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1.1 Working memory: How does the brain maintain information in the                   

absence of inputs? 

Consider the most basic building blocks of animal behavior: Moving between different                       

places, maybe with the goal of finding sources of food; in humans, having a conversation or                               

planning the tasks of one’s day. In each of these situations, animals have to think ahead                               

and plan the necessary actions to reach their goal. More fundamentally, animals have to                           

represent goals throughout a continuous span of time, in order to concatenate different                         

actions that will lead to their accomplishment. A fox that is chasing prey, for example, has                               

to remember that it has seen a rabbit in order to follow it through the woods. Similarly, a                                   

presenter at a conference has to remember the beginning of their sentence in order to finish                               

it coherently. Even though these situations are vastly different in many respects, they share                           

the feature that without an ongoing representation of past information, successful behavior                       

would not be possible. One way or another, the brain has to achieve continuity of                             

information through time, especially in the absence of relevant inputs.  

 

In Chapter 1.1, I will present the solutions that neuroscience has proposed for this                           

problem. First, I will define working memory from a cognitive perspective and introduce                         

classical experimental tasks that are used to measure properties of working memory across                         

species and sensory systems (note, however, that the focus of this thesis lies on visual                             

working memory). Then, I will review electrophysiology findings from the last 50 years that                           

are foundational to our understanding of how neural circuits implement working memory.                       

Finally, I will discuss how mechanisms of short-lived synaptic plasticity could emerge from,                         

and contribute to, working memory maintenance. 

 

Working memory as a fundamental cognitive function 

The set of brain functions that achieve a temporally continuous representation of past                         

experiences is called memory. Depending on a number of factors, but mostly based on the                             

timescale over which information is maintained, psychologists, cognitive scientists and                   
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neuroscientists distinguish between short-term or working memory , and long-term                 1

memory. This distinction has first become evident in patients with cortical lesions, in whom                           

information maintenance on either shorter or alternatively longer timescales was affected,                     

depending on the location of the lesion (Scoville and Milner 1957; Shallice and Warrington                           

1970). Still, these functions are by no means independent, as working memory can be                           

influenced by long-term contents, and working memory might play a role in the initial                           

formation of long-term memories. For now, I will provide a definition of working memory as                             

a brain function that retains information in an active state over short periods of time                             

(typically hundreds of milliseconds to several seconds), thereby allowing for concurrent                     

maintenance and processing of the stored information (Baddeley 1992). Measures of                     

working memory are strongly correlated with different aspects of higher-order cognition,                     

including reasoning, learning, planning, language comprehension, and general cognitive                 

ability (Conway et al. 2003), pointing to its core contribution to most aspects of cognitive                             

performance.  

 

In parallel to early studies of working memory in humans (Atkinson and Shiffrin 1968;                           

Baddeley 1986), its study in animal models has allowed to make significant advances                         

beyond purely cognitive theories by measuring brain activity on the level of single neurons                           

while animals perform working memory tasks (Fuster and Alexander 1971; Kojima and                       

Goldman-Rakic 1982). Some of the groundbreaking findings in primates, described in the                       

next section, became fundamental to the understanding of how the brain maintains                       

information in the absence of inputs. Therefore, in this thesis I will mostly focus on tasks                               

that employ low levels of abstraction and can be used in both human and animal                             

experiments (as compared to e.g. verbal working memory tasks, which limit us to human                           

subjects and therefore rarely allow for direct assessments of single-cell activity). 

 

Working memory across species can be measured in different sensory domains (visual,                       

tactile, and auditory (Pasternak and Greenlee 2005), but also olfactory, which is a natural                           

choice for rodent models (Liu et al. 2014)). While important differences exist regarding task                           

structures, all share the basic building blocks of working memory encoding (information is                         

presented in the form of a stimulus), maintenance (the stimulus is removed, but the                           

information must be remembered over several seconds), and recall (the stimulus identity                       

must be reported: either by reproducing its value, adjusting a second stimulus to match the                             

1 where working memory, in contrast to short-term memory, is not just limited to storing information,                               
but implies a more active maintenance (Baddeley 1992). 
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remembered one, choosing the previously shown stimulus from a set of stimuli, or a simple,                             

“yes/no” binary identification of a probe). A specific type of working memory task, the                           

delayed-response task (Hunter 1913), is shown in Figure 1. Other than locations, modern                         

versions of the task can test the retention of various other visual features, such as                             

orientations, spatial frequency or movement direction, different auditory features, such as                     

tone frequency, loudness, etc. Popular variations of this task, with the goal of making it                             

more challenging and testing the limits of working memory, are the sequential or                         

simultaneous presentation of several to-be-remembered stimuli, the introduction of                 

distracting stimuli during the delay, or the introduction of contextual information that                       

interferes with the presented stimuli (e.g by introducing stimulus correlations between                     

trials).  

 

 

 
Figure 1. Example of an “analog” visuo-spatial working               
memory or delayed-response task. In this early version               
of the task, the experimenter shows the animal a                 
peanut (cue) on one of two locations (left or right).                   
Then, an opaque screen is lowered for several               
seconds, during which the animal needs to remember               
the presented location (delay). Finally, the blind is               
removed again, and the animal can choose at which                 
side it remembers the peanut to be (response). In more                   
modern versions of this task, the stimulus is presented                 
on a computer screen, and the to-be-remembered             
stimulus value can lie on a continuum (e.g., an angular                   
location instead of a left/right decision). Moreover,             
other stimulus dimensions than location can be used,               
such as gratings with different contrasts, spatial             
frequency or movement speed for visual stimuli, tone               
frequency or loudness for auditory tasks, etc. Figure               
from Goldman-Rakic (1987) with permission from           
Wiley publishing group. 

 

Depending on the type of stimulus and the recall modality, working memory can be                           

quantified in terms of the somewhat interdependent terms of capacity (How many                       

presented stimuli are recalled?), accuracy (Is the recalled stimulus correctly identified or                       

reported?), and precision (How precisely does the recalled or reproduced stimulus value                       

match the encoded one?). As we shall see in the Chapter 1.2, multiple sources of errors                               

exist and can lead to forgetting or imprecision of working memory representations in the                           

brain. To understand these phenomena in a mechanistic framework that takes the neural                         

circuit as its starting point, it is important to first discuss the neural correlates that have                               

been identified in animals performing working memory tasks. 
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Cellular mechanisms of working memory 

In the early seventies, single-cell activity during delayed-response tasks was measured for                       

the first time in primates (Fuster and Alexander 1971; Kubota and Niki 1971). Informed by                             

lesion studies in humans and monkeys that resulted in working memory deficits (Brutkowski                         

1965), these researchers chose to record in the prefrontal cortex (PFC). Fuster and                         

Alexander (1971) found that more than half of the 110 recorded prefrontal cells increased                           

their spiking activity transiently or during a prolonged period of time during stimulus                         

presentation, delay, or both, as compared to a pre-stimulus baseline. Intriguingly, many                       

neurons showed changes in activity that were sustained throughout the whole delay ,                       2

sometimes during more than 60 s. 

 

 

Figure 2. One neuron’s responses during stimulus presentation (C), delay (D), and saccadic response                           
(R) in the ODR (see text below). Stimuli in each trial were presented at any of eight locations (middle).                                     
On the outer plots, spike times (vertical lines) for an example neuron are plotted, each subplot                               
corresponding to a group of trials (rows) with the same stimulus location. Below, a peristimulus time                               
histogram (PSTH) shows cumulative spike counts over several trials with the same stimulus location.                           
Note that activity is smoothly modulated by stimulus location, showing more similar responses for                           
adjacent stimuli. A suppression of activity for opposite locations can be seen in other example                             
neurons that are not shown here. Figure from Funahashi et al. (1989) with permission from The                               
American Physiological Society. 

2 The proportion of persistently active neurons in PFC was estimated as 33% in a follow-up study                                 
two years after these initial findings (Fuster 1973). 
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The finding of prefrontal persistent activity was replicated often in the years to follow (for                             

an extensive review, see Leavitt et al. 2017). Importantly, Niki and Watanabe (1974; 1976)                           

showed soon after that prefrontal activity not only spanned the whole delay period, but at                             

the same time encoded the identity of the memorized stimulus: Independently of the                         

upcoming motor response direction, a considerable share of cells exposed consistent side                       

preferences, i.e. they increased their activity more strongly if the stimulus had appeared on                           

one side rather than the other. However, classical monkey electrophysiology setups like the                         

one shown in Figure 1 made it hard to precisely control for motor and postural confounds,                               

stimulus timing, and to introduce more elaborate stimulus protocols. To overcome these                       

limitations, Funahashi et al. (1989) designed a computer-controlled oculomotor delayed-                   

response task (ODR) that allowed to present visual stimuli across a wide part of the                             

monkey’s visual field, and that measured eye movements or saccades as responses. Their                         

most important result, shown in Figure 2, summarizes what has since then been widely                           

accepted as the neural substrate of (visuospatial) working memory: Location-tuned,                   

persistent activity in PFC. Around 70% of neurons with persistent activity exposed location                         

preferences. The authors showed that these preferences arise from smooth location tuning                       

similar to neural tuning in primary visual areas (Hubel and Wiesel 1959), and thereby coined                             

the term memory fields. 

 

 

 

Figure 3. Areas of the primate brain in which                 
stimulus-specific persistent activity during visual         
working memory is consistently found. Color hue             
indicates the number of positive (red) or negative               
(blue) results, and saturation levels the number of               
studies conducted for each area (the more             
saturated, the more studies, out of max. 32               
reviewed studies). Other than PFC (rightmost),           
regions with persistent activity include primarily           
inferotemporal (center bottom) and parietal (center           
top) regions. While early sensory regions are             
probably mostly involved in memory encoding,           
association cortices with persistent activity are           
suited for domain-general working memory storage           
and manipulation (Xu 2017; Panichello and           
Buschman 2020). Figure adapted from Leavitt et al.               
(2017) with permission from Elsevier. 

 

 

It is important to note that persistent activity during working memory delays has not                           

only been found in PFC (despite being the most unequivocally identified region). A recent                           
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review of over 90 studies in primates by Leavitt et al. (2017) reports evidence for                             

stimulus-selective, sustained activity in several higher-order, associative cortices, including                 

prefrontal, parietal, and inferotemporal regions. In contrast, evidence for sustained activity                     

in early sensory regions is rather sparse (Figure 3), and is potentially explained by top-down                             

feedback from PFC (Xu 2017).  

 

From cellular to network mechanisms 

After a cellular substrate of working memory maintenance had been identified, questions                       

arose on how a neuron could produce constant output over such long timescales. One                           

possibility is that specific membrane properties of single neurons could lead to                       

single-neuron bistability, so that a neuron can fire with both low baseline firing rates or                             

sustained high firing rates in the absence of external input. The sustained firing state is                             

achieved through extended periods of excitability that cause prolonged, so-called plateau                     

potentials, and exceed the time of stimulation by several hundred milliseconds or, in rare                           

cases, substantially longer periods (Marder et al. 1996; Zylberberg and Strowbridge 2017).                       

While evidence for single-cell persistent activity has been found in PFC (Haj-Dahmane and                         

Andrade 1998) and intrinsic, non-task-related timescales of PFC neuronal firing are in fact                         

longer than in most other cortical areas (Murray, Bernacchia, et al. 2014), single-cell                         

persistent firing in most neurons still barely spans sufficiently long periods for successful                         

memory maintenance (usually during delays of up to ~ 20 s; Inagaki et al. 2019).  

 

An easier solution to the problem of persistent firing becomes evident when one                         

considers the PFC as a network: Its neurons receive inputs not only through feedforward                           

pathways from sensory brain regions, but also from recurrent connections that form                       

feedback loops (Lorente De Nó 1938; Hebb 1949). While feedforward input ceases soon                         

after external stimuli are removed, recurrent connections feed output from a PFC neuron                         

back to itself (after further processing through other neurons of the same or a different                             

circuit ). Indeed, neurons in PFC (similar to other higher-order cortices) communicate with                       3

other PFC neurons through horizontal connections within the same layer (González-Burgos                     

3 Candidate regions that might form recurrent loops with PFC are those that show persistent activity                               
themselves, primarily inferotemporal and parietal regions (for a review, see ref. (Riley and                         
Constantinidis 2015)). A rather unexplored hypothesis of the origin of PFC persistent activity during                           
working memory lies in recurrent connections of the PFC with the thalamus, basal ganglia, and, as                               
pointed out by more recent evidence, cerebellum. Early on, persistent activity during                       
delayed-response tasks has been found in the thalamus (Fuster and Alexander 1973), and recently,                           
Gao et al. (2018) have shown that frontal cortex persistent activity depends on inputs from deep                               
cerebellar nuclei, which also exhibited persistent activity in a delayed-response task. 
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et al. 2000; Kritzer and Goldman-Rakic 1995), as illustrated in Figure 4. Moreover,                         

correlated delay responses in adjacent neurons (Rao et al. 1999) suggests a circuit                         

structure that favors connections between neurons with similar memory fields. 

 

The advances in the neuroanatomical and electrophysiological understanding of the                   

PFC made in the 70s, 80s and 90s inspired biophysical models of the prefrontal microcircuit                             

as a system that maintains stimulus-specific working memory representations                 

autonomously through recurrent excitatory and inhibitory connections (Goldman-Rakic               

1995). The principal phenomenon in this family of models (Compte et al. 2000; Amit and                             

Brunel 1997; Lim and Goldman 2013) is reverberation of activity through time, which in turn                             

depends on sufficiently strong recurrent excitatory connections (Wang 2001). When                   

stimulus-specific inputs are fed into these networks, a transient increase of activity in                         

location-tuned neurons occurs. These neurons send outputs to similarly tuned excitatory                     

neurons, while inhibitory connections suppress activity in neurons that are more dissimilar                       

in tuning. Inhibition is achieved through a pool of inhibitory interneurons, which is smaller                           

than the excitatory pool (usually with a ratio of ~ 1:4). The balance between excitation and                               

inhibition ensures that activity in the microcircuit is stable both in the absence of                           

memoranda (the state of spontaneous activity, in which neurons usually fire with rates of                           

~1-4 spikes/second), and in a state of persistent delay firing (in which stimulus-specific                         

neurons show firing rates of ~20-100 spikes/second). Importantly, network bistability                   

implies a non-linear relation between input strength and neural firing, where the network                         

switches abruptly between spontaneous and persistent firing as inputs exceed a certain                       

threshold. Figure 5 depicts activity in a bump-attractor network for working memory                       

(Compte et al. 2000) that simulates PFC activity recorded in Funahashi et al. (1989). 

 

 

Figure 4. Retrograde labeling in monkey PFC vs. primary visual cortex (V1) identifies the neurons that                               
provide input (triangles) to a cell (oval) located in a specific layer, here layer 3c. In contrast to V1,                                     
layer 3 PFC neurons receive extensive inputs from other neurons of layer 2, 3 and layer 3c. Similar                                   
patterns of connectivity are observed in layer 5 (not shown). Figure from Kritzer and Goldman-Rakic                             
(1995) with permission from John Wiley and Sons. 
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Figure 5. Bump attractor model of working memory in the prefrontal microcircuit. Heatmap shows                           
individual neurons’ (ordered along the y-axis by their preferred stimulus location) firing rates at each                             
point of time. Vertical lines mark on- and offset of inputs, and the on- and offset of a strong,                                     
unspecific stimulus (marking the response). Before stimulus onset and after the response, neurons                         
fire with spontaneous rates of ~4 Hz. During the delay, a bump of activity with a characteristic width                                   
and firing rates of ~20 Hz maintains stimulus-specific information. Background noise causes the                         
bump to drift slightly over the course of the delay, a phenomenon related to delay-dependent                             
imprecision (see Chapter 2). Bottom, tuning curves or memory fields for an example excitatory and                             
inhibitory cell. Figure from Compte et al. (2000) with permission from Oxford University Press. 
 

 

In the last decade, several studies have tested the predictions of attractor models of                           

working memory in monkey PFC, finding evidence in line with both stable delay-firing, and                           

the network origin of such activity (Wimmer et al. 2014; Inagaki et al. 2019; Kim et al. 2017).                                   

Yet, the fundamental assumptions of these models have been questioned recently                     

(Lundqvist et al. 2018). Criticism is centered around the concept of persistent delay activity,                           

claiming that it either reflects preparatory motor activity (which would be drastically reduced                         

in delayed match-to-sample tasks (Shafi et al. 2007)), or a confound of trial-averaging of                           

variable and transient single-trial activity. While the first concern poses a serious restriction                         

to the interpretation of delay activity, the latter is answered by the compatibility of                           

reverberatory, persistent activity with single-neuron, trial-to-trial variability and               

heterogenous temporal profiles: As outlined above, persistent activity likely is a network                       

phenomenon, and does not need to occur in single cells. Accordingly, it has been                           

demonstrated that while heterogenous on the single-neuron level, delay activity is best                       

described by a stable code on the population level (Murray et al. 2017; Parthasarathy et al.                               

2019; Mendoza-Halliday and Martinez-Trujillo 2017).  
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How does persistent delay firing translate to human neuroimaging and EEG? 

Interpreting human neuroimaging or human electroencephalography (EEG) studies in terms                   

of underlying circuit mechanisms can be problematic, as the firing patterns of (delay-active)                         

neurons are not unambiguously translated into neural activity measurable in EEG or fMRI                         

BOLD responses. In fMRI, activity of a single voxel is best understood as the                           

several-seconds-delayed, time-averaged, and spatially averaged activity of ca. 300,000                 

neurons that lie within several millimeters squared of cortical surface (Heeger and Ress                         

2002). For EEG, the relation to neural firing patterns is even more indirect: The potential                             

measured at a scalp electrode reflects averaged spiking activity, but also subthreshold                       

post-synaptic potentials from large, spatially distributed groups of neurons (Snyder and                     

Smith 2015). It is non-trivial to reconstruct the source of a specific signal, due to                             

physiological and mathematical difficulties: On the one hand, the directions along which                       

EEG signals travel are very heterogeneous for different cortical regions, and signals                       

distorted as they travel through inhomogeneous masses of neural tissue and scalp; on the                           

other hand, there are more potential sources of the signal than electrodes or                         

measurements, which makes the problem an underdetermined system (Grech et al. 2008).                       

In any case, it has to be kept in mind that signals from different brain regions are integrated                                   

in potentials measured at a local electrode, and that EEG should therefore be understood                           

on a whole-brain or global network level. Finally, neural computations can translate into                         

temporally complex patterns in voltage traces (Snyder and Smith 2015), e.g. as a function                           

of the synchrony in neural firing. However, the rules of this translation are not well known,                               

further complicating inferences about neural processes from EEG signals. 

 

While it is important to keep these limitations in mind, EEG offers an affordable and                             

non-invasive way to study neural correlates of cognition in humans. Especially for the study                           

of cognition in psychiatric disease that does not easily translate to animal models, it is often                               

the only option to access brain activity in patients, together with fMRI. Moreover, EEG has a                               

high temporal resolution and signals are relatively immediate (with a lag on the scale of tens                               

of milliseconds), making it a suited instrument to study temporal aspects of neural                         

responses (e.g., changing vs. stable codes, latency effects, etc.). While the EEG typically                         

measures transient brain responses, other approaches have shown that sustained                   

processes are reflected in the EEG signal, too: For example, when decomposing signals                         

into oscillations of different frequencies, the power of the “alpha” band (8-12 Hz ) correlates                           4

4 In some studies, the alpha band refers to frequencies between 8-15 Hz. 
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with anticipatory or ongoing spatial attention (Banerjee et al. 2011; Foster and Awh 2019;                           

Gould et al. 2011). Importantly, increases or decreases in the alpha band are retinotopically                           

organized, so that their distribution across the scalp can be used to “decode” the spatial                             

focus of attention. In fact, using this feature, alpha power has been recently employed to                             

precisely decode spatial working memory contents over delays of several seconds (Foster                       

et al. 2016). Similarly, but possibly during less extensive time periods, working memory                         

contents can be decoded from multivariate raw voltage traces, where several properties of                         

EEG memory codes correspond to memory codes measured from neural ensembles (e.g.                       

Wolff et al. 2020). 

 

What is the correspondence between these distributed, whole-brain memory codes and                     

the circuit mechanisms described earlier? The sobering answer is, in most aspects, we do                           

not know. Memory codes measured in alpha power possibly reflect the synchronization of                         

neurons in location-tuned visual cortices (Kelly et al. 2006; Rihs et al. 2007), which could be                               

driven by frontal feed-back inputs (Reinhart et al. 2012). When interpreting correlates of                         

cognition measured in EEG in terms of circuit mechanisms, it is of advantage to compare                             

findings to the non-human primate literature. Ideally, tasks should be designed in a way that                             

make the comparison as straightforward as possible. Of course, these considerations are of                         

lesser importance when interpreting neural correlates in EEG on their own account, outside                         

the context of circuit mechanisms. 

 

What is the role of synaptic plasticity in working memory? 

In addition to the criticisms described in the last section, persistent activity holds other                           

potential downsides: It is metabolically expensive (Attwell and Laughlin 2001), and relatively                       

susceptible to distraction or interference from simultaneously held memories, as described                     

in Chapter 1.2. Hence, it has been postulated that activity-dependent mechanisms with                       

long time-scales other than increased firing rates, such as short-term plasticity (STP), might                         

support attractor models to render memories more stable (Carter and Wang 2007; Itskov et                           

al. 2011; Hansel and Mato 2013; Barbieri and Brunel 2008; Seeholzer et al. 2019; York and                               

van Rossum 2009; Pereira and Wang 2015; Mongillo et al. 2012; Kilpatrick 2018; Yoon et al.                               

2020), and allow the temporary absence of persistent spiking during the delay (Mongillo et                           

al. 2008; Fiebig and Lansner 2017).  
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These hybrid models are inspired by the identification of a range of STP mechanisms                           

(Zucker and Regehr 2002), which span a spectrum of timescales from tens of milliseconds                           

to several minutes, and can both potentiate or depress synapses. Evidence for STP in PFC                             

has been found in vitro (Hirsch and Crepel 1990; Hempel et al. 2000; Wang et al. 2006) and                                   

in behaving animals (Fujisawa et al. 2008). In addition, specific features of STP in PFC                             

(strong augmentation, strong facilitation in recurrent excitation) suggest that these                   

mechanisms may play a role in the specific functions of PFC (Hempel et al. 2000; Wang et                                 

al. 2006). Typically, these studies considered STP as complementary to activity-based                     

working-memory maintenance (Carter and Wang 2007; Itskov et al. 2011; Hansel and Mato                         

2013; Barbieri and Brunel 2008; Seeholzer et al. 2019; York and van Rossum 2009; Pereira                             

and Wang 2015; Mongillo et al. 2012; Kilpatrick 2018; Yoon et al. 2020; Hempel et al. 2000;                                 

Wang et al. 2006), but the modeling work by Mongillo et al. (2008) has motivated a series of                                   

studies, most of them employing human neuroimaging techniques, that set out to                       

demonstrate “activity-silent”, i.e. plasticity-based, maintenance of working memory by                 

observing the absence of persistent activity during memory delays (e.g. Wolff et al. 2017;                           

Rose et al. 2016). Apart from the issues with circuit interpretations of neuroimaging results                           

exposed in the previous section, this line of argumentation is problematic from a                         

science-theoretical perspective for two reasons: First, the absence of a mnemonic code in                         

spiking activity of a specific area can only be observed if all neurons in that area were                                 

recorded, which to date is technically difficult with spike-recording techniques, and                     

inaccessible to human neuroimaging techniques. Second, the absence of one mechanism                     

does not per se prove the presence of a specific other mechanism, but rather the presence                               

of any other mechanism (given the animal still successfully performs the task). 

 

To conclude, it remains to be demonstrated that STP or other mechanisms with                         

long-lasting activity-dependent alterations in neuronal excitability can replace persistent                 

activity during working memory delays, and for the time being, stable memory codes as                           

achieved by bistable neurons or attractor dynamics on the network level continue to be the                             

most parsimonious explanation of how the brain maintains information in the absence of                         

external inputs. At the same time, it is likely that some sort of long-timescale mechanisms                             

coexist with firing-based neural codes, potentially stabilizing memory-related activity,                 

reflecting early phases of memory consolidation in the neocortex, or merely reflecting                       

residual phenomena of persistent firing. However, explicit evidence for this is still lacking.   
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1.2 Errors and systematic biases in working memory 

As outlined in Chapter 1.1, working memory can be measured by how successfully an                           

animal recalls the initially encoded stimulus. Depending on the characteristics of the task,                         

different measures can be derived; the most popular ones being capacity (which implies the                           

encoding of multiple items), accuracy (usually measured as percentage of correct                     

responses) or precision (measuring how strongly responses vary around the stimulus value                       

in continuous settings). Given the particular relevance of working memory tasks with                       

continuous stimulus features, this section will focus on working memory errors as measured                         

by imprecision (but generalize to errors measured by other metrics whenever it seems                         

adequate). Errors in working memory can theoretically result from failed encoding,                     

maintenance, or recall; therefore, only those phenomena that reflect increased memory                     

failure for longer delay periods are considered maintenance-related (although different                   

sensory features might expose memory decay more or less strongly (Pasternak and                       

Greenlee 2005)). The systematic study of the sources of imprecision is interesting from a                           

behavioral perspective itself. From a neuroscience perspective, it allows us to make                       

inferences about the failure modes of neural mechanisms that hold working memory. In this                           

sense, studying behavior is useful to test and adjust our mechanistic understanding of                         

working memory. In Chapter 1.2, I will discuss the known sources of working memory                           

imprecision and the neural basis thought to underlie the failure of working memory. 

 

Forgetting 

Working memory imprecision is explained by a multitude of factors, many of which are                           

possibly still to be discovered. Imprecision can be measured by comparing encoded with                         

reported stimulus values: Typically, most reports do reproduce stimuli relatively faithfully,                     

but some reports are completely uncorrelated with encoded stimuli. These reports are                       

thought to result from the most drastic of memory failures, forgetting, as a consequence of                             

a breakdown of neural representations over the course of the delay (e.g. Funahashi et al.                             
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1989). This phenomenon can be explained by insufficient excitatory reverberation, for                     

example due to lower than optimal levels of recurrency between excitatory neurons                       

(Cano-Colino et al. 2014). Another reason for forgetting could be the interference of strong                           

new inputs with the currently maintained memory (Compte et al. 2000), causing                       

memory-related neural activity to be abandoned (Sakai and Passingham 2003). However,                     

the disruptive effect of distractors on persistent activity is stronger in parietal and                         

inferotemporal regions than in PFC (Miller et al. 1996; Suzuki and Gottlieb 2013), so that                             

distractors are typically successfully suppressed or filtered by PFC. In turn, if PFC                         

persistent activity is abandoned, memory errors increase (Sakai and Passingham 2003).                     

Finally, forgetting can be related to the number of stimuli that are memorized, resulting in an                               

upper limit to working memory capacity (Zhang and Luck 2008; Miller 1956; Adam et al.                             

2017) . In all cases, memories no longer retained by the responsible brain circuits will result                               5

in random responses at chance level, if the subject or animal is asked to report the stimulus                                 

after the delay (Zhang and Luck 2008). 

 

Diffusion 

A second source of errors in working memory is more subtle than the complete loss of                               

memory-related activity, and does not result in forgetting: Neural circuits are subject to                         

(intrinsic or extrinsic) noise that corrupts signals. In continuous attractor models such as the                           

bump-attractor model proposed by Compte et al. (2000), the impact of noise on memory                           

representations increases over time and contributes to a diffusion process of memory                       

representations that is sometimes (somewhat non-orthodoxly) referred to as random drift .                     6

The strength of this diffusion can be measured by the trial-to-trial variability of behavioral                           

responses around the target, after eliminating random responses and systematic biases. As                       

shown in Figure 6, increased memory delays lead to less precise responses (Funahashi et                           

al. 1989; Rademaker et al. 2018). In both monkey and human electrophysiology, it has been                             

shown that this phenomenon is consistent with randomly diffusing, but stable, neural codes                         

(Wimmer et al. 2014; Wolff et al. 2020).  

5 but see refs. (Gorgoraptis et al. 2011; Wilken and Ma 2004) for accounts of gradual corroboration                                 
and loss in precision, rather than forgetting,  in multi-item working memory 
6 The underlying assumption of a diffusion process is a continuous, so-called line attractor model of                               
working memory. In a different class of attractor models, which are multistable with a discrete                             
number of attractor states, remembered stimuli are categorized and stored as the typical class                           
representation or fixed points (for a review, see Compte 2006). Due to the non-continuity of attractor                               
states, diffusion or random drift should not affect memory representations in these models (Inagaki                           
et al. 2019). 
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Figure 6. Saccadic endpoints after increasing delays in the experiment of Funahashi et al. (1989). The                               
variability in monkeys’ reports increases with increasing delay lengths, here observable in an                         
increased spread of responses around the eight potential target locations. From left to right, visually                             
guided saccades, saccades after 3 s delays, and after 6 s delays. Figure from Funahashi et al. (1989)                                   
with permission from The American Physiological Society. 
 
 

Importantly, diffusion is not to be confused with (nonrandom) drift of memories towards                         

specific stimulus values, a topic discussed in the next section. Both sources of error                           

contribute to increased spread of reports around the target, usually resulting in a                         

Gaussian-like distribution of reports relative to the target. Therefore, it is important to first                           

explain errors that result from directed drift or different types of biases towards fixed                           

stimulus values, before interpreting residual variability as the result of diffusion. 

 

Systematic biases 

The final part of this section has the goal to introduce the concept of biases in working                                 

memory, i.e. systematic distortions of memory representations towards or away from                     

specific values of the parameter space that describes the stimulus. There is a large number                             

of possible sources for bias, many of them probably still undiscovered, and I will only touch                               

on a few of them: Bias towards fixed values of the parameter space, bias towards                             

simultaneously presented stimuli, and bias towards previous experiences. 

 

Again, all three of these classes are in agreement with attractor models of local working                             

memory-maintaining circuits, such that memory representations drift towards specific                 

values of the stimulus space. Some of these attracting values are fixed values which are                             

constant over the course of an experiment (or even longer periods of time) and represent                             

salient values of the stimulus distribution, such as visually salient colors in a color working                             

memory task, or the cardinal directions in a visuospatial working memory task (Lipinski et                           

al. 2010; Shin et al. 2017; Panichello et al. 2019; Bae et al. 2015). Attraction towards fixed                                 
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stimulus values shows a smooth profile that depends on the distance between the                         

memorized stimulus and the value it is attracted to, and attractive effects typically increase                           

with working memory delay (Shin et al. 2017; Panichello et al. 2019; Bae et al. 2015). 

 

A second category of memory bias is attraction towards simultaneously presented                     

stimuli, which can be observed in multi-item working memory (Almeida et al. 2015; Nassar                           

et al. 2018), but also as an attraction towards distractors (Herwig et al. 2010; Rademaker et                               

al. 2015; Van der Stigchel et al. 2007). Importantly, in both cases the attractive effect is                               

again dependent on the relative distance between the remembered stimulus value and the                         

stimulus value of the distractor, or the simultaneously remembered memory item, such that                         

attraction is stronger for close-by distances. Almeida et al. (2015) have shown that                         

attraction can be explained by (partial) merging of two bumps that represent different, but                           

simultaneously held memories . 7

 

Finally, biases can be directed towards previously experienced values. This attraction or                       

repulsion can be a result of learning the stimulus statistics, so that the stimulus distribution                             

serves as a Bayesian prior and causes an attraction towards the expected value of the                             

distribution (Lieder et al. 2019; Ashourian and Loewenstein 2011). This bias is called                         

contraction bias, as values are contracted towards the mean. Contraction bias is a specific                           

example of the first class of biases described in this section, which are directed towards                             

salient or prominent values of the stimulus space, and one could argue that the preference                             

for certain stimulus values emerges from long-time learning of the sensory statistics in the                           

outside world. While contraction biases could be explained in a local circuit model of                           

working memory with (potentially learned) non-continuous attractor landscapes, similar to                   

the model proposed by Panichello et al. (2019), Akrami et al. (2018) found that stimulus                             

history in rats is stored separately from working memory delay activity in posterior parietal                           

cortex (PPC).  

 

 

 

7 Another phenomenon that occurs in multi-item settings are swap errors (Bays et al. 2009):                             
Multi-item settings necessarily employ more than one stimulus dimension (such as color and                         
location), so that at the time of recall, one feature can be used to indicate for which item the second                                       
feature has to be reported (“report the position of the red item (not the blue one)”). Swap errors occur                                     
when the non-probed item (in this example, the blue item) is reported instead of the probed one (the                                   
red one). This mix-up is thought to result from failures in feature-binding rather than memory bias,                               
and has to be controlled for by calculating errors not only with respect to the target stimulus, but                                   
also to non-target stimuli, revealing an above-chance precision in case swap errors occurred. 
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Figure 7. Left: Biases towards previous stimuli depend non-linearly on the distance between previous                           
and current stimulus values. Middle: Serial dependence increases with increasing delay lengths.                       
Right: For increased ITI durations between two trials, serial dependence decreases. Figure adapted                         
from Papadimitriou et al. (2015) with permission from The American Physiological Society. 
 

 

Biases towards previously experienced values do not necessarily imply optimal or                     

Bayesian processing in the context of the working memory task: In tasks with a flat prior                               

and uncorrelated trial-to-trial stimulus statistics, responses in human subjects, nonhuman                   

primates, and rodents are attracted to the stimuli presented in the immediate past (Akrami                           

et al. 2018; Papadimitriou et al. 2015; Hermoso-Mendizabal et al. 2020; Fischer and                         

Whitney 2014). This type of biases is also called serial dependence in the human literature,                             

as biases are short-lived and fade in the course of a few trials (Fischer and Whitney 2014),                                 

and they are weaker after longer inter-trial intervals (ITI) (Papadimitriou et al. 2015). There                           

are other interesting temporal dynamics that characterize serial dependence: Attractive                   

biases usually only emerge after working memory delays of several seconds, while biases                         

are repulsive in the absence of memory requirements (Bliss et al. 2017). Repulsive biases                           

are thus believed to be related to perception and sensory processing (Fritsche et al. 2017).                             

Figure 7 shows the different temporal properties of serial dependence in a monkey                         

behavioral study. These biases are small and systematic, and their different temporal                       

features match with temporal characteristics of short-lived plasticity or cell-intrinsic,                   

activity-dependent mechanisms with timescales of up to tens of seconds. Modeling work                       

by Carter and Wang (2007) that includes such mechanisms in a continuous attractor model                           

of working memory actually predicted the occurrence of biases towards previous stimuli,                       

and theoretical work that explicitly tried to model the findings of Fischer and Whitney (2014)                             

has successfully explained experimentally observed characteristics of serial dependence by                   

including STP in continuous attractor models (Bliss and D’Esposito 2017; Kilpatrick 2018).                       

The central idea in these models is that persistent firing facilitates or potentiates synapses                           
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between delay-active neurons. After the response, in the absence of persistent activity ,                       8

these synapses remain potentiated for a few seconds, and thereby carry stimulus                       

information from one trial to the next. When a new stimulus is presented, previously active                             

neurons are more likely to fire, and memory-related activity is drawn to the respective                           

stimulus values. 

 

   

8 Note that Papadimitriou et al. (2017) have found that in a study with short ITIs, persistent firing                                   
continued until the next stimulus onset and attracted new memories through “active” interference,                         
rather than through synaptic remnants. 
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1.3 The role of the NMDAR for working memory 

In Chapters 1.1 and 1.2, I have introduced what is thought to be the neural basis of working                                   

memory maintenance, and what happens to cognition and behavior in case these                       

mechanisms fail or are corrupted by noise or competing information. As pointed out in                           

Chapter 1.2, failure and corruption of working memory results from a set of external factors,                             

such as the length of the memory delay, the amount of concurrently presented stimuli, etc.                             

More fundamentally however, a large number of internal variables of the neural circuit                         

determines its suitedness and capacity for information maintenance. In Chapter 1.1, I                       

touched upon variations of the cortical circuit architecture that can lead to persistent                         

activity in PFC, but probably not in V1. Similarly, across individuals (or within individuals, as                             

a result of long-term alterations), the same microcircuit can operate distinctly as a function                           

of differences in neurotransmitter systems (Arnsten et al. 2012). Moreover, neuromodulators                     

can flexibly move single neurons and circuits to a different operating regime (Marder 2012;                           

Marder and Goaillard 2006), in which specific computations become possible or not . 9

 

Pushing internal circuit parameters to specific directions in the parameter space can                       

influence perception, cognition and behavior (Avery and Krichmar 2017), a fact exploited in                         

pharmacological studies; and long-lasting alterations of neurotransmitter and               

neuromodulator systems are likely to be implicated in pathological brain function (Rolls et                         

al. 2008; Arnsten et al. 2012; Cano-Colino et al. 2014). In this section, I will highlight the role                                   

of the NMDA receptor (NMDAR), which together with the AMPA receptor (AMPAR) and the                           

less frequent kainate and delta receptors is one of the main building blocks of the                             

glutamatergic system (Dingledine et al. 1999). Glutamate is the main excitatory                     

neurotransmitter, and its binding to these ionotropic receptors triggers their opening,                     

9 At the same time, neurons and neural circuits often show very similar behavior under widely distinct                                 
external and internal conditions. This observation led to the insight that if a neuron’s behavior is                               
subject to several parameters (e.g. if several different ion channels are expressed at a synapse),                             
multiple solutions to the same neural behavior exist (Marder and Taylor 2011), a property that                             
guarantees an inherent adaptability for certain parameter changes through compensation. 
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causing positively charged cations to enter the postsynaptic cell . These positively charged                       10

currents eventually lead to the cell’s depolarization and to an action potential or spike, if it                               

depolarizes sufficiently. Changes in the glutamatergic system can affect circuit functions                     

through reduced or increased synaptic excitation, which affects the so-called                   

excitation/inhibition balance (E/I balance) of a system (discussed in the first part of this                           

section). At the same time, the NMDAR plays a role in synaptic plasticity on different                             

timescales, as discussed in the second part of this section. Finally, I will introduce two                             

diseases that are linked to alterations in NMDAR density and function, anti-NMDAR                       

encephalitis and schizophrenia, and discuss evidence for working memory dysfunction in                     

relation to the NMDAR and to each of the two diseases. 
 

The NMDAR contributes to persistent activity 

While the NMDAR is best known for its features that support the induction of synaptic                             

long-term potentiation (LTP) (Bliss and Collingridge 1993), it is also characterized by                       

particularly slow deactivation kinetics that affect the decay time course of the excitatory                         

postsynaptic current (EPSC) (Lester et al. 1990). In vitro NMDAR-mediated EPSCs are more                         

prolonged in PFC than in V1 neurons, which might be explained by the predominant type of                               

subunits that NMDARs in the respective cortex are composed of (with decay time constants                           

τ: GluN2A < GluN2B ≅ GluN2C << GluN2D; Cull-Candy et al. (2001)), and they are                             

substantially more prolonged than AMPAR-mediated EPSCs in either area (Wang et al.                       

2008). As illustrated in Figure 8, the slow decay of EPSCs increases the postsynaptic                           

neuron’s excitability for a prolonged period, so that new inputs are integrated over time and                             

increase the probability of repeated firing. 

 

 

Figure 8. NMDAR- (upper trace) vs           
AMPAR-mediated (lower, inverted trace) EPSCs         
in PFC (left) vs. V1 (right). Due to their long                   
deactivation time constant (here, τ = 81 ms as                 
compared to τ = 6.7 ms for AMPARs), NMDARs                 
in PFC favor the prolonged depolarization of             
postsynaptic cells, thereby increasing       
excitability and the probability of repeated           
firing. Figure from Wang et al. (2008). Copyright               
2008 National Academy of Sciences, U.S.A. 

