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"The knowledge of anything, since all things have causes, is not acquired
or complete unless it is known by its causes."

–Ibn Sina (Avicenna) (973-1037 A.D.), Persian polymath.
From: Charles F. Horne, ed., The Sacred Books and Early Literature of the East, (New York: Parke,

Austin, & Lipscomb, 1917), Vol. VI: Medieval Arabia, pp. 90-91.

"For let Philosopher and Doctor preach
Of what they will, and what they will not – each

Is but one Link in an eternal Chain
That none can slip, nor break, nor over-reach.

–Omar Khayyam (1048-1131 A.D.), Persian polymath.
Translated by Edward Fitzgerald

iii





I dedicate this dissertation to Atossa, the light of my life, and to my parents.
For your constant love and support.

v





Acknowledgment

I would like to thank Dr. Belén Sancristóbal and Dr. Rubén Moreno-
Bote for offering me the PhD position. I am extremely grateful to Prof.Dr.
Belén Sancristóbal for her continuous support, invaluable supervision and
patience during my doctoral studies. Her knowledge and experience, as
well as her confidence in me, have encouraged me in my doctoral studies.

You have to be lucky to have great colleagues. I would like to thank all
my friends and colleagues at the Center for Brain and Cognition (CBC),
Barcelona. My special thanks to my friends Indre and Ruben who have
welcomed me so warmly and are such great people. I cannot thank you
enough for your support.

If you get off on the wrong foot on a new journey, all you need is the
help of good people. There are many people who have helped me and to
whom I am very grateful. Special thanks to Arezou Rezazadeh and Rasoul
Nikbakht for their help when I arrived in Barcelona. People like you revive
the hope for a better future.

Living abroad can be difficult, especially if you are not able to com-
municate, but having great friends alleviates it. I cannot thank my friends
enough: Adrian, Ruben, Alba, Alejandro, Luis, Laura, Luke, Pablo and
my other friends at Law & Philosophy research group at Universitat Pom-
peu Fabra, Barcelona. Thanks for including me even when I was unable to
communicate in English or Spanish. Thanks for inviting me to every priva-
te and public meeting and embracing the challenge of speaking in English
instead of Spanish. Thanks for creating such great memories.

There are two things that become more valuable as they age: Wine and
friendship. I would like to thank my friend Adib, who has always been
there for me. Sometimes, you should stop writing pages and leave it at one
word: "One friend does what a hundred people cannot do." I would also
like to thank my friends Milad and Mojde for supporting me. I hope to see
you somewhere soon.

vii



Somethings are beyond words, yet they speak for themselves. "Mam"and
"Dad" are probably the most self-explanatory. Mom and Dad, I am extre-
mely grateful to you for your constant love and support and for all your
hard efforts to make ends meet. Mom and Dad, I never told you how much
I regret what I made you go through when I was imprisoned for my beliefs.

My sister Atossa, you cannot imagine how much I love you. I can not
help laughing when I remember your attempts in childhood to trick me into
getting you a glass of water. I have seen how mature you think, analyze and
behave even when you were a child. Atossa, remember "if you’re going to
try, go all the way. Otherwise, don’t even start" (Charles Bukowski). You
may feel the urge to give up. But remember that everyone has felt and
experienced that urge. See the glimmer of light at the end of the tunnel. I
know, more than all the stars, that the bright future is yours.

Whether positive or negative, our environment shapes our personality.
I would like to thank everyone who influenced my life, including my teac-
hers, friends, relatives, and "the stranger who greeted me with the hat tip
and plastic smile" (Forough Farrokhzad).

viii



Abstract
During the deep phases of sleep we do not normally wake up by a thunder,
but we nevertheless notice it when awake. The exact same sound gets to
our ears and cortex through the thalamus and still, it triggers two very dif-
ferent responses. There is growing experimental evidence that these two
states of the brain—sleep and wakefulness—distribute sensory informa-
tion in different ways across the cortex. In particular, during sleep, neural
responses remain local and do not spread out across distant synaptically
connected regions. On the contrary, during wakefulness, stimuli are able
to elicit a wider spatial response. We have used a computational model of
coupled cortical columns to study how these two propagation modes arise.
Moreover, the transition from sleep-like to waking-like dynamics occurs in
agreement with the synaptic homeostasis hypothesis and only requires up-
scaling of excitatory synapses. We have found that, in order to reproduce
the aforementioned observations, synaptic upscaling has to be selectively
applied: synaptic connections between distinct cortical columns have to be
upscaled over local ones.

ix



Resum
Durant les fases profundes del son normalment no ens despertem amb un
tro, però, tanmateix, ho notem quan estem desperts. El mateix so arri-
ba exactament igual a les nostres orelles i còrtex a través del tàlem i,
tot i així, desencadena dues respostes molt diferents. Hi ha una creixent
evidència experimental que aquests dos estats del cervell—son i vigília—
distribueixen la informació sensorial de diferents maneres a través de l’es-
corça. En particular, durant el son, les respostes neuronals romanen locals
i no s’estenen per regions distants connectades sinàpticament. Per contra,
durant la vigília, els estímuls són capaços de provocar una resposta espacial
més àmplia. Hem utilitzat un model computacional de columnes corticals
acoblades per estudiar com sorgeixen aquests dos modes de propagació.
A més, la transició de la dinàmica del son a la de la vigília es produeix
d’acord amb la hipòtesi de l’homeòstasi sinàptica i només requereix un re-
escalament de les sinapsis excitadores. Hem trobat que, per reproduir les
observacions esmentades anteriorment, s’ha d’aplicar selectivament el re-
forç sinàptic: les connexions sinàptiques entre columnes corticals diferents
s’han d’augmentar sobre les locals.
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This dissertation is an original intellectual product by the author, Far-

had Razi. All the Python codes needed in this Thesis are developed by Far-
had Razi. The main contribution of this Thesis is the proposal of a synaptic
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in the cerebral cortex during sleep and wakefulness.

A version of the hypothesis in this Thesis has been published in the
following paper: Razi, F.; Moreno-Bote, R.; Sancristóbal, B. Computatio-
nal Modeling of Information Propagation during the Sleep–Waking Cycle.
Biology 2021, 10, 945. doi:10.3390/biology1010094.
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Correlates of Different Information Propagation Patterns during the Sleep–
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Chapter 1

INTRODUCTION

All humans and most animals sleep. Sleep is a global state of the body and
the mind. Sleep reduces the energy demand of the brain by slowing the
metabolic rate [1], which, in turn, affects sensory perception. For instance,
a thunderstorm can go unnoticed while we are asleep, whereas we normally
notice it when we are awake. In this study, we seek to investigate the neural
substrate of such a different behavioral response during deep sleep stages
(aka NREM sleep) and wakefulness.

Here, we present the state of the art in sleep research along three sec-
tions. In the first section, the electrophysiology and neurobiology of sleep-
wake states are discussed. First, the neural origins underlying the electro-
physiological characteristics of these states are presented. Finally, the sub-
cortical structures involved in the development of sleep-wake states and
their neuromodulatory milieu that might control the electrophysiological
characteristics are presented.

The second section is devoted to the electrophysiological recordings
during auditory stimulation in NREM sleep and wakefulness. In this sec-
tion, we provide an overview of brain responses to auditory stimuli mea-
sured by electroencephalography (EEG) and extracellular single-unit record-
ings. We then present a human study on brain responses to non-sensory
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stimuli, supporting the findings of above studies.
The Third section addresses the mechanisms underlying different prop-

agation patterns of neural firing responses in NREM sleep and wakeful-
ness. The current scientific consensus is that differences in propagation
patterns in the cerebral cortex between NREM sleep and wakefulness are
not due to altered strength of cortico-cortical synaptic pathways, but to al-
tered dynamics of the thalamocortical network [2, 3]. However, as far as
our own research is concerned, there is insufficient evidence to support this
view.

To assess the role of the cortico-cortical synaptic pathways in tuning
propagation patterns of neural firing responses in the cerebral cortex dur-
ing NREM sleep and wakefulness, we first provide an overview of a thala-
mocortical model that describes the neural groups and synaptic pathways
involved in propagation of neural firing responses in the cerebral cortex.
Then, we review the literature on the dynamics of the thalamocortical net-
work and we argue that experimental evidence challenges these mecha-
nisms as a sufficient mechanism for attenuating propagation of neural fir-
ing responses in the cerebral cortex. Finally, we provide support for the
missing piece of the puzzle, namely the role of cortico-cortical synapses as
a mechanistic explanation.

In the final section, we discuss whether experimental studies in the
second section supports the view that propagation of information about
external stimuli attenuates along a hierarchical cortical processing chain
during NREM sleep compared with wakefulness. To this end, we present a
framework to define information and methods for its quantification. Then
we asses whether evidence in experimental observations in the second sec-
tion supports this view. Finally, the reader will also find a reflection on the
mechanisms accounting for attenuation of information propagation given
experimental observations in the third section.

It is also important to note that the studies reviewed include both hu-
man and animal models. Given the great similarities between mammalian
and human brains (see [4] for rodents and humans), the analysis of ani-
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mal models has improved the understanding of the electrophysiology and
neuromodulatory milieu of sleep–wake states.

1.1 Characteristics of Sleep–Wake States
Sleep is a vital brain state that enhances memory and learning functions [5,
6, 7, 8, 9, 10, 11]. It is often accompanied by loss of interaction with the
external environment. Behaviorally, this can be clearly observed in the
cessation of actions, as sleep affects reproduction, exploration, protection,
and rearing of offspring. In the laboratory, the states of wakefulness and
sleep are distinguished using techniques that record the electrical activity
of the brain and body.

1.1.1 Electrophysiology of Sleep–Wake States
Since the invention of electroencephalography (EEG) in 1924 by German
psychiatrist Hans Berger, researchers have used EEG techniques to record
the electrical activity of the brain during wakefulness and sleep. Since
then, electrophysiological recordings have been used to distinguish be-
tween waking and sleeping states. Early EEG recordings showed that
characteristics of the electrophysiology of brain activity change between
wakefulness and sleep [12, 13, 14] (see Figure 1.1A).

Wakefulness is characterized by low-amplitude–high-frequency EEG
activity [15, 1] (see Figure 1.1B). In contrast, during sleep ,the brain al-
ternates between two distinct states, rapid eye movement (REM) and non-
rapid eye movement (NREM) sleep [15, 1]. During REM sleep, also called
paradoxical sleep, EEG activities are similar to those during wakefulness,
hence the name paradoxical sleep [15, 1] (see Figure 1.1B). However, in
NREM sleep, the frequency and amplitude of EEG activities begins to
slow down and increase, respectively, with increasing depth of NREM
sleep [14, 15, 1] (see Figure 1.1B).
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NREM sleep is further divided into three distinct stages [15, 1]. Each
NREM stage (N1, N2, and N3) corresponds to a deeper sleep level. Arousal
thresholds, a measure of sleep depth, increase with increasing sleep depth,
with N3 being the deepest sleep stage and having the highest arousal thresh-
old [15]. The first stage of NREM sleep (N1) resembles drowsy wakeful-
ness and is the stage at which the transition from wakefulness to sleep
occurs [15, 1].

The N2 stage, also referred to as light NREM sleep, is characterized
by the appearance of waveforms including K-complexes (<1 Hz) and sleep
spindles (10-16 Hz) in the EEG signals [1]. K-complexes are waveforms
that last about one second and precede sleep spindles. They are character-
ized by a brief positive high-voltage excursion followed by a slower nega-
tive deflection around 350-550 ms and a final positive peak at 900 ms [16].
Spindles last 1-3 s and are transient oscillations at 10-16 Hz generated by
thalamic neurons during NREM sleep [17, 18, 19].

In contrast, the EEG signals in the N3 stage, also referred to as deep
NREM sleep, exhibit high-amplitude–low-frequency (0.1-4 Hz) waves, also
referred to as sleep slow wave [1]. Sleep slow waves are divided into two
distinct oscillatory rhythms in the brain: delta oscillations (1-4 Hz) and
slow oscillations (0.1-1 Hz) [20, 18, 1]. Note that throughout this study,
we will use the term NREM sleep to refer to both N2 and N3 stages of
NREM sleep.

Studies using in vivo and in vitro techniques suggest that the generation
of NREM-related brain rhythms is due to intrinsic properties of thalamic
and cortical neurons during NREM sleep. In the following, we review the
neural origin of brain rhythms during NREM sleep.

Neural origin of the K-complex (N2)

The neural origin underlying the generation of K-complexes in EEG sig-
nals is thought to be the same as that underlying slow oscillations [21].
Briefly, cortical neurons fall into periods of prolonged hyperpolarization
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Figure 1.1: Electrophysiology recordings across the sleep–wake cycle in hu-
mans. (A). The amplitude and frequency of the EEG signals decrease and in-
crease, respectively, from sleep to wakefulness in vertex of human brain. The
dashed vertical line represent s the presentation of a loud sound that led to awak-
ening of the sleeping subject. Figure taken from [14]. (B). Left. EEG recording in
humans during NREM sleep. Amplitude and frequency of EEG signals increase
and decrease, respectively, with increasing depth of NREM sleep. During light
NREM sleep (stage N2), spindles and K-complexes occur. During deep NREM
sleep (stage N3), sleep slow waves (0.5-4 Hz) are observed. Right. EEG record-
ings in humans during wakefulness (top) and REM sleep (bottom). Figure taken
from [1].
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following periods of intense firing. Synchronization of such activity by
a group of neurons results in the appearance of K-complexes in the EEG
signals.

Microelectrode recordings in epilepsy patients have also shown that
spontaneous and evoked K-complexes in widespread cortical areas are as-
sociated with reduced neural firing, probably an isolated Down-state [22].
This evidence may suggest that the occurrence of K-complexes increases
with increasing depth of NREM sleep and forms slow oscillations during
deep NREM sleep.

Neural origin of the sleep spindle (N2)

Thalamic neurons include relay neurons (thalamic neurons that project to
the cerebral cortex, also called thalamocortical neurons), local inhibitory
interneurons, and the thalamic reticular nucleus (TRN) [17, 19, 23].

Thalamc neurons are hyperpolarized during NREM sleep. As a re-
sult, the firing profile of thalamic neurons shifts from tonic firings during
wakefulness to burst firings during NREM sleep [17, 19, 23]. In particular,
TRN burst activity triggers spindle activity by mediating synaptic inhibi-
tion at various thalamic relay neurons that is larger and slower than the
TRN-tonic-mediated inhibition [19, 1, 24]. Accordingly, thalamic relay
neurons generate a rebound of burst firings that are monosynaptically pro-
jected to cortical areas. Feedback of cortical activity to thalamic neurons,
as well as thalamic burst firings to TRN neurons, maintains spindle ac-
tivity. Widespread connections from the TRN complex to other thalamic
relay neurons can result in a local spindle synchrony. Finally, spindle ac-
tivity can be terminated by a combination of intrathalamic, cortical, and
brainstem mechanisms (see for review [1, 24]).
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Neural origin of delta oscillation (N3)

Studies in cats using in vivo techniques suggest that delta oscillations (1-
4 Hz) are generated in the thalamus [18, 25]. Thalamic neurons are further
hyperpolarized from N2 to N3 stage, which activates low-threshold cal-
cium channels [18]. As a result, a calcium spike occurs following burst fir-
ings in thalamic relay neurons. The thalamic burst firings result in bursts in
a large number of cortical neurons. Widespread connections from the TRN
complex to other thalamic relay neurons can result in a local delta syn-
chronization in thalamic relay neurons, which, in turn, is transferred to the
cortex. Feedback from corticothalamic neurons can further enhance delta
synchronization in thalamic relay neurons [18] (see for review [18, 1]).

Neural origin of slow oscillation (N3)

Intracellular recordings from cortical neurons in cats have shown that corti-
cal neurons alternate between two distinct periods during slow oscillations:
long-lasting depolarized periods periodically interrupted by long periods of
hyperpolarization [20, 26] (see Figure 1.2A). Neural firing rates during de-
polarized periods were characterized with persistent firing activity as high
as in wakefulness, and thus are referred to as Up states. During hyperpolar-
ized periods, referred to as Down states, firing activity vanished. Further-
more, fluctuations in membrane potential during NREM sleep showed a bi-
modal distribution, due to the alternation between Up and Down states [26]
(see Figure 1.2B left). On the other hand, wakefulness was associated with
stable neural firing rates, and fluctuations in membrane potential showed a
Guassian-like distribution (see Figure 1.2B right). REM sleep, like wake-
fulness, was associated with stable neural firing rates and a Guassian-like
distribution of membrane potential.

Experimental studies suggest that the generation of slow oscillations
has a cortical origin, as removal of the cortex terminates slow oscillations
in thalamic neurons [27]. Studies using in vitro cortical slices from ferrets
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Figure 1.2: Spontaneous activity of cortical neurons in sleep–wake states. (A).
Intracellular activity in a representative neuron from the cat posterior association
suprasylvian area during slow wave sleep (left) and wakefulness (right). Hori-
zontal blue and red bars indicate hyperpolarized and polarized periods associated
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have also shown that cortical neurons in slices can generate slow oscil-
lations in the absence of the thalamus by alternating between periods of
depolarized Up and hyperpolarized Down states [28]. This pattern of ac-
tivity is often referred to as cortical bistability [29, 30, 31].

Studies in rats have shown that cortical bistability during NREM sleep
is associated with the phase of sleep slow waves. Extracellular recordings
from rat barrel cortex showed that the negative phase of the sleep slow
waves occurs almost simultaneously with periods when all recorded neu-
rons are silent [32] (see Figure 1.3). These periods in which cortical neu-
rons in the same electrode contact are silent and simultaneously spend their
time in the Down-state are referred to as OFF periods. Alternatively, peri-
ods in which at least a subset of cortical neurons are active and spend their
time in the Up-state are referred to as ON periods. OFF periods account for
a small fraction of neural activities [33] during slow wave sleep. In fact,
cortical neurons spend most of their time in ON periods, which are similar
in dynamics to wakefulness [34], and are only occasionally interrupted by
spontaneous OFF periods [32].

The mechanism underlying cortical bistability is attributed to activity-
dependent potassium currents (e.g., current through KCa and KNa, calcium-
and sodium-activated channels, respectively.) [35, 18, 28, 36, 37, 31]. Neu-
romodulators released in the cortex from the subcortical ascending arousal
network affect the strength of these potassium currents. These neuromod-
ulators block the activity-dependent potassium channels [17]. As a result,
the reduction in the neuromodulators in the cerebral cortex during NREM
sleep increases activity-dependent potassium currents following trains of
action potentials in Up-state. This mechanisms result in prolonged af-
terhyperpolarization periods of neural silence [17], Down-state. Finally,
stochastic release of presynaptic vesicles results in activation of postsy-
naptic cortical neurons and terminates Down-state [31].
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Figure 1.3: Cortical bistability is linked to the phase of sleep slow waves. Hypno-
gram (A) and EEG traces (B) from the right barrel cortex of a representative rat
during a 2-hour interval starting at light onset. Note that the EEG signals exhibit
low-amplitude–high-frequency fluctuations during wakefulness and REM sleep,
whereas during NREM sleep they exhibit large amplitude–low-frequency compo-
nent. (C). Average EEG power spectra in NREM sleep, REM sleep, and wakeful-
ness. Note the high values of spectral power in the slow frequency range in NREM
sleep. (D). Raster plots of spike activity for the 6 channels from a microwire array
placed in the left barrel cortex recorded simultaneously in the same rat. Note that
OFF periods correspond to times when nearby neuron activity is silent. Horizon-
tal lines below the spike activity during NREM sleep delineates OFF (on bottom)
and ON periods (on top). Figure taken from [32].
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1.1.2 Neurochemistry of Sleep–Wake States

Changes in electrophysiological features of brain activity across sleep–
wake cycle might be reflection of changes in neuromodulatory input syn-
thesized in subcortical areas. In a seminal study in 1949, Moruzzi and
Magoun showed that stimulation of the brainstem of anesthetized cats con-
verts slow wave activity, the electrophysiological hallmark of NREM sleep,
into wakefulness-like dynamics, low-amplitude and high-frequency activ-
ity [38] (see Figure 1.4A). This suggests the possible role of subcortical
areas and their neurochemical synthesis in the generation of sleep–wake
states.

There are several subcortical areas, such as the brainstem, posterior hy-
pothalamus, and basal forebrain, that have been implicated as networks for
the generation of sleep–wake states. Neural groups in subcortical regions
can be classified into wake-, NREM- or REM-promoting neural system
based on their firing patterns in each vigilance state [39]. Changes in the
firing pattern of these subcortical areas in the sleep–wake states change the
concentration of synthesized neurochemicals in several brain regions and
thus can control sleep–wake states.

Neurochemicals are the molecules of the nervous system involved in
the chemical transmission of messages. The two main types of neuro-
chemicals are neurotransmitters and neuromodulators. The functions of
neurotransmitters differ from those of neuromodulators. A neurotransmit-
ter is a chemical that is used to transmit a message from one neuron to
another neuron; this process is called neurotransmission. A neuromodula-
tor, on the other hand, modulates neurotransmission between two neurons.

Wake-promoting neural system

Following the observations of Moruzzi and Magoun in 1949 [38], it has
been proposed that the brainstem encompasses neural nuclei that forms
the wake-promoting neural system in the brain, also known as the ascend-
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ing arousal network. The ascending arousal network in the brainstem is
composed of various groups of neurons that differ in their neurochemi-
cal synthesis. The main groups involved in arousal are monoaminergic
(MAergic) and cholinergic nuclei that synthesize monoamines (MAs) and
acetylcholine (ACh), respectively (see for review [40, 1, 39]).

Firing rate of the ascending arousal network are high during wakeful-
ness and decrease during sleep [41]. For instance, single- and multi-unit
recordings in rats have shown that firings in LC neurons (a nuclei in as-
cending arousal network) are high during wakefulness and decrease during
sleep [42]. The higher firing rate of MAergic and cholinergic nuclei during
wakefulness increases the concentration of MAs and ACh in several brain
regions in the cerebral cortex, thalamus and other subcortical structures
(see red and green dots in Figure 1.4B left column). Monoamines (MAs)
act as neuromodulators that affect neurotransmission between groups of
neurons, whereas ACh acts as both a neurotransmitter and a neuromodula-
tor. Although MAs and ACh can increase excitability in cortical neurons by
increasing the signal-to-noise ratio, the functional roles of MAs and ACh
in the cerebral cortex are not homogeneous [17]. For instance, when recep-
tive field of a neuron is stimulated, presence of ACh can further increases
evoked firing rates without changing the spontaneous firing rates [17].

NREM-promoting neural system

Several groups of GABAergic neurons in subcortical areas regulate sleep
(see for review [40, 1, 39]). During NREM sleep, the higher firing rate of
the NREM-promoting neural system increases the concentration of GABAer-
gic input in several regions of the cerebral cortex and in subcortical struc-
tures (see Figure 1.4B). During wakefulness, higher firing rates of MAer-
gic and cholinergic nuclei inhibit NREM-promoting neurons [44]. The
reciprocal inhibitory interaction between NREM-promoting neurons and
the ascending arousal network is a key factor in triggering the sleep–wake
flip-flop.
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Figure 1.4: Subcortical brain regions modulate sleep–wake states. (A). Stimula-
tion of the left reticular formation in an anesthetized cat converts high-amplitude–
low-frequency voltage fluctuations in slow wave activities into low-amplitude–
high-frequency components in left and right sensorimotor cortex (from top to
bottom). The black horizontal dash line represents the stimulation period. Fig-
ure taken from [38]. (B). Schematic representation of the concentration of neural
chemicals and brain nuclei controlling the sleep–wake cycle in a sagittal view of
the human brain. The colored lines represent chemically encoded projections of
MAergic (red), cholinergic (green), and GABAergic (blue) neurons for wakeful-
ness, NREM sleep and REM sleep (from left to right column). LC, DR, TMN nu-
clei (red patches) constitute the ascending arousal network promoting (next page)
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Figure 1.4 (previous page): wakefulness. Neurons in LDT-PPT and BF nu-
clei (green patches) promote REM sleep. Neurons in VLPO and BF nuclei (blue
patches) promote NREM sleep. Abbreviations: LC, locus coeruleus, DR, DR,
dorsal raphe; TMN, tuberomammillary nucleus; BF, basal forebrain; LDT/PPT,
laterodorsal and pedunculopontine tegmental nuclei; VLPO, ventrolateral preop-
tic area of the hypothalamus; PRF, pontine reticular formation; SC, spinal cord;
Th, thalamus. Schematic taken from [43].

REM-promoting neural system

The cholinergic neurons play an important role in generating REM sleep
as they do for wakefulness (see for review [40, 1, 39]). The firing pattern
of the cholinergic neurons is heterogeneous and can be divided into three
groups. The largest subpopulation fires both in wakefulness and REM. The
second largest subpopulation promote REM sleep by firing during REM
and the smallest subpopulation fires only during wakefulness [45]. During
REM sleep, the higher firing rate of the REM-promoting neural system in-
creases ACh concentration in several regions of the cerebral cortex, thala-
mus and subcortical structures (see Figure 1.4B). The projections of MAer-
gic neurons to the cholinergic REM-promoting system are inhibitory. Al-
ternatively, the reciprocal projections from the REM-promoting to MAer-
gic neurons are excitatory. These reciprocal interactions between ascend-
ing arousal network with REM and NREM-promoting system have been
proposed as the basis of REM-NREM ultradian rhythms [46].

1.1.3 Summary
Electrophysiological recordings have provided unprecedented methods for
distinguishing sleep from wakefulness. EEG signals in wakefulness exhibit
low-amplitude–high-frequency fluctuations [15, 1]. Based on electrophys-
iological recordings, sleep is divided into rapid eye movement (REM) and
non-rapid eye movement (NREM) sleep [15, 1]. EEG signals in REM
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sleep are similar to those in wakefulness, particularly so when compared
to NREM sleep, when the frequency and amplitude of EEG activities slow
down and increase, respectively, with increasing sleep depth [15, 1]. In
particular, NREM sleep is characterized by the occurrence of spindles and
K-complexes (<1 Hz) in light NREM sleep (10-16 Hz) and delta (1-4 Hz)
and slow oscillation (0.1-1 Hz) in deep NREM sleep [20, 18, 15, 1].

Studies using in vitro and in vivo techniques suggest that spindles and
delta oscillations are generated in thalamic neurons [18] and projected to
the cerebral cortex via thalamocortical pathways. Due to a progressive
decrease in the neuromodulatory input from the ascending arousal net-
work as NREM sleep progresses [17, 18], thalamic neurons become more
hyperpolarized. As a result, thalamic neurons often generate sleep spin-
dles in light NREM sleep [19, 18] and delta oscillations in deep NREM
sleep [18]. Alternatively, K-complexes and slow oscillations are gener-
ated during NREM sleep due to an intrinsic property of cortical neurons,
namely cortical bistability. Cortical neurons fall into a silent period, the
Down-state, following trains of action potentials during Up states in NREM
sleep [20, 26]. The occurrence of Down-state increases progressively with
increasing depth of NREM sleep. As a result, isolated K-complexes in
light NREM sleep transition to slow oscillations in deep NREM sleep.

There is ample experimental evidence for the control of subcortical
structures over the rhythmic electrical activity of the brain, as stimula-
tion of the brainstem of anesthetized cats converts slow wave activity, the
electrophysiological hallmark of NREM sleep, to wakefulness-like activ-
ity [38]. Neural groups in subcortical regions can be classified into the
wake-, NREM- or REM-promoting neural system based on the firing pat-
terns in each vigilance state [39]. Changes in the firing pattern of these
subcortical areas in sleep–wake states change the concentration of synthe-
sized neurochemicals in several brain regions.

During wakefulness, the higher firing pattern of MAergic and cholin-
ergic nuclei in wake-promoting neural system, also referred to as the as-
cending arousal network, results in higher extracellular concentrations of
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monoamines and acetylcholine in several cortical and subcortical areas [42,
40, 43, 41, 39]. During NREM sleep, the NREM-promoting neural sys-
tem inhibits the ascending arousal network [47], resulting in low extracel-
lular concentrations of monoamines and acetylcholine [43, 39]. Alterna-
tively, during REM sleep, the extracellular concentration of acetylcholine
increases due to activation of the REM-promoting neural system, while the
concentration of monoamines remains low [40, 43, 39].

Monoamines and acetylcholine act as neuromodulators in the cerebral
cortex, i.e. neurochemicals that modulate membrane channels. Changes in
these neuromodulators impact the cerebral cortex. For instance, silent neu-
romodulators from ascending arousal network during NREM sleep changes
dynamics of the thalamic and cortical neurons resulting in the brain-rhythms
captured by EEG signals across sleep–wake cycles. For instance, decreased
neuromodulatory input from the ascending arousal network to the cortical
neurons during NREM sleep results in cortical bistability, which manifests
as slow oscillations in the EEG signal [20, 26]. Changes in the level of
neuromodulators not only shift the dynamics, but also neurotransmission
between neural groups. Although MAs and ACh can increase excitabil-
ity in cortical neurons by increasing the signal-to-noise ratio (SNR), the
functional roles of MAs and ACh in the cerebral cortex are not homoge-
neous [17]. For instance, when receptive field of a neuron is stimulated,
presence of ACh can further increases evoked firing rates without chang-
ing the spontaneous firing rates [17].

1.2 Electrophysiological Recordings During Au-
ditory Stimulation Across Sleep–Wake States

Sleep is associated with sensory disconnection from the external environ-
ment. However, there are numerous life experiences that show that loss of
behavioral responsiveness during sleep does not indicate loss of sensory
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processing. For instance, sleeping parents awaken to the sounds of their
baby. Not only the presence but also the absence of a sensory stimulus
with subjective significance can awaken a sleeping individual, just as the
miller awakens when the mill stops [48]. Nevertheless, there is a general
consensus that sleep affects cognitive functions.

Here we will only examine the literature addressing brain responses to
auditory stimuli and exclude studies of olfactory and visual stimuli. Be-
cause nasal breathing is slower and shallower [49] and eyelids are closed
during sleep, olfactory and visual stimuli may be partially intercepted in
the periphery, making it difficult to tease out differences in brain responses
to sensory stimuli during sleep compared to wakefulness.

In addition, we exclude REM sleep. First, because this study is a com-
putational study in which neural activity is modeled such that it is possible
to distinguish between NREM-like dynamics and wakefulness-like dynam-
ics. Distinguishing REM sleep from other states requires other signals,
such as electromyography (EMG) and electrooculography (EOG), which
are not modeled in this study. Second, motor neurons in the spinal cord
are inhibited in REM sleep [39]. Therefore, it remains difficult to attribute
the loss of behavioral responses during REM sleep to inhibition of motor
neurons in the spinal cord or to attenuated propagation of neural responses
among distinct cortical areas.

Brain activity in response to auditory stimuli can be measured using
noninvasive methods such as electroencephalography (EEG) and neuroimag-
ing techniques (such as positron emission tomography of the brain and
functional magnetic resonance imaging) or by invasive methods such as
local field potential (LFP) and single unit (SU) recordings.

In this section, we will first discuss EEG studies suggesting that audi-
tory stimuli reach the cortex, but that neural markers for cognitive functions
associated with the stimuli decrease during NREM sleep [48, 50, 51, 52,
53, 54, 55, 56]. Neuroimaging techniques provide high spatial resolution
at the expense of temporal resolution, which is advantageous for demon-
strating the functional organization of cognitive processes, such as the lan-
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guage system in the human brain [57, 58, 59]. However, because brain
activation in neuroimaging techniques reflects average activation over time
intervals of seconds, it may mask different temporal responses of the brain
to auditory stimuli during NREM sleep and wakefulness (for neuroimaging
studies during sleep and wakefulness, see [60, 61, 59, 62, 63, 64]).

Next, we will review SU recording studies to clarify the extent to which
neural responses to auditory stimuli are modulated during NREM sleep.
These studies suggest that auditory-evoked neural responses are attenuated
in higher cortical areas, although responses in primary areas are preserved
during NREM sleep compared with wakefulness [65, 66, 67, 68]. LFP
signals, on the other hand, provide a remarkable method for monitoring
neural activity. However, because local and non-local sources contribute
to LFP signals via volume conduction [69], it is difficult to determine the
local modulation of neural responses at each recording site. In addition, the
spatial extent of volume conduction is different in NREM sleep and wake-
fulness because of the different frequency arrangement, making it difficult
to determine changes in neural responses in NREM sleep and wakefulness.

Finally, we present a human study reporting brain responses to tran-
scranial magnetic stimulation (TMS) [70], supporting the view that evoked
responses are attenuated along a hierarchical cortical processing chain.

1.2.1 EEG Recordings During Auditory Stimulation
EEG recordings track electrical brain activity from the scalp with a high
temporal resolution (≈1 ms)[71]. Although the poor spatial resolution of
EEG recordings makes it difficult to assign a topographic origin to neu-
ral responses along sensory pathways, the high temporal resolution allows
tracking of different brain responses to different stimuli.

EEG studies have shown that loss of behavioral responsiveness is not
indicative of loss of sensory processing during NREM sleep. There are
numerous studies suggesting that auditory stimuli reach the cortex and
subjective significance and semantics are extracted from auditory stimuli
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during NREM sleep [48, 50, 51, 52, 53, 54, 55, 56]. Nevertheless, neural
markers of cognitive functions associated with auditory stimuli decrease
during NREM sleep compared with wakefulness.

Subjective significance is extracted from auditory stimuli during NREM
sleep

Early EEG studies in humans have measured brain responses to auditory
stimuli during NREM sleep [16] (see Figure 1.5A). The auditory evoked
EEG response develops gradually and increases in amplitude and duration
from wakefulness to NREM sleep, forming the K-complex during light
and deep NREM sleep-state [72, 73, 74]. The auditory evoked K-complex
might represents a stimulus-specific neural activation followed by a neural
suppression, the Down state. Experimental studies have shown that the
evoked K-complex habituates with stimulus repetition and dishabituates
with a deviant stimulus [48, 75, 76], similar to auditory evoked responses
during wakefulness [77, 78].

In a brilliant 1960 study, Oswald et al. developed a paradigm that ex-
ploited the habituation and dishabituation properties of the auditory evoked
K-complex to examine the ability of the sleeping brain to capture the sig-
nificance of auditory stimuli [48]. In the experiment, participants were
asked to clench their fists when they heard their own name (auditory stim-
uli with subjective significance) or a control name (e.g., other names rep-
resenting auditory stimuli without subjective significance) during sleep.
Galvanic skin responses (GSR) and EEG recordings showed significantly
stronger occurrence of hand movements and evoked K-complexes, respec-
tively, to own’s name than to control names during light NREM sleep (see
Figure 1.5B). The stronger evoked K-complex responses to own name than
to control names indicate stronger habituation to the control stimuli, sug-
gesting that the cerebral cortex is involved in the genuine discriminative
analysis of the subjective significance of auditory stimuli during NREM
sleep. Moreover, GSR recordings showed decreased hand movements to
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own name in deep NREM sleep, suggesting that discriminative ability can
be maintained in deep NREM sleep but associated behavioral markers de-
crease compared with light NREM sleep.

