (2016) for organic and conventional farms in Spain, France and Italy, for olives, cereals and 

vineyards in those respective countries. 

 
Farm No. Mean total 

nitrogen input 
(kg/ha) 

Mean mineral 
nitrogen input 
(kg/ha) 

Number of 
pesticide 
applications 
(No./ha) 

Number of 
herbicide 
applications 
(No./ha) 

Number of 
fungicide 
applications 
(No./ha) 

Number of 
insecticide 
applications 
(No./ha) 

Number of 
mechanical field 
operations 
(No./ha) 

SPAIN 
(OLIVES, 
other 
woody 
crops) 

ORGANIC 

EO01 113 0 0 0 0 0 3.5 

EO02 46 0 0 0 0 0 2.9 

EO03 15 0 0 0 0 0 2.9 

EO04 40 0 1 0 1 0 5 

EO05 23 0 2 0 2 0 5 

EO06 80 0 0.9 0 0.9 0 2.8 

EO07 16 0 0.9 0 0 0 5.7 

EO08 140 0 0 0 0 0 0.9 

EO09 88 0 0 0 0 0 2.2 

EO10 134 0 2 0 2 0 9 

Mean 69.5 0 0.7 0 0.6 0 3.9 

Standard 
deviation 

48.2 0 0.8 0 0.8 0 2.3 

CONVENTIONAL 

EO11 38 37 1 0 1 0 5.7 

EO12 32 32 0.9 0 0.9 0 3.7 

EO13 30 30 1 0 1 0 6 

EO14 75 29 1 0 1 0 6 

EO15 32 32 0 0 0 0 2 

EO16 16 9 0 0 0 0 1.9 

EO17 147 39 0 0 0 0 4 
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EO18 59 32 1 0 1 0 5.8 

EO19 40 40 0 0 0 0 3 

EO20 71 29 0 0 0 0 2.7 

Mean 54 30.9 0.5 0 0.5 0 4.1 

Standard 
deviation 

37.8 8.7 0.5 0 0.5 0 1.7 

FRANCE 
(Wheat & 
Barley) 

ORGANIC 

FR03 74 74 4.2 2 1.2 1 11.4 

FR06 81 81 2.1 1 0 0.3 5.6 

FR07 93 66 2.2 2.2 0 0 6.8 

FR08 125 45 0.6 0.6 0 0 6.9 

FR09 126 126 3.9 2.9 1 0 10.8 

FR11 135 99 1.6 0.4 0.9 0.3 7.7 

FR12 183 41 3.3 3 0 0.2 6.2 

FR15 91 1 3 1.7 1.3 0 9.9 

Mean 113.5 66.6 2.6 1.7 0.5 0.2 8.2 

Standard 
deviation 

36.1 38.3 1.2 0.9 0.6 0.3 2.2 

CONVENTIONAL 

FR01 37 0 0 0 0 0 4.9 

FR02 44 0 0 0 0 0 4 

FR04 34 0 0 0 0 0 7 

FR05 62 0 0 0 0 0 6 

FR10 18 0 0 0 0 0 5.1 

FR13 71 0 0 0 0 0 5.6 

FR14 55 0 0 0 0 0 6.7 

FR16 28 0 0 0 0 0 3.8 

Mean 43.6 0 0 0 0 0 5.4 

Standard 
deviation 

17.9 0 0 0 0 0 1.2 
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ITALY 
(Vineyards) 

ORGANIC 

IT01 8 0 26 0 17 9 29 

IT03 6 0 22 0 22 0 26 

IT05 20 0 21 0 17 4 26 

IT07 1 0 12 0 6 6 20.5 

IT09 10 0 8.6 0 8.6 0 12.4 

IT11 5 0 13.9 0 11.1 2.8 18.7 

IT13 0 0 13 0 13 0 17 

IT15 49 0 16 0 13 2 21 

IT17 38 0 35.8 0 17.5 18.3 39.4 

Mean 15.2 0 17.2 0 12.3 4.7 22.1 

Standard 
deviation 

17.3 0 9.0 0 4.2 6.3 8.7 

CONVENTIONAL 

IT02 101 80 12.2 1 10.3 0.9 18 

IT04 51 51 13 0 10 3 17 

IT06 32 32 26 4 20 2 32 

IT08 0 0 13 1 10 2 18 

IT10 44 44 20 2 18 0 25 

IT12 11 0 11.7 1.9 8.8 1 16.7 

IT14 35 35 12.1 2.8 9.2 0.1 15.9 

IT16 0 0 20.8 3.9 15.9 0.9 26.8 

IT18 3 0 17.8 0 14.2 3.7 19.8 

Mean 30.8 26.9 16.3 1.8 12.9 1.5 21.0 

Standard 
deviation 

32.7 28.9 5.1 1.5 4.2 1.3 5.6 

 


