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Abstract

It’s the year 1736, in the city of Königsberg in Prussia there are seven bridges
that connect two portions of land through two large islands, and the Swiss mathe-
matician Leonhard Euler is thinking about one question: How to walk through the
city crossing all the bridges only once? Euler concluded that this journey cannot
be made. To demonstrate this conclusion, he represented the problem by drawing a
simple graph, which became the precursor of a new way of modeling the world, this
was the beginning of Graph Theory.

Nowadays networks are present in many areas and in many aspects of everyday
life, from road networks to chemical formulations. This trend has increased in
recent years due to the emergence of the internet and digitization. These factors
have generated a new flow of data that has reaffirmed the need to create network
models to comprehend and solve problems. This need has led to the development of
Graph Theory which has become an important research branch of mathematics with
applications in computer science, biology, chemistry, social science, and geography
among others. In some cases, not only the network structure can be of interest,
but also we can be interested in events occurring along these linear configurations.
For instance, in geography, networks containing events (typically point patterns)
are modeled into spatial (and often planar) graphs. This representation is useful to
describe and predict the future behavior of such occurrences. Another important
research line in Graph Theory is the study of graph reliability. This is an expanding
area where there are many unknowns, for instance, in the reliability of hamiltonian
graphs.

The aim of this thesis is to give more light on both of these areas, i.e. graph
reliability and point patterns on networks, by providing new methodologies and
practical tools accessible to all researchers. Therefore, this thesis is structured into
two main parts covering the areas of network reliability and spatial networks re-
spectively. The first part presents research focused on the design of uniformly most
reliable hamiltonian networks and a study to calculate the all-terminal reliability
for undirected networks. The second part provides new developments in optimal
path algorithms based on weighted graphs and a paper that presents a new package
based on the R computational language focused on the visualization and statistical
analysis of point processes occurring over spatial networks.

The author of the thesis acknowledges the support of the MCIN/AEI/ 10.13039/
501100011033 (Spanish Government) through Grants MTM 2017-86767-R and PID
2020-115442RB-I00.
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Resumen

Es el año 1736, en la ciudad de Königsberg en Prusia hay siete puentes que conectan
dos porciones de tierra a través de dos grandes islas y el matemático suizo Leonhard
Euler está pensando en una pregunta: ¿Cómo caminar por la ciudad cruzando todos
los puentes sólo una vez? Euler concluyó que este viaje no puede realizarse. Para
demostrar esta conclusión, representó el problema dibujando un gráfico sencillo, el
cual se convirtió en el precursor de una nueva forma de modelar el mundo, este fue
el inicio de la Teoŕıa de los Grafos.

Actualmente, las redes están presentes en muchos ámbitos y aspectos de la vida
cotidiana, desde redes de carreteras hasta formulaciones qúımicas. Esta tendencia
ha aumentado en los últimos años debido a la aparición de internet y la digital-
ización, estos factores han generado un nuevo flujo de datos que ha reafirmado la
necesidad de crear modelos de red para entender y resolver nuevos problemas. Esta
necesidad ha desembocado en el desarrollo de la Teoŕıa de Grafos que se ha conver-
tido en una importante rama de investigación de las matemáticas con aplicaciones en
informática, bioloǵıa, qúımica, ciencias sociales y geograf́ıa, entre otros. En algunos
casos, no solo puede ser de interés la estructura de la red, sino que también pode-
mos estar interesados en los eventos que ocurren a lo largo de estas configuraciones
lineales. Por ejemplo, en geograf́ıa, las redes que contienen eventos (normalmente
patrones puntuales) se moldean en gráficos espaciales (y a menudo planares). Esta
representación es útil para describir y predecir el comportamiento futuro de estos
hechos. Otra ĺınea de investigación relevante en teoŕıa de grafos es el estudio de la
fiabilidad de los grafos. Esta es un área en expansión donde hay muchas incógnitas,
por ejemplo, en la fiabilidad de los grafos hamiltonianos.

El objetivo de esta tesis es dar más luz a estos dos ámbitos, es decir, la fiabilidad
de grafos y los patrones de puntos en las redes, aportando nuevas metodoloǵıas y
herramientas prácticas accesibles a todos los investigadores. Por tanto, esta tesis se
estructura en dos partes principales que cubren las áreas de fiabilidad de redes y redes
espaciales respectivamente. La primera parte presenta una investigación centrada
en el diseño de redes hamiltonianas uniformemente más fiables y un estudio para
calcular la fiabilidad (all-terminal) para redes no dirigidas. La segunda parte ofrece
nuevos desarrollos en algoritmos de caminos óptimos basados en grafos ponderados
y un art́ıculo que presenta un nuevo paquete basado en el lenguaje computacional
centrado R en la visualización y análisis estad́ıstico de procesos puntuales que se
producen en redes espaciales.

El autor de la tesis agradece el apoyo del MCIN/AEI/10.13039/501100011033
(Gobierno de España) a través de las Subvenciones MTM 2017-86767-R y PID 2020-
115442RB-I00.
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Resum

És l’any 1736, a la ciutat de Königsberg a Prússia hi ha set ponts que connecten
dues porcions de terra a través de dues grans illes i el matemàtic súıs Leonhard
Euler està pensant en una pregunta: Com caminar per la ciutat travessant tots els
ponts només una vegada? Euler va concloure que aquest viatge no es pot fer. Per
demostrar aquesta conclusió, va representar el problema dibuixant un gràfic senzill,
el qual es va convertir en el precursor d’una nova manera de modelar el món, aquest
va ser l’inici de la Teoria dels Grafs.

Actualment, les xarxes estan presents en molts àmbits i en molts aspectes de la
vida quotidiana, des de xarxes de carreteres fins a formulacions qúımiques. Aquesta
tendència ha augmentat en els últims anys a causa de l’aparició d’internet i de la
digitalització, aquests factors han generat un nou flux de dades el qual ha reafir-
mat la necessitat de crear models de xarxa per entendre i resoldre nous problemes.
Aquesta necessitat ha desembocat al desenvolupament de la Teoria de Grafs que
s’ha convertit en una important branca de recerca de les matemàtiques amb aplica-
cions en informàtica, biologia, qúımica, ciències socials i geografia, entre d’altres. En
alguns casos, no només pot ser interessant l’estructura de la xarxa, sinó que també
podem estar interessats en els esdeveniments que tenen lloc al llarg d’aquestes con-
figuracions lineals. Per exemple, en geografia, les xarxes que contenen esdeveniments
(normalment patrons puntuals) es modelen en gràfics espacials (i sovint planars).
Aquesta representació és útil per descriure i predir el comportament futur d’aquests
fets. Una altra ĺınia de recerca rellevant en teoria de grafs és l’estudi de la fiabilitat
dels grafs. Aquesta és una àrea en expansió on hi ha moltes incògnites, per exemple,
en la fiabilitat dels grafs hamiltonians.

L’objectiu d’aquesta tesi és donar més llum en aquests dos àmbits, és a dir,
la fiabilitat de grafs i els patrons de punts a les xarxes, aportant noves metodolo-
gies i eines pràctiques accessibles a tots els investigadors. Per tant, aquesta tesi
s’estructura en dues parts principals que cobreixen les àrees de fiabilitat de xarxes
i xarxes espacials respectivament. La primera part presenta una investigació cen-
trada en el disseny de xarxes hamiltonianes uniformement més fiables i un estudi per
calcular la fiabilitat (all-terminal) per a xarxes no dirigides. La segona part ofereix
nous desenvolupaments en algorismes de camins òptims basats en grafs ponderats i
un article que presenta un nou paquet basat en el llenguatge computacional R cen-
trat en la visualització i anàlisi estad́ıstic de processos puntuals que es produeixen
en xarxes espacials.

L’autor de la tesi agraeix el suport del MCIN/AEI/ 10.13039/ 501100011033
(Gobiern d’Espanya) a través de les Subvencions MTM 2017-86767-R i PID 2020-
115442RB-I00.
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Chapter 1

Introduction

1.1 The world as a network

The problem of the seven bridges of Königsberg was the first approach to model the
world as a network. Since then many fields have adopted network modeling as an ef-
fective way to solve problems through Graph Theory. These fields are really diverse
and we can see graph theory applications in main areas. For example, in Computer
Science, see for instance, in communication networks, the internet of things (IoT),
topological networks, and image analysis [28]. Also, we can find examples in biology
sciences, see for instance, drug characterization, protein interaction, biological and
metabolical networks. We can also find applications in chemistry sciences, see for
instance, molecular connectivity, drug design, chemical formulation, and biomacro-
molecules study [19], or electrical engineering to study electrical network dynamics,
analyze its properties and design new networks [14].

Since the apparition of the internet, available data has grown exponentially,
from more sources, better detailed, and with great accessibility. This has promoted
the apparition of new fields of research such as Data Mining [55] or the boost of
other fields closely related to the availability of data such as Machine Learning
[57]. Graph Theory has demonstrated to be a powerful tool for these areas too
and boosted its usage since then. If we think about our daily lives we can see how
graphs are used all the time, from searching on the internet to calculating the best
travel to our destination. We can also note that the increase in available information
provides better results, such as accurate search findings [13], optimized traffic route
options based on road events (transit density, accidents, etc.) [56], or personalized
advertising [29].

Therefore, having reliable graphs and better or new methodologies to analyze
such graphs affects positively many areas at once.

In this thesis, we will take a deeper look into network reliability and spatial
networks where we will detail how to construct reliable networks and calculate their
reliability and, how random events occurring over a spatial plane interrelates with
networks.

1.1.1 Network Characteristics

As described in Graph Theory, a network or graph is mathematically modeled by
an ordered pair G = (V,E), where V is a non-empty set of nodes (also called

8



CHAPTER 1. INTRODUCTION

vertices) {v1, v2, . . . , vn} which can be interconnected using a set {e1, e2, . . . , em} ∈ E
of links (or edges). Moreover, we define a spatial point process X on a linear
network as a stochastic mechanism that generates a countable and finite set of
events xi = 1, . . . , n, where n is not fixed in advance over a linear network. In
addition, depending on the characteristics of such links, the graphs are categorized
into different types:

• Multigraph: A multigraph is a generalization of a graph that allows multiple
edges, therefore two nodes may be connected through more than one edge. In
some definitions, a multigraph also can include loops, that is, an edge that
connects a vertice to itself.

• Digraph: A graph is called directed or digraph when its edges have a definite
direction (usually indicated with an arrow). For instance, if the vertex v1 is
connected to the vertex v2 with one directed edge from v1 to v2 {v1 → v1},
then from v2 its impossible to reach v1 without any additional vertices or
edges. Formally defined, a directed graph is a graph G = (V,E) where E is
a set of ordered pairs of elements of V . On the opposite, a graph G = (V,E)
is undirected when the set of edges E is composed of unordered pairs of
vertices, therefore, the graph doesn’t contain any directed edge.

• Mixed: If a graph contains directed and undirected edges, then it’s considered
a mixed graph (also known as partially directed graph).

• Weighted: When a graph contains attributes (or weights) embedded into its
edges or vertices, then its named weighted graph. For instance, in a road
network where its roads represent edges, can be useful to attach its length as
edge weights.

• Induced sub-graph: An induced sub-graph of a graph is another graph formed
by a sub-set of the vertices of the original graph and all the edges incident to
pairs of vertices of said sub-set.

By looking at the nodes and edges, we can observe particularities and structures
that can help to comprehend the graph. For instance, some of them are:

• Walk: A pair of nodes connected by a sequence of nodes and edges is called a
walk . In this sequence, both nodes and edges can be repeated.

• Path: If a pair of nodes are connected by a sequence of non-repeated edges
and nodes, this sequence is named a path . Note that a path is also a walk
but a walk may not be a path.

• Cycle: It is a cycle a path where its starting node it’s also its ending node.

• Distance: The number of edges of a shortest path connecting a pair of nodes
is named distance .

• Eccentricity: A node eccentricity is the maximum distance from itself to any
other node in the graph.

• Radius: The radius of a graph is the minimum eccentricity of its nodes.

1.1. THE WORLD AS A NETWORK 9
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• Diameter: Among all the shortest paths between each pair of nodes in a graph,
the longest is called the diameter of the graph.

• Neighborhood: The neighborhood of a node v is referred to as the induced
sub-graph composed of all the adjacent nodes of v. In other words, it’s the
sub-graph formed by all the nodes connected via an edge to v.

• Degree: The degree is the number of edges that are incident to a node.

The form in which the nodes are interconnected can result in several graph
configurations. Such configurations can contain characteristics that describe how
the graph is structured. Below we define some of the most common:

• Connected: A graph is categorized as connected when each of its nodes can
be reachable from any other node. That is, exists a path between each pair of
vertices. On the other hand, a graph that doesn’t fulfill the previous requisite
is considered disconnected , and its connected parts are called components .

• Planar: A graph is planar if it can be ‘drawn’ in the plane so that none of
its edges cross each other.

• Bipartite: If the nodes of a graph can be divided into two disjoint and inde-
pendent sets U and V so that the edges cannot relate vertices of the same set,
then, the graph is called bipartite. If each node in the set U connects to a
node in the set V , then the graph is called complete bipartite.

• Complete: A graph is considered complete if each of its nodes is linked to all
the remaining nodes, in other words, if each pair of vertices is connected with
an edge.

• Regular: When all the vertices of a graph have the same number of neighbors,
the graph is regular . It can also be called k-regular where k is the degree of
the nodes. Regarding a directed graph, it is regular if all the nodes have the
same number of in and out edges.

• Hamiltonian: In a connected graph, if there exists a path that traverses all
the nodes only once, it’s called a hamiltonian path. If said path ends in the
same starting node, then it is a hamiltonian cycle. Therefore, a graph that
contains such a cycle is considered hamiltonian .

• Tree: In an undirected graph if for each pair of nodes only exists one path
connecting them, then the graph is categorized as a tree .

Note that a graph can be defined by a combination of several types and structures
since they are not exclusive. For example, we can have a planar regular mixed graph
with multiple directed weighted edges as shown in Fig. 1.1.

1.1.2 Network Representation

As described in Graph Theory, network representation is a procedure that allows
saving the network in various forms. This procedure is useful to store the network
in computer memory and ease its analysis and computations. Similarly to language,

10 1.1. THE WORLD AS A NETWORK
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Figure 1.1: Example of a mixed graph that is planar, regular, and with weighted
mixed edges (directed and undirected)

it is an encoding process that allows representing the same information in different
ways. To this end, there are some points to take into consideration, for instance,
the links or edges between each pair of nodes must be properly encoded as well as
its direction and its weight (if exist). Some of the most common representations are
in form of matrices which depending on the structure can be differentiated between
adjacency and incidence matrices. There is another recent way to represent net-
works by using ASCII characters named Graph6 , although this encoding method
is not intuitive it’s notable for being memory-efficient.

Adjacency Matrix

As its name indicates, an adjacency matrix represents the adjacency between each
pair of nodes, that is, the existence of an edge connecting these nodes. An adja-
cency matrix A = (aij) is composed by n×n elements where a value aij = 1 refers
to the existence of an edge between the vertex i and the vertex j and aij = 0 other-
wise. This type of representation can encode directed and undirected networks with
or without weight. In the weighted case, instead of a value of aij = 1, the weight
value is used. If the weight is aij = 0, this implies the nonexistence of an edge.
When working with sparse graphs (with few edges), the adjacency matrix contains
large quantities of 0 values, in this case, there are some techniques to reduce the
space in memory designed to store the network, for instance, the usage of triples
(Row, Column, value) to only store the non-zero values. To this end, there exists
some packages that already provide this conversion, for example, the library Scipy
for the Python computer language or the library Matrix for R. Another method
to optimize memory space is the usage of adjacency lists. In this representation,
each node of the network contains a list of its adjacent vertices. Although this
method also allows checking whether two vertices are adjacent, it is slower than the
adjacency matrix.

Incidence Matrix

This matrix focuses on the edges associated with each node, in other words, the
incident edges. An incident matrix B = (bik) is formed by n×m elements where

1.1. THE WORLD AS A NETWORK 11
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the nodes are represented as rows and the edges as columns such that if ek is an
edge between the pair of nodes (i, j), then the elements bik and bjk will contain the
value 1 (bik = bjk = 1) and 0 otherwise if the graph is undirected. In the case of
directed graphs, the value can be 1 to represent an outgoing edge from the node, −1
for an incoming edge, or 0 if there is no edge. In terms of memory space, between
incident or adjacent matrices, is better to use an incident matrix if the number of
nodes is much larger than the number of edges.

Graph6

Presented by Brendan McKay, Graph6 focuses on the representation of undirected
graphs. It’s a method that encodes the size and the upper part of the adjacency
matrix in ASCII characters. To this end, this methodology first represents the graph
in an adjacency matrix (which is symmetric), then, it creates a new matrix T with
the upper triangle part of the adjacency matrix excluding its diagonal (since only
contains zeroes). Next, it builds a bit vector of size n(n − 1)/2 by traversing T
row by row. Following, the vector is divided into chunks of 6 bits. These chunks
are then converted to integers in the range of 63 to 126. Finally, each integer
is transformed into its corresponding ASCII character. After the creation of this
format, the author developed another graph representation for undirected sparse
graphs named Sparce6 and directed graphs with the name of Digraph6 .

Example

Graphical Network Adjacency Matrix

a

b

c

d

e

f

a b c d e f





a 0 1 0 1 0 1
b 1 0 1 0 1 0
c 0 1 0 1 0 1
d 1 0 1 0 1 0
e 0 1 0 1 0 1
f 1 0 1 0 1 0

Incidence Matrix Graph6







a 1 1 1 0 0 0 0 0 0
b 1 0 0 1 1 0 0 0 0
c 0 0 0 1 0 1 1 0 0
d 0 0 1 0 0 1 0 1 0
e 0 0 0 0 1 0 0 1 1
f 0 1 0 0 0 0 1 0 1

ElUg

Figure 1.2: Different representations of a network with 6 nodes and 8 edges
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Chapter 2

Aim and Objectives of the Thesis

The world of networks as described in Graph theory have numerous branches and
covers many areas, the aim of this thesis is to give more light on some of the less
studied branches as well as to provide new methodologies and tools. To this end,
the thesis is divided into two main parts. The first part is devoted to the study
of network reliability, more specifically the all-terminal reliability polynomial. This
polynomial gives the probability of the network remaining connected when all its
edges have a certain fixed probability of failure. In this study, we take two ap-
proaches, the design of the uniformly most reliable graphs for certain families, and
the efficient calculation of the reliability polynomial. All the reliability study has
been implemented and tested in Python computer language in form of open-access
repositories and libraries.

The second part focuses on the study of point processes occurring on spatial
networks, for instance, traffic accidents in a road network, criminal activity in a
city, or fires provoked by high-tension towers. All these events have a space-time
dependence but the space where they occur is restricted to the roads, streets, or
power lines. The presence of these events allows us to consider weighted networks,
weights based on these events, and then analyze the resulting network structure
accordingly. For instance, we studied how to optimally traverse a given network in
terms of the characteristics of these events occuring on it, and how these events are
related to the network structure and correlated with each other. This study has
been implemented and tested in R the computer language, which can also be found
in form of open-access repositories and libraries.

To summarize, the research objectives are divided into two:

All-terminal network reliability

• The design of uniformly most reliable graphs for certain families.

• The efficient calculation of the all-terminal reliability polynomial.

• The definition of new tools in form of Python repositories and libraries.

Occurrences in spatial networks

• The study of event-sensitive optimal paths that traverse networks.

• The definition of weighted network based on events occurring along networks.

• the definition of new tools in form of R repositories and libraries.

13



Chapter 3

Thesis Structure

This dissertation is structured in 7 chapters. Chapter 1 introduces network models
as described in Graph Theory. It gives an overview of graph applications, char-
acteristics, and representations. Chapter 2 details the aim and objectives of the
thesis whereas chapter 3 presents its structure. The research articles are divided
into two groups regarding the two main aims of this study, Network Reliability and,
Spatial Networks with Point Processes. The first aim (Network Reliability) is rep-
resented in Chapter 4. The first part of this chapter introduces network reliability,
gives an overview of its evolution from 1952 until recent years, and differentiates
the two main approaches in network reliability. The first approach focuses on the
design of optimal networks with high all-terminal reliability whereas the second ap-
proach focuses on the calculation of network reliability. Before each article, a short
overview and the main takeaways of the article are given. The first research stud-
ies the design of Uniformly Most Reliable (UMR) hamiltonian networks and, the
second research, provides tools and methodologies in form of a Python package to
calculate the network all-terminal reliability. The second aim of this thesis (Spatial
Networks with Point Processes) is presented in Chapter 5. Similarly to Chapter 4,
this Chapter begins with an introduction to spatial points processes and gives an
overview of the state of the art from 1995 to 2021. The following articles presented
in this Chapter are also introduced with a brief overview and their main takeaways.
The first research provides a methodology to calculate the safest path between any
two points of the network based on weighted graphs. In particular, we focus our
analysis on point patterns of wildlife-vehicle collisions, and other variables (the road
type, speed limits, and vegetation density near the roads) to define the weight of
each linear segment of the road network structure. To this end, the study tested the
model using a real data set on a square area of 40 × 40 square km and the related
road network structure around the city of Lleida, Spain. The second article presents
an R package which provides tools and methodologies for undirected, directed, and
mixed networks to manipulate network data, estimate intensities, compute local and
global autocorrelation statistics, and data visualization. Chapter 6 presents other
research activities such as conferences, posters, and, the abroad research stay. And
finally, Chapter 7 presents a summary of all the research done in this thesis, the
summary includes state of art, methodologies, and results. This chapter also dis-
cusses the development of the thesis, presents the limitations and difficulties, details
the implications of the results, and finalizes with possible future research lines and
upgrades, and some concluding remarks of this thesis.
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Chapter 4

Network Reliability

4.1 Overview

The ability of a network G = (V,E) to remain operational when some of its links are
inoperative is named network reliability. A network is operational if there exists at
least one walk between each pair of nodes. This is crucial in many areas, for instance,
in road networks to maintain all areas connected, in distributed data systems to
allow access to all the information, in electrical networks to provide electricity to
all areas, or in supply chains to prevent a stock shortage. Our research is centered
on the all-terminal network reliability problem. Given a probability p of an edge to
be operational, this problem focuses on the probability of a network G to remain
connected, in other words, that exist at least one operational path between all pairs
of nodes. In our model, the network has perfect nodes, and the edges have the same
independent probability 0 ≤ p ≤ 1 to remain operational, moreover, no repair is
allowed if an edge fails (see Fig. 4.1).

p

p

p

p

p

Figure 4.1: Network example with a reliability polynomial of: p5 + 5p4(1 − p) +
8p3(1− p)2

4.1.1 State of Art

Although the problem of constructing reliable networks was presented by John von
Neumann in 1952, the definition of network reliability as we understand nowadays
was first coined in 1956 by E.F. Moore and C.E. Shannon in a paper called ‘Reli-
able circuits using less reliable relays ’ [31]. They proposed a probabilistic network
model with perfect nodes and edges that could fail independently with a certain
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probability p. Since then, networks have become more present in our society and
within many areas. This provided a fertile ground for research from which many
studies have been done and with different variants of the original problem. For
instance, one variant of the network reliability problem is to consider node failures
in the model. This model is closer to real-life cases and was first presented in 1986
[17]. Other variants consider directed and mixed graphs. In general, there are three
main problems related to network reliability: the two-terminal reliability problem,
the all-terminal reliability problem, and the k-terminal reliability problem. Regard-
ing the all-terminal problem for undirected networks (which this thesis focuses on),
different methodologies had been purposed. For instance, the Inclusion-Exclusion
principle and the Deletion-Contraction algorithm can calculate the all-terminal re-
liability polynomial while the Kruskal–Katona theorem [54] and the Edge-Packing
methodology [12] obtain bounds for the reliability. Such principles and algorithms
work with a wide range of network types. Still, there are other algorithms that cal-
culate the reliability for specific graphs such as recursive methodologies for bipartite
graphs [18], Series-Parallel reduction [47] or Monte Carlo algorithms [26] for Planar
graphs, or Kruskal–Katona theorem for hypercubes and related networks [8].

Recently, part of the research is focused on; multivariate reliability polynomi-
als where they consider two types of links with different failure probabilities [30],
ternary networks where each component can be in one of three possible states [22],
geographic networks which they consider dependent failures instead of independent
[58] and, diameter-constrained reliability where the nodes have a probability of re-
main connected based on a path of length D or less [11].

To see a more detailed state of the art, the paper ‘Sixty Years of Network Relia-
bility ’ from Hebert Pérez-Rosés [37] reviews the basic concepts of network reliability,
provides results, analyses some recent developments and important research direc-
tions.

4.1.2 Two Approaches in Network Reliability

In the network reliability context, there are two main research lines; network design
and, reliability calculation. The first approach is centered on the design of optimal
networks with high reliability, for instance, the design of uniformly most reliable
(UMR) networks. We say that a graphG is uniformly more reliable than a graphG′ if
for any probability p of an edge to be operational, G always has a greater probability
to remain connected than G′. The second research line is focused on finding ways to
efficiently calculate the reliability polynomial and reduce the computational time.

Next are presented two studies that approach both lines, the first is focused on
the design of UMR networks related to the cake graph families whereas the second
presents a new modular methodology to calculate the reliability polynomial.

4.2 Article: ‘Network reliability in hamiltonian

graphs’

This article has been published in the journal Discrete Optimization, belonging to
the second quartile (Q2) in the area of applied mathematics as classified by Journal
Citation Reports (JCR) and Scimago Journal Rank (SJR). See Table 4.1.
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Table 4.1: Journal metrics corresponding to the journal Discrete Optimization for
the year 2021

Journal Metric Value
Citescore 1.9
Impact Factor (JCR) 1.509
SJR 0.646
SNIP 1.22

The purpose of the article ‘Network reliability in hamiltonian graphs’ is to study
the design of uniformly-most reliable (UMR) network configurations belonging to
the hamiltonian family. The research focuses on one particular hamiltonian family
named Cake networks. Such networks can be thought of as cycle networks with
diametral chords that traverse the cycle and cross each other like cuts in a cake.
With this configuration, the study characterizes the construction of UMR networks
for n nodes and m = n + 1, m = n + 2, and provides a computational approach
for m = n + 3 edges. The research also demonstrates the non-existence of UMR
hamiltonian networks for some configurations. To summarize, the main points of
this article are:

• The characterization of UMR hamiltonian graphs for m = n+1 and m = n+2
edges.

• Computational approach for the hamiltonian case with m = n+ 3 edges.

• Analysis of Cake graphs and comparison with the UMR hamiltonian graphs.

• Demonstration of non existence of UMR hamiltonian graphs for m =
(
n
2

)
− n+2

2

for all n ≥ 6 even and, m =
(
n
2

)
− n+5

2
for all n ≥ 7 odd.
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a b s t r a c t

The reliability polynomial of a graph gives the probability that a graph remains
operational when all its edges could fail independently with a certain fixed
probability. In general, the problem of finding uniformly most reliable graphs inside
a family of graphs, that is, one graph whose reliability is at least as large as any
other graph inside the family, is very difficult. In this paper, we study this problem
in the family of graphs containing a hamiltonian cycle.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Notation and terminology

In the reliability context, networks are modeled by graphs. We recall that a graph is an ordered pair
G = (V, E), where V is a non empty set of vertices or vertices, and E is a set of unordered pairs of different
elements of V , called links or edges. The degree of a vertex v ∈ V , denoted by d(v), is the number of incident
edges at v. A walk of length ℓ ≥ 0 from a vertex u to a vertex v is a sequence of ℓ+1 vertices, u0u1 . . . uℓ−1uℓ,
such that u = u0, v = uℓ and each pair ui−1ui, for i = 1, . . . , ℓ, is an edge of G. A connected graph has always
a walk between any pair of vertices. Otherwise, the graph is not connected. Our model is a stochastic network
with perfect vertices but with edge failures: each edge remains operational independently with probability
0 ≤ p ≤ 1 (every edge has the same probability of being operational). Moreover, no repair is allowed after
an edge fails.

Through this paper, we consider the problem of computing the probability that a network remains
connected. More precisely, we focus on what is called, the all-terminal network reliability problem: given
the probability p of an edge being operational in a network G, what is the probability that there exists an
operational path between every pair of vertices u and v of G (see [1]).

∗ Corresponding author.
E-mail addresses: pol.llagostera@udl.cat (P. Llagostera), nacho.lopez@udl.cat (N. López), carles.comas@udl.cat

(C. Comas).
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1572-5286/© 2021 Elsevier B.V. All rights reserved.
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Hamiltonian graphs
A graph G is a hamiltonian graph if it contains a spanning cycle, that is, a cycle passing through all the

vertices of the graph. This cycle is called a hamiltonian cycle. The problem of finding a hamiltonian cycle
takes back to the 1850s when Sir William Rowan Hamilton presented the problem of finding a hamiltonian
cycle in a dodecahedron. The complexity of finding a hamiltonian cycle in a graph is in general NP-complete
and much research in this area is devoted to finding necessary and/or sufficient conditions for a graph to be
hamiltonian. One of such conditions is Ore’s Theorem, which is a well-known result in the field.

Theorem 1.1 (Ore). Let G be a connected graph of order n such that d(u) + d(v) ≥ n for any two pair of
non adjacent vertices u and v. Then G is a hamiltonian graph.

Recent developments and many results regarding hamiltonian graphs can be found in [2].

The reliability polynomial

Let |G| denote the number of edges of a network G = (V, E). Let us consider the set G of connected
spanning subgraphs of G. Then, the probability that G is connected, as a function of p, is

∑

G′∈G
p|G′|(1− p)m−|G′| (1)

This formula is known as the reliability polynomial of G, and it is denoted as Rel(G, p). There are several
methods for computing Rel(G, p), but in general this problem is NP-complete (see [3]). A pathset of a graph
G = (V, E) is a subset N ⊆ E of edges that makes the graph (V, N) connected. Hence, an alternative
definition for the reliability polynomial is,

Rel(G, p) =
m∑

i=0
Nip

i(1− p)m−i (2)

where Ni denotes the number of pathsets of cardinality i. From this point of view, some of the coefficients of
the reliability polynomial are ‘easy’ to compute. For instance, Ni = 0 for all i < m−n + 1. Also Ni =

(
m

m−i

)

for all i > m − λ, where λ denotes the edge-connectivity of G. The edge-connectivity can be found with a
network flow algorithm in polynomial time (see [4]). Moreover, any spanning tree of G contain m − n + 1
edges, so Nm−n+1 = τ where τ is the number of spanning trees of G (also known as the tree-number). Again,
τ is computed in polynomial time (see [5]) using the Kirchoff’s matrix tree theorem. Further, from [1], section
5.2, Nm−λ can also be computed in polynomial time.

Uniformly most reliable graphs

A main problem in the reliability context is concerned with the design of networks with ‘high’ reliability.
To this end, let G(n, m) be the set of all simple connected graphs with n vertices and m edges. Given two
graphs G, G′ ∈ G(n, m), we say that G is uniformly more reliable than G′ if Rel(G, p) ≥ Rel(G′, p) for all
p ∈ [0, 1]. This means that, for any value of an edge to being operational p, graph G has equal or higher
probability to remain connected than graph G′. If there exists a graph G such that Rel(G, p) ≥ Rel(H, p)
for all p ∈ [0, 1] and for all H ∈ G(n, m), then G is known as a uniformly most reliable graph in the set
G(n, m). We point out that uniformly most reliable graphs have been also known as uniformly optimally
reliable graphs (see [6–9]) and uniformly optimal digraphs for the directed case (see [10]).