Semantics are extracted from auditory stimuli during NREM sleep

In addition to extracting subjective significance, there is compelling exper-
imental evidence that semantics of auditory stimuli, the correct meaning
of a word in a given context, are extracted during NREM sleep [50, 52,
53, 54]. Studies suggest that extracting semantic in classification tasks
can occur up to the preparation of a motor response during NREM sleep
[53, 54]. In these studies, awake participants were instructed to classify
words as animals or objects based on their semantic category by press-
ing a button through lateralized hand responses, and they were asked to
perform the categorization also during sleep (see Figure 1.6A). As an in-
dicator of responsiveness to extracting semantics, the motor preparation
response was examined during wakefulness and NREM sleep. The mo-
tor preparation response was calculated as the subtraction of contralateral
from ipsilateral EEG activation at central electrodes. It was found that the
motor preparation response associated with semantic categorization per-
sisted during NREM sleep but decreased with increasing depth of NREM
sleep (see Figure 1.6B,C).

Amplification of neural responses of relevant versus irrelevant audi-
tory stimuli persists during NREM sleep

Recently, amplification of neural responses of relevant versus irrelevant
auditory stimuli, i.e., the ability to selectively attend relevant stimuli in a
cocktail party paradigm, was shown to persist during NREM sleep [55].
The experimental design in this study consisted of two phases, the training
phase and the testing phase. In the training phase, participants were pre-
sented with two isolated speech streams (real speech such as a narrative and
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Stimulus MARGARET! HELEN! HUGH! BILL! MAIA! IAN!

HAND

1
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Subjective Significance Is Extracted From Auditory Stimuli During NREM Sleep

Figure 1.5: Subjective significance is extracted from auditory stimuli during
NREM sleep. (A). Discovery of K-complex to an auditory stimulus during light
NREM sleep. Human EEG recording (bipolar montage) from the left central elec-
trode showing the evoked K complex to an auditory stimulus. a tone, during light
NREM sleep. The vertical bars mark the beginning and end of the stimulus. Fig-
ure taken from [16]. (B). Subjective significance of auditory stimuli is processed
during NREM sleep. EEG and GSR signals from a subject named MAIA during
light NREM sleep. Note the drastic changes in EEG and GSR signals when her
name is played. The first trace represents the timing of the stimuli played. Figure
taken from [48].
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Semantics Are Extracted From Auditory Stimuli During NREM Sleep

Figure 1.6: Semantics are extracted from auditory stimuli during NREM sleep.
Motor preparation response associated with semantic categorization persists dur-
ing NREM sleep. (A). Experimental paradigm. Participants classify words as
animals or objects based on their semantic category by pressing a button in wake-
fulness (top) through lateralized hand responses. Participants are reminded to
categorize the semantic category as they fall asleep, with new words in NREM
sleep unbeknown to them (bottom). (B). Motor preparation response. The lat-
eralized readiness potential (LRP) represents the motor preparation response and
is calculated as the subtraction of contralateral from ipsilateral EEG signal at the
central electrodes. It is an index of the motor preparation response associated
with semantic categorization. The LRP signals show that auditory stimuli are
processed at the semantic level during wakefulness (left) and light NREM sleep
(right). Shaded areas represent standard error of the mean (SEM) computed for all
participants. Horizontal bars represent significant deviations in LRPs. Note that
the arrow bar in the left panel indicates the response time that overlaps with the
significant LRP interval. The delayed significant interval in the right panel could
then indicate delayed extracting of auditory semantics during NREM (next page)
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Figure 1.6 (previous page): sleep compared with wakefulness. (C). Modulation
of LRP size during NREM sleep. Motor preparation responses associated with se-
mantic categorization persisted during NREM sleep but decreased with increasing
depth of NREM sleep. The unit on y-axis represents arbitrary units (a.u.) to bet-
ter visualize the dynamics of the LRP and delta power with increasing depth of
NREM sleep. Figures taken from [54].

nonsense speech such as the Jabberwocky story), and a model was trained
to associate the recorded EEG signals to the envelopes of the corresponding
speech streams. In the test phase, participants were presented with the two
speech streams simultaneously in a cocktail party paradigm (i.e., differ-
ent speech streams in each ear) and were asked to attend only to one of the
streams. The model was then used to reconstruct the envelope of the stream
from the EEG signals recorded both during awake and NREM sleep. The
Pearson correlation coefficient between the reconstructed envelope and the
original envelope of the stream (either real or nonsense speech) was used
to determine which speech stream had the predominant neural represen-
tation in the EEG signals (see Figure 1.7A). In the awake condition, the
Pearson correlation was higher for the relevant speech stream, indicating
an amplification of the neural representation of the relevant speech stream
compared with the irrelevant speech stream. The amplification of the rel-
evant speech stream compared with the irrelevant speech stream persisted
during NREM sleep but decreased with increasing depth of NREM sleep
(see Figure 1.7B).

Cognitive functions depend on the interaction of multiple functionally
specialized groups of cortical neurons. Therefore, although cognitive func-
tions associated with auditory stimuli decrease during NREM sleep, it re-
mains unclear at which sites along the sensory pathways evoked neural
responses to auditory stimuli are modulated across the sleep–wake cycle.
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Figure 1.7: Amplification of neural responses of relevant versus irrelevant audi-
tory stimuli persists during NREM sleep. (A). Experimental paradigm. In the test
phase, participants were simultaneously exposed to two speech streams in a cock-
tail party paradigm (i.e., different speech streams in each ear) and were asked to
attend the relevant speech stream (here, real speech). The EEG signals were used
to reconstruct the envelope of the speech stream using a model obtained in the
training phase. The Pearson correlation coefficient, R, between the reconstructed
envelope and the original envelope of the speech stream was used to determine
which speech stream had the predominant neural representation in the EEG sig-
nals. (B). Reconstruction scores for the real and nonsense stories in wakefulness,
light sleep, and deep sleep. Note that these results correspond to the scenarios in
which participants were asked to attend the real speech. The results were con-
firmed when participants were asked to attend the nonsense speech. Figures taken
from [55].
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1.2.2 Single-Unit Studies

Invasive recording techniques enable measurements from specific brain ar-
eas. Single-unit (SU) extracellular recordings monitor action potentials in
neurons in target areas. Although this technique cannot record simulta-
neously from the entire brain, SU recordings allow assessment of neural
responses to external stimuli in specific sensory areas.

SU recordings in nonhuman animals and humans have shown that
evoked neural responses to auditory stimuli are heterogeneously modulated
along the hierarchical cortical processing chain. These studies show that
evoked neural responses are preserved in primary auditory cortex (A1),
whereas they are attenuated in higher cortical areas during NREM sleep
compared with wakefulness.

Neural firing responses are preserved in primary auditory cortex dur-
ing NREM sleep

Microelectrode recordings in sleeping marmoset monkeys have shown that
neural firing responses to auditory stimuli (e.g., tones, clicks, and vocal-
izations) in primary auditory cortex (A1) are not systematically attenuated
during NREM sleep compared with wakefulness [65]. Although neural
firing responses either increased or decreased in response to individual au-
ditory stimuli, they were not significantly attenuated on average during
deep NREM sleep compared with wakefulness. Moreover, the peristimu-
lus time histogram (PSTH) of evoked responses during NREM sleep corre-
lated highly with those during wakefulness, indicating a highly preserved
temporal code of evoked responses during deep NREM sleep. Further-
more, neural tuning curves, i.e., neural firing responses as a function of
stimuli, during NREM sleep were strongly correlated with those during
wakefulness, indicating preserved neural sensitivity to auditory stimuli.
These observations suggest that evoked neural responses to auditory stim-
uli in A1 of marmoset monkeys are preserved during deep NREM sleep
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compared to wakefulness.

Single- and multi-unit studies in rodents have also confirmed the ob-
servations that evoked neural responses in A1 to auditory stimuli are pre-
served during NREM sleep compared to wakefulness [66, 67]. Microwire
array recordings from the auditory cortex in rats have shown that neural fir-
ing responses to auditory stimuli (e.g., tones, clicks, and rat vocalizations)
during NREM sleep are comparable to those during wakefulness [66] (see
Figure 1.8A). Moreover, quantitative analysis of evoked responses revealed
that neural response profiles (i.e., the selectivity of a neuron to trigger
an onset, sustained, or offset response to stimuli) were preserved during
NREM sleep (see Figure 1.8B). Neural firing responses for each response
profile were also not significantly attenuated during deep NREM sleep
compared to wakefulness (see Figure 1.8B,C). These observations suggest
that evoked neural responses in A1 of rats to auditory stimuli are preserved
across the sleep–wake cycle.

The above observations were recently replicated in humans. In an
unprecedented study, evoked neural responses to a wide range of audi-
tory stimuli (including clicks, tones, music, words, and sentences) were
recorded in a passive paradigm in cortical areas—comprising the supe-
rior temporal gyrus, superior temporal plane, middle temporal gyrus, and
orbitofrontal cortex—from epilepsy patients who had depth electrodes im-
planted for clinical monitoring [68]. The magnitudes of neural firing re-
sponses recorded in A1 (within the superior temporal gyrus) were not sig-
nificantly attenuated during NREM sleep compared to wakefulness (see
Figure 1.9). In addition to the magnitudes, the mutual information be-
tween the auditory stimuli and the spike responses in A1 was also pre-
served during NREM sleep compared to wakefulness. These observations
suggest that auditory evoked responses in A1 are preserved in humans dur-
ing NREM sleep and are as informative as in the awake state.

26



B

A Wakefulness NREM Sleep

3

2

1

0

3

2

1

0

30

20

10

0

Fi
ri

n
g

 r
a
te

 (
H

z)

Fi
ri

n
g

 r
a
te

 (
H

z)

S
e
le

ct
iv

it
y
 N

R
E
M

 (
%

)

M
a
g

n
it

u
d

e
 N

R
E
M

 (
H

z)

Time (ms)
-500 0 500 1000

Time (ms)
-500 0 500 1000

40

50

60

Selectivity Wake (%)
0 20 40 60

Magnitude Wake (Hz)
0 50 100 150

150

100

50

0

Preserved Auditory Evoked Responses in A1 in Rats During NREM Sleep

Figure 1.8: Preserved auditory evoked responses in A1 in rats during NREM
sleep. (A). Peristimulus time histogram (PSTH) of a representative auditory re-
sponse (with respect to baseline firing during wakefulness) to a 6 kHz tone with
a duration of 100 ms in an A1 neuron during wakefulness (left) and NREM sleep
(right). Note that this neuron triggers onset and offset responses, barely visually
distinguishable visually between vigilant states. (B). Left. Scatter plot of response
selectivity profile (for onset response profile) in NREM sleep (y-axis) compared
with wakefulness (x-axis). The response selectivity profile of A1 neurons is com-
parable between NREM sleep and wakefulness. Each dot indicates the percentage
of stimuli that triggered an increased onset response for each A1 neuron. Note
that the firing rate selectivity profiles are preserved during NREM sleep compared
with wakefulness. Right. Scatter plot of the response magnitudes for neurons
showing onset profile during NREM sleep (y-axis) compared with (next page)
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Figure 1.8 (previous page): wakefulness (x-axis). The response magnitude
of A1 neurons is comparable between NREM sleep and wakefulness. Each dot
denotes the magnitude of the response of an A1 neuron to a particular stimulus
that triggered onset response. Note that the neural selectivity are preserved during
NREM sleep. These results are confirmed for the sustained and offset response
types. Figures taken from [66].

Neural firing responses are heterogeneously modulated in areas down-
stream to the primary auditory cortex during NREM sleep

Despite the experimental evidence reviewed above, showing that neural
firing responses to auditory stimuli are preserved in A1 in nonhuman an-
imals and humans across vigilance states, heterogeneous modulation of
neural firing responses emerges in cortical areas downstream to A1.

In marmoset monkeys, regions within the microelectrode recordings
in the lateral belt, the secondary auditory cortex downstream to A1, have
shown that neural firing responses to auditory stimuli are not significantly
decreased during deep NREM sleep [65]. However, simultaneous record-
ings in rats from A1 and the perirhinal cortex (PRC), a higher-order cor-
tical area also downstream to A1, have shown that neural firing responses
to auditory stimuli (e.g., tones, clicks, and rat vocalizations) in the PRC
decrease during NREM sleep compared with wakefulness, whereas neural
firing responses in A1 are preserved (see Figure 1.10).

Studies in humans have also shown that not only the magnitude of
neural firing responses but also the mutual information between auditory
stimuli and spike responses decreased in areas outside A1, although they
were preserved in A1 during NREM sleep compared to wakefulness (see
Figure 1.11A) [68]. Moreover, the extent of attenuation increased with in-
creasing depth of NREM sleep. Of note, neural firing responses in different
cortical areas were attenuated in a heterogeneous manner during NREM
sleep (see Figure 1.11C).B

It is important to note that there is compelling experimental evidence
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Figure 1.9: Preserved auditory evoked responses in A1 in humans during NREM
sleep. Peristimulus time histogram (PSTH) of representative auditory responses
in a neuron in A1 in response to a word (top) and a music segment (bottom)
in a human subject during NREM sleep (in green) and wakefulness (in pink).
Horizontal bars above PSTH time-courses indicate significant response intervals
compared to peristimulus intervals. The grayscale soundwave spectrograms are
shown above the PSTH. Vertical dotted black lines represent the stimulus onset
and offset. Note that neural firing responses during NREM sleep mimic those
during wakefulness in amplitude and temporal variation. Figure taken from [68].
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Figure 1.10: Attenuation of auditory evoked responses outside A1 during NREM
sleep in rats. (A). Peristimulus time histogram (PSTH) of a representative auditory
response in an A1 neuron (upper panel) and a PRC neuron (lower panel) recorded
simultaneously in a rat during NREM sleep (in blue) and wakefulness (in orange).
Neural firing responses are attenuated in the PRC, a higher-order cortical region
downstream to A1, although neural firing responses are preserved in A1 during
NREM sleep compared with wakefulness. Stimulus duration is marked by the
gray shaded area. Figure taken from [67].
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Figure 1.11: Heterogeneous attenuation of auditory evoked responses outside A1
during NREM sleep in humans. (A). PSTH of a representative auditory response
in a neuron outside A1 in response to the word spider in a human subject during
NREM sleep (in green) and wakefulness (in pink). Horizontal bars above PSTH
time-courses indicate significant response intervals compared with spontaneous
activity in prestimulus intervals. Stimulus duration is marked by the vertical dot-
ted black lines. The grayscale soundwave spectrograms is shown above the PSTH.
(B). Relative change in magnitude of neural firing responses (NREM versus wake-
fulness) in each region that showed auditory responses. Each circle shows the
anatomical location of the recording region on a standard left hemisphere tem-
plate. The size of the circle (left) shows the number of responses detected in that
region. The color of the circle (right) shows the value of the neural (next page)
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Figure 1.11 (previous page): gain in this region. Neural gain is defined as
the average of the relative change (NREM compared to awake) of the magni-
tude of evoked responses in each region. Note the heterogeneous modulation of
auditory evoked responses during NREM sleep in regions outside A1, despite
the preserved responses in A1. Note the heterogeneous modulation of auditory
evoked responses outside A1 during NREM sleep. Figures in panels B and C
taken from [68].

that attention to external stimuli [79] and higher sensory processing de-
mands during wakefulness [80] increase brain activation to external stim-
uli. Therefore, it remains unclear whether or not the reduced evoked neu-
ral responses to auditory stimuli in cortical areas downstream to A1 during
NREM sleep merely reflect lack of attention.

1.2.3 TMS Stimulation: A Non-sensory Approach to Re-
sponse Propagation

Transcranial magnetic stimulation (TMS) is a noninvasive stimulation tech-
nique that eliminates the confounding effects of attention to external stim-
uli on evoked responses in the brain. The experimental setup consists of a
procedure that eliminates sensory perception of stimuli during wakefulness
and NREM sleep [81]. The TMS clicks associated with the coil discharge
are masked by a noise that corresponds to the waveform of the noise gen-
erated by the coil.

Spatiotemporal extent of cortical activation to TMS stimulation de-
creases during NREM sleep compared to wakefulness

In a brilliant human study, brain responses to TMS perturbation of a se-
lected cortical area (e.g., either right premotor or parietal cortex) were
recorded with high-density electroencephalography (HD-EEG) during wake-
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fulness and NREM sleep [70]. Cortical activation in response to TMS
pulses was measured by current source density (CSD) analysis. CSD anal-
ysis by estimated the cortical current sources that generate the evoked EEG
potentials. As expected, initial cortical activation was centered below the
stimulation site in both wakefulness and NREM sleep. However, the per-
turbation propagated in the cerebral cortex in two different ways depend-
ing on the brain state. Perturbation propagated from the stimulated area
along its anatomical connections in contralateral and ipsilateral areas dur-
ing wakefulness (see Figure 1.12). On the contrary, the perturbation re-
mained local, propagated only to areas in the vicinity of the stimulation site
and dissipated rapidly during NREM sleep (see Figure 1.12). These results
were reproduced when different cortical areas were stimulated [70, 81, 2].

These observations suggest that the spatiotemporal extent to which the
cortex is activated in response to TMS stimuli is lower during NREM sleep
than during wakefulness. These observations refute the possibility that the
attenuated evoked neural responses to auditory stimuli during NREM sleep
are a consequence of the lack of attention to the external stimuli.

1.2.4 Summary
Changes in the level of neuromodulators not only shift the dynamics and
neurotransmission, but also might affect behavior. Behaviorally, sleep is
associated with sensory disconnection from the external environment. In
contrast to the extreme view of sensory disconnection from the external
environment, there is compelling experimental evidence that some level of
sensory processing persists during NREM sleep [48, 50, 51, 52, 53, 54, 55,
56]. This is so, even if, neural markers of cognitive functions associated
with auditory stimuli, such as motor preparatory signals [53, 54] and the
amplification of relevant signals [55], are attenuated during NREM sleep
compared with wakefulness [48, 53, 54, 55, 56]. Given that cognitive func-
tions depend on the interaction of multiple functionally specialized groups
of cortical neurons, it is important to determine where auditory stimuli are
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Figure 1.12: Reduced spatiotemporal extent of cortical activation to TMS stimuli
during NREM sleep compared with wakefulness. Cortical activation, color-coded
by the latency of region activation, to TMS stimuli during wakefulness (left) and
NREM sleep (right) in one subject. The yellow cross marks the TMS target on the
cortical surface. Note that in wakefulness, the perturbation propagates to a larger
spatial area, whereas in NREM sleep it is confined to the stimulated area. Figure
taken from [70].
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modulated along the sensory pathway that differs between NREM sleep
and wakefulness.

Consistent with EEG studies, extracellular SU responses in A1 recorded
during a rich ensemble of auditory stimulation are preserved during NREM
sleep, as compared to wakefulness, in nonhuman animals and humans [65,
66, 67, 68]. However, responses in higher cortical areas downstream to
A1 are heterogeneously attenuated [65, 66, 67, 68]. Accordingly, stud-
ies show that cortical activation to TMS stimuli, which abolishes subjects’
perception of the stimuli during wakefulness, remains local during NREM
sleep compared with the broader spatiotemporal extent of propagation dur-
ing wakefulness [70, 81]. This suggests that attenuated evoked neural re-
sponses in higher cortical areas to auditory stimuli during NREM sleep are
not simply a consequence of lack of attention to the external stimuli.

1.3 Mechanisms Underling Different Propaga-
tion Patterns of Neural Firing Responses Across
the Sleep–Wake States

The underlying mechanisms leading to different propagation patterns of
neural firing responses in the cerebral cortex during NREM sleep and wake-
fulness remain largely unknown.

In a communication system, the mechanisms by which propagation of
responses among system elements attenuates can be divided into two broad
classes: the transducers (communication nodes) change to a less excitable
state and/or the strength of the physical transmission medium (communi-
cation channels) weakens. The brain is composed of neural groups and
synaptic pathways that resemble a communication system. Similarly, the
attenuated propagation of neural firing responses during NREM sleep com-
pared with wakefulness can be attributed to the altered dynamics of the
neural groups and/or the strength of the synaptic pathways involved in
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propagation patterns.
The current scientific consensus is that the different propagation pat-

terns of neural firing responses in the cerebral cortex during NREM sleep
and wakefulness are due to the altered dynamics of the thalamocortical
network. However, as far as we know, there is not a clear evidence to sup-
port this view and changes in the cortico-cortical synaptic strength has not
yet been studies. In the first part of this section we provide an overview
of a thalamocortical model that describes the neural groups and synaptic
pathways involved in propagation of neural firing responses in the cere-
bral cortex. In the following two parts, we review experimental evidence,
first, supporting changes in the dynamics of the thalamocortical network as
a mechanism for attenuating propagation of neural firing responses in the
cerebral cortex, and second, challenging these mechanisms as a sufficient
explanation. Finally, the missing piece of the puzzle, namely the role of
cortico-cortical synapses is presented.

1.3.1 Model of Propagation of Neural Firing Responses
in Cortical Hierarchy

The cortex and the thalamus innervate each other through massive di-
rect excitatory projections involving cortico-thalamic (CT) and thalamo-
cortical (TC) pathways forming the cortico-thalamo-cortical (CTC) net-
work [82]. The CTC pathways, in addition to the cortico-cortical (CC)
pathways, may serve to transmit neural firing responses between cortical
areas. The first experimental evidence for CTC pathways was obtained in
mouse brain slices. It was shown that a substantial proportion of evoked
responses in the secondary somatosensory cortex depended on thalamic
circuits when layer 5 of the primary somatosensory cortex was electrically
stimulated [83].

A CTC model that proposes a hierarchical organization in the cortex
for propagation of neural firing responses was developed by Sherman and
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Guillery [23, 84] (see Figure 1.13). In the following, this model is briefly
presented.

Motifs of the CTC model

Thalamic and cortical neurons are at the heart of the CTC model. CTC
model describes that neural firing responses to an external event propagate
in a hierarchical organization in the cortex along the two parallel pathways:
CTC and CC pathways. Via glutamatergic pathways, thalamic neurons and
cortical neurons receive two distinct classes of inputs: driver and modu-
latory [23, 84, 85]. Driver inputs relay neural firing responses about an
external event to target neurons. Modulatory inputs modulate the response
of target neurons to driver inputs [84, 85].

Thalamic neurons include relay neurons, local inhibitory interneurons,
and the thalamic reticular nucleus (TRN) [17, 19, 23]. Based on the source
of driver inputs, thalamic relay neurons are divided into two classes, namely
first-order (FO) relay neurons and higher-order (HO) relay neurons [23,
85]. First-order relay neurons receive driver inputs mainly from the pe-
riphery and subcortical areas, whereas driver inputs to higher-order relay
neurons come from layer 5 of different cortical areas (and in some cases
also from subcortical areas) [84, 85] (see Figure 1.13). First-order thalamic
relay neurons project the driver inputs predominantly to layer 4 of primary
cortical areas. Higher-order thalamic relay neurons project primarily to
cortical layer 4 of higher cortical areas (and in some cases to primary cor-
tical areas too) [84, 85].

Modulatory inputs to first- and higher-order relay neurons are gener-
ally similarly arranged [23]. Modulatory inputs are dominant with respect
to driver inputs in thalamic relay neurons and are proposed as a mech-
anism that controls propagation of neural firing responses through thala-
mic pathways without altering the properties of the receptive field [23].
Modulatory inputs consist of inputs from local GABAergic areas (includ-
ing local GABAergic interneurons and TRN neurons), cortical feedback
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Cortico-Thalamo-Cortical Model

Primary Higher Higher

(Cont'd)

Figure 1.13: Cortico-Thalamo-Cortical model. Lower motor centers receive
neural firing responses from periphery and cortical areas (blue arrows), where
a copy of neural firing responses is sent directly to the thalamic relay neurons
(red arrows). First-order thalamic neurons (FO) transmit a copy of neural firing
responses from the periphery sent directly to lower motor centers to primary cor-
tical areas (black arrow). Neural firing responses in the cortex propagate through
two pathways, CC and CTC. The higher order thalamic neurons (HO) transmit
neural firing responses via the CTC pathways. They transmit a copy of the cor-
tical neural firing responses sent directly to the lower motor centers to the higher
cortical areas. Here, the motor messages originate from layer 5 of the cortical
areas in the cortical hierarchy. Figure taken from [84].
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inputs from layer 6, and neuromodulatory inputs from subcortical struc-
tures, such as cholinergic, noradrenergic, serotonergic, and histaminergic
inputs [17, 19, 23].

1.3.2 Dynamics of the Thalamus Are Insufficient
The thalamus is an important node in the brain that relays neural signals to
the cortex by innervating almost all cortical areas via TC pathways [82]. A
change in the dynamics of thalamic neurons due to decreased neuromod-
ulatory inputs during NREM sleep could be a mechanism that attenuates
propagation of neural firing responses between cortical areas.

Thalamic neurons can control propagation of neural firing responses
via three types of dynamics. There is no experimental evidence for the
effectiveness of the three thalamic mechanisms in attenuating propagation
of neural firing responses between cortical areas via higher-order thalamic
relay neurons. Moreover, the ineffectiveness of these mechanisms in atten-
uating propagation neural firing responses from the periphery to the cortex
via first-order thalamic relay neurons may challenge the view that thalamic
dynamics during NREM sleep is a sufficient explanation.

Proposed mechanisms for thalamic dynamics during NREM sleep at-
tenuating propagation of neural firing responses

One mechanism that could attenuate propagation of neural firing responses
in the cortex is the burst firing mode of thalamic relay neurons during
NREM sleep. Neuromodulatory projection from the ascending arousal
network in subcortical areas is silent during NREM sleep. Reduced neu-
romodulatory inputs hyperpolarize thalamic relay neurons and shifts the
firing profile from tonic firings in wakefulness to burst firings in NREM
sleep [17, 19, 23]. Although burst firings from thalamic relay cells in re-
sponse to external stimuli generate a high excitatory postsynaptic potential
in cortical neurons that could facilitate detection of neural firing responses,
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this may affect the accuracy of spike timing and thus reduce the precision
of neural firing responses transmitted to cortical neurons.

Inhibition of thalamic relay neurons by the enhanced activity of local
GABAergic interneurons during NREM sleep could also lead to less ex-
citable dynamics and attenuate propagation of neural firing responses [86].
The absence of neuromodulators during NREM sleep disinhibit local GABAer-
gic interneurons that results in inhibiting thalamic relay neurons [17, 23,
86]. This mechanims can attenuate response of thalamic relay neurons to
incoming driver inputs (for a more detailed description, see [86]). Attenu-
ated neural firing responses in thalamic relay neurons diminish propagation
of neural firing responses to cortical neurons.

Another mechanism by which the thalamus might attenuate propaga-
tion of neural firing responses to the cortex is spindle-mediated inhibition
of cortical neurons, which converts cortical dynamics to less excitable dy-
namics [24]. This mechanism is known as the thalamic gating hypothesis.
The long-held thalamic gating hypothesis states that sleep spindles inter-
rupt the transmission of sensory signals to the cerebral cortex [19]. This
view has been supported by several experimental observations. For in-
stance, human studies found a correlation between the rate of occurrence
of spindles and the arousal threshold; the higher the rate of occurrence of
spindles, the higher the arousal threshold [87]. Spindles may represent a
mechanism that inhibits cortical neurons. As a result of the interaction
between TRN and thalamic relay neurons during spindle activity, thala-
mic relay neurons fire bursts during NREM sleep. These burst firings are
monosynaptically projected to cortical areas and could shift the balance
between excitation and inhibition in cortical pyramidal neurons toward in-
hibition by activating local cortical inhibitory neurons during NREM sleep.
(For a more detailed description of spindle activity, see [24]).
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Dynamics of the thalamus during NREM sleep do not fully account for
attenuated propagation of neural firing responses in the cortex

The thalamus controls the flow of neural signals not only from the periph-
ery to the cortex but also between cortical areas [23, 84]. However, there
is compelling evidence that limits the proposed thalamic mechanisms in
previous part as a mechanistic account for attenuated propagation of neural
firing responses. To our knowledge, the effectiveness of thalamic dynamics
in attenuating propagation of neural firing responses via higher-order tha-
lamic relay neurons during NREM sleep has not been studied. However,
there is convincing experimental evidence that thalamic dynamics does not
attenuate propagation of neural firing responses via first-order thalamic re-
lay neurons during NREM sleep. For instance, neural firing responses in
A1 to auditory stimuli, which is downstream to first-order thalamic relay
neurons, is preserved during NREM sleep compared to wakefulness (see
Section 1.2.2), challenging the view that thalamic dynamics are sufficient
to attenuate propagation of neural firing responses.

The effectiveness of spindle-mediated inhibition in attenuating propa-
gation of neural firing responses to the primary auditory cortex was sys-
tematically studied in rats during NREM sleep. Microwire array record-
ings from rat primary auditory cortex showed that neural firing responses
to auditory stimuli (e.g., tones, clicks, and rat vocalizations) were compa-
rable in periods with and without spindle activity during NREM sleep [88]
(see Figure 1.14A). Moreover, quantitative analysis of evoked responses
revealed that neural response profiles (i.e., the selectivity of a neuron to
trigger an onset, sustained, or offset response to stimuli) were preserved
and neural firing responses were not significantly attenuated in periods
with and without spindle activity during NREM sleep for each response
profile (see Figure 1.14B).

Nevertheless, the observed correlation between the occurrence of spin-
dles and arousal threshold in humans [87] may favor the view that spindle
activity generated by higher-order thalamic relays in higher cortical areas
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Figure 1.14: Auditory evoked responses in A1 in rats are indistinguishable be-
tween spindle and non-spindle conditions during NREM sleep. (A). Peristimulus
time histogram (PSTH) with respect to baseline of a representative auditory re-
sponse in an A1 neuron during spindle (left) and no-spindle activity (right) to an
8-kHz tone with a duration of 100 ms. Note that this neuron elicits both onset
and offset responses, with both types of responses barely distinguishable visu-
ally between spindle and no-spindle activity in NREM sleep. (B). Scatter plot of
the representative response size profile in spindle (y-axis) versus no-spindle (x-
axis). The response size profile of A1 neurons is comparable between spindle and
no-spindle conditions. Each dot denotes the size of an A1 neuron’s response to
a particular stimulus that triggered onset response. Note that the firing rate size
profiles are preserved during spindle and no-spindle activity in NREM (next page)
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Figure 1.14 (previous page): sleep. These results are confirmed for the sus-
tained and offset response types. Figures taken from [88].

impairs propagation of neural firing responses, in contrast to first-order re-
lays. However, the higher arousal threshold after sleep deprivation, when
spindle density is reduced ( for review [24]), calls into question spindles
as a sufficient mechanism for gating propagation of neural firing responses
in general. It is also important to note that deep NREM sleep is associated
with lower spindle density than light NREM sleep during the course of nat-
ural sleep [18, 89], whereas gating propagation of neural firing responses
may correlate with sleep depth [53, 54, 55, 68]. Therefore, it seems un-
likely that spindle-mediated gating by higher-order thalamic relays could
be a satisfactory explanation for attenuated propagation of neural firing
responses in the cerebral cortex during NREM sleep.

The other line of evidence that thalamic dynamics are insufficient comes
from studies using in vitro cortical slices. Electrical stimulation of ferret
cortical slices in the absence of the thalamus has shown that perturbations
propagate in two different ways under NREM-like and wakefulness-like
conditions [90].

1.3.3 Dynamics of the Cortex Are Insufficient

The high correlation between the occurrence of slow waves and attenua-
tion of propagation of stimulus-specific neural activity during NREM sleep
raises the exciting possibility that cortical dynamics during NREM sleep
may explain the propagation differences between NREM sleep and wake-
fulness.

Decreased neuromodulatory input from subcortical areas alters the dy-
namics of cortical neurons. Cortical neurons tend to fall into the Down-
state (an inactive state) following periods of intense firing (Up state), which
is known as cortical bistability during NREM sleep. Because cortical neu-
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rons are hyperpolarized during the Down-states, cortical bistability could
represent a low excitable regime responsible for the attenuation of propa-
gation of stimulus-specific neural activity during NREM sleep.

There are two types of Down-states: spontaneous and evoked. When
Up state are due to nonspecific spontaneous neural firing, the following in-
active states are referred to as spontaneous Down states. Down states fol-
lowing stimulus-specific activation are referred to as evoked Down states.
Because the literature discussed below is based on extracellular rather than
intracellular recordings, the terms ON and OFF periods will be used in-
stead of Up and Down state to ensure consistent terminology [32]. Al-
though experimental observations seem to support the view that cortical
dynamics during NREM sleep attenuate propagation of stimulus-specific
neural activity in the cerebral cortex, there are several considerations that
suggest that cortical dynamics may be an insufficient explanation.

Spontaneous OFF periods do not fully account for attenuated propa-
gation of neural firing responses during NREM sleep

Extracellular recordings during NREM sleep show an alternation between
between OFF and ON periods that form slow waves. Because slow waves
during sleep are local events [91, 30], the spontaneous OFF and ON peri-
ods during slow waves often occur out of phase in different cortical areas.
This could be a mechanism that attenuates propagation of neural firing re-
sponses from a cortical region in the ON period to a cortical region in the
OFF period.

Nevertheless, preserved evoked neural responses in A1 during NREM
sleep and wakefulness [65, 66, 67, 68] challenges this view at least in pri-
mary areas. Moreover, microwire array recordings of A1 in rats showed
that neural firing responses to tones were not systematically attenuated dur-
ing OFF periods compared with ON periods during NREM sleep [88] (see
Figure 1.15). Only at low intensity tones, neural firing responses during
OFF periods were smaller than those during ON periods. Surprisingly,
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neural firing responses during OFF periods were larger than those during
ON periods to high intensity tones, with no significant difference for the
middle intensity tones.

In addition, microwire array recordings suggest a complex effect of
OFF periods rather than a systematic attenuation of propagation of neural
firing responses between cortical areas. [67]. For instance, neurons with a
late response latency profile in A1 and PRC show stronger evoked neural
responses to tones in OFF periods than ON periods, whereas neurons with
an early response latency profile in A1 and PRC show stronger evoked
neural responses to tones in ON periods than OFF periods.

