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Abstract
The idea of optimal decision-making presupposes certain features about the agent
and their environment. This thesis examines two common assumptions in dis-
ciplines that study natural and artificial behavior: perfect rationality and reward
maximization. Defining or inferring a reward function to maximize can be problem-
atic, especially when one considers the constraints faced by the agents. First, we
explore the breadth-depth dilemma, a tradeoff that contrasts superficial versus deep
sampling of options by having finite resources. In the models, two major regimes
of optimal sample allocation arise as a function of sampling capacity, offering
alternative ways to understand “suboptimal” behavior. Additionally, we propose a
novel intrinsic motivation approach based on occupying as many paths in the envi-
ronment as possible, using rewards as means rather than the goal. Agents can thus
attach meaning to reward, and develop diverse yet goal-directed behaviors. This
approach presents novel opportunities to understand fluid, naturalistic behavior.

Keywords: decision making, optimality, constrained optimization, bounded
rationality, breadth–depth tradeoff, intrinsic motivation, reward hypothesis, entropy,
reinforcement learning, goal-directed behavior
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Resumen
La noción de decisiones óptimas presupone algunas características del agente y su
entorno. Esta tesis examina dos suposiciones comunes en diversas disciplinas que
estudian comportamiento natural y artificial: racionalidad perfecta y maximización
de recompensas. Definir o inferir una función de recompensa a maximizar puede
ser problemático, especialmente cuando uno considera las constricciones a las
que el agente se enfrenta. Primeramente, esta tesis explora el dilema amplitud–
profundidad, un balance que contrasta un muestreo superficial contra uno profundo
de las opciones a elegir al tener recursos limitados. En nuestros modelos, dos
regímenes principales emergen para la distribución óptima de recursos en función
de la capacidad de muestreo, lo cual ofrece alternativas para entender algunos
comportamientos “subóptimos”. Adicionalmente, se propone una perspectiva de
motivación intrínseca basada en la ocupación máxima de trayectorias en el entorno,
usando las recompensas como medio y no como fin. Los agentes pueden así
asignar un significado a las recompensas, y desarrollan comportamientos variables
al mismo tiempo que orientado a metas. Este enfoque ofrece nuevas oportunidades
de entender comportamientos naturales y fluidos.

Palabras clave: toma de decisiones, optimalidad, optimización con restriccio-
nes, racionalidad limitada, balance amplitud–profundidad, motivación intrínseca,
hipótesis de recompensa, entropía, aprendizaje por refuerzos, comportamiento
orientado a metas
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Preface

During these last four years, I have been exposed to a torrent of diverse ideas,
all pertaining to some degree to the study of intelligence and behavior. Although
I participated in conferences, courses and summer schools that were technically
about neuroscience, its multidisciplinary nature helped me interact with all sorts of
people and backgrounds ranging from artificial intelligence and computer science,
through cognitive and computational neuroscience, all the way to computational
biology, ethology and philosophy. Throughout all of these interactions, specifically
for the field of decision making, I never stopped noticing the big question of the
agential homunculus (as compared to the cortical homunculus); the idea that there
is always an agent, either distributed in a circuit or localized abstractly, that makes
decisions. It is always either side-stepped, ignored or acknowledged to be a hard
question. To me, this big unknown has driven my continued interest in the field
of decision making, helping me elucidate two of my big questions: What does
the concept of agency get us? And how can we understand the idea of having the
ability to choose?

The notions of decision making and behavior are intricately linked by the
conception of agency, i.e. the ability to produce actions. While behavior is usually
thought simply as something that organisms do, and decision making usually
implies a deliberation process, there are numerous common perspectives that one
can take in order to study both, and I have learned the value of taking a pluralistic
view in science. Therefore, in the Introduction, I review two pluralistic approaches
to the study of biological phenomena: Tinbergen’s four questions and Marr’s levels
of analysis. I then present the field of Bounded Rationality through the lens of
these frameworks, given its major relevance in the works presented in the thesis.

One core concept that I have encountered several times in my trajectory is the
notion of constraints, which helped develop the two major projects contained in
this thesis. I have come to appreciate that finding the right constraints is the main
ingredient in correctly identifying the problem to solve, as well as the essential
perspective to accurately model a behaving system. Although it may sound trivial,
I find this approach a fundamental lens that allows you to see the core features of
a system, and understand its place among its family of systems by studying the
possible instantiations of the constraints. In everyday research, the major questions
about agency described above are a bit too vague and general, so there were
two more specific questions that ultimately were developed during my doctorate
thanks to the notion of constraints: How are our decisions and behavior shaped by
constraints and how should we model and study them? How do constraints produce
an agent’s goals and how are they related to its behavioral variability? The first
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question is tackled in Chapter 2 and 3 by developing models of the Breadth–Depth
dilemma. The second question is addressed in Chapter 4, with the proposal of
path occupancy maximization as an overarching principle of behavior. Finally,
in Chapter 5, I tie the frameworks presented in the Introduction with the works
developed during my PhD and show how keeping the big questions in mind can
motivate, drive and suggest present and future research.
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Chapter 1

INTRODUCTION

The search for explanations for particular behaviors in the natural world has
prompted philosophers, naturalists and scientists to formulate a plethora of theories
and frameworks that encapsulate a diverse set of features of behavior, such as
mechanism, function, development and evolution of behavioral traits. Ultimately,
the explanations that anyone is able to reach are greatly biased and constrained
by their own interests. Clearly, when dealing with complex phenomena such as
naturalistic behavior, one needs to find the level of analysis that is appropriate to
the questions asked (Anderson, 1972), such that the explanandum is formulated
precisely with respect to the methodology and aims of the scientist’s repertoire of
reachable explanans. This is the main reason why there is a vast amount of fields
that study “natural" behavior, as they do so from a diverse set of methodologies
and aims. Additionally, just like the behavioral repertoires of an organism are
constrained by its phylogeny and development, scientific fields are constrained by
the evolution of their own predecessors and of the ideas around the subject of study.
(There is a reason why the phrase popularized by Isaac Newton is “if I have seen
further, it is by standing on the shoulders of giants" (Newton, 1675), and not by
standing on their wings or fins.) While these biases are inevitable, it is of utmost
importance to take an active role to be aware of the particular aims and methods of
the fields to which we subscribe.

In this Introduction, the interests and biases of this thesis about optimal behavior
will be delineated as clear as possible by reviewing a necessarily limited but
interconnected set of concepts, fields and frameworks that seek to either explain
naturalistic behavior or design optimal policies by incorporating two main features
of this thesis: optimality and constraints. Specifically, the frameworks reviewed will
be Tinbergen’s four questions, Marr’s three levels of analysis, and, as a case study,
Bounded Rationality. They will be reviewed independently first, with a specific link
to the works in this thesis, in order to reveal the connections between them in the
last section of this Introduction. Chapter 2 presents a bounded optimality model of

1
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strategic decision making where sampling constraints are made explicit and where
it is shown how the optimality of behavior depends on the capacity of the (abstract)
agent, which is itself a function of its sampling resources and the environment
statistics. Chapter 3 presents an alternative principle of behavior where (abstract)
external reward is not maximized, but reconceptualized as a stimulus that allows
for a better occupation of (abstract) action-state path space. Chapter 4 discusses
the contributions of these works and unifies them with the core idea of constraint
as a powerful ingredient for obtaining insights about agency and optimality, as well
as the potential applications and future directions of the works presented in this
thesis.

1.1 Tinbergen’s four questions

In Niko Tinbergen’s 1963 landmark article (Tinbergen, 1963), he proposed a
framework of four “major problems of Biology”, for three of which he credited
Julian Huxley (Huxley, 2009, p. 40) and then added a fourth. The problems are,
in his own words, “that of causation, that of survival value and that of evolution
– to which I should like to add a fourth, that of ontogeny" (Tinbergen, 1963).
Although matters of causation and function in science and philosophy go back
at least as far as Aristotle’s four causes (Juarrero, 2000; Hladky and Havlicek,
2013), Tinbergen’s four questions were originally specifically devised to understand
biological phenomena and, more precisely, behavior. In fact, he advocated the
conception of a new field, "The Biology of Behavior", which overlapped the many
fields of Ethology, but with the aim of integrating them for a holistic understanding
of behavior (Tinbergen, 1963). It is this unifying feature of the framework that is
crucial for its importance in the field of Modern Ethology, but which has largely
been cast aside, and the individual questions have mainly continued to be tackled
separately (Bateson and Laland, 2013).

The four questions have had a big influence on Modern Ethology, although
Bateson and Laland (2013) call for a revisit on the taxonomy. They can be read
in their original conception in (Tinbergen, 1963) and a modern interpretation in
(Bateson and Laland, 2013), but here they are summarized succintly, and are as
follows:

• Causation, understood as “mechanism of control", which aims to explain the
mechanistic/physiological basis of behavior.

• Survival value, understood as “current utility" or “function", which aims to
understand the contribution of the studied behavior to the organism’s survival
in the present day.

2
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• Evolution, which aims to understand the part that constraints brought by the
organism’s phylogeny play in shaping the studied behavior.

• Ontogeny, which aims to understand how the behavior came to be in the
particular organism, i.e. how the study of the organism’s development can
provide explanations about the existence and persistence of a particular
behavior.

These questions can be subsequently categorized as two ‘how’ questions
(Mechanism and Ontogeny) and two ‘why’ questions (Current utility and Evolu-
tion), also known as proximate versus ultimate view, respectively. Another useful
classification of these questions is in terms of the timescale involved; the mech-
anism and the current utility look for explanans in the present condition of the
organism whereas the evolution and ontogeny of behavior extend backwards in
time. These two classifications are heuristic in nature, as the borders between why
and how questions, as well as between present and past, are not universally deter-
mined. However, both the proximate-ultimate and the present-past axes covered
by these questions help us understand the nature of the explanations one can seek
to formulate and, ideally, try to unify. These four questions do not exist without
debate about them (Cuthill, 2005), but they have withstood the test of time and
continue to prove useful for a wide range of scientific fields (Bateson and Laland,
2013).

All the questions are important for the understanding of any one complex
system, and in this thesis we will be concerned with two abstractions that project
somewhat to all of them: optimality and constraint.

Optimality

First, all throughout the text, we will be defining utility functions, which can be
thought as the purpose or function of a particular agent in a particular situation. In
other words, utility functions will be thought as ‘why’ questions, which have the
presumption to give an ultimate explanation of particular actions, be they about
current utility or evolved behavioral traits.

Establishing a utility function is necessarily contentious. In the context of
Tinbergen’s four questions, distinguishing between current utility and evolved
traits in particular is important because functions derived from these questions
might not be the same. This distinction has been clearly presented by Gould and
Vrba (Gould and Vrba, 1982), where they differentiate between an adaptation
and an ‘exaptation’: current function may not equal past function. An example
of this is the development of feathers in birds’ evolution. According to them,
there is sufficient evidence to suggest that feathers were not initially selected for

3
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flight, and thus other hypothesis have been put forward, such as for insulation.
Then, it was after their appearance that flight was developed, showing them to
be an exaptation for flight. On the other hand, while not the original function of
feathers, the appareance of flight shaped the continued evolution of the feathered
phylogeny, such that the trait was maintained, thus subsequently becoming an
adaptation, possibly through many cycles of adaptation and exaptation ranging
many generations. It is this entanglement between function and timescale that can
gather significant discussion (Cuthill, 2005).

For experimental science, the view is confusingly less controversial: if one
wishes to study the behavior of an organism, one trains it to perform an externally
designed task, and controls for the animal’s performance with experimentally
tractable interventions. The ability of organisms to show quick adaptations, such as
learning, to prepared environments is of paramount importance in any experimental
field that observes and studies behavior. However, it is critical to incorporate
Tinbergen’s questions to enrich the space of reachable explanations.

In any case, once a particular utility function is formulated, in this thesis we
will be asking what the sequence of actions that can maximize the utility is, i.e.
what is the most suitable behavior with respect to the proposed utility function.
As stipulated before, depending on the field, there are many ways to categorize
objectives, and there will be an attempt to be as explicit as possible about the nature
of the ones introduced in all the work here presented.

Constraints
Second, we will be explicit about constraints, particularly in the decision making
process. All four questions can be thought of as determinants of constraints, and
we will illustrate it with an example: Imagine that you are sitting on a couch, and
suddenly feel hungry, so you intend to go to the kitchen for some food.

Current utility constrains the space of possible action sequences and component
configurations, such that only the ones that lead to the desired behavior are kept
for the current context, which is similar to Juarrero’s second order contextual
constraints (Juarrero, 2000), and Aristotle’s final cause (Hladky and Havlicek,
2013). Getting food responds directly to the hunger signal whose link to the
survival value of the organism is clear. This current utility constrains the space
of possible behaviors, as one could reach the kitchen in a myriad of ways, but the
space- and timescales are restricted by this goal, such that, for example, walking in
the opposite direction of the kitchen is largely unfavored.

Evolution constrains the form and function of organisms, in a way that the
trajectory throughout evolutionary time impacts the kinds of behavior that organ-
isms can reach, similar to Aristotle’s formal cause (Hladky and Havlicek, 2013).
Humans are terrestrial and bipedal, such that reaching the kitchen by flying or swim-
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ming is impossible, while standing up and walking is the most likely behavioral
combination.

Development constrains the form and function of individual organisms by their
interaction with their environment. By taking the environment-agent interaction
into account, the specific materials and form that an individual can reach are con-
strained by the developmental process, such as learning and epigenetic phenomena,
in a way that mirrors Aristotle’s material cause (Hladky and Havlicek, 2013). One
particular individual could have learned to stand up by leaning forward and pushing
only with their legs, while others could have a preference for pushing with their
arms as well. Furthermore, different people walk in different ways and they will
decide to prepare different foods adjusting to their possibly diverse preferences
carved throughout their lifetimes.

Finally, mechanisms constrain the immediate space of possible paths that lead
to a particular behavior through the possible physical realizations of the function.
Historically, the search for mechanistic explanations has occupied much of modern
science’s workforce and, as a result, it has been the main source of answer to the
question “what is the cause of that phenomenon?" (Juarrero, 2000). While Tinber-
gen ambiguously equated the mechanistic question with the word “causation", he
advocated this approach to be called simply “The Physiology of Behavior" (Tinber-
gen, 1963). While the mechanistic pathway for getting food might be extremely
complicated throughout scales, one can think that the homeostatic signal of being
hungry effects a system-wide response, from particular higher level value-based de-
cisions to possible neuro-muscular activations, which provide material constraints
to the food-getting behavior.

In this thesis, we will abstract the various sources of constraints in different
ways to simplify, wherever possible, their influence on the kinds of behaviors that
agents can implement. We will establish that constraints are crucial to think about
‘rational’ behaviors, given that they determine the accessible action and state space
that agents can reach.

1.2 Marr’s levels of analysis
During the 1970’s, David Marr and Tomaso Poggio independently arrived at
but jointly formulated a framework of levels of analysis at which one needs to
understand any complex, information-processing system (Marr and Poggio, 1976).
The levels were further formalized and popularized in David Marr’s 1982 book
Vision, and are briefly described in Figure 1-4 (Marr, 2010, p. 25),

• Computational theory: What is the goal of the computation, and what
is the logic of the strategy by which it can be carried out?

5
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• Representation and algorithm: How can this computation be imple-
mented? In particular, what is the representation for the input and
output, and what is the algorithm for the transformation?

• Hardware implementation: How can the representation and algorithm
be realized physically?

The original formulation was intended to be general enough to understand any
complex system, as Marr elegantly expressed it in his book,

If one hopes to achieve a full understanding of a system as complicated as a
nervous system, a developing embryo, a set of metabolic pathways, a bottle
of gas, or even a large computer program, then one must be prepared to
contemplate different kinds of explanation at different levels of description
that are linked (emphasis added), at least in principle, into a cohesive whole,
even if linking the levels in complete detail is impractical. (Marr, 2010, p.
20)

However, the specific levels framework proposed by Poggio and Marr (which,
from now on, for compactness, will be called “Marr’s levels”, keeping in mind the
original credit to Poggio) was applied by them and has been applied since then
with the specific focus of information-processing systems.

Optimality
The link between optimality and Marr’s levels of analysis is clear from Marr
himself,

It becomes possible, by separating explanations into different levels, to make
explicit statements about what is being computed and why and to construct
theories stating that what is being computed is optimal in some sense or is
guaranteed to function correctly. (Marr, 2010, p. 19)

In other words, he forms a connection between the computational level, where one
specifies what is being computed and why, to a normative account of the system’s
behavior, where one can define the system’s goal and give a formal quantification
of how well the system is performing a specific task.

In his book, Marr gives specific attention to the computational level of analysis,
which he claims had been neglected by the mainstream neurophysiology programs.
In the previous decades leading up to the writing of his influential book, much
progress in neuronal recordings led to the development of a large reductionist pro-
gram, where researchers focused on the mechanisms regarding neuronal responses
as a function of external stimuli and disregarded ecological, contextual and all

6
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other higher level constructs in order to describe the processes of single neurons.
It was a reductionist approach simply because it led to the increased attention to
the functioning of single neurons with the goal of understanding the higher order
system that they collectively form, as illustrated by Horace Barlow’s first of his five
dogmas,

A description of that activity of a single nerve cell which is transmitted
to and influences other nerve cells, and of a nerve cell’s response to such
influences from other cells, is a complete enough description for functional
understanding of the nervous system. There is nothing else ‘looking at’ or
controlling this activity (emphasis added), which must therefore provide a
basis for understanding how the brain controls behaviour. (Barlow, 1972, p.
380)

Since then, technological advances have further biased the neuroscientific field into
looking at the microscopic level, largely in disregard of higher order phenomena,
such as behavior, with the hopes that a mechanistic explanation will be sufficient
for the scientific endeavor of understanding the complex systems that realize those
mechanisms (Krakauer et al., 2017).

The computational level, which seeks to abstract the goal of an information
processing system, is crucial to the development of the utility functions that are
presented in this thesis. By studying formally the optimal solutions for a specific
utility function, one can then compare the mathematical analysis to the target
behavior to gather insights about the overarching behavioral goal, the algorithms
employed or the physical implementations in the organism.

Constraints

The notion of constraint permeates all three levels of analysis in different forms,
and in fact specifying each level can be thought of as providing constraints to
the neighbouring levels, in both top-down and bottom-up directions. To illustrate
the constraints imposed by the different levels, let us use the same example as
in the previous section: being on a couch, feeling hungry and getting food at the
kitchen. For practical purposes, one can imagine the individual to be a robot that
we are programming to perform this task. First, let us work in a top-down fashion.
The computational level is concerned with the ‘what’ and ‘why’ questions. The
‘what’ question describes the computation done by the system, thus constraining
the space of possible tasks. More importantly, the ‘why’ question can be thought
of as specifying constraints about why certain computations are more appropriate
for the goal, as opposed to others. For the food-getting example, one can identify
the computational problem to be about locomotion: the goal in that particular
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context is getting food by physically moving body parts to reach the kitchen and
prepare food. To do so, complex action-perception feedback loops will likely have
to be used. The reason why locomotion is the computational problem comes from
the requirements or constraints given by the context, i.e. the individual (robot)
is hungry and needs to displace themselves to another physical location. The
usefulness of conceptualizing the computational level as specifying constraints was
pointed out by Marr in his book,

[...] the business of isolating constraints that are both powerful enough to
allow a process to be defined and generally true of the world is a central
theme of our inquiry. (Marr, 2010, p. 23)

In a different sense, the computational level will also interact with the algo-
rithmic level by constraining the space of possible representations and algorithms
to be implemented. By identifying the computational level as locomotion, the
representations will have to somehow include the right level of relevant variables,
such as body positions, velocity of the limbs or the acceleration of the center of
mass. In fact, there might be a wide range of choices for the specific represen-
tations, such as position with respect to the kitchen versus the center of mass,
egocentric versus allocentric visually-guided navigation, etc. There might also be
a variety of algorithms, working with the chosen representations, that instantiate
the computational problem, such as leaning forward to get up versus jumping off
the couch, walking versus running to the kitchen, etc.

While the computational level constrains the space of possible representations
and algorithms, the algorithmic level will itself constrain the space of possible
physical instantiations. If, for example, the chosen algorithm involved slowly
getting up and walking to the kitchen, all the neuromuscular activations that are
associated with jerky, imprecise movements of the limbs when jumping off the
couch and running cannot be utilized.

On the other hand, this constraint cross-talk between levels of analysis can
also be applied in the reverse direction, that is, bottom-up. If we start off with the
particular materials that the individual’s body is made off, this itself will constrain
the types of representations and algorithms that can be expressed. For example, a
human body, with its computational brain and particular anatomy navigates any
physical space in a much different way than a robot or a bird would. In fact,
the actual algorithmic operations involved in any navigational task are somehow
already embodied and have been shaped by evolution: we as humans have two
frontal eyes, a central and peripheral nervous system, knees that bend outwards,
etc. If a bird is confronted by the same task (for example, being on a couch and
going to a kitchen to get food), its reachable representations and algorithms will be
radically different to a human’s. In a parallel way, the particular representations
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and algorithms that are reachable by the hardware also constrain the types of tasks,
goals and computations that any information-processing system will be able to do.
For example, while the human anatomy and processing power allow for flexibility
in navigation by walking, running or tumbling, flying without any aid is out of the
question, such that reaching a floating kitchen in the air is not an allowed task for
humans.

The interaction between levels is not something that Marr originally intended to
investigate. In fact, in his book, while he conceded that the links between the levels
are crucial; he advocated that they should be studied independently (Marr, 2010).
Since then, more attention to the specific links between levels has been given,
particularly under the lens of constraints. For example, a perspective that takes
into account the specific bottom-up constraints from the implementational level to
the algorithmic level all the way to the computational level is given by the efficient
coding hypothesis, which began as an application to Claude Shannon’s information-
theoretic ideas to the information processing of sensory neurons (Attneave, 1954;
Barlow, 1961). In it, it is hypothesized that (sensory) neurons are functionally and
computationally constrained to reflect the specific statistics of the environment that
the organism lives in. By implicitly considering the evolutionary, developmental
and behavioral trajectory of the organisms, neurons are therefore hypothesized to
encode the relevant stimuli efficiently (Simoncelli and Olshausen, 2001; Sterling
and Laughlin, 2017).

Another example comes from abstracting resource limitations, such as compu-
tational constraints, and incorporate them into the algorithmic level. The abstract
constraints delineate what types of computations are realizable and, therefore, the
goals of the organism are impacted in a way that the optimal behavior is now a
function of the available resources (Russell and Wefald, 1991; Russell and Subra-
manian, 1994; Griffiths et al., 2015). The next section covers Bounded Rationality,
a general framework that captures these ideas appropriately for the works later
presented in this thesis.

1.3 Bounded rationality
The theoretical and quantitative study of economic behavior was formalized in
the influential work of von Neumann and Morgenstern (1953), where they intro-
duced axioms to formalize utility theory and presented the principle of Maximum
Expected Utility and a notion of rational behavior, which they define through the
following phrase: “the individual who attempts to obtain these respective max-
ima is also said to act "rationally." But it may safely be stated that there exists,
at present, no satisfactory treatment of the question of rational behavior.” (von
Neumann and Morgenstern, 1953, p. 9). By proposing a set of desired properties

9



“output” — 2023/4/19 — 21:05 — page 10 — #24

about preference orderings, it is possible to relate ideal decision to the actions that
maximize an agent’s expected utility, which considers the probability of states in
the worlds given the action (Gershman et al., 2015). The formalization of this
problem made analysis of behavior and, most importantly, derivation of ideal
behavior tractable and quantifiable. They knowingly made a normative assumption
of complete information, in which the subject or subjects have all the information
and computational resources to arrive at the ideal solutions,

[...] we cannot avoid the assumption that all subjects of the economy under
consideration are completely informed about the physical characteristics of
the situation in which they operate and are able to perform all statistical,
mathematical, etc., operations which this knowledge makes possible. The
nature and importance of this assumption has been given extensive attention
in the literature and the subject is probably very far from being exhausted.
We propose not to enter upon it. The question is too vast and too difficult and
we believe that it is best to " divide difficulties." I.e. we wish to avoid this
complication which, while interesting in its own right, should be considered
separately from our present problem. (von Neumann and Morgenstern, 1953,
p. 30)

Sure enough, people realized soon after that predicting human behavior was
still out of reach for the field of Economics, whose theories based on rational
behavior were not satisfactory, and for the field of Psychology, whose theories
based on biases and heuristics were still insufficient. As a consequence, Herbert
A. Simon proposed to revise the idea of the “rational man” present in economic
theory by considering the decision maker’s limitations, thus spawning the field of
bounded rationality,

Broadly stated, the task is to replace the global rationality of economic
man with a kind of rational behavior that is compatible with the access to
information and the computational capacities that are actually possessed
by organisms, including man, in the kinds of environments in which such
organisms exist. (Simon, 1955, p. 99)

In concrete, Simon proposed to leave the optimization perspective by trying
to establish a theory of choice that is apparent from human behavior. Looking at
it from Marr’s levels, he tried to focus on the algorithmic limitations to explain
choice behavior, arguing that the computational problem is not an optimization
problem, but a “satisficing” one. In many instances, he claims that this optimiza-
tion perspective involve a use of unrealistic assumptions, such as a 1) the ability
to attach a definite pay-off for each possible outcome, 2) complete ordering of
pay-offs, and 3) complete knowledge of the world model. For these three “unre-
alistic” assumptions, he provides three more realistic situations for which there
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are “simplifying” solutions based on his satisficing assumption: 1) Simple pay-off
functions, where he proposes a discrete set of values, onto which many outcomes
can be mapped. This allows for simpler algorithms that can find satisficing states
and actions. (2) Consider partial-ordering of pay-offs, where it is unfeasible to
compare many features of the alternatives (“oranges to apples”). Then, one can
consider an extension of the simplified pay-off function, where he introduces a vec-
torial pay-off function, and a threshold determined for the value of each feature, a
simplification he calls aspiration levels. (3) Incorporating into the decision-making
process the information gathering process, thus considering that the sampling of
the environment is not costless. By considering this algorithmic limitation, he
argued that the simplified pay-off function can help the decision maker perform a
more efficient search, reaching a satisfying solution without the extensive use of
resources.

Simon’s view about abandoning the notion of optimization is best understood
with his own words,

The question of how it is to behave "rationally," given these limitations, is
distinct from the question of how its capabilities could be increased to permit
action that would be more "rational" judged from the mountain-top of a more
complete model [One might add: “or judged in terms of the survival value of
its choice mechanism” (in footnote)]. The two viewpoints are not, of course,
completely different, much less antithetical. We have already pointed out
that the organism may possess a whole hierarchy of rational mechanisms -
that, for example, the aspiration level itself may be subject to an adjustment
process that is rational in some dynamic sense. Moreover, in many situations
we may be interested in the precise question of whether one decision-making
procedure is more rational than another, and to answer this question we will
usually have to construct a broader criterion of rationality that encompasses
both procedures as approximations. Our whole point is that it is important to
make explicit what level we are considering in such a hierarchy of models,
and that for many purposes we are interested in models of "limited" rationality
rather than models of relatively "global" rationality. (Simon, 1955, p. 16)

This perspective is at odds with the idea of constrained optimization, a formal
way to restrict the optimization procedure to follow specified, arbitrary constraints.
Gigerenzer and Selten (2000) argue, in all likelihood accurately, that the original
ideas of Simon (1955) have been wrongly applied as constrained optimization,
which is “inappropriate” and “misleading”. In contrary, they argue that models
of bounded rationality use “fast and frugal stopping rules for search that do not
involve optimization”(Gigerenzer and Selten, 2000, p. 12).

What is missed from this perspective, however, is the fact that a careful study
of constrained optimization can lead to tractable mathematical solutions, where in
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fact the constrained optimal solution could easily be implemented, thus providing
a candidate explanation for the function of a particular computation. The fact that
the theorist needs to flex some muscle to arrive at the constrained optimal solutions,
does not mean that 1) it is the only way at arriving at the solutions, 2) we think that
this is exactly the way the brain or mind do it and 3) evolution and development
do not aid in biasing and constraining the space of possible computations. In fact,
their idea of heuristic decision making is not incompatible with constrained opti-
mization; the difference being that the former is a descriptive account for behavior,
whereas the latter is a prescriptive one. The importance of a prescriptive, normative
description was already recognized in the work of von Neumann and Morgenstern
(1953), as an assumption of complete information might actually explain some phe-
nomena for which, traditionally, there might have been assumptions of incomplete
information, therefore providing a satisfactory interpretation about the agent’s state
of information (von Neumann and Morgenstern, 1953, p. 30).

The field of Bounded Rationality, understood under this non-optimizing light,
then steered towards the observation of actual human behavior to try to find the
algorithmic approximations made by humans, illustrated by heuristics, analyzing
a posteriori why they work. Nevertheless, the idea that rational behavior needed
to be revised and formalized to include the cognitive limitations of the decision
makers was groundbreaking by itself, prompting many other works to build upon it.
The idea has been visited many times, in many forms and with many names since
then. Rather than a historical account, we proceed to highlight a few approaches
that are relevant to the particular phylogeny of this thesis.

1.3.1 Metalevel rationality
Horvitz (1987) addressed the idea of computational constraints in the context
of rational decision making under uncertainty, for the problem of inference in
particular. In this work, he analyzed the metareasoning problem (or reasoning
about reasoning); in other words, finding the best course of action for computing
solutions to apply in the object level, consistent with Good’s type II rationality
(Russell and Wefald, 1991). The problem was picked up and formalized by Russell
and Wefald (1991). They define the object level as the level where actions take
place, but the optimization procedure lies in the metalevel, or computational level
(not to be confused with Marr’s), where the maximization of utility is over the
space of computations. The conceptual novelty was to introduce the “value of
computation”, where they explicitly model the cost of computation and weigh it
against the utility of the choice, which is a consequence of the selected computation.

One of the main issues, discussed in the paper, is that the metalevel problem is
in fact more difficult to solve than the object level, as it has to take into account
the space of actions and object-level states, as well as the space of computations.
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However, this approach was later picked up by Griffiths et al. (2015) in an attempt
to build an analysis of human behavior that takes into account resource limitations.
They, following Anderson (1990), made the important observation that Marr’s
levels make the assumption that the analysis of the computational level can be
formulated independently of the details of the algorithmic and physical implemen-
tations, which implicitly creates an ideal entity that can solve this problem. This
is an adaptationist stance that, when made explicit, prompted Anderson (1990) to
create his six-level system of rational analysis,

1. Precisely specify what are the goals of the cognitive system.

2. Develop a formal model of the environment to which the system is
adapted (almost certainly less structured than the standard experimental
situation).

3. Make the minimal assumptions about computational limitations. This
is where one specifies the constraints of evolutionary history. To the
extent that these assumptions are minimal, the analysis is powerful.

4. Derive the optimal behavioral function given items 1 through 3.

5. Examine the empirical literature to see if the predictions of the behav-
ioral function are confirmed.

6. If the predictions are off, iterate. In my own experience, my problems
have been with the mathematical analyses required in step 4, which can
often be quite complex. (Anderson, 1990, p. 29)

Griffiths et al. (2015) focus on the third one, which summarize their resource-
rational analysis,

Rather than blurring these lines and building constraints into computational-
level theories, we suggest a different approach: Define the computational-
level theory without considering limitations on its execution, and then explore
the consequences of those limitations as a further analysis that brings us closer
to an algorithmic-level theory. (Griffiths et al., 2015)

Resource-rational analysis is then a process of finding the algorithms that make
optimal use of the cognitive constraints at each level, until hopefully eventually
finding the right ones. The focus is then on idealizing a computational level (that
can be solved by an unbounded agent) and thinking that real behavior has an
algorithmic capability with finite resources. By explicitly modeling computation
costs, they can find the optimal use of the assumed resources for each particular
family of algorithms, and then compare that to real behavior. They claim that the
process of finding the “correct” approximation that best matches real behavior is
valuable. That is, the quest is to find insights into the algorithmic constraints and
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processes by assuming that real agents have the capability to implement the theo-
rist’s family of algorithms. Crucially, they augment the utility function to include
the cost of computation, which then will favor (or disfavor) particular algorithms
that will try to maximize utility. It is thus essentially an adaptation of rational
metareasoning introduced by Russell and Wefald (1990), where one introduces
a metalevel problem where the optimization procedure is defined in the space of
computations (or algorithms), constrained by the cost of those computations.

1.3.2 Bounded optimality
Horvitz (1987) also coined the term ‘bounded optimality’ to “refer to the optimiza-
tion of computational utility given a set of assumptions about expected problems
and constraints in reasoning resources." (Horvitz, 1987). However, the problem was
not properly formalized and the term changed its meaning thanks to Russell and
Subramanian (1994)’s work on provably bounded optimal agents. In this article,
they borrowed the term introduced by Horvitz and formalized it mathematically.
Consistently with Horvitz’s definition, they define a bounded optimal agent as
one that “behaves as well as possible given its computational resources. Bounded
optimality specifies optimal programs rather than optimal actions or optimal com-
putation sequences."(Russell and Subramanian, 1994) The motivation for revisiting
this concept stems from the fact that maximizing over the space of actions or
computations makes specific, unrealistic assumptions about the implementability
of those actions and computation sequences by the agents. Metareasoning deals
with the fact that action sequences and their consequences need to be computed
with limited resources, which changes the notion of optimality at the object level.
However, those optimal metapolicies themselves need resources to be computed,
and one enters an infinite regress that cannot guarantee that an agent will be able
to implement the (resource rational) optimal object-level policy function. One
way out of this infinite regress is to introduce the idea that we can model any
decision-making agent as a machine architecture that runs programs, whose space
is defined by a programming language and is therefore necessarily finite. One
defines a utility function in the same way as always, but instead of maximizing
it over the space of actions, computations (or computations of computations, so
on and so forth), the idea is to find the program that maximizes this utility, which
can always be done (Russell and Subramanian, 1994). This approach then puts the
emphasis on the architecture of the agent, instead of on the policy functions, which
are actually realized by programs running on the architecture.