 
 

10 With inward currents of sodium (Na+) and calcium (Ca2+) in case of the NMDAR, and (mostly) Na+ in                                     
case of the AMPAR. The AMPAR is also characterized by an outward current of potassium ions (K+). 
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Figure 9. Frequency-current curves for different levels of AMPAR- (left) vs. NMDAR-mediated (right)                         
synaptic coupling or conductance (gAMPA/gNMDA). The curves are described by R = f(Itot(R)), where                           
f is a function describing input-output relations, and Itot(R) the total input from recurrent and input                               
synapses. Both AMPAR- and NMDAR-dominated networks are able to maintain stable states of                         
spontaneous and persistent firing (solid lines). However, the transition to the persistent state (marked                           
by filled squares), which is caused by a transient input current of ~ 0.4 nA, occurs at realistic firing                                     
rates (< 100 Hz) only in the presence of NMDAR currents. Moreover, sufficiently strong recurrent                             
synaptic coupling of either the AMPA or NMDA type is necessary for solid bistability (space on the                                 
x-axis spanned by the dashed lines), as discussed in Chapter 1.1. Figure from Wang (1999),                             
copyright 1999 Society for Neuroscience. 
 

 

The PFC likely uses this property to generate persistent delay firing, a hypothesis                         

formalized in spiking neural networks that explicitly model temporal kinetics of NMDAR and                         

AMPAR at excitatory synapses (Wang 1999; Compte et al. 2000; Lisman et al. 1998). In                             

these models, if the contribution of NMDARs is sufficiently strong, the EPSC of a single                             

neuron is still above its baseline when inputs from recurrent connections arrive. Therefore,                         

these models predict that repeated or persistent firing as a network phenomenon should                         

crucially depend on NMDARs, given realistically low firing rates (< 100 Hz; Wang (1999)), as                             

illustrated in Figure 9. In fact, recent work by Wang et al. (2013) confirmed this model                               

prediction in an in vivo study in behaving monkeys: When selectively inhibiting NMDAR at                           

excitatory synapses through a local application of NMDAR antagonist MK801, delay-active                     

cells interrupted their persistent activity during the time of the pharmacological                     

manipulation (Figure 10). Similarly, in the same study, the (less controlled but more broadly                           

effective) systemic administration of MK801 and ketamine (another NMDAR antagonist) also                     

affected delay firing, and ketamine reduced the monkey’s precision in the delayed-response                       

task. In line with these findings, several studies (Driesen et al. 2013; Honey et al. 2004;                               

Anticevic et al. 2012) showed that the systemic administration of ketamine in humans                         

reduced working memory-related changes in fMRI BOLD signals in PFC and affected                       

working memory accuracy. 
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Figure 10. Raster plot and PSTH of             
delay-active cell in dlPFC of a monkey             
performing a visuospatial working       
memory task, before and after the local             
application (iontophoresis) of NMDAR       
antagonist MK801. In the control         
condition (no application of MK801)         
and after recovery from the drug           
manipulation, the delay cell increases         
its firing rate if the stimulus is shown in                 
the preferred direction, and decreases         
its rate for the nonpreferred direction.           
Immediately after iontophoresis, the       
cell does not modulate its firing rate             
during the delay. Figure from Wang et             
al. (2013) with permission from         
Elsevier. 

 

Synaptic plasticity on multiple timescales depends on the NMDAR 

In addition to its slow deactivation kinetics, the NMDAR has a second prominent feature                           

that makes it unique for the maintenance of memories (albeit on a different timescale than                             

working memory). For the receptor to open, two conditions have to be met: The binding of                               

glutamate and glycine, and a sufficiently advanced depolarization of the postsynaptic cell                       

(Dingledine et al. 1999). The reason for this voltage-gating (in addition to glutamatergic                         

ligand-gating) is the so-called magnesium (Mg2+)-block. A Mg2+ ion blocks the NMDAR and                         

is only removed when the postsynaptic cell depolarizes (Nowak et al. 1984). Therefore, the                           

NMDAR is sometimes referred to as a Hebbian coincidence detector: It activates only after                           

the fast-opening AMPAR (or kainate receptor) already caused the depolarization of the                       

postsynaptic cell and, coincidentally, additional glutamate is released upon presynaptic                   

firing. Faithful to the Hebbian prediction, the synapses between co-active pre- and                       

postsynaptic neurons are then strengthened locally, through a postsynaptic change in the                       

number or efficacy of AMPAR that is triggered by the influx of Ca2+ through the open                               

NMDAR (Malenka and Nicoll 1999). This NMDAR-dependent strengthening of synapses is                     

called long-term potentiation (LTP) and is assumed to be the fundamental neural process                         

involved in learning and long-term memory (Morris 1989).  

 

Although most often studied in hippocampal (HC) synapses, it is widely accepted that                         

LTP is a general property of excitatory synapses that takes place in many, and possibly all,                               

neocortical areas (e.g., Castro-Alamancos et al. 1995; Kirkwood and Bear 1994; Crair and                         
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Malenka 1995; Buonomano 1999; for reviews, see Feldman 2009; Mäki-Marttunen et al.                       

2020). LTP is studied through in vitro stimulation protocols, where the influence of repeated                           

presynaptic stimulation on the EPSC of the postsynaptic cell is measured. After stimulation,                         

EPSCs evoked by a probe stimulus can be higher (potentiation/LTP) or lower                       

(depression/LTD) than EPSCs evoked before the stimulation protocol, depending on the                     

exact experimental parameters (Dudek and Bear 1993; Malenka and Bear 2004). The                       

effects of LTP can last hours to days, and probably contribute to the consolidation of                             

memories (Clopath 2012; Clopath et al. 2008). In some protocols however, stimulation with                         

insufficient duration, frequency or intensity to induce long-lasting LTP can cause more                       

transient forms of potentiation that wane after a few minutes. Experiments that selectively                         

blocked different subunits of the NMDAR in HC synapses showed that in fact, transient and                             

long-lasting NMDAR-mediated potentiation might be partially triggered by different                 

mechanisms: Volianskis et al. (2013) found that a quickly decaying form of transient LTP,                           

also termed short-term potentiation, and long-lasting LTP both depended on receptors                     

containing GluN2A/B subunits, while an intermediate form of short-term potentiation was                     

disrupted by blocking receptors with GluN2B/D subunits. In light of these findings, an                         

earlier study by Castro-Alamancos and Connors (1996) that applied the NMDAR antagonist                       

AP5 to successfully disrupt short-term enhancement in somatosensory cortex could be                     

interpreted as evidence for quickly decaying, GluN2A/B receptor-dependent short-term                 

potentiation in neocortical and especially granular areas. Finally, Erickson et al. (2010)                       

showed that NMDAR-dependent short-term potentiation (in HC) can be induced by as few                         

as one or two presynaptic bursts, supporting the potential emergence of short-term                       

potentiation during relatively short-lasting neural activity in flexible animal behavior, as                     

compared to the long-lasting repeated stimulation in learning. 

 

There is a range of STP mechanisms that can transiently enhance synaptic strength,                         

many of which are not fully elucidated. As mentioned in Chapter 1.1, several processes at                             

different time-scales have been described by Zucker and Regehr (2002), many of which                         

appear to have an effect on the presynaptic probability of neurotransmitter release. In the                           

context of working memory, the most popular mechanism is short-term facilitation, which                       

results from residual calcium in the presynaptic terminal after neurotransmitter release                     

(Tsodyks and Markram 1997). In contrast to the NMDAR-dependent short-term potentiation                     

mechanisms described in the previous paragraph, this form of plasticity is more short-lived                         

(up to 2 s), and more importantly, non-associative in the Hebbian sense. NMDAR-                         

dependent, associative short-term potentiation mechanisms (Castro-Alamancos and             
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Connors 1996; Volianskis et al. 2013) also seem to increase the presynaptic probability of                           

neurotransmitter release (but see Erickson et al. 2010), but probably either through a form                           

of retrograde signaling from the post- to the presynaptic cell (Volianskis et al. 2015;                           11

Meunier et al. 2017), or through presynaptic NMDARs (Corlew et al. 2008). Finally, their                           

potentiating effects can last up to several minutes, and seem to depend on the frequency of                               

probing, rather than the time since the potentiation protocol (Figure 11).  

 

To conclude, synaptic plasticity on several timescales is mediated by NMDARs. Apart                       

from the well-established findings for the implication of NMDAR-dependent LTP in learning                       

and memory (Morris 1989), there is still little direct evidence for how the above-described                           

NMDAR-dependent STP mechanisms are relevant in behaving animals. This is due to the                         

difficulty of measuring plasticity in awake behaving animals. Moreover, and especially for                       

STP, there is an added difficulty of disambiguating the influence of activity-based vs.                         

plasticity-based contributions to animal behavior and cognition, due to the overlap of their                         

timescales, and the overlap in underlying cellular mechanisms linked to the NMDAR. 

 

Figure 11. LTP and two forms of short-term               
potentiation (abbreviated in this figure as STP)             
depend on different NMDAR subtypes. When           
applying the NMDAR antagonist NVP (also AP5,             
not shown) that preferentially inhibits GluN2A/B           
containing receptors, LTP and the more           
short-lived form of short-term potentiation,         
STP(1), are disrupted (upper) at in vitro HC               
synapses. In contrast, antagonist UBP         
preferentially disrupts the longer-lasting form of           
short-term potentiation, STP(2), but not STP(1)           
or LTP (lower). The decay of STP(1) and STP(2)                 
has time constants τ(1) = 7 min and τ(2) = 16                     
min at a stimulation rate of 0.067 Hz (Volianskis                 
et al. 2013). However, the decay of short-term               
potentiation is activity-dependent, and in         
absence of probe stimulation, it can be             
maintained at a similar level for 30 min (or                 
longer), as demonstrated by the 30 min break               
after theta-burst stimulation (TBS) that induced           
synaptic potentiation. Conversely, under higher         
frequencies as might occur in vivo, short-term             
potentiation will decay much faster (possibly on             
a seconds timescale). Figure from Volianskis et             
al. (2015) with permission. 

11 Potential candidates for retrograde signaling are neuromodulators nitric oxide (NO), brain-derived                       
neurotrophic factor (BDNF; Meunier et al. 2017), or a retrograde flux of K+ (Shih et al. 2013). 
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Schizophrenia 

To conclude this section’s review on how the NMDAR contributes to working memory, I will                             

focus on two diseases that stand in the center of this thesis due to their link to NMDAR                                   

dysfunction: Schizophrenia and anti-NMDAR encephalitis. Specifically, after giving an                 

overview of the clinical picture of each disease, I will highlight how (working) memory is                             

affected in each of the two diseases, and how NMDAR dysfunction might contribute to the                             

specific memory deficits. 

 

Schizophrenia is a severe psychiatric disease that is mainly characterized by pervasive                       

psychotic and cognitive symptoms. The onset of schizophrenia usually occurs in late                       

adolescence or early adulthood, but genetic factors are a major predictor for the disease                           

(Harrison and Weinberger 2005) and first-degree relatives share similar but milder                     

symptoms in the cognitive domain (Sitskoorn et al. 2004). The most striking and therefore                           

often first noted symptoms belong to the category of psychosis, and include hallucinations,                         

delusions (false beliefs), disturbed thought patterns that lead to disorganized speech, and                       

disorganized motor behavior. Cognitive symptoms include deficits in so-called “executive                   

functions”, such as planning, action inhibition, attention, and working memory (Barch and                       

Ceaser 2012); but memory deficits on longer time scales also frequently occur, specifically                         

in  episodic memory (Pelletier et al. 2005). 

 

Working memory deficits in schizophrenia are consistently found and might underlie                     

more complex symptoms in cognition and behavior (Lee and Park 2005). Deficits occur                         

across modalities (Forbes et al. 2009) and are related to maintenance, rather than the                           

manipulation of memory contents (Barch and Ceaser 2012). The most robust findings                       

include reduced working memory capacity (e.g., Gold et al. 2010; Hahn et al. 2018) and                             

increased distractibility (Starc et al. 2017; Leonard et al. 2017; Gold et al. 2020) for people                               

with schizophrenia, especially if distractors were similar to the working memory targets.                       

Capacity and distractor effects in these studies appear to be independent of delay length,                           

and might therefore not depend on gradual drift or diffusion of memory contents as                           

described in Chapter 1.2. Similarly, Lee and Park (2005) and Gold et al. (2010) reported an                               

absence of delay-dependent precision loss for patients with schizophrenia; however, Starc                     

et al. (2017) and Gold et al. (2020) showed that given sufficiently long delays (~15-20 s), a                                 

loss in precision is indeed observed.   
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Some of these working memory deficits might be caused by an imbalance between                         

cortical excitation and inhibition in people with schizophrenia, e.g. through a reduction in                         

the activity of inhibitory interneurons (Lewis et al. 2005). The resulting disinhibition in a                           

prefrontal circuit model, depicted in Figure 12, leads to increased memory drift, larger                         

distractibility windows (Murray, Anticevic, et al. 2014), and potentially to a reduced capacity                         

of the network to store multiple memory items. Disinhibition could follow from dysfunctional                         

GABA receptors (GABAR; Lewis et al. 2005), which are the main cortical inhibitory                         

receptors. Alternatively, the dysfunction of NMDAR at inhibitory interneurons could lead to                       

cortical disinhibition (Anticevic et al. 2012; Cano-Colino and Compte 2012). In fact, there is                           

steadily accumulating evidence for reduced NMDAR density and function in schizophrenia                     

(including in PFC; Catts et al. 2016; Kristiansen et al. 2006), supporting the NMDAR                           

hypofunction theory of schizophrenia that became popular in the last 20 years, after                         

observations of schizophrenia-like symptoms and behavior in pharmacological studies with                   

NMDAR antagonists (Olney et al. 1999).  

 

Consistent with the NMDAR hypofunction model, working memory deficits and their                     

neural correlates in healthy subjects under the administration of ketamine resemble those in                         

subjects with schizophrenia (Driesen et al. 2008; Driesen et al. 2013). However, the attentive                           

reader will notice that the blockade of cortical NMDAR at recurrent excitatory synapses, in                           

contrast to the disinhibition model, could lead to a reduction in cortical excitation and a                             

breakdown of memory-related delay activity (as explained earlier in this section; e.g., Wang                         

et al. 2013). Depending on the synaptic site affected by the specific pharmacological                         

manipulation, NMDAR blockade can lead to both disinhibition or deficient recurrent                     

excitation in cortical circuits. Similarly, it is not clear in which direction cortical E/I balance in                               

schizophrenia is perturbed, and different developmental stages of the disease could be                       

linked to decreased or increased cortical excitation (Krystal et al. 2017). 

 

Finally, by the NMDAR-mediated plasticity mechanisms described in the previous                   

section of this chapter, NMDAR hypofunction could also affect LTP and short-term                       

potentiation in schizophrenia. Evidence for this hypothesis comes from genetic studies in                       

patients with schizophrenia that measure alterations in genes linked with synaptic plasticity                       

(Harrison and Weinberger 2005), and conversely, from genetic animal models of                     

schizophrenia that show working memory and long-term memory deficits in vivo, and                       

reduced LTP and short-term potentiation in PFC and other neocortical areas in vitro                         

(Arguello and Gogos 2012). Moreover, deficits in synaptic plasticity on the long term could                           
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lead to alterations in circuit architecture, such as dendritic spine loss at recurrent synapses                           

between layer 3 neurons (Glantz and Lewis 2000), and manifest in widely observed                         

functional dysconnectivity in human neuroimaging studies (Stephan et al. 2006; Yang et al.                         

2016). 

 

 

Figure 12. Decreased NMDAR-mediated conductance at inhibitory interneurons leads to disinhibition                     
in a cortical circuit model of working memory. This disinhibition affects the persistent network state                             
by broadening the bump of neurons that actively represent working memory content during the delay                             
(left). Moreover, disinhibition causes an increase in noise in neural firing. This leads to stronger                             
diffusion or random drift (upper right panel) over the course of the delay. Hence, over many trials, the                                   
distribution of responses is more variable for the disinhibited network than for the control condition,                             
measured by the variance of network readout (center of mass of the bump), as shown in the lower                                   
right panel. Figure adapted from Murray, Anticevic, et al. (2014) with permission from Oxford                           
University Press. 
 

Anti-NMDAR encephalitis 

Anti-NMDAR encephalitis is an autoimmune brain disorder that presents with neurological,                     

psychotic and cognitive symptoms (Dalmau et al. 2007; Finke et al. 2012). The key                           

mechanism of this disease is the formation of antibodies that target GluN1 subunits of the                             

NMDAR and cause their internalization (Hughes et al. 2010; Dalmau et al. 2008), as                           

depicted in Figure 13. Over the course of several weeks, the immune response affects an                             

increasing number of NMDARs, causing a progressive deterioration of the clinical picture.                       

Often, the disease starts with flu-like prodromal symptoms, followed by psychotic                     

symptoms similar to those observed in schizophrenia, and cognitive deficits of working                       

memory and speech. If left untreated, patients develop severe neurological symptoms,                     

amongst others including abnormal or stereotyped movements, seizures, dysregulation of                   

cardiac and respiratory function, and eventual coma. Compatible with the role of the                         

NMDAR in LTP and memory formation, the most severe stages of the disease are                           

accompanied by anterograde amnesia. Fortunately, the disease is easily diagnosed by the                       

identification of antibodies in cerebrospinal fluid (CSF) or serum, and can be treated with                           
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immunotherapy (Dalmau et al. 2011). Complications can arise from early, frequently                     12

occurring misdiagnosis as schizophrenia or another psychotic disorder, leaving the patient                     

untreated (Steiner et al. 2013). After treatment, more than 75% of patients substantially                         

recover over the course of several months (but sometimes also periods longer than one                           

year). The most long-lasting deficits concern working memory and other executive                     

functions (Finke et al. 2012).  

 

Most assessments of long-term and working memory deficits in (recovering) patients                     

with anti-NMDAR encephalitis (reviewed in McKeon et al. 2018) have been performed with                         

standardized neuropsychological instruments. One study by Finke et al. (2012) measured                     

working memory deficits in a delayed match-to-sample task for color, location, or their                         

association (as in earlier described multi-item tasks). The authors found that in some cases,                           

(location and association) working memory was still impaired ~2 years after treatment,                       

especially for long delays. Still, based on the current literature, it is difficult to establish                             

which aspects of working memory fail in recovering anti-NMDAR encephalitis patients.  

 

 

Figure 13. NMDAR density at rat HC neurons after the application of cerebrospinal fluid (CSF) from                               
healthy control subjects (left), after application of anti-NMDAR encephalitis patients’ CSF (middle),                       
and after 3 days of patients’ CSF followed by 4 days of recovery under application of control CSF.                                   
Receptor density was measured by immunostaining GluN1 subunits which are contained in all                         
NMDAR (red dots). The percentage of GluN1 (NR1) clusters shows that receptor density is drastically                             
reduced after the application of antibody-containing CSF, but recovers after the removal of                         
patient-derived antibodies. In contrast, the number of excitatory synapses, measured by the                       
colocalization of presynaptic protein VGlut and postsynaptic protein PSD-95, was not affected by                         
applying patient CSF. Figure from Hughes et al. (2010). 

12 In ~50% of patients, the misdirected immune-response is triggered by an ovarian teratoma (tumor)                             
that expresses NMDARs. In these cases, a surgical removal of the tumor should be performed                             
together with immunotherapy (Dalmau et al. 2011). 
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Also, neural correlates of working memory failure in patients have not yet been                         

assessed. However, the use of animal models that can be infused with patients’ antibodies                           

is a promising experimental approach both for the investigation of anti-NMDAR                     

encephalitis, and for research on NMDAR function per se. When applying patients’                       

antibodies to rat HC cells in vitro, a selective disruption of the NMDAR current can be                               

observed in patch-clamp experiments (Hughes et al. 2010). This finding suggests that at                         

least in acute stages of the disease, circuit mechanisms that depend on slow                         

NMDAR-dependent currents, such as persistent activity (Wang 1999), should make a major                       

contribution to working memory dysfunction. In contrast, long-term memory and its cellular                       

substrate, LTP, show significant impairments in mice treated with antibodies from                     

encephalitis patients: When patients’ CSF was infused to ventricles of healthy mice                       

(Planagumà et al. 2015; Planagumà et al. 2016), reversible memory deficits in a novel-object                           

recognition task could be measured in vivo. When mice were sacrificed during the acute                           

antibody treatment, a strong reduction in LTP was measured in stimulation protocols in                         

vitro, as shown in Figure 14. 

 
 

                   
Figure 14. The infusion of human CSF containing NMDAR antibodies impairs long-term memory and                           
LTP in mice. Left, the novel object recognition index measures the animal’s long-term memory of                             
objects. Higher indices indicate better memory. Mice were infused with patients' CSF for 14 days                             
and showed progressive memory deficits. After the end of the treatment, memory performance                         
recovered within a few days. Middle, field excitatory postsynaptic potentials (EPSPs) in mice infused                           
with patients’ or healthy controls’ CSF, respectively, before and after an LTP stimulation protocol.                           
While control mice showed substantially increased EPSP slopes (also, right panel), mice that were                           
treated with patients’ CSF did not. Compared to mice that were infused with healthy controls’ CSF,                               
significantly reduced LTP was induced in mice infused with NMDAR antibodies. Figure adapted from                           
Planagumà et al.( 2016) and Planagumà et al. (2015) with permission from John Wiley and Sons and                                 
Oxford University Press. 
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Chapter 2  

Goals 

The overarching goal of this thesis is to understand different sources of working memory                           

errors as a function of underlying network computations in the “healthy” brain (Chapter 3.1),                           

and in pathological conditions, namely anti-NMDAR encephalitis and schizophrenia                 

(Chapters 3.2 and 3.3). I will especially focus on systematic memory biases that arise from                             

the sequential structure of working memory tasks, as described in Chapter 1.2.  

 

Specifically, Chapter 3.1 describes how persistent delay activity in working memory can                       

lead to the formation of short-lived synaptic traces, and how persistent activity can be                           

reactivated from these traces to influence upcoming memories. The section combines                     

parallel data analyses in monkey prefrontal cortex and human EEG, and their connection to                           

behavior. Moreover, we propose a computational model that captures prefrontal dynamics                     

in monkey electrophysiology, and test predictions derived from this model in monkey and                         

human data, and in a TMS perturbation experiment. 

 

In Chapter 3.2, I describe behavioral working memory alterations in anti-NMDAR                     

encephalitis and schizophrenia, as compared to healthy control subjects. I then interpret                       

empirical findings in the framework of a prefrontal circuit model that combines network                         

bistability through slow, NMDAR-mediated currents, and associative short-term               

potentiation that might depend on the NMDAR. The section scrutinizes whether working                       

memory alterations observed in the two patient groups can be explained by a mere                           

perturbation of E/I balance, or whether a dysfunction in short-term potentiation is needed to                           

capture experimental results. 
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Chapter 3.3 explores neural correlates of behavioral working memory alterations in                     

anti-NMDAR encephalitis and schizophrenia in an EEG study. In this section, will                       

characterize patients’ working memory codes during and between subsequent working                   

memory trials, and test whether previous memories are reactivated in patients, similar to                         

memory reactivations in healthy controls described in Chapter 3.1. Then, I will test whether                           

differences in EEG memory codes reflect behavioral alterations in patients observed in                       

Chapter 3.2, and relate the characteristics of the neural code back to the computational                           

models proposed in Chapter 3.1 and Chapter 3.2. 

   

42 



 

 

 

Chapter 3  

Results 
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3.1 Interplay between persistent activity and activity-silent dynamics in the                 

prefrontal cortex underlies serial biases in working memory 

In this section , I will show that rather than operating independently, PFC persistent activity                           13

and “activity-silent” mechanisms interact dynamically to produce serial dependence in                   

working memory, consistent with attractor models with synaptic plasticity. 

Supplementary material for this section is included in Appendix A1.   

13 This section has been published as:  
Barbosa, J.*, Stein, H.*, Martinez, R.L., Galan-Gadea, A., Li, S., Dalmau, J., Adam, K.C.S., Valls-Solé,                             
J., Constantinidis, C., & Compte., A. (2020). Interplay between persistent activity and activity-silent                         
dynamics in the prefrontal cortex underlies serial biases in working memory. Nat Neurosci 23,                           
1016–1024. https://doi.org/10.1038/s41593-020-0644-4. (*equal contribution) 
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The mechanisms by which information is maintained in work-
ing memory are still not fully understood. Ample evidence 
supports a role for sustained neural activity in prefrontal1–3 and 

other cortices4,5, possibly supported by attractor dynamics in recur-
rently connected circuits6,7. However, recent studies have argued 
that memories may be maintained without persistent firing-rate 
tuning during memory periods8. This ‘activity-silent’ memory can 
be mediated by slowly decaying intrinsic or synaptic mechanisms, 
such as short-term synaptic plasticity9,10, or by activity-dependent 
intrinsic mechanisms with a long time constant11–13 that could allow 
the reactivation of memories from latent storage. This computa-
tional proposal has received support from neuroimaging studies, 
whereby in some working memory tasks, despite good memory 
performance, stimulus information cannot be retrieved from neural 
delay activity, but later robustly reappears14 during comparison or 
response periods (but see also ref. 15).

The apparent incompatibility between activity-based and 
activity-silent memory maintenance has led to viewing them as 
exclusive alternatives8. However, modeling implementations of 
activity-silent conditions invariably require the network to be con-
figured close to the same attractor regime9 that enables persistent 
activity. This attractor nonlinearity is necessary to increase the 
signal-to-noise ratio of the fading subthreshold signal for success-
ful memory reactivation9. At the same time, activity-silent memory 
mechanisms may stabilize persistent activity in attractor networks 
(for examples, see refs. 11,16–18). Interestingly, modeling studies have 
argued that the interaction of these mechanisms during the delay 
period would be reflected behaviorally in serial biases11,16, but this 
theoretically appealing hypothesis still lacks experimental support.

Serial biases in spatial working memory denote small but system-
atic shifts of memory reports toward nearby locations memorized 
in the previous trial19–22, which reveal a lingering representation of 
previous memories. Uncleared memory remnants have long been 
viewed as limiting working memory performance (proactive inter-
ference23), but recent proposals suggest that they may be useful to 
inform working memory about the expected statistics in naturalistic 
conditions24 (but see 25), similar to other history biases with longer 
time scales and possibly different neural mechanisms (contraction 
bias26–28). The functional relevance of biases implicates specific roles 
of higher-order brain areas. On the one hand, these areas could sup-
press maladaptive biases to minimize performance degradation29,30. 
On the other hand, they might promote adaptive biases by main-
taining a representation of stimulus history26. Whether association 
areas generate or suppress serial biases in primates is currently 
undefined, and a mechanistic understanding of the generation of 
any type of history biases is still lacking.

Both attractor dynamics20 and activity-silent11,16,31 mechanisms 
have been proposed to carry stimulus-selective information from 
one trial to the next to effect serial biases. However, dependen-
cies of serial biases on inter-trial interval (ITI) durations20–22 
are largely consistent with activity-silent and not activity-based 
mechanisms11,16,31. Here, we sought to specify the interaction of 
activity-based and activity-silent PFC mechanisms in supporting 
serial biases while participants performed a spatial working mem-
ory task that engages attractor dynamics in the PFC6. Furthermore, 
this approach may offer indirect evidence that activity-silent and 
activity-based mechanisms co-occur during the delay period, as 
proposed by computational models (for examples, see refs. 11,16–18). 

Interplay between persistent activity and 
activity-silent dynamics in the prefrontal cortex 
underlies serial biases in working memory
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Persistent neuronal spiking has long been considered the mechanism underlying working memory, but recent proposals argue 
for alternative ‘activity-silent’ substrates. Using monkey and human electrophysiology data, we show here that attractor 
dynamics that control neural spiking during mnemonic periods interact with activity-silent mechanisms in the prefrontal cortex 
(PFC). This interaction allows memory reactivations, which enhance serial biases in spatial working memory. Stimulus infor-
mation was not decodable between trials, but remained present in activity-silent traces inferred from spiking synchrony in the 
PFC. Just before the new stimulus, this latent trace was reignited into activity that recapitulated the previous stimulus repre-
sentation. Importantly, the reactivation strength correlated with the strength of serial biases in both monkeys and humans, as 
predicted by a computational model that integrates activity-based and activity-silent mechanisms. Finally, single-pulse tran-
scranial magnetic stimulation applied to the human PFC between successive trials enhanced serial biases, thus demonstrating 
the causal role of prefrontal reactivations in determining working-memory behavior.
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Telling these mechanisms apart in the delay period is problematic 
because of their coactivation. By extending the relevant task periods 
to the ITI, we propose a way to disentangle them and to study the 
effect of their interaction on upcoming memories.

We compared the encoding properties of brain activity in the 
delay and ITI periods to identify the mechanistic basis of the mem-
ory trace that spans consecutive trials. We used behavioral and elec-
trophysiological data collected in monkeys and humans: prefrontal 
multiple-unit recordings in monkeys and scalp electroencepha-
lography (EEG) in humans. Between successive persistent activity 
mnemonic codes, we found an activity-silent code in the PFC that 
carried stimulus information through inter-trial periods. In addi-
tion, we found correlational and causal evidence, using transcra-
nial magnetic stimulation (TMS), to indicate that fixation-period 
PFC reactivation from this activity-silent trace enhances attractive 
serial biases. These findings underscore the behavioral relevance 
of the dynamic interplay between attractor and subthreshold net-
work dynamics in the PFC and reconcile these seemingly conflict-
ing mechanisms. Our data suggests that this interplay could be the 
basis of closely associated memory storage processes operating at 
different time scales, thereby possibly serving different behavioral 
purposes.

Results
We trained four rhesus monkeys to perform an oculomotor delayed 
response task. The task consisted of remembering spatial loca-
tions at fixed eccentricity while maintaining fixation during a delay 
period of 3 s (Fig. 1a; Methods). The extinction of the fixation cue 
triggered the monkey to execute a saccade toward the remembered 
location and marked the beginning of a fixed ITI of 3.1 s, lasting 
until the appearance of the stimulus cue of the new trial (Fig. 1b). 
In addition, we tested 35 human participants in variations of the 
task performed by the monkeys (Methods). In all cases, we recorded 
the reported location and computed behavioral errors as angular 
distances to corresponding target locations. Following the methods 
described in previous studies19, we analyzed the dependence of the 
current-trial error on relative previous-trial location. Both monkeys 
and humans showed biased reports relative to previously remem-
bered locations. These biases were attractive for short distances 
between previous-trial and current-trial locations, and repulsive 
for large previous–current distances (Figs. 1a and 2a). Our primary 
goal was to test the hypothesis that activity-silent and persistent 
activity working memory mechanisms interact to produce serial 
dependence effects. To this end, we investigated electrophysiologi-
cal measurements in the ITI, including periods from the response to 
the subsequent fixation period.

Reactivation of previous memory information in the monkey 
dorsolateral PFC before new stimulus presentation. We collected 
single-unit responses from the dorsolateral PFC (dlPFC) of two 
monkeys while they performed the task. A substantial fraction of 
neurons in this area showed tuned persistent delay activity during 
the mnemonic delay period6 (n = 206 out of 822, Methods). These 
specific neurons are part of bump-attractor dynamics that charac-
terize the memory periods of this task6. Based on this evidence, we 
assumed an attractor dynamics mechanism for persistent activity, 
and these terms are used interchangeably to refer to this network 
regime. Based on our hypothesis that an interplay of activity-silent 
and attractor mechanisms support serial biases, we focused our 
analyses on these neurons, and we grouped them in simultaneously 
recorded ensembles for decoding analyses (n = 94 ensembles, size 
range of 1–6 neurons; Extended Data Fig. 1a).

The firing rates of dlPFC neurons exhibited strong dynamics in 
the ITI compared to the characteristic stable dynamics during mne-
monic delay periods (Fig. 1b). Phasic rate increases at response exe-
cution (Rn – 1, Fig. 1b) and fixation onset (Fn, Fig. 1b) were hallmarks  
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clockwise trials (folded errors, Methods). Positive (negative) values 
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indicates bootstrapped ±s.e.m. Black horizontal solid bars represent 
P < 0.05 (one-sided permutation test). Durations in different experiments 
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normalized firing rate of n = 206 neurons during the ITI (spike counts of 
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CI = [–0.3, –0.03], Cohen’s d = –0.17 (cyan); P = 0.865, CI = [–0.12, 0.14], 
Cohen’s d = 0.012 (deep blue); P = 0.025, CI = [0.024, 0.33], Cohen’s  
d = 0.15 (orange); n = 206 neurons, shading depicts ± s.e.m.). In all panels, 
unless stated otherwise, error shading marks bootstrapped 95% CI.
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in these dynamics, but we also noted an increase in the firing rate 
before stimulus presentation (Sn, Fig. 1b), which could reflect the 
anticipation of the upcoming stimulus due to fixed-length fixa-
tion periods. We wondered whether these rate changes were also 
related to dynamic changes in stimulus selectivity. Under the 
attractor-based hypothesis for serial biases32, sustained stimulus 
selectivity would be expected to extend from the delay period of the 
previous trial into the fixation period of the next trial. We measured 
selectivity by training a linear decoder on the spike counts of our 
neuronal ensembles and referenced its accuracy to that obtained by 
chance using a resampling approach (Methods). During the delay 
period, neuronal ensembles carried stimulus information and single 
neurons showed stimulus tuning (Fig. 1c,d, red). After report, the 
memorized location was still decodable from ensemble activity, but 
the tuning curves of single neurons showed a selective suppression 
of responses in their mnemonic preferred locations (Fig. 1c, cyan). 
This could reflect neuronal adaptation mechanisms or saccade  

preparation toward the opposite direction to regain fixation. In the 
middle of the ITI, decoding accuracy was not different from chance 
and neurons were no longer tuned to the previous stimulus (Fig. 1c,d,  
deep blue), which suggests that the encoding of the previous 
stimulus had disappeared from neural activity. However, immedi-
ately before the presentation of the new stimulus and aligned with 
anticipatory ramping activity (Fig. 1b), the previous stimulus was 
again decoded and single-neuron tuning reappeared (Fig. 1c,d, 
orange). This reemergent stimulus information is consistent with 
previously-reported spiking selectivity during the ITI32, but we 
show here that there is a period in the ITI in which stimulus infor-
mation cannot be decoded before it reappears at the end of the fixa-
tion period (late fixation). Furthermore, this code in late fixation is 
a reactivation of the representation active in the previous trial delay. 
This is supported by two pieces of evidence. First, information reap-
pearance occurred more strongly in those neuronal ensembles that 
maintained more stimulus information during the delay period 
(Fig. 1c; Extended Data Fig. 1). Second, the converging pattern of 
noise correlations at the end of the delay6 and in late fixation sug-
gested a similar attractor-like network activation in both periods. 
Indeed, when the preceding stimulus appeared between the pre-
ferred locations of two neurons, these PFC neuron pairs exhibited 
negative noise correlations in late fixation (Extended Data Fig. 2). 
These negative noise correlations are a signature of a fixed-shape 
bump that diffuses from the initial stimulus location: as it moves 
closer to the preferred location of one neuron and away from the 
other, the firing rate increases for one neuron and decreases for 
the other6. Negative noise correlations appeared exclusively dur-
ing late fixation, which strongly suggests that a bump is reactivated 
at that specific time point (Extended Data Fig. 2). Taken together, 
these results support that there is a reactivation of memory-period 
representation in the fixation period (reactivation period) follow-
ing a period of absent selective neuronal firing in the dlPFC. This 
reactivation points at a relationship between mechanisms of delay 
memory encoding and mechanisms bridging the ITI to facilitate 
reactivation before the new stimulus.

Previous trial memory information reactivation in the fixation 
period of human EEG traces. In line with the monkey electrophysi-
ology data, we found similar previous-trial traces in human EEG 
data (n = 15). We extracted alpha power from all electrodes and used 
a linear decoder to reconstruct the target location from EEG signals 
in each trial33 (Methods). The target representation was significantly 
sustained during delay and response periods and in the fixation 
period of the next trial (Fig. 2b, diagonal axis). Importantly, at each 
time point, this dynamic EEG decoder uses signals originating from 
different cortical regions and could therefore combine temporally 
overlapping but spatially distinct representational components (for 
example, mnemonic versus response-related components). We 
therefore trained different linear decoders during the delay period 
(500–1,000 ms after stimulus onset, ‘delay code’) and around the time 
of the response (250 ms before to 250 ms after response, ‘response 
code’), and used the respective weights to extract previous-stimulus 
information throughout different periods of the trial (Fig. 2c). The 
delay code was stable during stimulus presentation and delay, but 
disappeared during the ITI, around the time of the response. In con-
trast, the response code did not generalize beyond the time at which 
the decoder was trained (Fig. 2c). We found that the delay code of 
the previous trial reappeared during the fixation period (Fig. 2c,d, 
orange), similarly to what we found in the monkey neurophysiol-
ogy data (Fig. 1c), but slightly earlier in the ITI. In our human data, 
reactivation was possibly triggered by the onset of the fixation dot, 
while reactivation in the monkey PFC could be triggered by a ramp-
ing anticipatory signal in the fixed-duration ITI (Fig. 1b). These 
results provide a confirmatory correspondence with the time course 
of mnemonic decoding in the monkey data, but they also show the 
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temporal continuity between qualitatively distinct memory and 
response codes. The bidirectional transfer of information between 
memory and response representations in different brain areas could 
provide a bridge between the memory and reactivation periods 
observed in the PFC. Alternatively, response codes may just reflect 
the output motor commands, and mnemonic codes may subsist at a 
subthreshold level in the PFC to allow reactivations. We tested this 
hypothesis with a cross-correlation analysis of PFC units.

Increased cross-correlation suggests a latent trace during the 
ITI. We sought experimental validation for whether activity-silent 
mechanisms in the dlPFC still maintained stimulus information 
during the ITI between consecutive trials. We reasoned that if such 
latent activation (for example, a synaptic trace9) affected a group 
of interconnected neurons, these would be more likely to exceed 
their spiking threshold in synchrony8,34. Following a preferred cue, 
neurons would increase their activity in the delay period and main-
tain latent activity-silent traces in the subsequent ITI that would 
be reflected in enhanced synchrony34, but not enhanced rates. 
Moreover, we deduced that this reasoning was pertinent only to 
effective excitatory interactions (exc); that is, neurons interacting 
through effective inhibition (inh) should instead show a reduced 
probability of coactivation following a possible inhibitory efficacy 
enhancement by preferred stimuli in the previous trial34.

To test this hypothesis, we selected pairs of neurons with simi-
lar selectivity (n = 67 pairs, Methods) so that they had consistent 
activation (high or low firing rate) in the delay period. As per previ-
ous studies35,36, we divided the selected pairs on the basis of their 
whole-trial cross-correlation peak sign in exc and inh interactions 
(Methods). We considered the following two conditions (Fig. 3a; 
Methods): trials in which the previous stimulus was shown close to 
either preferred location (pref; Methods) or far from preferred loca-
tions (anti-pref). Then, we computed a cross-correlation selectivity 
index (CCSI) by subtracting the amplitude of the central peak of the 
jitter-corrected cross-correlation function (coincident spikes within 
20 ms; Methods, similar to ref. 37) for pref and anti-pref trials for 
each neuron pair (Fig. 3b). Our hypothesis predicts positive (nega-
tive) CCSI for exc (inh) pairs in the ITI; that is, higher (lower) spike 
synchrony following preferred stimuli.