However, the reliability polynomial does not define a total ordering in G(n, m), because there are graphs
whose corresponding reliability polynomial have a crossing point in the interval (0, 1) (see [1] p.48). In order
to prove that a graph is uniformly most reliable graph, the following observation is widely used.

2
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Table 1
Uniformly most reliable graphs known in G(n, m), where n denotes the number of vertices
and m the number of edges, for m ≤ n + 3 and other sporadic values.

(n, m) UMR graphs for m ≤ n + 3 and other sporadic values Reference

(n, n − 1) UMR(n, n − 1) (Tree graphs Tn)
(n, n) UMR(n, n) (Cycle graphs Cn)
(n, n + 1) UMR(n, n + 1) (θ-graphs) [11]
(n, n + 2) UMR(n, n + 2) (subdivision of K4) [14]
(n, n + 3) UMR(n, n + 3) (subdivision of K3,3) [15]
(8, 12) Wagner graph [12]
(10, 15) Petersen graph [16]
(12, 18) Yutsis 18j-symbol label F graph [17]

Observation 1.1. Let G, G′ be graphs such that Ni(G) ≤ Ni(G′), for all 0 ≤ i ≤ m. Then Rel(G, p) ≤
Rel(G′, p) for all p ∈ [0, 1].

Hence, maximizing the number of pathsets Ni has been a classical method to obtain uniformly most
reliable graphs. We point out that the converse assertion of Observation 1.1 is not known to be true.

There exist uniformly most reliable graphs for m ≤ n + 3, m ≥
(

n
2
)
− n, and other sporadic values (see

Table 1). The uniformly most reliable graphs for m ≤ n + 3 are subdivisions of certain small graphs. The
subdivision operation for an edge uv is the deletion of uv from the graph and the addition of two edges uw

and wv along with the new vertex w. A graph which has been derived from G by a sequence of subdivision
operations is called a subdivision of G. For instance, every uniformly most reliable graph in the case m = n+1
(n ≥ 5) is a particular θ-graph, constructed taking a graph of order 5 as a basis and subdividing edges and
adding vertices one by one by following the sequence A, B, C, A, B, C, . . . (see Fig. 1). The characteristics of
this construction are that the resulting graphs have nearly or equal path lengths. This graph is also called
the Monma graph [11]. Uniformly most reliable graphs can be also obtained as subdivisions of small graphs
for m = n + 2 and m = n + 3. We will denote these extremal graphs as UMR(n, m). It has been conjectured
that UMR(n, n + 4) are particular subdivisions of the Wagner graph for n ≥ 8 (see [12]). Despite these
general constructions, uniformly most reliable graphs have been found only for (n, m) = (8, 12) (Wagner),
(10, 15) (Petersen) and (n, m) = (12, 18) (Yutsis 18j-symbol label F). Besides, candidates for uniformly most
reliable graphs have been found using heuristics in [13] for even orders between 14 and 20.

Besides, a graph G with m ≥
(

n
2
)
− n

2 edges is uniformly most reliable if its complement graph has a
matching (see [18]). The remaining values in the range

(
n
2
)
− n ≤ m <

(
n
2
)
− n

2 have also uniformly most
reliable graphs characterized by their corresponding complementary graph (see [19,20]). On the other hand,
there are infinitely many values of n and m where uniformly most reliable graphs do not exist (see [21,22]).

Main contributions of the paper
We study uniformly most optimal graphs inside the family of hamiltonian graphs with n vertices and

m edges. First, in Section 2, we see that most uniformly most optimal graphs are not hamiltonian, so we
perform a deep study in cases m ≤ n + 2. To this end, we compute the reliability polynomial in terms of
what we call the chord type graph and the chord-path lengths vector, obtaining the reliability polynomial
of any hamiltonian graph. We present an algorithmic approach for the construction of a family of graphs
FCGn,m, based in a ‘fair cutting cake process’, that provides uniformly most reliable hamiltonian graphs
in some cases. In Section 2.3 we take advantage of the computational tools developed for the construction
of FCGn,m graphs to give some light for the case m = n + 3 and beyond. In particular, a modified version
of the Factoring theorem has been developed and therefore we have been able to compute every uniformly
most reliable hamiltonian graph with diametrical chords for all values of n ≤ 34. We also obtain a few
uniformly most reliable hamiltonian graphs for m = n + 4 and m = n + 5. Section 2.4 is devoted to prove
the non-existence of uniformly most reliable hamiltonian graphs for infinitely many values of n and m.

3
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Fig. 1. Uniformly most reliable graphs.

2. Uniformly most reliable hamiltonian graphs

Interconnection networks are usually modeled by graphs. In this context, the design of optimal topologies
is based on finding graphs satisfying some requirements of their properties. The study of connectivity, fault
tolerance and/or reliability is of utmost importance in this area (see [23]). Also hamiltonicity is a common
requirement in the design of some network topologies (also called ‘ring embedding’ problem, see [24]).
However the study of uniformly most reliable hamiltonian graphs is a challenging problem in designing
suitable topologies under certain requirements.

Uniformly most reliable graphs have been classically studied on the set G(n, m) of (simple) graphs on n

vertices and m edges. A restricted version of the problem is the study of these extremal graphs inside the
family of hamiltonian graphs. Let us denote as H(n, m) the set of (non-isomorphic) hamiltonian graphs with
n vertices and m edges. Of course, H(n, m) is a subset of G(n, m) and since every hamiltonian graph on n

vertices and m edges contains a spanning cycle, then we may assume that m ≥ n. If a particular graph G is
uniformly most reliable in G(n, m) and it is in addition hamiltonian, then G is also uniformly most reliable
in H(n, m). This happens trivially in case (n, n) for all n ≥ 3, where Cn are uniformly most reliable graphs,
and also in (8, 12) and (12, 18), where the Wagner and Yutsis graphs are uniformly most reliable graphs,
respectively, and also hamiltonian. It is well known that the Petersen graph is not hamiltonian (see [2]) and
in UMR(n, m ≤ n + 3), when n is large enough, uniformly most reliable graphs are not hamiltonian, as next
result shows.

Proposition 2.1. The following uniformly most reliable graphs in G(n, m),

(a) UMR(n, n + 1) is hamiltonian if and only if n = 4;
4
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(b) UMR(n, n + 2) is hamiltonian if and only if n ≤ 8;
(c) UMR(n, n + 3) is hamiltonian if and only if n ≤ 13;

Proof. For any graph G containing a vertex v of degree d(v) ≥ 3 and such that there are at least three
different neighbors w1, w2, w3 of v such that d(w1) = d(w2) = d(w3) = 2, then G is not hamiltonian. Indeed,
any vertex of G uses exactly two edges in any hamiltonian cycle, hence the only two incident edges of w1, w2
and w3 belong to any hamiltonian cycle. But one of these two pairs of edges is incident also to v, and hence v

would use three edges in any hamiltonian cycle, which is impossible. The graph UMR(n, n+1) (n ≥ 5) given
in Fig. 1 has a vertex v of degree 3 and that all its neighbors have degree 2. Hence it is not hamiltonian.
Besides UMR(4, 5) exists and is K4−e (a complete graph of order 4 where an edge has been removed) which
is a hamiltonian graph. It is easy to find a hamiltonian cycle in UMR(n, n + 2) for 4 ≤ n ≤ 8, when the four
subdivisions A, B, C, D are performed at most. But for n ≥ 9 there exists a vertex of degree 3, such that all
its neighbors have degree 2, and hence it is no longer hamiltonian. The argument for case (c) is similar: the
sequence of edges (subdivided or not) A, D, B, E, C, F gives a hamiltonian cycle for every n ≤ 12 and the
next subdivision (edge G) produces a vertex of degree 3 such that all its neighbors have degree 2. □

So the natural question about which hamiltonian graphs are uniformly most reliable (whenever they do
exist) arises. We partially answer this question in the following sections.

2.1. The case m = n + 1

Let us consider G as a hamiltonian graph with n vertices {0, 1, . . . , n − 1} and m = n + 1 edges where
the hamiltonian cycle is given by the sequence 0, 1, . . . , n− 1, 0. Without loss of generality, we assume that
the remaining edge of the graph joins vertex 0 and vertex x1. We may consider that 2 ≤ x1 ≤ ⌊n

2 ⌋ (the
remaining cases ⌊n

2 ⌋ < x1 < n − 2 produce an isomorphic graph taking x′
1 = n − x1). Then, the reliability

polynomial of G is given by

Rel(G, p) = pm + mpm−1(1− p) + τpm−2(1− p)2, (3)

where τ = n + x1(n − x1). Indeed, the removal of one edge or less guarantee the connectivity of the graph
(the edge-connectivity of G is precisely λ = 2 for n ≥ 4). Besides, deleting any set of three edges or more
disconnects the graph (Ni = 0 for all i < m − 2). Hence, just the coefficient Nm−2 is unknown. This is
precisely the tree number τ . The number of spanning trees of G is n + x1(n− x1) since we have two cases:
if edge (0, x1) is removed, then we can remove any of the n remaining edges. Otherwise we may delete two
edges belonging to the hamiltonian cycle. In order to guarantee the connection of the resulting graph, we
must choose one edge from the cycle 0, 1, . . . , x1, 0 and the other from the cycle 0, x1, x1 + 1, . . . , n, 0. There
are x1 edges in one cycle and n− x1 in the other. This gives the total number n + x1(n− x1).

Proposition 2.2. The set of hamiltonian graphs H(n, n + 1), n ≥ 4, is totally ordered by the reliability
polynomial and the uniformly most reliable graph is given by joining any of two vertices of Cn at maximum
distance.

Proof. For any graph G in H(n, n + 1), there exist x1, with 2 ≤ x1 ≤ ⌊n
2 ⌋ such that G is isomorphic to

a graph with hamiltonian cycle 0, 1, . . . , n− 1, 0 plus an edge (0, x1). According to (3), for any p, the value
of τ(G) = −x2

1 + nx1 + n attains the maximum at x1 = ⌊n
2 ⌋. This graph G is isomorphic to the graph

constructed from Cn by joining two vertices at maximum distance. □

Although the most reliable graph constructed from Cn and adding one single edge was previously known
(see [12]) it is good to notice that H(n, n + 1) is totally ordered by the reliability polynomial for all n ≥ 4,
since in general, this is not true for m ≥ n + 2 where reliability polynomials can cross for p ∈ (0, 1).

5
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Fig. 2. Different chord-types of hamiltonian graphs with two chords. The degenerated case is a chord-type A (or B) graph with
x1 = 0.

2.2. The case m = n + 2

Here we will present uniformly most reliable graphs in H(n, n + 2). The reliability polynomial for any
G ∈ H(n, n + 2) is,

Rel(G, p) = pm + mpm−1(1− p) + Nm−2pm−2(1− p)2 + τpm−3(1− p)3. (4)

Any hamiltonian graph G of order n and size n + 2 can be graphically depicted in a circular embedding
where every vertex of G is in a hamiltonian cycle C of G together with 2 more edges (chords) through the
hamiltonian cycle C. Then, the hamiltonian cycle is split by the chords in four paths of lengths x1, x2, x3
and x4, where x1 + x2 + x3 + x4 = n and xi ∈ Z+, for all 1 ≤ i ≤ 4. In fact, we have two more situations
regarding the relative position between the chords (see Fig. 2). When xi = 0 for an specific 1 ≤ i ≤ 4 then
we fall in what we call a degenerated case. However, for any chord-type graph G ∈ H(n, n + 2) we associate
its corresponding vector (x1, x2, x3, x4). We will refer this vector as the vector of chord-path lengths. In the
other way around, given any positive integer vector (x1, x2, x3, x4), such that x1 + x2 + x3 + x4 = n, we can
construct any graph G of H(n, n + 2) of any type. Moreover, since any cyclic permutation of (x1, x2, x3, x4)
produces an isomorphic graph, we can just consider those vectors modulo cyclic permutations.

Next we will compute coefficients Nm−2 and τ in Eq. (4) depending on (x1, x2, x3, x4).

Proposition 2.3. Let G be a chord-type A graph in H(n, n + 2) with vector of chord-path lengths
(x1, x2, x3, x4). Then,

Nm−2 = 1 + 2n +
∑

1≤i<j≤4
xixj .

τ = n + (x1 + x2)(x3 + x4) + (x1 + x4)(x2 + x3) +
∑

1≤i<j<k≤4
xixjxk.

(5)

Proof. The coefficient Nm−2 counts the number of connected graphs after the deletion of two edges of G. If
these two edges are the chords, then we have just one graph (the hamiltonian cycle). Besides, if the removed
edges are one chord and one edge of the cycle, then, we can choose between 2 chords and n edges of the
hamiltonian cycle. This gives 2n graphs. Finally, if the removed edges belong to the hamiltonian cycle, then
both edges must be from different paths defined by the chords. This gives the number

∑
1≤i<j≤4 xixj . The

computation of τ is similar, we need to remove three edges of G in order to obtain a spanning tree of G.
6
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We proceed depending on which edges we are dealing with:

1. Two chords plus one edge of the cycle: Any edge of the cycle can be removed after the removal of the
two chords, so we count n spanning trees of this type.

2. One chord plus two edges of the cycle: After the removal of one chord, say c1, we must remove one edge
of each path defined by the other chord. Since these paths have lengths x1 +x2 and x3 +x4, the number
of spanning trees is (x1 + x2)(x3 + x4). The same applies for the other chord, say c2, where now the
paths lengths are x1 + x4 and x2 + x3.

3. Three edges of the cycle: The graph remain connected after the deletion of three edges of the cycle only
if these three edges belong to different paths defined by the chords. Hence the number of spanning trees
in this case is given by the all different three products of x1, x2, x3, x4. □

Chord-type B graphs are not interesting for the study of uniformly most-reliable hamiltonian graphs, as
next result states:

Proposition 2.4. Let (x1, x2, x3, x4) be a chord-path lengths vector of GA and GB, which are chord-type
graphs of types A and B, respectively. Then, τ(GA) > τ(GB) and Nm−2(GA) ≥ Nm−2(GB).

Proof. Following the ideas behind the proof of Proposition 2.3 one can see that

Nm−2(GB) = 1 + 2n +
( ∑

1≤i<j≤4
xixj

)
− x1x3,

τ(GB) = n + (x1 + x2 + x4)x3 + (x2 + x4 + x3)x1 +
∑

1≤i<j<k≤4
xixjxk − (x1x2x3 + x1x3x4).

(6)

A simple comparison of both formulas with the ones given in Proposition 2.3 gives the desired result,

Nm−2(GA) = Nm−2(GB) + x1x3 ≥ Nm−2(GB) and
τ(GA) = τ(GB) + x1x3x4 + (x1x2 + 2x1)x3 > τ(GB). □

Notice that Eqs. (5) and (6) coincide when x1 = 0, since they represent the same ‘degenerated’ graph (the
one depicted in Fig. 2). In order to obtain those integer vectors (x1, x2, x3, x4) such that produce uniformly
most-reliable hamiltonian graphs, we should maximize both Nm−2 and τ in Eq. (4). To this end, let us
consider the set of chord-path length vectors Xn = {(x1, x2, x3, x4) ∈ Z4

+ |x1 + x2 + x3 + x4 = n} and the
functions

f : Xn −−−−−−−−−−−→ Z
(x1, x2, x3, x4) ↦−→ τ

and g : Xn −→ Z
(x1, x2, x3, x4) ↦−→ Nm−2

(7)

where τ and Nm−2 are given in Prop. 2.3. Let n = 4k + α, α ∈ {0, 1, 2, 3}. For any (x1, x2, x3, x4) ∈ Xn we
define

D(x1, x2, x3, x4) =
4∑

i=1
|xi − k|

as a measure of closeness to the constant vector (k, k, k, k). Then the elements of Xn can be measured
according to its closeness to this constant vector. For instance, when α = 1, there is just one vector in Xn with
D = 1, which is (k+1, k, k, k) (any cyclic permutation of this vector of chord-path lengths gives an isomorphic
graph, so we do not take them into account). Notice that D must be odd when α = 1, so next D is 3 and the
set of vectors of chord-path lengths with D = 3 is {(k+1, k+1, k−1, k), (k, k+2, k−1, k), (k, k+2, k, k−1)}.

We also define the following graphical operators in Xn: given a graph with vector of chord-path lengths
(x1, x2, x3, x4) ∈ Xn, the operator σ moves just one vertex of a chord in such a way that two contiguous path
lengths are modified by one unit each (see Fig. 3), that is, σ(x1, x2, x3, x4) = (x1, x2 + 1, x3− 1, x4). Besides
the operator r defined as r(x1, x2, x3, x4) = (x2, x3, x4, x1) is simply a rotation of the graph. For instance, in
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Fig. 3. Graphical representation of operator σ.

the case α = 1, starting from the single vector with D = 1 one can obtain all the vectors of chord-path lengths
for D = 3: σ(k + 1, k, k, k) = (k + 1, k + 1, k− 1, k), σ ◦ r(k + 1, k, k, k) = σ(k, k + 1, k, k) = (k, k + 2, k− 1, k)
and r−1 ◦ (σ ◦ r)2(k + 1, k, k, k) = (k, k + 2, k, k − 1).

Clearly, functions f, g and D are invariants under operator r. This is no longer true for operator σ. In
contrast, we have the following result.

Lemma 2.1. Let x = (x1, x2, x3, x4) ∈ Xn and y = (y1, y2, y3, y4) ∈ Xn such that D(y) = D(x) + 2 and
y = σ(x). Then f(x) ≥ f(y) and g(x) ≥ g(y).

Proof. Suppose that y = σ(x), that is, y1 = x1, y2 = x2+1, y3 = x3−1 and y4 = x4. From D(y) = D(x)+2
we have that

|(x2 + 1)− k| − |x2 − k|+ |(x3 − 1)− k| − |x3 − k| = 2

which is equivalent to
(
|(x2 − k) + 1| − |x2 − k|

)
+

(
|(x3 − k)− 1| − |x3 − k|

)
= 2. (8)

Taking into account that |a + 1| − |a| ≤ 1 and |b− 1| − |b| ≤ 1 and both equalities hold if and only if
a ≥ 0 and b ≤ 0, respectively. Then Eq. (8) is equivalent to x2 ≥ k and x3 ≤ k. Besides, from Eq. (5) we
have f(x) − f(y) = (x2 − x3)(x1 + x4 + 1). From x2 ≥ k and x3 ≤ k we have (x2 − x3) ≥ 0 and hence
f(x) − f(y) = (x2 − x3)(x1 + x4 + 1) ≥ 0 since both factors are positive. Besides, again from Eq. (5),
g(x)− g(y) = x2 − x3 + 1 which is also positive since (x2 − x3) ≥ 0. □

Theorem 2.1. A uniformly most reliable graph G exists in H(n, n + 2). Moreover, G is a chord-type A
graph with vector (x1, x2, x3, x4) of chord-path lengths equal to

• (k, k, k, k) if n = 4k for some positive integer k,
• (k + 1, k, k, k) if n = 4k + 1 for some positive integer k,
• (k + 1, k, k + 1, k) if n = 4k + 2 for some positive integer k,
• (k + 1, k + 1, k + 1, k) if n = 4k + 3 for some positive integer k.

Proof. By Proposition 2.4 we have to take into account only graphs of type A. In order to maximize the
coefficients of the reliability polynomial, let us consider the discrete functions f : Xn → Z and g : Xn → Z
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Fig. 4. Uniformly most reliable graphs in H(11, 13) and G(11, 13), respectively, and the corresponding coefficients Nm−2 and τ of
their reliability polynomials.

defined in Eq. (5). We want to find the maximum of the discrete functions f and g in Xn. By Lemma 2.1, the
elements of Xn with minimum D are precisely the candidates for being a maximum of the functions f and g.
Hence we just have to look at those chord path length vectors with minimum D. If n = 4k, then the constant
vector (k, k, k, k) ∈ Xn has minimum D and hence this is precisely the chord path length vector giving the
maximum value for τ and Nm−2 in (5). For the remaining cases, that is, when n = 4k + α, α ∈ {1, 2, 3}.
Then ( n

4 , n
4 , n

4 , n
4 ) = (k + α

4 , k + α
4 , k + α

4 , k + α
4 ) /∈ Xn and we want to find the chord path length vectors

that give the maximum value of f and g in Xn. When α = 1, there is only one vector of chord-path lengths
with minimum D, which is (k + 1, k, k, k).

For α = 2, the set of vectors with minimum D is {(k + 2, k, k, k), (k + 1, k + 1, k, k), (k + 1, k, k + 1, k)}.
According to Eq. (5), the last two vectors are maximum with the same value for g, which is 6k2 + 14k + 6,
meanwhile for f we have that (k +1, k, k +1, k) has maximum value since f(k +1, k, k +1, k) = 4k3 +14k2 +
14k + 4 = f(k + 2, k, k, k) + 2k + 2 = f(k + 1, k + 1, k, k) + 1.

Finally, for α = 3, the set of vectors {(k+3, k, k, k), (k+2, k+1, k, k), (k+2, k, k+1, k), (k+1, k+1, k+1, k)}
has minimum D. The vector of chord-path lengths (k + 1, k + 1, k + 1, k) achieves the maximum both for g

and f , where g(k + 1, k + 1, k + 1, k) = 6k2 + 17k + 10 and f(k + 1, k + 1, k + 1, k) = 4k3 + 17k2 + 22k + 8 =
f(k + 3, k, k, k) + 6k + 5 = f(k + 2, k + 1, k, k) + 2k + 3 = f(k + 2, k, k + 1, k) + 2k + 1. □

Example. For n = 11 and m = 13, the uniformly most reliable hamiltonian graph must have vector of
chord-path lengths (3, 3, 3, 2) and Nm−2 = 68 and τ = 152 (according to Theorem 2.1, case k = 2 and
α = 3). We also used Nauty1 to generate all non-isomorphic graphs with 11 vertices and 13 edges. There are
33 851 of such graphs. Then we filtered the hamiltonian ones using a function from a Python library called
Graphx. There are 56 hamiltonian graphs in this case and the uniformly most reliable hamiltonian graph is
the expected one. We also computed the uniformly most reliable graph among the total set of graphs (which
corresponds to a particular subdivision of K4, as expected). We have depicted both graphs in Fig. 4. The
computational method to obtain the reliability polynomial is explained in Section 2.3.

1 http://users.cecs.anu.edu.au/bdm/nauty.
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The fair cake-cutting graph FCGn,c

In this section we present an algorithmic construction of a family of graphs FCGn,c that produces
uniformly most reliable graphs in some cases. We introduce this family of graphs inspired by the results
of Theorem 2.1, where uniformly most reliable graphs are those with chord-path length vectors with almost
equal components. From a geometrical point of view, these optimal graphs can be seen as ‘fair cuts of a
cake’, where every slice is as similar as possible to the other slices. As far as we know, there are different
definitions for this fair cake-cutting process in the literature (see [12,25]). For our purposes, we have to cut
a cake (modeled as a circular drawing of the cycle Cn) performing a given number of cuts c. The idea is to
deliver each part as equal (fair) as possible for every guest. Each cut of the cake is represented in the graph
by a diametrical chord, that is, one edge joining two opposite vertices. Given the order n of the hamiltonian
cycle and the number of chords c (‘cuts’ in terms of cake cutting), we present an algorithm to construct what
we call The fair cake-cutting graph FCGn,c. Since the cuts can be performed only over the lines joining two
opposite vertices of Cn, the idea behind this algorithm is that the slices have ‘almost’ equal areas in the
plane.

input : n← Number of desired vertices for the FCG
c← Number of desired chords for the FCG

output: FCG

1 graph fcg ← Cycle with edges (0, 1), (1, 2), . . . , (n− 1, 0).
2 float separation = n/(2c)
3 float position = separation
4 int placedch = 0
5 while placedch ≤ c do
6 Add edge (int(position)− 1, int(position + n/2)− 1)
7 //-1 due that the vertices begin with 0
8 position = position + separation //note that the variable is still a float
9 placedch = placedh + 1

10 end
11 return graph

Algorithm 1: Fair Cake construction

A detailed explanation of the algorithm is the following: With the given number of vertices, the algorithm
constructs its corresponding cycle. After, the vertices of its hamiltonian cycle are stored into a list. Then,
the ‘separation’ between vertices of degree 3 (corresponding to the endpoints of the chords) is calculated.
This ‘separation’ is also stored in the variable ‘position’ that in the first iteration of the loop will be one
of the first chord endpoints. The loop in line 5 places all the cuts to the previously generated cycle. Line
6-9: Each edge chord is added to the graph using the vertices stored inside the hamiltonian cycle list in the
corresponding positions. Each position is calculated by adding the previous position plus the separation.
The last endpoint of each cut must have maximum distance from its first endpoint, this distance is equal to
the half of the vertices of the graph. Notice that the positions of the list must be a natural number but its
decimal part is not overlooked. This part is added when the next position is calculated. Finally, the cycle
graph with all the chords placed is returned (see Table 2).

Example. For n = 16 and c = 3, we start from a cycle graph C16 with edge set {(0, 1), (1, 2), . . . , (15, 0)}.
This table summarizes the procedure that the algorithm follows to calculate the positions (p1, p2) of the
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Table 2
Algorithm of construction of F CG16,3.

# cut Separation Accumulated Total p1 p2 (v1, v2)

1st 16/6 = 2.6 0 2.6 2 2 + 8 = 10 (2 − 1, 10 − 1)
2nd 16/6 = 2.6 2.6 5.3 5 5 + 8 = 13 (5 − 1, 13 − 1)
3rd 16/6 = 2.6 5.3 8 8 8 + 8 = 16 (8 − 1, 16 − 1)

Fig. 5. (a) The fair cake-cutting graph F CG16,3. It has vector of chord-path lengths (2, 3, 3, 2, 3, 3). (b) A chord-type A graph in
H(n, n + 3) with diametrical chords.

hamiltonian path list for each chord (v1, v2): First the separation of the cuts is calculated, n
2c = 16

6 = 2.6 and
then the accumulated part is added. This part is the summation of all previously calculated values (Totals).
With this information, the positions of the chord endpoints can be obtained: p1 is equal to the decimal part
from the ‘Total’. p2 = p1 + n

2 . Finally, the vertices of each chord are extracted from the hamiltonian path list
using the previous positions: For instance, since the vertices starts with 0, at position 5 we have the vertex
4, and the position 13 the vertex 12, therefore we add edge (4, 12).

The fair cake-cutting graphs FCGn,c are similar to the family of graphs that are a solution of the following
augmentation problem: Starting from the cycle graph Cn, add a single edge at each step, in order to maximize
the reliability of the resulting graph. Romero (see [12,16]) finds the sequence of graphs {G(i)}i=0,...,⌊ n

2 ⌋ with
G(0) = Cn such that G(i+1) = G(i) ∪ {ei+1} gives the best augmentation. This process (called also the
fair cake-cutting process) ends with the circulant graph with steps 1 and n

2 , that is, a cubic hamiltonian
graph where every vertex is joined to its opposite vertex in the hamiltonian cycle. For n = 8, this is the
Wagner graph depicted in Fig. 1, which is a uniformly most reliable graph for (8, 12). The main difference
between both families is that in our case the number of cuts c is previously known, meanwhile, in this other
family, the cuts are performed as the guest arrives. In fact, both families differ when three or more cuts are
performed. As a consequence of Theorem 2.1 and Proposition 2.2 we have that FCGn,c produces uniformly
most reliable hamiltonian graphs for c = 1 and c = 2.

Corollary 2.1. FCGn,1 and FCGn,2 are uniformly most reliable hamiltonian graphs for m = n + 1 and
m = n + 2, respectively.

2.3. Computational approach for m = n + 3 and beyond

Uniformly most reliable hamiltonian graphs have been totally characterized when m ≤ n+2 in Section 2.
We also give a construction of these optimal graphs in Section 2.2. Beyond this point, we have performed
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some computational tools in order to generate uniformly most reliable hamiltonian graphs for m ≥ n + 3.
First, we discuss the computation of the reliability polynomial of a graph.

The computation of the reliability polynomial

The factoring theorem is a recursive method for computing Rel(G, p) based on the combination of two
graph operations: edge deletion G− e, and edge contraction G/e (for further details see, for instance, [3]):

Rel(G, p) =

⎧
⎪⎨
⎪⎩

Rel(G− e, p) if e is a loop,
pRel(G/e, p) if e is a cut-edge,
(1− p)Rel(G− e, p) + pRel(G/e, p) otherwise.

(9)

The algorithm 2 shows the implementation of the theorem done in our code.
input : g ← Graph
output: Reliability Polynomial

1 // If the graph is not connected, then it has a reliability polynomial of 0
2 if g is not connected then
3 return 0
4 end
5 // if the number of edges > 0, then we perform the two sub-cases of the Factoring Theorem if

number of edges of g > 0 then
6 edge e = g.random edge(e)
7 graph contracted = g.contract edge(e)
8 graph deleted = g.delete edge(e)
9 polynomial rec contracted = recursion with the graph contracted

10 polynomial rec deleted = recursion with the graph deleted
11 polynomial s = p · rec contracted + (1− p) · rec deleted

12 return s
13 end
14 // Otherwise, we only have 0 edges and 1 vertex, which is connected, so we return 1.
15 return 1

Algorithm 2: Reliability Polynomial Factoring Theorem
We perform a modified version of this Factoring Theorem which works slightly different: In each recursion,

if there exist some method that can directly retrieve the reliability polynomial or with less cost than another
recursion, then, the method will retrieve it and the recursion will stop in that generated subgraph. In other
words the main idea to improve this algorithm is to prevent it to ‘dismantle’ the graph to its very basic
components (trivial graphs) by giving the reliability of the subgraphs before becoming basic components.
We developed a series of fast formulas for specific families of graphs such as multi-tree, multi-cycle and glued
cycles that when one of the subgraphs matches one of the families of our formulas then, the reliability is
directly returned. With this modified method we have been able to compute the reliability polynomial of all
graphs in H(n, n + 3) for any n ≤ 11. All (non-isomorphic) graphs have been generated first using Nauty
and we get the hamiltonian ones using the library Graphx from Python. The drawback of this function is
that, at the worst case, runs in linear time (O(n)). The coefficients list Ni of the reliability polynomial of
those uniformly most reliable hamiltonian graphs is presented in Table 3.

Every graph listed in Table 3 is of type A (in the sense explained in Section 2.2) and it has some
diametrical chords (chords joining two vertices at maximum distance in the hamiltonian cycle, see Fig. 5).
Although we do not have a proof that uniformly most reliable hamiltonian graphs must be of type A with
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Table 3
Coefficients list of uniformly most reliable hamiltonian graphs for 6 ≤ n ≤ 11
and m = n + 3.