This idea was picked up by Lewis et al. (2014) to apply it as a framework of
analysis in cognitive science. The approach to analyzing behavior under the lens of
bounded optimality was named as ‘computational rationality’. This approach puts
special emphasis on the fact that behaviors are generated by cognitive architectures
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that are adapted not only to the structure of environments they have evolved in, but
also to the structure of "the mind itself". When behaviors can be better explained
by introducing both, Lewis et al. (2014) call this type of rationality “ecological-
bounded optimality”. This channels one of Herbert Simon’s first works on bounded
rationality, whose main effort was to show that a bounded rational agent should
exploit ecological regularities to achieve their satisficing needs,

[...] if an organism is confronted with the problem of behaving approximately
rationally, or adaptively, in a particular environment, the kinds of simplifica-
tions that are suitable may depend not only on the characteristics – sensory,
neural, and other – of the organism, but equally upon the structure of the
environment.(Simon, 1956)

As a contrast to resource-rational analysis, computational rationality does
not interpret behavior as approximations of unbounded optimality, but rather that
behavior is a consequence of the agent adapting to both the environment and its own
cognitive and physical architecture. The applicability and usefulness of resource-
rational analysis versus computational rationality is a matter of perspective, and
ultimately it will depend on the ease of use of their proposed frameworks. The
former focuses on the space of approximations induced by resource constraints to
a global optimization, whereas the latter focuses on the space of optimal programs
and machines that are a consequence of an ecological-mechanistic adaptation,
which induces by itself a notion of resource constraints.

1.4 Discussion
Thus far, we have presented two frameworks for the analysis of behavior: Tinber-
gen’s Four Questions, Marr’s levels of analysis, and one field that makes specific
assumptions about the real cognitive structures that produce behavior, Bounded
Rationality. They were all originally formulated for distinct purposes and fields,
but share some properties that are highly relevant for the development of this
thesis. The idea of Tinbergen’s Four Questions and Marr’s levels is to provide
any theory with a pluralistic view of the studied phenomenon and therefore have
specific important value to the understanding of behavior, which has been pointed
out before for the specific field of Neuroscience (Krakauer et al., 2017). In this
thesis, a similar view is advocated. In particular, the existence of these frameworks
lets us study our theories in a structured way, and gives us a guide into possible
gaps in our understanding. In fact, we can use them to study the structure of the
frameworks proposed under the Bounded Rationality umbrella.

As we have reviewed, Bounded Rationality posits that we need to incorporate
the specific implementational limitations of agents in our theories to understand
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their behavior, and we can use Tinbergen’s Four Questions to analyze it. First, it
is straightforward to see that the function of a behavior asks what the utility of
a particular behavior is in the current environment, providing a static why of the
behavior, which would correspond directly to the utility function or aspirations in
Bounded Rationality. Secondly, it is important to recognize that the mechanisms
that lead to the behavior have a deep history of adaptation to a family of envi-
ronments. The constraints brought by evolution need to be taken into account to
understand a dynamic why of the behavior. This question maps onto the ecological
part of ecological-bounded optimality, as well as it provides great motivation to
understand the origin of the resource limitations of Griffiths et al. (2015) or the
architectures of Lewis et al. (2014). Thirdly, the actual environment where the
agent is in has a great influence on the behavioral mechanisms it can display via
its development, which provides the theorist with and understanding of how the
resource constraints are formed, and how they are continuously impacted by the
current environment through learning. Agents that are resource limited develop in
a particular environment are encouraged to learn to exploit its structure regularities,
which maps onto the original idea of Simon (1956). Finally, understanding the
physical and cognitive machinery of agents will provide clues about how they can
produce behavior and actually realize the function, which maps onto the actual
study of the resource limitations in Bounded Rationality.

Parallely, we can use Marr’s levels of analysis to probe the structure of the
Bounded Rationality theories and frameworks, distinguish between them and
extract different dimensions of understanding from them. In the case of the first
level, Bounded Rationality, as envisioned by Simon (1955) and advocated by
Gigerenzer and Selten (2000), does not define the computational level as being
about optimizing a utility function, but rather to “satisfice” it. In contrast, bounded
optimality Russell and Subramanian (1994) and metareasoning Russell and Wefald
(1991) frameworks do involve a constrained optimization procedure, although they
make different assumptions about the utility function. The major conceptual work
in this field lies on the second level. It is precisely by focusing on the algorithmic
limitations of humans that a bounded-rational analysis of their behaviors was
put forward by Simon (1955). However, the different approaches that stemmed
from it differ in how they conceptualize the resource limitations. For example,
metareasoning and resource-rational analysis consider resource limitations as costly
computations, whereas bounded optimality and computational rationality consider
resource limitations as having a finite set of programs that can run on the particular
architecture of agents. Finally, the physical implementations of the algorithms are
not usually a subject of bounded rationality accounts, although the fact that physical
substrates have to do the actual computing definitely informs the algorithmic level,
as seen in the field of efficient coding (Barlow, 1972; Simoncelli and Olshausen,
2001; Sterling and Laughlin, 2017). Importantly, many of the accounts that span
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the bounded rationality spectrum advocate, in their own ways, using the algorithmic
level to inform the computational one. This integration of levels was something
that Marr (2010) called for, even if originally he envisioned their independent
analysis.

In Chapter 2 and 3, we will present a model of strategic decision making that
is motivated by the Bounded Rationality field. In brief, we explore the optimal
allocation of limited resources in a situation where feedback is delayed, and thus
the optimal allocation needs to take both the environment regularities into account
and the actual capacity of the agent to sample the environment, in line with Simon’s
scissor-like view of human cognition (Simon, 1956; Gigerenzer and Selten, 2000),
as well as with the ecological-bounded rationality proposed in Lewis et al. (2014).

The fact that there is extensive discussion about the nature of rationality of
agents, especially in humans, given their behaviors, and thus looking for explana-
tions for it in terms of perfect rationality (von Neumann and Morgenstern, 1953),
metalevel rationality (Russell and Wefald, 1991), bounded optimality (Russell and
Subramanian, 1994), resource-rational analysis (Griffiths et al., 2015), ecological
rationality (Anderson, 1990), ecologically bounded optimality (Lewis et al., 2014)
or any other framework to analyze behavior, makes it apparent that it is quite hard
to (1) determine the function of a behavior and (2) attach the relevant computational
constraints to it. Therefore, inferring a utility function from behavior or designing
one for artificial agents is a problem that arises by establishing the need to associate
behavior to utility maximization.

An alternative formulation is to endow the agents with a general enough princi-
ple of behavior, and cast function, utility or reward as constraints for this principle.
For example, if we establish that an overarching principle of behavior is for agents
to survive, then particular physical substrates and dynamics, learning and develop-
mental mechanisms, ecologies, evolutionary histories and cognitive capabilities all
provide constraints for this principle to be achieved. Whether this is a principle that
predicts behavior accurately or not is an empirical question. Other alternatives can
be tried, such as reproduction or group survival, in order to capture real behavior.
In any case, what this perspective provides is that the usual utility functions, such
as external reward, and the associated intervening processes that are studied in
single tasks, such as algorithms, representations and physical implementations,
can now be reinterpreted as serving a higher level process. In Chapter 4 we will
propose one such principle of behavior to reconceptualize core ideas in modern
research such as reward, curiosity and exploration.

Finally, in Chapter 5 we will discuss the contributions of the works, and con-
textualize them into the frameworks presented in this Introduction, to subsequently
visit the possible promising scientific paths to take in the future given the ideas
here presented.

17



“output” — 2023/4/19 — 21:05 — page 18 — #32



“output” — 2023/4/19 — 21:05 — page 19 — #33

Chapter 2

BREADTH-DEPTH DILEMMA

The following chapter is based on the manuscript published in Proceedings of the
National Academy of Sciences, see (Moreno-Bote et al., 2020) for bibliographic
details. I declare to be one of the main authors of this work.

Abstract
In multi-alternative risky choice we are often faced with the opportunity to allocate
our limited information-gathering capacity between several options before receiv-
ing feedback. In such cases, we face a natural tradeoff between breadth – spreading
our capacity across many options – and depth – gaining more information about
a smaller number of options. Despite its broad relevance to daily life, including
in many naturalistic foraging situations, the optimal strategy in the breadth-depth
tradeoff has not been delineated. Here, we formalize the breadth-depth dilemma
through a finite sample capacity model. We find that, if capacity is small (around
10 samples), it is optimal to draw one sample per alternative, favoring breadth.
However, for larger capacities, a sharp transition is observed, and it becomes best
to deeply sample a very small fraction of alternatives, that roughly decreases with
the square root of capacity. Thus, ignoring most options, even when capacity is
large enough to shallowly sample all of them, is a signature of optimal behavior.
Our results also provide a rich casuistic for metareasoning in multi-alternative
decisions with bounded capacity using close-to-optimal heuristics.

2.1 Introduction
The breadth-depth (BD) dilemma is a ubiquitous problem in decision-making.
Consider the example of going to graduate school, where one can enroll in many
courses in many topics. Let us assume that the goal is to determine the single
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area of research that is most likely to result in an important discovery. One cannot
know, even in a few weeks of enrollment, whether a course is the most exciting
one. Should I enroll in few courses in many topics –breadth search— at the risk
of not learning enough about any topic to tell which one is the best? Or should I
enroll in many courses in very few topics –depth search— at the risk of not even
taking the course with the really exciting topic for the future? One crucial element
of this type of decision is that the resources (time, in this case) need to be allocated
in advance, before feedback is received (before classes start). Also, once decided,
the strategy cannot be changed on the fly, as doing so would be very costly.

The BD dilemma is important in tree search algorithms (Horowitz and Sahni,
1978; Korf, 1985) and in optimizing menu designs (Miller, 1981). It is also
one faced by humans and other foragers in many situations, such as when we
plan, schedule, or invest with finite resources while lacking immediate feedback.
Furthermore, it is a dilemma that a large number of distributed decision-making
systems have to tackle. These include, for example, ant scouts searching for a
new colony settlement (Pratt et al., 2002), stock market investors, or soldiers in
an army during battle. Evidence suggests that distributed processing with limited
resources is also a valid model of brain computations (Balasubramani et al., 2018;
Eisenreich et al., 2017). In face of this, it is remarkable that the bulk of research on
the BD has been in fields outside of psychology and neuroscience (e.g. (Halpert,
1958; Schwartz et al., 2009; Turner et al., 2002)). We believe that one reason for
this is the lack of models and formal tools for thinking about the BD dilemma and
separating it from other dilemmas.

Many features of the BD dilemma warrant its study in isolation. First, BD deci-
sions are about how to divide finite resources, with the possibility of oversampling
specific options and ignoring others, e.g., one can select several courses on the
same topic while ignoring other topics. Secondly, the BD dilemma is about making
strategic decisions, that is, decisions that need to be planned in advance and cannot
be changed on the fly once initiated, e.g., it is very costly to change courses once
they have started, at least during the first semester. Finally, BD decisions need to
be made before the relevant feedback is received, e.g., enrollment happens before
courses start, and thus before knowing the true relevance of the courses and topics.
One can easily imagine replacing courses by ant scouts or neurons, and topics by
potential new settlements or sensory functions, and so on, in the above example
to reveal new relevant BD dilemmas pertaining to distributed decision making or
brain anatomy, respectively.

The identifying features of the BD dilemma are distinct from those of the
well-known exploitation-exploration (EE) dilemma (Cohen et al., 2007; Costa
et al., 2019; Daw et al., 2006; Ebitz et al., 2018; Wilson et al., 2014) and its
associated formalization in multi-armed bandits (Averbeck, 2015; Chen et al.,
2016; Gittins et al., 2011). Specifically, whereas in the EE dilemma samples are
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allocated sequentially, one by one, to gather information and reward after each
sample, in the BD dilemma multiple samples can be allocated in parallel at once to
multiple options (possibly allocating multiple samples to some) without immediate
feedback to gather information and maximize future reward. It is worth pointing
out that EE and BD are not mutually exclusive aspects of decision making, and
therefore they are expected to appear hand-in-hand in many realistic situations.

Past work has revealed that humans appear to carefully trade off the benefits
of examining many options broadly and examining a smaller number of options
deeply in multi-alternative choice. For example, when faced with a large number
of options, we often focus – even if arbitrarily – on a subset of them (Bettman et al.,
1998; Brandstätter et al., 2006; Gigerenzer and Gaissmaier, 2011; Tversky, 1972)
with the presumable benefit that we can more precisely evaluate them. Likewise,
we may consider all options, but arbitrarily reject value-relevant dimensions (Buse-
meyer et al., 2019; Timmermans, 1993), as if contemplating them all is too costly.
Option narrowing appears to be a very general pattern, one that is shared with both
human and non-human animals, despite the fact that rejecting options can reduce
experienced utility (Gigerenzer and Gaissmaier, 2011; Tversky, 1972). It is often
proposed that such heuristics reflect bounded rationality (Simon, 1955), which is
likely correct in principle, but the exact processes underlying that boundedness
remain to be identified. Why do we so often consider a very small number of
options when considering more would a priori improve our choice? One possibility
is that this pattern reflects an evolved response to an empirical fact: that when
capacity is constrained, optimal search favors consideration of a small number of
options.

Because cognitive capacity is limited in many ways, the BD dilemma has
direct relevance to many aspects of cognition as well. For example, executive
control is thought to be limited in capacity, such that control needs to be allocated
strategically (Hills et al., 2010; Koechlin and Summerfield, 2007; Shenhav et al.,
2013, 2017). Likewise, attentional focus and working memory capacity are limited,
such that, during search, we often foveate only a single target or hold a few items
in memory (Cowan et al., 2005). Although the effective numbers are low, each
contemplated option is encoded with great detail (Awh et al., 2007; Luck and Vogel,
2013; Ma et al., 2014). Furthermore, it seems clear that recollection of information
from memory can be thought of as a search-like process (Hills et al., 2012; Ratcliff
and Murdock, 1976; Shadlen and Shohamy, 2016). That is, to retrieve a memory
we must attend to a recollection processes, with its associated limited capacity.
Thus memory-guided decisions presumably involve BD tradeoffs too.

Although the relevance of the BD dilemma is clear, tractable models are
lacking, and thus, optimal strategies for BD decisions are largely unknown. Here,
we develop and solve a model for multi-alternative decision making endowed
with the prototypical ingredients of the BD dilemma. Our model consists of a
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reward-optimizing yet bounded decision-maker (Gershman et al., 2015; Simon,
1955) confronted with multiple alternatives with unknown subjective values. The
first critical element of the model is finite sample capacity, which enforces a
tradeoff between sampling many options with few samples each (breadth) and
sampling few options with many samples each (depth). The second critical element
is that samples need to be allocated across alternatives before sampling starts and,
thus, before feedback is available. This strategic decision with the finite sample
capacity constraint implies a metareasoning problem (Griffiths et al., 2015; Russell
and Wefald, 1991) where deliberation about the multiple possible allocations of
resources (meta-actions) need to be made in advance to optimize expected utility
of a future choice.

Despite the simplicity of the model, it features non-trivial behaviors, which are
characterized analytically. When capacity is low (less than 4-10 samples can be
probed), it is best to sample as many alternatives as possible, but only once each;
that is, breadth search is favored. At larger capacities, there is a qualitative and
sharp change of behavior (a ‘phase transition’) and the optimal number of sampled
alternatives roughly grows with the square root of sample capacity (‘square root
sampling law’), balancing breadth and depth. Therefore, in the high capacity
regime it is best to ignore the vast majority of potentially accessible options. We
considered globally optimal allocations in comparison to even allocation of samples
across sampled alternatives and found that the square root sampling law, obtained
for the latter, provides a close-to-optimal heuristic that is simpler to implement. We
also study limit cases where the above rules break down, as well as generalizations
to dynamic allocation of finite resources with feedback that illustrate the generality
of the results. Our results are also robust to strong variations of the environments
where the probability of finding good options widely varies.

2.2 Results

2.2.1 Finite sample capacity model

We assume that a decision-maker can choose how to allocate a finite resource
among options of unknown status to determine the best option (Fig. 2.1). The
environment generates a large number of options, each characterized by the prob-
ability of delivering a successful outcome. The success probabilities, unknown
to the decision-maker, determine the quality of each of the options, with better
options having higher success probabilities (e.g., options with a higher probability
of delivering a large reward if they are sampled). The goal of the decision-maker is
to infer which of the options has the highest success probability (and thus, highest
expected value). The success probabilities of the options are generated randomly
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from an underlying prior probability distribution, modelled as a beta distribution
with parameters (α, β). We assume that this distribution is known by the decision-
maker, due, for example, to previous experience with the environment. The prior
distribution determines the overall difficulty of finding successful options in the
environment.

The decision-maker is endowed with a finite sample capacity C, i.e., a finite
number of samples that she can allocate to any option and to as many options
as desired. Within the allowed flexibility, it is possible that the decision-maker
decides to oversample some options by allocating more than one sample to them,
and it is also possible that she decides to ignore some options by not sampling them
at all. Feedback is not provided at the allocation stage, so this decision is based
purely on the expected quality of options in the environment. After allocation has
been determined, the outcomes of the samples are revealed, constituting the only
feedback that the decision-maker receives about the fitness of her sample allocation.
Outcomes for each of the sampled alternatives are modelled as a Bernoulli variable,
where a successful outcome (corresponding to a large reward) has probability equal
to the success probability of that option (see below for a generalization in which
we consider Gaussian outcomes). The inferred best alternative is the one with
the largest inferred success probability based on the observed outcomes from the
allocated samples to each of the options (Bechhofer and Kulkarni, 1984; Gupta
and Liang, 1989; Sobel and Huyett, 1957). Choosing this alternative maximizes
expected utility (see below and Appendix).

While making a choice based on the observed outcomes is a trivial problem,
deciding how to allocate samples over the options to maximize expected future
reward is a hard combinatorial problem. There are many ways a finite number
of samples can be allocated amongst a very large number of alternatives. At the
breadth extreme, one can split capacity to over as many alternatives as possible,
sampling each just once. In this case, the decision-maker will likely identify a
few promising options, but will lack the information for choosing well between
them. At the depth extreme, the search could allocate all samples only to a couple
of alternatives. The decision-maker’s estimate of the success probability of those
options will be accurate, but that of the other alternatives will remain unknown. It
would seem that an intermediate strategy is better than either extreme. Specifically,
the optimal allocation of samples should balance the diminishing marginal gains
of sampling a new alternative and those of drawing an additional sample from an
already sampled alternative.

To formalize the above model, let us assume that the decision-maker can sample
and choose from N = C alternatives. That is, we consider scenarios where the
number of alternatives N is as large as the decision-maker’s sampling capacity –if
the number of alternatives is larger than capacity, the only difference is that there
would be a larger number of ignored alternatives. The allocation of samples over
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Environment

Decision-maker

finite capacity, C
actions

unobservable

allocation

option 1 option 2 option N-1 option N

observable

sampling

sampled not sampled

choice

Figure 2.1: Finite sample capacity model. The environment (top, green) contains a large
number N of options, and choosing either might lead to a successful outcome (e.g., a
large vs a small reward). For each option, the probability of success (blue fraction of
red/blue bar) is a priori unknown to the decision-maker and is drawn independently across
options from an underlying prior probability distribution, modelled as a beta distribution
(top distribution). Options are characterized by the probability of delivering a successful
outcome (e.g., a large reward), and the outcomes are modelled as Bernoulli variables. The
decision-maker (bottom, orange) has a finite capacity C, i.e., a finite number of samples
(bar of squares) that can be allocated to any option in any possible way. All samples need
to be allocated in advance and allocation cannot be changed thereafter. Therefore, feedback
is not provided at this stage. After allocation, sampling starts (center, white), in which
the decision-maker observes a number of successes and failures for each of the sampled
options (colored squares; blue: success –large reward, red: failure –small reward). Once
this evidence is collected, the decision-maker chooses the option that is deemed to have
the highest probability of success (in this case, option 2; purple box).
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the alternatives is described by the vector
−→
L , with components Li representing

the number of samples allocated to alternative i = 1, . . . , N . The finite sample
capacity of the decision-maker imposes the constraint

∑
i Li = C. Upon drawing

Li samples from each alternative i, the decision maker observes the number of
successes (1’s), denoted ni, of each of the Bernoulli variables. The best option is
then the one with the highest posterior mean probability E (pi|ni, α, β) =

ni+α
Li+α+β

after observing these successes, such that the utility for a given allocation
−→
L

and associated outcomes −→n becomes U
(−→n ,

−→
L
)
= maxi

ni+α
Li+α+β

. Because the
number of successes is only revealed after selecting the sample allocation strategy
−→
L , the decision-maker’s utility for using that strategy, U

(−→
L
)

, is an average of

U
(−→n ,

−→
L
)

over all possible outcomes given
−→
L ,

U
(−→
L
)
=
∑
−→n

p
(−→n ∣∣∣−→L , α, β

)
max

i

ni + α

Li + α + β
, (2.1)

where p
(−→n ∣∣∣−→L , α, β

)
is the joint probability distribution of the outcomes −→n

given the allocation
−→
L and the prior distribution parameters. As each alterna-

tive is sampled independently, the distribution of success counts factorizes as
p
(−→n ∣∣∣−→L , α, β

)
=
∏

i p(ni|Li, α, β), where p(ni|Li, α, β) is a beta-binomial dis-
tribution (Murphy, 2012). This distribution specifies the probability of observing
exactly ni successes from a Bernoulli variable that is drawn Li times, and whose
success probability pi follows a beta distribution with parameters α and β. These
two parameters control the skewness of the distribution: if both parameters are
equal, the distribution is symmetric around one half, while for α larger (smaller)
than β the distribution is negatively (positively) skewed.

Finally, the optimal allocation of samples across options
−→
L

∗
is the one that max-

imizes the decision-maker’s expected utility U
(−→
L
)

in Eq. (1) over all allocations

of samples
−→
L ,

−→
L

∗
= argmax

−→
L

U
(−→
L
)

(2.2)

with the above finite sample capacity constraint (see Methods for details). The
optimal expected utility then becomes U∗ = max−→

L
U
(−→
L
)

, which involves a
double maximization over the expected success probabilities of the sampled al-
ternatives and the allocation of samples over the alternatives, effectively solving
the two-stage decision process (i.e., first allocate samples, then observe outcomes,
and then choose) in reverse order (i.e., first optimize choices given outcomes and
allocation, then optimize allocation).
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This maximization allows total flexibility over how many samples to allocate to
each alternative. However, for the sake of tractability, let us first consider the best
even allocation of samples, that is, a subfamily of allocation strategies where the
same number of samples L are allocated to each of M sampled alternatives, while
the remaining alternatives (C−M ) are not sampled, subject to the standard capacity
constraint M × L = C. Indeed, finding the optimal even allocation of samples
is easier than finding the globally optimal allocation, which might be uneven in
general (see below). As we show in Methods, a particularly simple expression
for the optimal even sample allocation, L∗, arises when the prior distribution over
success probabilities is uniform (α = β = 1),

L∗ = argmin
L

∑L
s=0(s+ 1)M

(L+ 1)M(L+ 2)
, (2.3)

where the right-hand side is related to utility by

U(M = C/L) = 1−
∑L

s=0(s+ 1)M

(L+ 1)M(L+ 2)
. (2.4)

Note that only M∗ = C/L∗ ≤ C alternatives are sampled in the optimal allocation,
while the remaining options are given zero samples, thus effectively being ignored.
The sampled alternatives can be chosen randomly, as they are indistinguishable
before sampling. Using extreme value theory (see Methods), we show that the
optimal number of sampled alternatives M∗ and optimal number of samples per
alternative L∗ both follow a power law with exponent ½ for large capacity C

lim
C→∞

M∗ =
√
C, lim

C→∞
L∗ =

√
C, (2.5)

which corresponds to perfectly balancing breadth and depth.
In the next section, we analyze this case in detail. After that, we consider

optimal even allocations of samples for arbitrary prior distributions, and finally we
provide results for the globally optimal allocations, not necessarily even.

2.2.2 Sharp transition of optimal sampling strategy at low ca-
pacity

We first analyze the expected utility U(M) as a function of the number of evenly
sampled alternatives M , each sampled L times (such that M × L = C) (Fig. 2.2a)
At low capacity (C = 4, lighter gray line), the utility increases monotonically from
sampling just one alternative (M = 1) four times, to sampling four alternatives
(M = 4) one time each. Thus, a pure breadth strategy is favored. At intermediate
capacity (C = 10, medium gray line), the maximum occurs at an intermediate
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number of alternatives (specifically, M = 5), reflecting an increasing emphasis
on depth. At large capacity (C = 100, black line), the maximum expected utility
occurs when sampling few different alternatives (M = 10 sampled alternatives
with L = 10 samples each), reflecting a tight balance between breadth and depth.
For such large capacities, a breadth search that samples most of the alternatives
(rightmost point of the black line) would lead to a reward that approaches 2/3,
which is the lowest expected reward one would obtain if at least one sampled
alternative has a positive outcome (see Appendix).

The model displays a sharp transition when capacity crosses the critical value
of 5 (Fig. 2.2b) Below this critical capacity, the optimal number of sampled alter-
natives equals capacity. That is, one should follow a breadth strategy and distribute
one sample to each alternative. Above 5, the optimal number of sampled alterna-
tives is much smaller than the capacity, with the temporary exception of capacity
equal to 7. That is, one should balance the number of sampled alternatives with
the depth of sampling each of them. Specifically, the optimal number of sampled
alternatives follows a power law with exponent 1/2 (log-log linear regression,
power = slope = 0.49, 95% CI = [0.48, 0.50] ), as predicted by Eq. (5), which
implies that the fraction of sampled alternatives decreases with the square root of
capacity. This means that breadth and depth are tightly balanced in the optimal
strategy. The sharp transition at around 5 becomes clearer when plotting the ratio
between the optimal number of sampled alternatives and capacity as a function of
capacity (Fig. 2.2c).

In summary, if the capacity of a decision-maker increases by a factor of 100, the
decision-maker will roughly increase the number of samples alternatives just by a
factor of 10, one order of magnitude smaller than the capacity increase. Because the
optimal number of sampled alternatives increases with capacity with an exponent
½ , we call this the ‘square root sampling law’. A remarkable implication of this
law is that the vast majority of potentially accessible alternatives should be ignored
(e.g., for C = 100, C −M = 90 options are ‘rationally’ ignored).

2.2.3 Generalizing to variations in beta prior distributions
The above critical capacity for optimal even sample allocation changes when,
instead of using a uniform prior of success probabilities, we allow for variations of
the prior distribution (Fig. 2.2d). However, the critical capacity consistently lies
again at around low values (around 10) with the specific value depending on the
environment. By changing the prior’s parameters, we can vary the difficulty of
finding a good extreme alternative, and thus can compare different scenarios. For
the uniform prior that we have used previously (a ‘flat’ environment), a decision-
maker is equally likely to find an alternative with any success probability. Consider
a prior distribution that is concentrated and symmetric around a success probability
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Figure 2.2: Sharp transitions in optimal number of sampled alternatives at low capacity,
and power law behavior at large capacity. (a) Average reward (points, simulations; lines,
theoretical expressions, Eq. 4) as a function of the number of sampled alternatives M for
three different capacities (C = 4, 10, 100; light, intermediate and dark lines respectively)
for the flat environment (uniform prior). The maximum occurs at the large extreme for
low capacity but at a relatively low value for large capacity. Note log horizontal scale.
(b) Optimal number of sampled alternatives as a function of capacity. When capacity is
smaller than around 5, a linear trend of unit slope is observed (dashed green line), but
when capacity is above 7, a sublinear behavior is observed (dashed red line corresponds to
the best power law fit, with exponent close to 1/2). Black line corresponds to analytical
predictions. The jagged nature of this prediction and simulation lines in this and other
panels is due to the discrete values that the optimal M can only take, not due to numerical
undersampling. (c) The sharp transition is clearer when plotting the optimal number of
sampled alternatives to capacity ratio as a function of capacity. For low capacity, the
ratio is one, but for large capacity the ratio decreases very rapidly. The last point below
which the optimal ratio is always one (critical capacity) corresponds to capacity equal to 5
(indicated with a vertical red line). (d) Number of sampled alternatives to capacity ratios for
different prior distributions (α = β = 3, bell-shaped, green line; α = 3, β = 1, negatively
skewed prior modelling a ‘rich’ environment, brown line; α = 1, β = 3, positively skewed
distribution modeling looking for a ‘needle in a haystack’, that is, a ‘poor’ environment,
blue line). Lines correspond to analytical predictions from Eq. 9 in the Methods; points
correspond to numerical simulations; error bars are smaller than data points in all panels.
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of 0.5 (approximately as a Gaussian, corresponding to the beta prior parameters
α = β = 3). In this environment, unusually good (high success probability) and
unusually bad (low success probability) options are rarer than medium ones (Fig.
2.2d, green line). In this case, the breadth-depth tradeoff as a function of C is
remarkably similar to the uniform prior case, with a transition at C = 5.

We also consider a negatively skewed prior distribution (α = 3, β = 1).
This distribution refers to environments with rare bad options, as, for example,
a tree whose fruits are mostly ripe but that has a few unripe ones. In this ‘rich’
environment, one can afford sampling a smaller number of options, and as they are
sampled more deeply, it is possible to better detect the really excellent ones. A sharp
transition occurs even in this condition, exactly when the critical capacity equals 3
(brown line). As expected in this environment, the decay of the ratio between the
optimal number of sampled alternatives and capacity after this transition is (slightly)
faster than that of the symmetric prior. Therefore, negative skews engender a
modest bias towards depth over breadth.

Finally, consider the opposite scenario, in which the prior distribution is con-
centrated at low success probability values (α = 1, β = 3, positively skewed beta
distribution), which corresponds to looking for a ‘needle in a haystack’ or a ‘poor’
environment. In this scenario, one ought to sample more alternatives less deeply
to allow for the possibility of finding the rare good alternatives, and thus breadth
should be emphasized over depth (Fig. 2.2d, blue line). In this scenario, the sharp
transition occurs at capacities around 10 (blue line).

Despite the large variations of prior distributions, a fast transition occurs in
all conditions at around a small capacity value, like in the uniform prior case. In
addition, a power law behavior is observed at larger values of capacity regardless
of skew, with exponents close to 1/2 in all cases (uniform prior, exponent = 0.49;
negatively skewed prior, 0.49; positively skewed prior, 0.64; s.e.m. = 0.01). These
behaviors are observed over a larger range of parameters of the prior distribution
(Fig. 2.3)

One interesting limit scenario arises for strongly positively skewed prior distri-
butions, e.g., by taking β to infinity while fixing α = 1. In this limit, the prior mean
probability α/(α+ β) decreases to zero, and the critical capacity rises very steeply
to infinity (Fig. 2.3a as one moves leftwards). Increasing the prior’s skewness
makes finding good options less likely, as most of the options are very likely to be
very bad, akin to an extreme case of the haystack environment considered before.
As expected, this makes breadth search optimal for increasingly larger values
of capacity, as indicated by the increasing values of critical capacity. However,
for large enough capacities a transition is still observed above which a roughly
balanced mix between breadth and depth becomes optimal. More precisely, in this
regime the optimal number of sampled alternatives features a power behavior with
exponents close but above 1/2, indicating a bias towards breadth (leftmost points
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Figure 2.3: Sharp transitions at relatively low capacity values and close to square root
sampling behavior for large capacity are observed for a broad range of parameters of the
prior distribution. (a) Critical capacity decreases very steeply to low values (≈ 10) as a
function of the prior mean probability α/(α+ β). (b) Exponents decrease as a function
of the prior mean probability and cluster around 1/2. The exponents are obtained from
log-log linear regression fits of the optimal number of alternatives samples vs capacity
(M ∝ Cexponent) for C’s ranging from 1000 to 2000 in steps of one. Shaded areas
correspond to 95 CIs. In both panels, points are obtained by theoretical predictions from
Eq. 4 in the Methods. For prior mean probabilities smaller than or equal to 1/2 we fix
α = 1 while β varies from 1 to 20 in steps of one, and for values larger than 1/2 we fix
β = 1 while α varies from 1 to 20.

in Fig. 2.3b). When the prior mean probability exceeds values as low as 0.1, the
critical capacity plateaus to low values below 10, and the exponent drops to values
smaller but close to 1/2, indicating a weak preference towards depth.

To test how robust the behaviors we explored are, we furthermore considered
Gaussian rather than Bernoulli samples (Supplemental Fig. 2.7). Strikingly, for
a large range of the samples’ noisiness, we again observed a sharp transition
occurring at low critical capacities (∼ 10). Below the critical capacity, breadth
search is preferred, while above it a mix between breadth and depth is optimal,
characterized by a power law behavior (exponent = 0.35, 95% CI = [0.30, 0.41]).
Thus, the resulting strategy was qualitatively identical, and numerically similar, to
the Bernoulli samples case.

2.2.4 Optimal choice sets and sample allocations
So far, we have focused on optimal even sample allocation. Let us now consider the
payoffs for decision-makers willing to consider all possible allocation strategies.
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Figure 2.4: Optimal sample allocations and choice sets. Optimal sample allocation for
flat, rich and poor environments from capacity C = 1 up to C = 20. The environments
correspond respectively to uniform, negatively and positively skewed prior distributions
(top icons). Optimal sample allocations are represented as bar plots, indicating the number
of samples allocated to each alternative ordered from the most to the least sampled alterna-
tive.

The number of all possible allocations equals the number of partitions of integers
in number theory, which grows exponentially with the square root of capacity
(Andrews, 1998). This makes finding the globally optimal sample allocation a
problem that is intractable in general. For small capacity values C ≤ 7 and uniform
prior distributions we compute the exact optimal sample allocation by exhaustive
search and rely on a stochastic hill climbing method for larger capacities and other
priors. The latter finds a local maximum for the utility, which is likely to be a
global maximum, as we found it to coincide with the one provided by exhaustive
search for small capacities C ≤ 7, and the optimal utility did not significantly
change across different initializations and random seeds for larger capacity values.

Globally optimal sample allocation (which defines optimal choice sets) for a
uniform prior beta distribution tends to sample all or most of the alternatives when
the capacity is small, but as capacity increases the number of sampled alternatives
decrease (Fig. 2.4, left). For instance, for capacity equal to 5 samples, the optimal
sample allocation is (2,1,1,1,0). In general, in optimal allocations, the decision-
maker adopts a local balance between oversampling a few alternatives and sparsely
sampling others –a local compromise between breadth and depth— even though
all options are initially indistinguishable. This further level of specialization and
distinction between alternatives might be able to better break ties between similar
alternatives when compared to an even sampling strategy.