The CCSI computed in a period of the ITI where the firing rate 
had ceased to represent the stimulus (activity-silent period, Fig. 1c,d,  
deep blue) was positive, which reflects selectivity in neuronal  
synchrony to the previous stimulus for all interactions (Fig. 3c). We 
then investigated changes in CCSI values for exc and inh interactions 
across our two periods of interest: the activity-silent and reactiva-
tion periods (Fig. 1c, deep blue and orange, respectively). We found 
that their reactivation-period CCSI values significantly differed, 
being negative for inh interactions and positive for exc interactions 
(Fig. 3c). Finally, we explored the CCSI dynamics throughout the 
trial (Fig. 3d) and found that with the exception of immediately 
after the previous response, in which neurons showed anti-tuning to 
previous-trial stimulus (Fig. 1c), the CCSI for exc pairs was always 
positive, indicating stronger central-peak cross-correlation when 
the previous stimulus was preferred (Fig. 3d, orange). Conversely, 
for inh interactions, the CCSI was negative (stronger inh interac-
tions following a preferred stimulus) only during reactivation and 
the previous-trial delay period (Fig. 3d, cyan), the periods in which 
PFC firing rates showed stimulus selectivity (Fig. 1c). This pattern is 
consistent with the latent memory mechanism residing in excitatory 
neurons and only being reflected in inhibitory interactions through 
collective engagement in bump-attractor dynamics during the delay 
period and at the time of reactivation. Importantly, this analysis 
was done during a period without firing-rate selectivity (Fig. 3f), 
thus free of a potential confound from firing rates (see Extended 
Data Fig. 3 for the same analysis performed during the delay period, 
where that caveat cannot be ignored.)

This proves the existence of a latent trace of the stimulus in  
the PFC during the ITI, but it could still be reflecting selective  
subthreshold inputs from a different area that maintains tuned  
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Fig. 3 | Cross-correlation selectivity to previous-trial stimulus suggests an  
activity-silent trace in the PFC. a, Schematic of trial selection. For neuron 
pairs with a similar preferred location (<60°), we separated trials with 
stimulus near the preferred locations (pref) of the pair from trials with far  
locations (anti-pref). b, Cross-correlation (X-corr) of a sample PFC pair  
shows zero-lag peak selectivity to a previous-trial stimulus in the activity- 
silent period (one-sided permutation test, P = 0.025, Cohen’s d = 0.10, 
n = 44 independent trials). c, The CCSI was consistently positive in the 
activity-silent period, but became negative for inh interaction pairs during 
reactivation (two-sided permutation test, interaction period × exc/inh, 
P = 0.03, Cohen’s d = −0.6). At reactivation, the CCSI for exc (n = 27) 
and inh pairs (n = 20) significantly differed (two-sided permutation test, 
**P = 0.006, d = 0.75). P values report results of one-tailed permutation tests 
according to our hypotheses (CCSI > 0 for exc, CCSI < 0 for inh). d, The CCSI 
in the ITI (1-s windows, 50-ms steps) for exc (n = 27) and inh pairs (n = 20). 
Except immediately after the report, where neurons show anti-tuning (Fig. 1d),  
the CCSI was positive for exc interactions. The CCSI was negative for inh 
interactions during previous delay and reactivation. Data were smoothed 
with a five-sample square filter. e, Trial-by-trial correlation between 
previous-delay spike counts for exc pairs and the ITI cross-correlation 
central peak (activity-silent period in d, Methods) is positive only for the pref 
condition (one-sided permutation test P = 0.017, interaction P = 0.01; n = 320 
and 769 trials for pref and anti-pref, respectively). f, The absence of a mean 
firing rate difference between the pref and anti-pref conditions (same pairs 
as in d) discards a confound between the rate selectivity and the CCSI. Error 
bars represent bootstrapped 95% CI (b and e) or s.e.m (c and d).
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persistent activity instead of selective local modulations in the PFC. 
To rule out this possibility and to strengthen the idea that stimu-
lus information is directly transferred from an activity-based to an 
activity-silent code in the PFC, we tested whether the selectivity 
of exc interactions during the activity-silent period depended on 
the spiking activity of corresponding neurons in the previous delay 
period. Assuming a neuron-specific activity-dependent mecha-
nism supporting the activity-silent code in the ITI, we predicted 
that the magnitude of the cross-correlation central peak in the 
activity-silent period would correlate on a trial-by-trial basis with 
the mean spike count recorded in the preceding delay period and 
specifically for pref (and not for anti-pref) trials (Methods). This 
prediction was confirmed in the experimental data (Fig. 3e). Thus, 
this cross-correlation analysis supports the hypothesis that previ-
ous, currently irrelevant, stimulus information remains in prefron-
tal circuits in latent states, undetected by linear decoders that do not 
take spike timing into consideration (Figs. 1c and 3f).

Bump reactivation as a mechanism for stimulus information 
reappearance. Based on our electrophysiology results and on prior 
modeling studies9, we formulated the bump-reactivation hypothesis 
to explain our data. We hypothesized that information held in mem-
ory as an activity bump during the delay period of the previous trial6 
would be imprinted in neuronal synapses as a latent activity-silent 
trace during the ITI. This latent bump could be reactivated by the 
nonspecific anticipatory signal seen in the mean firing activity in 
the PFC (Fig. 1b) or by anticipatory mechanisms following an exter-
nal cue that predicts stimulus presentation, such as the onset of a 
fixation dot (Fig. 2c). In fact, in a separate EEG experiment in which 
fixation lengths were jittered so as to make stimulus onsets unpre-
dictable, we could not find any delay code reactivation (Extended 
Data Fig. 4).

To test the bump-reactivation hypothesis, we built a 
bump-attractor network model of spiking excitatory and inhibi-
tory neurons. Based on our electrophysiology findings, short-term 
plasticity (STP) dynamics were included only in excitatory synapses 
(Methods). In each trial, stimulus information was maintained in 
activity bumps during the delay period by virtue of recurrent con-
nectivity between neurons selective to the corresponding stimulus. 
During the ITI period, model neurons did not exhibit detectable 
tuning to the previous-trial stimulus (Fig. 4a, black, and Fig. 4b, 
deep blue)16,31. However, the synapses of neurons that had partici-
pated in memory maintenance in the previous delay period were 
facilitated due to STP (Fig. 4a, deep blue). Parallel to our analysis 
presented in Fig. 3, this was reflected in the central peak of the 
ITI cross-correlation for pairs of excitatory model neurons, which 
maintained selectivity to the previous stimulus (Fig. 4a) even in 
the absence of single-neuron firing-rate selectivity (Fig. 4a, deep 
blue). We found that single-neuron tuning could be recovered from 
the hidden synaptic trace using a nonspecific input (drive) to the 
entire population (Fig. 4a,c; Methods, see also refs. 9,38). Our bio-
logically constrained computational model was therefore an explicit 
implementation of the bump-reactivation hypothesis that we  
had formulated.

The impact of bump reactivation on serial biases. We next used 
our computational model to derive behavioral and physiological 
predictions to test in our data, in particular in relation to serial 
biases. To simulate serial biases with our computational model, we 
ran pairs of consecutive trials with varying distance between the 
two stimuli presented in each simulation. We used the final loca-
tion of the bump in the second trial (current-trial memory) as  
the ‘behavioral’ output of the model in that trial. We were able to 
model the profile of serial biases that were experimentally observed 
(Fig. 4d; Extended Data Fig. 5), similar to previous models16,31. To 
test the impact of bump reactivation on serial biases, we compared 

the behavioral output of simulations with and without drive before 
the second trial stimulus (Methods). Bump reactivation resulted in 
stronger attractive biases for similar successive stimuli, and in repul-
sive biases for more dissimilar successive stimuli (Fig. 4d, cyan). We 
found that tuned intracortical inhibition39,40 was necessary for this 
emergence of repulsive biases after bump reactivation (Extended 
Data. Fig. 5; see refs. 31,41 for an alternative mechanism). Finally, we 
tested the dependence of this behavioral effect on the strength of 
the nonspecific drive. A very short but strong impulse to the entire 
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triangle), both rate and synaptic tuning are at their maximum, both driven 
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through reactivation by a nonspecific input drive (cyan bar). b, Averaged 
single-neuron tuning to the previous-trial stimulus at different epochs, 
marked as colored triangles in a. c, Cross-correlation of model neurons in 
the ITI differed for the previous-trial stimulus in the preferred location (pref, 
black) and for anti-pref trials (gray) despite no firing-rate selectivity  
(a and b, deep blue). d, Serial bias plots computed from ‘behavioral 
response’ (Methods) in three different conditions of nonspecific 
depolarizing drive. A weak anticipatory drive increases attractive serial 
biases and produces repulsion from more distinct previous memories,  
while a strong drive removes serial biases.
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network during the ITI quickly saturated all the synaptic facilitation 
variables, effectively removing all serial biases in the output of the 
network (Fig. 4d, deep blue). Thus, in this model, bump reactivation 
nonlinearly affects serial biases as the reactivation strength is varied. 
In summary, our model reproduced the behavioral and neurophysi-
ological findings described in Figs. 1–3 and derived predictions 
concerning memory reactivations from silent traces that we then 
tested in the data.

Previous stimulus reactivation increases serial biases. The model 
predicts that higher reactivation of previous memories in the  
fixation period should be associated with stronger serial biases  
(Fig. 4d). We tested this prediction in our neural recordings from 
monkey PFC and in EEG recordings from the human scalp.

Monkey PFC. We first classified each trial on the basis of 
leave-one-out decoding of the previous stimulus trained and tested 
on activity from two different time windows during fixation: dur-
ing a period with no stimulus information (activity-silent period; 
Fig. 1, deep blue) and at the time of reactivation (Fig. 1, orange). 
For each of these two windows, we separated high-decoding tri-
als (first quartile) from low-decoding trials (all other trials) and 
computed bias curves separately. We found that serial biases  
were indistinguishable in the activity-silent period (Fig. 5a), but  
they were stronger for high-decoding than for low-decoding trials 
at the time of bump reactivation (Fig. 5b). This follows the predic-
tion of our computational model, and it confirms the behavioral  
relevance of the bump reactivation before stimulus onset. This 
result was not dependent on a singular selection of trial separations,  
because for different proportions of high-decoding and low-decoding 
trials, the serial bias strengths (Methods) changed smoothly and 
remained consistent with the reported result (Extended Data  
Fig. 6). We then repeated the same analysis at different time points 
of the ITI. A significant difference in serial bias strength (Methods) 
emerged only when trials were classified as low-decoding versus 
high-decoding in the reactivation period (Figs. 1c and 5c, orange), 
and serial biases remained virtually indistinguishable at all other 
time points (Fig. 5c).

Human EEG. Analogous to the analysis of the monkey data, we 
grouped trials on the basis of their leave-one-out decoding accuracy 
of the previous stimulus (Methods). We separated high-decoding 
and low-decoding trials at two different time points: at the time of 
reactivation (Figs. 2 and 5f, orange) and at a fixation-period time 
point without stimulus information (activity-silent; Fig. 5c, black). 
Consistent with the monkey data and the prediction from our 
model, we found a stronger serial bias for high-decoding than for 
low-decoding trials for the reactivation period (Fig. 5e), but not for 
the activity-silent period (Fig. 5d), during which previous memory 
content was not decodable (Fig. 2c). The analysis was repeated for 
all other time points during the fixation period (Fig. 5f). Indeed, 
behavior exclusively depended on decoding accuracy at the time of 
delay code reactivation (Fig. 2, orange). Taken together, these results 
support the hypothesis that previous-trial memory reactivation 
before stimulus onset controls serial biases.

TMS-induced reactivations modulate serial biases. As a causal 
validation of the influence of pre-stimulus PFC reactivation on 
serial biases, we designed a TMS study. This is a relevant experiment 
because memory-dependent changes in human EEG alpha power 
cannot be unequivocally ascribed to a specific brain region, which 
limits the correspondence of our EEG and monkey dlPFC data. In 
particular, representations in larger and more organized occipi-
tal cortices might strongly contribute to visual EEG signals (for 
example, see ref. 33), but could yet be driven by top-down projec-
tions from association cortices42. Inspired by a previous study14 that 

reported reactivation of latent memories using TMS, we causally 
tested the role of the dlPFC in serial biases by applying single-pulse 
TMS during the fixation period. We had two control conditions 
to test our hypotheses: (1) we targeted the TMS coil at the dlPFC 
and the vertex in interleaved blocks, and (2) we randomly chose 
the TMS intensity in each trial (sham: 0%, weak-TMS: 70%, and 
strong-TMS: 130% of the resting motor threshold (RMT) of each 
participant; Methods). We found that TMS modulated serial biases 
when targeted at the dlPFC but not at the vertex (Fig. 6). Moreover, 
our computational model predicted a nonlinear dependence with 
stimulation strength (Fig. 4d), which was supported by the TMS 
data (Fig. 6b). Interestingly, the behavioral impact of PFC TMS stim-
ulation declined throughout the session, as if participants became 
desensitized to the TMS pulse (Extended Data Fig. 7). Importantly, 
we show combined results from two separate experiments of n = 10 
participants each, one being a preregistered replication (Methods; 
Extended Data Figs. 8 and 9). These results provide causal evidence 
for the involvement of the PFC in the serial bias machinery during 
the ITI. Furthermore, we show that TMS affects serial biases in a 
nonlinear manner, as predicted by model simulations that imple-
ment the bump-reactivation hypothesis via the interplay of bump 
attractor and activity-silent mechanisms.
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Fig. 5 | Bump reactivation from a hidden trace increases serial biases. 
Serial bias for trials with high previous-trial stimulus information (upper 
quartile, red) and for all other trials (black) in monkeys (a–c, n = 1,362 
trials) and in humans (d–f, n = 15 participants, with a range of 792–908 
trials in this analysis). See Extended Data Fig. 6 for different quantiles.  
a, Trials selected based on a decoder trained and tested early in the  
fixation period (black triangle in c), did not reveal differences in serial bias. 
b, Serial biases were markedly enhanced for high-decoding trials when 
training and testing the decoder at the time of reactivation (Fig. 1c, orange 
triangle in c). c, Differences in serial bias curves between high-decoding 
and other trials became significant only in late fixation, concomitant with 
reactivation (Fig. 1c). Triangles mark the center of decoding windows for 
the splits shown in a and b. d–f, Same analyses for human EEg (n = 15 
independent participants). Note that for humans, d corresponds to an 
activity-silent period in late fixation (black triangle in f), and e to the 
reactivation period in early fixation (Fig. 2c, orange triangle in f). f, As for 
monkeys, serial bias differences in humans were significant only during 
reactivation. In c and f, time courses of differences between high-decoding 
and other trials were smoothed in time using a 5-sample (monkey) and 
16-sample (human) square filter. Black horizontal bars (b and c) mark 
significant differences between high-decoding and other trials (P < 0.05, 
one-sided permutation test). Error shading represents 95% CI (c and f) or 
±s.e.m. (a, b, d and e).
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Discussion
By studying the neural basis of serial biases, we showed how the 
interplay of bump-attractor dynamics and activity-silent mecha-
nisms in the PFC maintains and eventually reactivates infor-
mation about previous stimuli in spatial working memory. In 
delayed-response tasks, prefrontal tuned persistent activity consis-
tent with bump-attractor dynamics characterizes the delay period 
and correlates with behavioral precision6,43. We have now seen 
that this sustained activation disappears from the prefrontal net-
work between trials, but is reactivated before the new trial (Figs. 1  
and 2) and enhances behavioral serial biases (Figs. 5 and 6). This 
reactivation is directly linked to previous-trial activity: it emerged 
specifically in those neural ensembles that showed strongest per-
sistent tuning in the delay period (Fig. 1c; Extended Data Fig. 1), 
it was decoded from human EEG data with decoders trained in 
the delay period (Fig. 2) and it exhibited the fingerprints of bump 
attractors as evaluated using pairwise correlations (Extended Data 
Fig. 2). Activity-silent mechanisms in the PFC bridge disconnected 
periods of persistent activity, carrying trial-specific information 
from one trial to the next (Fig. 3). Importantly, this latent tuning 
was directly associated with trial-by-trial firing rates in the preced-
ing delay period (Fig. 3e), thus establishing a coupling between 
activity-based and activity-silent mechanisms in the PFC. Taken 
together, our results are consistent with the view that attractor-based 
and activity-silent mechanisms are jointly represented in the 
prefrontal circuit and that their tight interplay influences repre-
sentations in spatial working memory. We specified this in a compu-
tational network model, whereby delay-period attractor dynamics  
imprint activity-silent mechanisms, which then retain informa-
tion between trials and allow reactivations to recapitulate attractor  
states (Fig. 4).

Our data indicate that nonspecific PFC stimulation can revive 
subthreshold information, thus supporting the ideas put forward 
in computational models9 and in previous neuroimaging and EEG 
studies14,44,45. Importantly, we obtained explicit causal evidence 
supporting the role of ITI reactivations in enhancing serial biases. 

Similarly, recent causal evidence obtained in rodents26 showed the 
role of parietal activations in generating history-dependent biases. 
However, the absence of selective mnemonic delay activity in rat 
parietal neurons26 suggests that parietal ITI representations do not 
emerge from trace reactivations. A directed mechanistic investiga-
tion of the rat posterior parietal cortex in this task, similar to our 
efforts here, would be necessary to clarify the mechanisms and ori-
gin of history biases, and potential differences between the genera-
tion of contraction and serial biases in rodents and primates. More 
in line with our reasoning, human TMS studies found behavioral 
effects of memory reactivations when applied in the delay period, but 
only when memories were still behaviorally relevant14. In contrast, 
we show here that fixation-period TMS enhanced the behavioral 
influence of previous, already irrelevant memories. Reactivations 
may therefore not depend on behavioral relevance but rather on the 
decaying dynamics of activity-silent mechanisms; a more advanced 
decay of irrelevant memory traces may limit memory reactivations 
in ref. 14. Reactivations also offer alternative explanations to TMS 
effects in working memory that have previously been interpreted on 
the basis of network disruptions46.

Our data support the idea that activity-silent and attractor-based 
mechanisms are not orthogonal, alternative mechanisms, but that 
they are interdependent mechanisms colocalized in the PFC. In turn, 
their different timescales may associate them preferentially with 
different types of memory processes. During active maintenance 
of working memory, rapid persistent attractor-based activity may 
encode memory, with slower activity-silent mechanisms providing a 
supporting, stabilizing role11,16,17. Note that although direct evidence 
of this interplay in the delay period is problematic (Extended Data 
Fig. 3), our approach of separately assessing delay period and ITI, 
and their trial-by-trial correlation, indirectly supports this interplay 
and may be the most direct evidence that can be accessed extra-
cellularly without resorting to detailed intracellular measurements 
in awake monkeys. After the deactivation of attractor-based active 
maintenance in the ITI, slowly decaying activity-silent maintenance 
may underlie secondary, possibly involuntary memory traces, lead-
ing to serial biases in upcoming trials. Note that previous studies 
have also proposed a central role for activity-silent maintenance for 
an additional, intermediate type of memory: unattended, behavior-
ally relevant memories14,44. It was hypothesized that by resorting  
to different mechanisms, unattended memories may be reserved 
and protected while processing attended memories. Although  
our data do not address the mechanism of unattended memo-
ries, in our proposed framework, the close interplay between 
attractor-based and activity-silent mechanisms does not allow unat-
tended memories (activity-silent memories) to be protected from 
intervening attended memories (attractor-based). This yields the 
prediction that serial-bias-like patterns of interference39,40 between 
unattended and attended memories should be observed in these 
experiments14,44.

Our results have implications for the functional interpretation 
of serial biases and their relation with the interplay of prefrontal 
mnemonic mechanisms. First, enhanced serial biases after reacti-
vating latent traces from earlier memories are consistent with the 
view that biases are the by-product of memory-supporting pro-
cesses. As previous computational studies have shown, long-lasting 
cellular or synaptic mechanisms can enhance the stability of work-
ing memory retention (for examples, see refs. 11,16–18), but with the 
cost of across-trial interference of memories11,16. Along these lines, 
a recently found reduction in serial biases in patients with schizo-
phrenia41, anti-NMDA receptor encephalitis41 or autism28 may 
reflect a reduced interplay of memory-supporting mechanisms. 
Second, we see an active role of the PFC in generating serial biases, 
rather than suppressing them as proposed by the proactive interfer-
ence literature29,30. This discrepancy could be resolved if the role of 
PFC was two-sided: (1) the PFC could generate biases either as a 
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by-product of stable memory retention11,16 or actively, in circum-
stances in which past memory traces are adaptive for behavior24; 
alternatively, (2) strong PFC activation would suppress maladap-
tive memory remnants in  situations where biases are particularly 
detrimental to behavioral performance. This dual PFC function is 
supported in our modeling and TMS data by the contrasting effect 
of weak and strong PFC activation on serial biases.

Our TMS experiment clarified our EEG results by demonstrat-
ing the role that the PFC plays in serial biases. Because we did not 
concurrently acquire EEG data during the TMS study, we could not 
directly measure the neural reactivation induced by the TMS pulse. 
However, prior work has shown the reactivation of EEG memory 
representations with TMS14, albeit in different conditions (pulses 
in the memory period targeted at parietal and occipital regions). 
Intriguingly, serial biases for trials without TMS stimulation in 
PFC-stimulation blocks were repulsive (Fig. 6b). We speculate that 
this was due to suppressive long-lasting physiological effects in the 
PFC that carried over from previous TMS-stimulated trials in the 
block47 (see Extended Data Fig. 10 for a phenomenological model 
of this hypothesis). Future work involving more fine-grained TMS 
intensities and carefully controlled block designs will be necessary 
to further clarify these results.

We proposed a computational model that can parsimoniously 
explain our data using STP in the synapses of a recurrent net-
work. STP has also been used in previous computational models 
of interacting activity-based and activity-silent dynamics9,10,13 and 
of serial biases16,31. Beyond previous modeling efforts, we explored 
the mechanistic requirements of code reactivations before a new 
trial, and we derived predictions whose validation conferred plau-
sibility to the model. Our findings do not unequivocally identify 
this mechanism and we could have chosen another mechanism 
with a long time constant to computationally implement our 
hypothesis (for example, calcium-activated depolarizing currents17, 
depolarization-induced suppression of inhibition11 or short-term 
potentiation48). Also, synaptic plasticity mechanisms linked to feed-
forward connections into the PFC38 could conceivably play a role. 
Still, several lines of evidence support the involvement of STP in 
prefrontal function. First, there is explicit evidence for enhanced 
short-term facilitation and augmentation among PFC neurons in 
in  vitro studies49,50. Second, extracellular recordings in behaving 
animals cannot directly probe activity-silent mechanisms, but indi-
rect evidence for synaptic plasticity has been gathered from pre-
frontal activity correlations of rodents engaged in working memory 
tasks35. Our study also follows this approach to seek evidence for 
activity-silent stimulus encoding, but we applied it specifically at 
time periods without firing-rate codes for task stimuli, thus unam-
biguously decoupling activity-silent from activity-based selectivity 
(Fig. 3; Extended Data Fig. 3).

In summary, our data show that subthreshold traces of recent 
memories remain imprinted in PFC circuits and bias behavioral 
output in working memory in particular through network reactiva-
tions of recent experiences. Our findings suggest that the dynamic 
interplay between attractor and subthreshold network dynamics in 
the PFC supports closely associated memory storage processes: from 
effortful memory to occasional reactivation of fading experiences.
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Methods
Behavioral task and recordings. Monkey behavioral task and recordings. Four 
adult (>6 years old), male rhesus monkeys (Macaca mulatta) were trained in an 
oculomotor delayed response task requiring them to fixate, view a peripheral visual 
stimulus on a screen at a distance of 50 cm and make a saccadic eye movement to 
its location after a delay period. During execution of the task, neurophysiological 
recordings were obtained from the dlPFC. Detailed methods of the behavioral task, 
training, surgeries and recordings, as well as descriptions of neuronal responses 
in the task, have been previously published6,51–54 and are only summarized briefly 
here. Visual stimuli were 1° squares, flashed for 500 ms at an eccentricity of either 
12° or 14°, indicated as degrees of visual angle. Stimuli were randomly presented 
at one out of eight possible locations around the fixation point. A delay period 
lasting 3 s followed the presentation of the stimulus, at the end of which the 
fixation point turned off and a saccade terminating within 5° from the location of 
the remembered stimulus was reinforced with a liquid reward (5° corresponds to 
about 20° of arc on the circle of possible cues). Although fixation was maintained 
through cue and delay periods, we denote the fixation period as the interval 
between fixation onset and cue onset, when the only behavior expected was 
fixation (fixation period, Fig. 1b). A fixed ITI of 3.1 s elapsed between fixation cue 
extinction and the onset of the cue in the next trial (ITI, Fig. 1b). Eye position was 
monitored using a scleral eye coil system in two monkeys and an ISCAN camera 
in the other two. From two of those monkeys, we collected single-unit responses 
from the dlPFC using tungsten electrodes of 1–4 MΩ impedance at 1 kHz while 
they were performing the task51. Simultaneous recordings were obtained from 
arrays of 2–4 microelectrodes spaced 0.2–1 mm apart. A substantial fraction of 
neurons in this area showed tuned persistent delay activity during the mnemonic 
delay period of the task (n = 206 out of 822 neurons6,51–54). For decoding analyses, 
we grouped those neurons in simultaneously recorded ensembles (total of 
n = 94 neural ensembles, 1–6 neurons per ensemble, Extended Data Fig. 1a). All 
experiments were conducted in accordance with the guidelines set forth by the 
US National Institutes of Health, as reviewed and approved by the Yale University 
Institutional Animal Care and Use Committee, and by the Wake Forest University 
Institutional Animal Care and Use Committee. Data collection and analyses were 
not performed blinded to the conditions of the experiments. No statistical methods 
were used to predetermine sample sizes, and we followed the customary practice of 
testing n = 2 monkeys for electrophysiology data and n = 4 monkeys for behavioral 
data. We note that the electrophysiology data were previously acquired and have 
been used in other publications6,51–56.

Human participants and behavioral task. Thirty-five neurologically and 
psychologically healthy volunteers with normal or corrected vision (EEG 
experiment: n = 15 (4 male), 21.27 ± 4.86 years (mean ± s.d.); two additional 
participants were tested, but aborted the EEG experiment with insufficient  
trials; TMS experiments: n = 20 (6 male), 29.86 years ± 9.55 years (mean ± s.d.); 
one additional participant was excluded before their MRI scan due to health 
concerns) from the Barcelona area provided written informed consent and were 
monetarily compensated for their participation, as reviewed and approved by 
the Research Ethics Committee of the Hospital Clínic de Barcelona. During 
both the EEG and TMS experiments, each participant performed two sessions 
lasting approximately 1.5 h. To perform behavioral and EEG analyses, we 
concatenated the two sessions for each participant. Stimuli were presented on a 
17ʺ HP ProBook viewed at a distance of 65 cm, and we used Psychopy (v.1.82.01) 
running on Python 2.7. The TMS study consisted of an initial experiment with 
ten participants and a preregistered replication experiment (https://osf.io/rguzn/) 
with ten more participants (Extended Data Figs. 7–9). For all three studies (one 
EEG and two TMS experiments), we recruited independent participant pools. 
For the fully randomized within-subjects design of our EEG task, condition-blind 
data collection and analyses were not a critical issue. In the TMS study, the 
experimenter could not be blinded to the location of the coil. No statistical 
methods were used to predetermine sample sizes, but our sample sizes were similar 
to those reported in relevant previous publications14,33,46.

In each 1.5-h EEG session, participants completed 12 blocks of 48 trials 
(except for one participant, who completed 12 blocks in one session and 9 blocks 
in the second session). Each trial began with the presentation of a central black 
fixation dot (0.5 × 0.5 cm) on a gray background. After 1.1 s of fixation, a single 
colored circle (stimulus, diameter of 1.4 cm) appeared for 0.25 s at any of 360 
circular locations at a fixed radius of 4.5 cm, randomly sampled from a uniform 
distribution. In 66.67% of trials (a total of 768 trials per participant), the stimulus 
was followed by a 1-s delay in which only the fixation dot remained visible. In the 
remaining trials, the delay duration was either 3 s (16.67% of trials, 192 trials per 
participant) or 0 s (16.67% of trials, 192 trials per participant). Trials with 0-s delay 
were excluded from the analyses in this study. The change in the fixation dot color 
(from black to the stimulus color) instructed participants to respond (response 
probe). Participants responded by making a mouse click at the remembered 
location. A transparent circle with a white border indicated the radial distance of 
the stimulus, so the participant was only asked to remember its angular location. 
After the response was given, the cursor had to be moved back to the fixation 
dot to self-initiate a new trial. The total length of the ITI, defined as the time 
between response probe and the next stimulus onset, was around 2.72 s (median, 

95% confidence intervals (CIs) = [2.11 s, 4.16 s]). Participants were instructed to 
maintain fixation during pre-stimulus fixation, stimulus presentation and delay, 
and were free to move their eyes during the response and when returning the 
cursor to the fixation dot. Colors (one out of six colors with equal luminance) were 
randomly chosen with an equal probability for each trial.

Stimuli and the trial structure in the TMS task were similar to the EEG task, 
except for the fixation period duration (0.6 s), screen background (white), stimulus 
color (black) and response probe color (red). At the end of the fixation period 
(16.7 ms before stimulus onset), a single TMS pulse was applied in half of the vertex 
trials (TMS or sham trials, randomly interleaved) and in two-thirds of prefrontal 
trials (weak or strong TMS or sham trials, randomly interleaved). See TMS details 
below. Only delays of 1 s were used in this experiment. Participants completed 4 
blocks of 90 (vertex) and 4 blocks of 130 (PFC) trials within each session. In the 
first TMS study, these eight blocks were randomly shuffled for each session. In the 
replication TMS study, we successively alternated vertex and PFC blocks within 
each session, and the two sessions of a given participant started alternately with 
each area in a counterbalanced design.

EEG recordings and preprocessing. We recorded EEG data from 43 electrodes 
attached directly to the scalp. The electrodes were located at the following modified 
combinatorial nomenclature sites: Fp1, Fpz, Fp2, AF7, AFz, AF8, F7, F3, Fz, F4, 
F8, FT7, FC3, FCz, FC4, FT8, A1, T7, C5, C3, Cz, C4, C6, T8, A2, TP7, CP3, CPz, 
CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO3, POz, PO4, PO8, O1, Oz and O2. Sites 
were referenced to an average of mastoids A1 and A2 and re-referenced offline to 
an average of all electrodes. We further recorded horizontal electrooculography 
data from both eyes, vertical electrooculography data from an electrode placed 
below the left eye and electrocardiography data to detect cardiac artifacts. We 
used a Brainbox EEG-1166 EEG amplifier with a 0.017–100 Hz bandpass filter and 
digitized the signal at 512 Hz using Deltamed Coherence software (v.5.1).

EEG data were preprocessed using Fieldtrip (v.20171231) in Matlab R2017b 
and R2019a. We excluded outlier trials in which variance or kurtosis across 
samples exceeded four standard deviations from mean variance or kurtosis 
over trials, respectively. To reduce artifacts in the remaining data, we ran an 
independent component analysis on the trial-segmented data and corrected the 
signal for blinks, eye movements and electrocardiogram signals, as identified by 
visual inspection of all components. Data were Hilbert-transformed (using the 
FieldTrip function ft_freqanalysis.m) to extract frequencies in the alpha band 
(8–12 Hz), and total power was calculated as the squared complex magnitude of the 
signal. Finally, we excluded trials in which log-normal alpha power at any electrode 
exceeded the time-resolved trial average of log-normal alpha power by more than 
four standard deviations, and trials in which the time-averaged variance across 
electrodes exceeded the mean variance over trials by more than four standard 
deviations (to increase the stability of trial-wise decoding predictions for different 
randomly chosen training sets). In total, we rejected an average of 3.95 ± 1.07% 
(mean ± s.d.) of trials per participant. Excluding rejected trials and trials with 
0-s delay, we used 914.33 ± 28.94 trials per participant. To concatenate data from 
the two sessions for the same participant, we normalized the alpha power of each 
session for each electrode separately.

TMS study. Stimulation was performed in the TMS study using a Magstim Rapid 2  
machine with a 70-mm figure-of-eight coil. TMS target points were located using  
a BrainSight navigated brain stimulation system that allowed coordination of  
the coil position based on the structural MRI scan of each participant. A region  
of interest in the right dlPFC (MNI152 coordinates x = 40, y = 34, z = 16) was  
defined using a NeuroSynth57 term-based meta-analysis of 53 functional MRI 
studies associated with the key phrase ‘spatial working memory’ (Supplementary 
Fig. 1 and Supplementary Data). This mask was transformed into the structural 
MRI space of each participant. Vertex target points were defined using the 10–20 
measurement system. Stimulator intensity, coil position and coil orientation were 
held constant for each participant for the duration of each session. To mask the 
sound of TMS coil discharge, we had participants listen to white noise through 
earphones for the duration of the session. White noise volume was selected 
based on the threshold of the participant for detecting a TMS click using the 
staircase method (two up, one down). Stimulation intensity was determined by 
the individually defined RMT. We applied two different TMS intensities at 70% 
RMT (weak-TMS, 24.5–41.5% (min–max) of stimulator output) and 130% RMT 
(strong-TMS, 45.5–76.5% of stimulator output) depending on the trial (see main 
text). To reduce the number of trials per session, we applied strong-TMS at the 
vertex in the original study, but weak-TMS for the replication study (preregistered 
at https://osf.io/rguzn/; Extended Data Figs. 9 and 10). The stimulation parameters 
were in accordance with published TMS guidelines58. In a post-experiment 
debriefing session, we collected information about the subjective experience of  
the participants. Many participants (13 out of 20) reported facial muscle twitching 
in the dlPFC blocks. This is an unlikely explanation for the effects observed  
in Fig. 6 because (1) twitching is expected to increase with TMS intensity, but we  
instead observed a nonlinear dependency in our effect (Fig. 6b), and  
(2) behavioral performance in our task as measured by the precision of the 
responses was not modulated by the TMS intensity in the dlPFC blocks (linear 
mixed model: θ2e  intensity þ ð1jsubjectÞ

I
, P > 0.5), which suggests that our 
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reported intensity-dependent effect (Fig. 6b) was not the result of a general 
behavioral impairment caused by facial twitching.

Serial bias analysis. Human study. For each trial, we measured the response 
error (θe

I
) as the angular distance between the angle of the presented stimulus and 

the angle of the response. To exclude responses produced by guessing or motor 
imprecision, we only analyzed responses within an angular distance of 1 radian and 
a radial distance of 2.25 cm from the stimulus. Furthermore, we excluded trials in 
which the time of response initiation exceeded 3 s, and trials for which the time 
between the response probe of the previous trial and the stimulus presentation of 
the current trial exceeded 5 s. On average, 2.99 ± 4.51% (mean ± s.d.) of trials per 
participant were rejected.

We measured serial biases as the average error in the current trial as a function 
of the circular distance between the target locations of the previous and the current 
trial (θd

I
) in sliding windows with size π=3

I
 and in steps of π=20

I
 radians, and steps 

of π/100 radians for Fig. 2a (note that for easier interpretability, all figures depict 
values in angular degrees). To increase power and correct for global response 
biases, we calculated a ‘folded’ version of serial biases as follows25. We multiplied 
trial-wise errors by the sign of θd

I
: θ0e ¼ θe ´ signðθdÞ
I

, and used absolute values 
of θd

I
. Positive mean folded errors should be interpreted as attraction toward the 

previous stimulus and negative mean folded errors as repulsion away from the 
previous location. For a scalar estimate of differences in serial bias curves (Fig. 5f), 
we averaged folded errors for close θd distances (between 0 and π=2

I
 radians).

Monkey study. In contrast to the human study, the stimulus distribution was 
discrete for all the monkey experiments. On each trial, the subject was cued to one 
of eight possible cue locations equidistant on a circle. This restricted the minimal 
angular distance between cues in two consecutive trials to be π=4

I
 radians. To 

obtain a finer resolution to calculate serial biases, we capitalized on the response 
variability on each trial: we computed θd

I
 as the distance between the stimulus of 

the current trial and the response of the previous trial (instead of the stimulus of 
the previous trial). Similar methods to the human study were used, except for Fig. 1a,  
where we used smaller sliding window sizes (π=10

I
 in steps of π=100

I
 radians), 

which was essential to capture the thinner attractive serial bias profile in monkeys 
(Fig. 1a). Specific differences in our monkey and human serial bias curves (Figs. 1a 
and 2a) may be due to the discrete stimulus distribution (eight possible locations) 
that we used for monkeys, in contrast to the continuous distribution used in our 
human experiments. Indeed, studies with larger samples and continuous stimulus 
distributions have reported behavioral biases in monkeys more consistent with 
the human literature20,32. For all our serial bias curves, x axis coordinates mark the 
central value of the corresponding sliding window.

Statistical methods. Data were analyzed using custom scripts in Python 2.7 
(monkey and TMS data) and in Python 3.7.4 (human EEG data). Details of 
statistical methods are tabulated in the Nature Research Reporting Summary 
available online. Unless stated otherwise, all hypothesis tests were two-tailed 
(permutation tests or bootstrap hypothesis test, n = 106) and CI are at [2.5, 97.5] 
percentiles of a bootstrapped distribution. Using bootstrap distributions, we avoid 
assuming normality for our statistical tests. One exception was the linear model 
used for TMS data analyses, in which normality was assumed. Supplementary Fig. 2  
shows the distribution of residuals of this model and the corresponding qqplot. 
There was a significant deviation from normality in extreme values. This did not 
compromise our statistical inference because of the large sample size (n = 18,299 
trials)59 and because the interaction of interest was confirmed by model-free 
analyses (Fig. 6; Extended Data Figs. 7–9).

To test the effect of TMS on serial biases, we fit a linear mixed-effects model 
using the R function lme60. In particular, we modeled trial-wise behavioral errors 
θe
I

 as a linear model with interaction terms for coil location (PFC versus vertex), 
TMS intensity (strong-TMS, sham and weak-TMS) and the sine of θd

I
 (prev-curr), 

which approximates the expected dependency of θe on θd
I

 in the presence of 
serial biases (θe / sinðθdÞ

I
). We incorporated the nonlinear dependency of serial 

bias on stimulation intensity that our model simulations predicted by using –1, 
0 and 1 for strong-TMS, sham and weak-TMS, respectively. In one model, we 
used instead the nominal percent of RMT TMS intensity used (70, 0 and 130, 
respectively) for comparison (Fig. 6b). We accounted for subject-by-subject 
variability by including random-effect intercepts and random-effect 
coefficients of prev-curr. The full, three-way interaction model was as follows: 
θe  coil location ´ intensity ´ prev-currþ ð1þ prev-currjsubjectÞ
I

Decoding stimulus information. Monkeys. Population decoder. For each recorded 
ensemble, we decoded stimulus θj in trial j by modeling it as a linear combination 
of the spike counts nij

I
 (i ¼ 1:::k
I

) of k simultaneously recorded neurons, computed 
in sliding windows of 0.5 s and steps of 0.1 s during that trial (in all decoding time 
courses depicted in figures (monkeys and humans), time (x axis) coordinates mark 
the central value of the corresponding sliding window):

cos θj
� 

 1þ
Xk

i

βinij and sin θj
� 

 1þ
Xk

i

ωinij

For each set of neurons, we trained two sets of weights fβig
I

 and fωig
I

 on 80% 
of randomly selected trials and tested in the remaining trials. We applied Monte–
Carlo cross-validation with 50 random splits to obtain angle estimates θ̂j. We 
obtained a measure of error (err) by averaging across splits the mean absolute error 
( θ̂j � θj
�� ��
I

) in each split.

Accuracy of ensembles: distance from shuffle. To establish the significance of 
decoding accuracy (z), we compared the decoding error (err) for each ensemble to 
the distribution of decoding errors in 1,000 shuffled stimulus sequences (errs). By 
shuffling the list of stimuli presented in the particular recording of each ensemble, 
we maintained the characteristics of the distribution (for example, unbalanced 
distribution of stimuli), but effectively destroyed correlations between stimuli and 
neural activity.

z ¼ � err�meanðerrsÞ
s:d:ðerrsÞ

In Fig. 1c and Extended Data Fig. 1b, we separately tested ensembles that had 
the strongest and weakest decoding accuracy in the delay period by obtaining z 
from spike counts in the delay period and classifying the ensembles based on z: 
ensembles within the top tertile (high-decoding delay ensembles) and those in the 
bottom tertile (low-decoding delay ensembles).

