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1 Introduction

Given our inevitably incomplete knowledge about key structural as-
pects of an ever-changing economy and the sometimes asymmetric costs
or benefits of particular outcomes, a central bank needs to consider not
only the most likely future path for the economy, but also the distribu-
tion of possible outcomes about that path. (Greenspan, 2004, p. 37)

Central banks and international organizations forecast relevant economic vari-
ables to guide their policy decisions. Traditionally, these estimates have focused
on the central moment of the distribution of variables, for example, the future
expected value of GDP growth or inflation conditional on the available informa-
tion set. However, as the former Governor of the Federal Reserve (FED), Alan
Greenspan, pointed out, the conduct of monetary policy has, at its core, crucial ele-
ments of risk management (Greenspan, 2004). Such a conceptual framework high-
lights the need to study the sources of risk and uncertainty (including the Knightian
view), quantifying them, and assessing their associated costs. In general, policy de-
cisions should not only take into account the economy’s expected path, but also the
distribution of outcomes associated with that path, e.g., downside or upside risks.

In recent years, policy has focused on tail risks related to economic variables,
such as output, unemployment, and prices, and this has motivated the development
of new statistical tools to evaluate the likelihood of distress scenarios. One of the
most influential tools used by regulators and policy makers in this regard is the
growth-at-risk approach, pioneered by Giglio et al. (2016) and Adrian et al. (2019),
which echoes the concept of value at risk, which has been widely used and under-
stood by regulators and practitioners for at least two decades. Globally, there are
a number of institutions, including the Federal Reserve System, the International
Monetary Fund, and central banks, that publish and discuss output growth and in-
flation probability distributions (Sánchez and Röhn, 2016; Prasad et al., 2019).

This thesis contributes to our understanding of tail risks in macroeconomics. The
general objective is to develop new tools to improve the measurement of tail risks
for forecasting purposes, and to study the factors that explain tail risks across fund-
ing markets and economic variables (i.e. credit, stocks, output growth, inflation, and
unemployment), for a specific economy or a broader set of countries. Two main ap-
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1 Introduction

proaches are used to understand tail risks, which reflect the need to analyze the
mechanisms via which risks are transmitted and to improve the forecasting perfor-
mance of tools currently used in the literature. The first of these approaches relates
financial shocks originating from the United States to global funding markets, us-
ing a quantile regression framework (Adrian et al., 2019). This approach is further
supported by a body of literature that reports that external shocks, such as changes
in US financial conditions, including monetary policy rates, could affect domestic
credit in other regions (e.g. Kalemli-Özcan, 2019; Bräuning and Ivashina, 2020b;
Di Giovanni et al., 2022). The second approach builds on the idea that despite the
popularity of the framework developed by Adrian et al. (2019), its forecasting per-
formance has not been extensively studied for many settings, including real-time
nowcasting (Ferrara et al., 2022; Carriero et al., 2022), point versus density fore-
casts (e.g. Adrian et al., 2019; Brownlees and Souza, 2021), other macroeconomic
variables (unemployment rate and inflation) (Kiley, 2021; Adams et al., 2021), and
for a wide range of countries (Brownlees and Souza, 2021).

This thesis comprises four original chapters that seek to address two problems
identified in the literature: i) How do US financial conditions impact funding mar-
kets (credit and stocks) in a large set of countries around the world under different
scenarios of macro-financial distress?; and ii) what role can be played by high-
frequency data, real variables, and machine learning techniques in improving the
forecasting performance of macroeconomic tail risk measures? To answer these
questions, the various chapters of this thesis extend the framework developed by
Adrian et al. (2019) to study different economic phenomena – specifically, credit
growth, stock returns, GDP growth, unemployment, and inflation – using differ-
ent methods, either to make inferences about parameters, or to produce point or
density forecasts, for a specific economy or a broader set of countries. Chapter 2
specifically addresses the first question, while Chapters 3-5 deal with the second.
Thus, in Chapter 2, I document vulnerable funding episodes around the world. In
Chapters 3 and 4, I analyze the role of high-frequency data and real variables in
forecasting tail risks, while in Chapters 3 and 5 I also explore new machine learning
techniques. Finally, Chapter 3 focuses on point forecasts, while Chapters 4 and 5
concern themselves with density forecasts.

International propagation of US financial shocks in funding
markets under stress

In Chapter 2, entitled “Vulnerable Funding in the Global Economy”, I study the
propagation of financial conditions in the United States to global financial markets.
Unlike previous studies examining the effect of financial conditions on real eco-

2



nomic activity (e.g. Adrian et al., 2019), I focus on a crucial intermediate step: that
is, how financial conditions in the United States impact funding markets (credit and
stocks) in a large set of countries around the world, especially during scenarios of
macro-financial distress. This distinction is important from a policy perspective, as
policies that seek to safeguard the financial stability of domestic economies would
expect to mitigate the adverse effects of large, negative financial shocks from the
US at this intermediate financial level. I also acknowledge that financial conditions
must be understood in a broader sense that includes changes in the first and second
moments of financial conditions (see Ludvigson et al., 2021). Lastly, I examine
what is the most likely reason for a given country’s vulnerability to changes in US
financial conditions, testing whether this vulnerability is due to the size or depth
of a country’s financial market or the strength of its financial connectedness with
the US (e.g. Alfaro et al., 2004; Kalemli-Özcan, 2019). My results show that the
answer depends on whether I am dealing with credit or stock markets, and, by so
doing, I provide fresh insights into this stream of the literature.

Forecasting macroeconomic risks

In the second part of my dissertation, I tackle the problem of producing accurate,
out-of-sample tail forecasts for output growth, unemployment and inflation. In
Chapter 3, entitled “Daily growth-at-risk: financial or real drivers”, I propose a
daily growth-at-risk approach, based on high-frequency financial and real indica-
tors, for monitoring downside risks in the US economy. This Chapter makes three
contributions to the literature. First, I show that the informational content of daily
financial and real economy indicators differs across time. Thus, in certain circum-
stances, forecasting accuracy depends heavily on such financial indicators as the
equity market volatility index or credit spreads; however, in other circumstances,
real economic indicators, such as the Aruoba-Diebold-Scotti business conditions
index (Aruoba et al., 2009), are better for improving forecasts. Here, the results
clearly point to the time-varying importance of real and financial variables. Second,
I contribute to the literature by using high-frequency financial and real indicators.
Unlike most studies that employ either quarterly (e.g. Adrian et al., 2019; Brown-
lees and Souza, 2021) or weekly indicators (Carriero et al., 2022) to forecast tail risk
to output growth, I estimate different models using daily predictors. Finally, I use
a battery of new shrinkage, regularization and dimensionality reduction techniques,
such as those afforded by LASSO (Belloni and Chernozhukov, 2011), elastic net
(Zou and Hastie, 2005), the adaptive sparse group LASSO (Mendez-Civieta et al.,
2021), and targeted predictors based on principal components analysis (Bai and
Ng, 2008; Lima et al., 2020), to produce tail forecasts and compare them with past
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candidates in the literature.
In Chapter 4, entitled “Daily Unemployment at Risk”, I further exploit the high-

frequency framework developed in Chapter 3 to produce unemployment density
forecasts. Although this chapter is fairly brief, its insights nonetheless are power-
ful. The study reported contributes to the unemployment-at-risk literature (Kiley,
2021; Adams et al., 2021), by providing real-time daily unemployment nowcasts to
inform policymakers at the highest possible frequency about the tail-risks surround-
ing current or near-future unemployment. This approach shows that a simple mixed
data sampling quantile model using the daily indicator of real economic activity
developed by Aruoba et al. (2009) can provide more precise density estimates than
the financial indicators hitherto used in the literature.

Finally, in Chapter 5, entitled “Forecasting Inflation Risk Around the Globe”, I
address the problem of forecasting density forecasts for a large panel of countries
(n = 75). By using a broader set of countries and employing state-of-the-art ma-
chine learning techniques, I make three contributions to the field. First, unlike pre-
vious studies (e.g. Banerjee et al., 2020; Lopez-Salido and Loria, 2022; Queyranne
et al., 2022), I compute inflation density forecasts for a larger panel of countries us-
ing a set of global factors as predictors corresponding to five regions. This provides
evidence that, in general, global inflation factors improve the accuracy of density
forecasts, while the previous literature has tended to focus on point estimates (e.g.
Ciccarelli et al., 2015; Kamber and Wong, 2020; Medeiros et al., 2021, 2022). This
eclectic approach is largely supported by evidence that inflation is largely a global
phenomenon. Second, while most studies in the literature only employ the quantile
framework developed by Adrian et al. (2019) to produce density forecasts, I use both
quantile regressions and random forest estimators (Athey et al., 2019). I show that
the latter provide superior predictive performance, as also documented in the recent
literature (Medeiros et al., 2021, 2022; Goulet Coulombe et al., 2022). Third, I con-
struct two inflation risk measures, namely the probability of high and low inflation,
across regions (see Lopez-Salido and Loria, 2022; Garratt and Petrella, 2022). In
this sense, I provide novel heterogeneous patterns of these measures across regions.

The working paper versions of Chapters 2-4 of this thesis can be found in:

• Chuliá, H., Garrón, I., & Uribe, J. M. (2021). Vulnerable Funding in the
Global Economy. Documents de Treball (IREA), (6), 1.

• Chuliá, H., Garrón, I., & Uribe, J. M. (2022). Daily Growth at Risk: financial
or real drivers? The answer is not always the same. Documents de Treball
(IREA), (8), 1.

• Chuliá, H., Garrón, I., & Uribe, J. M. (2022). Monitoring daily unemploy-
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ment at risk. Documents de Treball (IREA), (11), 1.

At the moment of depositing this thesis, two chapters have been submitted to
journals and are under "revise and resubmit": Chapter 2 in the Journal of Banking
and Finance, and Chapter 3 in the International Journal of Forecasting. The results
of Chapters 4 and 5 are preliminary and could be further improved in the future.
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2 Vulnerable Funding in the Global
Economy

2.1 Introduction

An influential set of recent studies has documented the significant predictive power
of financial conditions on real economic activity during distressed macroeconomic
scenarios, that is, on the left (and negative) tail of the GDP growth distribution. This
literature, pioneered by the works of Giglio et al. (2016) and Adrian et al. (2019,
2021), has coined the term Growth at Risk (GaR), which echoes the concept of
Value at Risk, widely used and understood by regulators and practitioners around
the world for at least the last two decades.1 In fact, the indicator has gained pop-
ularity among international regulators to the point of becoming part of the toolkit
of central banks and financial supervisors for monitoring financial stability. Hence,
estimating and reporting the lowest quantiles of the GDP distribution, predicted by
financial conditions, one or several quarters ahead, has become standard practice
(Prasad et al., 2019). This practice, which originated as a domestic economy exer-
cise, in which the aim is to predict the GDP of the US with an index of the financial
conditions of the same country, usually the National Financial Conditions Index
(NFCI)2, quickly became global in practice. Therefore, the ability of financial con-
ditions to predict the left tail of economic activity in a relatively large set of different
countries has also been examined and evaluated (e.g. Brownlees and Souza, 2021;
Arrigoni et al., 2020).

We contribute to this literature in three ways. i) First, unlike previous studies that
examine the effect of financial conditions on international real economic activity,
we focus on a crucial intermediate step: We study how financial conditions in the
US impact funding markets (credit and stocks) in a large set of countries around
the world, under macro-financial distress scenarios. In other words, we focus on

1See as well on the vulnerable growth literature the works by Kiley (2021), Adrian et al. (2021),
Loria et al. (2023), Figueres and Jarociński (2020), and Delle Monache et al. (2021).

2The NFCI calculated by Chicago’s Fed captures financial risk, leverage, and credit quality
within a single indicator. It offers a comprehensive view of US financial conditions in money debt
and equity markets alongside both traditional and shadow banking systems.
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2 Vulnerable Funding in the Global Economy

vulnerable funding instead of vulnerable growth. This intermediate step is crucial
because financial shocks do not transit directly, or in a vacuum, from the US to the
global economic activity. On the contrary, US financial conditions mainly impact
global economic activity by deteriorating funding opportunities for households and
firms around the world. This distinction is also important from a policy perspective
because it is at this intermediate financial level where policies that seek to safe-
guard the financial stability of domestic economies can expect to mitigate in some
way the adverse effects of the large, negative financial shocks that may emerge from
the United States market. In this respect, we document that US Financial conditions
have a larger and more significant impact on the lowest quantiles of credit and stock
prices on a global scale than on the central quantiles. ii) Second, also unlike the
previous literature, we acknowledge that financial conditions must be understood
in a broader sense that includes not only changes in the first moment of financial
conditions (as measured by the NFCI) but also changes in the second moment of
financial conditions (which are better approximated by the index of financial uncer-
tainty proposed by Ludvigson et al. (2021)).

First and second moment shocks impact global funding differently. On one hand,
credit growth largely responds to first moment shocks in US financial conditions
four quarters after they originated, which is consistent with a reduction in interna-
tional funding sources for financing domestic investment, and therefore with the in-
ternational credit view for the transmission of financial shocks to different countries.
On the other hand, stock markets react more sensitively and rapidly (mainly within
a quarter) to second moment shocks. This latter effect is more consistent with an
expectation channel of the transmission of shocks, which in turn is associated with
probable portfolio rebalancing by international portfolio holders, following an in-
crease in US financial uncertainty. We empirically show that the two channels, the
credit view and the portfolio view are complementary, and both are necessary to un-
derstand how financial conditions in the US spillover into the rest of the world. iii)
Third, we examine what is the most likely reason for a given country’s vulnerability
to changes in US financial conditions. Namely, we test whether such vulnerability
can be explained by the size or depth of a country’s financial market as it can be
inferred from previous studies (e.g. Alfaro et al., 2004; Kalemli-Özcan, 2019), or
if the explanation is rooted in the strength of the financial connectedness of a given
country with the US. We show that the answer depends on whether we focus on
credit or stock markets. In the case of credit markets, the most persistent and nega-
tive outcomes in terms of vulnerability are clearly more associated with the size or
depth of the market while, in the case of stock markets, vulnerable funding episodes
are associated with the financial closeness to the US. This result sheds new light on
the problem compared to the previous literature, which does not employ the large
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number of countries that we consider, and also does not focus on macro financially-
distressed scenarios when funding is vulnerable.

To achieve our objectives we analyze vulnerable funding around the world. Vul-
nerable funding consists of two indicators: Credit at Risk (CaR) and Equity at Risk
(EaR). CaR refers to the impact of US financial conditions (including financial un-
certainty) on the lowest quantiles of real credit growth, and EaR refers to the impact
of stock market prices on the lowest quantiles. Loans and shares are the two main
funding sources used by corporations to finance their operations, especially their
investments (Parsons and Titman, 2008; Fama and French, 2012). Therefore, eval-
uating the impact of the financial conditions of the world’s largest economy on the
lowest quantiles of the growth of credit and stock prices of the rest of the world
is a crucial gap in the literature that we aim to fill. Our approach intends to be
comprehensive, thus we include more than 40 countries in our estimations, with
information spanning six decades (from 1960 to 2019) in most cases. Our data
set consists of economies in all stages of development and comprises all sorts of
recessionary and non-recessionary periods. To the best of our knowledge no previ-
ous article within the vulnerable growth literature has used such a large data set to
back-up its claims.

Methodologically speaking, thanks to the multinational point of view of our re-
search, we are able to circumvent two controversial issues regarding the estimation
of effects in the vulnerable growth literature. The first issue is related to the lack of
relevant controls on economic activity at the national level, which are required to as-
sess the effect of financial conditions on future growth. The second issue is related
to the presence of global macroeconomic and financial cycles that need to be con-
sidered when the propagation of shocks on a global scale is estimated. Regarding
the first issue, Reichlin et al. (2020) and Plagborg-Møller et al. (2020) emphasize
that the predictive power of financial conditions seems to disappear once the model
controls for (enough) real-economy variables. Therefore, the deterioration of finan-
cial conditions might be more of an endogenous response of the system than of an
exogenous shock that deteriorates future real economic activity. In other words,
by not having enough controls on real variables, the vulnerable growth literature
might be overstating the true impact of financial conditions on future economic ac-
tivity. This identification issue is related to the problem of identifying the effects of
real and financial uncertainty on the real economy (Ludvigson et al., 2021; Carriero
et al., 2020), and also to the extensive controversy in the macroeconomics literature
on the extent to which we can isolate the effects of policy variables, like the interest
rate, on the real economy series3, which is of course an unsolved problem.

3See Nakamura and Steinsson (2018) for a recent summary on the non-neutrality of monetary
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2 Vulnerable Funding in the Global Economy

To estimate the effects of US financial conditions on global credit and equity
markets, we follow a conservative path. We assume that shocks to US financial
conditions do not come from the domestic variables of each individual country in
our sample, although they may be influenced by common shocks to all markets
external to the US economy. In other words, US financial conditions are not in-
fluenced by a small shock to the credit market in the Netherlands or Mexico, but
they may be influenced by sufficiently large shocks that affect many economies si-
multaneously. This assumption is backed-up by recent literature that documents the
dominant role of the US economy in relation to other countries, and in particular
its monetary policy, which significantly influences the commonality of business and
financial cycles around the world (Ammer et al., 2016; Jordà et al., 2019; Miranda-
Agrippino and Rey, 2020a,b). At the same time, by controlling for global factors,
we emphasize that US shocks might be correlated with global financial and eco-
nomic activity shocks, which cannot be ruled out by only stressing the dominance
of the US economy. This point has been explored for instance by Chudik and Pe-
saran (2015) and Cesa-Bianchi et al. (2021). Lacking control for these common
factors will probably lead to a bias of omitted-variables in the estimated effects on a
domestic level. Thus, in short, while we assume that domestic economic variables
in each country are not the origination of the financial conditions shocks to the US,
we acknowledge the presence of common factors in the global economy which are
not caused by UF financial conditions and indeed can influence them. This strategy
can be followed only within an international framework as ours, and in this way, it
moves away from the debate of the identification of financial conditions effects on
real and nominal variables within a single economy that we mentioned before.

Our study is also related to the large corpus of theoretical and empirical liter-
ature that has expanded the credit-channel to international grounds. It has there-
fore contributed to explaining the transmission of financial shocks across the world
economy (Peek and Rosengren, 1997; Cetorelli and Goldberg, 2012; Ivashina et al.,
2015; Bruno and Shin, 2015; Choi, 2018; Choi et al., 2018; Baskaya et al., 2017;
Gete and Melkadze, 2018; Bräuning and Ivashina, 2020b; Di Giovanni et al., 2022,
among others). We revise this literature and connect it with our contributions in the
next section, which, in short, aim to help regulators foresee future risks to funding
opportunities for domestic investment and consumption, and therefore to economic
activity after a financial shock to the US economy has been observed (as occurred
for instance during the Great Recession). We also aim to document the main way
in which vulnerable growth occurs, which is precisely through the propagation of
financial shocks across the global financial markets, i.e., via vulnerable funding.

policy.
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2.2 The international spread of US financial conditions

The rest of this document is organized as follows: Section 2.2 briefly revises two
perspectives in the literature that can explain the transmission of US financial con-
ditions to the international funding markets, namely the credit view and the portfo-
lio view, and also revise the two main explanations underlying vulnerable funding,
market depth and market connectedness. Section 2.3 outlines our methodology.
Section 2.4 describes our data and sources, and presents details about the construc-
tion of our macroeconomic and financial global factors. Section 2.5 contains our
main empirical results and discussion. Section 2.6 concludes.

2.2 The international spread of US financial
conditions

In addition to the vulnerable growth literature summarized in the introduction, our
study is related to two different sets of studies: Those which emphasize the channels
through which financial shocks transit from a central economy (generally the US)
to the rest of the global markets, and those which examine the macroeconomic de-
terminants of financial vulnerability to external shocks. Both sets of studies are too
rich to be summarized in this subsection, so we focus on those studies that directly
provide a baseline for understanding our main results. In the former group of stud-
ies we find a subset of articles that highlight the role of credit in the international
propagation of financial shocks, which we label as the credit view, and a second
subset that emphasizes the transmission of financial shocks through expectations,
which we include in the portfolio view of the transmission of shocks.

In the second group of studies we find a great majority of articles that point to
the size and depth of the financial markets as the main determinants of financial
vulnerability to external shocks, we have therefore labeled them as the financial de-
velopment determinant. There is also a second subset that stresses the importance
of financial connectedness across the global financial markets as the main explana-
tory factor, which we have labeled the financial connectedness determinant. Both
channels and determinants are important for our different definitions of financial
conditions, based on first and second moment indicators. The classification does
not claim to be either exhaustive or exclusive. Indeed, in referenced studies the
channels and determinants are closely examined. For instance, as highlighted by
Alfaro et al. (2004), the role of local financial markets is crucial in enabling for-
eign direct investment. The more developed the local financial markets, the easier
it is for credit-constrained entrepreneurs to start their own business. Large varieties
of intermediate goods imply positive spillovers to the final goods sector and, as a
consequence, financial markets allow the backward linkages between foreign and
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domestic firms to turn into FDI spillovers.
Hence, our revision is more oriented towards serving as a starting point for under-

standing the empirical results in the next section, as well as how these relate to our
working hypothesis explained in the introduction about the existence of vulnerable
funding episodes following first and second moment shocks to financial conditions
in the US.

2.2.1 The channels

A. The international credit view

According to this literature, external factors, such as US interest rates and global fi-
nancial conditions, are key determinants of capital flows, especially in the short run.
Which is important because, as highlighted by Kalemli-Özcan et al. (2020), there
is evidence of a strong association between capital flows, GDP volatility, and finan-
cial crises. This general view consists in understanding that international creditors
may react to a change in financial conditions, including monetary policy stances
in their original economies, by reducing their exposition to foreign markets, to sat-
isfy risk-taking constraints on their international credit portfolio holdings. Thus, as
emphasized by Bräuning and Ivashina (2020b), some intended consequences of the
US monetary policy within its domestic economy, may end up having intended con-
sequences on a global basis (i.e. spillover of "prudent risk-taking" or "productive
risk-taking").

In these lines, Bruno and Shin (2015) highlight the role of financing costs of
banks, which are closely linked to the reference policy rate chosen by the central
bank. If funding costs affect decisions on how much exposure to take on, monetary
policy will then affect the economy through greater risk-taking by the banking sec-
tor. Di Giovanni et al. (2022) also document that an easing in global financial con-
ditions leads to lower borrowing costs and an increase in local lending. The shocks
on credit can potentially transit via international banks, as in Cetorelli and Goldberg
(2012), via foreign banks lending elsewhere, as in Bräuning and Ivashina (2020a)
and Ivashina et al. (2015), via domestic banks borrowing from foreign banks and
global investors over the global financial cycle, as in Baskaya et al. (2017), or even
via credit trade by multinational establishments (Lin and Ye, 2018).

B. The international portfolio view

Even if we abstract from the direct link that provides lending, it could also be the
case that if a peak of uncertainty in the US associated with a worsening of finan-
cial conditions is interpreted as a signal of future higher domestic vulnerability in
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other countries, this increase may lead to higher precautionary savings which do not
remain within the domestic economies but instead flow abroad, reducing domestic
demand (Fernández-Villaverde et al., 2011). Similarly, it could lead to a contraction
in banks’ credit supply after facing greater uncertainty, which can be rationalized
by the arguments explored by Bordo et al. (2016), Alessandri and Mumtaz (2019),
Alessandri and Bottero (2020).

We contribute to the previous literature on the transmission channels in two ways:
first, we focus on the most vulnerable market scenarios, automatically identified by
estimating Credit at Risk and Equity at Risk statistics, which has not been done
before (all the aforementioned literature focuses on the average scenarios, and most
studies center on a small number or individual countries). Therefore, we acknowl-
edge the non-linear dimension emphasized by the consensus of the macroeconomic
literature in recent years, which is necessary for explaining economic collapses (Iso-
hätälä et al., 2016; Brunnermeier and Sannikov, 2016; Gertler and Gilchrist, 2018).
Second, we jointly analyze the impacts of first moment shocks proxied by the NFCI,
and second moment financial conditions proxied by the index of financial uncer-
tainty of Ludvigson et al. (2021). Thus we are able to disentangle the entire effect
of financial conditions on the global economy. Our results emphasize the role of
the portfolio view for the propagation of second moment financial condition shocks
and of the credit view for understanding the propagation of first moment financial
conditions shocks.

2.2.2 The determinants

A. Size and depth of the domestic financial market

The previous literature reports that global financial conditions have an asymmetric
impact on the economic activity of emerging and advanced economies. For ex-
ample, Carrière-Swallow and Céspedes (2013) find that in comparison to the US
and other developed countries, emerging economies suffer much more severe falls
in investment and private consumption following an exogenous uncertainty shock.
They present evidence on the correlation between the dynamics of investment and
consumption and the depth of financial markets. The authors emphasize the role of
financial institutions and argue that the lack of development of local financial mar-
kets can limit the economy’s ability to take advantage of potential FDI spillovers.
Alfaro et al. (2004) evaluate the various links among the FDI, financial markets, and
economic growth. They conclude that FDI alone plays an unclear role in economic
growth, and that it is well-developed financial markets and institutions that enable a
country to take advantage of increases in foreign investment. Kalemli-Özcan (2019)
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shows that changes in US monetary policy affect capital flows in and out of emerg-
ing markets more than they do in advanced economies, since the capital flows of
emerging markets are more risk sensitive, and US policy affects the risk sentiments
of global investors.

Other authors such as Bräuning and Ivashina (2020b) document that global bank
flows driven by US monetary policy affect credit conditions in emerging markets,
at the firm level, which confirms that global banks contracting credit is not com-
pensated by an increase in credit by local banks. On the contrary, it leads to a
general credit contraction, an increase in interest rate spreads, and finally to a lower
probability of refinancing.

The same narrative can be tracked in the previous literature regarding the trans-
mission of international stock market shocks to domestic economies across the
world. For instance, Bhattacharya et al. (2019) document that unanticipated changes
in US uncertainty have significant effects on financial and macroeconomic emerg-
ing market economies. The transmission is traced back to a depreciation of the local
currency of domestic economies, which leads to a decline in local stock markets and
increases long-term interest rate spreads in relation to the US. This is followed by a
decrease in capital inflows into the domestic economies.

B. Financial connectedness with the US

It is important to think of this literature as a complement of the studies in subsec-
tion A, which emphasizes the role played by the size and depth of the domestic
markets that receive the shock, instead of as an alternative explanation. To illustrate
this point, Fink and Schüler (2015) emphasize the importance of financial linkages
with the US rather than via bilateral trade to explain the propagation of financial
condition shocks across the global economy. However, precisely for this reason the
transmission to emerging market economies (EME) may occur to a different extent
than the transmission to advanced economies. Fink and Schüler (2015) find that,
indeed, an adverse shock to the overall US financial system dries up capital flows
from the US to the EME and that this decline in cross-border lending results in
tighter financing conditions for the EME.

Alfaro and Chen (2012) use granular data to research the way in which multi-
nationals around the world responded to the 2008 crisis compared to local firms.
They explore three channels through which FDI affects establishment performance:
production linkages, financial linkages, and multinational networks. These authors’
results show that FDI flows played an important although heterogeneous role in ex-
plaining the performance of multinational firms during the Global Financial Crisis.
They emphasized both the role of FDI linkages in the international transmission
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of shocks and the important interaction of the various facets that determine these
transmissions, from considerations of financial constraints to the engagement of
some firms with vertical production linkages.

Lin and Ye (2018) explore a trade credit channel through which FDI firms can
propagate global liquidity shocks to host countries, despite these host countries im-
plementing tight controls on portfolio flows. This is important because, in practice,
while many developing countries impose tight restrictions on non-FDI flows, they
are significantly open to FDI inflows. These authors show that indeed a positive
global liquidity shock eases raising international funds for FDI firms. This in turn,
strengthens the advantage of FDI firms in providing trade credit to local downstream
firms. In short, there is a trade credit channel through which FDI firms can propa-
gate global liquidity shocks to host economies despite the presence of tight controls
on non-FDI financial flows.

In terms of contributions, our multi-country and comprehensive approach allows
us to test which factor best explains the heterogeneous dynamic of Credit at Risk
and Equity at Risk indicators that we estimate for the cross-section of countries. We
find that the vulnerability of credit markets is better explained by the size or depth
of credit markets, while financial connectedness to the US, measured as the relative
importance of US direct foreign investment to a country’s GDP, better explains the
vulnerability of stock markets.

2.3 Methodology

To avoid the criticisms mentioned in the introduction regarding the possible en-
dogeneity of financial first and second moment shocks with respect to credit and
stock markets within a single economy, we estimate multi-country factor augmented
quantile-regression models. Our models consider directly the influence of common
real and financial factors of a global nature, on the domestic economic series. Thus,
they allow us to better isolate the causal effects of financial conditions on funding
markets around the world.

Our base-line specification for each country i is given by Equation (2.1):

Qτ (yi,t+h) = α0i (τ) +β0i (τ)yi,t+β1i (τ)us.fct+ δi (τ)′Xt, (2.1)

where, i= 1, . . . ,N , refers to the country, h= {0,1,4}, to the forecasting horizon,
and τ = {0.05,0.10.0.20,0.50} to the quantile of the dependent variable. yi,t+h is
either the quarterly change of real credit growth in logarithms (Credit at Risk) or
the quarterly change of the stock price index in logarithms (Equity at Risk), at time
horizon t+h. On its side, us.fct is the US financial condition indicator, which can
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be either the NFCI of Chicago’s Fed or the Financial Uncertainty Index provided
by Ludvigson et al. (2021), publicly available on the webpage of the authors. Xt

consists of a global macroeconomic factor and a global financial factor. α0i,β0i,β1i

and δ(τ) denote the parameters corresponding to the τ -th quantile.
We emphasize that Qτ (yi,t+h) is a conditional quantile of the response variable,

and for this reason there is not a random term in Equation (2.1). In other words,
Qτ (yi,t+h) characterizes yi,t+h but it is deterministic in nature. Nevertheless, we
can present Equation (2.1) alternatively in the following way:

yi,t+h = α0i (τ) +β0i (τ)yi,t+β1i (τ)us.fct+ δi (τ)′Xt+ εi,t, (2.2)

where εi,t is a random noise that is assumed to follow the following quantile-
restriction P [εi,t ≤ 0|α0i(τ) +β0i(τ)yi,t +β1i(τ)us.fct + δi(τ)′Xt] = τ . The pre-
sentation of the model in Equation (2.2) emphasizes the factor structure of the CaR
and EaR statistics. The model for each country is estimated using individual con-
ditional quantile regressions as proposed by Koenker and Bassett (1978), but yi,t+h
in all countries is a function of common factors, us.fct and Xt, which do not have
crosssectional variation but only vary over time, via a country-specific intercept α0i

and countryspecific slope coefficients ( β0i,β1i, δi ). All the variables were normal-
ized before estimation to have zero mean and unitary variance. In this way, we are
able to compare the magnitude of the effects across different countries.

The model in Equation (2.1) expands a traditional conditional mean regression,
in the sense that it explains the whole conditional time-series distribution of credit
growth and stock returns. In particular, the parameters are estimated by solving the
following optimization problem:

Θ̂(τ) = argminΘ(τ)E
[
ρτ
(
yi,t+h−Qτ (yi,t+h)

)]
, (2.3)

where Θ(τ) = [α0i(τ),β0i(τ),β1i(τ), δi]′ are the parameters, and ρτ is a loss func-
tion given by ρτ = (1− τ)1({εi,t+h < 0})|εi,t+h|+ τ1({εi,t+h > 0})|εi,t+h|, where
εi,t+h is the error term and with 1({εi,t+h < 0}) taking the value of 1 when the sub-
script is true and 0 otherwise. As it is well known, the mathematical formulation in
Equation (2.3) leads to the solution of a linear programming optimization problem
that we have omitted here. Its basic structure and the counterpart algorithm solution
can be found in Koenker (2005).

Quantile regressions have been employed in the factor models literature since at
least Ando and Tsay (2011). We estimate the global factors using PCA, following
the tradition of the factor literature, as described for example by Bai and Ng (2008,
2020) and Stock and Watson (2012), and also the approach of aforementioned stud-
ies on GaR. An alternative to Equation (2.1) would be to incorporate the global
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factors, as Chudik and Pesaran (2015) did, using the crosssectional means for the
variables in the data set. This would result in a quantile factor model in the form of
Harding et al. (2020). Both these authors’ approaches and our approach are inspired
by the necessity to incorporate common factors to model the dynamics of the cross-
sectional units. These are fundamental when multinational comparisons are carried
out in order to reduce the risk of omitting relevant confounding variations. Note as
well that we do not have a balanced panel (and we do not require it). Our approach
is more flexible than that because our factors use all the available cross-sectional
units at each period in the sample. However, the country-specific estimates depend
on the number of timeseries units available for each country, which in most cases
run from 1960Q1 to 2019Q4, and only in three cases consist of shorter samples
(which are indicated in the results).