We also studied optimal sample allocation for positively and negatively skewed
prior distributions. In a rich environment (center panel), the optimal sample alloca-
tion is uneven for capacities as low as C = 3. In contrast, in a poor environment
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(right), the optimal sample allocation remains even up to capacity C =5, which
was not the case for the flat environment (compare with left panel). For higher
capacities, decision-makers in rich environments ought to sample less broadly but
more deeply. For instance, for capacity C = 20, only around 5 alternatives are
sampled, while the remaining 15 potentially accessible alternatives are neglected.
In the haystack environment, in contrast, about half of the alternatives are sampled,
but not very deeply (only a maximum of 3 samples are allocated to the most
sampled alternatives).

2.2.5 Even sample allocation is close to optimal
Three principles stand out. First, globally optimal sample allocation almost never
coincides with optimal even allocation. Second, at low capacity optimal allocation
favors breadth while at large capacity a breadth-depth balance is preferred (Fig.
2.5a). Third, a fast transition is observed between the two regimes happening at
a relatively small capacity value. The last two features are shared by the optimal
even allocations as well (cf. Fig. 2.2c).

Optimal even and globally optimal sample allocations share some important fea-
tures, but are they equally good in terms of average reward obtained? We compared
the average reward from globally optimal and even optimal sample allocations. For
comparison, we always used even sampling based on a uniform prior over each
alternatives’ success probabilities, that is, we sample M = C alternatives with one
sample each if capacity is C ≤ 7 and M =

√
C alternatives with L =

√
C samples

each if capacity is larger (square root sampling law; see Methods for details). This
heuristic produced comparable performances to the optimal ones (Fig. 2.5b). The
worst-case scenario occurred in the poor environment (blue line) when capacity
is close to 10, which led to a drop in reward by close to 10%, but the maximum
discrepancy value was even smaller for the flat and rich environments. Indeed, for
the flat environment, the maximum drop in reward was only around 5%.

For large capacity C > 100 the square root sampling law produced results that
were very close to the performance of the optimal solutions (as found by stochastic
hill climbing). Therefore, the gain of globally optimal sample allocation over
optimal even sampling at low capacity, and over the square root sampling law for
high capacity, is at most marginal.

We also compared the merits of the square root sampling law to other sensible
heuristics: pure breadth, pure depth, random sampling of options and a triangular
approximation. Pure breadth search allocates just one sample per alterative, such
that the number of sampled alternatives equals capacity. The pure depth heuristic
randomly chooses two alternatives that are each allocated half of the sampling
capacity. Random search randomly assigns each of the C samples to any alternative
with replacement. A final heuristic, called ‘triangular’, is inspired by the seemingly
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Figure 2.5: Globally optimal and optimal even sample allocations share similar features
and have similar performances. (a) Fraction of sampled options (compared to the maximum
number of potentially accessible alternatives, equal to C) as a function of capacity C. The
fraction is close to one for small values for all environments (flat -black line, rich -brown,
and poor -blue). The fraction decays rapidly to zero from a critical value that depends
on the prior. The jagged nature of the lines is due to the discrete nature of capacity. (b)
Percentage increase (gain) in averaged reward by using globally optimal sample allocation
compared to even allocation (see Appendix). Color code as in the previous panel. (c)
Percentage loss in averaged reward by using triangular (gray), square root sampling law
(black), random (orange), pure breadth (red) and pure depth (pink) heuristics compared to
optimal allocation, in a flat environment. For the square root and triangular heuristics, we
used pure breadth search when C ≤ 5.

isosceles right triangle shape of the optimal allocations (see Fig. 2.4). It splits
capacity by sampling the first alternative with

⌊
2
√
C
⌋
− 1 samples and any further

alternative with one sample less than the previous one until capacity is exhausted
(⌊x⌋ is the floor function). All heuristics finally choose the alternative with the
highest posterior mean probability. While the loss relative to optimal allocation is
smallest for triangular allocation, the square root sampling law performs similarly,
and much better than random, pure breadth and pure depth heuristics (Fig. 2.5c).

2.2.6 Dynamic allocation of capacity

Thus far, we have considered ‘static’ allocations whereby no feedback is provided
before all samples are allocated. In a less rigid ‘dynamic’ sample allocation strategy
some basic form of interim feedback might be available, based upon which further
alternatives can be sampled. To model such a scenario, assume that the capacity
can be divided into a sequence of a maximum of C waves k = 1, . . . , C, such that
in each wave a number of alternatives Mk, no larger than in the previous wave, is
sampled just once. The number of alternatives sampled at each wave can be chosen
freely, but has to be allocated before sampling starts, that is, the decision maker
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has to determine the policy at the start knowing she will receive feedback in the
future. However, to dynamically react to past sampling outcomes, the kth wave
allocates its Mk samples to only those Mk alternatives with the largest number of
successes so far (with random allocation in case of ties). This implies that in wave
k + 1 one can only sample a subset of the alternatives sampled in wave k. Once
sampling has been completed across all waves, the alternative with the highest
posterior mean probability is chosen among the M1 sampled alternatives in the first
wave. We restricted the final choice to this initial set of alternatives to handle the
unlikely case that the lastly sampled alternatives turned out to be worse than (our a
priori belief about) the initially sampled ones. In that case, the dynamic strategy
could lead to worse performance than the static one. We call the above flexible
allocation of the predefined sample waves ‘dynamic’ sample allocations. As for
static allocations, we find the best-performing M1,M2, . . . sequence by stochastic
hill climbing.

Optimal dynamic sample allocations share many features with optimal static
sample allocations (Fig. 2.6). At low capacity, pure breadth search is again optimal.
That is, it is best to allocate all samples in the first wave, assigning just one sample
per alternative (Fig. 2.6a). For capacities larger than the critical capacity C=3, it is
best to mix breadth with depth search, and for very large capacity most accessible
alternatives are again ignored. The optimal dynamic and static sample allocations
have, however, important differences (Fig. 2.6b; cf. Fig. 2.4). Specifically, the
initial wave tends to sample many alternatives to identify good ones, and follow-up
waves narrow down the search to the potentially best ones. This results in broader
sample allocations (Fig. 2.6c), that, overall, sample more alternatives than for
static allocations (cf. Fig. 2.4). Finally, we test how the static square root sampling
law performs against the optimal dynamic allocations, finding that the former is
worse by less than 9% for all capacity values (Fig. 2.6d). We also confirm that
static random, pure breadth and pure depth strategies are substantially worse than
the square root sampling law, while the triangular strategy is similar to the simple
square root sampling heuristic.

2.3 Discussion
We delineate a formal mathematical- framework for thinking about a commonplace
decision-making problem. The breadth-depth dilemma occurs when a decision-
maker is faced with a large set of possible alternatives, can query multiple alter-
natives simultaneously with arbitrary intensities, and has overall a limited search
capacity. In such situations, the decision-maker will often have to balance between
allocating search capacity to more (breadth) or to fewer (depth) alternatives. We
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Figure 2.6: Optimal dynamic sample allocations display a sharp transition at low capacity,
distribute samples unevenly across alternatives, and ignore a vast number of alternatives at
high capacity. (a) Fraction of sampled alternatives (compared to the maximum number
of potentially accessible alternatives, equal to C) as a function of capacity C for the flat
environment (uniform prior). The fraction is one for small capacity values and decays
rapidly to zero at large capacity. (b) Optimal sample waves, indicating the number of
samples allocated in each wave. The number of samples allocated in each wave lies
between 1 and C and they sum up to the total available capacity C. The maximum
allowed number of waves is C. (c) Optimal dynamic sample allocations and choice sets
after the whole capacity has been allocated through the sample waves. The alternatives
with largest number of successes are allocated a higher number of samples compared to
static allocations (cf. Fig. 2.4). Many alternatives are given just one sample, typically
arising from the first wave, which produces broader sample allocations compared to static
allocations. (d) Percentage loss in averaged reward by using triangular (gray), square root
sampling law (black), random (orange), pure breadth (red) and pure depth (pink) static
heuristics compared to optimal dynamic allocation.
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develop and use a finite sample capacity model to analyze optimal allocation of
samples as a function of capacity. The model displays a sharp transition of be-
havior at a critical capacity corresponding to just a small set of available samples
(around 10). Below this capacity, the optimal strategy is to allocate one sample
per alternative to access as many alternatives as possible (i.e. breadth is favored).
Above this capacity, breadth-depth balance is emphasized, and the square root
sampling law, a close-to-optimal heuristic, applies. That is, capacity should be split
into a number of alternatives equal to the square root of the capacity. This heuristic
provides average rewards that are close to those from the optimal allocation of
samples. As it is easy to implement, it can become a general rule of thumb for
strategic allocation of resources in multi-alternative choices. The same results
roughly apply to a wide variety of environments, including flat, rich and poor ones,
characterized by very different difficulties of finding good alternatives.

Despite the billions of neurons in the brain, our processing capacity seems
quite limited. This strict limit applies to attention, where it is sometimes called the
attentional bottleneck (Deutsch and Deutsch, 1963; Treisman, 1969; Yantis and
Johnston, 1990), including spatial attention, where the limit is best characterized
(Desimone and Duncan, 1995), over working memory (Brady et al., 2011; Cowan
et al., 2005; Luck and Vogel, 2013; Ma et al., 2014; Miller, 1956; Sims, 2016),
to executive control (Norman and Shallice, 1986; Shenhav et al., 2017; Sleezer
et al., 2016) and to motor preparation (Cisek and Kalaska, 2010) These narrow
limits, which often number only a handful of items (though see (Ma et al., 2014)),
suggest some sort of bottleneck. However, another interpretation is that capacity is
much larger than it appears, and instead, observed capacity reflects the strategic
allocation of resources according to the compromises that our model identifies as
optimal. The square root sampling law, in other words, suggests that the apparently
narrow bandwidth of cognition may reflect the optimal allocation across very few
alternatives of a relatively large capacity.

This is particularly likely to be true for economic choice. We are especially
interested in the apparent strict capacity limits of prospective evaluation (Hayden
and Moreno-Bote, 2018; Krajbich et al., 2010; Lim et al., 2011; Redish, 2016;
Rich and Wallis, 2016). Indeed, the failures of choice with choices sets over a
few items are striking and have been a major part of the heuristic literature (Diehl
and Poynor, 2010; Iyengar and Lepper, 2000). These strict limits are ostensibly
difficult to explain. They do not appear to derive, for example, from the basic
computational or biophysical properties of the nervous system, as is evident from
the fact that our visual systems are an exception to the general pattern and can
process much information in parallel. Nor do these limits appear to relate to any
desire to reduce the extent of computation, as large numbers of brain regions
coordinate to implement these cognitive processes (Rushworth et al., 2011; Siegel
et al., 2015; Vickery et al., 2011; Yoo and Hayden, 2018). Our results presented
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above offer an appealing explanation for this problem: economic choice can be
construed as breadth-depth search problems, and even when capacity is large, the
optimal strategy is to focus on a very small region of the search space. Thus, our
results can also help to understand why many cognitive systems operate in a regime
of low sampling size, thus resolving the paradox of why low breadth sampling and
large brain resources can coexist.

We believe that these results are particularly relevant to behavioral economics.
Research has shown that consumers often consider just a small number of brands
from where to purchase a specific product out of the many brands that exist in
the market (Hauser and Wernerfelt, 1990; Stigler, 1961). The prevailing notion is
that decision-makers hold a consideration choice set from where to make a final
choice rather than contemplating all possibilities. Several reasons for this behavior
have been provided. First, choice overload has been shown to produce suboptimal
choices in certain conditions (Iyengar and Lepper, 2000; Scheibehenne et al., 2010).
Secondly, selecting a small number of options from where to choose can be actually
optimal if there is uncertainty about the value of the options and there is cost for
exploring and sampling further options (Mehta et al., 2003; Roberts and Lattin,
1991; Santos et al., 2012). Estimating the overall benefits of considering larger sets
has to be balanced with the associated cost of exploring further options.

This research has provided a relevant line of thought for understanding low
sampling behavior within the context of bounded rationality by formally assuming
the presence of linear costs of time for searching for new options. Time costs come
in their models at the expense of unknown parameters, which often are difficult
to fit (Mehta et al., 2003; Roberts and Lattin, 1991). Further, linear time costs
always permit unlimited number of sampled options, as they do not impose a strict
limit in the number of options that can be sampled. In our approach, in contrast,
allocating finite resources imposes a strict limit to the number of options that can
be sampled and, as resources are limited, there is a tradeoff between sampling more
options with less resources or sampling fewer options with more resources, directly
addressing the breadth-depth dilemma. This difference could be the main reason
why the consideration set literature has not reported sharp transitions of behavior
as a function of model parameters (costs) nor power sampling laws, which are the
main features of our finite sample capacity model.

A number of extensions would be required to fully address more realistic
problems associated to the breadth-depth dilemma. So far, we have considered a
two-stages decision process, where the first metareasoning decision is about opti-
mally distributing limited sampling capacity. We have also considered a sequential
problem where some basic form of feedback can be used, but the allocation strategy
needs to be chosen before the gathering of information and remains fixed thereafter.
By construction, these optimal dynamic allocations at large capacity sample more
deeply those alternatives that have largest values, in line with experimental work

37



“output” — 2023/4/19 — 21:05 — page 38 — #52

(Krajbich et al., 2010; Sepulveda et al., 2020). Perhaps a more relevant observation
is that the depth of processing of the best alternatives increases with capacity
and that more samples are allocated to the top alternatives than for optimal static
sample allocations (cf. Fig. 2.6). Furthermore, if capacity increases, relatively
more samples are allocated to the most-sampled than the second-most-samples
alternative. Both predictions are currently untested. It would be interesting to
extend these results to truly sequential processes where the decision of how many
samples to allocate per wave is flexible and depends on intermediate feedback.
An advantage of this more general setup (Morgan and Manning, 1985) is that a
full-fledged interaction between the breadth-depth and exploration-exploitation
dilemmas could be studied. In particular, a relevant direction is relating our square
root sampling law with Hick’s law (Hick, 1952) for multialternative choices. The
two approaches touch different aspects of multialternative decision making: while
Hick’s law refers to the problem of how long options should be sampled in a
multialternative setting, it does so by sampling all available options; the square root
sampling law, by contrast, applies to situations where there are many alternatives
and a large fraction of them are to be ignored due to limited capacity, directly facing
the breadth-depth dilemma. It will be interesting to integrate the two sets of results
within a general framework of multialternative sequential sampling (Roe et al.,
2001; Tajima et al., 2016; Usher and McClelland, 2004) under limited resources.

A second possible extension of our work is reconsidering the nature of capacity.
For instance, ‘rate distortion theory’ defines a natural capacity constraint over
the mutual information between the inputs and the outputs in a system (Bates
et al., 2019; Sims, 2003). This capacity constraint might more naturally enforce
a finite capacity than fixing the total number of samples that a system can draw
from (externally or internally). A third relevant direction would be extending
our study to cases where the capacity is continuous rather than discrete, and to
cases where the observations are continuous variables. Showing that Gaussian
rather than Bernoulli outcomes yield qualitatively similar strategies is a first step in
this direction. Although it remains a topic for future research, we do not expect
qualitative differences in behavior in other continuous settings, as for large capacity
the continuous limit approximation applies, and for low capacities the optimality
of low number of alternatives is expected.

While we do not know of direct tests of breadth-depth capacities in humans,
indirect measurements suggest that the square root sampling law can be at work
in some realistic conditions, such as chess. It has been argued that chess players
can image around 100 moves before deciding their next move (Simon, 1972).
Assuming that their capacity is 100, then the square root sampling law would
predict that players should sample 10 immediate moves followed by around 10
continuations. Indeed, estimates indicate that chess players mentally contemplate
roughly between 6-12 immediate moves followed by their continuations (Simon,
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1972) before capacity is exhausted due to time pressure. Although decisions in
trees like this surely involve other types of search heuristics beyond balancing
breadth and depth, the quantitative similarity between predictions and observations
is intriguing.

Finally, our work potentially opens ways to understand confirmation biases.
Confirmation biases happen when people extensively sample too few alternatives,
thus effectively seeking information for the same source. We have demonstrated
that oversampling some alternatives and completely ignoring others is optimal
in certain conditions. It remains to be seen, however, whether this is actually
the optimal strategy under more general conditions or whether the oversampling
strategy induces severely harmful biases in certain niches.

It is important to note that we have described the phenomenology of the breadth-
depth dilemma in conditions where all alternatives are, a priori, equally good. Thus,
ignoring a large fraction of options and the associated square root sampling law can
only be the worst-case scenario, in the sense that if there are biases or knowledge
that a subset of alternatives is initially better than the rest, then fewer number of
alternatives should be sampled. This consideration reassures us in the conclusion
that the number of alternatives that ought to be sampled is much smaller than
sampling capacity, an observation that might turn to be of general validity in both
decision-making setups as well as in terms of brain organization for cognition.

2.4 Appendix

2.4.1 Finite capacity model

We consider a two-stage decision process in a multi-alternative decision-making
problem modeled as a partially observable Markov decision process. There are
N alternatives, defined each by a Bernoulli random processes, whose trial by trial
(t = 1, ...) outcomes follow sti ∼ Bern (pi), sti ∈ {0, 1} = {failure, success},
i = 1, ..., N . The outcomes are independently distributed for all trials t and
across alternatives. The values of the success probabilities are unknown to the
decision-maker, and follow a prior distribution pi ∼ Beta(α, β) i.i.d. for all
alternatives, with known hyperparameters (α, β). Allowed actions follow a two-
stage decision process. In the first stage, the decision-maker can draw a total of
C = N samples at once, namely, a one-go decision is considered (Bechhofer and
Kulkarni, 1984; Gupta and Liang, 1989; Sobel and Huyett, 1957). We consider
the case where the total number of alternatives N exhausts sampling capacity C,
but the results are equivalent if the number of alternatives is larger than capacity,
with the addition of more rejected or non-sampled alternatives. The action space
is AL = {L⃗ : Li ≥ 0 ∀i,

∑
i Li = C}, where L⃗ = (L1, ..., LN) is the number of

39



“output” — 2023/4/19 — 21:05 — page 40 — #54

samples drawn from each of the alternatives, with the constraint
∑

i Li = C (we
often refer to the vector L⃗ as sample allocation). Note that the decision-maker
can decide to sample the same alternative several times (i.e., Li > 1 for some i),
and also decide not to sample from several alternatives (i.e., Li = 0 for other i).
In general, M ≤ C = N alternatives are sampled. If just a few alternatives are
sampled (M ∼ 1), many samples can be allocated to each. If C alternatives are
sampled, only one sample could be allocated to each of them. Outcomes of the
samples from the sampled alternatives are revealed all at once, not sequentially.
In the second stage of the decision-making process, after outcomes are observed,
the decision-maker should decide what alternative to choose. We initially assume
that it is possible to choose only among the sampled alternatives. Thus, the action
space in the second stage is defined by the set AC = {c : Lc > 0} of size M ,
ordered as {c1, ..., cM}. The sufficient statistics of the outcomes of the Bernoulli
processes to infer the success probabilities are the counts of successes for each
of the M sampled alternatives, n⃗ = (nc1 , ..., ncM ), with nj =

∑Lcj

t=1 s
t
cj

, and thus
the decision of what option to choose should be a function of those counts and on
the sample allocation vector L⃗, which together constitute the information state of
the decision process. The counts, conditioned on the success probabilities, follow
ni ∼ Bin(pi, Li). Note that the dimension of the vector n⃗ depends on the number
of sampled alternatives (those satisfying Li > 0) and thus the consideration set
changes size depending on the first stage decision.

We define the utility of a choice i ∈ AC as the hidden value of the success
probability of the corresponding Bernoulli variable, Ui = pi. We assume that
the decision-maker maximizes expected utility. This involves determining the
optimal allocation of samples L⃗∗ to be used in the first stage followed by defining
an optimal decision rule that selects one of the sampled alternatives based on n⃗. A
decision rules maps an observation n⃗, given the allocation vector L⃗, into an element
of the action space AC. By considering all possible decision rules, δ = {δ(n⃗, L⃗) :
(n⃗, L⃗)→ AC}, we show in Sec. (2.4.4) that the optimal decision rule, δ∗(n⃗, L⃗), is
the one that selects always, for any sample allocation L⃗, the alternative with the
maximum posterior mean success probability E(pi|ni, Li) =

ni+α
Li+α+β

, i ∈ AC , or
chooses any of the maximum ones if there are ties. Therefore, the expected utility
for a given sample allocation L⃗ following the optimal decision rule is

U(L⃗) =
∑
n⃗

p
(
n⃗|L⃗, α, β

)
max
i∈AC

(
ni + α

Li + α + β

)
, (2.6)

where the joint posterior over n⃗ factorizes into beta-binomial distributions as
p
(
n⃗|L⃗, α, β

)
=
∏

i∈AC
Bb(ni|Li, α, β). Then, the optimal sample allocation L⃗∗

equals
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L⃗∗ = argmax
L⃗∈AL

U(L⃗) = max
L⃗∈AL

∑
n⃗

p
(
n⃗|L⃗, α, β

)
max
i∈AC

(
ni + α

Li + α + β

)
, (2.7)

and the corresponding maximum expected utility becomes

U∗ = max
L⃗∈AL

U(L⃗). (2.8)

Finding the optimal solution in Eq. (2.7) is hard because of the large number
of sample allocations that it is possible to form out of C samples. The number
of unique partitions of C samples equals the number of integer partitions of C
(not to be confused with the Bell number), for which we are not aware of simple
exact expressions. We should only consider unique partitions because all the
alternatives are initially (before sampling) indistinguishable. Therefore, without
loss of generality, we can always assume that we sample the alternatives by using
the sample allocation L⃗ ∈ AL where we impose the additional constraint that
Li ≥ Li+1 for i = 1, ..., N−1. That is, we sample the first alternative with more or
the same number of samples as the second alternative, the second alternative with
more or the same number of samples as the third one, and so forth. We describe a
stochastic hill climbing algorithm bellow in Sec. (2.4.4) to find the optimal sample
allocation exactly for small capacity C and approximately for large capacity. To
find useful analytical expressions for Eqs. (2.7, 2.8), we restrict ourselves further
by first looking for optimal even sample allocations, that is, allocation of samples
across M ≤ C options with the same number of samples L per alternative. Optimal
even sample allocation across alternatives is discussed in Sec. (2.4.2).

2.4.2 Analytical expressions for optimal even sample allocation

Because the space of actions AL = {L⃗ : Li ≥ 0 ∀i,
∑

i Li = C} is very large,
we restrict ourselves to a subset of possible actions, consisting in dividing the
capacity C into M alternatives equally sampled with L samples each. Without loss
of generality, we assume that we sample the first M alternatives and we ignore
the rest of C −M alternatives. Even splitting of the capacity is only possible if
C = M × L holds exactly, so we will only examine the pairs (M,L) that satisfy
that condition. The advantage of working in this subset of actions is that it is
possible to obtain useful, exact analytical expression that will reveal non-trivial
properties of the decision process. Methods for finding globally optimal sample
allocation strategies are provided in Sec. (2.4.4). In the main results we also show
that optimal sample allocations are not greatly better than the optimal even ones,
so that even sample allocation is close-to-optimal. For an even capacity split, the
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optimal L∗ under the constraint C = ML can be obtained by specializing Eq. (2.7)
to this case as

L∗ = argmax
L

∑
n⃗

M∏
j=1

p (nj|L, α, β)max
i

(
ni + α

L+ α + β

)
, (2.9)

where i ∈ {1, ...,M} and p (nj|L, α, β) = Bb(nj|L, α, β). Naturally, the optimal
number of alternatives to be sampled is M∗ = C/L∗

A particularly simple expression results from the case α = β = 1, correspond-
ing to a uniform prior over the success probabilities of the Bernoulli variables.
This is because p (nj|L, 1, 1) = Bb(nj|L, 1, 1) = 1

L+1
, thus becoming a discrete

uniform distribution over nj ∈ {0, ..., L}, independent of nj . Then, replacing this
expression in Eq. (2.9), the optimal even sample allocation simplifies to

L∗ = argmax
L

U(L),

U(L) =
1

(L+ 1)M

L∑
n1,...,nM=0

max
i

(
ni + 1

L+ 2

)
(2.10)

=
1

(L+ 1)M(L+ 2)

(
(L+ 1)M +

L∑
n1,...,nM=0

max(n1, ..., nM)

)

=
1

(L+ 1)M(L+ 2)

(
(L+ 1)M +

L∑
s=0

(
(s+ 1)M − sM

)
s

)
(2.11)

= 1−
∑L

s=0(s+ 1)M

(L+ 1)M(L+ 2)
, (2.12)

with M = C/L. Eq. (2.11) in the derivation results from realizing that the sum
over maxi(ni) contains exactly 1M−0 zeros, 2M−1 ones, 3M−2M twos, etc. The
sum in Eq. (2.12) is the sum of the M − th powers of the first L+ 1 integers, and
it can be computed using Faulhaber’s formula. Eq. (2.12) confirms the intuition
that the expected utility U(L) for any L is smaller than one. Finally, the optimal
number of evenly allocated samples (over the sampled options) can be written as

L∗ = argmin
L

∑L
s=0(s+ 1)M

(L+ 1)M(L+ 2)
(2.13)

It is interesting to examine some limits of Eq. (2.12) by relaxing the constraint
C = M × L. For large M and L = 1, the expected utility in Eq. (2.12) becomes
limM→∞ U → 2

3
. This observation is not surprising, as when a very large number
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of alternatives is sampled with just one sample, it is very likely that at least one
of them will have a successful outcome. Therefore, the expected utility of that
alternative under the uniform prior will be 2

3
. This limit is visible in the rightmost

point of Fig. 2a. In the opposite scenario, when only one alternative is sampled,
M = 1, then the expected utility is 1

2
for all L. That is, if just one alternative is

sampled, then the expected probability of success of the sampled alternative is 1
2
,

which equals the prior mean. This limit is visible in the leftmost point of Fig. 2a.

A more general way of performing the integrals involved in Eq. (2.9) is by using
cumulative distribution function of the beta-binomial distributions, F (n|L, α, β) =∑

m≤n Bb(m|L, α, β). By noting that the extreme value distribution has probability
mass function FM(n) − FM(n − 1) (where M denotes exponent and we have
dropped conditioning to avoid cluttered notation), we can write the optimal even
sample allocation in Eq. (2.9) as

L∗ = argmax
L

L∑
n=0

[
FM (n|L, α, β)− FM (n− 1|L, α, β)

]( n+ α

L+ α + β

)
,

(2.14)

Note that the extreme value distribution FM(nmax) − FM(nmax − 1) is the dis-
tribution of nmax = max(n1, ..., nM) where n⃗ follows the above factorized beta-
binomial distribution. In other words, the extreme value distribution for nmax is
the probability that no alternative has more than nmax successful samples (hence
the first term FM(nmax)) but removing the cases where there is no alternative
with more than nmax − 1 successful samples (hence the second negative term
FM(nmax − 1)). For the uniform prior case, α = β = 1, we recover Eq. (2.13),
for which the cumulative can be exactly computed. For arbitrary values of α and β,
Eq. (2.14) is solved numerically. These solutions are used in Fig. 2d.

The general Eq. (2.7) valid for any allocation of samples, and the specific
Eq. (2.14) valid for even sample allocations, assume that a choice is made from
the sampled alternatives, while non-sampled alternatives are excluded from the
choice set. However, if none of the sampled alternatives turns to be good ones
(e.g., because ni ≪ Li for i ∈ AC), then it would be better to choose randomly
from any of the non-sampled alternatives. This is particularly so if the expected
utility of any of the sampled alternatives, ni+α

Li+α+β
, is smaller than α

α+β
, which is

the default expected utility of the non-sampled alternatives given that the success
probabilities are drawn from a B(α, β). It is straightforward to generalize these
results by adding a default alternative, assumed to have utility p0. In this case, the
optimal even allocation of samples obeys
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L∗ = argmax
L

L∑
n=0

(
FM (n|L, α, β)− FM (n− 1|L, α, β)

)
max

(
n+ α

L+ α + β
, p0

)
.

(2.15)

2.4.3 Asymptotic behavior for large capacity: the square root
sampling law

It is possible to derive an approximation for the limiting behavior of the optimal
number of sampled alternatives M∗ and their associated optimal number of samples
per alternative L∗ by using Eq. (2.10) for large capacity C in the case of the uniform
prior distribution. For large capacity C, we assume that L∗ grows to infinity. This
assumption is confirmed later, when the asymptotic optimal L∗ is derived. If L is
large, then Eq. (2.10) can be approximated by

U(L) =
1

(L+ 1)M

L∑
n1,...,nM=0

max
i

(
ni + 1

L+ 2

)
(2.16)

=
1

(L+ 2)

(
1 +

1

(L+ 1)M

L∑
n1,...,nM=0

max(n1, ..., nM)

)

≈ 1

(L+ 2)

(
1 + L

∫ 1

0

dx1...

∫ 1

0

dxM max(x1, ..., xM)

)
,

where the sum in the second equation has been approximated in the third equation
by an integral in the interval [0, 1]M over a uniform distribution by using the
transformation ni = Lxi for i = 1, ...,M . The continuous approximation is valid
when L is large, as assumed, since then the transformation delivers values of xi

that are dense in the unit interval. The integral can be rewritten as∫ 1

0

dx1...

∫ 1

0

dxM max(x1, ..., xM) =

∫ 1

0

dxmaxxmaxf(xmax),

where we have defined the extreme value xmax = max(x1, ..., xM). The extreme
value follows the extreme value distribution f(xmax) = (F (xmax)

M)′ = MxM−1
max ,

where we have used that F (x) = x is the cumulative of the continuous uniform
distribution in [0, 1]. Therefore,
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U(L) ≈ 1

(L+ 2)

(
1 + L

∫ 1

0

dxmaxMxM
max

)
=

1

(L+ 2)

(
1 +

ML

M + 1

)
. (2.17)

Finally, by maximizing U(L) as a function of L with the constraint C = ML we
obtain the asymptotic optimal number of sampled alternatives M∗ and optimal
number of samples per sampled alternative L∗

lim
C→∞

M∗ =
√
C, lim

C→∞
L∗ =

√
C,

which corresponds to the square root sampling law.
In the above derivation we have assumed that L∗ grows with C. To see that this

corresponds to the only valid assumption to obtain L∗, let us assume now that L∗

does not grow with C, that is, it is a constant or decreases with C. For any fixed
value L, using Eq. (2.12) we see that U(L) ≤ 1− 1/(L+2). This utility is smaller
than the one obtained by using the square root law, which converges to 1, as can be
easily derived from Eq. (2.17). Therefore, the square root law delivers the highest
utility.

2.4.4 Optimal sample allocation
For low capacity C ≤ 7 we found the globally optimal sample allocation strategy
by exhaustive search over all possible sample allocations. For larger capacity, we
searched the optimal sample allocation by using stochastic hill climbing. With this
method, we confirmed that for values up to C ≤ 20 the globally optimal sample
allocations were correct up to a precision in expected utility of 10−4.

We started the algorithm by using even sample allocation using the square
root law heuristic: if C ≤ 7 all options were sampled with one sample, and if
capacity was larger we used the square root law by sampling

√
C alternatives

√
C

times each. We considered the possibility that the resulting square root was not
an integer, and thus we allocated the residual number of samples to a randomly
chosen additional alternative; we call this allocation scheme ’even allocation’.
At every iteration, we computed the expected utility of the current best sample
allocation L⃗ through a Monte Carlo simulation of the Bernoulli variables and
averaging utility over 4×105 repetitions for C ≤ 20 and 5×104 for larger capacity
values. A perturbed sample allocation was proposed by randomly selecting two
alternatives. One sample was removed from the first alternative and added to the
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second one, but only if the first alternative had already assigned at least one sample.
To exploit symmetry, we only consider changes of one sample from one alternative
i to another j > i if Lj−1 ≥ Lj and Li ≥ Lj . If j < i, there were not restrictions.

With the proposed perturbed sample allocation, we computed the expected
utility using the same Monte Carlo method. If the new expected value was larger
than the previous one, then the proposed perturbed sample allocation became the
current best sample allocation. This process was iterated 2× 104 times for C ≤ 20
and 3 × 103 for larger capacity values. Because at each iteration we reevaluate
the expected value of the current best sample allocation, we avoid the possibility
of getting stuck in a random fluctuation leading to a spuriously large expected
value. The stochastic hill climbing method found optimal sample allocations that
were identical to those found with the exhaustive search for low capacity C ≤ 7.
Although we do not know whether the found optimal sample allocation corresponds
to a global maximum when capacity is larger, we confirmed that the optimal sample
allocations found were stable against different random number seeds and initial
conditions. Figs. 4 and 5 use the above method. Percentage reward gain in Fig. 5b
is computed as 100× (U∗ − Ueven)/Ueven, where U∗ is the utility estimate of the
globally optimal allocation and Ueven is the estimate of the initial even allocation.
Percentage reward loss in Fig. 5c is computed as 100 × (Uheuristic − U∗)/U∗,
where U∗ is the utility estimate of the globally optimal allocation and Uheuristic is
the utility estimate from triangular, square root sampling law, pure breadth or pure
depth heuristics.

We also employed another version of stochastic hill climbing that avoided
using extensive sampling of the Bernoulli variables to estimate expected utility.
This method was used to confirm robustness of the previous results. We define the
optimal utility as

U∗ = max
L⃗

∑
n⃗

p(n⃗|L⃗, α, β)max
i

(
ni + α

Li + α + β

)
. (2.18)

We thus can design a Markov Chain Monte Carlo method to sample from the
probability distribution

p(n⃗|L⃗, α, β) =
∏
j

Bb(nj|L⃗, α, β)

appearing in the sum of Eq. (2.18) as follows (these samples can be then used to ap-
proximate the sum). Detailed balance imposes that the probability of transitioning
from a state with n⃗ to n⃗′ is the same as the converse,

Pn⃗,n⃗′ p(n⃗|L⃗, α, β) = Pn⃗′,n⃗ p(n⃗
′|L⃗, α, β).
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By proposing a change to a single alternative n′
j = nj ± 1, we can get a simple

expression for the acceptance rate r(n⃗→ n⃗′). If n′
j = nj +1 the acceptance rate is

r(n⃗→ n⃗′) = min

(
1,

(nj + α)(Lj − nj)

(Lj − nj + β + 1)(nj + 1)

)
,

while if n′
j = nj − 1, it becomes

r(n⃗→ n⃗′) = min

(
1,

(Lj − nj + β)nj

(nj + α− 1)(Lj − nj)

)
,

where we have made use of the Metropolis-Hastings algorithm. These two changes
are proposed with equal probability and randomly across all the options. Utilities
are estimated using 106 samples. The search over L⃗ is made using 50×C iterations.
Results in Fig. 4 were reproduced by this method.