Accuracy of single trials: leave-one-out decoder. To measure stimulus information 
on a trial-by-trial basis, we used leave-one-out cross-validation (Fig. 5a–c). We 
regressed the βi

I
 and ωi

I
 weights in all trials, except the one left out for testing. For 

these analyses we computed spike counts in windows of 1 s in steps of 50 ms.

Humans. Linear decoder. EEG alpha power is known to decrease in occipital sites 
contralateral to attended locations and for locations being actively maintained 
in working memory33,61–63. We used this feature to decode the angular position 
of the stimulus from the distribution of alpha power over all 43 electrodes. We 
trained the decoder on the stimulus label of the previous trial and decoded this 
information throughout the previous and current trial. Trial-wise alpha power 
for each electrode was modeled as a linear combination of a set of regressors 
representing the stimulus location in the corresponding trial, U ¼ WM

I
, where U 

is a J ´K
I

 matrix of alpha power measured at electrode j in trial k, M is the N ´K
I

 
design matrix of values for regressor n in trial k, and W is the J ´N

I
 weight matrix, 

mapping the weight for regressor n to electrode j. U and M were given by the 
experiment, while W was fitted using least squares.

The design matrix M is a set of eight regressors Mn
I

 representing expected 
“feature activations”64 for feature n in trial k. The value of regressor Mn

I
 in trial k 

was determined as sin nπ=8� skπ=8þ π=2ð Þ7
�� ��
I

, where sk = [0 … 7] indicates which 
one of eight angular location bins (width π=8

I
 radians) included the stimulus shown 

in trial k.
As in the monkey analyses, we measured single-trial stimulus representations 

using leave-one-out cross-validation, ensuring an equal number of trials from each 
location bin in the training set (Ut

I
 and Mt

I
). We estimated the weight matrix Ŵ

I
 and 

the design matrix M̂k
I

 for the left-out trial k, as follows:

Ŵ ¼ UtM
T
t MtM

T
t

� ��1

M̂k ¼ ŴTŴ
� ��1

ŴTUk

For each trial and time point, we repeated this analysis 100 times with 
randomly chosen training sets (except for the temporal generalization matrix, 
for which ten repetitions were run, Fig. 2b), and averaged M̂

I
 over all repetitions. 

Finally, we estimated the predicted angle θ̂k
I

 as the direction of the vector sum of 
feature vectors with length M̂nk

I
 pointing at angular location bin centers bn ¼ nπ=8

I
 

(n = 0…7). Trial-wise decoding strength was then defined as cos θ̂k � θk
� �

I
. To 

correlate the decoding strength with behavioral biases (Fig. 5d–f), we increased 
the stability of trial-wise measures by temporal averaging over moving 200-ms 
windows (x axis ticks in Fig. 5f are centered at window centers).

Cross-temporal decoding. To explore the temporal generalization of the mnemonic 
and the response code over time, we trained decoders in independent time 
windows of the previous and current trial, and tested them in all time points  
of consecutive trials (from 0.25 s to 1.25 s after previous stimulus onset (Fig. 2c,  
left), −0.25 s to 0.25 s after previous response (Fig. 2c, middle), and −1.25 s 
to 0.25 s after the stimulus onset of the current trial (Fig. 2c, right)). For the 
temporal generalization matrix (Fig. 2b), we averaged training and test data over 
independent windows of 50 samples (~97.77 ms). High-resolution time courses of 
mnemonic and response code (Fig. 2c) were obtained by training the decoder on 
averaged data from 0.5 s to 1 s after previous stimulus onset and −0.25 s to 0.25 s 
relative to the response time (dashed lines in Fig. 2b), respectively, and by testing 
on averaged data from five samples (~9.77 ms) through consecutive trials.

Preferred location. We computed the preferred locations of each neuron. Similar 
to ref. 6, the preferred location was determined by computing the circular mean of 
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the cue angles (0–315°, in steps of 45°) weighted by the mean spike count of the 
neuron over the delay period (3 s) following each cue presentation.

Cross-correlations. Dataset. For the estimation of functional connectivity, we 
estimated cross-correlations by computing the jittered cross-covariances65 of spike 
counts from simultaneously recorded neuron pairs, whose preferred locations were 
separated by a maximum of 60° (n = 67). We included pairs of neurons recorded 
from the same electrode (n = 21) and pairs recorded from different electrodes 
(n = 46). For each pair, we selected those trials in which the presented cue fell 
within the preferred range (pref, within 40° from either preferred locations) or 
outside the preferred range (anti-pref, all the other trials). We discarded those trials 
without at least one spike for each neuron in the pair.

Jittered cross-covariance. We used the Python function scipy.signal.correlate to 
compute cross-covariances between spike trains of simultaneously recorded pairs. 
Spikes were counted in independent windows of 10 ms37,66. For each trial, 1,000 
jittered cross-covariances were computed as follows65. We shuffled the spike counts 
within non-overlapping windows of 50 ms and computed cross-covariance for each 
of these jittered spike counts. This captured all the cross-covariance caused by slow 
dynamics (>50 ms) but destroyed any faster dynamics. Finally, we removed the 
mean of these jittered cross-covariances from the cross-covariance of each trial, 
ending up with correlations due to faster dynamics (≤50 ms). We considered the 
magnitude of the central peak of the cross-covariance in our analyses by averaging 
3 bins (±1 bin from the zero-lag bin). For the time-resolved cross-correlation 
function (Fig. 3c,d), we repeated this process for sliding windows of 1 s and steps of 
50 ms, and averaged across trials and neuronal pairs.

Putative exc and inh interaction. Because changes in connectivity strength 
(our hypothesis for activity-silent mechanisms) affect inversely exc peaks and 
inh troughs of cross-correlations34, we separately analyzed these two types 
of interactions. Similar to refs. 35,36, based on the average central peak of the 
cross-correlation function in the entire trial [−4.5 s, 2.5 s], we classified each pair 
into three subgroups: (1) those with a positive peak for both pref and anti-pref 
trials were classified as putative exc interactions, (2) those with a negative peak for 
both pre and anti-pref trials were classified as putative inh interactions and (3) we 
discarded those with an inconsistent peak sign between pref and anti-pref trials. 
In total, we analyzed the cross-correlation time course of n = 47 pairs of neurons 
(n = 27 exc and n = 20 inh; from different electrodes n = 20 exc and n = 13 inh). We 
confirmed that our results held when analyzing only pairs from different electrodes 
(Fig. 3c; exc: P = 0.01, n = 20; inh: P = 0.04, n = 13, one-sided permutation test).

Delay rate versus ITI cross-correlation analyses. As shown in Fig. 3e, we sought 
evidence for an interplay between attractor and subthreshold network dynamics 
in the PFC. To this end, we computed the trial-by-trial correlation between the 
cross-covariance peak (see above) in the ITI—at a time point when there was no 
firing-rate tuning (activity-silent period, Fig. 3d)—and the mean firing rate of the 
two neurons at the end of the preceding delay period (last 2 s, delay-fr, Fig. 3e) 
for exc interaction pairs under the pref and anti-pref condition (see above). For 
each pair, we obtained demeaned values for each trial by subtracting the mean 
firing rate and the mean cross-covariance peak across all trials, respectively. This 
allowed us to compute the correlation based on trial-by-trial measurements of all 
pairs together (n = 27) to increase statistical power. Error bars were then computed 
based on a bootstrap approach on all trials for all pairs. A local activity-dependent 
subthreshold mechanism for ITI memory traces predicts that for pref trials, but not 
for anti-pref trials, firing-rate variations in the delay period determines the degree 
of latent variable loading (cross-covariance peak) in the ITI (Fig. 3e).

Simulating bump reactivation. We used a previously proposed computational 
model39,67,68 to study serial dependence between two consecutive trials. The model 
consists of a network of interconnected 2,048 excitatory and 512 inhibitory 
leaky integrate-and-fire neurons69. This network was organized according to a 
ring structure: excitatory and inhibitory neurons were spatially distributed on a 
ring so that nearby neurons encoded nearby spatial locations. All connections 
were all-to-all and spatially tuned, so that nearby neurons with similar preferred 
directions had stronger than average connections, while distant neurons had 
weaker connections. Inhibitory-to-inhibitory connections were untuned. Network 
parameters were taken from ref. 67 except for the following:

GEE;AMPA ¼ 0:1 nS; GEI;AMPA ¼ 0:192 nS

GEE;NMDA ¼ 0:42 nS; GEI;NMDA ¼ 0:49 nS

GII;GABA ¼ 0:7413 nS;GIE;GABA ¼ 0:9163 nS

gext; I ¼ 5:8 nS; gext; E ¼ 5:915 nS

JþEE ¼ 7:1; σEE ¼ 18 ° ; JþEI ¼ JþIE ¼ 2:2; σEI ¼ σIE ¼ 32 °

where G values are the maximum conductances of the corresponding connections 
(e.g., GEE, AMPA is the total maximum conductance of AMPAR-mediated local 
excitation onto an excitatory neuron), gext,E and gext,I are the maximum conductance 
of external Poisson inputs to an excitatory or inhibitory neuron, respectively, and 
J+ and σ values define the amplitude and width of corresponding connectivity 
footprints, respectively. See ref. 67 for more details.

STP dynamics. Simulation of activity-silent mechanisms during the inter-trial 
period was done by adding two more variables x and u, as described in refs. 9,70, to 
excitatory presynaptic neurons as follows:

dx
dt

¼ 1� x
τx

� u x δ t � tsp
� �

du
dt

¼ U � u
τu

þ U 1� uð Þ δ t � tsp
� �

With tsp
I

 marking all spike times and δðtÞ
I

 being the Dirac delta function. We used 
the parameters U ¼ 0:2; τx ¼ 200ms; τu ¼ 1; 500ms

I
. The effective conductance 

of each excitatory synapse was then g ´ u ´ x
I

, with g being the corresponding 
maximum conductance parameter (see above). These STP dynamics affected only 
AMPA-receptor-mediated recurrent connections in the network. In a separate 
set of network simulations (not shown), we also included STP in inhibitory 
connections in the network (same parameters as indicated above) and we found 
that we could obtain a similar pattern of serial bias modulations as shown in Fig. 4d.  
This shows that our results are not specifically dependent on whether inhibitory 
connections present facilitation dynamics or not.

Stimulation and behavioral readout. External stimuli were fed into the circuit 
as weak inputs (0.25 nA) to neurons selective to the stimulus as previously 
described67. Each simulation of our computational model consisted of two trials 
run in sequence: a first stimulus of 250 ms, a first delay period of 1,000 ms, a 
network resetting input (nonspecific current −0.261 nA, duration 300 ms), an ITI 
of 1,300 ms, a second stimulus (250 ms) and a second delay period of 1,000 ms. 
The first and second cue stimuli were independently drawn randomly from 360 
uniformly distributed angular values, and only the network readout of the second 
trial was analyzed to obtain a ‘behavioral’ readout. The readout was obtained 
with a bump-tracking procedure: starting at cue presentation, the instantaneous 
network readout was derived as the angular direction of the population vector of 
single-neuron firing rates (computed in windows of 250 ms, sliding by 100 ms) 
considering the ±100 neurons surrounding the readout estimated in the previous 
time step. The instantaneous readout was iteratively derived to track the center 
of the bump (thus ignoring possible elevated activity extending from the fixation 
period), and the final behavioral output was defined as the readout in the last 
250 ms of the trial. Serial bias was calculated by measuring single-trial errors 
(behavioral readout minus target location) in relation to the angular distance 
θd between the first and second stimulus locations, as described above for 
experimental data.

Consecutive trials and bump reactivation. Reactivation of the previous-trial 
stimulus during the reactivation period (300 ms before the second stimulus 
onset) was accomplished by stimulating all excitatory neurons with a nonspecific 
external stimulus9,38. This stimulus exponentially increased with a rate of α = 10 s–1 
as βð1� e�αðt�t0ÞÞ

I
, with β being the reactivation strength and t0 the time of onset 

of the stimulus. The reactivation strength was weak (β ¼ 0:17 nA
I

) or strong 
(β ¼ 2:9 nA
I

).

Rate and synaptic tuning. For each simulation shown in Fig. 3a,b, we computed the 
firing rate (r) and synaptic (s ¼ u ´ x

I
) tuning by computing the difference between 

neurons within (±50°) and outside (180 ± 50°) the previous bump location for both 
measures.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are available at https://github.com/
comptelab/interplayPFC.

Code availability
The custom code used in this study is publicly available at https://github.com/
comptelab/interplayPFC.
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3.2 Reduced serial dependence suggests deficits in synaptic potentiation in                 

anti-NMDAR encephalitis and schizophrenia 

In this section , I show that serial biases in working memory are disrupted in patients with                               14

anti-NMDAR encephalitis and schizophrenia. Modeling of different NMDAR-dependent               

circuit alterations explains these findings most parsimoniously with a reduction in                     

short-term synaptic potentiation . 15

Supplementary material for this section is included in Appendix A2. 

14 This section has been published as:  
Stein, H.*, Barbosa, J.*, Rosa-Justicia, M., Prades, L., Morató, A., Galan-Gadea, A., Ariño, H.                           
Martinez- Hernandez, E., Castro-Fornieles, J., Dalmau, J. & Compte., A. (2020). Reduced serial                         
dependence suggests deficits in synaptic potentiation in anti-NMDAR encephalitis and                   
schizophrenia. Nat Commun, 11, 4250. https://doi.org/10.1038/s41467-020-18033-3. (*equal             
contribution) 
15 Note that in Chapters 3.2 and 3.3, I will use the abbreviation STP to refer to NMDAR-dependent                                   
short-term potentiation, in contrast with the remainder of this thesis, in which STP is used to refer to                                   
short-term plasticity. 
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Helena Ariño1, Eugenia Martinez-Hernandez 1,3, Josefina Castro-Fornieles 1,2,4, Josep Dalmau 1,3,4,5,6 &

Albert Compte 1✉

A mechanistic understanding of core cognitive processes, such as working memory, is crucial

to addressing psychiatric symptoms in brain disorders. We propose a combined psycho-

physical and biophysical account of two symptomatologically related diseases, both linked to

hypofunctional NMDARs: schizophrenia and autoimmune anti-NMDAR encephalitis. We first

quantified shared working memory alterations in a delayed-response task. In both patient

groups, we report a markedly reduced influence of previous stimuli on working memory

contents, despite preserved memory precision. We then simulated this finding with NMDAR-

dependent synaptic alterations in a microcircuit model of prefrontal cortex. Changes in

cortical excitation destabilized within-trial memory maintenance and could not account for

disrupted serial dependence in working memory. Rather, a quantitative fit between data and

simulations supports alterations of an NMDAR-dependent memory mechanism operating on

longer timescales, such as short-term potentiation.
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The NMDA receptor (NMDAR) subserves memory
mechanisms at several timescales, including sustained
working memory delay activity1,2 and different temporal

components of synaptic potentiation3–5. In addition, hypo-
function of NMDARs is linked to psychiatric disease, in parti-
cular schizophrenia6, and it possibly contributes to abnormal
working memory function in patients with schizophrenia7,8.
Indeed, reduced prefrontal NMDAR density characterizes this
disease9. Yet, the specific neural alterations by which NMDAR
hypofunction could lead to memory deficits in schizophrenia
are still under debate7,8. Here, we studied working memory
function in healthy controls, patients with schizophrenia, and
patients recovering from anti-NMDAR encephalitis (see
“Methods“ section and Supplementary Table 1). Anti-NMDAR
encephalitis is characterized by an antibody-mediated reduction
of NMDARs10, accompanied by initial psychosis and long-
lasting memory deficits11,12. The prevalence of positive symp-
toms during the early stages of the disease causes frequent
misdiagnosis as a schizophrenia spectrum disorder13,14. Here,
we tested patients that had overcome acute stages, and had
progressed to a more stabilized period with some positive
symptoms but dominated by negative and cognitive symptoms,
comparable to those in stabilized schizophrenia patients15. Due
to the parallels in neurobiology, clinical aspects, and cognition
of the two diseases, we expected working memory deficits in
anti-NMDAR encephalitis to qualitatively resemble those in
schizophrenia. This correspondence allows linking alterations
in working memory to the NMDAR in both patient groups.

We assessed memory alterations in a visuospatial delayed-
response task (Fig. 1a) on two coexisting temporal scales: single-
trial working memory precision as a proxy of active memory
maintenance during short delays, and serial dependence of
responses on previously memorized stimuli16,17 (serial biases,
Fig. 1b) as a read-out of passive information maintenance across
trials. Our results show reduced serial dependence but intact
working memory precision in both patient populations. Neural
correlates of this task have been identified in monkey prefrontal
cortex18–20, inspiring computational models that can capture key
aspects of neural dynamics and behavior18,21,22. The biophysical
detail of these models permits to investigate how NMDAR
hypofunction at different synaptic sites affects circuit dynamics
and working memory. Candidate mechanisms are a disturbed
balance between cortical excitation and inhibition (excitation/
inhibition balance), as it is observed in schizophrenia and in
studies using NMDAR antagonists (e.g., ketamine)2,6,23,24, and
alterations in NMDAR-regulated short-term synaptic potentia-
tion3–5,25. In the modeling section of this study, we systematically
test the potential of these candidate mechanisms for explaining
our behavioral findings. We conclude that a reduction in short-
term potentiation in a network model of working memory most
parsimoniously reproduces the experimentally observed memory
alterations in schizophrenia and anti-NMDAR encephalitis.

Results
Unaltered working memory precision in both patients groups.
First, we sought to identify alterations in single-trial working
memory precision, as an indication of a possible dysfunction of
activity-based memory maintenance. Meta-analyses report
mainly negative findings for delay-dependent precision impair-
ments in schizophrenia and ketamine studies7,26 (but see ref. 27).
We calculated the circular standard deviation of bias-corrected
response errors (“Methods”) as an inverse estimate of precision
for each participant and delay. Correcting for biases as a sys-
tematic source of error allowed us to estimate memory precision
independently of serial biases. For all groups, precision decreased

equally with delay (Fig. 1c), indicating spared active working
memory maintenance over short delays of up to 3 s in encepha-
litis and schizophrenia.

Patients’ memories are less biased towards previous memories.
Next, we tested whether NMDAR-related memory alterations
could be observed at intermediate timescales by measuring serial
dependence. Serial dependence is defined as a systematic shift of
responses towards previously remembered, uncorrelated stimuli16

(Fig. 1b), revealing that traces of recently processed stimuli persist
in memory circuits and are integrated with new memories.
Importantly, these attractive biases emerge over the trial’s
memory delay, indicating a dependence on memory pro-
cesses28,29. In conditions without memory requirements, only
small repulsive biases are present, possibly generated during
perceptual processing28–30. To assess NMDAR-related differences
in serial dependence, we modeled single-trial errors θe as a linear
mixed model of delay length, group, and a non-linear basis
function of the distance θd between consecutive stimuli16,29

(derivative-of-Gaussian, DoG(θd), “Methods”, Eq. (1); Supple-
mentary Fig. 1), and we assessed the significance of fixed effects
through ANOVA tables (“Methods”).

Serial dependence explained only a small fraction of single-trial
errors in working memory (conditional R2= 0.03 for the linear
model presented in Eq. (1)), reflecting its small magnitude
compared to the typical extent of response inaccuracies (Fig. 1c),
but it depended strongly on relevant task factors: In accordance
with previous results28,29, we found a dependence of attractive
bias strength on memory delay (delay × DoG(θd), (F(2,58)=
13.89, p= 1e−5). Moreover, biases differed between groups of
participants (group × DoG(θd), F(2,49)= 9.68, p= 0.0003), espe-
cially when comparing groups for different delay lengths
(group × delay × DoG(θd), F(4,58)= 8.45, p= 2e−5). Figure 1d–f
shows linear model fits and average bias curves for 0, 1, and 3 s
delays (see Supplementary Figs. 2–4 for single-subject bias curves
and fits). Groupwise linear models (Eq. (2)) allowed to assess the
delay dependence of biases within each population (delay × DoG
(θd)): For healthy controls, initially repulsive biases became
gradually more attractive with delay length (F(2,17)= 26.91, p=
6e−6; Supplementary Fig. 5). Encephalitis patients showed a
qualitatively similar, but reduced pattern (F(2,23)= 5.06, p=
0.015). In contrast, no attractive bias emerged over delay in
patients with schizophrenia (F(2,16)= 1.31, p= 0.30). Rather, a
repulsive bias dominated all delay lengths in this group (DoG(θd),
F(1,16)= 9.07, p= 0.008). Post-hoc tests and between-group
comparisons are reported in Fig. 1g–i.

Serial dependence is known to fade with increasing inter-trial
intervals (ITI)29. We controlled for ITI length by including ITI ×
DoG(θd) as a covariate in our linear model (“Methods”, Eq. (4);
Supplementary Fig. 6): For each additional second of ITI, serial
bias decreased by 0.46 ± 0.12° (mean ± s.d.). However, group
differences in serial dependence remained unchanged after
including the covariate. The timescale of serial dependence was
further defined by how many past trials influenced the current
response. We observed a much weaker delay-dependent bias
towards the penultimate trial, but there was no consistent
evidence for group differences (Supplementary Fig. 7a–c).

Antipsychotic medication does not explain group differences.
We also controlled for potential effects of antipsychotic medica-
tion in chlorpromazine equivalents (CPZ, “Methods”) in light of
significant group differences in CPZ estimates (Supplementary
Table 1), and an association of CPZ with individual serial bias
strength within groups (Supplementary Fig. 8). When including
CPZ as a covariate (“Methods”, Eq. (5)), delay-dependent biases
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still markedly differed between groups (Supplementary Fig. 8,
caption). We designed two additional analyses to demonstrate
the independence of group differences from the effect of
antipsychotic medication: First, we showed that the difference
in serial dependence persisted when we compared healthy con-
trols to the unmedicated subset of encephalitis patients (n= 12
out of 16 encephalitis patients, Supplementary Fig. 9a–f). Second,
we designed an analysis to test conservatively the group effect
once we removed all the explanatory power of CPZ: We first

fitted single-trial errors θe as a function of CPZ and its one-
and two-way interactions with delay and DoG(θd) in all subjects.
On average, CPZ in patients with schizophrenia (370.6 ± 462.4
mg day−1, mean ± s.d.) explained a reduction of 1.06° in biases in
the 3 s delay condition, and only a reduction of 0.08° in ence-
phalitis patients (with CPZ equivalents of 26.6 ± 52.7 mg day−1,
mean ± s.d.). Residuals of the linear model, now free of linear and
multiplicative effects of CPZ estimates, were fitted as a function of
group, delay, DoG(θd), and their interactions. Supplementary
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screen’s center during the inter-trial-interval (ITI). b Serial dependence is measured as a systematic shift of responses towards previous target locations.
Attractive effects depend on the distance θd between previous and current stimulus. c Precision for each subject and delay was inversely estimated as the
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the mean) by delay. g Serial dependence was repulsive in 0 s trials (DoG(θd), F(1,52)= 12.67, p= 0.0008), independently of group (group × DoG(θd),
F(2,52)= 0.46, p= 0.63). h For 1 s trials, group differences in serial dependence emerged (group × DoG(θd), F(2,48)= 6.52, p= 0.003) between ctrl and
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Fig. 9g–l shows that group differences in memory-dependent
biases remained marked (a reduction of 2.51° for schz, and 1.62°
for enc in the 3 s delay condition) and highly significant even after
conservatively controlling for CPZ.

Encephalitis patients’ biases increase with recovery. We did not
find correlations between individuals’ bias estimates for 3 s
delay trials and the severity of psychiatric symptoms for
encephalitis or schizophrenia patients (Supplementary Fig. 8
and Supplementary Table 1). These between-subjects analyses
were possibly underpowered, so we designed a within-subject
longitudinal assessment for n= 14 encephalitis patients that
returned for a follow-up session after 3–12 months (mean
8.5 months). As expected, clinical symptoms improved in these
patients (Supplementary Table 2) and we found that serial
dependence normalized with the patients’ recovery (Eq. (8);
Supplementary Fig. 10). Interestingly, for this subsample of
encephalitis patients, positive and general symptoms measured
in the PANSS scale correlated with serial dependence in the
follow-up session (PANSS pos, r=−0.70, C.I.= [−0.90,
−0.26], p= 0.006; PANSS gen, r=−0.62, C.I.= [−0.87,
−0.13], p= 0.02), but again not significantly in the baseline
session (PANSS pos, r=−0.38, C.I.= [−0.76, 0.19], p= 0.19;
PANSS gen, r=−0.02, C.I.= [−0.54, 0.52], p= 0.94), although
the direction of the effect was congruent between the two ses-
sions. Moreover, patients with a stronger longitudinal nor-
malization of biases improved more on the scale of positive
symptoms (PANSS pos) in the follow-up session, when com-
pared to the baseline session, r=−0.54, C.I.= [−0.83, −0.02],
p= 0.04 (Supplementary Fig. 10g; all correlations, Pearson’s r).

Together, our experimental results show no differences in
single-trial memory maintenance, but a strong reduction of
delay-dependent biases in anti-NMDAR encephalitis that
ameliorates with patients’ recovery, and a complete absence of
attractive biases in patients with schizophrenia. These findings
are not explained by ITI length, general response correlations
between trials (Supplementary Fig. 7d–f), response biases with
respect to cardinal directions (Supplementary Fig. 11), or
medication (Supplementary Fig. 8). Our conclusion is thus that
alterations at the neural circuit level, related to NMDAR
hypofunction, reduce serial dependence gradually, up to the
point of completely disrupting attraction to previous stimuli. A
prevailing idea associates NMDAR hypofunction in schizophre-
nia primarily to synapses onto GABAergic interneurons23, while
the role of NMDARs in working memory has been emphasized
in synapses between pyramidal neurons1,2,21. Alternatively,
NMDARs could be involved in mechanisms directly associated
with the generation of serial biases, such as short-term
plasticity18,22,31. To assess these mechanistic explanations
comparatively, we simulated consecutive trials of a spatial
working memory task in a spiking neural network model of
the prefrontal cortex21 (Fig. 2a). Prefrontal cortex not only holds
working memory contents in an activity-based code19,20, but also
keeps long-lasting latent (possibly synaptic) memory traces that
produce serial dependence18.

NMDAR hypofunction in a prefrontal working memory cir-
cuit. We modeled a local prefrontal circuit, composed of neurons
selective to the locations presented in the spatial working
memory task. We used a network of excitatory and inhibitory
neurons recurrently connected through AMPAR-, NMDAR- and
GABAAR-mediated synaptic transmission in which persistent
delay firing emerges from attractor dynamics (Fig. 2a, Supple-
mentary Fig. 12; “Methods”). As proposed by the previous stu-
dies18,22,31, we modeled serial dependence as an effect of short-

term plasticity that builds up at delay-active recurrent excitatory
synapses and maintains information during the ITI in a sub-
threshold stimulus representation not reflected in firing rate
selectivity (Fig. 2b, “Methods”). We implemented an associative
mechanism of short-term potentiation (STP) that is NMDAR-
dependent and upregulates glutamatergic efficacy, consistent
with a long-lasting increase in the probability of presynaptic
neurotransmitter release3,4. As described in refs. 3,4, this efficacy
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trial n− 1 remained only in the potentiated weight trace. To facilitate
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dependent decay (Eq. (17)).
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increase undergoes activity-dependent decay (Fig. 2c). In our
simulations, stimulus-specific potentiated synaptic traces per-
sisted through the ITI and attracted the next trial’s memory
representation progressively over the course of the delay22,31. To
mimic memory-independent repulsive biases29,30, current sti-
mulus inputs were slightly shifted away from previous stimulus
values by a fixed value31 (“Methods”). This shift represents
adaptation effects in sensory regions and is therefore not affected
by local circuit alterations in prefrontal cortex.

We assessed the effects of NMDAR dysfunction on serial
dependence at three potential synaptic sites: based on the
reported NMDAR-dependence of STP3–5, NMDAR hypofunction
would reduce the strength of STP at excitatory synapses and
disrupt delay-dependent biases (hypothesis I: reduced STP). Also,
we tested the explanatory potential of reduced NMDAR-mediated
synaptic transmission. In particular, we tested cortical disinhibi-
tion27, caused by diminished NMDAR efficacy at inhibitory
interneurons (hypothesis II: reduced gEI), and the hypofunction
of NMDARs at recurrent excitatory synapses, leading to
diminished delay activity2,32,33 (hypothesis III: reduced gEE). To
assess each of these mechanisms, we independently varied STP
strength, gEI and gEE, and we read out “behavioral responses” after
0, 1, and 3 s from population activity in our network simulations
(“Methods”). Then, we fitted a linear model to measure bias
strength in each condition (Eq. (18), Supplementary Fig. 13). We
sought to identify which mechanisms could independently
reproduce the patterns of reduced and absent biases observed
in patients, and their dependence on working memory delay
(Fig. 1).

Reduced STP but not E-I imbalance disrupts memory biases.
We found that both hypotheses I and III were qualitatively
consistent with our experimental results: NMDAR hypofunction
(whether reducing STP or gEE) reduced the strength of serial
dependence (Fig. 3a, c, orange). In contrast, hypothesis II was
discarded by our simulations: reducing gEI increased serial
dependence (Fig. 3b, orange), contrary to our experimental
results, and quickly led to network disinhibition, causing
previous-trial delay activity to spontaneously reemerge in the ITI
(Supplementary Fig. 14). Both for reduced gEI and reduced gEE,
the percentage of outlier responses (where errors θej j > 57.3°, i.e. 1
radian) quickly rose as the network lost the stability of one of its
two states (spontaneous activity for reduced gEI, and persistent
delay activity for reduced gEE, dashed vertical lines in Fig. 3b, c),
as illustrated in Supplementary Fig. 14. Moreover, we noted that
memory precision was slightly affected by all three manipulations
(Fig. 3a–c), in contrast with our behavioral findings (Fig. 1b), but
consistent with other studies with longer delays27. Delay length
and task complexity could be important factors to detect
NMDAR-related differences in memory precision.

In addition, we found that hypotheses I and III could be
disambiguated based on biases produced by the different linear
models in 0, 1, and 3 s delays (Fig. 3d–f). Even for the lowest
value of gEE within the stable network regime (Fig. 3c), attractive
biases increased with delay (Fig. 3f). While this manipulation can
qualitatively reproduce decreased delay-dependent biases in the
encephalitis group, it is incompatible with our results for patients
with schizophrenia (Fig. 1), who do not develop attractive biases
in memory trials. In contrast, reduced STP at recurrent excitatory
synapses captured a pattern of equally strong repulsive biases for
all delay lengths (Fig. 3d). Note that these findings also hold for a
network with STP (and NMDAR-dependent reductions in STP)
in inhibitory interneurons34 (Supplementary Fig. 15). Based on
our simulations, we conclude that the disruption of STP, a
mechanism operating on a longer timescale than activity-based

memory maintenance, provides a plausible explanation for
altered serial dependence as observed in schizophrenia and
anti-NMDAR encephalitis.

Discussion
In this study, we assessed working memory alterations in two
patient groups linked to NMDAR hypofunction, and hypothe-
sized that their shared clinical and neurobiological features
should be reflected in qualitatively similar behavioral patterns. In
accordance with this reasoning, we found a drastic reduction of
working memory serial dependence both in patients with anti-
NMDAR encephalitis and schizophrenia, as compared to healthy
controls. In contrast, we did not find memory maintenance def-
icits on timescales of a few seconds, suggesting that cognitive
deficits in these patients8,12 might be partly explained by the
disruption of long-lasting, inactive memory traces, and a lacking
integration of past and current memories. Our modeling results
show that simple alterations in cortical excitation (hypotheses II
and III), as proposed by current theories of NMDAR hypofunc-
tion in schizophrenia6,24,27, cannot fully explain these behavioral
findings. Instead, altered serial dependence is mechanistically
accounted for by a disruption in slower dynamics, here specified
as NMDAR-dependent associative STP (hypothesis I) that is
triggered by sustained delay activity and influences memory
representations in upcoming trials. Our results suggest that
clinical reports of short-term memory alterations in schizo-
phrenia and anti-NMDAR encephalitis could be understood in
the light of reduced synaptic potentiation25. This is consistent
with in vitro studies, which have demonstrated the dependence of
STP on specific subunit components of the NMDAR3,4, and
reduced STP in genetic mouse models of schizophrenia35.
Importantly, our modeling is not incompatible with altered cor-
tical excitatory or inhibitory tone as a result of hypofunctional
NMDARs. Rather, it states the necessity of assuming alterations
in a mechanism operating on longer timescales, such as STP. For
instance, diminished STP alongside symmetric effects on both E-
E and E-I synapses could maintain the excitation/inhibition
balance and thus stable delay activity, while interrupting passive
between-trial information maintenance.

Future studies should address the effects of pharmacological
NMDAR blockade on serial dependence. These studies could
unequivocally confirm the role of the NMDAR for trial-history
effects in working memory, and at the same time allow to ask
more specific questions: On the one hand, serial dependence
effects under different NMDAR antagonists should vary accord-
ing to how blocking specific NMDAR subunits modulates
synaptic potentiation at different timescales3. Our results cannot
address subunit specificity because anti-NMDAR encephalitis
(and possibly schizophrenia9) is associated with hypofunction of
the GluN1 subunit, which is contained in all NMDARs36,37. On
the other hand, pharmacological studies in combination with
neural recordings could reveal how trial-history representations
are affected by the blockade of NMDARs18,38. In rodents, long-
term pharmacological experiments during behavior could be
complemented with in vitro studies to assess STP directly. Finally,
pharmacological studies would clarify if the alterations in serial
dependence occur as a result of acute NMDAR hypofunction or
whether they depend on compensatory changes in STP that arise
after early, acute phases of cortical excitation/inhibition imbal-
ance in these diseases (e.g., as a long-term adjustment of the
probability of presynaptic neurotransmitter release).

We showed how working memory in the two investigated
diseases is altered in a parallel way, and how these alterations are
parsimoniously explained by manipulating a single, NMDAR-
dependent synaptic variable in our model. However, substantial
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neurobiological heterogeneity must underlie the differences in
epidemiology and longitudinal development of schizophrenia and
autoimmune anti-NMDAR encephalitis39. Under this reasoning,
we cannot exclude that distinct biological mechanisms in our two
patient groups might lead to convergent patterns of working
memory processing. For instance, our modeling shows that
encephalitis patients’ biases could also be explained qualitatively
by a reduced excitation-to-inhibition ratio in the memory circuit
(Fig. 3f), consistent with task-related fMRI BOLD activity in
ketamine33, and the effect of NMDAR antagonists on single-cell
firing rates in monkey PFC2. In contrast, we could not confirm
the findings of previous modeling work of schizophrenia, pos-
tulating that deficits in working memory precision and higher
susceptibility to distractors40,41 or alterations in probabilistic
reasoning42 could be explained by an increased excitation-to-

inhibition ratio, leading to cortical disinhibition. This mechanistic
alteration cannot replicate serial dependence deficits in schizo-
phrenia in our model (Fig. 3b, e). Reduced short-term plasticity,
in contrast, would predict reduced working memory precision
after long memory delays (Fig. 3a, see also ref. 43), and higher
susceptibility to distractors44 in line with reported behavior in
schizophrenia41, which was previously proposed to reflect an
excessive excitation-to-inhibition ratio. In addition, some incon-
gruences with previous findings might be explained by the
acuteness of the patients’ condition, with more acute or psychotic
stages being connected with patterns of disinhibition, and less
acute stages with residual alterations in synaptic plasticity, but not
cortical excitation. Alternatively, mechanisms not considered in
our model could be at play. For instance, NMDAR dysfunction
could negatively affect long-range connectivity45–47 between trial
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history-tracking areas38 and areas that hold current working
memory contents (like prefrontal cortex), and in this way impede
the integration of previous with current memories. Note, how-
ever, that recent combined experimental and theoretical work in
primate and human prefrontal cortex shows how both past and
current memories are jointly represented in prefrontal cortex, and
how their interaction subserves serial dependence18.

Our findings advance the conceptual understanding of
working memory alterations in schizophrenia and anti-
NMDAR encephalitis, as they demonstrate a selective disrup-
tion of information carryover between trials, reflected by a
reduction of serial dependence that is robustly found in neu-
rotypical subjects17. We found several indicators of clinical
relevance for our finding. First, as anti-NMDAR encephalitis
patients recovered, their biases normalized in the direction of
healthy controls (Supplementary Fig. 10a–c). Second, the
amount of this normalization correlated across patients with
their improvement on a scale that measures positive symptoms
(Supplementary Fig. 10g), indicating a potential relation
between psychotic symptoms and reductions in serial depen-
dence. Third, both the alterations in serial dependence and the
strength of positive symptoms were higher for patients with
schizophrenia than for the anti-NMDAR encephalitis group.
Still, studies with larger sample sizes are needed to confirm the
relation of psychotic symptoms and reduced serial biases at the
subject-level, which in our study did not reach significance for
two out of three analyses in patients with schizophrenia
and anti-NMDAR encephalitis (Supplementary Fig. 8 and
“Results”).

Serial dependence could also reflect a clinically relevant
dimension which is not or only mildly related to the assessed
psychiatric scales. In this sense, it has been argued that serial
dependence could facilitate information processing in temporally
coherent real-world situations17. Alternatively, serial biases could
be the mere by-product of long-lasting cellular or synaptic
mechanisms that support memory stabilization during working
memory delays48. Our study is in line with previous findings of
reduced susceptibility to proactive interference in schizo-
phrenia49,50. However, while proactive interference is mainly
discussed in the context of cognitive control, the limited com-
plexity of our task restricts possible interpretations of reduced
between-trial interference and supports the role of reduced resi-
dual memory traces. Moreover, thanks to our task’s well-studied
single-neuron correlates18–20 and biophysical models18,19,21 and
the comparison with anti-NMDAR encephalitis patients, we
provide a specific mechanistic model of synaptic deficits leading
to reduced previous-trial interference in schizophrenia.

Interestingly, a reduction in serial dependence has recently
been reported for patients with autism51, a disease also associated
with NMDAR hypofunction52 and alterations in synaptic
potentiation25. Further, as for autism, our findings of reduced
serial dependence are compatible with normative accounts of
information processing in schizophrenia. Classic theories and
recent studies have reported an underweighting of past context,
or in Bayesian terms, learned priors, and an overweighting of
incoming perceptual information in patients with schizo-
phrenia42,53,54 and NMDAR hypofunction55. Long-lived traces of
past stimuli could serve as Bayesian priors to perception and
memory, and a disruption of STP might be regarded as a biolo-
gical implementation of a reduced usage of priors in schizo-
phrenia and anti-NMDAR encephalitis.

Methods
Experimental sample. We included n= 16 patients with anti-NMDAR ence-
phalitis (enc), n= 17 patients with schizophrenia or schizoaffective disorder (n=
12 and n= 5, respectively; schz), and n= 19 neurologically and psychiatrically

healthy control participants (ctrl), all with normal or corrected vision. Behavioral
data from n= 14 healthy controls has been included in a previous study18. Psy-
chiatric diagnoses (or the absence thereof for controls) were confirmed using the
Structured Clinical Interview for DSM IV (SCID-I)56. Patients diagnosed with anti-
NMDAR encephalitis were recruited from different centers (n= 14 in Spain, n= 1
in Germany and n= 1 in the United Kingdom) at the moment of hospital dis-
charge and completed the experiment around 5.5 months after disease onset
(median, interquartile range i.q.r.= 3.7–7.2 months). All patients fulfilled clinical
diagnostic criteria of anti-NMDAR encephalitis with confirmation of CSF IgG
antibodies against the GluN1 subunit of the NMDAR57. All subjects were tested in
our laboratory for antibodies against NMDAR in serum36 and all healthy controls
and patients with schizophrenia were seronegative. Anti-NMDAR encephalitis is
known to have a prolonged process of recovery after the acute stage of the dis-
ease58, and patients in the prolonged recovery phase still suffer from cognitive
deficits as has been previously described in cohorts with long follow-up12. All
patients were sufficiently recovered to participate in the testing procedure. Controls
and patients with schizophrenia were recruited from the Barcelona area and from
Hospital Clínic (Barcelona, Spain), respectively. Patients with schizophrenia were
tested 35.0 months after diagnosis (median, i.q.r.= 16.0–69.5 months) and were
clinically stable at the time of testing. All participants (and, in the case of minors of
age, their legal guardians) provided written informed consent and were monetarily
compensated for their time and travel expenses, as reviewed and approved by the
Research Ethics Committee of Hospital Clínic. All subjects were assessed for
psychiatric symptoms and functionality through a battery of standard tests
including the Spanish versions of the Positive and Negative Syndrome Scale
(PANSS)59, the Young Mania Rating Scale (YMRS)60, the Hamilton Depression
Rating Scale (HAM-D)61 and the Global Assessment of Functioning Scale (GAF)62.
Finally, the dose of antipsychotic medication at the moment of testing was esti-
mated as chlorpromazine equivalent (CPZ, mg day−1)63. For a demographic and
clinical overview of the populations, please refer to Supplementary Table 1.