2.4 Data

Our dataset includes a set of macroeconomic and financial variables for advanced
and emerging economies and US data on financial conditions. Specifically, we use
a long quarterly data panel constructed and provided by Monnet and Puy (2019),
which covers real Gross Domestic Product (GDP), credit, consumer prices, nom-
inal stock prices, and sovereign bond yields for advanced and emerging countries
over the whole post-war period. Compared to other similar sources, such as the
Organization for Economic Cooperation and Development (OECD) or the Bank of
International Settlements (BIS), the coverage gains for these data are around 20% to
30% for advanced economies, and more than 100% for emerging economies. More
specifically, real GDP is available for 37 countries, real credit for 45 countries, con-
sumer prices for 48, nominal stock prices for 25 countries and bond yields for 18,
with a sample size that ranges between 1950Q1 and 2019Q4 per country.4 We re-
strict our sample to starting in 1960-1Q because of poor data quality for the earlier
periods (we observed very extreme values and large volatility). For the purposes of
our analysis, we transform our variables to achieve stationarity before estimation.
Table 2.A2 in the Appendix shows the transformations applied to each series and
Figure 2.A1 plots both the untransformed and transformed series with their associ-
ated unit root tests.5

Similarly to US data on financial conditions, we use either the National Financial
Condition Index6or the financial uncertainty indicator proposed by Ludvigson et al.

4See Table 2.A1 in the Appendix for details on data availability, Table 2.A2 for details on trans-
formations of the variables, and Table 2.A3 for details on summary statistics.

5We test for unit roots using the Augmented Dickey-Fuller (ADF).
6The NFCI is constructed and published by the Federal Reserve Bank of Chicago and it is
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(2021)7. On one hand, following the seminal work of Adrian et al. (2019), NFCI
is considered to be one of the most relevant predictors of the lower conditional
quantiles of output growth for the US (e.g. Arrigoni et al., 2020; Brownlees and
Souza, 2021; Beutel et al., 2020). Based on Brave et al. (2011), the NFCI is a
weighted average of 105 measures of financial activity, each scaled to have zero
mean and one standard deviation. Positive NFCI values imply that US financial
conditions are tighter than average. Since the NFCI has weekly periodicity, for
our analysis we aggregated it by taking the quarter averages for the overall sample,
starting at 1971Q1. This implies that for our econometric estimations that include
this variable, the sample is reduced to around 200 observations. On the other hand,
the financial uncertainty index is constructed by Ludvigson et al. (2021) using a
rich dataset of variables that fully characterize US financial markets. The authors
of the index estimate a factor model for the large dataset, and predict each variable
using their latent factor structure. Then, they estimate the time-varying conditional
volatility of the residuals of each series and determine the average across all of them
to obtain the financial uncertainty indicator.

As stated above, in our estimations we include a global macroeconomic factor
and a global financial factor to control for the commonality of business and financial
cycles previously emphasized by the literature. The central idea of our approach is
to summarize fluctuations in macroeconomic and financial variables for a large and
heterogeneous panel of advanced and emerging economies by using factor models.
In particular, we estimate two global factors: the first factor, which we refer to as
the global financial factor (N = 89;T = 240, from 1960Q1 to 2019Q4) contains real
credit growth, stock returns and changes in sovereign bond yields; and the second
factor, which we refer to as the global macroeconomic factor (N = 174;T = 240,
from 1960Q1 to 2019Q4), also includes real GDP growth and inflation on top of the
abovementioned variables.

We estimate these common factors by a two-step procedure that combines first-
step estimation via Principal Component Analysis (PCA)8 with the Kalman filter,
where the latter is used to compute recursively the expected value of the common
factors, which is iterated until convergence of the Expected-Maximization (EM) al-
gorithm (Doz et al., 2012). This procedure is especially relevant for our work as
we deal with some missing data for specific countries at the end of the sample. We
compute the factors from the stationary variables and assume they can be repre-

available at: https://www.chicagofed.org/publications/nfci/index.
7The Financial Uncertainty indicator is available for the US on the web page of one of its authors,

at: https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes.
8In order to estimate principal components in the first stage, missing values are imputed by the

average of respective country-specific variables.
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2.4 Data

sented by a VAR(1) process. However, the two factors (global macroeconomic and
financial) estimated using the two-steps algorithm are very similar to the factors
computed by direct estimation via PCA. Therefore, we opt for reporting only the
latter in our results (see Table 2.A4).

Figure 2.1 plots the NFCI jointly with the global macroeconomic and finan-
cial factors over the sample period. Consistent with Miranda-Agrippino and Rey
(2020b), we find that our global factors point to the existence of a global cycle
that is linked to the US recession periods as identified by the NBER (red shaded
areas). These global factors, the NFCI and the financial uncertainty index share a
pronounced contemporaneous common component, especially around the global fi-
nancial crisis. In this period, we notice a sharp movement of the global factors and
a tightening in US financial conditions. This suggests that, in order to explore the
international transmission of financial fragility in the US to the conditional distri-
bution of global credit markets and stock markets, we should control for the con-
temporaneous global and financial cycles. Thus, we should focus on the additional
"marginal" information provided by the indicator of financial fragility in the US. We
also observe that the NFCI and the financial uncertainty index share some common
spikes, e.g. around the 1973-1975 recession due to the oil crisis coupled with the
stock market crash, and during the global financial crisis, but appear to be capturing
different aspects of US financial fragility. In particular, the NFCI is more volatile
and moved up notably during the recession periods in the early 80s, while the uncer-
tainty index stayed subdued over the same period. However, the opposite happened
in the late 1990s and during the collapse of the speculative dot-com bubble in the
early 2000s. Moreover, during 2018-2019 the uncertainty index rose significantly
while the NFCI remained stable.

Finally, to assess cross-country heterogeneity, we construct three variables related
to the size of credit and stock markets, respectively, and financial interconnection
with the US. Specifically, we measure the size of credit markets by the annual av-
erage of the credit to GDP ratio for each country and the size of stock markets by
the annual average of the market capitalization to GDP ratio. This data has been
collected from the World Bank database9 and, in both cases, the time span is from
1960 to 2019. Financial interconnection with the US is measured by the total direct
investment of the US as a percentage of the country’s GDP (for the sample period,
1989 to 2019). To this end, we compute for each country the maximum value of
US investment inflows relative to its GDP.10 We use historical data on US direct

9Credit refers to financial resources (loans, securities, and other claims) provided to the private
sector by banks. Market capitalization is the share price times the number of shares outstanding for
listed domestic companies.

10Results are robust when we use the average instead of the maximum value.
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investment abroad from the National Bureau of Economic Research and nominal
GDP from the International Monetary Fund statistics.11

Figure 2.1: Global factors and US financial conditions

Sources: Chicago National Financial Condition Index (NFCI) and author’s computation.
Note: Standardized variables. Time span 1960Q1 to 2019Q4. Red shaded area represents NBER
recessions at the end of the period.

2.5 Results

First, we present our estimation results of the impact of shocks due to US financial
conditions on credit growth and stock returns. We distinguish between changes in
the first moment of financial conditions (as measured by the NFCI) and changes in
the second moment of financial conditions (as measured by the index of financial
uncertainty proposed by Ludvigson et al. (2021)). We then assess the heterogeneity
on the vulnerability of credit and stock markets to US financial conditions across
countries. First, we graphically show our results sorting the countries according to
different measures related to the size of credit and stock markets, and the relative
importance of US foreign investment for each country. Finally, we carry out cross-
sectional regressions that use as input the quantile slopes of CaR and EaR estimated
in the first round of regressions, and as explanatory variables the ones mentioned
above.

11See Table 2.A5 in the Appendix for information on these variables.
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2.5.1 Impact of NFCI shocks on global markets

Table 2.1 summarizes the estimation results for real credit growth as the depen-
dent variable for quantiles τ = {0.05,0.10.0.20,0.50} and for forecasting horizons
h = {0,1,4}. We run two different regressions. The first one only includes the
NFCI while the second one controls for the global financial and macroeconomic
factors. The table reports the following information: the first and last quartiles of
the distribution of estimated coefficients (q25-q75), the proportion of countries for
which the variable is statistically significant at a 90% confidence level (Sig.), and,
for the NFCI, it is also shown the proportion of countries that display negative and
significant quantile slope coefficients (Sig. < 0).

Three main findings emerge from the results in Table 2.1. First, the impact of
the NFCI on real credit growth is more frequently (and significantly) negative on
the lower quantiles than on the central quantiles of credit growth. In other words,
the proportion of countries for which the effect is significant, is much higher in
the lower quantiles. This result suggests that US financial fragility is an important
predictor of downside risks to real credit growth in the global economy. Second,
our results hold when we control for global financial and macroeconomic factors,
i.e., the performance of the model including the global factors is basically indis-
tinguishable from the model including only the NFCI. Third, the results also hold
irrespective of the forecasting horizon (h = {0,1,4}) but the highest percentage of
countries for which the impact of NFCI on the quantile at τ = 0.05 (0.10) of real
credit growth is statistically significant and negative is obtained when h = 4, with
27% (30%) for 44 countries. This suggests that the global economy requires one
year to fully transmit most of the first moment shocks of US financial conditions
to the rest of the credit markets in the world, which is consistent with a credit view
explanation of the transmission of shocks, i.e., deterioration of financial conditions
seems to generate a reduction in international funding sources for financing domes-
tic investment, which fully materializes one year after the shock.

Interestingly, the forecasting power of NFCI on the conditional distribution of
credit is more heterogeneous than the effect of the other covariates in all our speci-
fications. That is, US financial conditions clearly impact the negative tail of credit
growth of a higher number of countries than in the case of the average quantiles,
while the other variables, whether they are global common factors or idiosyncratic
characteristics, exert a more homogeneous effect across the conditional distribution
of credit.

From Table 2.1 we also see that the impact of financial conditions in the United
States is very heterogeneous across countries. While it is a relevant predictor of
negative credit dynamics at least four quarters ahead for around 25− 30% of our
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sample, it is not for the rest of the countries. Moreover, the impact of the three
global factors, namely, two global factors and the US financial conditions index,
vary greatly across countries. That is, in most of the cases the effects contained be-
tween the first and the third quartiles of the cross-sectional distribution of countries
include both positive and negative magnitudes, meaning that global factors impact
credit creation around the world heterogeneously.

Table 2.2 summarizes the estimation results for stock returns as the dependent
variable. Again, we run two models for each quantile of the dependent variable (τ =

{0.05,0.10.0.20,0.50}) and forecasting horizon (h = {0,1,4}). The first model
only includes the NFCI while the second also considers controls for the global fi-
nancial and macroeconomic factors. The table reports the following information:
the first and last quartiles of the distribution of estimated coefficients (q25-q75), the
proportion of countries for which the variable is statistically significant at a 90%
confidence level (Sig.); for the NFCI, the proportion of countries that are associated
with negative and significant coefficients is also shown (Sig. < 0). The results show
that the highest impact of US financial conditions on the left tail of conditional stock
returns is observed when h = 0, i.e., NFCI significantly explains downside risk in
stock markets in a contemporaneous fashion. This key result is observed even if
we control for global financial and macroeconomic factors, as the percentage of
countries for which the NFCI coefficient is statistically significant goes from 32%

(τ = 0.05 quantile ) to 48% (τ = 0.10 quantile), out of 25 countries. Interestingly,
the contemporaneous impact at the median is significant for a larger proportion of
countries (60%), but this percentage drops to 12% when we control for the global
factors. At horizons h= 1 and h= 4, the effects of NFCI on stock markets are less
pronounced, both at the lower tail and at the central quantiles.

An interesting pattern that confirms that the US is the probable origin of shocks to
the global economy can also be seen in Table 2.2. This pattern agrees with previous
literature on global cycles, and also validates our multinational approach. Namely,
at h= 1, local financial conditions in the United States exert a significant impact in
around 4-12% of the countries of our sample, for quantiles between τ = 0.05 and
0.20, while the global financial factors impact the same quantiles for 12-16% of
the countries and the global macroeconomic factors for 0-12%. In contrast, when
h = 4, the impact of the US domestic financial conditions only exert a significant
influence in 4-12% of the countries, while the global financial and macroeconomic
factors have gained in significance to affect 40-52% and 28-64% of countries, re-
spectively. This would be the case if one year after the US shock, this original shock
has been fully transmitted to the global economy, and the non-linear amplification
mechanisms operating in financial markets on a global scale are responsible for the
newest sources of financial fragility in the global economy.
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Once again, the effects across countries at the lowest quantiles of the stock market
growth are heterogeneous. That is, the interquartile range of the cross-sectional
distribution of countries includes both positive and negative values, not only for
the financial condition index, but also in the case of macroeconomic and financial
global factors, indicating heterogeneous risksharing across countries. While a large
fraction of the countries react negatively to a deterioration of either the financial
conditions in the US or the two global factors, most of them do not react or even
react positively to the shock.

One way in which the transmission of shocks may occur across countries is
through spillover effects of the "prudent risk-taking" or "productive risk-taking"
channel of monetary policy. This is a channel that leads to increased risk-taking by
banks in response to monetary policy easing, which is consistent with traditional
portfolio allocation models. Namely, lower policy rates make riskier investments
more attractive.

Importantly, the largest effects of US financial fragility on credit markets are
observed one year after the realization of the shock, suggesting that US financial
conditions can be used as a predictor of the future vulnerability of domestic credit
conditions by regulators and central banks around the globe. On the contrary, the
effects on stock markets are mainly contemporaneous, which prevents this indicator
being used to forecast future prices or as an early warning indicator that alerts about
future limitation of internal (equity) funding.
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Table 2.1: Quantile regressions, Impact of NFCI on real credit growth (CaR)

τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.50

Regressions for h= 0

US financial conditions indicator

NFCIt
q25-q75 [-0.32;0.07] [-0.22;0.02] [-0.14;0.05] [-0.05;0.08]
Sig.<0 0.25 0.16 0.14 0.07

US financial conditions indicator + Global factors

NFCIt
q25-q75 [-0.25;0.02] [-0.24;0.01] [-0.16;0.02] [-0.06;0.07]
Sig.<0 0.18 0.14 0.25 0.07

GFINt
q25-q75 [0.02;0.56] [0.00;0.56] [0.03;0.52] [0.13;0.52]
Sig. 0.25 0.34 0.45 0.5

GMACROt
q25-q75 [-0.08;0.63] [-0.1;0.52] [-0.05;0.53] [0.11;0.54]
Sig. 0.27 0.3 0.45 0.5

Regressions for h= 1

US financial conditions indicator

yit
q25-q75 [0.05;0.32] [0.07;0.36] [0.06;0.35] [0.09;0.43]
Sig. 0.30 0.48 0.59 0.70

NFCIt
q25-q75 [-0.28;-0.02] [-0.24;-0.06] [-0.19;-0.01] [-0.08;0.02]
Sig.<0 0.23 0.25 0.30 0.07

US financial conditions indicator + Global factors

yit
q25-q75 [0.06;0.30] [0.05;0.35] [0.09;0.37] [0.09;0.43]
Sig. 0.36 0.48 0.57 0.68

NFCIt
q25-q75 [-0.26;-0.02] [-0.24;-0.03] [-0.17;-0.05] [-0.06;0.06]
Sig.<0 0.16 0.27 0.25 0.02

GFINt
q25-q75 [-0.45;0.37] [-0.27;0.23] [-0.16;0.17] [-0.08;0.19]
Sig. 0.30 0.23 0.25 0.30

GMACROt
q25-q75 [-0.4;0.40] [-0.24;0.23] [-0.11;0.26] [0.00;0.27]
Sig. 0.30 0.23 0.27 0.39

Regressions for h= 4

US financial conditions indicator

yit
q25-q75 [0.24;0.57] [0.32;0.55] [0.34;0.56] [0.33;0.62]
Sig. 0.61 0.80 0.89 0.98

NFCIt
q25-q75 [-0.41;0.02] [-0.28;-0.02] [-0.22;0.00] [-0.09;0.02]
Sig.<0 0.25 0.20 0.34 0.18

US financial conditions indicator + Global factors

yit
q25-q75 [0.29;0.56] [0.27;0.60] [0.33;0.58] [0.34;0.60]
Sig. 0.68 0.77 0.84 0.98

NFCIt
q25-q75 [-0.32;-0.01] [-0.31;-0.02] [-0.22;-0.02] [-0.07;0.04]
Sig.<0 0.27 0.30 0.3 0.14

GFINt
q25-q75 [-0.48;0.11] [-0.32;0.19] [-0.18;0.20] [-0.05;0.15]
Sig. 0.16 0.09 0.20 0.16

GMACROt
q25-q75 [-0.49;0.05] [-0.37;0.15] [-0.23;0.16] [-0.03;0.16]
Sig. 0.16 0.20 0.20 0.18

Note: Sig. denotes proportion of countries for which the variable is statistically significant at 90%
confidence level; q25-q75 shows the first and third quartiles of the estimated coefficients. Intercepts
are omitted in the table. Standard errors are based on bootstrapping with 1000 replications. Sample:
1971Q1 to 2019Q4 for 44 countries, except for Bolivia (to 2019Q3), Iceland (to 2018Q4) and Taiwan
(to 2018Q4).
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Table 2.2: Quantile regressions, Impact of NFCI on stock markets (EaR)

τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.50

Regressions for h= 0

US financial conditions indicator

NFCIt
q25-q75 [-0.65;-0.24] [-0.47;-0.2] [-0.37;-0.08] [-0.24;-0.08]
Sig.<0 0.36 0.56 0.68 0.60

US financial conditions indicator + Global factors

NFCIt
q25-q75 [-0.34;0.00] [-0.24;0.02] [-0.15;-0.01] [-0.05;0.04]
Sig.<0 0.32 0.48 0.36 0.12

GFINt
q25-q75 [-0.79;-0.41] [-0.85;-0.42] [-0.83;-0.39] [-0.78;-0.35]
Sig. 0.60 0.68 0.76 0.88

GMACROt
q25-q75 [-0.09;0.25] [-0.1;0.26] [-0.14;0.23] [-0.06;0.21]
Sig. 0.20 0.08 0.40 0.24

Regressions for h= 1

US financial conditions indicator

yit
q25-q75 [0.18;0.51] [0.19;0.47] [0.18;0.41] [0.26;0.37]
Sig. 0.56 0.64 0.80 0.92

NFCIt
q25-q75 [-0.23;0.01] [-0.2;0.00] [-0.18;-0.02] [-0.1;0.01]
Sig.<0 0.12 0.16 0.16 0.16

US financial conditions indicator + Global factors

yit
q25-q75 [-0.01;0.29] [0.08;0.33] [0.15;0.37] [0.16;0.38]
Sig. 0.08 0.32 0.48 0.56

NFCIt
q25-q75 [-0.21;0.05] [-0.18;0.01] [-0.15;0.00] [-0.07;0.01]
Sig.<0 0.12 0.04 0.08 0.16

GFINt
q25-q75 [-0.35;0.09] [-0.53;-0.07] [-0.41;-0.09] [-0.24;-0.01]
Sig. 0.12 0.12 0.16 0.00

GMACROt
q25-q75 [-0.20;0.40] [-0.31;0.03] [-0.26;-0.09] [-0.18;-0.03]
Sig. 0.08 0.00 0.12 0.00

Regressions for h= 4

US financial conditions indicator

yit
q25-q75 [-0.10;0.29] [0.00;0.17] [-0.02;0.10] [-0.09;0.03]
Sig. 0.20 0.16 0.08 0.08

NFCIt
q25-q75 [-0.28;0.14] [-0.14;0.09] [-0.09;0.06] [-0.06;0.04]
Sig.<0 0.04 0.04 0.04 0.12

US financial conditions indicator + Global factors

yit
q25-q75 [-0.07;0.16] [-0.13;0.17] [-0.11;0.12] [-0.10;0.04]
Sig. 0.00 0.04 0.08 0.08

NFCIt
q25-q75 [-0.18;0.21] [-0.17;0.13] [-0.08;0.09] [-0.07;0.06]
Sig.<0 0.04 0.12 0.04 0.08

GFINt
q25-q75 [-0.96;-0.33] [-0.79;-0.46] [-0.64;-0.34] [-0.36;-0.08]
Sig. 0.40 0.52 0.52 0.36

GMACROt
q25-q75 [-0.82;-0.36] [-0.88;-0.36] [-0.62;-0.40] [-0.38;-0.11]
Sig. 0.28 0.56 0.64 0.52

Note: Sig. denotes proportion of countries for which the variable is statistically significant at 90%
confidence level; q25-q75 shows the first and third quartiles of the estimated coefficients. Intercepts
are omitted in the table. Standard errors are based on bootstrapping with 1000 replications. Sample:
1971Q1 to 2019Q4 for 25 countries.
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2.5.2 Impact of US financial uncertainty (FUN) shocks on global
markets

Global credit markets

Similar to Table 2.1, Table 2.3 summarizes the estimation results for credit growth
as the dependent variable but this time bringing into play the US financial uncer-
tainty index instead of the NFCI.

We observe that the impact of financial uncertainty on the lower quantiles of real
credit growth is negative and higher in absolute value than on the central quan-
tiles. However, the proportion of countries for which the effect is significant is
similar across quantiles. These results hold when we control for global financial
and macroeconomic factors. This time, the highest effects of financial uncertainty
are recorded well in advance of h= 4. Indeed, the impact is quite similar across all
forecasting horizons (h = {0,1,4}). Importantly, on h = 4, first moment financial
shocks on credit growth (Table 2.1) exert an economically and statistically signif-
icant effect for a greater number of countries compared to other horizons. This is
in accordance with first moment shocks associated with credit tightness and which
consistently take more time to spillover to global markets, therefore supporting the
credit view of the spread. As with NFCI, we can see that the impact of financial
uncertainty in the US is very heterogeneous across countries, not only because it is
a relevant predictor of negative credit dynamics for around 16-25% of our sample of
countries but not for the rest, but also because these effects can be positive or nega-
tive. If we focus on the global factors, we observe that global factors impact credit
creation around the world heterogeneously. In general, these covariates impact the
average quantiles of credit growth of a higher number of countries than in the case
of the negative tail. In addition, the effects of these global factors include a wide
range of values, often showing high positive values even in the lowest quantiles.

Similar to Table 2.2, Table 2.4 summarizes the estimation results for stock returns
as the dependent variable but using the US financial uncertainty index instead of the
NFCI as our financial conditions indicator.

The results show that at horizons h= 0 and h= 1, the impact of financial uncer-
tainty at the lower tail of the distribution of conditional stock returns is very high. At
horizon h = 4, the effects of financial uncertainty are much less pronounced. This
key result is observed even if we control for global financial and macroeconomic
factors, as the percentage of countries for which the financial uncertainty coeffi-
cient is statistically significant goes from 60% (τ = 0.05 quantile) to 76% (τ = 0.10

quantile) out of 25 countries. This fast and strong response of global stock markets
to US financial uncertainty is consistent with portfolio rebalancing by international
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investors following an increase in US financial uncertainty, and thus, with the port-
folio view of transmission.

As with NFCI, we observe that financial uncertainty impacts the lower quantiles
of stock markets more frequently and significantly than the average quantiles, while
the impact of global common factors (financial and macroeconomic) is higher on the
average quantiles. Interestingly, we observe a less heterogeneous response across
countries than in the case of NFCI. That is, financial uncertainty is a relevant pre-
dictor of stock price declines for a larger percentage of countries than NFCI, and, in
addition (in all cases), the effect documented for the lowest quartiles (τ = 0.05 and
τ = 0.1) is negative.

Overall, our results confirm that both first and second moment shocks to US fi-
nancial conditions convey powerful signals on downside risks to funding markets.
Our findings suggest that, like the vulnerable growth episodes documented in the
previous literature, there is also vulnerable funding periods of a global scale, origi-
nating from financial fragility in the US. These results highlight the importance of
funding for the transmission of recessionary shocks. In addition, our results em-
phasize the role of the portfolio view for the propagation of financial uncertainty
(largely through the stock market), and of the credit view to understand the propa-
gation of first moment financial conditions shocks (largely through the credit mar-
ket). The two mechanisms are complementary and help to better understand the
propagation of US financial conditions across global markets.
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Table 2.3: Quantile regressions, Impact of Financial Uncertainty on real credit
growth (CaR)

τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.50

Regressions for h= 0

US financial uncertainty indicator

FUNt
q25-q75 [-0.23;0.05] [-0.2;0.02] [-0.13;0.02] [-0.07;0.02]
Sig.<0 0.14 0.20 0.25 0.23

US financial uncertainty indicator + Global factors

FUNt
q25-q75 [-0.29;0.02] [-0.21;-0.02] [-0.15;0.00] [-0.1;0.05]
Sig.<0 0.16 0.25 0.25 0.20

GFINt
q25-q75 [-0.15;0.57] [0.07;0.54] [0.05;0.61] [0.17;0.64]
Sig. 0.36 0.48 0.57 0.68

GMACROt
q25-q75 [-0.13;0.48] [-0.09;0.52] [0.00;0.62] [0.10;0.67]
Sig. 0.32 0.50 0.55 0.64

Regressions for h= 1

US financial uncertainty indicator

yit
q25-q75 [0.00;0.25] [-0.03;0.28] [0.09;0.30] [0.13;0.41]
Sig. 0.30 0.39 0.64 0.73

FUNt
q25-q75 [-0.22;0.04] [-0.17;0.01] [-0.1;0.00] [-0.09;-0.02]
Sig.<0 0.18 0.20 0.23 0.25

US financial uncertainty indicator + Global factors

yit
q25-q75 [-0.09;0.25] [-0.01;0.26] [0.05;0.27] [0.09;0.36]
Sig. 0.30 0.43 0.57 0.73

FUNt
q25-q75 [-0.22;0.06] [-0.14;0.04] [-0.12;0.00] [-0.07;0.03]
Sig.<0 0.16 0.18 0.23 0.14

GFINt
q25-q75 [-0.31;0.21] [-0.33;0.16] [-0.14;0.23] [0.01;0.29]
Sig. 0.27 0.25 0.34 0.30

GMACROt
q25-q75 [-0.21;0.28] [-0.23;0.25] [-0.18;0.27] [0.07;0.31]
Sig. 0.25 0.27 0.39 0.34

Regressions for h= 4

US financial uncertainty indicator

yit
q25-q75 [0.22;0.57] [0.24;0.55] [0.29;0.57] [0.34;0.61]
Sig. 0.61 0.70 0.89 0.98

FUNt
q25-q75 [-0.23;0.03] [-0.17;0.01] [-0.11;-0.01] [-0.1;0]
Sig.<0 0.18 0.23 0.18 0.23

US financial uncertainty indicator + Global factors

yit
q25-q75 [0.21;0.56] [0.26;0.56] [0.31;0.57] [0.33;0.58]
Sig. 0.59 0.75 0.89 0.98

FUNt
q25-q75 [-0.24;-0.02] [-0.20;0.01] [-0.13;-0.03] [-0.09;0.01]
Sig.<0 0.18 0.23 0.20 0.18

GFINt
q25-q75 [-0.38;0.20] [-0.26;0.25] [-0.15;0.19] [0.02;0.18]
Sig. 0.27 0.20 0.27 0.23

GMACROt
q25-q75 [-0.44;0.12] [-0.30;0.18] [-0.19;0.14] [0.02;0.21]
Sig. 0.32 0.30 0.18 0.25

Note: Sig. denotes proportion of countries for which the variable is statistically significant at 90%
confidence level; q25-q75 shows the first and third quartiles of the estimated coefficients. Intercepts
are omitted in the table. Standard errors are based on bootstrapping with 1000 replications. Sample:
1971Q1 to 2019Q4 for 44 countries, except for Bolivia (to 2019Q3), Iceland (to 2018Q4) and Taiwan
(to 2018Q4).
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Table 2.4: Quantile regressions, Impact of Financial Uncertainty on stock markets
(EaR)

τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.50

Regressions for h= 0

US financial uncertainty indicator

FUNt
q25-q75 [-0.64;-0.36] [-0.57;-0.30] [-0.44;-0.23] [-0.27;-0.16]
Sig.<0 0.88 0.88 0.92 0.88

US financial uncertainty indicator + Global factors

FUNt
q25-q75 [-0.31;-0.04] [-0.22;-0.02] [-0.13;-0.03] [-0.05;0.01]
Sig.<0 0.48 0.48 0.32 0.12

GFINt
q25-q75 [-0.89;-0.17] [-0.84;-0.29] [-0.80;-0.38] [-0.66;-0.32]
Sig. 0.56 0.68 0.88 0.88

GMACROt
q25-q75 [-0.21;0.36] [-0.15;0.24] [-0.16;0.17] [0.00;0.23]
Sig. 0.28 0.28 0.36 0.4

Regressions for h= 1

US financial uncertainty indicator

yit
q25-q75 [0.09;0.45] [0.11;0.37] [0.18;0.33] [0.23;0.34]
Sig. 0.52 0.56 0.72 0.96

FUNt
q25-q75 [-0.58;-0.33] [-0.42;-0.26] [-0.25;-0.12] [-0.13;-0.02]
Sig.<0 0.88 0.76 0.56 0.24

US financial uncertainty indicator + Global factors

yit
q25-q75 [-0.02;0.36] [-0.04;0.38] [0.11;0.33] [0.21;0.39]
Sig. 0.32 0.32 0.60 0.72

FUNt
q25-q75 [-0.64;-0.26] [-0.46;-0.21] [-0.27;-0.12] [-0.11;-0.03]
Sig.<0 0.6 0.76 0.6 0.24

GFINt
q25-q75 [-0.27;0.28] [-0.27;0.18] [-0.24;0.02] [-0.24;-0.02]
Sig. 0.20 0.20 0.16 0.12

GMACROt
q25-q75 [-0.19;0.37] [-0.18;0.13] [-0.25;0.04] [-0.18;-0.08]
Sig. 0.20 0.04 0.08 0.16

Regressions for h= 4

US financial uncertainty indicator

yit
q25-q75 [-0.16;0.21] [-0.05;0.12] [-0.03;0.05] [-0.07;0.06]
Sig. 0.04 0.08 0.12 0.12

FUNt
q25-q75 [-0.29;-0.09] [-0.22;-0.08] [-0.13;0] [-0.04;0.04]
Sig.<0 0.12 0.08 0.16 0.04

US financial uncertainty indicator + Global factors

yit
q25-q75 [-0.18;0.16] [-0.15;0.15] [-0.11;0.06] [-0.12;0.09]
Sig. 0.04 0.12 0.08 0.16

FUNt
q25-q75 [-0.27;-0.07] [-0.19;-0.04] [-0.11;-0.04] [-0.08;0.00]
Sig.<0 0.08 0.12 0.12 0.04

GFINt
q25-q75 [-0.48;-0.02] [-0.50;-0.11] [-0.42;-0.17] [-0.40;-0.11]
Sig. 0.12 0.16 0.52 0.64

GMACROt
q25-q75 [-0.56;-0.09] [-0.55;-0.08] [-0.49;-0.22] [-0.37;-0.25]
Sig. 0.20 0.36 0.60 0.72

Note: Sig. denotes proportion of countries for which the variable is statistically significant at 90%
confidence level; q25-q75 shows the first and third quartiles of the estimated coefficients. Intercepts
are omitted in the table. Standard errors are based on bootstrapping with 1000 replications. Sample:
1971Q1 to 2019Q4 for 25 countries.
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2.5.3 Cross-country heterogeneity

Graphical analysis

To examine which is the most likely reason for a given country’s vulnerability to
changes in US financial conditions, first, we relate the size of each country’s credit
and stock market responses to two classical determinants of the international spread
of financial shocks, namely, the size of credit (stock) markets, and the relative im-
portance of US foreign investment for each country. We measure the size of credit
markets by the annual average of the credit to GDP ratio for each country, the size of
stock markets by the annual average of the market capitalization to GDP ratio and,
financial interconnection by the total direct investment of the US as a percentage of
the country’s GDP. To this end, we calculate, for each country, the maximum value
of US investment inflows relative to its GDP.12

In both cases, credit and stock markets, we show the results for the horizon and
the ordering measure that provides the clearest pattern. This translates into showing
the results for horizon h = 0 and sorting the countries by the size or depth of the
market in the case of credit markets and by their financial closeness to the US in the
case of stock markets.13

Figure 2.2 shows the impact of NFCI over the entire distribution of credit growth
of the countries in the sample (for forecasting horizon h= 0), ordered according to
their credit to GDP ratio. Interestingly, we find that there is a cluster in the lower
left-hand corner of the heat map, suggesting that the economies with lower credit
to GDP ratios are more sensitive to a first moment shock to US financial conditions
and that the response is stronger in the left tail (lower quantiles) of the distribu-
tion. However, the response of economies with higher credit to GDP ratios is much
weaker, or inexistent. That is, the smaller the credit market, the more likely that
country will experience vulnerable funding episodes. In turn, credit market size
is associated with market development, which suggests an asymmetric impact of
first moment shocks of financial conditions on emerging and advanced economies.
This result implies that when we focus on shocks to the first moment of the finan-
cial conditions, vulnerable funding is clearly associated with the size or depth of a
country’s credit market. This is consistent with the view advanced, for instance, by
Alfaro et al. (2004) and Kalemli-Özcan (2019).