For the optimal dynamic allocations described in Fig. 6, we employed again
a stochastic hill climbing method identical to the one described at the start of
this section by using the vector of numbers of allocated samples per wave, Mi,
i = 1, 2, ...C, instead of the number of samples per alternative, Li. The method
proceeded by proposing a new vector of waves M⃗ by adding a sample to a randomly
chosen wave and removing a sample from another randomly chosen wave. This
was done only if the second wave had at least one allocated sample to it and if
the resulting proposed perturbed allocation satisfied the constraint Mi+1 ≤ Mi

for all i. The number of iterations and samples for Monte Carlo utility estimates
are the same as above. Optimal dynamic allocations found are correct up to a
precision of 10−4 in the utility estimates. Very similar results to those described
in Fig. 6 are found when options to be sampled in each wave are selected based
on their current posterior mean probabilities instead of their current number of
total successes. Percentage reward loss of static heuristics compared to optimal
dynamic allocations described in Fig. 6d are computed as in Fig. 5c.

Consistency

Perhaps intuitively, but wrongly, we might assume that by always opting for the
alternative with larger number of successful outcomes (larger ni in Eq. (2.7)), this
would result in ’cherry picking’, that is, in selecting a spuriously good option. This,
in turn, would mean that we would obtain a reward that is lower than the expected
utility in Eq. (2.8). Here we show, however, that the decision rule of choosing
always the alternative with the highest posterior mean is both optimal and delivers
on average a reward that is equal to the expected utility. This is a well-known result
in statistical decision theory (Moreno-Bote, 2010; Beck et al., 2008; Berger and
Berger, 1985). Here we show the derivation for completeness.
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Consider any possible decision rule d⃗ = δ(n⃗) that assigns the counts of suc-
cesses for the M sampled alternatives, n⃗, to a decision d⃗ ≡ d⃗(n⃗) = (dc1(n⃗), ..., dcM (n⃗)),
encoded as a one-hot vector of length M (i.e., dci = 1 if alternative ci is chosen,
and dci = 0 otherwise; we omit the potential dependence of the decision rule on L⃗
to avoid cluttered notation). If the success probabilities of the sampled alternatives,
p⃗, are known, then by using the decision rule δ the decision-maker would have an
expected utility

U(p⃗, L⃗, δ) =
∑
n⃗

∏
i∈AC

Bin(ni|Li, pi) p
di(n⃗)
i ,

where L⃗ is the allocated number of samples over the alternatives. Note that the
expected utility is an average over the values of the chosen pi given the decision
rule averaged across all possible outcomes given the allocated number of samples
over alternatives. As probabilities are unknown, they are marginalized out with
their prior beta distributions, resulting in the overall expected utility

U(L⃗, δ) =
∑
n⃗

∏
i∈AC

Γ(Li + 1)

Γ(ni + 1)Γ(Li − ni + 1)

Γ(α + β)

Γ(α)Γ(β)

×Γ(ni + α + di)Γ(Li − ni + β)

Γ(Li + α + β + di)
. (2.19)

We note that for each term in the sum over n⃗, there is only one value of i for which
di = 1 in the product, while dj = 0 for j ̸= i. The term i in the product with
di = 1 gives an extra factor ni+α

Li+α+β
(by expanding the gamma functions just one

step) that is not present in the product terms with dj = 0. Therefore, the product is
maximized iff di = 1 for the alternative i with maximum ni+α

Li+α+β
(if the maximum

is not unique, any alternative with the maximum value will give exactly the same
result). This result proves that the optimal decision rule δ∗ is the one that chooses
always the alternative with the highest posterior expected utility given n⃗.

Now, we can show that for the optimal decision rule δ∗, the expected utility is
the same as that in Eq. (2.8). We can rewrite Eq. (2.19) as

U(L⃗, δ∗) =
∑
n⃗

max
i∈AC

(
ni + α

L+ α + β

) ∏
i∈AC

Γ(Li + 1)

Γ(ni + 1)Γ(Li − ni + 1)

Γ(α + β)

Γ(α)Γ(β)

×Γ(ni + α)Γ(Li − ni + β)

Γ(Li + α + β)
,

which is identical to the maximum expected utility U(L⃗) in Eq. (2.8), that is,
U(L⃗, δ∗) = U(L⃗). This shows that ’cherry picking’ is optimal.
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2.4.5 Supplementary Figures

Figure 2.7: Sharp transitions in optimal number of sampled alternatives at low capacity
and power law behavior at high capacity in a breadth-depth (BD) model with Gaussian
outcomes. Each option is modelled as a Gaussian with known variance σ2 and unknown
mean reward µ drawn independently for each option from a uniform prior over [0, 1]. The
goal is to optimize the even allocation of C independent samples over at most C options
to maximize the posterior mean reward of the best option. The less options samples are
allocated to, the better the estimates of the underlying means of the sampled options. The
optimal even allocations observed qualitatively match those found in Fig. 2.1 for Bernoulli
observations with unknown success probabilities. (a) Average reward (points and lines,
simulations) as a function of the number of sampled alternatives M for three different
capacities (C = 4, 10, 100; light, intermediate and dark lines respectively) for variance
σ2 = 1, comparable to prior’s width. The maximum occurs at the right extreme for low
capacity but at a relatively low values for large capacities. Note log horizontal scale.
(b) Optimal number of sampled alternatives as a function of capacity. When capacity is
smaller than around 9, a linear trend of unit slope is observed (dashed green line), but when
capacity is above 9, the behavior becomes sublinear (dashed red line corresponds to the
best power law fit, with exponent close to 1/3; power law fit, exponent = 0.35, 95% CI =
[0.30, 0.41]). The transition between these two regimes is sharp. (c) The sharp transition
is clearer when plotting the optimal number of sampled alternatives to capacity ratio as
a function of capacity. For low capacity, the ratio is one, but for large capacity the ratio
decreases very rapidly. The last point below which the optimal ratio is always one (critical
capacity) corresponds to capacity equal to 9 (indicated by the vertical red line). (d) Number
of sampled alternatives to capacity ratios for different variances σ2 = 0.1, 1, 10 (blue,
black, red lines, respectively), corresponding to reliable, standard, and unreliable Gaussian
samples. All points and lines correspond to simulations. When samples are reliable (blue
line), breadth search is favored, as can be seen from the increase of the critical capacity
and the slower decay of the optimal ratio M/C. In contrast, when samples are unreliable
(red line), depth search is favored.
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Chapter 3

BREADTH-DEPTH DILEMMA
FOR CONTINUOUS RESOURCES

The following chapter is based on the manuscript published in the journal of
Cognitive Science, see (Ramírez-Ruiz and Moreno-Bote, 2022) for bibliographic
details. I declare to be the main author of this work.

Abstract

When facing many options, we narrow down our focus to very few of them. Al-
though behaviors like this can be a sign of heuristics, they can actually be optimal
under limited cognitive resources. Here we study the problem of how to optimally
allocate limited sampling time to multiple options, modelled as accumulators of
noisy evidence, to determine the most profitable one. We show that the effective
sampling capacity of an agent increases with both available time and the discrim-
inability of the options, and optimal policies undergo a sharp transition as a function
of it. For small capacity, it is best to allocate time evenly to exactly five options
and to ignore all the others, regardless of the prior distribution of rewards. For
large capacities, the optimal number of sampled accumulators grows sub-linearly,
closely following a power law as a function of capacity for a wide variety of priors.
We find that allocating equal times to the sampled accumulators is better than using
uneven time allocations. Our work highlights that multi-alternative decisions are
endowed with breadth-depth tradeoffs, demonstrates how their optimal solutions
depend on the amount of limited resources and the variability of the environment,
and shows that narrowing down to a handful of options is always optimal for small
capacities.
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3.1 Introduction
The problem of allocating finite resources to determine the best of several options
is common in decision making, from deciding which vaccine candidates to fund for
further research to choosing a movie for Saturday night. In these cases, planning,
and thus resource allocation, needs to be made in advance, well before feedback
about the success of the choice is observed. Consequently, two important questions
arise: How many options should we examine? And, for how long? When resources
are limited, such as number of participants that can be tested with vaccines in a
short time, or weekend free time in the previous examples, a decision maker should
balance breadth, how many options to sample, and depth, how much to sample
each. This ubiquitous decision making problem under constrained resources is
what has been called the breadth-depth dilemma (Miller, 1981; Horowitz and Sahni,
1978; Moreno-Bote et al., 2020).

In the face of many alternatives, humans quickly narrow down the number of
considered options to around two to five (Payne, 1976; Olshavsky, 1979; Beach,
1993; Levin et al., 1998; Hauser and Wernerfelt, 1990), and, when presented with
more than six options, experienced overload produces suboptimal choices in certain
conditions (Iyengar and Lepper, 2000; Scheibehenne et al., 2010). Models describe
this behavior by assuming that considering more options incurs search or mental
costs (Hauser and Wernerfelt, 1990; Mehta et al., 2003; Stigler, 1961), but why
people consider small sets in a wide range of environments is still a matter of debate.
While this could be explained by strict small capacity limits in attention or working
memory (Miller, 1956; Cowan et al., 2005), the nature of this small capacity would
still need to be addressed (Ma et al., 2014). Another possibility is that capacity is
not necessarily small, but rather that sampling few options and ignoring the vast
majority, in either an automatic or in a conscious manner, is actually an optimal
policy that favors depth over breadth (Moreno-Bote et al., 2020). This possibility
is supported by the fact that neuronal resources devoted to decision making are not
precisely low, as dozens of brain areas and several billions of neurons are involved
in even simple decision making tasks (Rushworth et al., 2011; Siegel et al., 2015;
Vickery et al., 2011; Yoo and Hayden, 2018). Thus, processing bottlenecks could
be reflections of close-to-optimal policies to breadth-depth dilemmas.

Bounded rationality accounts (Simon, 1972; Russell and Wefald, 1991; Ger-
shman et al., 2015; Griffiths et al., 2015) surmise that many features of cognition
arise from the finite limits of the nervous system. This must also be the case for
the nature of the policies chosen by people in decision making, but oftentimes
the constraints imposed by the limited resources are not made explicit. Indeed,
choices stemming from sequential sampling between two or three options have
been typically modelled as optimal stopping problems (Ratcliff and Murdock,
1976; Gold and Shadlen, 2007; Krajbich and Rangel, 2011; Drugowitsch et al.,
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2012; Tajima et al., 2019; Jang et al., 2021; Callaway et al., 2021; Vul et al., 2014;
Sepulveda et al., 2020), where agents should optimally balance the prospect of
learning the value of the options with the costs of sampling them, but they do so
without computational or capacity constraints. In these works, the objective is to
maximize accumulated reward, typically by introducing a sampling cost. There-
fore, by fixating largely on the sequential nature of the tasks, these studies focus
only on a particular efficiency–performance tradeoff known as the speed–accuracy
tradeoff (Del Giudice and Crespi, 2018) In many complex decisions, however,
there are several other functional tradeoffs that involve other properties of the
agent–environment loop, such as limited sampling resources, limited interactions
with the environment and delayed feedback (Moreno-Bote et al., 2020). The effect
of these resource limitations on decision making might not be important when there
are only two or three available options, but it might be critical when going beyond
those low numbers. In that case, the allocation of resources might be governed by
two-stage processes (Hauser and Wernerfelt, 1990; Mehta et al., 2003; Shocker
et al., 1991; Roberts and Lattin, 1991), instead of purely sequential processes,
where the first decision is about the subset of options that will be considered for
further processing.

Here we study whether narrowing attention to a few options results from
optimally allocating finite resources in multi-alternative choices. To this end, we
consider an infinitely divisible sampling resource (e.g. time or precision), such
that there are no bounds in the number of alternatives that can be considered.
In our model, an agent can first allocate finite sampling time over an arbitrarily
large number of options, modelled as accumulators of noisy evidence, with the
only restriction that the total sampling time is fixed. This is in stark contrast
with previous work on the breadth–depth tradeoff, where the sampling process
was simplified, and where the sampling outcomes and resources were discrete,
thus obtaining qualitatively different predictions (Moreno-Bote et al., 2020). This
accumulation of evidence runs in parallel and independently for each accumulator,
and only their final states are observed. Based on the observations, the agent
picks up the one with the highest expected rate of evidence accumulation, which
defines the utility of the choice. The goal of the agent is to optimize the allocation
of sampling time such that expected utility is maximized. We identify a critical
variable in the problem, that we simply call capacity, that increases with the actual
size of the resources of the agent as well as with the discriminability between
options, and we find that this capacity separates two distinct regimes of optimal
allocation. When sampling capacity is small, the optimal policy is to sample
exactly five options, regardless of the prior. In contrast, when capacity is large,
the number of options to sample grows with capacity in a sub-linear fashion that
depends on the prior. We find a duality between allocated time and allocated
precision to the options, such that all our results generalize to allocating precision
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while keeping fixed sampling time. Finally, we show that even allocations are
optimal, and thus better than more complex asymmetric time allocations over the
considered options. Overall, our results suggest that decisional bottlenecks can be
a byproduct of optimal policies in the face of uncertainty.

3.2 Multi-accumulator model
We consider an environment that generates many options (N ≫ 1) from which
to choose (Fig. 1, top), each one characterized by a ‘drift’ parameter µi (i =
1, . . . , N ), unknown to the agent. All drifts µi are drawn identically and indepen-
dently from a prior probability distribution pθ(µ), known to the agent and assumed
to have finite mean and variance. In order to choose between the options, the agent
gathers information by sampling them. The critical aspect of our model is that
sampling times ti ≥ 0 (Fig. 1, bottom) need to be allocated before the actual
sampling occurs, and with the constraint that the total sampling time T is limited,

N∑
i=1

ti = T. (3.1)

In practice, the agent needs to decide on the number of options M ≤ N to be
sampled and their corresponding sampling times ti > 0 for i ≤ M , while the
remaining options i > M are ignored by giving them no sampling time, ti = 0
(Figure 1, bottom). The ordering of the options is irrelevant, as they are initially
indistinguishable, and thus we take the first M as those that are sampled. We
assume that non-sampled options cannot be chosen, although a ‘default’ option can
be added to our framework with no change of our main results.

Once total sampling time is allocated, noisy evidence about the drift µi of each
of the sampled options i ≤M is integrated by independent accumulators (Fig. 1,
middle) according to the drift-diffusion process

dxi(t)

dt
= µi + ηi (t) , (3.2)

where xi(t) is the accumulated evidence up to time t with initial condition xi(0) =
0, and ηi (t) is a Gaussian white noise with zero mean and fixed variance σ2,
independent and identical for all the accumulators.

The result of the accumulation is the total evidence xi at time ti, both of
which are observed by the agent and constitute the sufficient statistics for the
unknown drift µi (Moreno-Bote, 2010). With these observations, the agent builds
the posterior distribution of the drifts by using Bayes rule as

p(µi|xi, ti, σ, θ) =
L(µi|xi, ti, σ)pθ(µ)

p(xi|ti, σ, θ)
, (3.3)

54



“output” — 2023/4/19 — 21:05 — page 55 — #69

Figure 3.1: A multi-accumulator model with finite sampling resources. The environment
produces a large number of options, each characterized by a drift µi, unknown to the agent
and drawn from a prior distribution characterized by hyperparameters θ, which is known
to the agent. The agent has a finite resource T , that they divide and allocate across options,∑

i ti = T , in order to sample them. In practice, the agent allocates finite sampling time to
a finite number M of accumulators to infer their unknown drifts. After allocation, evidence
(red lines) is optimally integrated by the accumulators. The agent observes the integrated
evidence xi at the end of the accumulation, after time ti, infers the drifts for each of the
accumulators and chooses the one that is deemed to have the highest drift (in this case,
µM ; green box).

where L(µi|xi, ti, σ) = N (xi|µiti, σ
2ti) is the likelihood function for the drift,

pθ(µ) is the prior distribution and p(xi|ti, σ, θ) =
∫
dµN (xi|µti, σ2ti)pθ(µ) is the

marginal distribution of the evidence, which serves as a normalization constant.

After building these posterior distributions, the agent simply chooses the option
with the highest expected drift, (Fig. 1, middle, green box), which defines utility,
U (M,x, t, σ, θ) = maxi≤M µ̂i (xi, ti, σ, θ), where x = (x1, ..., xM) is the vector
of observations for the M accumulators with allocated times t = (t1, ..., tM). To
avoid notation clutter, from now on we will stop writing the dependence on σ and
θ of the various functions and leave it implicit.

The previous expression is the utility of the choice of accumulator, which
depends on the observations and allocation times. However, before time is allocated,
the observations x themselves will be unknown to the agent. Therefore, the
expected utility of a given allocation t is given by taking the expectation of the

55



“output” — 2023/4/19 — 21:05 — page 56 — #70

above utility over all possible observations as

Û(M, t) ≡ E
[
max
i≤M

µ̂i|t
]
=

∫
dx1 ... dxM p(x1, ..., xM |t)max

i
µ̂i (xi, ti) , (3.4)

where, using the independence of the accumulators, p(x1, ..., xM |t) =
∏

k≤M p(xk|tk)
is the product of the marginal distribution of the evidences.

Optimally inferring the drifts from observations is readily accessible through
Bayesian inference as shown above. Thus, the main, and harder, objective of
the agent is to optimize the allocation policy, i.e. to select both the number of
sampled accumulators M ≤ N and the time ti allocated to each, in order to
maximize expected reward, while satisfying the total sampling time constraint in
Eq. (3.1). This is accomplished by optimizing the utility with respect to M and
t = (t1, ..., tM) as

(M∗, t∗) = argmax
M, t

Û(M, t). (3.5)

3.3 Capacity and time–precision duality
While time can be understood as the resource that the agent allocates, we found a
dimensionless scale that expresses their actual sampling capacity, i.e. their ability
to sample and differentiate between drifts, which we call capacity C (Fig. 3.2). As
the agent integrates noisy evidence through Eq. (3.2), the likelihood of the drift µi

for accumulator i is proportional to a Gaussian (Fig. 3.2a, orange curve) with mean
xi/ti and variance σ2/ti, L(µi|xi, ti, σ) ∝ N (µi|xi

ti

σ2

ti
) (Moreno-Bote, 2010). Its

variance σ2/ti shows how the sampling time and the variance of the sampling noise
are related when inferring the drift µi: the likelihood gets broader with increasing σ
or decreasing time ti, reflecting that the precision of the observations is decreased
by having more noise or less time, respectively. In fact, the sampling capacity
of the agent should capture this duality. Thus, having a fixed capacity could be
interpreted as having a fixed noise variance σ2 for all accumulators and allocating
time T between them (Fig. 3.2b, left) or as having a fixed sampling time T for
each of the accumulators and allocating precision 1/σ2 between them (Fig. 3.2b,
right).

Moreover, the posterior in Eq. (3.3) depends on the prior as well (Fig. 3.2a,
cyan curve). For fixed evidence, the broader the prior is, the easier it is to differenti-
ate between sampled drifts, since the expected squared distance between two drifts
drawn from the same distribution is twice its variance Var[pθ(µ)] (see Appendix
3.6.1). Therefore, we define the capacity allocated to option i as the ratio between
the precision of the observation and the precision of the prior,

ci =
Var[pθ(µ)]

Var[N (µi|xi

ti
, σ

2

ti
)]

=
σ2
0

σ2
ti. (3.6)
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Figure 3.2: Time/precision duality and the notion of capacity. (a) The likelihood of the drift
µ (in orange) given the evidence has variance σ2/ti and the prior distribution of the drifts
(in cyan) has variance σ2

0 . These quantities determine capacity as in Eq. (3.6). (b) Time
and sampling noise are intricately related (see text). In this example, allocating time T/3
to each accumulator under fixed precision 1/σ2 (left) is equivalent to allocating precision
1/3σ2 to each accumulator under fixed sampling time T (right). (c) Small capacity means
that the variance of the observation is much larger than the variance of the prior, indicating
that it is difficult to confidently identify the best drift from the observations. (d) In the
large capacity limit, it is easier to differentiate the good drifts from the poor ones.

Adding the individual capacities results in the total sampling capacity of the agent,

C =
∑
i

ci =
σ2
0

σ2
T. (3.7)

For the rest of this article, we stick to the interpretation of allocating capacity
as dividing the total time T while fixing the accumulation noise σ, such that the
variable we can control is the sampling time allocated to each option, keeping in
mind that all the results presented below can be readily reinterpreted as dividing
precision while giving to all options the same sampling time.
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3.4 Results
Optimally dividing sampling capacity C into options is an a priori hard problem
due to its high dimensionality. However, we show in subsection 3.4.2 that the
optimal allocation lies within the family of even allocations, where M options
receive equal sampling time ti = t ≡ T/M , while the remaining others are given
no time. Thus, finding the optimal policy reduces to finding the optimal number
M of accumulators to sample.

3.4.1 Even sampling
In this subsection, we exploit the structure of even sampling. First, the posterior
mean of the drift µ̂i(xi, t), computed from Eq. (3.3), is a monotonously increasing
function of the evidence xi for any prior (see proof in Sec. 3.6.2 in Appendix).
Therefore, the option that maximizes the posterior mean µ̂i is the one that has the
highest evidence xi(t), as all M sampled options are given the same sampling
time t. This allows us to work by maximizing evidence instead of maximizing
the posterior means of the drifts in Eq. (3.4). Secondly, by changing variables
y ≡ maxi xi, and using the probability distribution of the maximum y, denoted
pmax(y|t, σ, θ), the expected utility in Eq. (3.4) can be recast in the one-dimensional
integral

Û(M, t) =

∫
dy pmax(y|t)µ̂(y, t).

Finally, given that the M options are sampled evenly, the probability distribution
of the maximum can be simplified by using the cumulative distribution of the
evidence x for an arbitrary accumulator, Fx(y|t) =

∫ y

−∞ dx′ p(x′|t), where p(x|t)
is the marginal of the evidence x of the accumulator, as

pmax(y|t) =
d

dy
[Fx(y|t)]M . (3.8)

With all the above, the expected utility in Eq. (3.4) can thus be written as

Û(M, t) = M

∫
dy [Fx(y|t)]M−1 p(y|t) µ̂(y, t). (3.9)

When the prior distribution is a Gaussian with mean µ0 and variance σ2
0 , it is

possible to identify the total capacity C =
σ2
0

σ2T explicitly and Eq. (3.9) simplifies
to

Û(M,C) = µ0 +
Mσ0√
1 + M

C

∫ ∞

−∞
dy [Φ(y)]M−1N (y|0, 1) y, (3.10)
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Figure 3.3: Expected utility as a function of sampled accumulators exhibits the breadth-
depth tradeoff. Results for the Gaussian prior case (µ0 = 0.5, σ2

0 = 1), for various different
capacities. Blue points denote the maxima. Note log horizontal scale (points, Monte Carlo
simulations; lines, theoretical predictions, Eq. 3.10). (a) For large capacities, the optimal
number of sampled accumulators changes with the capacity. (b) For small capacities, the
optimum is independent of capacity and equal to five.

where Φ(y) = 1
2

[
1 + erf

(
y√
2

)]
is the cumulative distribution function of a normal

distribution.

Plotting the utility in Eq. (3.10) as a function of the number of sampled
accumulators M reveals a clear breadth-depth tradeoff (Fig. 3.3a). At the depth
limit, M = 1, only one accumulator is sampled and it is given all sampling time
T . In this case, the expected utility will simply be the expected value of the prior,
µ0 = 0.5 (Fig. 3.3a, left point), since there is no choice to be made between
accumulators. At the breadth extreme, M/C →∞, the evidence gathered for each
accumulator is very noisy because each has been allocated a very short sampling
time, and thus choosing any will amount to an expected utility again equal to the
prior mean (rightmost points). Therefore, for all capacities, there is an intermediate
optimal value for the number of accumulators to sample, M∗.

Sharp transition between the small and large capacity regimes

Our main result is that the optimal allocation policies are qualitatively different
at small and large capacity, and that there is a abrupt transition between the two
regimes. We provide useful asymptotic analytical expressions for the utility in Eq.
(3.9) and the optimal M∗ in both limits and describe their characteristic features.

The limit C ≪ 1 corresponds to the case where the uncertainty in the obser-
vation σ2/T is much larger than the variance of the prior σ2

0 , i.e. the Gaussian
likelihood is much wider than the prior (Fig. 3.2c). In this limit, we find that the
utility in Eq. (3.9) can be expanded a series in powers of

√
C, which at first order
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is given by (see Appendix, Sec. 3.6.3)

Û(M,C) ≈ µ0 + σ0

√
C

2π

[
√
M

∫ ∞

−∞
dz z exp

(
−z2

2

)(
1

2
+

1

2
erf

(
z√
2

))M−1
]

(3.11)

Remarkably, this expression holds for any prior distribution as long as capacity
is small enough. Let us now note that the only dependence on M appears in the
quantity in square brackets, so we isolate it to look for the optimal M . Since
capacity does not play a role here, we see that M∗ will be constant as a function
of small capacity. Furthermore, using Extreme Value Theory (see Sec. 3.6.5 in
Appendix), we find that this quantity decreases with M for large M . This means
that sampling many accumulators will not be optimal, following the intuition that
there is no point in sampling many options when having scarce resources. On the
other hand, and as noted before, it is easy to see that expected utility attains its
lowest value when M = 1, since in this case there is no choice to be made. Thus,
the optimal M is attained at some intermediate value. Given these observations,
the optimum can be thus found numerically by varying M, and it happens when

M∗(C ≪ 1) = 5,

which can be checked visually for various values of small capacity in Fig. 3.3b,
which also validates the approximation in Eq. (3.11). It is important to highlight
that when capacity is strictly zero, expected utility does not depend on M , and
is equal to the prior mean, since choosing options to sample has no effect when
there is no time to be allocated. However, as long as the small capacity is finite,
an optimal number of options to sample equal to five emerges, regardless of the
prior and the value of capacity. We have confirmed this strong prediction by direct
numerical integration of Eq. (3.9) using different prior distributions, including
Gaussian, uniform and bimodal (Fig. 3.4), which also holds even when a non-
sampled, default, option can be chosen (diamond markers).

The opposite limit C ≫ 1 corresponds to the case where the precision of the
observation is much greater than the one of the prior (Fig. 3.2d). Intuitively, this
means that the quality of the observations is good enough to likely differentiate the
drifts between two randomly chosen accumulators, and thus we expect the optimal
number of accumulators to increase with increasing capacity, giving a qualitatively
different behaviour than at small capacity. Hence, we make this assumption to
inspect the optimality of Eq. (3.9) for this large capacity limit, which we find
to be consistent with the numerical results shown below. In particular, when the
prior distribution is Gaussian, the expected utility in Eq. (3.10) has the following
asymptotic behavior,
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Figure 3.4: The optimal number of sampled accumulators undergoes qualita-
tively different behaviors at small and large capacity values. Results come from
searching the maximum expected utility via Monte Carlo simulations (points)
and numerical integration (lines) for a Gaussian (blue line; Eq. 3.10), uniform
(pink; Eq. 3.20) and a bimodal (green; Eq. 3.21) priors (illustrated in inset). We
used µ0 = 0.5 for all priors and σ2

0 = 1/12 for the Gaussian prior to match the
uniform distribution. For the bimodal prior, the variance of each mode equals σ2

0 .
Dashed red line corresponds to the asymptotic limit in the Gaussian prior case,
Eq. (3.13). Dashed gray line (almost overlaid by the pink line) is the best power
law fit for the uniform prior case (M∗ ∝ Ca, a = 0.33). Diamonds (overlaying
most of points) indicate simulations with a ‘default’ option.

Û(M ≫ 1, C)→ µ0 + σ0
bM√
1 + M

C

, (3.12)

where bM = (2 log(M)− log(log(M))− log(4π))1/2 (see Sec. 3.6.5 in Ap-
pendix). By relaxing M to be continuous, we can maximize expected utility,
and we find that the optimal number of sampled options for large capacity satisfies,
up to leading order, the implicit equation M∗ log(M∗) = C. After inverting it, the
optimal number of sampled options is

M∗(C ≫ 1) =
C

W (C)
, (3.13)

where W (C) is the Lambert function. This asymptotic limit provides a very
good approximation to the optimal M∗ at large C obtained from direct numerical

61



“output” — 2023/4/19 — 21:05 — page 62 — #76

integration of Eq. (3.10) (Fig. 3.4; red dashed line, theory; blue points, simulations).
For prior distributions other than the Gaussian, we rely on numerical integration
of Eq. (3.9) (see Secs. 3.6.6 and 3.6.7 in Appendix for analytical expressions).
For a uniform prior, the optimal number of sampled options increases as a power
law with an exponent close to 1/3 (Fig. 3.4, pink), while for a bimodal prior the
optimal number increases in a similar fashion to the Gaussian prior case (green).
While differences of asymptotic limits are due to the presence of bounded or
unbounded drifts in the priors, in all cases the increase is sub-linear, indicating
that increasingly longer times are allocated to each of the sampled accumulators as
capacity increases.

The above results show that there are two distinct regimes, one at small and
another at large capacities, characterized by qualitatively different optimal alloca-
tions: while at small capacity the optimal number of sampled accumulators should
be five regardless of the prior, at large capacity the optimal number of sampled
accumulators grows sublinearly regardless of the tested prior. Further, we observe
that there is an abrupt transition between the two regimes as capacity grows, with a
bump being observed at intermediate capacity values.

3.4.2 Even allocation is optimal

Above we have assumed that we could find the optimal time allocation within
the subset of even allocations, such that, given finite total time T , an agent just
needs to determine how many options will be sampled and split equal time to all
of them. Conveniently, this set is discrete and thus amenable to effective search
of the optimum. However, in general, the set of allocation policies is the infinite-
dimensional simplex

∑
i ti = T , ti ≥ 0 for all i, as a priori the agent could unevenly

split time to options in any arbitrary way. Despite its infinite-dimensionality, we
have seen in the case of even sampling that it is optimal to ignore (infinitely) many
options, such that ti > 0 only for i ∈ {1, ...,M}, with finite M , to which we will
refer as having M active dimensions.

To address the most general case, using the above intuitions we first gener-
alize the expected utility, Eq. (3.9), to the case when allocated time is unevenly
distributed among M accumulators, as

Û(M, t) =

∫ ∞

−∞
dy

d

dy

[
M∏
i=1

Fx(y|ti)

]
µ̂(y, ti), (3.14)

where Fx(y|ti) is the cumulative distribution function of the posterior when using
ti sampling time. Our goal is then, for every M , to find the allocation t that
maximizes Eq. (3.14) under the capacity equality constraint and the inequalities
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ti ≥ 0 for all i, and then select the optimal M , the one that achieves the highest
utility.

In this more general setup, an even allocation corresponds to the symmetrical
point in M active dimensions given by teM , where teM,i = T/M for i = 1, ...,M
(superscript reflects ‘even’ allocation). As the expected utility in Eq. (3.14) is
symmetric under any permutation tj ↔ tk for any j and k, all its partial derivatives
have to be equal at teM . Therefore, every even allocation for each M corresponds to
a critical point of the constrained optimization problem (see Appendix, Sec. 3.6.8).

We still need to characterize these critical points in order to show that the global
maximum is indeed an even allocation. We first remember that the optimal number
of active dimensions M needs to be found, and thus it is useful to see how expected
utility varies as a function of M . To do this, we note that any M -dimensional
simplex is in fact the border of an (M + 1)-dimensional simplex. For example,
for M = 2, the constraints describe a line segment, or 1-simplex, where we have
the symmetric critical point te2 = (T/2, T/2) (Fig. 3.5b, black circle). We then
notice that the line t1 + t2 = T is one of the 3 edges of the triangle, or 2-simplex
(Fig. 3.5c: pink lines are the edges of triangle), where in fact we have another
symmetric critical point in its interior (black triangle). With this, we can ‘visualize’
the infinite-dimensional nature of this problem, since all critical points of the utility
lie at the edges of a higher dimensional simplex.

To asses the landscape of expected utility in high-dimensional simplices, we
can evaluate it at all symmetric critical points teM and along directions that go
orthogonally between them (Fig. 3.5c, orange arrows). Thus, we devised a one-
dimensional path that allows to continuously connect all symmetrical critical
points, and applied it to the small capacity limit C ≪ 1. As we move from the
1-simplex to higher dimensional simplices (as in Fig. 3.5c), we find that first utility
increases, reaching a maximum at the even allocation in M = 5 dimensions, and
then decreases (Fig. 3.5d). Therefore, critical points te2, te3 and te4 are ‘saddle’-like
points, as they are maxima in the interior of their corresponding simplex, and
minima as one moves to the interior of the higher dimensional simplex.

Although the above analysis suggests that the optimum lies at an even allocation
point, it is still unclear whether there are other critical points that are asymmetrical
and have a larger utility. To argue that the presence of non-symmetrical local
optima is unlikely, we used a stochastic gradient projection method (Fletcher,
2013) that maximizes expected utility subject to the constraints, and applied it to
the Gaussian prior case (see Sec. 3.6.8 in Appendix for details). Indeed, we find
for various capacities that, regardless of the initial condition, i.e. random initial
allocations, a maximum utility is attained when time is evenly divided (Fig. 3.5e),
and the global maxima coincide with the ones found in the previous sections.
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Figure 3.5: Even allocations correspond to critical points of utility lying at the center
of M -simplices. (a) In one dimension, there is only one point that complies with the
constraint. (b) For M = 2 dimensions, constraints define a line segment or 1-simplex. The
circle depicts the symmetric critical point te2. (c) For M = 3, constraints form a triangle or
2-simplex. The black triangle is the symmetric critical point te3. The colors at the extremes
reflect the minimum and maximum utility reached in this simplex, which was computed
with Monte Carlo simulations of Eq. (3.4) for the Gaussian prior with T = 0.1, σ = 1,
σ0 = 1, µ0 = 0.5. (d) Expected utility computed along directions that go orthogonally
from teM to teM+1 (as illustrated with orange arrows in panel c, same parameters). The red
dot shows the maximum occurring at te5. (e) Using the stochastic projected gradient ascent
detailed in Sec. 3.6.8, we initialized the algorithm at random points (ten shown here) in a
high-dimensional simplex and measured the coefficient of variation (CV) of the allocation
vector at every step of the algorithm until convergence, for various values of capacity. Zero
CV implies even allocation.
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3.5 Discussion
We have studied a model of multi-alternative decision making where an agent can
allocate finite sampling resources to options and choose the best one amongst them.
We found that the capacity of the agent depends on both the amount of sampling
resources, i.e. time or precision, as well as on the discriminability of the options
in the environment. As a function of capacity, optimal policies undergo an abrupt
transition: at small capacity, allocating time to a handful of options is optimal; at
large capacity, the number of options grows sub-linearly, well below the actual
sampling capacity of the agent. Our results show that decision bottlenecks, such
as option-narrowing, can arise from optimal policies in the face of uncertainty,
and provide so far untested predictions on choice behaviors in multi-alternative
decision making as a function of capacity.