Experimental task protocol and behavioral testing. Participants completed two
1.5 h sessions performing a visuospatial working memory task described in Fig. 1a.
In each session, participants were asked to complete 12 blocks of 48 trials. How-
ever, some participants did not complete all blocks (on average, participants
completed 1114.1 ± 134.4 trials (mean ± s.d., ctrl), 1086.0 ± 189.9 trials (enc), and
1030.6 ± 192.8 trials (schz)).

For stimulus presentation, we used Psychopy v3.1.5 on Python 2.7, running on
a 17” HP ProBook laptop. Each trial began with the presentation of a central black
fixation square on a gray background (0.5 × 0.5 cm) for 1.1 s. A single colored circle
(stimulus, diameter 1.4 cm, 1 out of 6 randomly chosen colors with equal
luminance) was then presented during 0.25 s at one of 360 randomly chosen
angular locations at a fixed radius of 4.5 cm from the center. The stimulus was
followed by a randomly chosen delay of 0 (16.67% of trials), 1 (66.67% of trials), or
3 s (16.67% of trials) in which only the fixation dot remained visible (except for 0 s
trials, where the stimulus remained visible until the participant started to move the
cursor). When the fixation dot changed to the stimulus’ color (probe), participants
were asked to respond by making a mouse click at the remembered location
(response). A white circle indicated the stimulus’ radial distance, so participants
only had to remember the angular position. After the response, the cursor had to be
moved back to the fixation dot to start a new trial (ITI). Participants were
instructed to maintain fixation during the fixation period, stimulus presentation,
and memory delay and were free to move their eyes during response and when
returning the cursor to the fixation dot.

Error and serial dependence analysis. Response errors θen in trial n were mea-
sured as the angular distance between response and target. To exclude errors due to
guessing or motor imprecision, we only analyzed responses within an angular
distance of 1 radian and a radial distance of 2.25 cm from the stimulus. Further, we
excluded trials in which the time of response initiation exceeded 3 s, and trials for
which the time between the previous trial’s response probe and the current trial’s
stimulus presentation exceeded 5 s. In total, 2.6 ± 4.2% (mean ± s.d., ctrl), 4.8 ±
6.9% (enc) and 7.5 ± 9.6% (schz) of trials per participant were rejected (but only
0.1 ± 0.2% (ctrl), 0.4 ± 0.5% (enc) and 0.6 ± 0.7% (schz) of trials were excluded due
to angular response errors).

We then measured serial dependence as the error in the current trial as a
function of the circular distance between the previous and the current trial’s target
location. Figure 1c–e depict ‘folded’ serial dependence: We multiplied trial-wise
errors θen by the sign of the previous-current distance, θdn : θ

e0
n ¼ θen � sign θdn

� �
, and

then binned data based on absolute values jθdnj. Errors θe0n were then averaged for
each jθdnj in sliding windows with size π/3 in steps of π/30. Positive mean folded
errors should be interpreted as attraction towards the previous stimulus and
negative mean folded errors as repulsion away from the previous location. In all
figures including bias curves, s.e.m. are calculated across pooled trials from all
subjects for each group and delay. For visualization, all values were transformed
from radians to angular degrees.

Linear (mixed) models. We modeled signed errors θenm in trial n and subject m
using linear mixed models that included the dummy-coded variables group (ctrl,
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enc or schz) and delay (0, 1, or 3 s), and a nonlinear function of previous-current
stimulus distance θdnm , DoG(θ

d
nm), which has been used for modeling serial

dependence16,29. DoG(θdnm) is the normalized first derivative of a Gaussian with
fixed location hyperparameter μ= 0. Its scale parameter σ was determined using
cross-validation as explained below (see also Supplementary Fig. 1). Our main
linear model is:

θenm ¼ β0 þ β1;ggroupnm þ β2;ddelaynm � β3DoGðθdnmÞ
þ β4;g;dgroupnmdelaynm � β5;ggroupnmDoGðθdnmÞ
� β6;ddelaynmDoGðθdnmÞ � β7;g;dgroupnmdelaynmDoGðθdnmÞ
þ γ0;m � γ1;mDoGðθdnmÞ � γ2;m;ddelaynmDoGðθdnmÞ þ εnm

ð1Þ

β coefficients estimate fixed, and γ coefficients random effects. Coefficient sub-
scripts g and d denote that a separate coefficient was estimated for different values
of dummy-coded variables group or delay, respectively, resulting in a total of 18 β
coefficients for Eq. (1). Coefficient subscript m denotes that a separate coefficient
was estimated for each subject. Bias strength for a certain condition can then be
read out as the sum of coefficients of all terms containing DoG(θdnm) and the
dependence of bias strength on other variables is assessed by evaluating the sig-
nificance of interaction terms containing DoG(θdnm) and the relevant variable. To
measure response precision, bias-corrected response errors were defined as linear
model residuals εnm from Eq. (1). For each subject and delay, inverse response
precision was then measured as the circular s.d. of εnm.

Group- (Eq. (2), Supplementary Fig. 5) and delay-wise (Eq. (3), Fig. 1g–i) linear
models were defined as:

θenm ¼ β0 þ β1;ddelaynm � β2DoGðθdnmÞ � β3;ddelaynmDoGðθdnmÞ
þ γ0;m � γ1;mDoGðθdnmÞ � γ2;m;ddelaynmDoGðθdnmÞ þ εnm

ð2Þ

θenm ¼ β0 þ β1;ggroupnm � β2DoGðθdnmÞ � β3;ggroupnmDoGðθdnmÞ
þ γ0;m � γ1;mDoGðθdnmÞ þ εnm

ð3Þ

The effect of covariates ITI length (Eq. (4)) and CPZ equivalent (Eq. (5)) were
assessed as:

θenm ¼ β0 þ β1;ggroupnm þ β2;ddelaynm � β3DoGðθdnmÞ
þ β4;g;dgroupnmdelaynm � β5;ggroupnmDoGðθdnmÞ
� β6;ddelaynmDoGðθdnmÞ � β7;g;dgroupnmdelaynmDoGðθdnmÞ
� β8ITInmDoGðθdnmÞ þ γ0;m � γ1;mDoGðθdnmÞ
� γ2;m;ddelaynmDoGðθdnmÞ þ εnm

ð4Þ

θenm ¼ β0 þ β1;ggroupnm þ β2;ddelaynm � β3DoGðθdnmÞ
þ β4;g;dgroupnmdelaynm � β5;ggroupnmDoGðθdnmÞ
� β6;ddelaynmDoGðθdnmÞ � β7;g;dgroupnmdelaynmDoGðθdnmÞ
� β8;dCPZnmdelaynmDoGðθdnmÞ þ γ0;m � γ1;mDoGðθdnmÞ
� γ2;m;ddelaynmDoGðθdnmÞ þ εnm

ð5Þ

Further, a conservative estimate of group effects when controlling for CPZ
equivalents was obtained by first regressing trialwise errors as CPZ-dependent
effects excluding random effects to not absorb variance related to the experimental
group that subjects belonged to (notice dropped m subscripts):

θen ¼ β0 þ β1CPZn þ β2;dCPZndelayn � β3CPZnDoGðθdnÞ
� β4;dCPZndelaynDoGðθdnÞ þ εn

ð6Þ

and subsequently modeling residuals εn as main and interaction effects of group,
delay, and DoG(θdnm) as described in Eq. (1) (Supplementary Fig. 9g–l).

Biases towards stimuli in trial n− 2 were measured by including distances to
the penultimate stimulus, θd0nm ’

θenm ¼ β0 þ β1;ggroupnm þ β2;ddelaynm � β3DoGðθdnmÞ
þ β4;g;dgroupnmdelaynm � β5;ggroupnmDoGðθdnmÞ
� β6;ddelaynmDoGðθdnmÞ � β7;g;dgroupnmdelaynmDoGðθdnmÞ
� β8DoGðθd0nmÞ � β9;ggroupnmDoGðθd0nmÞ � β10;ddelaynmDoGðθd0nmÞ
� β11;g;dgroupnmdelaynmDoGðθd0nmÞ þ γ0;m � γ1;mDoGðθdnmÞ
� γ2;m;ddelaynmDoGðθdnmÞ þ εnm

ð7Þ

Baseline and follow-up sessions in encephalitis patients and controls were
compared by:

θen ¼ β0 þ β1sessionn þ β2;ggroupn þ β3;ddelayn

� β4DoGðθdnÞ þ β5;g sessionngroupn þ β6;dsessionndelayn

þ β7;g;dgroupndelayn � β8sessionnDoGðθdnÞ
� β9;ggroupnDoGðθdnÞ � β10;ddelaynDoGðθdnÞ
� β11;g sessionngroupnDoGðθdnÞ � β12;dsessionndelaynDoGðθdnÞ
� β13;g;dgroupndelaynDoGðθdnÞ � β14;g;dsessionngroupndelaynDoGðθdnÞ þ εn

ð8Þ
where sessionn takes values 0 or 1 (baseline vs. follow-up). In this model, we did
not include random effects due to increased model complexity and resulting
difficulties in model convergence. For extended linear models in Eqs. (4), (5), (7),
and (8), we compared nested models via Wald Tests to determine the optimal
model complexity. Data was analyzed in Python 3.7. We used different packages
from R statistics (version 3.6.3) through the ‘rpy2’ interface64. All linear mixed
models were fitted, compared and statistically tested with packages ‘lme4’65 and
‘lmerTest’66, which calculates ANOVA tables for the fixed effects of the linear
mixed model by estimating degrees of freedom and F values using Satterthwaite’s
method. For optimization, we used the ‘optimx’ package67 ‘nlimb’ algorithm with a
convergence tolerance of 0.003 and checked the consistency of parameter estimates
with other optimization algorithms (‘L-BFGS-B’, ‘bobyqa’). Note that the normality
assumption of residuals was not met (normality test, s2+ k2= 4248.72, p < 1e−16),
but with only slightly diverting kurtosis (Fisher)= 3.37 and skewness= 0.12
parameters. Due to the large number of trials (n= 52,394), this should not
compromise statistical inference68. Moreover, all effects of relevant task variables
are visualized both in a model-based and model-free way to confirm their
congruence.

Basis function selection and hyperparameter cross-validation. To determine
the hyperparameter σ used in Eqs. (1)–(8), we fitted errors θen in trial n as a linear
model including factors group, delay, and DoG(θdn) as described in Eq. (1), but
excluding random effects:

θen ¼ β0 þ β1;ggroupn þ β2;ddelayn � β3DoGðθdnÞ
þ β4;g;dgroupndelayn � β5;ggroupnDoGðθdnÞ
� β6;ddelaynDoGðθdnÞ � β7;g;dgroupndelaynDoGðθdnÞ þ εn

ð9Þ

while setting Gaussian hyperparameters μ= 0 and σ 2 ½0:2; 1:8� (in radians). For
each value of the scale parameter σ, we used a stratified cross-validation procedure,
fitting the linear model to 67% of the trials from each subject and testing the
prediction in the left-out 33% of trials. Performance for each σ was evaluated using
the mean squared error (MSE) of predictions from 1000 cross-validation repeti-
tions. σ was chosen so as to minimize the MSE obtained by the linear model,
yielding σ= 0.8 (Supplementary Fig. 1).

To test whether a linear model with repulsive biases at high distances jθdnj fitted
our data more parsimoniously, we compared cross-validation MSE for linear
models with first- and third-derivative-of-Gaussian basis functions (Supplementary
Fig. 1). We repeated the hyperparameter fitting procedure described above for the
third-derivative-of-Gaussian model using hyperparameters μ= 0 and σ 2 ½0:6; 2:0�
rad. As the first-derivative-of-Gaussian model produced smaller MSE in the cross-
validation procedure, we discarded the third-derivative-of-Gaussian model. Thus,
all linear model results reported in this manuscript correspond to the first-
derivative-of-Gaussian model.

Confidence intervals and effect sizes. We compared single-subject bias estimates
between groups using post hoc t-tests. Effect sizes for these comparisons were
estimated as Cohen’s d, defined as d ¼ μ1�μ2

s for independent samples, where s is

the pooled standard deviation: s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1�1Þs21þðn2�1Þs22Þ

n1þn2�2

r
, and as d ¼ tffiffi

n
p for related

samples. For correlations of individual subjects’ biases with symptoms, we used
Pearson correlation and calculated parametric 95% confidence intervals (‘CIr’
function from the ‘psychometric’69 package). In the face of small, potentially non-
normal samples, we confirmed significant results with bootstrap confidence
intervals and p-values, leading to consistent results in all but one correlation
(Supplementary Fig. 10g): Here, we obtained C.I= [−0,83, −0,02] and p= 0.04
with parametric methods, but C.I.= [−0.85, 0.09] and p= 0.09 with non-
parametric methods (all two-sided; note however that our directed hypothesis of an
expected negative correlation supports a one-sided test with p= 0.04). Confidence
intervals of the mean (Figs. 1 and 3, and Supplementary Figs. 5, 6 and 9) were
calculated as 95% bootstrap confidence intervals.

Neural network architecture and dynamics. We simulated consecutive pairs of
trials in a spiking neural network model of prefrontal cortex implemented in
Brian270. NE= 1024 excitatory and NI= 256 inhibitory leaky integrate-and-fire
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neurons were connected all-to-all via synapses governed by NMDAR-, AMPAR-,
and GABAAR-dynamics, as described in ref. 21.

The dynamics of the membrane voltage of excitatory neurons Vi i ¼ 1::NEð Þ
were given by:

Cm
dVi

dt
¼ � gLðVi � ELÞ � gEE;A

XNE

j

WEE
ij sAj ðVi � EAÞ

� gEE;N
1þ e�aVi=3:57

XNE

j

WEE
ij sNj ðVi � EN Þ

� gIE
XNI

j

sGj ðVi � EGÞ � gext;EsextðVi � EAÞ þ Isi

ð10Þ

with membrane capacitance Cm ¼ 0:5 nF, leak conductance gL ¼ 25 nS, leak
reversal potential EL ¼ �70mV, AMPAR, GABAAR and NMDAR reversal
potentials EA ¼ 0mV, EG ¼ �70mV, EN ¼ 0mV, unitary conductances
gext;E ¼ 3:1 nS, gIE ¼ 2:672 nS, gEE;N ¼ 0:56 nS, gEE;A ¼ 0:502 nS, and the NMDAR
magnesium block parameter a ¼ 0:062mV�1. In simulations of reduced NMDAR
conductance, parameters gEE;N or respectively gEI;N were modulated as indicated in
Fig. 3b, c, e, f and Supplementary Fig. 14.

The membrane voltage of inhibitory neurons followed:

Cm
dVi

dt
¼ � gLðVi � ELÞ � gEI;A

XNE

j

sAj ðVi � EAÞ

� gEI;N
1þ e�aVi=3:57

XNE

j

sNj ðV � EN Þ

� gII
XNI

j

sGj ðVj � EGÞ � gext;I sextðVi � EAÞ

ð11Þ

with Cm ¼ 0:2 nF, gL ¼ 20 nS, gext;I ¼ 2:38 nS, gII ¼ 2:048 nS, gEI;A ¼ 0:384 nS and
gEI;N ¼ 0:424 nS.

The kinetics of synaptic variables sAi ði ¼ 1 � � �NEÞ, sGi ði ¼ 1 � � �NIÞ, and sext
were determined by

dsX
dt

¼ � sX
τX

þ w
X
i

δðt � tiÞ ð12Þ

with τA ¼ 2ms, τG ¼ 10ms, τext ¼ 2ms, and the summation running over all
spike times ti so that at each spike time the synaptic variable increased by a step of
magnitude w, which was generally set to 1 except for synapses undergoing synaptic
potentiation (see below). For sext, spike times were generated as a Poisson spike
train of rate 1800 spikes s−1 (simulating inputs from 1000 external Poisson neurons
firing at 1.8 spikes s−1 each).

The slower and saturating NMDAR synaptic variables sNi ði ¼ 1¼NEÞ followed
the coupled equations:

dsNi
dt

¼ � sNi
τNs

þ αNxið1� sNi Þ ð13Þ

dxi
dt

¼ � xi
τNx

þ w
X
j

δðt � tjÞ ð14Þ

with τNs
¼ 100 ms, τNx

¼ 2 ms, and αN ¼ 0:5 kHz.
The strength of recurrent excitatory synapses was modulated depending on the

distance in preferred location of presynaptic and postsynaptic excitatory neurons:
WEE

ij ¼ Jðθi � θjÞ, where J is a Gaussian function (centered at μ= 0 with σ= 14.4
degrees) plus a constant, tuned so that

P
j
Jðθi � θjÞ ¼ NE and J(0)= 1.63. As a

result, neurons with similar preferred locations had 1.63 stronger weights than the
average weight (Supplementary Fig. 10 for network scheme and weight profiles).

STP rule in neural network simulations. For connections between excitatory
neurons, the spike-triggered step in AMPAR and NMDAR synaptic variables w
could vary individually for each specific connection: wij characterized the step at
the synapse from neuron j onto neuron i. Upon synchronized pre- and post-
synaptic spiking, wij was slightly enhanced by an amount Δw that depended on the
relative spike times of neuron j and i (Fig. 2c) to simulate an increase in probability
of glutamate release71:

wij ¼ wij þ Δwðtj � tiÞ≥ 1 ð15Þ
The associative nature of this rule was determined by a potentiation function

that required synchronization within a specific temporal window (Fig. 2d):

Δwðtj � tiÞ ¼ P exp �jtj � tij=τΔ
� �

; ð16Þ
with potentiation factor P= 0.00022 and τΔ= 20 ms. Changes were sustained (did
not decay with time), but synapses depotentiated based on presynaptic activity3: at

each presynaptic spike

wij ¼ wij � 0:04*ðwij � 1Þ ð17Þ

Trial structure in neural network simulations. We simulated 20,000 pairs of
consecutive trials with independent randomized stimulus locations. Network
inputs θsn in trial n with stimulus s were slightly transformed to mimic a repulsive
baseline bias away from previous stimulus locations, resulting from sensory
aftereffects produced in lower-level cortical areas29: θs0n ¼ θsn þ 1:25DoGðθdnÞ,
where DoG(θdn) is the first-derivative-of-Gaussian function with μ= 0 and σ= 0.8
radians, and θdn is the distance between previous and current stimulus.

Simulations started with a stimulus presentation at 0° (trial n− 1) for 0.25 s.
After the input was removed, a delay of 1 s followed. A negative input to the whole
network during 0.25 s simulated the response and removed stimulus-associated
neural activity. After an ITI of 3 s, a second stimulus (trial n) was delivered at a
random location for 0.25 s. The second delay duration was 3 s. To obtain behavioral
readouts from the network, we counted each neuron’s spikes during three time
windows of 0.25ms: 0–0.25 s after stimulus offset (0 s delay condition), 0.75–1 s (1 s
delay), and 2.75–3 s after stimulus offset (3 s delay). The behavioral response was
determined as the angular direction of the population vector of spike counts.

Neural network behavioral analysis. We first calculated the percentage of outlier
responses and excluded outlier trials from the network’s population vector
responses (response error >1 radian). Circular standard deviations and serial
dependence were then calculated from the network’s population vector responses
analogous to human error analyses. In Fig. 3a–f, bias strength was measured as the
sum of bias term coefficients in the linear model

θen ¼ β0 þ β1;ddelayn � β2DoGðθdnÞ � β3;ddelaynDoGðθdnÞ þ εn ð18Þ
that fitted errors θen in trial n from each parameter manipulation (P, gEE, and gEI)
separately as a function of delay and DoG(θdn) with μ= 0 and σ= 0.6 radians.

Hyperparameter cross-validation for neural network responses. The value of
hyperparameter σ was determined in a cross-validation procedure for the baseline
condition with P= 0.00022, gEE= 0.56 nS, and gEI= 0.424 nS, for values σ 2
½0:2; 1:8� (in radians). For each value of σ, we fitted the linear model described in
Eq. (18) to 67% of trials and tested the prediction in the left-out 33% of trials.
Performance for each σ was evaluated using the mean squared error (MSE) of
predictions from 1000 cross-validation repetitions. σ was chosen to minimize the
MSE of the linear model, yielding σ= 0.6 radians (Supplementary Fig. 13).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Behavioral data analyzed in this article are openly available by accessing the github
repository: github.com/comptelab/serialNMDA

Code availability
Custom code used for simulations and data analysis is openly accessible through the
github repository: github.com/comptelab/serialNMDA
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3.3 Working memory codes are reactivated between trials in healthy                 

controls, but not in anti-NMDAR encephalitis and schizophrenia 

In this section , I use EEG decoding techniques to test whether the neural mechanisms                           16

described in Chapter 3.1 are altered in anti-NMDAR encephalitis and schizophrenia, given                       

the finding of reduced serial dependence and the hypothesis of reduced short-term                       

potentiation  in these patients, as described in Chapter 3.2. 17

Supplementary material for this Chapter is included in Appendix A3.   

16 This section is a manuscript in preparation. A similar list of authors contributed to this work as in                                     
Chapter 3.2. I would like to additionally acknowledge the contribution of Joan Santamaria, who                           
supported the experimental EEG setup in the hospital, and Diego Lozano-Soldevilla, who set up the                             
EEG preprocessing pipeline for this project. 
17 Note that in Chapters 3.2 and 3.3, I will use the abbreviation STP to refer to NMDAR-dependent                                   
short-term potentiation, in contrast with the remainder of this thesis, in which STP is used to refer to                                   
short-term plasticity. 
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Working memory codes are reactivated between trials in healthy                 
controls, but not in anti-NMDAR encephalitis and schizophrenia 

Introduction 

Working memory is a brain function that lies at the core of cognition 1, as it maintains                                 
information for short periods of time in a format that makes it easy to access and                               
manipulate 2. Working memory deficits occur across a wide range of brain disorders,                         
including major depression, bipolar disorder, ADHD, and Parkinson’s disease 3. Yet, they                       
might play a particularly central role for thought disorders in specific psychiatric and                         
neurological diseases, such as schizophrenia 4 or anti-NMDA-receptor (NMDAR)                 
encephalitis 5, where working memory deficits even form part of early diagnostic criteria 6.                           
Memory alterations in both anti-NMDAR encephalitis and schizophrenia could result from                     
an underlying dysfunction of the NMDAR in memory-maintaining circuits like the prefrontal                       
cortex 7–9. This hypothesis is supported by working memory studies under pharmacological                       
blockade of the NMDAR 10,11, computational modeling of NMDAR dysfunction in                     
memory-maintaining cortical circuits 12,13, post-mortem assessments of NMDAR densities in                   
prefrontal cortex in patients with schizophrenia 14, and the drastic reduction of NMDAR                         
levels caused by anti-NMDAR encephalitis 15. In line with this hypothesis, we have recently                           
reported a novel, qualitative alteration in working memory processing in patients with                       
anti-NMDAR encephalitis and schizophrenia 16. Specifically, we showed that while working                     
memory in healthy controls was positively biased towards previous memories (so-called                     
serial dependence), these biases were drastically reduced in both patient groups.  
 
Serial dependence is a common phenomenon in neurotypical subjects 17 which                     
demonstrates that memory information is carried over between subsequent working                   
memory trials, even when this is not required to perform the task. Given that after the                               
response, memory circuits such as prefrontal cortex usually cease to encode working                       
memory items in persistent neural firing 18, alternative mechanisms 19,20 or brain regions 21                           
have been proposed to represent previous trial items between subsequent trials. We have                         
recently demonstrated that a plasticity-like mechanism can temporarily enhance neural                   
excitability at previously delay-active prefrontal neurons, and that these traces of enhanced                       
excitability can bias upcoming memories towards previous items 22. We explained these                       
findings through a hybrid model of prefrontal cortex that combines rate-based coding                       
during delay and a short-term plasticity mechanism 23,24 that spans inter-trial intervals (ITIs)                         
and biases incoming memories.  
 
An important feature of models that combine persistent firing and plasticity in the same                           
circuit is the possibility to retrieve former attractors after the network has returned to a state                               
of spontaneous firing 25,26. When a short, sufficiently strong input is delivered to a random                             
subset of neurons in the network, previously active neurons can return to a pattern of                             
persistent firing. In our recent analyses of single-unit data from monkey prefrontal cortex,                         
we showed that such code reactivations can occur between trials, just before the onset of a                               
new stimulus 22. In a parallel human experiment, we demonstrated that reactivations can                         
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also be measured in alpha power in human electroencephalography (EEG). Memory                     
reactivations in monkeys and humans were triggered by internal or external attention                       
signals, such as ramping neural activity in monkey prefrontal cortex neurons, and the onset                           
of the next trial’s fixation period in healthy controls. Importantly, the strength of code                           
reactivations predicted how strongly upcoming memories were biased towards previous                   
ones in both monkeys and humans.  
 
Here, we aimed at testing whether previous-trial working memory codes in multivariate EEG                         
alpha power would be reactivated in the inter-trial interval (ITI) in patients with anti-NMDAR                           
encephalitis and patients with schizophrenia, similar to the reactivations observed in healthy                       
controls in ref. 22. This question was based on two observations: First, we have reported                             
drastically reduced serial dependence in patients with anti-NMDAR encephalitis and                   
schizophrenia 16, and a link between memory reactivations in EEG and the strength of serial                             
dependence 22. Second, we have postulated that short-term potentiation (STP) mechanisms                     
in memory-maintaining circuits could be disturbed in both patient groups, potentially as a                         
result of NMDAR dysfunction 27,28, leading to a disruption of information carry-over between                         
consecutive trials 16. Here, we first formalized our hypothesis in a circuit model of prefrontal                             
cortex with varying degrees of STP 16, where a deficit in STP is reflected in reduced memory                                 
reactivations during the ITI. We then analyzed working memory codes in multivariate EEG                         
alpha power, and measured reduced and less stable memory codes during the delay in                           
both patient groups, when compared to healthy controls. We then tested our prediction of                           
reduced memory reactivations during ITI, and found that memory reactivations occurred in                       
healthy controls, but were indeed disrupted in patients with anti-NMDAR encephalitis or                       
schizophrenia. In healthy controls, the strength of memory reactivations correlated with                     
their predictiveness of serial dependence in the upcoming trial on a trial-by-trial basis, while                           
this was not the case in patients, who lacked memory reactivations in the first place.                             
Together, these findings suggest that a lack in between-trial memory reactivations                     
contributes to a reduction in serial dependence, and results from dysfunctional STP                       
mechanisms in patients with anti-NMDAR encephalitis and schizophrenia. 
 

Results 

Similar working memory precision, but decreased serial dependence in patients 

To measure the neural correlates of working memory maintenance and serial dependence                       
in healthy controls and patients, we conducted a visuospatial working memory experiment                       
in a sample of n = 22 controls, n = 27 patients with anti-NMDAR encephalitis, and n = 19                                     
patients with schizophrenia. Patients with encephalitis had received immunotherapy and                   
were in a prolonged recovery phase, while patients with schizophrenia were tested during a                           
stabilized period. In two sessions of 1.5 h each, subjects had to remember randomized                           
angular locations at fixed eccentricity presented on a computer screen for short delay                         
periods of 0, 1, or 3 s (Methods, Fig. 1a). After subjects indicated the memorized location in                                 
one trial with a mouse click, a fixation period of 1.1 s started, before a new, uncorrelated                                 
location was presented in the next trial. Here, we recorded EEG activity during delay, and                             
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response and fixation periods at 43 scalp electrodes and analyzed single-trial behavioral                       
and EEG data. 
 
 

 

Fig. 1 | Similar working memory precision, but decreased serial dependence in patients 

a In each trial, participants were asked to maintain eye fixation and the mouse pointer on a central                                   
fixation dot. After 1.1 s (fixation period), a stimulus appeared for 0.25 s at a randomly chosen                               
angular location with fixed distance from the center. Delay lengths varied randomly between trials (0,                             
1 or 3 s), where 1 s trials occurred with higher probability (P = 0.67), and 0 and 3 s trials with equal                                           
probabilities (P = 0.17). Subjects reported the remembered location with a mouse click and started                             
the next trial by moving the mouse back to the fixation dot during the inter-trial-interval (ITI). b                                 
Precision for each subject and delay was inversely estimated as the circular s.d. of bias-corrected                             
error distributions (Methods). For longer delays, participants’ responses were less precise (delay,                       
F(2,195) = 78.61, p < 1e−16). There were no overall or delay-dependent group differences in                     
precision (group, F(2,195) = 2.62, p = 0.75; group × delay, F(4,195) = 0.16, p = 0.96, all p-values                 
from ANOVA). Error bars indicate 95% bootstrap C.I. of the mean. c-e, Serial dependence by group                               
and delay length. Serial dependence is calculated as the ‘folded’ error θe′ for different θd (Methods).                               
Shading, 32% bootstrap C.I. of the mean across participants for n = 22 healthy controls (ctrl),                           
n = 19 patients with schizophrenia (schz), and n = 27 patients with anti-NMDAR encephalitis (enc).                       
c, Serial dependence for all groups was repulsive in 0 s trials. d For 1 s trials, group differences in                                   
serial dependence emerged between ctrl and enc, and between ctrl and schz. e After 3 s delay, both                                 
patient groups showed drastically reduced biases compared to ctrl. Significance bars show                       
significant permutation tests (1,000 permutations) at alpha = 0.05 between groups.  
 
 
After analyzing behavioral measures of working memory in 16, we included further subjects                         
to increase the sample for the EEG study. We therefore asked whether previously reported                           
behavioral results could be confirmed in the extended sample. First, we measured the                         
circular standard deviation of responses around the target for each subject and each delay.                           
This measure is an inverse estimate of memory precision and increases with delay length,                           
as a function of accumulating noise in working memory delay activity 29. We used a linear                               
model to compare the delay-dependent decrease in precision between groups (Fig. 1b).                       
Similar to our previous findings, precision in patients did not decrease more strongly with                           
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delay, and there were no overall differences in precision between groups (group,                       
F(2,195) = 2.62, p = 0.75; group × delay, F(4,195) = 0.16, p = 0.96, ANOVA). 
 
We also calculated serial dependence in our extended sample to confirm previous results.                         
We averaged errors around the target separately for different, binned distances between                       
previous and current targets (Methods). Positive mean folded errors in these curves denote                         
attraction to previous targets, while negative values denote repulsion. Fig. 1c-e shows                       
mean “folded” bias curves for each group and delay. In congruence with our previous                           
results 16, we found small, repulsive biases for all groups in conditions with low memory                             
requirements (0 s delay), and gradually increasing attractive biases in healthy controls for                         
longer working memory delays. In contrast, biases remained repulsive for all delay lengths                         
in patients with schizophrenia, and became only minimally attractive in encephalitis patients                       
for 3 s delays. 

STP moderates reactivation strength in a circuit model of working memory 

In our previous work, we simulated reduced serial dependence in patients as an effect of                             
reduced NMDAR-dependent STP 16. However, local STP-like mechanisms or the absence                     
thereof cannot be measured in scalp EEG, which limits our ability to test this hypothesis in                               
patients. Therefore, here we used the model proposed in ref. 16 to derive predictions about                             
the neural code that should be observed if STP was disrupted in patients. In particular, we                               
were interested in working memory reactivations occurring between trials: In ref. 22, we have                           
demonstrated that circuits that combine persistent delay activity and STP-based, “silent”                     
memory traces can produce reactivations of memory codes when a non-specific input is                         
delivered to all neurons, and showed that such reactivations occur in monkey prefrontal                         
cortex neurons, and in EEG alpha power in humans. 
 
We then tested whether memory code reactivations were indeed disrupted in the circuit                         
model proposed in ref. 16 when STP levels were modulated to mimic the behavioral                           
alterations observed in our patient populations (Fig. 2a,b). In this model, working memory                         
representations are held in persistent delay firing (Fig. 2c), and delay activity leaves                         
potentiated synaptic traces (Fig. 2d) that later bias upcoming delay activity towards old                         
memories. We hypothesized that NMDAR dysfunction in patients is reflected in reduced                       
STP (Fig. 2b,d), while synaptic conductances through NMDARs remain intact. To simulate                       
memory reactivations in the inter-trial interval (ITI), we delivered an non-specific, excitatory                       
drive to all neurons of the network (orange triangle in Fig. 2c,d). This drive might reflect                               
external signals, such as the onset of the fixation dot, or internal preparatory signals, such                             
as attention processes. In line with our previous results 22, memory codes were reactivated                           
in some trials, leading to an increase in firing rate tuning during the fixation period, before                               
the onset of the next stimulus (black line in Fig. 2c). In contrast, when STP was reduced                                 
(green and lilac dashed lines in Fig. 2d), memory reactivations occurred less frequently (Fig.                           
2c). Hence, our modeling predicts that memory codes should be relatively intact during                         
delay; however, memory reactivations in the ITI should be significantly reduced in patients                         
with anti-NMDAR encephalitis and patients with schizophrenia, if STP was disrupted in                       
these diseases. 
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Fig. 2 | Reduced STP in a circuit model of working memory disrupts memory reactivations                             
during ITI  

To test the impact of STP on memory code reactivations, we simulated consecutive working memory                             
trials in a network model that combines persistent delay activity and STP. a STP was implemented                               
as an activity-dependent increase and decrease in synaptic weights between excitatory model                       
neurons. The strength of each individual synapse is determined by wij (a, middle black trace), which                               
is potentiated at each spike by an amount Δw that depends on the relative spike times tj and ti of pre-                                         
and postsynaptic neurons, respectively, and on the potentiation factor P and it is reduced by an                               
amount relative to the synaptic strength at each presynaptic spike, resulting in activity-dependent                         
decay. b Different potentiation factors P are chosen to represent reduced STP in anti-NMDAR                           
encephalitis and schizophrenia. c Firing rate tuning (calculated as the difference in average firing                           
rates in 21 neurons centered at the presented stimulus value and 21 neurons centered at the                               
opposite stimulus value) and d weight traces (averaged over 21 stimulus-selective neurons) in                         
simulations with high (black), gradually reduced (green) and drastically reduced (lilac) values of                         
potentiation factor P, as shown in b. Firing rate tuning and weights traces are averaged over 1,000                                 
trials. When stimuli in trial n-1 were presented at the neurons’ preferred location, a subgroup of                               
neurons represented the memory in a stable working memory code, discernible in firing rate tuning.                             
Through the increase in synchronized firing, weights w were potentiated between delay-coactive                       
neurons. After firing rates returned to spontaneous levels, firing rate tuning was lost, but synaptic                             
weights remained potentiated until the onset of the next stimulus. When a short, unspecific drive was                               
delivered to all neurons in the network at -1.1 s, memory codes from the previous trial were                                 
recovered into neural tuning in some trials for networks with high- and intermediate STP levels, but                               
not in networks with disrupted STP. 
 
 

Working memory contents during delay are decoded with less reliability 

Before testing our hypothesis regarding neural reactivations during ITI, we characterized                     
working memory codes during the delay period in all three groups. To this end, we                             
extracted alpha power (8-12 Hz) from EEG signals at 43 scalp electrodes. Alpha power                           
decreases in occipital sites contralaterally to attended locations and for locations being                       
actively maintained in working memory 30,31. We used this characteristic to decode                       
memorized spatial locations from the spatial distribution of alpha power across electrodes.                       
We assigned stimuli to one of eight bins, and trained a linear decoder for each subject on all                                   
but one trial. We then used the left-out trial to test the predictive performance of the                               
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decoder, measured as the cosine of the difference between predicted and presented angle                         
(Fig. 3a, Methods). Decoders were first trained and tested at the same time point, to read                               
out the overall information about the stimulus that was available at each period of the trial                               
(we term this kind of decoder a “diagonal decoder”). In Fig. 3, we combine decoding results                               
for 1 and 3 s trials up to 1.25 s after the stimulus onset. Decoding performance throughout                                 
the whole 3 s-delay period in 3 s trials (which occurred with a lower probability, thereby                               
significantly reducing the number of trials that can be used for training and testing) is                             
reported in Supplementary Fig. 1. 
 
Spatial locations could be decoded throughout the 1 s delay in all three groups (Fig. 3b,                               
upper significance bars). Memory codes in 1 s trials were weaker in patients than in healthy                               
controls during most time points (lower significance bars). We wondered whether this group                         
difference might be mediated by group differences in the number of trials (ctrl, n = 900.63 ±                                 
103.02; enc, n = 870.44 ± 141.93; and schz, n = 833 ± 153.33 trials): To test this                                   
hypothesis, we compared the decoding performance of decoders during the delay period                       
after including increasing numbers of trials (Supplementary Fig. 2). We found that significant                         
differences in delay decoding between healthy controls and patients persisted across                     
different numbers of trials. Moreover, decoding performance saturated after ~ 400 trials in                         
all groups, further strengthening the independence of group differences from the number of                         
trials. Finally, we asked whether differences in decoding performance might be an effect of                           
increased noise in patients’ EEG signals. To answer this question, we conducted a                         
time-frequency analysis to compare task-induced, univariate changes in alpha power                   
between groups (Supplementary Fig. 3). We did not find a deficit in alpha modulation in                             
patients, compared to healthy controls: In fact, alpha power during the working memory                         
delay decreased more strongly in encephalitis patients than in healthy controls. We thus                         
conclude that reduced decoding performance during the memory trial can not be attributed                         
to external factors, such as noise or a less efficient modulation of EEG alpha power through                               
the task, but rather reflects a significant difference in neural processing of working memory                           
contents in patients with anti-NMDAR encephalitis and schizophrenia. 

Delay-, but not stimulus-related code components are weaker and less stable in                       
patients 

In Fig. 3b, we have shown that memory codes are reduced in patients, compared to healthy                               
controls. However, decoding performance in patients was comparable during some periods                     
of the delay (e.g, shortly before the response probe), while differences were largest in early                             
and mid-delay. To test which aspects of the memory code are affected in patients, we                             
trained cross-temporal decoders 22,32,33 to disentangle temporal code components that                   
could be related to different processing stages. For each subject, we trained and tested                           
decoders at all combinations of time points from 0.25 s before stimulus onset to the time of                                 
the response probe (1.25 s after the stimulus; Fig. 3d-f; Supplementary Fig. 4 shows                           
cross-temporal decoding matrices for 3 s trials), and from 0.25 s before until 0.25 s after the                                 
motor response. For each group, we assessed temporal clusters of significant decoding                       
across subjects (red contours), which differed in two aspects: First, and in line with Fig. 3b,                               
we found group differences in the overall decoding performance, especially during the                       
delay period of the trial. In addition, we observed a reduced temporal stability of memory                             
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codes in both patients groups, as compared to healthy controls: While healthy controls’                         
memory codes generalized across all time points of the delay, memory code generalization                         
in patients was temporally more limited to adjacent time points, when using a decoder                           
trained in “mid-delay” (in a window from 0.65 - 0.85 s after stimulus onset, indicated with an                                 
orange mark in Fig. 3b,g, and indicated with a dashed white line that marks the window’s                               
center in Fig. 3d-f). Finally, we asked whether a reduced memory component could account                           
for overall reduced decoding performance in patients (Fig. 3b). We measured the “residual”                         
code, after accounting for delay decoding, by calculating subject-wise differences between                     
diagonal (Fig. 3b) and delay decoding performance (Fig. 3g). This residual code, which                         
mostly consisted of a stimulus- and a probe-related component, did not differ between                         
patients and healthy controls (Fig. 3h). Hence, we identified a specific decrease in memory                           
codes, but not visual or motor-related codes during the performance of our visuo-spatial                         
working memory task. 