Figure 2.3 shows the impact of the NFCI over the entire distribution of stock
returns (for forecasting horizon h = 0) of the countries in the sample ordered by
their degree of financial interconnection with the US. We find a cluster in the upper
left-hand corner of the heat maps, suggesting that the sensitivity of the effect of the

12The results are robust when we use the average instead of the maximum value.
13Results for horizons h= 1 and h= 4 are available upon request.
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Figure 2.2: Impact of the NFCI over the distribution of real credit growth

Note: The left-hand panel shows the NFCI coefficients for τ =0.05−0.95 in 0.05 intervals, for all 44
countries. The right-hand panel presents the statistical significance of the NFCI coefficients as well
as the sign of the estimated coefficient. The blue (grey)-shaded areas are defined as being negatively
(positively) statistically significant at the 90 % level of confidence, whereas the white-shaded area
corresponds to insignificant coefficients associated with the NFCI.

NFCI in the lower part of the distribution of stock returns is related to the relative
importance of US investment for a given country. This suggests that stock mar-
kets of economies that share stronger financial links with the US are more severely
affected by a tightening in US financial conditions than economies with weaker
financial ties with the US.

Interestingly, most of the countries showing larger stock market responses to first
moment shocks in US financial conditions are developed markets. It seems that the
relative importance of US foreign flows to a country does determine to a great ex-
tent how domestic share values will react following a deterioration of US financial
conditions, and indeed in general, how these values react to global financial factors.
While FDI flows are more volatile for emerging countries, as past literature has doc-
umented, the stock markets of advanced economies, such as Ireland, Switzerland,
the Netherlands, Canada and the United Kingdom (which are the five top receivers
of direct US foreign investment), are also among the countries most affected in
our sample by a deterioration in US financial conditions. This can be observed by
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Figure 2.3: Impact of NFCI over the distribution of current stock returns

Note: The left-hand panel shows the NFCI coefficients for τ =0.05−0.95 in 0.05 intervals, for all 25
countries. The right-hand panel presents the statistical significance of the NFCI coefficients as well
as the sign of the estimated coefficient. The blue (grey)-shaded areas are defined as being negatively
(positively) statistically significant at the 90 % level of confidence, whereas the white-shaded area
corresponds to insignificant coefficients associated with the NFCI.

looking at the significance of the estimated effects for the five countries (right-hand
side plot) as well as the darker color in the heat map associated with the quantile
slope that measures the effect of NFCI in each market (left hand side plot) of Figure
2.3. Thus, the depth and liquidity of the local stock market may prevent the impact
of the external shock on the real economy from being dramatic; however, in any
case, the local funding opportunities reduce the impact of the deterioration of US
financial conditions, as expected. These results show the vulnerability of local fi-
nancial markets to external imbalances and credit restrictions, given the high degree
of interconnectedness of current global finance.

Figure 2.4 shows the impact of US financial uncertainty over the entire distribu-
tion of credit growth (for forecasting horizon h= 0) of the countries in the sample,
ordered according to size or depth of the market. As with first moment shocks to
US financial conditions, we observe that the size or depth of the credit markets is
important for explaining credit vulnerability to financial uncertainty and that most
of the countries showing higher responses are emerging market economies. Again,
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the smaller the size of the credit market, the more likely a country will experience
vulnerable funding episodes. This result is consistent with Carrière-Swallow and
Céspedes (2013) who find that in comparison with the US and other developed
countries, emerging economies suffer much more severe falls in investment and pri-
vate consumption following an exogenous uncertainty shock. Bhattacharya et al.
(2019) also document that unanticipated changes in US uncertainty have significant
effects on emerging market economies.

We also find that, although in general the effect is more negative in the lower
quantiles than in the central ones, the proportion of countries for which the effect is
significant is relatively similar across the entire distribution.

Figure 2.4: Impact of the Financial Uncertainty index over the distribution of real
credit growth

Note: The left-hand panel shows the financial uncertainty coefficients for τ = 0.05−0.95 in 0.05 in-
tervals, for all 44 countries. The right-hand panel presents the statistical significance of the financial
uncertainty coefficients as well as the sign of the estimated coefficient. The blue (grey)-shaded areas
are defined as being negatively (positively) statistically significant at the 90% level of confidence,
whereas the white-shaded area corresponds to insignificant coefficients associated with the financial
uncertainty index.

Finally, Figure 2.5 shows the impact of US financial uncertainty over the entire
distribution of the stock return (for forecasting horizon h= 0) of the countries in the
sample, ordered according to the strength of their financial links with the US. Now,
we observe graphically that the impact of financial uncertainty at the left tail of the
conditional distribution of stock returns is very large for a high percentage of coun-
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tries. As with first moment shocks, we find a cluster in the upper left-hand corner
of the heat map, suggesting that the sensitivity of the effect of financial uncertainty
on the lower part of the distribution of stock returns is related to the degree of US
investment abroad. Again, the stock markets of advanced economies are among the
countries most affected in our sample after a shock to financial uncertainty in the
US.

Overall, we find that the heterogeneous dynamic of Credit at Risk episodes is
better explained by the size or depth of the credit market, while in the case of Equity
at Risk episodes, heterogeneity is more related to the financial interconnections with
the US. This result holds for both first moment shocks and financial uncertainty
shocks.

Figure 2.5: Impact of the Financial Uncertainty index over the distribution of cur-
rent stock returns

Note: The left-hand panel shows the financial uncertainty coefficients for τ = 0.05−0.95 in 0.05 in-
tervals, for all 25 countries. The right-hand panel presents the statistical significance of the financial
uncertainty coefficients as well as the sign of the estimated coefficient. The blue (grey)-shaded areas
are defined as being negatively (positively) statistically significant at the 90% level of confidence,
whereas the white-shaded area corresponds to insignificant coefficients associated with the financial
uncertainty index.

Cross-sectional analysis

In this subsection we present the results of our exploratory regressions that measure
the association between financial vulnerability and the two classical determinants
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of the international spreading of financial shocks. We used as our right-hand-side
variable the slope coefficients of CaR and EaR at various quantiles, and as left-hand-
side variables both the ratio of US direct investment to the GDP of each country and
the ratio of credit (market capitalization) to GDP of each country. We estimate these
latter variables using the average of the yearly indicators across the sample period
(1960Q1- 2019Q4) and using the annual maximum across the sample (to emphasize
the most extreme scenarios). Table 2.5 to 2.8 present the results using the maxima
version, which are virtually the same as using the averages (which are available
upon request). Table 2.5 and 2.6 focus on the credit market and Table 2.7 and 2.8
on the stock market.

Table 2.5: Cross-sectional determinants of vulnerable credit (first moment shock)
τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.50 τ = 0.80 τ = 0.90 τ = 0.95

Regressions for h= 0

US inv./GDP (%) 0.000200 -0.000584 -0.000856 -0.00101 -0.00118* -0.000904 0.000164
(0.00104) (0.000800) (0.000615) (0.000776) (0.000675) (0.000715) (0.000798)

Credit/GDP (%) 0.00249** 0.00175** 0.00144** 0.00138*** 0.00124* 0.00120* 0.00172*
(0.00109) (0.000777) (0.000584) (0.000445) (0.000656) (0.000679) (0.000911)

Constant -0.317*** -0.213*** -0.158*** -0.0596* 0.0301 0.0330 -0.0210
(0.0813) (0.0615) (0.0472) (0.0297) (0.0412) (0.0493) (0.0665)

Regressions for h= 1

US inv./GDP (%) -0.000358 -0.000884 -0.00125 -0.000886*** -0.000679* -0.000343 -0.000486
(0.000936) (0.00112) (0.00108) (0.000267) (0.000361) (0.000879) (0.000866)

Credit/GDP (%) 0.00193* 0.00111 0.000585 0.000496 0.000961** 0.000534 0.00121
(0.00102) (0.000662) (0.000462) (0.000468) (0.000431) (0.000541) (0.000939)

Constant -0.280*** -0.196*** -0.126*** -0.0183 0.0192 0.0907** 0.0722
(0.0813) (0.0527) (0.0304) (0.0260) (0.0287) (0.0382) (0.0625)

Regressions for h= 4

US inv./GDP (%) -0.00284 -0.00236 -0.00161* -0.00198*** -0.000739 -0.00132 -0.00135
(0.00218) (0.00149) (0.000853) (0.000429) (0.000771) (0.00145) (0.00108)

Credit/GDP (%) 0.00244** 0.000960 -0.000108 0.000800** 0.000561 -0.000139 -0.000281
(0.00114) (0.000755) (0.000443) (0.000309) (0.000465) (0.000621) (0.00100)

Constant -0.303*** -0.201*** -0.0792** -0.0429* 0.0420 0.142*** 0.160**
(0.0935) (0.0661) (0.0376) (0.0239) (0.0281) (0.0444) (0.0630)

N 44 44 44 44 44 44 44

Note: Robust standard errors in parentheses ∗p < 0.10,∗∗ p < 0.05,∗∗∗p < 0.01.

From a general reading of Table 2.5 when h = 0, we see that market size signif-
icantly explains the transmission of NFCI shocks. The effect is that expected ac-
cording to the theory and is in agreement with previous studies, namely, the larger
the market the lower the negative effect of US financial conditions on that market.
When h = 1 and h = 4, market size loses its significance in most of the cases as it
only remains significant at the lowest quantiles (0.05) and the median of the distri-
bution. Financial closeness to the US helps to explain the central quantiles when
h = 1 (τ = 0.8) and h = 4 (τ = 0.5) but not the vulnerable funding episodes as-
sociated with the lowest quantiles. The same narrative can be seen in Table 2.6,
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namely market size helps to explain the propagation of financial uncertainty across
the world credit markets when h= 0, while at other horizons and especially for the
lowest quantiles the explanation escapes from these two traditional determinants.

Table 2.6: Cross-sectional determinants of vulnerable credit (second moment
shock)

τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.50 τ = 0.80 τ = 0.90 τ = 0.95

Regressions for h= 0

US inv./GDP (%) -0.000269 -0.000502 -0.000436 0.000299 0.000801* 0.000584* 0.00170***
(0.000905) (0.00123) (0.000972) (0.000582) (0.000430) (0.000324) (0.000410)

Credit/GDP (%) 0.00138 0.00146** 0.000987** 0.000936* 0.00140** 0.00178** 0.00242**
(0.000837) (0.000549) (0.000487) (0.000536) (0.000642) (0.000797) (0.000962)

Constant -0.206*** -0.193*** -0.124*** -0.0844** -0.104** -0.118** -0.177***
(0.0601) (0.0390) (0.0362) (0.0341) (0.0423) (0.0524) (0.0643)

Regressions for h= 1

US inv./GDP (%) -0.00177 -0.000651 -0.000769 0.0000613 0.000471* 0.000766** 0.000461
(0.00183) (0.000984) (0.000751) (0.000478) (0.000267) (0.000347) (0.00139)

Credit/GDP (%) -0.000280 0.000302 0.000504 0.000586 0.000659 0.00110 0.00250*
(0.000923) (0.000491) (0.000419) (0.000401) (0.000538) (0.000714) (0.00127)

Constant -0.0672 -0.0713* -0.0756** -0.0572* -0.0366 -0.0585 -0.148**
(0.0841) (0.0398) (0.0353) (0.0293) (0.0341) (0.0487) (0.0724)

Regressions for h= 4

US inv./GDP (%) -0.000462 -0.00135 -0.00109** -0.00110*** 0.000539* 0.000190 0.000662
(0.00141) (0.000864) (0.000507) (0.000380) (0.000294) (0.000447) (0.000554)

Credit/GDP (%) 0.00103 -0.000441 -0.000644** 0.000369 0.000225 0.000322 0.0000929
(0.000758) (0.000510) (0.000258) (0.000285) (0.000615) (0.000780) (0.00118)

Constant -0.192*** -0.0627* -0.0249 -0.0482** -0.00561 0.0371 0.0458
(0.0501) (0.0353) (0.0186) (0.0180) (0.0342) (0.0466) (0.0801)

N 44 44 44 44 44 44 44

Note: Robust standard errors in parentheses ∗p < 0.10,∗∗ p < 0.05,∗∗∗p < 0.01.

When we turn our attention to the stock markets, a different landscape emerges.
In Table 2.7 we can observe that when h= 0 the relative size of US investment (mar-
ket closeness to the US) significantly explains the transmission of NFCI shocks. The
effect is that expected according to the theory: the markets closest to the US (i.e.
those that have a larger relative reception of US annual investment as a percentage
of local GDP) are the most affected (independently of the size of the market), which
can be rationalized with the portfolio view operating on the global transmission of
US financial conditions. This time the size of the market does not offer explana-
tory power for the vulnerable funding episodes (or even for the transmission in the
highest quantiles).

When we move from h = 0 to h = 1 and h = 4, financial closeness keeps its
explanatory power for the central quantiles but not for the lowest. Moreover, for

36



2.5 Results

the central cases the market size gains some statistical power, which nevertheless is
accompanied by a negative sign, meaning that advanced economies are more sus-
ceptible to receiving shocks from the US than emerging economies. A very similar
panorama arises when we move to the last table of our estimations (Table 2.8). This
table focuses on the effect of second moment shocks (financial uncertainty) on the
stock markets. Again it is financial closeness instead of market size which offers
significant explanatory power of vulnerable funding episodes. The size of the stock
market only matters four quarters after the shock has occurred. Our cross-sectional
regressions tell us that market size and financial closeness to the US explain vulner-
able funding episodes, at least contemporaneously. Nevertheless, the explanation
depends on the market. Credit markets react according to market size, while stock
markets react according to financial closeness. There are no notable differences in
this case between the explanatory power of the first and second moment shocks of
these two variables.

Table 2.7: Cross-sectional determinants of vulnerable equity (first moment shock)

τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.50 τ = 0.80 τ = 0.90 τ = 0.95

Regressions for h= 0

US inv./GDP (%) -0.00206** -0.00172*** -0.000933** -0.00102*** -0.00154*** -0.00205*** -0.00208*
(0.000889) (0.000542) (0.000361) (0.000255) (0.000337) (0.000592) (0.00107)

Market Cap./GDP (%) -0.00124 -0.00129* -0.000317 -0.000117 0.000412 0.000103 0.000128
(0.00106) (0.000713) (0.000415) (0.000366) (0.000887) (0.000773) (0.00121)

Constant -0.00952 -0.0128 -0.0351 0.0324 0.117* 0.217*** 0.216**
(0.0766) (0.0554) (0.0395) (0.0360) (0.0647) (0.0650) (0.0906)

Regressions for h= 1

US inv./GDP (%) -0.000509 -0.0000444 -0.000627** -0.000906*** -0.000740** -0.0000370 0.000994
(0.000816) (0.000462) (0.000225) (0.000246) (0.000342) (0.000395) (0.00106)

Market Cap./GDP (%) -0.00144 -0.000531 -0.000890** -0.0000682 0.00182* 0.00275*** 0.00237***
(0.00119) (0.000933) (0.000424) (0.000437) (0.000888) (0.000791) (0.000772)

Constant -0.0116 -0.0382 -0.00695 -0.00529 -0.0441 -0.0617 -0.0108
(0.1000) (0.0714) (0.0371) (0.0354) (0.0579) (0.0676) (0.0705)

Regressions for h= 4

US inv./GDP (%) -0.000400 -0.000130 -0.00130*** -0.000229 -0.000937** -0.0000656 -0.000329
(0.00177) (0.000544) (0.000434) (0.000495) (0.000375) (0.000623) (0.000711)

Market Cap./GDP (%) -0.00199 -0.00240** -0.00145** -0.000563 0.0000627 0.00117 0.000862
(0.00127) (0.000895) (0.000611) (0.000483) (0.000817) (0.00118) (0.00114)

Constant 0.178 0.167* 0.122** 0.0469 0.0791 0.0915 0.205**
(0.109) (0.0869) (0.0533) (0.0516) (0.0725) (0.0748) (0.0850)

N 25 25 25 25 25 25 25

Note: Robust standard errors in parentheses ∗p < 0.10,∗∗ p < 0.05,∗∗∗p < 0.01.
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Table 2.8: Cross-sectional determinants of vulnerable equity (second moment
shock)

τ = 0.05 τ = 0.10 τ = 0.20 τ = 0.50 τ = 0.80 τ = 0.90 τ = 0.95

Regressions for h= 0

US inv./GDP (%) -0.00109** -0.00124*** -0.000714*** -0.000578*** -0.00108*** -0.00147*** -0.00102**
(0.000431) (0.000277) (0.000191) (0.000140) (0.000294) (0.000414) (0.000486)

Market Cap./GDP (%) -0.00103 -0.000489 -0.000257 0.0000940 0.000817** 0.000897 -0.000184
(0.000684) (0.000605) (0.000444) (0.000326) (0.000373) (0.000591) (0.00102)

Constant -0.107 -0.0684 -0.0467 -0.00853 0.0265 0.105* 0.201*
(0.0678) (0.0489) (0.0331) (0.0223) (0.0326) (0.0547) (0.104)

Regressions for h= 1

US inv./GDP (%) -0.00316** -0.00142*** -0.000857* -0.000213 -0.000283 0.000396 0.0000253
(0.00130) (0.000404) (0.000437) (0.000176) (0.000185) (0.000346) (0.000389)

Market Cap./GDP (%) -0.00195* -0.000895 -0.000746* -0.000278 0.000753* 0.00162*** 0.00126
(0.00100) (0.000730) (0.000389) (0.000397) (0.000379) (0.000528) (0.000753)

Constant -0.271*** -0.248*** -0.124*** -0.0477* -0.0195 -0.0333 0.0816
(0.0795) (0.0590) (0.0367) (0.0264) (0.0285) (0.0360) (0.0595)

Regressions for h= 4

US inv./GDP (%) 0.000271 0.000310 -0.000418* -0.000448 -0.000262 -0.000353 0.000387
(0.000509) (0.000283) (0.000202) (0.000327) (0.000412) (0.000330) (0.000549)

Market Cap./GDP (%) -0.00212*** -0.00166** -0.000471 -0.000232 0.000436 0.00112 0.00136
(0.000677) (0.000681) (0.000495) (0.000299) (0.000448) (0.000904) (0.00114)

Constant -0.0346 -0.0297 -0.0368 -0.00249 0.00279 0.00531 0.0163
(0.0715) (0.0456) (0.0339) (0.0253) (0.0334) (0.0565) (0.0632)

N 25 25 25 25 25 25 25

Note: Robust standard errors in parentheses ∗p < 0.10,∗∗ p < 0.05,∗∗∗p < 0.01.

2.6 Conclusions

We systematically document vulnerable funding episodes in the world economy.
That is, financial conditions in the United States have significant predictive power
in the lowest quantiles of credit growth and stock market prices around the global
economy. However, the established effects are very heterogeneous in several dimen-
sions. Vulnerable funding depends on the country, the funding market, i.e., credit
or stock, and the type of shock, i.e., mean-shock to financial conditions or second-
moment uncertainty shock. We also show that vulnerable funding can be explained,
mainly contemporaneously, by the relative market size in the case of credit markets
and by the financial links with the US (measured by the total direct investment of
the US as a percentage of the country’s GDP) in the case of the stock market.

Our methodological approach uses quantile regressions, following the emphasis
of the Growth at Risk literature, which allows us to examine the impact of US fi-
nancial conditions on the entire conditional distribution of credit and stock market
prices around the world, and hence to document the asymmetric impacts summa-
rized above. We complement our model specification with global economic and
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financial factors that we construct using a rich data set that comprises more than 40
countries, in most cases with information spanning almost six decades. Our results
are robust to including both a global macroeconomic factor and a global financial
factor.

The impact of US financial conditions on global stock markets is immediate, so
that the strongest effects are observed in the same period when the shock occurs.
This reduces the possibility of using the indicator of US financial conditions as a
measure of future market performance, or as an early warning indicator foreseeing
future limited funding by corporations. The opposite occurs in the case of credit
markets, the larger effects are observed, according to our results, one year after the
shock occurs. This means that US financial conditions may serve as a predicting
variable of future vulnerability of domestic credit markets. These two effects put
together emphasize the importance of funding for the transmission of recession-
ary shocks throughout the global economy, as well as the need to monitor funding
variables and their relationship with global financial shocks in financial stability
exercises conducted by central banks and regulators around the world on a regular
basis.

The policy implications of our results are clear. We show that international fund-
ing markets are a source of persistence and amplification of financial conditions
shocks across the global economy. This means that a deterioration of US finan-
cial conditions calls for policy actions in other economies around the world. For
instance, an increase in market uncertainty that is associated with lower global liq-
uidity and credit availability might worsen the fall in investment (and slow down
the economic recovery) observed after an international shock to US financial con-
ditions. Under these scenarios it may be determinant, on the part of domestic fiscal
and monetary authorities, to foster internal demand by reducing the cost of financ-
ing and providing liquidity to companies that look to invest once uncertainty has re-
turned to its normal levels. We show that this line of reasoning is more general than
the previous literature has indicated, because the deterioration of funding opportu-
nities, either via credit or the stock market, is observed in all types of economies
regardless of the size of their financial markets. Indeed, such differentiation does
not matter at all for stock markets, and although it is important for credit markets,
in the sense that larger markets are less prone to vulnerable funding episodes than
smaller markets, according to our estimation results, vulnerable funding is also a
concern for developed economies.
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2.A Appendix A

Table 2.A1: Availability of information for each country and variable in Monnet and
Puy (2019) macro-financial dataset

Country Variable Start End T

Argentina CPI 1950 Q1 2019 Q4 280
Argentina Real credit 1950 Q1 2019 Q4 280
Argentina Real GDP 1957 Q1 2019 Q4 252
Australia CPI 1950 Q1 2019 Q4 280
Australia Real credit 1950 Q1 2019 Q4 280
Australia Real GDP 1957 Q1 2019 Q4 252
Australia Nominal stock prices 1950 Q1 2019 Q4 280
Australia Bond Yield 1955 Q1 2019 Q4 260
Austria CPI 1950 Q1 2019 Q4 280
Austria Real credit 1950 Q1 2019 Q4 280
Austria Real GDP 1950 Q1 2019 Q4 280
Austria Nominal stock prices 1950 Q1 2019 Q4 280
Belgium CPI 1950 Q1 2019 Q4 280
Belgium Real credit 1950 Q4 2019 Q4 277
Belgium Real GDP 1950 Q1 2019 Q4 280
Belgium Nominal stock prices 1951 Q1 2019 Q4 276
Belgium Bond Yield 1957 Q1 2017 Q4 244
Bolivia CPI 1950 Q4 2019 Q4 277
Bolivia Real credit 1950 Q4 2019 Q3 276
Brazil CPI 1950 Q4 2019 Q4 277
Brazil Real credit 1950 Q4 2019 Q4 277
Brazil Real GDP 1957 Q1 2019 Q4 252
Canada CPI 1950 Q1 2019 Q4 280
Canada Real credit 1950 Q1 2019 Q4 280
Canada Real GDP 1950 Q1 2019 Q4 280
Canada Nominal stock prices 1950 Q1 2019 Q4 280
Canada Bond Yield 1950 Q1 2017 Q2 270
Chile CPI 1950 Q1 2019 Q4 280
Chile Real credit 1950 Q4 2019 Q4 277
Chile Real GDP 1950 Q1 2019 Q4 280
Chile Nominal stock prices 1953 Q1 2019 Q4 268
Colombia CPI 1952 Q4 2019 Q4 269
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Colombia Real credit 1952 Q4 2019 Q4 269
Costa Rica CPI 1950 Q4 2019 Q4 277
Costa Rica Real credit 1950 Q4 2019 Q4 277
Cyprus CPI 1957 Q1 2019 Q4 252
Cyprus Real credit 1958 Q1 2019 Q4 248
Denmark CPI 1950 Q1 2019 Q4 280
Denmark Real credit 1950 Q1 2019 Q4 280
Denmark Real GDP 1950 Q1 2019 Q4 280
Denmark Nominal stock prices 1950 Q1 2019 Q4 280
Denmark Bond Yield 1955 Q1 2019 Q4 260
El Salvador CPI 1957 Q1 2019 Q4 252
Finland CPI 1950 Q1 2019 Q4 280
Finland Real credit 1950 Q4 2019 Q4 277
Finland Real GDP 1950 Q1 2019 Q4 280
Finland Nominal stock prices 1951 Q1 2019 Q4 276
France CPI 1950 Q1 2019 Q4 280
France Real credit 1950 Q1 2019 Q4 280
France Real GDP 1950 Q1 2019 Q4 280
France Nominal stock prices 1950 Q1 2019 Q4 280
France Bond Yield 1955 Q1 2017 Q2 250
Germany CPI 1950 Q1 2019 Q4 280
Germany Real credit 1950 Q1 2019 Q4 280
Germany Real GDP 1950 Q1 2019 Q4 280
Germany Nominal stock prices 1953 Q1 2019 Q4 268
Germany Bond Yield 1957 Q1 2017 Q2 242
Greece CPI 1950 Q1 2019 Q4 280
Greece Real credit 1953 Q4 2019 Q4 265
Greece Real GDP 1950 Q2 2019 Q4 279
Guatemala CPI 1950 Q1 2019 Q4 280
Guatemala Real credit 1950 Q4 2019 Q4 277
Honduras CPI 1950 Q4 2019 Q4 277
Honduras Real credit 1950 Q4 2019 Q4 277
Iceland CPI 1955 Q1 2019 Q4 260
Iceland Real credit 1955 Q1 2018 Q4 256
Iceland Real GDP 1957 Q2 2019 Q4 251
India CPI 1950 Q1 2019 Q4 280
India Real credit 1950 Q1 2019 Q4 280
India Real GDP 1950 Q1 2019 Q4 280
India Nominal stock prices 1950 Q1 2019 Q4 280
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Ireland CPI 1950 Q1 2019 Q4 280
Ireland Real credit 1950 Q1 2019 Q4 280
Ireland Real GDP 1950 Q1 2019 Q4 280
Ireland Nominal stock prices 1955 Q1 2019 Q4 260
Ireland Bond Yield 1957 Q1 2017 Q2 242
Israel CPI 1951 Q4 2019 Q4 273
Israel Real credit 1951 Q4 2019 Q4 273
Israel Real GDP 1957 Q1 2019 Q4 252
Israel Nominal stock prices 1955 Q1 2019 Q4 260
Italy CPI 1950 Q1 2019 Q4 280
Italy Real credit 1950 Q1 2019 Q4 280
Italy Real GDP 1950 Q1 2019 Q4 280
Italy Nominal stock prices 1950 Q1 2019 Q4 280
Italy Bond Yield 1955 Q1 2019 Q4 260
Japan CPI 1950 Q1 2019 Q4 280
Japan Real credit 1950 Q1 2019 Q4 280
Japan Real GDP 1950 Q1 2019 Q4 280
Japan Nominal stock prices 1950 Q1 2019 Q4 280
Japan Bond Yield 1950 Q1 2017 Q2 270
Korea CPI 1950 Q1 2019 Q4 280
Korea Real credit 1951 Q4 2019 Q4 273
Korea Real GDP 1957 Q1 2019 Q4 252
Luxembourg CPI 1950 Q1 2019 Q4 280
Luxembourg Real GDP 1950 Q1 2019 Q4 280
Malaysia CPI 1950 Q1 2019 Q4 280
Malaysia Real credit 1952 Q4 2019 Q4 269
Malta CPI 1957 Q1 2019 Q4 252
Mexico CPI 1950 Q1 2019 Q4 280
Mexico Real credit 1950 Q1 2019 Q4 280
Mexico Real GDP 1950 Q1 2019 Q4 280
Mexico Nominal stock prices 1950 Q1 2019 Q4 280
Morocco CPI 1957 Q1 2019 Q4 252
Morocco Real credit 1959 Q1 2019 Q4 244
Morocco Real GDP 1957 Q1 2019 Q4 252
Netherlands CPI 1950 Q1 2019 Q4 280
Netherlands Real credit 1950 Q1 2019 Q4 280
Netherlands Real GDP 1950 Q1 2019 Q4 280
Netherlands Nominal stock prices 1950 Q1 2019 Q4 280
Netherlands Bond Yield 1955 Q1 2019 Q2 258
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New Zealand CPI 1950 Q1 2019 Q4 280
New Zealand Real credit 1950 Q1 2019 Q4 280
New Zealand Real GDP 1957 Q1 2019 Q4 252
New Zealand Nominal stock prices 1950 Q1 2019 Q4 280
New Zealand Bond Yield 1957 Q1 2019 Q4 252
Norway CPI 1950 Q1 2019 Q4 280
Norway Real credit 1950 Q1 2019 Q4 280
Norway Real GDP 1950 Q1 2019 Q4 280
Norway Nominal stock prices 1950 Q1 2019 Q4 280
Norway Bond Yield 1957 Q1 2019 Q4 252
Pakistan CPI 1950 Q1 2019 Q4 280
Pakistan Real credit 1950 Q4 2019 Q4 277
Pakistan Real GDP 1950 Q1 2019 Q4 280
Peru CPI 1950 Q4 2019 Q4 277
Peru Real credit 1950 Q4 2019 Q4 277
Peru Nominal stock prices 1950 Q1 2019 Q4 280
Philippines CPI 1950 Q4 2019 Q4 277
Philippines Real credit 1950 Q4 2019 Q4 277
Philippines Real GDP 1963 Q1 2019 Q4 228
Philippines Nominal stock prices 1953 Q1 2019 Q4 268
Portugal CPI 1950 Q1 2019 Q4 280
Portugal Real credit 1950 Q1 2019 Q4 280
Portugal Real GDP 1955 Q1 2019 Q4 260
Portugal Bond Yield 1955 Q1 2017 Q2 250
South Africa CPI 1950 Q1 2019 Q4 280
South Africa Real credit 1950 Q4 2019 Q4 277
South Africa Real GDP 1957 Q1 2019 Q4 252
South Africa Nominal stock prices 1950 Q1 2019 Q4 280
South Africa Bond Yield 1955 Q1 2019 Q4 260
Spain CPI 1950 Q1 2019 Q4 280
Spain Real credit 1953 Q4 2019 Q4 265
Spain Real GDP 1950 Q1 2019 Q4 280
Spain Nominal stock prices 1950 Q1 2019 Q4 280
Sweden CPI 1950 Q1 2019 Q4 280
Sweden Real credit 1950 Q1 2019 Q4 280
Sweden Real GDP 1950 Q1 2019 Q4 280
Sweden Nominal stock prices 1950 Q1 2019 Q4 280
Sweden Bond Yield 1955 Q1 2017 Q2 250
Switzerland CPI 1950 Q1 2019 Q4 280
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Switzerland Real credit 1950 Q1 2019 Q4 280
Switzerland Real GDP 1955 Q1 2019 Q4 260
Switzerland Nominal stock prices 1950 Q1 2019 Q4 280
Switzerland Bond Yield 1955 Q1 2019 Q4 260
Taiwan CPI 1957 Q1 2019 Q4 252
Taiwan Real credit 1957 Q1 2018 Q4 248
Taiwan Real GDP 1957 Q1 2019 Q4 252
Thailand CPI 1950 Q1 2019 Q4 280
Thailand Real credit 1950 Q4 2019 Q4 277
Turkey CPI 1950 Q4 2019 Q4 277
Turkey Real credit 1950 Q4 2019 Q4 277
Turkey Real GDP 1957 Q1 2019 Q4 252
United Kingdom CPI 1950 Q1 2019 Q4 280
United Kingdom Real credit 1950 Q1 2019 Q4 280
United Kingdom Real GDP 1950 Q1 2019 Q4 280
United Kingdom Nominal stock prices 1950 Q1 2019 Q4 280
United Kingdom Bond Yield 1955 Q1 2019 Q4 260
United States CPI 1950 Q1 2019 Q4 280
United States Real credit 1950 Q1 2019 Q4 280
United States Real GDP 1950 Q1 2019 Q4 280
United States Nominal stock prices 1950 Q1 2019 Q4 280
United States Bond Yield 1953 Q2 2019 Q4 267
Uruguay CPI 1950 Q4 2019 Q4 277
Uruguay Real credit 1950 Q4 2019 Q4 277
Uruguay Real GDP 1957 Q1 2019 Q4 252