Study case Rel(H, p) coefficients vector (Ni)

H(6, 9) [1, 9, 36, 78, 81]
H(7, 10) [1, 10, 44, 104, 117]
H(8, 11) [1, 11, 53, 137, 168]
H(9, 12) [1, 12, 63, 178, 240]
H(10, 13) [1, 13, 74, 226, 328]
H(11, 14) [1, 14, 86, 284, 445]

diametrical chords for m = n+3, this experimental result encourage us to look optimal graphs in this subset
of hamiltonian graphs that we denote as HD(n, m). So, we designed a direct way to construct all graphs in
HD(n, n + 3) that lead us to go beyond n = 11 vertices: starting with a cycle, draws a diametrical chord
dividing the cycle in two parts. Then, makes a set of 2-element combinations between each group of vertices
from each part. Notice that all the edges in this set cross the first diametrical chord. With this set it makes
another 2-element combinations, but this time with the elements inside the created edge set. Finally, with
each combination of 2 edges creates a new graph by adding them into the graph with the diametrical chord.
The algorithm 3 shows in detail this process.

input : n← Number of vertices
output: List of type A hamiltonian graphs with at least one diametrical chord

1 graph cycle← Cycle with edges (0, 1), (1, 2), . . . , (n− 1, 0).
2 list vertices← cycle.vertices

3 // Set the diametrical chord
4 cycle← add edge {0, floor(n/2)}
5 // Remove the vertices of the added chord from vertices
6 vertices← remove {0, floor(n/2)}
7 // Get possible chords
8 list hvertices1← 1st half of the list vertices
9 list hvertices2← 2nd half of the list vertices

10 list possibleV ertices← all combinations of elements between hvertices1 and hvertices2
11 // From all non-existent possible edges, get combinations of 2 chords
12 // Notice that we already added 1 chord (the diametrical one)
13 list edgeCombinations← all combinations of 2 elements from the list possibleVertices
14 // For each combination create a graph and save it into a list of graphs
15 list hamiltonians
16 for combination in edgeCombinations do
17 graph tmp← copy(cycle)
18 tmp← add edges in combination
19 hamiltonians← add tmp
20 end
21 return hamiltonians
Algorithm 3: Generation of chord-type A hamiltonian graphs with three diametrical chords.

The generated list of graphs contains many isomorphic graphs. Then we use nauty to remove isomorphic
graphs from the list. We compute the reliability polynomial of each graph of this shorter list with the method
explained at the first part of this section. Table 4 shows the uniformly most reliable graphs of chord-type A
with at least one diametrical chord for n ≤ 34 and m = n + 3.

13

ON THE ANALYSIS OF NETWORK RELIABILITY AND SPATIAL
NETWORKS WITH POINT PATTERNS

30 4.2. ARTICLE: ‘NETWORK RELIABILITY IN HAMILTONIAN GRAPHS’



P. Llagostera, N. López and C. Comas Discrete Optimization 41 (2021) 100645

Table 4
Coefficients list of uniformly most reliable hamiltonian graphs of type A with at least one diametrical chord.

Study case Rel(H, p) coefficients vector (Ni) Study case Rel(H, p) coefficients vector (Ni)

HD(12, 15) [1, 15, 99, 353, 600] HD(24, 27) [1, 27, 315, 1977, 5832]
HD(13, 16) [1, 16, 112, 422, 755] HD(25, 28) [1, 28, 338, 2192, 6669]
HD(14, 17) [1, 17, 126, 502, 948] HD(26, 29) [1, 29, 362, 2426, 7620]
HD(15, 18) [1, 18, 141, 594, 1188] HD(27, 30) [1, 30, 387, 2680, 8700]
HD(16, 19) [1, 19, 157, 697, 1464] HD(28, 31) [1, 31, 413, 2953, 9880]
HD(17, 20) [1, 20, 174, 814, 1799] HD(29, 32) [1, 32, 440, 3248, 11209]
HD(18, 21) [1, 21, 192, 946, 2205] HD(30, 33) [1, 33, 468, 3566, 12705]
HD(19, 22) [1, 22, 210, 1078, 2611] HD(31, 34) [1, 34, 496, 3884, 14201]
HD(20, 23) [1, 23, 229, 1225, 3088] HD(32, 35) [1, 35, 525, 4225, 15864]
HD(21, 24) [1, 24, 249, 1388, 3648] HD(33, 36) [1, 36, 555, 4590, 17712]
HD(22, 25) [1, 25, 270, 1566, 4272] HD(34, 37) [1, 37, 586, 4978, 19704]
HD(23, 26) [1, 26, 292, 1762, 4995]

Fig. 6. Some uniformly most reliable hamiltonian graphs for m = n + 4.

Our conjecture about the uniformly most reliable hamiltonian graph in H(n, m) must be in HD(n, m)
is no longer true for m ≥ n + 4. In Fig. 6 we present some uniformly most reliable hamiltonian graphs for
m = n + 4 found by computer. Despite the case n = 8, m = 12 (see Fig. 1(a)), the remaining cases are not
of chord-type A. The situation for m = n + 5 is similar (see Fig. 7).

We have been able to find all uniformly most reliable hamiltonian graphs up to n = 11 vertices and m = 16
edges using the general method described at the beginning of the section: First we generate a list containing
all non-isomorphic graphs of a given order and size using Nauty. Afterwards, the reliability polynomial of
every graph in the list is computed by using our improved version of the factoring theorem.

A (simple) graph of order n has at most m =
(

n
2
)

edges. There is only one of such graphs with maximum
number of edges, which is the complete graph Kn and hence it is uniformly most reliable. There is also
only one graph (up to isomorphisms) with m =

(
n
2
)
− 1 edges, but for m =

(
n
2
)
− 2 we have two different

graphs: we can eliminate from Kn either a path of length two or two independent edges. This latter case
gives the uniformly most reliable graph. More in general, it is already known that when m ≥

(
n
2
)
− n

2
then there exists a uniformly most reliable graph which is the graph whose complement graph has a set of
independent edges (see [26]). Any graph with a number of edges large enough is hamiltonian, and hence
uniformly most reliable graphs are hamiltonian in this case. For instance, it is well known that every graph
satisfying m ≥ 1/2(n2 − 3n + 6) is hamiltonian (see [27]). Every graph with m ≥

(
n
2
)
− n

2 satisfies also
m ≥ 1/2(n2 − 3n + 6) whenever n ≥ 6 and hence uniformly most reliable graphs in this case are also
uniformly most reliable hamiltonian.

Proposition 2.5. Given an integer n ≥ 6, there is a uniformly most reliable graph in H(n, m) for any
m ≥

(
n
2
)
− n

2 .
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Fig. 7. Some uniformly most reliable hamiltonian graphs for m = n + 5.

2.4. Non existence of uniformly most reliable hamiltonian graphs for some cases

There are some cases where uniformly most reliable graphs do not exist: it is shown in [21] that the
graph G2 of order n ≥ 6 even, which is defined as the complement of the graph P4 ∪K2 ∪ n−6

2 K2 satisfies
Rel(G2, p) > Rel(G′, p) for all G′ ∈ G(n, m), m =

(
n
2
)
− n+2

2 and p sufficiently close to one. Besides, the
complement of 2P3 ∪ n−6

2 K2, defined as G1, satisfies Rel(G1, p) > Rel(G2, p) for p sufficiently close to zero.
As a consequence, there are no uniformly most reliable graphs in G(n, m) for m =

(
n
2
)
− n+2

2 . We use this
result to prove that there are infinitely many pairs (n, m) where uniformly most reliable hamiltonian graphs
do not exist.

Proposition 2.6. There are no uniformly most reliable graphs in H(n, m) for

• m =
(

n
2
)
− n+2

2 for all n ≥ 6 even;
• m =

(
n
2
)
− n+5

2 for all n ≥ 7 odd.

Proof. For the case m =
(

n
2
)
− n+2

2 it is suffice to show that the graphs G1 and G2 defined above as the
complements of the graphs 2P3 ∪ n−6

2 K2 and P4 ∪K2 ∪ n−6
2 K2 for n ≥ 6 even, respectively, are hamiltonian

graphs. To this end notice that the minimum degree for a vertex in G1 is n − 3. Hence for any two given
vertices u and v, d(u) + d(v) ≥ 2n − 6 ≥ n for all n ≥ 6. Applying Theorem 1.1 we deduce that G1 is
hamiltonian. The same argument applies for G2.

For n ≥ 7 odd, define G3 as the complement of C3 ∪ P4 ∪ n−7
2 K2 and G4 as the complement of

C5 ∪ K2 ∪ n−7
2 K2 as in [21] and apply again Theorem 1.1 to proof that they belong to H(n, m), where

m =
(

n
2
)
− n+5

2 . In [21] it is shown that Rel(G4, p) > Rel(G′, p) for all G′ ∈ G(n, m) for p sufficiently close
to one. Besides Rel(G3, p) > Rel(G4, p) for p sufficiently close to zero, and the proof is completed. □

3. Conclusions and open problems

In this paper uniformly most reliable hamiltonian graphs have been characterized for m ≤ n + 2 and we
give some light for the case m = n+3 which somehow follow the previous cases. The situation is different for
m ≥ n + 4, where the problem is totally open except for some small cases found by computer. Nevertheless,
one can use these results to obtain uniformly most reliable hamiltonian graphs for a fixed value of n. For
instance, when n = 6 we have nine cases to analyze (6 ≤ m ≤ 15): For m = 6, C6 is the uniformly most
reliable hamiltonian graph. For 7 ≤ m ≤ 9 we have that FCG6,c are uniformly most reliable hamiltonian
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graphs for c = 1, 2, 3, respectively (also K3,3 for m = 9, which is isomorphic to FCG6,3). For m = 11 there
is no uniformly most reliable hamiltonian graph (Proposition 2.6) and for m ≥ 12 subgraphs of K6 whose
complement graph has a set of independent edges are uniformly most reliable (Proposition 2.5). It remains
the case m = 10. We have found by computer that adding any edge to the graph K3,3 produces the uniformly
most reliable graph in this case. We point out that in every case, the uniformly most reliable graph found
in this paper has the largest coefficient vector.

Problem 3.1. Characterize uniformly most reliable hamiltonian graphs for other values of n and m.

The fair cake-cutting graph FCGn,c presented in Section 2.2 is a uniformly most reliable graph for many
values, but we believe that is also optimal for other values.

Conjecture 3.1. Let n ≡ 0 (mod 2c). Then FCGn,c is a uniformly most reliable hamiltonian graph for
m = n + c.

The problem of finding uniformly most reliable graphs seems difficult, even for restricted versions of the
problem, like the one we present here for hamiltonian graphs. It would be worth to study this problem for
other classes of graphs.

Problem 3.2. Study the problem of finding uniformly most reliable graphs for a named class of graphs,
such as bipartite graphs, Cayley graphs, etc.
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4.3 Article: ‘Computing all-terminal network re-

liability: A new modular methodology’

The research presented in the article ‘Computing all-terminal network reliability: A
new modular methodology’, proposes a new modular methodology to calculate the
reliability of undirected graphs. This methodology combines the generality of the
Deletion-Contraction (DC) algorithm [38] with the computational speed of specific
algorithms for certain families of graphs. For instance, the DC algorithm can com-
pute the reliability of undirected graphs, but it has an exponential computational
cost, while the specific algorithms for certain families of graphs are much faster
but they are bound to its specific graph families. Both advantages (generality and
speed) are combined in a new methodology in form of a Python package named
‘atr ’ which can be found in the Python Package Index PyPi as well as in GitHub
repositories. The methodology is based on the DC algorithm and integrates, in the
form of modules, specific algorithms for certain families of graphs. Such modules
can be activated or deactivated depending on the need of the user. Moreover, the
package facilitates the addition of new modules without the need to modify the
original code. The principal takeaways of this study are as follows:

• The development of algorithms to calculate the reliability for certain graph
families.

• The development of a new methodology that combines the generality of the
Deletion-Contraction algorithm with the computational speed of the specific
algorithms.

• The implementation of the methodology in a Python package named ‘atr ’
and can be found in PyPi and GitHub repositories..

• The design of the ‘atr ’ package is modular, easily expandable, and adaptable
to the given networks.

Where the package can be found following the next URLs:

• GitHub: https://github.com/LlagosteraPol/ATR

• PyPi: https://pypi.org/project/atr/

This paper has been submitted for publication and is not yet been published (changes
might occur during the revision process).
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Computing all-terminal network reliability: A new
modular methodology

Pol Llagostera∗†, Nacho López†, and Carles Comas†

Abstract—The reliability of a network is a measure of connect-
edness that can be loosely defined as the ability of the system to
stand operational after the failure of some of its components. If
the nodes of the network are considered to be perfectly reliable,
and the links could fail independently with the same probability,
this leads to the so-called reliability polynomial of the network.
The coefficients of this polynomial provide an efficient tool to
compare the reliability of different networks having the same
number of nodes and links. Knowing this reliability is becoming
increasingly important in modern society since networks become
more present, e.g., in computing, road systems, social relations,
etc. Therefore, among other things, we can use this knowledge
to optimize the design of networks, make better decisions or
mitigate possible damages. Throughout this paper, we present a
new modular methodology to calculate the reliability polynomial
of an undirected networks. It has been implemented in a Python
package called atr. In form of ‘modules’, the methodology
integrates close formulas to calculate the reliability, an improved
algorithm specialized in cake networks and several methodologies
to identify network families. At the end of the paper, we also
detail how to easily expand the package with new modules and
methodologies.

Index Terms—network reliability, network design, reliability
polynomial, reliability optimization, hamiltonian network

I. INTRODUCTION

ONE of the main concerns of the early designers of
computer circuits was the reliability. The problem of

constructing reliable circuits was first studied in the fifties [1],
when a primal probabilistic model of network reliability was
introduced. In this initial model, only the links between nodes
could stop working with a certain probability. Since then,
networks have become ubiquitous in modern society and these
probabilistic models have been applied to a whole range of
networks beyond computer circuits as diverse as; image anal-
ysis [2], protein interaction [3], drug design [4] or electrical
networks [5]. In this context, the design of optimal topologies
is based on finding networks satisfying some requirements
of their properties. The study of connectivity, fault tolerance,
and/or reliability is of utmost importance in this area [6]–[8].

In this paper, we consider the problem of computing the
probability that a network remains connected. More precisely,
we focus on what is called, the all-terminal network reliability
problem: given the probability p of an edge being operational
in a network G, what is the probability that there exists an
operational walk between every pair of vertices u and v of
G.

†Department of Mathematics, University of Lleida, Lleida, 25001 Spain∗Corresponding author: P. Llagostera (email: pol.llagostera@udl.cat)

In the reliability context, networks are modeled by graphs.
Our model is a stochastic network with perfect nodes and
links failures: each link remains operational independently
with probability 0 ≤ p ≤ 1 and every link has the same
probability of being operational. Moreover, no repair is
allowed after a link connection fails.

From the computational point of view, the calculation of
the reliability polynomial is an NP-complete problem [9].
Nevertheless, the reliability polynomial can be computed
in polynomial time for a few families of networks, such as
the serial-parallel networks [10], [11], or even for particular
instances of two-terminal network reliability [12].

Our main contribution is to develop a powerful tool and
methodologies to speed up the computation of the reliability
polynomial of undirected networks. Moreover, the design of
the tool is intuitive, easy to use, and modular. In section
II we present a new version of the Deletion-Contraction
algorithm (DC for short) that computes the reliability. Section
III describes the implementation of the algorithm and further
methodologies which we called ‘modules’ that work together
with the DC algorithm to speed up the computation of the
reliability. Each module section specifies its aim, the theory
behind the methodology, its implementation, and use-case
examples. The possible expansions of the tool are detailed
in section V which includes examples and templates for
new possible modules and methodologies. Finally, in the last
sections, we talk about the conclusions and the possible future
research lines.

A. Background

1) Hamiltonian networks: Hamiltonian networks [13]
are characterized by containing a spanning cycle, that is,
a cycle passing through all the nodes of the network. This
cycle is called a hamiltonian cycle. The computational
complexity of finding a hamiltonian cycle in a network
is in general NP-complete. Hamiltonian networks can be
drawn with all their nodes in a circular embedding (see Fig. 1).

2) Pathsets: A pathset of a network G is a subset of links
that makes the network connected. Thus, the reliability of a
network G having m links is computed using the following
polynomial, known as the reliability polynomial of a network
G:

RG(p) =

m∑

i=0

Nip
i(1− p)m−i (1)
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G1 G2

Fig. 1. Two hamiltonian networks with n = 8 nodes and m = 15 links.

where Ni denotes the number of pathsets of cardinality i.

3) Deletion-Contraction algorithm: The Deletion-
contraction methodology (or DC) can compute the reliability
of any graph using the combination of two network
operations: link deletion, and link contraction. The operation
of contracting a link e from a network G consists of deleting
e and identifying the nodes of the link, while keeping all the
other links incident to those nodes. Note that this operation
may create multiple links and loops. We denote the operation
of contracting an edge e by G/e, and the operation of deleting
e by G − e. This methodology creates sub-graphs where
the process is repeated again until the resulting sub-graph is
trivial (trivial graph) which reliability is p. Then the resulting
reliabilities of each sub-graph, are back-propagated in the
algorithm while assembling together to create the reliability
polynomial of the original graph. The Deletion-Contraction
algorithm [10], [14] (DC for short) is based on the following
recursive formula, also known as the factoring theorem
[15]–[17]:

RG(p) =





RG−e(p) if e is a loop,
p · RG/e(p) if e is a cut-link,
(1− p) · RG−e(p)+

p · RG/e(p) otherwise.

(2)

This formula is also graphically represented in Figure 2.

The algorithm’s strongest point is its generality since it can
compute any graph’s reliability. On the other hand, its weak-
ness is the computational time required for the calculations.
Although the running time of the DC algorithm depends on
several practical issues, such as the choice of the data structure,
the link selection strategy, etc. the truth is that the running time
of the DC algorithm may be exponential with the number of
nodes. Nevertheless, there are a few collections of algorithms
that compute RG(p) much faster than the DC for certain
restricted families of networks. For instance, Satyanarayana
[18] purposes a linear-time algorithm to compute reliability
for series-parallel networks. In conclusion, the DC algorithm
is useful when a graph cannot be categorized in any family or
if its family doesn’t have any algorithm that computes RG(p)
faster than exponential time.

Fig. 2. Factoring theorem scheme

II. NEW DC ALGORITHM

We developed a methodology that combines the generality
of the DC algorithm with the computational speed of the al-
gorithms designed to calculate the RG(p) for certain restricted
families. Therefore, our algorithm effectively calculates the all-
terminal reliability polynomial of any undirected graph faster
than the original DC. We design the algorithm to be highly
modular and dynamic. Its functionalities are encapsulated in
what we called ‘modules’ which allows to treat or modify them
separately without affecting the main algorithm. Moreover, due
to this structure, it’s easy to expand the main algorithm with
new functionalities. The algorithm is also dynamic since it can
be adapted to any given graph, for instance, one can select
the modules that better fits the given graph. These selected
modules will be used to calculate the reliability polynomial of
the network, therefore, a fitter selection of modules, reduces
the computational time.

A. Algorithm description

The idea behind the improved version of the DC algorithm,
is to prevent ‘dismantling’ the network to its very basic
components (trivial networks). If the graph or any sub-graph
(produced by an edge contraction or deletion) is from a family
in which there exists a faster algorithm that calculates its
RG(p), then such algorithm is used. If the family cannot be
found or doesn’t exist any specific algorithm, then another
iteration of the DC algorithm is performed.
We have observed that during the factorization process in the
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classical version of the DC algorithm, many of the obtained
subnetworks are either a multilink tree, multilink cycle, or a
tree of cycle networks. Hence, the closed formulas given for
this particular family of networks have been implemented and
added in form of modules in our new version of the DC algo-
rithm. Such modules contain two functionalities; determine if
the graph fits the module specified graph family (identification)
and calculate the RG(p) of the graph using specific algorithms
for that family.

B. Algorithm methodology

Previous to the calculation of the reliability, the algorithm
can be fitted to the given graph by selecting which modules
will be used, and, in case of edge contraction and deletion,
what requirements would be followed in order to choose
the edge to perform such operations. Once the features that
fit better the given graph have been selected, the algorithm
starts with the identification process. In this procedure, each
of the chosen modules determines if the network belongs
or not to its family. If the network can be categorized as
part of a module family, then its reliability is calculated
using the specific algorithm provided by the module. If the
network doesn’t fit in any of the categories present in the
algorithm modules, then, an edge is chosen for its contraction
and deletion which creates two sub-graphs (see previous sub-
section). In the case that any of the sub-graphs is trivial, its
reliability is directly given, if not, all the process (since the
identification point) will be applied again to that sub-graph.
Each calculated reliability is assembled together to form the
RG(p) of the original graph following the same procedure as
the original DC algorithm described in section I-A3. Figure
3 contains a visual representation of the previously described
methodology. In the next section we detail the implementation
of the new DC algorithm which has been developed in form
of a python package called atr.

III. THE ATR PACKAGE

We have created a python package called atr that calculates
the all-terminal reliability of any undirected graph based on
our improved DC algorithm described in the previous section.
The package can be found online in the official python
repository PyPi and in GitHub repository, which can contain
more recent updates (that later are updated to PyPi). The url
of these two repositories is presented below:

• PyPi: https://pypi.org/project/atr/
• GitHub: https://github.com/LlagosteraPol/ATR
The structure of the package is divided in one main function

named calculate reliability() two classes (EdgeSelector and
RelModule) and four sub-classes (ModuleTree, ModuleCycle,
ModuleCycleTree and, ModuleCake) which inherits from
RelModule. Also, aditional methods have been implemented
in the graphtools structure which provides functionalities to
all the previous classes (Fig. 4 contains the UML diagram of
the package). For its network inputs, uses the graph structure
from the well known library networkx [19] which creates a
model of the networks. On the other hand, for the outputs
(resulting network reliability polynomials), uses the library

Fig. 3. Improved factoring theorem scheme

sympy [20].

Only with the calculate reliability() function, the user can
manage all the capabilities of the package. This function
calculates the RG(p) using two elements; the graph with
class networkx and a list of strings containing the name of
the module classes desired to be used. These modules are
the functionalities that calculates the reliability for specific
families of graphs (see II). Each module checks (identifies)
if the given network belongs to its module graph family and
calculates its reliability in that case. If it doesn’t belong,
then the next module provided in the list is executed. If
the network doesn’t belong to any of the provided module
families, then an iteration of the basic DC is performed. Note
that if one module positively identifies the network, the other
modules will not perform the identification process.
In addition, two optional parameters can be provided to the
function calculate reliability() in order to customize even
more the behavior of the function. These two parameters are;
graph pruning and, edge selector, both are described below:

1) Graph pruning: The optional attribute graph pruning
requires a true/false boolean option (true by default) that, if
set to true, tells the algorithm to separate the ‘tree’ parts of the
graph and create sub-graphs with each connected component.
The process is done in each iteration before the graph is
evaluated by the modules. Then each sub-graph is treated as an
input for a new iteration of the algorithm, where the modules
evaluates the sub-graph and, if positively identified, calculates
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Fig. 4. UML class diagram of the inherent structured of the atr package
indicating its classes, methods, and internal relations. Functions provided by
the different classes use the - and + symbols to differentiate between private
and public functions, respectively, and italic to indicate abstract functions.
Associations between the classes are indicated by solid lines and inheritance
relations by arcs (→).

the RG(p) of the graph or, if cannot be categorized, proceed
with the contraction-deletion recursion of the DC algorithm
(see section II). The pruning procedure is repeated in each
iteration of the algorithm and for each sub-graph produced by
the edge contraction and deletion.
This option works better in combination with the TreeModule,
since the module calculates directly the reliability of all
the tree components, the computational time is effectively
reduced. It is optimal to use this option with graphs that
contain a notorious amount of tree parts or if such parts
are prone to appear in the sub-graphs. An example of this
procedure is shown in Figure 5.

2) Edge selector: The attribute edge selector specifies
which methodology is used in order to select the edges to per-
form a contraction and deletion. This operation is performed
in each iteration of the algorithm in the case that the graph
(or sub-graph) is not identified. As an argument, it requires a
string containing the name of the selector function of the class
EdgeSelector. By default it selects a random edge using the

G

G1 G2 G3

Fig. 5. A graph G divided into three sub-graphs G1, G2, and G3 using the
graph pruning methodology.

function select random() from the class EdgeSelector. This
class also contains two more functions, select min degree()
and, select max degree(). These two functions select the edge
where the sum of its conforming node degrees are maximum
and minimum respectively.

A. Using the package

This section explains step by step how to use the package,
that is; how to load it, create a network (or read it from
a file), and calculate the all-terminal reliability polynomial
using different configurations.

1) Loading the package: Since the package is included in
the official Python repository, it can be installed as any other
official Python package with the help of the standard package
manager for Python pip:

1: # Unix/macOS
2: python3 -m pip install atr

3: # Windows
4: py -m pip install atr

The package can also be installed directly from the GitHub
repository with pip using its URL:

1: # Unix/macOS
2: python3 -m pip install

git+https://github.com/LlagosteraPol/ATR

3: # Windows
4: py -m pip install git+https://github.com/LlagosteraPol/ATR

Another option is to download the package either from the
official repository PyPi or from GitHub and install it with the
same commands shown previously but, instead of an URL,
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using the directory where the package is found.

2) Obtaining a network: The atr library works with
networkx class networks. To create such graphs, the net-
workx library offers different options. One option is to cre-
ate a network from an adjacency matrix with the function
from numpy matrix(). As the name indicates, the matrix must
be an object of class NumPy [21]. Moreover, this function
also permits to create multi-edge networks with the attributes
parallel edges and create using. The first attribute allows
specifying directly in the adjacency matrix how many edges
exist between each pair of nodes. The second attribute specifies
the object type of the new network, for instance, a multi-edge
graph will be of type MultiGraph. Following, we present an
example:

1: import networkx as nx
2: import numpy as np
3: A = np.array([[0, 2, 0, 1],[2, 0, 3, 0],

[0, 3, 0, 2],[1, 0, 2, 0]])
4: g = nx.from numpy matrix(A, parallel edges = True,

create using=nx.MultiGraph)

Where the visual representation of the network is shown in
Figure 7 and the adjacency matrix is:

A =




0 2 0 1
2 0 3 0
0 3 0 2
1 0 2 0




Another option is to give the edges of the network. To
this end, it’s requested to specify the nodes that conform
each edge. Below we exemplify this procedure by building a
multi-edge tree network (see Fig. 6):

1: import networkx as nx
2: g = nx.MultiGraph([(1, 2), (1, 2), (1, 2),

(2, 3), (2, 3), (3, 4)])

An interesting option to save and load simple undirected
networks, is to use the graph6 format. The networks in this
format, are represented in ASCII characters which require
little space in memory. Moreover, several networks can be
written altogether in a single .txt file where each line represents
a different graph. The networkx library provides the function
read graph6() to read a file containing graphs in graph6
format and convert them into a list of networkx class objects.
The library also gives the function write graph6() to format
any networkx graph into graph6 and save it into a file. Below
we present an example:

1: import networkx as nx

2: g = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
3: nx.write graph6(g, ”test.txt”, header=False)
4: g = nx.read graph6(”test.txt”)

3) Calculating the reliability: As explained at the begin-
ning of section III, the RG(p) is calculated using the function
calculate reliability() from the atr library. Such function ad-
mits different configurations to speed up the computational
time depending on the given graph. Below we present an
example of how to calculate the RG(p) from the network
shown in Figure 5. To this end, we use different approaches,
first; using only the pure DC algorithm (without modules and
graph pruning), second, with all modules and default optional
attributes, and, finally, with some modules, with graph pruning
and specifying the selector. Note that the edge selection
function (attribute edge selector) will be set on random by
default since we didn’t specify it.

1: import networkx as nx
2: g = nx.MultiGraph( [(1,2), (1,2), (1,3), (2,3), (2,3), (2,3),

(3,4), (4,5), (4,5), (5,6), (5,6), (5,6), (6,7), (7,8), (8,9),
(9,10), (10,11), (11,12), (12,7), (8,11), (9,12)] )

3: rel1 = atr.calculate reliability(g)

4: rel2 = atr.calculate reliability(g,
modules = [’ModuleTree’, ’ModuleCycle’,
’ModuleCycleTree’, ’ModuleCake’])

5: rel3 = atr.calculate reliability(g, prune = True,
modules = [’ModuleTree’, ’ModuleCycleTree’,
’ModuleCake’])

Notice that the last configuration of the calculate reliability
function is the fittest for the given graph since, thanks to the
pruning process, it separates the tree part of the network (also
shown in Fig. 5) and creates three sub-networks. Moreover,
the chosen modules fit exactly the family categories of these
three sub-networks which are: multi-edge cycle, multi-edge
tree, and cake graph (in the next sections detail each module).
The computational times verifies the previous affirmation,
where, the first computation (line 3) takes 4.978 seconds,
the following (line 4) takes 1.278 seconds and the last
computation (line 5) 0.024 seconds. Such results were
calculated using a computer with a core Intel i5 8th Gen
and 18GB of RAM. The resulting all-terminal reliability
polynomial from the network in the example is:

RG(p) = p21 + 19.0p20(1 − p) + 168p19(1 − p)2 +
908p18(1 − p)3 + 3309p17(1 − p)4 + 8480p16(1 − p)5 +
15487p15(1− p)6 + 19958p14(1− p)7 + 17442p13(1− p)8 +
9384p12(1− p)9 + 2376p11(1− p)10
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IV. MODULES

To enhance our new DC algorithm, we developed a series
of methodologies that calculates the all-terminal reliability for
several families of graphs. These methodologies had been de-
signed to be modules of our DC algorithm (see section II). The
main idea of a module is to be easily added or removed from
the new DC algorithm, therefore to be ‘modular’. Moreover,
the modules also contain an algorithm that determines if the
given graph is part of the graph family of the module, if
so, the module can proceed to calculate the RG(p). Each
module focuses on a specific graph family such as, multi-
paths, multi-cycles, multi-cycle trees and the hamiltonian cake
graphs (sections IV-A, IV-B, IV-C, and IV-D). Although the
families belonging to the series-parallel networks already have
known methodologies to calculate the RG(p) [18], in order
to be incorporated into the new DC algorithm, we’ve created
other compact algorithms that fit the requisites of the modules.
We implemented into the atr library all the specific modules
for the previously mentioned graph families. Each of them is
represented by a sub-class which inherits form the RelModule
class (see Fig. 4). All the sub-classes contain a constructor
and at least two functions, the function identify() which
determines if the network type matches the module, and the
function calculate() which calculates the reliability of the
given network. Although the main class of the atr library
uses automatically the functionalities of the modules (see III),
such functionalities can be directly used. For instance, this is
convenient where the given network family is known and there
is no need to identify the graph. In these cases, the specific
module reliability calculator algorithm can be directly applied.
Below we detail each module implementation by presenting its
aim, the theory behind the algorithm and how to (directly) use
its functionalities with examples. Note that all the examples
assume the imports for the networkx library to create networks,
the module classes, and the graphtools toolbox which contains
extra methodologies such as converting a polynomial to a
grouped sum of binomials (function polynomial2binomial()).
Such imports are in the form:

1: import networkx as nx
2: import relmodules
3: import graphtools

A. Multi-Tree Module

A (simple) tree network of n nodes, denoted by T (n), is
any connected network with n − 1 links where the deletion
of any of the links produces a non-connected network. The
reliability polynomial of T (n) is therefore RT (n)(p) = pn−1.
We define the multi-link tree MT (M) as a tree network on
n nodes but allowing multiple links between nodes, where
M = {m1,m2, ...,mn−1} is the set where each mi counts
the number of links between two given nodes, where mi ≥ 1,
also known as link-cardinalities set. For instance, a simple
tree network has mi = 1 for all 1 ≤ i ≤ n − 1. Notice that
MT (M) is no longer connected when at least one whole set
of links between two nodes is removed. If we generalize the

classical reliability polynomial for simple trees T (n) taking
into account that m1 = m2 = · · · = mn−1 = 1, we can
determine the network reliability of Multi-Trees by combining
mi sets of disconnected links as shown in formula 3.

RMT (M)(p) =

n−1∏

i=1

[1− (1− p)mi ] (3)

The class ModuleTree from the atr package implements the
functionalities of the Multi-Tree Module. This module uses
the capabilities of the networkx package to determine if the
given network is a Multi-Tree and implements the formula
3 to calculate its reliability. Following we demonstrate the
usage of this module with an example.