Delay codes do not correlate with working memory precision 

In Fig. 1b, we have seen that there are no group differences in working memory precision;                               
yet, memory codes during delay differ significantly in strength and temporal stability.                       
Therefore, we designed a more sensitive analysis on the intraindividual level: Again, we                         
trained a trial-wise decoder on the average signal during mid-delay (0.65 s - 0.85 s). We                               
then divided trials in high-decoding and low-decoding based on delay decoding                     
performance (Methods), and calculated the difference between the averages of absolute                     
errors |𝜃e| for each subject (Fig. 3c). This difference did not deviate from zero for all groups,                                 
indicating the lack of a relation between decoding strength during delay and behavioral                         
precision in single trials. The absence of a relationship between delay codes and working                           
memory precision at both the group level and the intra-individual is a striking finding that                             
can potentially be explained by the low cognitive demand posed by our task, as detailed                             
further in the discussion.  
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Fig. 3 | Working memory codes in patients are less reliable and less stable during delay 

a We calculated decoding performance as the cosine of the angular difference between predicted                             
(here, ~85º) and presented (45º) angles in each trial. The predicted angle was determined as the                               
circular mean of single-trial tuning curves (Methods). b,g,h Shading, 32% bootstrap C.I. of the mean                             
across participants for n = 22 healthy controls (ctrl), n = 19 patients with schizophrenia (schz), and                           
n = 27 patients with anti-NMDAR encephalitis (enc); upper significance bars mark significant                     
decoding, lower significance bars mark significant group differences, corrected with 1- or                       
respectively 2-sample cluster permutation tests at alpha = 0.05. Grey bars indicate stimulus and                           
probe presentation, and orange bars indicate the timepoints later referred to as “mid-delay”                         
(0.65-0.85 s). b Spatial locations in working memory were decoded throughout the complete 1 s                             
memory delay in all groups. During mid-delay, decoding performance was lower for patients than for                             
healthy controls. c Difference in absolute errors as a function of trialwise decoding performance in                             
mid-delay. For each subject, we separated high (>75th percentile) and low-decoding (<75th                       
percentile) trials and tested whether subjects responded with higher precision in high-decoing trials.                         
The difference was non-significant for all groups. d,e,f Cross-temporal decoding during stimulus                       
presentation (S), delay, and response (R). White lines mark the discontinuity of EEG signals after the                               
probe onset at 1.25 s. Orange lines mark significant decoding clusters (1-sample permutation test at                             
alpha = 0.05). Spatial locations were decoded above chance at all time points comprising the                             
diagonal for all groups. In controls, memory codes trained at any period of the delay generalized to                                 
any other delay time point, while in patients, memory codes did not generalize as extensively. During                               
response, a different code component than during delay represented memory contents in all groups.                           
g Temporal generalization of memory codes trained in mid-delay (orange bar). h Residual code,                           
when subtracting the delay component (g) from the diagonal decoder (b), does not differ between                             
groups. 
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Working memory delay code in patients is not reactivated during the ITI 

After characterizing working memory codes during delay, we now wanted to test our                         
prediction that group differences in serial dependence, and a disruption in STP, should be                           
reflected by reduced memory code reactivations in patients, compared to healthy controls.                       
To measure reactivations, we used a cross-temporal decoder to read out memory contents                         
throughout two consecutive trials n-1 and n. We decoded the location presented in trial n-1                             
throughout the delay period and motor response of trial n-1, and the fixation period of trial                               
n, up until the onset of the new stimulus (Fig. 4a-c, where the bottom left part of the                                   
matrices corresponds to Fig. 3d-f). Memory contents from the last trial were still decodable                           
in the fixation period, and faded several hundred ms before the onset of the new stimulus.                               
However, the cross-decoder revealed that these memory codes in patients did not share                         
information with the previous delay-period: Rather, memories were represented by a                     
distinct, independent code component (Fig. 4b,c). In contrast, memory reactivations in                     
healthy controls were driven by the previous trial’s delay code, reflected in above-chance                         
decoding performance in the lower right part of the decoding matrix in Fig. 4a. Fig. 4d                               
compares a decoder trained in mid-delay (0.65 - 0.85 s after stimulus in trial n-1) across                               
groups. These analyses confirm our hypothesis, linking reduced fixation-period memory                   
reactivations (Fig. 4a-d) to disrupted serial dependence (Fig. 1c-e) on the group level. 

Strong memory code reactivations predict biases in the upcoming trial 

Finally, we asked whether we could relate the strength of memory reactivations to serial                           
dependence on a within-subjects level. We have previously reported such a relationship in a                           
subset of healthy controls 22. We thus first assessed this relation in our extended sample of                               
healthy controls: For each subject, we separated trials with high and low reactivation of the                             
delay code during fixation (orange mark in rightmost panel of Fig. 4d), and calculated serial                             
dependence separately for each set of trials (Methods). In Fig. 4e-g, we show the difference                             
Δbias between high- and low-decoding trials for each subject. Δbias was positive in healthy                           
controls, but non-significant (Fig. 4e). We wondered whether this relation was modulated by                         
a difference in reactivation strength: In subjects whose memory code does not reemerge, a                           
split based on decoding strength would separate trials mainly based on random                       
fluctuations. We therefore related the difference between high- and low-decoding trials with                       
the strength of memory reactivations for the three different groups. A linear model of Δbias as                               
a function of reactivation strength, group, and their interaction confirmed our hypothesis:                       
The higher the average reactivations, the more pronounced were differences between high-                       
and low-decoding trials (main effect of reactivation strength F(62,1) = 9.83, p = 0.003).                           
Although there was no significant interaction between reactivation strength and group                     
(F(62,2) = 1.54, p = 0.22), groupwise correlations showed that the main effect of reactivation                             
strength was driven mainly by healthy controls, whose reactivations were pronounced                     
(Pearson’s r = 0.60, p = 0.003; Fig. 4e), compared to patients with encephalitis (Pearson’s r                               
= 0.07, p = 0.75) and schizophrenia (Pearson’s r = 0.18, p = 0.47; Fig. 4f,g). To conclude,                                   
these results reveal that memory reactivations in EEG alpha power can increase serial                         
dependence in subjects whose memory codes in the fixation period are reliably decoded.                         
Together with the absence of memory reactivations and serial dependence on the group                         
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level, these findings confirm the predictions from our network model with reduced STP in                           
anti-NMDAR encephalitis and schizophrenia. 
 

 

Fig. 4 | Memory codes are reactivated during ITI in healthy controls, but not in patients 

a,b,c Cross-temporal decoding over consecutive trials. We decoded the location presented in trial                         
n-1 from the time of stimulus presentation (Sn-1), over the delay, during the response period (Rn-1),                               
and the fixation period in the current trial, starting at fixation dot onset (Fn) and ending at the onset of                                       
the new stimulus (Sn). White lines mark the discontinuity of EEG signals after the probe onset at 1.25                                   
s, and between response and fixation periods. Orange lines mark significant decoding clusters                         
(1-sample permutation test t alpha = 0.05). Spatial locations were decoded above chance at all time                               
points comprising the diagonal for all groups, up until Sn in ctrl and enc, and until mid-fixation in                                   
schz. Memory codes trained during delay reemerged during fixation in controls, but not in patients,                             
after being interrupted by the response code. d Memory codes trained in mid-deay (0.65 - 0.85 s)                                 
generalized across large parts of the delay in trial n-1 (from stimulus presentation, Sn-1, to the                               
response probe Pn-1), before disappearing around the time of response (Rn-1) and reemerging after                           
the onset of fixation (Fn; upper significance bars, 1-sample cluster permutation test al alpha = 0.05).                               
Lower significance bars indicate significant group differences between healthy controls and patients                       
(2-sample cluster permutation test al alpha = 0.05). Shading, bootstrap s.e.m. across participants for                           
n = 22 healthy controls (ctrl), n = 19 patients with schizophrenia (schz), and n = 27 patients with                           
anti-NMDAR encephalitis (enc). Grey bars indicate stimulus and probe presentation, and orange bars                         
indicate the timepoints referred to as “mid-delay” and “fixation”. e Difference Δbias in serial                           
dependence between trials with high and low memory reactivations (Methods), as a function of the                             
strength of memory reactivations. Δbias was positive, but non-significant in healthy controls (t = 1.00,                             
p = 0.33), and increased with the overall strength of memory reactivations (Pearson’s r = 0.60, p =                                   
0.003). f,g Δbias was non-significant in both enc (t = 0.09, p = 0.93) and schz (t = -0.3, p = 0.76), and                                             
did not correlate with overall memory reactivation strength. 
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Discussion 

In this study, we assessed whether reduced serial dependence in anti-NMDAR encephalitis                       
and schizophrenia (Fig. 1) would be reflected in disrupted EEG reactivations of                       
previous-trial memory contents during the inter-trial interval (ITI), as predicted by a model                         
with reduced STP in memory-maintaining circuits (Fig. 2). Moreover, we explored qualities                       
of the working memory code during memory delays in patients, as compared to healthy                           
controls. We showed that multivariate alpha power tracked memory contents throughout                     
short delay periods in all groups. In patients with encephalitis and patients with                         
schizophrenia, memory codes were selectively impaired already in delay, when compared                     
to healthy controls, and generalized less in time (Fig. 3). In all groups, memory codes                             
trained in delay disappeared completely during the response period, to then reappear after                         
the onset of the next trial’s fixation dot in healthy controls, but not in patients (Fig. 4). We                                   
reasoned that the reactivation of memory codes should be related to serial dependence,                         
and confirmed this prediction in healthy controls: Strong memory code reactivations during                       
the fixation period were related to stronger serial bias in the upcoming trial. In contrast, we                               
did not observe such a relationship in patients with encephalitis or schizophrenia, whose                         
memory codes did not reactivate in the fixation period and were not predictive of biases.  
 
Our findings confirm the relation between working memory reactivations in the ITI and serial                           
dependence, both on the group level and the intra-individual level. Our modeling suggests                         
that both serial dependence and memory reactivations depend on a STP mechanism that is                           
disrupted in patients with anti-NMDAR encephalitis and in patients with schizophrenia, so                       
that both patient groups show reduced serial dependence, and weaker ITI memory                       
reactivations in our working memory task. Following the logic of our network model,                         
memory reactivations are not needed to produce serial dependence: Even in the absence of                           
reactivations, memory traces in STP can still bias upcoming memories 16. Instead, memory                         
reactivations can modulate the strength of biases, as explicitly shown in Fig. 4e, and in ref.                               
22. Hence, in our model, the necessary component for both memory reactivations and serial                           
dependence is a STP-like mechanism. By showing that both serial dependence and                       
memory reactivations are disrupted in patients with anti-NMDAR encephalitis and                   
schizophrenia, we deliver more evidence for the dysfunction of such a STP-like mechanism                         
in the two diseases. 
 
To confirm our hypothesis about how neural computations differ between groups to disrupt                         
memory reactivations during ITI, further experimental work is needed. Combined                   
electrophysiology and pharmacology in animal models could elucidate questions that                   
remain unanswered in this study: Similar to ref. 22, the analysis of single-neuron activity                           
during working memory performance could identify neurons that participate in working                     
memory codes, and detect correlations of these neurons’ activity between delay and ITI                         
periods. Importantly, in such studies, STP traces between delay-active neurons could be                       
estimated during ITI. The pharmacological blockade of NMDAR could then test hypotheses                       
regarding both STP and the nature of reactivated memory codes that could underlie the                           
observed phenomena in anti-NMDAR encephalitis and schizophrenia. Experimental work                 
would also be needed to discard an alternative explanation of our findings: Working                         
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memory codes could be held in one area during the delay, and transferred to another area                               
after the response. From that area, stimulus-specific activity could be fed back to the                           
memory circuit after the ITI, to then actively influence new, upcoming memories. This                         
interpretation would be congruent with findings of ITI-, but not delay-representations in                       
PPC in ref. 21. In this view, a failure to reactivate memories in the fixation period could                                 
reflect the disrupted bi-directional communication between memory-maintaining circuits,               
and brain areas that represent past memory contents during response or inter-trial periods. 
 
Importantly, we cannot offer a straightforward way to interpret reduced and less stable                         
delay codes in patients, relative to healthy controls. With respect to the lower decoding                           
performance during delay, we have shown that our findings are not explained by a reduced                             
number of trials or a reduction in univariate alpha power (Supplementary Figs. 2,3). In fact,                             
alpha power during delay was modulated more strongly in patients with encephalitis than in                           
healthy controls. Moreover, we failed to find a relationship between delay code and working                           
memory precision both on the inter-group level, and on the intra-individual level (between                         
trials). In ref. 16, we have argued that intact memory precision in patients might be explained                               
through ceiling effects that emerge in the very simple working memory task performed in                           
this study: Subjects only needed to remember one item, during rather limited delay periods,                           
while reduced working memory precision has been found in tasks with long delays 34 or                             
more challenging stimuli 35. In line with this reasoning, ref. 36 have reported reduced                           
memory-related BOLD signals in PFC and reduced memory precision in patients with                       
schizophrenia in a task with long working memory delays. Thus, our task might not have                             
tested the upper limits of working memory. Consequently, variability in response precision                       
or in working memory decoding performance between trials or between individuals might                       
not reflect a cognitively relevant dimension. 
 
To conclude, we identified a disruption in memory code reactivations during ITI in patients                           
with anti-NMDAR encephalitis and schizophrenia. We argued that disruptions in memory                     
reactivations and reduced serial dependence observed in these patients are both related to                         
a disruption in STP. Moreover, memory reactivations and their absence in anti-NMDAR                       
encephalitis and schizophrenia could also directly impact the (lacking) generation of serial                       
dependence, a hypothesis based on observations in previous work in healthy human                       
subjects and monkeys 22, and supported by computational modeling of                   
memory-maintaining circuits 16,22. To understand whether and how the absence of memory                       
reactivations is related to STP and to altered delay period memory codes, further work,                           
ideally accompanied by electrophysiological recordings in prefrontal cortex, is needed that                     
specifically tests this hypothesis. 

Methods 

 
Experimental sample 

We included n = 27 patients with anti-NMDAR encephalitis (enc; age 28.7 ± 11.3 years, mean ± s.d.;                                   
n = 5 male), n = 19 patients with schizophrenia or schizoaffective disorder (schz; age 21.3 ± 8.8                                   
years, mean ± s.d.; n = 8 male), and n = 22 neurologically and psychiatrically healthy control                                 
participants (ctrl; age 24.9 ± 10.4 years, mean ± s.d.; n = 4 male), all with normal or corrected vision.                                       
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Behavioral data from n = 19 controls, n = 16 patients with encephalitis, and n = 17 patients with                                     
schizophrenia has been reported before 16, and behavioral and EEG data from n = 14 healthy                               
controls has been included in another previous study 22. Psychiatric diagnoses (or the absence                           
thereof for controls) were confirmed using the Structured Clinical Interview for DSM IV (SCID-I) 37.                             
Patients with anti-NMDAR encephalitis were recruited from centers in Spain (n = 25 in Spain),                             
Germany (n = 1), and the United Kingdom (n = 1) and participated in the experiment several months                                   
after hospital discharge. Patients with anti-NMDAR encephalitis were diagnosed by confirmation of                       
CSF IgG antibodies against the GluN1 subunit of the NMDAR 6. All healthy controls and patients with                                 
schizophrenia tested seronegative for antibodies against NMDAR in serum 38. Anti-NMDAR                     
encephalitis is known to have a prolonged process of recovery after the acute stage of the disease                                 
39, and patients in the prolonged recovery phase still suffer from cognitive deficits as has been                               
previously described in cohorts with long follow-up 40. All patients were sufficiently recovered to                           
participate in the testing procedure. Controls and patients with schizophrenia were recruited from the                           
Barcelona area and from Hospital Clínic (Barcelona, Spain), respectively. Patients with schizophrenia                       
were clinically stable at the time of testing. All participants (and, in the case of minors of age, their                                     
legal guardians) provided written informed consent and were monetarily compensated for their time                         
and travel expenses, as reviewed and approved by the Research Ethics Committee of Hospital                           
Clínic. All subjects were assessed for psychiatric symptoms and functionality through a battery of                           
standard tests including the Spanish versions of the Positive and Negative Syndrome Scale (PANSS)                           
41, the Young Mania Rating Scale (YMRS) 42, the Hamilton Depression Rating Scale (HAM-D) 43 and                               
the Global Assessment of Functioning Scale (GAF) 44.  
 

Task protocol and behavioral testing 

Participants completed two 1.5 h sessions performing a visuospatial working memory task described                         
in Fig. 1a. In each session, participants were asked to complete 12 blocks of 48 trials. However,                                 
some participants did not complete all blocks, and some did not complete both sessions (on                             
average, participants completed 1138.5 trials (median, ctrl, i.q.r. = 35.0), 1101.0 trials (median, enc,                           
i.q.r. = 110.0), and 1017.0 trials (median, schz), i.q.r. = 301.0). For stimulus presentation, we used                               
Psychopy v3.1.5 on Python 2.7, running on a 17” HP ProBook laptop. Each trial began with the                                 
presentation of a central black fixation square on a grey background (0.5 x 0.5 cm) for 1.1 s. A single                                       
colored circle (stimulus, diameter 1.4 cm, 1 out of 6 randomly chosen colors with equal luminance)                               
was then presented during 0.25 s at one of 360 randomly chosen angular locations at a fixed radius                                   
of 4.5 cm from the center. The stimulus was followed by a randomly chosen delay of 0 (16.67% of                                     
trials), 1 (66.67% of trials), or 3 s (16.67% of trials) in which only the fixation dot remained visible                                     
(except for 0 s trials, where the stimulus remained visible until the participant started to move the                                 
cursor). When the fixation dot changed to the stimulus’ color (probe), participants were asked to                             
respond by making a mouse click at the remembered location (response). A white circle indicated                             
the stimulus’ radial distance, so participants only had to remember the angular position. After the                             
response, the cursor had to be moved back to the fixation dot to start a new trial (ITI). Participants                                     
were instructed to maintain fixation during the fixation period, stimulus presentation, and memory                         
delay and were free to move their eyes during response and when returning the cursor to the fixation                                   
dot.  

 

Error and serial dependence analysis 

Response errors in trial n were measured as the angular distance between response and target.    θen                            
To exclude errors due to guessing or motor imprecision, we only analyzed responses within an                             
angular distance of 1 radian and a radial distance of 2.25 cm from the stimulus. Further, we excluded                                   
trials in which the time of response initiation exceeded 3 s, and trials for which the time between the                                     
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previous trial’s response probe and the current trial’s stimulus presentation exceeded 5 s. In total,                             
2.0% (median, ctrl, i.q.r. = 0.3%), 1.8% (median, enc, i.q.r. = 0.4%) and 2.0% (median, schz, i.q.r. =                                   
0.3%) of trials per participant were rejected. 

We then measured serial dependence as the error in the current trial as a function of the circular                                   
distance between the previous and the current trial’s target location. Fig. 1c,d,e depict ‘folded’ serial                             
dependence: We multiplied trial-wise errors by the sign of the previous-current distance, :          θen                 θdn  

, and then binned data based on absolute values . Errors were thenign  θen
′ = θen * s θ( d

n)                   θ || d
n     θen

′      
averaged for each in sliding windows with size in steps of . Positive mean folded errors      θ || d

n             /3π         /20π          
should be interpreted as attraction towards the previous stimulus and negative mean folded errors as                             
repulsion away from the previous location. In all figures including bias curves, s.e.m. are calculated                             
across pooled trials from all subjects for each group and delay. For visualization, all values were                               
transformed from radians to angular degrees. 

EEG recordings and preprocessing 

We recorded EEG from 43 electrodes attached directly to the scalp. The electrodes were located at                               
Modified Combinatorial Nomenclature sites Fp1, Fpz, Fp2, AF7, AFz, AF8, F7, F3, Fz, F4, F8, FT7,                               
FC3, FCz, FC4, FT8, A1, T7, C5, C3, Cz, C4, C6, T8, A2, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4,                                           
P8, PO7, PO3, POz, PO4, PO8, O1, Oz and O2. Sites were referenced to an average of mastoids A1                                     
and A2 and re-referenced offline to an average of all electrodes. We further recorded horizontal EOG                               
from both eyes, vertical EOG from an electrode placed below the left eye and ECG to detect cardiac                                   
artifacts. We used a Brainbox® EEG-1166 EEG amplifier with a .017-100 Hz bandpass filter and                             
digitized the signal at 512 Hz using Deltamed Coherence® software (version 5.1).  
 
EEG data was pre-processed using Fieldtrip (version 20171231) in MATLAB R2017b and R2019a.                         
We excluded outlier trials in which variance or kurtosis across samples exceeded 4 standard                           
deviations from mean variance or kurtosis over trials, respectively. To reduce artifacts in the                           
remaining data, we ran an independent component analysis (ICA) on the trial-segmented data and                           
corrected the signal for blinks, eye movements, and ECG signals, as identified by visual inspection of                               
all components. Data were Hilbert-transformed (using the FieldTrip function “ft_freqanalysis.m”) to                     
extract frequencies in the alpha-band (8-12 Hz) and total power was calculated as the squared                             
complex magnitude of the signal. Finally, we excluded trials in which lognormal alpha-power at any                             
electrode exceeded the time-resolved trial average of lognormal alpha-power by more than 4                         
standard deviations, and trials in which the time-averaged variance across electrodes exceeded the                         
mean variance over trials by more than 4 standard deviations (to increase the stability of trial-wise                               
decoding predictions for different randomly chosen training sets). Excluding rejected trials and trials                         
with 0 s delay, we used n = 900.63 ± 103.02 (ctrl, mean ± std); n = 870.44 ± 141.93 (enc, mean ±                                             
std); and n = 833 ± 153.33 (schz, mean ± std) trials per participant. To concatenate data from the                                     
two sessions for the same subject, we normalized each session's alpha-power for each electrode                           
separately. 

EEG decoding 

We used a linear decoder to read out the angular position of the stimulus from the distribution of                                   
alpha power across the 43 electrodes. We concatenated consecutive trials and trained the decoder                           
on the stimulus label of the previous trial, to then decode location information throughout the                             
previous and current trial. Trial-wise alpha power for each electrode was modeled as a linear                             
combination of a set of regressors representing the stimulus location in the corresponding trial,                           

, where U is a J × K matrix of alpha power measured at electrode j in trial k, M is the N ×                                               
K design matrix of values for regressor n in trial k, and W is the J × N weight matrix, mapping the                                           
weight for regressor n to electrode j. U and M were given by the experiment, while W was fitted using                                       
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least squares. The design matrix M is a set of eight regressors Mn representing expected values for                                 
feature n in trial k 46. The value of regressor Mn in trial k was determined as                                 

, where sk = [0…7] indicates which one of eight angular location bins                         
(with width π/8 radians) included the stimulus shown in trial k. 
 
We measured single-trial stimulus representations using leave-one-out cross-validation, ensuring an                   
equal number of trials from each location bin in the training set (Ut and Mt). We estimated the weight                                     
matrix Ŵ and the design matrix Mk for the left-out trial k, as follows: 
 

 

 
 
For each trial and time point, we repeated this analysis 10 times with randomly chosen training sets,                                 

and averaged M over all repetitions. Finally, we estimated the predicted angle as the direction of                                 

the vector sum of feature vectors with length Mnk pointing at angular location bin centers                               

(n = 0…7). Trial-wise decoding strength was then defined as . To correlate the                       
decoding strength with behavioral biases (Figs. 3c, 4e-g), we increased the stability of trial-wise                           
measures by training the decoder on temporally averaged data over a 200-ms window in mid-delay                             
(0.65 - 0.85 s, orange marks in Figs. 3b,g,h, 4d). We then separated trials as high-decoding (>75th                                 
percentile) or low-decoding (<75th percentile) during delay (Fig. 3c) or respectively, during fixation                         
(Fig. 4e-g), and calculated the difference between absolute errors (Fig. 3c) or respectively, between                           
bias curves (Fig. 4e-g) separately for each set of trials. The difference in bias strength between two                                 
groups of trials was calculated for previous-current distances between 0º and 90º. 
 
To explore the temporal generalization of the mnemonic and the response code over time, we                             
trained decoders on the previous stimulus label in independent time windows of the previous and                             
current trial, and tested them in all time points of previous delay and response (Fig. 3d-f, 4a-c, from                                   
0.25 s to 1.25 s after previous stimulus onset and from -0.25 s to 0.25 s after the previous                             
response) and current fixation periods (Fig. 4a-c, -1.25 s to 0.25 s after the stimulus onset of the                               
current trial). For decoding matrices, we averaged training and test data over independent windows                           
of 50 samples (~97.77 ms). The high-resolution time course of the mnemonic code (Figs. 3g, 4d)                             
were obtained by training the decoder on averaged data from 0.65 - 0.85 s after previous stimulus                               
onset (dashed lines in decoding matrices), and by testing on averaged data from five samples                             
(~9.77 ms) through consecutive trials. For all timeseries and cross-temporal matrices, significance                     
was assessed with 1-sample or 2-sample cluster permutation tests 47 with 1,000 permutations,                         
implemented in the Python “mne” package 48. 
 
Neural network simulations 

We simulated consecutive pairs of trials in a spiking neural network model of prefrontal cortex                             
implemented in Brian2 49. excitatory and inhibitory leaky integrate-and-fire                   
neurons were connected all-to-all via synapses governed by NMDAR-, AMPAR-, and                     
GABAAR-dynamics, as described in ref. 50. All connection strengths of all-to-all connections were                         
constant, except for recurrent excitatory connections, which were modulated depending on the                       

distance in preferred location of presynaptic and postsynaptic neurons: , where                     
is a Gaussian function (centered at with degrees) plus a constant, tuned so thatJ               μ = 0      14.4σ =                 

and . As a result, neurons with similar preferred locations had    (0) 1.63J =                     
1.63 stronger weights than the average weight. For equations describing network dynamics, please                         
refer to ref. 16. 
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Moreover, connections between excitatory neurons were plastic (Fig. 2a): AMPAR and NMDAR                       
synaptic variables wij characterize the synaptic weight between neuron j and neuron i. Upon                           
synchronized pre- and postsynaptic spiking, wij was slightly enhanced by an amount that                        ∆w    
depended on the relative spike times of neuron j and i to simulate an increase in probability of                                   
glutamate release 51:  

.  
The associative nature of this rule was determined by a potentiation function that required                           
synchronization within a specific temporal window:  

,  
with potentiation factor = 0.00022 (to simulate STP in healthy controls), = 0.00012       P                  P    
(encephalitis), or = 0.00002 (schizophrenia), and = 20 ms (Fig. 2b). Changes were sustained     P         τ ∆                
(did not decay with time), but synapses depotentiated based on presynaptic activity 28: at each                             
presynaptic spike: 

.  
Dynamics in network connections are described in more detail in ref. 16. 

We simulated 1,000 pairs of consecutive trials with independent randomized stimulus locations. We                         
then calculated rate tuning as the difference between firing rates of neurons selective for the                             
presented location (in trial n-1) and neurons selective for the opposite location. Simulations started                           
with a stimulus presentation at 0º (trial n-1) for 0.25 s. After the input was removed, a delay of 1 s                                         
followed. A negative input to the whole network during 0.25 s simulated the response and removed                               
stimulus-associated neural activity. After an ITI of 2.75 s, a second stimulus (trial n) was delivered at                                 
a random location for 0.25 s. 1.1 s before the second stimulus, a transient excitatory drive (0.5 s) was                                     
delivered to all excitatory neurons in the network. 
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Chapter 4  

Summary of Results 

In this thesis, I investigated different synaptic and circuit mechanisms of working memory,                         

how their interaction produces specific working memory biases, and how their disruption in                         

psychiatric or neurological disease can contribute to abnormal working memory function.  

 

In Chapter 3.1, I showed that PFC represents working memory contents not only in                           

spiking, persistent activity, but also shows signatures of imprinted, synaptic traces of                       

working memory. These traces can hold contents for an extended period of time, such as                             

an ITI, without the need for firing rate-based maintenance. From locally facilitated synapses,                         

stable working memory representations could be reactivated through unspecific network                   

inputs, a result found in monkey PFC and indirectly in human EEG, and explained by a                               

circuit model of PFC that exhibits bistability (i.e., stable, persistent activity) and is supported                           

by a STP mechanism. Finally, memory reactivations as observed in monkey PFC, human                         

EEG, and elicited with prefrontal TMS in humans increased systematic biases towards                       

previous memories. These findings demonstrate the behavioral relevance as well as the                       

prefrontal locus of the discussed mechanisms. 

 

Chapter 3.2 builds up on the findings from Chapter 3.1. I designed experiments parallel                           

to Chapter 3.1 to test the impact of NMDAR dysfunction on working memory precision and                             

systematic serial biases in patients with anti-NMDAR encephalitis and patients with                     

schizophrenia, and compared their data to that of healthy controls. I found that working                           

memory precision in both patient groups was unaffected, but serial biases were drastically                         

reduced in encephalitis patients, and completely disrupted in patients with schizophrenia.                     

Moreover, I found that biases normalized in patients with encephalitis, a sign of their                           

relation to clinically relevant processes. I then modeled these findings in a prefrontal circuit                           

model similar to the model developed in Chapter 3.1. By disrupting different                       
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NMDAR-related parameters, I showed that perturbations in E/I balance through reduced                     

NMDAR-mediated currents cannot explain findings from patients. In contrast, reduced                   

short-term potentiation successfully disrupted between-trial memory traces and the                 

emergence of serial biases in the model. 

 

In Chapter 3.3, I tested whether neural reactivations of working memory codes, a                         

mechanism of serial dependence identified in Chapter 3.1, would be disrupted in patients’                         

EEG. This question was based on the hypothesis of disrupted STP, as proposed in the                             

circuit model from Chapter 3.2. The findings in Chapter 3.3 confirm our hypothesis: While in                             

healthy controls, memory representations from previous trials were reactivated during the                     

ITI, and subsequently influenced behavior, no such reactivation occurred in patients with                       

anti-NMDAR encephalitis or schizophrenia.  
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Chapter 5  

Discussion   
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5.1 How do these findings impact our understanding of working memory? 
In Chapter 1.1 and 1.3, I have introduced the concepts of persistent delay activity and                             

short-term plasticity (STP), and the ways the two mechanisms are thought to be involved in                             

working memory. Specifically, persistent delay activity has long been accepted as a                       

self-sufficient mechanism that can maintain information in an active state for several                       

seconds (Goldman-Rakic 1995), a hypothesis supported by experimental (Fuster and                   

Alexander 1971; Kubota and Niki 1971; Funahashi et al. 1989; Constantinidis et al. 2001;                           

Wimmer et al. 2014) as well as theoretical work (Compte et al. 2000; Amit and Brunel 1997;                                 

Lim and Goldman 2013). In contrast, there has been steadily accumulating in-vitro evidence                         

for different forms of STP in neocortical areas (Hempel et al. 2000; Wang et al. 2006;                               

Castro-Alamancos and Connors 1996). The implication of STP in cognition or working                       

memory, albeit an attractive idea (Miller et al. 2018), has been postulated in theoretical work                             

(Mongillo et al. 2008; Kilpatrick 2018), but has since remained without experimental proof.                         

In Chapter 3.1, we have now demonstrated that a mechanism which temporally and locally                           

enhances neural excitability in PFC, potentially a form of STP, co-exists with persistent                         

neural spiking during the execution of a working memory task. We have shown that this                             

enhancing mechanism is related to the retention of memory contents in persistent activity in                           

an interactive way, and our results show that it plays a functional role in cognition and                               

behavior. 

 

Crucially, Chapter 3.1 does not claim that STP is the main mechanism responsible for                           

delay-period working memory maintenance, like it has been argued by previous studies                       

(e.g. Wolff et al. 2017; Rose et al. 2016; Stokes 2015). In fact, our data does not support the                                     

absence of memory codes during short delays, as memories were decodable from a small                           

number of prefrontal neurons throughout the delay. Rather, we adopt a perspective on STP                           

that has its co-existence with persistent delay activity at its core, similar to previous                           

theoretical accounts (Carter and Wang 2007; Itskov et al. 2011; Hansel and Mato 2013;                           

Barbieri and Brunel 2008; Seeholzer et al. 2019; York and van Rossum 2009; Pereira and                             

Wang 2015; Mongillo et al. 2012; Kilpatrick 2018; Yoon et al. 2020). In accordance with the                               
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experimental data shown in Chapter 3.1, our computational model solves the problem of                         

working memory through persistent activity. Delay activity in our task only ceases once                         

working memory contents are recalled and a response is made. After delay-active neurons                         

return to their baseline firing rates, a plastic increase in neuronal excitability becomes                         

evident in the spiking patterns of those neurons (Chapter 3.1, Figure 3) , although STP                           18

probably already emerges during the delay: Persistent delay firing with rates of ~ 20-60 Hz                             

could represent a short form of tetanic stimulation, similar to the average length and rates                             

of stimulation protocols used in in-vitro studies of short-term potentiation (Erickson et al.                         

2010; Volianskis et al. 2013; Castro-Alamancos and Connors 1996; Malenka 2002). With                       

regard to the functional role of STP, our study does not take a prominent stance, given that                                 

our experiment is not suited to test whether or how working memory performance could                           

benefit from STP. Previous work has postulated that STP mechanisms could replace delay                         

firing (Mongillo et al. 2008; Stokes 2015; Barak and Tsodyks 2007; Fiebig and Lansner                           

2017), a perspective that we reject for our paradigm based on our finding of a sustained                               

memory code during delay in monkey PFC and human EEG (Chapter 3.1, Figures 1c, 2c), or                               

alternatively stabilize memory representations (Carter and Wang 2007; Itskov et al. 2011;                       

Seeholzer et al. 2019; York and van Rossum 2009; Pereira and Wang 2015; Kilpatrick                           

2018). It is possible that STP simply emerges as a by-product of delay firing, without                             

serving one specific purpose. In some contexts, this might be beneficial for working                         

memory (i.e., stabilizing delay codes), while in others, it could introduce working memory                         

errors (see Chapter 1.2), such as serial biases. 

 

By characterizing the interplay of STP and persistent activity, we have elucidated the                         

circuit basis of serial dependence in working memory in Chapter 3.1. Our modeling                         

provides a parsimonious framework for how the dynamics in a single, memory-maintaining                       

area can produce at the same time reliable working memory codes, and small, but                           

behaviorally relevant distortions of these codes. In our framework, we do not consider the                           

contribution of inputs from other brain regions to the generation of attractive serial biases:                           

This conceptual choice is based on the finding that serial biases are absent in trials with                               

very short delays, and increase over the course of the delay (see Bliss et al. (2017) and                                 

Chapter 3.2), pointing to an origin in memory-maintaining circuits. There might however be                         

complex interactions between several brain regions that could alternatively cause biases in                       

PFC. For example, Akrami et al. (2018) showed that in rat PPC, previous-trial information is                             

18 For this finding, the absence of persistent delay spiking for determining STP in data is important,                                 
as firing rates might confound cross-correlations measured to detect locally enhanced synapses, as                         
discussed in Chapter 3.1. 
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represented transiently during ITIs, while the same area did not code for memory items                           

during the working memory delay. Following this observation, it is possible that memories                         

are transferred from PFC to a different, trial-history tracking area after the response, to then                             

influence new memories in the next trial. This possibility is explicitly discussed in Chapters                           

3.2 and 3.3, as it would influence the interpretation of disrupted serial dependence in                           

patients: Disrupted long-range connectivity could cause a disruption in bi-directional                   

information transfer between memory circuits and trial-history tracking areas. 

 

While the findings of this thesis strongly suggest the existence of a synaptic mechanism                           

that enhances excitability, co-exists and interacts with activity-based memory maintenance,                   

and influences cognition, it is still highly speculative what this mechanism could look like. In                             

this sense, choosing one over the other implementation for the modeling aspects of this                           

thesis should not be understood as a decision with absolute finality. In Chapter 3.1, we                             

used a plasticity rule describing short-term facilitation, similar to refs. (Markram et al. 1998;                           

Mongillo et al. 2008). Short-term facilitation enhances the efficacy of postsynaptic                     

responses non-associatively, as a result of residual calcium in presynaptic terminals                     

subjected to repeated activation (Catterall et al. 2013). Presynaptic calcium levels remain                       

augmented for ~1 s after neural activity of the presynaptic cell ceases, determining the                           

relatively fast decay of this plasticity mechanism, compared to longer-lasting short-term                     

potentiation (Zucker and Regehr 2002). The implication of calcium-triggered short-term                   

facilitation in working memory and other computations performed by the PFC is plausible,                         

given that facilitation is widely found in this cortical region and overcomes short-term                         

depression (Hempel et al. 2000; Wang et al. 2006). Potentially, this form of short-term                           

facilitation could also be involved in schizophrenia and explain behavioral findings from                       

Chapter 3.2, given evidence from genetic studies that found calcium channel dysfunction in                         

schizophrenia (Nanou and Catterall 2018). 

 

In contrast, we explicitly modeled an NMDAR-dependent form of STP to explain                       

findings from Chapter 3.2 and 3.3. This choice was based on the assumption that (working)                             

memory alterations in both anti-NMDAR encephalitis and schizophrenia should be related                     

to NMDAR dysfunction, and consequently on the consideration of different synaptic sites                       

and mechanisms that could be affected by NMDAR hypofunction. As set forth in Chapter                           

1.3, these effects could include processes on different time scales: On the one hand, the                             

NMDAR plays a role in prolonging the postsynaptic response through long-lasting EPSCs,                       

which can contribute to single-cell and network bistability in PFC (Wang 1999; Lisman et al.                             
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1998). On the other hand, the NMDAR regulates different forms of associative potentiation                         

that are distinguished by the time constant of their decay (Volianskis et al. 2013; Erickson et                               

al. 2010). There is evidence for an NMDAR-dependent, fast-decaying component of LTP                       

(with time constant τ = 7 min at a stimulation rate of 0.067 Hz in vitro (Volianskis et al.                                     

2015), and a presumably much faster decay at higher stimulation rates and in vivo                           

environmental conditions, e.g. temperature), including in neocortex (Castro-Alamancos and                 

Connors 1996), which is called early-, transient-LTP or short-term potentiation (described in                       

more detail in Chapter 1.3). Although not nearly as well-established as short-term                       

facilitation, it is possible that an NMDAR-dependent plasticity mechanism is at play in the                           

generation of serial dependence. In turn, it is also possible that forms of STP that do not                                 

(directly) depend on NMDARs are affected in patients through some different mechanisms                       

than NMDAR dysfunction (for example through calcium channel dysfunction, as mentioned                     

above). Before further experiments will investigate these questions in pharmacological                   

studies, the conclusions about the specific STP mechanism that maintains                   

activity-independent working memory traces will remain a subject of mere theoretical                     

deliberation.  