Table 2.A2: Variables and transformations

Original Transformation Definition

Real GDP (xxx1ttt) ∆log(x1t) Real GDP growth (q-o-q)
CPI (xxx2ttt) ∆2 log (x2t) Inflation growth (q-o-q)
Credit (xxx3ttt) ∆log(x3t/x2t) Real credit growth (q-o-q)
Stock price (xxx4ttt) ∆log(x4t) Stock returns (q-o-q)
Bond yield (xxx5ttt) ∆(x5t) Bond yield change (q-o-q)
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Table 2.A3: Descriptive statistics of the variables after transformations

Country Variable Mean Sd Min Max

Argentina Real credit 0.01 0.11 -0.91 0.61
Argentina Real GDP 0.01 0.02 -0.08 0.08
Argentina CPI 0.00 0.16 -1.52 0.94
Australia Real credit 0.02 0.01 -0.02 0.06
Australia Real GDP 0.01 0.01 -0.02 0.04
Australia CPI 0.00 0.01 -0.04 0.05
Australia Nominal stock prices 0.01 0.08 -0.49 0.2
Australia Bond yield -0.02 0.48 -1.65 1.83
Austria Real credit 0.01 0.02 -0.04 0.08
Austria Real GDP 0.01 0.01 -0.02 0.04
Austria CPI 0.00 0.02 -0.13 0.08
Austria Nominal stock prices 0.01 0.09 -0.61 0.45
Belgium Real credit 0.01 0.02 -0.07 0.1
Belgium Real GDP 0.01 0.01 -0.02 0.04
Belgium CPI 0.00 0.01 -0.02 0.02
Belgium Nominal stock prices 0.01 0.07 -0.37 0.21
Belgium Bond yield -0.02 0.34 -1.39 1.09
Bolivia Real credit 0.02 0.10 -0.58 0.71
Bolivia CPI 0.00 0.13 -1.04 0.69
Brazil Real credit 0.02 0.07 -0.41 0.34
Brazil Real GDP 0.01 0.02 -0.08 0.07
Brazil CPI 0.00 0.11 -1.15 0.49
Canada Real credit 0.01 0.02 -0.03 0.08
Canada Real GDP 0.01 0.01 -0.02 0.03
Canada CPI 0.00 0.01 -0.03 0.02
Canada Nominal stock prices 0.01 0.07 -0.37 0.19
Canada Bond yield -0.01 0.47 -2.19 2.15
Chile Real credit 0.03 0.08 -0.34 0.54
Chile Real GDP 0.01 0.02 -0.14 0.11
Chile CPI 0.00 0.07 -0.45 0.39
Chile Nominal stock prices 0.07 0.16 -0.38 0.88
Colombia Real credit 0.01 0.04 -0.19 0.13
Colombia CPI 0.00 0.04 -0.22 0.22
Costa Rica Real credit 0.01 0.04 -0.18 0.13
Costa Rica CPI 0.00 0.02 -0.11 0.06
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Cyprus Real credit 0.02 0.03 -0.16 0.13
Cyprus CPI 0.00 0.02 -0.06 0.05
Denmark Real credit 0.01 0.01 -0.03 0.07
Denmark Real GDP 0.01 0.01 -0.08 0.06
Denmark CPI 0.00 0.01 -0.04 0.04
Denmark Nominal stock prices 0.02 0.08 -0.39 0.3
Denmark Bond yield -0.03 0.63 -3.34 2.75
El Salvador CPI 0.00 0.02 -0.05 0.05
Finland Real credit 0.01 0.02 -0.05 0.14
Finland Real GDP 0.01 0.01 -0.07 0.05
Finland CPI 0.00 0.01 -0.04 0.04
Finland Nominal stock prices 0.02 0.10 -0.35 0.42
France Real credit 0.01 0.02 -0.04 0.08
France Real GDP 0.01 0.01 -0.05 0.08
France CPI 0.00 0.01 -0.02 0.01
France Nominal stock prices 0.01 0.08 -0.33 0.23
France Bond yield -0.02 0.42 -1.62 1.81
Germany Real credit 0.01 0.01 -0.02 0.05
Germany Real GDP 0.01 0.01 -0.05 0.04
Germany CPI 0.00 0.01 -0.02 0.03
Germany Nominal stock prices 0.01 0.08 -0.32 0.23
Germany Bond yield -0.03 0.37 -1.37 1.07
Greece Real credit 0.01 0.03 -0.07 0.10
Greece Real GDP 0.01 0.02 -0.05 0.08
Greece CPI 0.00 0.03 -0.07 0.07
Guatemala Real credit 0.01 0.11 -1.44 0.58
Guatemala CPI 0.00 0.02 -0.08 0.09
Honduras Real credit 0.02 0.03 -0.10 0.12
Honduras CPI 0.00 0.02 -0.06 0.05
Iceland Real credit 0.01 0.05 -0.15 0.28
Iceland Real GDP 0.01 0.02 -0.09 0.10
Iceland CPI 0.00 0.03 -0.15 0.12
India Real credit 0.02 0.04 -0.11 0.15
India Real GDP 0.01 0.02 -0.07 0.09
India CPI 0.00 0.03 -0.13 0.09
India Nominal stock prices 0.02 0.11 -0.64 0.37
Ireland Real credit 0.01 0.03 -0.10 0.11
Ireland Real GDP 0.01 0.02 -0.06 0.21
Ireland CPI 0.00 0.01 -0.07 0.04
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Ireland Nominal stock prices 0.02 0.09 -0.49 0.35
Ireland Bond yield -0.02 0.66 -2.19 2.40
Israel Real credit 0.03 0.05 -0.17 0.45
Israel Real GDP 0.01 0.02 -0.12 0.10
Israel CPI 0.00 0.04 -0.30 0.23
Israel Nominal stock prices 0.05 0.14 -0.84 0.61
Italy Real credit 0.01 0.03 -0.05 0.09
Italy Real GDP 0.01 0.01 -0.03 0.10
Italy CPI 0.00 0.01 -0.05 0.04
Italy Nominal stock prices 0.01 0.10 -0.30 0.35
Italy Bond yield -0.02 0.56 -2.30 2.34
Japan Real credit 0.01 0.02 -0.07 0.08
Japan Real GDP 0.01 0.01 -0.05 0.03
Japan CPI 0.00 0.01 -0.04 0.05
Japan Nominal stock prices 0.01 0.08 -0.36 0.22
Japan Bond yield -0.03 0.35 -1.22 1.50
Korea Real credit 0.03 0.04 -0.13 0.19
Korea Real GDP 0.02 0.02 -0.07 0.08
Korea CPI 0.00 0.03 -0.13 0.17
Luxembourg Real GDP 0.01 0.02 -0.05 0.06
Luxembourg CPI 0.00 0.01 -0.03 0.02
Malaysia Real credit 0.03 0.04 -0.07 0.24
Malaysia CPI 0.00 0.01 -0.06 0.03
Malta CPI 0.00 0.02 -0.04 0.05
Mexico Real credit 0.01 0.06 -0.31 0.28
Mexico Real GDP 0.01 0.02 -0.06 0.08
Mexico CPI 0.00 0.03 -0.22 0.09
Mexico Nominal stock prices 0.05 0.15 -0.72 0.7
Morocco Real credit 0.02 0.04 -0.13 0.12
Morocco Real GDP 0.01 0.03 -0.14 0.17
Morocco CPI 0.00 0.02 -0.07 0.04
Netherlands Real credit 0.01 0.02 -0.04 0.08
Netherlands Real GDP 0.01 0.01 -0.05 0.06
Netherlands CPI 0.00 0.01 -0.06 0.04
Netherlands Nominal stock prices 0.01 0.08 -0.42 0.17
Netherlands Bond yield -0.02 0.37 -1.23 1.31
New Zealand Real credit 0.01 0.04 -0.12 0.17
New Zealand Real GDP 0.01 0.02 -0.08 0.11
New Zealand CPI 0.00 0.01 -0.06 0.05
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New Zealand Nominal stock prices 0.01 0.08 -0.44 0.23
New Zealand Bond yield -0.02 0.61 -2.33 4.35
Norway Real credit 0.01 0.02 -0.05 0.08
Norway Real GDP 0.01 0.01 -0.03 0.04
Norway CPI 0.00 0.01 -0.05 0.06
Norway Nominal stock prices 0.02 0.10 -0.51 0.34
Norway Bond yield -0.01 0.37 -1.45 1.56
Pakistan Real credit 0.02 0.06 -0.21 0.24
Pakistan Real GDP 0.01 0.02 -0.05 0.09
Pakistan CPI 0.00 0.02 -0.10 0.11
Peru Real credit 0.02 0.08 -0.52 0.34
Peru CPI 0.00 0.15 -1.56 1.23
Peru Nominal stock prices 0.08 0.35 -0.47 3.37
Philippines Real credit 0.02 0.05 -0.23 0.13
Philippines Real GDP 0.02 0.11 -0.10 1.62
Philippines CPI 0.00 0.03 -0.12 0.11
Philippines Nominal stock prices 0.01 0.13 -0.36 1.09
Portugal Real credit 0.01 0.03 -0.07 0.07
Portugal Real GDP 0.01 0.01 -0.03 0.06
Portugal CPI 0.00 0.02 -0.08 0.06
Portugal Bond yield 0.00 0.72 -3.76 3.07
South Africa Real credit 0.01 0.02 -0.04 0.09
South Africa Real GDP 0.01 0.01 -0.02 0.05
South Africa CPI 0.00 0.01 -0.04 0.03
South Africa Nominal stock prices 0.02 0.09 -0.26 0.24
South Africa Bond yield 0.02 0.61 -2.07 3.39
Spain Real credit 0.01 0.02 -0.07 0.08
Spain Real GDP 0.01 0.01 -0.03 0.04
Spain CPI 0.00 0.01 -0.04 0.04
Spain Nominal stock prices 0.01 0.09 -0.28 0.36
Sweden Real credit 0.01 0.02 -0.06 0.06
Sweden Real GDP 0.01 0.01 -0.04 0.03
Sweden CPI 0.00 0.01 -0.04 0.03
Sweden Nominal stock prices 0.02 0.09 -0.29 0.33
Sweden Bond yield -0.02 0.45 -1.76 2.06
Switzerland Real credit 0.01 0.01 -0.05 0.05
Switzerland Real GDP 0.01 0.01 -0.05 0.03
Switzerland CPI 0.00 0.01 -0.02 0.03
Switzerland Nominal stock prices 0.01 0.07 -0.34 0.16
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Switzerland Bond yield -0.02 0.27 -0.82 0.87
Taiwan Real credit 0.02 0.03 -0.14 0.12
Taiwan Real GDP 0.02 0.02 -0.05 0.08
Taiwan CPI 0.00 0.02 -0.16 0.08
Thailand Real credit 0.02 0.03 -0.09 0.13
Thailand CPI 0.00 0.02 -0.06 0.08
Turkey Real credit 0.02 0.06 -0.25 0.18
Turkey Real GDP 0.01 0.02 -0.11 0.07
Turkey CPI 0.00 0.04 -0.20 0.14
United Kingdom Real credit 0.01 0.02 -0.04 0.07
United Kingdom Real GDP 0.01 0.01 -0.03 0.05
United Kingdom CPI 0.00 0.01 -0.08 0.04
United Kingdom Nominal stock prices 0.02 0.08 -0.27 0.35
United Kingdom Bond yield -0.02 0.54 -1.88 1.76
United States Real credit 0.01 0.02 -0.04 0.04
United States Real GDP 0.01 0.01 -0.02 0.04
United States CPI 0.00 0.01 -0.04 0.02
United States Nominal stock prices 0.02 0.06 -0.36 0.19
United States Bond yield -0.01 0.46 -2.45 1.54
Uruguay Real credit 0.00 0.07 -0.31 0.22
Uruguay Real GDP 0.01 0.02 -0.07 0.09
Uruguay CPI 0.00 0.04 -0.17 0.18

Table 2.A4: Correlations between global factors

Coefficient of
correlation

Financial factor
(PC1)

Financial factor
(2 stage)

Macroeconomic
factor (PC1)

Macroeconomi
factor (2 stage)

Financial factor
(PC1) 1 0.98 -0.88 -0.98

Financial factor
(2 stage) 0.98 1 -0.89 -0.99

Macroeconomic
factor (PC1) -0.88 -0.89 1 0.93

Macroeconomic
factor
(2 stage)

-0.98 -0.99 0.93 1
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Table 2.A5: Cross-section variables

Country
Credit/ GDP (%) Market Cap./GDP (%) US inv./GDP (%)
Mean N Mean N Max N

Argentina 16.44 58 10.86 43 10.04 31
Australia 65.1 60 79.36 41 13.25 30
Austria 90.24 19 17.74 45 4.43 31
Belgium 61.95 19 46.02 44 13.27 31
Bolivia 29.15 60 6.1 31
Brazil 41.07 60 49.3 20 6.2 31
Canada 64.04 49 108.49 41 23.26 31
Chile 44.14 60 95.97 29 14.83 31
Colombia 28.23 60 45.84 15 4.45 31
Costa Rica 30 60 6.45 18 15.21 31
Cyprus 193 19 25.72 14 23.48 30
Denmark 81.41 54 29.21 30 5.4 30
El Salvador 34.73 55 17.58 31
Finland 81.15 19 63.67 22 1.39 30
France 90.71 19 48.45 44 3.37 31
Germany 92.08 19 32.13 45 3.84 31
Greece 89.29 19 37.06 19 0.79 31
Guatemala 19.18 60 4.61 31
Honduras 30.03 60 8.61 31
Iceland 72.1 60 3.4 14
India 26.94 60 76.27 17 1.75 30
Ireland 98.38 19 51.83 22 135.64 31
Israel 52.25 60 49.75 41 7.98 31
Italy 50.44 30 45.69 10 2.05 31
Japan 119.36 60 70.48 45 2.59 31
Korea 65.03 60 47.69 40 2.63 31
Luxembourg 56.23 30 104.14 45 1095.82 31
Malaysia 78.15 60 132.34 39 7.74 31
Malta 57.2 26 43.01 20 21.5 18
Mexico 21.12 60 21.19 44 9.34 31
Morocco 31.49 56 55.38 10 0.7 31
Netherlands 71.03 30 66.59 43 111.54 31
New Zealand 63.4 60 38.94 35 10.6 31
Norway 62.94 60 40.37 39 8.5 31
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Pakistan 22.24 60 21.94 24 0.96 30
Peru 18.04 60 37.78 23 7.47 31
Philippines 28.47 60 58.04 24 7.34 31
Portugal 81.5 30 23.07 42 2.3 30
Singapore 77.43 60 166.79 41 85.84 31
South Africa 52.37 59 167.8 45 2.88 31
Spain 84.2 30 48.1 44 5.37 31
Sweden 62.66 60 48.19 29 11.29 31
Switzerland 126.4 57 142.54 45 37.09 31
Taiwan 110.16 35 5.09 30
Thailand 70.51 60 66.1 31 5.79 31
Turkey 25.24 60 24.86 27 0.82 31
United Kingdom 83.1 60 86.3 34 30.54 31
Uruguay 27.63 60 4.06 2 5.09 30

Note: N denotes the annual non-missing sample size available for each indicator. The time spam for
Credit/ GDP and Market Cap./GDP is 1960 to 2019, and for US inv./GDP it is 1989 to 2019.
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2 Vulnerable Funding in the Global Economy

Figure 2.A1: Original series, transformed series and unit root tests
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3 Daily growth-at-risk: financial or
real drivers? The answer is not
always the same

3.1 Introduction

Many recent studies have analyzed the predictive power of financial variables as
indicators of real economic activity in times of crisis. One stream of this literature
has emphasized the significant role played by financial indicators in forecasting low
quantiles of the real GDP growth rate (e.g., Giglio et al., 2016; Adrian et al., 2019),
while another reports that, having controlled for real variables, financial indicators
have little to add to the mix (e.g., Reichlin et al., 2020; Plagborg-Møller et al., 2020).
And yet, at the same time, a number of studies actually make the opposite claim and
conclude that after financial variables have been incorporated into the forecasting
equation, real variables have little to add (see Carriero et al., 2022).

This lack of consensus arises because forecasting real economic activity (or any
part of the growth distribution, for that matter) using financial variables is a uniquely
challenging problem: first, because financial and real variables are generally sam-
pled at different frequencies, the former at a considerably higher frequency than the
latter, and, second, because quantifying just how much financial variables add in
terms of forecasting power seems to be as much a causal question as a predictive
one, inseparable in this regard from the recurring controversy in economics con-
cerning the dichotomy between nominal and real variables, and how (and the extent
to which) the former influence the latter. Furthermore, this second concern high-
lights the tension between what can be considered tasks of pure "prediction" and
pure "causal" inference in the social sciences, in general, and in economics, in par-
ticular (Athey, 2017). This theoretical distinction is far from clear when it comes
to undertaking macroeconomic studies that are, out of necessity, observational and
in which forecasting can generally be improved by using domain knowledge that
is causal. Moreover, forecasting exercises are generally expected to improve our
understanding of the causal mechanisms at work in the economy. In short, we tend
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to trust forecasts more than we can actually fathom.
Given the complexity of this relationship and the multiplicity of aims that a re-

searcher or policy maker may have when making a forecast, we recommend an
eclectic approach be adopted. In so doing, both financial and real variables should
ideally be used for forecasting episodes of economic crisis, while the data should
be allowed to highlight the relative importance of each set of variables on a time-
varying basis. By adhering to such an approach, we are able to make two major
contributions to the field. First, we show that the informational content of daily
financial and real economy indicators differs across time. Thus, in certain circum-
stances, forecasting accuracy depends heavily on such financial indicators as the
equity market volatility (VXO) index or credit spreads; however, in other circum-
stances, real economic indicators, such as the Aruoba-Diebold-Scotti business con-
ditions (ADS) index (Aruoba et al., 2009), are better at enhancing forecasts. Here,
our results clearly point to the time-varying importance of real and financial vari-
ables. We compute the optimal weights that our nowcasting growth-at-risk (GaR)
models assign to the ADS index or to financial variables when combining forecasts
and we show that in periods such as the aftermath of the Global Financial Crisis
(GFC), financial indicators play a far more relevant role than the ADS index, while
the opposite holds true for the recent Covid-19 crisis. This finding is in agreement
with the general consensus reached by the macrofinancial literature which high-
lights the financial nature of the GFC, during which financial markets and interme-
diaries acted as amplifiers of systemic shocks (Isohätälä et al., 2016; Brunnermeier
and Sannikov, 2016; Gertler and Gilchrist, 2018). It is also in agreement with stud-
ies claiming that the Covid-19 crisis was simply a product of the supply restrictions
imposed to contain the pandemic, which were real and supply-side in nature, albeit
with repercussions for aggregate demand (Guerrieri et al., 2022). Thus, it is appar-
ent that understanding the mechanisms underpinning a crisis is a purely causal task
that can enable researchers to interpret the results of the forecasting exercise and, to
improve the actual forecast.

Second, we also contribute to the GaR literature, as pioneered by Adrian et al.
(2019), by using high-frequency financial and real indicators. Unlike most of the
literature that employs either quarterly (e.g., Adrian et al., 2019; Brownlees and
Souza, 2021) or weekly indicators (Carriero et al., 2022) to forecast tail risk to
GDP growth, we estimate our models using daily right-hand side variables. This
means our results are based on more real-time information than is usually the case
in the extant literature. Exceptions exist - most notably Ferrara et al. (2022) and
De Santis and Van der Veken (2020) - however, in the cited instances, real variables
are neglected and the number of financial indicators included is limited. Thus, our
results are supported by richer cross-sectional information at the intended frequency
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than is the case in previous studies and so we present models of considerably greater
accuracy.

One significant concern that needs to be addressed when working with daily
predictors, yet without excluding any variables (financial or real) a priori, is the
rate at which the number of parameters to be estimated increases. In this instance,
shrinkage, regularization and dimensionality reduction techniques, such as those af-
forded by LASSO, elastic net (EN), the adaptive sparse group LASSO or principal
components analysis (PCA), become essential. Here, we introduce these methods
into mixed data sampling (MIDAS)-Quantile models for estimating GaR and use
quantile regression for high-dimensional spaces, as proposed by Belloni and Cher-
nozhukov (2011), and PCA to reduce the dimensions of our problem even further.
In line with the warnings reported by Lima et al. (2020) and Lima and Meng (2017),
parameterreduction techniques are critical when operating at such high frequencies.
The LASSO-Quantile (LASSO-Q) model is described as outperforming other alter-
natives proposed in the literature, for example, traditional MIDAS quantile regres-
sion, where the vector of high-frequency terms takes an arbitrary form, estimated
by either frequentist (Ghysels et al., 2016) or Bayesian methods (Mogliani and Si-
moni, 2021; Ferrara et al., 2022), both in- and out-of-sample. In addition, in line
with Stock and Watson (2004), Andreou et al. (2013), and Ferrara et al. (2022),
we show that combined forecasts using all indicators are more accurate, especially
out-of-sample.

We validate our conclusions using a battery of statistics drawn from different
fields of forecasting and quantitative risk management. Here, rather than relying
on a single statistic taken from the forecasting literature which, for instance, may
not take into account when the value at risk (VaR) of a series is estimated (low or
high conditional quantile), we seek to ensure two properties: unconditional cover-
age and independence (Christoffersen, 1998). This is important because, as shown
by Brownlees and Souza (2021) in a multi-country setting, original indicators of
GaR frequently fail to pass basic tests designed in finance to measure the preci-
sion of VaR estimates. This, in turn, can call into question the utility of the whole
enterprise.

We show that this is not the case for our indicators. In fact, on the vast majority
of occasions, daily financial information together with daily information on real
activity are especially useful for anticipating adverse scenarios for GDP growth.
Moreover, we show that our GaR statistics are adequate and satisfy expectations in
terms of performance.

The rest of this paper is organized as follows. Sections 3.2 and 3.3 present our
data and methodology, respectively. Section 3.4 presents our main results, while
section 3.5 concludes.
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3.2 Data

Here, we seek to nowcast the conditional tail of the distribution of real GDP growth
(or GNP for some of the sample period1) on a pseudo real-time basis. To do this,
we use the quarterly real-time data set reported by the Federal Reserve Bank of
Philadelphia (FRBP) spanning the period from 1986Q1 to 2020Q4. Specifically,
this dataset captures the advance estimate for the previous quarter, released towards
the end of the month of the current quarter.2

In the case of our high-frequency variables, we include 12 daily predictors to
make the GaR forecasts (11 financial and 1 real variable). Of this set, eight series
are the same as those employed by Pettenuzzo et al. (2016): i) the ADS daily busi-
ness cycle index designed by Aruoba et al. (2009), which comes from a dynamic
factor model at daily frequency; ii) the interest rate spread between the 10-year
government bond rate and the federal fund rate (ISPREAD); iii) the change in the
effective Federal Funds rate (EFFR); iv) the BAA-AAA-rated corporate bond yield
credit spread (CSPREAD); v) the excess return on the market (RET); vi) the returns
on the portfolio of small minus big stocks (SMB); vii) the returns on the portfolio of
high minus low book-tomarket ratio stocks (HML); and viii) the returns on a win-
ner minus loser momentum spread portfolio (MOM). In addition, we include four
financial indicators: the equity market volatility index (VXO), which has previously
been used as a risk indicator;3 the spread between the yield of 10-year constant ma-
turity Treasury bonds and 3-month Treasury bills (TERM), as a predictor of US
recessions;4 the spread between the 3-month LIBOR based on US dollars and the
3-month Treasury bill spread (TED), as a proxy of credit risk;5 and the Composite
Indicator of Systemic Stress (CISS) for the US, which is a systemic risk measure
based on 15 raw market indicators, following a computation analogous to the CISS
for the Euro Area (Holló et al., 2012). This last variable is used as a benchmark
indicator in our models, as the standard GaR framework considers a composite fi-
nancial condition index (Adrian et al., 2019; Figueres and Jarociński, 2020). Again,
our data sample spans the period from 1986Q1 to 2020Q4 and is restricted by the

1In December 1991, the Bureau of Economic Analysis switched from reporting GNP to report-
ing GDP as its output measure. Later, in January 1996, they also switched from calculating GDP
using fixed-weight aggregation to chain-weight methods.

2Faust et al. (2013) use this dataset to forecast real-time measures of economic activity using
Bayesian model averaging with a large number of real and financial indicators.

3Rey (2015) shows that this indicator comoves with global capital flows, global credit growth,
and global asset prices. Longstaff et al. (2011) also document that the price of sovereign risk is
strongly correlated with VXO.

4Estrella and Mishkin (1998) and the subsequent literature have shown the forecasting power of
the term spread for recessions.

5Gunay (2020) shows that the TED spread is superior to credit default swap indexes as an early
warning indicator for the credit market.
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availability of data for all indicators.
The ADS index is used in our nowcasting exercise with weekly vintages start-

ing 30 November 2008. Although this approach reduces uncertainty at the sample
endpoints (Amburgey and McCracken, 2022), uncertainty remains due to the esti-
mation of the ADS index in a previous step. Maldonado and Ruiz (2021) emphasize
the importance of measuring this type of uncertainty accurately in empirical appli-
cations. This means, for instance, that favourable economic conditions (i.e. better
than average) can only be confidently asserted if both the point estimate of the ADS
index and its confidence intervals are positive. This uncertainty is, therefore, in-
herent in our GaR models, given that they use the ADS index as an input variable,
and may, as such, produce overstated results (i.e. providing estimates that appear
more precise than what they actually are). This limitation applies to all nowcasting
exercises that use an index estimated in a prior step (and not only the ADS index),
and needs to be acknowledged. We include up to one year of daily lags of the
high-frequency indicator in all our specifications. A detailed description of these
indicators is provided in Table 3.1.
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Table 3.1: Detailed description of variables

Variable Frequency Sample Lags Description Source

ADS Daily Jan. 1, 1986, to Dec.
31, 2020

1 year ADS index weekly vintages collected in real-time from 30 November 2008 Federal Reserve Bank
of Philadelphia

ISPREAD Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Interest rate spread between the 10-year government bond rate and the federal fund rate Federal Reserve Bank
of St. Louis

EFFR Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Effective Federal Funds rate, first difference Federal Reserve Bank
of St. Louis

CSPREAD Daily Jan. 1, 1986, to Dec.
31, 2020

1 year BAA-AAA-rated corporate bond yield credit spread Federal Reserve Bank
of St. Louis

RET Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Excess return on the market, value-weight return of US stocks Fama and French
(1993)

SMB Daily Jan. 1, 1986, to Dec.
31, 2020

1 year The average return on the three small portfolios minus the average return on the three big
portfolios

Fama and French
(1993)

HML Daily Jan. 1, 1986, to Dec.
31, 2020

1 year The average return on the two value portfolios minus the average return on the two growth
portfolios

Fama and French
(1993)

MOM Daily Jan. 1, 1986, to Dec.
31, 2020

1 year The average return on the two high prior return portfolios minus the average return on the
two low prior return portfolios

Fama and French
(1993)

VXO Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Option-based implied volatility measure of S&P100 Federal Reserve Bank
of St. Louis

TERM Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Spread between the yield of 10-year constant maturity Treasury bonds and of 3-month
Treasury bills

Federal Reserve Bank
of St. Louis

TED Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Spread between 3-Month LIBOR based on US dollars and 3-month Treasury bills Federal Reserve Bank
of St. Louis

CISS Daily Jan. 1, 1986, to Dec.
31, 2020

1 year Daily systemic risk measure based on Holló et al. (2012) European Central
Bank

GDP
growth

Quarterly Q1, 1986, to Q4, 2020 1
quar-
ter

Real GDP or Gross National Product, percent change from preceding period, quarterly,
seasonally adjusted

Federal Reserve Bank
of Philadelphia
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3.3 Methodology

To nowcast tail risks in GDP growth, we extend Adrian et al’s (2019) formulation
to account for high-frequency (daily) predictors. In this section, we show briefly
how we adapt the standard GaR to incorporate daily financial and real indicators
using mixed data sampling. To this end, we compare the respective performances
of a traditional MIDAS (with Almon lag polynomials), Bayesian MIDAS, LASSO,
EN, adaptive sparse group LASSO, and soft and hard thresholding methods. We
also show how we combine forecasts, an approach that has been shown to improve
forecast accuracy. Finally, we present the tools used to evaluate tail risk forecasts. A
quick note for notation: bold letters and symbols refer to multivariate objects such
as vectors and matrices.

3.3.1 Growth-at-risk framework

As in the standard framework of quarterly GaR pioneered by Giglio et al. (2016) and
Adrian et al. (2019), we rely on quantile regressions (Koenker and Bassett, 1978).
Specifically, we assess the combined effect of past GDP growth (yt−h) and a given
financial condition indicator (xt−h) at quarter t and forecast horizon h on current
output growth (yt). At this point it is important to recall that even though xt−h is
observed daily, it is aggregated to quarterly frequency by simple averaging.

The baseline quantile regression is given by:

yt = β0(τ) +β1(τ)yt−h+β2(τ)xt−h+ εt (3.1)

where βββ(τ) = (β0(τ),β1(τ),β2(τ))′ denotes the vector of parameters correspond-
ing to the τ -th quantile, and εt is a random noise.

The parameters in Eq. (3.1) are estimated by minimizing the tick loss (TL) func-
tion:

TLτ =
1

T

T

∑
t=h+1

[ρτ (yt−Qτ (yt | yt−h,xt−h))] (3.2)

where ρτ (εt) = (1−τ)1(εt < 0)|εt|+τ1(εt > 0)|εt|, with 1(εt < 0) taking a value
of 1 when the subscript is true and 0 otherwise. The mathematical formulation in
Eq. (3.2) leads to the solution of a linear programming optimization problem that
we have not included here. Its basic structure and the counterpart algorithm solution
can be found in Koenker (2005).

The predicted value from Eq. (3.1) is the quantile of yT |T−h, which is conditional
on the information available up to T −h,
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Qτ (yT | yT−h,xT−h) = β0(τ) +β1(τ)yt−h+β2(τ)xt−h. (3.3)

Koenker and Bassett (1978) further prove thatQτ (yT |yT−h,xT−h) is a consistent
linear estimator of the conditional quantile function of yt. In this setting, we are
particularly interested in the GaR(10%) measure defined as the conditional 10%

quantile forecast (see, Figueres and Jarociński, 2020; Ferrara et al., 2022; Carriero
et al., 2022), namely Qτ=10%(yT |yT−h,xT−h).6

This last equation can be interpreted as the 10% quantile of GDP growth, which
is conditional on the information set available up to T −h for the predictors. On the
one hand, a vast literature documents that financial conditions constitute strong pre-
dictive information for the lower quantiles of future GDP growth (see, e.g., Adrian
et al., 2019; Prasad et al., 2019; Brownlees and Souza, 2021; Figueres and Jaro-
ciński, 2020; Ferrara et al., 2022); however, on the other, Plagborg-Møller et al.
(2020) and Reichlin et al. (2020) state that controlling for real factors is necessary
to measure accurately the real-time effect of financial indicators on real activity. We
take these two results into account in the framework we develop here by incorpo-
rating, as a high-frequency indicator of the real sector, the Aruoba et al’s ADS daily
business cycle index (2009), in addition to the financial indicators. We then adopt a
combination approach, aimed at producing a better point forecast, and we verify the
optimal weights of individual high-frequency predictors by following the literature
in this field (see Stock and Watson, 2004; Andreou et al., 2013; Pettenuzzo et al.,
2016; Ferrara et al., 2022).

3.3.2 Adapting the standard GaR approach to high-frequency
indicators

The handicap of the formulation as stated in Eq. (3.1) is that by aggregating the
high-frequency indicator, the model cannot respond to daily shocks. Thus, in line
with Ferrara et al. (2022), we adapt it so as to account for the daily information
flow of the high-frequency indicator up to the latest available observation (minus
hd days), based on the following regression:

yt = β0(τ) +β1(τ)yt−1 +XXXD′
t−hdφφφ(τ) + εt (3.4)

where φφφ(τ) is a p× 1 vector of daily parameters and XXXD
t =

(
x0
t ,x

1
t , . . . ,x

p−1
t

)′
is a p× 1 vector of the high-frequency variable available on a daily basis, with

6Alternatively, Adrian et al. (2019) use the 5% quantile forecast as the measure of tail risk.
However, due to our shorter sample period, we opt to use the 10% quantile.
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xjt , j = (0,1,2, . . . ,p−1), which is updated d times between quarter t and t−1. In
this setup, we consider yt as being affected by up to one year (q= 4 quarters) of past
daily shocks and past GDP growth, giving a total number of parameters (including
the constant) approximately equal to K = q ∗d+ 2 = 4∗ 60 + 2 = 242, assuming a

five-day working week (d = 60 days ); that is, XXXD
t−hd =

(
x0
t ,x

1
t− 1

60

, . . . ,x239
t− 239

60

)′
,

with xjt−hd . Notice that in this formulation, the forecast horizon is expressed in
high-frequency terms, that is, hd = (0,1/d,2/d, . . . ,(p−1)/d).