First the network is created using the function MultiGraph
from the neworkx library (such network is represented
in Fig. 6). Once we have the graph, we use it to create
an object instance from the class ModuleTree. Finally, if
the network belongs to the Multi-Tree family, then we
calculate its reliability. Note that we use the function
polynomial2binomial() to represent the resulting polynomial
in form of a grouped sum of binomials.

1: g = nx.MultiGraph([(1, 2), (1, 2), (1, 2),
(2, 3), (2, 3), (3, 4)])

2: treemodule = atr.relmodules.ModuleTree(g)

3: if treemodule.identify():
4: rel = treemodule.calculate()
5: print(atr.graphtools.polynomial2binomial(rel))

The previous code prints the following result:

RG(p) = p6 + 5p5(1− p) + 9p4(1− p)2 + 6p3(1− p)3

Fig. 6. A multilink Tree T (M) on 4 nodes with set of link-cardinalities
M = {3, 2, 1}. Its reliability is therefore RMT (M)(p) = (1−(1−p)3)(1−
(1− p)2)(1− (1− p))

B. Multi-Cycle Module
As in the multi-link tree network, the multilink-cycle

MC(M) allows multiple links between pairs of nodes of the
cycle graph on n nodes, where M = {m1,m2, ...,mn} is
the set of link-cardinalities. In order to disconnect MC(M)
at least two whole sets of multiple links must be removed
from the network. Therefore we can calculate all the possible
ways to disconnect the network and retrieve all connected
sub-networks (equation 4).

RMC(M)(p) =

1−
(

n∑

k=2

(−1)k
∑

i1<···<ik

(k − 1)(1− p)mi1
+···+mik

)
(4)

CHAPTER 4. NETWORK RELIABILITY

4.3. ARTICLE: ‘COMPUTING ALL-TERMINAL NETWORK RELIABILITY:
A NEW MODULAR METHODOLOGY’

41



IEEE TRANSACTIONS ON RELIABILITY 7

where m =
∑n

i=1 mi is the total number of (multiple)
links. In the particular case m1 = m2 = · · · = mn = m′, we
can simplify the calculations of the previous equation:

RMC(M)(p) = 1−
(

n∑

k=2

(−1)k(k − 1)

(
n

k

)
(1− p)m

′·k
)

(5)

This module is implemented in the atr library by the
class ModuleCycle. To determine if the family of the given
graph is a cycle or multi-cycle, the class function identify(),
temporarily converts the given graph into a simple network
(without multi-edges), and determines its regularity. If the
network is 2-regular (all the nodes have degree 2), then
it’s a cycle which indicates that its multi-link version must
be also a cycle. To calculate the reliability and to improve
its computational speed, the function calculate() counts the
number of parallel edges between nodes, if all sets of parallel
edges contains the same number of links, the function will
use the equation 5, otherwise the equation 4 will be chosen.
Below we exemplify the usage of this module with an
example:

Like the multi-tree example presented previously, we first
create the network (shown in Fig. 7) using the function
MultiGraph from the neworkx library. We create then a
ModuleCycle object using the previous network and finally
if the network is detected as being part of the module family
(either cycle or multi-cycle), then the reliability polynomial is
calculated and printed (shown) in form of a grouped sum of
binomials using the function polynomial2binomial().

1: g = nx.MultiGraph([(1, 2), (1, 2), (1, 2), (2, 3),
(2, 3), (3, 4), (4, 1), (4, 1)])

2: cyclemodule = atr.relmodules.ModuleCycle(g)

3: if cyclemodule.identify():
4: rel = cyclemodule.calculate()
5: print(atr.graphtools.polynomial2binomial(rel))

The resulting output of the code is the following:

RG(p) = p8 + 8p7(1 − p) + 28p6(1 − p)2 + 54p5(1 −
p)3 + 58p4(1− p)4 + 28p3(1− p)5

C. Multi-CycleTree Module

Another closed formula can be given for a family of
networks MTC(M) which can be loosely defined as a tree
of cycle networks (see Fig. IV-C). The MTC(M) network
depends on how the cycles are connected between them. To
this end, a reduction of its links can be done, by ‘collapsing’
the links of the cycles to one link per cycle. The resulting
network is the basis tree network. However, the reliability
of MTC(n) does not depend on the structure of the basis
tree network but on the set M = {m1,m2, ...,ms} of the
number of links of each cycle. Indeed, the coefficients Ni of

Fig. 7. A multilink Cycle G on 4 nodes with set of link-cardinalities
{3, 2, 1, 2}. Its reliability is therefore RG(p) = 1 − [1((1 − p)3+2 + (1 −
p)3+2 + (1− p)3+1 + (1− p)2+2 + (1− p)2+1 + (1− p)2+1)− 2((1−
p)3+2+2 + (1 − p)3+2+1 + (1 − p)3+2+1 + (1 − p)2+2+1) + 3(1 −
p)3+2+2+1 = 1− [(2(1− p)5 + 2(1− p)4 + 2(1− p)3)− 2((1− p)7 +
2(1− p)6 + (1− p)5) + 3(1− p)8]

the reliability polynomial RG(p) =
∑m

i=0 Nip
i(1−p)m−i can

be computed directly with the new formula:

RMTC(M)(p) =pm +mpm−1(1− p)+
s∑

k=2

( ∑

i1<···<ik

mi1 · · ·mik

)
pm−k(1− p)k

(6)

where m =
∑s

i=1 mi. We recall that the coefficient Nk

in the reliability polynomial counts the number of different
connected subnetworks. In this case, after the removal of k
links of MTC(M), the subnetwork remains connected only
if these k links belong to different cycles each. This means
that just one link can be removed from each cycle if we
want to keep the network connected. For each k, there are∑

i1<···<ik
mi1 · · ·mik different ways of removing these k

edges.

The implementation of this module is done within the class
ModuleTreeCycle from the atr library. The network identifica-
tion process to determine if it belongs to the family of ‘tree of
cycles’ (or Cycle-Tree), follows this reasoning; A Cycle-Tree
network must contain only cycles without any shared edges.
To know if the graph contains only cycles, we can search for
the minimum set of cycles C = {c1, c2, · · · , cn} such that any
cycle in the graph can be written as a combination of these
basis cycles, this is also known as the cycle basis of a network.
With this set, we can compare the number of non-repeated
nodes from the cycle basis with the order of the network. If
the previous condition is asserted, then the network is formed
only with cycles. Lastly, if none of the cycles contain shared
edges, the following equality will hold true:

o(G) =
∑n

k=1(o(ck))− n+ 1

Where o(G) is the order of the given network G and o(ck) is
the order of a cycle from the cycle basis C. Therefore, if the
graph only contains cycles and such cycles don’t share any
edges, then the network belongs to the Cycle-Tree family.
The calculation of the reliability depends if the given network
is simple or Multi-Graph (with multiple edges), the function
calculate(), uses a different approach for each case. If it’s a
simple graph, the previous equation 6 is chosen. If instead, the
network contain multiple edges, the function takes the cycles
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from the network cycle basis and, for each ck applies the
equation 4 (see previous section IV-B), therefore:

RMTC(M)(p) =

n∏

k=1

(RMC(ck)(p)) (7)

As in the previous examples, using this module requires
four steps; Step one, build the network. Step two, create an
object instance of the module (in this case ModuleCycleTree)
using the previous network. Step three, identify the network.
Step four, if the network belongs to the module family,
calculates its reliability. An optional last step is to transform
the given polynomial to a grouped sum of binomials for better
comprehension.

1: g = nx.MultiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 6),
(4, 5), (5, 6), (6, 7), (7, 8), (8, 9),
(9, 10), (10, 11), (11, 6)])

2: cycletreemodule = atr.relmodules.ModuleCycleTree(g)

3: if cycletreemodule.identify():
4: rel = cycletreemodule.calculate()
5: print(atr.graphtools.polynomial2binomial(rel))

Notice that even the network object is declared as
MultiGraph, it doesn’t contain any parallel edges, therefore
the calculate() function will choose the equation for simple
graphs (Equation 6). The resulting reliability from this
example network is:

RG(p) = p13+13p12(1− p)+54p11(1− p)2+72p10(1− p)3

Fig. 8. The network G = MTC({3, 4, 6}) (top) having the linear path on
4 vertices as its basis network (bottom) has reliability polynomial. RG(p) =
p13 + (3 + 4 + 6)p12(1− p) + ((3 · 4) + (3 · 6) + (4 · 6))p11(1− p)2 +
3 · 4 · 6p10(1− p)3

D. Cake Module

We developed a new method to speed up the computa-
tion of the reliability polynomial for hamiltonian networks
[22] belonging to the cake graph family. These hamiltonian
networks can be described as cycle networks Cn with extra
diametral interior links that cross each other (like diametral
cuts in a cake) known as chords. This type of networks are

characterized by the chord-path length vector (x1, x2, . . . , xc),
where xi > 0, that gives the lengths of every path defined by
the end vertices of the chords given in clockwise order (see
Fig. 9).

Fig. 9. A cake network with chord-path length vector (3, 2, 1, 2, 2, 1).

The specific algorithm for cake networks calculates the
probability of being disconnected. This procedure is divided
into three parts; (a) Calculate all possible ways to disconnect
the network by ’breaking’ only links of the cycle. (b) Possible
disconnections by ’extracting’ the diametral chords, that is, a
connected sub-network constituting of links of the cycle and
only one chord. (c) Removing one chord and applying (a)
and (b) on the resulting sub-network. Following, we give a
detailed explanation of these steps.

Fig. 10. Cake algorithm scheme
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Given any α = number of disconnected links. For (a),
the network is disconnected by breaking two links of the
same c-path and any other α − 2 links of the cycle c-paths
(x1, x2, · · · , xc). Therefore we need to consider different
combinations of possibilities; only breaking links of the same
path xi, breaking 2 links of the same path and others only of
a path xj > xi, same case but breaking links of a path where
xj < xi and, any possible combination of the last three cases.
A pseudocode with this procedure is given in algorithm 1.

Regarding (b), the rule is we can only break one arc
for path since the cases where more than one are broken, are
already contemplated in (a). Then, in order to disconnect the
network and following the previous rule, we need to break
a minimum of four arcs that surrounds a chord or multiple
chords and effectively ’extract’ them as described previously.
After we have the minimum set that disconnects the network
(4 arcs), then we can break any combination of α − 4 arcs
that are not already in the minimum set. The algorithm is
described into the pseudocode algorithm 2. Lastly, only the
links that must be considered are the chords. Point (c) is the
part of the algorithm that handle these cases. The idea behind
(c), is to recursively delete a chord, applying (a) and (b) to
the generated sub-network, and continue this procedure until
no chords are left. A better look on this procedure is shown in
figure 10. Notice that the procedures described in the scheme
as ’Get number of arc cuts’ and ’Get number of chord cuts’
are referred to the previous nodes (a) and (b) respectively.

All the procedures to calculate the reliability of Cake graphs
are implemented in the class ModuleCake from the atr library
which also contains the functions described by the pseu-
docodes 1 and 2. Such functions are private, and are handled
by the calculate() function of the module. The identification
process to determine if the given network is from the Cake
family, starts with some conditions. The graph must be simple
(without multi-edges), the degree of its nodes o(ni) must range
between 1 < deg(ni) < 4 and at least one of its degrees must
be deg(ni) = 3 (at least must contain one chord). If the graph
meets the requirements, the algorithm proceeds to determine
its hamiltonian cycle in order to identify the chords. Finally,
the algorithm checks that all the chords are diametral. To know
if a chord is diametral, the path in the extracted hamiltonian
cycle in which its starting and ending nodes coincide with
the chord endpoint nodes must have length o(G)/2 (either
rounded up or down). As in the previous examples, using
this module requires obtaining the network, creating an object
instance of the module (ModuleCake), identifying the network,
and if belongs to the module family, calculating its reliability.

Algorithm 1 Pseudocode to calculate the number of all pos-
sible ways to disconnect a network with α ’cuts’ by ’cutting’
only the arcs.

1: procedure ARCCUTSALGORITHM(x, α, m, c)
2: // x: paths of length xi

3: // α: maximum number of link cuts without disconnect-
ing the network

4: // m: number of links of the network
5: // c: number of chords of the network

6: int result = 0

7: for j ← 2, α do
8: for i← 2, |x| do
9: if j ≤ xi−1 then

10: current path comb =
(
xi−1

j

)

11: else
12: continue
13: end if
14: if (α− j) > 0 then
15: for z ← 1, (α− j) do
16: next path comb =

(
m−c−(|x1|+|x2|+...+|xi|)

α−j−z

)

17: if z ≤ (i− 1) then
18: prev path comb lst = Pz(x1, x2, ..., xi−1)
19: int prev path comb = 0
20: for comb ← prev paths comb lst do
21: int mult = 1
22: for w ← comb do
23: mult · = |xw|
24: end for
25: prev path comb += mult
26: end for
27: end if
28: result += curr path comb · next path comb

· prev path comb
29: end for
30: else
31: result += curr path comb
32: end if
33: end for
34: end for

35: return result
36: end procedure

1: g = nx.MultiGraph([(1, 2), (2, 3), (3, 4), (4, 5),
(5, 6), (6, 7), (7, 8), (8, 1),
(1, 5), (2, 6), (3, 7), (4, 8)])

2: cakemodule = atr.relmodules.ModuleCake(g)

3: if cakemodule.identify():
4: rel = cakemodule.calculate()
5: print(atr.graphtools.polynomial2binomial(rel))

The resulting reliability from the previous example is:
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Algorithm 2 Pseudocode to calculate the number of all pos-
sible ways to disconnect a network with α ’cuts’ by ’cutting’
out (’extracting’) the chords.

1: procedure CHORDCUTSALGORITHM(x, α, c)
2: // x: paths of length xi

3: // α: maximum number of link cuts without
disconnecting the network

4: // c: number of chords of the network

5: list chord combs = []
6: list all combs = []

7: for z ← 1, c do
8: for i(mod|x|) ← 1, c do
9: curr comb = [xi, xi+z, xi+c, xi+c+z]

10: chord combs.append(curr comb)
11: end for
12: end for
13: if (α− 4) > 0 then
14: for ch comb←chord combs do
15: rest combs = P(α−4)[(x1, x2, ..., x|x|)−ch comb ]
16: for rs comb←rest combs do
17: all combs.append(ch comb + rs comb)
18: end for
19: end for
20: else
21: all combs = chord combs
22: end if
23: all combs ← Delete all duplicate elements

24: int result = 0
25: for comb←all combs do
26: int mult = 1
27: for e←comb do
28: mult · = |xe|
29: end for
30: result + = mult
31: end for
32: return result
33: end procedure

RG(p) = p12 + 12p11(1 − p) + 66p10(1 − p)2 + 212p9(1 −
p)3 + 409p8(1− p)4 + 392p7(1− p)5

1) Computational Performance: We ran several tests
in order to compare the basic DC algorithm with our new
algorithm in the computation of the reliability for Cake
Graphs. As shown in table I, the Cake Module has a
polynomial computational time compared with the original
DC which has exponential time. For the tests, we used a
computer with a core Intel i5 8th Gen and 18GB of RAM.

Firstly, to obtain a batch of these networks to compare
the computational times, we developed an algorithm that
constructs random Cake graphs. Basically random networks
consist of a certain number of nodes connected with some

probability model. For instance, the well known Barabási-
Albert model produces random networks with a power
law degree distribution (scale-free networks), that is, the
probability that a node in the network interacts with k other
vertices follows a power law. Nevertheless, most of the
random network models produce non-hamiltonian networks.
In order to construct a random hamiltonian network of the
family of Cake graphs, we start with a cycle network and
we add randomly a fixed number of chords as shown in
algorithm 3. Note that the algorithm assumes that the number
of chords its less or equal to half of the nodes (c ≤ n/2).

Algorithm 3 Pseudocode to generate random hamiltonian
Cake networks.

1: procedure RANDOMCAKEALGORITHM(n, c)
2: // n: number of nodes of the network
3: // c: number of chords of the network

4: cycle = generate Cn

5: mid = truncate(n/2)
6: node list = cycle.nodes()[1:mid]

7: while c > 0 do
8: random node = random choice(node list)
9: cycle.add edge(random node, random node + mid)

10: node list.remove(random node)
11: c = c− 1
12: end while
13: return cycle
14: end procedure

For our tests, we have created random cake graphs from 15
to 60 nodes with 3 and 6 chords. The time reduction between
the original DC and the Cake module, has a mean with all the
tests of 99.99%. This improvement increases as more nodes
and links the network has (Table I).

V. EXPANDING THE ATR LIBRARY

The library is designed with high modularity to facilitate the
implementation of new algorithms and methodologies without
modifying the source code. Therefore, the new functionalities
can be added directly in form of classes or functions and the
library will automatically detect and manage them. In the next
sub-sections, we detail the two main functionalities that can
be added, which are: Methodologies that specify which edge
is selected in each iteration of our new DC algorithm and,
modules that identify and calculate the reliability of specific
families of graphs.

A. Expanding Edge Selection Methodologies

The class EdgeSelector is responsible for providing the
functions that choose the edges which will be contracted and
deleted in each iteration of the DC algorithm. To ease the
addition of new functions, the network is present in the class
structure (is a global parameter) and can be accessed with the
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TABLE I
RANDOM CAKE NETWORK COMPUTATIONAL TIMES (IN SECONDS) FOR

DIFFERENT AMOUNT OF NODES. THE FIRST TABLE SHOWS THE CASE FOR
3 CHORDS, MEANWHILE THE SECOND ONE DEPICT RANDOM NETWORKS

WITH 6 CHORDS.

3 Chords Random Cake Networks

n Original DC Cake Module Time reduction

15 3.1486 0.0105 99.9966%
20 10.5446 0.0136 99.8710%
25 27.9091 0.0171 99.9387%
30 61.7438 0.0214 99.9653%
35 130.2638 0.0289 99.9778%
40 235.9418 0.0299 99.9873%
45 426.1442 0.0362 99.9915%
50 710.5972 0.0429 99.9939%
55 1111.4745 0.0528 99.9952%
60 1729.5110 0.0590 99.9965%

6 Chords Random Cake Networks

n Original DC Cake Module Time reduction

15 40.7586 0.0412 99.8989%
20 205.4605 0.0520 99.9746%
25 854.5891 0.0740 99.9913%
30 2621.3500 0.0828 99.9968%
35 7652.6396 0.0948 99.9987%
40 17959.6568 0.1079 99.9993%
45 41305.4407 0.1266 99.9997%
50 100657.7801 0.1558 99.9998%
55 197461.1199 0.1687 99.9999%

python call self.g, therefore the new functions don’t need to
contain any arguments (apart of self ). There are two ways
to enhance this class with new methodologies: The first way
is to add the new function directly in the class as shown in
algorithm 4.

Algorithm 4 Modify EdgeSelector class to add a new method
1: class EdgeSelector:
2: # Class Code

3: def new selector(self ):
4: graph = self.g
5: # Code
6: return edge id

The other option is to add the new function outside the
class, this means to create a function and, afterwards, add it
to the class EdgeSelector with the python command setattr()
as shown in algorithm 5

Algorithm 5 Dynamically add a methods to EdgeSelector
class

1: def new selector(self ):
2: graph = self.g
3: # Code
4: return edge id

5: setattr(atr.selector.EdgeSelector, ’new selector’,
new selector)

Our package automatically detects all newly added functions
to the class EdgeSelector (either added directly or dynami-
cally). Where the user just needs to indicate which selector
wants to use through a string in the arguments of a new atr
object (see section III) as shown below:

1: atr.calculate reliability(g, edge selector = ’new selector’)

B. Adding New Modules

The library can be expanded by adding new modules that
calculate the all-terminal reliability polynomial for specific
families of networks. A module is a class that is derived
(inherits) from the base class RelModule. All this classes
must have a constructor and at least two functions which
are identify() and calculate(). Where the function identify()
contains the methodologies that identify if the given network
belongs to the module family and, the function calculate(),
calculates the given network reliability. Regarding the chosen
module name, it hasn’t any restrictions except to be different
from the other module names. Note that the file containing
the implementation of the module must be in the same folder
as the other module files. The last step in the creation of the
module is to index it in the init .py file from the folder
relmodules. Next, we show the basic structure of a new module
and how can be indexed.

1: from relmodules.reliability modules import RelModule
2: import networkx as nx

3: class NewModule(RelModule):
4: def init (self, g):
5: self.g = g

6: def identify(self):
7: return False

8: def calculate(self):
9: return 0

1: # file ‘relmodules/ init .py’

2: from atr.relmodules.reliability modules import
RelModule

3: from atr.relmodules.new module file name import
NewModule

The atr function calculate reliability() detects automatically
any new modules and, in order to call them, the function only
needs an string with the module name in the attribute modules
as described in section III-A.

VI. CONCLUSIONS

In this paper, we present an improved new version of the DC
algorithm along with a series of methodologies (modules) that
work altogether to speed up the computation of the reliability
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polynomial of any undirected network. The algorithm has been
implemented in form of a python package called atr which has
been designed to be easy to use, modular, highly scalable, and
flexible. We detail its implementation plus use-case examples.
Moreover, we also show how the new DC algorithm can be
expanded to include new modules and algorithms to reduce its
computational time. Due to the flexibility of the algorithm, the
variability of the computational time to calculate the reliability
highly depends on the given network and the modules selected.
Therefore, choosing or adding the right combination of mod-
ules can reduce significantly the computational time compared
with the original DC algorithm. This said, we believe that our
tool can be extended to all the areas which work with networks
since the package can deal with general graphs and also be
easily personalized and optimized to work with more specific
types of networks.

VII. FUTURE RESEARCH LINES

This work provides a base and methodologies to easily ex-
pand the new DC algorithm. For instance, due to the modular
nature of the improved DC, it’s easy to include new modules
that work with specific families of graphs and new methods
to selectively choose the best edges to contract/delete in each
iteration of the algorithm. Therefore, it’s a foundation that can
be used by any field that works with network reliability and
also can be expanded to fit the specific needs of the areas.
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Chapter 5

Spatial Networks with Point
Processes

5.1 Overview

A spatial network (or geometric graph) is a representation where its vertices or
edges model geometric elements, and therefore they are bound to a measurement
system. Such systems can vary depending on the structure type that the network
is modeling. For instance, in the case of a road structure (which is considered in
this thesis), the used systems are the metric system and the geographic coordinate
system. In this spatial linear structure, several events of interest can occur, for
example, traffic accidents, crimes, and traffic jams. These collections of points are
usually called point patterns and they are generated by a stochastic mechanism
(usually called a spatial point process) on a linear networks. Several statistical
tools can be considered to analyze the structure of such point occurrences and to
visualize their spatial configurations; this can be crucial to understand such spatial
configurations and predicting future occurrences. Moreover, based on these point
occurrences, we can find optimal short paths between two points on a network (origin
and destination), where some point occurrences can be chosen to be avoided or vice
versa.

5.1.1 State of Art

The last decade has experienced an increase of interest in the spatial analysis of point
patterns occurring on network structures. This raise of interest is due to, among
other things, the creation of new network-based fields, the growing availability of
datasets, and the necessity of interrelating and analyzing the processes occurring
on networks. Among the various studies regarding this topic, we can note Okabe
et al. [35] which proposed four statistical methods to analyze the distribution of
points on a network, Okabe and Yamada [36] generalized the Ripley’s K-function
[44] to the network domain, Ang et al. [1] were the first to develop a geometry
corrected Ripley’s K function that provides a better understanding of network-based
event configurations, while Rasmussen and Christensen [42] extended the analysis of
point processes to directed linear networks. Recently, Baddeley et al. [2] presented
a review of the literature related to the analysis of point patterns occurring over
networks. Now we present two studies; the first work is devoted to the analysis
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of weighted networks based on wildlife-vehicle collisions (point patterns) to model
traffic safety, while the second work details a tool in the form of an R package
that provides tools to analyze the intensity of spatial point patterns occurring over
different network structures.

5.2 Article: ‘Modeling road traffic safety based

on point patterns of wildlife-vehicle collisions’

This article has been published in the journal Science of the Total Environment,
belonging to the first quartile (Q1) in the area of environmental science as classified
by Journal Citation Reports (JCR) and Scimago Journal Rank (SJR). See Table
5.1.

Table 5.1: Journal metrics corresponding to the journal Science of the Total Envi-
ronment for the year 2021

Journal Metric Value
Citescore 14.1
Impact Factor (JCR) 10.753
SJR 1.806
SNIP 2.17

The motivation of the article ‘Modeling road traffic safety based on point patterns
of wildlife-vehicle collisions’ is to develop a general flexible framework to consider
weighted graphs based on point patterns to obtain optical paths between points (ori-
gin and destination) on networks. Here, we consider the problem of finding optimal
paths in terms of the intensity of wildlife-vehicle collisions (WVC) (a road safety
problem). This approach simplifies real complex road structures into a mathematical
linear network and considers different variables to calculate optimal routes between
two points (origin and destination) assuming several restrictions. For this problem,
we considered real data regarding a square area of 40 × 40 km around the city of
Lleida, Spain. This work analyses the resulting graph model of the road network
contained in this area (459050 km of roads), for several road categories, namely, high-
ways, paved roads, and city roads. Then, based on this network structure, we obtain
a weithed network structure based on the wildlife-vehicle collisions (as a point pat-
tern) during the period 2010−2014, the traffic density during the years 2014−2015,
the speed limits of the roads, and the spring vegetation density near the roads. Our
new approach uses these variables (road types, WVCs, traffic density, speed limits,
and vegetation density) to calculate weights for each road segment which is used to
determine the safety of the road and the resulting optimal paths. The flexibility of
the framework lies in the possibility of including or excluding variables, for example,
centering the results on one or multiple variables, comparing different paths from
different model restrictions, or the possibility to adapt the framework to other dif-
ferent problems. We have also developed an interactive application based on Shiny
for the R language that provides a visual representation of the methodology used
in this study. The main points of this research are:
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• Create a flexible framework to calculate optimal paths depending on the net-
work characteristics (weighed networks).

• Analysis of a real data set regarding an area of 40× 40 km around the city of
Lleida, Spain.

• Model the 459050 km of roads contained in this area.

• Identify different variables that affect the wildlife-vehicle collisions in a road
network.

• Calculate optimal paths between pair of towns regarding variables such as road
types, WVCs, traffic density, speed limits, and vegetation density.

• Produce an interactive app to visually see the optimal paths depending on the
given covariates as well as the heatmaps generated by such covariates.

Where the Shiny application can be found following the next URL:

• GitHub: https://github.com/LlagosteraPol/ATR
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Modeling road traffic safety based on point patterns of
wildlife-vehicle collisions
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• To reduce the impacts of wildlife-vehicle
collisions a modeling framework is de-
fined.

• Weights are based on the intensity of
wildlife-vehicle collisions (point pattern).

• The optimal road path between two points
ndeparture and destination) is based on a
safety criterion.

• The model is tested on a real data set con-
taining 491 wildlife-vehicle collisions.

A B S T R A C TA R T I C L E I N F O
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Wildlife-vehicle collisions represent one of the main coexistence problems that appear between human populations
and the environment. In general terms, this affects road safety, wildlife management, and the building of road infra-
structures. These accidents are a great danger to the life and safety of car drivers, cause property damage to vehicles,
and affect wildlife populations. In this work, we develop a new approach based on algorithms used to obtainminimum
paths between vertices in weighted networks to get the optimal (safest) route between two points (departure and des-
tination points) in a road structure based onwildlife-vehicle collision point patterns together with other road variables
such as traffic volume (traffic flow information), road speed limits, and vegetation density around roads. For this pur-
pose, we have adapted the road structure into a mathematical linear network as described in the field of Graph Theory
and added weights to each linear segment based on the intensity of accidents. Then, the resulting network structure
allows us to consider some graph theory methodologies to manipulate and apply different calculations to analyze
the network. This new approach has been illustrated with a real data set involving the locations of 491 wildlife-
vehicle collisions in a square region (40 km × 40 km) around the city of Lleida, during the period 2010–2014, in
the region of Catalonia, North-East of Spain. Our results show the usefulness of our new approach to model road traffic
safety based on point patterns of wildlife-vehicle collisions. As such, optimal path selection on linear networks based
onwildlife-vehicle collisions can be considered to find the safest path between two pairs of points, avoiding more dan-
gerous routes and even routes containing hotspots of accidents.

1. Introduction

Wildlife-vehicle collisions (WVC) represent one of the main coexistence
problems that appear between human populations and the environment
(Mo et al., 2017). In general terms, this affects road safety, wildlife manage-
ment and the building of road infrastructures (van der Ree et al., 2015).
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These accidents are a great danger to the life and safety of car drivers, cause
property damage to vehicles (Díaz-Varela et al., 2011; Groot Bruinderink
and Hazebroek, 1996), and are a real peril to wildlife populations (Hilário
et al., 2021; Coffin, 2007). For instance, in 2017 in Spain, traffic accidents
were the fourth external cause of death behind suicides, drownings and ac-
cidental falls (Press release of the INE, October 2018). Moreover, in 2018
there were 102,299 traffic accidents with victims (1679 of themwith fatal-
ities) of which, at least 403, were caused bywildlife-vehicle collisions, with
6 fatalities (Anuario-DGT, 2018). These figures highlight the importance
and the severity of these types of accidents. Sàenz-de Santa-María and
Tellería (2015) found that 8.9% of the accidents that happened in Spain be-
tween 2006 and 2012 (74,600 accidents in total) are related to fauna. These
authors also pointed the spatial inhomogeneous distribution of these
events, reaching 30 − 50% in some of the northern mountainous regions.
The expanding populations of wild boars (Sus scrofa) and roe deer
(Capreolus capreolus), caused 79 % of the collisions. Therefore, it should
be a priority to evaluate and describe the factors affecting these road colli-
sions in order to determine effectivemeasures tomitigate or eradicate them
(Lord and Mannering, 2010).

As WVC do not occur randomly neither in space nor in time, as they
have a clear space-time component, during the last few decades there has
been a growing interest in the description and the modeling of such type
of events (Gunson et al., 2011), especially for identifying areas with a
high amount of accidents (hot spots) (Litvaitis and Tash, 2008; Ramp
et al., 2005). This interest has been promoted by a greater availability of
this type of data, the definition of new statistical techniques and methodol-
ogies based on geographic information systems (GIS) and the use of global
positioning tools such as the GPS. In fact, the analysis of such space-time
structures, implies the analysis of point locations (events) distributed on lin-
ear structures (roads). In this context, roadkills can be assumed as points
(events) occurring on a linear structure and evolving through time. Other
examples of similar linear spatial configurations include the spatial distri-
bution of some invasive plant species (Spooner et al., 2004; Deckers et al.,
2005), street crimes (Ang et al., 2012) and, in general, traffic accidents
(Yamada and Thill, 2004; Xie and Yan, 2008). Note that for all these exam-
ples, point patterns occur on linear structures, and it is not expected that an
event lies out of one of these linear configurations. As such, the analysis of
these spatial configurations is focused on the description of the spatial con-
figuration of points assuming that thewhole point pattern is placed over the
linear network.With this in mind, several counterpart versions of statistical
tools derived frompoint process theory have been proposed to analyze such
spatial point configurations. For instance, the (empirical) network K-
function presented by Okabe and Yamada (2001) is a modification of
Ripley's K-function (Ripley, 1977) to analyze the spatial structure of point
patterns on a linear network. And the geometrically corrected version of
this function proposed by Ang et al. (2012), given that the function defined
by Okabe and Yamada (2001) depends on the geometry of the network.
Baddeley et al. (2021) provide a review ofmethods and theory of point pro-
cess on linear networks.