Moreover, experimental studies show that neural firing responses dur-
ing NREM sleep are heterogeneously modulated in areas downstream to
A1 [65, 67, 68] (see Section 1.2.2). For instance, evoked responses in
perirhinal cortex (PRC) are significantly attenuated [67], whereas responses
in secondary auditory cortex (A2) are preserved [65]. Therefore, it remains
unclear why spontaneous OFF periods in A2 do not attenuate propagation
of neural firing responses during NREM sleep, unlike their counterparts in
the PRC.

Evoked OFF periods do not fully account for attenuated propagation
of neural firing responses during NREM sleep

Because of cortical bistability during NREM sleep, cortical neurons can
enter OFF periods following a stimulus-specific activation, which are there-
fore referred to as evoked OFF periods. The evoked OFF periods may limit
the time window for propagation of neural firing responses by cortical ar-
eas. For instance, an evoked OFF period in a cortical area enforces a time
window of neural silence that represents a less excitable neural state and
thus attenuates the cortical response to stimulus-specific neural firing re-
sponses sent back from other areas, which is known as stimulus-specific
cortical interactions.

This mechanism was suggested by the observation that time-locked
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Figure 1.15: Spontaneous OFF periods do not systematically attenuate auditory
evoked responses in A1 in rats during NREM sleep. Peristimulus time histogram
(PSTH) with respect to baseline of a representative auditory response in an A1
neuron in Down state (left) and Up state (right) to low (30 dB), medium (55 dB),
and high intensity (80 dB) tones, from top to bottom. Tones had a (next page)
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Figure 1.15 (previous page): duration of 100 ms and are shown as thick hori-
zontal green bars. Note that the pre-stimulus baseline (yellow shadow) is higher
for ON than for OFF periods. ∆ represents the relative change in amplitude of
neural firing response in Up state compare to ones in Down state. Figures taken
from [88].

EEG responses to TMS stimuli during NREM sleep resemble spontaneous
slow waves [81]. EEG responses to TMS stimuli in humans have been
shown to switch from evoked slow waves occurring in a limited area un-
der the stimulating site to different activation patterns characterized by
low-amplitude–high-frequency components during wakefulness [70, 81].
The anthers even go beyond and claim that these findings suggest that
the intrinsic tendency of cortical neurons during NREM sleep to fall into
the OFF period following stimulus-specific activation may constrain long-
range patterns of causal interaction between cortical areas [2].

Following this view, local field potentials (LFP) from single-pulse in-
tracortical electrical stimulation (SPES) were analyzed in epileptic patients
implanted with depth electrodes for clinical assessment [3]. Because the
recording technique was not ideal for identifying spike activity, suppres-
sion of high-frequency power (20-100 Hz) was used as a proxy for the
occurrence of OFF periods [92, 22]. In addition, stimulus-specific cortical
interactions across recording sites were quantified by the phase-locking
factor (PLF) in frequency ranges of 8-100 Hz at each recording site (PLF
assesses the consistency of the phase of ongoing cortical oscillations across
trials). Evoked LFP responses were found to be characterized at the net-
work level by a larger evoked slow wave, a larger evoked OFF period, and
short-lasting phase-locked activity during NREM sleep than during wake-
fulness (see Figure 1.16A,B). In addition, larger evoked slow waves corre-
lated with larger evoked OFF periods, and the timing of evoked OFF pe-
riods correlated with the timing of attenuation of PLF (see Figure 1.16C).
The authors claim that these observed correlations may support the view
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that evoked OFF periods during NREM sleep attenuate propagation of neu-
ral firing responses in the cortex during NREM sleep.

However, there are several considerations that might limit the interpre-
tation of these results. First, the above conclusions were based on a cor-
relation analysis, i.e., the timing of the high-frequency power suppression
in slow waves correlated with the timing of the decline of PLF [3]. Corre-
lation does not imply a causality and may still reflect a hidden underlying
mechanism. For instance, evoked OFF periods are absent during REM
sleep, however, the spatiotemporal extent of propagation of TMS pertur-
bation is smaller than wakefulness and larger than NREM sleep [93]. On
the other hand, evoked OFF periods are present during ketamine-induced
unresponsiveness state [94], whereas the spatiotemporal extent of propa-
gation of TMS perturbation is smaller than wakefulness and larger than
NREM sleep [95].

Second, PLF lasted longer in electrodes near the stimulation site during
wakefulness than during NREM sleep, despite comparable evoked OFF pe-
riods (see Figure 1.16A). The authors proposed the phase-locked feedback
activity from the rest of the network as an explanation for the persistence of
PLF in wakefulness. However, this interpretation does not seem to support
the original claim regarding evoked OFF periods. Evoked OFF periods
in electrodes near the stimulation site have the largest amplitude which is
comparable between NREM sleep and wakefulness. Therefore, it remains
unclear why the evoked OFF period in the stimulated site can not attenuate
stimulus-specific neural firing responses transmitted back from other areas,
as opposed to NREM sleep.

It is also important to note that LFP signals are generally difficult to
interpret because they reflect potentials generated at local and nonlocal
sources [69]. For instance, PLF, which is calculated from the LFP signals at
a particular electrode site, should not be interpreted simply as an expression
of the dynamics at the recording site, because the oscillations may be the
result of volume conduction of potentials generated by two dipoles located
far from the recording site [69].
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Figure 1.16: Suppression of high-frequency power (20-100 Hz) is proposed to
correlates with attenuation of stimulus-specific interaction of cortical areas. (A).
Three measurements: the amplitude of evoked slow waves, high-frequency power
(20-100 Hz), and phase-locking factor (PLF), from top to bottom, in response to
SPES pulses in a contact near the stimulation site for wakefulness (in red) and
NREM sleep (in blue) in a human subject. (B). Same three measurements as in
panel A, averaged across all contacts. Note that the amplitude of evoked slow
waves in wakefulness is comparable to that in NREM sleep. The suppression
of high-frequency power is nearly identical in awake and NREM sleep; the PLF
lasts longer in awake than in NREM sleep. (C). Top. Correlation between the
maximum amplitude (converted to dB) of the evoked slow wave (max SWa, y-
axis) and the maximum level of high-frequency power suppression with respect
to baseline (max SHFp, x-axis) across all contacts during NREM sleep for a rep-
resentative subject. Bottom. Correlation between the timing of maximum high
frequency suppression (max SHFt) and the latency at which PLF fell below the
threshold for significance (max PLFt). The coefficient of determination R2 and
significance level p of the correlation are given below each graph. Note that larger
evoked slow waves correlate with stronger suppression of high-frequency power
and earlier suppression correlates with earlier attenuation of PLF. Figures taken
from [3].
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Moreover, LFP signals (filtered at 0.5-300 Hz) contain little informa-
tion about spike activity. Therefore, conclusions about the presence of
evoked OFF periods (a state with suppressed spike activity) based on LFP
signals should be made with caution in the absence of spike data. For in-
stance, careful examination of extracellular recordings in rats and mice
shows that evoked LFP signals near the stimulation site reflect evoked
spike activity. However, significant evoked LFP signals are elicited at sites
far from the stimulation site even though there is no evoked spike activ-
ity [66, 96] (see Figure 1.17A,B), presumably due to volume conduction
and/or presynaptic activity [69].

Therefore, it remains unclear to what extent the amplitude of evoked
slow waves or the suppression of high-frequency powers in the LFP rep-
resents a genuine evoked neural OFF period ( neural silence mode) and
whether the dropping of PLF during NREM sleep at recording sites are
local events mediated by "evoked OFF periods".

Studies using in vitro cortical slices have also attempted to investigate
cortical bistability as a mechanism for attenuated propagation of neural
evoked responses. Electrical stimulation of ferret cortical slices has shown
that perturbations during NREM-like and wakefulness-like states propa-
gate in two distinct ways [90]. Spontaneous multi-unit activity (MUA)
of cortical slices in the NREM-like state showed alternation between ON
and OFF periods. After administration of noradrenergic and cholinergic
agonists (NE+CCh), spontaneous neural signals showed wakefulness-like
features (see Figure 1.18A). MUA activation in response to electrical stim-
ulation in the NREM-like state was followed by cessation of firing, pre-
sumably an OFF period, after which MUAs returned to prestimulus lev-
els. In contrast, activation in the awake-like state was followed by a brief
decrease in firing rates, after which the MUAs rebounded at different la-
tencies (see Figure 1.18B,C). However these observations do not seem to
support cortical bistability as a mechanism that attenuates propagation of
neural firing responses. That is so, because administration of kainate (an
ionotropic glutamatergic receptor agonist) in that study did not enhanced
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Figure 1.17 (previous page): auditory cortex (first column) and motor cortex
(second column). Horizontal green bars mark the duration of the stimulus. Ver-
tical green lines mark the onset of the sound. In contrast to the robust responses
observed in auditory cortex, the evoked LFP responses in motor cortex are not
associated with an evoked MUA. Note that the positive peak (red asterisk) corre-
sponds to poststimulus suppression of neural activity in auditory cortex but not in
motor cortex. Figures taken from [66]. (B). Superimposed event-related LFP (top
row) and firing rates (bottom row) in motor cortex (first column) and somatosen-
sory cortex (second column) in response to electrical stimulation of motor cortex
with biphasic 400-µs current pulses during wakefulness. Vertical green lines mark
the onset of the tone. Each LFP trace comes from a recorded LFP along the elec-
trode shaft. Each firing rate trace represents a single regular spiking neuron from
the same electrode. Note that the evoked LFP signals correspond to evoked local
spike responses in motor cortex but not in somatosensory cortex. Figures taken
from [96].

propagation of neural firing responses although it abolished the neural al-
ternations between OFF and ON [90] (see Figure 1.18D). This evidence
amplifies that the coincidence of cortical bistability and attenuated propa-
gation of neural firing responses does not imply cortical bistability as the
mechanistic account fo attenuation. This is another example of correlative
evidence that does not indicate a causal relationship and may still reflect a
hidden underlying mechanism.

Furthermore, experiments in rat motor cortex during wakefulness have
shown that neural firing responses to electrical stimuli included rebound
firing following a period of silence activity, presumably an evoked OFF
period [96] (see Figure 1.19A). These observations may also challenge the
view that OFF periods are a sufficient mechanisms to impair causal inter-
action between cortical neurons. Moreover, evoked OFF periods appear
to be an insufficient explanation for the heterogeneity of modulation of
neural firing responses to auditory stimuli in downstream areas to A1 dur-
ing NREM sleep [65, 67, 68] (see Section 1.2.2). For instance, it remains
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Figure 1.18: Different propagation patterns of electrical stimulation in ferret
cortical slices during NREM- and wakefulness-like dynamics. (A). Spontaneous
multi-unit activity (MUA) of cortical slices without pharmacological treatment
shows NREM-like dynamics (blue), whereas wakefulness-like dynamics (red) oc-
cur after administration of noradrenergic and cholinergic agonists. To compensate
for large fluctuations, MUAs were logarithmically scaled, hence the arbitrary unit
(a.u.) in the vertical axis. (B). Superimposed evoked MUAs to electrical stimula-
tion in a channel during NREM-like (blue) and wakefulness-like (red) states. Note
that the black curve is the average over 15 trials. (C). For all channels of the same
slice (the black arrow on the right represents the channel on panel B), the central-
ized (A-scored with respect to peristimulus activity) averaged MUA are shown.
Note that the channels are sorted by the total amount of activity significantly dif-
ferent from zero. (D). Same as panel A-C, but for the kainate condition. Note that
the slow neural oscillation is abolished (first row), but the propagation pattern is
not comparable to the wakefulness-like condition. Figures taken from [90].
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unclear why the evoked OFF periods in A2 do not attenuate propagation
of neural firing responses during NREM sleep, unlike their counterparts
in PRC. Finally, given the identical mechanism underlying evoked and
spontaneous OFF periods—i.e., a neural inactive state due to activation
of activity-dependent potassium currents during neural active states—it
remains unclear how evoked OFF periods can attenuate incoming neural
signals, whereas spontaneous OFF periods do not systematically attenuate
incoming neural signals. Given these considerations, it appears that evoked
OFF periods are an insufficient explanation for attenuated propagation of
neural firing responses in the cerebral cortex during NREM sleep.

Moreover, auditory stimulation studies suggest that sleeping individu-
als can perform some degree of sensory processing during NREM sleep [48,
50, 51, 60, 63, 52, 53, 54, 55]. Processing of speech stimuli requires the
integration of low-level acoustic features to extract higher-level linguis-
tic units, which does not seem to fit with a disruption of stimulus-specific
interaction between cortical areas due to cortical bistability. Another ob-
servation that challenges cortical bistability as an explanation to attenuated
propagation of stimulus-evoked activities during NREM sleep is that ex-
perimental observations suggest that neural markers for the amplification
of relevant auditory signals are weaker in the second half of the night than
in the first half [55]. In contrast, fewer sleep slow waves occur in the sec-
ond half of the night [97] and the tendency for cortical bistability should
decreases in the second half of the night given that bistability tendency
decreases with decreasing sleep pressure [29].

1.3.4 The Missing Piece of the Puzzle: Strength of Cortico-
cortical Synapses

Although, to our knowledge, there is no study investigating the role of
synaptic pathways in different propagation patterns of neural firing re-
sponses in the cortex during NREM sleep and wakefulness, several studies
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suggest that it is not due to changes in synaptic pathways but to changes
in thalamocortical dynamics [81, 2, 3]. The authors in [3] claimed that
the comparable percentage of contacts with significant evoked LFP signals
during NREM sleep and wakefulness in response to single-pulse electri-
cal stimulation argue against disruption of synaptic pathways in NREM
sleep. However, it is important to note that these observations were based
on evoked LFP signals (filtered at 0.5-300 Hz), which contain little infor-
mation about spike activity. A careful review of extracellular recordings in
rats shows that significant evoked LFP signals are elicited at sites far from
the stimulation site, presumably due to volume conduction and/or presy-
naptic activity [69], although there is no evoked spike activity at these same
sites [66, 96] (see Figure 1.17A,B). Another consideration is that neural
firing responses during NREM sleep may be significantly different from
baseline but still contain less information than awake responses (see Sec-
tion 1.4). Overall, it remains unclear to what extent the same percentage
of significant evoked LFP signals during NREM sleep and wakefulness [3]
argues against disruption of synaptic pathways during NREM sleep com-
pared with wakefulness.

It is important to acknowledge that there is a lack of experimental stud-
ies examining the role of synapses. However, the arguments put forward
so far suggest that changes in thalamocortical dynamics (including tha-
lamic and cortical dynamics) during NREM sleep are an insufficient ex-
planation for the attenuated propagation of neural firing responses in the
cerebral cortex during NREM sleep compared with wakefulness. These
arguments suggest the existing role of synaptic pathways in different prop-
agation patterns of neural firing responses in the cortex during wakefulness
and NREM sleep. Synapses in the transthalamic model can be divided
into two classes: those involved in the cortico-thalamo-cortical (CTC) and
those involved in the cortico-cortical (CC) pathways.

A recent study in mice examined the role of the CTC pathways and sug-
gested that burst firings from thalamic neurons to the cerebral cortex via the
CTC pathways are critical for generating different propagation patterns of
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evoked neural responses during wakefulness and anesthesia [96]. Single-
unit recordings from the motor cortex (MO) and somatomotor-related tha-
lamic areas (SM-TH) in mice showed that evoked neural firing responses
to electrical stimulation from MO during wakefulness consisted of an ini-
tial response followed by cessation of firing, presumably OFF period, after
which the evoked responses rebounded (see Figure 1.19A). Cortical re-
bound responses were shown to correlate with the preceding evoked SM-
TH burst firings during wakefulness (see Figure 1.19B,C). However, dur-
ing anesthesia, after administration of isflorane, the cortical rebound re-
sponses disappeared, although the initial responses were preserved (see
Figure 1.19A). In addition, the probability of burst firings and the relative
timing between thalamic evoked activity and cortical rebound responses
decreased (see Figure 1.19B,C). The authors claimed that these observa-
tions indicate the importance of CTC pathways and dynamics of thalamic
relay neurons for cortical rebound responses.

Nevertheless, it remains unclear how these patterns of evoked activity
in the cerebral cortex may disappear during NREM sleep, in which thala-
mic neurons switch to the burst firing model and have a higher tendency
to fire bursts [17, 19, 23]. Moreover, perturbations in cortical slices of fer-
rets, lacking the thalamus, have shown that rebound spike activity follows
initial activation under wakefulness-like condition [90]. Although these ar-
guments are not sufficient to rule out the possible role of CTC synapses and
thalamic dynamics, these considerations suggest that CC synapses play a
role in different propagation patterns of neural firing responses in the cere-
bral cortex during NREM sleep and wakefulness.

Altered strength of CC synapses during NREM sleep compared with
wakefulness could explain the different propagation patterns of neural fir-
ing responses. The change in CC synaptic strength is consistent with
the view that neuromodulators from the ascending arousal network in-
crease neurotransmission in cortical neurons during wakefulness by in-
creasing the signal-to-noise ratio [17]. Another possible explanation for
the weakened CC synapses during NREM sleep could be the downscal-
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Cortico-Thalamo-Cortical Interactions Modulate Evoked
Neural Firing Responses in the Cerebral Cortex in Mice

Figure 1.19: Cortico-thalamo-cortical interactions modulate evoked neural fir-
ing responses in the cerebral cortex in mice. (A). Average evoked neural firing
responses in MO (top row) and SM-TH (bottom row) to electrical stimulation of
MO in the awake state (left) and under anesthesia (right). Vertical green lines
mark electrical stimulation onset. Firing rates are z-scored using average pre-
stimulus firing rate of all regular spiking (RS) neurons recorded from the Neu-
ropixels probes (n is the number of neurons). Note that cortical rebound responses
decrease during anesthesia. (B). Spike latency in the 100-300 ms time window
(around cortical rebound responses) for responsive RS neurons in stimulated cor-
tex (green) and in the SM-TH (pink) under all conditions. (C). The probability of
burst firings (proportion of total trials) in SM-TH within 75-300 ms (next page)

57



Figure 1.19 (previous page): (around cortical rebound responses) after stimulus
onset for the two conditions (N=12 mice). Boxplots show median, 25th, and 75th
percentiles; whiskers extend from the box by 1.5 IQR. p < 0.01. Figures taken
from [96].

ing of the conductance of excitatory synapses, a hypothesis established by
researchers Giulio Tononi and Chiara Cirelli as synaptic homeostasis hy-
pothesis (SHY).

Synaptic homeostasis hypothesis (SHY)

SHY suggests that sleep is the price the brain pays to renormalize synaptic
weight [98, 99, 100, 101]. SHY predicts that synaptic strength in several
cortical circuits decreases during NREM sleep due to net synaptic upscal-
ing during wakefulness (see Figure 1.20A).

Briefly, SHY explains that the neuromodulatory milieu during wake-
fulness (see Section 1.1.2) results in the expression of cellular correlates
of synaptic upscaling in many brain regions. As a result, the synaptic
pathways that are activated in response to stimuli coming from external
environment are upscaled during wakefulness, resulting in learning and
memory functions of the brain. On this basis, even spontaneous neural
activity during wakefulness can result in synaptic upscaling in several cor-
tical circuits. Alternatively, changes in the neuromodulatory milieu dur-
ing NREM sleep decrease expression of the cellular correlates of synap-
tic upscaling but increase expression of the cellular correlates of synaptic
depotentiation/depression. In this view, spontaneous neural activity dur-
ing NREM sleep does not results in synaptic upscaling, and synapses may
downregulate via mechanisms of depotentiation/depression (see for more
details [98, 99, 100, 101]).

There is ample molecular, electrophysiological, structural, and ultra-
structural evidence supporting SHY (see for review [98, 99, 100, 101]).
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Synaptic strength can be defined by several markers. For instance, one
molecular measure of synaptic strength could be the expression of excita-
tory glutamatergic AMPA (Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazole
Propionic Acid) receptors at excitatory synapses [102]. Experiments in
rats have shown that the expression of AMPA receptors at the synaptic
level in the rat cerebral cortex was higher during wakefulness than during
sleep [103].

Axon-spine interface (ASI) at excitatory synapses is a morphologi-
cal measure for synaptic strength at the ultrastructural level [104]. Se-
rial electron microscopy studies in mice have shown that the size of the
ASI was larger on average during wakefulness than during sleep (see Fig-
ure 1.20B). It is important to note that these observations did not distin-
guish between NREM sleep and REM sleep. Nonetheless, these observa-
tions may broadly suggest that synaptic strength at excitatory synapses is
greater during wakefulness than during NREM sleep.

Distance–selective synaptic homeostasis

An increase in the strength of CC synapses (upscaling of excitatory con-
nections in SHY terminology) seems to be a plausible mechanism that en-
hances propagation of neural firing responses in wakefulness compared
with NREM sleep. Upscaling of excitatory connections in wakefulness
may result in stronger driver inputs, which could explain the larger spa-
tiotemporal extent of response propagation in TMS studies (see Section 1.2.3)
or greater evoked neural responses in higher cortical areas to auditory stim-
uli (see Section 1.2.2). However, it is possible that synaptic upscaling in
the awake state does not guarantee enhanced propagation of neural firing
responses.

Studies using in vitro techniques have shown that spontaneous synap-
tic activities modulates the gain of neural responses [105]. The higher the
spontaneous synaptic activity, the less responsive neural populations are
to driver inputs (injected currents). Evoked firing rates to constant driver
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Figure 1.20: Schematic diagram describing the synaptic homeostasis hypothesis
(SHY). (A). Renormalization of synaptic weight in the sleep-wake cycle. Due
to ongoing learning and memory processes, synaptic strength increases during
wakefulness in many brain circuits (red lines in the bottom sagittal view of human
brain). During sleep, synaptic strength decreases in most, if not all, circuits to
compensate for the net increase during wakefulness. ASI, axon-spine interface;
AMPARs, AMPA receptors. Figure taken from [101]. (B). Electron microscopy
of cortical synapses in mice. Top. Examples of presynaptic and postsynaptic el-
ements in layer 2 of the primary motor cortex of a mouse, postnatal day 30. The
contact area between the presynapse (synaptic vesicle) and postsynapse (spiny
head) is referred to as the ASI and is highlighted in red. Bottom. Probabil-
ity density of ASI size (log-transformed) in mice at postnatal day 30 for sleep
(in blue), wakefulness (in yellow), and sleep deprivation (in red). Note that the
ASI for the awake and sleep-deprived groups of animals overlap, likely indicating
synaptic saturation and the need for sleep to renormalize synapses. Figures taken
from [104].
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currents were found to decrease when spontaneous synaptic activity was
increased for pyramidal neurons in slices in a balanced configuration (i.e.,
increasing inhibition to regulate overexcitation) without excessive excita-
tory or inhibitory factors.

Therefore, upscaling of excitatory synapses (synaptic upscaling) in a
balanced configuration in the waking state appears to be a phenomenon
that needs fine tuning between two opposing effects on cortical neural fir-
ing responses: driving and pulling effects. Although synaptic upscaling in
wakefulness may produce stronger driving forces from one cortical area
to another, the higher spontaneous synaptic activities in wakefulness may
attenuate neural evoked responses. One way to overcome the pulling ef-
fect of spontaneous synaptic activities in wakefulness is that synaptic up-
scaling occurs preferentially between distinct neural networks rather than
within local and recurrent connections. We have coined this hypothesis as
distance–selective synaptic homeostasis.

Distance-selective synaptic homeostasis states that upscaling of inter-
synapse (intercortical excitatory synapses formed between different corti-
cal columns) should be stronger than upscaling of intra-synapse (intracor-
tical excitatory synapses formed within a cortical column). This hypoth-
esis predicts that synaptic upscaling in wakefulness favors driver inputs
over spontaneous synaptic activities, enhancing propagation of neural fir-
ing responses along a hierarchical cortical processing chain in wakefulness
compared with NREM sleep.

To get a clear idea of our hypothesis, imagine a neural system with two
distinct cortical columns that are interconnected and can represent different
cortical columns, one from the primary auditory cortex (A1) and the other
from perirhinal cortex (PRC). We know from experiments that the evoked
neural responses in A1 during NREM sleep and wakefulness to auditory
stimuli are comparable. However, the evoked neural responses in the PRC
are larger during wakefulness than during NREM sleep.

Imagine that, accepting SHY, excitatory synapses are upscaled in wake-
fulness in a balanced configuration. Note that the increase in inhibition is
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just to cancel out overexcitation due to upscaling of excitatory synapses.
Given the intracortical and intercortical excitatory connections, there are
three synaptic upscaling scenarios in wakefulness: local–selective, homo-
geneous, and distance–selective. Note that both intra- and inter-synapses
are upscaled in the waking state, but the relative strength of upscaling re-
sults in three scenarios. A local–selective synaptic upscaling scenario cor-
responds to stronger intra-synaptic upscaling over inter-synaptic upscal-
ing; homogeneous synaptic upscaling scenario corresponds to equal intra-
synaptic upscaling and inter-synaptic upscaling; and, finally, distance–
selective synaptic upscaling scenario corresponds to stronger inter-synaptic
upscaling over intra-synaptic upscaling, hence the names.

We hypothesize that only spatial-selective synaptic upscaling can ex-
plain an enhanced neural firing responses in the PRC during wakefulness
compared with NREM sleep. In the following we will develop such choice.
Synaptic upscaling in a balanced configuration from NREM sleep to wake-
fulness results in higher spontaneous synaptic activities in the PRC during
wakefulness compared with NREM sleep. This is true even if we assume
that spontaneous presynaptic firing to the PRC (including spontaneous A1
and recurrent PRC firing) is comparable in NREM sleep and wakefulness,
which is an upper bound because firing rate in NREM sleep should be
smaller than wakefulness due to the Up and Down states in NREM sleep.
Synaptic upscaling in wakefulness increases the driving input from A1 to
PRC compared with NREM sleep for all three synaptic upscaling scenar-
ios. Note that this is due to the synaptic upscalings in the awake state, even
though the evoked neural responses in A1 are comparable in NREM sleep
and the awake state. From a PRC perspective, however, only the signal-to-
noise ratio (SNR) is important. The higher the SNR, the higher the evoked
responses.

It is important to point out that the following part is not an analytical
derivation, but a very intuitive way to understand the necessity of distance–
selective synaptic upscaling in the waking state. Later, in the Result chap-
ter, we will provide ample numerical evidence for it. Let us define SNR
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as the ratio between the driver input, i.e., the signal, and the spontaneous
synaptic activities, i.e, the noise. This definition of SNR has been used
elsewhere as well [17]. Therefore, the driver input to PRC, in a simplis-
tic view, is the postsynaptic excitatory currents in PRC due to presynaptic
evoked firing responses in A1. The spontaneous synaptic activities in PRC
consist of two contributions: postsynaptic excitatory currents due to spon-
taneous presynaptic firing activities in A1 and postsynaptic excitatory cur-
rents due to spontaneous recurrent firing activities in PRC. Let us denote
intra-synaptic upscaling by βintra and inter-synaptic upscaling by βinter.
Then, SNR is proportional to the ratio between driver and spontaneous
synaptic activities: SNR ∝ βinter

βintra+βinter
. Note that βintra, βinter > 1 in

wakefulness and βintra = βinter = 1 in NREM sleep. The three synap-
tic upscaling scenarios in the awake state are as follows: local–selective
(βintra > βinter), homogeneous (βintra = βinter) and distance–selective
(βintra < βinter). Therefore, the SNR for local–selective synaptic upscal-
ing is lower in wakefulness than in NREM sleep; the SNR for homoge-
neous synaptic upscaling is comparable in wakefulness and NREM sleep;
the SNR for distance–selective synaptic upscaling is greater in wakefulness
than in NREM sleep.

It is important to emphasize that neural systems are nonlinear systems,
which makes the explanation in the previous paragraph simplistic. One
source of nonlinearity not considered in the above explanation is feedback
loops. Feedback from PRC to A1 may affect the response of A1, which in
turn may affect the response in PRC.

1.3.5 Summary
There is much evidence for attenuation of propagation of neural firing
responses in the cerebral cortex during NREM sleep compared to wake-
fulness. However, the underlying mechanisms are unknown. However,
the underlying mechanisms are unknown. The attenuated propagation can
be attributed to the altered dynamics of the neural populations and/or the
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strength of the synaptic pathways involved in propagation patterns. The
current scientific consensus is that the altered dynamics of the thalamo-
cortical network is the major cause of this change. However, as far as we
know, there is insufficient evidence to support this view and changes in
strength of the cortico-cortical synaptic pathways has not been yet studied.

The cortex and thalamus innervate each other by forming massive ex-
citatory projections that form cortico-cortical (CC) and cortico-thalamo-
cortical (CTC) pathways [82]. The transthalamic model describes that tha-
lamic and cortical neurons and CTC and CC pathways are at the heart of
propagation of neural firing responses in a hierarchical cortical organiza-
tion [23, 84].

Thalamic neurons include thalamic relay neurons, local inhibitory in-
terneurons, and Thalamic reticular nucleus (TRN). First-order thalamic re-
lay neurons transmit information from the periphery to the cortex, whereas
higher-order thalamic relay neurons transmit information between cortical
areas via CTC pathways [84, 85]. Silent neuromodulatory projections dur-
ing NREM sleep from the ascending arousal network in subcortical areas
(see subsection 1.1.2) alters the dynamics of thalamic and cortical neurons,
which is proposed to represent a mechanism that attenuates propagation of
neural firing responses in the cerebral cortex.

Although direct experimental evidence is lacking, the fact that differ-
ent propagation patterns of electrical stimulation in cortical slices appear
even in the absence of thalamic neurons under NREM- and wakefulness-
like conditions [90] suggests that thalamic dynamics during NREM sleep
and CTC pathways are insufficient explanation for attenuated propagation
of neural firing responses in the cortex during NREM sleep compared to
wakefulness.

Moreover, there are ample considerations that challenges the view that
dynamics of the cortex, the tendency to fall into an OFF period following
periods of intense firing, is a sufficient mechanism attenuating propagation
of neural firing responses. For instance, preserved evoked neural responses
in A1 during NREM sleep and wakefulness [65, 66, 67, 68] challenges
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effectiveness of spontaneous OFF periods in attenuating propagation pat-
terns.

There are several considerations that also challenge the view [81, 2, 3]
that evoked OFF periods following external stimuli attenuate propagation
patterns in the cerebral cortex. For instance, studies supporting this view
are based on LFP recording signals. Given that LFP signal has no in-
formation about spiking data, and volume conduction of potential signals
and/or presynaptic activity [69] in LFP signals, it remains unclear to what
extent LFP signals can be informative regarding local evoked OFF peri-
ods in which local neural spike activity is suppressed. Moreover, given
the identical neural mechanisms underlying spontaneous and evoked OFF
periods, it remains unclear how evoked OFF periods, unlike spontaneous
OFF periods, can systematically attenuate propagation patterns.

Although, to our knowledge, there is no study investigating the role of
synaptic pathways several studies suggested that the different propagation
patterns in the cerebral cortex in NREM sleep compared to wakefulness is
not due to changes in synaptic pathways but to changes in thalamocortical
dynamics [81, 2, 3]. Authors [3] showed that the percentage of contacts
with significant evoked LFP signals in response to single-pulse electrical
stimulation was similar in epilepsy patients in NREM sleep and awake,
arguing against disruption of synaptic pathways in NREM sleep [3]. How-
ever, it is important to note that these conclusions are based on evoked
LFP signals (filtered at 0.5-300 Hz), which contain little information about
spike activity. For instance, extracellular recordings in rats and mice shows
that significant evoked LFP signals are elicited at sites far from the stimu-
lation site, even though there is no evoked spike activity [66, 96], presum-
ably due to volume conduction and/or presynaptic activity [69]. Another
consideration is that evoked responses during NREM sleep may be signif-
icant compared with peristimulus activities, but still contain less informa-
tion (see subsection 1.4) than in awake state.

It is important to acknowledge that there is a lack of experimental stud-
ies examining the role of synapses. However, the arguments put forward
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so far suggest that changes in thalamocortical dynamics (including both
thalamic and cortical dynamics) during NREM sleep are an insufficient
explanation for the attenuated information propagation in the cerebral cor-
tex during NREM sleep compared with wakefulness. Moreover, pertur-
bations in cortical slices from ferrets lacking the thalamus have shown
graded propagation of perturbation in wakefulness-like than NREM-like
condition [90]. These considerations suggest that CC synapses play a role
in different propagation patterns of neural firing responses in the cerebral
cortex during NREM sleep and wakefulness.

In agreement with synaptic homeostasis hypothesis (SHY) [98, 99,
100, 101], upscaling of excitatory CC synapses in wakefulness may re-
sult in stronger driver inputs, which could enhance propagation of neural
firing responses in wakefulness compared to NREM sleep. However, it is
possible that synaptic upscaling in a balanced configuration in the awake
state does not ensure enhanced propagation patterns. For instance, studies
using in vitro techniques have shown that spontaneous synaptic activities
modulate the gain of neural responses [105]. The higher the spontaneous
synaptic activity, the less responsive neural populations are to driver inputs
(a constant injected current).

We propose that synaptic upscaling in the waking state is a phenomenon
with two opposing effects on neural firing responses: driving and pulling
effects. Although synaptic upscaling in a balanced configuration in wake-
fulness may produce stronger driving forces from one cortical area to an-
other, the higher spontaneous synaptic activities in wakefulness may at-
tenuate neural evoked responses. One way to overcome the pulling effect
of increased spontaneous synaptic activities in wakefulness is that synap-
tic upscaling occurs preferentially between distinct neural networks rather
than within local and recurrent connections. We have coined this hypothe-
sis as distance–selective synaptic homeostasis.

Distance-selective synaptic homeostasis states that inter-synaptic up-
scaling should be stronger than intra-synaptic upscaling in wakefulness.
This way, synaptic upscaling in wakefulness favors driver inputs over spon-

66



taneous synaptic activities, enhancing propagation of neural firing responses
along a hierarchical cortical processing chain in wakefulness compared
with NREM sleep.

1.4 Information Propagation
One of the most common ways that neurons use to interact is by triggering
action potentials (spikes). Action potentials are fast and high amplitude
changes in the membrane potential that are transmitted between neurons.
Neural spikes can be spontaneously triggered or evoked by an external
stimulus. The evoked neural spikes can be unveiled by repeating the stim-
ulus many times to obtain average neural firing responses (the peristimulus
time histogram (PSTH) in spike-based theories or the average firing rate in
rate-based theories) under the same stimulus conditions.

In a simplified view of a hierarchical neural processing chain, the neu-
ral spikes elicited by a group of neurons (or by a single neuron) vary in
response to an external stimulus. The neural firing responses in this group
cause changes in the neural spike train of a postsynaptically connected
group of neurons (or in a single neuron), and so on [106, 107]. Neural
spikes in the postsynaptic group carry information about the neural firing
responses of the presynaptic group. But, what is information?