Our estimation window is wider than that employed by Ferrara et al. (2022), the
latter considering a 60-day lag window for the high-frequency indicator. This en-
ables the model to capture up to one year’s worth of daily information. In our case,
the number of parameters K is relatively higher than the total number of observa-
tions T , so we are faced with a parameter proliferation problem, which invalidates
the standard estimation procedure of the quantile regression. Thus, in what follows,
we discuss the four alternative methods used in our results section to estimate the
above regression.

3.3.3 MIDAS-Q

The MIDAS-Quantile model (MIDAS-Q) offers an effective solution for incorpo-
rating highfrequency indicators into Eq. (3.4), relying on a restriction of the form
in which the distributed lags of the high-frequency variable are included in the re-
gression. Specifically, we introduce the high-frequency lagged vector XXXD

t−hd in a
quantile regression for the low-frequency dependent variable yt as follows:

yt = β0(τ) +β1(τ)yt−1 +
p−1

∑
j=0

b(j;θθθ(τ))L
j
dxjt−hd + εt (3.5)

where b(j;θθθ(τ)) = ∑
c
i=0 θi,j(τ)ji is the Almon lag polynomial weighting func-

tion, which depends on the vector of parameters θθθ(τ), where j = (0,1,2, . . . ,p−1),
and the order of the Almon lag polynomial is given by c. While Ghysels et al.
(2016) propose the Beta lag polynomial function for the quantile weighting func-
tion, we consider the Almon lag polynomial as in other more recent works (Lima
et al., 2020; Mogliani and Simoni, 2021; Ferrara et al., 2022). Under the so-called
"direct method", Eq. (3.5) can be reparameterized as follows:

yt = β0(τ) +β1(τ)yt−1 + X̃XX
D′
t−hdφφφ(τ) + εt (3.6)

where X̃XX
D

t−hd := QQQ×XXXD
t−hd is a (c+ 1)×1 vector representing the transformed

highfrequency predictor, QQQ is a ((c+1)×p) weighting matrix with the (i− th+1)
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row element ofQQQ equal to
(
0i,1i,2i, . . . ,(p−1)i

)
for i= 0, . . . , c. Following Ferrara

et al. (2022), we set c = 3 (third degree Almon lag) and impose two end-point
zero restrictions on the slope and the value of the lag polynomial (r = 2), such
as b(p−1;θj(τ)) = 0 and ∇jb(j;θj(τ))|j=p−1 = 0, as in Mogliani and Simoni
(2021). This causes the weighting structure to slowly reduce to zero. Consequently,
the number of parameters of the high-frequency indicator to be estimated is reduced
from (c+ 1) to (c+ 1− r) parameters.

3.3.4 BMIDAS-Q

The Bayesian version of the MIDAS-Quantile model (BMIDAS-Q), based on the
asymmetric Laplace distribution (ALD) estimation pioneered by Yu and Moyeed
(2001), offers a convenient alternative for estimating Eq. (3.6). This approach is
adopted by Ferrara et al. (2022) to nowcast GaR for the Eurozone when using high-
frequency financial indicators. Yu and Moyeed (2001) showed that the minimization
problem of quantile regressions (see Eq. (3.6)) is equivalent to maximizing the
likelihood function using the ALD for the error term εt. Here, we use the Gibbs
sampling method as implemented by Kozumi and Kobayashi (2011), alongside their
mixture representation of ALD. In this framework, the error term εt in Eq. (3.6)
can be represented as a location-scale mixture of normal distributions in which the
mixing distribution follows an exponential distribution (see Kozumi and Kobayashi,
2011). This implies that Eq. (3.6) can be expressed as:

yt = β0(τ) +β1(τ)yt−1 + X̃XX
D′
t−hdφφφ(τ) +ϕ1(τ)vt+ϕ2(τ)

√
σvtut (3.7)

where ϕ1 and ϕ2 are fixed parameter functions of the quantile τ,vt = σzt follows
a standard exponential function, and ut is a standard normal function. This leads to
the following likelihood function (to simplify assume XXXt contains all covariates):

f
(
yt |XXX ′tφφφ(τ),vt,σ

)
∝ exp

(
−

T

∑
t=1

(
yt−XXX ′tφφφ(τ)−ϕ1(τ)vt

)2
2ϕ2(τ)2√σvt

)
T

∏
t=1

1√
σv

(3.8)

with posterior densities for φφφ,v and σ given by:

φφφ |XXX,v,σ,τ ∼N(β̃ββ, ṼVV ),

v |XXX,φφφ,σ,τ ∼GiG

(
1

2
,

(
yt−XXX ′tφφφ(τ)

)2
σϕ2(τ)2

,
2

σ
+
ϕ1(τ)2

σϕ2(τ)

)
,
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σ |XXX,v,φφφ,τ ∼ Inv-Gamma(a,b),

where

β̃ββ = ṼVV

(
T

∑
t=1

XXXt (yt−ϕ1(τ)vt)

ϕ2(τ)2σvt

)
and ṼVV

−1
=

T

∑
t=1

XXX ′tXXXt

ϕ2(τ)2σvt
+ ṼVV

−1

0

and a and b are shape and scale parameters of the inverse gamma distribution,
respectively. In our framework, as in that employed by Carriero et al. (2022), we
are interested in using the posterior mean of the coefficient vector φφφ(τ) to produce
point forecasts.

3.3.5 Soft thresholding: LASSO-Q and EN-Quantile (EN-Q)

One caveat of the restricted MIDAS approach presented above is that the prede-
termined choice of the weighting function might result in a lag structure for the
high-frequency predictor that fails to maximize forecast accuracy. Thus, as an alter-
native, we propose estimating GaR by using either the LASSO or EN regularization
for choosing a lag structure for the high-frequency predictors (Bai and Ng, 2008;
Lima et al., 2020).

Accordingly, we select the lags of the high-frequency variable, based on the
LASSO-Q algorithm proposed by Belloni and Chernozhukov (2011). The model
can be summarized as follows,

min
β,φ

E[ρτ (yt−β0(τ)−β1(τ)yt−1−XXXD′

t−hd
φφφ(τ))]+

λτ [

√
τ(1− τ)

T
]
p−1

∑
j=0

|φj(τ)|
(3.9)

where the optimization problem is the sum of the standard quantile minimization
function (as in Eq. (3.2)) and a penalty function given by a scaled l1-norm of the
daily vector of parameters φj(τ). The overall penalty is given by λτ [

√
τ(1− τ)/T ],

where T is the sample size. The optimal level of λτ (LASSO-Q penalization) is
calculated as in Belloni and Chernozhukov (2011). The LASSO-Q penalty has
the distinctive feature of making the coefficients of insignificant predictors exactly
equal to zero, retaining only the informative predictors for the forecast.

The Zou and Hastie’s (2005) EN estimator seeks to address two potential draw-
backs of the original LASSO. First, if K > T , LASSO can select T variables at
most. Second, if there is a group of variables with high pairwise correlation co-
efficients, LASSO tends to select only one variable from the group and does not
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care which one. Both, LASSO and EN shrink the estimates and perform model
selection. However, while the LASSO penalty is convex, the EN penalty is strictly
convex, which means that predictors must be grouped to have similar coefficients.
The EN-Q objective function is given by:

min
β,φ

E
[
ρτ

(
yt−β0(τ)−β1(τ)yt−1−XXXD′

t−hd
φφφ(τ)

)]
+

λ1,τ

p−1

∑
j=0

|φj(τ)|+λ2,τ

p−1

∑
j=0

φj(τ)2
(3.10)

where λ1,τ and λ2,τ are two tuning parameters that satisfy λ2,τ
λ1,τ+λ2,τ

> 0. This
restriction implies that the EN-Q is strictly convex, so it forces high pairwise corre-
lated predictors to have similar coefficients. As a result, EN-Q stretches the net so
as to retain all the important predictors, even if they are highly correlated.

As Zou and Hastie (2005) show, the EN objective function can be reformu-
lated as a LASSO problem.7 This has appealing computational properties, since
we can use the Belloni and Chernozhukov (2011) algorithm to estimate the EN-
Q model. To implement this, let’s first define (where for the sake of simplicity,
we assume that XXXt contains all the covariates): y+

t (τ) = (ytOOOp)
′ and XXX+

t (τ) =
1√

1+λ2,τ

(
XXXt

√
λ2,τIIIp

)′
, where OOOp represents a p× 1 vector of zeros and IIIp is a

p×p identity matrix.

Based on this new formulation, Eq. (3.10) can be re-expressed as follows,

min
φφφ++

E
[
ρτ
(
y+
t −XXX

+′
t φφφ(τ)

)]
+γτ

p−1

∑
j=0

|φj(τ)| (3.11)

where γτ =
λ1,τ√
1+λ2,τ

. Notice that now the sample size is equal to T +p, which en-

ables EN to select all p high-frequency predictors in all cases. To remove the double
shrinkage effect from LASSO, the EN-Q estimator is φφφ+(τ) = (1 +λ2.τ )φφφ++(τ)

(see Zou and Hastie, 2005). In our application, we only apply this correction if we
use the EN-Q model to produce the conditional quantile nowcasts directly.

7Bai and Ng (2008) and Lima et al. (2020) use this approach to produce conditional mean
forecasts with different loss functions. The former apply the mean square error and the latter the TL
function.
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3.3.6 Soft and hard thresholding methods: LASSO-PCA-Q and
EN-PCA-Q

In line with Lima et al. (2020) and Bai and Ng (2008), we apply soft and hard
thresholding methods when making forecasts with many predictors. To implement
this approach, we estimate principal components from the non-zero coefficients se-
lected by LASSO-Q or EN-Q and, using these selected variables, we can estimate
factors by PCA and select the optimal number of factors using the eigen ratio (Ahn
and Horenstein, 2013). Finally, we retain the factors associated with p-values lower
than 0.01 (or the statistically most significant). To differentiate these models from
those that only use the soft threshold to make their forecasts (i.e. LASSO-Q and
EN-Q), we label models of this type as LASSO-PCA-Q and EN-PCA-Q, with the
first step being selected by LASSO-Q or EN-Q, respectively.

3.3.7 Adaptive sparse group LASSO (ASGL-Q)

In line with Mendez-Civieta et al. (2021), we introduce a novel framework based
on an adaptive sparse group LASSO-Quantile (ASGL-Q) regression framework.8

This technique is particularly suited to high-dimensional problems where (p >>
T ) and, therefore, for dealing with multiple groups of high-frequency variables,
with sparsity allowed within the high-frequency lagged vector. It also uses adaptive
weights in the penalization scheme, in line with Zou (2006). For simplicity of
notation, we refer to TLτ (φφφ(τ)) as the TL function of the vector of parameter φφφ(τ)

(see Eq. (3.2)).
The ASGL-Q objective function is given by:

min
φ
E

[
TLτ (φφφ(τ)) +αλ

p−1

∑
j=0

w̃j |φj(τ)|+ (1−α)λ
m−1

∑
l=0

√
plṽl

∥∥∥φ(τ)l
∥∥∥

2

]
(3.12)

where w̃j is the weight of the j − th parameter φj(τ), ṽl is the weight of the
l− th group of parameters (or high-frequency variable) φ(τ)l, and pl is the size of
the l−th group. Overall, these weights assign a low weight to a relatively important
high-frequency variable (or to a given lag) and thus penalize less. Notice that Eq.
(3.12) is a linear combination of LASSO and group LASSO, given by λ and the
tradeoff between them, α∈ [0,1]. Specifically, a value close to 1 leads to the additive
LASSO while a value close to 0 leads to the additive sparse group LASSO. Thus,
this formulation provides solutions that are both between and within groups. Also,
as pointed out by Mendez-Civieta et al. (2021), this formulation defines a convex

8We thank an anonymous reviewer for suggesting this model.
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function which ensures that the solution of the minimization process is a global
minimum.

3.3.8 Forecast combination

An extensive literature reports the superior performance of forecast combinations,
reflecting the fact that they draw on information from all the underlying models
as opposed to relying on just one specific model (e.g., Stock and Watson, 2004;
Andreou et al., 2013; Pettenuzzo et al., 2016; Ferrara et al., 2022). Indeed, se-
lecting just one model can be both inconvenient and misleading in the presence of
a misspecification (Hansen et al., 2011). While different methods have been de-
veloped for implementing forecast combinations, here we opt for the discounted
meansquared forecast error combination approach (Stock and Watson, 2004; An-
dreou et al., 2013), using the TL as the objective function.

Combination weights are computed recursively on a daily basis as follows:

wi,t−hd =
λ−κi,t−hd

∑
N
i λ
−κ
i,t−hd

,

λi,t−hd =
Tf

∑
s=To

δTf−s (ys−GaRi,s(10%))× (τ −1(ys <GaRi,s(10%))) ,

(3.13)

where wi,t−hd is the weight corresponding to the individual GaRi,s(10%) mea-
sure based on the high-frequency indicator i, which depends on the discounted TL
given by λi,t−hd , with discount factor δ = 0.9 and κ= 1. Importantly, s= To is the
point at which the first prediction is computed, and s= Tf is the point at which the
most recent prediction can be evaluated with the high-frequency indicator up to the
latest available observation. By using this framework, we can compute a combined
GaR(10%) for each model.

3.3.9 GaR evaluation

We evaluate tail risk forecasts using a battery of indicators developed in the forecast
and risk management literatures. Our main tool for assessing GaR(10%) point fore-
casts is the average TL, which has been shown to be particularly appropriate when
the object of interest is the forecast of a certain quantile of the dependent variable’s
conditional distribution (see Giacomini and Komunjer, 2005; Gneiting and Raftery,
2007; Gneiting and Ranjan, 2011; Manzan, 2015). Carriero et al. (2022) specifi-
cally use this loss function to evaluate the predictive capacity of their models for
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quantifying tail risks.

The average TL for τ = 0.10 is specified as follows,

TLτ=10% =
1

T

T

∑
t=1

(yt−GaRt(10%))× (τ −1(yt <GaRt(10%))) , (3.14)

where yt is the actual GDP growth, GaRt(10%) is the 10% predictive quantile
of GDP growth, and the indicator function 1(yt < GaRt(10%)) takes a value of 1
if it is below the 10% forecast quantile and 0 otherwise. Following convention (see
Corradi and Swanson, 2006; Clark and McCracken, 2013), we use the Diebold and
Mariano (1995) test9 to assess the relative forecasting accuracy of our GaR models.
In all instances, the models compared are non-nested. In the recent literature, An-
dreou et al. (2013), Pettenuzzo et al. (2016), and Carriero et al. (2022) have adopted
the same approach.

In addition, we employ two coverage tests commonly used in the risk manage-
ment literature to assess interval forecasts. In line with Christoffersen (1998), the
problem of assessing the adequacy of a VaR model can be reduced to the problem of
determining whether the indicator of excess sequence (i.e. the 1(yt <GaRt(10%))
has two properties: i) an unconditional coverage property, and ii) an independence
property. In this setting, GaR forecasts are evaluated using the TL, a loss function
generally used to assess the accuracy of VaR predictions (Giacomini and Komunjer,
2005). We evaluate these two conditions using the unconditional coverage (UC),
and the dynamic quantile (DQ) tests (Engle and Manganelli, 2004), respectively.
Specifically, the DQ is estimated using four lags of the excess sequence indicator
(see Engle and Manganelli, 2004). Brownlees and Souza (2021) follow a similar
approach for a multi-country GaR evaluation. Note that these two conditions can
be achieved by more than one model; thus, ultimately, the TL is used in the final
selection of the best performing model.

3.4 Empirical analysis

This section presents the statistical details for the computation of each model and
the outcomes of the nowcasting exercise.

9We use the variance adjustment proposed by Harvey et al. (1997), which is supported by the
results in Clark and McCracken (2013).
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3.4.1 Parameterization and computational approach

We consider different high-frequency GaR measures covering different variables
and models. Below we discuss our choice of parameters for each model:

• MIDAS-Q: Eq. (3.6) is estimated by adopting the quantile approach described
in Section 3.3.3, in which we consider a third degree Almon lag polynomial
(c= 3) with two endpoint restrictions (r = 2), so that the number of parame-
ters of the high-frequency indicator is reduced substantially to c+1−r. This
lag structure presents good economic properties as it slowly decays towards
zero (see Mogliani and Simoni, 2021).

• BMIDAS-Q: Based on the aforementioned constrained Almon lag structure
for the high-frequency variable, Eq. (3.7) is estimated using the Bayesian
methodology considered in Section 3.3.4. Specifically, the model considers
standard uninformative priors on the coefficient vector to have a mean equal
to 0 and a variance where all elements in the diagonal are equal to 9, except
for the autoregressive lag of GDP, whose prior mean and variance are set at
0.5 and 0.1, respectively. Also, the scale and shape parameters of the inverse
gamma function are set at 0.01. The Gibbs sampler is used to estimate the
model parameters with 10,000 repetitions (for computational efficiency), after
a burn-in period of 1,000 iterations, using the normal approximation, which
simplifies the algorithm (Yang et al., 2015).10 The choice of these parameters
closely resembles those made by Ferrara et al. (2022), which constitutes a
natural benchmark model for our work.

• LASSO-Q: In line with the model presented in Section 3.3.5, we set the
penalty parameter λ equal to the 0.9 quantile of the pivotal distribution (see
Belloni and Chernozhukov, 2011). Figure A1 shows the selected lags for
LASSO-Q using each highfrequency predictor. Interestingly, historically it
not only tends to select the most recent daily lag of the given quarter (as one
would expect), but others from past quarters. This is a key difference of this
technique when compared to MIDAS-Q and BMIDAS-Q, as the latter models
have an arbitrary decaying weighting scheme.

• EN-Q: Based on the model presented in Section 3.3.5, λ1,τ is set as the
penalty parameter of the LASSO-Q model, defined as above, and λ2,τ is ob-
tained by minimizing the mean cross-validated errors of the model, with the
EN mixing parameter set at α= 0.5 (Friedman et al., 2010). Figure A2 shows

10See Kozumi and Kobayashi (2011) for details on the estimation procedure.
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the selected lags for EN-Q using each highfrequency predictor. Analogous to
LASSO-Q, we observe that this model historically selects different daily lags
for each high-frequency variable.

• LASSO-PCA-Q and EN-PCA-Q: Based on the non-zero high-frequency lags
selected with either LASSO-Q or EN-Q, we estimate factors by PCA, select
the optimal number of factors using the eigen ratio (Ahn and Horenstein,
2013), and retain the factors associated with p-values lower than 0.01 (or the
statistically most significant). The final step in this procedure is estimated
using the quantile approach described in Section 3.3.1.

• ASGL-Q: Based on the model presented in Section 3.3.7, we consider the fol-
lowing parametrization procedure. First, we carry out cross-validation checks
for different values of λ and α to obtain their optimal values. By estimating
this model with the full sample and all the high-frequency variables (except
the CISS, which is used as a benchmark), we obtain the optimal values of
λ = 0.010 and α = 0.25, which minimize the TL function. Second, we com-
pute recursively both LASSO weights and group LASSO weights based on
the regression on a subset of principal components. As suggested by Mendez-
Civieta et al. (2021), this method achieves better results in terms of prediction
error and the stability of the variables selected when used in real datasets.

For each of these models,11 we construct the individual GaR(10%) nowcasts by
estimating the 10% quantile forecast Q̂τ=10%

(
yT | yT−1,XXX

D
i,T−hd

)
conditional on

one lag of GDP growth and the respective high-frequency indicator, as described in
Table 3.1. This measure is computed recursively on a daily basis for each specifi-
cation including a high-frequency indicator XXXD

i,T−hd . The estimation sample spans
the period from 1986Q1 to 2020Q4, and the daily nowcasts start on January 1, 2007.

GaR∗T (10%) = ∑
i

wi,T−hd× Q̂τ=10%

(
yT | yT−1,XXX

D
i,T−hd

)
(3.15)

Eq. (3.15) allows us to capture the relative importance of individual GaR(10%)
estimates and to deal with the potential problem of introducing many, potentially
correlated, series into a common framework. It should again be stressed that the
combined GaR(10%) does not include the CISS, as it is the benchmark financial
composite indicator. Figure A3 provides a recursive plot of the combination weights
assigned to the various models using the forecast combination approach. We find

11In the case of the AGSL-Q model, since it allows for multiple groups of variables, we compute
the conditional 10% quantile using all the high-frequency indicators (except the CISS, which is the
benchmark); thus, it directly produces a combined GaR forecast.

69



3 Daily growth-at-risk: financial or real drivers? The answer is not always the same

that both high-frequency real and financial indicators are important in providing
accurate GaR(10%) nowcasts and that the importance of each is time varying.

3.4.2 Nowcasting GaR

We recursively estimate all the specifications identified above for each quarter span-
ning the period from 1986Q1 to 2006Q4 and construct daily GaR nowcasts in
pseudo real-time as of 1 January 2007.

We begin by showing the combined GaR(10%) forecasts made by our LAS-
SOQ model12 and compare these to two alternative specifications, the individual
GaR(10%) using the CISS and the combined GaR(10%) estimated by ASGL-Q. Re-
call that while LASSO-Q combines forecasts as explained in Section 3.4.1, ASGL-
Q uses all the information directly in the estimation. Figure 3.1a shows the pre-
liminary real-time estimates of quarterly US growth rate along with the combined
GaR(10%) and the two alternative models. Overall, it is evident that the large neg-
ative growth rates recorded during periods of recession, such as the GFC in 2008-
2009 and the Covid-19 pandemic (that started in 2020), are captured effectively
by our combined GaR(10%), while this is not the case for the second event when
using the alternative specifications. First, the difference in predictive powers be-
tween LASSO-Q and ASGL-Q is due in part to the difference in their combination
schemes (see Figures 3.1b and 3.1c); thus, while the weights of the former are more
volatile, those of the latter are more stable. Interestingly, in both frameworks, at the
onset of the Covid-19 pandemic a larger weight is assigned to the ADS indicator,
highlighting the benefits of using real indicators in a GaR framework. Second, rel-
ative to the individual GaR using the CISS and the standard GaR framework that
uses only a composite financial condition index (Adrian et al., 2019), an evident
strength of our framework is that it permits the use of a wider range of indicators
which improves the accuracy of our predictions. Figure 3.1b provides a clearer
indication of this by presenting the daily combination weights assigned to the dif-
ferent individual GaR nowcasts. Here, it is apparent that the relative importance
of real and financial indicators is time varying. In the case of the 2008 GFC, the
ADS, VXO and CSPREAD indicators receive a relatively high weight across all
models; in contrast, on the onset of the Covid-19 pandemic, all the models assign
higher weights to the ADS. This first result is in line with the general consensus
in the macro-financial literature stressing the financial nature of the GFC, in which
both financial intermediaries and financial markets amplified the shocks to the real

12We opt to report here the combined GaR nowcasts of the LASSO-Q model as, in general, it
performs relatively well in terms of the average TL function compared to the rest of the models (see
Table 3.2). The results for the other models are available upon request.

70



3.4 Empirical analysis

economy (Isohätälä et al., 2016; Brunnermeier and Sannikov, 2016; Gertler and
Gilchrist, 2018). However, the second result indicates that the Covid-19 crisis was
a product of the supply restrictions imposed to contain the pandemic, which were
real and supply-side in nature (Guerrieri et al., 2022). Consequently, our optimal
estimated weights suggest that it is fundamental to include both real and financial
daily indicators to improve GaR nowcasts. Interestingly, the closely related studies
conducted by Ferrara et al. (2022) and De Santis and Van der Veken (2020), which
only include daily financial variables in the GaR framework, fail to capture the real
magnitude of the risks during the Covid-19 epidemic. This indicates that financial
variables alone play only a modest role in gauging the effect of this last recession.
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Figure 3.1: GaR results for LASSO-Q and ASGL-Q

Note: The estimation sample spans the period from 1986Q1 to 2020Q4, and the daily nowcasts start
as of 1 January 2007. In Panel a, the area shaded red represents NBER recessions at the end of the
period. In Panel c, we omit the weight of the lagged GDP growth as it is close to zero.
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3.4.3 Evaluation

In this section we assess the relative performance of i) combined GaR nowcasts
based on real and financial indicators vs. individual GaR nowcasts using a financial
condition index (i.e. CISS) as a benchmark; and ii) individual GaR nowcasts of
financial and real indicators vs. the combined GaR nowcasts, in line with Figueres
and Jarociński (2020).

Combined GaR (using financial and real variables) vs. standard GaR

Table 3.2 reports the relative average TL function of a given combined GaR model
compared to that of the benchmark model (an individual GaR using the CISS),
together with their DM test statistic values. A TL value lower than one implies that
the combined model outperforms the benchmark, while in the case of the DM test
the alternative hypothesis is that the indicated forecast is more accurate than that of
the benchmark (i.e. rejection of the null is our preferred outcome). Notably, most
models outperform the benchmark and so we can reject the hypothesis of equality
of forecasts according to the DM test with a 10% confidence level. This provides
strong evidence of the benefits of combining multiple real and financial indicators
within the GaR framework. Interestingly, the LASSO-Q model tends to provide a
lower average TL function and often rejects the null hypothesis of the DM test for
different daily horizons, for both periods (that is, before and after the Covid-19). We
provide evidence that the LASSO lag selection improves forecast accuracy while
imposing fewer restrictions than those imposed by traditional MIDAS models.

Table 3.3 reports the tests commonly used in the financial risk management liter-
ature, namely the UC and the DQ tests, to assess interval forecasts for the combined
GaR models. Specifically, the UC tests the probability of the null hypothesis that
the proportion of exceedances is equal to the quantile (non-rejection is our pre-
ferred outcome), while the DQ tests the probability of the null hypothesis that the
exceedance indicator is an i.i.d. process (non-rejection is again our preferred out-
come). Overall, models using LASSO or EN perform better than MIDAS on these
adequacy tests, with a higher number of non-rejections at the 10% level of probabil-
ity. These results hold for both the period before Covid-19 and the period including
it.

Combined GaR (using financial and real variables) vs. individual GaR

Next, we address the question as to whether combined or individual indicators pro-
vide more accurate nowcasts, also building on Figueres and Jarociński (2020). Ta-
ble 3.4 reports the relative average TL function of an individual GaR vs. that of the
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Table 3.2: Out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRMIDAS 0.641 0.001 0.655 0.001 0.653 0.000 0.686 0.001 0.683 0.001
GaRBMIDAS 0.606 0.000 0.616 0.000 0.631 0.001 0.643 0.001 0.654 0.001
GaRLASSO 0.590 0.001 0.559 0.000 0.569 0.000 0.769 0.145 0.843 0.232
GaREN 0.956 0.415 0.978 0.461 0.932 0.366 0.853 0.273 0.858 0.277
GaRLASSO−PCA 0.617 0.001 0.638 0.002 0.706 0.010 0.830 0.225 0.857 0.266
GaREN−PCA 0.617 0.001 0.691 0.010 0.741 0.039 0.809 0.176 0.844 0.251
GaRASGL 1.102 0.646 1.037 0.559 0.983 0.471 0.945 0.419 1.221 0.744

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRMIDAS 0.855 0.027 0.82 0.005 0.804 0.022 0.558 0.094 0.943 0.201
GaRBMIDAS 0.878 0.021 0.849 0.000 0.839 0.005 0.558 0.087 0.932 0.141
GaRLASSO 0.864 0.002 0.773 0.006 0.458 0.096 0.501 0.121 0.895 0.092
GaREN 0.953 0.243 0.969 0.330 0.822 0.153 0.563 0.139 0.917 0.173
GaRLASSO−PCA 0.940 0.263 0.733 0.041 0.488 0.116 0.593 0.133 0.927 0.120
GaREN−PCA 0.911 0.102 0.850 0.013 0.841 0.064 0.691 0.116 0.903 0.123
GaRASGL 1.106 0.790 1.002 0.506 1.027 0.614 1.056 0.687 1.085 0.766

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the
CISS, for different daily horizons. We also report the p-values of the DM test for the null hypothesis
of equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that
the indicated forecast is more accurate than the benchmark (a rejection of the null is preferred). If
the p-value is below 0.10 (bold values), we conclude that the forecast from a combined GaR model
is more accurate than that of the benchmark.

combined GaR (benchmark) using LASSO-Q, together with their DM test statistic
values. Again, a TL value lower than one implies that the individual GaR outper-
forms the benchmark (the combined GaR), while in the case of the DM test the
alternative hypothesis is that the indicated forecast is more accurate than the bench-
mark. In this setting, we would prefer to obtain a TL with a value greater than 1 and,
thus, not reject the null hypothesis, in order to have evidence of the greater accuracy
of our combined GaR framework. Overall, our results suggest that we cannot reject
the null hypothesis of the DM test with a 10% confidence level, indicating that our
combined GaR is indeed more accurate. However, the individual GaR specification
using the ADS indicator is the only model to present a relative TL value lower than
one for daily horizons greater or equal to 10 days and for the period including the
Covid-19 pandemic. This suggests, in line with Pettenuzzo et al. (2016) and Lima
et al. (2020), that individual GaR models that include the ADS index perform rel-
atively better than their counterparts that do not include it. Moreover, this result
recognizes that the Covid-19 crisis was a product of the supply restrictions imposed
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Table 3.3: Out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRMIDAS 0.001 0.619 0.019 0.164 0.019 0.144 0.019 0.141 0.001 0.619
GaRBMIDAS 0.001 0.619 0.001 0.619 0.001 0.619 0.001 0.619 0.001 0.619
GaRLASSO 0.019 0.849 0.273 0.014 0.273 0.018 0.095 0.590 0.019 0.272
GaREN 0.273 0.180 0.273 0.218 0.926 0.126 0.273 0.045 0.273 0.107
GaRLASSO−PCA 0.095 0.316 0.095 0.344 0.273 0.378 0.095 0.630 0.095 0.011
GaREN−PCA 0.019 0.842 0.565 0.021 0.273 0.386 0.095 0.603 0.095 0.631
GaRASGL 0.427 0.013 0.226 0.071 0.226 0.044 0.926 0.200 0.226 0.493

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRMIDAS 0.208 0.001 0.455 0.045 0.455 0.085 0.455 0.024 0.208 0.003
GaRBMIDAS 0.068 0.040 0.068 0.063 0.068 0.080 0.068 0.080 0.068 0.080
GaRLASSO 0.068 0.917 0.786 0.000 0.786 0.021 0.786 0.042 0.208 0.266
GaREN 0.786 0.007 0.786 0.009 0.547 0.029 0.786 0.042 0.786 0.076
GaRLASSO−PCA 0.455 0.235 0.455 0.009 0.786 0.036 0.455 0.118 0.455 0.008
GaREN−PCA 0.208 0.468 0.547 0.000 0.860 0.202 0.455 0.130 0.455 0.677
GaRASGL 0.160 0.015 0.031 0.000 0.031 0.000 0.312 0.237 0.031 0.371

Note: This table shows the following two interval tests for different combined GaR models: Ku-
piec’s (1995) unconditional coverage test (UC), where the null hypothesis is that the proportion of
exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic quantile
test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator
is an i.i.d. process (non-rejection of the null is preferred). Bold values indicate that model passes the
test with a 10% level of probability.

to contain the pandemic, which were real and supply-side in nature (Guerrieri et al.,
2022). Results for alternative models are presented in Appendix 3.B.

Table 3.5 reports the UC and the DQ test results when assessing interval forecasts
for the different individual GaR specifications estimated by LASSO-Q. Again, the
UC tests the probability that the proportion of exceedances is equal to the quantile
(where non-rejection of the null is our preferred outcome) and the DQ tests the
probability that the exceedance indicator is an i.i.d. process (where non-rejection
of the null is again our preferred outcome). For individual GaR specifications the
evidence is mixed, depending on the daily horizon. Results for alternative models
are presented in Appendix 3.C.