Seemingly strict limits pervade cognition, from the so-called attentional bottle-
neck (Deutsch and Deutsch, 1963; Treisman, 1969; Yantis and Johnston, 1990),
over working memory (Miller, 1956; Cowan et al., 2005; Luck and Vogel, 2013;
Ma et al., 2014; Brady et al., 2011), to executive control (Shenhav et al., 2017;
Norman and Shallice, 1986; Sleezer et al., 2016). These limits might result from
using scarce neuronal resources or from using them inefficiently. However, a likely
alternative is that bottlenecks reflect strategies that make optimal use of limited but
large resources. Indeed, past work has recognized that some apparent limits, most
notably dual tasking bottlenecks (Fischer and Plessow, 2015; Meyer and Kieras,
1997), could be the result of optimal allocation of finite resources to avoid overlap
and interference between the different representations needed to solve the two tasks
(Meyer and Kieras, 1997; Feng et al., 2014; Zylberberg et al., 2011). Further, it has
been recognized that the narrow focus of attention could be at the heart of solution
to the the binding problem by integrating separate features into a coherent object
(Treisman, 1998), and thus its narrowness might reflect a function more than a
limitation. Our work follows this line of argument and provides for the first time
a quantitative account for why it is optimal for an agent to consider a handful of
options in the face of uncertainty, well above two but well below 10. In addition,
our results shed light on why people might ignore hundreds of accessible options
and focus resources to a very small number of options (Hauser and Wernerfelt,
1990; Iyengar and Lepper, 2000; Scheibehenne et al., 2010). Thus, some of the
seemingly strict limits in decision making can be the result of optimal policies that
favour depth versus breadth processing of the options.

It has been long recognized that people often consider a small set of options
while ignoring many others (Stigler, 1961; Hauser and Wernerfelt, 1990; Mehta
et al., 2003; Payne, 1976). In the ‘consumer’ literature this is explained by argu-
ing that small consideration sets are favored because they optimally balance the
probability of finding a good option in the set with the search and mental costs
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incurred in adding new options to that set. These models thus assume that resources
are not limited, but are costly. In contrast, the assumptions in our work do not
explicitly tune the cost of sampling, but rather an implicit cost arises naturally
from the strict capacity constraint, which depends intrinsically on the agent as
well as extrinsically on the environment. A more fundamental distinction is that
previous work did not focus on allocating resources intensively into the options,
such that the only decision was whether to include an option into the set or not,
without considering the amount of resources allocated to it. This distinction makes
that problem drastically different than the tradeoffs of the breadth-depth dilemma
considered here. This can explain why transitions of optimal policies as a function
of agent’s parameters have not been reported before.

Most current theories of perceptual and value-based decision making are based
on accumulation of evidence that favors certain hypotheses over others (Gold
and Shadlen, 2007; Drugowitsch et al., 2012; Moreno-Bote, 2010; Ratcliff and
Smith, 2004). When combined with sampling costs and rewards, a normative
theory emerges where it is optimal to only accumulate evidence up to a bound
(Gold and Shadlen, 2007; Drugowitsch et al., 2012). By letting the information
between the competing options be processed parallelly, a tradeoff between speed
and accuracy of the choice emerges, and it is then possible to derive optimal policies
under various further assumptions (Vul et al., 2014; Tajima et al., 2019; Callaway
et al., 2021; Jang et al., 2021). For instance, the work of Vul and colleagues
assumes that only one option is correct, that is, that there are only two types of
reward. Combined with an opportunity cost, taking zero to one sample in this
setting becomes optimal under large parameters regions of the cost of time (Vul
et al., 2014). However, multi-alternative decision making requires estimating the
subjective value of offers, and none of them is correct in any absolute sense, which
can favor not single-sample, deep strategies (Moreno-Bote et al., 2020). The work
of Jang and colleagues aims to optimally allocate attentional resources by solving
numerically the Bellman equation in binary choice (Jang et al., 2021), but extending
this framework to (many) multi-alternative decisions is intractable. While the speed-
accuracy tradeoff is a ubiquitous phenomenon in sequential decisions, there are
certainly other features of decision making that need to be studied in isolation to
advance our understanding of the various challenges that arise in multi-alternative
decision making.

In our work, we have implemented the prevalent feature of evidence accumula-
tion, but we have highlighted other characteristics of decision making, such as finite
sampling resources, delayed feedback and limited interaction with the environment,
that are critical in many real-world examples (see Introduction). These assumptions
differentiate our results with those of previous work. Most importantly, we have
not considered a sequential process where the evidence gathered during the accu-
mulation is observable and thus it cannot be used to stop the accumulation process.
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This is important case when accumulation of evidence happens in a decentralized
manner by, e.g., different groups of neurons, and only the final result of the accu-
mulation is conveyed to another set of neurons where the comparison and choice
takes place. Indeed, parallel sampling of information is a ubiquitous ingredient
in theories of decision making (Busemeyer and Townsend, 1993; Glöckner and
Betsch, 2008). In this work, limited capacity in parallel sampling is understood
as a limitation on available sampling precision, thus allowing for the allocation
of attentional resources under parallel evidence accumulation with time pressure
(see Figure 2). These ingredients force the decision maker, in a deliberate or auto-
matic way, to allocate resources into the options in advance in a strategic fashion,
prompting the need to trade sampling breadth over depth.

Although previous work has characterized optimal breadth-depth tradeoffs in
multi-alternative choices like the ones studied here, it has been assumed that agents
have a finite ‘discrete’ capacity (Moreno-Bote et al., 2020). Our assumption of
a continuous resource (e.g. time or precision) that can be infinitely divided has
allowed us to uncover qualitatively novel optimal policies at small capacity. We
have therefore been able to derive optimal policies that trade off breadth with
depth search in (many) multi-alternative settings where using traditional sequential
decision frameworks would be intractable. Integrating resource allocation with
sequential decision making into a single theory of dynamic allocation will be most
relevant to understand human decision making, but its study is deferred to the near
future. In any event, any agent with finite capacity cannot avoid the problem of
first deciding how many options to allocate capacity to, and thus breadth-depth
tradeoffs as described above will be generally at play.

Bounded rationality accounts (Simon, 1972; Russell and Wefald, 1991; Ger-
shman et al., 2015; Griffiths et al., 2015) propose that cognition results from the
finite limits of the nervous system from where it emerges. Our work follows
this line of research in two ways. First, we propose that agents indeed have a
finite sampling capacity that can be arbitrarily allocated to the available options.
However, an important assumption in our work is that while the intrinsic resources
of an agent might seem large, the interaction of the agent with the environment
might render their effective decision-making capacity small. Therefore, capacity
is not an absolute quantity that describes an agent, but a relative quantity that
contextualizes the agents and characterizes how well they are suited to solve a
given task in the world. An important contribution of our work is to show that
optimal policies depend on effective capacity in a highly non-linear way, such
that small-capacity agents would behave qualitatively different than large-capacity
agents (or even the behavior of the same agent operating in different environments
could be qualitatively different). This is clearly a prediction that can be tested
with humans where time or other resources are constrained and varied on a trial
by trial basis. Secondly, agents perform the allocation before feedback is received,
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which relates to a bounded-optimal agent that is optimized at ‘design’-time, which
eliminates the paradox of perfect rationality by not letting the agent optimize their
decisions at run-time (Russell and Subramanian, 1994), an argument that further
supports the validity and relevance of two-stage decisions.

Another important result of our work is that evenly dividing time to a small set
of options is optimal when they are initially indistinguishable. This optimal division
of resources coincides with the 1/N heuristic rule (Gigerenzer and Gaissmaier,
2011) or equality heuristic (Messick, 1993), which has proven to be implemented
in human decision making and highly efficient as a portfolio strategy (DeMiguel
et al., 2009). In our case, the fact that options are drawn from the same prior
(known to the agent) contributes to the optimality of the even allocation. Although
the optimal allocation of non-identically distributed options is not addressed here,
this heuristic can be efficient in such situations (Thorngate, 1980). It is important
to realize that the optimal low numbers of considered options have been found in
the case where their values are not known in advance and come from the same
distribution. If agents have strong preferences or have additional information about
the expected values of the options (e.g. by sampling them sequentially), then the
number of considered alternatives will be further reduced. Of course, if the agents
are allowed to sequentially sample options with which they are familiar, a non-even
allocation might emerge to be optimal (Callaway et al., 2021; Tajima et al., 2019;
Sepulveda et al., 2020). Nonetheless, for binary choice, reward is still maximized
at even allocations in sequential sampling when options have not been unevenly
sampled in the past (Fudenberg et al., 2018; Jang et al., 2021). On the other hand,
when the number of alternatives is much higher than two, people choose to ignore
many of the available options (Thomas et al., 2021), consistent with our findings.
Moreover, for fixed-duration tasks there is evidence that humans have a choice
set of around five in sequential decisions (Reutskaja et al., 2011), even if their
final allocation might be uneven. This shows once again that a low number of
considered options can hardly be taken as evidence of a decisional bottleneck and
is more in line with an optimal tradeoff between breadth and depth.

Finally, our results can have important implications for the optimal wiring of
neural networks in the brain (Rushworth et al., 2011; Siegel et al., 2015; Vickery
et al., 2011; Yoo and Hayden, 2018). First, as just few options should be considered
at the same time, it is expected that only those would be encoded in different, albeit
possibly overlapping, pools of neurons. Thus, although models consisting of two
or three pools that compete for dominance through mutual inhibition can be a
sensible idea for binary and ternary decision making (Gold and Shadlen, 2007;
Cisek and Kalaska, 2010; Roe et al., 2001; Usher and McClelland, 2001; Moreno-
Bote et al., 2007; Churchland et al., 2008; Wang, 2008), extrapolating this to
many more options (e.g., larger than 10) by splitting neurons into corresponding
pools of neurons would be hardly optimal. Our results are, in contrast, consistent
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with the opposite view that posits that a single pool of neurons is sufficient for
decision making (Hayden and Moreno-Bote, 2018). In this framework, a single
pool encodes just one of the available options, the one that is under the focus of
attention. Previously attended options produce a background activity against which
the current option is compared to, and other options fall outside the representation
of the neural network (Hayden and Moreno-Bote, 2018; Krajbich et al., 2010; Lim
et al., 2011; Redish, 2016; Rich and Wallis, 2016). Thus, comparison and selection
between options occurs through a temporal contrast, rather than through mutual
inhibition between simultaneously encoded options. This model can be readily
extrapolated to multiple many options, with the only dilemma of dividing time or
precision into few or many options (like in Fig. 1), thus addressing the associated
breadth-depth tradeoffs. The debate of the one-pool versus several-pools models
remains open (Hayden and Moreno-Bote, 2018; Ballesta and Padoa-Schioppa,
2019), but electrophysiology experiments with many options should be able to
arbitrate between the two hypotheses under the new computational constraints that
we have identified here.
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3.6 Appendix
Comments and mathematical proofs supporting claims in the main text.

3.6.1 Expected square distance between two random i.i.d. points
The expected square distance between two independently and identically distributed
random points x, y ∼ p(·) is, by the law of the unconscious statistician,

E[d2(x, y)] =
∫

(x− y)2p(x, y) dx dy

=

∫
x2p(x) dx+

∫
y2p(y) dy − 2

∫
x p(x) dx

∫
y p(y) dy

= 2E[x2]− 2E[x]2

= 2Var[x]

3.6.2 Posterior mean of drift is a monotonously increasing func-
tion of accumulated evidence

Here we prove that the posterior mean of the drift, which is a random variable
with probability distribution defined by Bayes’ rule, Eq. (3.3), is a monotonously
increasing function of evidence x. We have seen that the expected value of a drift µ
given the accumulated evidence x, for any option (and thus here dropping indices)
is given by

µ̂(x, t, σ, θ) =

∫
dµµN (x|µt, σ2t)pθ(µ)

p(x|t, σ, θ)
, (3.15)

where pθ(µ) is the prior probability of the drifts, with hyperparameters θ and
p(x|t, σ, θ) is the marginalized probability distribution of the evidence. To know
if µ̂(x, t, σ, θ) is an increasing function of x, we simply derive, and we expect the
derivative to be always positive,

dµ̂

dx
=

p(x|t, σ, θ)
∫
dµµ

(
−x−µt

σ2t

)
N (x|µt, σ2t)pθ(µ)

p(x|t, σ, θ)2

−
∫
dµµN (x|µt, σ2t)pθ(µ)

∫
dµ
(
−x−µt

σ2t

)
N (x|µt, σ2t)pθ(µ)

p(x|t, σ, θ)2
> 0

⇐⇒ 1

σ2

(
E
[
µ2|x, t, σ, θ

]
− E [µ|x, t, σ, θ]2

)
=

Var [p(µ|x, t, σ, θ)]
σ2

> 0,

where

E [µn|x, t, σ, θ] =
∫
dµµnN (x|µt, σ2t)pθ(µ)∫
dµN (x|µt, σ2t)pθ(µ)

.
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Since the variance is the expected value of a positive quantity, then we conclude
that the expected value of the drift is a monotonously increasing function of the
observed accumulated evidence x for any prior.

3.6.3 Expected value of the drift in the small capacity limit
Here we show that in the small capacity limit, the utility in Eq. (3.9) can be written
as in Eq. (3.11) for any regular prior distribution. Our strategy is to study the
limiting behaviors of the cumulative density function (described below in Sec.
3.6.4) and the posterior mean of the drift (detailed in this section) that appear in
Eq. (3.9) as C =

σ2
0

σ2T goes to zero.
From Bayes’s rule, Eq. (3.3), the posterior mean of the drift is given by

µ̂(x, t, σ, θ) =
1√

2πσ2t

∫
dµµ exp

(
− 1

2σ2t
(µt− x)2

)
pθ(µ|θ)

p(x|t, σ, θ)
. (3.16)

Let us focus on the numerator, which we will interpret as the expectation value
of µ exp

(
− 1

2σ2t
(µt− x)2

)
with respect to the prior. We assume the prior to be

such that this expectation is finite for all x and that all its moments are finite (e.g,
Gaussian and uniform distributions). We define z ≡ z(x) ≡ 1√

σ2t
(x − µ0t) and

µs ≡ 1√
σ2t

(µt− µ0t), and by adding and subtracting µ0t at the exponent, we can
write the numerator in the above equation as

Eθ

[
µ exp

(
− 1

2σ2t
(µt− x)2

)]
= Eθ

[
µ exp

(
− 1

2σ2t
(µt− µ0t+ µ0t− x)2

)]
= exp

(
−z2

2

)
Eθ

[
µ exp

(
zµs −

1

2
µ2
s

)]
= exp

(
−z2

2

){
Eθ

[
µ0 exp

(
zµs −

1

2
µ2
s

)]
+ Eθ

[√
σ2

t
µs exp

(
zµs −

1

2
µ2
s

)]}
.

Next, we note that the exponential in the expectations is the generating function
of the Hermite polynomials, and thus

exp

(
zµs −

1

2
µ2
s

)
=

∞∑
n=0

Hen(z)
µn
s

n!
.

By replacing the exponential with the infinite series in the above expectation, Eq.
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(3.16), we obtain

p(x|t, σ, θ)µ̂(x, t, σ, θ) =

=
exp
(
− z2

2

)
√
2πσ2t

{
Eθ

[
µ0

∞∑
n=0

Hen(z)
µn
s

n!

]
+ Eθ

[√
σ2

t
µs

∞∑
n=0

Hen(z)
µn
s

n!

]}

=
N (z|0, 1)√

σ2t

{
∞∑
n=0

1

n!
Eθ [µ

n
s ]µ0Hen(z) +

∞∑
n=0

1

n!
Eθ

[
µn+1
s

]√σ2

t
Hen(z)

}

=
N (z|0, 1)√

σ2t

{
∞∑
n=0

1

n!
Eθ

[
(µ− µ0)

n√
σ2/t

n

](
µ0Hen(z) +

√
σ2

t
nHen−1(z)

)}

=
N (z|0, 1)√

σ2t

{
∞∑
n=0

1

n!

√
C

M

n−1

Eθ

[
(µ− µ0)

n

σn
0

]

×

(√
C

M
µ0Hen(z) + σ0nHen−1(z)

)}
,

where we have used that all the moments of the prior are finite and the sum is
well defined. Note that to obtain the third line we have shifted the second index
n+ 1→ n and used that the term nHen−1(z) is zero for n = 0.

We now insert the above series into the expression of utility in Eq. (3.9) to
obtain

Û(t, σ, θ) =

∫
dx

d

dx

{
[Fx(x|t, σ, θ)]M

}
µ̂(x, t, σ, θ)

=

∫
dx M [Fx(x|t, σ, θ)]M−1 N (z|0, 1)√

σ2t

×

{
∞∑
n=0

1

n!

√
C

M

n−1

Eθ

[
(µ− µ0)

n

σn
0

](√
C

M
µ0Hen(z) + σ0nHen−1(z)

)}

=

∫
dz M [Fz(z|t, σ, θ)]M−1N (z|0, 1)

[
µ0 +

√
C

M
σ0z

]
+O(C),

where in the second line it is implicit that z depends on x, and in the last line we
have made a linear transformation of variables from x to z = z(x). We also note
that as the integral in the last line only involves polynomials in z that are weighted
by the standard normal (and by a cumulative, which is bounded to be in the range
[0, 1]), their integrals are finite, and thus we can truncate the series at the first leading
order, which is order

√
C. It remains to see whether the cumulative density function

Fz(z|t, σ, θ) contributes order
√
C or larger, and we show below in Sec. (3.6.4)

72



“output” — 2023/4/19 — 21:05 — page 73 — #87

that the former is actually true, such that Fz(z|t, σ, θ) = 1
2

[
1 + erf

(
z√
2

)]
+O(C).

With all this, we can approximate the utility up to order
√
C as

Û(C,M, µ0) = µ0+σ0

√
C
√
M

∫ ∞

−∞
dz

[
1

2

(
1 + erf

(
z√
2

))]M−1

N (z|0, 1) z+O(C),

(3.17)
which is identical to Eq. (3.11) in main manuscript.

3.6.4 Distribution of evidence at small capacity limit

Here, we find an approximation to the marginalized probability distribution of
the evidence at small capacity. From Bayes’ rule and the law of the unconscious
statistician,

p(x|t, σ, θ) =
∫

dµN (x|µt, σ2t)pθ(µ|θ) = Eθ

[
N (x|µt, σ2t)

]
.

To compute this expectation, we follow the same procedure as in Sec. 3.6.3. We
define z ≡ 1√

σ2t
(x−µ0t) and µs ≡ 1√

σ2t
(µt−µ0t) and add and subtract µ0t at the

exponent, to obtain

p(x|t, σ, θ) = Eθ

[
exp

(
− 1

2σ2t
(x− µt)2

)]
= Eθ

[
exp

(
− 1

2σ2t
(x− µ0t+ µ0t− µt)2

)]
= exp

(
−z2

2

)
Eθ

[
exp

(
zµs −

1

2
µ2
s

)]
.

Next, we again identify the exponential generating function of the Hermite polyno-
mials,

exp

(
zµs −

1

2
µ2
s

)
=

∞∑
n=0

Hen(z)
µn
s

n!
,
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and thus we obtain a series for the probability distribution of the evidence,

p(x|t, σ, θ) = 1√
2πσ2t

exp

(
−z2

2

)
Eθ

[
∞∑
n=0

Hen(z)
µn
s

n!

]

=
exp
(
− z2

2

)
√
2πσ2t

∞∑
n=0

1

n!
Eθ [µ

n
s ] Hen(z)

=
exp
(
− z2

2

)
√
2πσ2t

∞∑
n=0

1

n!
Eθ

[
(µ− µ0)

n√
σ2/t

n

]
Hen(z)

=
exp
(
− z2

2

)
√
2πσ2t

∞∑
n=0

1

n!

√
C

M

n

Eθ

[
(µ− µ0)

n

σn
0

]
Hen(z).

We see that the leading order the distribution of the evidence is a normal distribution,
while the order

√
C is zero. Therefore, its cumulative in the variable z = z(x)

is, exactly, up to order
√
C, Fz(z|t, σ, θ) = 1

2

[
1 + erf

(
z√
2

)]
+ O(C). This

expression has been used in Sec. (3.6.3).

3.6.5 Asymptotic limit of relevant integral

In this subsection we want to obtain the asymptotic limit, M →∞, of the integral

I(M) =

∫ ∞

−∞
dy y

d

dy
ΦM(y),

appearing in Eqs. (3.11) and (3.12), where Φ(y) is the normal cumulative distribu-
tion function,

Φ(y) =

(
1

2
+

1

2
erf

(
y√
2

))
.

Using Extreme Value Theory (De Haan and Ferreira, 2007), it can be shown that
this cumulative distribution function Φ(y) belongs to the Gumbel class of the
generalized extreme value distributions,

lim
M→∞

ΦM(aMy + bM) = G(y),

where G(y) = exp(− exp(−y)) and

bM = (2 log(M)− log(log(M))− log(4π))1/2 and aM = 1/bM .
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Using this result, then our integral develops quite easily,

I(M)→
∫ ∞

−∞
dy y

d

dy
G

(
y − bM
aM

)
=

∫ ∞

−∞
dy

(
y

bM
+ bM

)
d

dy
G(y)

=
1

bM

∫ ∞

−∞
dy y exp(−y) exp(− exp(−y)) + bM

∫ ∞

−∞
dy

d

dy
G(y)

I(M →∞) =
γ

bM
+ bM ,

where γ ≈ 0.577 is Euler’s constant.

3.6.6 Expected utility for uniform prior
For this choice of prior, drifts are all drawn independently and identically from a
uniform probability distribution between zero and one. That is,

p(µi) = Θ(µi)Θ(1− µi),

where Θ(x) is the Heaviside step function. We can substitute this prior into eq.
(3.3) to obtain the posterior probability distribution for the drifts,

p(µi|xi, σ, ti, θ) =


N

(
µi|

xi
ti
,σ

2

ti

)
∫ 1
0 N

(
µi|

xi
ti
,σ

2

ti

)
dµi

µi ∈ [0, 1]

0 otherwise.

This will produce an expectation value for each drift,

µ̂i(xi, ti, σ) ≡ E [µi|xi, ti, σ] =
xi

ti
+

σ√
2πti

exp
(
− x2

i

2σ2ti

)
− exp

(
− (xi−ti)

2

2σ2ti

)
1
2

[
erf

(
xi√
2σ2ti

)
− erf

(
xi−ti√
2σ2ti

)] ,
(3.18)

where the denominator is related to the probability distribution of the evidence xi,
which we can find by marginalizing over drifts,

p(xi|ti, σ) =
∫ 1

0

dµ
1√

2πσ2ti
exp

(
− 1

2σ2ti
(xi − µiti)

2

)
=

1

2ti

[
erf

(
xi√
2σ2ti

)
− erf

(
xi − ti√
2σ2ti

)]
. (3.19)
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We will use from now on the assumption of even time allocation, ti = t = T
M

for all i. The cumulative probability distribution for the evidence in Eq. (3.19) is,
integrating by parts,

F (x|t, σ) =
∫ x

−∞
p(x′|t, σ) dx′

=
1

2

(
1 + erf

(
x− t√
2σ2t

))
+

x

2t

(
erf

(
x√
2σ2t

)
− erf

(
x− t√
2σ2t

))
+

√
σ2

2πt

[
exp

(
− x2

2σ2t

)
− exp

(
−(x− t)2

2σ2t

)]
=

1

2

[
1 + erf

(
x− t√
2σ2t

)]
+ tp(x|t, σ)µ̂(x, t, σ),

where in the last equality we have rewritten the solution in a convenient form.
Hence, the product of the expected value with the probability density can be
rewritten in terms of the cumulative function, from the previous equation,

µ̂(x, t, σ)p(x|t, σ) = 1

t
F (x|t, σ)− 1

2t

[
1 + erf

(
x− t√
2σ2t

)]
,

and using eq. (3.9) we get the expression for the utility,

Û(M, t, σ) =
M

t

∫ ∞

−∞
dx [F (x|t, σ)]M−1

{
F (x|t, σ)− 1

2

[
1 + erf

(
x− t√
2σ2t

)]}
.

(3.20)

3.6.7 Expected utility for Gaussian bimodal prior
The expected utility for the bimodal Gaussian prior with modes µ1 and µ2, each with
a variance σ2

0 , is quite similar to the unimodal, Eq. (3.10), and follows the straight-
forward application of Eq. (3.9). The probability distribution of the evidence
marginalized over drifts is p(x|t, σ, θ) = 1

2
N (x|µ1t, σ

2t+σ2
0t

2)+ 1
2
N (x|µ2t, σ

2t+
σ2
0t

2). Therefore the cumulative is

F (x|t, σ, θ) = 1

2
Φ(x|µ1t, σ

2t+ σ2
0t

2) +
1

2
Φ(x|µ2t, σ

2t+ σ2
0t

2),

where Φ(x|µm, σ
2
m) is the normal cumulative distribution for one mode. However,

the expected value of the drift is a bit more involved, since the posterior distribution
over drifts takes a different form,

p(µ|x, t, σ, θ) = σt√
2πσ2tσ2

0p(x|t, σ, θ)

×
∑
i

1

2
N (µ|µ̂i, σ

2
t ) exp

(
− 1

2(σ2
0t

2 + σ2t)
(µit− x)2

)
,
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where 1/σ2
t = t/σ2 + 1/σ2

0 and

µ̂i =
σ2
t

σ2
0

µi +
σ2
t

σ2
x.

Consequently, the expected value will be

µ̂(x, t, σ, θ) =
1√

2π(σ2
0t

2 + σ2t)

1

p(x|t, σ, θ)
∑
i

µ̂i

2
exp

(
− 1

2(σ2
0t

2 + σ2t)
(µit− x)2

)
.

Then, expected utility is

Û(M, t, σ, θ) = M

∫ ∞

−∞
dxF (x|t, σ, θ)M−1

∑
i

µ̂i

2
N
(
x|µit, σ

2
0t

2 + σ2t
)
.

(3.21)
This expression is numerically integrated and used in Fig. 3.4.

3.6.8 Stochastic gradient ascent method for Gaussian prior
To maximize utility, Eq. (3.14) in main manuscript, under the time constraint, we
can make use of unconstrained optimization through Lagrangian multipliers. We
construct the Lagrangian given by

L(t, θ, λ) = Û(t, σ, θ) + λh(t) + µ · g(t), (3.22)

where h(t) =
∑M

i=1 ti−T is the equality constraint that defines the hyperplane and
0 ≤ gi(t) = ti is the inequality constraint forcing all times i to be non-negative and
thus defining the simplex. The quantities λ and µ are the Lagrangian multipliers.
In other words, maximizing utility, Eq. (3.14), subject to the initial constraints
can be done by optimizing the Lagrangian, Eq. (3.22), with respect to t, λ and µ
subject to Karush-Kuhn-Tucker conditions (Bishop, 2006)

gi(t) ≥ 0, for all i (3.23a)
µj ≥ 0, for all j (3.23b)

µ · g(t) = 0 (3.23c)

We notice that the first two conditions imply that the third can be rewritten as
µiti = 0 for all i. By optimizing the Lagrangian, Eq. (3.22), we obtain the
following system of equations

∇t Û(t∗, σ, θ) + λ∗1+ µ∗ = 0, (3.24)

where t∗, λ∗,µ∗ denote the critical points of the Lagrangian. We note that the
symmetrical point in M active dimensions, denoted by teM , where teM,i = T/M
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for i = 1, ...,M , is a critical point of the Lagrangian. This is because the partial
derivatives with respect to the utility have to be equal at teM , and since this point
lies in the interior of the (M −1)-simplex, the µe

i = 0 for i = 1, . . . ,M . Therefore
teM complies with Eq. (3.24) and is indeed a critical point.

Next, we detail the gradient ascent method used to obtain Fig. 3.5e. As
explained above, we want to optimize utility, Eq. (3.14), subject to a set of
equality, Eq. (3.1), and inequality constraints, ti ≥ 0, as described in section “Even
allocation is optimal" of the Results. As all our constraints are linear, we can make
use of the gradient projection method (Fletcher, 2013). In this case, we want to
obtain the gradient of utility in Eq. (3.10) and project it in the (M − 1)-simplex
such that the capacity constraint in Eq. (3.1) is satisfied. Due to the linear capacity
equality constraint, this projection is simply given by the linear operator

Π = IdM×M −
1

M
1M×M

where IdM×M is the M ×M identity matrix and 1M×M is an M ×M matrix full
of ones. Therefore, we can maximize utility by updating t(k) appropriately,

t(k+1) = t(k) + ηΠ
(
∇t Û(t, σ, θ)

)
, (3.25)

where η = 10−1 T is the default step size, k is the iteration number, and θ corre-
sponds to the parameters of the Gaussian prior. The utility for an arbitrary time
allocation t for the Gaussian prior case is, using Eq. (3.14),

Û(t, σ, θ) = µ0 + σ0

N∑
i=1

∫ ∞

−∞
dy y

exp
(
− y2

2σ2
i

)
√

2πσ2
i

∏
j ̸=i

{
1

2

[
1 + erf

(
y√
2σj

)]}
,

(3.26)

where σ2
i =

σ2
0ti

σ2
0ti+σ2 . We can therefore compute the derivative of the previous

equation with respect to all components ti and numerically integrate the expression
that results.

In addition to the linear capacity constraint, we have to enforce the inequality
constraints as well, i.e. ti ≥ 0, which we do by utilizing an active set of constraints.
To implement it, we start in a relatively high-dimensional (M − 1)-simplex, choos-
ing M to be 2M∗, where M∗ is the optimal number of accumulators to sample in
the even sampling case (which is estimated before through exploration, see main
text). If and whenever any of the components of tk+1 derived from Eq. (3.25) is
approaching a border (t(k+1)

i ≈ τ for some i and small τ ), the step size decreases
until the component effectively reaches zero. In such a case, this dimension is
added to the active constraints set (we inactivate the dimension), thus downgrading
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the simplex to a lower dimension. In this way, our algorithm only reduces the
initial dimension of the simplex and never extends it. To initially activate the
2M∗ dimensions, for any random initial condition t0, we make sure that all the
components are greater than our threshold t0,i > τ for all i = 1, ..., 2M∗.

Finally, in order to avoid potentially getting trapped in local maxima, we
add noise at every iteration as follows. At every step k of Eq. (3.25), and with
probability ϵ = 0.1, we push the t

(k)
i of a randomly chosen dimension i by a

magnitude δ = 10−3T and pull the t
(k)
j of another random dimension j in the

opposite direction with the same amount in order to stay in the appropriate simplex.
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Chapter 4

OPTIMALITY WITH INTRINSIC
MOTIVATION

The following chapter is based on the pre-print manuscript currently in https:
//arxiv.org/abs/2205.10316. See (Ramírez-Ruiz et al., 2022) for biblio-
graphic details. This version is currently under consideration. I declare to be the
main author of this work.

Abstract

Most theories of behavior posit that agents tend to maximize some form of reward or
utility. However, animals very often move with curiosity and seem to be motivated
in a reward-free manner. Here we abandon the idea of reward maximization, and
propose that the sole goal of intelligent behavior is maximizing occupancy of future
paths of actions and states, a principle that we call path occupancy maximization.
According to this view, rewards are the means to occupy path space, not the goal per
se; goal-directedness simply emerges as rational ways of searching for resources
so that movement, understood amply, never ends. We find that action-state path
entropy is the only measure consistent with additivity and other intuitive properties
of expected future action-state path occupancy. We provide analytical expressions
that relate the optimal policy and state-value function, and prove convergence
of our value iteration algorithm. Using discrete and continuous state tasks, we
show that complex behaviors such as ‘dancing’, hide-and-seek and a basic form
of altruistic behavior naturally result from the intrinsic motivation to occupy path
space. All in all, we present a theory of behavior that generates goal-directedness
in the absence of reward maximization.
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4.1 Introduction
Natural agents are endowed with a natural tendency to move, explore and interact
with their environment (Ryan and Deci, 2000; Oudeyer et al., 2007). For instance,
human newborns unintentionally move their body parts (Adolph and Berger, 2007),
and 7 to 12-months infants spontaneously babble vocally (MacNeilage and Davis,
2000) and with their hands (Petitto and Marentette, 1991). Exploration and curiosity
are major drives for learning and discovery through information-seeking (Dietrich,
2004; Kidd and Hayden, 2015; Gottlieb et al., 2013). These behaviors seem to
elude a simple explanation in terms of external reward maximization. However,
intrinsic motivation pushes agents to visit new states by performing novel courses
of action, which helps learning and the discovery of even larger rewards in the
long run (Gittins et al., 2011; Averbeck, 2015). Therefore, it has been argued that
exploration and curiosity could have arisen as a consequence of seeking external
reward maximization by endowing agents with the necessary inductive biases to
learn in complex and ever-changing natural environments (Doll et al., 2012; Wang
and Hayden, 2021).