We refer to information from the neuron’s point of view: "a difference
that makes a difference" [108]. We propose two measures to quantify infor-
mation in neural firing responses: information detection and information
differentiation. Information detection measures whether neural firing re-
sponses to an stimulus differ significantly from spontaneous neural firing.
In other words, information detection determines whether neural firing re-
sponses can be statistically attributed to presentation of a stimulus or not.

Although information detection is necessary for perception, it does not
necessarily guarantee a high level of information about external stimuli
coded in neural firing responses. For instance, imagine that neural firing
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responses to two different stimuli, each, differ significantly from sponta-
neous neural firing activities. However, neural firing responses to these
two stimuli may not differ significantly from one another. This reveals that
neural firing responses do not contain information to distinguish between
stimuli. Note that this case does not indicate a lack of information content
in neural firing responses, but attenuated information content, because it
is still able to distinguish neural firing responses from spontaneous neural
firing activities.

Information differentiation measures whether neural firing responses
to different stimuli differ significantly from one another. In other words,
information differentiation measures whether neural firing responses can
be attributed to different stimuli or not. Information differentiation is lim-
ited to the ensemble of stimuli. For instance, information content in neural
firing responses can be high for the set of stimuli tested, but may decrease
with respect to a new stimulus. Information detection and differentiation
are sufficient to determine information content in neural firing responses of
a neural system. A decrease in information detection and/or differentiation
implies attenuated information content in neural firing responses.

Changes in propagation of information between two neural groups in a
hierarchical neural processing chain under two different conditions can be
quantified by measuring information content in each neural group in each
condition. For instance, imagine that information content (information de-
tection and differentiation) in a presynaptic neural group is preserved un-
der two different conditions. Moreover, in the postsynaptic neural group,
information detection is preserved under both conditions, whereas infor-
mation differentiation is not. This implies that information content in the
postsynaptic group is attenuated despite preserved information content in
the presynaptic group. Accordingly, it can be claimed that propagation of
information from the presynaptic to the postsynaptic neural group is atten-
uated from one condition to the other one. Note that this argument holds
true for both spike-based and rate-based theories.

To quantify information detection and differentiation in a neural group,
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supervised or unsupervised machine learning algorithms can be employed.
In this study we focus on supervised techniques, but it is also important to
extend the scope to unsupervised techniques in future works. In a super-
vised framework, information detection can be measured as the accuracy
of an ideal observer to distinguish between neural firing responses to an
stimulus in poststimulus intervals and spontaneous neural firing activities
in peristimulus intervals. A high level of accuracy shows a high level of
information detection in neural firing responses. Furthermore, informa-
tion differentiation can be measured as the accuracy of an ideal observer to
distinguish among neural firing responses in poststimulus intervals to dif-
ferent stimuli in the neural system. A high level of accuracy shows a high
level of information differentiation in neural firing responses. Note that
high levels of information detection and differentiation can also guarantee
high accuracy of an ideal observer with priori knowledge about stimuli to
decode the stimuli features.

The experimental design required to assess information content relies
on a high number of trials in which neural firing responses to various stim-
uli are recorded. It is also important to note that the two measures of infor-
mation detection and differentiation are not mutually exclusive events. For
instance, both information detection and differentiation can be high in one
condition but low in another condition.

Does the literature reviewed in Section 1.2 suggest that information
content along a hierarchical cortical processing chain decreases during
NREM sleep compared with wakefulness?

It is important to highlight that the literature reviewed in Section 1.2 lacks
a systematic and direct quantification of information content along a neu-
ral pathway. However, there are compelling observations indicating that
information content in A1 is preserved during NREM sleep compared to
wakefulness and that it attenuates in higher cortical areas downstream to
A1.
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For instance, single-unit studies in monkeys showed that averaged am-
plitudes and variability of neural firing responses, temporal encoding and
neural tuning curves in A1 are preserved in NREM sleep compared to
wakefulness [65]. Moreover, single-unit studies in rats showed that am-
plitude and selectivity of neural firing responses in A1 are preserved in
NREM sleep compared to wakefulness [66]. Furthermore, a recent human
study also reported that amplitude of neural firing responses along with
mutual information between the ensemble of auditory stimuli and neural
firing responses are preserved in A1 [68]. This evidence might suggest
that the information content in A1 is preserved during NREM sleep com-
pared to wakefulness. For instance, preserved amplitude and standard de-
viation of neural firing responses might indicate preserved information de-
tection. On the other hand, preserved tuning curves, or response selectivity
for stimuli, or mutual information might indicate preserved information
differentiation.

Alternatively, it seems plausible to conclude that information content
in cortical areas downstream to A1 attenuates heterogeneously. Studies in
monkeys [65] suggest that auditory information is preserved in the sec-
ondary auditory cortex, whereas studies in rats [67] suggest that auditory
information is attenuated in perirhinal cortex. Moreover, a recent human
study reported that amplitude of neural firing responses along with mutual
information between the ensemble of auditory stimuli and neural firing
responses attenuate heterogeneously in cortical areas downstream to A1
during NREM sleep compared to wakefulness [68].

This evidence might suggest that information propagation attenuates
along a hierarchical cortical processing chain in NREM sleep compared to
wakefulness. The other line of evidence for attenuation of information con-
tent comes from TMS studies reporting decreased spatiotemporal extent of
cortical activation to TMS stimulation during NREM sleep compared to
wakefulness [70]. These observations were based on current source den-
sity of evoked EEG signals rather than spike activity. Nevertheless, recent
experimental observations show that the amplitude of current source den-
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sity correlates with local spike activity [96]. Therefore, the shorter-lasting
significant current source densities in NREM sleep could be due to a more
rapid attenuation of neural firing responses in NREM sleep compared with
wakefulness. Nevertheless, it is important to note that further data analysis
is needed to draw more robust conclusions about the attenuation of infor-
mation propagation along a hierarchical cortical processing chain during
NREM sleep compared to wakefulness.

Does the literature reviewed in Section 1.3 disclose the mechanisms ac-
counting for attenuated information propagation along a hierarchical
cortical processing chain during NREM sleep compared with wakeful-
ness?

It is important to highlight that nearly all studies reviewed in Section 1.3
have not evaluated information content and are based on amplitude of neu-
ral firing responses. This also applies to the CTC model. The CTC model
proposes a hierarchical organization of the cortex for the propagation of
neural firing responses. Further studies are required to evaluate its validity
when reproducing propagation of information content within the cortex.

To the best of our knowledge, a solid proof of the role of the dynam-
ics of the thalamus in attenuating propagation of information in the cortex
during NREM sleep compared to wakefulness is missing and few studies
are limited to evaluation of amplitude of neural firing responses. Neverthe-
less, preserved amplitude and selectivity of neural firing responses in A1
during spindle and no-spindle moments in NREM sleep in rats [88] might
suggest that spindle mediated inhibition through first-order thalamic relay
neurons in NREM sleep is an insufficient mechanism. Although further
experiments and data analysis are required to evaluate the effectiveness of
the dynamics of the thalamus on attenuation of information propagation in
the cortex, current scientific evidence suggests that the thalamus might not
be the only element at play.

The same arguments for evaluation of information applies to the role
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of the dynamics of the cortex in attenuation of information propagation
during NREM sleep and the strength of CTC and CC synaptic pathways.
Although further experiments are required to assess the effects of the OFF
periods on the information content rather than the amplitude of evoked re-
sponses, these observations and the fact that the spontaneous OFF periods
account for only a small fraction of neural activity during NREM sleep [33]
suggest that the spontaneous OFF periods may not effectively attenuate the
transmission of auditory information in the cerebral cortex.

By and large, we believe that literature reviewed in Section 1.3 sug-
gests that dynamics of the thalamus and the cortex and the strength of CTC
synaptic pathways do not fully account for attenuation of information prop-
agation along a hierarchical cortical processing chain during NREM sleep
compared with wakefulness. Therefore, we investigate the possible role of
the strength of CC synaptic pathways.

It is important to note that this claim depends on the fact that the infor-
mation content about an external stimulus is preserved at the first cortical
population processing the stimuli. Otherwise, the attenuated information
content along a hierarchical cortical processing chain could be an epiphe-
nomenon of the decreased information content at this first station popula-
tion. Thus, more empirical data are needed to draw robust conclusions.
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Chapter 2

METHODS

In this chapter, we describe the methods that is used in this study to eval-
uate our hypothesis. In particular, how synaptic upscaling modulate infor-
mation propagation from one cortical column to another in wakefulness
compared to NREM sleep. To do so, this chapter is devoted into two sec-
tions. In the first section, we provide the computational model used in this
study. Next, we describe the tools we have used to analyze simulated data
by the computational model.

2.1 Computational Model

Computational modeling is a technique using mathematical models to sim-
ulate and study complex systems, especially when analytical solutions are
not available. Computational models rely on several specific conceptual
and mathematical assumptions and use a set of quantitative variables that
characterize the under study system. In computational neuroscience, com-
putational models of neurons are mathematical descriptions of biological
properties of neurons that generate neural activities recorded in laborato-
ries, e.g., electrical membrane potentials, firing rate activities, etc.
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In this section, we describe the computational model and the computa-
tional pipeline used in this study. In the first part, we introduce the neural-
mass model that describes average neural activity of a single cortical col-
umn. In the second part, we extend the model to two cortical columns
coupled bidirectionally with excitatory synapses. Finally, we present the
computational pipeline used to evaluate responses of models to transient
excitatory inputs.

2.1.1 One-Cortical-Column Model
Recordings of the extracellular neural field are thought to capture the su-
perposition of all transmembrane currents, such as the synaptic and ionic
currents [69]. To reproduce the dynamic features of these signals, we used
a neural mass model representing average membrane potential of a neu-
ral cortical column that results in generation of characteristics of NREM
sleep and wakefulness [109, 110]. A single cortical column consists of
pyramidal, p, and inhibitory, i, populations that are interconnected (see
Figure 2.1A for schematic).

Neural Mass Model

The dynamics of average membrane potential of each cortical popula-
tion, Vp/i, is determined by the mathematical formalism of the classical
conductance-based model [111] with one leak, two synaptic currents and
an activity-dependent potassium current as follows:

τpV̇p = −IpL − IpAMPA − IpGABA − τpC−1m IKNa, (2.1)

τiV̇i = −I iL − I iAMPA − I iGABA, (2.2)

where τp/i, I
p/i
L , Ip/iAMPA and Ip/iGABA are, respectively, the membrane time

constant and the leak, AMPAergic and GABAergic currents of population
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p or i. IKNa is the activity-dependent potassium current of the pyramidal
population (see Section 2.1.1). Cm is the membrane capacitance in the
Hodgkin–Huxley model.

Average firing rate of each population is modeled as an instantaneous
function of average membrane potential Vp/i according to a sigmoid func-
tion [112, 113]:

Qp/i(Vp/i) = Qmax
p/i

(1 + tanh(C(Vp/i − θp/i)/σp/i))
2

, (2.3)

where Qmax
p/i , θp/i and σp/i represent the maximum firing rate, firing rate

threshold and inverse neural gain of population p or i, respectively (see
Tables 2.1 and 2.2 for symbol description and parameter value, respec-
tively). Here, C = π

2
√
3

is a constant linking the neural gain to the slope of
the sigmoid function [109]. The nonlinear function is consistent with ex-
perimental observations that firing rate and membrane potential of cortical
neurons in vivo follows a nonlinear increasing curve [26].

Model Synapses

Synapses are the structure that permit signal transmission between and
within populations. They are modeled by presynaptic and postsynaptic
elements. The presynaptic element is the presynaptic activities which have
an intrinsic and an extrinsic origin. The intrinsic or recurrent activity is
the input that each population receives from local pyramidal and inhibitory
populations. The extrinsic element comes from non-explicitly modeled
nearby cortical columns that impinges on population p and i only through
excitatory synapses. This is consistent with the morphology of cortical
neurons, in which pyramidal neurons have larger projecting axons than
the more localized inhibitory axons [114, 115, 116]. This has also been
reflected in numerous computational studies [117, 118, 119, 120, 121].

The model incorporates Dale’s principle: an excitatory (inhibitory)
population performs excitation (inhibition) at all of its synaptic connec-

75



A

Inhibitory (i)

Pyramidal (p)

NipNpi

Npp

Nii

φp

φi

AMPAergic connection

GABAergic connection

Gaussian noise

B

Inhibitory (i)

Pyramidal (p)

NipNpi

Npp

Nii

φp

φi

Inhibitory (i′)

Pyramidal (p′)

Ni′p′Np′i′

Np′p′

Ni′i′

φp′

φi′

Np′p

Npp′

Ni′pNip′

Figure 2.1: Diagram of the neural mass model. (A) A cortical column contain-
ing one pyramidal and one inhibitory population. The couplings between pyrami-
dal and inhibitory populations are mediated through AMPAergic and GABAergic
connections (see Tables 2.1 and 2.2 for symbol description and parameter val-
ues). (B) Neural mass model describing two mutually coupled cortical columns.
The connections between two cortical columns are only AMPAergic, i.e., only the
pyramidal populations target both pyramidal and inhibitory populations from the
other cortical column (see Tables 2.1 and 2.4 for symbol description and parame-
ter values).
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tions to other populations, regardless of the identity of the target popula-
tion. Given a presynaptic population k′ and a postsynaptic population k,
the time course of synaptic activity, skk′ , at time t, depends on the pyrami-
dal or inhibitory nature of the presynaptic population k′.

The postsynaptic element is modeled by ionotropic receptors includ-
ing AMPA and GABA receptors. Synapses are considered AMPAergic for
excitation, i.e., when the population k′ is the pyramidal one, and GABAer-
gic for inhibition, i.e., when the population k′ is the inhibitory one. The
mathematical formalism adopted is the convolution of the presynaptic fir-
ing, Qk′ , with average synaptic response to a single spike αk′ which has an
exponential decay time course [122]:

skk′ = Nkk′Qk′(Vk′) ~ αk′ , (2.4)
αk′ = γ2k′ t exp(−γk′t), (2.5)

where Nkk′ is the mean number of synaptic connections from the presy-
naptic population k′ to the postsynaptic population k. γk′ describes the
time constant of the dynamics of a synapse activated by the presynaptic
firing of the population k′. The set of Equations (2.4) and (2.5) lead to the
second-order differential equation (derived in detail in Appendix A.1):

s̈kk′ = γ2k′ (Nkk′ Qk′(Vk′) + φk − skk′) − 2γk′ ṡkk′ , (2.6)

where Equation (2.6) describes dynamics of synaptic currents due to firing
of the presynaptic population k′ onto the postsynaptic population k. More-
over, the noise φk is simulated independently for each cortical population
as a Gaussian process with zero autocorrelation time constant, with zero
mean and standard deviation of 1.8 ms−1. Note that the Gaussian noise
is applied only on excitatory synapses. The AMPAergic and GABAergic
synaptic currents are defined as:

IkAMPA = ḡAMPA skp (Vk − EAMPA), (2.7)
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IkGABA = ḡGABA ski (Vk − EGABA), (2.8)

where ḡAMPA and ḡGABA are, respectively, the average AMPAergic and GABAer-
gic conductance. EAMPA and EGABA are the reversal potentials of the AM-
PAergic and GABAergic currents.

Activity-Dependent Potassium Current

Slow oscillation is the hallmark of neuronal cortical activity during NREM
sleep and anesthesia. It consists of silent (Down) and persistent (Up) firing
patterns of activity that alternate. Activation of the slow activity-dependent
K+ current has been suggested as a possible mechanism for triggering the
Down state initiation [28, 36, 37, 31]. The sodium-dependent potassium
current IKNa and sodium concentration [Na] are implemented in the model
as follows:

IKNa = ḡKNa
0.37

1 + (38.7[Na] )
3.5

(Vp − EK), (2.9)

τNa ˙[Na] = αNaQp(Vp)− Napump([Na]), (2.10)

where ḡKNa, EK, τNa and αNa correspond to average conductance of IKNa,
the Nernst reversal potential of the IKNa current, the time constant of the
extrusion of sodium concentration and average influx of sodium concen-
tration per firing. Napump is a function representing the sodium pumps that
determines the extrusion of sodium concentration through sodium pumps
(see Appendix A.1 for details).

Upscaling Excitatory Synapses

The neural mass model proposed by [109, 110] is able to generate the
physiological characteristics of the sleeping cortex for particular values
of the parameters. There, the authors showed that by reducing σp and ḡKNa,
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Symbol Value Unit

Qmax
p 0.03 ms−1

Qmax
i 0.06 ms−1

θp, θi −58.5 mV
σp 6.7 mV
σi 6 mV
τp, τi 30 ms
Cm 1 µF/cm2

φp/i 1.8 ms−1

Npp 144 –
Nip 36 –
Npi 160 –
Nii 40 –
γp 70 · 10−3 ms−1

γi 58.6 · 10−3 ms−1

ḡAMPA 1 ms
ḡGABA 1 ms
EAMPA 0 mV
EGABA −70 mV
Ep

L −66 mV
Ei

L −64 mV
ḡKNa 1.9 mS/cm2

EK −100 mV
τNa 1.7 ms
αNa 2 mM ·ms
Rpump 0.09 mM
Naeq 9.5 mM

Table 2.2: Parameter values in one-cortical-column model.
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the model generates the low-amplitude–high-frequency fluctuations in av-
erage membrane potential characteristic of wakefulness. However, with
their proposed set of parameter values, firing rate of the pyramidal popu-
lation is saturated at its maximum, given by Qmax

p of the sigmoid function
Qp(Vp). This can limit evaluation of the model’s responses to inputs due
to response saturation. Therefore, we propose a different set of bifurcation
parameters to place the model in the wakefulness regime.

We choose to upscale average conductance of excitatory synapses to tran-
sition from NREM sleep to wakefulness, consistent with SHY and active
neuromodulatory inputs of synaptic upscaling from subcortical regions.
Excitatory synapses within a cortical column, here now on, are referred
to as intra synapses. In wakefulness, intra synapses are upscaled by a fac-
tor βintra, in a balanced configuration, i.e., increasing inhibition to regu-
late overexcitation of each population. Thus, average conductance of in-
hibitory synapses is upregulated on pyramidal and inhibitory populations
by a factor β p

GABA and β i
GABA, respectively. This procedure guarantee that

intra-synaptic upscalings are in a balanced configuration by keeping the
steady state value of average membrane potential of the pyramidal Vp and
inhibitory Vi populations equal to their values in the Up state during NREM
sleep (see Table 2.2 to compare parameter values between brain states), in
agreement with experimental studies [26, 34]. To avoid, repetition, we
factor the term in a balanced configuration whenever we use synaptic up-
scaling in wakefulness.

Values of Vp and Vi are determined by simulating 500 trials (4 s long in
duration) of NREM dynamics. Distribution of firing rate signals in NREM
sleep is bimodal and the polarized peak of distribution is associated with
Up states. The peak value of distribution of firing rate signals during Up
states is used to compute the steady state value of Vp and Vi in wakefulness.
β p

GABA and β i
GABA on pyramidal and inhibitory populations, respectively, is

upregulated until these Vp and Vi values are obtained for the correspond-
ing intra-synaptic upscaling, βintra, in wakefulness (see Appendix A.2 for
dynamical constraints on β p

GABA and β i
GABA on pyramidal and inhibitory
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βintra = 2 βintra = 3 βintra = 4

β p
GABA 1.961 3.343 4.724

β i
GABA 2.165 3.407 4.65

Table 2.3: Values of β k
GABA for intra-synaptic upscalings in wakefulness in

one-cortical-column model.

populations in one-cortical-column model).
Given above description, the Equations 2.7 and 2.8 transform to :

IkAMPA = βintra ḡAMPA s
intra
kp (Vk − EAMPA), (2.11)

IkGABA = β k
GABA ḡGABA s

intra
ki (Vk − EGABA), (2.12)

Note that in NREM sleep βintra = 1 and β k
GABA = 1 for k ∈ {p, i}.

For the values in wakefulness see Tables 2.3. For full model equations see
Appendix A.1.

2.1.2 Two-Cortical-Column Model

We extend the model to two bidirectionally connected cortical columns
(see Figure 2.1B). Parameters for each cortical column is the same as in
one-cortical-column model (see Table 2.2 and 2.1). We consider that the
connectivity between the two cortical columns is symmetric and excitatory
due to the longer axons of pyramidal neurons as compared to the short-
range axons of inhibitory neurons [114, 115, 116, 117, 118, 119, 120]. For
notation convenience, we use p, i to refer to pyramidal and inhibitory pop-
ulation in the first cortical column and p′, i′ for populations in the second
cortical column (see Table 2.4 for the values of connectivity between two
cortical columns).
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Symbol Value Description

Npp′ , Np′p 16 Mean number of synaptic connections
from p to p′ (and p′ to p)

Nip′ , Ni′p 4 Mean number of synaptic connections
from p to i′ (and p′ to i)

Table 2.4: Connectivity parameters between two cortical columns.

Excitatory synapses between two cortical columns, here now on, are
referred to as inter synapses, as opposed to the intra synapses in each indi-
vidual cortical column. In NREM, excitatory connections in two-cortical-
column increase the excitation on both pyramidal and inhibitory popula-
tions within each cortical column. To counterbalance overexcitation in
NREM, average conductance of inhibitory synapses within each cortical
column is upregulated by a factor β k

GABA, k ∈ {p, i, p′, i′}. To do so,
steady state values of Vp and Vi in one-cortical-column model are de-
termined by simulating a deterministic trial (in the absence of Gaussian
noise) in NREM sleep. Then, these values are used to compute β k

GABA,
k ∈ {p, i, p′, i′}, in NREM sleep in two-cortical-column model (see Ap-
pendix A.2 for dynamical constraints on β k

GABA, k ∈ {p, i, p′, i′}, on pyra-
midal and inhibitory populations in two-cortical-column model). Please
note that due to the symmetry connectivity paradigm the values for pyra-
midal populations in each cortical columns are equal, so is for inhibitory
populations. Note that β p/p′

GABA = 1.18 and β i/i′

GABA = 1.149 in NREM sleep
in two-cortical-column model.

Synaptic upscalings in wakefulness in two-cortical-column model oc-
curs in two directions: intra-connections and inter-connections. Therefore,
synaptic upscalings in wakefulness in two-cortical-column model intro-
duce three synaptic upscaling classes: local-selective (βintra > βinter),
homogeneous (βintra = βinter), and distance-selective synaptic upscaling
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(βintra < βinter). Note that any of the synaptic upscaling cases in wakeful-
ness introduces overexcitation within each cortical columns. To counter-
balance overexcitation, average conductance of inhibitory synapses within
each cortical column is upregulated by a factor β k

GABA, k ∈ {p, i, p′, i′}.
To do so, we used the values of Vp and Vi in Up states in one-cortical-
column model. Then, β k

GABA, k ∈ {p, i, p′, i′}, is upregulated until
these Vp and Vi values are obtained for the corresponding intra- and inter-
synaptic upscaling in wakefulness, βintra and βinter, respectively (see Ap-
pendix A.2 for dynamical constraints on β k

GABA, k ∈ {p, i, p′, i′}, in
two-cortical-column model). By doing so, we keep the steady state value
of Vp and Vi in two-cortical-column model equal to the values in wake-
fulness and Up states of NREM sleep in one-cortical-column model (see
Table 2.5 for values of β k

GABA in wakefulness).
Given above description, the second-order differential equations for

AMPAergic postsynaptic responses in the first cortical column due to the
inter-cortical-column coupling are as follows:

s̈ inter
pp′ = γ2p′ (Npp′ Qp′(Vp′)− s inter

pp′ ) − 2γp′ ṡ
inter
pp′ , (2.13)

s̈ inter
ip′ = γ2p′ (Nip′ Qp′(Vp′)− s inter

ip′ ) − 2γp′ ṡ
inter
ip′ , (2.14)

where Nkp′ is the mean number of synaptic connections from a presynap-
tic pyramidal population p′ in the second cortical column to postsynaptic
populations k, k ∈ {p, i}, in the first cortical column. Therefore, the AM-
PAergic current to the postsynaptic population k in the first cortical column
is as follows:

IkAMPA = βintra ḡAMPA s
intra
kp′ (Vk − EAMPA)

+ βinter ḡAMPA s
inter
kp′ (Vk − EAMPA), (2.15)

IkGABA = β k
GABA ḡGABA s

intra
ki (Vk − EGABA), (2.16)

where k ∈ {p, i}. Swapping indexes between the first and second cortical
column results in the AMPAergic postsynaptic responses in the second cor-
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βintra = 2 βintra = 4 βintra = 15

βinter = 2
β
p/p′

GABA = 2.268 β
p/p′

GABA = 3.650 β
p/p′

GABA = 5.032

β
i/i′

GABA = 2.441 β
i/i′

GABA = 3.683 β
i/i′

GABA = 4.926

βinter = 4
β
p/p′

GABA = 2.422 β
p/p′

GABA = 3.803 β
p/p′

GABA = 5.185

β
i/i′

GABA = 2.579 β
i/i′

GABA = 3.821 β
i/i′

GABA = 5.064

βinter = 15
β
p/p′

GABA = 2.575 β
p/p′

GABA = 3.957 β
p/p′

GABA = 5.339

β
i/i′

GABA = 2.717 β
i/i′

GABA = 3.960 β
i/i′

GABA = 5.202

Table 2.5: Values of β k
GABA, k ∈ {p, i, p′, i′}, for various synaptic upscal-

ings in wakefulness in two-cortical-column model.

tical column due to the inter-cortical-column coupling (see Appendix A.1
for the full model equations).

2.1.3 Computational pipeline
The computational pipeline consists of two stages. In the first stage, we
evaluate spontaneous activity of the model under different scenarios. We
also evaluate sensitivity of the model generating the dynamical features of
NREM sleep for the parameter of the Gaussian noise varied by 10%. Then,
we evaluate changes in the dynamical features of the one-cortical-column
model upon intra-synaptic upscaling given the parameters provided in Ta-
ble 2.2 and Table 2.3. We show that intra-synaptic upscaling generates
wakefulness-like dynamics. Note that synaptic upscaling is always in a
balanced configuration (see subsection 2.1.1) and we omit "in a balanced
configuration" to avoid repetition. Finally, we evaluate the dynamical fea-
tures of the two-cortical-column model in NREM sleep and intra- and
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inter-synaptic upscalings in wakefulness given the parameters provided in
Table 2.2, 2.4 and 2.5.

In the second stage, the models are subject to inputs with increasing
amplitude. Two different types of inputs are applied: injected inputs and
synaptic inputs. Injected inputs correspond to inputs that are modeled as
an excitatory electrical current, Ipinput, to the pyramidal population and are
not synaptic as:

τpV̇p = −IpL − IpAMPA − IpGABA − τpC−1m IKNa + Ipinput, (2.17)

This procedure resembles current injection techniques, hence the name,
and guarantee that the excitatory effect of a given input amplitude is the
same for NREM sleep and various intra-synaptic upscalings in wakeful-
ness. Note that Ipinput is zero before input onset and after input offset.

Synaptic inputs correspond to inputs that are applied through a synapse
mimicking the presynaptic firing of a pyramidal population Q input

pum , which
is not explicitly modeled, hence the name. We consider that the unmod-
eled upstream cortical column forms synapses with the pyramidal and in-
hibitory population in the one-cortical-column model with the mean num-
ber of synaptic connections of Nppum and Nipum (16 and 4, respectively),
where index um stands for unmodeled cortical cortical column. The AM-
PAergic postsynaptic response in the cortical column due to firing of un-
modeled upstream cortical column follows:

s̈ input
kpum = γ2pum (Nkpum Q input

pum − s input
kpum) − 2γpum ṡ input

kpum , (2.18)

where k is either the pyramidal or the inhibitory postsynaptic population
of the cortical column model. Given the synapse from unmodeled cortical
column could be either inter or intra synapse, the excitatory postsynap-
tic current to the postsynaptic population k in one-cortical-column corre-
sponding to the input are as follows:
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Ikinput = β input
inter/intra ḡAMPA s

input
kpum (Vk − EAMPA) (2.19)

for k ∈ {p, i}. Taking into account the postsynaptic currents associated
with the input, Equation 2.1 and 2.2 are as follows:

τpV̇p = −IpL − IpAMPA − IpGABA − τpC−1m IKNa − Ipinput, (2.20)

τiV̇i = −I iL − I iAMPA − I iGABA − I iinput, (2.21)

Inputs, whether injected or synaptic, are modeled as boxcar function
with a duration of 100 ms.

In the second stage of the computational pipeline, we subject the com-
putational models to injected and synaptic inputs. First, the one-cortical-
column model is subject to injected and synaptic inputs. Note that injected
input to the one-cortical-column model, Ipinput, is zero before input onset
and after input offset. Synaptic input to the one-cortical-column mode is
applied through an inter synapse, as:

Ikinput = β input
inter ḡAMPA s

input
kpum (Vk − EAMPA) (2.22)

Given the presence of inter and intra synapses, synaptic upscalings oc-
cur in three synaptic upscaling scenarios: local-selective, homogeneous,
distance-selective synaptic upscalings. Note that Q input

pum is zero before in-
put onset and after input offset.

Then, we subject the two-cortical-column model to injected and synap-
tic inputs. Note that in two-cortical-column model, one of the columns
receives the inputs directly and, from now on, it is deferred as perturbed
cortical column. The second cortical column that does not receive inputs
directly is referred as unperturbed cortical column. Injected inputs to the
two-cortical-column model, Iinput, are applied to the pyramidal population
of the perturbed cortical column (for instance see Equation 2.17). Note that
Ip

′

input is zero for pyramidal population in the unperturbed cortical column.
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Synaptic inputs to the two-cortical-column model are applied to the
perturbed cortical column through an intra synapse, as:

Ikinput = β input
intra ḡAMPA s

input
kpum (Vk − EAMPA) (2.23)

The choice of intra synapse over inter synapse was due to the saturation
of evoked responses in the perturbed column for inter-synaptic upscalings.
Note that Q input

pum is zero for the unperturbed cortical column, so is Ikinput,
k ∈ {p′, i′}.

We applied inputs (whether injected or synaptic inputs) with increasing
amplitudes. Amplitude range of inputs is chosen such that the amplitude
of evoked responses for the largest input amplitude does not saturate.

Numerical Integration

Simulations are implemented and run in Python, using a stochastic Heun
method [123] with a step size of 0.1 ms. The code is available at github.
Each simulation (trial) is run independently, with the initial conditions of
all variables randomly selected from a uniform distribution. Trials are sim-
ulated with the length of 4 s (after discarding the first 4 s from the beginning
of the simulation to eliminate transient dynamics towards the stable solu-
tion).

In the first stage of the computational pipeline, 500 independent tri-
als are simulated separately to validate standard deviation of the Gaussian
noise. Then, 500 trials are simulated separately for NREM sleep and var-
ious synaptic upscalings in wakefulness in one- and two-cortical-column
models, given the parameters in Table 2.2 and 2.4.

Simulations in the second stage consist of two steps. In the first step,
we simulate one deterministic trial (in the absence of Gaussian noise) for
one- and two-cortical-column models subject to injected and synaptic in-
puts to evaluate deterministic responses. We also compute the excitatory-
inhibition (E/I) ratio of synaptic currents on pyramidal population in peri-
stimulus intervals for each brain state and in one- and two-cortical-column
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model. The E/I ratio was defined as the ratio |IpAMPA|/|IpGABA| in peristim-
ulus intervals (see Equations 2.11 and 2.12 for two-cortical-column model
and Equations 2.15 and 2.16 for two-cortical-column model) when the
model is simulated in the absence of the noise (deterministic simulations).
That is so, because the average of this ratio computed in the stochastic con-
dition will approach the deterministic value for sufficiently large number
of trials. Note that | | represents the absolute value function. Note that the
baseline E/I ratio is identical when the models are subjected to injected and
synaptic inputs.

Next, 500 independent trials are simulated separately for NREM sleep
and various synaptic upscalings in wakefulness in one- and two-cortical-
column models subjected to injected and synaptic inputs to evaluate stochas-
tic evoked responses.

2.2 Data Analysis

All data analyses were carried out offline with Python. We analyzed firing
rate signals from the pyramidal populations.

2.2.1 Analysis of Spontaneous Activities

We used the 500 independent trials for each brain state in the first stage of
the computational pipeline to evaluated the dynamical features of sponta-
neous activities. We used firing rate signals of the pyramidal populations
in NREM sleep and various synaptic upscalings in wakefulness in one- and
two-cortical-column models. Note that given the symmetric connectivity
paradigm in two-cortical-column model, analysis of spontaneous activities
were restricted to the pyramidal population in the first cortical columns.
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Analysis of Amplitude-Frequency Content of Firing Rate Signals

To evaluate the spread of the spontaneous firing rate values, we computed
the normalized distribution of firing rate signals for each brain state sepa-
rately with a bin size of 1 mV (for instance see Figures S5.2 and S5.9).

To evaluate the degree of similarity between each time series with its
lagged version, we also computed auto correlation of firing rate signals and
averaged it across 500 trials for each brain state separately (for instance see
Figures S5.3 and S5.4).

To quantify frequency content of firing rate signals in each brain state,
we computed spectrogram. To do so, we first windowed each firing rate
signal in 2 s length intervals with a 90% overlap within which the signal
is considered quasi-stationary [124]. Then, each window was tapered with
a Hann function to control for the spectral leakage, and we computed the
discrete Short-Time Fourier Transform (STFT). Next, the power spectral
density (PSD) on each time window was obtained from the amplitude of
the STFT. Because each brain state were independently simulated and were
not time-locked events, we averaged the PSD over all time windows sepa-
rately for each brain state [125]. To better observe the wide dynamic range
of the firing rate signals, we plotted the spectrogram in units of logarithmic
decibels (dB), defined as:

dB = log10

(
P

Pr

)
, (2.24)

where P is averaged PSD and Pr the reference PSD, set at 1 (mV)2/Hz.
The spectrogram of firing rate signals were averaged over 500 trials for
each brain state (for instance see Figures S5.5 and S5.12).

To quantify changes in each frequency band, we computed power ratio
of each frequency band with respect to the total power within each signal.
Then it was averaged over 500 trials (for instance see Figures S5.6 and
S5.13). Finally, distribution of log ratio between high (>30 Hz) and low (<4
Hz) frequency bands was computed to further verify the different dynamics
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between NREM and synaptic upscalings in wakefulness (for instance see
Figures S5.7 and S5.14)

2.2.2 Analysis of Deterministic Evoked Responses
Trials in the second stage of the computational pipeline were used to eval-
uated evoked responses in NREM sleep and various synaptic upscalings in
wakefulness in one- and two-cortical-column model.