Overall, the evidence we present here supports the time-varying importance of
both daily financial and real indicators for estimating GaR. Our results are consis-
tent with those for the eurozone reported by Ferrara et al. (2022) and for the US
reported by De Santis and Van der Veken (2020), insofar as daily financial vari-
ables provide policymakers with timely warnings about the downside risks of GDP.
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Table 3.4: LASSO-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.232 0.978 2.072 0.990 1.768 0.988 1.772 0.997 1.692 0.996
GaREEFR 2.000 0.965 2.392 0.935 1.819 0.972 1.711 0.971 1.649 0.968
GaRRET 2.107 0.973 2.049 0.962 1.792 0.946 2.200 0.994 1.594 0.971
GaRSMB 2.079 0.991 2.202 0.991 1.833 0.994 1.930 0.986 2.069 0.990
GaRHML 2.200 0.957 1.447 0.916 1.570 0.973 1.514 0.968 1.655 0.916
GaRMOM 1.448 0.987 2.076 0.959 1.578 0.987 2.072 0.960 1.756 0.973
GaRV XO 1.813 0.991 1.550 0.995 1.521 0.997 1.258 0.921 1.268 0.886
GaRCSPREAD 2.242 0.979 1.789 0.993 1.367 1.000 1.275 0.963 1.259 0.951
GaRTERM 2.198 0.984 1.946 0.991 1.728 0.989 1.754 0.990 1.684 0.989
GaRTED 1.643 0.918 1.603 0.968 1.485 0.964 1.440 0.960 1.397 0.931
GaRADS 1.678 0.950 1.496 0.910 1.175 0.717 0.939 0.375 1.263 0.915

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.445 0.968 1.555 0.995 1.530 0.990 1.837 0.973 1.346 0.983
GaREEFR 1.449 0.982 1.707 0.992 1.550 0.987 1.855 0.963 1.367 0.979
GaRRET 1.408 0.992 1.556 0.989 1.503 0.976 1.776 0.964 1.208 0.957
GaRSMB 1.271 0.948 1.510 0.989 1.301 0.991 1.667 0.960 1.302 0.996
GaRHML 1.453 0.995 1.504 0.983 1.281 0.913 1.834 0.942 1.300 0.975
GaRMOM 1.274 0.981 1.712 0.971 1.510 0.969 1.722 0.934 1.307 0.988
GaRV XO 1.196 0.908 1.335 0.995 1.317 0.994 1.426 0.893 1.129 0.950
GaRCSPREAD 1.336 0.991 1.351 0.993 1.280 0.939 1.501 0.888 1.133 0.956
GaRTERM 1.42 0.974 1.502 0.995 1.432 0.993 1.789 0.971 1.334 0.989
GaRTED 1.315 0.960 1.433 0.994 1.420 0.985 1.731 0.950 1.279 0.980
GaRADS 1.375 0.923 0.595 0.174 0.655 0.159 0.504 0.152 0.743 0.260

Note: This table shows the TL for each individual GaR forecast relative to the combined GaR fore-
cast, for different daily horizons. We also report the p-values of the DM test for the null hypothesis of
equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that the
indicated forecast is more accurate than the combined GaR (non-rejection of the null is preferred).
If the p-value is above 0.10 (bold values), we conclude that the forecast from the combined GaR is
more accurate than that of the individual GaR.

Nevertheless, we are able to provide further and clearer evidence, in line with the
suggestions made by Pettenuzzo et al. (2016), that stress the benefits of incorpo-
rating a high-frequency real indicator, such as the ADS index, in the forecasting
regressions. Furthermore, when comparing our combined GaR framework with
that of the standard GaR using a financial condition index (specifically the CISS),
we show that our framework performs significantly better. This is also true when
comparing our combined GaR framework with different individual GaR specifica-
tions, although the performance of those that only include the ADS index is similar
when considering the Covid-19 period. This evidence suggests that financial vari-
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Table 3.5: LASSO-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.926 0.161 0.926 0.072 0.926 0.121 0.565 0.070 0.565 0.052
GaREEFR 0.717 0.131 0.226 0.012 0.427 0.070 0.226 0.089 0.107 0.014
GaRRET 0.226 0.001 0.001 0.000 0.046 0.000 0.046 0.000 0.001 0.000
GaRSMB 0.046 0.001 0.427 0.015 0.226 0.103 0.006 0.001 0.107 0.002
GaRHML 0.046 0.050 0.107 0.000 0.226 0.001 0.018 0.006 0.018 0.003
GaRMOM 0.427 0.781 0.717 0.146 0.046 0.099 0.046 0.000 0.226 0.003
GaRV XO 0.107 0.066 0.046 0.812 0.018 0.063 0.046 0.067 0.046 0.707
GaRCSPREAD 0.226 0.036 0.226 0.038 0.717 0.741 0.717 0.799 0.565 0.921
GaRTERM 0.565 0.087 0.565 0.088 0.565 0.080 0.926 0.280 0.273 0.701
GaRTED 0.226 0.011 0.107 0.003 0.107 0.003 0.046 0.003 0.046 0.023
GaRADS 0.107 0.067 0.018 0.050 0.107 0.043 0.226 0.186 0.226 0.230

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.312 0.003 0.312 0.002 0.312 0.002 0.547 0.001 0.547 0.001
GaREEFR 0.160 0.007 0.031 0.000 0.074 0.001 0.031 0.002 0.012 0.000
GaRRET 0.074 0.000 0.000 0.000 0.004 0.000 0.004 0.000 0.000 0.000
GaRSMB 0.012 0.001 0.160 0.004 0.074 0.083 0.001 0.000 0.031 0.001
GaRHML 0.004 0.000 0.012 0.000 0.031 0.001 0.001 0.000 0.004 0.002
GaRMOM 0.160 0.425 0.160 0.018 0.004 0.001 0.004 0.000 0.074 0.000
GaRV XO 0.031 0.338 0.004 0.267 0.001 0.011 0.004 0.042 0.004 0.215
GaRCSPREAD 0.031 0.005 0.031 0.011 0.160 0.204 0.160 0.427 0.547 0.921
GaRTERM 0.547 0.002 0.547 0.001 0.547 0.002 0.312 0.008 0.860 0.021
GaRTED 0.031 0.003 0.012 0.000 0.012 0.000 0.004 0.000 0.004 0.001
GaRADS 0.074 0.137 0.004 0.003 0.031 0.001 0.074 0.230 0.031 0.018

Note: This table shows the following two interval tests for different combined GaR models: Ku-
piec’s (1995) unconditional coverage test (UC), where the null hypothesis is that the proportion of
exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic quantile
test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator
is an i.i.d. process (non-rejection of the null is preferred). Bold values indicate that model passes the
test with a 10% level of probability.

ables alone played a limited role in gauging the downside risk for GDP during the
Covid-19 pandemic and highlights the complex ways in which real and financial
variables interconnect to determine economic growth in what is a causal fashion.

3.5 Conclusions

We show that both real and financial variables reported with a daily frequency pro-
vide valuable information for monitoring periods of economic vulnerability. Here,
our main contribution has been to demonstrate that by incorporating both types of
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variable simultaneously in the GaR framework, it is possible to provide an early
warning of a downturn in GDP in pseudo real-time and that this framework works
well for both the GFC and the Covid-19 episode.

The flexible approach reported allows us to emphasize the importance of both
economic theory and economic intuition when interpreting the results of forecast
combinations and for improving the point forecast itself. By acknowledging the
complexity of the nowcasting task in macroeconomics, especially when using high-
frequency data, we contribute to a better understanding of the economic signals that
can be extracted from this daily information when seeking to anticipate downturns
in the economy. More specifically, here, we show that during the GFC and the
Covid-19 pandemic, the optimal forecasting weights of real and financial variables
underwent a marked change. In the earlier of these two periods, financial indicators
such as credit spreads and the VXO were fundamental; however, they failed to
capture the magnitude of the decline in GDP observed with the onset of the Covid-
19 pandemic. This difference in behaviour is attributable to the specific nature of
each of the two crises, something we can only grasp because we understand (to
some extent) the economic mechanisms underpinning these two events.

Interestingly, among the set of financial variables, VXO and CSPREAD are es-
pecially relevant for all models during the GFC, highlighting the prominent role
played by uncertainty in determining economic outcomes. However, as discussed,
the financial indicators alone were unable to forecast low quantiles of GDP growth
during the Covid-19 pandemic. Indeed, only by including the ADS index were we
able to gauge both the sign and magnitude of the downside GDP risk in this period.

We show that our combined GaR model outperforms the standard GaR model,
which only takes financial indicators into consideration (Adrian et al., 2019; Fer-
rara et al., 2022). We have been able to evaluate this outcome by comparing the
performance of combined GaR nowcasts with that of i) individual GaR nowcasts
using the CISS as a benchmark; and ii) individual GaR nowcasts using different
financial and real indicators relative to the combined GaR nowcasts. Our specific
implementation uses different dimension reduction techniques including MIDAS
and shrinkage.

In this study, we have compared seven different models and 12 high-frequency
predictors using a forecast combination approach with time-varying optimal weights.
In addition, we have used a novel approach based on adaptive sparse group LASSO
for quantile regressions, which allows for multiple groups and sparsity within the
high-frequency lagged vector (Mendez-Civieta et al., 2021). While this model
presents some good properties for addressing high-dimensional problems, we found
that LASSO-Q tends to outperform the rest of the models in terms of forecast ac-
curacy at different daily horizons. This is probably a consequence of traditional
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MIDAS restrictions on the lag structure of the high-frequency indicator, which do
not necessarily improve forecast accuracy. As such, our results lend further support
to past evidence, inasmuch as shrinkage models should ideally be used to select the
number of lags of the highfrequency predictors. Additionally, the ASGL-Q model
displays more stable weights than those displayed by the LASSO-Q model, which
is arguably a potential cause of the difference in accuracy. Nonetheless, these two
weighting schemes emphasize the importance of the ADS indicator for forecasting
during the Covid-19 period. Here, we used a single indicator to capture the role of
real economic activity - that is, the ADS index - essentially because it is the only
that is available at a daily frequency. We also introduced weekly vintages of this
indicator to perform the nowcasting exercise in pseudo real-time. Nevertheless, we
believe that more indicators gauging the informational content of different facets of
economic activity and the credit markets will prove to be fundamental in the future,
not only for achieving greater forecasting accuracy in real time, but also for under-
standing the causes of ongoing crises, before, that is, the actual causal mechanisms
become clear to the professionals. In short, our models can be considered as making
a contribution to anticipating and understanding economic dangers while the latter
are actually unfolding.
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3.A Appendix A

Figure 3.A1: Selected high-frequency LASSO-Q lags from individual GaR specifi-
cations

Note: The figure shows selected daily lags from the individual LASSO-Q models corresponding to
the last day of each quarter.
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3.A Appendix A

Figure 3.A2: Selected high-frequency EN-Q lags from individual GaR specifica-
tions

Note: The figure shows selected daily lags from the individual EN-Q models corresponding to the
last day of each quarter.
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Figure 3.A3: Daily forecast combination weights

Note: The estimation sample spans the period from 1986Q1 to 2020Q4, and the daily nowcasts
commence as of 1 January 2007.
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3.B Appendix B

Table 3.B1: MIDAS-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.338 0.990 2.285 0.990 2.313 0.99 2.212 0.991 2.234 0.987
GaREEFR 2.317 0.971 2.185 0.962 2.221 0.967 2.12 0.968 1.999 0.955
GaRRET 1.446 0.989 1.506 0.994 1.595 0.997 1.808 0.996 1.637 0.996
GaRSMB 2.11 0.988 2.124 0.991 2.07 0.993 2.008 0.992 2.058 0.989
GaRHML 2.141 0.987 2.204 0.986 2.29 0.978 2.452 0.980 2.169 0.981
GaRMOM 2.097 0.978 1.987 0.978 1.945 0.979 1.752 0.978 1.780 0.974
GaRV XO 1.617 0.951 1.589 0.959 1.537 0.975 1.493 0.986 1.467 0.994
GaRCSPREAD 2.052 0.996 1.834 0.997 1.579 1.000 1.363 0.997 1.414 1.000
GaRTERM 2.313 0.989 2.253 0.989 2.252 0.988 2.173 0.991 2.198 0.987
GaRTED 1.957 0.982 1.929 0.978 1.889 0.977 1.758 0.980 1.784 0.981
GaRADS 1.474 0.936 1.527 0.953 1.377 0.928 1.100 0.698 1.433 0.908

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.437 0.996 1.470 0.998 1.489 0.992 2.201 0.952 1.334 0.991
GaREEFR 1.327 0.988 1.375 0.984 1.418 0.969 2.087 0.923 1.231 0.969
GaRRET 1.370 0.977 1.460 0.984 1.494 0.981 2.235 0.951 1.327 0.954
GaRSMB 1.491 0.990 1.539 0.993 1.537 0.985 2.267 0.951 1.355 0.985
GaRHML 1.585 0.989 1.650 0.996 1.633 0.997 2.433 0.966 1.433 0.996
GaRMOM 1.664 0.970 1.698 0.975 1.729 0.972 2.453 0.959 1.511 0.948
GaRV XO 1.202 0.935 1.251 0.961 1.300 0.960 1.918 0.927 1.107 0.892
GaRCSPREAD 1.300 0.995 1.307 0.991 1.270 0.946 1.819 0.871 1.115 0.984
GaRTERM 1.438 0.995 1.471 0.997 1.486 0.990 2.18 0.948 1.318 0.990
GaRTED 1.407 0.994 1.454 0.993 1.465 0.984 2.113 0.935 1.276 0.987
GaRADS 1.089 0.796 0.788 0.247 0.762 0.248 0.764 0.231 0.978 0.446

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the
CISS, for different daily horizons. We also report the p-values of the DM test for the null hypothesis
of equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that
the indicated forecast is more accurate than the benchmark (a rejection of the null is preferred). If
the p-value is below 0.10 (bold values), we conclude that the forecast from a combined GaR model
is more accurate than that of the benchmark.
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Table 3.B2: BMIDAS-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.133 0.972 2.109 0.971 2.075 0.970 2.054 0.970 2.026 0.967
GaREEFR 1.892 0.969 1.842 0.965 1.802 0.964 1.799 0.965 1.685 0.956
GaRRET 1.259 0.966 1.348 0.989 1.331 0.975 1.333 0.969 1.346 0.973
GaRSMB 2.217 0.978 2.215 0.979 2.160 0.981 2.181 0.977 2.152 0.977
GaRHML 2.15 0.965 2.227 0.965 2.265 0.954 2.432 0.948 2.058 0.942
GaRMOM 2.706 0.979 2.546 0.983 2.325 0.984 2.101 0.972 2.100 0.980
GaRV XO 1.378 0.959 1.360 0.965 1.335 0.970 1.311 0.971 1.245 0.957
GaRCSPREAD 1.561 1.000 1.544 1.000 1.528 1.000 1.519 1.000 1.493 1.000
GaRTERM 2.163 0.973 2.128 0.971 2.089 0.970 2.068 0.970 2.056 0.969
GaRTED 1.488 0.917 1.458 0.916 1.421 0.914 1.395 0.930 1.374 0.935
GaRADS 1.177 0.908 1.197 0.935 1.125 0.884 0.961 0.330 1.119 0.784

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.342 0.989 1.368 0.991 1.367 0.977 2.054 0.923 1.245 0.972
GaREEFR 1.232 0.982 1.248 0.983 1.26 0.960 1.909 0.910 1.135 0.934
GaRRET 1.183 0.951 1.26 0.969 1.248 0.947 1.834 0.877 1.117 0.980
GaRSMB 1.392 0.993 1.414 0.991 1.403 0.975 2.150 0.928 1.295 0.983
GaRHML 1.435 0.983 1.491 0.990 1.496 0.985 2.268 0.945 1.304 0.975
GaRMOM 1.51 0.991 1.488 0.995 1.445 0.994 2.094 0.933 1.285 0.990
GaRV XO 1.039 0.720 1.067 0.894 1.112 0.927 1.704 0.892 1.009 0.545
GaRCSPREAD 1.194 0.991 1.227 0.998 1.229 0.985 1.850 0.902 1.127 1.000
GaRTERM 1.354 0.990 1.377 0.991 1.376 0.977 2.073 0.925 1.26 0.977
GaRTED 1.242 0.969 1.263 0.969 1.257 0.935 1.885 0.882 1.142 0.964
GaRADS 1.000 0.501 0.754 0.204 0.742 0.215 0.689 0.196 0.907 0.305

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the
CISS, for different daily horizons. We also report the p-values of the DM test for the null hypothesis
of equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that
the indicated forecast is more accurate than the benchmark (a rejection of the null is preferred). If
the p-value is below 0.10 (bold values), we conclude that the forecast from a combined GaR model
is more accurate than that of the benchmark.
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Table 3.B3: EN-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 1.339 0.988 1.327 0.992 1.305 0.991 1.462 0.981 1.456 0.976
GaREEFR 1.373 0.959 1.569 0.919 1.41 0.956 1.564 0.969 1.549 0.959
GaRRET 1.589 0.992 1.536 0.971 1.919 0.992 1.732 0.98 2.263 0.986
GaRSMB 1.308 1.000 1.362 1.000 1.611 0.992 1.756 0.997 1.681 0.996
GaRHML 1.631 0.991 1.182 0.925 1.289 0.993 1.854 0.997 1.809 0.993
GaRMOM 1.050 0.808 1.355 0.950 1.312 0.989 1.870 0.984 1.450 0.951
GaRV XO 1.315 0.974 1.328 0.979 1.293 0.970 1.257 0.890 1.284 0.924
GaRCSPREAD 1.170 0.907 1.177 0.934 1.144 0.911 1.303 0.961 1.250 0.955
GaRTERM 1.273 0.987 1.255 0.993 1.253 0.994 1.427 0.974 1.398 0.971
GaRTED 1.200 0.830 1.195 0.853 1.181 0.855 1.364 0.915 1.261 0.845
GaRADS 1.038 0.589 1.038 0.588 0.96 0.405 0.865 0.230 1.048 0.672

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.165 0.967 1.151 0.988 1.33 0.955 1.926 0.906 1.202 0.993
GaREEFR 1.216 0.981 1.261 0.977 1.382 0.953 1.983 0.910 1.159 0.976
GaRRET 1.414 0.988 1.381 0.988 1.649 0.972 1.992 0.911 1.414 0.991
GaRSMB 1.203 0.980 1.429 0.989 1.409 0.986 2.108 0.921 1.268 0.992
GaRHML 1.367 0.994 1.436 0.980 1.179 0.975 2.634 0.951 1.266 0.996
GaRMOM 1.222 0.952 1.374 0.982 1.439 0.949 2.247 0.931 1.196 0.973
GaRV XO 1.078 0.926 1.127 0.992 1.264 0.931 1.839 0.877 1.135 0.959
GaRCSPREAD 1.152 0.952 1.132 0.972 1.293 0.877 1.845 0.872 1.114 0.928
GaRTERM 1.145 0.945 1.157 0.985 1.35 0.958 1.988 0.918 1.187 0.989
GaRTED 1.140 0.911 1.155 0.960 1.316 0.903 1.927 0.885 1.132 0.923
GaRADS 0.961 0.380 0.809 0.169 0.672 0.146 0.733 0.190 0.845 0.316

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the
CISS, for different daily horizons. We also report the p-values of the DM test for the null hypothesis
of equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that
the indicated forecast is more accurate than the benchmark (a rejection of the null is preferred). If
the p-value is below 0.10 (bold values), we conclude that the forecast from a combined GaR model
is more accurate than that of the benchmark.
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Table 3.B4: LASSO-PCA-Q out-of-sample forecast accuracy based on the relative
TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.200 0.978 2.260 0.988 1.868 0.988 1.723 0.997 1.678 0.996
GaREEFR 2.254 0.961 2.295 0.957 2.074 0.973 1.795 0.974 1.822 0.976
GaRRET 2.222 0.980 2.270 0.968 1.777 0.927 2.197 0.984 1.544 0.978
GaRSMB 2.288 0.992 1.851 0.971 1.826 0.988 1.649 0.981 1.588 0.989
GaRHML 2.163 0.940 2.425 0.957 1.938 0.960 2.188 0.988 1.726 0.942
GaRMOM 1.475 0.995 1.958 0.95 1.622 0.988 1.976 0.971 1.700 0.989
GaRV XO 1.785 0.990 1.714 0.994 1.591 0.999 1.328 0.940 1.220 0.867
GaRCSPREAD 2.271 0.982 1.939 0.996 1.406 1.000 1.241 0.915 1.227 0.931
GaRTERM 2.204 0.986 2.105 0.987 1.816 0.987 1.730 0.992 1.656 0.990
GaRTED 1.644 0.923 1.736 0.965 1.562 0.965 1.407 0.951 1.379 0.933
GaRADS 1.187 0.847 1.186 0.834 0.928 0.307 0.943 0.374 1.228 0.884

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.418 0.964 1.807 0.994 2.591 0.952 2.139 0.957 1.319 0.977
GaREEFR 1.502 0.969 1.938 0.988 2.834 0.958 2.284 0.955 1.445 0.975
GaRRET 1.392 0.992 1.743 0.974 2.423 0.909 2.070 0.947 1.171 0.981
GaRSMB 1.239 0.908 1.602 0.952 2.201 0.926 1.857 0.893 1.227 0.995
GaRHML 1.314 0.971 2.051 0.99 2.658 0.964 3.143 0.963 1.209 0.968
GaRMOM 1.14 0.882 1.990 0.983 2.444 0.912 2.059 0.926 1.208 0.992
GaRV XO 1.087 0.700 1.480 0.983 2.122 0.921 1.688 0.881 1.090 0.963
GaRCSPREAD 1.271 0.963 1.532 0.983 2.139 0.888 1.725 0.874 1.079 0.981
GaRTERM 1.377 0.956 1.742 0.995 2.385 0.940 2.091 0.952 1.300 0.984
GaRTED 1.274 0.932 1.662 0.988 2.450 0.934 2.018 0.930 1.247 0.978
GaRADS 1.499 0.851 0.606 0.139 0.610 0.113 0.605 0.122 0.902 0.301

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the
CISS, for different daily horizons. We also report the p-values of the DM test for the null hypothesis
of equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that
the indicated forecast is more accurate than the benchmark (a rejection of the null is preferred). If
the p-value is below 0.10 (bold values), we conclude that the forecast from a combined GaR model
is more accurate than that of the benchmark.
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Table 3.B5: EN-PCA-Q out-of-sample forecast accuracy based on the relative TL

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 2.232 0.978 2.072 0.990 1.768 0.988 1.772 0.997 1.692 0.996
GaREEFR 2.000 0.965 2.392 0.935 1.819 0.972 1.711 0.971 1.649 0.968
GaRRET 2.107 0.973 2.049 0.962 1.792 0.946 2.200 0.994 1.594 0.971
GaRSMB 2.079 0.991 2.202 0.991 1.833 0.994 1.930 0.986 2.069 0.990
GaRHML 2.200 0.957 1.447 0.916 1.57 0.973 1.514 0.968 1.655 0.916
GaRMOM 1.448 0.987 2.076 0.959 1.578 0.987 2.072 0.960 1.756 0.973
GaRV XO 1.813 0.991 1.550 0.995 1.521 0.997 1.258 0.921 1.268 0.886
GaRCSPREAD 2.242 0.979 1.789 0.993 1.367 1.000 1.275 0.963 1.259 0.951
GaRTERM 2.198 0.984 1.946 0.991 1.728 0.989 1.754 0.990 1.684 0.989
GaRTED 1.643 0.918 1.603 0.968 1.485 0.964 1.440 0.960 1.397 0.931
GaRADS 1.678 0.950 1.496 0.910 1.175 0.717 0.939 0.375 1.263 0.915

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 1.445 0.968 1.555 0.995 1.530 0.99 1.837 0.973 1.346 0.983
GaREEFR 1.449 0.982 1.707 0.992 1.550 0.987 1.855 0.963 1.367 0.979
GaRRET 1.408 0.992 1.556 0.989 1.503 0.976 1.776 0.964 1.208 0.957
GaRSMB 1.271 0.948 1.510 0.989 1.301 0.991 1.667 0.960 1.302 0.996
GaRHML 1.453 0.995 1.504 0.983 1.281 0.913 1.834 0.942 1.300 0.975
GaRMOM 1.274 0.981 1.712 0.971 1.510 0.969 1.722 0.934 1.307 0.988
GaRV XO 1.196 0.908 1.335 0.995 1.317 0.994 1.426 0.893 1.129 0.950
GaRCSPREAD 1.336 0.991 1.351 0.993 1.280 0.939 1.501 0.888 1.133 0.956
GaRTERM 1.420 0.974 1.502 0.995 1.432 0.993 1.789 0.971 1.334 0.989
GaRTED 1.315 0.960 1.433 0.994 1.420 0.985 1.731 0.950 1.279 0.980
GaRADS 1.375 0.923 0.595 0.174 0.655 0.159 0.504 0.152 0.743 0.260

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the
CISS, for different daily horizons. We also report the p-values of the DM test for the null hypothesis
of equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that
the indicated forecast is more accurate than the benchmark (a rejection of the null is preferred). If
the p-value is below 0.10 (bold values), we conclude that the forecast from a combined GaR model
is more accurate than that of the benchmark.
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3.C Appendix C

Table 3.C1: MIDAS-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.565 0.039 0.565 0.042 0.565 0.032 0.565 0.034 0.565 0.032
GaREEFR 0.273 0.003 0.095 0.142 0.273 0.002 0.273 0.003 0.273 0.004
GaRRET 0.427 0.452 0.226 0.713 0.046 0.281 0.046 0.027 0.046 0.015
GaRSMB 0.926 0.200 0.717 0.509 0.717 0.553 0.926 0.191 0.926 0.153
GaRHML 0.565 0.560 0.565 0.561 0.717 0.506 0.717 0.077 0.926 0.273
GaRMOM 0.926 0.142 0.926 0.054 0.565 0.147 0.273 0.368 0.095 0.141
GaRV XO 0.926 0.903 0.717 0.878 0.717 0.867 0.717 0.863 0.226 0.887
GaRCSPREAD 0.717 0.088 0.926 0.090 0.926 0.102 0.273 0.925 0.095 0.826
GaRTERM 0.565 0.056 0.565 0.060 0.273 0.002 0.273 0.002 0.273 0.002
GaRTED 0.226 0.273 0.107 0.265 0.226 0.309 0.226 0.310 0.226 0.323
GaRADS 0.226 0.229 0.226 0.201 0.226 0.230 0.006 0.000 0.107 0.072

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.547 0.001 0.547 0.001 0.547 0.000 0.547 0.000 0.547 0.000
GaREEFR 0.860 0.001 0.786 0.004 0.860 0.000 0.860 0.000 0.860 0.000
GaRRET 0.074 0.059 0.031 0.015 0.004 0.005 0.004 0.001 0.004 0.001
GaRSMB 0.312 0.004 0.160 0.014 0.160 0.015 0.312 0.003 0.312 0.003
GaRHML 0.547 0.008 0.547 0.007 0.160 0.007 0.160 0.001 0.312 0.005
GaRMOM 0.312 0.005 0.312 0.000 0.547 0.004 0.860 0.008 0.786 0.000
GaRV XO 0.547 0.675 0.160 0.763 0.160 0.685 0.160 0.656 0.031 0.584
GaRCSPREAD 0.160 0.100 0.312 0.035 0.312 0.056 0.860 0.626 0.786 0.405
GaRTERM 0.547 0.001 0.547 0.001 0.860 0.000 0.860 0.000 0.860 0.000
GaRTED 0.031 0.242 0.012 0.028 0.031 0.033 0.031 0.041 0.031 0.032
GaRADS 0.160 0.146 0.160 0.088 0.074 0.015 0.004 0.002 0.031 0.008

Note: This table shows the following two interval tests for different combined GaR models: Ku-
piec’s (1995) unconditional coverage test (UC), where the null hypothesis is that the proportion of
exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic quantile
test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator
is an i.i.d. process (non-rejection of the null is preferred). Bold values indicate that model passes the
test with a 10% level of probability.
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Table 3.C2: BMIDAS-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.095 0.139 0.095 0.141 0.095 0.142 0.095 0.141 0.273 0.012
GaREEFR 0.273 0.006 0.273 0.006 0.095 0.082 0.095 0.109 0.095 0.074
GaRRET 0.427 0.058 0.926 0.682 0.565 0.877 0.427 0.638 0.717 0.383
GaRSMB 0.565 0.000 0.565 0.000 0.565 0.000 0.565 0.000 0.565 0.000
GaRHML 0.565 0.029 0.565 0.022 0.273 0.228 0.273 0.005 0.273 0.139
GaRMOM 0.273 0.012 0.273 0.013 0.273 0.013 0.273 0.012 0.095 0.125
GaRV XO 0.565 0.907 0.565 0.908 0.565 0.909 0.926 0.907 0.717 0.710
GaRCSPREAD 0.095 0.885 0.095 0.881 0.095 0.880 0.095 0.874 0.019 0.811
GaRTERM 0.095 0.139 0.095 0.142 0.095 0.142 0.095 0.14 0.273 0.012
GaRTED 0.717 0.731 0.717 0.713 0.717 0.695 0.717 0.686 0.717 0.696
GaRADS 0.565 0.892 0.926 0.901 0.565 0.758 0.095 0.432 0.095 0.375

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.455 0.015 0.455 0.015 0.455 0.015 0.455 0.014 0.786 0.004
GaREEFR 0.786 0.000 0.786 0.000 0.455 0.001 0.455 0.004 0.455 0.002
GaRRET 0.160 0.140 0.547 0.163 0.860 0.362 0.16 0.168 0.312 0.052
GaRSMB 0.860 0.000 0.860 0.000 0.860 0.000 0.86 0.000 0.860 0.000
GaRHML 0.860 0.001 0.860 0.000 0.786 0.007 0.786 0.001 0.786 0.050
GaRMOM 0.786 0.003 0.786 0.003 0.786 0.004 0.786 0.004 0.455 0.009
GaRV XO 0.786 0.864 0.860 0.462 0.860 0.68 0.547 0.709 0.312 0.119
GaRCSPREAD 0.455 0.875 0.455 0.860 0.455 0.856 0.455 0.856 0.208 0.616
GaRTERM 0.455 0.015 0.455 0.015 0.455 0.015 0.455 0.015 0.786 0.004
GaRTED 0.312 0.328 0.312 0.327 0.312 0.320 0.312 0.315 0.312 0.324
GaRADS 0.860 0.716 0.547 0.529 0.547 0.835 0.208 0.569 0.455 0.372

Note: This table shows the following two interval tests for different combined GaR models: Ku-
piec’s (1995) unconditional coverage test (UC), where the null hypothesis is that the proportion of
exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic quantile
test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator
is an i.i.d. process (non-rejection of the null is preferred). Bold values indicate that model passes the
test with a 10% level of probability.
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Table 3.C3: EN-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.717 0.488 0.717 0.464 0.717 0.488 0.926 0.216 0.717 0.481
GaREEFR 0.926 0.099 0.565 0.147 0.926 0.002 0.926 0.124 0.926 0.073
GaRRET 0.717 0.007 0.107 0.000 0.427 0.000 0.717 0.002 0.226 0.010
GaRSMB 0.565 0.071 0.565 0.064 0.926 0.131 0.717 0.012 0.926 0.021
GaRHML 0.107 0.000 0.717 0.032 0.926 0.032 0.427 0.003 0.427 0.017
GaRMOM 0.565 0.001 0.273 0.648 0.107 0.000 0.427 0.007 0.427 0.134
GaRV XO 0.427 0.656 0.427 0.645 0.226 0.358 0.427 0.583 0.926 0.922
GaRCSPREAD 0.717 0.856 0.717 0.879 0.717 0.855 0.717 0.856 0.565 0.900
GaRTERM 0.926 0.244 0.565 0.779 0.565 0.783 0.565 0.783 0.565 0.780
GaRTED 0.107 0.330 0.046 0.235 0.107 0.329 0.018 0.068 0.107 0.521
GaRADS 0.565 0.741 0.926 0.678 0.565 0.573 0.019 0.286 0.565 0.889

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.312 0.145 0.312 0.144 0.160 0.028 0.312 0.007 0.160 0.015
GaREEFR 0.547 0.085 0.86 0.313 0.547 0.001 0.547 0.079 0.547 0.094
GaRRET 0.312 0.000 0.031 0.000 0.160 0.000 0.312 0.003 0.074 0.001
GaRSMB 0.86 0.011 0.547 0.000 0.547 0.038 0.312 0.002 0.547 0.016
GaRHML 0.031 0.000 0.160 0.000 0.547 0.069 0.074 0.000 0.160 0.011
GaRMOM 0.86 0.000 0.860 0.002 0.012 0.000 0.160 0.001 0.160 0.080
GaRV XO 0.312 0.498 0.160 0.111 0.074 0.056 0.160 0.113 0.547 0.458
GaRCSPREAD 0.312 0.402 0.312 0.389 0.312 0.420 0.312 0.384 0.860 0.426
GaRTERM 0.312 0.014 0.547 0.129 0.547 0.088 0.547 0.074 0.547 0.072
GaRTED 0.031 0.039 0.012 0.020 0.031 0.040 0.004 0.003 0.031 0.082
GaRADS 0.786 0.921 0.547 0.551 0.547 0.022 0.208 0.432 0.547 0.776