The occurrence of WVC are affected by several biological, ecological
and meteorological covariates together with some structural road charac-
teristics. For instance, Seo et al. (2013) analyzed the influence of landscape
structure and seasonal changes on WVC, Keken et al. (2019) evaluate the
roadside vegetation and the presence of hotspots of WVC, Borkovcová
et al. (2012) analyze the effect of the type of road on roadkills, Al-harbi
et al. (2012) considered the impact of meteorological conditions on road
traffic accidents, whilst Ha and Shilling (2018) used the ecological model
Maxent, described by Elith et al. (2011), to model potential WVC locations
considering environmental factors and human population density. More-
over, the occurrence of WVC also depends on three important factors, i.e.
the density of animals near the road, animal propensity to enter (cross) a
road, and traffic volume. In fact, the risk of having a WVC depends on
these three elements. A high traffic volume road, with a low density of an-
imals near this road, results in a road with a low risk of having aWVC. Sim-
ilarly, if the density of animals near the road is high, but the traffic volume
is low, the risk of having a WVC continue being low. However, if the traffic

volume is increased then the risk of having a WVC could also increase.
Thus, it is clearly necessary to consider traffic flow information when iden-
tifying optimal roads in terms of the risk of having a WVC.

Moreover, we consider vegetation density as a good measure to discern
the probability of animal road crossing and the density of animals near the
roads. This is so since, one may expected high densities of animals near
areas with abundant vegetation. Here we used the satellite ‘normalized dif-
ference vegetation index (NDVI)’ as an index of vegetation abundance. In
particular, we consider data from the spring of 2017 provided by the
Government of Catalonia (first year with available data). Note that this
normalized index ranges in [0,1], providing 5 classes of vegetation densities.
We can assume that the vegetation is scarce, low, medium, high and very
abundant if this index ranges in [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8) and
[0.8, 1], respectively. Finally, we also consider the travel speed limit of each
road as a factor of road safety, assuming that on roads with higher speed
limits are more likely to have a WVC. With this purpose, we added the
speed limits for each road based on three categories; urban road (50 km/h),
country road (90 km/h), and highway (120 km/h).

Consequently, distinct road sections will have distinct probabilities of
having a WVC in terms of the covariates surrounding this road area (vege-
tation density, for instance), the traffic volume of this road section and its
speed limit. Borrajo et al. (2021) model the point intensity of roadkills
based on several landscape covariates. This suggests the possibility of con-
sidering weighted graphs to model the risk of WVC, and to define distinct
path configurations to optimize this risk. Weighted graphs, based on WVC
information, could be considered to find the safest road trip between two
points (a departure and a destination point). Indeed, various network prop-
erties and indicators can be evaluated using Graph Theory methodologies.
Several authors have already considered graph theory tomodel path config-
urations on linear networks. Quintero et al. (2012) used graph theory-based
transit indicators to develop road safety models for transit infrastructure,
transit network topology, transit route design, and transit performance
and operations. Whilst, Xu and Chen (2003) used different shortest path al-
gorithms to identify associations in criminal networks, and Chen et al.
(2015) used a shortest path approach to discover potential tumor suppres-
sor genes to help with the design of effective treatments against cancer.

Therefore, our main aim in this paper is to develop a newmodel frame-
work adapting algorithms used to obtain minimum paths between vertices
in weighted networks to model road traffic safety based on wildlife-vehicle
collision point patterns, covariates related to vegetation density together
with other road variables related to traffic flow information. In this new ap-
proach, we consider minimum-weight path finder algorithms, for instance,
the Dijkstra algorithm, the Bellman-Ford algorithm, the Floyd-Warshall ap-
proach (Magzhan and Jani, 2013) and the Johnson algorithm (Johnson,
1977), tomodel road safety based on the intensity of roadkills. For this pro-
pose, we adapt the road structure into amathematical linear network as de-
scribed in the field of Graph Theory, adding weights to each linear segment
based on the intensity of accidents. In this way, the resulting network struc-
ture allow us to consider some graph theory methodologies to manipulate
and apply different calculations to analyze weighed network. Finally, we
applied our new approach to analyze a dataset containing 491 wildlife-
vehicle collisions occurred in a squared area (40 km× 40 km) during the
period 2010–2014 around the city of Lleida, in the region of Catalonia,
North-East of Spain.

The plan of the paper is the following. In Section 2 we present a real
dataset of wildlife-vehicle collisions. Some definitions and preliminaries
of spatial point processes on linear networks are provided in Section 3. In
Section 4 we develop amodel for road traffic safety based on point patterns
over linear networks. We analyze the dataset and present some results in
Section 5. And finally, the paper ends with a summary section.

2. Wildlife-vehicle collisions on a road network

We analyze the spatial structure of a dataset containing 491 wildlife-
vehicle collisions occurred in a squared area (40 km × 40 km) around
the city of Lleida in the region of Catalonia, North-East of Spain (see
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Fig. 1). This study area involves 459.050 km of roads for three distinct road
categories, namely, highways and paved roads during the period
2010–2014, together with the daily average traffic volume based on 365
days of the years 2014–2015 for each road section. Note that this squared
area comprises a wide range of landscape structures, including riparian for-
ests, crops fields and some densely populated areas (for instance, themetro-
politan area of Lleida). Moreover, most of the wildlife-vehicle collisions
involve ungulates (33.22 %), and non-identified mammals (66.78 %). For
the ungulates, roadkills comprise only two species namely, wild boar (Sus
scrofa) and roe deer (Capreolus capreolus), and no extra information is
given for the non-identified mammals.

The Department of Territory and Sustainability of the Autonomic
Government of Catalonia (https://web.gencat.cat) provided the roadkill
records, the traffic flow information (in particular, daily average traffic vol-
ume and speed limit), the road structure for the study, and the vegetation
density. The Mossos d'Esquadra, the autonomous police force of Catalonia,
recorded all the wildlife-vehicle collisions including the location, the date
and the type of animal involved in the accident.

A first inspection of Fig. 1 reveals that points are not distributed homo-
geneously on the network configuration, suggesting the presence of areas
with a higher concentration of roadkills, and other areas with a scarce pres-
ence of accidents. So, this first visual analysis reinforces our idea that it is
possible to find optimal road paths regarding the risk of having a wildlife-
vehicle collision.

3. Linear networks and point processes

A road network is a complex structured formed by line segments and
curves. A tentative way to represent these complex structures (geometric
graph networks) is to consider linear networks. We define a line segment in
the plane with endpoints u and v as [u,v] = {tu + (1 − t)v : 0 ≤ t ≤ 1}
(Ang et al., 2012). Then a linear network L is the union L= ∪h=1

s lh of a finite
collection of line segments l1,…, ls in the plane, with a total length ∣L∣.We can
also consider L as planar graph, defined by a set of vertices v1, …, vm and
edges eij = [vi,vj]. Note that the intersection of two distinct edges contains
at most one point.

Furthermore, a path between two points u and v is considered as a se-
quence x0, x1, …, xm in L such that x0 = u, xm = v and [xi,xi+1] ⊂ L, for
i = 0, …, m − 1. Then, we define the length of this path x0, x1, …, xm as
∑i=0
m−1 ∥ xi+1 − xi∥ where ∥ ⋅ ∥ is the Euclidean distance. Finally, we define

the shortest path distance dL(u,v) between two points u and v in L as the min-
imum of the lengths of all the paths from u to v. Note that for convenience,
we set dL(u,v) =∞ if there no path between these two points, and so these
points are placed in disconnected portions of L.

Nowwe consider a point processX on a linear network L to be a stochas-
tic mechanism that generates a countable and finite set of events xi, i = 1,

…, n, where n is not fixed in advance over a linear network L. Also, we as-
sume that X is simple. In particular, we consider the Poisson point process
with point intensity λ > 0, where the number of points falling in any line
segment B∈ L has a Poisson distributionwithmean λ ∣ B∣. Moreover, events
falling in disjoint line segments B1, …, Bs ∈ L are independent. Stochastic
realizations of a point process X will be denoted as x.

3.1. Point intensity estimation on liner networks; modeling roadkills

This section is devoted to model the roadkill intensity based on kernel
functions. Our intention is to work with the intensity of collisions to obtain
weights related to each linear segment of the road network to assess the risk
of having a wildlife-vehicle collision. These weights should be considered
to determine paths on the network structure satisfying some conditions.
The intensity or rate function λ(u), for u ∈ L, of a point process related to
roadkills is the spatially-varying expected number of random points per
unit length of network, and it is defined via

E N X∩ Bð Þ½ � ¼
Z

B
λ uð Þdu ð1Þ

for all interval B ∈ L, where du denotes integration with respect to arc
length along the network, and N(·) is a counting measure, which provides
the number of points of X in B. Note that it would be possible to work
also with the related probability density function f(u), though for this
work we shall just consider the rate or intensity function.

Let us now obtain an estimator of the rate or intensity function. A kernel
estimator of this intensity function can be defined as

λ̂ uð Þ ¼
Xn
i¼1

κ ujxið Þ; u∈L

where κ(u|v) is the kernel function. Various authors have considered a ker-
nel estimator to estimate the intensity function on a network structure
(Bailey and Gatrell, 1995; Okabe et al., 2009), and some of these kernel es-
timators have been also used to estimate the intensity of roadkills (Krisp
and DurotJohnson, 2007; Morelle et al., 2013). Here we assume the diffu-

sion estimator bλH
uð Þ proposed by McSwiggan et al. (2016) and imple-

mented in the Spatstat R package (Baddeley et al., 2015) as a tentative
kernel point intensity estimator,

λ̂h uð Þ ¼ λ̂h ujx; hð Þ ¼
Xn
i¼1

κt ujxið Þ; u∈L ð2Þ

where κt(u|xi) is the heat kernel, being the probability density at u of the lo-
cation, at time t, of a particle which executes Brownian diffusion on the
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Fig. 1. Location of the study area (Left panel) together with the location of 6590 roadkills during the period 2010–2014 and the underlying road network in Catalonia (North-
East of Spain), given in km. (Central panel), and amagnification of the study region around the city of Lleida (40 km×40km)with the location of 491 roadkills (Right panel).
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network and which started at time t = 0 at location v. Here, h > 0 is the
smoothing bandwidth and t = h2.

3.2. The road network

A road is a complex structure formed by line segments and curves. Usu-
ally, this complex structure is defined by a set of line segments that repre-
sents all the complex configurations of a road, resulting in a configuration
of vertices and edges to model this structure. Usually, the number of verti-
ces and edges, and their structure is given and represent the linear road con-
figuration. One problem that arises from thewindowof observation and the
structure of the linear network are the crossing points between roads (line
segments) and the edges of the observation window. In fact, these points
are artificial endpoints of roads (one may expect that roads continue out-
side the observation window), and for convenience in our graph analysis,
we shall consider them as vertices. Thus, the resulting undirected weighted
graph is then defined by 410 vertices and 437 edges, bymaintaining the in-
herent road structure (see Fig. 2).

4. Modeling road safety

A first step to model road safety based on point patterns over linear net-
works is to assign to each linear segment of the road network a weight re-
lated to the risk of having a wildlife-vehicle collision. These weight
should be considered to determine paths on the network structure satisfy-
ing some conditions. Here, these segmentweights are based on the intensity
of roadkill collisions. Then we define the assigned weight value for each
segment via

Λ lið Þ ¼ E N X ∩ lið Þ½ � ¼
Z

li
λ uð Þdu ð3Þ

where Λ(li) is the intensity countingmeasure defined for the linear segment
li, i=1,…, s. This value will be considered as the weight for each line seg-
ment to evaluate the risk of having awildlife-vehicle collision. In the case of
a constant point intensity, longer line segments are expected to have more
accidents than shorter ones, and therefore, the shortest path between two

prescribed points on L will result also in the safest one. Here, we consider

the diffusion estimator bλH
uð Þ (2) as a tentative point intensity estimator.

4.1. Assuming several weight types

So far we have considered optimal paths, and therefore road safety,
based on the point intensity of accidents. However, others criteria can be in-
volved in finding optimal paths between points on L. Other important
criteria to decidewhich path to choose between two points on L are the traf-
fic flow information (daily average traffic volume and speed limit) and veg-
etation density which should be incorporated to full understand this
decision analysis. In general, a tentative way to combine several distinct
criteria (for instance, intensity of accidents, traffic volume along the net-
work and road speed), is to consider a linear combination of these elements
via

W lið Þ ¼ a
Λ lið Þ− min Λ lð Þð Þ

max Λ lð Þð Þ− min Λ lð Þð Þ þ
Xv
j¼1

bj
Z j lið Þ− min Z j lð Þ

� �
max Z j lð Þ

� �
− min Z j lð Þ

� � ð4Þ

for i=1,…, s, whereW(li) is the global weight related to segment li, Zj(li) is
the j=1,…, v variable related to the same segment i, a+ b1 +…+ bv=
1, and max(Λ(l)) and minΛ(l)) (say) is the maximum and the minimum
value of all Λ(li), for i = 1, …, s. Note that this expression is not affected
by the relative scale of each criterion. Then 0 ≤ W(li) ≤ 1, for any i = 1,
…, s. The linear combination of several factors affecting WVC permits to
have a better control between weight types, by changing the values of the
a and bj paramenters. Now if a = 1, W(li) = (Λ(li) − min (Λ(l)))/(max
(Λ(l)) − min (Λ(l))), and therefore, the criterion used to path selection is
based on the expected number of wildlife-vehicle collisions, independently
of the Z variables. Similarly, if b1 = 1, for v = 1, W(li) = (Z(li) − min
(Z(l)))/(max(Z(l))−min (Z(l))), and thus, the path selection is based on a
single variable Z1, independently of the expected number of collisions. Fi-
nally, it is possible to consider a criterion that combines several elements.
For instance, if we take a=0.8 and b1 = 0.2, for v=1, our path selection
is mainly based on the intensity of accidents, although variable Z1 on L is
also taken into account.

Let us now consider the traffic volume as a tentative variable together
with the intensity of accidents. Under two roads with the same intensity
of accident, the road with higher traffic volume is, apparently, safer than
that with a lower traffic volume. This is so, since for the same intensity of
accidents the road with higher traffic volume results in less accidents per
vehicle than that with lower traffic volume. Probably, either the road
with higher traffic volume has less density of animals near the road, or
else, animals have less propensity to enter (cross) the road. Thus, in our
analysis, we shall consider that roads with higher traffic volumes to be
safer than those with lower traffic volumes when having a similar intensity
of accidents. As such, the traffic volume variable T should be considered in
(4) as Z1(li) =max (T(l))− T(li), where T(li) is the daily average traffic vol-
ume (traffic flow information) of the road segment i. Note that now under
this variable, for a given accident intensity, roadswith higher traffic volume
of vehicles are chosen to find the optimal (safer) road path. So we expect
large weighted sum values for roads with high accident intensities and
with low traffic volumes of vehicles. These roads should be avoid, for safety
reasons, since even having a low traffic volume they have a high concentra-
tion of roadkills.

Moreover, in the case of road speed limit, we assume that roads with
higher speed limits are more likely to have a WVC and so we assume Z2
(li) = S(li) in (4), where S(li) is the speed limit of the road segment i. The
density of vegetation is considered in a similarly way, where high densities
imply more animal density near and crossing roads, and thus we assume Z3
(li) = V(li) in (4), where V(li) is the vegetation density for segment i. Note
that to obtain the vegetation density for each segment, we have crossed
the information of the vegetation index (a pixel image) on the roads and ob-
tained an average value of the index for each segment.

Fig. 2. Study region with the resulting network structure formed by 410 vertices
(black points) and 437 edges.
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4.2. Avoiding paths with larger prescribed weight values (hotspots)

The methodology applied so far prioritizes possible paths between two
vertices on L assuming the total sum of weights related to the edges that
form each path. However, it might happen that this global criterion does
not provide a satisfactory search for the optimal path between points. In
fact, an optimal path between two points based on the total sum of weights
might contain edges with weights larger than a prescribed weight value.
For instance, in our application, this optimal path might contain an edge
with a large expected value of wildlife-vehicle collisions (a hotspot). In
this case, although the global path is the safest of all the possible paths,
the presence of this hotspot of collisions might result in an unsafer path.
To avoid these hotspots, we have adapted the DFS algorithm to filter
paths that contain edges with weight values larger than a prescribed value.

4.3. Adapting algorithms used to obtain minimum paths between vertices in
weighted networks

There are several algorithms used to calculate the minimum path be-
tween two vertices in a weighted network, and some of the most used are
the Dijkstra algorithm, the Bellman-Ford algorithm, the Floyd-Warshall al-
gorithm and the Johnson algorithm. Usually, shortest path algorithms for
weighed graph explore networks in search of the path between two points
(usually vertices) that has minimum cost. This cost is defined as the total
sum of the weights associated with the edges of each path. Here a path is
defined as a set of unique edges that connects distinct vertices starting
from a vertex origin and ending with a vertex destination. The choice of
the algorithm to be used depends on the network, for instance, the type
of network (direct, undirected or mixed graph), its size (vertices and
edges), the nature of the weights (positive, negative or mixed), and the
problem under analysis, such as finding the shortest path between two
points (the Dijkstra, and the Bellman-Ford and Johnson algorithms) or be-
tween each pair of vertices (the Floyd-Warshall algorithm).

In our analysis, we focus our attention on two problems. First, calculate
the total number of possible paths between two points (vertices) and, sec-
ond, rank the top K-best paths between them, based on a given criterion.
For the first problem, we used a modified version of the well-known algo-
rithm called Depth First Search (DFS) which has a computational cost of
O(|V| + |E| ) from the igraph R library. This algorithm finds all possible
paths by recursively expanding each node in a tree form and going through
each branch of the tree until the iteration process reaches: (a) the destination
vertex; (b) an already explored vertex by a previous iteration; or, (c) a dead-
end (a vertex from which it is impossible to reach another one). Moreover,
we used the Yen's algorithm (Yen, 1971) to work on the second problem.
This is so since this algorithm works with non-negative edges and it is
more efficient than the DFS algorithm when k (the rank position of all the
possible paths) is less than the total number of possible paths. This algo-
rithm has a cost of O(kn3) and uses the Dijkstra algorithm to find the best
path between two nodes and then it calculates all k - 1 shortest paths.

Our new approach allows to analyze a combination of several variables
based on a prescribed criterion to find optimal paths. This can be done by
adding data on the edges as weights, and thus resulting in a multi-weight
network. In our case, we used accident intensity and the traffic volume as
weights but more variables can be considered. This implies to obtain
weights related to each edge of the linear structure. If the variable under
analysis is a point pattern, then we can consider expression (3) and (4). If
the variable is an internal variable of the network, we can obtain its corre-
spondingweights from the network geometry (for instance, the distance be-
tween vertices). Other variables such as those related to traffic flow
information are usually provided by governmental agencies and should
be considered directly as given for each road segment. Then, the DFS and
Yen's algorithms are applied along the previous combined data to find the
best optimal path (or the best k-optimals) between any two points on the
network. Also, we can filter these paths by excluding edges with larger pre-
scribed weight values (hotspots). We have implemented this hotspot filter
assuming two different methodologies. First, our algorithm detects all the

hotspot edges of the linear network, and then, avoiding these edges, search
for the optimal path based on a given criterion. The second methodology
filters the paths posterior to the optimal search and then avoids paths con-
taining hotspot edges. Whilst the first methodology is faster, it is less infor-
mative than the second one, which is slower but it also gives a list of all the
paths that should be avoided (the complete list of paths that contains a
hotspot).

5. Analysing the wildlife-vehicle collision dataset

To illustrate the use of our new approach, we consider several scenarios
assuming the wildlife-vehicle collision data. Fig. 3 (top, left panel) shows
the resulting point density based on the diffusion estimator (2)with a band-
width value around 750 m chosen to provide a good visual fitting to the
point pattern. This figure highlights that visual inspection of this spatial
structure reveals points forming aggregations on the road network, thereby
suggesting the presence of clusters of wildlife-vehicle collisions probably
due to a certain degree of inhomogeneity. The corresponding weighted net-
work structure (see Fig. 3, top, right panel) shows the average number of
wildlife-vehicle collisions for each linear segment (3). Moreover, we also
consider the daily average traffic volume given by each network segment
(Fig. 3, middle, left panel), vegetation density (spring 2017 NDVI) given
by each network segment (Fig. 3, middle, right panel) and the road speed
limits, also, for each segment (Fig. 3, bottom, left panel). The last panel
(Fig. 3, bottom, right) shows the linear combination of the intensity of
WVC, traffic volume, vegetation density and road speeds, assuming
expression (4).

In particular, we adapt the DFS and the Yen's algorithm tofind the safest
paths between several pairs of points (origin/destination) based on the
weighted graph defined by the average number of wildlife-vehicle colli-
sions together with the traffic volume, vegetation density and road speeds
based on a linear combination of these variables assuming expressions
(4). To illustrate the use of our new approach, consider two tentative ori-
gins/destinations, in this case, real town locations (Vilanova de Segria/
Soses, and Alcarras/Castelldans) (see Fig. 4, for town locations). Obviously,
we could have considered any pair of vertices located on L.

5.1. Road safety based on the intensity of accidents and the traffic volume

Let now focus our attention on finding the optimal path between pairs
of vertices on the road structure based on the linear combination of the in-
tensity of accidents together with variables Zj(li), for j = 1,…, 3 assuming
(4) for a= b1 = b2 = b3 = 0.25, since the four variables are considered to
affect similarly the weighed sum. Here, we consider our new approach to
find the safest paths between the two pairs of towns Vilanova de Segria/
Soses and Alcarras/Castelldans, respectively. For completeness, we con-
sider also the distance between vertices to find the shortest path between
these two pairs of towns, and show how these optimal paths can differ
when a safety criterion is taken into account. To simplify our notation, we
call the criterion that combines intensity of accidents and the three covari-
ates as the safety criterion, and the criterion based on the distance between
towns as the path distance criterion. Fig. 4 shows the safest path (therefore
based on the safety criterion) between these two pairs of origin/destination
points togetherwith the shortest paths between the same pair of points. The
safest and the shortest paths are different under both examples (pair of
town locations). Thus the safest path between these two pairs of towns is
not the same as the resulting shortest paths. In fact, we have found
712.916 and 691.415 possible paths between these pair of towns, respec-
tively. These represent the total number of possible combinations of
edges that connects the source and destination nodes (towns) without re-
peating any node. Note that all these combinations do not depend on the
weights associated to each edge, but only on the number of edges that
form the graph. Table 1 shows the ranking values for the 10th safest path
for these two pairs of origin/destination points. We see that the resulting
weighted values for these 10th safest paths for a given pair of towns are
very similar. In fact, these weighted values are around 13 and 8 under the
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Vilanova de Segria/Soses, and the Alcarras/Castelldans pairs of towns, re-
spectively. However, under both pair of towns the 10th shortest paths
have a similar distance of around 28 km. thereby suggesting that the safest
routes between Vilanova de Segria and Soses are far more dangerous than
the safest routes between Alcarras and Castelldans.

5.2. Path selection avoiding wildlife-vehicle collision hot-spots

Let us now consider the road safety analysis avoiding collision hotspots.
As such, we assume four distinct prescribed weight values by avoiding
paths that contain edges with a weight larger than 20 %, 40 %, 60 % and
80 % of the largest weight value on L. In particular, we combine the inten-
sity of accidents together with three covariates (daily average traffic vol-
ume, road speed limit, and vegetation density) assuming expression (4)
(i.e. the safety criterion) to obtain the weight for each road segment.
Table 2 shows the results of applying this filter for the two pairs of towns,
and the four prescribed weight values. When we assume the more restric-
tive filter (20 %), we found that it is not possible to find a path with a max-
imum edge weight less than or equal to 20 % of the largest weight on L. So
any of all the possible paths will contain an edge with a weight larger than

the 20 % of the largest one. Similar results are obtained when we consider
the 40% and 60% of the largest weight on L. If we relax this condition and
we consider the prescribed weight value to be 80 % of the largest weight
(we allow paths with larger weight per segment), we have found 1056
and 548 paths applying the safest criterion for Vilanova de Segria/Soses
and Alcarras/Castelldans pairs of towns, respectively. Thus for prescribed
values larger than 80 % it is possible to find several paths connecting
both pairs of towns satisfying this filter condition. Thus under the Vilanova
de Segria/Soses pair of towns (say), it is possible to find paths where all the
line segments have a weight of less than or equal to 0.8 × 0.7795114 =
0.6236091, where 0.7795114 is the largest weight combining both vari-
ables for any segment on L. So any path with segments with weight values
larger than 0.6236091 are not considered. For this specific case, hotspots
are those sections of a road with a weight larger than 0.6236091, and it is
possible to find several rout es to avoid such road segments. Note that
large weight values usually are related to roads with high accident intensi-
ties, low traffic volumes, high road speeds, and high vegetation densities
near roads. So we expect that roads with high accident intensities, low traf-
fic volumes, high speeds, and abundant vegetation to be unsafer, and thus
these roads (or road portions) should be avoid, for safety reasons.

Fig. 3. Resulting point intensity for the roadkill point pattern based on the diffusion estimator (2) with a bandwidth value around 750 m (top, left panel), weighted network
structure based on the average number of wildlife-vehicle collisions for each linear segment (top, right panel), daily average traffic volume for each road section (middle, left
panel), vegetation density (spring 2017NDVI) (middle, right panel), road speed limits (bottom, left panel), and theweights of the lineal combination of the variables based on
expressions (4) (bottom, right panel) (the scales of the axes are given in km).
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6. Summary

We have proposed a new approach to obtain minimum paths between
vertices (optimal path finders) in weighted networks to obtain the safest
route between two points (departure and destination points) in a road struc-
ture based on wildlife-vehicle collision point patterns, and on three covari-
ates (daily average traffic volume, road speed limit and vegetation density).

Fig. 4. Linear structure of the study region together with the resulting optimal path for the two pairs of origin/destination points, Vilanova de Segria (V)/Soses (S) (top
panels), and Alcarras (A)/Castelldans (C) (bottom panel), under the safety criterion (safest path) (left panels and green lines) and the path distance criterion (shortest
path) (right panels and blue lines) (the scales of the axes are given in km.). new figure.

Table 1
Top-10 rating of the safest paths between the towns of Vilanova de Segria and Soses
(Vil-Sos), and Alcarras and Castelldans (Alc-Cas), with the total weighted sumbased
on the linear combination of the intensity of accidents together with the traffic vol-
ume (safety criterion) (see expression (4)) per path, and the shortest path distances
(path distance criterion).

Safest Shortest (km)

# Vil-Sos Alc-Cas Vil-Sos Alc-Cas

1 12.77587 7.059108 27.860 27.906
2 13.12468 7.192944 27.861 28.939
3 13.26935 7.611801 27.862 29.802
4 13.31218 7.745637 27.862 29.930
5 13.49028 8.151168 27.862 29.990
6 13.57224 8.366453 27.862 30.283
7 13.61815 8.398381 27.863 30.482
8 13.66098 8.400001 27.864 30.834
9 13.80565 8.48813 27.865 30.962
10 13.83909 8.532217 27.866 31.022

Table 2
Number of paths satisfying that none of their segments has a weight value larger
than the % of the largest segment weight value under the safety criterion, and for
the two pairs of towns.

% Vilanova de Segria/Soses Alcarras/Castelldans

20 0 0
40 0 0
60 0 0
80 1056 548
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In particular, we have adapted the DFS and the Yen's algorithms to find the
optimal routes based on the intensity of roadkills together with these three
covariates. For completeness, we have also found optimal routes based on
distances between vertices. For this purpose, we have adapted the road
structure into a mathematical linear network as described in the field of
Graph Theory, adding weights to each linear segment based on a linear
combination of the intensity of accidents, the daily average traffic volume,
road speed and vegetation density. Then, the resulting network structure al-
lows us to consider some graph theory methodologies to manipulate and
apply different calculations to analyze weighted network. This new ap-
proach has been illustrated with a real data set involving the locations of
491 WVC in an agriculture square area (40 km × 40 km) around the city
of Lleida, during the period 2010–2014, in the region of Catalonia, North-
East of Spain, together with the underlying road network of this region.

To illustrate the use of our new approach, we have considered two tenta-
tive origins/destinations, in this case, real town locations. Our results show
that our new approach ranks all possible paths between these pairs of
towns in terms of the weight associated with each edge. We have considered
four distinct types of weights associatedwith each edge, i.e. a linear combina-
tion of the average number ofWVC togetherwith the daily average traffic vol-
ume, road speed and vegetation density, and the edge length. For each type of
weight, this new methodology ranks all possible paths between two pairs of
vertices on L, and provides the optimal path for a given type of weight.

Moreover, we have shown that this methodology also permits to define
optimal paths assuming the presence of hot-spots that should be avoid. Our
new approach incorporates an algorithm to filter paths containing edges
with weight values larger than a prescribed value. In this way, it is possible
to optimize path selection avoiding hot-spots of WVC. More insight on op-
timal path selection on road networkswould be definitely valuable for road
traffic safety.

An important extension of this work is the definition of other functions,
instead of a lineal relationship, to combine distinct variables of interest, and
the incorporation of other variables in the optimization process. Although,
this model is defined to analyze road traffic safety of vehicles, it would be
interesting to adapt our new approach tomodel also safety of wildlife cross-
ing the road. So in this case, an extension of our new approachmight define
road safety from two points of view, vehicles and passengers and wildlife
crossing roads.

Mention that to support our research and make it accessible to other re-
searchers, we developed an interactive application of our new approach in
the R language. We can reproduce the results presented in this work using
this new application, and the complete data set can be obtained from the ap-
plication data files. Moreover, we designed the app to work with any given
network if the provided datafills the application requisites. Detailed informa-
tion about the usage of the app and the app itself, can be found in our GitHub
repository https://github.com/LlagosteraPol/OptimalPathApp. Thisfirst ver-
sion of our new application can help to analyze large data set and test our new
approach in a real situation.

Finally, we conclude this paper by saying that the analysis of point pat-
terns and linear networks opens up new promising lines of research to ana-
lyze point structures that depend on linear networks. In our case, focused on
road traffic safety. In particular, the optimal path selection on linear net-
works based on WVC can be considered to find the safest path between
two pairs of points, avoiding more dangerous routes and routes containing
hot-spots of accidents.
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5.3 Article: ‘intensitynet: Intensity-based Anal-

ysis of Spatial Point Patterns Occurring on

Complex Networks Structures in R’

To properly analyze spatial point patterns that occur on a network, many steps
are involved, for instance: data preparation, data visualization, statistical analysis
of the data, and proper result display. Performing any of these steps may require
time-consuming actions such as properly including all the information in the model,
accessing part of the information regarding a set of vertices or nodes, performing
statistical computations, or generating understandable plots to summarize results.
Such operations are easily performed with the tools and functionalities provided
by the package intensitynet presented in the paper ‘intensitynet: Intensity-based
Analysis of Spatial Point Patterns Occurring on Complex Networks Structures in R’.
This package is written in R language and it can be found in the Comprehensive
R Archive Network (CRAN ) as well as in the GitHub repository. The package
is designed in a modular programming structure, with ease-to-use functions that
require few data to perform operations and, with enhanced adaptability to other
packages since it works with the widely known and used network modeling package
igraph. The paper presents the structure of the intensitynet package, details each of
its functions, and in each case presents examples using the Chicago dataset provided
by the intensitynet package. These are the key points of this paper:

• The paper presents a general introduction to the intensitynet package.