Evoked responses in the absence of Gaussian noise (deterministic evoked
responses) were evaluated for one- and two-cortical-column models sub-
jected to injected and synaptic inputs. Amplitude of evoked responses
with respect to peristimulus intervals at input offset were extracted for
NREM sleep and various synaptic upscalings in wakefulness. Determinis-
tic evoked responses were used to show the pulling and driving effects of
synaptic upscaling on amplitude of evoked responses.

In the following, we used two classes of discriminative and generative
classification models in machine learning techniques to estimate informa-
tion content in stochastic evoked responses.

2.2.3 Discriminative Modeling
We used the 500 independent trials for various input amplitudes of in-
jected and synaptic inputs to evaluate information content separately in
NREM sleep and various synaptic upscalings in wakefulness for one- and
two-cortical-column models. To evaluate information content in stochastic
evoked responses, we used discriminative modeling: binomial and multi-
nomial logistic classification models.

Binomial Logistic classification

To measure information detection, we quantified how well firing rates at
input offset for a given input amplitude are classified from spontaneous ac-
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tivities (firing rates in a random time point in peristimulus intervals). To do
so, a Generalized Linear Model (GLM) was derived separately for various
input amplitudes in NREM sleep and various synaptic upscalings in wake-
fulness to model the true distribution q(y | x) from which data (y, x) were
generated. y is the response variable and takes on either 0 for absence of in-
put (denoting distribution of spontaneous activities) or 1 presence of input
(denoting distribution of evoked responses for the given input amplitude).
The covariate x is the value of firing rate of pyramidal population in the
corresponding distributions. Constructing the GLM proceeded with three
steps of model selection, estimation of model parameters and prediction
[126].

The Bernoulli distribution was selected for modeling due to the binomial–
valued nature of the response variable y ∈ {0, 1}. Bernoulli distribu-
tions are a member of exponential family [127, 128], and the GLM for
Bernoulli distributions is called binomial logistic classification model [126,
129, 128]. Independent simulations across trials satisfied the assumption
of independent observations in GLM.

To estimate model parameters and evaluate performance of the classi-
fication model on making predictions, samples were split into training and
test sets. Samples were composed of 1000 values that were composed of
500 values in the absence of input (class 1) and 500 values for presence
of input (class 2). First, a binomial logistic classification model was fitted
on training set. The Newton-Raphson iterative optimization technique was
carried out to optimize model parameters that maximize the log likelihood
function [127, 129, 130].

Then, model performance on making predictions was evaluated on test
set. To eliminate the effect of class imbalances in training and tests sets,
stratified random sampling was used. 10-fold cross-validation was carried
out to partition randomly samples into 10 subsets (folds) of equal size. All
samples except the first subset were used as training set to fit the bino-
mial logistic classification model. The held-out subset was used as test
set and its samples were predicted by the model to estimate model per-
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formance. The procedure repeated for the all other subsets such that all
subsets were used only once as test set [131]. Model performance was de-
fined as the proportion of the correctly predicted samples in test set [131].
Classification accuracy score, representing model performance estimate,
was averaged over values of 10 performance estimates produced by 10-
fold cross-validation [131]. The classification accuracy score was used as
the measure that quantifies information detection. The larger value of clas-
sification accuracy represents a higher information detection.

Multinomial Logistic classification

To measure information differentiation, we quantified how well firing rates
at input offset for various input amplitudes are classified from one another.
To do so, a Generalized Linear Model (GLM) was derived separately in
NREM sleep and various synaptic upscalings in wakefulness to model the
true distribution q(y | x) from which data (y, x) were generated. y is the
response variable and y ∈ {0, 1, . . . , N}, where N denotes number of in-
puts. The covariate x is the value of firing rate of pyramidal population
in distributions corresponding to each input. Constructing the GLM pro-
ceeded with three steps of model selection, estimation of model parameters
and prediction [126].

The Multinomial distribution was selected for modeling due to the
multinomial–valued nature of the response variable. Multinomial distri-
butions are a member of exponential family, and the GLM for Multino-
mial distributions is called multinomial logistic classification model (also
known as softmax classification). Independent simulations across trials for
various input amplitudes satisfied the assumption of independent observa-
tions in GLM.

As in Binomial Logistic classification, stratified-10-fold cross-validation
was used to optimize model parameters and evaluate performance of classi-
fication models on making predictions. Training sets were used to estimate
model parameters. The Newton-Raphson iterative optimization technique
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was implemented to optimize model parameters that maximize the log like-
lihood function [127, 130, 129]. Then, the model parameters were used to
make predictions on test sets. Model performance was defined as the pro-
portion of the correctly predicted samples in test set [131]. Classification
accuracy score over 10 performance estimates was used as the measure that
quantifies information differentiation. The larger value of classification ac-
curacy represents a higher information differentiation.

2.2.4 Generative Modeling
As an extension, we used generative modeling to evaluate information con-
tent in stochastic evoked responses. We used Gaussian discriminant anal-
ysis (GDA), as opposed to Naive Bayes approach, since the covariate x is
continuous.

Gaussian Discriminant Analysis

To measure information detection we quantified how well firing rates at
input offset for a given input amplitudes are classified from spontaneous
activities. Binomial GDA models the distribution q(x | y) according to a
binomial normal distribution. Then, the Bayes’ rule was used to model the
true distribution q(y | x). q(x | y) was parameterized with a mean and
variance for each response variable. Given the unidimensional covariate x,
mean and variance for each response variable were scalar variables.

To measure information differentiation we quantified how well firing
rates at input offset for various input amplitudes are classified from one
another. Multinomial GDA models the distribution q(x | y) according to a
multinomial normal distribution. As in Binomial GDA, the Bayes’ rule was
used to model the true distribution q(y | x). q(x | y) was parameterized
with a mean and variance for each response variable.

As in Binomial Logistic classification, stratified-10-fold cross-validation
was used separately for Binomial GDA and Multinomial GDA to estimate
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model parameters and evaluate performance of the classification models on
making predictions. Training sets were used to estimate mean and variance
of covariate x for each response variable separately for Binomial GDA and
Multinomial GDA. Then, the model parameters were used along with the
Bayes’ rule to make predictions on test sets separately for Binomial GDA
and Multinomial GDA. Model performance was defined as the proportion
of the correctly predicted samples in test set [131].

Classification accuracy score in Binomial GDA over 10 performance
estimates was used as the measure that quantifies information detection.
The larger value of classification accuracy represents a higher informa-
tion detection. Accordingly, classification accuracy score in Multinomial
GDA over 10 performance estimates was used as the measure that quanti-
fies information differentiation. The larger value of classification accuracy
represents a higher information differentiation.

2.2.5 Significance Tests and Information Theory

Significance Test

In a different approach from machine learning techniques, we used signifi-
cance tests to evaluate how well evoked responses in poststimulus intervals
are different from spontaneous activities in peristimulus intervals.

Since the number of trials was large (500 trials) for the Central Limit
Theorem to hold, we computed an independent t-test value (t-value) at
every time point as t = (x̄1− x̄2)/(s

√
2/n), where x̄1 and x̄2 are averages

across time-locked trials of firing rate signals in poststimulus intervals and
peristimulus intervals, respectively. s is sample standard deviation, whose
variance is s2 = ((n − 1)s21 + (n − 1)s22)/(2n − 1). s21/2 is variance of
variable x1/2 across trials. Statistical significance was set at p-values below
0.05 and Bonferroni correction was used to control for family-wise error in
multiple comparisons of temporal t-tests. The consecutive time points with
a significant difference were referred as t-cluster statistic [132]. The area
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of t-cluster statistic was used as the measure that quantifies information
detection. The larger value of the area of t-cluster statistic represents a
higher information detection.

Information Theory

In a different approach from machine learning techniques, we used infor-
mation theory to evaluate how well firing rates at input offset are informa-
tive about applied inputs. Mutual information measures information about
an input in probability distribution of firing rates as follows [107]:

I(R, sj) =
∑
i

p(ri|sj) log2

p(ri|sj)
p(ri)

, (2.25)

where I(R, sj) is the mutual information between distribution of firing
rates and input sj . p(ri) and p(ri|sj) are, respectively, the probability that
firing rates take the value ri and the conditional probability that firing rates
take the value ri for a given input sj . Summing values of mutual infor-
mation for all inputs results in a scalar mutual information value I(R, S).
The scalar value of mutual information, I(R, S), is a good predictive mea-
sure of information differentiation. A larger separation among distribution
of evoked responses to various input amplitudes results in a larger mutual
information value. Therefore, the larger value of mutual information rep-
resents a higher information differentiation. Note that to compute mutual
information in Equation 2.25, we discretized firing rate signals into 0.3 Hz
bins to compute the probabilities.

2.2.6 Result Validation

It is important to note that evoked neural responses are temporally dy-
namic. Unlike significance test, other methods to quantify information
content were restricted to the evoked responses at input offset. Moreover,
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to quantify information detection, distribution of evoked responses at in-
put offset were evaluated against distribution of spontaneous activities at a
random time point in peristimulus intervals.

To evaluate validity of our result for the choice of time points differ-
ent than used, we first quantified information detection. The distribution
of evoked responses at input offset were evaluated against the distribution
of spontaneous activities at a another random time point in peristimulus
intervals. Then, we quantified information detection and differentiation
at different time points than at input offset. We evaluated distribution of
evoked responses at 20 ms prior and post input offset to compute informa-
tion content in the temporal evoked responses. The reason that we avoided
temporal classification across the time series of evoked responses was due
to the long-lasting and heavy computational jobs for optimization of model
parameters.

Above procedure was carried out for discriminative models, genera-
tive models and mutual information. In addition, we used two different
discretization parameters (0.2 Hz bins and 0.6 Hz bins) for mutual infor-
mation to test validity of our results for different bin size used in mutual
information.
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Chapter 3

RESULTS

In the following chapter, we present results of the computational pipeline
described in Section 2.1.3. Briefly, the computational pipeline consists
of two stages. In the first section we present results of the first stage of
the computational pipeline: evaluation of the spontaneous activity of the
model under different scenarios. We also evaluate sensitivity of the model
generating the dynamical features of NREM sleep for the parameter of
the Gaussian noise varied by 10%. Then, we evaluate changes in the dy-
namical features of the one-cortical-column model upon intra-synaptic up-
scaling. We show that intra-synaptic upscaling generates wakefulness-like
dynamics. Note that synaptic upscaling is always in a balanced configura-
tion (see Section 2.1.1) and we omit "in a balanced configuration" to avoid
repetition. Finally, we evaluate the dynamical features of the two-cortical-
column model in NREM sleep and intra- and inter-synaptic upscalings in
wakefulness.

Next, we present results for the second stage of the computational
pipeline. In the second stage, the models are subject to inputs with increas-
ing amplitude. Two different types of inputs are applied: injected inputs
and synaptic inputs. Injected inputs correspond to inputs that are modeled
as an excitatory electrical current to the pyramidal population and are not
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synaptic (see Equation 2.17). This procedure resembles current injection
techniques, hence the name. Synaptic inputs correspond to inputs that are
applied through a synapse mimicking the presynaptic firing of a pyramidal
population, which is not explicitly modeled, hence the name (for instance
see Equation 2.18). We consider that the unmodeled upstream cortical col-
umn forms synapses with the pyramidal and inhibitory population in the
one-cortical-column model with the mean number of synaptic connections
of Nppum and Nipum (16 and 4, respectively), where index um stands for
unmodeled cortical cortical column. Inputs, whether injected or synaptic,
are modeled as boxcar function with a duration of 100 ms.

In the second stage of the computational pipeline, we subject the com-
putational models to injected and synaptic inputs. First, the one-cortical-
column model is subject to injected and synaptic inputs. Note that inputs
are zero before input onset and after input offset. Then, we subject the
two-cortical-column model to injected and synaptic inputs. Note that in
two-cortical-column model, one of the columns receives the inputs directly
and, from now on, it is deferred as perturbed cortical column. The second
cortical column that does not receive inputs directly is referred as unper-
turbed cortical column.

We also compute the excitatory-inhibition (E/I) ratio of synaptic cur-
rents on pyramidal population in peristimulus intervals for each brain state
and in one- and two-cortical-column model. The E/I ratio was defined as
the ratio |IpAMPA|/|IpGABA| in peristimulus intervals (see Equations 2.11 and
2.12 for two-cortical-column model and Equations 2.15 and 2.16 for two-
cortical-column model) when the model is simulated in the absence of the
noise (deterministic simulations). That is so, because the average of this
ratio computed in the stochastic condition will approach the deterministic
value for sufficiently large number of trials. Note that | | represents the
absolute value function. Note that the baseline E/I ratio is identical when
the models are subjected to injected and synaptic inputs. Results of the
computational pipeline are provided in the ascending order in section 2-5.

We applied inputs (whether injected or synaptic inputs) with increasing
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amplitudes. Amplitude range of inputs is chosen such that the amplitude
of evoked responses for the largest input amplitude does not saturate. It
is important to note that the analysis in this chapter are restricted to the
firing rate of pyramidal populations measured at input offset. Finally, we
show in that our results are valid at time points different than input offset.
We also use a battery of different methods and show that our results are
independent of the analysis used.

3.1 Spontaneous Brain States
The one-cortical-column model contains only one cortical column and is
able to generate electrophysiological signals associated with NREM sleep
(Figure 3.1A). Compared to wakefulness, simulated signals in NREM sleep
reproduce three well-observed features: (1) firing rate signals show large
amplitude fluctuations in NREM sleep, (2) distribution of firing rate signals
is bimodal and (3) they carry more spectral power within the SO (<1 Hz)
and delta (1-4 Hz) frequency bands than in wakefulness. Dynamical fea-
tures of NREM sleep are robust to the changes in the standard deviation of
the Gaussian noise in the model (see Figure S5.1 - S5.7).

In agreement with SHY (see Section 1.3.4), intra-synaptic upscaling
by a factor βintra (see Equation 2.11) shifts gradually the dynamics from
NREM-like to wakefulness-like dynamics (see Figure S5.8 - S5.14). Spon-
taneous firing rate signals show low amplitude fluctuations in wakefulness
(W) compared to NREM sleep (see Figure 3.1B). Distribution of firing rate
signals shifts from a bimodal distribution in NREM sleep to a unimodal
distribution in wakefulness. Moreover, firing rate signals carry lower spec-
tral power within the SO (<1 Hz) and delta (1-4 Hz) frequency bands in
wakefulness than in NREM sleep.

These results are reproduced in the two-cortical-column model as well
(see Figure S5.15 - S5.21). Firing rate signals in NREM sleep in the two-
cortical-column model carry more power on lower frequency bands and

101



0 2 4
Time (s)

0

5

10

15

20

25

30

Fir
in

g 
Ra

te
 (H

z)

A NREM

0 2 4
Time (s)

0

5

10

15

20

25

30

B intra =  2 (W)

0 5 10 15 20 25 30
Firing Rate (Hz)

0.00

0.05

0.10

0.15

0.20

Oc
cu

rre
nc

e

0 5 10 15 20 25 30
Firing Rate (Hz)

0.00

0.05

0.10

0.15

0.20

SO
Delt

a
Th

eta
Alph

a
Beta

Gam
ma

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Po
we

r R
at

io

SO
Delt

a
Th

eta
Alph

a
Beta

Gam
ma

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.0000

0.0025

0.0000

0.0025

Spontaneous Activity of the Pyramidal Population

Figure 3.1: Spontaneous activity in NREM sleep and wakefulness (W) in the
one-cortical-column model. (A) Electrophysiological features of NREM sleep.
Top. Simulated firing rate signals showing large amplitude fluctuations in NREM
sleep between periods of sustained activity (Up state) and silent (next page)
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Figure 3.1 (previous page): activity (Down states). Middle. Average of the
distribution firing rate, which is a bimodal distribution in NREM sleep. Shaded
area corresponds to standard deviation over 500 trials. Bottom. Firing rate signals
carry more spectral power within the SO (<1 Hz) and delta (1-4 Hz) frequency
bands in NREM sleep. Error bar shows standard deviation over 500 trials. (B)
Results as in panel A, but for wakefulness (W). Top. Simulated signals showing
low amplitude fluctuations in wakefulness. Middle. Distribution of firing rate
signals is unimodal in wakefulness. Bottom. Firing rate signals in wakefulness
carry less spectral power within the SO (<1 Hz) compared to the ones’ in NREM
sleep. Signals in wakefulness carry more spectral power within higher frequencies
than in NREM sleep (see the inset).

have larger amplitude of fluctuations compared to the ones’ in wakeful-
ness. However, it is important to note that the dynamical features of NREM
sleep is compromised upon connecting two cortical columns with respect
to the ones for the one-cortical-column model. These results can reflect
experimental observations that cortical de-afferentation boosts dynamical
features of NREM sleep [2].

3.2 Perturbed Brain States

In this section we present results of subjecting the one- and two-cortical-
column models to injected and synaptic inputs.

3.2.1 Injected Inputs to the One-Cortical-Column Model:
Pulling Effect on Information Content

We applied injected inputs with amplitude ranging from 10 mV to 80 mV
by steps of 10 mV to the pyramidal population in the one-cortical-column
model. This procedure is suitable to show the pulling effect (as introduced
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in Section 1.3.4) of intra-synaptic upscaling on response amplitude and
information content.

Deterministic Responses

Simulations in the absence of noise (deterministic evoked responses) show
that intra-synaptic upscaling (i.e.,increasing βintra) generates a pulling ef-
fect on evoked responses (see Figure 3.2A and Figure S5.22A), i.e, de-
crease of the evoked responses. Amplitude of evoked responses (with re-
spect to peristimulus activity) is larger in NREM sleep than in wakefulness.
It is important to note that these results are in agreement with observations
in vitro where increasing spontaneous synaptic activities in a balanced con-
figuration attenuates amplitude of evoked responses [105]. Intra-synaptic
upscaling in a balanced configuration in wakefulness attenuates the E/I ra-
tio of the pyramidal population in peristimulus intervals (see Figure 3.2B).
Interestingly, changes in the E/I ratio in prestimulus interval correlates with
the pulling effect. As the E/I ratio of the pyramidal population decreases
pulling effects on evoked responses to inputs are larger.

Stochastic Responses

To evaluate pulling effects on information content, 500 independent tri-
als in the presence of Gaussian noise were simulated (see Appendix A.1
for the full model equations). Evoked responses to inputs in NREM sleep
have a slow wave shape, on average, that consists of two deflections (see
Figure S5.23). The first deflection reflects an increase in firing rate above
peristimulus values (corresponding to a poststimulus neuronal activity in
response to inputs). The second deflection reflects a decrease in firing rate
that extends beyond input offset (corresponding to a poststimulus suppres-
sion of neuronal activity). Evoked responses in wakefulness consist of an
increase in firing rate above peristimulus values (corresponding to a post-
stimulus neuronal activity in response to inputs), whereas the poststimulus
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Figure 3.2: Pulling effect due to intra-synaptic upscaling on amplitude of evoked
responses in the one-cortical-column model. (A). Amplitude of deterministic fir-
ing rate evoked responses at input offset for various input amplitudes (injected in-
puts) in NREM (red) and various intra-synaptic upscalings in wakefulness (color
coded). Amplitude of evoked responses increases with increasing input ampli-
tude. However, it decreases with increasing intra-synaptic upscaling in wakeful-
ness, showing the pulling effect. (B). The E/I ratio in peristimulus intervals for
NREM (red) and various intra-synaptic upscalings in wakefulness (color coded as
in panel A). Intra-synaptic upscaling in a balanced configuration in wakefulness
cause a decrease of the E/I ratio. Note that the decrease in the E/I ratio in peris-
timulus intervals correlates with the pulling effect due to intra-synaptic upscaling.
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suppression of neuronal activity is either absent or not comparable to the
ones in NREM sleep (see Figure S5.23 and S5.24). These results are in
agreement with results obtained by Nir and colleagues [66].

Evoked responses at input offset have larger values, on average, and
smaller standard deviation with increasing input amplitude in both NREM
sleep and wakefulness (see Figure S5.25). Moreover, increasing the intra-
synaptic upscaling in wakefulness increases the standard deviation of evoked
responses (see Figure S5.25 and S5.26). The decrease in amplitude and in-
crease in standard deviation of evoked responses as synaptic upscaling in-
creases in wakefulness causes the distribution of evoked responses to vari-
ous input amplitudes become closer to the distribution of spontaneous ac-
tivities (for instance see Figure S5.27). Moreover, it causes the distribution
of evoked responses for various input amplitudes to overlap. Therefore,
increasing intra-synaptic upscaling in wakefulness attenuates information
detection and differentiation.

To quantify changes in information detection and differentiation, dis-
criminative models (logistic classification) are implemented (see Section 2.2.3).
Information detection enhances with increasing input amplitude in both
NREM sleep and wakefulness (see Figure 3.3A). Moreover, intra-synaptic
upscaling attenuates information detection in wakefulness. Likewise, in-
formation differentiation is larger in NREM sleep and attenuates with in-
creasing intra-synaptic upscaling in wakefulness (see Figure 3.3B). The
E/I ratio in peristimulus intervals (see Figure 3.2B) is a good predictive of
attenuation of information detection and information differentiation with
increasing intra-synaptic upscaling in wakefulness. It in is interesting that
the strength of E/I ratio in baseline predicts the strength of pulling effects
due to synaptic upscaling.
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3.2.2 Synaptic Inputs to the One-Cortical-Column Model:
Driving Effect on Information Content

Synaptic inputs with amplitude ranging from 0.01 ms−1 to 0.07 ms−1 by
a step size of 0.01 ms−1 are applied through an inter-synapse. Inputs, fir-
ing rate of the unmodeled upstream cortical column, are implemented as
a boxcar function with a duration of 100 ms. Given the presence of in-
ter synapse, synaptic upscalings occur in three synaptic upscaling scenar-
ios: local-selective, homogeneous, distance-selective synaptic upscalings
(as introduced in Section 1.3.4).

Deterministic Responses

Deterministic evoked responses show that increasing the inter-synaptic up-
scaling when the intra-synaptic upscaling in wakefulness is kept constant
generates driving effects on evoked responses (see Figure S5.22B). Am-
plitude of evoked responses at input offset is larger in NREM sleep com-
pared to wakefulness (see Figure 3.4A-C). Moreover, amplitude of evoked
responses increases with increasing inter-synaptic upscaling (i.e., increas-
ing βinter) when intra-synaptic upscaling (i.e., βintra) in wakefulness is
kept constant. It is important to note that the opposite upscaling policy,
i.e., intra-synaptic upscaling when inter-synaptic upscaling is kept con-
stant, shows the pulling effect on amplitude of evoked responses (see Fig-
ure 3.4D). These results show that synaptic upscaling in the presence of
synaptic inputs introduces a competition between pulling and driving ef-
fects on evoked responses.

Stochastic Responses

Stochastic evoked responses at offset have larger values, on average, and
smaller standard deviation with increasing input amplitude in both NREM
sleep and wakefulness (see Figure S5.28). Increasing inter-synaptic up-
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Driving and Pulling Effects on Response Amplitude
One-Cortical-Column Model - Synaptic Inputs

Figure 3.4: Driving and pulling effect due to synaptic upscaling on amplitude
of evoked response in the one-cortical-column model. (A). Amplitude of de-
terministic evoked responses at input offset for various input amplitudes (Inter-
synaptic inputs to the one-cortical-column model) in NREM (red) and various
inter-synaptic upscalings when intra-synaptic upscaling in wakefulness is kept
constant at βintra = 2 (color coded). The driving effect is revealed in the increase
of the amplitude of evoked responses with increasing inter-synaptic upscaling in
wakefulness. Results as in panel A, but for βintra = 3 (B) and βintra = 4 (C).
(D). Pulling effect due to intra-synaptic upscaling on amplitude of deterministic
evoked responses when inter-synaptic upscaling in wakefulness is kept constant
at βinter = 2. Results in panel D reproduce results in Figure 3.2A.
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scaling when intra-synaptic upscaling is kept constant in wakefulness de-
creases standard deviation of evoked responses (see Figure S5.29A-C).
The increase in amplitude and decrease in standard deviation of evoked
responses with increasing inter-synaptic upscaling when intra-synaptic up-
scaling is kept constant in wakefulness causes the distribution of evoked
responses to various input amplitudes become distant to the distribution
of spontaneous activities. Moreover, it cause the distribution of evoked
responses for various input amplitudes to become distant to each other.
Therefore, increasing inter-synaptic upscaling in wakefulness enhances in-
formation detection and differentiation. On the other hand, increasing
intra-synaptic upscaling, when inter-synaptic upscaling is kept constant,
decreases amplitude and increases standard deviation of evoked responses
(for instance see second row in Figure S5.28, and Figure S5.29), hence
resulting in attenuation of information content, as in injected inputs in the
previous Section 3.2.1.

Logistic classification techniques quantified the above descriptions. In-
formation detection enhances with increasing input amplitude both in NREM
sleep and wakefulness (see Figure 3.5A-C). Increasing inter-synaptic up-
scaling when intra-synaptic upscaling is kept constant in wakefulness en-
hances information detection (for instance see Figure 3.5A). However, intra-
synaptic upscaling when inter-synaptic upscaling is kept constant in wake-
fulness attenuates information detection. Note that amplitude of evoked
responses in NREM sleep is larger than in any synaptic upscalings in wake-
fulness (see Figure 3.4 and S5.22B). However, larger standard deviation of
evoked responses in NREM sleep (see Figure S5.29D) prevents informa-
tion detection compared to wakefulness.

Likewise, information differentiation in NREM sleep is not larger than
in wakefulness (see Figure 3.5D). Nevertheless, information differentiation
enhances with increasing inter-synaptic upscaling when intra-synaptic up-
scaling is kept constant in wakefulness. On the other hand, information dif-
ferentiation attenuates with increasing intra-synaptic upscaling when inter-
synaptic upscaling is kept constant in wakefulness.
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Driving and Pulling Effects on Information Content
One-Cortical-Column Model - Synaptic Inputs

Figure 3.5: Driving and pulling effect due to synaptic upscaling on informa-
tion content in the one-cortical-column model. (A). Information detection at in-
put offset for various input amplitudes (Inter-synaptic inputs) in NREM (red) and
various inter-synaptic upscalings when intra-synaptic upscaling in wakefulness is
kept constant at βintra = 2 in wakefulness (color coded). Information detection
increases with increasing inter-synaptic upscaling, a hallmark of driving effect.
Results as in panel A, but for βintra = 3 (B) and βintra = 4 (C). Note that infor-
mation detection decreases overall with increasing intra-synaptic upscaling, which
directly show the pulling effect. (D). Information differentiation at input offset for
NREM (red) and various synaptic upscalings in wakefulness (color coded as in
panel A, B and C). Information differentiation increases with increasing inter-
synaptic upscaling, when intra-synaptic upscaling is kept constant in (next page)
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Figure 3.5 (previous page): wakefulness (dash lines color coded in legend).
On the other hand, information differentiation decreases with increasing intra-
synaptic upscaling, when inter-synaptic upscaling is kept constant in wakefulness.
Error bar shows 95 percent confidence interval. Black dash line represents the
chance-level accuracy = 1

#input amplitudes .

Synaptic upscaling of both intra-connections and inter-connections in-
troduces three synaptic upscaling scenarios: local-selective (βintra > βinter),
homogeneous (βintra = βinter), and distance-selective synaptic upscaling
(βintra < βinter). Rearranging results according to these scenarios shows
that information content in distance selective synaptic upscaling is larger
than homogeneous and local-selective synaptic upscaling in wakefulness
(see Figure 3.6).

3.2.3 Injected Inputs to the Two-Cortical-Column Model:
Information Propagation

Injected inputs with amplitude ranging from 10 mV to 130 mV by a step
size of 10 mV are applied to the pyramidal population in the two-cortical-
column model. The increase in input range compared to Section 3.2.1 is
the result of additional pulling effects due to the second cortical column,
which allows us to explore larger input amplitudes before evoked responses
in the perturbed column saturate.

Deterministic Responses

Deterministic evoked responses in the perturbed column reproduce the re-
sults in Section 3.2.1. Amplitude of evoked responses is larger in NREM
sleep than at any synaptic upscalings in wakefulness. Here, both inter-
and intra-synaptic upscaling generate a pulling effect on the amplitude of
evoked responses in wakefulness since inputs are applied independent of
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Figure 3.6: Driving and pulling effect due to synaptic upscaling on information
content in the one-cortical-column model rearranged by synaptic upscaling sce-
narios. Figures are as in Figure 3.5, but rearranged based on synaptic upscaling
scenarios in wakefulness. Information detection for local-selective (A), homoge-
neous (B) and distance-selective (C) synaptic upscaling scenarios in wakefulness.
(D) Information differentiation (as in Figure 3.5D) for NREM and three various
synaptic upscaling scenarios (color coded as in panel A-C) in wakefulness. Error
bar shows 95 percent confidence interval. Black dash line represents the chance-
level accuracy = 1

#input amplitudes .
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synapse (see Figure 3.7A-C).
As in the one-cortical-column model, synaptic upscaling in wakeful-

ness in a balanced configuration attenuates the E/I ratio of the pyramidal
population (see Figure 3.7D). As the E/I ratio of the pyramidal population
decreases, the pulling effect on evoked responses to inputs increases. It
is important to note that decrease in the E/I ratio is larger for increasing
intra-synaptic upscaling than inter-synaptic upscaling. This is due to the
larger number of intra-connections than inter-connections in the model.

On the other hand, deterministic evoked responses in the unperturbed
column reproduce driving and puling effects of synaptic upscaling. Inputs
travel indirectly to the unperturbed column through inter-synapses. There-
fore, increasing inter-synaptic upscaling when intra-synaptic upscaling is
kept constant in wakefulness generates driving effects in the unperturbed
column (see Figure 3.8A-C). On the other hand, increasing intra-synaptic
upscaling when inter-synaptic upscaling is kept constant in wakefulness
generates pulling effects in the unperturbed column (see Figure 3.8D).

Stochastic Responses

Stochastic evoked responses in NREM sleep have a slow wave shape, on
average, consisting of a poststimulus neuronal activity followed by a post-
stimulus suppression of neuronal activity in response to inputs (see Fig-
ure S5.30). Evoked responses in wakefulness contain only a poststimulus
neuronal activity and lacked the suppression of neuronal activity (see Fig-
ure S5.30 and S5.31)

Logistic classification on evoked responses at offset shows that in-
formation detection decreases with increasing intra-synaptic upscaling in
wakefulness (see Figure 3.9A). Pulling effects of intra-synaptic upscaling
on information content in the perturbed column reproduces results in Sec-
tion 3.2.1.

Despite the obvious decrease in amplitude of evoked responses for in-
creasing inter-synaptic upscaling, the pulling effect on information detec-
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Pulling Effects on Response Amplitude in the Perturbed Column
Two-Cortical-Column Model - Injected Inputs

Figure 3.7: Pulling effects of synaptic upscaling on amplitude of evoked re-
sponses in the two-cortical-column model. Evoked responses corresponds to the
perturbed column. (A). Amplitude of deterministic firing rate evoked responses
at input offset for various input amplitudes (injected inputs) in NREM (red) and
various inter-synaptic upscalings, when intra-synaptic upscaling in wakefulness
is kept constant at βintra = 2 (color coded). Amplitude of evoked responses de-
creases with increasing inter-synaptic upscaling, which shows the pulling effect.
Results as in panel A, but for when intra-synaptic upscaling in wakefulness is kept
constant at βintra = 4 (B) and βintra = 15 (C). Note that amplitude of evoked re-
sponses decreases overall with increasing intra-synaptic upscaling: pulling effect.
(D). The E/I ratio in peristimulus intervals for NREM (red) and various synaptic
upscalings in wakefulness (color coded as in panel A-C). Synaptic (next page)

115



Figure 3.7 (previous page): upscaling in a balanced configuration in wakeful-
ness decreases the E/I ratio in peristimulus intervals. The decrease in the E/I ratio
correlates with the pulling effects of inter- and intra-synaptic upscalings on ampli-
tude of evoked responses to inputs. Note that the decrease in the E/I ratio for in-
creasing intra-synaptic upscaling is larger than those for increasing inter-synaptic
upscaling, resulting in a larger pulling effect on amplitude of evoked responses for
intra-synaptic upscaling.

tion is not obvious. It occurs due to the competition between pulling and
driving effects on the distribution of spontaneous activities and distribu-
tion of evoked responses (see Figure S5.32). It is so because the stan-
dard deviation of distribution of spontaneous activities also changes as a
function of synaptic upscaling. Spontaneous activity is the response of
the model to the Gaussian noise. Gaussian noise is implemented through
an intra-synapse. Therefore, intra-synaptic upscaling is a competition be-
tween pulling and driving effects on amplitude of spontaneous responses
to the Gaussian noise. Pulling effect is due to the intra-synapse represent-
ing recurrent synapses and driving effect is due to the intra-synapse that
carries Gaussian noise to cortical column. On the other hand, increase in
inter-synaptic upscaling generates pulling effects and decreases standard
deviation of distribution of spontaneous activities (see Figure S5.33).

Nevertheless, synaptic upscaling does not enhance information detec-
tion in the unperturbed column unless inter-synaptic upscaling is larger
than intra-synaptic upscaling (see Figure 3.9B). This is due to the compe-
tition of intra- and inter-synaptic upscaling on amplitude and standard de-
viation of evoked responses and spontaneous activities (see Figure S5.34).