Note: This table shows the following two interval tests for different combined GaR models: Ku-
piec’s (1995) unconditional coverage test (UC), where the null hypothesis is that the proportion of
exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic quantile
test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator
is an i.i.d. process (non-rejection of the null is preferred). Bold values indicate that model passes the
test with a 10% level of probability.
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Table 3.C4: LASSO-PCA-Q out-of-sample forecast accuracy based on coverage
tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.926 0.226 0.717 0.227 0.926 0.16 0.926 0.069 0.565 0.050
GaREEFR 0.565 0.394 0.926 0.110 0.926 0.025 0.926 0.022 0.717 0.029
GaRRET 0.107 0.050 0.717 0.364 0.926 0.905 0.006 0.000 0.018 0.007
GaRSMB 0.427 0.154 0.717 0.239 0.926 0.279 0.717 0.435 0.565 0.089
GaRHML 0.107 0.123 0.427 0.009 0.427 0.133 0.226 0.008 0.427 0.336
GaRMOM 0.226 0.084 0.926 0.884 0.427 0.626 0.926 0.096 0.046 0.006
GaRV XO 0.107 0.481 0.226 0.570 0.226 0.382 0.107 0.189 0.717 0.711
GaRCSPREAD 0.717 0.146 0.717 0.148 0.926 0.923 0.926 0.925 0.565 0.929
GaRTERM 0.273 0.003 0.273 0.003 0.926 0.200 0.565 0.079 0.273 0.678
GaRTED 0.427 0.469 0.226 0.180 0.226 0.180 0.107 0.185 0.107 0.450
GaRADS 0.226 0.043 0.427 0.100 0.226 0.085 0.226 0.014 0.226 0.229

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.312 0.004 0.160 0.004 0.312 0.001 0.312 0.001 0.547 0.001
GaREEFR 0.547 0.009 0.312 0.002 0.312 0.001 0.312 0.000 0.160 0.002
GaRRET 0.031 0.001 0.312 0.046 0.312 0.035 0.000 0.000 0.004 0.007
GaRSMB 0.160 0.009 0.160 0.007 0.312 0.028 0.160 0.028 0.547 0.000
GaRHML 0.031 0.082 0.074 0.000 0.074 0.005 0.031 0.003 0.074 0.041
GaRMOM 0.031 0.038 0.312 0.031 0.074 0.136 0.547 0.037 0.004 0.000
GaRV XO 0.031 0.066 0.074 0.163 0.074 0.074 0.031 0.023 0.312 0.372
GaRCSPREAD 0.312 0.436 0.312 0.566 0.547 0.925 0.547 0.928 0.860 0.954
GaRTERM 0.860 0.000 0.860 0.000 0.312 0.006 0.547 0.001 0.860 0.014
GaRTED 0.074 0.018 0.031 0.002 0.031 0.001 0.012 0.001 0.012 0.015
GaRADS 0.074 0.001 0.312 0.095 0.074 0.023 0.160 0.021 0.031 0.004

Note: This table shows the following two interval tests for different combined GaR models: Ku-
piec’s (1995) unconditional coverage test (UC), where the null hypothesis is that the proportion of
exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic quantile
test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator
is an i.i.d. process (non-rejection of the null is preferred). Bold values indicate that model passes the
test with a 10% level of probability.
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Table 3.C5: EN-PCA-Q out-of-sample forecast accuracy based on coverage tests

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before COVID-19 (2007Q1 to 2019Q4)

GaRISPREAD 0.717 0.422 0.717 0.256 0.926 0.159 0.926 0.061 0.565 0.054
GaREEFR 0.565 0.769 0.427 0.060 0.926 0.114 0.427 0.455 0.427 0.589
GaRRET 0.427 0.042 0.427 0.507 0.226 0.061 0.006 0.000 0.006 0.002
GaRSMB 0.427 0.607 0.046 0.001 0.226 0.035 0.226 0.219 0.926 0.009
GaRHML 0.107 0.115 0.717 0.333 0.926 0.253 0.427 0.120 0.717 0.155
GaRMOM 0.226 0.083 0.717 0.092 0.226 0.716 0.427 0.003 0.226 0.021
GaRV XO 0.226 0.614 0.107 0.188 0.226 0.383 0.107 0.337 0.427 0.725
GaRCSPREAD 0.717 0.147 0.717 0.148 0.926 0.919 0.926 0.925 0.565 0.930
GaRTERM 0.565 0.062 0.273 0.003 0.926 0.198 0.565 0.074 0.273 0.680
GaRTED 0.427 0.469 0.226 0.180 0.226 0.180 0.107 0.185 0.107 0.451
GaRADS 0.107 0.031 0.226 0.096 0.226 0.006 0.226 0.008 0.226 0.390

Panel B. Including COVID-19 (2007Q1 to 2020Q4)

GaRISPREAD 0.160 0.010 0.160 0.005 0.312 0.001 0.312 0.001 0.547 0.001
GaREEFR 0.547 0.026 0.074 0.002 0.312 0.003 0.074 0.011 0.074 0.018
GaRRET 0.160 0.005 0.074 0.002 0.031 0.000 0.000 0.000 0.001 0.000
GaRSMB 0.160 0.260 0.004 0.000 0.031 0.000 0.031 0.009 0.312 0.000
GaRHML 0.012 0.001 0.160 0.003 0.312 0.049 0.074 0.014 0.160 0.012
GaRMOM 0.031 0.254 0.160 0.003 0.031 0.032 0.160 0.009 0.031 0.000
GaRV XO 0.031 0.074 0.012 0.004 0.031 0.020 0.031 0.053 0.160 0.388
GaRCSPREAD 0.160 0.053 0.160 0.107 0.312 0.407 0.547 0.923 0.860 0.953
GaRTERM 0.547 0.001 0.860 0.000 0.312 0.003 0.547 0.001 0.860 0.014
GaRTED 0.074 0.018 0.031 0.002 0.031 0.001 0.012 0.001 0.012 0.016
GaRADS 0.074 0.029 0.074 0.006 0.074 0.001 0.074 0.003 0.031 0.109

Note: This table shows the following two interval tests for different combined GaR models: Ku-
piec’s (1995) unconditional coverage test (UC), where the null hypothesis is that the proportion of
exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic quantile
test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator
is an i.i.d. process (non-rejection of the null is preferred). Bold values indicate that model passes the
test with a 10% level of probability.
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4 Daily Unemployment at Risk

4.1 Introduction

A primary task of macroeconomic policymaking is to provide accurate forecasts of
the unemployment rate so governments can decide on the most appropriate mone-
tary policy stance to adopt at any given time. This is particularly challenging during
episodes of market distress. For instance, at the onset of the Covid-19 pandemic,
the Federal Open Market Committee (FOMC) reported that job gains were solid and
the U.S. unemployment rate could be expected to remain low (Federal Open Market
Committee, 2020). However, during the next quarter, the average unemployment
rate spiked at 13%, the highest increase recorded since 1948. This paper seeks
to provide real-time daily unemployment nowcasts to inform policymakers at the
highest possible frequency about the tail-risks surrounding current or near-future
unemployment and, in so doing, contribute to the literature of ’unemployment at
risk’ (URisk) pioneered by Kiley (2021) and Adams et al. (2021).

We extend the framework developed by Adams et al. (2021). These authors use
quantile regressions to construct quarterly predictive distributions of unemployment
around the median forecasts of the Survey of Professional Forecasters (SPF), con-
ditional on a quarterly National Financial Conditions Index. This approach has
two limitations: i) it fails to incorporate daily flows of information, which have
proven to be valuable for monitoring macroeconomic risks in real time (Ferrara
et al., 2022); and ii) it ignores the stable relationship between unemployment and
economic activity - Okun’s Law - widely documented in the literature (Okun, 1962;
Ball et al., 2017).

We address these two issues by means of a mixed data sampling quantile (Q-
MIDAS) model, which conditions unemployment density on the ADS index, a daily
indicator of real economic activity developed by Aruoba et al. (2009) and regularly
updated by the Federal Reserve Bank of Philadelphia (FRBP). We center our anal-
ysis on the Global Financial Crisis (GFC) and the Covid-19 pandemic.

Our primary motivation here is captured by Figure 4.1, which shows the relation-
ship between quarterly SPF’s forecast errors and the real-time daily ADS index. As
can be observed, there is a negative relationship between the two variables, which
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Figure 4.1: Quarterly SPF’s forecast errors and real-time daily ADS index

Sources: FRBP and authors’ computation.
Note: Time span 1969-04-01 to 2020-12-31. The daily ADS index is calculated using preliminary
estimates as they were released at each point in time, so that nowcast can be made in real-time.
Shaded areas represent NBER recessions.

is more evident in crisis episodes and we show that this relationship can be used to
significantly improve the accuracy of nowcasting exercises to inform policy making.

The rest of the document is organized as follows. Sections 4.2 and 4.3 present
our data and methodology, respectively. Section 4.4 presents our main results, while
section 4.5 concludes.

4.2 Data

We draw on data from real-time survey forecasts of unemployment provided by the
quarterly SPF, as conducted by the FRBP. This survey, carried out since 1990Q3,
publishes its forecasts in the middle month of each quarter. For each survey, par-
ticipants provide quarterly point forecasts for a particular variable for the next five
quarters, including the current quarter. Specifically, we use the one-quarter-ahead
forecasts for the median unemployment rate from the survey corresponding to the
current quarter. For the unemployment rate, which is the target variable, we use the
average unemployment rate obtained from the Federal Reserve Bank of St. Louis
database (FRED). As for the ADS index, we use weakly vintages starting from
November 30, 2008 from the FRBP to conduct the nowcasting exercise. Table 4.1
shows the description of the daily variables used as additional conditioning vari-
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ables to construct unemployment nowcasts. Our data sample spans the period from
1969-01-01 to 2020-12-31. In the case of the VXO and CSPREAD, pre-1986 in-
formation is unavailable in the corresponding websites. Thus, in the first case, fol-
lowing Bloom (2009), the daily VXO is calculated as the 20-day standard deviation
of the S&P500 index normalized to the same mean and variance as the VXO index
when they overlap from 1986 onward. In the second case, we use the information
provided in the online appendix of Lima et al. (2020).

Table 4.1: Detailed description of variables

Variable Description Source

ISPREAD Interest rate spread between the 10-year government
bond rate and the federal fund rate

FRED

VXO Option-based implied volatility measure of S&P100 FRED
CSPREAD BAA-AAA corporate bond yield credit spread FRED
ADS ADS index vintages collected in real-time from Novem-

ber 30, 2008
FRBP

Source: Authors’ elaboration.

4.3 Methodology

We extend the methodology developed by Adams et al. (2021) to accommodate
daily predictors in a Q-MIDAS framework.

4.3.1 Parameter proliferation problem

Let eSPFt+1|t denote the one-step-ahead median forecast error from the SPF, such that
eSPFt+1|t = yt+1− ySPFt+1|t, where yt+1 is the unemployment rate at quarter t+ 1 and
ySPFt+1|t is the one-step-ahead median SPF forecast of yt+1, given the survey con-

ducted at quarter t. XXXD
t+1 = (x0

t+1,x
1
t+1, . . . ,x

p−1
t+1 )′ is a p× 1 vector of the high-

frequency variable available on a daily basis, with xjt+1, j = (0,1,2, . . . ,p− 1),
which is observed d times between quarter t+1 and t. In this setup, we consider that
conditional quantile of eSPFt+1|t is affected by up to one year (q = 4 quarters) of past

daily shocks of XXXD
t+1−hd , giving a total number of parameters (including the con-

stant) approximately equal toK = q×d+1 = 4×60+1 = 241, assuming a five-day

working week (d = 60 days ); that is, XXXD
t+1−hd =

(
x0
t+1,x

2
t+1− 1

60

, . . . ,x239
t+1− 239

60

)′
.

Note that the number of parameters K is relatively larger than the total number
of observations T , so we are faced with a parameter proliferation problem, which
invalidates the standard estimation procedure of the quantile regression.
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4.3.2 MIDAS quantile

In this context, the mixed data sampling quantile (Q-MIDAS) model offers an effec-
tive solution to incorporate high-frequency indicators, which relies on a restriction
of the form in which the distributed lags of the high frequency variable are included
in the quantile regression. Specifically, we consider the Almon lag polynomial as
in other recent works (Lima et al., 2020; Mogliani and Simoni, 2021; Ferrara et al.,
2022).1

Let XXXD
t+1−hd follows the Almon lag polynomial given by:

B
(
L
i
d ;θθθjjj(τ)

)
=
p−1

∑
i=0

b
(
i;θθθjjj(τ)

)
L
i
dxjt+1

where L
i
dxjt+1 works as a daily lag operator and b(i;θθθj(τ)) = ∑

c
k=0 θk,ji

k is the
weighting function that depends on the vector of parameters θθθj(τ), the lag order i=

(0,1,2, . . . ,p−1), and the order of the Almon lag polynomial given by c.
Thus, the p× 1 vector of the high-frequency variable XXXD

t+1−hd , can be trans-
formed based on the following polynomial weighting matrix:

Q=


1 1 1 . . . 1

1 2 3 . . . p1

...
...

... . . . ...
1c 2c 3c . . . pc


By multiplying Q×XXXD

t+1−hd we get the vector of transformed daily predictors

X̃XX
D

t+1−hd , which enters into our quantile framework. In our specification, we set
c = 3 (third degree Almon lag), and impose two zero restrictions on the slope and
value of the lag polynomial (see Mogliani and Simoni, 2021). This last causes the
weighting structure to slowly reduce to zero.

4.3.3 Density forecasts

In the first step, we estimate a Q-MIDAS model using quantile regressions (Koenker
and Bassett, 1978):

eSPFt+1|t = α0(τ) + X̃XX ′′′t+1−hdφφφ+ εt (4.1)

where β(τ) = (α0(τ),φφφ)′ denotes the vector of parameters corresponding to the
τ -th quantile, and εt is a random noise. Notice that the forecast error only depends

1Since at least Pettenuzzo et al. (2016) many works in the literature have chosen to use the
Almon lag polynomial for MIDAS, since it is parsimonious and linear in the parameters.
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on the vector of daily information X̃XX
D

t+1−hd which is updated until the last day of the
next quarter minus hd days. In this formulation, the forecast horizon is expressed in
high-frequency terms, that is, a given day between quarters t and t+ 1.

The predictive value of Equation (4.1),

Q̂τ

(
eSPFt+1|t | X̃XX

D

t+1−hd

)
= α0(τ) + X̃XX ′′′t+1−hdφφφ (4.2)

produces an estimate of the conditional quantile of eSPFt+1|t conditional on the

information contained in the high-frequency variable X̃XX
D

t+1−hd for different τ =

{0.05,0.25,0.75,0.95}. Then, to construct the predicted quantiles for the target
variable yt+1, we add the forecast point ySPFt+1|t available at time t:

Q̂τ

(
yt+1 | X̃XX

D

t+1−hd

)
= Q̂τ

(
eSPFt+1|t | X̃XX

D

t+1−hd

)
+ySPFt+1|t (4.3)

In the second step, to construct the full conditional probability distribution from
our quantile regression estimates, we follow the methodology proposed by Adrian
et al. (2019). We consider Azzalini and Capitanio’s (2003) four-parameter skew-t
distribution with the probability density function given by:

f(y;µ,σ,α,v) =
2

σ
t

(
y−µ
σ

;v

)
∗T

(
α

(
y−µ
σ

;v

)√
v+ 1

v+ y−µ
σ

;v+ 1

)
(4.4)

where t(·) and T (·) denote the probability density function and cumulative dis-
tribution function of the Student’s t-distribution, respectively. This distribution is
specified by its location µ, scale σ, shape α, and fatness v. In essence, this dis-
tribution allows us to capture fat tails and skewness (see Azzalini and Capitanio,
2003).

Finally, for each quarter, we fit a skew-t distribution by choosing the parameters
(µt+1,σt+1,αt+1,vt+1) that minimize the squared differences between our quantile
regression estimates and the skew-t implied quantiles for τ = {0.05,0.25,0.75,0.95}:

(µ̂t+1, σ̂t+1, α̂t+1, v̂t+1) = argmin
µ,σ,α,v

∑(Q̂τ
(
yt+1)−F−1(y;µ,σ,α,v)

)2
. (4.5)

In addition, as a natural benchmark for our estimates, we construct the uncondi-
tional predictive distributions based only on the current ySPFt+1|t and the distribution
of historical forecast errors (see Reifschneider and Tulip, 2019).2

2Following Adams et al. (2021), we estimate quantile regressions in Equation 4.1 with only a
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4.4 Nowcasting unemployment at risk

Using the ADS index collected in real-time our nowcasting exercise starts on Jan-
uary 1, 1992. Figure 4.2 displays the nowcasts results for the historical quantile
estimates, the density nowcasts during the GFC, approximately from 2008Q3 to
2009Q1, and the Covid-19 pandemic, from 20201 to 20203. The historical now-
casts show that our daily quantile estimates capture the dynamic of the unemploy-
ment rate (Figure 4.2a). Particularly, during the first of these events, we observe that
the model conditioning on the ADS index precisely captures the upside risks in the
unemployment rate as the distribution of our model (blue line) moves to the right
(Figure 4.2b). Likewise, during the second of these events, the density distribution
moves significantly to the right after the onset of the pandemic, coinciding with
the Federal Reserve Press Release (Federal Open Market Committee, 2020). Im-
portantly, in the second quarter, the average unemployment rate spiked at 13%, the
highest increase recorded since 1948 (Figure 4.2c). Also, the asymmetry of shifts in
the density forecasts highlights the differences in unemployment risk over the time
span of each event. In the Appendix 4.A, we show the results for the alternative
indicators ISPREAD, VXO and CSPREAD.

constant term included in the set of conditioning variables. We then center these estimates around
the current ySPFt+1|t, and fit the skew-t distribution as in Equation (4.5).
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4.4 Nowcasting unemployment at risk

Figure 4.2: Daily nowcasts of ADS index in real time

(a) Historical quantile estimates

(b) GFC

(c) Covid-19

Sources: FRED and authors’ computation.
Note: The blue daily density nowcasts correspond to the model that incorporates the ADS as the
high-frequency indicator. The black dots indicate the realized value of the unemployment rate in the
given quarter.
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To assess the accuracy of our daily unemployment nowcasts, we calculate predic-
tive scores by evaluating the model’s density at the realized value of the unemploy-
ment rate. Table 4.2 reports differences in average log predictive scores between the
predictive densities that considers daily predictors and the benchmark distribution
of historical forecast errors, for different daily horizons. Positive values indicate a
superior average forecasting performance of the densities that incorporate the cor-
responding daily predictor.

Overall, we find strong support for the superior predictive ability of the ADS in-
dex to nowcast the conditional probability distribution of unemployment rate when
compared to other daily predictors, for both periods the pre-Covid 19 period and
the period including the Covid-19 pandemic (both periods include the GFC). More
specifically, it is the only indicator that manages to gauge the increase in unem-
ployment with 40 days’ lagged information when the sample period includes the
Covid-19 pandemic.

Table 4.2: Evaluation of out-of-sample nowcasts for different daily horizons

hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

Before COVID-19 (1992Q1 to 2019Q4)

ISPREAD 0.008 0.015 0.015 -0.033 -0.024
VXO -0.096 -0.113 -0.128 -0.624 -0.118
CSPREAD -0.013 -0.006 -0.014 -0.052 -0.079
ADS 0.12 0.059 0.172 0.194 0.195

Including COVID-19 (1992Q1 to 2020Q4)

ISPREAD -0.526 -0.547 -0.212 -0.037 -0.019
VXO -0.454 -0.938 -0.419 -1.16 -0.499
CSPREAD -0.026 -0.3 -0.233 -0.07 -0.082
ADS -1.829 -1.11 -0.426 -0.774 0.218

Note: This table reports differences in average log predictive scores. Column names hd represent
the lag of the high frequency daily information (i.e., minus hd days before the quarter ends).

4.5 Conclusions

We construct daily unemployment at risk around consensus forecasts conditional on
the ADS business conditions index, using a Q-MIDAS model. Our results suggest
that this indicator i) has better nowcasting properties than those provided by daily
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4.5 Conclusions

financial conditioning variables, and ii) provides early signal of unemployment rate
increases, especially during episodes of distress. Our results are relevant for risk
monitoring and nowcasting purposes of central banks and other institutions.
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4.A Appendix A

Figure 4.A1: Daily nowcasts of ISPREAD in real time

(a) Historical quantile estimates

(b) GFC

(c) Covid-19

Sources: FRED and authors’ computation.
Note: The blue daily density nowcasts correspond to the model that incorporates the ISPREAD as
the high-frequency indicator. The black dots indicate the realized value of the unemployment rate in
the given quarter.
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Figure 4.A2: Daily nowcasts of VXO in real time

(a) Historical quantile estimates

(b) GFC

(c) Covid-19

Sources: FRED and authors’ computation.
Note: The blue daily density nowcasts correspond to the model that incorporates the VXO as the
high-frequency indicator. The black dots indicate the realized value of the unemployment rate in the
given quarter.
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4 Daily Unemployment at Risk

Figure 4.A3: Daily nowcasts of CSPREAD in real time

(a) Historical quantile estimates

(b) GFC

(c) Covid-19

Sources: FRED and authors’ computation.
Note: The blue daily density nowcasts correspond to the model that incorporates the CSPREAD as
the high-frequency indicator. The black dots indicate the realized value of the unemployment rate in
the given quarter.
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5 Forecasting Inflation Risk Around
the Globe

5.1 Introduction

Traditional inflation predictions can help central banks make their monetary policy
decisions; yet, few insights can be provided into the probability of either high or low
inflation. As Alan Greenspan (2004), former Governor of the Federal Reserve, has
pointed out, a central bank needs to consider “not only the most likely future path
for the economy but also the distribution of possible outcomes about that path”. To
facilitate them in this task, a growing number of studies propose inflation risk indi-
cators based on tail risk measures (Kilian and Manganelli, 2007; Adams et al., 2021;
Lopez-Salido and Loria, 2022; Clark et al., 2022; Pfarrhofer, 2022), market-based
measures (Kitsul and Wright, 2013; Fleckenstein et al., 2017), and survey-based
measures (Adams et al., 2021; Ryngaert, 2022). Of these, indicators based on the
distribution of realized inflation have received special attention, as they can be ap-
plied to a wider range of countries (see, e.g., Banerjee et al., 2020; Lopez-Salido and
Loria, 2022; Pfarrhofer, 2022; Queyranne et al., 2022).1 Moreover, most of these
works rely on quantile regressions that can be fitted on a skew-t distribution (see
Adrian et al., 2019; Azzalini and Capitanio, 2003). Yet, while they offer insights on
inflation risk measures, they do not study extensively the out-of-sample predictive
performance of their measures nor do they consider specific world regions.

Here, by drawing on a broader set of countries and employing state-of-the-art
machine learning techniques, I am able to make three contributions to the field.
First, I compute inflation density forecasts for a large panel of countries – Euro-
pean (20), North American (15), South American (7), Asian and Oceanian (16),
and African (18) (75 in total; see Table 5.A1) – using a set of global factors as
predictors. In so doing, I provide evidence that, in general, global inflation fac-
tors improve the accuracy of density forecasts. This contrasts with the previous
literature which has tended to focus specifically on point estimates (e.g. Ciccarelli

1For instance, Banerjee et al. (2020) estimate inflation-at-risk statistics for 41 advanced and
emerging market economies, and Queyranne et al. (2022) for seven Middle East and Central Asian
countries.
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and Mojon, 2010; Kamber and Wong, 2020; Medeiros et al., 2022; Arango-Castillo
et al., 2023). I show that a global real economic factor based on commodity prices
and a crude oil index is important for the one-year-ahead forecast horizon, thus
highlighting the importance of including commodity price indicators as potential
predictors, as in Kamber and Wong (2020). Overall, this eclectic approach is sup-
ported by evidence that inflation is largely a global phenomenon (e.g. Ciccarelli
and Mojon, 2010; Ha et al., 2021; Kamber and Wong, 2020; Arango-Castillo et al.,
2023). For instance, Ciccarelli and Mojon (2010) report that the inflation rates of
22 OECD countries have a common component that accounts for approximately
70% of the total variance, while Kamber and Wong (2020) show that global infla-
tion factors and commodity prices play an important role in determining inflation,
particularly its cyclical component, among a group of advanced and emerging mar-
ket economies. Finally, Arango-Castillo et al. (2023) provide further evidence that
global factors strongly influence both headline and core inflation in these countries.
More recently, Medeiros et al. (2022), in a cross-country setting, corroborate the
earlier findings of Ciccarelli and Mojon (2010) and show that global and regional
factors are relevant predictors of future inflation. As such, this paper contributes to
the literature on forecasting global inflation from a risk perspective.

Second, while most studies in the literature only follow the quantile framework
developed by Adrian et al. (2019) to produce density forecasts, I use both quan-
tile regressions and a random forest estimator. Specifically, I show that the latter
method provides superior predictive performance, as documented in the literature
(see Medeiros et al., 2021, 2022; Goulet Coulombe et al., 2022; Clark et al., 2022).
I develop an inflation risk framework using a rolling window following Medeiros
et al. (2021, 2022), and extend it to quantile regression methods (Adrian et al.,
2019). To compute the density forecasts, I consider the standard quantile regres-
sions (QRs) (Koenker and Bassett, 1978) and the quantile random forest (QRF)
estimator developed by Athey et al. (2019), which is an extension of Breiman’s
(2001) random forest that provides a flexible method for estimating any quantity
identified by local moment conditions. The latter method is inspired by the find-
ings of Medeiros et al. (2021, 2022) and Goulet Coulombe et al. (2022), who show
that random forest outperforms a wide range of other machine learning methods for
forecasting inflation. To assess forecast accuracy, I rely on the quantile-weighted
continuous ranked scores (Gneiting and Ranjan, 2011).

Third, using the estimated inflation density forecasts, I am able to derive inflation
risk measures – namely, the probability of high and low inflation – across regions
(see Lopez-Salido and Loria, 2022; Garratt and Petrella, 2022). Thus, I provide
novel evidence of these inflation risk measures across regions for the out-of-sample
period. Previous studies have tended to focus on a group of advanced and emerging
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market economies (Banerjee et al., 2020; Lopez-Salido and Loria, 2022; Queyranne
et al., 2022); however, I find interesting heterogeneous patterns across regions. For
example, in Africa, the probability of having high inflation is more persistent and
higher than in other regions. This ultimately indicates a systematic issue, as the
results suggest that the probability of high inflation in other regions has fallen since
2000. In America and Asia, the probability of high inflation is similar to that in
Africa before the Global Financial Crisis (GFC), but after that event the probabil-
ity displays a downward-sloping trend. In contrast, the probability of deflation or
inflation below 0% is, in general, lower than 10% in all regions, except in Europe,
where the probability around 2015 was, according to Ha et al. (2021), “unusually
persuasive”.

The rest of this document is organized as follows. Section 5.2 describes the data
and presents details about the construction of the indicators. Section 5.3 explains
the framework for forecasting inflation risk. Section 5.4 outlines the models and
forecast evaluation scheme. Section 5.5 reports the main findings and Section 5.6
concludes.

5.2 Data

In this section, I present the data sources, calculations and results for the indicators
used in this study: namely i) inflation rates, ii) global and regional inflation factors,
iii) a real global economic activity factor, iv) a crude oil index; and v) a financial
indicator.

Inflation rates. I draw primarily on the large global inflation database in Ha
et al. (2021). This dataset contains various inflation measures for multiple countries
at different frequencies (monthly, quarterly and annual). Additionally, it provides
aggregate measures of inflation, as well as measures of global commodity prices.
Specifically, I use the monthly headline Consumer Price Index (CPI) series to con-
struct inflation measures because it has a broader country coverage (83) compared
to that of the core CPI series (17) since 1970 (see, Ha et al., 2021).2 The sam-
ple size is restricted to 75 countries from five regions (Europe, Asia and Oceania,
Africa, North America, and South America) based on data availability for the pe-
riod January 1980 to December 2021. Table 5.A1 lists the countries considered in
each region.

Global and regional inflation factors. I construct a global common factor

2The data have been collected from country-specific sources as well as from multiple organi-
zations. The headline CPI includes all goods and services, while the core CPI does not include the
more volatile components of the former, including food and energy.
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and five regional factors based on the 75 country-specific inflation rates mentioned
above. As in previous studies, I use the monthly year-on-year inflation rates, which,
by construction, have no seasonal pattern (see Ciccarelli and Mojon, 2010; Arango-
Castillo et al., 2023). One important concern in calculating these factors for the
period 1980 to 2021 is that many countries, especially those that have experienced
inflationary episodes, share a common trend and high-volatility episodes. To ac-
count for the mix of stationary and non-stationary inflation rates, I use the approach
developed by Hamilton and Xi (2023). This approach requires filtering each se-
ries using Hamilton’s filter (Hamilton, 2018), and performing principal component
analysis (PCA) on the regression residuals.3 The authors show that this technique
provides similar benefits to those of traditional PCA, albeit with some advantages,
such as dealing with some non-stationary series.4 I apply this procedure to all the
dataset and each region, and retain the first principal component. The details of the
resulting factors are presented in Appendix 5.A.1. Figure 5.A1a shows the global
inflation factor using the simple cross-country average and Hamilton’s approach.
Relative to the former approach, the latter closely tracks the general movement of
inflation while subtracting the trend component. In addition, Figure 5.A1b shows
the regional inflation factors using Hamilton’s approach.

Real global economic factor. To control for supply-side fluctuations, I consider
a real global economic factor based on commodity prices (see Alquist et al., 2020).
As pointed out by Kamber and Wong (2020), the influence of global inflation factors
may reflect commodity price shocks. This factor closely resembles the factor used
in Baumeister and Guérin (2021), inasmuch as I use the same 23 basic industrial
and agricultural commodities related directly to the production of final goods and
which, as such, are related to real output from World Bank commodity price data.5

Before conducting the PCA, I normalize each CPI series by the US CPI and take
logs. This index has the advantage of arguably being calculated in real-time (the
US CPI has a one-month lag) relative to other indicators that are based on industrial
production indexes (e.g. Baumeister and Hamilton, 2019) or cost of shipping data
(e.g. Kilian, 2009).6

Oil prices and global financial conditions. Additionally, to control for other oil

3Following Hamilton’s suggestion, I run an ordinary least squares (OLS) regression for the two-
year-ahead inflation rate and include 12 lags.

4Another strategy involves searching for the order of integration of all the countries and trans-
forming them to achieve stationarity (e.g., as in McCracken and Ng, 2016, 2021). One problem with
this strategy is that it ends up mixing many I(0) with I(1) series, with different properties (i.e. the
acceleration of inflation rather than inflation).

5See https://www.worldbank.org/en/research/commodity-markets.
6See Baumeister and Guérin (2021) for a full discussion of the forecasting power of different

monthly global indicators for forecasting output growth.

108

https://www.worldbank.org/en/research/commodity-markets.
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and financial shocks, I include two indicators. The first is the World Bank crude oil
price index, measured as the average of WTI, Brent, and Dubai crude oil prices. In
this case, the log difference of this variable is used. The second is the VIX index,
used as a proxy of the global financial cycle (see Rey, 2015), and which is a measure
of uncertainty and risk aversion in the financial markets.

5.3 Forecasting inflation risk framework

This section presents the general forecasting framework, which is similar to that
used by Medeiros et al. (2021, 2022). More specifically, however, I extend it to
QRs, as in Adrian et al. (2019). Finally, I derive two measures of inflation risk (see
Garratt and Petrella, 2022; Lopez-Salido and Loria, 2022).

In the spirit of Stock and Watson (2002), let πhi,t+h be the annualized monthly
average inflation rate,

πhi,t+h = (1200/h)/ln(Pi,t+h/Pi,t), (5.1)

where h = 1, ...,H denotes the forecast horizon, t = 1, ...,T the time period, i =

1, ...,N the country-specific index, and Pi,t the headline CPI for country i at time t.
To characterize the τ -quantile of the distribution of future inflation πhi,t+h on a

d-dimension vector Xit of predictors, I consider the following general model:

πhi,t+h =Qh,τ (Xi,t) +ui,t, (5.2)

where Qh,τ (.) is the target quantile function that relates covariates and the distri-
bution of future inflation; and ui,t is an zero-mean i.i.d error term. For each country,
the target quantile function could be linear or nonlinear and have a different set of
covariates, but it is the same for each forecasting horizon.