• The introduction includes network modeling, data manipulation, intensity es-
timation, computation of local and global autocorrelation statistics, visualiza-
tion, and extensions to marked point process scenarios.

• The package is written in R language and can be found in CRAN and GitHub
repositories.

• The package can handle undirected, directed, and mixed networks.

• All the tools and methodologies provided by the package are accompanied by
examples using a real dataset for the city of Chicago given by the spatstat
package.

Where the package can be found following the next URLs:

• GitHub: https://github.com/LlagosteraPol/intensitynet

• CRAN: https://cran.r-project.org/web/packages/intensitynet/index.
html

This paper has been submitted for publication and is not yet been published (changes
might occur during the revision process).
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Abstract

The statistical analysis of structured spatial point process data where the event loca-
tions are determined by an underlying spatially embedded relational system has become
a vivid field of research. Despite a growing literature on different extensions of point
process characteristics to linear network domains, most software implementations remain
restricted to either directed or undirected network structures and are of limited use for the
analysis of rather complex real-world systems consisting of both undirected and directed
parts. Formalizing the network through a graph theoretic perspective, this paper discusses
a complementary approach for the analysis of network-based event data through generic
network intensity functions and gives a general introduction to the intensitynet package
implemented in R covering both computational details and applications. By treating the
edges as fundamental entities, the implemented approach allows the computation of inten-
sities and other related values related to different graph structures containing undirected,
directed, or a combination of both edges as special cases. The package includes charac-
teristics for network modeling, data manipulation, intensity estimation, computation of
local and global autocorrelation statistics, visualization, and extensions to marked point
process scenarios. All functionalities are accompanied by reproducible code examples us-
ing the chicago data as toy example to illustrate the application of the package.

Keywords: Autocorrelation statistics, heatmaps, mixed network structures, visualization.

1. Introduction
The statistical investigation and characterization of point configurations in event-type data
on relational objects, i.e. spatially embedded network structures, have attracted a lot of
attention in recent years. Typical examples include the locations of accidents or crimes
in traffic systems, insects on brick structures, and spines in neural networks. In any such
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2 intensitynet: Analysis of event-data on complex networks in R

data, the event locations are only observed on or along the individual structural entities
(i.e. the edges) which, in turn, constitute the relational system of interest within a planar
observations window. Dating back to the pioneering contributions on event-type data on
linear networks of Okabe, Yomono, and Kitamura (1995) and Okabe and Yamada (2001),
Ang, Baddeley, and Nair (2012) were the first to consider geometrically corrected summary
characteristics for the analysis of network-based event patterns that account for the inherent
structural properties of the relational system under study. Extending this idea further, a rich
body of the literature has been established on network-adjusted extensions of classical spatial
point process characteristics to spatially embedded structured domains (see Baddeley, Nair,
Rakshit, McSwiggan, and Davies 2021, for a recent review of the literature). While extensions
to directed linear networks (Rasmussen and Christensen 2021) and graphs with Euclidean
edges (Anderes, Møller, and Rasmussen 2020; van Lieshout 2018) were proposed, most tools
are of limited use for the analysis of more complex, real-world network structures where both
directed and undirected edges coexist. In particular, the spatstat (Baddeley, Rubak, and
Turner 2015; Baddeley and Turner 2005), DRHotNet (Briz-Redon 2021a), geonet (Schneble
2021), spNetwork (Gelb 2021a,b), SpNetPrep(Briz-Redon 2021b) and stlnpp (Moradi, Cronie,
and Mateu 2020) packages in R (R Core Team 2021) do not help for the joint analysis of events
on different types of edges nor the computation of point characteristics at different structural
entities, e.g. set of neighbors or paths, of the network.

Addressing these limitations, Eckardt and Mateu (2018, 2021b) introduced a complementary
approach that formalizes the network-based event data through different network intensity
functions using a graph theoretic perspective. Treating the edges as fundamental entities,
this approach allows for the computation of intensities and related quantities over different
types and graph theoretic sets of (hyper-)structural entities including directed, undirected,
or combinations of different, i.e. mixed, edges. All event-based characteristics derive directly
from the intensities of the corresponding edges included where each edgewise intensity cor-
responds to the number of events, i.e. count per edge adjusted for its length. Although
Eckardt and Mateu (2018, 2021b) derived a rich theoretical framework that allows for the
analysis of event-type data on different network structures, no general implementation of the
methodological toolbox exists. Summarizing their network intensity functions approach into
an open-source solution in R, the intensitynet package is designed to fill this gap.

Implemented through S3 classes in a modular programming structure, the package allows for
easy computation of edgewise, nodewise, and pathwise characteristics for event-type data on
(sets of) directed, undirected, and mixed-type network structures. To ease its handling, the
package is built around one constructor function, i.e. intensitynet(), which automatically
parses the underlying network structure to all computations. Using the capacities of the igraph
(Csardi and Nepusz 2006) package, all results are provided as edge or node attributes which
allow for easy manipulation and retrieval of the stored information. Apart from summary
tables, the package includes flexible visualization tools which help to produce (i) a reliable
plot of the network structure itself, i.e. the observed patterns on the paths between any two
nodes (origin and destination), and (ii) outputs from the computed intensity functions, the
corresponding mark proportions or averages, and autocorrelation statistics. Each plot can
be personalized with a few arguments allowing, among other things, to show only certain
nodes or edges, deciding to show or hide the event locations, and selecting its transparency.
The package is available from the Comprehensive R Archive Network (CRAN) at https:
//cran.r-project.org/package=intensitynet and also as development version via the
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repository https://github.com/LlagosteraPol/IntensityNet/.
This paper provides a general introduction to the intensitynet package including data manip-
ulation, intensity estimation, the computation of local and global autocorrelation statistics,
visualization, and extensions to marked point process scenarios. The functionalities of the
package are tested and exemplified using the chicago dataset provided by the spatstat pack-
age.

2. Structure and main functionalities
Embedded into a graph theoretic framework, the intensitynet package translates the observed
network structure into a graph G = (V, E) with V = {vi}n

i=1 and E = {ej}m
j=1 ⊆ V×V denoting

the sets of vertices and edges, respectively. Each edge in E is associated with a pair of (not
necessarily distinct) vertices, i.e. its endpoints, which constitute the relational structure of
G. For a traffic network, the edges could correspond to the set of distinct road segments
and the vertices to the intersections of the edges, e.g. the crossings in the traffic system.
Formally, the observed network structure is translated into a graph object through a n × n
matrix A with element ai,j . Each element ai,j numerically reflects the presence or absence of
an edge joining vi and vj through zero and nonzero values with zeros indicating missing edges.
Usually, a binary coding scheme is applied such that A only contains zeros and ones with ones
corresponding to the edges contained in E . We note that apart from this binary specification,
more challenging coding schemes exist for weighted graphs in which weight ω, i.e. numerical
attribute, is assigned to either the nodes or the edges, and multigraphs, where sets of vertices
are joined by multiple edges. Under the present implementation of the intensitynet package,
any such non-binary values need to be transformed into binary values in a preprocessing step.
If the road segments are direction preserving, i.e. if movement along a particular road is
only possible in one way, the corresponding edges are called directed. In any such case, the
associated vertices are defined by the ordered pair (vi, vj) and the corresponding edges are
indicated by an arc with head vj and tail vi leading to asymmetric A as only ai,j but not aj,i

is nonzero. In contrast, any edge which does not impose any movement restrictions is called
undirected and related to the set {vi, vj} corresponding to nonzero entries in both ai,j and aj,i.
Different from the directed case, undirected edges are represented by lines. Depending on the
edges, G is called directed, if all edges are directed, undirected if all edges are undirected, and
mixed if G consists of both directed and undirected edges. See Table 1 for a visual representa-
tion and corresponding specification of A for all three possible graph representations covered
by the intensitynet package. To relate the spatial network structure to its graph theoretical
representation and investigate the distributional characteristics of the event locations over
the edges, both the graph and the events need to be augmented by additional geographical
information. To this end, the sets of n nodes and p event locations are both reformulated
into sets of coordinates {v1, . . . , vn) and {ξ1, . . . , ξp} where vi = (xi, yi) and ξj = (ui, wj)
are the exact coordinates of the i-th node and j-th event with respect to a given coordinate
reference system (CRS), respectively. As such, only the set of n nodes {v1, . . . , vn) is treated
as fixed while the p events are considered as realizations of an unobserved stochastic mechanic
which governs the locations on the network. Although both pairs of coordinates are treated
differently, both sets of coordinates must be derived from a unique CRS system.
To explicitly control for the structured nature of the data and consider the points and net-
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4 intensitynet: Analysis of event-data on complex networks in R

Graph Type Graph Structure Adjacency Matrix

Undirected
v2

v1

v3
v4

v5

v6

A =




0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0




Directed
v2

v1

v3
v4

v5

v6

A =




0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 0 0




Mixed
v2

v1

v3
v4

v5

v6

A =




0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 1 0 0




Table 1: Examples of potential graph specifications and corresponding adjacency matrices
covered by the intensitynet package

work structure simultaneously, all summaries and characteristics in the intensitynet package
derive directly from local computations, treating the edges as core elements. To this end, the
edges are considered as edge intervals with associated Euclidean length which takes (vi, vj)
as endpoints. The edgewise intensity itself can then be computed as the sum over all events
{ξp} that fall onto the interval spanned between (vi, vj) adjusted for its length. All alterna-
tive nodewise and pathwise summaries included in the intensitynet package derive directly
from the edgewise characteristics including directed, undirected and mixed graph versions
(see Eckardt and Mateu 2018, 2021b, for detailed discussion). To correct for small spatial
deviations of the locations of the events {ξp} from the edges, the intensitynet packages allow
to specify a maximal spatial error distance between the edges and events, i.e. a spatial buffer,
that assigns each event to a distinct edge based on the distance argument specified by the
user (see Section 3.4.1 for detailed description).

3. Operations on data
This section provides a detailed description of the different functionalities included in the
intensitynet package and explains its application using the chicago data, originally provided
by the spatstat (Baddeley et al. 2015; Baddeley and Turner 2005) package, as toy exam-
ple. To highlight its use in different graph settings, the intensitynet package provides three
adapted versions of the original data, i.e. und_intnet_chicago, dir_intnet_chicago, and
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mix_intnet_chicago, based on undirected, directed and mixed graph specifications.

3.1. Structure and classes
To introduce the basic operations and the interrelations among the functionalities of the in-
tensitynet package, its internal structure needs to be described first. Conceptualized into
two main and three subclasses, the intensitynet package provides several functions (compu-
tational tools) to calculate, manipulate and visualize structured event-type data observed on
relational systems. Its internal structure and the relation among the distinct (sub)classes
and functions are presented in Figure 1 in form of a Unified Modeling Language (UML) class
diagram. At its core, the package creates a proper intensitynet object based on the given
arguments of the intensitynet() function, and a constructor associated with the main class
intensitynet of the package. All general functionalities of the main class are provided as
visible (public) functions. Specific methods for undirected, directed and mixed graphs are
given by the three subclasses intensitynetUnd, intensitynetDir, and intensitynetMix
which inherit all methods from the main class. Associated with the intensitynet class, the
package consists of a second main class, called netTools, which is constructed as a helper
class with a set of functions used by the intensitynet class and corresponding graph spe-
cific subclasses. All methods of the helper class are implemented as invisible, i.e. private,
functions and primarily designed for internal operations and should not be applied directly
by the user. We note that apart from the main functionalities, both the intensitynet class
and its related subclasses also contain private functions which are not designed for direct ap-
plication. To model, manipulate and store the network and to externally visualize the results,
all network-based information and computational results including distances, intensities, and
correlations are stored as node and edge attributes using the capacities of the igraph (Csardi
and Nepusz 2006) package.

3.2. The intensitynet function
To apply any operations on network-based event data, the event locations and correspond-
ing information derived from the graph theoretic reformulation of the underlying relational
system needs to the transformed into an intensitynet object. This object is initialized
by the constructor intensitynet() which, in turn, requires the following three elements as
mandatory attributes:

• adjacency_mtx: a binary adjacency matrix of dimension n × n which specifies the
network structure as the relation (adjacency) between each pair of nodes according to
Table 1.

• node_coords: a n × 2 vector as DataFrame corresponding to the n pairs of exact coor-
dinates provided by {vi}n

i=1. These coordinates will be used to calculate the distances
of edges and to draw the network in the desired spatial structure (shape).

• event_data: a p × 2 vector as DataFrame corresponding to the p pairs of exact coor-
dinates provided by {ξj}p

j=1. If additional marks, i.e. qualitative or quantitative point
attributes, are available, event_data is required to be a DataFrame of dimension p × 3
with the exact coordinates placed in the first two, and the mark information in the
third columns. The mark column could contain mixtures of real-valued (numerical) and
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6 intensitynet: Analysis of event-data on complex networks in R

<<private>> 
netTools

- InitGraph(): igraph

- CalculateDistancesMtx(): matrix

- SetNetCoords(): igraph

- SetEdgeIntensity(): igraph

- SetNodeIntensity(): igraph

- GeoreferencedPlot(): no return

- GeoreferencedGgplot2(): no return

- PointToLine(): double

- PointToSegment(): double

- Undirected2RandomDirectedAdjMtx():
 matrix

intensitynet

+ graph: igraph

+ events: DataFrame

+ distances_matrix: matrix

+ intensitynet(): c(intensitynet,
 intensitynetUnd/intensitynetDir/intensitynetMix)

+ PathTotalWeight(): double

+ ShortestPath(): list

+ NodeGeneralCorrelation(): vector

+ NodeLocalCorrelation(): intensitynet

+ PlotHeatmap(): no return

+ PlotNeighborhood(): no return

+ ApplyWindow(): intensitynet

+ RelateEventsToNetwork(): intensitynetUnd

- ShortestNodeDistance(): double

- EdgeIntensity(): double

- EdgeIntensitiesAndProportions(): intensitynet

- SetNetworkAttribute(): intensitynet

- MeanNodeIntensity(): double

intensitynetUnd

+ graph: igraph

+ events: DataFrame

+ distances_matrix: matrix

+ RelateEventsToNetwork():
 intensitynetUnd

+ plot(): no return

- MeanNodeIntensity(): double

intensitynetDir

+ graph: igraph

+ events: DataFrame

+ distances_matrix: matrix

+ RelateEventsToNetwork():
 intensitynetDir

+ plot(): no return

- MeanNodeIntensity(): double

intensitynetMix

+ graph: igraph

+ events: DataFrame

+ distances_matrix: matrix

+ RelateEventsToNetwork():
 intensitynetMix

+ plot(): no return

- MeanNodeIntensity(): double

Legend:
+ : Public
-  : Private
italic : Abstract
   : Inheritance
   : Association 

Figure 1: UML class diagram of the inherent structure of the intensitynet package indicating
its classes, methods, and internal relations. Functions provided by the different classes use
the - and + symbols to differentiate between private and public functions, respectively, and
italic to indicate abstract functions. Associations between the classes are indicated by solid
lines and inheritance relations by arcs (−−�).

categorical (string) entries. However, at each row, only one numerical or categorical
mark is permitted.
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For both node_coords and event_data, the coordinates are required to be numbers without
any punctuation or spaces.

In addition, two optional arguments can be provided to the intensitynet() function to cus-
tomize the network structure and event-on-edge alignment. By default, intensitynet() as-
sumes an undirected graph. For alternative graph structures, specification of the graph_type
is required to compute the corresponding set of suitable network intensity functions.

• graph_type: A string (text) indicating the specific network structure under study.
Potential statements include undirected, treated as the default value, directed, and
mixed.

• event_correction: Numerical value specifying the maximal distance in meters used
to compute the event-to-edge alignment. By default, a maximal pointwise distance of 5
meters is applied using the world cartography representation WGS84 as the coordinate
reference system. It is strongly advised to carefully adapt this value to the CRS of the
node and event locations. Higher values of the event_correction argument potentially
yield an increase of (mis-)assigned events while values close to 0 may increase the number
of events that are not assigned to any edge in the network and, whence, excluded from
any subsequent computations.

The constructor function returns a two-class object, i.e. an object with class intensitynet
and corresponding subclass depending on the given graph_type argument according to Figure
1. The secondary classes are used internally to call the corresponding functions and operations
for undirected, directed, or mixed network structures. The resulting object wraps 4 values
into a list with the following information:

• graph: the graph representation of the observed network stored as igraph object with
the Euclidean length placed as an edge attribute called weight.

• events: DataFrame of events as provided by the user in the event_data argument of
intensitynet function.

• graph_type: A string corresponding to the specification of the graph type (undirected,
directed or mixed).

• distances_matrix: A n × n dimensional matrix with the pairwise Euclidean distances
between the node locations on the network specified as the length of the virtual line
joining any pair of nodes in the network.

• event_correction: Value specified in the event_correction argument of the inten-
sitynet function corresponding to the maximal distance used in the computation for
the pointwise event-to-edge assignment.

All elements of the intensitynet object can directly be addressed, analogous to standard
data operations in R, by using e.g. the ‘$´ symbol.
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3.3. Specifying the intensitynet objects from alternative network formats
Before providing a detailed treatment of available data manipulation operations in the intensi-
tynet package, we briefly outline potential steps to compute the intensitynet function from
(i) a linear point process (lpp) object as provided by the spatstat package and (ii) shapefile
(shp) information. Although the aim of our package is not to read, adapt or convert differ-
ent formats into an intensitynet object, all mandatory arguments of the intensitynet()
function can be retrieved from different sources using a variety of available R packages.

Specifying the intensitynet object from linear point process object
In what follows, the main steps to gather all relevant information, i.e. the coordinates of
the nodes, the corresponding adjacency matrix A, and the set of event locations, from a
lpp object, using the capacities of the igraph package are described and illustrated using the
chicago data of the spatstat package.

In the spatstat package, a lpp object is jointly defined from two objects: (i) a point pattern
object (ppp) which specifies the observed event locations and (ii) a corresponding linear
network object (linnet) which specifies the underlying network structure as a network of line
segments. Having installed and loaded the spatstat and intensitynet packages and chicago
data into the R environment, information on the edges can be extracted from the from and
to vectors of the domain attribute of the linnet object which specifies the individual edges
by the corresponding pairs of endpoints (from, to). The exact coordinate information for
the vertices can then be retrieved from the x and y vectors of the vertices attribute of the
domain object. Executing the following lines, both the edges and the vertices are stored as a
vector and DataFrame, respectively.

R> library(intensitynet)
R> library(spatstat)
R> data(chicago)

R> edges <- cbind(chicago[["domain"]][["from"]], chicago[["domain"]][["to"]])
R> node_coords <- data.frame(xcoord=chicago[["domain"]][["vertices"]][["x"]],
+ ycoord=chicago[["domain"]][["vertices"]][["y"]])

Given the coordinates of the nodes, the second mandatory argument of the intensitynet()
function, i.e. the adjacency matrix A, can be computed directly from the edges object using
subsequently the graph_from_edgelist() and as_adjacency_matrix() functions from the
igraph package.

R> net <- igraph::graph_from_edgelist(edges)
R> adj_mtx <- as.matrix(igraph::as_adjacency_matrix(net))

Finally, ignoring any additional mark information provided by the chicago data, the event
locations can be retrieved from the x and y columns of the data attribute of the lpp object.
We note that identical coordinates information to x and y is also provided in the columns
seg and tp, but using an alternative coordinate reference system. Collecting the required
information, the intensitynet object can then be specified by executing the following lines.
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R> chicago_df <- as.data.frame(chicago[["data"]][, -(3:4)])

R> intnet_chicago <- intensitynet(adjacency_mtx = adj_mtx,
+ node_coords = node_coords,
+ event_data = chicago_df)
R> attributes(intnet_chicago)
$names
[1] "graph" "events" "graph_type" "distances_mtx" "event_correction"

$class
[1] "intensitynet" "intensitynetUnd"

Compared to the required operations of the spatstat package for network event data impor-
tation, the intensitynet appears to be highly flexible with eager object generability. Different
from the simple network object specification through the intensitynet() function and es-
sential data requirement, spatstat asks to perform several data transformations to define a
linear network pattern. In detail, this process requires to subsequently create a point process
object (ppp) and a linnet object which itself derives from an ppp object plus a two-column
matrix specifying the edges and, finally, the linear point pattern object (lpp) with the linnet
object plus the location of the points (coordinates). Moreover, if it is intended to create an
igraph object using the linear point pattern, more conversions are required using the help of
additional libraries such as sf and sfnetworks.

Specifying the intensitynet object from shapefile data
Shapefile (shp) event-type data emerge in different contexts, in particular in public data, and
is commonly used in cartographic tools such as ArcGIS (Redlands 2011) or QGIS (QGIS
Development Team 2022). As for the lpp object, any shp object can be transformed into
the desired formats using the capacities of the maptools (Bivand and Lewin-Koh 2019) and
shp2graph (Lu, Sun, Xu, Harris, and Charlton 2018) packages. All required steps are illus-
trated using the ORN.nt data on the Ontario road network (Ontario 2006) provided by the
shp2graph package.

If required, any shapefile could initially be read into the R environment using the function
readShapeLines() from maptools which stores the provided information as SpatialLines-
DataFrame object, an object of class sp. Here, as the ORN.nt data is already provided in sp
format, this initial step through the maptools package is omitted. Given a sp object as in
our example, the object can be transformed into a list using the readshpnw() function of the
shp2graph. By setting the argument ELComputed of the readshpnw() function to TRUE, the
list will also contain the edge lengths.

R> library(intensitynet)
R> library(shp2graph)
R> data(ORN)

R> rtNEL <- shp2graph::readshpnw(ORN.nt, ELComputed = TRUE)

Executing the above code yields a list with the following elements: a Boolean stating if the
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list is in Detailed mode (FALSE by default), the list of nodes from the network, the list of
edges, the lengths of the edges, a DataFrame of edge attributes extracted from the sp object,
a vector with the x coordinates of all the nodes, and a vector containing the y coordinates.
From this list, only information on the nodes, edges, and lengths of the edges are needed
for further operations. Using the nel2igraph() from the shp2graph package, this selected
information can finally be translated into an igraph object as outlined in the following lines.

R> nodes_orn <- rtNEL[[2]]
R> edges_orn <- rtNEL[[3]]
R> lenghts_orn <- rtNEL[[4]]

R> net_orn<-shp2graph::nel2igraph(nodelist = nodes_orn,
+ edgelist = edges_orn,
+ weight = lenghts_orn)

From the net_orn object, all required information to initialize the intensitynet() func-
tion can easily be obtained. Noting that net_orn object is a network in igraph format,
its adjacency matrix A can directly be recovered using the graph_from_edgelist() and
as_adjacency_matrix() functions as outlined in the previous section. The coordinates of
the nodes can be extracted from the nodes_orn object using the Nodes.coordinates()
function from the shp2graph package. Given the above information, the initialization of the
intensitynet object is exemplified below. Notice that the argument event_data is an empty
matrix with two columns (corresponding to the number of columns required) as no events are
available in the original data.

R> adj_mtx_orn <- as.matrix(igraph::as_adjacency_matrix(net_orn))
R> node_coords_orn <- shp2graph::Nodes.coordinates(nodes_orn)

R> intnet_orn <- intensitynet(adjacency_mtx = adj_mtx_orn,
+ node_coords = node_coords_orn,
+ event_data = matrix(ncol = 2))

3.4. Event-to-edge alignment and network intensity function estimation

Event-to-edge alignment
The intensitynet object described in Section 3.2 summarizes the network-based event data
together with information on the network as such including the node coordinates, its associ-
ated adjacency matrix, and the edge distances. Although the intensitynet object already
allows for the direct computation of different graphical outputs and to retrieve the data or
igraph object, it does not provide any event characteristics, i.e. intensity functions or au-
tocorrelation statistics. To derive any further information on the event pattern from the
intensitynet object, the individual event locations {ξj}p

j=1 need to be assigned to the edges
in a subsequent action using the RelateEventsToNetwork() function. At its core, this func-
tion computes the distances dj,k of the j-th event to all k edges in the graph and assigns the
event to exactly one edge based on the minimal distance dj,k which, in turn, depends on a
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pre-specified threshold distance τ stated by the user in the event_correction argument of
the intensitynet object.
To illustrate the potential event-to-edge assignment scenarios, consider the three toy graphs
G1, G2 and G3 with nodes v1 and v2 denoting the endpoints of an edge and ξ an artificial event
location that calls for an event-to-edge assignment. Mathematically, any such assignment
operation can be defined through the distance δ(ξ, (v1, v2)) between the event ξ and its
projection to an edge with endpoints (v1, v2). Using the distance δ as decision criteria,
any event ξ is re-assigned to its closest edge. Note that each event-to-edge assignment only
accounts for the subset of edges satisfying δ ≤ τ . Theoretically, three potential cases might
appear as illustrated in the toy examples G1 to G3 (compare Figure 2). While the event ξ
falls into a rectangular area formed by both nodes v1 and v2 in scenario one (G1), ξ is in
the exterior but close to the area spanned by v1 or v2 in the two alternative scenarios. To
decide on the closest distance δ to the edge (v1, v2), the intensitynet package performs a
triangulation based on a vector projection and rejection approach (see Fox and Bolton 2002,
for detailed discussion) to select the optimal event-to-edge assignment.
Formally, given the nodes v1 = (x1, y1), v2 = (x2, y2) and the event ξ = (u, w) on a network,
simple calculation yield the vectors a = v2−v1 = (x2−x1, y2−y1), b = ξ−v1 = (u−x1, w−y1)
and c = ξ − v2 = (u − x2, w − y2). The definition of a and b allows to compute projection
b1 of b onto the edge (v1, v2) where b1 = ((b · a)/(a · a)) × a and · denotes the dot product
of the vectors a and b. Finally, from b and its projection b1, the vector rejection b2 can be
obtained from calculation of b2 = b − b1 as b = b1 + b2.
Under the above formulation and depending on the exact location of ξ relative to a, the
closest edge could be either b, b2 or c. To decide on which one is the closest, the vector
distances of b1 and a can be used to determine whether ξ falls into the area spanned by v1
and v2 or an exterior region close to v1 or v2. If the location of ξ is between v1 and v2, the
closest vector is b2, if it falls in an exterior area but close to v2, the closest vector is c, and
if it falls in an exterior area but is close to v1, the closest vector is b.
The following decision criteria on the event-to-edge assignment can be derived - assuming
either positive (left) or negative (right) directions of a:

0 < |b1| < |a| → b2 and 0 > |b1| > |a| → b2

0 ≥ |b1| < |a| → b and 0 ≤ |b1| > |a| → b
0 < |b1| ≥ |a| → c and 0 > |b1| ≤ |a| → c.

Based on the above decision criteria, the distance to the closest selected edge is calculated.
This is the distance that will be used to determine whether the event is accounted into the edge
events. The described procedure is implemented in the private function PointToSegment()
of the class netTools and used by the RelateEventsToNetwork() function .

Network intensity function estimation
Having performed an event-to-edge assignment for all events of the intensitynet object, the
RelateEventsToNetwork() function internally computes the edgewise and nodewise intensi-
ties of the network-based event pattern. As the core element of all network intensity function
computations, the edgewise intensity which quantifies the number of events for each edge in
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Figure 2: Three potential scenarios encountered in the event-to-edge alignment. The event
ξ is located between the nodes v1 and v2 of G1 (left), the event ξ is not located between v1
and v2 but close to v2 of G2 (central), and the event ξ is not located between v1 and v2 but
close to v1 of G3 (right).

the network adjusted for the length of the edge is computed in an initial step. We note that
different from all alternative statistics, the edgewise intensity function is calculated for all
edges regardless of the type and potential direction restrictions. This local quantity is then
used in subsequent actions to compute the nodewise and also pathwise intensity functions.
The nodewise intensity is computed as the average of the edgewise ones over the set of edges
included in the hyperstructural set under study, i.e. the set of neighbors, the set of parents, or
the set of children (see Eckardt and Mateu 2018, 2021b, for the formulation and mathematical
details on different network intensity functions).
Internally, the edgewise and nodewise intensities are implemented in the private functions
EdgeIntensity() and MeanNodeIntensity(), respectively. The MeanNodeIntensity() func-
tion is an abstract method from the intensitynet class and is implemented by its subclasses
intensitynetUnd, intensitynetDir, and intensitynetMix (see Figure 1). The second
class of intensitynet object allows to automatically compute the correct nodewise intensity
depending on the network type (undirected, directed, or mixed). For undirected networks,
the MeanNodeIntensity() function yields only one output which is stored under the name
intensity. Different from the undirected case, application of the MeanNodeIntensity()
function to directed graphs yields two different network intensity functions corresponding to
the set of parent pa (where pa(i) = j → i) and set of children ch (where ch(i) = i → j) that
are stored under the names intensity_in and intensity_out, respectively. Formally, the
intensity_in object is computed by averaging the edgewise intensities over the set of inci-
dent edges with respect to a given vertex. Likewise, the intensity_out object reports the
average intensity at node level constructed from the edgewise intensities of the set of dissident
edges. Lastly, all these three outputs (intensity_und, intensity_in, intensity_out) and
one additional object called intensity_all are provided in the case of mixed graphs, i.e.
when the graph consists of both undirected and directed edges (see Diestel 2016, for a de-
tailed review of Graph Theory concepts). The application of the RelateEventsToNetwork()
function to empirical data is illustrated in the following lines.
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Continuing with the chicago toy example, the internal event-to-edge assignment based on the
edge_correction arguments and subsequent intensity estimations are initialized by directly
applying the RelateEventsToNetwork() function to the intensitynet object. Recalling that
all computations are internally stored as edge and node attributes, the graph object g needs to
be addressed to extract the stored information from the results. Given the graph object, both
the nodewise and edgewise intensities could be retrieved by specifying the what argument of
the igraph::as_data_frame(g, what) command as vertices and edges, respectively.

R> intnet_chicago <- RelateEventsToNetwork(intnet_chicago)
Calculating edge intensities with event error distance of 5...

|=============================================================| 100%
Calculating node intensities...

|=============================================================| 100%

R> g <- intnet_chicago$graph
R> class(g)
[1] "igraph"

R> head(igraph::as_data_frame(g, what = "vertices"))
name xcoord ycoord intensity

V1 V1 0.3894739 1253.803 0.000000000
V2 V2 109.6830137 1251.771 0.000000000
V3 V3 111.1897363 1276.560 0.000000000
V4 V4 198.1486340 1276.560 0.000000000
V5 V5 197.9987626 1251.153 0.008242282
V6 V6 290.4787354 1276.560 0.000000000

R> head(igraph::as_data_frame(g, what = "edges"))[1:5]
from to weight n_events intensity

1 V1 V2 109.31241 0 0.00000000
2 V2 V3 24.83439 0 0.00000000
3 V2 V5 88.31791 0 0.00000000
4 V2 V24 54.86415 0 0.00000000
5 V4 V5 25.40732 0 0.00000000
6 V5 V7 90.99421 3 0.03296913

If the intensitynet object contains additional mark information, the RelateEventsToNet-
work() function automatically calculates additional edgewise summaries in addition to the
intensity computations. Accounting for the mark information provided, the RelateEventsTo-
Network() function computes either edgewise averages (numerical marks) or proportions
(categorical marks) of all events that fall into the edge interval considered. All computations
including the edgewise and nodewise intensities, the mark means and proportions, and the
number of events per edge are stored as node and edge attributes using the igraph class.
To give an example of the underlying computations, consider a set of network-based events
with numerical mark km and categorical mark animals with levels cat, dog, and cow. For
km and animals, suppose that we observed three events with marks 100, 20, 30 and one cat
recorded twice and dog appearing one time. Given the above specified data, application of
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the RelateEventsToNetwork() function results in the values 50 for km, 0.666 for cat and
0.333 for dog. As no event is labeled as cow in the toy data, the output will include a zero in
the corresponding field.
Given any empirical network-based event data with additional mark information, the internal
edge-to-event assignment and subsequent calculation can be implemented analogously to the
unmarked case as illustrated above. From the output of the RelateEventsToNetwork()
function, all results can be retrieved in subsequent actions directly from the graph object g
as illustrated in the next lines.