Likewise, information differentiation in the perturbed column in NREM
sleep is larger than at any synaptic upscaling in wakefulness (see Fig-
ure 3.10A). Moreover, it diminishes with increasing intra-synaptic upscal-
ing when inter-synaptic upscaling is kept constant in wakefulness. On the
other hand, information differentiation in the unperturbed column in wake-
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Driving and Pulling Effects on Response Amplitude in the Unperturbed Column
Two-Cortical-Column Model - Injected Inputs

Figure 3.8: Driving and pulling effect due to synaptic upscaling on the ampli-
tude of evoked response in the two-cortical-column model. Evoked responses
corresponds to the unperturbed column. (A). Amplitude of deterministic firing
rate evoked responses at input offset for various input amplitudes (injected inputs)
in NREM (red) and various inter-synaptic upscalings, when intra-synaptic up-
scaling in wakefulness is kept constant at βintra = 2 (color coded). Amplitude of
evoked responses increases with increasing inter-synaptic upscaling, which shows
the driving effect. Results as in panel A, but for when intra-synaptic upscaling in
wakefulness is kept constant at βintra = 4 (B) and βintra = 15 (C). (D). Pulling
effect due to intra-synaptic upscaling on amplitude of evoked responses when
inter-synaptic upscaling in wakefulness is kept constant at βinter = 2: pulling
effect.
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Pulling and Driving Effects on Information Detection
Two-Cortical-Column Model - Injected Inputs

Figure 3.9: Pulling and driving effects due to synaptic upscaling on information
detection in the two-cortical-column model. (A). Information detection at input
offset in the perturbed column for various input amplitudes (injected inputs) in
NREM (red) and various synaptic upscalings in wakefulness (color coded). Top.
Information detection remains comparable when inter-synaptic (next page)
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Figure 3.9 (previous page): upscaling increases in wakefulness when intra-
synaptic upscaling is kept constant at βintra = 2. Middle, Bottom. Results as in
Top, but for βintra = 4 and βintra = 15, respectively. Note that intra-synaptic up-
scaling decreases information detection in the perturbed column due to the pulling
effect. (B). Results as in panel A, but for the unperturbed column. Intra-synaptic
upscaling decreases information detection in the unperturbed column due to the
pulling effect. Note that information detection when inter-synaptic upscaling in-
creases in wakefulness for βintra = 2 is comparable in the perturbed column
(light blue in A Top), however, only βinter = 15 enhances information detection
in the unperturbed column due to the driving effect (dark blue in B Top). Error bar
shows 95 percent confidence interval. Black dash line represents the chance-level
accuracy = 1

#input amplitudes .

fulness is not enhanced unless inter-synaptic upscaling is larger than intra-
synaptic upscaling (see Figure 3.10B). As in Section 3.2.1, the strength
of E/I ratio in peristimulus intervals (see Figure 3.7D) correlates with the
level of information detection and differentiation in the perturbed column.
This is important from These results show that distance-selective synaptic
upscaling enhances information propagation from perturbed to the unper-
turbed column.

It is important to note that the increase in intra-synaptic upscaling at-
tenuates information content in the perturbed cortical column, which might
lead to a corresponding decrease in information content in the unperturbed
cortical column. For instance, attenuated propagation of information to the
unperturbed column in the case of βintra = 15, βinter = 15 compared to
βintra = 2, βinter = 15 might be due, to start with, to less information
content in the perturbed column (see Figure 3.9). Therefore, it remain un-
clear whether information content in the unperturbed column for βintra =
15, βinter = 15 could have been comparable to βintra = 2, βinter = 15 if
information content in the perturbed column was comparable. To untangle
this ambiguity, in the next section, we provide a control condition where
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Figure 3.10: Pulling and driving effects due to synaptic upscaling on informa-
tion differentiation in the two-cortical-column model. (A). Information differenti-
ation at input offset in the perturbed column for various input amplitudes (injected
inputs) in NREM (red) and various synaptic upscalings in wakefulness (color
coded). Information differentiation decreases with increasing intra-synaptic up-
scaling when inter-synaptic upscaling in wakefulness is kept constant. Note that
the decrease in the E/I ratio in Figure 3.7D is predictive of pulling effects of synap-
tic upscaling on information differentiation. (B). Results as in panel A, but for the
unperturbed column. Intra-synaptic upscaling decreases information differentia-
tion in the unperturbed column (see the inset plot), showing the pulling effect.
Note that information differentiation in the unperturbed cortical column is larger
at βintra = 2 and βinter = 15 than βintra = 2 and βinter = 2 even though in-
formation differentiation in the perturbed column is the largest at βintra = 2 and
βinter = 2, which highlights the driving effect due to inter-synaptic upscaling.
Error bar shows 95 percent confidence interval. Black dash line represents the
chance-level accuracy = 1

#input amplitudes .
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information content in the perturbed cortical column is comparable among
different synaptic upscalings.

3.2.4 Synaptic Inputs to the Two-Cortical-Column Model:
Information Propagation (Control Condition)

Here, we provide a control condition where information content in the per-
turbed column is comparable across various synaptic upscalings. Results
in the previous section showed that synaptic upscaling generates a pulling
effect on information content in the evoked responses of perturbed cortical
column to injected inputs. However, the results from Section 3.2.2 shows
that synaptic inputs can generate competing effects of pulling and driving
on information content. Therefore, synaptic inputs to two-cortical-column
model has potential to preserved information content in the perturbed cor-
tical column.

Synaptic inputs with amplitude ranging from 0.01 ms−1 to 0.11 ms−1

by a step size of 0.01 ms−1 are applied through an intra-synapse to the
perturbed column. The increase in input range compared to Section 3.2.2
is the result of additional pulling effects due to bidirectional coupling with
a second cortical column which allows us to explore larger input ampli-
tudes before evoked responses in the perturbed column saturate. Unlike
Section 3.2.2, synaptic inputs are applied through an intra synapse. This
is so because evoked responses in the perturbed column for inter synaptic
upscaling βinter = 15 saturate. To prevent saturation of evoked responses
we applied the synaptic inputs through an intra synapse.

Deterministic Responses

Amplitude of deterministic evoked responses is larger in NREM sleep than
at any synaptic upscalings in wakefulness (see Figure 3.11). In this control
condition, amplitude of deterministic evoked responses in local-selective
and homogeneous synaptic upscalings are larger than distance-selective
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synaptic upscalings (see Figure 3.11A). Nevertheless, synaptic upscaling
has a different effect in the unperturbed column. Amplitude of determinis-
tic evoked responses in distance-selective synaptic upscalings is larger than
homogeneous and local-selective synaptic upscalings (see Figure 3.11B).

Stochastic Responses

Logistic classification on evoked responses in the perturbed column at off-
set shows that information detection remain comparable between NREM
sleep and the three synaptic upscaling scenarios in wakefulness (see Fig-
ure 3.12A-C). Amplitude of evoked responses is larger for local-selective
synaptic upscaling in the perturbed column in wakefulness (S5.35). How-
ever, the larger standard deviation of evoked responses for local-selective
synaptic upscalings makes information detection comparable among synap-
tic upscaling scenarios in wakefulness (see Figure S5.36A).

Despite comparable information detection in the perturbed column,
information detection in the unperturbed column is not enhanced com-
pared with NREM sleep unless inter-synaptic upscaling is larger than intra-
synaptic upscaling (see Figure 3.13A-C). This is due to the competition
of intra- and inter-synaptic upscalings in the regulation of the amplitude
and standard deviation of evoked responses and spontaneous activities (see
Figure 3.11B, and Figure S5.36B and S5.37). Arranging results accord-
ing to synaptic upscaling scenarios shows that information content in the
unperturbed column is larger in distance-selective synaptic upscaling sce-
nario than homogeneous and local-selective synaptic upscaling scenarios
(see Figure 3.13A-C).

Likewise, information differentiation in NREM sleep and other synap-
tic upscalings in wakefulness are comparable in the perturbed column (see
Figure 3.12D). Nevertheless, synaptic upscaling does not enhance informa-
tion differentiation in the unperturbed column in wakefulness compared to
NREM sleep (and chance level) unless inter-synaptic upscaling is larger
than intra-synaptic upscaling (see Figure 3.13D). These results highlight
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Figure 3.11: Effects of synaptic upscalings on amplitude of evoked responses in
the two-cortical-column model. (A) Amplitude of deterministic evoked responses
in firing rate signals in the perturbed column at input offset for various input am-
plitudes (Intra-synaptic inputs) in NREM (red) and various synaptic (next page)
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Figure 3.11 (previous page): upscalings in wakefulness (color coded). Ampli-
tude of evoked responses is larger in local-selective synaptic upscalings(Top) in
wakefulness compared to homogeneous (Middle) and distance-selective synaptic
upscalings (Bottom) in wakefulness. (B) Results as in panel A, but for the un-
perturbed column. Amplitude of evoked responses is larger in distance-selective
synaptic upscalings (Bottom) in wakefulness compared to homogeneous (Middle)
and local-selective synaptic upscalings (Top) in wakefulness. Note that although
amplitude of evoked responses in the perturbed column for local-selective synap-
tic upscaling is the largest in wakefulness, they trigger the smallest evoked re-
sponses in the unperturbed column. On the other hand, evoked responses in the
perturbed column in wakefulness is the smallest in distance-selective synaptic up-
scalings. However, distance-selective synaptic upscalings enhance amplitude of
evoked responses in the unperturbed column.

the hypothesis that distance-selective upscaling enhances information prop-
agation from the perturbed to the unperturbed column.

3.2.5 Robustness of the Computational Results
In this section we check whether our results in previous sections are robust
and hold to the choice of time points different than input offset and to
different methods of quantification of information.

Choice of Time Point

Information detection at input offset comes from the comparison between
distribution of evoked responses at offset and distribution of spontaneous
activities at a time point within the peristimulus interval. Our results con-
cerning information detection, described in previous sections, are valid
for even if the selected time point in the peristimulus interval is changed
(see Figure S5.38 for Section 3.2.1; Figure S5.39 for Section 3.2.2; Fig-
ure S5.40 for Section 3.2.3; Figure S5.41 and Figure S5.42 for Section 3.2.4).
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Figure 3.12: Effects of synaptic upscalings on information content in the per-
turbed column in the two-cortical-column model rearranged by synaptic upscaling
scenarios. Results correspond to the perturbed column. (A). Information detec-
tion at input offset for various input amplitudes in NREM (red) and local-selective
synaptic upscalings in wakefulness (color coded). As in panel A, but for homo-
geneous (B) and distance-selective (C) synaptic upscalings in wakefulness, re-
spectively. Note that information detection in the perturbed column is comparable
among the three synaptic upscaling scenarios and NREM sleep. (D) Information
differentiation for NREM and three synaptic upscaling scenarios in wakefulness.
Note that information differentiation in the perturbed column is (next page)
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Figure 3.12 (previous page): comparable among the three synaptic upscaling
scenarios and NREM sleep. Error bar shows 95 percent confidence interval. Black
dash line represents the chance-level accuracy = 1

#input amplitudes .

Then we evaluated information content at 20 ms prior to input offset.
Information detection and differentiation are, to a large degree, comparable
20 ms prior to input offset with the ones at offset (see Figure S5.43 for
Section 3.2.1; Figure S5.44 for Section 3.2.2; Figure S5.45 and S5.46 for
Section 3.2.3; Figure S5.47, and S5.48 for Section 3.2.4).

Moreover, our results are still valid even at 20 ms post input offset
(see Figure S5.49 for Section 3.2.1; Figure S5.50 for Section 3.2.2; Fig-
ure S5.51 and S5.52 for Section 3.2.3; Figure S5.53 and S5.54 for Sec-
tion 3.2.4). It is important to note that information content decays at 20-
ms-post-offset compared to the ones at input offset in the perturbed column
when injected inputs are applied (Section 3.2.1 and Section 3.2.3). Infor-
mation decay when synaptic inputs are applied (Section 3.2.2) is slower.
This includes the decay of information in the perturbed column and in the
unperturbed column when injected inputs are applied to the perturbed col-
umn (Section 3.2.2 and 3.2.4, respectively). This is due to difference in
the way that inputs travel to a cortical column. When a cortical column re-
ceives an input through a synapse, decay of information at 20 ms post off-
set is smaller than when inputs are injected. Synapses introduce a form of
memory due to the alpha-function activation. Nevertheless, our results are
valid regarding an enhanced information propagation for distance-selective
synaptic upscaling even at 20-ms-post-offset.

Generative Model

Our results also holds when using generative models (Gaussian discrim-
inant analysis) on evoked responses at input offset (see Figure S5.55 for
Section 3.2.1; Figure S5.56 for Section 3.2.2; Figure S5.57 and S5.58
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Figure 3.13: Effects of synaptic upscalings on information content in the unper-
turbed column in the two-cortical-column model rearranged by synaptic upscaling
scenarios. As in Figure 3.12, but for the unperturbed column. (A). Information
detection at input offset for various input amplitudes in NREM (red) and local-
selective synaptic upscaling scenario in wakefulness (color coded). As in panel
A, but for homogeneous (B) and distance-selective (C) synaptic upscaling sce-
narios in wakefulness, respectively. Note that information detection is compara-
ble among the three synaptic upscaling scenarios in the perturbed column (see
Figure 3.12A-C), however, only distance-selective synaptic upscaling scenario in
wakefulness enhances information detection in the unperturbed (next page)
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Figure 3.13 (previous page): column compare to homogeneous and local-
selective synaptic upscaling scenarios and NREM sleep. (D) Information dif-
ferentiation for NREM and three various synaptic upscaling scenarios in wake-
fulness. Note that information differentiation is comparable among the three
synaptic upscaling scenarios in the perturbed column (see Figure 3.12D), how-
ever, distance-selective synaptic upscaling scenario in wakefulness enhances in-
formation differentiation in the unperturbed column compare to homogeneous and
local-selective synaptic upscaling scenarios and NREM sleep. Error bar shows 95
percent confidence interval. Black dash line represents the chance-level accuracy
= 1

#input amplitudes .

for Section 3.2.3; Figure S5.59 and S5.60 for Section 3.2.4). Informa-
tion detection implementing generative models is also independent of the
choice of the time point in peristimulus intervals (see Figure S5.61 for Sec-
tion 3.2.1; Figure S5.62 for Section 3.2.2; Figure S5.63 for Section 3.2.3;
Figure S5.64 and Figure S5.65 for Section 3.2.4).

Moreover, information content implementing generative models at 20 ms
prior to input offset is to a large degree comparable with the ones at off-
set (see Figure S5.66 for Section 3.2.1; Figure S5.67 for Section 3.2.2;
Figure S5.68 and S5.69 for Section 3.2.3; Figure S5.70 and S5.71 for Sec-
tion 3.2.4).

Furthermore, our results are valid even at 20 ms post input offset (see
Figure S5.72 for Section 3.2.1; Figure S5.73 for Section 3.2.2; Figure S5.74
and S5.75 for Section 3.2.3; Figure S5.76 and S5.77 for Section 3.2.4). In-
formation content decays at 20 ms post offset compared to the ones at offset
for Section 3.2.1, 3.2.2 and the perturbed column in Section 3.2.3. How-
ever, information decay in Section 3.2.2 is slower due to synaptic dynam-
ics. The decay of information in the unperturbed column in Section 3.2.3
and both perturbed and the unperturbed column in Section 3.2.4 are not
prominent, as for discriminative models.

However, it is important to note that generative models have an overall
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better accuracy in information detection (not information differentiation).
The Gaussian Discriminant analysis models the distribution of data accord-
ing to normal distributions. Thus, the difference between the discrimina-
tive and generative models on information detection could be a result of
stronger modeling assumptions in the generative model.

Significance Tests and Information Theory

Our results are also valid for methods other than machine learning tech-
niques. Performing significance tests on evoked responses in poststim-
ulus intervals versus spontaneous activities in peristimulus intervals re-
produces results regarding information detection (see Figure S5.78A for
Section 3.2.1; Figure S5.79A-C for Section 3.2.2; Figure S5.80 for Sec-
tion 3.2.3; Figure S5.81A-C and Figure S5.82A-C for Section 3.2.4).

Then, we used information theory to compute mutual information be-
tween the distribution of evoked responses at input offset and distribu-
tion of inputs. Interestingly, mutual information qualitatively reproduces
the results obtained for information differentiation with machine learn-
ing techniques (see Figure S5.78B for Section 3.2.1; Figure S5.79D for
Section 3.2.2; Figure S5.83 for Section 3.2.3; Figure S5.81D and Fig-
ure S5.82D for Section 3.2.4). The choice of number of bins for data
discretization does not affect our results (see Figure S5.84). Moreover,
mutual information at 20 ms prior to input offset is to a large degree com-
parable with the ones at input offset, whereas there is a decay in mu-
tual information at 20 ms post input offset (see Figure S5.85A for Sec-
tion 3.2.1; Figure S5.85B for Section 3.2.2; Figure S5.86 for Section 3.2.3;
Figure S5.87 for Section 3.2.4). Note that only for the unperturbed column
in Section 3.2.4 mutual information at 20 ms post input offset is larger
than at input offset, which might reflect synaptic memory about the in-
puts. Nevertheless, implementing significance tests and information the-
ory reproduces our results. In particular, synaptic upscaling in wakefulness
does not enhance information propagation compared to NREM sleep un-
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less inter-synaptic upscaling is larger than intra-synaptic upscaling, known
as distance-selective synaptic upscaling.
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Chapter 4

DISCUSSION

Sleep is a vital physiological state that, in the brain, is associated with
enhances memory and learning functions [5, 6, 7, 8, 9, 10, 11]. However,
sleep is often accompanied by loss of interaction with the surroundings
which can be threatening in an ever-changing environment. Nevertheless,
the loss of interaction might not indicate that sensory processing is absent
during sleep. While innocuous sounds can go unnoticed without disrupting
sleep, auditory stimuli with subjective significance can arouse a sleeping
individual, as a baby’s cry awakens the parents.

There is compelling experimental evidence that some level of audi-
tory processing persists during deep phases of sleep, also known as NREM
sleep [48, 50, 51, 52, 53, 54, 55, 56]. However, neural markers of cognitive
functions associated with auditory stimuli are attenuated during NREM
sleep compared with wakefulness [48, 53, 54, 55, 56]. Attenuated neu-
ral markers of these cognitive functions does not seem to be a conse-
quence of lack of attention during NREM sleep since perceptual, semantic
and motor processes can occur even without awareness during wakeful-
ness [133, 134, 135].

There is compelling experimental evidence that auditory stimuli elicit
neural firing responses in the primary auditory cortex that are similar in
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NREM sleep and wakefulness [65, 66, 67, 68]. This poses a challenge to
the conventional thalamic gating hypothesis because sounds seem to by-
pass the thalamus in both brain states. Nevertheless, experimental studies
suggest that neural firing responses to auditory stimuli does attenuate in
cortical areas downstream to the primary auditory cortex [65, 66, 67, 68].
Moreover, TMS stimulation studies in humans have shown that cortical
activation remains local during NREM sleep compared with the broader
spatiotemporal extent of propagation during wakefulness [70, 81].

These evidence opens the door to a different hypothesis than thala-
mic gating hypothesis: propagation of information about external stimuli
is compromised during sleep compared to wakefulness along the cortical
processing chain. This hypothesis is supported by the fact that effective
connectivity [136] during sleep is reduced with respect to wakefulness,
a feature that has also been explored in large-scale models [117, 137].

Nevertheless, the underlying mechanisms enhancing propagation of in-
formation in the cerebral cortex during wakefulness compared to NREM
sleep remain largely unknown. One possible neural correlate of enhanced
information propagation in the cortex could be the upscaling of excitatory
synapses in wakefulness compared to NREM sleep, a hypothesis known as
synaptic homeostasis hypothesis (SHY) [138, 102, 98, 99, 103, 139, 100,
101, 104, 140]. SHY states that synaptic strength in several cortical circuits
decreases during NREM sleep due to net synaptic upscaling during wake-
fulness. Upscaling of excitatory synapses in wakefulness can increase the
driver effects of neural firing responses of a presynaptic cortical area on its
postsynaptic site, resulting in an increased signal-to-noise ratio.

However, we hypothesize that synaptic upscaling in a balanced config-
uration in wakefulness enhances not only signal, but also noise. This is in
agreement with findings using in vitro techniques where increasing sponta-
neous synaptic activities attenuates neural firing responses [105]. We argue
that synaptic upscaling in a balanced configuration in wakefulness is a phe-
nomenon with two competing effects on neural firing responses: driving
and pulling effect. The first tends to increase the amplitude of the neuronal
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responses, whereas the second tend to bring them closer to baseline level of
activity. One way to overcome the pulling effect of spontaneous synaptic
activities in wakefulness is that synaptic upscaling occurs preferentially be-
tween distinct neural networks rather than within local and recurrent con-
nections. We have coined this hypothesis as distance–selective synaptic
homeostasis. Distance-selective synaptic homeostasis states that upscaling
of inter-synapse (intercortical excitatory synapses formed between differ-
ent cortical columns) should be stronger than upscaling of intra-synapse
(intracortical excitatory synapses formed within a cortical column)

Here, we have used a computational approach to understand how synap-
tic upscaling in a balanced configuration in wakefulness modulates prop-
agation of information compared to NREM sleep. By means of a neural
mass model operating in two distinct brain dynamics, NREM sleep and
wakefulness, we investigate propagation of information in a neural system
composed of two cortical columns. Simulated firing rate signals have a
bimodal distribution in the parametric space belonging to NREM dynam-
ics, which is indicative of the alternation between Up and Down states and
the presence of slow oscillations. The higher power at low frequencies
in NREM versus the higher power at high frequencies in wakefulness of
firing rate signals also validates the existence of these two different dynam-
ical regimes.

Few models exhibiting both regimes have been published up to date [141,
109, 110, 142, 143, 144]. Despite the fact that any computational model
with multiple parameters exhibits a rich variety of bifurcations, we show
that the sleep–waking transition can be obtained with the minimum set
of possible changes. Naturally, the simplest solution is to vary a single
parameter. Here, increasing intra-synaptic upscaling suffices to move the
system from NREM-like to waking-like dynamics. This is so because for
the parameter space of the NREM state in the model, the membrane poten-
tial show large amplitude deflections to a perturbation, producing damped
oscillations due to the presence of a stable spiral [145]. This behavior
generates the slow oscillation in the presence of noise in NREM sleep.
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Whereas intra-synaptic upscaling decreases the amplitude of deflections,
which, in turn, reduces the time required to relax back to the steady state
value. This behavior decreases the slow oscillation and increases higher
frequency components in the presence of noise. This also explains why
the dynamical features of NREM sleep are compromised when connecting
two cortical columns.

In this study, the connectivity between the two cortical columns is ex-
citatory and symmetric, but only one of the pyramidal populations receives
transient excitatory inputs. We investigated how various synaptic upscal-
ings in wakefulness modulate propagation of information about inputs to
the other column in such a way that it is enhanced in the awake state when
compared to NREM. Previous computational work [120] also aimed at re-
producing the distinct propagation patterns that arise across the SWC, ob-
taining similar results to the ones described here. In particular, a wider
propagation of the external perturbation occurs during wakefulness than
during NREM sleep. In our case, this is quantified by information con-
tent in response of the unperturbed column, whereas [120] used the per-
turbational complexity index (PCI) [146]. However, the set of parame-
ters’ changes used by [120] focus on an adaptation current that weakens
during wakefulness, which in our opinion is less experimentally justified.
Moreover, the authors showed that during wakefulness the ratio between
poststimulus and peristimulus firing rate can be greater in an area that is
not directly stimulated than in the stimulation site, which requires further
experimental verification.

We showed that when inter-synaptic upscalings (upscaling of synapses
within a cortical column) are equal or less than intra-synaptic upscalings
(upscaling of synapses between two cortical column) in wakefulness, in-
formation propagation is not enhanced compared to NREM sleep. Prop-
agation of information enhances only when inter-synaptic upscalings are
larger than intra-synaptic upscalings. Our results suggest that the synap-
tic homeostasis hypothesis should be heterogeneously applied, that is, that
synaptic upscaling has to be spatially organized and distant synaptic con-
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nections should be upscaled with respect to the local ones. This is so be-
cause intra-synaptic upscaling in a balanced configuration attenuates neu-
ral firing responses and information content, in agreement with in vitro
studies [105].

Synaptic upscaling in wakefulness occurs due to long-term potentia-
tion, a process involving persistent strengthening of synapses. This pro-
cess leads to changes in signal transmission between neural populations.
Our results establish that heterogeneity of synaptic upscaling in a balanced
configuration is necessary from NREM sleep to wakefulness to account for
different information propagation patterns in NREM sleep and wakeful-
ness. Although our results need experimental validation, heterogeneity of
synaptic upscalings have been reported for perforated and non-perforated
synapses. Briefly, perforated synapses are on average large and have a dis-
continuous postsynaptic density (PSD). Non-perforated synapses are on
average small and have a continuous PSD. Non-perforated synapses are
more numerous than perforates synapses [104]. It was shown that, in the
cortex, perforated synapses enlarge their axon–spine interface after waking
relative to sleep, in contrast to the lack of change found in non-perforated
synapses [104]. This morphological change specific to perforated synapses
also speaks for their major role in synaptic plasticity and the selective im-
plementation of synaptic homeostasis that we propose.

Limitations
Some limitations of the study should be explicitly acknowledged. First, our
model cannot account for whole brain interactions and is restricted to the
dialogue between two cortical columns. A more complex connectivity di-
agram comprising other cortical and subcortical structures could, nonethe-
less, provide spatial information about stimulus propagation. Subcortical
structures, such as the brainstem and basal forebrain, are the substrate for
the changes in the concentration of neuromodulators that occur throughout
the sleep–weak cycle [38, 40, 1, 147, 39, 148, 149]. These neuromodula-
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tors target vesicular release at the presynaptic site or transmitter receptors
at the postsynaptic site and alter synaptic strength [150, 151]. We have phe-
nomenologically implemented their role by tuning synaptic conductances
but the precise effect of these substances (norepinephrine, acetylcholine,
histamine, serotonin, etc.) on target brain areas is out of the scope of this
study, partly because the exact microcircuitry of the ascending arousal sys-
tem is still unknown.

In this study, the connectivity between the two cortical columns is ex-
citatory and symmetric, which might not reflect the biological morphology
in all area of the cortex. However, it is important to note that our results
hold true even when we consider one cortical column, where we showed
that distance-selective synaptic upscaling boosts information content in the
one-cortical-column model subjected to synaptic inputs. Nevertheless, we
acknowledge that future works are required to asses the effects of feedback
connections on changes in propagation of information during wakefulness
and NREM sleep. In addition, our model does not include the emergence
of more elaborated receptive fields along the cortical hierarchy and it re-
lies only on transferring information about basic stimuli features (input
strength). Future works are required to elucidate how synaptic upscalings
in wakefulness modulate propagation of information about higher-order
stimuli features compared to NREM sleep in a higher-order neural net-
work.

Moreover, neural mass models considers that neural communications
are through rate coding. Although our hypothesis is independent of rate-
or spike-based coding schemes, it is advantageous to use spiking-based
models to test the validity of our results when neural communications are
through spike timing.

In addition, neural mass models cannot consider the neural heterogene-
ity within one cortical column. Different types of neurons show distinct
evoked neural responses during NREM sleep in non-human mammals [65]
and rats [67]. These studies suggest that modulation of neural firing re-
sponses in neurons within one area might depends on their response la-
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tency, with a larger response attenuation in late-latency neurons. The neu-
ral heterogeneity can be implemented and tested by spiking-based models.
Nevertheless, we used neural mass models due to the computational power
required by our study.

Despite comparable results implementing discriminative and genera-
tive supervised learning techniques, future work could extend the scope
and check validity of our results regarding information propagation pat-
terns by using unsupervised techniques. Although we did not evaluate
delays in information propagation during NREM sleep and wakefulness,
future work should also address this problem. The delays in propagation
of information might also play a role in understanding sensory process-
ing during sleep–waking cycle. For instance, studies have reported that all
cortical components of averaged EEG responses are delayed during NREM
sleep [76, 152, 51]. Since the generators of the ERPs are usually at mul-
tiple sites, delayed ERPs might indicate that propagation and integration
of information in different cortical sites are compromised during NREM
sleep.

Moreover, we have excluded REM sleep from our work, which is a
short but relevant stage of sleep that follows NREM epochs. The LFP
and EEG dynamics recorded during REM sleep show similar features to
wakefulness. Since neural firing responses in the primary auditory cortex
are preserved across the SWC, including REM sleep [66, 67], computa-
tionally, we could use the same set of parameters to model REM than
wakefulness at a single cortical column level. However, tracking these
responses up to the perirhinal cortex, shows that their amplitude is atten-
uated from wakefulness to NREM sleep, and has intermediate values in
REM sleep [67]. In our model, this could be replicated by using a βinter
value for REM sleep smaller than for wakefulness. However, experimen-
tally, SHY has only proven to be true when comparing wakefulness and
NREM sleep [104]. Therefore, we need to be cautious before extending
our conclusions to REM sleep. Moreover, motor neurons in the spinal cord
are inhibited in REM sleep [39]. Therefore, it remains difficult to attribute
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the loss of behavioral responses during REM sleep to either inhibition of
motor neurons in the spinal cord or to attenuated information propagation
among distinct cortical areas.

It is important to acknowledge that laminar dependence of changes in
information propagation patterns in NREM sleep and wakefulness is not
addressed in our work. Nevertheless, a recent study in rhesus monkeys has
reported a laminar dependence of propagation of neural firing responses
in early visual cortical areas [153]. Surprisingly, the authors reported that
propagation of neural firing responses induced by optogenetic stimulation
attenuates across cortical layers within a cortical column during wakeful-
ness but not during NREM sleep. Interestingly, the decrease of E/I balance
correlated with the attenuation of laminar propagation of neural firing re-
sponses.

Although further data analysis are required to extend these findings
to information propagation of stimuli, these observations might suggest
a dual-route model for propagation of information in the cerebral cortex.
The dual-route model, as I may call it, would consist of two pathways:
inter-areal and intra-areal. The brain state, whether sleep or wakefulness,
would modulate the amount of information that can propagate through each
routes under the constraint that the total amount of information propagating
through inter-areal and intra-areal route is preserved across different brain
states.

Therefore, the dual-route model of information propagation in the cor-
tex states that what changes from wakefulness to NREM sleep is infor-
mation routing in the cortex. During wakefulness inter-cortical synapses
are strong, therefore, information travels among distinct cortical areas.
Whereas, during NREM sleep, due to distance–selective synaptic home-
ostasis, synaptic downscalings are stronger for inter-cortical synapses. There-
fore, the ability to propagate information is larger for intra-areal routes
than for inter-areal routes. As a consequence, information propagation
through intra-areal routes is increased during NREM sleep compared to
wakefulness, resulting in increased laminar propagation of information.
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The change in information routing in the cortex proposed by the dual-route
model predicts that information integration among distant cortical areas, a
prerequisite feature for cognitive functions, decreases during NREM sleep
compared to wakefulness.

Despite the limitations of our model, our work opens the door to ex-
plore which rules need to be implemented to reproduce experimental data
and guide computational principles. This is particularly important while
we still lack a clear understanding of how inputs scattered along the wide
dendritic tree of a pyramidal neuron are added to combine synaptic sources
at short and long distances with respect to the soma.

Findings Supporting Our Results
Our study reproduces several experimental findings previously published
[154]. Moreover, a similar mechanism to our hypothesis has been also
suggested in a network model of macaque cortex [155]. Although this
study [155] did not reproduced different brain states, authors suggested
that signal transmission increases when inter-areal excitatory connection
strengths and intra-areal inhibition is enhanced. Our hypothesis is also in
agreement with the view that rare long-range connections boost informa-
tion processing [156].

Furthermore, our hypothesis can explain various observations in EEG
and fMRI studies. Distance-selective synaptic hypothesis predicts that cor-
tical communications between distinct cortical areas are enhanced during
wakefulness compared to NREM sleep. This can account for different
signal routing in wakefulness compared to NREM sleep in EEG studies.
EEG studies have shown that the cortical components of averaged EEG
responses (arising after 20 ms stimulus onset [152, 157, 71]) are different
across the scalp and this topographic distribution changes from this NREM
sleep to wakefulness [76, 50, 52, 54, 158].

Finally, enhanced cortical communications predicted by our hypoth-
esis can account for the decoupling of the brain’s default mode network
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during NREM sleep [159]. Regions with higher structural connectivity
show higher functional connectivity [160, 161, 162, 163, 164, 165, 166,
167, 168]. Therefore, distance-selective synaptic upscaling in wakefulness
can result in a higher functional connectivity between distinct cortical net-
works. This can explain the higher participation of the frontal cortex in the
activity of the default mode network [169, 170, 171] in wakefulness com-
pared to NREM sleep [159]. Lastly, our results can also account for the
high arousal threshold in response to external sensory stimulation during
NREM sleep compared to wakefulness.

Other Mechanisms to Explain Attenuated Propagation of
Information During NREM Sleep Compared to Wakeful-
ness

There is much evidence for attenuation of information propagation in the
cerebral cortex during NREM sleep compared to wakefulness. However,
the underlying mechanisms are unknown. However, the underlying mecha-
nisms are unknown. Here, we have proposed a distance–selective synaptic
homeostasis process. Are there other options?

Another option to control the flow of information among cortical areas
is neural synchrony. Synchronous firing between two neural populations
could increase propagation of information from sending to receiving neu-
ral populations. In light of this view, synchronous gamma activity was pro-
posed as a possible mechanism explaining different information propaga-
tion during NREM sleep and wakefulness. However, synchronous gamma
activity was found to be equally low in NREM sleep and REM sleep, and
it can be high in anesthesia [172, 2]. Given comparable amount of prop-
agation of information in NREM sleep and anesthesia, and the attenuated
propagation of information in NREM sleep compared to REM sleep, it re-
mains uncertain to what extend impairment of synchronous gamma activ-
ity during NREM sleep can fully account for the attenuation of information
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propagation during NREM sleep compared to wakefulness.
Finally, cortical areas can communicate not only through synchrony,

but also through coherence [173]. One prediction of communication-through-
coherence hypothesis is that gamma-band (30-90 Hz) coherency can mod-
ulate excitation rapidly enough so that it escapes the following inhibition
and activates postsynaptic neurons effectively [174]. However, human
studies have reported high robust auditory-induced high-gamma (80-200
Hz) and low-gamma (40-80 Hz) power responses during NREM sleep and
wakefulness [68]. It remains to be validated in [68] whether the phase co-
herence of evoked responses in gamma band did decrease or not during
NREM sleep compared to wakefulness. However, the preserved inter-trial
phase coherence (in 40 Hz) of responses to 40-Hz click-trains in A1 and
areas outside A1, suggests that impairment of communication-through-
coherence might be an insufficient explanation for attenuated information
propagation during NREM sleep compared to wakefulness.

Contribution of Our Results
The brain is a collection of functionally distinct neural populations that
forms an integrated whole which interacts with the external environment
by processing the information it receives. The neural mechanisms under-
lying the interruption of complex cortical interactions in brain-injured or
unconscious patients are still uncertain.

Experimental observations suggest that attenuation of propagation of
evoked neural responses during states of unconsciousness mimics the ones’
in NREM sleep. Despite preserved auditory evoked neural responses in A1
during anesthesia-induced loss of consciousness (LOC) and wakefulness,
neural responses attenuate in higher-order cortical area downstream to A1
during anesthesia-induced LOC compared to wakefulness [175]. More-
over, studies in humans [176] and mice [177] have shown that cortical
effective connectivity breaks down during anesthesia-induced LOC com-
pared to wakefulness. Given the occurrence of slow wave activity during
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states of LOC, the general scientific consensus is that cortical bistability
is the mechanistic origin of attenuated propagation of neural responses
along a hierarchical cortical processing chain [2]. Nevertheless, other lines
of studies suggest that the presence or absence of electrical dynamics of
sleep–waking cycles do not reflect the severity of LOC in patients with
vegatative state [178, 179, 180].