While most theories of rational behavior posit that agents are reward maximiz-
ers (von Neumann and Morgenstern, 1953; Sutton et al., 1998; Kahneman and
Tversky, 2013), very few of us would agree that the sole goal of living agents is
maximizing money gains or food intake. Indeed, expressing excessive emphasis
on those goals is a sign of psychological disorders (Rash et al., 2016; Ágh et al.,
2016). Further, setting a reward function by design as the goal of artificial agents is
more often than not arbitrary (Sutton et al., 1998; McNamara and Houston, 1986;
Klyubin et al., 2005; Lehman and Stanley, 2011), leading to the recurrent problem
faced by theories of reward maximization of defining what rewards are (Singh
et al., 2009; Zhang et al., 2021b; Schmidhuber, 1991b; Hadfield-Menell et al., 2017;
Eysenbach et al., 2018). In some cases, like in artificial games, rewards can be
unambiguously defined, such as number of collected points or wins (Schrittwieser
et al., 2020). However, in most situations defining rewards is task-dependent, non-
trivial and problematic. For instance, a vacuum cleaner robot could be designed
to either maximize the weight or volume of dust collected, energy efficiency, or
a weighted combination of them (Asafa et al., 2018). In more complex cases,
companies can aim at maximizing profit, but without a suitable innovation policy
profit maximization can be self-defeating (Kline and Rosenberg, 2010).

Here, we abandon the idea that the goal is maximizing external reward and
that movement over space is a means to achieve this goal. Instead, we adopt the
opposite view, inspired by the nature of our intrinsic drives: we propose that the
objective is to maximally occupy action-state path space, understood in a broad
sense, in the long term. We call this principle path occupancy maximization (POM),
which posits that the goal of agents is to generate all sort of behaviors and occupy,
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on average, as much space (action-state paths) as possible in the future. According
to this principle, external rewards serve to generate the work necessary to occupy
action-state space, they are not the goals per se. The usual exploration–exploitation
tradeoff (Wilson et al., 2021) therefore disappears: agents that seek to occupy space
“solve” this issue naturally because they care about rewards only as means to an end.
Furthermore, in this sense, surviving is only preferred because it is needed to keep
visiting action-state space. Our theory provides a rational account of exploratory
and curiosity-driven behavior where the problem of defining an external reward
function vanishes, and captures the variability of behavior (Moreno-Bote et al.,
2011; Recanatesi et al., 2022; Corver et al., 2021; Dagenais et al., 2021; Mochol
et al., 2021; Cazettes et al., 2021) by taking it as a principle.

We build over an extensive literature on entropy-regularized reinforcement
learning (RL) (Todorov, 2009; Ziebart, 2010; Haarnoja et al., 2018; Schulman
et al., 2017; Neu et al., 2017; Hausman et al., 2018; Tishby and Polani, 2011;
Nachum et al., 2017; Galashov et al., 2019). While that literature emphasizes the
regularization benefits of entropy for learning, external rewards still serve as the
major drive of behavior. Intrinsic motivation approaches where reward does not
play any role are closer to ours. One type of reward-free approaches promotes
exploration through information-seeking objectives, such as minimizing surprise
by refining predictions (Burda et al., 2018; Achiam and Sastry, 2017; Fountas
et al., 2020; Burda et al., 2019; Pathak et al., 2017; Hafner et al., 2020) or novelty
seeking (Bellemare et al., 2016; Tang et al., 2017; Aubret et al., 2022). One central
prediction of these approaches is that exploration, and thus behavioral variability,
ceases after learning. Our POM principle is different in that the objective is
determined independently from the agents’ knowledge of the environment, and
thus movement through the occupation of path space never ends, even if there is
nothing to learn. Another type of intrinsic motivation approaches that are close
to ours are pure entropic objectives, but they concentrate instead on the coverage
problem, maximizing the stationary state entropy (Hazan et al., 2019; Liu and
Abbeel, 2021; Mutti et al., 2021; Seo et al., 2021; Zhang et al., 2021a; Amin et al.,
2021), and they do so typically to generate better policies in the exploitation phase
when a well-defined task is to be solved. Finally, there is a class of reward-free
objectives known as empowerment that focus on generating policies under which
state transitions are predictable (Klyubin et al., 2005; Jung et al., 2011; Still and
Precup, 2012; Mohamed and Jimenez Rezende, 2015), which is different from
occupying path space.

In this work, we model an agent interacting with the environment as a Markov
decision process (MDP) where the intrinsic, immediate reward is the occupancy
of the next action-state visited, which is largest when performing an uncommon
action and visiting a rare state –there are no external rewards that drive the agent.
We assume that the agent maximizes the occupancy of future action-state paths. We
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Figure 4.1: Entropy-seeking agents (H agents) achieve path occupancy maximization
(POM). An H agent (grey triangle) in the middle of two rooms has the choice between
going left or right. Black arrows indicate available actions, blue arrows indicate random
transitions after choosing moving right or moving left actions, and pink arrow width
indicates the probabilities of those actions. See text for details.

show that action-state path entropy is the only measure of occupancy consistent with
additivity per time step, positivity and smoothness. Due to the additivity property,
the value of being in a state, defined as the expected future time-discounted action-
sate path entropy, can be written in the form of a Bellman equation. We show that
the Bellman equation has a unique solution that can be found with an iterative map.
In four simulated experiments we show that the sole goal of maximizing future
action-state path entropy generates complex behaviors that, to the human eye,
look genuinely goal-directed and playful, such as hide-and-seek in a prey-predator
problem, dancing of a cartpole and a basic form of altruism in an agent-and-pet
example.

4.2 Path occupancy maximization principle

4.2.1 Entropy measure of path space occupancy

We model an agent as a finite action-state MDP in discrete time. The policy π
describes the probability π(a|s) of performing action a given that the agent is at
state s at some time step, and p(s′|s, a) is the transition probability from s to a
successor state s′ in the next time step given that action a is performed. Starting at
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t = 0 in state s0, an agent performing a sequence of actions and experiencing state
transitions τ ≡ (s0, a0, s1, ..., at, st+1, ...) gets a return defined as

R(τ) = −
∞∑
t=0

γt ln
(
πα(at|st)pβ(st+1|st, at)

)
(4.1)

with action and state weights α > 0 and β ≥ 0, respectively, and discount factor
0 < γ < 1. A larger return is obtained when, starting in st, a low-probability
action at is performed and followed by a low-probability transition to a state
st+1. Therefore, maximizing the return in Eq. (4.1) favors ‘visiting’ action-states
(at, st+1) with a low transition probability. From st+1, another low-probability
action-state transition is preferred and so on, such that low-probability trajectories
τ are more rewarding than high-probability ones. Thus, the agent is pushed to
visit action-states that are rare or ‘unoccupied’, implementing POM. Due to the
freedom to choose action at given state st and the uncertainty of the resulting next
state st+1, apparent in Eq. (4.1), the term ‘action-states’ used here is more natural
than ‘state-actions’.

The agent is assumed to optimize the policy π to maximize the state-value
Vπ(s), defined as the expected return

Vπ(s) ≡ Eπ[R(τ)|s0 = s] = Eπ

[
∞∑
t=0

γt (αH(A|st) + βH(S ′|st, at))
∣∣∣s0 = s

]
(4.2)

given the initial condition s0 = s and following policy π, that is, the expectation
is over the at ∼ π(at|st) and st+1 ∼ p(st+1|st, at), t ≥ 0. In the last identity, we
have rewritten the expectations of the terms in Eq. (4.1) as a discounted sum of
action and successor state conditional entropiesH(A|s) = −

∑
a π(a|s) lnπ(a|s)

and H(S ′|s, a) = −
∑

s′ p(s
′|s, a) ln p(s′|s, a), respectively. We stress that this

expected return is purely intrinsic, namely, there is no external reward (policy-
independent reinforcer) that the agent seeks to maximize.

We call entropy-seeking agent (H agent) the one that optimizes the policy to
maximize the state-value in Eq. (4.2). The entropy representation in Eq. (4.2)
of the POM principle has several implications. First, H agents prefer regions of
state space that lead to a large number of successor states (Fig. 4.1a) or larger
number of actions (Fig. 4.1b). Second, death (absorbing) states where only one
action-state (i.e., stay) is available forever are naturally avoided by an H agent,
as they promise zero future action and state entropy (Fig. 4.1c). Therefore, our
framework implicitly incorporates a survival instinct. Finally, regions of state space
where there are “rewarding” states that increase the capacity of the agent to visit
further action-states (such as filling an energy reservoir) are more frequently visited
than others (Fig. 4.1d).
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We found that maximizing the discounted action-state path entropy in Eq.
(4.2) is the only reasonable way of formalizing the POM principle, as it is the
only measure of action-state path occupancy in Markov chains consistent with the
following intuitive conditions: if a path τ has probability p, visiting it results in an
occupancy gain C(p) that (i) decreases with p and (ii) is first-order differentiable
(Supplemental Sec. 4.5.1 for details). Condition (i) implies that visiting a low
probability path increases occupancy more than visiting a high probability path, and
our agents should tend to occupy ‘unoccupied’ path space; condition (ii) requires
that the measure should be smooth. We also ask that (iii) the occupancy of paths,
defined as the expectation of occupancy gains over paths given a policy, is the
sum of the expected occupancies of their subpaths (additivity condition). This
last condition implies that agents can accumulate occupancy over time by keeping
visiting low-probability action-states, but the accumulation should be consistent
with the Markov property of the decision process.

4.2.2 Optimal policy and state-value function
The state-value Vπ(s) in Eq. (4.2) can be recursively written using the values of
successor states through the standard Bellman equation

Vπ(s) = αH(A|s) + β
∑
a

π(a|s)H(S ′|s, a) + γ
∑
a,s′

π(a|s)p(s′|s, a)Vπ(s
′)

=
∑
a,s′

π(a|s)p(s′|s, a) (−α lnπ(a|s)− β ln p(s′|s, a) + γVπ(s
′)) ,(4.3)

where the sum is over the available actions a from state s and over the successor
states s′ given the performed action at state s. The optimal policy π∗ that maximizes
the state-value is defined as π∗ = argmaxπ Vπ and the optimal state-value is

V ∗(s) = max
π

Vπ(s), (4.4)

where the maximization is with respect to the {π(·|·)} for all actions and states.
To obtain the optimal policy, we first determine the critical points of the expected
return Vπ(s) in Eq. (4.3) using Lagrange multipliers (Supplemental Sec. 4.5.2).
The optimal state-value V ∗(s) is found to obey the non-linear self-consistency set
of equations

V ∗(s) = α lnZ(s) (4.5)

= α ln

[∑
a

exp

(
α−1βH(S ′|s, a) + α−1γ

∑
s′

p(s′|s, a)V ∗(s′)

)]
,

(4.6)
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where Z(s) is the partition function, defined by substitution, and the critical policy
satisfies

π∗(a|s) = 1

Z(s)
exp

(
α−1βH(S ′|s, a) + α−1γ

∑
s′

p(s′|s, a)V ∗(s′)

)
. (4.7)

We find that the solution to the non-linear system of Eqs. (4.6) is unique and,
moreover, the unique solution is the absolute maximum of the state-values over all
policies (Supplemental Sec. 4.5.3).

To determine the actual value function from such non-linear set of equations,
we derive an iterative map, a form of value iteration that exactly incorporates the
optimal policy at every step. Defining zi = exp(α−1γV (si)), pijk = p(sj|si, ak)
andHik = α−1βH(S ′|si, ak), Eq. (4.6) can be turned into the iterative map

z
(n+1)
i =

(∑
k

wike
Hik

∏
j

(
z
(n)
j

)pijk)γ

(4.8)

for n ≥ 0 and with initial conditions z(0)i > 0. Here, the matrix with coefficients
wik ∈ {0, 1} indicate whether action ak is available at state si (wik = 1) or not
(wik = 0), and j extends over all states, with the understanding that if a state sj
is not a possible successor from state si after performing action ak then pijk = 0.
We find that the infinite series z(n)i defined in Eq. (4.8) converges to a finite limit
z
(n)
i → z∞i regardless of the initial condition in the positive first orthant, and that
V ∗(si) = αγ−1 ln z∞i is the optimal state-value function, which solves Eq. (4.6)
(Supplemental Sec. 4.5.3). Iterative maps similar to Eq. (4.8) have been studied
before (Todorov, 2009, 2006), subsequently shown to have uniqueness (Rubin
et al., 2012) and convergence guarantees (Nachum et al., 2017; Leibfried et al.,
2019) in the absence of state entropy terms. A summary of results and particular
examples can be found in Supplemental Sec. 4.5.4.

We note that in the definition of return in Eq. (4.2) we could replace the
absolute action entropy termsH(A|s) by relative entropies of the form

−DKL(π(a|s)||π0(a|s)) =
∑
a

π(a|s) ln(π0(a|s)/π(a|s)),

as in KL-regularization (Todorov, 2009, 2006; Schulman et al., 2017; Galashov
et al., 2019), but in the absence of any external rewards. In this case, one ob-
tains an equation identical to (4.8) where the coefficients wik are simply replaced
by π0(ak|si), one to one. This apparently minor variation undercovers a major
qualitative difference between absolute and relative action entropy objectives: as∑

k wik ≥ 1, absolute entropy-seeking favors visiting states with a large action
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accessibility, that is, where the sum
∑

k wik and thus the argument of Eq. (4.8)
tends to be largest. In contrast, as

∑
k π0(ak|si) = 1, maximizing relative entropies

provides no preference for states s with large number of accessible actions |A(s)|.
This happens even if the default policy is uniform in the actions, as then the im-
mediate intrinsic return becomes −DKL(π(a|s)||π0(a|s)) = H(A|s) − ln |A(s)|,
instead of H(A|s). The negative logarithm penalizes visiting states with large
number of actions, which is the opposite goal to occupying action-state path space.

4.3 Results

4.3.1 Entropy-seeking agents quickly fill physical space

In very simple environments with high symmetry and little constraints, like open
space, maximizing path occupancy amounts to performing a random walk that
chooses at every step any available action with equal probability. However, in
realistic environments where space is not homogeneous or there are energetic
limitations for moving, a random walk is no longer optimal. To illustrate how
interesting behaviors arise from the POM principle in these cases, we first tested
how an H agent moving in a 4-room and 4-food-sources environment (Fig. 4.2a)
compares in occupying physical space to a random walker (RW) and to a reward
seeking agent (R agent). The three agents are identical in most ways. They have
nine possible movement actions, including not moving; they all have an internal
state corresponding to the available energy, which reduces one unit at every time
step and gets increased by a fixed amount (food gain) whenever a food source is
visited; and they can move as long as their energy is non-zero. The total state space
is the Cartesian product between physical space and internal energy. The agents
differ however in their objective function. The H agent has a reward-free objective
and implements POM by maximizing path action entropy, Eq. (4.2). In contrast,
the R agent maximizes future discounted reward (in this case, food), and displays
stochastic behavior through an ϵ-greedy action selection, with ϵ matched to the
survival of the H agent (Supplemental Sec. 4.5.5 and Fig. 4.7a).

We find that the H agent generates behaviors that can be dubbed goal-directed
and curiosity-driven (Video 1). First, by storing enough energy in its reservoir, the
agent reaches far, entering the four rooms in the long term (Fig. 1b, left panel),
and visiting every location of the arena except when food gain is small (Fig. 1c,
blue line). In contrast, the R agent lingers over one of the food sources for most of
the time (Fig. 1b, middle panel; Video 1). Although its ϵ-greedy action selection
allows for brief exploration of other rooms, the R agent does not on average visit
the whole arena (Fig. 1c, orange line). Finally, the random walker dies before it
has time to visit a large fraction of the physical space (Fig. 1b, right panel). These
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Figure 4.2: Maximizing future path occupancy leads to high occupancy of physical space.
(a) Grid-world arena. The agents have nine available actions (arrows, and staying still)
when alive (internal energy larger than zero) and away from walls. There are four rooms,
each with a small food source in a corner (green diamonds). (b) Probability of visited
spatial states for an entropy-seeking (H) agent, an ϵ-greedy reward (R) agent that survives
as long as the H agent, and a random walker. Food gain = 10 units, maximum reservoir
energy = 100, episodes of 5 × 104 time steps, and (α, β) = (1, 0) for the H agent. All
agents are initialized in the middle of the lower left room. (c) Fraction of locations of the
arena visited at least once per episode as a function of food gain. Error bars correspond to
s.e.m over 50 episodes. (d) Noisy room problem. The bottom right room of the arena was
noisy, such that agents in this room jump randomly to neighboring locations regardless of
their actions. Food gain equals maximum reservoir energy = 100. Histogram of visited
locations for an episode as long as in (b) for a H agent with β = 0.3 (left) and time fraction
spent in the noisy room (right) show that H agents with β > 0 can either be attracted to the
room or repelled depending on γ.

89



“output” — 2023/4/19 — 21:05 — page 90 — #104

Figure 4.3: Complex hide-and-seek and escaping strategies in a prey-predator example.
(a) Grid-world arena. The agent has nine available actions when alive and far from walls.
There is a small food source in a corner (green diamond). A predator (red, down triangle)
is attracted to the agent (gray, up triangle), such that when they are at the same location,
the agent dies. The predator cannot enter the locations surrounded by the purple border.
Arrows show a clockwise trajectory. (b) Histogram of visited spatial states across episodes
for the H and R agents. The vector field at each location indicates probability of transition
at each location. Green arrows on R agent show major motion directions associated with
the its dominant clockwise rotation. (c) Fraction of clockwise rotations (as in panel (a)) to
total rotations as a function of food gain, averaged over epochs of 500 timesteps. Error
bars are s.e.m.

differences hold for a large range of food gains (Fig. 1c).
We next considered a slightly more complex environment where actions in one

of the rooms lead to uniformly stochastic transitions to any of the neighboring
locations. An H agent with β > 0 (see Eq. (4.2)) has a preference for stochastic
state transitions, and a priori it could get attracted and stuck in the noisy room,
where actions do not have any predictable effect –a spatial version of the noisy TV
problem (Schmidhuber, 1991a; Burda et al., 2019). However, H agents also care
about future states, and thus getting stuck in regions where energy cannot be pre-
dictably obtained will be avoided by sufficiently long-sighted agents (dependence
on γ in Fig. 4.2d; Supplemental Sec. 4.5.5). This shows how H agents can tradeoff
immediate with future action-state occupancy.

4.3.2 Hide and seek in a prey-predator interaction
More interesting behaviors arise from the POM principle in increasingly complex
environments. To show this, we next considered a prey and a predator in a grid
world with a safe area (house) and a single food source (Fig. 4.3a). The prey (a
“mouse”, gray up triangle) is the agent whose behavior is optimized by maximizing
future action path entropy, while the predator (a “cat”, red down triangle) acts
passively chasing the prey. The state of the agent consists on its location and energy
level, but it also includes the predator’s location being accurately perceived. The
prey can move as in the previous 4-room grid world and has an energy reservoir as
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in the previous example. For simplicity, we only considered a food gain equal to the
size of the energy reservoir, such that the agent fully replenishes its reservoir each
time it visits the food source. The predator has the same available actions as the
agent and is attracted to it stochastically, i.e. actions that move the predator towards
the agent are more probable than those that move it away from it (Supplemental
Sec. 4.5.5).

The entropy-seeking agent generates complex behaviors, not limited to visiting
the food source to increase the energy buffer and hide at home. In particular, the
agent very often first teases the cat and then performs a clockwise rotation around
the obstacle, which forces the cat to chase it around, leaving the food source free
for harvest (Fig. 4.3a, arrows show an example; Video 2, H agent). Importantly,
this behavior is not restricted to clockwise rotations, as the agent performs an
almost equal number of counterclockwise rotations to free the food area (Fig. 4.3c,
H agent, blue line). The variability of these rotations in the entropy-seeking agent
are manifest in the lack of virtually any preferred directionality of movement in
the arena at any single position. Indeed, arrows pointing toward several directions
indicate that on average the prey moves following different paths to get to the food
source (Fig. 4.3b, H agent).

The behavior of the H agent was compared with an R agent that receives a
reward of one each time it is alive and zero otherwise. To promote variable behavior
in this agent as well, we implemented an ϵ-greedy action selection (Supplemental
Sec. 4.5.5), where ϵ was chosen to match the expected lifetime of the H agent
(Supplemental Fig. 4.7b). The behavior of the R agent was strikingly less variable
than that of the H agent, spending more time close to the food source (Fig. 4.3b, R
agent). Most importantly, while the H agent performs an almost equal number of
clock and counterclockwise rotations, the R agent strongly prefers the clockwise
rotations, reaching 90% of all observed rotations (Video 3, R-agent; Fig. 4.3c,
orange line). This shows that the R agent mostly exploits only one strategy to
survive and displays a smaller behavioral repertoire than the H agent.

4.3.3 Dancing in an entropy-seeking cartpole
In the previous examples, complex behaviors emerge as a consequence of the
presence of obstacles, predators and limited food sources, but the actual dynamics
of the agents are very coarse-grained. Here, we considered a system with physically
realistic dynamics, the balancing cartpole (Barto et al., 1983; Florian, 2007),
composed of a moving cart with an attached pole free to rotate (Fig. 4.4a). The
cartpole is assumed to reach an absorbing state when either it hits a border, or when
the pole angle exceeds 36 degrees. Thus, we consider a broad range of angles that
makes the agents reach a larger state space than in standard settings (Brockman
et al., 2016). We discretized the state space and used a linear interpolation to solve
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Figure 4.4: Dancing of an entropy-seeking cartpole. (a) The cart (brown rectangle) has
a pole attached. The cartpole reaches an absorbing state if the magnitude of the angle θ
exceeds 36 deg or its position reaches the borders. There are 5 available actions when alive:
a big and a small force to either side (arrows on cartpole), and doing nothing (full circle).
(b) Time-shifted snapshots of the pole in the reference frame of the cart as a function of
time for the H (top) and R (bottom) agents. (c) Position and angle occupation for a 2× 105

time step episode. (d) Here, the right half of the arena is stochastic, while the left remains
deterministic. In the stochastic half, the intended state transition due to an applied action
(force) succeeds with probability 1 − η (and thus zero force is applied with probability
η). (e) Fraction of time spent on the right half of the arena increases as a function of
β, regardless of the failure probability η. (f) The fraction has a non-monotonic behavior
as a function of η when state entropy is important for the agent (β = 1), highlighting a
stochastic resonance behavior. When the agents do not seek state entropy (β = 0) the
fraction of time spent by the agent on the right decreases with the failure probability, and
thus they avoid the stochastic right side. γ = 0.99 for panels (e,f).
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for the optimal value function in Eq. (4.4), and to implement the optimal policy in
Eq. (4.7), (Supplemental Sec. 4.5.5). The H agent widely occupies the horizontal
position, and more strikingly it produces a wide variety of pole angles, constantly
swinging sideways as if it were dancing (Video 4, H agent; Fig. 4.4b,c).

We compared the behavior of the H agent with that of an R agent that receives
a reward of one for being alive and zero otherwise. As expected, the R agent
maintains the pole close to the balanced position throughout most of a long episode
(Fig. 4.4b, bottom), producing very little behavioral variability (Fig. 4.4c, right
panel) and no movement that could be dubbed ‘dancing’ (Video 4, R agent).
Although both agents use a similar strategy which keeps the pole pointing towards
the center as much as possible (Fig. 4.4c, positive angles correlate with positive
positions in both panels), the behavior of the R agent is qualitatively different, and
is best described as a bang-bang sort of control for which the angle is kept very
close to zero while the cart is allowed to travel and oscillate around the origin,
which is more apparent in the actual paths of the agent (see trajectories in phase
space in Video 5). We also find that the R agent does not display much variability
in state space even after using an ϵ-greedy action selection (Supplemental Fig.
4.8), with ϵ chosen to match average lifetimes between agents (Supplemental Fig.
4.7c). This result showcases that the H agent exhibits the most appropriate sort of
variability for a given average lifetime.

We finally introduced a slight variation to the environment, where the right
half of the arena has stochastic state transitions. Here, when agents choose an
action (force) to be executed, a state transition in the desired direction occurs
with probability 1 − η, and a transition corresponding to zero force occurs with
probability η (Fig. 4.4d). Therefore, an H agent that seeks state entropy (β > 0)
will show a preference for the right side, where there is in principle higher state
entropy resulting from the stochastic transitions over more successor states than
on the left side. Indeed, we find that H agents spend more time on the right side
as β increases, regardless of the probability η (Fig. 4.4e). For fixed γ, spending
more time on the right side can bring the life expectancy to decrease significantly
depending on β and η (Supplemental Fig. 4.7 d-e). Interestingly, for β > 0 there
is an optimal value of the noise η that maximizes the fraction of time spent on
the right side (Fig. 4.4f), which is a form of stochastic resonance. Therefore, for
different β, different qualitative behaviors emerge as a function of the noise level
η.

4.3.4 Entropy-seeking agents can also seek entropy of others
Finally, we consider an example where an agent seeks to occupy path space, which
includes another agent’s location as well as its own. The agent can freely move
(Fig. 4.5a; grey triangle) and open or close a fence by pressing a lever in a corner

93

https://youtu.be/aDXBgnrLKNE
https://youtu.be/aDXBgnrLKNE
https://youtu.be/gyLAQnnCdYc


“output” — 2023/4/19 — 21:05 — page 94 — #108

Figure 4.5: Modelling altruism through an optimal tradeoff between own action entropy
and other’s state entropy. (a) An agent (gray up triangle) has access to nine movement
actions (gray arrows and doing nothing), and open or close a fence (dashed blue lines).
This fence does not affect its movements. A pet (green, down triangle) has access to the
same actions, and chooses one randomly at each timestep, but is constrained by the fence
when closed. Pet location is part of the state of the agent. (b) As β in Eq. (4.2) is increased,
the agent tends to leave the fence open for a larger fraction of time. This helps its pet reach
other parts of the arena. Error bars correspond to s.e.m. (c) Occupation heatmaps for 2000
timestep-episodes for β = 0 (left) and β = 1 (right). In all cases α = 1.

(blue triangle). The pet of the agent (green triangle) can freely move if the fence
is open, but when the fence is closed the pet is confined to move in the region
where it is currently located. The pet moves randomly at each step, but its available
actions are restricted by its available space (Supplemental Sec. 4.5.5).

To maximize action-state path entropy, the agent ought to trade off the state
entropy resulting from letting the pet free with the action entropy resulting from
using the open-close action when visiting the lever location. The optimal tradeoff
depends on the relative strength of action and state entropies. In fact, when state
entropy weighs as much as action entropy (α = β = 1), the fraction of time that
the agent leaves the fence open is close to 1 (rightmost point in Fig. 4.5b) so that
the pet is free to move (Fig. 4.5c, right panel; (A-S)-H agent). However, when
the state entropy has zero weight (α = 1, β = 0), the fraction of time that the
fence remains open is close to 0.5 (leftmost point in Fig. 4.5b) and the pet remains
confined on the right side for most of the time (Fig. 4.5c, left panel; (A)-H agent),
the region where it was initially placed. As a function of β the fraction of time
the fence is open increases. Therefore, the agent gives more freedom of its pet,
as measured by the pet’s state entropy, by curtailing its own action freedom, as
measured by action entropy, thus becoming more "altruistic".

4.4 Discussion

Often, the success of agents in nature is not measured by the amount of reward
obtained, but by their ability to expand in state space and perform complex behav-
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iors. Here we have proposed that a major goal of intelligence is to ‘occupy path
space’. External rewards are thus the means to move and occupy action-state path
space, not the goal of behavior. In a MDP setting, we have shown that the intuitive
notion of path occupancy is captured by future action-state path entropy, and we
have proposed that behavior is driven by the maximization of this sole intrinsic
goal –the POM principle. We have solved the associated Bellman equation and
provided a convergent iterative map to determine the optimal policy.

In four examples we have shown that the POM principle, along with the agent’s
constraints and dynamics, leads to complex behaviors that are not observed in other
simple reward maximizing agents. Quick filling of physical space by a moving
agent, hide-and-seek behavior and variable escaping routes in a predator-prey
example, dancing in a realistic cartpole dynamical system and altruistic behavior in
an agent-and-pet duo are all behaviors that strike as being playful, curiosity-driven
and energetic. To the human eye, these behaviors look genuinely goal-directed (see
SI Sec. 4.5.6). Although the agent does not have any externally designed goal, it
still seeks the regions of state space (e.g. with resources) that allow it to move the
longest in a way that maximizes future path action-state entropy.

A related set of algorithms, known as empowerment, have also proposed using
reward-free objectives as the sole goal of behavior (Klyubin et al., 2005; Jung et al.,
2011; Mohamed and Jimenez Rezende, 2015). In this approach, the mutual infor-
mation between a sequence of actions and the final state is maximized. This makes
empowerment agents prefer states where actions leads to large and predictable
changes, such as unstable fixed points (Jung et al., 2011). One drawback is that
empowered agents tend to remain close to those states without producing diverse
behavioral repertoires, as it also happens in causal entropy approaches (Wissner-
Gross and Freer, 2013). For instance, in the cartpole setting, both empowered and
causal entropy agents balance the pole upwards and cease variable behavior when
that state is reached (Jung et al., 2011; Wissner-Gross and Freer, 2013). Another
difference is that empowerment is not additive over paths, and thus it cannot be
formalized as a cumulative per-step objective (Supplemental Sec. 4.5.7) (Jung
et al., 2011; Leibfried et al., 2019; Mohamed and Jimenez Rezende, 2015; Volpi
and Polani, 2020), in contrast to action-state path entropy. We note, however, that
an approximation to empowerment having the desired additive property could
be obtained from our framework by putting β < 0 in Eq. (4.2), such that more
predictable state transitions are preferred. Other reward-free RL settings and pure
exploration objectives have been proposed in the past (Hazan et al., 2019; Lee et al.,
2019; Jin et al., 2020; Zhang et al., 2021a; Mutti and Restelli, 2020; Mutti et al.,
2021; Pathak et al., 2017; Eysenbach and Levine, 2021), but this body of work
typically investigates how to efficiently sample MDPs to construct near-optimal
policies when reward functions are introduced in the exploitation phase. More
importantly, this work differs from ours in that the POM principle generates goal-

95



“output” — 2023/4/19 — 21:05 — page 96 — #110

directedness and behavioral variability even in known environments (see examples
above).

Several steps remain to have a more complete POM theory. One is to study
learning in environments where state transitions are not known. Previous related
attempts have introduced Z-learning (Todorov, 2006, 2009) and G-learning (Fox
et al., 2015) using off-policy methods, so our results could be extended to learning
following similar lines. Other possibilities are using transition estimators using
counts or pseudo-counts (Bellemare et al., 2016), or hashing (Tang et al., 2017), for
the learning of the transition matrices. One potential advantage of our framework
is that, as entropy-seeking behavior obviates external rewards, those rewards do
not need to be learned and optimized, and thus the learning problem reduces to
transition matrices learning. In addition, modeling and injecting prior information
could be particularly simple in our setting in view that intrinsic entropy rewards can
be easily bounded before the learning process if action space is known. Therefore,
initializing the state-value function to the lower or upper bounds of the action-
state path entropy could naturally model pessimism or optimism during learning,
respectively.

All in all, we have introduced POM as a novel theory of behavior, which
promises new ways of understanding goal-directedness without reward maximiza-
tion, and that can be applied to artificial agents to discover by themselves ways of
surviving and occupying action-state space.
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4.5 Appendix

4.5.1 Entropy measures the occupancy of action-state paths
We consider a time-homogeneous Markov decision process with finite state set
S and finite action set A(s) for every state s ∈ S. Henceforth, the action-state
xj = (aj, sj) is any joint pair of one available action aj and one possible successor
state sj that results from making that action under policy π ≡ {π(a|s)} from the
action-state xi = (ai, si). By assumption, the availability of action aj depends
on the previous state si alone, not on ai. Thus, the transition probability from
xi to xj in one time step is pij = π(aj|si)p(sj|si, aj), where p(sj|si, ai) is the
conditional probability of transitioning from state si to sj given that action aj is
performed. Although there is no dependence of the previous action ai on this
transition probability, it is notationally convenient to define transitions between
action-states. We conceive of rational agents as maximizing future action-state
path occupancy. Any measure of occupancy should obey the intuitive Conditions
1-4 listed below.

Intuitive Conditions for a measure of action-state occupancy:

1. Occupancy gain of action-state xj from xi is a function of the transition
probability pij , C(pij)

2. Performing a low probability transition leads to a higher occupancy gain
than performing a high probability transition, that is, C(pij) decreases with
pij

3. The first order derivative C ′(pij) is continuous for pij ∈ (0, 1)

4. (Definition: the action-state occupancy of a one-step path from action-state
xi is the expectation over occupancy gains of the immediate successor action-
states, C(1)

i ≡
∑

j pijC(pij))

The action-state occupancy of a two-steps path is additive,

C
(2)
i ≡

∑
jk pijpjkC(pijpjk) = C

(1)
i +

∑
j pijC

(1)
j

for any choice of the pij and initial xi

Condition 1 simply states that occupancy gain from an initial action-state is
defined over the transition probabilities to successor action-states in a sample space.
Condition 2 implies that performing a low probability transition leads to a higher
occupancy of the successor states than performing a high probability transition.
This is because performing a rare transition allows the agent to occupy a space that
was left initially unoccupied. Condition 3 imposes smoothness of the measure.
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In Condition 4 we have defined the occupancy of the successor action-states
(one-step paths) in the Markov chain as the expected occupancy gain. Condition
4 is the central property, and it imposes that the occupancy of action-states paths
with two steps can be broken down into a sum of the occupancies of action-states
at each time step. Note that the action-state path occupancy can be written as

C
(2)
i ≡

∑
jk

pijpjkC(pijpjk) =
∑
j

pijC(pij) +
∑
jk

pijpjkC(pjk)

=
∑
jk

pijpjk (C(pij) + C(pjk)) ,

which imposes a strong condition on the function C(p). Note also that the sum∑
jk pijpjkC(pijpjk) extends the notion of action-state to a path of two consecutive

action-states, each path having probability pijpjk due to the (time-homogeneous)
Markov property. The last equality is an identity. While here we consider paths of
length equal to 2, further below we show that there is no difference in imposing
additivity to paths of any fixed or random length (Corollary 2).

Theorem 1. C(p) = −k ln p with k > 0 is the only function that satisfies Condi-
tions 1-4

Corollary 1. The entropy C
(1)
i = −k

∑
j pij ln pij is the only measure of action-

state occupancy of successor action-states xj from xi with transition probabilities
pij consistent with Conditions 1-4.