R> head(igraph::as_data_frame(g, what = "edges"))[6:12]
assault burglary cartheft damage robbery theft trespass

1 0 0 0 0.0000000 0.0000000 0 0
2 0 0 0 0.0000000 0.0000000 0 0
3 0 0 0 0.0000000 0.0000000 0 0
4 0 0 0 0.0000000 0.0000000 0 0
5 0 0 0 0.0000000 0.0000000 0 0
6 0 0 0 0.3333333 0.6666667 0 0

Apart from working on the complete network, the intensitynet package allows the selection of
smaller areas from the network using the ApplyWindow() function. As before, this function
only requires an intensitynet object as input and the pairs of (x, y) coordinates specifying
the boundaries of the selection window. The function extracts the induced sub-network along
with corresponding event locations and returns an object with the same class type as its
origin. We note that apart from the pre-selection of the observation window, the function
also allows for post-selection of sub-networks. In that case, all computations corresponding
to the selected area will be inherited from the sub-network.
To illustrate the ApplyWindow() function, we outline its application for the chicago toy data
example. Using the intnet_chicago object as input, an extract of the substructure with
borders x = (300, 900) and y = (500, 1000) is computed executing the next lines of code.

R> sub_intnet_chicago <- ApplyWindow(intnet_chicago,
x_coords = c(300, 900),
y_coords = c(500, 1000))

Given any substructure, both the original and the selected network event patterns can be
compared using e.g. the gorder() and gsize() functions which compute the number of
nodes and edges in the corresponding networks, respectively, as outlined next.

R> c(igraph::gorder(intnet_chicago$graph),
igraph::gsize(intnet_chicago$graph),
nrow(intnet_chicago$events))

[1] 338 503 116

R> c(igraph::gorder(sub_intnet_chicago$graph),
igraph::gsize(sub_intnet_chicago$graph),
nrow(sub_intnet_chicago$events))

[1] 75 112 37
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3.5. Exploring the network structure
Before proceeding with the estimation of alternative event-related characteristics, summaries
of the network structure itself provided by intensitynet package are presented first.
Given any network, an important graph theoretic concept that helps to quantify the structural
pairwise interrelations between the distinct nodes is the shortest path (Rahman 2017). From
a graph theoretic perspective, a path connecting any two vertices (origin and destination) is
defined as a sequence of distinct vertices (v1, v2, · · · , vn) with a maximum degree of 2 and
distinct edges (e1, e2, · · · en−1) such that no edge and no vertex is traversed twice. A shortest
path between an origin and a destination is the minimum number of edges (if unweighted)
or the minimum total weight of the edges (if weighted) to move along a path from the origin
to the destination. Several algorithms and methodologies can be found in the literature
that computes the shortest path including the algorithms of Dijkstra, Bellman-Ford, Floyd-
Warshall, (Magzhan and Jani 2013), and Johnson (Johnson 1977) or the Bread-First search
algorithm to name just a few. Each of these algorithms serves better for certain networks
with particular characteristics and, in turn, the choice of the algorithm used has a crucial
impact on the computation and might yield an increase in the computational time or even
intractable computations.
The function ShortestPath() of the intensitynet package is designed to simplify the shortest
path detection on the network. Basically, this function calculates the shortest path between
two nodes based on either the number of edges or their weights. To operate, the function only
requires the network of class intensitynet, the origin and destination nodes (either its names
as strings or IDs as integers) specifying the path under selection, and an optional parameter
specifying the weight type as arguments. If no weight is provided, the function calculates
the shortest path based on the number of edges. If weights are available, the shortest path
detection returns the minimum total weight (sum of all path edge weights). Regarding the
chosen algorithm that calculates the shortest path, the function will choose automatically the
one that fits best for the given network. Internally, the function performs a selection based on
the network characteristics. If the network is unweighted (or the weights are not considered)
then the Bread-First search algorithm is used. If the user specifies a valid weight (that is
present in the edge attributes), then Dijkstra’s algorithm is chosen. For negative weights, the
shortest path detection either uses Johnson’s algorithm, if the network consists of more than
100 nodes, or Bellman-Ford’s algorithm if the number of nodes is less than 100.
The use of the ShortestPath() function and the specification of its argument are demon-
strated in the next lines of code using the intnet_chicago object. Selecting the nodes v1
(V1) and v300 (V300) from the intnet_chicago object, the following lines outline the shortest
path detection with respect to the minimum number of edges, the minimum pathwise inten-
sity, and the minimum number of car thefts taking additionally the mark information into
account.

R> short_path <- ShortestPath(intnet_chicago,
node_id1 = "V1" ,
node_id2 = "V300")

R> short_path$path
+ 16/338 vertices, named, from d8a2c9e:
[1] V1 V2 V24 V46 V65 V83 V96 V115 V123 V125 V134 V219 V220
[14] V221 V294 V300
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R> short_path$total_weight
[1] 16

R> short_path_intensity <- ShortestPath(intnet_chicago,
node_id1 = "V1" ,
node_id2 = "V300" ,
weight = "intensity")

R> short_path_intensity$path
+ 44/338 vertices, named, from d8a2c9e:
[1] V1 V2 V24 V25 V26 V48 V63 V85 V102 V103 V144 V141 V140
[14] V224 V223 V222 V221 V294 V300

R> short_path_intensity$total_weight
[1] 0.1826603

R> short_path_cartheft <- ShortestPath(intnet_chicago,
node_id1 = "V1" ,
node_id2 = "V300" ,
weight = "cartheft")

R> short_path_cartheft$path
+ 24/338 vertices, named, from d8a2c9e:
[1] V1 V2 V24 V25 V26 V48 V63 V85 V104 V103 V144 V141 V142
[14] V135 V136 V137 V224 V223 V225 V282 V292 V293 V301 V300

R> short_path_cartheft$total_weight
[1] 0

Apart from the shortest path detection, the PathTotalWeight() function provided by the
intensitynet package additionally allows the extraction of the weights of any given (not nec-
essarily shortest) path. Requiring (i) the network as intensitynet object, (ii) a vector
specifying the nodes along the path under selection, and (iii) an optional parameter with the
type of weight to be computed as arguments, its use is illustrated in the following code. Note
that if no weight type is provided, PathTotalWeight() returns the total amount of edges in
the path, otherwise, returns the total sum of the specified weight.

R> path <- c("V89", "V92", "V111", "V162", "V164")
R> PathTotalWeight(intnet_chicago, path = path)
[1] 3

R> PathTotalWeight(intnet_chicago, path = path, weight = "intensity")
[1] 0.03296913

PathTotalWeight(intnet_chicago, path = path, weight = "robbery")
[1] 0.6666667

Note that the path must be specified as an ordered list corresponding to the movement on
the graph, i.e. a path with starting point v89 and destination v164 specified by v89 → v92 →
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v111 → v162 → v164. The nodes on a path can either be stated by their names as strings or
IDs as integers, or in a separate object as exemplified below.

R> path <- c(89, 92, 111, 162, 164)
R> PathTotalWeight(intnet_chicago, path = path)
[1] 3

3.6. Autocorrelation
To increase its applicability to different contexts and allow for a high level of flexibility within a
unified framework, the intensitynet packages provide several correlation statistics in addition
to the intensity function estimation including local and global versions of Moran I (Moran
1950), Geary’s C (Geary 1954), and Getis and Ords G statistic (Getis and Ord 1992). While
these global statistics help to quantify potential interrelations among the intensity functions
over the complete network, their local counterparts quantify the contribution of the intensity
functions for each element on the global one. As such, the local versions allow the identification
of important hot- or coldspots on the network (see Anselin 2018, for detailed treatment and
mathematical details).
Both global and local network correlation functions can directly be computed through the
NodeGeneralCorrelation() and NodeLocalCorrelation() functions, respectively, from the
intensitynet object, each of which requires three arguments including (i) an intensitynet
object, (ii) the type of statistic (either moran, getis, or geary), and (iii) a vector con-
taining the nodewise intensities. Recalling the internal computation for different types of
graphs, this vector could correspond to different objects, i.e. intensity_in, intensity_out,
intensity_und, or intensity_all. Using the adjacency matrix A to specify the neigh-
borhood structure, i.e. the lags over the network, to compute the spatial autocorrelations
among the distinct entities, any correlation function is only available at node-level. Formally,
the underlying lag structure can be constructed for different orders, i.e. the k-order neigh-
borhood, and includes either the partial or cumulative neighbors which derive directly from
the corresponding adjacency matrices of and up to Ak of order k, respectively. We note
that the implemented approach can also be used to include bivariate (Lee 2001) or partial
and semi-partial (Eckardt and Mateu 2021a) autocorrelation statistics in a straightforward
manner.
The NodeLocalCorrelation() functions return a list with the computational results stored as
node attributes and an intensitynet object as arguments. The name of the node attribute
corresponds to the type argument used in the computation, i.e. moran, getis, or geary.
For the local Moran I, the function returns a (n × 5)-dimensional table as output which
contains the empirical local Moran Ii indices (Ii), the corresponding expected values E [ii]
(E.Ii) and variances Var [ii] (Var.Ii), Z-value (Z.Ii) and a p-valued (Pr(z != E(Ii)))
based on a Normal distribution. This table is augmented by an intensitynet object (only
storing the permutation data (P(z! = E(Ii))) from the node attributes). To illustrate its
application, the next lines outline the computation of the NodeLocalCorrelation() using
the intnet_chicago as a toy example.
Initially, to extract the nodewise intensity functions from the node attributes of the intensi-
tynet object, the vertex_attr() function from the igraph package can be applied to the
graph object intnet_chicago$graph. In addition to the mandatory intensitynet object,
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this information can then be used as an argument of the NodeLocalCorrelation() function
to compute the desired local autocorrelation statistic. Depending on the type argument
provided by the user, the function either computes the local Moran I (moran), Geary C
(geary), or Getis G (getis).

R> intensity_vec <- igraph::vertex_attr(intnet_chicago$graph)$intensity

R> data_moran <- NodeLocalCorrelation(intnet_chicago,
+ dep_type = "moran" ,
+ intensity = intensity_vec)
R> head(data_moran)

Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
V1 0.31576139 -0.0009369774 0.31640163 0.5630234 0.5734189
V2 0.12649811 -0.0009369774 0.07839415 0.4551423 0.6490069
V3 0.31576139 -0.0009369774 0.31640163 0.5630234 0.5734189
V4 -0.44129172 -0.0009369774 0.31640163 -0.7828586 0.4337102
V5 -0.04934006 -0.0018300486 0.15297793 -0.1214705 0.9033184
V6 -0.44129172 -0.0009369774 0.31640163 -0.7828586 0.4337102

R> intnet_chicago <- data_moran$intnet

R> data_geary <- NodeLocalCorrelation(intnet_chicago,
+ dep_type = "geary" ,
+ intensity = intensity_vec)
R> head(data_geary$correlation)
[1] 0.0000000 0.4524253 0.0000000 1.8097012 1.0263252 1.8097012

R> intnet_chicago <- data_geary$intnet
R> data_getis <- NodeLocalCorrelation(intnet_chicago,
+ dep_type = "getis" ,
+ intensity = intensity_vec)
R> head(data_getis$correlation)
[1] -0.5630234 -0.4551423 -0.5630234 0.7828586 -0.1214705 0.7828586

R> intnet_chicago <- data_getis$intnet

The correlation and covariance among the nodewise intensities, and the global Moran’s I and
Geary’s C autocorrelation statistics provided by the NodeGeneralCorrelation() function
are constructed as wrapper functions using the nacf() function from the package sna (Butts
2008) as the source. Internally, this function transforms the intensitynet object into a sna
format to meet the desired input of the nacf() function. In addition to intensitynet object,
the implemented function also requires (i) a type statement (correlation, covariance,
moran or geary), (ii) a vector constructed from the nodewise intensities and (iii) a number
specifying the order of Ak. Apart from these mandatory arguments, the user could also
specify if a partial neighborhood (default) or a cumulative lag structure up to order k should
be used in the computations. The partial neighborhood for any given node vi is defined as
the set of nodes that are exactly k steps apart from vi whereas the cumulative neighborhood
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of vi subsumes all nodes whose distance to vi is less than or equal to k. As output, the
corresponding results are provided in form of a vector of length k, starting with zero neighbors
where no lag information is used to the k-th neighbors as specified in the order statement. An
application of the NodeGeneralCorrelation() function to the intnet_chicago is illustrated
in the following lines.
Using the intensity_vec object from the previous example as input for our computations,
execution of the following lines yields the partial covariances of the nodewise intensity func-
tions for the sets of partial neighbors of orders 0 to 2.

R> NodeGeneralCorrelation(intnet_chicago,
+ dep_type = "covariance" ,
+ lag_max = 2,
+ intensity = intensity_vec)

0 1 2
3.742840e-05 1.746413e-05 8.142177e-06

Likewise, the partial correlation for the sets of partial neighbors up to order k = 5 and its
cumulative counterpart version (partial_neighborhood= FALSE) can be obtained by run-
ning the following code. Both quantities show a clear decrease in correlation from lag zero,
corresponding to the correlation of the calculated nodewise intensity values with themselves,
to lag five.

R> NodeGeneralCorrelation(intnet_chicago,
+ dep_type = "correlation" ,
+ lag_max = 5,
+ intensity = intensity_vec)

0 1 2 3 4 5
1.00000000 0.46522061 0.21689644 0.18078130 0.09940217 0.03468309

R> NodeGeneralCorrelation(intnet_chicago,
+ dep_type = "correlation" ,
+ lag_max = 5,
+ intensity = intensity_vec,
+ partial_neighborhood = FALSE)

0 1 2 3 4 5
1.0000000 0.4652206 0.3012361 0.2402657 0.1827256 0.1317444

3.7. Data Visualization
Working with event data on relational systems, graphical outputs are of particular importance
to describe the observed data and computed results. To allow for simple computations, differ-
ent visualization tools are included in the intensitynet package. All main visual functionalities
are provided by the PlotHeatmap() function which serves as a generic visualization tool and
allows for the computation of graphically optimized heatmap representations of the network,
either with or without any additional information on the event locations or estimated quan-
tities. The function can directly be applied to any intensitynet object while the output
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can be specified through a wide range of additional arguments. The PlotHeatmap() func-
tion internally uses the GeoreferencedGgplot2() function from the netTools class which,
in turn, is embedded into the ggplot2 framework. As such, the function also allows for further
arguments to manipulate the plot by customizing e.g. the edge or node size and color layers.
Without any further arguments, PlotHeatmap() yields a graphical output of the internally
stored network structure including all edges and vertices (see Figure 3 for a visual representa-
tion of the underlying graph structure for the intnet_orn object presented in section 3.3.2).
In addition to the basic visualization of the network structure itself, the precise event locations
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Figure 3: Imported network structured of the Ontario data example from section 3.3.2 which
nodes represented as black dots and edges shown as solid gray lines

on the individual edges can be added to the output by setting the parameter show_events to
TRUE. As a result, each event location is shown as orange squares. The transparency of the
squares can be further customized by using the alpha argument.
Apart from the raw network and event information, the PlotHeatmap() function also allows
for the representation of different results derived from the original input information includ-
ing various local correlation functions, categorical marked point proportions or averages, and
vertex or edge intensities as outlined in Sections 3.4 to 3.6. Any such intensity-based charac-
teristics can be included in the output by specifying the heat_type argument. Examples of
heatmap representations of the edgewise (heat_type = e_intensity) nodewise (heat_type
= v_intensity) intensity functions, the mark proportions (heat_type = trespass), and
Geary’s C (heat_type = geary) are depicted in Figure 4.
In addition to the global representation of the network and all event-based computations
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over the complete relational system under study, the PlotHeatmap() function allows also the
computation of graphical outputs for only some pre-selected vertices or edges. To construct a
visualization of the localized network only, the selected vertices or edges need to be specified
in advance either by using the vertex identifier or an igraph vertices or edges object, i.e.
igraph.vs or igraph.es, respectively. The following lines of code outline the localized rep-
resentation of the local Moran’s I autocorrelation statistic for a list of pre-specified vertices
(V66, V65, V64, V84, V98, V101, V116, V117, V118). The corresponding output is shown in
the right bottom of Figure 4).

R> PlotHeatmap(intnet_chicago,
+ heat_type = "moran" ,
+ net_vertices = c("V66", "V65", "V64",
+ "V84", "V98", "V101",
+ "V116", "V117", "V118"))

In addition to the PlotHeatmap() function, the intensitynet package also provides a plot()
function which is internally designed as a wrapper function of the GeoreferencedPlot()
function provided in the auxiliary main class netTools and allows to uses the capabilities of
the plot.igraph() function from the igraph package. As such, the plot() function allows to
modify the nodes and edge labels of the network output and to highlight movements along the
networks, i.e. paths, by specifying the corresponding vertex identifiers. Moreover, this func-
tion also allows for a proper spatial embedding of the network and the plotting of background
grids, corresponding coordinates on the axes, and highlighting of event locations using simple
flag arguments (TRUE, FALSE). As in the PlotHeatmap() function, the transparency of the
events can be determined by using the alpha parameter. Finally, using the capacities of the
plot.igraph() function, the plot() function allows to modify the output by including any
graph analytic quantity from the igraph toolbox including communities or centrality measure
based weights. Its applications to the intnet_chicago object is illustrated in the next lines
of code.

R> plot(intnet_chicago, show_events = TRUE)
R> short_path <- ShortestPath(intnet_chicago,
+ node_id1 = "V1" ,
+ node_id2 = "V300" ,
+ weight = "intensity")
R> plot(intnet_chicago, show_events = TRUE, path = short_path$path)

Both the PlotHeatmap() and the plot() functions are augmented by the PlotNeighborhood()
function which allows to highlight the first-order neighborhood for user-specified nodes and
related event locations (highlighted by red circles). Execution of the code below yields the
corresponding results for node v100 (V 100), the resulting plot from the execution of this code
is shown in Figure 5 on the right.

R> PlotNeighborhood(intnet_chicago, node_id = "V100")
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Figure 4: Heatmap representations of network intensity functions and derived characteristics
computed from the chicago data with the rows defined as follows: The top row depicts the
heatmaps for the nodewise (left) and edgewise intensity functions (right), the central row
consists of the heatmaps constructed from the edgewise proportions of the crime categories
trespass (left) and theft (right), and the bottom panels show the heatmap representations
of the local Geary’s C (left) and Moran’s I (right) autocorrelation statistics. Positive and
negative autocorrelations are highlighted in both Geary’s C and Morans I heatmaps.
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Figure 5: Selected outputs of the plot() and PlotNeighborhood() functions computed from
the intnet_chicago object. Shortest path from v1 to v300 along the network which avoids
criminal areas highlighted in the color green (left), first-order neighborhood and incident edges
for node v100 and closest raw event locations (red circles).

3.8. Going beyond points
Embedded into a graph theoretic formulation, the intensitynet package allows for additional
investigations of the network event patterns that go well beyond the classic approaches in
spatial point process analysis. The network assigned event locations or computed network
intensity functions allow for the specification of advanced spatial (spatio-temporal) regression
models for network-based responses and additional spatial covariates or mark information
(see Eckadt, Klein, Greven, and Mateu 2022, for recent regression model for network-based
response). Apart from regression specifications, the computed results can also be used to
investigate the dependence or variation of different types of events, i.e. crimes, or to embed the
observed network event patterns as graph-valued data into the framework of object-oriented
data analysis. Finally, the inherent formulation of the network characteristics within the
igraph framework allows using the well-established methodological toolbox and mathematical
concepts of applied graph theory to detect communities and clusters, compute centrality and
connectivity measures, and apply spectral analysis methods.
Using the chicago data as a toy example, the following code investigates the potential cor-
relation between the nodewise intensities of trespass and robbery events.

R> chicago_trespass <- chicago_df[chicago_df$marks == "trespass" ,]
R> trespass_intnet <- intensitynet(adj_mtx,
+ node_coords = node_coords,
+ event_data = chicago_trespass)
R> trespass_intnet <- RelateEventsToNetwork(trespass_intnet)
Calculating edge intensities with event error distance of 5...

|=============================================================| 100%
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Calculating node intensities...
|=============================================================| 100%

R> chicago_robbery <- chicago_df[chicago_df$marks == "robbery" ,]
R> robbery_intnet <- intensitynet(chicago_adj_mtx,
+ node_coords = chicago_node_coords,
+ event_data = chicago_robbery)
R> robbery_intnet <- RelateEventsToNetwork(robbery_intnet)
Calculating edge intensities with event error distance of 5...

|=============================================================| 100%

Calculating node intensities...
|=============================================================| 100%

R> trespass_intensity <- igraph::vertex_attr(trespass_intnet$graph, "intensity")
R> robbery_intensity <- igraph::vertex_attr(robbery_intnet$graph, "intensity")
R > cor(trespass_intensity, robbery_intensity)
[1] 0.3559283

Extracting the igraph network structure from an intensitynet object, the next lines illus-
trate the computation of graph theoretic quantities from the intnet_chicago object.

R> g <- intnet_chicago$graph

R> degree <- igraph::degree(g)
R> head(degree)
V1 V2 V3 V4 V5 V6
1 4 1 1 4 1

R> max(degree)
[1] 5

R> head(igraph::betweenness(g))
V1 V2 V3 V4 V5 V6

0.00 677.50 0.00 0.00 797.25 0.00

R> head(igraph::edge_betweenness(g))
[1] 337.00 337.00 461.75 556.25 337.00 527.00

R> head(igraph::closeness(g))
V1 V2 V3 V4 V5 V6

2.850374e-06 3.183678e-06 3.101290e-06 3.303551e-06 3.399421e-06 3.481001e-06

4. Summary and discussion
This paper has introduced the general implementation and main functionalities of the inten-
sitynet package including exploratory analysis tools, network adjusted summary and autocor-
relation statistics, and visualization capacities. Bridging the general ideas from graph theory
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into the analysis of structured spatial event-type data, the package allows for the analysis of
potential events on different types or combinations of edges and also disconnected subgraph
structures. The package is build around a set of generic intensities functions which derive
directly from edgewise computations and allow to address different graph theoretic entities
and sets in the network under study and help to investigate the variation in numbers of events
over the graph object. Embedded into the igraph framework, the intensitynet sets the ground
for even further analysis based on graph theory methodologies and also easy importation into
related R packages.
Although the package is designed to work with any network size and edge configuration,
both the size of the network and the number of events under study affect the computing
time. To address the computational burden and structure the necessary computational op-
erations, the package is implemented in the two separate functions (intensitynet() and
RelateEventsToNetwork()). This enables the user to decide to either obtain some intensity
based statistics or work explicitly with the network representation in the form of an igraph
class object.
To test the reliability of our package, we ran numerous unitary tests, and also general tests,
using multiple datasets, some of them with dummy data and some involving real datasets
such as the Chicago data presented in this work. Additionally, the package has passed all
the CRAN repository policies and checks. Moreover, the package is in constant revision and
development, to detect and amend unnoticed bugs and other possible code-related problems.
About future development, some of the features that could be implemented are (1) consider
more input options to initialize the intensitynet(), (2) incorporate an occurrence legend in
the plots plot() or PlotHeatmap() if the occurrences are chosen to be shown, (3) consider
multiple output options to save the network model in different formats, and finally (4) develop
an application to access interactively all the tools that our package offers, using the Shiny
package.
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Chapter 6

Other Research Activities

6.1 Conferences
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Polynomial of Cycle Graphs with Ordered Path-Chords: International Work-
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and Algebra (ACCOTA), Merida, Yucatan, Mexico, December 2-7, 2018.

• P. Llagostera, N. López, J. Conde, C. Comas, Network Reliability Based on
Spatial Point Patterns: Spatial Statistics, towards spatial data science, Sitges,
Spain, July 10-13, 2019.

• P. Llagostera, C. Comas, C. Dalfó, N. López, Optimal Path Selection for Road
Traffic Safety based on wildlife-vehicle collisions: 10th International Workshop
on Spatio-Temporal Modelling (METMA), Lleida, Spain, June 1-3, 2022.

• P. Llagostera, C. Comas, N. López, Computing the Reliability Polynomial of
Cake Graphs Efficiently: Graph Masters, Lleida, Spain, October 10 and 12,
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Onthecomputationof therealiabilitypolynomial
of cyclegraphswithorderedpath-chords

Pol Llagostera, Nacho López, Carles Comas.
{pol.llagostera, nlopez, carles.comas}@matematica.udl.es

Introduction
The reliability polynomial of a network gives the probability that the network remains operational when all its edges could fail independently with

certain fixed probability. In general, the problem of computing the reliability polynomial becomes intractable when the size of the network increases. In
this paper, we give some exact formulas for the realibility polynomial of certain networks. Combining these results with a new algorithm approach, we

improve the computation of the realibility polynomial for networks satisfying certain conditions.

The Reliability Polynomial
Let |G| denote the number of edges of a network G = (V,E). Let us
consider the set G of connected spanning subgraphs of G. Then, the prob-
ability that G is connected, as a function of p, is

∑

G′∈G
p|G

′|(1− p)m−|G
′| (1)

This formula is known as the reliability polynomial of G, and it is denoted as
Rel(G, p). Formula (1) requieres the computation of all connected spanning
subgraphs, so it is useful just for a few family of graphs, like Complete
graphs, Cycle graphs or Trees. Of course Rel(G, p) = 1 if G is a single
vertex and Rel(G, p) = 0 if G is disconnected, for the remaining cases
the following recursive formula, also known as the factoring theorem is an
alternative method for computing Rel(G, p) based on the combination of
two graph operations: edge deletion G− e, and edge contraction G/e:

Rel(G, p) =





Rel(G− e, p) if e is a loop,
pRel(G/e, p) if e is a cut-edge,
(1− p)Rel(G− e, p) + pRel(G/e, p) otherwise.

(2)

New Formulas
Let G(l1, . . . , lL) be a graph obtained from a Tree by replacing L edges by
cycles of length l1, l2, . . . , lL, then

Rel(G(l1, . . . , lL), p) =

pm +mpm−1(1− p) +
L∑

s=2

( ∑

i1<···<is

li1 . . . lisp
m−s(1− p)s

) (3)

where m denotes the number of edges of G(l1, . . . , lL).
Let MT be a multitree graph, i.e. a graph obtained from a Tree by re-
placing L edges by a set of multiedges each of cardinality mi, 1 ≤ i ≤ L.
Then

Rel(MT, p) =
L∏

i=1

(
1− (1− p)mi

)
(4)

Cycle graphs with ordered path-chords
A Cycle graph with ordereded path-chords G is obtained from a Cycle
Cn : 0, 1, . . . n − 1 by adding some chords (xi, yi), 1 ≤ i ≤ t, such that
x1 < x2 < · · · < xt < yt < yt−1 < · · · < y2 < y1 Then, we replace every
chord by a path graph in such a way that the endpoints of the path graph
are the end points of the corresponding chord.

C

0
1 2 3 4

5678
→ =0

1 2 3 4
5678
∗

P
0
1
2

0
1 2 3 4

5678
9

New Approach Formulae
Definitions:

[A]n: Set of all the
subsets of A with
exactly n elements
k: Constants
m: Total edges
H: Set of graphs
path
H= [B1, B2, · · ·, Bt]
H ′: List containing
the number of edges
that has each ele-
ment of H
H ′= [Q̃1, Q̃2, · ·
·, Q̃z]
L: Set of cycles
containded in the
graph
L= [C1, C2, · · ·, Cn]
L′: List of cycle
lengths without its
shared edges
L′= L−H

L′= [F̃1, F̃2, · · ·, F̃j ]

Rel(G, p) =

|L|∑

n=0

(kn · pe−n(1− p)n)

(5)
Constants (k):

• k0 : 1
• k1 : e
• k2 :

∑

i<j

|F̃i| · |F̃j |+
|H|∑

i=1

|Hi| · (e− |H|) +
∑

i<z

|Q̃i| · |Q̃z|

(6)
• k(n≥3):

R = [H]|H| = [r1, r2, · · ·, rd]
Gi = G− ri→ S = [G′1, G

′
2, · · ·, G′d]

d ∈ h ∈ [H ′]j

f ∈ l ∈ [L′](|L
′|−j)

|S|∑

i=1

G′i =
|L′|∑

j=1

(

|hj |∏

v=1

dv ·
|lb|∏

v=1

fv) (7)

Example

P 1 P 2 P 3

A B C D0

1

8

7

2

9

6

3

10

5

4

p14 + 14 · p13(1− p) + 84 · p12(1− p)2

+ 256 · p11(1− p)3 + 336 · p10(1− p)4
(8)

Two broken edges (k2)

A·B + A·C + A·D + B·C + B·D + C·D:
2·2 + 2·2 + 2·2 + 2·2 + 2·2 + 2·2 = 24

¬P1 + ¬P2 + ¬P3

2·8 + 2·8 + 2·8 = 48

¬(P1P2) + ¬(P1P3) + ¬(P2P3)
2·2 + 2·2 + 2·2 = 12

Total = 24 + 48 + 12 = 84

Three broken edges (k3)

A·B·C + A·B·D + A·C·D + B·C·D:
2·2·2 + 2·2·2 + 2·2·2 + 2·2·2 = 32

¬P1 + ¬P2 + ¬P3

((2)·4·2 + (2)·4·2 + (2)·2·2) +
((2)·4·2 + (2)·4·2 + (2)·2·2) +
((2)·4·2 + (2)·4·2 + (2)·2·2) = 120

¬(P1P2) + ¬(P1P3) +
¬(P2P3)
((2·2)·6 + (2·2)·2) +
((2·2)·4 + (2·2)·4) +
((2·2)·6 + (2·2)·2) = 96

¬(P1P2P3)
(2·2·2) = 8

Total = 32 + 20 + 96 +
8 = 256

4 broken edges (k4)

A·B·C·D:
2·2·2·2 = 16

¬P1 + ¬P2 + ¬P3

(2)·4·2·2 +
(2)·4·2·2 +
(2)·4·2·2 = 96

¬(P1P2) + ¬(P1P3) +
¬(P2P3)
(2·2)·6·2 +
(2·2)·4·4 +
(2·2)·6·2 = 160

¬(P1P2P3)
(2·2·2)·8 = 64

Total = 16 + 96 + 160
+ 64 = 336

Computer Results for P2 × Pl

Computing times (s)
Graph Old Imp. New
P2xP4 0,19s 0,12s 0,05s
P2xP5 0,73s 0,25s 0,09s
P2xP6 2,97s 0,72s 0,23s
· · · · · · · · · · · ·
P2xP12 2,03h 6,55m 46,33s
P2xP13 7,82h 23,89m 1,92m
P2xP14 31,11h 1,49h 6,42m
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Networkreliabilitybasedonspatialpointpatterns*
Pol Llagostera, Nacho López, Josep Conde, Carles Comas.
{pol.llagostera, nlopez, jconde, carles.comas}@matematica.udl.es

*Work partially funded by grant MTM2017-86767-R from Spanish Ministry of Science, Innovation and Universities.