Although the neural mechanisms underlying anesthesia-induced LOC
and NREM sleep might not be identical, our results, with cautious, could
be extended to attenuated propagation of neural responses in states of LOC
and consciousness. Our results can shed light on the neural correlates of
different patterns of causal interaction among cortical areas in healthy pa-
tients and patients with disorders of consciousness. This opens the door to
further investigations on pharmaceutical and treatment investigations for
patients with disorders of consciousness. Moreover, our results along with
proposed future computational studies can be used in health sectors to in-
vestigate how noise pollution in urban areas affect sleep quality in individ-
uals.

Conclusion
Sleep and wakefulness are distinguished by distinct behavioural, electro-
physiological and molecular features. It is still unclear how these biolog-
ical layers are causally connected. Here, we have explored one particu-
lar relationship between two experimentally observed changes that occur
across the SWC: upscaling of excitatory synapses and the broad propaga-
tion of incoming information throughout the cortex that takes place during
wakefulness. The former happens during learning and strengthens synaptic
connections, a process that is compensated during NREM sleep to enable
synaptic homeostasis. The later evidence may speak for a cortical gating
mechanism by which signals coming from the external world only reach
higher processing brain areas during wakefulness and could possibly ex-

142



plain the emergence of consciousness.
Our computational model links both phenomena by showing that up-

scaling of excitatory synapses not only triggers a dynamic change of the
electrical activity of the neural networks, but also of the propagation pat-
tern across them. However, we predict that, in order for a spatially wider
response to occur during wakefulness, it is necessary that such upscaling
occurs preferentially between distinct networks over local and recurrent
connections.
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Chapter 5

SUPPLEMENTARY FIGURES

This Chapter includes supplementary figures of the study.
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Figure S5.1: A representative instance of firing rate signals in NREM sleep for
varied standard deviation of the Gaussian noise. Simulated signals shows large
amplitude fluctuations in NREM sleep between periods of sustained activity (Up
state) and silent activity (Down states) for various values of standard deviation of
the Gaussian noise.
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Figure S5.2: Distribution of firing rate signals in NREM sleep for varied standard
deviation of the Gaussian noise. Average of the distribution firing rate, which is
bimodal in NREM sleep. It is consistent across varied standard deviation of the
Gaussian noise. Shaded area corresponds to standard deviation over 500 trials.

147



-2 -1 0 1 2
0.5

0.0

0.5

1.0

Au
to

-C
or

re
la

tio
n

Standard Deviation=9 (ms 1)

-2 -1 0 1 2
0.5

0.0

0.5

1.0
Standard Deviation=10 (ms 1)

-2 -1 0 1 2
0.5

0.0

0.5

1.0

Au
to

-C
or

re
la

tio
n

Standard Deviation=11 (ms 1)

-2 -1 0 1 2
0.5

0.0

0.5

1.0
Standard Deviation=12 (ms 1)

-2 -1 0 1 2
Time (s)

0.5

0.0

0.5

1.0

Au
to

-C
or

re
la

tio
n

Standard Deviation=13 (ms 1)

-2 -1 0 1 2
Time (s)

0.5

0.0

0.5

1.0
Standard Deviation=14 (ms 1)

State Validation for Standard Deviation of Gaussian Noise
Auto-Correlation

Figure S5.3: Auto-correlation of firing rate signals in NREM sleep for varied
standard deviation of the Gaussian noise. Average of auto-correlation of firing
rate signals shows a negative peak around 0.5 s and a subtle positive peak around
1 s, presence of slow oscillation. It is consistent across varied standard deviation of
the Gaussian noise. Shaded area corresponds to standard deviation of the average
of auto-correlation over 500 trials.
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Figure S5.4: Auto-correlation of A representative instance of firing rate signals in
NREM sleep for varied standard deviation of the Gaussian noise. Auto-correlation
of a representative firing rate signal shows a negative peak around 0.5 s and a peak
around 1 s, presence of slow oscillation. It is consistent across varied standard
deviation of the Gaussian noise.
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Figure S5.5: Spectral content of firing rate signals in NREM sleep for varied
standard deviation of the Gaussian noise. Average power spectrum density of
firing rate signals in NREM sleep is consistent across varied standard deviation of
the Gaussian noise. Shaded area corresponds to standard deviation of the average
of power spectrum density over 500 trials.
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Figure S5.6: Power ratio of firing rate signals in NREM sleep for varied standard
deviation of the Gaussian noise. Firing rate signals carry more spectral power
within the SO (<1 Hz) and delta (1-4 Hz) frequency bands in NREM sleep. It is
consistent across varied standard deviation of the Gaussian noise. Error bar shows
standard deviation over 500 trials.
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Figure S5.7: Distribution of high-/low-frequency power ratio of firing rate sig-
nals in NREM sleep for varied standard deviation of the Gaussian noise. Distri-
bution of high-/low-frequency (where high is above 30 Hz and low is below 4
Hz) power ratio in firing rate signals in NREM sleep is consistent across varied
standard deviation of the Gaussian noise.
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Figure S5.8: A representative instance of firing rate signals for increasing val-
ues of βintra. Simulated signals shows large amplitude fluctuations in NREM
sleep (βintra = 1) between periods of sustained activity (Up state) and silent ac-
tivity (Down states). Amplitude of fluctuations decreases with increasing βintra.
βintra ≥ 2 obliterate occurrence of Down states.

153



0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

Oc
cu

rre
nc

e

NREM

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20
intra = 1.2

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

Oc
cu

rre
nc

e

intra = 1.6

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20
intra = 2

0 5 10 15 20 25 30
Firing Rate (Hz)

0.00

0.05

0.10

0.15

0.20

Oc
cu

rre
nc

e

intra = 3

0 5 10 15 20 25 30
Firing Rate (Hz)

0.00

0.05

0.10

0.15

0.20
intra = 4

State Validation for intra
Histogram

Figure S5.9: Distribution of firing rate signals for increasing βintra. Average
of the distribution firing rate, which is bimodal in NREM sleep (βintra = 1).
Bistability decreases with increasing βintra. Average of distribution for βintra ≥ 2
is unimodal. βintra ≥ 2 obliterate bistability. Shaded area corresponds to standard
deviation over 500 trials.
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Figure S5.10: Auto-correlation of firing rate signals for increasing βintra. Aver-
age of auto-correlation of firing rate signals in NREM sleep (βintra = 1) shows a
negative peak around 0.5 s and a subtle positive peak around 1 s, presence of slow
oscillation. The peaks decrease with increasing βintra. Shaded area corresponds
to standard deviation of the average of auto-correlation over 500 trials.
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Figure S5.11: Auto-correlation of A representative instance of firing rate signals
for increasing βintra. Auto-correlation of a representative firing rate signal in
NREM sleep (βintra = 1) shows a negative peak around 0.5 s and a peak around
1 s, presence of slow oscillation. The peaks become stochastic with lower time
lags (higher frequency) with increasing βintra.
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Figure S5.12: Spectral content of firing rate signals for increasing βintra. Aver-
age power spectrum density of firing rate signals decreases with increasing βintra.
Shaded area corresponds to standard deviation of the average of power spectrum
density over 500 trials.
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Figure S5.13: Power ratio of firing rate signals for increasing βintra. Firing
rate signals carry more spectral power within the SO (<1 Hz) and delta (1-4 Hz)
frequency bands in NREM sleep (βintra = 1). Power ratio of slow oscillation
decreases with increasing βintra. On the other hand, power ratio of higher fre-
quency bands (Theta, Alpha, Beta and Gamma) increases with increasing βintra.
Error bar shows standard deviation over 500 trials.
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Figure S5.14: Distribution of high-/low-frequency power ratio of firing rate sig-
nals for increasing βintra. Distribution of high-/low-frequency (where high is
above 30 Hz and low is below 4 Hz) power ratio in firing rate signals moves to
higher values with increasing βintra. It confirms the spectral separation between
NREM sleep (βintra = 1) and βintra ≥ 2.
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Figure S5.15: A representative instance of firing rate signals for increasing val-
ues of βintra and βinter in the two-cortical-column model. Simulated signals
shows large amplitude fluctuations in NREM sleep (βintra = 1, βinter = 1)
between periods of sustained activity (Up state) and silent activity (Down states).
Amplitude of fluctuations decreases with increasing βintra and βinter.
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Figure S5.16: Distribution of firing rate signals for increasing βintra and βinter in
the two-cortical-column model. Note that bistability in two cortical column model
is compromised in NREM sleep compared to the one-cortical-column model.
Nevertheless, bistability decreases with increasing βintra and βinter. Shaded area
corresponds to standard deviation over 500 trials.
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Figure S5.17: Auto-correlation of firing rate signals for increasing βintra and
βinter in the two-cortical-column model. Average of auto-correlation of firing rate
signals in NREM sleep (βintra = 1, βinter = 1) shows a negative peak around
0.5 s, likely presence of slow oscillation. The peaks decrease with increasing
βintra and βinter. Shaded area corresponds to standard deviation of the average of
auto-correlation over 500 trials.
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Figure S5.18: Auto-correlation of A representative instance of firing rate sig-
nals for increasing βintra and βinter in the two-cortical-column model. Auto-
correlation of a representative firing rate signal in NREM sleep (βintra = 1,
βinter = 1) shows a negative peak around 0.5 s and a peak around 1 s, presence
of slow oscillation. The peaks become stochastic with lower time lags (higher
frequency) with increasing βintra and βinter.
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Figure S5.19: Spectral content of firing rate signals for increasing βintra and
βinter in the two-cortical-column model. Average power spectrum density of fir-
ing rate signals decreases with increasing βintra and βinter. Shaded area corre-
sponds to standard deviation of the average of power spectrum density over 500
trials.
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Power Ratio

Figure S5.20: Power ratio of firing rate signals for increasing βintra and βinter
in the two-cortical-column model. Firing rate signals carry more spectral power
within the SO (<1 Hz) and delta (1-4 Hz) frequency bands in NREM sleep
(βintra = 1, βinter = 1) than at any synaptic upscalings states. Power ratio of
slow oscillation decreases with increasing βintra and βinter. On the other hand,
power ratio of higher frequency bands (Theta, Alpha, Beta and Gamma) increases
with increasing βintra and βinter. Error bar shows standard deviation over 500
trials.
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Figure S5.21: Distribution of high-/low-frequency power ratio of firing rate sig-
nals for increasing βintra and βinter in the two-cortical-column model. Distribu-
tion of high-/low-frequency (where high is above 30 Hz and low is below 4 Hz)
power ratio in firing rate signals moves to higher values with increasing βintra
and βinter. It confirms the spectral separation between NREM sleep (βintra = 1,
βinter = 1) and βintra ≥ 2, βinter ≥ 2.
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Figure S5.22: Pulling and driving effects of intra-synaptic upscaling on evoked
responses in the one-cortical-column model. Deterministic firing rate signal of
pyramidal population in response to an input. (A) The input amplitude is 70 mV
(injected inputs). Figure shows the time trace of evoked response in NREM
(left) and in wakefulness (right). Intra-synaptic upscaling (color coded) gener-
ates pulling effects on evoked responses in wakefulness. (B) As in panel A but
for synaptic inputs when the input amplitude is 0.07 ms−1 and is applied through
an inter-synapse. Figure shows the time trace of evoked response in NREM (left)
and in wakefulness (right). Inter-synaptic upscaling (color coded) generates driv-
ing effects on evoked responses in wakefulness. Zero on x-axis represents input
onset. Input duration is represented by a light gray area.

167



0 1
10

15

20

25

30

Fir
in

g 
Ra

te
 (H

z) input strength=10 (mV)

NREM

0 1
10

15

20

25

30
input strength=10 (mV)

intra = 2 (W)

0 1
Time (s)

10

15

20

25

30

Fir
in

g 
Ra

te
 (H

z) input strength=80 (mV)

0 1
Time (s)

10

15

20

25

30
input strength=80 (mV)

Average of Evoked Responses of Pyramidal Population
One-Cortical-Column Model - Injected Inputs

Figure S5.23: Average of evoked responses in the one-cortical-column model in
the presence of Gaussian noise. Average response in NREM sleep (left column)
and wakefulness (right column, βintra = 2) when the amplitude of injected inputs
are 10 mV (top row) and 80 mV (bottom row). Black horizontal bars show the lo-
cation of significant time points (Bonferroni correction) when comparing evoked
responses in poststimulus intervals with spontaneous activity in peristimulus in-
tervals. Zero on x-axis represents input onset. Input duration is represented by a
light gray area.
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Figure S5.24: Average of evoked responses in wakefulness in the one-cortical-
column model in the presence of Gaussian noise, as in Figure S5.23. Average re-
sponse in wakefulness for βintra = 2 (left column) and βintra = 4 (right column)
when the amplitude of injected inputs are 10 mV (top row) and 80 mV (bottom
row). Note that the left column is identical to the right column in Figure S5.23.
Black horizontal bars show the location of significant time points (Bonferroni cor-
rection) when comparing evoked responses in poststimulus intervals with sponta-
neous activity in peristimulus intervals. Zero on x-axis represents input onset.
Input duration is represented by a light gray area.
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Figure S5.25: Average and standard deviation of evoked responses to injected in-
puts in the one-cortical-column model. Inputs are applied independent of synapse.
Average and standard deviation of evoked responses in NREM sleep (panel A)
and various intra-synaptic upscalings in wakefulness (columns in panel B) for
various input amplitudes. input amplitude zero corresponds to spontaneous activ-
ities in peristimulus interval. Average and standard deviation of evoked responses
increases and decreases, respectively, with increasing input amplitudes. Larger
separation between distribution of evoked responses for a given input amplitude
and distribution of spontaneous activities (input amplitude zero) determines better
information detection. Larger separation among distribution of evoked responses
for various input amplitudes (excluding input amplitude zero) determines better
information differentiation.
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Figure S5.26: Effects of synaptic upscaling on standard deviation of evoked re-
sponses to injected inputs in the one-cortical-column model. Inputs are applied
independent of synapse. Figures correspond to standard deviation of evoked re-
sponses (as in Figure S5.25). (A) standard deviation of evoked responses for var-
ious intra-synaptic upscalings in wakefulness for various input amplitudes. Stan-
dard deviation of evoked responses increases with increasing intra-synaptic up-
scaling in wakefulness. (B) As in panel A, but for NREM sleep and wakefulness
(βintra = 2) for various input amplitudes.
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Figure S5.27: Distribution of evoked responses for representative input ampli-
tudes. Distribution of evoked responses for representative input amplitudes (color
coded) in NREM sleep (panel A) and various intra-synaptic upscalings in wakeful-
ness (columns in panel B). Distribution of spontaneous activities in peristimulus
intervals is in pink. Larger separation between distribution of evoked responses
for a given input amplitude and distribution of spontaneous activities (in pink)
determines better information detection. Larger separation among distribution of
evoked responses for various input amplitudes determines better information dif-
ferentiation.
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Average and Standard Deviation of Evoked Responses - Synaptic Inputs

Figure S5.28: Average and standard deviation of evoked responses to synaptic
inputs in the one-cortical-column model. Inputs are applied through an inter-
synapse. (A) Average and standard deviation of evoked responses in NREM sleep
for various input amplitudes. (B) As in panel A, but for various intra-synaptic
upscalings (columns) and inter-synaptic upscalings (rows) in wakefulness. input
amplitude zero corresponds to spontaneous activities in peristimulus intervals.

173



0.02 0.04 0.06
Input Strength (ms 1)

0.5

1.0

1.5

2.0

St
an

da
rd

 D
ev

ia
tio

n
Fir

in
g 

Ra
te

 (H
z)

A
intra = 2 (W)

inter = 2
inter = 3
inter = 4

0.02 0.04 0.06
Input Strength (ms 1)

0.5

1.0

1.5

2.0

St
an

da
rd

 D
ev

ia
tio

n
Fir

in
g 

Ra
te

 (H
z)

B
intra = 3 (W)

inter = 2
inter = 3
inter = 4

0.02 0.04 0.06
Input Strength (ms 1)

0.5

1.0

1.5

2.0

St
an

da
rd

 D
ev

ia
tio

n
Fir

in
g 

Ra
te

 (H
z)

C
intra = 4 (W)

inter = 2
inter = 3
inter = 4

0.02 0.04 0.06
Input Strength (ms 1)

2

4

6

St
an

da
rd

 D
ev

ia
tio

n
Fir

in
g 

Ra
te

 (H
z)

D
NREM

NREM
intra = 2, inter = 2
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 Synaptic Inputs

Figure S5.29: Effects of synaptic upscaling on standard deviation of evoked re-
sponses to synaptic inputs in the one-cortical-column model. Inputs are applied
through an inter-synapse. Figures correspond to standard deviation of evoked re-
sponses as in Figure S5.28. (A) Standard deviation of evoked responses decreases
with increasing inter-synaptic upscaling when intra-synaptic upscaling in wake-
fulness is kept constant at βintra = 2. Results as in panel A, but for βintra = 3
(B) and βintra = 4 (C). Note that standard deviation of evoked responses in-
creases with increasing intra-synaptic upscaling in wakefulness. (D) As in panel
A, but for NREM sleep and βintra = 2, βinter = 2.
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Figure S5.30: Average of evoked responses in the two-cortical-column model in
the presence of Gaussian noise. Average response in NREM sleep (left column)
and wakefulness (right column, βintra = 2, βinter = 15) for the perturbed column
(top row) and the unperturbed column (bottom row). The amplitude of injected
input is 80 mV. Black horizontal bars show the location of significant time points
(Bonferroni correction) when comparing evoked responses in poststimulus inter-
vals with spontaneous activity in peristimulus intervals. Zero on x-axis represents
input onset. Input duration is represented by a light gray area.
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Figure S5.31: Average of evoked responses in wakefulness in the two-cortical-
column model in the presence of Gaussian noise, as in Figure S5.30. Average re-
sponse in wakefulness for βintra = 2, βinter = 15 (left column) and βintra = 15,
βinter = 15 (right column) for the perturbed column (top row) and the unper-
turbed column (bottom row). The amplitude of injected input is 80 mV. Note that
the left column is identical to the right column in Figure S5.30. Black horizon-
tal bars show the location of significant time points (Bonferroni correction) when
comparing evoked responses in poststimulus intervals with spontaneous activity
in peristimulus intervals. Zero on x-axis represents input onset. Input duration is
represented by a light gray area.

176



0 50 100
Input Strength (mV)

20

25

30

Fir
in

g 
Ra

te
 (H

z)

A NREM

0 50 100

20

25

30

Fir
in

g 
Ra

te
 (H

z)

inter = 2

B
intra = 2 (W)

0 50 100

20

25

30

inter = 2

intra = 4 (W)

0 50 100

20

25

30

inter = 2

intra = 15 (W)

0 50 100

20

25

30

Fir
in

g 
Ra

te
 (H

z)

inter = 4

0 50 100

20

25

30

inter = 4

0 50 100

20

25

30

inter = 4

0 50 100
Input Strength (mV)

20

25

30

Fir
in

g 
Ra

te
 (H

z)

inter = 15

0 50 100
Input Strength (mV)

20

25

30

inter = 15

0 50 100
Input Strength (mV)

20

25

30

inter = 15
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Figure S5.32: Average and standard deviation of evoked responses of the per-
turbed column to injected inputs in the two-cortical-column model. Inputs are
applied independent of synapse. (A) Average and standard deviation of evoked
responses in NREM sleep for various input amplitudes. (B) As in panel A, but for
various intra-synaptic upscalings (columns) and inter-synaptic upscalings (rows)
in wakefulness. input amplitude zero corresponds to spontaneous activities in
peristimulus intervals.
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Figure S5.33: Effects of inter-synaptic upscaling on standard deviation of spon-
taneous activities to injected inputs in the two-cortical-column model. Figures
correspond to standard deviation of spontaneous activities in peristimulus inter-
vals of the unperturbed column for various input amplitudes (on x axis). Note that
peristimulus intervals of perturbed and the unperturbed column are exchangeable
due to the symmetric connections. (A) Standard deviation of spontaneous activi-
ties decreases with increasing inter-synaptic upscaling when intra-synaptic upscal-
ing in wakefulness is kept constant at βintra = 2. Results as in panel A, but for
βintra = 3 (B) and βintra = 4 (C). Note that standard deviation of spontaneous
activities increases with increasing intra-synaptic upscaling in wakefulness. (D)
As in panel A, but for NREM sleep and βintra = 2, βinter = 2.
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Figure S5.34: Average and standard deviation of evoked responses of the unper-
turbed column to injected inputs in the two-cortical-column model. Results as in
Figure S5.32, but for the unperturbed column. (A) Average and standard devia-
tion of evoked responses in NREM sleep for various input amplitudes. (B) As in
panel A, but for various intra-synaptic upscalings (columns) and inter-synaptic up-
scalings (rows) in wakefulness. input amplitude zero corresponds to spontaneous
activities in peristimulus intervals.
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Average and Standard Deviation of Evoked Responses - Synaptic Inputs

Figure S5.35: Average and standard deviation of evoked responses of the per-
turbed column to synaptic inputs in the two-cortical-column model. Inputs are
applied through an intra-synapse. (A) Average and standard deviation of evoked
responses in NREM sleep for various input amplitudes. (B) As in panel A, but for
various intra-synaptic upscalings (columns) and inter-synaptic upscalings (rows)
in wakefulness. input amplitude zero corresponds to spontaneous activities in
peristimulus intervals.
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Standard Deviation of Evoked Responses Grouped by Upscaling Possibilities
Two-Cortical-Column Model - Synaptic Inputs

Figure S5.36: Standard deviation of evoked responses to synaptic inputs in the
two-cortical-column model. Inputs are applied through an intra-synapse. (A)
Standard deviation of evoked responses in the perturbed column in wakefulness
is the largest for local-selective synaptic upscaling scenario (Top) and smallest for
distance-selective synaptic upscaling scenario (Bottom). Figures (next page)
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Figure S5.36 (previous page): correspond to standard deviation of evoked re-
sponses in Figure S5.35 (B). Results as in panel A, but for the unperturbed column.
Note that standard deviation of evoked responses in wakefulness is the largest
for local-selective synaptic upscaling scenario (Top) and smallest for distance-
selective synaptic upscaling scenario (Bottom).
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Average and Standard Deviation of Evoked Responses - Synaptic Inputs

Figure S5.37: Average and standard deviation of evoked responses of the unper-
turbed column to synaptic inputs in the two-cortical-column model. Results as in
Figure S5.35, but for the unperturbed column. (A) Average and standard devia-
tion of evoked responses in NREM sleep for various input amplitudes. (B) As in
panel A, but for various intra-synaptic upscalings (columns) and inter-synaptic up-
scalings (rows) in wakefulness. input amplitude zero corresponds to spontaneous
activities in peristimulus intervals.
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Figure S5.38: Pulling effect due to intra-synaptic upscaling on information con-
tent at offset compared to another random time point in peristimulus intervals in
the one-cortical-column model. Results as in Figure 3.3. (A). Information detec-
tion at input offset for various input amplitudes (injected inputs) in NREM (red)
and various intra-synaptic upscalings in wakefulness (color coded). (B). Infor-
mation differentiation at input offset for NREM (red) and various intra-synaptic
upscalings in wakefulness (color coded as in panel A). Increasing intra-synaptic
upscaling in wakefulness decreases information differentiation. Note that infor-
mation differentiation is independent of the choice of time point in peristimulus
intervals. Error bar shows 95 percent confidence interval. Black dash line repre-
sents the chance-level accuracy = 1
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Figure S5.39: Driving and pulling effect due to synaptic upscaling on informa-
tion detection at offset compared to another random time point in peristimulus
intervals in the one-cortical-column model. Results as in Figure 3.5A-C. (A).
Information detection at input offset for various input amplitudes (Inter-synaptic
inputs) in NREM (red) and various inter-synaptic upscalings when intra-synaptic
upscaling in wakefulness is kept constant at βintra = 2 in wakefulness (color
coded). Results as in panel A, but for βintra = 3 (B) and βintra = 4 (C). Error
bar shows 95 percent confidence interval. Black dash line represents the chance-
level accuracy = 1
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Pulling and Driving Effects on Information Detection
Two-Cortical-Column Model - Injected Inputs

Figure S5.40: Pulling and driving effects due to synaptic upscaling on infor-
mation detection at offset compared to another random time point in pristimulus
interval in the two-cortical-column model. Results as in Figure 3.9. (A). Informa-
tion detection at input offset in the perturbed column for various input amplitudes
(injected inputs) in NREM (red) and various synaptic upscalings in (next page)

186



Figure S5.40 (previous page): wakefulness when intra-synaptic upscaling is
kept constant at βintra = 2 (Top), βintra = 4 (Middle) and βintra = 15 (Bot-
tom). (B). As in panel A, but for the unperturbed column. Error bar shows 95
percent confidence interval. Black dash line represents the chance-level accuracy
= 1
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Effects on Information Content Rearranged by Upscaling Possibilities
Perturbed Column in Two-Cortical-Column Model - Synaptic Inputs

Figure S5.41: Effects of synaptic upscaling on information detection at offset
compared to another random time point in pristimulus interval in the perturbed
column in the two-cortical-column model rearranged by synaptic upscaling sce-
narios. Results as in Figure 3.12. (A). Information detection at input offset for
various input amplitudes in NREM (red) and local-selective synaptic upscaling
scenario in wakefulness (color coded). (B), (C). As in panel A, but for homoge-
neous and distance-selective synaptic upscaling scenarios in wakefulness, respec-
tively. Error bar shows 95 percent confidence interval. Black dash line represents
the chance-level accuracy = 1
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Effects on Information Content Rearranged by Upscaling Possibilities
Unperturbed Column in Two-Cortical-Column Model - Synaptic Inputs

Figure S5.42: Effects of synaptic upscaling on information detection at offset
compared to another random time point in pristimulus interval in the unperturbed
column in the two-cortical-column model rearranged by synaptic upscaling sce-
narios. Results as in Figure 3.13. (A). Information detection at input offset for
various input amplitudes in NREM (red) and local-selective synaptic upscaling
scenario in wakefulness (color coded). (B), (C). As in panel A, but for homoge-
neous and distance-selective synaptic upscaling scenarios in wakefulness, respec-
tively. Error bar shows 95 percent confidence interval. Black dash line represents
the chance-level accuracy = 1
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Figure S5.43: Pulling effects of synaptic upscaling on information content at
20 ms prior offset in the one-cortical-column model. Results as in Figure 3.3.
(A). Information detection at 20 ms prior offset for various input amplitudes (in-
jected inputs) in NREM (red) and various synaptic upscalings in wakefulness
(color coded). (B). Information differentiation at input offset for NREM (red) and
various synaptic upscalings in wakefulness (color coded as in panel A). Error bar
shows 95 percent confidence interval. Black dash line represents the chance-level
accuracy = 1
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Driving and Pulling Effects on Information Content
One-Cortical-Column Model - Synaptic Inputs

Figure S5.44: Driving and pulling effect due to synaptic upscaling on informa-
tion content at 20 ms prior offset in the one-cortical-column model. Results as
in Figure 3.5. (A). Information detection at 20 ms prior offset for various input
amplitudes (Inter-synaptic inputs) in NREM (red) and various synaptic upscal-
ings in wakefulness (color coded). Results as in panel A, but for βintra = 3 (B)
and βintra = 4 (C). (D). Information differentiation at 20 ms prior input offset
for NREM (red) and various synaptic upscalings in wakefulness (color coded).
Error bar shows 95 percent confidence interval. Black dash line represents the
chance-level accuracy = 1
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Pulling and Driving Effects on Information Detection
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Figure S5.45: Pulling and driving effects due to synaptic upscaling on informa-
tion detection at 20 ms prior offset in the two-cortical-column model. Results as
in Figure 3.9. (A). Information detection at 20 ms prior offset in the perturbed
column for various input amplitudes (injected inputs) in NREM (red) and various
synaptic upscalings in wakefulness when intra-synaptic upscaling is (next page)
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Figure S5.45 (previous page): kept constant at βintra = 2 (Top), βintra = 4
(Middle) and βintra = 15 (Bottom). (B). As in panel A, but for the unperturbed
column. Error bar shows 95 percent confidence interval. Black dash line repre-
sents the chance-level accuracy = 1
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Figure S5.46: Pulling and driving effects due to synaptic upscaling on informa-
tion differentiation at 20 ms prior offset in the two-cortical-column model. Results
as in Figure 3.10. (A). Information differentiation at 20 ms prior offset in the per-
turbed column for various input amplitudes (injected inputs) in NREM (red) and
various synaptic upscalings in wakefulness (color coded). (B). As in panel A,
but for the unperturbed column. Error bar shows 95 percent confidence interval.
Black dash line represents the chance-level accuracy = 1
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Figure S5.47: Effects of synaptic upscaling on information content at 20 ms
prior offset in the perturbed column in the two-cortical-column model rearranged
by synaptic upscaling scenarios. Results as in Figure 3.12. (A). Information detec-
tion at input offset for various input amplitudes in NREM (red) and local-selective
synaptic upscaling scenario in wakefulness (color coded). (B), (C). As in panel A,
but for homogeneous and distance-selective synaptic upscaling scenarios in wake-
fulness, respectively. (D) Information differentiation for NREM and three synap-
tic upscaling scenarios in wakefulness. Error bar shows 95 percent confidence
interval. Black dash line represents the chance-level accuracy = 1
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Figure S5.48: Effects of synaptic upscaling on information content at 20 ms prior
offset in the unperturbed column in the two-cortical-column model rearranged by
synaptic upscaling scenarios. Results as in Figure 3.13. (A). Information detec-
tion at input offset for various input amplitudes in NREM (red) and local-selective
synaptic upscaling scenario in wakefulness (color coded). (B), (C). As in panel A,
but for homogeneous and distance-selective synaptic upscaling scenarios in wake-
fulness, respectively. (D) Information differentiation for NREM and three synap-
tic upscaling scenarios in wakefulness. Error bar shows 95 percent confidence
interval. Black dash line represents the chance-level accuracy = 1
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Figure S5.49: Pulling effects of synaptic upscaling on information content at
20 ms post offset in the one-cortical-column model. Results as in Figure 3.3. (A).
Information detection at 20 ms post offset for various input amplitudes (injected
inputs) in NREM (red) and various synaptic upscalings in wakefulness (color
coded). (B). Information differentiation at input offset for NREM (red) and var-
ious synaptic upscalings in wakefulness (color coded as in panel A). Error bar
shows 95 percent confidence interval. Black dash line represents the chance-level
accuracy = 1
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Driving and Pulling Effects on Information Content
One-Cortical-Column Model - Synaptic Inputs

Figure S5.50: Driving and pulling effect due to synaptic upscaling on informa-
tion content at 20 ms post offset in the one-cortical-column model. Results as
in Figure 3.5. (A). Information detection at 20 ms post offset for various input
amplitudes (Inter-synaptic inputs) in NREM (red) and various synaptic upscal-
ings in wakefulness (color coded). Results as in panel A, but for βintra = 3 (B)
and βintra = 4 (C). (D). Information differentiation at 20 ms post to input offset
for NREM (red) and various synaptic upscalings in wakefulness (color coded).
Error bar shows 95 percent confidence interval. Black dash line represents the
chance-level accuracy = 1
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Pulling and Driving Effects on Information Detection
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Figure S5.51: Pulling and driving effects due to synaptic upscaling on informa-
tion detection at 20 ms post offset in the two-cortical-column model. Results as
in Figure 3.9. (A). Information detection at 20 ms post offset in the perturbed
column for various input amplitudes (injected inputs) in NREM (red) and various
synaptic upscalings in wakefulness when intra-synaptic upscaling is (next page)
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Figure S5.51 (previous page): kept constant at βintra = 2 (Top), βintra = 4
(Middle) and βintra = 15 (Bottom). (B). As in panel A, but for the unperturbed
column. Error bar shows 95 percent confidence interval. Black dash line repre-
sents the chance-level accuracy = 1
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Figure S5.52: Pulling and driving effects due to synaptic upscaling on informa-
tion differentiation at 20 ms post offset in the two-cortical-column model. Results
as in Figure 3.10. (A). Information differentiation at 20 ms post offset in the per-
turbed column for various input amplitudes (injected inputs) in NREM (red) and
various synaptic upscalings in wakefulness (color coded). (B). As in panel A,
but for the unperturbed column. Error bar shows 95 percent confidence interval.
Black dash line represents the chance-level accuracy = 1
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Figure S5.53: Effects of synaptic upscaling on information content at 20 ms post
offset in the perturbed column in the two-cortical-column model rearranged by
synaptic upscaling scenarios. Results as in Figure 3.12. (A). Information detec-
tion at input offset for various input amplitudes in NREM (red) and local-selective
synaptic upscaling scenario in wakefulness (color coded). (B), (C). As in panel A,
but for homogeneous and distance-selective synaptic upscaling scenarios in wake-
fulness, respectively. (D) Information differentiation for NREM and three synap-
tic upscaling scenarios in wakefulness. Error bar shows 95 percent confidence
interval. Black dash line represents the chance-level accuracy = 1
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Figure S5.54: Effects of synaptic upscaling on information content at 20 ms post
offset in the unperturbed column in the two-cortical-column model rearranged by
synaptic upscaling scenarios. Results as in Figure 3.13. (A). Information detec-
tion at input offset for various input amplitudes in NREM (red) and local-selective
synaptic upscaling scenario in wakefulness (color coded). (B), (C). As in panel A,
but for homogeneous and distance-selective synaptic upscaling scenarios in wake-
fulness, respectively. (D) Information differentiation for NREM and three synap-
tic upscaling scenarios in wakefulness. Error bar shows 95 percent confidence
interval. Black dash line represents the chance-level accuracy = 1
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Figure S5.55: Pulling effects of synaptic upscaling on information content im-
plementing Generative model at offset in the one-cortical-column model. Results
as in Figure 3.3. (A). Information detection at offset for various input amplitudes
(injected inputs) in NREM (red) and various synaptic upscalings in wakefulness
(color coded). (B). Information differentiation at input offset for NREM (red) and
various synaptic upscalings in wakefulness (color coded as in panel A). Error bar
shows 95 percent confidence interval. Black dash line represents the chance-level
accuracy = 1
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Driving and Pulling Effects on Information Content
One-Cortical-Column Model - Synaptic Inputs

Figure S5.56: Driving and pulling effect due to synaptic upscaling on informa-
tion detection implementing Generative model at offset in the one-cortical-column
model. Results as in Figure 3.5. (A). Information detection at offset for various
input amplitudes (Inter-synaptic inputs) in NREM (red) and various synaptic up-
scalings in wakefulness (color coded). Results as in panel A, but for βintra = 3
(B) and βintra = 4 (C). (D). Information differentiation at 20 ms prior input off-
set for NREM (red) and various synaptic upscalings in wakefulness (color coded).
Error bar shows 95 percent confidence interval. Black dash line represents the
chance-level accuracy = 1
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Pulling and Driving Effects on Information Detection
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Figure S5.57: Pulling and driving effects due to synaptic upscaling on informa-
tion detection implementing Generative model at offset in the two-cortical-column
model. Results as in Figure 3.9. (A). Information detection at offset in the per-
turbed column for various input amplitudes (injected inputs) in NREM (red) and
various synaptic upscalings in wakefulness when intra-synaptic (next page)
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Figure S5.57 (previous page): upscaling is kept constant at βintra = 2 (Top),
βintra = 4 (Middle) and βintra = 15 (Bottom). (B). As in panel A, but for the
unperturbed column. Error bar shows 95 percent confidence interval. Black dash
line represents the chance-level accuracy = 1
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Figure S5.58: Pulling and driving effects due to synaptic upscaling on informa-
tion differentiation implementing Generative model at offset in the two-cortical-
column model. Results as in Figure 3.10. (A). Information differentiation at offset
in the perturbed column for various input amplitudes (injected inputs) in NREM
(red) and various synaptic upscalings in wakefulness (color coded). (B). As in
panel A, but for the unperturbed column. Error bar shows 95 percent confidence
interval. Black dash line represents the chance-level accuracy = 1
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Figure S5.59: Effects of synaptic upscaling on information content implement-
ing Generative model at offset in the perturbed column in the two-cortical-column
model rearranged by synaptic upscaling scenarios. Results as in Figure 3.12. (A).
Information detection at input offset for various input amplitudes in NREM (red)
and local-selective synaptic upscaling scenario in wakefulness (color coded). (B),
(C). As in panel A, but for homogeneous and distance-selective synaptic upscaling
scenarios in wakefulness, respectively. (D) Information differentiation for NREM
and three synaptic upscaling scenarios in wakefulness. Error bar shows 95 per-
cent confidence interval. Black dash line represents the chance-level accuracy
= 1

#input amplitudes .