Proof. Put p1,1 = 1 and p1,j = 0 for j ̸= 1. Then, Condition 4 reads C(1) =
C(1) + C(1) when the initial action-state is x1, which implies C(1) = 0.

Now, take a Markov chain with p0,0 = 1, p1,0 = 1 − t > 0, p1,2 = t > 0,
p2,0 = p2,1 = 0, p2,j = 1/n for j = 3, ..., n + 2 and n > 0, and pk,0 = 1
for k = 3, ..., n + 2. In this chain, the state 0 is absorbing and all others are
transient (here action-states are simply referred to as states). Starting from state 1,
transition to the transient state 2 happens with probability t and to the absorbing
state 0 with probability 1 − t. From state 2 a transition to states j = 3, ..., n + 2
happens with equal probability. From any of those states, a deterministic transition
to 0 ensues. (These last transitions can only happen in the third time step, and
although it will be relevant later on, it is no used in the current proof, which
focuses on paths of length two.) Then, Condition 4 with initial state 1 reads
tC(t/n) + (1− t)C(1− t) = tC(t) + (1− t)C(1− t) + tC(1/n) + (1− t)C(1),
and hence C(t/n) = C(t) + C(1/n) for any 0 < t < 1 and integer n > 0.
By Condition 3 and taking derivative with respect to t in both sides, we obtain
C ′(t/n) = nC ′(t), and multiplying in both sides by t we obtain t

n
C ′( t

n
) = tC ′(t).

By replacing t with nt, we get tC ′(t) = ntC ′(nt), provided that nt < 1.
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We will now show that tC ′(t) is constant. In the last equation replace t by t/m
by integer m > 0 to get the last equivalence in tC ′(t) = t

m
C ′( t

m
) = n

m
tC ′( n

m
t)

(the first equivalence is obvious). These equivalences are valid for positive t < 1
and n

m
t < 1. Let 0 < s < 1 and n = ⌊ms/t⌋ be the largest integer smaller than

ms/t. Therefore, as m increases n
m
t < 1 and approaches s as close as desired. By

Condition 3 the function xC ′(x) is continuous, and therefore limm→∞
n
m
tC ′( n

m
t) =

sC ′(s). The basic idea is that we can first compress t as much as needed by the
integer factor m and then expand it by the integer factor n so that nt/m is as close
as desired to s. This shows that sC ′(s) = tC ′(t) for s, t ∈ (0, 1), and therefore
tC ′(t) is constant.

Assume that tC ′(t) = −k. Then, by integrating we obtain C(t) = −k ln t+ a,
but a = 0 due to C(1) = 0, and k > 0 due to Condition 2. Together with the above,
we can now proof the theorem by noticing that the solution satisfies Condition 4
for any choice of the pij .

Corollary 2. Condition 4 can be replaced by an equivalent condition that requires
additivity of paths of any finite length n with no change in the above proof. We first
introduce some notation: the probability of path i0, i1, ..., in is pi0,i1pi1,i2 ...pin−1,in ,
where it refers to the state visited at step t and i0 is the initial state. Then the new
Condition 4 reads in terms of the action-state occupancy of paths of length n as

C
(n)
i0

=
∑

i1,i2,...,in

pi0,i1pi1,i2 ...pin−1,inC
(
pi0,i1pi1,i2 ...pin−1,in

)
=
∑
i1

pi0,i1C(pi0,i1) +
∑
i1,i2

pi0,i1pi1,i2C(pi1,i2) + ...

+
∑

i1,i2,...,in

pi0,i1pi1,i2 ...pin−1,inC
(
pin−1,in

)
=

∑
i1,i2,...,in

pi0,i1pi1,i2 ...pin−1,in

(
C(pi0,i1) + C(pi1,i2)...+ C(pin−1,in)

)
,

for any time-homogeneous Markov chain. By choosing the particular chains used
in Theorem 1, we arrive again to the same unique solution C(p) = −k ln p after
using C(1) = 0 repeated times, which obviously solves the above equation for any
chain and length path. Indeed, note that for the second chain in Theorem 1, from
initial state 1 the absorbing state is reached in three time steps with probability
one, and thus the above sum contains all C(1) starting from the third terms, which
contribute zero to the sum.

The above entropy measure of action-state path occupancy can be extended to
the case where there is a discount factor 0 < γ < 1. To do so, we assume now that
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the paths can have a random length n ≥ 1 that follows a geometric distribution,
pn = γn−1(1− γ). In this case, the occupancy of the paths is

Cglobal = (1− γ)
∑
i1

pi0,i1C(pi0,i1) + γ(1− γ)
∑
i1,i2

pi0,i1pi1,i2C(pi0,i1pi1,i2)

+γ2(1− γ)
∑

i1,i2,i3

pi0,i1pi1,i2pi2,i3C(pi0,i1pi1,i2pi2,i3) + ... (4.9)

where the n-th term in the sum is the expected occupancy gain of paths of length n
weighted by the probability of a having a path with exactly such a length.

Equivalently, a path in course can grow one step further with probability γ or
be extinguished with probability 1 − γ. Therefore, the occupancy in Eq. (4.9)
should also be equal to the sum of the expected occupancy gains of the local states
along the paths, defined as

Clocal =
∑
i1

pi0,i1C(pi0,i1)+γ
∑
i1,i2

pi0,i1pi1,i2C(pi1,i2)+γ2
∑

i1,i2,i3

pi0,i1pi1,i2pi2,i3C(pi2,i3)+...

(4.10)
where the first term is the expected occupancy gain given by the initial condition,
the second term is the expected occupancy gain in the next step weighted by the
probability of having a path length of at least two steps, and so on.

Eqs. (4.9-4.10), after using the Markov chain in Corollary 2, reduce to

Cglobal = (1− γ)
∑
i1

pi0,i1C(pi0,i1) + γ(1− γ)
∑
i1,i2

pi0,i1pi1,i2C(pi0,i1pi1,i2)

+γ2(1− γ)
∑
i1,i2

pi0,i1pi1,i2C(pi0,i1pi1,i2) + ...

= (1− γ)
∑
i1

pi0,i1C(pi0,i1) + γ
∑
i1,i2

pi0,i1pi1,i2C(pi0,i1pi1,i2)

and

Clocal =
∑
i1

pi0,i1C(pi0,i1) + γ
∑
i1,i2

pi0,i1pi1,i2C(pi1,i2),

where we have used pi2,i3 = 1 because all transitions in the third step are determin-
istic.

Equality of these two quantities leads to Condition 4, specifically,∑
i1,i2

pi0,i1pi1,i2C(pi0,i1pi1,i2) =
∑
i1

pi0,i1C(pi0,i1) +
∑
i1,i2

pi0,i1pi1,i2C(pi1,i2).
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Therefore, the only consistent measure of occupancy with temporal discount is the
entropy. Obviously, the equality of global and local time-discounted occupancies
measured by entropy holds for any time-homogeneous or inhomogeneous Markov
chain.

4.5.2 Critical policies and critical state-value functions
Here, the expected return following policy π in Eq. (4.10), known as the state-value
function, is written recursively using the Bellman equation. Then, we find a non-
linear system of equations for the critical policy and critical state-value function by
taking partial derivatives with respect to the policy probabilities (Theorem 2).

Using Eq. (4.10) and Theorem 1 with k = 1, we define the expected return
from state s under policy π as

Vπ(s) = −
∑
i1

ps,i1 ln ps,i1−γ
∑
i1,i2

ps,i1pi1,i2 ln pi1,i2−γ2
∑

i1,i2,i3

ps,i1pi1,i2pi2,i3 ln pi2,i3+...

(4.11)
where ps,i1 is the transition probability from state s to action-state xi1 = (ai1 , si1).
Note that in Eq. (4.10) we have replaced the initial action-state i0 by the initial
state s alone, as the previous action that led to it does no affect the transition
probabilities in the Markov decision process setting. The expected returns satisfy
the standard recurrence relationship (Sutton et al., 1998)

Vπ(s) =
∑
a,s′

ps,(a,s′)
(
− ln ps,(a,s′) + γVπ(s

′)
)

=
∑
a,s′

π(a|s)p(s′|s, a) (− lnπ(a|s)p(s′|s, a) + γVπ(s
′)) . (4.12)

Here, we have unpacked the sum over the action-state i1 into a sum over (a, s′),
where a is the action made in state s and s′ is its successor. The second equation
shows, in a more standard notation, the explicit dependence of the expected return
on the policy. It also highlights that the intrinsic immediate reward takes the form
Rintrinsic(s, a, s

′) = − lnπ(a|s)p(s′|s, a), which is unbounded.
From Eq. (4.11) it is easy to see that the expected return exists (is finite) for

any policy π if the Markov decision process has a finite number of actions and
states. Due to the properties of entropy, Eq. (4.11) is a sum of non-negative
numbers bounded by Hmax = ln(|A|max|S|) (|A|max is the maximum number
of available actions from any state) weighted by the geometric series, which
guarantees convergence of the infinite sum for −1 < γ < 1. An obvious, but
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relevant, implication of the above is that the expected return is non-negative and
bounded, 0 ≤ Vπ(s) ≤ Hmax/(1− γ), for any state and policy.

While in Eq. (4.12) the immediate intrinsic reward is the sum of the action
and state occupancies, Rintrinsic(s, a, s

′) = − lnπ(a|s)p(s′|s, a) = − lnπ(a|s) −
ln p(s′|s, a), we can generalize this reward to consider any weighted mixture of
entropies as Rintrinsic(s, a, s

′) = −α ln π(a|s)− β ln p(s′|s, a) for any two numbers
α > 0 and β ≥ 0. In particular, for (α, β) = (1, 1) we recover the action-
state occupancy of Eq. (4.12), and for (α, β) = (1, 0) and (α, β) = (0, 1) we
only consider action or state occupancy, respectively. The case (α, β) = (0, 1) is
understood as the limit case where α becomes infinitely small. We note that the case
(α, β) = (1, 0) has often been used along with an external reward with the aim of
regularizing the external reward objective (Ziebart, 2010; Todorov, 2009; Schulman
et al., 2017; Haarnoja et al., 2018; Hausman et al., 2018). We also note that the case
(α, β) = (1,−1), with negative β, constitutes an approximation to empowerment
(Klyubin et al., 2005; Jung et al., 2011): the agent tries to maximize action entropy
while minimizing state entropy conditioned to the previous action-state, which
favors paths where there is more control on the resulting states. However, we do
not consider this case in this paper.

Under the more general intrinsic reward, the expected return obeys

Vπ(s) =
∑
a,s′

π(a|s)p(s′|s, a)
(
− lnπα(a|s)pβ(s′|s, a) + γVπ(s

′)
)
. (4.13)

Our goal is to maximize the expected return over the policy probabilities π =
{π(a|s) : a ∈ A(s), s ∈ S} to obtain the optimal policy. Note that for α > 0 and
β ≥ 0 the expected return is non-negative, Vπ(s) ≥ 0.

Theorem 2. The critical values V c(s) of the expected returns Vπ(s) in equation
(4.13) with respect to the policy probabilities π = {π(a|s) : a ∈ A(s), s ∈ S}
obey

V c(s) = α lnZ(s) = α ln

 ∑
a∈A(s)

exp

(
α−1βH(S ′|s, a) + α−1γ

∑
s′

p(s′|s, a)V c(s′)

)
(4.14)

where H(S ′|s, a) = −
∑

s′ p(s
′|s, a) ln p(s′|s, a) is the entropy of the successors

of s after performing action a, and Z(s) is the partition function.
The critical points (critical policies) are

πc(a|s) = 1

Z(s)
exp

(
α−1βH(S ′|s, a) + α−1γ

∑
s′

p(s′|s, a)V c(s′)

)
, (4.15)
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one per critical value, where the partition function Z(s) is the normalization
constant.

Defining zi = exp(α−1γV c(si)), pijk = p(sj|si, ak) andHik = α−1βH(S ′|si, ak),
Eq. (4.14) can be compactly rewritten as

zγ
−1

i =
∑
k

wike
Hik

∏
j

z
pijk
j (4.16)

where the matrix with coefficients wik ∈ {0, 1} indicates whether action ak is
available at state si (wik = 1) or not (wik = 0), and j extends over all states, with
the understanding that if a state sj is not a possible successor from state si and
action ak then pijk = 0.

Note that the we simultaneously optimize |S| expected returns, one per state s,
each with respect to the set of probabilities π = {π(a|s) : a ∈ A(s), s ∈ S}.

Proof. We first note that the expected return in Eq. (4.2) is continuous and has
continuous derivatives with respect to the policy except at the boundaries (i.e.,
π(a|s) = 0 for some action-state (a, s)). Choosing a state s, we first take partial
derivatives with respect to π(a|s) for each a ∈ A(s) in both sides of (4.13), and
then evaluate them at a critical point πc to obtain the condition

λ(s, s) =
∑
s′

p(s′|s, a)
(
− ln(πc(a|s))αpβ(s′|s, a) + γV c(s′)

)
− α

+γ
∑
b,s′

πc(b|s)p(s′|s, b)λ(s′, s) (4.17)

= −α ln πc(a|s)− β
∑
s′

p(s′|s, a) ln p(s′|s, a)− α

+γ
∑
s′

p(s′|s, a)V c(s′) + γ
∑
b,s′

πc(b|s)p(s′|s, b)λ(s′, s), (4.18)

where we have defined the partial derivative at the critical point ∂Vπ(s′)
∂π(a|s) |πc ≡ λ(s′, s)

and used the fact that this partial derivative should be action-independent. To
understand this, note that the critical policy should lie in the simplex

∑
a π(a|s) =

1, π(a|s) ≥ 0, and therefore the gradient of Vπ(s
′) with respect to the π(a|s) at the

critical policy should be along the normal to the constraint surface, i.e., the diagonal
direction (hence, action-independent), or be zero. Indeed, the action-independence
of the λ(s′, s) also results from interpreting them as Lagrange multipliers: λ(s′, s)
is the Lagrange multiplier corresponding to the state-value function at s′, Vπ(s

′),
associated to the constraint

∑
a π(a|s) = 1, π(a|s) ≥ 0, defining the simplex

where the probabilities {π(a|s) : a ∈ A(s)} lie.
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Noticing that the last term of Eq. (4.18) does not depend on a, we can solve for
the critical policy πc(a|s) to obtain equation (4.15). Eq. (4.15) implicitly relates
the critical policy with the critical value of the expected returns from each state
s. Inserting the critical policy (4.15) into Eq. (4.13), we get (4.14), which is
an implicit non-linear system of equations exclusively depending on the critical
values.

It is easy to verify that the partial derivatives of Vπ(s) in Eq. (4.13) with respect
to π(a′|s′) for s ̸= s′ are

λ(s, s′) = γ
∑
s′′

p(s′′|s)λ(s′′, s′),

and thus they provide no additional constraint on the critical policy. 1

We finally show that the optimal expected returns, as defined from the Bellman
optimality equation

V ∗(s) = max
π(·|s)

∑
a,s′

π(a|s)p(s′|s, a)
(
− ln πα(a|s)pβ(s′|s, a) + γV ∗(s′)

)
, (4.19)

obey the same Eq. (4.14) as the critical values of Eq. (4.13) do. To see this, note
that after taking partial derivatives with respect to π(a|s) for each a ∈ A(s) on the
right-hand side of Eq. (4.19) we get

0 = −α lnπ(a|s)−β
∑
s′

p(s′|s, a) ln p(s′|s, a)+γ
∑
s′

p(s′|s, a)V ∗(s′)−α+λ(s),

(4.20)
where λ(s) is the Lagrange multiplier associated to the constraint

∑
a π(a|s) = 1.

This equation, except for the irrelevant action-independent Lagrange multipliers,
is identical to Eq. (4.18). Eq. (4.14) follows from inserting the resulting optimal
policy into the Bellman optimality equation.

1This set of equations along with Eq. (4.18) generates a linear system of S2 equations for the
S2 unknowns λ(s, s′). In the next subsection we show that the critical values V c(s) and critical
policy πc(a|s) exists and are unique, and thus the system of equations for λ(s, s′) is of the type
Λ = γP ⊺Λ + F , with unique matrices Λss′ = λ(s, s′), Ps′s = p(s′|s) ≡

∑
a π

c(a|s)p(s′|s, a)
and Fs′s is a diagonal matrix with Fss = V c(s)− α. Because P is a stochastic matrix, it does not
have eigenvalues larger than one. Therefore the matrix I − γP ⊺ with γ < 1 does not have zero
eigenvalues, and thus it is invertible. The solution to the system is then unique and given thenby
Λ = (I− γP ⊺)−1F .
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4.5.3 Unicity of the optimal value and policy, and convergence
of the algorithm

We now prove that the critical value V c(s) is unique, in other words, equation
(4.14) admits a single solution (Theorem 3). We later prove that the solution is the
optimal expected return (Theorem 4).

Theorem 3. With the definitions in Theorem 2, the system of equations

zγ
−1

i =
∑
k

wike
Hik

∏
j

z
pijk
j (4.21)

with 0 < γ < 1, α > 0 and β ≥ 0 has a unique solution in the positive first orthant
zi > 0, provided that for all i there exists at least one k such that wik = 1. The
solution satisfies zi ≥ 1.

Moreover, given any initial condition z
(0)
i > 0 for all i, the infinite series z(n)i

defined through the iterative map

z
(n+1)
i =

(∑
k

wike
Hik

∏
j

(
z
(n)
j

)pijk)γ

(4.22)

for n ≥ 0 converges to a finite limit z∞i ≥ 1, and this limit is the unique solution of
equation (4.21)

Note that the condition that for all i there exists at least one k such that wik = 1
imposes virtually no restriction, as it only asks for the presence of at least one
available action in each state. For instance, in absorbing states, the action leads to
the same state.

Importantly, proving that the map (4.22) has a single limit regardless of the
initial condition in the positive first orthant z(0)i > 0 suffices to prove that equation
(4.21) has a unique solution in that region, as then no other fix point of the map
can exist. Additionally, since the solution is unique and satisfies z∞i ≥ 1, the
critical state-value function that solves equation (4.14) is unique, and V c(si) =
αγ−1 ln z∞i ≥ 0, consistent with its properties.

The map (4.22) provides a useful value-iteration algorithm used in examples
shown in the Results section, and empirically is found to rapidly converge to the
solution.

Proof. We call the series z
(n)
i with initial condition z

(0)
i = 1 for all i the main

series. We first show that the main series is monotonic non-decreasing.
For n = 1, we get
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z
(1)
i =

(∑
k

wike
Hik

∏
j

(1)pijk

)γ

≥ 1 = z
(0)
i (4.23)

for all i, using that there exists k for which, wik = 1, wik is non-negative for all i
and k,Hik ≥ 0 and the power function xγ is increasing with its argument.

Assume that for some n > 0, z(n)i ≥ z
(n−1)
i for all i. Then

z
(n+1)
i =

(∑
k

wike
Hik

∏
j

(
z
(n)
j

)pijk)γ

≥

(∑
k

wike
Hik

∏
j

(
z
(n−1)
j

)pijk)γ

= z
(n)
i

(4.24)
using the same properties as before, which proves the assertion for all n by induc-
tion.

Now let us show that the main series is bounded. Define Hmax = maxikHik,
and obviouslyHmax ≥ 0.

For n = 1 we have

z
(1)
i =

(∑
k

wike
Hik

)γ

≤
(
|A|maxe

Hmax
)γ ≡ cγ (4.25)

(remember that |A|max is the maximum number of available actions from any state).
For n = 2,

z
(2)
i =

(∑
k

wike
Hik

∏
j

(
z
(1)
j

)pijk)γ

≤

(∑
k

wike
Hik

∏
j

cγpijk

)γ

=

(∑
k

wike
Hikcγ

)γ

= cγ
2

(∑
k

wike
Hik

)γ

≤ cγ+γ2

using the standard properties,
∑

j pijk = 1 and Eq. (4.25).

Assume that for some n > 1 we have z(n)i ≤ cγ+γ2+...+γn . We have just showed
that this is true for n = 2. Then

z
(n+1)
i =

(∑
k

wike
Hik

∏
j

(
z
(n)
j

)pijk)γ

≤

(∑
k

wike
Hikcγ+...+γn

)γ

= cγ
2+...+γn+1

(∑
k

wike
Hik

)γ

≤ cγ+...+γn+1
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and therefore it is true for all n ≥ 0 by induction.

Therefore the series z(n)i is bounded by c1/(1−γ). Together with the monotonicity
of the series, we have now proved that the limit z∞i of the series exists. Moreover,
z∞i ≥ z0i = 1.

The above results can be intuitively understood: the ‘all ones’ initial condition
of the main series corresponds to an initial guess of the state-value function equal
to zero everywhere. The iterative map corresponds to state-value iteration to a
more optimistic value: as intrinsic reward based on entropy is always non-negative,
the z-values monotonically increase after every iteration. Finally, the z-values
reach a limit because the state-value function is bounded.

We now show the central result that the series obtained by using the iterative
map starting from any initial condition in the positive first orthant can be bounded
below and above by two series that converge to the main series. Therefore, by
building ‘sandwich’ series we will confirm that any other series has the same limit
as the main series.

Let the y
(0)
i = ui > 0 be the initial condition of the series y

(n)
i obeying the

iterative map (4.22), and define umin = mini ui and umax = maxi ui. Obviously,
umin > 0 and umax > 0. Applying the iterative map once, we get

y
(1)
i =

(∑
k

wike
Hik

∏
j

(
y
(0)
j

)pijk)γ

≤

(∑
k

wike
Hik

∏
j

(umax)
pijk

)γ

=

(∑
k

wike
Hikumax

)γ

= uγ
max

(∑
k

wike
Hik

)γ

= uγ
maxz

(1)
i

where in the last step we have used the values of the main series in the first
iteration. We can similarly lower-bound y

(1)
i to finally show that it is both lower-

and upper-bounded by z
(1)
i with different multiplicative constants,

uγ
minz

(1)
i ≤ y

(1)
i ≤ uγ

maxz
(1)
i (4.26)

Now, assume that

uγn

minz
(n)
i ≤ y

(n)
i ≤ uγn

maxz
(n)
i (4.27)

is true for some n > 0. Then, for n+ 1 we get
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y
(n+1)
i =

(∑
k

wike
Hik

∏
j

(
y
(n)
j

)pijk)γ

≤

(∑
k

wike
Hik

∏
j

(
uγn

maxz
(n)
i

)pijk)γ

= uγn+1

max

(∑
k

wike
Hik

∏
j

(
z
(n)
i

)pijk)γ

= uγn+1

max z
(n+1)
i

by simply extracting the common factor in the fourth expression, remembering
that

∑
j pijk = 1, and using the definition of the main series in the last one. By

repeating the same with the lower bound, we finally find that (4.27) holds also for
n+ 1, and then, by induction, for every n > 0.

The proof concludes by noticing that the limit of both uγn

max and uγn

min is 1, and
therefore using (4.27) the limit y∞i of the series y(n)i equals the limit of the main
series, y∞i = z∞i .

Note that the iterative map (4.22) is not necessarily contractive in the Euclidean
metric, as it is possible that, depending on the values of umin and umax and the
changes in the main series, the bounds in Eq. (4.27) initially diverge to finally
converge in the limit.

Theorem 4. The (unique) critical value V c(s) is the optimal expected return, that
is, the one that attains the maximum expected return at every state for any policy,
and we write V c(s) = V ∗(s)

Proof. To show that V c(s) is the optimal expected return, we note that the max-
imum of the functions Vπ(s) with respect to policy π should be at the critical
policy or at the boundaries of the simplices defined by

∑
a π(a|s) = 1 with

0 ≤ π(a|s) ≤ 1 for every a and s, as the expected return Vπ(s) is continuous and
has continuous derivatives with respect to the policy except at the boundaries. At
the policy boundary, there exists a non-empty subset of states si and a non-empty
set of actions ak for which π(ak|si) = 0. Computing the critical value of the
expected return along that policy boundary is identical to moving from the original
to a new problem where we replace the graph connectivity matrix wik in Eq. (4.21)
by a new one vik such that vik ≤ wik (remember that at the boundary there should
be an action ak that were initially available from state si, wik = 1, that at the policy
boundary is forbidden, vik = 0). We now define the convergent series z(n)i and y

(n)
i

for the original and new problems respectively by using the iterative map (4.22)
with initial conditions equal to all ones. We prove now that z(n)i ≥ y

(n)
i for all i for

n = 1, 2, ..., and thus their limits obey z∞i ≥ y∞i .
For n = 1, we get
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z
(1)
i =

(∑
k

wike
Hik

∏
j

(1)pijk

)γ

≥

(∑
k

vike
Hik

∏
j

(1)pijk

)γ

= y
(1)
i (4.28)

for all i, using that wik ≥ vik and that the power function xγ is increasing with its
argument.

Assuming that z(n)i ≥ y
(n)
i for all i for some n > 0, then

z
(n+1)
i =

(∑
k

wike
Hik

∏
j

(
z
(n)
j

)pijk)γ

≥

(∑
k

vike
Hik

∏
j

(
y
(n)
j

)pijk)γ

= y
(n+1)
i

(4.29)
using the same properties as before, which proves the assertion for all n by induc-
tion.

Remembering that the expected return V (si) is increasing with zi, we conclude
that the expected return obtained from policies restricted on the boundaries of the
simplices is no better than the original critical value of the expected return.

4.5.4 Particular examples
Here we summarize the main results and specialize them to specific cases. We
assume 0 < γ < 1, α > 0 and β ≥ 0 and use the notation zi = exp(α−1γV ∗(si)),
where V ∗(s) is the optimal expected return, pijk = p(sj|si, ak) and Hik =
α−1βH(S ′|si, ak), whereH(S ′|s, a) = −

∑
s′ p(s

′|s, a) ln p(s′|s, a).

Action-state entropy maximizers

Agents that seek to maximize the discounted action-state path entropy follow the
optimal policy

π∗(ak|si) =
1

Zi

(
wike

Hik

∏
j

z
pijk
j

)
(4.30)

with

Zi =
∑
k

wike
Hik

∏
j

z
pijk′
j (4.31)

The matrix with coefficients wik ∈ {0, 1} indicate whether action ak is available at
state si (wik = 1) or not (wik = 0).
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The expected return (state-value function) in terms of the z variables obeys

zγ
−1

i =
∑
k

wike
Hik

∏
j

z
pijk
j (4.32)

Action-only entropy maximizers

Agents that ought to maximize the time-discounted action path entropy correspond
to the above case with β = 0, and therefore the optimal policy reads as

π∗(ak|si) =
1

Zi

(
wik

∏
j

z
pijk
j

)
(4.33)

with

Zi =
∑
k

wik

∏
j

z
pijk
j (4.34)

The state-value function in terms of the z variables obeys

zγ
−1

i =
∑
k

wik

∏
j

z
pijk
j (4.35)

Entropy maximizers in deterministic environments

In a deterministic environment pi,j(i,k),k = 1 for successor state j = j(i, k), and
zero otherwise. In this case, at every state i we can identify an action k with its
successor state j. Therefore, the optimal policy is

π∗(ak|si) =
wijzj
Zi

(4.36)

with

Zi =
∑
j

wijzj (4.37)

The state-value function in terms of the z variables reads

zγ
−1

i =
∑
j

wijzj (4.38)
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Figure 4.6: H agents determine stochastic policies that maximize occupancy of future
action-state paths. In all panels, the three successive dots indicate that the future looks the
same for all the states or actions involved from that point onwards. (a) At time t, the agent
is faced with determining the optimal policy at state s. Given that taking action a1 can
stochastically lead to two distinct states s′1 and s′2, the optimal policy gives action a1 twice
the probability weight than to action a2 (which only induces a deterministic transition to
state s′3). From time t + 1, the future looks the same from all three states s′i. (b) If the
future does not look the same, and actually there are many more actions available at state
s′3 compared to s′1 and s′2, then more weight should be given to action a2 than if the future
was the same. (c) If, however, all the actions available at state s′3 lead you to an absorbing
state, almost zero weight should be given to action a2.

111



“output” — 2023/4/19 — 21:05 — page 112 — #126

4.5.5 Experiments
In this subsection, we present the details for the numerical simulations performed
for the different experiments in the manuscript. First, we discuss the construction
of the H and R agents, and afterwards we present the details of each particular
experiment.

H agent

In all the experiments presented, we introduce the H agent, whose name comes from
the usual notation for using H to denote entropy. Therefore, the objective function
that this agent maximizes in general is Eq. (4.2). As described in subsection
4.5.4, the α and β parameters control the weights of action and next-state entropies
to the objective function, respectively. Unless indicated otherwise, we always
use α = 1, β = 0 for the experiments. It is important to note, as we have
done before, that if the environment is deterministic, then the next-state entropy
H(S ′|s, a) = −

∑
s′ p(s

′|s, a) ln p(s′|s, a) = 0, and therefore β does not change
the optimal policy, Eq. (4.7).

We have implemented the iterative map, Eq. (4.8), to solve for the optimal
value, using z

(0)
i = 1 for all i as initial condition. Theorem (3) ensures that this

iterative map finds a unique optimal value regardless of the initial condition in the
first orthant. To determine a degree of convergence, we compute the supremum
norm between iterations,

δ = max
i
|V (n+1)

i − V
(n)
i |,

where Vi =
α
γ
log(zi), and the iterative map stops when δ < 10−3.

R agent

We also introduce a reward-maximizing agent in the usual RL sense. In this case,
the reward is r = 1 for living and r = 0 when dying. In other words, this agent
maximizes life expectancy. Additionally, to emphasize the typical reward-seeking
behavior and avoid degenerate cases induced by the tasks, we introduced a small
reward for the Four-room grid world (see below). In all other aspects, the modelling
of the R agent is identical to the H agent. To allow for reward-maximizing agents
to display some stochasticity, we used an ϵ-greedy policy, the best in the family
of ϵ-soft policies (Sutton et al., 1998). At any given state, a random admissible
action is chosen with probability ϵ, and the action that maximizes the value is
chosen with probability 1− ϵ. Given that the world models p(s′|s, a) are known
and the environments are static, this ϵ-greedy policy does not serve the purpose
of exploration (in the sense of learning), but only to inject behavioral variability.
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Therefore, we construct an agent with state-independent variability, whose value
function satisfies the optimality Bellman equation for this ϵ-greedy policy,

Vϵ(s) = (1−ϵ)max
a

∑
s′

p(s′|s, a) (r + γVϵ(s
′))+

ϵ

|A(s)|
∑
a,s′

p(s′|s, a) (r + γVϵ(s
′)) ,

(4.39)
where |A(s)| is the number of admissible actions at state s. To solve for the optimal
value in this Bellman equation, we perform value iteration (Sutton et al., 1998).
The ϵ-greedy policy for the R agent is therefore given by

π(a|s) =

{
1− ϵ+ ϵ

|A(s)| , if a = argmaxa′
∑

s′ p(s
′|s, a′) (r + γVϵ(s

′))
ϵ

|A(s)| , otherwise

where ties in argmax are broken randomly. Note that if ϵ = 0, we obtain the usual
greedy optimal policy that maximizes reward.

Four-room grid world

Environment The arena is composed of four rooms, each having size 5 × 5
locations where the agent can be in. From each room, the agent can go to two
adjacent rooms through small openings, each located in the middle of the wall that
separates the rooms. At each of these rooms, there is a food source located in the
corner furthest from the openings. See Fig. 4.2 for a graphic description. Unless
indicated otherwise, the discount factor is set to γ = 0.99.

States The states are the Cartesian product between (x, y) location and internal
state u, which is simply a scalar value between a minimum of 0 and a maxi-
mum capacity of 100. All states such that (x, y, u = 0) are absorbing states,
independently of the location (x, y). The particular internal state u = 100 is the
maximum capacity for energy, such that even when at a food source, this inter-
nal state does not change. Therefore, the number of states in this experiment is
|S| = 104 external states× 101 internal states = 10504.

Actions The agent has a maximum of 9 actions: up, down, left, right,
up left, up right, down left, down right, and nothing. When-
ever the agent is close to a wall, the number of available actions decreases such
that the agent cannot choose to go into walls. Finally, whenever the agent is in an
absorbing state, only nothing is available.
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Figure 4.7: Survivability for the experiments considered in our work. (a) Survivability of
the various agents tested in the four-room grid world. At each 5E4 timestep episode, we
recorded the survived time and averaged across episodes. (b) Survivability of the mouse
for both H and R agents. (c) Survivability for the cartpole (Sec. 4.5.5) in the deterministic
arena for the H agent and the ϵ-greedy R agents, γ = 0.98. (d) Survivability for cartpole
(Sec. 4.5.5) in the stochastic arena for the β = 0 and the β = 1 H agents. γ = 0.99. (e)
Survivability of the cartpole (Sec. 4.5.5) H agents as a function of β, for various values of
η. γ = 0.99
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Transitions At any transition, there is a cost of 1 unit of energy for being alive.
On the other hand, whenever the agent is located at a food source, there is an
increase in energy that we vary parametrically that we call food gain g. For
example, if the agent is in location (2, 1) at time t and moves towards (1, 1) (where
food is located), the change in energy would be ∆ut = −1, given that the change
in internal energy depends only on the current state and action. If the agent decides
to stay in (1, 1) at time t+ 1, then ∆ut+1 = −1 + g.

R agent As stated above, in this experiment we introduced an extra reward for
the R agent when it reaches the food source. The magnitude is small compared to
the survival reward (1E − 5 smaller) and it mainly serves to break the degeneracy
of the value function. The variability of the R agent is thus coming purely from the
ϵ-greedy action selection.

Survivability To allow for the maximum uniform variability for the R agent, we
tested various values for ϵ and observed the survivability of the agents as a function
of ϵ, across all the food gains tested (see Results section). The value of ϵ for which
the R agent still survives as much as the H agent is ϵ = 0.45 (see Figure 4.7a).

Noisy room In this variation for the experiment, there is a room (the bottom right
room) where transitions are uniformly random for all actions, across all possible
neighboring locations. That is, for any location snr in the noisy room, and any a
available at that location, given that it has n(snr) total neighbours (including the
same location),

p(s′|snr, a) =

{
1

n(snr)
for s′ ∈ neighbours

0 otherwise

Predator-prey scenario

Here we provide all details of the simulated experiments. Results are shown in Fig.
4.3.