The forecast equation is given by

Q̂t+h|t,τ (πhi,t+h|Xi,t) = Q̂t−Rh+1:t,τ (Xi,t), (5.3)

where Q̂t+h|t,τ (πhi,t+h|Xi,t) is an estimate of the future quantile function of πhi,t+h
for τ = {0.05,0.25,0.50,0.75,0.95} conditional on the data observed from t−Rh+

1 to t, where Rh is the window size. Importantly, the forecasts are based on
a rolling-window framework in line with Medeiros et al. (2021, 2022). In this
case, the number of observations for the in-sample estimation window is Rh =

240− p+ 1, where p is the is number of lags considered in the model.7 This

7In all cases, due to the training procedure of Hamilton’s filter explained ebove (Hamilton,
2018), the sample size decreases by 36, because we use the two-year-ahead inflation (24 months)
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rolling-window scheme is especially relevant for forecasting inflation around multi-
ple countries as it attenuates the effects of potentially structural breaks and it avoids
problems of running superior predictive performance tests (for a complete discus-
sion, see, Corradi and Swanson (2006) and Clark and McCracken (2013)).

Using the quantile forecasts from Eq. (5.3), the full conditional probability dis-
tribution can be constructed. I follow the methodology proposed by Adrian et al.
(2019) and consider the Azzalini and Capitanio (2003) four-parameter skew-t dis-
tribution with the probability density function given by:

f(π;µ,σ,α,v) =
2

σ
t

(
π−µ
σ

;v

)
∗T

(
α

(
π−µ
σ

;v

)√
v+ 1

v+ π−µ
σ

;v+ 1

)
, (5.4)

where t(·) and T (·) denote the probability density function and cumulative dis-
tribution function of the Student’s t-distribution, respectively. This distribution is
specified by its location µ, scale σ, shape α, and fatness v. This distribution, more-
over, has the distinctive characteristic of capturing fat tails and skewness (see Azza-
lini and Capitanio, 2003), which are relevant from a risk-management perspective.

Subsequently, for each forecasting horizon and country, the skew-t distribution is
fitted by choosing the parameters (µ,σ,α,v) that minimize the squared differences
between the quantile regression estimates and the skew-t implied quantiles for τ =

{0.05,0.25,0.50,0.75,0.95}:

(µ̂, σ̂, α̂, v̂) = argmin
µ,σ,α,v

∑

(
Q̂t−Rh+1:t,τ (Xi,t)−F−1(πhi,t+h;µ,σ,α,v)

)2
. (5.5)

Finally, I consider two measures of probability events for gauging inflation risk
events: i) inflation-at-risk (IaRh) defined as the probability where πht+h falls above
certain threshold π∗; and ii) deflation-at-risk (DaRh) defined as the probability
where πht+h falls below certain threshold π∗. Galbraith and Norden (2012), Lopez-
Salido and Loria (2022) and Garratt and Petrella (2022) consider similar proba-
bilities measures. While other risk measures are considered in the literature (e.g.
Kilian and Manganelli, 2007; Garratt and Petrella, 2022), these probability mea-
sures are widely used by market participants, policy makers and organizations (see
Gneiting (2008) for a discussion). Some examples of this type of publicly available
information can be found in the Survey of Professional Forecasters, which pro-
vides survey-based estimates for the probabilities of inflation rates, and the Federal
Reserve Bank of Minneapolis’s market-based probabilities, which provide implicit

and the 12 lags in the auxiliary OLS regression.
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probabilities based on market indicators. However, in both cases, the information
is restricted to a number of developed countries. Here, by contrast, I measure these
probabilities for a wide range of countries around the world.

Formally, the conditional probability that the h-step-ahead inflation conditional
on Xi,t is greater than certain threshold π∗ is,

IaRh = P (πhi,t+h > π∗|Xi,t), (5.6)

with the probability density,∫ ∞
π∗

f(πhi,t+h|Xi,t, µ̂, σ̂, α̂, v̂)dπi,t+h. (5.7)

Eq. (5.7) defines the risk measures as the integral of the skew-t density function
over a specified threshold conditional on a vector Xi,t and the skew-t parameters.
Conversely,DaRh is defined by changing the sign of the inequality inside Eq. (5.6),
and setting the lower limit of the integral to −∞ and its upper limit to π∗ in Eq.
(5.7).

5.4 Models and evaluation

5.4.1 Quantile Regression

As in the standard growth-at-risk framework developed by Adrian et al. (2019), I
rely on quantile regressions (QRs) (Koenker and Bassett, 1978). In this setting, the
vector of parameters βi,τ is chosen to minimize the following loss function:

βi,τ =
1

T

T

∑
t

[
ρτ

(
πhi,t+h−X ′i,tβi,τ )

)]
(5.8)

where ρτ (εt) = ui,t(τ − 1(ui,t < 0), with 1(εt < 0) taking a value of 1 when the
subscript is true and 0 otherwise (for details regarding the estimation, see Koenker
(2005)).

The forecast equation is given by:

Q̂t+h,τ (πhi,t+h|Xi,t) =X ′i,tβ̂i,τ . (5.9)

Koenker and Bassett (1978) further prove that Q̂t+h,τ (πi,t+h|Xi,t) is a consistent
linear estimator of the quantile function of πi,t+h conditional on Xi,t.8

8Since quantile forecasts are not necessarily monotone, I rearrange them so that they are always
monotone (Chernozhukov et al., 2009).
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5.4.2 Quantile Random Forest

I use QRF regressions based on the method proposed by Athey et al. (2019) and as
used by Coulombe et al. (2022). This method extends Breiman’s (2001) random
forests into a flexible method for estimating any quantity identified by local mo-
ment conditions. Specifically, Athey et al. (2019) propose building a forest using
a splitting scheme that is sensitive to changes in any of the quantiles of interest.
Their strategy of simultaneously estimating different quantiles has been shown to
be computationally efficient and to eliminate the risk of crossing quantiles, which
is a critical issue when forecasting multiple quantiles.

For each country and forecasting horizon, let {πs,Xs} be an independent sample
of the inflation rate and its covariates, indexed by s = 1, ...,S. The forest-based
estimates are obtained by solving the following minimization problem:

(θ̂τ (x), v̂(x)) = argminθτ ,v‖
S

∑
s=1

αs(x)ψθ(πs)‖2, (5.10)

with weights,

αbs =
1({Xs ∈ LB(x)|Xs = x})

|LB(x)|
,αs(x) =

1

B

B

∑
b=1

αbs(x), (5.11)

where ψθ(πs) = τ1(πs > θτ )− (1− τ)1(πs <= θτ ) is the quantile loss function,
with θτ being the conditional quantiles of πs; v(x) refers to an optional nuisance
parameter; and αs(x) is the weighting function. Eq. (5.11) further defines the ran-
dom forest weighting function as a forest-based neighborhood of x. The algorithm
grows b trees indexed by b= 1, ...,B and, for each such tree, it defines Lb(x) as the
set of training samples that falls into the same leaf as x (e.g. see Figure 5.1). In-
tuitively, the gradient-based QR trees separate observations that fall above the τ -th
quantile of the parent node from those below it, and label each observation by the
interval into which they fall. Then, it finds the best split for a particular node given
x (see Athey et al. (2019), for details on the splitting scheme and the algorithm).

In this setting, the forecast equation (5.3) is computed as the quantiles of the
weighted leaves that share a leaf with the test sample:

F̂ (πhi,t+h|Xi,t) =
1

B

B

∑
b=1

αbs(x)1(πhi,t+h <= θ̂τ (x)) (5.12)

where,

Q̂(πhi,t+h|Xi,t) = inf{πhi,t+h : F̂ (πhi,t+h|Xi,t)>= τ}. (5.13)
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5.4 Models and evaluation

For the computation of this model, I use the standard parameters suggest by
Athey et al. (2019).9 I set the number of bootstrapping samples B (trees) to 2000.
This is four times larger than the bootstrap sample used in Meinshausen (2006) to
build QRF regressions. The fraction of the data used to grow each tree is set to 0.5,
and following "honesty" splitting, it is further cut by a factor of 0.5. The algorithm
tries min{d(√p+ 20)e,p} variables for each splitting, where p is the number of
covariates.

Figure 5.1: Example of a random tree

Note: Random computed tree using all covariates (see Section 5.4.3).

5.4.3 Summary of models and information sets

Table 5.1 shows the different specifications of Xi,t considered for each country
and forecasting horizon. For the two models, i.e., QRs and QRFs, I consider four
variable sets. The baseline model is an autoregressive (AR) quantile model that
includes four lags of the dependent variable. This model ultimately serves as a
benchmark for the empirical analysis. The second model is the Cicarelli and Mojon
model (CM1) (2010), which includes a global inflation factor πg and a regional
inflation factor πrt corresponding to the country’s region. Medeiros et al. (2022)
consider a similar version of the CM1 model. The third model (CM2) includes the
global real indicator based on commodity prices gt, and the crude oil price index

9I use the "grf" R package available at https://grf-labs.github.io/grf/index.html.
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oilt. Finally, the last model (CM3) incorporates the VIX indicator to capture the
global financial cycle.

5.4.4 Forecast evaluation

To assess the accuracy of the quantile density forecasts based on the skew-t distribu-
tion (see Eq. (5.5)), I rely on the quantile weighted continuous ranked probability
score (CRPS) (see Gneiting and Ranjan, 2011). This measured is used widely in
the literature to asses quantile density forecasts (e.g. see Pfarrhofer, 2022; Ferrara
et al., 2022; Carriero et al., 2022).

First, I define the quantile score (QS), which is a common metric used for eval-
uating a specific quantile forecast (see Gneiting and Raftery, 2007; Giacomini and
Komunjer, 2005), as follows,

QSt+h,τ = (Q̂t+h,τ −πht+h)(1(Q̂t+h,τ < πht+h)− τ), (5.14)

where πht+h refers to the actual inflation rate observed at t+ h, Q̂t+h,τ is the
estimated quantile forecast based on the skew-t density distribution (see Eq. (5.5)),
and 1(Q̂t+h,τ < πht+h) is the indicator function that takes a value of 1 if the outcome
is below the forecast quantile and 0 otherwise.

Then, I define the quantile weighted CRPS (Gneiting and Ranjan, 2011),

CRPSt+h =
∫

2w(τ)QSt+h,τdτ (5.15)

where w(τ) is the weighting scheme considered by Gneiting and Ranjan (2011).
Following the authors, I consider five different weighting schemes to emphasize
specific parts of the distribution: i) equal w(τ) = 1 ; ii) tails w(τ) = (2τ − 1)2;
iii) left tail w(τ) = (τ −1)2; iv) center w(τ) = τ(τ −1)2; and v) right tail w(τ) =

τ2. Finally, I assess the statistically significance of the tests using the Diebold and
Mariano (DM) (1995) test for equality of the average loss.10 I conduct the tests on
a one-sided basis, so that the alternative hypothesis is that the indicated forecast is
more accurate than the benchmark.

5.5 Empirical analysis

In this section, I present the results of the out-of-sample exercise for the forecast-
ing horizon of h = {1,12}, across all 75 countries. Due to space constraints, the
analysis mainly focuses on the shortest horizon (h = 1) and the longest horizons

10I use the bias correction of the DM test statistic given by Harvey et al. (1997).
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Table 5.1: Summary of models and information sets

Mame Model Variable sets

QR-AR Quantile regression Xi,t = [{πi,t−j}4−1
j=o]

′

QR-CM1 Quantile regression Xi,t = [{πi,t−j}4−1
j=o,π

g
t ,π

r
t ]
′

QR-CM2 Quantile regression Xi,t = [{πi,t−j}4−1
j=o,π

g
t ,π

r
t ,gt,oilt]

′

QR-CM3 Quantile regression Xi,t = [{πi,t−j}4−1
j=o,π

g
t ,π

r
t ,gt,oilt,V IXt]

′

QRF-AR Quantile random forest Xi,t = [{πi,t−j}4−1
j=o]

′

QRF-CM1 Quantile random forest Xi,t = [{πi,t−j}4−1
j=o,π

g
t ,π

r
t ]
′

QRF-CM2 Quantile random forest Xi,t = [{πi,t−j}4−1
j=o,π

g
t ,π

r
t ,gt,oilt]

′

QRF-CM3 Quantile random forest Xi,t = [{πi,t−j}4−1
j=o,π

g
t ,π

r
t ,gt,oilt,V IXt]

′

(h = 12).11 The out-of-sample evaluation window runs from January 2000 to De-
cember 2021. Regardless of the model, all factors are estimated recursively using
a rolling window. I begin by providing an overview of the accuracy of all models
compared to a QR-AR benchmark model. Then, I seek to explain the results for
the best model by disaggregating the role of the temporal, cross-sectional, and vari-
able importance spectra. Finally, I present the inflation risk indicators, namely, the
probability of low and high inflation around the globe.

5.5.1 Aggregate forecast evaluation

Table 5.2 reports the global forecasting results as summary statistics across all mod-
els and horizons under consideration. Each row denotes the variable set and the two
models considered, namely, QRs and QRFs. Columns (1) to (5) report the average
CRPS ratios for different weighting schemes: equal, center, tails, right, and left. For
these columns, the rows containing QR-AR models show only the average CRPS
value across all countries, while the other rows display the average CRPS ratios
across all countries, where the ratios are computed between the model of interest
and the QR-AR model as a benchmark. Columns (7), (8), and (9) report the per-
centage of countries that have a DM test p-value below 10%. For each country, the
DM test is conducted on a one-sided basis, so that the alternative hypothesis is that
the indicated model is more accurate than the benchmark (a rejection of the null is
preferred). The best results for each horizon are highlighted in bold.

Four conclusions can be drawn from Table 5.2. First, in general, QRF offers a
more accurate performance than that offered by QR models. These results are in

11For example, Lopez-Salido and Loria (2022) focus their analysis on the one-year-ahead infla-
tion rate.
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line with those of Medeiros et al. (2021, 2022) and Goulet Coulombe et al. (2022),
in which non-linearities derived from random forest models are important for fore-
casting macroeconomic series, such as the inflation rate. This is the case for all
the weighting schemes considered. Second, the gains associated with incorporating
the additional set of variables are most frequently found when QRF is used. In this
sense, the percentage of countries that outperform the benchmark increases when
QRF is applied, relative to QR. This effect is notably higher for the one year-ahead
forecasting horizon. Third, global inflation factors, global real factors, and oil price
shocks are relevant, depending on the forecasting horizon. In the case of the short
forecasting horizon (h = 1), the QRF-CM1 model generally has the lowest aver-
age CRPS ratio and the highest percentage of countries for which it is statistically
better than the benchmark. In the case of the longest horizon (h = 12), the QRF-
CM2 model, which considers the global real factor and the oil price index, has the
highest percentage of countries that outperform the benchmark, independent of the
weighting scheme. The gains are substantial, with an increase of more than 10 per-
centage points across weighting schemes. Also, this model has the lowest average
CRPS ratio across all weighting schemes. Finally, I find no supporting evidence of
the role of a global financial indicator, such as the VIX, in forecasting the country-
specific inflation rates. Indeed, once the global real factor and the oil price index
are included in the equation, its effect tends to weaken the forecasting accuracy.

In summary, the results further support the evidence that inflation is a global phe-
nomenon and that, on average, there are important forecasting gains to be made
by including global inflation factors (Ciccarelli and Mojon, 2010; Arango-Castillo
et al., 2023; Medeiros et al., 2022). Additionally, in general, I find that the global
real factors and the oil price index are relevant for forecasting longer horizons, such
as the one-year-ahead inflation rate. As Kamber and Wong (2020) point out, com-
modity price shocks are important for explaining future inflation. The results also
suggest that global real factors are not only important for forecasting a nation’s GDP
growth (Baumeister and Guérin, 2021; Alquist et al., 2020), but also for predicting
national inflation rates.

5.5.2 Where do the cross-sectional gains come from?

To disentangle the cross-sectional gains, I present the distribution of the CRPS ra-
tios across the regions’ forecasting horizons. As in Section 5.5.1, these ratios are
computed between the model of interest and the QR-AR benchmark model. Figures
5.2 and 5.3 show the CRPS ratios with the three weighting schemes obtained, when
using the best model of each forecasting horizon h= {1,12}, respectively. The best
model for h = 1 is QRF-CM1; for h = 12, it is QRF-CM2 (see Section 5.5.1). The
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Table 5.2: Aggregate forecasting results

Weighting schemes DM test

Models (2) (3) (4) (5) (6) (7) (8) (9)

Equal Center Tails Right Left Equal Right left

h= 1

QR-AR 4.033 0.715 1.172 1.377 1.225 - - -
QR-CM1 0.990 0.989 0.991 0.990 0.990 30.7 24.0 26.7
QR-CM2 0.996 0.994 1.001 1.000 0.994 21.3 17.3 17.3
QR-CM3 1.004 1.001 1.011 1.009 1.001 17.3 9.3 18.7
QRF-AR 0.984 0.986 0.977 0.988 0.976 38.7 33.3 38.7
QRF-CM1 0.983 0.985 0.978 0.988 0.974 46.7 44.0 44.0
QRF-CM2 0.988 0.990 0.984 0.997 0.975 44.0 33.3 42.7
QRF-CM3 0.991 0.993 0.986 1.002 0.976 41.3 33.3 42.7

h= 12

QR-AR 1.830 0.325 0.529 0.654 0.525 - - -
QR-CM1 1.085 1.075 1.111 1.059 1.129 8.0 12.0 9.3
QR-CM2 1.066 1.055 1.093 1.039 1.110 9.3 18.7 9.3
QR-CM3 1.094 1.083 1.122 1.063 1.145 9.3 16.0 5.3
QRF-AR 1.020 1.017 1.029 1.003 1.050 33.3 37.3 20.0
QRF-CM1 0.991 0.992 0.989 0.984 1.000 36.0 40.0 32.0
QRF-CM2 0.972 0.975 0.967 0.970 0.974 49.3 50.7 45.3
QRF-CM3 0.981 0.985 0.971 0.982 0.977 44.0 44.0 44.0

Note: The table reports summary statistics for out-of-sample forecast accuracy for each model,
computed across 75 countries. The out-of-sample evaluation window runs from December 2000
to December 2021. Columns (1) to (5) report the average CRPS for different weighting schemes:
equal, center, tails, right, and left. For these columns, the rows containing QR-AR models show the
average CRPS value across all countries, while the other rows display the ratios of the average CRPS
across all countries, where the ratios are computed between the model of interest and the QR-AR
benchmark model. Columns (7), (8), and (9) report the percentage of countries that have a DM test
p-value below 10%. For each country, the DM test is conducted on a one-sided basis, so that the
alternative hypothesis is that the indicated model is more accurate than the benchmark (a rejection
of the null is preferred). The best results for each horizon are highlighted in bold.

benchmark model for both is the QR-AR. For each region, green indicates that the
model has a lower CRPS ratio than that of the benchmark (QR-AR), while red in-
dicates a higher CRPS ratio. Interestingly, in the case of Europe, Africa, and Asia
and Oceania, more than half the countries are better explained by global factors,
regardless of the horizon. In the case of North and South America, results are more
balanced. This landscape is generally the same across weighting schemes.
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5.5.3 Where do the temporal gains come from?

In this section, I examine the temporal distribution of CRPS ratios using an equal
weighting scheme for all forecasting horizons.12 Figure 5.4 plots the median and
interquartile range of the CRPS ratio distribution at each time for the best model
corresponding to each forecast horizon. Panel 5.4a shows the results for h = 1

computed by QRF-CM1, and Panel 5.4b the results for h = 12 computed by the
QRF-CM2. While this approach does not allow conclusions to be drawn about the
CRPS ratio for any particular country, it provides a more general overview of the
predictive capability of the best model compared to the QR-AR benchmark over
time. In the case of forecasting horizon h = 1, results show that the relative advan-
tage of QRF-CM1 is more stable across time and the different quantiles. In contrast,
in the case of forecasting horizon h = 12, there is a clear pattern for some periods
of time where QRF-CM2 offers a greater advantage over QR-AR.

Figure 5.2: Forecast accuracy across countries for h= 1

This figure shows for the QRF-CM1 model and h=1, the CRPS ratios across all countries, computed
between the QRF-CM1 model and the QR-AR model as a benchmark. Green (red) blocks show that
the given model has a lower (higher) CRPS than that of the benchmark (QR-AR).

12Results are largely unaltered when using other weighting schemes.
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Figure 5.3: Forecast accuracy across countries for h= 12

Note: This figure shows for the QRF-CM2 model and h = 12, the CRPS ratio across all countries,
computed between the QRF-CM2 model and the QR-AR model as a benchmark. Green (red) blocks
show that the given model has a lower (higher) CRPS than that of the benchmark (QR-AR).
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Figure 5.4: Forecast accuracy across time

(a) QRF-CM1 for h= 1

(b) QRF-CM2 for h= 12

Note: Panel (a) reports the median and interquartile range of the CRPS ratios for equal weights
computed by the QRF-CM1 model for h= 1, and Panel (b) reports the same statistics computed by
the QRF-CM2 model for h = 12. The ratios are computed between the model of interest and the
QR-AR benchmark model. Green (red) indicates that the given model has a lower (higher) CRPS
than that of the benchmark (QR-AR).
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5.5.4 What is the relative importance of variables across time
and regions?

In this section, I identify the importance of each variable for the best model cor-
responding to each forecasting horizon. Figure 5.5 shows the importance of each
variable for the QRF-CM1 model and h = 1, and Figure 5.6 shows the importance
of each variable for the QRF-CM2 model and h = 12. Variable importance is de-
fined as a simple weighted sum of the number of times a given variable was selected
to split on. It is then averaged in the time dimension, so that the sum at each time
is equal to one. In the case of forecasting horizon h = 1, roughly 25% of the vari-
able importance can be attributed to global and regional factors and these results,
in general, are stable across time. In contrast, when forecasting horizon h = 12, a
larger proportion of the variable importance – in this instance, approximately 50%
– can be explained by global inflation factors, the global real factor and the oil price
index. The results, in general, provide additional support for using global and re-
gional inflation factors for forecasting country-specific inflation series (Ciccarelli
and Mojon, 2010; Arango-Castillo et al., 2023; Medeiros et al., 2022). Moreover,
the results suggest that the global real factor and the oil price index improve fore-
casts for longer horizons. This finding is in line with Kamber and Wong (2020),
who show that commodity price shocks are important for explaining future rates of
inflation.
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Figure 5.5: Variable importance for the QRF-CM1 model and h= 1

Note: This figure plots the variable importance in the QRF-CM1 model, computed as how often a
given variable was split on.
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Figure 5.6: Variable importance for the QRF-CM2 model and h= 12

Note: This figure plots the variable importance in the QRF-CM2 model, computed as how often a
given variable was split on.
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5.5.5 Evolution of inflation risk across regions

In this section, I present novel evidence on inflation risk across regions, while pre-
vious works have tended to focus on groups of advanced and emerging market
economies (Banerjee et al., 2020; Lopez-Salido and Loria, 2022; Queyranne et al.,
2022). For each country, I calculate two measures of inflation risk: namely, the
probability of both high and low inflation for the out-of-sample period. These esti-
mates are based on the skew-t distribution calculated as in Eq. (5.5) with the QRF-
CM2 model for forecasting horizon h = 12. I then proceed to calculate the median
value for each region over time.

Figure 5.7 shows the one-year-ahead median probabilities of having inflation
rates higher than 3% and lower than 0%, computed at time t, across regions. In-
terestingly, we find heterogeneity in the patterns across regions. First, the probabil-
ity of high inflation is more persistent and higher in Africa than in the rest of the
regions. This highlights a systematic problem, given that in the rest of the regions
there is a downward-sloping trend in the probability of high inflation. For instance,
in the case of America and Asia prior to the GFC around 2009, this probability was
similar to that in Africa; however, thereafter it declined rapidly. In contrast, the
probability of deflation or inflation below 0% is somewhat lower than 10% across
regions, except Europe, where this probability was higher around 2015. According
to Ha et al. (2021), after the GFC, deflation or low inflation was common in ad-
vanced economies. In 2015, more than half the advanced economies had negative
inflation and, in 2016, three-quarters of the advanced economies had inflation in the
low single digits, giving rise to concerns that low inflation, or even deflation, would
become a permanent feature of inflation expectations. While the central banks of
European countries implemented very accommodating monetary policies after the
GFC, including the introduction of unconventional measures, the risk of deflation
persisted up to 2020. As shown by Ha et al. (2021), during the onset of the Covid-
19 pandemic, monthly global inflation fell between January and May 2020, picking
up thereafter to return to pre-pandemic levels. All in all, this historic perspective is
in agreement with the probability results presented here.

124



5.5
E

m
piricalanalysis

Figure 5.7: Probability of high and low inflation across world regions (2000-2020)

Note: This figure plots the one-year-ahead median probabilities of having an inflation rates higher than 3% and lower than 0%, computed at time t, across regions.125
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5.6 Conclusions

This paper has set itself the goal of investigating potential future inflation risks
in a large group of countries. To this end, I first compute inflation density fore-
casts for a large panel of countries using a set of global factors as predictors. I
provide evidence that, in general, global inflation factors improve the accuracy
of density forecasts. This contrast with the previous literature which has tended
to focus on point estimates (e.g. Ciccarelli and Mojon, 2010; Kamber and Wong,
2020; Medeiros et al., 2022; Arango-Castillo et al., 2023). Second, I present fur-
ther evidence that random forests improve inflation density forecasts. Specifically,
I report that this method provides a superior predictive performance, as has been
documented elsewhere (see Medeiros et al., 2021, 2022; Goulet Coulombe et al.,
2022; Clark et al., 2022). Third, using the inflation density forecast estimates, I de-
rive inflation risk measures, that is, the probability of high and low inflation, across
regions (see Lopez-Salido and Loria, 2022; Garratt and Petrella, 2022). Here, I re-
port interesting heterogeneous patterns across regions: for instance, while the risk
of high inflation, in general, presents a downward sloping trend around the world,
it continues to be a structural problem in Africa.

To conclude, the inflation risk framework presented in this paper can be applied
to a wide range of countries, with minimum data requirements. This is especially
relevant from the perspective of a central bank or an international organization, as
they will often have to assess risk across different regions. In this regard, I find that
global factors are generally robust predictors of density forecasts across countries.
This also draws attention to the synchronized reaction of the largest central banks
around the world as this is likely to contribute to maintaining global price stability.
Importantly, this framework can be tailored to any specific country in the sample
by simply modifying the lower and upper bounds of inflation, depending on the
characteristics of that country. For example, an inflation rate higher than 3% may
not be perceived as problematic in some Latin American countries, where average
inflation is usually higher than 3%. This highlights the importance of calibrating
the bounds.
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5.A Appendix

5.A.1 Data details

Table 5.A1 reports the complete list of 75 countries considered in the empirical
exercise. Table 5.A2 displays the variance explained by the factors estimated as
described in Section 5.2. Results show that the variance explained by one factor is
24.4% for all the countries, but that this increases when it is estimated by region.
European countries share the highest commonality across regions.

Table 5.A1: List of countries considered in the empirical exercise by region

Europe North America South America Asia Africa

Austria Bahamas Bolivia Fiji Algeria
Belgium Canada Chile India Botswana
Cyprus Costa Rica Ecuador Indonesia Burundi
Denmark Dominican Republic Paraguay Japan Burkina Faso
Finland El Salvador Peru Jordan Cameroon
France Grenada Trinidad and Tobago Korea, Rep. Cote d’Ivoire
Germany Guatemala Uruguay Malaysia Egypt, Arab Rep.
Greece Haiti Nepal Ethiopia
Iceland Honduras Pakistan Gambia, The
Ireland Jamaica Philippines Ghana
Italy Mexico Samoa Kenya
Luxembourg Panama Singapore Madagascar
Malta St. Kitts and Nevis Solomon Islands Mauritius
Netherlands St. Lucia Sri Lanka Morocco
Norway United States Thailand Niger
Portugal Turkey Nigeria
Spain South Africa
Sweden Sudan
Switzerland
United Kingdom

20 15 7 16 18
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Table 5.A2: Percentage of variance explained by inflation factors

# Countries 1 factor 2 factor 3 factor 4 factor Cumulative

Global 75 24.4 9.6 7.6 6.4 47.9
Europe 20 40.8 11.8 8.9 7.2 68.6
South America 8 35.8 18.8 11.8 10.5 76.9
North America 14 35.7 16.0 10.8 7.7 70.1
Asia 16 31.2 11.6 11.4 9.1 63.4
Africa 17 28.8 13.1 12.0 8.7 62.6

Note: See Section 5.2 for the details of the estimation procedure.
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Figure 5.A1: Measures of global and regional inflation

(a) Cross-country inflation average vs global inflation factor

(b) Global and regional factors

Note: Panel (a) plots the cross-country inflation average and the global inflation factor using Hamil-
ton’s approach. Panel (b) displays the multiple regional factors joint with the global inflation factor
using Hamilton’s approach.

129





6 Conclusions

This thesis contributes to two problems identified in the literature: i) How do US
financial conditions impact funding markets (credit and stocks) in a large set of
countries around the world under different scenarios of macro-financial distress?;
and ii) what role can be played by high-frequency data, real variables, and machine
learning techniques in improving the forecasting performance of macroeconomic
tail risk measures? In Chapter 2, I prove answers to the former question, while in
Chapters 3, 4, and 5 I deal with the latter question. From a methodological per-
spective, I use time series econometrics, quantile regressions, mixed data sampling
methods, machine learning models, and forecasts evaluation tests to address the
various research questions. Furthermore, this dissertation has implications for risk
management, monetary policy, financial stability, and forecasting.

In Chapter 2, I systematically document vulnerable funding episodes in the world
economy. That is, financial conditions in the United States have significant predic-
tive power in the lowest quantiles of credit growth and stock market prices around
the global economy. I also show that vulnerable funding can be explained, mainly
contemporaneously, by the relative market size in the case of credit markets and by
the financial links with the US (measured by the total direct investment of the US
as a percentage of the country’s GDP) in the case of the stock market. The pol-
icy implication of this work is clear. I show that international funding markets are
a source of persistence and amplification of financial conditions shocks across the
global economy. This means that a deterioration of US financial conditions calls for
policy actions in other economies around the world.

In the second part of my dissertation, I tackle the problem of producing accu-
rate, out-of-sample tail forecasts for output growth, unemployment and inflation.
In Chapter 3, I show that both real and financial variables reported with a daily
frequency provide valuable information for monitoring periods of economic vul-
nerability. I further show that is possible to provide an early warning of a downturn
in GDP in pseudo real-time and that this framework works well during episodes of
distress. The flexible approach reported allows me to emphasize the importance of
both economic theory and economic intuition when interpreting the results of fore-
cast combinations and for improving the point forecast itself. All in all, I contribute
to a better understanding of the economic signals that can be extracted from this
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daily information when seeking to anticipate downturns in the economy.
In Chapter 4, I construct daily unemployment at risk around consensus forecasts

conditional on the Aruoba-Diebold-Scotti business conditions index, using a quan-
tile mixed sampling model. My results suggest that this indicator has better now-
casting properties than those provided by other daily financial conditioning vari-
ables, and provides early signal of unemployment rate increases, especially during
episodes of distress. The results are relevant for risk monitoring and nowcasting
purposes of central banks and other institutions.

In Chapter 5, I investigate potential future inflation risks in a large group of coun-
tries, using inflation density forecasts based on a set of global factors as predictors.
I provides evidence that, in general, global inflation factors improve the accuracy
of density forecasts. Also, I show that state-of-the-art machine learning techniques
provide superior predictive performance. I document heterogeneous patterns of in-
flation risk measure across world regions. The results of this chapter are relevant
from the perspective of a central bank or an international organization, as they often
want to assess risk across different regions. In this regard, I find that global factors
are generally robust predictors of density forecasts across countries. This also calls
attention to a synchronized reaction of the largest central banks around the world,
which is likely to contribute to sustain global price stability.

To conclude, the study of tail risks in macroeconomics is crucial for interna-
tional organizations, policy makers, and central banks. The practice of reporting
and discussing tail risks of the main economic and financial variables is nowadays
a backbone of economic analysis, yet it has not been extensively studied in many
settings. This thesis is a initial step in that direction, which I expect to explore in
the following years.

Looking forward, I identify two avenues to work. The first will explore tail risks
in macroeconomics using machine learning techniques and big data. The second
will further study vulnerable funding episodes by analyzing the role of macropru-
dential policies and monetary policy, which are aimed at preventing and mitigating
systemic risks.
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