 

Finally, this thesis explores the boundaries between memory functions on different                     

timescales, introduced in Chapter 1.1: Possibly, the cognitive processes called working                     

memory and long-term memory are not as neatly separated as classically assumed in the                           

laboratory context. There likely exists a multitude of memory processes between those two                         

extremes, one of which is reflected by the serial dependence that relies on a trial-to-trial                             

information carry-over, implemented in plasticity-based neural codes. In this sense, Chapter                     

3.1 shows how memory traces with distinct biological substrates can co-exist and influence                         

each other, and Chapters 3.2 and 3.3 show how pathological brain conditions can                         

selectively disrupt some, but not other computations, even as they take place in the same                             

neural circuit. In the context of disease, this finding could impact the way we understand                             

clinical reports of working memory deficits in schizophrenia or anti-NMDAR encephalitis, as                       

discussed later in this chapter. For basic research in neuroscience, thinking about the                         

boundaries between working memory, “middle-term memory”, and long-term memory will                   

advance our understanding of the field. To determine the interactions between memory                       

processes that take place concurrently, but at different timescales is a challenge for future                           

work in neuroscience, and a mechanism-centered view will be key for making progress in                           

these questions. 
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5.2 Does NMDAR dysfunction not affect working memory maintenance,               

after all? 
To establish the clinical relevance and the broader context of the findings reported in                           

Chapter 3.2 and 3.3, it is important to consider their integration with previous literature.                           

While we did not identify precision-related working memory deficits in the patients included                         

in our study, we measured a new behavioral alteration in visual working memory that has                             19

not been reported before in any clinical group. Therefore, there are two questions to ask:                             

First, why did we fail to find memory effects in patients with anti-NMDAR encephalitis and                             

schizophrenia that were previously reported in patients with schizophrenia, and                   

pharmacological studies with NMDAR antagonists? Second, how do our new findings fit in                         

with previously reported cognitive alterations in anti-NMDAR encephalitis, schizophrenia,                 

and NMDAR dysfunction more generally, and what do they tell us about the clinical picture                             

of those conditions? In Chapter 5.2, I will discuss the first of these two questions, to then                                 

interpret our novel findings in a clinical context in Chapter 5.3.  

 

In our behavioral study in patients, we expected to observe a delay-dependent                       

reduction in spatial working memory precision. This hypothesis was primarily based on                       

previous studies that have reported such deficits in patients with schizophrenia (Badcock et                         

al. 2008; Driesen et al. 2008; Starc et al. 2017; Gold et al. 2020; Park and Holzman 1992)                                   

and anti-NMDAR encephalitis (Finke et al. 2012), and supported further by early modeling                         

work that postulates a central role of the NMDAR for persistent delay firing (Wang 1999;                             

Lisman et al. 1998; Compte et al. 2000), over pharmacological manipulations that produced                         

behavioral and physiological results in line with this modeling (Driesen et al. 2013; Wang et                             

al. 2013). In addition, all of our modeling scenarios predict decreased memory precision for                           

the parameters chosen to represent patient groups (Chapter 3.2, Figure 3a-c), although                       

19 Note however that for autism spectrum disorder (ASD), (Lieder et al. 2019) found a very similar                                 
effect in an auditory delayed comparison task: Auditory memories in subjects with ASD were less                             
biased towards previously remembered frequencies, compared to healthy controls. Moreover, this                     
effect showed a similar “distance-dependent” profile of attraction as serial dependence in visual                         
working memory tasks. 
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direct manipulations of NMDAR-mediated conductance affected precision to a stronger                   

extent than manipulations of short-term potentiation. Moreover, clinical reports of deficits in                       

neuropsychological working memory tasks in both patient groups strengthened this                   

hypothesis (Finke et al. 2012; Barch and Ceaser 2012), although neuropsychological tasks                       

used to assess working memory often differ from the task used in this thesis in terms of                                 

their complexity, typically by requiring the manipulation of memory items (e.g., reverse or                         

ordered recall of encoded items), but also in terms of the delay length. 

 

So why did both groups of patients perform the memory task without measurable                         

increased difficulty or imprecision compared to healthy controls, as reported in Chapter                       

3.2? Our first intuition was to correct reports for serial biases - given that this source of                                 

imprecision (see Chapter 1.2) was absent in patients, and especially in long memory delays,                           

the imprecision of their reports could have been underestimated, when compared to                       

controls. However, correcting for biases did not affect our result. Also, the extremely                         

simplistic task design did not host any other factors that might be masking memory deficits                             

in patients: Any difference in task strategy or general task processing would have affected                           

overall accuracy, but not in a delay-dependent fashion (e.g., patients might have been more                           

motivated than healthy controls). In turn, it is possible that our extremely simple task was                             

indeed too simple to measure memory impairment. Indeed, when looking closer at the                         

literature on spatial working memory deficits in schizophrenia, but also pharmacological                     

studies with ketamine in humans, the picture is less clear than initially expected (Lee and                             

Park 2005; Gold et al. 2010; Morgan and Curran 2006). As discussed in Chapter 1.3,                             

delay-dependent working memory impairment is not unequivocally found in these                   

conditions, and studies that did identify such a deficit (Starc et al. 2017; Gold et al. 2020)                                 

used delays of up to 20 s, which is substantially longer than the delays commonly used to                                 

study working memory in laboratory tasks. Other tasks in which working memory deficits                         

are measured include increased task complexity, e.g. in multi-item tasks, distractor tasks,                       

or tasks used in neuropsychological assessments (Lee and Park 2005).  

 

That maintenance deficits are absent from patients’ responses due to ceiling effects in                         

task performance is congruent with the reduced EEG memory traces reported in Chapter                         

3.3, where patients again completed the task with similar performance, but weaker and less                           

stable memory codes. In our task, weak traces did not measurably result in imprecision or                             

forgetting, but again, they might do so in future studies with longer delays or disruptions                             

through distractors or simultaneously held items. Moreover, future work should clarify the                       
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nature and behavioral relevance of less stable, or more dynamic, memory codes in patients                           

with anti-NMDAR encephalitis or schizophrenia. From the analyses presented in Chapter                     

3.3, it is not clear what the meaning of a dynamic code in EEG is: In the single-neuron                                   

literature, the concept of “dynamic codes” is interpreted at the population level, as a                           

sequence of distinct, memory-encoding neural firing patterns within the same cortical area                       

(Murray et al. 2017; Parthasarathy et al. 2019; Meyers et al. 2008), and even as a rapid                                 

change in prefrontal tuning properties (Stokes et al. 2013; Spaak et al. 2017). The benefits                             

of such dynamic coding schemes are a matter of ongoing discussion, and might include the                             

possibility to keep track of the timing of task events (Meyers et al. 2008), e.g. in tasks with                                   

fixed delay durations or increased temporal complexity (Orhan and Ma 2019).  

 

In contrast, dynamic coding schemes in EEG should be interpreted as shifts between                         

different brain areas that dominate the working memory code (King and Dehaene 2014). In                           

this sense, separating the spatial sources of stable and dynamic working memory                       

representations will be an important step in understanding the qualitatively different delay                       

codes observed in patients and healthy controls. Different approaches could be useful to                         

achieve this: On the one hand, one could separate signals from frontal and parieto-occipital                           

electrodes, and explore the different coding schemes separately in each subset of                       

electrodes, as proposed by Oh et al. (2019). Here, the authors found neurotypical subjects’                           

working memory codes at frontal electrodes to be more stable in time, and parieto-occipital                           

codes to be rather dynamic and driven by task demands. However, as discussed in                           

Chapter 1.1, this approach is limited by the overlapping contributions of signals from                         

different brain areas that are integrated at an electrode; i.e., signals at frontal electrodes                           

cannot be unambiguously interpreted as coming from frontal cortex. Alternatively, the                     

sources of memory codes at different periods of the trial could be reconstructed via inverse                             

models (Michel and Brunet 2019). The latter option would lead to a spatially more precise                             

and unequivocal solution, and would offer the possibility to interpret dynamic and weaker                         

memory codes in patients. For example, memory codes might be distributed across                       

different cortices, with stable frontal, and less stable parieto-occipital codes that represent                       

a series of processing stages (Mejias and Wang 2019). In patients, stable frontal codes                           

could be disrupted, while dynamic posterior codes might still be able to hold memory in a                               

sufficiently reliable code to perform our simple working memory task. 

 

Finally, it is a challenging endeavour to reconcile the finding of intact, or not measurably                             

affected, working memory performance in patients with the presumed theoretical                   
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importance of the NMDAR for memory-maintaining circuits. In our current understanding of                       

the biophysics of working memory, decreases in NMDAR function both at pyramidal cells or                           

alternatively at inhibitory interneurons should quickly destabilize network bistability and                   

therefore memory maintenance, as demonstrated in Chapter 3.2. One way to explain intact                         

memory performance is to assume that NMDAR dysfunction symmetrically affects both                     

inhibitory and excitatory connections, thereby keeping the overall E/I ratio balanced.                     

However, this solution would shift the network to a more AMPA-dependent regime and                         

affect the conditions under which persistent delay activity is achieved (Wang 1999). Another                         

way to compensate for the dysfunction of the NMDAR would be an increased reliance on                             

other excitatory channels with longer time constants, such as the kainate receptor (Castillo                         

et al. 1997), or an increased reliance on STP mechanisms (a possibility that is incompatible                             

with the results in Chapter 3.2). Alternatively, it is possible that patients tested in our studies                               

have passed the most acute stages of their disease, and greatly recovered their preclinical                           

cortical NMDAR density. In this scenario, NMDAR-dependent memory maintenance in                   

persistent activity would be greatly affected in early and/or more acute stages of the                           

disease as predicted by perturbations of NMDAR-mediated synaptic conductance                 

parameters (Chapter 3.2), but recovered or compensated for in residual stages of the                         

disease. STP deficits in this case could then result as long-lasting residual, possibly                         

compensatory effects for the disturbed synaptic transmission in more acute stages. Note                       

that in fact, the postulated deficits in NMDAR-dependent short-term potentiation affect                     

network bistability and memory maintenance in our model in a more subtle way than E-I                             

imbalance, congruent with our findings. Still, until (electro-)physiological experiments can                   

clarify the existence and synaptic origin of postulated STP deficits during stabilized phases                         

of anti-NMDAR encephalitis and schizophrenia, it remains a matter of speculation how                       

NMDAR dysfunction would selectively affect STP, but not basic synaptic transmission. 
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5.3 Which aspects of altered cognition does a disruption in serial                   

dependence in anti-NMDAR encephalitis and schizophrenia reflect? 

In this final section, I will discuss how our findings of reduced serial dependence and the                               

hypothesized disruption in short-term potentiation could translate into a clinical context.                     

This discussion will include the potential role of serial dependence for cognition in                         

neurotypical subjects, and how the absence of these biases could reflect abnormal                       

cognitive processing in brain disease. I will then discuss the potential of using serial biases                             

as a biomarker for conditions of NMDAR dysfunction, and specifically for the two disorders                           

studied in this thesis. Finally, I will propose future directions for work that could clarify                             

questions which this thesis opens. 

 

The absence of serial dependence from patients’ working memory representations is an                       

exciting finding: It shows that in the tested individuals, a basic mechanism of (voluntary or                             

involuntary) information maintenance in working memory circuits is disturbed. At the same                       

time, however, it is difficult to interpret how this alteration translates to clinical symptoms                           

that characterize the two studied diseases. This difficulty is due to our incomplete                         

understanding of the functional role of serial dependence: In neurotypical subjects, serial                       

biases occur in tasks with entirely uncorrelated stimulus sequences (Kiyonaga et al. 2017),                         

where they are detrimental to task performance: As explained in more detail in Chapter 1.2,                             

biases increase the variability of responses and therefore decrease working memory                     

precision. In this sense, biases are non-optimal, and should be avoided if possible, so that                             

the absence of biases in patients’ responses is not primarily a deficit, but a more optimized                               

way of solving the task. Still, neurotypical subjects do not seem to strive for optimality when                               

it comes to serial biases: In fact, the strength of serial dependence increases over the                             

course of experimental sessions, instead of decreasing (Barbosa and Compte 2020). 

 

To resolve these apparent contradictions, it is useful to think of serial dependence                         

outside of the context of the laboratory tasks it is studied in: It has been proposed that                                 
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biases could be useful in real-life situations, where temporally adjacent scenes are normally                         

correlated (Cicchini et al. 2018). In support of this argument, serial dependence is observed                           

across a wide range of stimuli with different levels of complexity and abstraction, such as                             

orientation (Fischer and Whitney 2014), color (Barbosa and Compte 2020), auditory                     

frequencies (Lieder et al. 2019), numerosity (Cicchini et al. 2014), and faces (Liberman et al.                             

2014), to only name some. Thus, serial biases could reflect a general processing mode that                             

is beneficial in most contexts, but not in others (Kiyonaga et al. 2017), such as the task                                 

used in this thesis. In this interpretation, trial-to-trial serial dependencies could lie at the end                             

of a spectrum of potentially adaptive processing modes that integrate information across                       

different time spans, together with biases that depend on alternating block-wise contexts                       

(Hermoso-Mendizabal et al. 2020), contraction biases to the expected value of an                       

experiment’s stimulus distribution (Akrami et al. 2018), slowly fluctuating heuristic (Mochol                     

et al. 2020) or persistent idiosyncratic choice biases (Lebovich et al. 2019). 

 

If one assumes that biases result from a general processing mode that is adaptive in                             

contexts other than the experiment itself, reduced serial dependence could reflect patients’                       

reduced capacity of integrating old and incoming information in working memory. This                       

interpretation is attractive, as it connects our findings to long-standing theories of                       

schizophrenia which place dysfunctional context processing at the root of cognitive and                       

perceptual symptoms in this disease (Hemsley 2005), as discussed in more detail in                         

Chapter 3.2. Our modeling contributes to this reading, by showing that reduced short-term                         

potentiation can perturb information maintenance on timescales necessary for context                   

processing. From the work presented in this thesis, it would be expected that such a                             

dysfunction would impair the performance of patients with schizophrenia and anti-NMDAR                     

encephalitis in tasks that require the integration of information across trials. To test the                           

temporal bounds of the neural mechanism affected in these disorders, stimulus correlations                       

on distinct timescales could be introduced in variations of the task. Such experiments                         

would also rule out an alternative explanation of our findings: Serial biases in neurotypical                           

subjects could be produced volitionally, based on the (misguided) assumption that                     

correlations exist between the stimuli used in our task. If this were the case, decreased task                               

engagement in patients could lead to decreased biases. However, it is not clear why in this                               

scenario of volitional biases, attraction to previous stimuli would only arise in trials with long                             

memory delays.  
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How useful could serial dependence be for diagnostic purposes, as a so-called                       

“biomarker” for the diagnosis or evolution of anti-NMDAR encephalitis, schizophrenia or                     

other conditions related to NMDAR dysfunction? Again, extensive future work would be                       

needed to answer this question. First of all, it is not well-studied how stable serial                             

dependence is in individual neurotypical subjects or patients. In Chapter 3.2, we showed                         

that on average within a group, the amplitude of bias curves stays unaltered for healthy                             

controls, and increases for recovering anti-NMDAR encephalitis patients. This result is                     

promising for the clinical relevance of the measure, but would need to be confirmed and                             

studied in more detail to establish its validity in individual subjects, before being deemed                           

useful for diagnostic purposes. Similarly, it is widely known that patients with schizophrenia                         

undergo a series of neurobiological processes between preclinical stages of the disease, its                         

first onset, and states that follow homeostasis and neurobiological compensation (Sohal                     

and Rubenstein 2019), and a great biological and symptomatic heterogeneity between                     

different subtypes of schizophrenia, psychotic and residual episodes, and treated and                     

untreated stages (Liang and Greenwood 2015). Yet, in our experiment we tested a subset of                             

patients that does not cover this wide spectrum of conditions systematically. Interindividual                       

heterogeneity even affects biases measured within the three groups assessed in Chapter                       

3.2 and 3.3, with sometimes repulsive biases in healthy controls, and both strong repulsive                           

and strong attractive biases in encephalitis patients that average out at the group level.  

 

The last and probably most important limitation to using serial dependence as a                         

diagnostic tool lies in the unknown specificity of our findings: We identified a reduction in                             

biases in two clinical groups, but we did not include a “clinical control” for a double                               

dissociation between NMDAR-associated conditions, and conditions not related to NMDAR                   

hypofunction. The only other clinical groups for which serial dependence has been studied                         

are autism and dyslexia, two disorders related to difficulties in context processing (Lieder et                           

al. 2019). The authors found a reduction in serial dependence in autism, but not in patients                               

with dyslexia , pointing to the specificity of the disrupted mechanism, rather than to a                           20

generalized deficit. Still, more studies in clinical populations are needed and the usefulness                         

of serial dependence for the diagnosis of anti-NMDAR encephalitis or schizophrenia is not                         

clear at this point. In turn, if serial dependence was validated as a stable and reliable                               

measure in individual subjects that correlated with longitudinal health markers, it could                       

potentially serve to monitor clinical progress in patients with anti-NMDAR encephalitis. 

20 At the same time, patients with dyslexia had reduced contraction biases, which were not present in                                 
patients with autism. 
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Relatedly, we have based our study on the assumption that working memory alterations                         

in anti-NMDAR encephalitis and schizophrenia should be caused by a common,                     

NMDAR-dependent neurobiological mechanism. Yet, biological mechanisms underlying             

anti-NMDAR encephalitis and schizophrenia greatly differ (Masdeu et al. 2016; Kayser and                       

Dalmau 2014; Oviedo-Salcedo et al. 2018). Therefore, it is important to understand that our                           

hypothesis and the modeling presented in Chapter 3.2 and 3.3 does not imply that we treat                               

anti-NMDAR encephalitis and schizophrenia as one and the same disease. Rather, based                       

on the convergence in symptoms (notably psychosis and neuropsychological symptoms                   

affecting executive functions and memory; Finke et al. 2012) and the frequent initial                         

misdiagnosis (Steiner et al. 2013; Maneta and Garcia 2014), we expect there to be a                             

common substrate on a level that affects cognitive and/or perceptual processing. This                       

common substrate is likely to involve the NMDA receptor, based on the long-standing                         

hypothesis of NMDAR hypofunction in schizophrenia (Olney et al. 1999). Thus, the                       

comparison of these two diseases is not an arbitrary choice for this thesis, but a sustained                               

theme in the ever-expanding literature on anti-NMDAR encephalitis and schizophrenia                   

(Kayser and Dalmau 2014; Masdeu et al. 2016; Weickert and Weickert 2016; Lennox et al.                             

2012; Maneta and Garcia 2014). It is still conceivable that distinct biological mechanisms                         

lead to the same phenomenon of reduced serial dependence in the two groups, but without                             

further evidence, a common alteration in NMDAR function and short-term potentiation is the                         

most parsimonious interpretation of our findings. 

 

To conclude, it is possible that serial dependence reflects memory processes on                       

timescales that are not typically probed in laboratory tasks of working memory or long term                             

memory, such as the delayed-response task. In patients with anti-NMDAR encephalitis and                       

schizophrenia, this timescale might be relevant for everyday-life problems, and might even                       

be a better reflection of the cognitive problems that determine the specific clinical                         

experience of these patients. Seeing serial dependence as a phenomenon emerging from                       

memory on intermediate timescales, our findings might even reconcile the inconsistent                     

literature on working memory deficits in clinical and neuropsychological assessments of                     

anti-NMDAR encephalitis and schizophrenia, but not in simple working memory tasks with                       

several seconds of undistracted delays. To come back to our initial definition in Chapter                           

1.1, memory describes the ways by which the brain achieves continuity of information                         

through time. In addition to the maintenance aspect of this definition, this thesis lays out a                               

way by which a continuous stream of information can be integrated in memory, namely                           
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through the merging of single working memory contents, and the neural substrates of short                           

and intermediate timescales on which working memory contents are represented. 
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Chapter 6  

Conclusions 

1. Working memory involves more than one mechanism that can maintain item-specific                     

information. In addition to persistent activity of prefrontal cortex neurons, I have                       

demonstrated that information is represented in traces of enhanced excitability                   

between delay-active neurons. Enhanced excitability traces decay more slowly than                   

persistent delay activity and can span several trials. 

 

2. Traces of enhanced excitability, which could result from short-term plasticity                   

mechanisms, and persistent delay firing are interdependent substrates of working                   

memory: During working memory delays, persistent delay firing triggers (plasticity)                   

processes that temporally enhance the connection between delay-active neurons. In                   

turn, memory-specific enhanced connections allow the network to reactivate                 

previous memory codes in persistent neuronal firing. 

 

3. Reactivations of previous memory codes can be observed in monkey prefrontal                     

cortex neurons and human EEG codes, and play a causal role in biasing upcoming                           

memories. 

 

4. Anti-NMDAR encephalitis and schizophrenia, two diseases linked to the dysfunction                   

of the NMDAR, are characterized by a strong reduction in serial biases compared to                           

healthy controls, while working memory precision remains intact. This reduction in                     

serial dependence evidences the disruption of a working memory mechanism on an                       

intermediate time scale. 
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5. A spiking neural network model that combines persistent delay firing and                     

NMDAR-dependent short-term potentiation reproduces the delay-dependent profile             

of serial dependence in healthy controls. A decrease in short-term potentiation can                       

qualitatively and quantitatively capture the behavioral effects observed in                 

anti-NMDAR encephalitis and schizophrenia. In contrast, disrupting synaptic               

conductances through NMDARs and therefore disturbing the balance between                 

cortical excitation and inhibition cannot explain the findings. 

 

6. Reducing NMDAR-dependent synaptic potentiation in a circuit model disrupts the                   

ability of the network to reactivate previous memories in persistent activity. This                       

prediction is confirmed when analyzing the strength of memory code reactivations in                       

human EEG in patients with anti-NMDAR encephalitis and schizophrenia. This                   

finding provides further evidence for the dysfunction of a plasticity-based memory                     

mechanism at an intermediate timescale in anti-NMDAR encephalitis and                 

schizophrenia. 
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A1 Supplementary material for Chapter 3.1 

This section contains Supplementary material which has been published alongside the                     21

main article presented in Chapter 3.1. 

 

   

21 This section has been published as:  
Barbosa, J.*, Stein, H.*, Martinez, R.L., Galan-Gadea, A., Li, S., Dalmau, J., Adam, K.C.S., Valls-Solé,                             
J., Constantinidis, C., & Compte., A. (2020). Interplay between persistent activity and activity-silent                         
dynamics in the prefrontal cortex underlies serial biases in working memory. Nat Neurosci 23,                           
1016–1024. https://doi.org/10.1038/s41593-020-0644-4. (*equal contribution) 
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Supplementary Figure 1. MNI coordinates used for TMS stimulation in the right prefrontal             

cortex. We targeted the center of a functionally defined region of interest (ROI) in right PFC.                

The ROI was determined as a cluster of activation around MNI coordinates x = 40, y = 34, z                   

= 16 (voxel with maximal activation in right PFC) that was consistently found to be activated                

in imaging studies investigating “spatial working memory” (custom keyword search in           

Neurosynth https://neurosynth.org/ as explained in Methods, activation map available as          

Supplementary Data). Here, the ROI is rendered on a 1 mm MNI152 standard in FSL.               

Before each TMS session, the mask was transformed (12 degrees of freedom) and rendered              

on each subject’s T1. The depicted ROI was then identified in the subject’s space for TMS                

stimulation. 

  

https://neurosynth.org/


 
 

 

Supplementary Figure 2. qqplot (a) and distribution (b) of residuals for the linear mixed              

model applied in the TMS data analysis (Fig. 6).  
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Extended Data Fig. 1 | Consistent decoding accuracy in delay and reactivation links these two representations at the neural ensemble level. a, The 
size of n=94 independent ensembles of simultaneously recorded neurons varies between 1-6. b, Fraction of neural ensembles with significant previous 
stimulus decoding accuracy (z > 1.96, see Methods) computed for all ensembles (dashed line) and only for those ensembles with strongest previous 
stimulus code averaged across the whole delay (see Methods). The incidence of stimulus decoding was significant in delay and reactivation, but not 
at ITI (two-sided binomial test at p=0.05, with n=94 and n=27 ensembles, for ‘all ensembles’ and ‘highest delay code’, respectively). Error bars are 
bootstrapped ±s.e.m. c, across-ensemble Pearson correlation between delay decoding accuracy (averaged in the entire delay) and decoding accuracy at 
different time points (two-sided p-values: 6.5e-30, 0.87, 0.035, n=94 ensembles). The ensembles with strongest delay code also had stronger decoding 
during reactivation, demonstrating the neural association between delay representations and reactivations despite absent code in the ITI. Error bars 
denote ±s.e.m. computed with a bootstrap procedure. d, Individual ensemble values from c, orange (Pearson correlation, two-sided p=0.035, n=94 
ensembles).
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Extended Data Fig. 2 | Noise correlation between pairs of neurons is negative at reactivation, as predicted by the attractor model. Bump-attractor 
dynamics are characterized by negative pairwise noise correlations for cues presented between the preferred locations (within pref) of the two neurons, 
but not for other cues (outside pref) 6. a, Periods used in noise correlation analyses: early (activity-silent), and late fixation (reactivation; n=94 ensembles, 
zoom-in of Fig. 1c). Error shading, bootstrapped 95% C.I. b, In the computational model (n=1,000 independent simulations), bump reactivations from 
subthreshold traces are characterized by negative noise correlations only during reactivation for within-pref trials, following the nonspecific input drive  
(Fig. 4). c, Noise correlations of PFC pairs with dissimilar preferred angles (60° < Δθ < 120°, n=34 pairs) were lower in late than in early fixation for 
within-pref trials (bootstrap test, p=0.0001, n=34, Cohen’s d=0.61). d, On average, lower noise correlations occurred only during reactivation and in 
within-pref trials (ANOVA trial condition x time point, F(4)=2.5, p=0.06, n=34). For within-pref trials, noise correlations differed between early and late 
fixation (bootstrap test, p=0.0001, Cohen’s d=0.61, n=34), being negative in late (bootstrap test, p=0.035, Cohen’s d=-0.32, n=34), but positive in early 
fixation (bootstrap test, p=0.018, Cohen’s d=0.37, n=34). Correlations were positive in outside-pref trials both during late and early fixation (bootstrap 
test, p=0.024 and p=0.06, respectively), with no significant difference (two-sided bootstrap test, p=0.93, n=34). In addition, negative noise correlations 
diminished when using the previous saccade location rather than the previous stimulus as reference (paired bootstrap test, p=0.005, Cohen’s d=-0.47, 
n=34), suggesting that the bump diffused only during the delay period, but not after the saccade 6. Unless stated otherwise, all bootstrap tests were 
one-tailed in the direction of the model predictions in b. All error bars indicate ±s.e.m.
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Extended Data Fig. 3 | Stimulus selectivity in both cross-correlation peaks and firing rates during the delay period prevents the isolation of 
activity-based and activity-silent processes. Same analysis as in Fig. 3, but performed during the current delay period (instead of ITI, Fig. 3) and selecting 
pref and anti-pref trials based on current stimulus (instead of previous, Fig. 3). Note that these are different trials (no need to be consecutive), so exc 
(n=33 pairs) and inh (n=21 pairs) might differ from Fig. 3. a, Left, cross-correlation peak selectivity emerged and was sustained in the delay period (left, 
CCSI as in Fig. 3, computed in centered 500-ms windows sliding in steps of 50 ms) and consisted in enhanced central peaks (troughs) for exc (inh) 
following a preferred stimulus. Color bars mark the periods where the average CCSI is different from 0 (bootstraped 95% C.I.) Right, cross-correlation 
averaged over 0.5-3.5 s. Zero-lag correlation for pref and anti-pref are different in exc (p=0.03, n=33, two-sided paired bootstrap test) and inh (p=0.01, 
n=21, two-sided bootstrap test) conditions. b, Firing rate selectivity (pref - anti-pref) also emerges robustly in the delay period for neurons in exc and inh 
pairs. The selectivity in cross-correlation peaks (CCSI) can therefore be confounded with firing rate selectivity71 when analyzing data in the delay period. 
This prevents the unambiguous identification of activity-silent mechanisms in this task period. Our approach of analyzing data in the inter-trial interval, 
when there is no firing rate selectivity (Fig. 3f), gets around this problem. gray shading marks the stimulus presentation. In all panels, error-bar shadings 
indicate ±s.e.m.

 71. de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007).
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Extended Data Fig. 4 | In a dataset with unpredictable stimulus-onset time, previous item representations were not reactivated in the pre-stimulus 
period. We conducted the same analysis as in human EEg (Fig. 2) in a previously published dataset (n=15 independent subjects for all panels; for 
experimental details, please refer to the original publication, ref. 33) with unpredictable fixation period durations (range 0.7 s-1.3 s). Decoding analyses 
were applied separately for data aligned to the onset of fixation (Fn, graded shading indicates range of possible stimulus onset times, upper panels) and 
aligned to the onset of the stimulus (Sn, graded shading indicates possible fixation onset times, lower panels). a, Tuning to previous-trial location (decoder 
trained in delay, 0.5s - 1.0s after stimulus onset) during previous-trial delay (left, stimulus aligned) vanishes in current-trial fixation (right, fixation 
onset aligned). No reactivation occurs. b, Average tuning reconstruction at different epochs for the delay decoder, indicated in a. c, Serial dependence 
separating trials with high (red curve, top quartile) from all other trials’ (black curve) decoding accuracy in early fixation (orange in a). Unlike in an 
experiment with predictable stimulus onset (Fig. 5), serial bias did not differ as a function of decoding strength. d, Difference in serial biases (Methods) 
between high-decoding and other trials were not significant at any time point in fixation. The black triangle marks the center of 0.2 s decoding window for 
the split in c. e-h, Parallel results were obtained when the analyses of panels a-d were run on data aligned to the time of stimulus onset instead of fixation 
onset. In d and h, time courses were smoothed using a squared filter of 5 samples. Periods with significant decoding in a,e are marked with black horizontal 
bars, indicating p<.001 in a two-sided bootstrap test. Shading indicates 95% C.I. in a,d,e,h, and ±s.e.m. in b,c,f,g.
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Extended Data Fig. 5 | Structured inhibition is necessary for repulsive serial biases at far distances. Top panel, illustration of two different models that 
have different inhibitory connectivity profiles. On the left, inhibitory connectivity strength from inhibitory to excitatory neurons is similar for all distances 
between their preferred locations. On the right, inhibition is structured such that similarly tuned neurons have stronger feedback inhibition. This shows 
that repulsive biases are caused by repulsive interactions between simultaneously active bumps in the network39,40, and are absent when there is no 
reignited bump that recruits localized inhibition at the flanks of the pre-cue bump of activity.
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Extended Data Fig. 6 | Serial bias split between high-decoding and other trials (Fig. 5) is robust to the choice of different percentiles. a, In monkey 
behavior b, In human behavior. X-axis indicates quantiles used for the split in high- and low-decoding trials (Fig. 5), from a total of n=1362 trials in a, 
and a range of 792-908 trials per subject in b. Error bars are ±s.e.m. (over n=1362 trials in a, and over n=15 subjects in b) and colored bars mark where 
corresponding difference in serial biases is different than zero (p<0.05, two-sided bootstrap test).
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Extended Data Fig. 7 | the effect on serial biases of targeting dlPFC with tMS diminishes in the course of the experimental session. Serial bias plots 
averaged across n=20 independent subjects for trials with TMS applied in vertex (a) and PFC (b), and difference between serial biases computed for sham 
and weak-tms trials in vertex (black) and in PFC (red) blocks (c). Same analyses as in Fig. 6, but (top) analyzing trials from the full session, (middle) first 
half session (225 trials, replication of Fig. 6) and (bottom) last half session (225 trials). The behavioral impact of PFC TMS stimulation declined through 
the session, as if subjects desensitized (prev-curr × TMS intensity × session-half t11083 = –2.38, p = 0.017. Methods, Linear Mixed Models). Serial biases were 
modulated by TMS in PFC, but not in Vertex (prev-curr × TMS intensity × coil location, t18272 = 2.21, p = 0.027. For dlPFC: prev-curr × TMS intensity, t11087 = 2.13,  
p = 0.032. For Vertex: t7166 = 0.03, p = 0.97. Methods, Linear mixed models) when analyzing the full session, and analyzing only the first half session  
(t9133 = 2.51, p = 0.011). x-axis coordinates mark the central value of windows (π/2 radians, sliding by π/30 radians) used to calculate behavioral biases.
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Extended Data Fig. 8 | Consistent fixation-period single-pulse tMS effects on serial biases: first experiment. Serial bias plots averaged across n=20 
independent subjects for trials with TMS applied in vertex (a) and PFC (b), and difference between serial biases computed for sham and weak-tms trials 
in vertex (black) and in PFC (red) blocks (c). Same as Extended Data Fig. 6, but only analyzing data from the original study (n=10 subjects). Similarly to 
when pooling both the original and replication studies together, the behavioral impact of PFC TMS stimulation declined throughout the session, however 
not significantly (prev-curr × TMS intensity × session-half t5701 = –1.73, p = 0.08. Methods, Linear Mixed Models). Serial biases were modulated by TMS in 
PFC, but not in Vertex (t5705 = 1.92, p = 0.05) when analyzing the full session, and analyzing only the first half session (t3059 = 2.59, p = 0.009, Methods). 
x-axis coordinates mark the central value of windows (π/2 radians, sliding by π/30 radians) used to calculate behavioral biases.
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Extended Data Fig. 9 | Consistent fixation-period single-pulse tMS effects on serial biases: replication experiment. Serial bias plots averaged across 
n=20 independent subjects for trials with TMS applied in vertex (a) and PFC (b), and difference between serial biases computed for sham and weak-tms 
trials in vertex (black) and in PFC (red) blocks (c). Same as Extended Data Fig. 6 and 7, but only analyzing data from the pre-registered (https://osf.io/rguzn/) 
replication study (n=10 subjects). Similarly to the original experiment, the behavioral impact of PFC TMS stimulation declined throughout the session, 
however not significantly (prev-curr × TMS intensity × session-half t5375 = –1.63, p = 0.1. Methods, Linear Mixed Models). Similarly to the original study, 
serial biases were more strongly modulated by TMS in PFC than in Vertex, however not significantly (t5379 = 1.12, p = 0.25) when analyzing the full session 
and the effect was stronger when analyzing only the first half-session (t2675 = 1.91, p = 0.06, Methods). x-axis coordinates mark the central value of 
windows (π/2 radians, sliding by π/30 radians) used to calculate behavioral biases.
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Extended Data Fig. 10 | A phenomenological model of our hypothesis on how long-term physiological effects of single tMS pulses affect serial bias 
curves in event-related experimental sessions. Our TMS results show a difference between the effects of sham stimulation at the vertex and sham 
stimulation over dlPFC (Fig. 6). We interpret this baseline difference as the possible effect of long-term physiological alterations by single pulses 58 (but 
see ref. 72) that carry over from “strong-tms” trials to “no-tms” trials. We explicitly implemented this interpretation in the following way: we generated 
trial-by-trial responses biased depending on the sequence of stimuli according to a given baseline serial bias curve (a, “Vertex” condition where TMS is 
ineffective). In the “PFC” condition the serial bias strength changed depending on TMS conditions: in “weak-tms” trials the pulse had the acute effect 
of increasing the bias strength momentarily by an additive factor (3 times the baseline bias strength), in “strong-tms” trials the effect of the pulse was 
chronic: the bias changed with a negative additive component (equal in magnitude to the baseline strength), which decayed slowly through subsequent 
trials (10% decay/trial). When collapsing together “responses” obtained on the basis of this model through a sequence of randomly selected “no-tms”, 
“weak-tms” and “strong-tms” trials, serial bias curves showed the pattern observed experimentally, where sham (“no-tms”) trials show repulsion in the 
“PFC” condition (panel b) and not in the “Vertex” condition (panel a). The difference of serial bias curves for “weak-tms” and “no-tms” then showed the 
modulation clearly in “PFC” and not in “Vertex” (panel c), as seen in the data (Fig. 6).

 72. Romero, M. C., Davare, M., Armendariz, M. & Janssen, P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat. Commun. 10, 2642 
(2019).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For the analysis of monkey data we were not able to predetermine sample sizes because this was data acquired previously (Constantinidis et 

al 2001). For human data, sample sizes were based on relevant prior literature. In the case of the EEG study, we matched the sample size 

(n=15) to the one used in a previous study that successfully decoded memory contents from EEG in an identical task (Foster et al. 2015). In 

the case of the TMS study, we predetermined the sample size (n=10) considering that TMS-induced memory reactivations had been shown in 

a previous study with 6 participants (Rose et al. 2016). We validated the results in a replication experiment with the same sample size (n=10).

Data exclusions * No monkeys were excluded from the analysis. In the EEG study, one participant aborted because of physical discomfort. Another participant 

repeated the session on a different day because they aborted their first session with too few trial blocks. For this participant we only analyzed 

session 2. In the TMS study, one participant dropped the study when acquiring her MRI because she suspected pregnancy. 

* For neural data analyses, we excluded neurons without significant tuned delay activity. This was because of the hypothesis of our study (we 

wanted to explore the interaction between persistent and activity-silent mechanisms) and was predetermined in this study, as in other 

previous studies with this dataset (Constantinidis et al 2001; Compte et al. 2003; Wimmer et al. 2014). 

* For behavioral analyses, we excluded trials where behavioral reports were too far from the target to remove guess trials that may have not 

engaged working memory. For monkeys, this was done directly at acquisition time and could not be predetermined for this study (criterion 

report more than 20 degrees away from target). For  humans, we excluded trials with responses further than 1 radian from targets in the 

angular direction and further than half the radius (2.25cm) in the radial direction.  

* For EEG analyses, we excluded outlier trials based on the voltage trace variance and alpha-power variance over each session. This is 

customary practice to remove EEG artifacts. Specific thresholds were set at the time of pre-processing of the data prior to final analyses.

Replication We designed a replication study for the TMS experiment, to test the bias-enhancing effects of weak TMS stimulation and the disappearance of 

the effects as the session progressed. The methods, hypotheses and even the analysis codes for this replication study were pre-registered 

(https://osf.io/rguzn) prior to acquiring the data. Methods were applied as literally pre-determined and the results were parallel to our 

previous findings, validating our results. In the manuscript we report the aggregated data (participants were independent for the 2 studies), as 

well as the individual data for each experiment (supplementary data).

Randomization Our study had a within-subject design, so randomization of participants across groups is not relevant for the study. Conditions of interest were 

typically randomized in our design: cue locations were pseudo-randomly chosen in monkey studies, and both cue locations and delay lengths 

were random in human EEG studies. For TMS experiments, cue locations and TMS intensity were random during experimental blocks, and 

TMS coil location was kept constant in each block and alternated from block to block, the order being counterbalanced in the 2 sessions of the 

same participant.

Blinding Blinding was not necessary in regard to participants because this was a within-subject design with randomized task contingencies. For the 

TMS study, the experimenter could not be blind to the location of the coil.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Methods
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ChIP-seq
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Monkey subjects were four adult male rhesus macaques. Two of the animals were tested 20 years ago, when age reporting was 
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Laboratory animals not customary. From their reported weights (Constantinidis et al. J. Neurosci. 21:3646, 2001) they were fully grown adults, so we 

can estimate the age at more than 6 years old. The ages of the other two animals reported in the study (with only behavioral 

data) were both 9 years old.

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve samples collected from the field.

Ethics oversight All experiments were conducted in accordance with the guidelines set forth by the US National Institutes of Health, as reviewed 

and approved by the Yale University Institutional Animal Care and Use Committee, and by the Wake Forest University 

Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics We studied healthy controls. The study does not address any specific covariate of interest across individuals, but within-subject 

comparisons between trial types.

Recruitment Participants were recruited from a volunteer database, mostly including people associated with the research institute and 

hospital, in all cases naïve to this study. 

Ethics oversight  Research Ethics Committee of Hospital Clínic (Barcelona)

Note that full information on the approval of the study protocol must also be provided in the manuscript.



 

 

 

A2 Supplementary material for Chapter 3.2 

This section contains Supplementary material which has been published alongside the                     22

main article presented in Chapter 3.2. 