Environment The environment is similar to that one used for the 4-room grid
world described in 4.5.5. Apart from the agent (prey), there is also another moving
subject (predator) with a simple predefined policy. The grid world consists of a
“home” area, a rectangle 2x3 where the agent may enter, but the predator cannot.
This home area has a small opening that leads to a bigger 4x7 rectangle arena
available for both the agent and the predator. The only food source is located at
the bottom-right corner of the common part of the arena, so that the agent needs
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to leave its home to boost its energy. Additionally, there is an obstacle which
separates the arena in two parts with two openings, above and under the obstacle.
This obstacle allows the agent to “hide” from the predator behind it.

States The location of the predator is part of the agent’s state, such that a par-
ticular state consists of the position of the agent, the position of the predator and
the amount of energy of the agent. For this case, we set the maximum amount of
energy F equal to the food gain. Positions are 2-dimensional, and therefore the
states are 5-dimensional. In the used arena there are 33 possible locations for the
agent and 26 ones for the predator, so that the total number of states ranges from
11154 for F = 13 to 17160 for F = 20.

Actions The agent has the same actions as in the four-room grid world. The
maximum number of available actions is therefore 9. Moving towards obstacles or
walls is not allowed.

Transitions The agent loses one unit of energy every time step and increases the
amount of energy up to a given maximum capacity level F only at the food source.
If the position of both the agent and the predator are the same, then the agent is
"eaten" and moves to the absorbing state of death as well as in the case of energy
equal to 0. After entering the absorbing state the agent stays there forever.

The predator also moves as the agent (horizontally, vertically, diagonally on one
step or to stay still). Steps of the agent and the predator happen synchronously. The
predator is “attracted” to the agent: the probability of moving to some direction is
an increasing function on the cosines cosαk of the angle αk between this direction
of motion k and the direction of the radius vector from the predator to the agent. In
particular, this probability is

pck = C−1 exp(κ cosαk) (4.40)

where κ is the inverse temperature of the predator and C =
∑

k exp(κ cosαk) is a
normalization factor. These probabilities are computed only for motions available
at the current location of the predator, so that e.g. for the location at the wall the
motions along the wall are taken into account, but not the motion towards the wall.

Goal The goal of the H agent is to maximize discounted action entropy, and thus
to find the optimal state-value function using the iterative map in Eq. (4.8) with
Hik = 0 (β = 0). While using the iterative map, we take advantage of the fact that
given an action the physical transition of the agent is deterministic, but the physical
transition of the predator is stochastic. Therefore, the sum over successor states j
in Eq. (4.8) is simply a sum over the predator successor states.
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Parameters γ = 0.98, F = 15 (if another value between 13 and 20 not men-
tioned), κ = 2. Simulation time is 5000 steps.

Counting rotations We define a clockwise (counterclockwise) half-rotation as
the event when the agent came from the left part of the arena to the right part
over the field above (under) the wall and from the right part to the left one over
the field under (above) the wall without crossing the vertical line of the wall in
between. One full rotation consists of two half-rotations in the same directions
performed one after another. We counted the number of full rotations in both
directions in 70 episodes of 500 time steps each for both H and R agents for
different values of the food gain F . Error bars were computed based on these 70
repetitions. The fraction of clockwise rotations to total rotations (sum of clockwise
and anticlockwise rotations) for different values of F is shown at Fig. 4.3.

Survivability The ϵ-greedy R agents display some variability that depends on ϵ.
To select this parameter, we matched expected lifetimes (measured in simulations
of 5000 steps length) between the H and R agents, separately for every F . Lifetimes
are plotted in Figure 4.7b.

Videos We have generated one video for the H agent (Video 2) and another for
the R agent (Video 3), both for F = 15, κ = 2, and ϵ = 0.06 for the R agent
so as to match their expected lifetimes as described above. In the videos, green
vertical bar indicates the amount of energy by the agent at current time. When the
agent makes at least one full rotation around the wall, it is indicated by the written
phrase “clockwise rotation” or “anticlockwise rotation”. Black vertical arrow
indicates direction (‘up’ for clockwise and ‘down’ for anticlockwise directions) of
the half-rotation in the part of arena left from the wall.

Cartpole

Environment A cart is placed in a one-dimensional track with boundaries at
|x| = 1.8. It has a pole attached to it, that rotates like an inverted pendulum with
its pivot point on the cart.

States The dynamical system can be described by a four-dimensional external
state (x, v, θ, ω), where x is the position of the cart, v is its linear velocity, θ is the
angle of the pole with respect to the vertical which grows counterclockwise, and ω
is its angular velocity. In this case, we model the internal state u simply with the
binary variable alive, dead, where the agent enters the absorbing state dead
if its position exceeds the boundaries, or if its angle exceeds 36 degrees. This
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amplitude of angles is larger than that typically assumed (12 degrees in (Brockman
et al., 2016)), and therefore our system is allowed to be more non-linear and
unstable. The state space is [−1.8, 1.8]×(−∞,∞)×[−36, 36]×(−∞,∞)×{0, 1}.
To solve for the state value function in Eq. (4.8), we discretize the state space by
setting a maximum value for the velocities. Given all the parameters (allowed x
and θ, magnitude of the forces, masses of cart and pole, length of pole and gravity,
below), we empirically set the maximum values for |v| = 6 and |ω| = 3, which the
cart actually never exceeds. Therefore, we computed the state value function in a
31× 31× 31× 31× 2 grid (number of states = 1.8× 106).

Actions Any time the agent is alive, it has 5 possible actions: forces of
{−40,−10, 0, 10, 40}, where zero force is understood as nothing. If the agent
is dead, then only nothing is allowed.

Transitions This dynamical system is a standard task in reinforcement learning,
namely the cartpole-v0 system of the OpenAI gym (Brockman et al., 2016).
The solution of this dynamical system is given in Ref. (Florian, 2007), where we
use a frictionless cartpole. The equations for angular and linear accelerations are
thus

θ̈ =
−g sin(θ) + cos(θ)

M+m

(
−F +mθ̇2l sin(θ)

)
l
(

4
3
− m cos2(θ)

M+m

) (4.41)

ẍ =
1

cos(θ)

(
4

3
lθ̈ − g sin(θ)

)
. (4.42)

Given a force F , a deterministic transition can be computed from these dynamical
rules, and a real-valued state transition is observed by the agents.

R agent The reward signal is 1 each time the agent is alive and 0 otherwise. To
allow for some variability in the action selection of the R agent, we implement
an ϵ-greedy action selection as described above. For exposition purposes, in the
manuscript we set ϵ = 0.0, but we also compared to an R agent with ϵ chosen such
that average lifetimes between H and R agents are matched (see Fig. 4.7c and Fig.
4.8).

Parameters Mass of the cart M = 1, mass of the pole m = 0.1, length of the
pole l = 1, acceleration due to gravity g = 9.81, time discretization ∆t = 0.02.
Unless specified differently, the discount factor was set to γ = 0.98.
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Figure 4.8: Histogram of angles and locations visited for the cartpole, as in Fig. 4.4 of the
main manuscript, for the H agent (left) and ϵ-greedy R agent (right), with ϵ chosen such
that H and R agents’ lifetimes are similar (see Fig. 4.7c).

Value interpolation The observed external state is a continuous four-dimensional
variable, so we need to approximate the value function. In order to do so, we simply
discretized the state space as described above, and use value iteration as described
in Eq. (4.6) in these grid points by performing a linear value interpolation for the
successor states at each iteration. During a particular episode, the observed states
might not be the same as the ones in the grid, so in order to compute the optimal
policy at these states, we perform the same type of value interpolation as in the
value iteration stage.

Stochastic arena We introduced a slight variation to the environment, where the
x > 0 half of the arena is noisy: agents choose an action (force), but the intended
state transition of applying such an action fails with probability η and succeeds
with probability 1− η. This is implemented as follows: given any state-action pair
(s, a) for which x > 0, there are two possible successor states, one corresponding
to the intended action (force) chosen, and the other one corresponding to a zero
force action:

p(s′|s, a) =


1, if x < 0 and s′ ← (s, a)

1− η, if x > 0 and s′ ← (s, a)

η, if x > 0 and s′ ← (s, 0)

(4.43)

This stochasticity lets us differentiate between action path occupancy maxi-
mizers and action-state path occupancy maximizers by choosing any positive real
value of β in Eq. (4.1), because β > 0 agents will have a natural tendency to prefer
x > 0 locations.
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Agent-pet scenario

An agent and a pet move in an arena with degrees of freedom that depend on the
actions made by the agent, as explained next in detail.

Environment A 5× 5 arena. The middle column of arena can be blocked by a
fence, a vertical obstacle that the pet cannot cross. The agent can cross it freely
regardless of whether it is open or closed. The agent can open or close the fence
by performing the corresponding action when visiting the lever location, at the left
bottom corner.

States The system’s state consists of the Cartesian product of agent´s location,
pet’s location and binary state of the fence. So, the number of states is 1250. For
the sake of simplicity there is no internal states for the energy, and thus there are
not absorbing states. The initial states of the agent and pet at the start of each
episode are the middle of the second column and the right lower corner of the
arena, respectively.

Actions As in Sec. 4.5.5 the agent’s actions are movements to one of the 8
neighbour locations as well as staying on the current one. Additionally, if the agent
is on the “lever” location, an additional action is available, namely to open or close
the fence, depending on its previous state.

Transitions The pet has same available movements as the agent when the fence
is open. The pet performs a random transition to any of the neighbour locations,
or stay still, with the same probability. If the agent closes the fence, then the pet
can only move on the side where it lies when closed. For simplicity, if the fence is
closed by the agent when the pet lies in the middle column, then the pet can only
move to the right or left locations such that it will be at one side of the fence in the
next time step.

Goal The goal of the H agent is to maximize discounted action-state entropy
using the iterative map in Eq. (4.8) with α = 1 and β ∈ [0, 1], parameters that
measure the weight of action and state entropies, respectively. As in the prey-
predator example, we take advantage of the fact that given an action the physical
transition of the agent is deterministic, while the physical transition of the pet is
stochastic. Thus, the product over successor states j in Eq. (4.8) is a product over
the pet successor states.
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Simulation details We ran simulations for several values of β, from 0 to 1 in 0.1
steps, to interpolate between pure action entropy (β = 0) and action-state entropy
(β = 1). We measured the fraction of time the gate was open using episodes of
2000 steps averaged over 70 simulations for each β, shown in Fig 4.5. Heat-maps
in that figure correspond to the occupation probability by the pet for β = 0 (left
panel) and β = 1 (right panel) using an episode of 5000 steps.

4.5.6 Relationship to Maximum Entropy Reinforcement Learn-
ing and goal directedness

The objective of maximizing action-state path entropy in Eq. (4.2) for the special
case β = 0 can be obtained from the maximum entropy reinforcement learning
(MaxEnt RL) formulation (Todorov, 2009; Ziebart, 2010; Haarnoja et al., 2018)

Vπ(s) = Eπ

[
∞∑
t=0

γt (r(st, at) + αH(π(·|st)))
∣∣∣s0 = s

]
, (4.44)

by setting the reward r(s, a) = 0 for all states and actions, and therefore there
is no difference between the two approaches in this particular case. However,
this reduction obscures the fact that we can generate goal-directed behaviors in
H-agents without the need of specifying rewards –indeed, this is one of the main
accomplishment of our work. To see this, we first quantify how a MaxEnt RL
agent gets reward in the four-room grid world defined in Supplemental Sec. 4.5.5,
as a function of the temperature parameter α. In this case, a sensible goal is “eating
food” (that is, defining r(s, a) = 1 at the food locations, and zero everywhere else).
Trivially, when α ≪ 1 in Eq. (4.44), the goal is simply to maximize the future
expected reward, equivalent to the ϵ-greedy R agent defined in Supplemental Sec.
4.5.5, for ϵ = 0 (Figure 4.9a, leftmost points). In contrast, for α≫ 1, we recover
the H agent in practice (due to the environment being deterministic). In this case,
the agent mostly focuses on maximizing future expected entropy, and getting small
eating rate (Figure 4.9a, rightmost points). Therefore, the temperature α quantifies
how “goal directed” the agent should be, where the goal here is understood as
getting food, and the entropy term is understood as a regularizer that promotes
exploration of the arena.

To aid in showing our central result that an extrinsic reward is not necessary
for “goal directed behavior”, we take the H agent and vary its energy capacity (see
Supplemental Sec. 4.5.5). For large capacities, the H agent can largely ignore
the food most of the time, obtaining small eating rate (Figure 4.9b, right-most
points). This is because food is conceived as the means to accomplish the goal
of maximizing future path occupancy. In contrast, when capacity is small, the H
agent needs to get the food much more frequently to avoid the absorbing state, thus
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Figure 4.9: Reward is not necessary for "goal-directed" behavior. (a) Eating rate as a
function of the temperature parameter α in Equation (4.44) for a MaxEnt RL agent in the
four-room grid world. (b) Eating rate as a function of the capacity for an H agent in the
four-room grid world.

getting much higher eating rates (Figure 4.9b, leftmost points). The remarkably
strong qualitative similarities between the two panels in the figure show that by
reinterpreting the concept of reward, one can forego the need of specifying a reward
function, and focus on more universal principles of behavior.

4.5.7 Non-additivity of mutual information and channel capac-
ity

Here we show that mutual information over Markov chains does not obey the
additive property. It suffices to prove our statement for paths of length two. Thus,
we ask whether the mutual information between actions (a0, a1) and states (s1, s2)
given initial state s0

MIglobal =
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
p(a0, s1, a1, s2|s0)

p(a0, a1|s0)p(s1, s2|s0)

equals the sum of the per-step mutual information

MIlocal =
∑
a0,s1

p(a0, s1|s0) ln
p(a0, s1|s0)

p(a0|s0)p(s1|s0)

+
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
p(a1, s2|s1)

p(a1|s1)p(s2|s1)
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where p(a0, s1, a1, s2|s0) = π(a0|s0)p(s1|s0, a0)π(a1|s1)p(s2|s1, a1) and p(a0, s1|s0) =
π(a0|s0)p(s1|s0, a0). Using Bayes’ rule and the Markov property, the above quan-
tities can be rewritten as

MIglobal =
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
p(a0, a1|s0, s1, s2)

p(a0, a1|s0)

=
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
p(a0|s0, s1)p(a1|s1, s2)

p(a0, a1|s0)

=
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
p(a0|s0, s1)p(a1|s1, s2)
π(a0|s0)p(a1|s0, a0)

=
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
p(a0|s0, s1)p(a1|s1, s2)

π(a0|s0)
∑

s π(a1|s)p(s|s0, a0)

=
∑
a0,s1

p(a0, s1|s0) ln
p(a0|s0, s1)
π(a0|s0)

+
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
p(a1|s1, s2)∑

s π(a1|s)p(s|s0, a0)

and

MIlocal =
∑
a0,s1

p(a0, s1|s0) ln
p(a0|s0, s1)
π(a0|s0)

+
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
p(a1|s1, s2)
π(a1|s1)

The quantities MIglobal and MIlocal are remarkable similar except for the denom-
inator in the ln of the last term in each expression. Therefore, equality between
MIglobal and MIlocal holds iff

∑
a0,a1,s1,s2

p(a0, s1, a1, s2|s0) ln
∑
s

π(a1|s)p(s|s0, a0)

=
∑

a0,a1,s1,s2

p(a0, s1, a1, s2|s0) lnπ(a1|s1)

which is not true for all choices of policy and transitions probabilities. To see this,
take a Markov chain where the action a0 = 0 from s0 = 0 is deterministic, but
results in two possible successor states s1 = 1 or s1 = 2 with equal probability
1/2. From s1 = 1 the policy takes actions a1 = 1 and a1 = 2 with probability
1/2. From s1 = 2 the policy is deterministic, that is, a1 = 3 with probability 1.
A simple calculation shows that the left side equals −3

2
ln 2, while the right side

equals a different quantity, −1
2
ln 2.
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Chapter 5

DISCUSSION

In the previous chapters, we have introduced two main models of decision making:
the breadth–depth (BD) dilemma and behavior as the occupation of action-state
path space. These works were discussed separately, and in this chapter, we aim to
connect them further between each other and with the frameworks presented in the
Introduction.

5.1 Summary of contributions
Breadth–depth dilemma

In the BD dilemma, we have explored the influence of sampling capacity in
strategic decision-making scenarios, where feedback is delayed. As was discussed,
this situation not only is relevant for actual real decisions, but it also allows us to
study in isolation a thus-far neglected decision-making tradeoff: choosing how to
allocate resources to choose between alternatives given fixed sampling restrictions.
In Chapter 2, we presented a simplified model of this tradeoff where both the
sampling resources and the outcomes of querying the alternatives are discrete
(although see Supplementary Fig. 2.7 for the case of Gaussian outcomes). The
alternatives are characterized by a real number, the probability of success pi, with a
known, fixed Bernoulli process determining the outcomes of the sampling. We set
up the problem of, given a fixed number of samples that we called capacity, finding
the best resource allocation possible in order to choose the option with the highest
probability pi, given that no reallocation was possible during the actual Bernoulli
processes. In other words, we defined a utility function to be about the allocation
of resources, assuming that the problem was about eventually choosing the best
option. (Determining which option has the highest probability of success given
the actual outcomes is a trivial problem, see Sec. 2.4.4.) The rest of the chapter
was about characterizing the allocations that maximize this utility function, as a
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function of the sampling capacity of the agent. The main finding of this work was
that, when capacity grows, the rate at which the number of alternatives are sampled,
relative to capacity, actually diminishes, therefore given an increasing emphasis on
depth over breadth. This result showcases the value of a normative approach (i.e.
searching for the allocation that maximizes the utility) to interpret real choice: it
lets us find candidate reasons for observed behavior without ad hoc assumptions.
In particular, it lets us reinterpret the observation that humans choose to focus
deeply on a small subset of options, instead of broadly, which might actually reflect
a high sampling capacity (see the Discussion of Chapters 2 and 3 for more details).

In Chapter 3, we presented a model of the same BD tradeoff where both the
sampling resources and the outcomes of querying the alternative are continuous.
Alternatives are also characterized by a real number, the mean µi, and in this case
a drift–diffusion process determines the outcome of the sampling process, given µi

for each alternative and diffusion noise σ. For this case, the capacity of the agent
to sample the environment was defined as the ratio between the precision of the
observations and the precision of the distribution that characterizes the richness
of the environment, a measure of discriminability of the quality of the options.
Therefore, the sampling capacity of the decision maker takes the environment
statistics into account, thus contextualizing the decision maker’s resources and
characterizing how well they are suited to solve a given task in the world. Allocating
capacity opened up a duality: we can think that agents either allocate sampling
time, or they allocate sampling precision. This is an important distinction, as
the former possibility is typically associated with a single agent in a sequential
sampling scenario, whereas the former can be associated to a distributed system of
samplers, each with an allocated precision (see Fig. 3.2). One of the main results of
this work was to find that, for small capacity and for any environment, the optimal
number of options to sample is fixed and equal to five (provided there are at least
five options available). We provided the proof for this limit, which agrees with
empirical simulation tests. For large capacity, the optimal number of options to
sample grows sublinearly for a variety of environments, a fact that matches the
result for discrete resources, showing a sign that, for increasing capacity, there is
an increasing emphasis of depth over breadth in the optimal tradeoff.

The models of the breadth–depth dilemma make certain assumptions that can be
analyzed with the frameworks presented in the Introduction. First off, we assume
that the objective is to find the best resource allocation given a particular capacity.
Making use of Tinbergen’s current utility question, we suggest that finding the
best option amongst many is a fundamental cognitive ability to the survival of
the decision maker. In other words, we propose why certain allocations will be
preferred to others, given the agent’s constraints. Secondly, the problem assumes
familiarity with the environment, in the sense that the overall distribution of
richness in the repertoire of alternatives is known. Therefore, we do not make use of
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Tinbergen’s development question, as we do not inquire how real agents can learn
the parameters of this distribution. Thirdly, we assume a specific sampling process,
in which feedback is only available after the deployment of the resources. It is a
constraint at the level of Tinbergen’s mechanistic question, as it directly restricts
how the sampling should happen, e.g. a distributed system where reallocation
of resources is impossible. Finally, the capacity of the agent is thought to be a
relatively fixed parameter that characterizes its constraints, perhaps brought by
evolution, that answer why an agent’s allocations should follow a particular rule.

On the other hand, there is a hierarchy of processes in the breadth–depth
dilemma. The actual process of sampling and choosing the best option is a “low
level” process; the situation in which the agent is assumed to actually be. The
higher level process, then, is the allocation of resources. Its optimal solution need
not be computed in real time, nor “consciously” by the agent. These two levels
can be read from the two maximizer operators in Eqs. 2.7 and 3.5. Each level
of the hierarchy can be inspected from Marr’s levels of analysis. In terms of
the low level, sampling process, the BD tradeoff assumes a particular algorithm,
which is influenced by the capacity of the agent. In this sense, the constraints that
enter the algorithmic level, directly influence the computational level – choosing
the best allocation of samples. By building the higher level of the hierarchy, we
managed to transform the problem into a metareasoning problem, thus providing a
computational theory at this level. There are no assumptions about how the optimal
allocations are found. This critical distinction is aligned with the idea of bounded
optimality, in which agents are optimized at design time, instead of at run time,
therefore escaping the problem of perfect rationality (and perfect metarationality,
and so forth). The actual mapping of this problem to the bounded optimality
framework, in the style of ecological bounded optimality (Lewis et al., 2014) is
a task for the future. By explicitly associating the features of the BD dilemma
with Tinbergen’s four questions and Marr’s levels, we are immediately pointed
towards two possible avenues of future research – namely how learning impacts
the allocation of resources and how optimal allocations can be found.

Path occupancy maximization

In Chapter 5, we moved away from the problem of optimally allocating resources
in the breadth–depth tradeoff in order to maximize utility, to actually asking what
utility means for an agent. In order to do so, we needed to introduce the concept of
intrinsic motivation, the idea that agents have an internal notion of what they want
to achieve, without the need to externally craft a reward function. We proposed
a principle that is inspired by the variability of natural behavior by proposing
variability itself as the goal. We formalized this idea by formulating the objective
as maximizing the occupancy of future paths. We showed that entropy is the only
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measure consistent with intuitive desiderata about path occupancy, and showed
that this principle generates complex behavior in various simulated environments.

A crucial ingredient in this framework is that agents do not “choose” actions.
Instead, they determine, consciously or unconsciously, the probability distribution
over actions, such that the actual action taken is randomly drawn from this distribu-
tion. While agents can still take actions deterministically (by setting the probability
of a particular action equal to one), they are discouraged to do so by seeking
variation in actions and states, since this leads to a variation of paths, thus fulfilling
the principle. The fact that agents are attracted to regions of state space where
both the policy and the transition probabilities are as uniform as possible lets us
interpret that these agents seek to “maximize agency” (always taking deterministic
actions and observing deterministic transitions is “boring” and takes away their
agency). The POM principle leads then to seemingly goal-directed, yet highly
variable, behavior: agents seek states (e.g. food sources) and actions (e.g. moving
away from a predator) that allow them to keep occupying future paths in the long
run. Seeking those states and actions, from the limited perspective of an external
observer, might appear to be reward-seeking behaviors, even if from the internal
perspective of the agents, they are only “fuel” to keep going.

At first, the identification of reward as means and not as goals might seem
simply as a semantic problem. In other words, it might be argued that the reward
in the reward function can be intrinsically generated, such as a homeostatic signal.
In fact, Keramati and Gutkin (2014) have introduced an algorithmic model to
make standard reinforcement learning compatible with homeostatic regulation by
crafting the reward function as the difference in distance to a vector of set points,
a model called homeostatic regulated reinforcement learning (HRRL). In this
way, if a particular external state and action were associated to particular internal
states being closer to their set points (e.g. in hypothalamus), then this would
translate as a high reward that can be used to compute value (e.g. in cortico-basal
ganglia circuits). Path occupancy maximization agrees in some points to HRRL,
in particular to the idea that rewards should be represented as internal states (or
transitions between states) of the system in question. The main difference, however,
is that HRRL assumes the existence of a family of set points (perhaps brought
by the phylogeny of the agent in question, or by developing and learning in a
particular environment (Juechems and Summerfield, 2019)), but it does not say
why they exist, why they are set to a particular value, or why they are relevant for
the agent. In contrast, POM makes no assumptions about the internal structure
of states that limits the interpretation of intrinsic reward, other than the possible
existence of death states, which by construction immobilize the agent in state and
actions. The advantage is that desired ranges for internal states emerge from the
need to occupy path space, and only those that serve this purpose will be relevant,
thus providing candidates for a more complete causal understanding of behavior.
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In essence, POM is a computational theory of behavior, whereas HRRL uses the
reward maximization hypothesis as the computational theory to then construct an
algorithmic theory of homeostatic regulation by reinforcers.

One of the main results of this work is then to reconceptualize reward as means
to occupy path space, instead of the goal. This important distinction also allows
us to interpret laboratory settings differently. In laboratory tasks, rewards are
usually identified a priori (e.g. water for a water-restricted animal), and scientists
typically assume the ‘reward hypothesis’ to hold, which says that agents will tend
to maximize reward (or reward-rate) (Juechems and Summerfield, 2019). Under
both the POM and the HRRL view, this will only be true as long as the agent
needs the particular reward. Unlike the HRRL, the POM principle can tell you
why the agent needs the reward, which includes, but is not limited to, its own
survival. Hence, this work is best understood as trying to answer Tinbergen’s
why questions: current utility and evolution, by providing a principle that can
be applied to both. While the POM principle is agnostic to how behaviors come
to be, the work presented here suggests certain mechanisms by which the POM
principle is implemented in natural agents – in particular, the notion that rewards
are synonymous of transitions between internal states, which allows a natural
interpretation of path space occupancy.

Finally, the POM principle relies on the correct identification of constraints in
the agent-environment loop. As was stated in Chapter 5, in any Markov decision
process with full symmetry in the state-action dynamics, a random walk maximizes
path space occupancy. However, we start observing more interesting behavior
when we introduce constraints that break symmetries, such as energetic limitations,
presence of a predator, or a cart and pole dynamical system with specific dynamics.
The POM principle then, by construction, produces the most variable behavior that
constraints allow.

5.2 Future directions
There are several potential avenues of research to expand the work introduced in
this thesis. While this has already been discussed separately, we can delineate more
in detail the possible contributions in the future stemming from our work.

Breadth–depth dilemma

The breadth–depth dilemma was introduced in a general setting in Chapter 2,
and at the same time it was modeled in two different ways (Chapter 2 and 3).
Ultimately, the optimal tradeoff between breadth and depth search will depend on
the actual scenario involved. Other scenarios have been developed specifically for
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the formulation presented in this thesis. For example, a decision tree search under
limited resources displays the breadth–depth tradeoff that encourages yet again
depth over breadth search for a wide range of parameter values (Mastrogiuseppe
and Moreno-Bote, 2022).

As mentioned before, a crucial ingredient for breadth–depth problems is the
identification of resource allocation for subsequent sampling. In this thesis, we
have delayed feedback about the quality of the options completely in order to study
the tradeoff in isolation. However, real decisions combine a plethora of cognitive
tradeoffs due to particular constraints in the problem formulation. For example,
free-response sequential decisions display a speed–accuracy tradeoff due to the lim-
itation of sequential sampling in noisy environments. The exploration–exploitation
(EE) tradeoff appears when a sequential search needs to be performed in uncertain
environments in order to maximize future reward. In general, functional constraints
necessarily imply tradeoffs that can be of different nature (Del Giudice and Crespi,
2018).

A possibility to expand the research into the BD tradeoff is then to incorpo-
rate other constraints into the problem formulation to make it interact with other
cognitive trade-offs. For example, if reallocation of resources is allowed at any
moment during the sampling phase (perhaps at some cost), then a full fledged
interaction between the speed–accuracy tradeoff and the breadth–depth tradeoff
can be studied. In fact, there is currently work to explore dynamic allocation of
attentional resources by a recurrent neural network when feedback about the initial
consideration set is available over time (Damiani and Moreno-Bote, 2023). By
stopping evidence accumulation about certain alternatives during the sampling pro-
cess, the network can obtain a better accuracy about the remaining alternatives, thus
improving the reward obtained, and inducing a full-fledged interaction between a
depth–breadth tradeoff (induced by a decision about the initial consideration set)
and the speed–accuracy tradeoff (by reducing the alternatives considered to im-
prove accuracy, or stopping the accumulation altogether to favor speed). There are
two main differences about this approach with respect to the dynamic allocations
presented in Chapter 2. First, our dynamic allocations were static, in the sense
that the number of alternatives to drop per wave were a fixed strategy, whereas
in the RNN scenario, the actual observations received by the network drive it to
drop certain alternatives. Secondly, the dynamic allocation in Chapter 2 considered
a discrete number of waves, whereas the RNN works in continuous time, and
accumulates evidence in a similar fashion to the setting in Chapter 3.

Another interesting alternative is to remove the assumption of familiarity with
the environment to induce a form of exploration–exploitation tradeoff: allocation of
resources needs to happen not only to discover a good option (exploitation), but also
to learn the environment statistics (exploration). The decision maker is therefore
prompted to plan the resource allocation in a way that they receive information
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about the environment, which is crucial to discover the optimal allocations in the
future. In Chapter 3, we provided a definition of capacity that depends on the
discriminability of options 1/σ2

0 , where σ2
0 is the variance of the prior distribution,

as C = σ0

σ
T . If the decision maker does not know σ0 in advance, it is as if they do

not know their true capacity, which they need to discover. The optimal strategy
to allocate resources in order to maximize reward in the long run will be a crucial
answer for this BD–EE interaction.

Finally, it is worth mentioning that Vidal et al. (2022) have tested the predictions
from Chapter 2 about the optimal tradeoff in an experimental setting with humans
that isolates the BD dilemma. They show that humans are capable of trading off
breadth versus depth as their sampling capacity is experimentally changed in a
way that is consistent with the optimal strategies presented here. Even if there are
slight deviations from the prescribed optimal strategies in Chapter 2, humans do a
remarkable job at recognizing how their strategies should change once they are able
to gather more information about the world. Since their experimental paradigm
uses the same Bernoulli process described in Chapter 2, another possibility to
explore in the future is to test the predictions of continuous resource allocation
(such as time, or precision), either in full isolation as presented in Chapter 3, or the
alternatives listed above.

Path occupancy maximization

There are various way to expand the path occupancy maximization principle for
the understanding of behavior. As was mentioned in the Discussion of Chapter 4,
one of the clearest avenues is to formalize learning for this principle. Because there
is no need to learn any reward structure, in this context it is only needed to learn
the world model (the transition probability between states given actions). While
this is quite a hard problem, there are techniques in the literature that deal with
this problem and it is thus not necessarily an issue of this theory (for examples
see (Bellemare et al., 2016; Tang et al., 2017)). By necessarily injecting a prior
into the learning agent, it would be possible to model optimism (or pessimism)
as in standard reinforcement learning by setting the initial state values higher (or
lower) than the bounds of the value function (Sutton et al., 1998). In this case,
however, optimism is not about the amount of reward that a state-action pair can
lead to in the future, but about the future path occupancy. In other words, POM
agents that are optimistic have the notion that any state-action pair has high path
availability, which maps intuitively to the notion of curiosity by encouraging agents
to try different courses of action.

In the same line, a possibly important avenue for the POM principle is to use it
to discover and exploit skills. One of the main assumptions in this theory is that
states and actions are provided, over which paths are constructed. However, there
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are two issues of different nature with this assumption. First, not only is this not
always the case, sometimes the state and action space is so large that learning from
path occupancy might not be efficient in covering action-state space, such that
agents are trapped in a small region of path space (Campos et al., 2020). This is
not a problem by itself given that the objective is not covering action-state space,
but in practice it might deliver agents that are too limited in what they do and what
they can visit. This leads to the second issue, which is that it can be argued that
natural agents show much smoother behaviors than those apparent in our results.
Using realistic dynamics where actions are analogous or equal to forces make the
dynamics smoother, as in the cartpole experiment (Fig. 4.4). However, actions
(in this case, forces) do vary significantly with a small timescale; a testable, but
dubious, consequence from using primitive actions to construct the POM principle.
One potential solution is to apply the POM principle to state-skill paths, or state-
option paths, where skills are latent variables on which policies can be conditioned
to deliver higher-level actions (Eysenbach et al., 2018; Sharma et al., 2020), and
options are temporally extended actions that call on primitive actions (e.g. ’getting
up from a chair’ calls on muscle contractions to deliver the desired higher level
action) (Sutton et al., 1999). This inevitably leads to asking what the right level
of coarse-graining is for path occupancy maximization, both in space and actions,
a question that is undoubtedly critical for agents that make decisions in real time
and under resource constraints (Harb et al., 2017). Certainly, when there are no
resource constraints, another important direction for POM is to make it scalable –
devise ways to deal with large state and action spaces, as well as continuous state
and action spaces. Bringing it to the state of the art of machine learning research
would mean dealing with sophisticated value function approximators and efficient
learning algorithms. While in principle there are no theoretical limitations to do
this, this direction is out of the scope of this thesis.

Finally, path occupancy maximization itself need not be the ultimate intrinsic
motivation approach. In fact, based solely on occupation of state and action spaces,
there exists already approaches that deal with a coverage problem: what is the
optimal policy to explore state space in an efficient way? (See (Hazan et al.,
2019; Neu et al., 2017; Liu and Abbeel, 2021; Mutti et al., 2021; Amin et al.,
2021).) While the inspiration is radically different, the methods might be similar.
In fact, one could pose the problem introduced by POM not as occupying path
space, but to actually occupy state and action space in a reward-free manner. This
objective function implies the existence of a stationary state distribution induced
by the optimal policy, by which the agent is pushed to maximize the state or action
entropies. We have unified some of these approaches in a general theory entropy
regularization in MDPs, where the state and action entropies can have arbitrary
weights (Grytskyy et al., 2023), but its implications for learning are still a work
in progress. In the end, one of the main inspirations of the POM principle was
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behavioral variability itself, and thus a natural direction for this work to expand
would be to try to understand animal behavior as maximizing path occupancy. As
said earlier, the right level of path abstraction will need to be either controlled
or inferred. All in all, the POM principle could also inspire a new neuroscience
approach to behavior that shies away from the reward hypothesis, bringing animal
behavior to more ecological tasks in which the analysis and interpretation of
behavior are not contingent to an external reward function set by the experiment
design.
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