206



0.02 0.04 0.06 0.08 0.10
Input Strength (ms 1)

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

A Detection
Local-Selective Upscaling

NREM
intra = 4, inter = 2
intra = 15, inter = 4
intra = 15, inter = 2

0.02 0.04 0.06 0.08 0.10
Input Strength (ms 1)

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

B Detection
Homogeneous Upscaling

NREM
intra = 2, inter = 2
intra = 4, inter = 4
intra = 15, inter = 15

0.02 0.04 0.06 0.08 0.10
Input Strength (ms 1)

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

C Detection
Distance-Selective Upscaling

NREM
intra = 2, inter = 4
intra = 2, inter = 15
intra = 4, inter = 15

NREM
Loc

al

Se
lec

tiv
e

Hom
og

en
eo

us

Dista
nce

Se
lec

tiv
e

0.10

0.12

0.14

Ac
cu

ra
cy

D Differentiation

Effects on Information Content Rearranged by Upscaling Possibilities
Unperturbed Column in Two-Cortical-Column Model - Synaptic Inputs

Figure S5.60: Effects of synaptic upscaling on information content implement-
ing Generative model at offset in the unperturbed column in the two-cortical-
column model rearranged by synaptic upscaling scenarios. Results as in Fig-
ure 3.12. (A). Information detection at input offset for various input amplitudes
in NREM (red) and local-selective synaptic upscaling scenario in wakefulness
(color coded). (B), (C). As in panel A, but for homogeneous and distance-selective
synaptic upscaling scenarios in wakefulness, respectively. (D) Information differ-
entiation for NREM and three synaptic upscaling scenarios in wakefulness. Error
bar shows 95 percent confidence interval. Black dash line represents the chance-
level accuracy = 1
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Figure S5.61: Pulling effects of synaptic upscaling on information content im-
plementing Generative model at offset compared to another random time point in
pristimulus interval in the one-cortical-column model. Results as in Figure 3.3.
(A). Information detection at offset for various input amplitudes (injected inputs)
in NREM (red) and various synaptic upscalings in wakefulness (color coded). (B).
Information differentiation at input offset for NREM (red) and various synaptic
upscalings in wakefulness (color coded as in panel A). Note that information dif-
ferentiation is independent of the choice of time point in peristimulus intervals.
Error bar shows 95 percent confidence interval. Black dash line represents the
chance-level accuracy = 1
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Figure S5.62: Driving and pulling effect due to synaptic upscaling on informa-
tion detection implementing Generative model at offset compared to another ran-
dom time point in pristimulus interval in the one-cortical-column model. Results
as in Figure 3.5A-C. (A). Information detection at input offset for various input
amplitudes (Inter-synaptic inputs) in NREM (red) and various synaptic upscalings
in wakefulness (color coded). Results as in panel A, but for βintra = 3 (B) and
βintra = 4 (C). Error bar shows 95 percent confidence interval. Black dash line
represents the chance-level accuracy = 1
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Figure S5.63: Pulling and driving effects due to synaptic upscaling on infor-
mation detection implementing Generative model at offset compared to another
random time point in pristimulus interval in the two-cortical-column model. Re-
sults as in Figure 3.9. (A). Information detection at input offset in the perturbed
column for various input amplitudes (injected inputs) in NREM (red) (next page)
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Figure S5.63 (previous page): and various synaptic upscalings in wakefulness
when intra-synaptic upscaling is kept constant at βintra = 2 (Top), βintra = 4
(Middle) and βintra = 15 (Bottom). (B). As in panel A, but for the unperturbed
column. Error bar shows 95 percent confidence interval. Black dash line repre-
sents the chance-level accuracy = 1
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Figure S5.64: Effects of synaptic upscaling on information detection at offset
compared to another random time point in pristimulus interval in the perturbed
column in the two-cortical-column model rearranged by synaptic upscaling sce-
narios. Results as in Figure 3.12. (A). Information detection at input offset for
various input amplitudes in NREM (red) and local-selective synaptic upscaling
scenario in wakefulness (color coded). (B), (C). As in panel A, but for homoge-
neous and distance-selective synaptic upscaling scenarios in wakefulness, respec-
tively. Error bar shows 95 percent confidence interval. Black dash line represents
the chance-level accuracy = 1
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Figure S5.65: Effects of synaptic upscaling on information detection at offset
compared to another random time point in pristimulus interval in the unperturbed
column in the two-cortical-column model rearranged by synaptic upscaling sce-
narios. Results as in Figure 3.13. (A). Information detection at input offset for
various input amplitudes in NREM (red) and local-selective synaptic upscaling
scenario in wakefulness (color coded). (B), (C). As in panel A, but for homoge-
neous and distance-selective synaptic upscaling scenarios in wakefulness, respec-
tively. Error bar shows 95 percent confidence interval. Black dash line represents
the chance-level accuracy = 1

#input amplitudes .

213



20 40 60 80
Input Strength (mV)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

A Detection

NREM
intra = 2 (W) 
intra = 3 (W) 
intra = 4 (W) 

NREM W

0.15

0.20

0.25

0.30
Ac

cu
ra

cy

B Differentiation

intra = 2
intra = 3
intra = 4

Pulling Effects on Information Content
One-Cortical-Column Model - Injected Inputs

Figure S5.66: Pulling effects of synaptic upscaling on information content im-
plementing Generative model at 20 ms prior offset in the one-cortical-column
model. Results as in Figure 3.3. (A). Information detection at 20 ms prior offset
for various input amplitudes (injected inputs) in NREM (red) and various synaptic
upscalings in wakefulness (color coded). (B). Information differentiation at in-
put offset for NREM (red) and various synaptic upscalings in wakefulness (color
coded as in panel A). Error bar shows 95 percent confidence interval. Black dash
line represents the chance-level accuracy = 1
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Driving and Pulling Effects on Information Content
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Figure S5.67: Driving and pulling effect due to synaptic upscaling on infor-
mation content implementing Generative model at 20 ms prior offset in the one-
cortical-column model. Results as in Figure 3.5. (A). Information detection at
20 ms prior offset for various input amplitudes (Inter-synaptic inputs) in NREM
(red) and various synaptic upscalings in wakefulness (color coded). Results as in
panel A, but for βintra = 3 (B) and βintra = 4 (C). (D). Information differentia-
tion at 20 ms prior input offset for NREM (red) and various synaptic upscalings in
wakefulness (color coded). Error bar shows 95 percent confidence interval. Black
dash line represents the chance-level accuracy = 1
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Pulling and Driving Effects on Information Detection
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Figure S5.68: Pulling and driving effects due to synaptic upscaling on informa-
tion detection implementing Generative model at 20 ms prior offset in the two-
cortical-column model. Results as in Figure 3.9. (A). Information detection at
20 ms prior offset in the perturbed column for various input amplitudes (injected
inputs) in NREM (red) and various synaptic upscalings in wakefulness (next page)
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Figure S5.68 (previous page): when intra-synaptic upscaling is kept constant
at βintra = 2 (Top), βintra = 4 (Middle) and βintra = 15 (Bottom). (B). As in
panel A, but for the unperturbed column. Error bar shows 95 percent confidence
interval. Black dash line represents the chance-level accuracy = 1
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Figure S5.69: Pulling and driving effects due to synaptic upscaling on informa-
tion differentiation implementing Generative model at 20 ms prior offset in the
two-cortical-column model. Results as in Figure 3.10. (A). Information differen-
tiation at 20 ms prior offset in the perturbed column for various input amplitudes
(injected inputs) in NREM (red) and various synaptic upscalings in wakefulness
(color coded). (B). As in panel A, but for the unperturbed column. Error bar
shows 95 percent confidence interval. Black dash line represents the chance-level
accuracy = 1
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Figure S5.70: Effects of synaptic upscaling on information content implement-
ing Generative model at 20 ms prior offset in the perturbed column in the two-
cortical-column model rearranged by synaptic upscaling scenarios. Results as in
Figure 3.12. (A). Information detection at input offset for various input ampli-
tudes in NREM (red) and local-selective synaptic upscaling scenario in wakeful-
ness (color coded). (B), (C). As in panel A, but for homogeneous and distance-
selective synaptic upscaling scenarios in wakefulness, respectively. (D) Informa-
tion differentiation for NREM and three synaptic upscaling scenarios in wakeful-
ness. Error bar shows 95 percent confidence interval. Black dash line represents
the chance-level accuracy = 1
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Figure S5.71: Effects of synaptic upscaling on information content implement-
ing Generative model at 20 ms prior offset in the unperturbed column in the two-
cortical-column model rearranged by synaptic upscaling scenarios. Results as in
Figure 3.13. (A). Information detection at input offset for various input ampli-
tudes in NREM (red) and local-selective synaptic upscaling scenario in wakeful-
ness (color coded). (B), (C). As in panel A, but for homogeneous and distance-
selective synaptic upscaling scenarios in wakefulness, respectively. (D) Informa-
tion differentiation for NREM and three synaptic upscaling scenarios in wakeful-
ness. Error bar shows 95 percent confidence interval. Black dash line represents
the chance-level accuracy = 1
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Figure S5.72: Pulling effects of synaptic upscaling on information content im-
plementing Generative model at 20 ms post offset in the one-cortical-column
model. Results as in Figure 3.3. (A). Information detection at 20 ms post offset
for various input amplitudes (injected inputs) in NREM (red) and various synaptic
upscalings in wakefulness (color coded). (B). Information differentiation at in-
put offset for NREM (red) and various synaptic upscalings in wakefulness (color
coded as in panel A). Error bar shows 95 percent confidence interval. Black dash
line represents the chance-level accuracy = 1
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Driving and Pulling Effects on Information Content
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Figure S5.73: Driving and pulling effect due to synaptic upscaling on infor-
mation content implementing Generative model at 20 ms post offset in the one-
cortical-column model. Results as in Figure 3.5. (A). Information detection at
20 ms post offset for various input amplitudes (Inter-synaptic inputs) in NREM
(red) and various synaptic upscalings in wakefulness (color coded). Results as in
panel A, but for βintra = 3 (B) and βintra = 4 (C). (D). Information differentia-
tion at 20 ms post to input offset for NREM (red) and various synaptic upscalings
in wakefulness (color coded). Error bar shows 95 percent confidence interval.
Black dash line represents the chance-level accuracy = 1
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Figure S5.74: Pulling and driving effects due to synaptic upscaling on informa-
tion detection implementing Generative model at 20 ms post offset in the two-
cortical-column model. Results as in Figure 3.9. (A). Information detection at
20 ms post offset in the perturbed column for various input amplitudes (injected
inputs) in NREM (red) and various synaptic upscalings in wakefulness (next page)
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Figure S5.74 (previous page): when intra-synaptic upscaling is kept constant
at βintra = 2 (Top), βintra = 4 (Middle) and βintra = 15 (Bottom). (B). As in
panel A, but for the unperturbed column. Error bar shows 95 percent confidence
interval. Black dash line represents the chance-level accuracy = 1
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Figure S5.75: Pulling and driving effects due to synaptic upscaling on informa-
tion differentiation implementing Generative model at 20 ms post offset in the
two-cortical-column model. Results as in Figure 3.10. (A). Information differen-
tiation at 20 ms post offset in the perturbed column for various input amplitudes
(injected inputs) in NREM (red) and various synaptic upscalings in wakefulness
(color coded). (B). As in panel A, but for the unperturbed column. Error bar
shows 95 percent confidence interval. Black dash line represents the chance-level
accuracy = 1
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Figure S5.76: Effects of synaptic upscaling on information content implement-
ing Generative model at 20 ms post offset in the perturbed column in the two-
cortical-column model rearranged by synaptic upscaling scenarios. Results as in
Figure 3.12. (A). Information detection at input offset for various input ampli-
tudes in NREM (red) and local-selective synaptic upscaling scenario in wakeful-
ness (color coded). (B), (C). As in panel A, but for homogeneous and distance-
selective synaptic upscaling scenarios in wakefulness, respectively. (D) Informa-
tion differentiation for NREM and three synaptic upscaling scenarios in wakeful-
ness. Error bar shows 95 percent confidence interval. Black dash line represents
the chance-level accuracy = 1
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Figure S5.77: Effects of synaptic upscaling on information content implement-
ing Generative model at 20 ms post offset in the unperturbed column in the two-
cortical-column model rearranged by synaptic upscaling scenarios. Results as in
Figure 3.13. (A). Information detection at input offset for various input ampli-
tudes in NREM (red) and local-selective synaptic upscaling scenario in wakeful-
ness (color coded). (B), (C). As in panel A, but for homogeneous and distance-
selective synaptic upscaling scenarios in wakefulness, respectively. (D) Informa-
tion differentiation for NREM and three synaptic upscaling scenarios in wakeful-
ness. Error bar shows 95 percent confidence interval. Black dash line represents
the chance-level accuracy = 1
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Figure S5.78: Pulling effects of synaptic upscaling on information content im-
plementing significance test and mutual information in the one-cortical-column
model. (A). t-cluster statistics (Bonferroni correction) when comparing the
evoked responses in firing rate signals with spontaneous activities in the peristim-
ulus intervals. Size of t-cluster statistics for various input amplitudes (injected
inputs) in NREM (red) and various synaptic upscalings in wakefulness (color
coded). Size of t-cluster statistics increases with increasing input amplitude. How-
ever, it decreases as synaptic upscaling in wakefulness increases: pulling effect.
(B). Mutual information at input offset for NREM (red) and various synaptic up-
scalings in wakefulness (color coded as in panel A). Note that t-cluster statis-
tics and mutual information qualitatively reproduce results for information detec-
tion and information differentiation, respectively, implementing machine learning
techniques (for instance see Figure 3.3).
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Figure S5.79: Driving and pulling effect due to synaptic upscaling on infor-
mation content implementing significance test and mutual information in the
one-cortical-column model rearranged by synaptic upscaling scenarios. (A), (B)
and (C) show the size of t-cluster statistics for local-selective, homogeneous and
distance-selective synaptic upscaling scenarios in wakefulness, respectively. (D)
Mutual information at input offset for NREM (red) and various synaptic upscal-
ings in wakefulness (color coded as in panel A, B and C). Note that t-cluster statis-
tics and mutual information qualitatively reproduce results for information detec-
tion and information differentiation, respectively, implementing machine learning
techniques (for instance see Figure 3.6).
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Figure S5.80: Pulling and driving effects due to synaptic upscaling on informa-
tion detection implementing significance test in the two-cortical-column model.
(A). Size of t-cluster statistics in the perturbed column for various input ampli-
tudes (injected inputs) in NREM (red) and various synaptic (next page)
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Figure S5.80 (previous page): upscalings in wakefulness when intra-synaptic
upscaling is kept constant at βintra = 2 (Top), βintra = 4 (Middle) and
βintra = 15 (Bottom). (B). As in panel A, but for the unperturbed column. Note
that t-cluster statistics qualitatively reproduce results for information detection,
implementing machine learning techniques (for instance see Figure 3.9).
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Figure S5.81: Effects of synaptic upscaling on information content implement-
ing significance test and mutual information in the perturbed column in the two-
cortical-column model rearranged by synaptic upscaling scenarios. Results cor-
respond to the perturbed column. (A). Size of t-cluster statistics for various in-
put amplitudes in NREM (red) and local-selective synaptic upscaling scenarios
in wakefulness (color coded). (B), (C). As in panel A, but for homogeneous and
distance-selective synaptic upscaling scenarios in wakefulness, respectively. (D)
Mutual information for NREM and three synaptic upscaling scenarios in wakeful-
ness. Note that t-cluster statistics and mutual information qualitatively reproduce
results for information detection and information differentiation, respectively, im-
plementing machine learning techniques (for instance see Figure 3.12).
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Figure S5.82: Effects of synaptic upscaling on information content implement-
ing significance test and mutual information in the unperturbed column in the
two-cortical-column model rearranged by synaptic upscaling scenarios. Results
correspond to the perturbed column. (A). Size of t-cluster statistics for various
input amplitudes in NREM (red) and local-selective synaptic upscaling scenarios
in wakefulness (color coded). (B), (C). As in panel A, but for homogeneous and
distance-selective synaptic upscaling scenarios in wakefulness, respectively. (D)
Mutual information for NREM and three synaptic upscaling scenarios in wakeful-
ness. Note that t-cluster statistics and mutual information qualitatively reproduce
results for information detection and information differentiation, respectively, im-
plementing machine learning techniques (for instance see Figure 3.13).
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Figure S5.83: Pulling and driving effects due to synaptic upscaling on informa-
tion differentiation implementing mutual information in the two-cortical-column
model. (A). Mutual information at input offset in the perturbed column for various
input amplitudes (injected inputs) in NREM (red) and various synaptic upscalings
in wakefulness (color coded). (B). As in panel A, but for the unperturbed col-
umn. Note that mutual information qualitatively reproduces results for informa-
tion differentiation, implementing machine learning techniques (for instance see
Figure 3.10).
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Figure S5.84: Pulling and driving effects on mutual is independent of data bin-
ing. (A) Mutual information in the one-cortical-column model (injected inputs)
when 0.6 Hz and 0.2 Hz bins are used for data discretization. (B). Results as
in panel A but for synaptic inputs. Note that mutual information for different
bin number qualitatively reproduces results for information differentiation, imple-
menting machine learning techniques.
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Figure S5.85: Effects of synaptic upscaling on mutual information at 20 ms
prior offset and 20 ms post offset in the one-cortical-column model. (A). Mutual
information at 20 ms prior offset (left) and 20 ms post offset (right) for various
input amplitudes (injected inputs) in NREM (red) and various synaptic upscalings
in wakefulness (color coded). (B). As in panel A, but for synaptic inputs.
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Figure S5.86: Effects of synaptic upscaling on mutual information at 20 ms prior
offset and 20 ms post offset to injected inputs in the two-cortical-column model.
(A). Mutual information at 20 ms prior offset (left) and 20 ms post offset (right)
in the perturbed column for various input amplitudes in NREM (red) and various
synaptic upscalings in wakefulness (color coded). (B). As in panel A, but for the
unperturbed column.
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Figure S5.87: Effects of synaptic upscaling on mutual information at 20 ms prior
offset and 20 ms post offset to synaptic inputs in the two-cortical-column model.
(A). Mutual information at 20 ms prior offset (left) and 20 ms post offset (right)
in the perturbed column for various input amplitudes in NREM (red) and various
synaptic upscalings in wakefulness (color coded). (B). As in panel A, but for the
unperturbed column.
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Appendix A

APPENDIX

This Chapter includes appendix of the study.

A.1 Appendix A: Neural Mass Model Equations
In this section, we provide full model equations for one- and two-cortical-
column models. A cortical column is described by the neural mass model
of pyramidal and inhibitory populations mutually connected through AM-
PAergic and GABAergic synapses.

Synapse Dynamics
Assuming that the postsynaptic response of a synapse skk′—given a presy-
naptic population k′ and a postsynaptic population k—is obtained by the
convolution of presynaptic firing, H(t), at time t at the synaptic site, and
average synaptic response to a single spike is αk′ , skk′(t) takes the follow-
ing form:

skk′(t) = H(t) ~ αk′(t),
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=

∫ t

0

H(τ) αk′(t− τ) dτ,

where αk′(t) has an exponential decay time course:

αk′(t) = γ2k′ t exp(−γk′t),

Therefore, the first derivative of the skk′(t) with respect to t taking into
account the Leibniz integral rule is as follows:

ṡkk′(t) =
d

dt

[∫ t

0

H(τ) αk′(t− τ) dτ

]
,

= H(t) αk′(t− t) +

∫ t

0

H(τ)
d

dt
[αk′(t− τ)] dτ,

=

∫ t

0

H(τ)
[
γ2k′ exp(−γk′(t− τ))

]
dτ

−
∫ t

0

H(τ)
[
γ3k′(t− τ) exp(−γk′(t− τ))

]
dτ,

=

∫ t

0

H(τ) γ2k′ exp(−γk′(t− τ)) dτ

− γk′

∫ t

0

H(τ) γ2k′(t− τ) exp(−γk′(t− τ)) dτ,

=

∫ t

0

H(τ) γ2k′ exp(−γk′(t− τ)) dτ

− γk′

∫ t

0

H(τ) αk′(t− τ) dτ,

=

∫ t

0

H(τ) γ2k′ exp(−γk′(t− τ)) dτ − γk′ skk′(t).
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In the same way, the second derivative of the skk′(t) with respect to t
is:

s̈kk′(t) = γ2k′ H(t) + γk′

∫ t

0

H(τ) γ2k′(t− τ) exp(−γk′(t− τ)) dτ

− γk′ ṡkk′(t),

= γ2k′ H(t) − γk′ (ṡkk′(t) + γk′ skk′(t)) − γk′ ṡkk′(t),

= γ2k′ H(t) − γ2k′ skk′(t) − 2γk′ ṡkk′(t),

= γ2k′ [H(t) − skk′(t)] − 2γk′ ṡkk′(t),

Finally, by substituting the H(t) = Nkk′ Qk′(Vk′) + φk—which is the
presynaptic drive at synapse of population k—the postsynaptic response
skk′ takes the form of:

s̈kk′ = γ2k′ (Nkk′ Qk′(Vk′) + φk − skk′) − 2γk′ , ṡkk′

Please note that the noise term φk is a stochastic Gaussian process with
zero autocorrelation time constant. The Gaussian noise is only applied on
excitatory synapses.

One-Cortical-Column Model
One-cortical-column model consists of one pyramidal and one inhibitory
population (see panel A in Figure 2.1). The model utilizes the mathemat-
ical formalism of the Hodgkin-Huxley model to describe the membrane
voltage activity in terms of driving synaptic activity. The synaptic activ-
ity contains one leak, two synaptic (AMPAergic and GABAergic) currents
and one activity-dependent potassium current. In the absence of the Gaus-
sian noise, the system relaxes on the steady state solution. At every time
point, the Gaussian noise puts the system out of the steady state solution,
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however, the aforementioned synaptic currents drive the system back to the
steady state solution. The full model equations for the one-cortical-column
model are described by:

τpV̇p = −IpL − IpAMPA − IpGABA − τpC−1m IKNa,

τiV̇i = −I iL − I iAMPA − I iGABA,

s̈ intra
pp = γ2p (Npp Qp(Vp) + φp − s intra

pp ) − 2γp ṡ
intra
pp ,

s̈ intra
pi = γ2i (Npi Qi(Vi)− s intra

pi ) − 2γi ṡ
intra
pi ,

s̈ intra
ip = γ2p (Nip Qp(Vp) + φi − s intra

ip ) − 2γp ṡ
intra
ip ,

s̈ intra
ii = γ2i (Nii Qi(Vi)− s intra

ii ) − 2γi ṡ
intra
ii ,

τNa ˙[Na] = αNaQp(Vp)− Napump([Na]),

with the currents defined by:

IkL = ḡL(Vk − Ek
L),

IkAMPA = βintra ḡAMPAs
intra
kp (Vk − EAMPA),

IkGABA = βkGABA ḡGABAs
intra
ki (Vk − EGABA),

IKNa = ḡKNa
0.37

1 + (38.7[Na] )
3.5

(Vp − EK), for k ∈ {p, i},

The sodium pump and firing rate functions are given by:

Napump([Na]) = Rpump

(
[Na]3

[Na]3 + 3375
−

[Na]3eq

[Na]3eq + 3375

)
,
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Qk(Vk) = Qmax
k

(1 + tanh(C(Vk − θk)/σk))
2

, C =
π

2
√

3

Symbol descriptions and parameter values are provided in Tables 2.1,
2.2 and 2.3.

Two-Cortical-Column Model
Two-cortical-column model consists of two cortical columns each con-
taining one pyramidal and one inhibitory population (see Appendix A.1)
that are mutually coupled through AMPAergic connections (see panel B
in Figure 2.1). Full model equations for two-cortical-column model are
described by:

τpV̇p = −IpL − IpAMPA − IpGABA − τpC−1m IpKNa,

τiV̇i = −I iL − I iAMPA − I iGABA,

τp′V̇p′ = −Ip′L − Ip
′

AMPA − Ip
′

GABA − τp′C−1m Ip
′

KNa,

τi′V̇i′ = −I i′L − I i
′

AMPA − I i
′

GABA,

s̈ intra
pp = γ2p (Npp Qp(Vp) + φp − s intra

pp ) − 2γp ṡ
intra
pp ,

s̈ intra
pi = γ2i (Npi Qi(Vi)− s intra

pi ) − 2γi ṡ
intra
pi ,

s̈ intra
ip = γ2p (Nip Qp(Vp) + φi − s intra

ip ) − 2γp ṡ
intra
ip ,

s̈ intra
ii = γ2i (Nii Qi(Vi)− s intra

ii ) − 2γi ṡ
intra
ii ,

s̈ intra
p′p′ = γ2p′ (Np′p′ Qp′(Vp′) + φp′ − s intra

p′p′ ) − 2γp′ ṡ
intra
p′p′ ,

s̈ intra
p′i′ = γ2i′ (Np′i′ Qi′(Vi′)− s intra

p′i′ ) − 2γi′ ṡ
intra
p′i′ ,

s̈ intra
i′p′ = γ2p′ (Ni′p′ Qp′(Vp′) + φi′ − s intra

i′p′ ) − 2γp′ ṡ
intra
i′p′ ,

241



s̈ intra
i′i′ = γ2i′ (Ni′i′ Qi′(Vi′)− s intra

i′i′ ) − 2γi′ ṡ
intra
i′i′ ,

s̈ inter
pp′ = γ2p′ (Npp′ Qp′(Vp′)− s inter

pp′ ) − 2γp′ ṡ
inter
pp′ ,

s̈ inter
ip′ = γ2p′ (Nip′ Qp′(Vp′)− s inter

ip′ ) − 2γp′ ṡ
inter
ip′ ,

s̈ inter
p′p = γ2p (Np′p Qp(Vp)− s inter

p′p ) − 2γp ṡ
inter
p′p ,

s̈ inter
i′p = γ2p (Ni′p Qp(Vp)− s inter

i′p ) − 2γp ṡ
inter
i′p ,

τNa ˙[Na]p = αNaQp(Vp)− Napump([Na]p),

τNa ˙[Na]p′ = αNaQp′(Vp′)− Napump([Na]p′),

where IhKNa is the sodium-dependent potassium current of either the per-
turbed pyramidal population (h = p) or the unperturbed pyramidal popu-
lation (h = p′). The currents are defined by:

IkL = ḡL(Vk − Ek
L), for k ∈ {p, i, p′, i′},

IkAMPA = βintra ḡAMPA s
intra
kp′ (Vk − EAMPA)

+ βinter ḡAMPA s
inter
kp′ (Vk − EAMPA), for k ∈ {p, i},

IkGABA = β k
GABA ḡGABAs

intra
ki (Vk − EGABA), for k ∈ {p, i},

IkAMPA = βintra ḡAMPA s
intra
kp (Vk − EAMPA)

+ βinter ḡAMPA s
inter
kp (Vk − EAMPA), for k ∈ {p′, i′},

IkGABA = β k
GABA ḡGABAs

intra
ki′ (Vk − EGABA), for k ∈ {p′, i′},

242



IhKNa = ḡKNa
0.37

1 + ( 38.7
[Na]h

)3.5
(Vh − EK), for h ∈ {p, p′},

The sodium pump and firing rate functions are given by:

Napump([Na]h) = Rpump

(
[Na]3h

[Na]3h + 3375
−

[Na]3eq

[Na]3eq + 3375

)
,

Qk(Vk) = Qmax
k

(1 + tanh(C(Vk − θk)/σk))
2

, C =
π

2
√

3

Symbol descriptions and parameter values are provided in Tables 2.1,
2.2, 2.4 and 2.5.

A.2 Appendix B: Dynamical Constrains onβ k
GABA

One-Cortical-Column Model
Upscaling the conductance of excitatory synapses by a factor βintra allows
us to place the model from NREM sleep dynamics into wakefulness, in
agreement with SHY . To counterbalance the overexcitation each popula-
tion receives due to intra-synaptic upscaling, the average GABAergic con-
ductance on pyramidal and inhibitory population are increased by a factor
β k

GABA, k ∈ {p, i}. To do so, we use the peaks of Vp and Vi values during
Up states in NREM sleep as the steady state value of average membrane
potential of pyramidal and inhibitory populations in wakefulness. β k

GABA
is increased until the value of Vk, (k ∈ {p, i}), is obtained for various
intra-synaptic upscalings in wakefulness.

The steady state solution of the model equations for one-cortical-column
(see Appendix A.1) are obtained by setting derivative of all variables to zero:

0 = −IpL − IpAMPA − IpGABA − τpC−1m IpKNa,
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0 = −I iL − I iAMPA − I iGABA,

skk′ = Nkk′ Qk′(Vk′),

[Na] =
3

√
A · 3375

1− A
,

A =
αNa

Rpump
Qp(Vp) +

[Na]3eq

[Na]3eq + 3375
,

Therefore, β k
GABA, k ∈ {p, i} are as follows:

β p
GABA =

−ḡL(Vp − Ep
L)− βintra ḡAMPA s

intra
pp (Vp − EAMPA)

ḡGABA s
intra
pi (Vp − EGABA)

+

−ḡKNa
0.37

1 + (38.7[Na] )
3.5

(Vp − EK)

ḡGABA s
intra
pi (Vp − EGABA)

,

β i
GABA =

−ḡL(Vi − Ei
L)− βintra ḡAMPAs

intra
ip (Vi − EAMPA)

ḡGABA s
intra
ii (Vi − EGABA)

,

β k
GABA, k ∈ {p, i} in wakefulness for various intra-synaptic upscalings

in wakefulness are obtained by substituting corresponding βintra and the
peaks of Vp and Vi values during Up states in NREM sleep.

Two-Cortical-Column Model
Inter-cortical column coupling introduces overexcitation to the pyrami-
dal and inhibitory populations in NREM sleep. To keep the steady state
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value of Vp and Vi in two-cortical-column model equal to the ones in one-
cortical-column model in NREM sleep, β k

GABA, k ∈ {p, i, p′, i′}, are
increased to counterbalance the inter-cortical column coupling. The same
procedure is carried out for various synaptic upscalings in wakefulness.

The steady state solution of the model equations for two-cortical-column
(see Appendix A.1) is obtained by setting the derivatives of all variables
to zero:

0 = −Ip/p′L − Ip/p′AMPA − I
p/p′

GABA − τp/p′C−1m I
p/p′

KNa ,

0 = −I i/i′L − I i/i′AMPA − I
i/i′

GABA,

skk′ = Nkk′ Qk′(Vk′),

s inter
kk′ = Nkk′ Qk′(Vk′)

[Na]p/p′ = 3

√
Ap/p′ · 3375

1− Ap/p′
,

Ap/p′ =
αNa

Rpump
Qp/p′(Vp/p′) +

[Na]3eq

[Na]3eq + 3375
,

By taking into account the symmetry between the two cortical columns,
we set the steady state value of Vp and Vi equal to Vp′ and Vi′ , respectively
(Vp′ = Vp and Vi′ = Vi). Therefore, to keep average membrane potential of
pyramidal and inhibitory populations in two-cortical-column model equal
to the ones in the one-cortical-column model both during NREM sleep and
wakefulness, β k

GABA, k ∈ {p, i, p′, i′}, change as follows:

β
p/p′

GABA =
−ḡL(Vp − Ep

L)− βintra ḡAMPA s
intra
pp (Vp − EAMPA)

ḡGABA s
intra
pi (Vp − EGABA)
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+
−βinter ḡAMPA s

inter
pp′ (Vp − EAMPA)

ḡGABA s
intra
pi (Vp − EGABA)

+

−ḡKNa
0.37

1 + (38.7[Na] )
3.5

(Vp − EK)

ḡGABA s
intra
pi (Vp − EGABA)

,

β
i/i′

GABA =
−ḡL(Vi − Ei

L)− βintra ḡAMPAs
intra
ip (Vi − EAMPA)

ḡGABA s
intra
ii (Vi − EGABA)

+
−βinter ḡAMPA s

inter
ip′ (Vi − EAMPA)

ḡGABA s
intra
ii (Vi − EGABA)

,

β k
GABA, k ∈ {p, i, p′, i′}, in NREM sleep in two-cortical-column

model are obtained by setting βintra = βinter = 1 and the steady state
values of Vp and Vi in NREM sleep in one-cortical-column model.

β k
GABA, k ∈ {p, i, p′, i′}, for various synaptic upscalings in wake-

fulness in two-cortical-column model are obtained by substituting corre-
sponding βintra and βinter and the peaks of Vp and Vi values during Up
states in NREM sleep in one-cortical-column model.
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