Abstract
We considered network reliability based on the presence of a point pattern that occurs over a given linear network. In particular, we estimate the

probability that a network element (for instance, an edge) operates based on a given spatial point pattern. For this propose, this point pattern have to
provide information about the connectivity of the linear network. We adapted this approach to the case of wildlife-vehicle collisions where the

probability that an edge is connected is assumed to be the collision probability for this edge. As such, the resulting network reliability provides the
global wildlife-vehicle collision probability (road traffic safety) for this linear network (road network). In this context, vehicle traffic collision are

considered as a point pattern over a linear network (road) and, based on this spatial structure, the collision probability is estimated for each network
edge. We applied this new approach to analyse the spatial structure of a dataset involving 57 wildlife-vehicle collisions over a road linear configuration

of a square region of 15× 15 Km2 in the centrer of Catalonia (Spain) during the period 2010-2014.

Introduction
•Wildlife-vehicle collisions have dramatically increased during the last few
years.
• This type of traffic collisions have important social, economic and ecolog-
ical consequences, for instance, human safety and death of wildlife animals.
• The reliability of a network gives the probability that the network re-
mains operational when all its edges could fail independently with a certain
fixed probability. In general, the problem of computing the reliability poly-
nomial becomes intractable when the size of the network increases.
• Network reliability can be applied, for instance, to understand social
network behaviour.
• We considered road reliability based on wildlife-vehicle collisions as the
global probability of suffering one of this type of traffic crashes (road traffic
safety) for a given linear network (road).
• The probability of suffering/no suffering a wildlife-vehicle collision will
be obtained from a real point pattern of traffic collisions associated to this
road.

Objectives
We want to analyse road traffic safety based on network reliability assum-
ing wildlife-vehicle collision probability obtained from a real roadkill point
pattern.

Point patterns and collision probabilities
• We considered point patterns that occur on a linear network.
• We analysed the occurrence of wildlife-vehicle collisions on a road net-
works.
• We used the diffusion estimator proposed by McSwiggan et al (2017) as
a tentative kernel point intensity estimator.
• Then we obtained the probability of traffic crashes, based on this point
intensity.
• We averaged the resulting associated probability on the road network,
to obtain a single probability of traffic crashes p.
• This probability is considered in the reliability procedure.

Network Reliability
• Method for computing the reliability of a network Rel(G, p) that com-
bines two network operations: edge deletion (G− e), and edge contraction
(G/e). Where e is an edge.
• This method is based on the following recursive formula, also known as
the factoring theorem:

Rel(G, p) =





1 if G is a singleton,
0 if G disconnected,
Rel(G− e, p) if e is a loop,
pRel(G/e, p) if e is a cut-edge,
(1− p)Rel(G− e, p) + pRel(G/e, p) otherwise.

(1)

• The main idea to improve this algorithm is to prevent it to “dismantle” the
network to its very basic components (one node sub-networks) by giving
the reliability of the sub-networks before becoming basic components.
• We developed a series of faster formulas for specific families of networks
such as multi-tree, multi-cycle, glued cycles, etc.
•When one of the sub-networks matches one of the families of our formulas
then, the reliability will be directly calculated and returned.

Network road reliability
•We adapted the concept of network reliability to a road network has the
global probability of suffering/no suffering a wildlife-vehicle collision. We
assume for each edge the probability p of suffering an accident.
• Then, we considered that a road network is “connected” if it is possible to
travel through it without having a wildlife-vehicle collision, and so the final
global probability of this network provides the global safety for this road;
this parallels the standard probability that the network remains connected.

A case study
• Square area of 15 × 15 km2 in the centrer of Catalonia (North-East
of Spain) involving 98.5 Km. of roads (linear network) together with 57
wildlife-vehicle collisions (see Figure 1, top panels)
• We have an average of 0.57 road crashes per linear Km.
• Figure 1 (bottom panels) shows the spatial point and road configuration
(left panel) together with the resulting probability of roadkills (middle
panel), and the graph associated to this spatial structure (right panel)
• From this roadkill probability, we have obtained a global probability of
road crash of around 0.135
• This value is considered in the reliability polynomial
• We obtained a global safety probability of around 0.075.
• This value is proportional to the probability of driven by the whole road
without having a wildlife-vehicle collision, i.e. the this is the probability
that the whole road is completely safe/connected.
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Ongoing work
• Consider multiple probability of roadkills, for instance p1 and p2.
• Define distinct road itinerary to obtain the more/less secure path for
travelling between two distinct vertices.
• To do so, we will adapt algorithm to find a path on a network, such
as the Breath First Search (BFS) and/or the Depth First Search (DFS)
methodologies.
• Investigate distinct computer models to improve algorithm for network
reliability.

References
[1] McSwiggan, G., Baddeley, A. and Nair, G.: Kernel Density Estimation

on a Linear Network. Scandinavian Journal of Statistics 44(2), (2017).
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Optimalpathselection for roadtrafficsafety*
P. Llagostera1, C. Comas1, C. Dalfó1 and N. López1,∗

{pol.llagostera, nacho.lopez, cristina.dalfo, carles.comas}@.udl.cat
*Work partially funded by grant PID2020-115442RB-I00 from MCIN/AEI/ 10.13039/501100011033.

Abstract
Wildlife-vehicle collisions (WVC) present an important coexisting problem between human populations and the environment. These type of accidents
threatens the life and safety of car drivers, cause property damage to vehicles, and affect wildlife populations. We present a new approach based on
algorithms used to obtain minimum paths between vertices in weighted networks to obtain the optimal (safest) route between two points (departure

and destination points) in a road structure based on wildlife-vehicle collision point patterns. We have adapted the road structure into a mathematical
linear network and analysed it using graph theory methodologies. This new approach has been illustrated with a case study in the region of Catalonia,
North-East of Spain. This example shows the usefulness of our new approach to identify optimal path between pair of vertices based on weighted edges.

Introduction
• Growing interest in the analysis and modelling of WVC’s since they

do not occur randomly neither in space nor in time.

• Important to identify areas with high accident intensity (hotspots).

• Point patterns on linear network is a tentative way to investigate such
space events.

• Occurrence of WVC are affected by several ecological, biological, and
meteorological covariates along with structural road characteristics.

• This suggests that distinct road section will have distinct occurrence
of such events.

• Weighted graphs can be considered to model the risk of WVC, and to
define distinct path configurations to optimize this risk.

• Our main aim in this paper is to develop a new approach adapting
algorithms used to obtain minimum paths between vertices in weighted
networks to model road traffic safety based on WVC point patterns.

Linear network and point patterns
• Road configuration as a linear network L as defined in [1]

• Then we consider a point pattern on L

• We obtain an intensity estimator of this point pattern assuming the
the diffusion estimator proposed by [2].

•We obtain the average intensity value for each edge of L as the integral
of this intensity function over a edge

• Now each line segment has a weight that represents the average of
WVC This value will be considered as the weight for each line

Minimum weighted path algorithms
• Several algorithms have been proposed to calculate the minimum path

between two vertices in a weighted network

• These algorithms are defined to explore weighted networks in search
of the path between two points that has minimum cost

• Cost is defined as the total sum of the weights associated with the
edges of each path

• A path is a set of unique edges that connects distinct vertices starting
from a vertex origin and ending with a vertex destination

• Two algothims are adapted; the Depth First Search (DFS) to calcu-
late the total number of possible paths between two points, and, Yen’s
algorithm [3] to rank the top K-best paths between them.

The Wildlife-vehicle collision dataset
• Case study; dataset containing 491 WVC occurred in a squared area

(40km× 40km) around the city of Lleida

• Road structure, 459.050 km of roads for three distinct road categories,
namely, highways and paved roads, during the period 2010− 2014

Analysing the dataset
• Next figure shows the resulting point density based on the diffusion

estimator with a bandwidth value around 750 meter and the weighted
network structure based on the average number of wildlife-vehicle collisions
for each edge

•We consider a possible scenario to illustrate our approach where mod-
ified DFS and the Yen’s algorithm are used to find the safest and the
shortest path between two real town locations Soses and Bell-Lloc d’Urgell

• The figure below shows the safest path between this pair of ori-
gin/destination points together with the shortest path between these two
locations.

• The safest path is not the shortest one between these two locations.

• Safest path is the best road route over 607.416 paths obtained by com-
bining the 410 vertices and 437 edges of this linear network configuration.

S

B

S

B

Future work
• To consider traffic flow information in our optimization procedure

• For instance,raffic flow information, such as, vehicle traffic volume is
crucial to full understand WVC.

• Consider other variables related with animal density and behaviour

References
[1] Ang, W., Baddeley, A., Nair, G., (2012). Geometrically corrected sec-

ond order analysis of events on a linear network, with applications to
ecology and criminology. Scandinavian Journal of Statistics 39, 591-
617.

[2] McSwiggan, G., Baddeley, A., Nair, G., (2016). Kernel density esti-
mation on a linear network. Scandinavian Journal of Statistics 44,
324-345.

[3] Yen, J.Y., (1971). Finding the k shortest loopless paths in a network.
Network. Management Science 17, 661-786.
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6.2 Abroad Research Stay

The candidate did a research stay from September 16, 2021, to December 21, 2021,
at the Humboldt University of Berlin, Berlin, Germany, and has been supervised by
Dr. Matthias Eckardt. This stay has been partially funded by the award from the
Barcelona Economic Society ‘Amics del Páıs’. In collaboration with the University
of Berlin, this stay resulted in the development of the paper presented in section
5.3.
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Chapter 7

Discussion and Conclusions

This Chapter summarizes the contents of this Thesis, discusses the methodology,
results, limitations and implications, provides possible future research lines, and
finalizes with some conclusions. The structure of this Chapter is presented as follows:
Section 7.1 highlights the most important basic concepts and, summarizes the two
aims of the thesis (Network Reliability and, Spatial Networks with Point Processes)
by providing a brief introduction, state of art, methodology and, results for each
aim. Section 7.2 analyzes and discusses the research presented in this Thesis as
well as the results. Section 7.3 identifies and analyzes the limitations of the study
along with its methodologies. Section 7.4 discusses the implications of the research
and the results. Section 7.5 identifies possible future research lines based on the
presented studies. Lastly, Section 7.6 presents the main concepts and highlights of
this Thesis.

7.1 Summary

Many types of processes and relationships can be modeled into a network G = (V,E)
where V is a set of nodes and E is the set of edges. In combination with the branch
of mathematics of Graph Theory, this model provides many useful advantages, for
instance, to study optimization, networking, matching, and operational problems.
This thesis is aimed to study the network’s ability to remain connected, also known
as network reliability, and the study of events occurring on spatial networks. To
this end, the aims are divided into two sub-groups, network reliability and, spatial
networks with point processes.

7.1.1 Network Reliability

The all-terminal reliability of a network refers to the ability of a network to remain
operational when its edges have the same independent probability p to remain con-
nected. In general, there are two main approaches to studying network reliability:
the design of highly reliable networks and, efficient reliability calculation.

State of art

A network is uniformly most reliable (UMR), when there does not exist any other
configuration with the same number of nodes n and edges e that produces a graph
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with higher reliability. The design of UMR networks has been studied in the lit-
erature by different authors, for instance, Boesch and Suffel [5] demonstrated that
UMR networks exist when e = n− 1, n, n+ 1, or n+ 2, while Gross and Saccoman
[24] extended these demonstrations to multi-edge networks, although Myrvold et al.
[34] proved that UMR networks do not always exist. Regarding the construction of
UMR networks, Smith and Lynne [51] show how to construct UMR regular graphs
while Romero [45] provided a methodology to construct UMR through iterative aug-
mentation. To the best of our knowledge, no research focused on the construction
of UMR networks belonging to the hamiltonian family. To give more light on this
topic, we studied this family, demonstrated the existence of UMR for hamiltonian
networks with m = n + 1 and m = n + 2, and provided a computational approach
for m = n+ 3.

There exist several methodologies to calculate network reliability, for instance,
Politof and Satyanarayana [39] and Satyanarayana and Tindell [48] developed effi-
cient algorithms to analyze the reliability of planar networks, Satyanarayana and
Chang [46], Burgos and Amoza [10] and Burgos [9] studied the use of the factoring
theorem to calculate the network reliability, Srivaree-ratana et al. [52] estimated
the reliability with neural networks and, Shafrat et al. [50] purposed a recursive
truncation algorithm. This thesis presents a new modular methodology to calculate
the all-terminal reliability of undirected networks that combines the generality of
the contraction-deletion algorithm [37] with the computational speed of specific al-
gorithms for certain network families. This methodology is implemented in form of
a Python package and is designed to be easily expanded with new modules without
requiring to modify the source code.

Methodology

A hamiltonian network can be thought of as a simple cycle network Cn with addi-
tional edges such that m = n + 1, n + 2, n + 3 . . . Therefore, to construct a UMR
hamiltonian network, the number of edges is taken into account. With m = n + 1,
the additional edge must connect two vertices of Cn at maximum distance, this cre-
ates a c-path length vector (x1, x2) such that n = x1+x2, where x2−1 ≤ x1 ≤ x2+1.
With m = n + 2, the two additional edges must cross each other and generate a
c-path length vector (x1, x2, x3, x4) where xi = xi+1 or max(xi) − 1 = min(xi).
This seems to be also the case with m = n + 3 where the c-path length vector
is (x1, x2, x3, x4, x5, x6) and xi = xi+1 or max(xi) − 1 = min(xi). The presented
UMR hamiltonian network configurations follow the structure from the Fair-Cake
networks.

The given new methodology to calculate the reliability polynomial of undirected
networks modifies the recursive Contraction-Deletion (DC) algorithm to reduce the
computational time by including fast algorithms for specific families of graphs. Each
iteration of the DC algorithm contracts produces two sub-graphs by contracting and
deleting an edge, this process is recursively performed until the trivial network is
reached, and from that point, the algorithm recursively constructs the reliability.
The purposed modified version of the DC, adds modules that contain two opera-
tions, identification, and calculation. Each of these modules focuses on a specific
family of networks, therefore the identification operation determines if the given
network belongs to the module family and if so, the calculation method calculates
the reliability of such network using the specific methodology for that family. For

96 7.1. SUMMARY



CHAPTER 7. DISCUSSION AND CONCLUSIONS

each iteration of the new DC algorithm, the network is evaluated by the modules.
If a module can identify the network, the reliability is calculated and retrieved us-
ing the methodologies of that module. If not, another module is asked. If any of
the modules could identify the network, another iteration of the DC algorithm is
performed which generates two sub-networks. Then the algorithm starts again until
the original network reliability is calculated.

Results

The research characterized the construction of UMR hamiltonian networks for m =
n + 1 and m = n + 2. Although the case m = n + 3 could not be demonstrated,
a computational approach had been given and conjectured how to construct UMR
networks for this case. Moreover, the study demonstrated the non-existence of UMR
for hamiltonian graphs with:

• m =
(
n
2

)
− n+2

2
for all n ≥ 6 even;

• m =
(
n
2

)
− n+5

2
for all n ≥ 7 odd.

To calculate the reliability of undirected graphs, the presented modular methodology
proved to be effective to reduce the computational time with respect to the original
DC in many cases. Such cases depend on the type of given graph and the included
modules. Following is given an overview of the functionalities provided by this new
methodology:

• Possibility to choose the functionality that selects the edge which is contract-
ed/deleted. The currently implemented functionalities can randomly choose
an edge, or select the edge with maximum order (sum of the order of its end-
points), or the edge with minimum order.

• Possibility to choose the active modules. The included modules work with the
following families: multi-trees, multi-cycles, cycle-trees (trees where the edges
are replaced by cycles), and cake networks.

• Possibility to separate all the ‘tree’ parts of the given network and generate
sub-networks with all the components.

• The implemented algorithm structure allows to easily add new modules or
methodologies to select the contracted/deleted edge without modifying the
original code.

7.1.2 Spatial Network with Point Processes

The main characteristic of a geographically referred structure modeled into a spatial
network is that the nodes and edges are located in the space and can be measured, i.e.
with a metric system. A point process is any stochastic mechanism that generates
a finit set of random events (points) located in a bounded region. For instance, if
such events happen in a network-structured spatial space, then, the interrelation of
the events with the network, can be analyzed using several methodologies proper
from Graph Theory in combination with point process theory.
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State of art

The studies of Okabe et al. [35], Okabe and Yamada [36], and Ang et al. [1], are
notable contributions to the analysis of events occurring on linear spatial networks.
Such events have space-time dependence and are restricted to linear structures which
might represent, for instance, road accidents, street crimes and fires caused by high-
voltage networks. This characteristic allows the creation of weights based on the
events and the possibility to consider weighted networks to analyze the resulting
network structure. In our case, we have considered the point intensity of wildlife-
vehicle collisions (WVC) to obtain weighted networks. This type of accident is a
great danger for both society and wildlife [53]. For this reason, in recent years, it
has been a growing interest to develop models to analyze such road accidents [25],
where the detection of hot-spot locations [27, 41] is a central issue. In Section 5.2,
we analyzed several variables related to WVC and propose a new methodology to
detect the most dangerous areas that are more likely to have a WVC. Moreover, our
new approach also calculates the safest route between any pair of points (origin and
destination) in the network.

Most of the R packages are limited in terms of modeling and analyzing spatial
points occurring over complex real-world networks containing directed and undi-
rected edges. In particular, theR packages spatstat [4, 3], DRHotNet [6], geonet
[49], spNetwork [21], SpNetPrep [7] and stlnpp [32], are not helpful to analyze
mixed networks nor to compute point attributes at distinct configurations such as
the network paths or sets of neighbors. Section 5.3 provides a new tool in form of an
R package that addresses these limitations. The new package is based on the works
of Eckardt and Mateu [15, 16] which introduces a different approach to analyzing
network-based event data through different network intensity functions.

Methodology

Section 5.2 presents a new modeling approach based on weighted networks to find
optimal paths in the network to reduce the risk of having a WVC. In addition to
WVC, we have considered road types, speed limits, traffic density, and vegetation
density (NDVI) surrounding the roads for our analysis. We have adapted the road
structure data into a connected mathematical network where its nodes and edges
contain geographical information such as latitude and longitude. The road safety
is modeled by assigning a weight to each linear segment of the network based on
an estimator of the point intensity, and the values of the rest of the covariables
associated with this linear segment.

The weights of the segments are calculated via the following linear combination

W (li) = a
Λ(li)−min(Λ(l))

max (Λ(l))−min (Λ(l))
+

v∑

j=1

bj
Zj(li)−min(Zj(l))

max (Zj(l))−min (Zj(l))
(7.1)

for i = 1, . . . , s, where s is the total number of segments and W (li) is the global
weight related to segment li. Here Λ(li) is the point intensity for segment li. The
variable associated with this segment li is represented by Zj(li), where j = 1, . . . , v
identifies the variable type from the total number of types v. Then, a+b1+. . .+bv =
1, and max (Λ(l)) and minΛ(l)) (say) is the maximum and the minimum value of
all Λ(li), for i = 1, . . . , s. The values a and bj allow us to have better control of
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the weights from the different factors that affect the WVCs. Then, the safest paths
between any two points are calculated using algorithms such as Depth-First Search
(DFS) and Dijkstra.

The R package intensitynet presented in Section 4.3, contains 3 S3 program-
ming structure classes that work with undirected, directed, and mixed graphs re-
spectively. The proper class for the given network is automatically chosen by the
package. Since the package uses the well-known igraph R package, the output
network model can be easily treated by other packages. The study also provides ex-
amples to easily import data sources in formats like shapefile (shp) commonly used
in cartographic tools such as ArcGIS [43] or QGIS [40], and linear point process
objects (lpp) generated by the spatstat package. Moreover, the presented inten-
sitynet package provides methodologies to; manipulate data, estimate intensities,
compute local and global autocorrelation statistics, data visualization, and other
minor methodologies.

Results

Our new approach presented in Section 5.2 has been tested with a real dataset involv-
ing 491 WVCs located in a square area of 40× 40 square km with a road extension
of 459050 km around the city of Lleida, Spain. This study also presents an inter-
active program made in R language that can be found in the GitHub repository.
This program graphically represents the network, calculate and shows the minimum
paths, between two given points, provides information about the attributes stored
in the nodes and edges, and plots heatmaps based on the selected variables.

All the methodologies offered by the intensitynet package had been tested with
a real dataset from Chicago city provided by the spatstat package. This dataset is
also found in the presented package and can be used to test it. An insight into each
set of methodologies that the package offers is listed below:

• Manipulate data such as creating spatial network models, removing or adding
nodes and edges, inserting data into the network model, and retrieving such
data.

• Estimate intensities related to the point patterns occurring near nodes and
edges.

• Compute local and global autocorrelation statistics, for example, Moran I [33],
Geary’s C [20], and Getis and Ords G [23].

• Data visualization, for instance, variable-related heatmaps, network paths,
occurrences, and the creation of sub-windows focused on specific parts of the
network.

• Minor methodologies such as calculating distances between points, providing
the shortest paths, and retrieving the total weight from a path based on a
selected variable.

7.2 Thesis Discussion

This thesis began with the analysis of network reliability where different network
structures, methodologies, and results were studied. We developed several new
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methods to reduce the computational time required for the computation of net-
work reliability such as the methodology shown in the poster ‘On the computation
of the reliability polynomial of cycle graphs with ordered path-chords’ presented in
ACCOTA conference in Mexico, 2018 (see section 6.1.1). These methodologies were
implemented in Python and used internally to computationally study the relia-
bility of different network configurations. From these configurations, the network
family named ‘Cake’ was found interesting due to the apparent relation between its
symmetry and high reliability. Therefore, this family belonging to the hamiltonian
networks became the focus of the research. We found that these networks are uni-
formly most reliable (UMR) when m = n+1, m = n+2, and m = n+3. The cases
for m = n + 1, m = n + 2 were proved and the case m = n + 3 was conjectured
based on computational proofs (see Section 4.2).

During the UMR networks study, we developed a new algorithm that combines
the deletion-contraction methodology with specific algorithms to compute the reli-
ability of specific graph families. Later, this new algorithm, together with previous
algorithms purposed at the beginning, were reviewed, structured, and implemented
into classes and sub-classes forming a Python package. This package was developed
using dynamic functions and unitary methodologies to provide modularity and scal-
ability. The package was named atr the paper ‘Network reliability in hamiltonian
graphs’ describes all the functionalities and provides use-case examples (see Section
4.3).

The research continued by studying the dependence structure of events occurring
on networks and the possibility to consider the reliability of networks based on these
events. For this purpose, a real dataset was considered involving road networks and
WVCs. Since the nature of the roadkills is at random (a point pattern) the possible
study of the all-terminal reliability of the network based on the intensity of accidents
for each segment (as a weight) could not be done (by the time being). However, we
found interesting to analyze the resulting weighted networks based on point patterns,
to find optimal paths between points on the network, and other relations between
point processes and spatial networks.

The motivation of the new study was to increase road safety either for animals
or human lives. This objective was performed by optimizing paths between points
on the network structure based on WVCs and other covariates affecting this type
of accident. We developed a new approach that integrates all these variables and
we tested the resulting algorithm with a real network model. We found different
hotspots where more WVCs were concentrated, considered road heatmaps to display
the previous variables (for instance, WVCs intensity, daily average traffic volume
and vegetation density), and finally, we calculated optimal safest routes from an
origin to a destination point (see Section 5.2).

The study of point processes on spatial networks continued in collaboration with
the Humboldt University of Berlin. During the stay in Berlin, we started the de-
velopment of a new R package named intensitynet to fill the gap with the other
existent packages which do not work with complex networks that combines undi-
rected and directed edges (see Section 5.3). In this package, we implemented several
methodologies to analyze and visualize networks and their correlation with the oc-
currences happening over them. Such methodologies were also tested using a real
data set provided by the package spatstat which contains the spatial locations
of the crimes reported between 25 April to 8 May of 2002 near the University of
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Chicago (Illinois, USA).
There were ups and downs during the development of this thesis but prevailed the

will to give more light to blur areas and to provide tools and methodologies accessible
to all. Although this research was not exempt from limitations and difficulties,
interesting future research lines and possible upgrades were found.

7.3 Limitations and Difficulties

As in life, nothing is exempt from drawbacks, and neither is in research. This section
is dedicated to describing the current limitations found in the presented research.
The following sub-sections present the limitations and difficulties of each study.

7.3.1 Constructing more than m = n + 2 hamiltonian net-
works

Section 4.2 characterized the construction of UMR hamiltonian until m = n+2 and
purposed a hypothesis based on a computational approach for the case of m = n+3.
Although the results seem to point to the Fair Cake graph as the uniformly most
reliable construction for any m = n+c (where c is a chord), the study demonstrated
that this statement does not hold for m ≥ n+4. We also found the nonexistence of
UMR in certain cases. Moreover, when the number of chords (c) is increased, the
number of possible combinations grows exponentially. These findings suggest that
generalizing a methodology is a difficult problem, and even for a specific number of
chords.

7.3.2 Network identification

The new methodology presented in Section 4.3 that calculates the all-terminal reli-
ability polynomial based on the Deletion-Contraction algorithm presents one draw-
back, the identification procedure. For instance, if an algorithm to calculate the
reliability is directly applied to a graph with a computational time t, using our new
methodology, also adds the identification time d, therefore being the total time (T )
T = t + d. This additional cost is easily amortized if d is comparatively small,
say O(n), and the identification results are positive. If the identification cost is big
or the identification is always negative in any of the sub-graphs generated by the
methodology, the total cost to calculate the reliability of the original graph could be
unnecessarily increased. To solve this issue, the time to identify the network must
be reduced as much as possible, and the modules carefully selected depending on
the given network.

7.3.3 Data preparation

To illustrate our new framework to find optimal paths (see Section 5.2), we consider
a real dataset involving WVCs and some other covariates related to this type of
accident. This process was very complex due to the nature of these types of data.
Here, the data came in different data-sets from different sources and with different
formats. To develop and illustrate our new approach, the data must be carefully
chosen. To this end, we studied the interrelation between the distinct considered
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covariates and their connection with the number of accidents. Once the data was
chosen, then it needed to be properly treated beforehand for its later usage. This
implies cleaning and removing duplicates, inconsistencies and noise data, and for-
matting such that all the data-sources share the same structure. Also, note that the
amount of data must be large enough to perform statistical analysis. Such proce-
dures might imply some difficulties to add more variables into the model, even when
the data is available.

7.3.4 Network size

The R package intensitynet detailed in Section 5.3 provides many methodologies
to manipulate network data, estimate intensities, compute autocorrelation statis-
tics, visualize data, and other minor functionalities. Although in the development
of the package the computational times are intended to be as low as possible, the
computing time highly depends on the network size. For instance, the functions
intensitynet() and RelateEventsToNetwork() can be used separately to avoid unnec-
essary computations. This presents the challenge to optimize each functionality and
computation which is complicated due to the size of the package and the interrelation
of the methodologies.

7.4 Implications

Each of the following sub-sections analyzes the implications of the different studies
presented in this Thesis.

7.4.1 Seminal work with UMR hamiltonian networks

The study presented in Section 4.2 is a seminal work in the area of uniform reliability
since to the best of our knowledge is the first research that explicitly studies the
UMR problems inside the hamiltonian family. Therefore this study prepares the
ground for a new line of research.

7.4.2 An adaptive and scalable tool

The Python package atr introduced in Section 4.2 implements a methodology to
calculate the all-terminal reliability from any undirected network. From its modular
nature, it can be easily expanded and improved to reduce the computing time for
more network families. Moreover, its adaptability to fit the requirements of any
given network makes it a useful tool for any network-oriented research field. These
characteristics imply that the usage of the tool directly affects its capabilities making
it a dynamic tool. Therefore, the more the tool is used and upgraded to fit the
necessities of different problems, the more extensive its benefits will be.

7.4.3 Spatial networks;

The study detailed in Section 5.2 purposes the use of weighted networks to obtain
optimal paths in this spatial structure based on spatial point patterns. For this case,
we considered WVCs. However, this methodology can be extended to analyze any
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spatial structure that occurs on linear networks, for instance, in electricity networks
to analyze power cuts and in water pipeline systems to identify water quality based
on possible contamination sources. Moreover, the study focused on WVCs already
has direct implications, such as saving animal and human lives, avoiding property
damages to vehicles, reducing the spent budget on special services (ambulance and
police), and other indirect implications such as improving wildlife management and
building road infrastructures.

7.4.4 Improve network analysis

Most of the present statistical tools to analyze networks with point patterns do
not provide the capabilities to analyze complex network structures containing di-
rected and undirected edges. The netintensity package presented in Section 5.3
addresses these limitations by treating the edges as fundamental entities. This per-
spective facilitates the calculation of intensities and related quantities over different
types of network structures including directed, undirected, or a combination of both
i.e. mixed edges. All event-based features are derived directly from edge-related
intensities where each edge intensity is calculated as the sum of all occurrences that
fall over the edge, adjusted (divided) for its spatial length. Moreover, the package
eases the network statistical analysis by building its methodologies around one con-
structor function (intensitynet()) which automatically parses the network structure
to all computations.

7.5 Possible future research lines and upgrades

The research presented in this Thesis opened several possibilities for expansion. This
section summarizes such possibilities for each of the studies.

Network reliability in hamiltonian graphs

• Study the existence of uniformly most reliable hamiltonian networks for other
values of n and m.

• Study other families of networks to find uniformly most reliable constructions.

Computing all-terminal network reliability: A new modular methodology

• Add new modules to calculate the reliability of different network families.

• Add new functionalities to select the edge for its deletion/contraction.

• Optimize the computational time of the identification methodology for each
module.

Weighted spatial networks: Modeling road traffic safety based on point
patterns of wildlife-vehicle collisions

• Define other functions to combine different key variables.

• Incorporate more variables into the methodology.
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• Adapt our approach to other problems, for instance, to define road safety from
two points of view, one regarding the wildlife crossing the road and the other
regarding the vehicles and its passengers.

intensitynet: Intensity-based Analysis of Spatial Point Patterns Occur-
ring on Complex Networks Structures in R

• Add more input possibilities to initialize an intensitynet object.

• Add an event legend to the resulting figures from plot() and PlotHeatmap()
functions.

• Add multiple file options to export the network model generated by the pack-
age.

• Create an interactive app with Shiny package to visually access the function-
alities of the intensitynet package.

7.6 Conclusion

Networks are present in many areas, and this trend is increasing exponentially in
recent times. Therefore it is crucial to understand their structures, behavior, and
interrelations with internal and external variables to create optimal networks, solve
problems, and make predictions. To this end, the research presented in this thesis
focuses on two main issues, one shared with all types of networks which is the relia-
bility, and the second, spatial networks with point patterns, affecting a large set of
existing networks. Although the size and complexity of networks significantly affect
the difficulty of their analysis, the methodologies and tools presented in this thesis
are aimed to ease and enhance their study and to provide base structures designed
to be easily expandable. For instance, in Section 4.2 we present a new research line
to study the uniformly-most reliable hamiltonian networks and provide a seminal
work addressing this topic. In Section 4.3 we detail a new modular methodology im-
plemented in a Python package to calculate the reliability polynomial of undirected
networks which can be easily expanded through new modules without modifying the
main structure. In Section 5.2 we present a general framework to model events that
occur on a linear network, to model, for instance, road safety based on several vari-
ables. This flexible framework allows removing or adding variables to adapt network
characteristics to the problem under analysis. And finally, Section 5.3, presents a
series of methodologies to analyze spatial networks and the events occurring over
them implemented in form of an R package designed in a modular programming
structure.

This thesis has been possible thanks to all the research done by many fellow
researchers throughout time and its intention is to facilitate the future research that
is to come. As Newton rightly said ‘If I have seen further, it is by standing on the
shoulders of giants.’
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