   

22 This section has been published as:  
Stein, H.*, Barbosa, J.*, Rosa-Justicia, M., Prades, L., Morató, A., Galan-Gadea, A., Ariño, H.                           
Martinez-Hernandez, E., Castro-Fornieles, J., Dalmau, J. & Compte., A. (2020). Reduced serial                       
dependence suggests deficits in synaptic potentiation in anti-NMDAR encephalitis and                   
schizophrenia. Nat Commun, 11, 4250. https://doi.org/10.1038/s41467-020-18033-3. (*equal             
contribution) 
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Supplementary Figures 

 

Supplementary Figure 1 | Hyperparameter cross-validation and model selection 

a, Mean squared error for stratified hyperparameter optimization using cross-validation                   
(1,000 repetitions, training set size = .33 from each subject) for first- (black) and third-                             
(orange) derivative-of-Gaussian fits. Hyperparameters are different values of scale                 
parameter of the underlying Gaussian with location hyperparameter = 0. MSE: mean   σ                  μ          
squared error. b, Shape of first- and third-derivative-of-Gaussian fits with optimal                     
hyperparameter and = 0. The cross-validation procedure used for model selection was   σ      μ                      

carried out based on a model with a minimal set of variables (group, delay, and DoG( )),                              θ 
d  

excluding random effects (Methods, equation (9)). Note that signed previous-current                   
distances in radians were used in the linear model. 
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Supplementary Figure 2 | 0 seconds delay single subject bias and linear mixed model                           
fit 

Serial dependence is calculated for each subject as the ‘folded’ error 𝜃e’ (in degrees, y-axis)                             
for different previous-current distances (x-axis, spanning absolute values of 0º-180º)        θ 

d              
(dashed line; Methods). Shading, ± s.e.m. Solid lines show linear model fits (Methods,                         
equation (1)), omitting intercepts and negative values of 𝜃d for visualization. Black curves                         
(row 1-4), ctrl, green curves (row 5-7), enc, purple curves (8-10), schz. 
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Supplementary Figure 3 | 1 second delay single subject bias and linear mixed model fit 

Serial dependence is calculated for each subject as the ‘folded’ error 𝜃e’ (in degrees, y-axis)                             
for different previous-current distances 𝜃d (x-axis, spanning absolute values of 0º-180º)                     
(dashed line; Methods). Shading, ± s.e.m. Solid lines show linear model fits (Methods,                         
equation (1)), omitting intercepts and negative values of 𝜃d for visualization. Black curves                         
(row 1-4), ctrl, green curves (row 5-7), enc, purple curves (8-10), schz. 
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Supplementary Figure 4 | 3 seconds delay single subject bias and linear mixed model                           
fit 

Serial dependence is calculated for each subject as the ‘folded’ error 𝜃e’ (in degrees, y-axis)                             
for different previous-current distances 𝜃d (x-axis, spanning absolute values of 0º-180º)                     
(dashed line; Methods). Shading, ± s.e.m. Solid lines show linear model fits (Methods,                         
equation (1)), omitting intercepts and negative values of 𝜃d for visualization. Black curves                         
(row 1-4), ctrl, green curves (row 5-7), enc, purple curves (8-10), schz.   
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Supplementary Figure 5 | Serial dependence develops as a function of delay length 

Individual (random coefficients; dots) and delay-specific group estimates (fixed effects;                   
black horizontal lines indicate mean and bootstrapped 95% C.I. of the mean) of serial                           
dependence. p-values report pairwise comparisons of random coefficients using paired,                   
two-sided t-tests for n = 19 (ctrl), n = 16 (enc), and n = 17 (schz) patients. a, Initially                                     
repulsive biases became gradually more attractive with delay length for healthy controls                       
(Methods, equation (3); delay ✕ DoG(𝜃d), F(2,17) = 26.91, p = 6e-6; 0 vs 1 s: t = -6.33, p =                                         
6e-6, Cohen’s d = -1.45; 1 vs 3 s: t = -11.37, p = 1e-9, Cohen’s d = -2.6; 0 vs 3 s: t =                                                 
-15.87, p = 5e-12, Cohen’s d = -3.64) and b, for encephalitis patients (delay ✕ DoG(𝜃d),                               
F(2,23) = 5.06, p = 0.015; 0 vs 1 s: t = -2.71, p = 0.02, Cohen’s d = -0.68; 1 vs 3 s: t = -4.32,                                                     
p = 6e-4, Cohen’s d = -1.08; 0 vs 3 s: t = -7.82, p = 1e-6, Cohen’s d = -1.95). c,                                           
schizophrenia patients’ biases did not develop over the course of the delay (delay ✕                           
DoG(𝜃d), F(2,16) = 1.31, p = 0.30; 0 vs 1 s: t = 3.99, p = 0.001, Cohen’s d = 0.97; 1 vs 3 s: t                                                   
= -0.65, p = 0.52, Cohen’s d = -0.16; 0 vs 3 s: t = 1.53, p = 0.15, Cohen’s d = 0.37), but                                               
stayed repulsive throughout all delay lengths (DoG(𝜃d), F(1,16) = 9.07, p = 0.008). 
 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 6 | Reduced serial dependence is               
not explained by group differences in ITI 

Histograms of ITI lengths for a, control participants b,                 
anti-NMDAR encephalitis, and c, schizophrenia patients.           
Here, the ITI is defined as the complete period from probe                     
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onset in trial n-1 to stimulus onset in trial n (including previous-trial response). Each plot                             
shows normalized histograms, transparently overlayed for each participant. Points on top                     
show median ITI lengths for each participant (n = 19 healthy controls, n = 16 patients with                                 
encephalitis, and n = 17 patients with schizophrenia), together with group mean and                         
bootstrapped 95% C.I. (black middle line and error bars). There was a trend for longer                             
median ITIs in patient groups (Kruskal-Wallis test for median ITI length, H = 5.17, p = 0.08;                                 
ctrl, 2.71±0.32 s; enc, 2.91±0.49 s; and schz, 3.03±0.46 s; mean±s.d.). Including ITI ✕                           
DoG(𝜃d) in our linear model (Methods, equation (4); 𝚫AIC = -13.8) did not change group or                               
delay effects of serial dependence (delay ✕ DoG(𝜃d), F(2,58) = 14.03, p = 1e-5; group ✕                               
DoG(𝜃d), F(2,50) = 8.13, p = 9e-4; group ✕ delay ✕ DoG(𝜃d), F(4,58) = 8.45, p = 2e-5), but                                     
rather explained additional variance (ITI ✕ DoG(𝜃d), F(1,7503) = 15.76, p = 7e-5).  
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Supplementary Figure 7 | Serial dependence to stimulus n-2 and stimulus n+1 

a,b,c, An extended linear model with bias terms to both n-1 and n-2 stimuli (adding the                               
𝜃d’-dependent term group ✕ delay ✕ DoG(𝜃d’), Methods, equation (7); 𝚫AIC = -4.11)                         
showed significant delay-dependent bias towards the penultimate stimulus (delay ✕                   
DoG(𝜃d’), F(2,52269) = 5.43, p=0.004). Group differences could not be discarded (group ✕                         
DoG(𝜃d’), F(2,52276) = 2.86, p = 0.06), but there was no evidence for delay-dependent                           
group differences (group ✕ delay ✕ DoG(𝜃d’), F(4,52268) = 0.47, p = 0.76). Groupwise                           
models for each delay showed a, significant repulsive bias (DoG(𝜃d’), F(1,8601) = 15.41, p =                             
9e-5) but no group differences for delays of 0 s, (group ✕ DoG(𝜃d’), F(2,8601) = 0.10, p =                                   
0.91). b, In contrast, groups differed for 1 s delays in absence of overall bias (DoG(𝜃d’),                               
F(1,34938) = 0.06, p = 0.81; group ✕ DoG(𝜃d’), F(2,34938) = 3.38, p = 0.03), but c, not for 3                                       
s delays (DoG(𝜃d’), F(1,8669) = 2.57, p = 0.11; group ✕ DoG(𝜃d’), F(2,8669) = 1.55, p = 0.21).                                   
c, d, e, We investigated whether serial dependence to stimulus n-1 and group differences in                             
biases could be explained by general response correlations. To detect potential spurious                       
correlations across trials, we replaced previous-current distances (between trial n and trial                       
n-1) in equation (1) with future-current distances (between trial n and trial n+1), as proposed                             
in ref. 1. There was no significant overall bias towards future stimuli (DoG(𝜃d), F(1,53) = 0.63,                               
p = 0.43; delay ✕ DoG(𝜃d), F(2,88) = 2.15, p = 0.12; group ✕ DoG(𝜃d), F(2,53) = 1.57, p =                                       
0.22; group ✕ delay ✕ DoG(𝜃d), F(4,88) = 1.04, p = 0.39), indicating non-significant                           
contributions of general response correlations between trials to the reported group and                       
delay effects of serial dependence. In all panels, dashed lines show ‘folded’ errors , and                           θ 

e′    
solid lines show linear model fits. Shading, ± s.e.m. across pooled trials from n = 19 healthy                                 
controls (ctrl), n = 17 patients with schizophrenia (schz), and n = 16 patients with                             
anti-NMDAR encephalitis (enc). 
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Supplementary Figure 8 | Correlations of serial dependence in 3 seconds delay trials                         
with clinical scales 

For each group, we correlated individual bias coefficients for 3 s delay trials (random                           
effects) with clinical measures (Methods for description of administered tests). The strength                       
of serial dependence did not correlate significantly with clinical scales. Correlations were                       
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calculated using Pearson’s r for n = 19 (ctrl, black, row 3), n = 16 (enc, green, rows 1 and 4),                                         
and n = 17 (schz, purple, rows 2 and 5). Correlations with antipsychotic medication (CPZ                             
equivalent) reached marginal significance for both encephalitis and schizophrenia. To test                     
whether medication could account for group differences in delay-dependent bias, we                     
included a transversal estimate of antipsychotic medication, CPZ, as a covariate in our                         
linear model (Methods, equation (5); 𝚫AIC = -2.7). Antipsychotic medication explained a                       
significant amount of variance in delay-dependent bias (CPZ ✕ delay ✕ DoG(𝜃d), F(3,60) =                           
3.06, p = .03), but did not change the pattern of results (delay ✕ DoG(𝜃d), F(2,62) = 17.58, p                                     
= 9e-7; group ✕ DoG(𝜃d), F(2,48) = 3.92, p = 0.03; group ✕ delay ✕ DoG(𝜃d), F(4,62) =                                   
4.43, p = 0.003). Moreover, to be able to pool all subjects for each of the correlations, we                                   
modeled subject-wise bias strength in 3 s trials as a function of group and a second                               
regressor, corresponding to each of the above clinical measures. Models with                     
psychosis-related measures (CPZ and PANSS scales) were fitted on patient data only, and                         
on all subjects’ biases for all other models (including GAF, YMRS, HAM-D). In these                           
analyses, only CPZ significantly predicted the strength of serial dependence (CPZ, F(1,30) =                         
6.52, p = 0.02), together with group (schz vs enc, F(1.30) = 4.27, p = 0.05). Measures: GAF                                   
(Global Assessment of Functioning Scale 2 ), YMRS (Young Mania Rating Scale 3 ), HAM-D                             
(Hamilton Depression Rating Scale 4 ), PANSS (Positive and Negative Syndrome Scale 5 )                           
Positive, Negative and General Psychopathology Scale, CPZ equivalent (transversal                 
estimate of antipsychotic medication as chlorpromazine equivalent). 
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Supplementary Figure 9 | Pronounced group differences in serial dependence remain                     
after controlling for antipsychotic medication 

a-f, To control for potential effects of chlorpromazine equivalent (CPZ, mg day-1) on serial                           
dependence, we fitted our full model as described in equation (1) on the unmedicated                           
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subset of participants (ctrl, n = 19 and enc, n = 12 out of n = 16, excluding schz due to n =                                             
1). a,b,c, There were significant group differences in delay-dependent biases (group ✕                       
delay ✕ DoG(𝜃d), F(2,28) = 4.49, p = 0.02 with n = 12, as compared to F(2,32) = 5.70, p =                                         
0.008 with n = 16 enc, excluding the schizophrenia group), with no significant overall group                             
differences in biases in neither the subset, nor the full group of patients (group ✕ DoG(𝜃d),                               
F(1,29) = 1.29, p = 0.27 for n = 12, and F(1,33) = 3.91, p = 0.06 with n = 16). d,e,f,                                           
Delay-wise models showed that the group difference in biases occured in 3 s delay trials                             
(F(1,29) = 5.80, p = 0.02 for n = 12), whereas biases were comparable between groups for                                 
shorter delays (F(1,30) = 0.15, p = 0.70 for 0 s, and F(1,29) = 0.00, p = 0.99 for 1 s). g-l, To                                             
obtain a conservative estimate of group differences after removing all possible linear effects                         
of CPZ in all subjects (n=19 healthy controls, n=16 patients with encephalitis, and n=17                           
patients with schizophrenia), we first regressed trialwise errors on terms containing CPZ                       
(equation (6)), and then estimated group and delay effects (as described in equation (1)) still                             
present in the regression residuals from equation (6). CPZ had a significant effect on                           
delay-independent and delay-dependent biases (CPZ ✕ DoG(𝜃d), F(1,52387) = 196.17, p <                       
1e-16, and CPZ ✕ delay ✕ DoG(𝜃d), F(2,52387) = 4.91, p = 0.007. g,h,i, Delay-independent                             
and delay-dependent serial biases remained significantly altered in both patient groups                     
after partially regressing CPZ equivalent from errors (group ✕ DoG(𝜃d), F(2,49) = 3.54, p =                             
0.04, and group ✕ delay ✕ DoG(𝜃d), F(4,63) = 6.14, p = 0.0003). j,k,l, Delay-wise models                               
showed similar results to Figure 1, with equally repulsive serial dependence for all groups in                             
0 s trials (DoG(𝜃d), F(1,52) = 6.76, p = 0.01, and group ✕ DoG(𝜃d), F(2,51) = 0.03, p = 0.97)                                       
and group differences emerging in 3 s trials (group ✕ DoG(𝜃d), F(2,50) = 8.97, p = 0.0005;                                 
with significant differences between individual estimates for ctrl vs enc, t = 4.21, p = 2e-4,                               
Cohen’s d = 1.47; ctrl vs schz, t = 5.05, p = 1e-5, Cohen’s d = 1.74; enc vs schz, t =1.85, p                                             
= 0.07, Cohen’s d = 0.66), although not in 1 s trials (group ✕ DoG(𝜃d), F(2,48.1) = 1.38, p =                                       
0.26). a-c, g-i, Dashed lines with ± s.e.m. shading, data; solid lines, linear model fits                             
(Methods). ctrl: healthy controls, schz: schizophrenia, enc: anti-NMDAR encephalitis. d-f,                   
j-l, Individual (random coefficients; dots) and group estimates of serial bias strength (fixed                         
effects; black error bars indicate mean and bootstrapped 95% C.I. of the mean) by delay.  
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Supplementary Figure 10 | Serial dependence increases with encephalitis patients’                   
recovery 

We performed a comparison of baseline and follow-up sessions (Methods, equation (8)) for                         
n=14 encephalitis patients (enc, Supplementary Table 2) and n=8 controls (ctrl). Although                       
the four-way interaction did not reach significance (session ✕ group ✕ delay ✕ DoG(𝜃d),                           
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F(2,30124) = 0.79, p = 0.45), group-wise models showed a normalization of biases in                           
encephalitis patients’ (a-c, session ✕ delay ✕ DoG(𝜃d), F(2,30124) = 3.07, p = 0.046), and                             
not in healthy controls (d-f, F(2,16311) = 0.10, p = 0.90). A delay-wise comparison of                             
encephalitis patients’ baseline and follow-up values showed that this difference was driven                       
by biases in 3 s delays (session ✕ DoG(𝜃d), F(1,5030) = 4.43, p = 0.035), while biases in 0                                     
and 1 s delays did not change (F(1,5030) = 0.15, p = 0.69, and F(1,20064) = 0.05, p = 0.81,                                       
respectively). Note that due to the increased complexity of the model and the limited                           
sample size, we could not model random effects in this model. In panels a-f, shading                             
denotes mean ± s.e.m. across pooled trials from all subjects of the respective group. g-l,                             
To assess single-subject alterations in serial dependence and their correlation with clinical                       
improvement, we estimated subject-wise models in 3 s delay trials for encephalitis patients,                         
by modeling errors 𝜃e as a function of session, DoG(𝜃d), and their interaction, session ✕                             
DoG(𝜃d). We then correlated coefficients for session✕ DoG(𝜃d) (y-axis, Δ bias; positive                       
values denote higher bias in the follow-up session) with change scores in clinical scales                           
(x-axis; positive values denote higher scores in the follow-up session; Pearson’s r and                         
uncorrected p-values in panels indicate strength and significance of each correlation). We                       
found that a more accentuated longitudinal reduction in PANSS positive symptoms was                       
related to a stronger increase in memory-dependent biases (r = -0.54, C.I. = [-0.83, -0.02], p                               
= 0.04). 
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Supplementary Figure 11 | No group differences in working-memory biases with                     
respect to cardinal directions 

History-independent response biases, such as attractive or repulsive effects with respect to            
cardinal directions (0º, ±90º, 180º) could influence behavioral performance and the fidelity of             
serial dependence estimations. a,b,c, Subject-averaged mean trialwise response errors 𝜃e,          
binned by stimulus location (x-axis, 30 bins of 12º) for each delay. This analysis revealed the                
effect of “repulsion from the axes” (e.g. 6–8) in all groups and delays. Error shading denotes                  
mean ± s.e.m. over n=19 healthy controls (ctrl), n=17 patients with schizophrenia (schz),                         
and n=16 patients with anti-NMDAR encephalitis (enc). To quantify the strength of this                   
effect, we measured the standard deviation (s.d.) of the binned statistic for each subject and               
delay, and assessed potential group- and delay-differences with an ANOVA. We observed            
stronger repulsion from the axes with increasing delays (observable in a,b,c; F(2,147) =             
72.45, p < 1e-16), but no overall group differences (F(2,147) = 1.72, p = 0.18) or                
delay-dependent group differences (F(4,147) = 0.16, p = 0.96).  
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Supplementary Figure 12 | Network scheme and connectivity profile  

a, Scheme of spiking neural network, consisting of 1,024 excitatory and 256 inhibitory                         
neurons. Neurons from both pools were connected in an all-to-all fashion, with excitatory                         
connections governed by NMDA and AMPA dynamics, and inhibitory connections governed                     
by GABAA dynamics. STP affected recurrent excitatory connections. b, Weight profiles for                       
recurrent excitatory (green) and all other connections (black). For recurrent connections,                     
weights between neurons preferring similar locations were higher, while more distant                     
neurons were only weakly connected. All other connections had flat connectivity profiles,                       
with equal weights between similar and dissimilar neurons. 
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Supplementary Figure 13 | Hyperparameter cross-validation and model selection 

a, Mean squared error for stratified hyperparameter optimization using cross-validation                   
(1,000 repetitions, training set size = 0.33 from each subject) for data (black) and for the                               
network model model (orange; cross-validation with 1,000 repetitions, training set size =                       
0.33 of 21,000 simulated trials with baseline STP and conductance parameters,                     
corresponding to the control condition in Figure 3). Hyperparameters are different values of                         
scale parameter 𝜎 (in radians) of the underlying Gaussian with location hyperparameter 𝜇 =                           
0. b, Shape of first-derivative-of-Gaussian fits with optimal hyperparameter 𝜎 and 𝜇 = 0 for                             
data (black) and model (orange). Hyperparameter cross-validation for neural network                   
simulations was carried out for the default parameter values of P, gEI and gEE as reported in                                  
Methods. Note that in b, signed previous-current distances are indicated in radians as used                           
in the linear model.  
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Supplementary Figure 14 | Network behavior for reduced gEI and gEE 

a, For reduced gEI, network activity was disinhibited and baseline firing became unstable.                         
Spontaneous activity bumps emerged in the ITI (upper panel), often in neurons that had                           
been active during the previous delay. Lower panel shows firing rates and STP traces at                             
neurons selective to stimuli appearing at 0º for the baseline condition (0% reduction,                         
dashed lines) and the disinhibited condition (1% reduction, solid lines), averaged over 1,000                         
trials in which the second stimulus appeared at randomized locations. b, For reduced gEE,                           
delay firing became unstable and active working memory representations were lost over the                         
delay (upper panel). Lower panel analogous to a, for the baseline condition (0% reduction,                           
dashed lines) and the condition of reduced excitation (1% reduction, solid lines). Lower                         
panels were computed as in Figure 2 but including trials for which the same neurons were                               
coactive in the two successive trials. This explains the difference between dashed lines                         
here and in Figure 2b, trial n.  
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Supplementary Figure 15 | Modeling results are generalizable to networks with STP in                         
both E-E and E-I synapses 

Network simulations as in Figure 3, but for STP (and reductions in STP for a,d,g-i) in both                                 
recurrent excitatory and excitatory-to-inhibitory synapses. a,b,c, Serial dependence               
(orange, bias coefficients from linear model, Methods) and precision (black, circular s.d. of                         
errors) as a function of model parameters in 3 s delay trials (20,000 trials per parameter                               
value). Vertical dashed lines indicate transition to ‘unstable’ network regimes for which                       
more than 10% of trials were outliers (|𝜃e| > 57.3º, i.e. 1 radian). Shading, 95% C.I. for                                 
parameter estimates. a, Serial dependence decreased gradually when decreasing STP                   
(potentiation factor P), while the network remained stable for all simulated values of P.                           
Precision changed slightly as a function of STP. b, Cortical disinhibition via decreased gEI                           

augmented serial bias while strongly affecting precision and stability. Note that for the                         
observed parameter values, the network did not enter the disinhibited unstable state (left),                         
unlike in Figure 3. c, Lowering recurrent cortical excitation (gEE) led to the opposite pattern,                             
decreasing biases. d,e,f, delay dependence of biases for each group, as defined by                         
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parameter values in a,b,c, (respectively colored triangles). Points depict mean bias strength                       
(over 20,000 trials) for each parameter value. For comparison, error bars indicate 95% CI for                             
bias strength obtained from n = 19 healthy controls (ctrl), n = 17 patients with schizophrenia                               
(schz), and n = 16 patients with anti-NMDAR encephalitis (enc) (reordered from Figure 1g-i).                           
d, Lowering STP strength reproduced the experimental data. In e and f, reduction of                           
NMDAR conductances (gEI or gEE) did not reproduce group and delay dependencies of                         
experimental biases. g,h,i, Solid lines, simulated serial dependence by delay length for                       
different values of P, indicated by colored triangles in a (20,000 trials per potentiation level                             
P). Dashed lines with error bars, serial dependence in encephalitis, schizophrenia, and                       
healthy controls. Bias calculated as averaged ‘folded’ error 𝜃e’ for binned absolute                       
previous-current distances 𝜃d. Shading, ± s.e.m. Compare to Figure 3 in the main text for a                               
network with STP (and STP disruptions in patients) only in E-E connections. 
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Supplementary Tables 
 

  ctrl (n=19) 
mean (s.d.) 
vs enc/schz 

enc (n=16) 
mean (s.d.) 
vs ctrl/schz 

schz (n=17) 
mean (s.d.) 
vs ctrl/enc 

F-value / 
Chi-square 

p-value 
(two-tailed) 

age (years) 

gender (% male) 

medication (% taking 
antipsychotics) 

medication (CPZ 
equivalent, mg day-1) 

Global Assessment 
of Functioning Scale 

PANSS Positive 
Symptoms 

PANSS Negative 
Symptoms 

PANSS General 
Psychopathology 

PANSS Total Score 
 

Hamilton Depression 
Rating Scale 

Young Mania Rating 
Scale 

22.4 (6.8) 

21.1 

0.0 
n.s. / * 

0.0 (0.0) 
n.s. / * 

86.3 (6.3) 
* / * 

7.2 (0.4) 
n.s. / * 

7.0 (0.0) 
* / * 

16.5 (1.2) 
* / * 

30.7 (1.6) 
* / * 

0.8 (1.8) 
* / * 

0.4 (1.1) 
* / n.s. 

25.5 (6.6) 

12.5 

25.0 
n.s. / * 

26.6 (52.7) 
n.s. / * 

54.9 (13.4) 
* / n.s. 

8.1 (1.3) 
n.s. / * 

12.9 (5.2) 
* / * 

26.0 (7.3) 
* / n.s. 

47.1 (12.7) 
* / * 

5.4 (4.3) 
* / n.s. 

4.2 (4.6) 
* / n.s. 

20.2 (6.1) 

41.2 

93.3 
* / * 

370.6 (462.4) 
* / * 

51.5 (12.7) 
* / n.s. 

12.5 (5.1) 
* / * 

18.9 (7.4) 
* / * 

30.2 (9.1) 
* / n.s. 

61.6 (17.5) 
* / * 

7.3 (6.1) 
* / n.s. 

2.6 (2.8) 
n.s. / n.s. 

2.71 

3.86 

35.35 
 

10.44 
 

54.62 
 

15.32 
 

24.29 
 

20.40 
 

28.70 
 

10.70 
 

6.72 

0.08 

0.14 

2e-8 
 

2e-4 
 

3e-13 
 

7e-6 
 

5e-8 
 

4e-7 
 

6e-9 
 

1e-4 
 

0.003 

Supplementary Table 1 | Clinical and demographic statistics of the population 

Measures: GAF (Global Assessment of Functioning Scale 2 ), YMRS (Young Mania Rating                         
Scale 3 ), HAM-D (Hamilton Depression Rating Scale 4 ), PANSS (Positive and Negative                           
Syndrome Scale 5 ) Positive, Negative and General Psychopathology Scale, CPZ equivalent                       
(transversal estimate of antipsychotic medication as chlorpromazine equivalent). The                 
significance of pairwise post-hoc Tukey/Bonferroni-corrected Chi-square tests is reported                 
below group mean and s.d. (n.s. marks non-significant comparisons, and * significant                       
comparisons with FWE = 0.05). 

 
 
 
 
 

  baseline (n=14) 
mean (s.d.) 

follow-up (n=14) 
mean (s.d.) 

t-value / 
Chi-square 

p-value 
(two-tailed) 
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medication (% taking 
antipsychotics) 

medication (CPZ 
equivalent, mg day-1) 

Global Assessment 
of Functioning Scale 

PANSS Positive 
Symptoms 

PANSS Negative 
Symptoms 

PANSS General 
Psychopathology 

PANSS Total Score 

Hamilton Depression 
Rating Scale 

Young Mania Rating 
Scale 

21.4 
 

21.4 (48.7) 
 

53.4 (12.4) 
 

8.2 (1.4) 
 

12.6 (4.6) 
 

26.3 (7.1) 
 

47.1 (12.1) 

5.8 (4.4) 
 

4.5 (4.8) 

7.1 
 

3.0 (11.2) 
 

72.1 (13.7) 
 

8.2 (0.9) 
 

8.6 (2.4) 
 

20.6 (3.2) 
 

37.4 (5.5) 

3.4 (4.0) 
 

3.1 (2.3) 

0.29 
 

1.34 
 

-4.69*** 
 

0.00 
 

3.24** 
 

2.86* 
 

2.85* 

2.12 
 

1.11 
 

0.59 
 

0.20 
 

4e-4 
 

1.00 
 

0.006 
 

0.01 
 

0.01 

0.05 
 

0.29 
 

Supplementary Table 2 | Baseline/follow-up comparison of anti-NMDAR encephalitis                 
patients 

Measures: GAF (Global Assessment of Functioning Scale 2 ), YMRS (Young Mania Rating                         
Scale 3 ), HAM-D (Hamilton Depression Rating Scale 4 ), PANSS (Positive and Negative                           
Syndrome Scale 5 ) Positive, Negative and General Psychopathology Scale, CPZ equivalent                       
(transversal estimate of antipsychotic medication as chlorpromazine equivalent). 
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A3 Supplementary material for Chapter 3.3 

This section contains Supplementary material for the main manuscript presented in                     23

Chapter 3.2. 

   

23 This section is the Supplementary Material of a manuscript in preparation. 
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Supplementary Material 

 

 

 

Supplementary Fig. 1 | Working memory codes fade during 3 s delays in all groups 

Spatial locations in working memory decoded in 3 s memory delay trials in all groups. Compare to                                 
Fig. 3b, where the decoder was trained and tested on pooled 1 s and 3 s trials (n = 900.63 ± 103.02                                           
trials for ctrl, n = 870.44 ± 141.93 for enc, and n = 833.16 ± 153.33 trials for schz, mean ± s.d.),                                           
leading to an increase in decoding performance due to decreased noise. Here, only the subset of 3 s                                   
delay trials was used for training and testing (n = 175.82 ± 20.61 trials for ctrl, n = 170.85 ± 29.07 for                                           
enc, and n = 164.44 ± 30.70 trials for schz, mean ± s.d.). Hence, decoding performance was reduced                                   
and more noisy. In ctrl, memory contents could be decoded until ~ 1.5 s after stimulus onset, while                                   
in enc and schz, codes already disappeared after ~ 0.75 s (upper significance bars, 1-sample cluster                               
permutation test al alpha = 0.05). Significant differences between groups (ctrl vs. enc) were only                             
found for a period between ~ 0.6 s - 1 s (lower significance bars, 2-sample cluster permutation test                                   
at alpha = 0.05), where healthy controls’ code increased suddenly. Shading, 32% bootstrap C.I. of                             
the mean across participants for n = 22 healthy controls (ctrl), n = 19 patients with schizophrenia                         
(schz), and n = 27 patients with anti-NMDAR encephalitis (enc). Grey bars indicate stimulus and                         
probe presentation.  
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Supplementary Fig. 2 | Decoding performance as a function of the number of trials 

To understand whether reduced memory codes in patients were related to the lower average number                             
of trials in patients (number of trials: ctrl, n = 900.63 ± 103.02; enc, n = 870.44 ± 141.93; schz, n =                                           
833 ± 153.33), we measured the increase in decoding performance when including increasing                         
numbers of trials. For each subject (transparent lines), we trained and tested decoders in mid-delay                             
(0.65 - 0.85 s after stimulus onset) on the first n trials of a session (x-axis). a-c The upper row shows                                         
the increase in decoding performance in all participants, up to the minimum number of trials (n=440                               
trials) that any included subject had performed (ctrl, n = 22; enc, n = 27; schz, n = 19). d-e The lower                                           
row shows the increase in decoding performance in a subset of subjects (ctrl, n = 19; enc, n = 21;                                       
schz, n = 10) who had performed the full experiment (after excluding trials during preprocessing, the                               
cutoff was set to n = 880 trials). Left (black), healthy controls, middle (green), encephalitis, right                               
(purple), schizophrenia. In all groups, mean decoding performance across subjects increased when                       
including more trials, but saturated at ~ 400 trials. Importantly, group differences remained marked                           
when fixing the number of trials along the entire x-axis. Shading, 95% bootstrap C.I. 
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Supplementary Fig. 3 | Alpha power is not modulated less efficiently in patients than in healthy                               
controls 

We tested whether decreased decoding performance in patients could be an effect of a less efficient                               
modulation of alpha power during working memory delays. To this end, we decomposed EEG                           
signals at each electrode into different frequency bands using a multi-taper-method convolution                       
(with fieldtrip function “mtmconvol”) with Hanning tapers. For each time point, we then calculated the                             
log(power/f) and subtracted the average pre-stimulus signal (-0.5 - 0 s). a-c, All three groups show a                                 
significant modulation of spectral power across a wide range of frequencies (white contours,                         
significant decrease; black contours, significant increase w.r.t. baseline, 1-sample cluster                   
permutation test at alpha = 0.05) after stimulus onset (0s - 1.25 s) and in the ITI (~ 1.5 - 0.5 s before                                             
stimulus onset). d, When comparing relative log power decreases between groups, there are no                           
significant clusters of differences between ctrl and enc, or e, between ctrl and schz (2-sample cluster                               
permutation test at alpha = 0.05). f, When comparing the delay period (0.65 - 0.85 s) without                                 
correcting for multiple comparisons, there is a significant difference at 12 Hz between ctr and enc.                               
Group differences in relative log power during delay are in the opposite direction than group                             
differences in decoding performance: Encephalitis patients modulate power in the alpha band more                         
strongly than healthy controls (uncorrected permutation test at alpha = 0.05). During delay, there is                             
no difference in relative log power between ctrl and schz. g, In the fixation period (0.95 - 0.75 s                                     
before stimulus onset), low frequencies (2 - 4 Hz) are modulated more strongly in healthy controls                               
than in both patient groups (uncorrected permutation test at alpha = 0.05). Moreover, power at 14 Hz                                 
is modulated more strongly in encephalitis patients than in healthy controls. Grey bars indicate the                             
alpha band, which was used in the decoding procedure.   
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Supplementary Fig. 4 | Cross-temporal decoding in 3 s delay trials 

Cross-temporal decoding during stimulus presentation (S), delay, and response (R), trained and                       
tested only on 3 s trials. Compare to Fig. 3d-f, where decoders were trained on pooled 1 and 3 s                                       
trials. White lines mark the discontinuity of EEG signals after the probe onset at 3.25 s. Orange lines                                   
mark significant decoding clusters (1-sample permutation test at alpha = 0.05). Spatial locations                         
were decoded above chance from ~0 - 2 s after stimulus onset in healthy controls. In patients, using                                   
only 3 s trials impaired decoding performance more dramatically, so that locations could only be                             
decoded reliably around the time of stimulus presentation, and weakly around ~2 s for patients with                               
encephalitis. 
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A4 Ten simple rules for modern psychophysics 

In this section , I provide a practical guide to researchers who want to embark on their own                                 24

psychophysics journey. 

The section summarizes practical lessons learned during the work leading to this thesis. It                           

is an overview with simple best practices for anyone who wants to set up a behavioral lab                                 

experiment in humans. These rules are useful not only for classical psychophysics, but to                           

test hypotheses about how the brain performs perception, working memory, motor control,                       

decision making, or any other abstract brain function in a task with a trial structure.   

   

24 This section is a manuscript in preparation. It is a joint project that started in discussions with Joao                                     
Barbosa and Alexandre Hyafil, and received additional inputs from Christopher Summerfield and                       
Salvador Soto-Faraco.  
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Ten Simple Rules For Modern Psychophysics 

Introduction 
We are witnessing a major technological revolution in the field of neuroscience, with                         
increasingly large-scale neurophysiological recordings in behaving animals (Gao and                 
Ganguli 2015) and advanced techniques and computational methods for human                   
neuroimaging, combined with the monitoring of high-dimensional behavior (Krakauer et al.                     
2017; Musall et al. 2019) and causal interventions (Jazayeri and Afraz 2017) at its forefront.  
 
Despite being a relatively low-tech enterprise, modern psychophysics remains a                   
fundamental way of investigating the mysteries underlying the human mind (Read 2015),                       
especially when combined with computational modelling (Wilson and Collins 2019; Ma and                       
Peters 2020), and is an affordable and accessible approach to neuroscience. 
 
Here, rather than focussing on the underlying theory of psychophysics, we aim at providing                           
a practical guide on how to perform successful experiments. These are the unwritten rules                           
to a steady and successful walk through the workflow of a typical psychophysics                         
experiment (Figure 1). For readers in search of a formal introduction to psychophysics, we                           
refer to several seminal introductory handbooks (Lu and Dosher 2013; Kingdom and Prins                         
2016; Green and Swets 1989) or tutorial articles (Wichmann and Jäkel 2018; Wichmann and                           
Hill 2001b).  
 
We intentionally employ a wide definition of psychophysics, beyond the traditional, more                       
narrow understanding which strictly refers to the study of the perceptual system alone                         
(Gescheider 2013). Over the years, this definition has been gradually extended to include                         
more cognitive tasks relating to higher level processes (Waskom et al. 2019). Here, we                           
include in its definition any behavioral experiment where human subjects respond, through                       
stereotyped behavior, to the controlled presentation of stimuli of any modality. With this                         
broad definition in mind, we believe our rules can be useful for anyone starting a behavioral                               
experiment to study working memory (Wilken and Ma 2004; Ma et al. 2014), long term                             
memory (Batchelder and Riefer 1990), reinforcement learning (Sutton and Barto 2018),                     
motor control (Wolpert et al. 2011; Gallivan et al. 2018), continuous psychophysics (Bonnen                         
et al. 2015), and so on. 
 
We assume here that the reader already has a hypothesis to test. Developing this                           
hypothesis is the most creative part of psychophysics and we have no recipe for that.                             
Instead, we want to provide clear, practical rules on how to proceed once you have                             
identified a scientific question, have operationalised your hypothesis, and want to test it                         
with psychophysics. The rules provided below can be seen as consecutive steps to take to                             
get the behavioral dataset that will best test your hypothesis. During this process, some of                             
the steps can be taken in parallel, while others are better taken iteratively in a loop, as                                 
shown in Figure 1. So how do you know you have a valid research question? Have                               
someone ask you: "what is your question?". If you can't answer, then think again. If you                               
can, have them ask you: "why is that important?". If you can't answer, go back to the                                 
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drawing board. By the way, "because nobody has done it before" is not a valid answer to                                 
this question. 
 

Rule 1. Do it.  

Psychophysics is one of the most affordable experimental disciplines. This, however, has                       
not always been the case. Avant-garde psychophysical experiments dating back to the late                         
40s involved expensive technology that was difficult to fit in an office room (Koenderink                           
1999). Nowadays, running a typical psychophysics experiment requires only inexpensive                   
equipment, a few hundred euros to compensate voluntary subjects, and a good hypothesis                         
on how the brain processes information. Indeed, behavioral experiments on healthy human                       
adults can be substantially faster and cheaper than other neuroscience experiments, such                       
as human neuroimaging or experiments with other animals. In addition, ethical approval is                         
easier to get (but see Rule 5), since psychophysics is the least invasive approach to study                               
the mind, and subjects participate voluntarily. With some experience and a bit of luck, you                             
could code your experiment, collect and analyze the data in a few weeks.  
 
 
 

 
Figure 1. workflow of a successful psychophysics experiment. 
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However, you should not rush into data collection. A trivial question, an erroneous                         
operationalization of the hypothesis, lack of statistical power, or a carelessly developed set                         
of predictions may result in findings that are irrelevant to your original question,                         
uninformative, or inconclusive. To achieve the necessary level of control, you will probably                         
need to spend a couple of months polishing your experimental paradigm, especially if it is                             
innovative. But rather than spending a long time exploring a potentially infinite set of task                             
parameters, loop between Rules 2-7 until you converge on a solid design.  
 

Rule 2. Aim for the best experimental design to test your hypothesis. 

Once you have a good sense of the hypothesis and variables you want to measure in order                                 
to answer your question, it is time to become concrete on the type of task, the nature of                                   
stimuli to be used, which conditions to include, and whether they will be manipulated within                             
or across subjects. Some of these aspects may be constrained by your question or                           
hypothesis. For example, if you study speech the stimuli many times are bound to be                             
acoustic. If gender is a variable of interest, you are forced to use a between-subject design.                               
Think hard on which set of conditions will better address your hypothesis. As Albert                           
Einstein famously did not say, “everything should be made as simple as possible, but not                             
simpler”. That is a good mantra to keep in mind throughout the whole process, and                             
especially during this stage. You should only manipulate a few variables of interest, which                           
influence behavior in a way that is specific to the hypothesis under scrutiny. If your                             
hypothesis unfolds into a series of sub-questions, focus on the core questions. A common                           
mistake by newcomers is to design complex paradigms aimed at addressing too many                         
questions, with dramatic repercussions on the statistical power. A rich set of experimental                         
conditions, given sufficient number of trials, will provide better insight into cognitive                       
processes if you master the necessary analysis tools to capture complex structures in your                           
data. For example, if one wants to manipulate the difficulty of the task on a trial-by-trial                               
basis, think of what is the most effective parameter to do so (e.g. if you run a perceptual                                   
task, think which parameter dial up or down the likely sources of noise). Don’t be afraid to                                 
innovate if you think this will provide better answers to your scientific questions. However,                           
innovative paradigms can take much more time to adjust than using off-the-shelf solutions,                         
so make sure the potential gain justifies the cost. Aim at experimental designs with                           
orthogonal manipulations, to avoid confounds that will be difficult to control for a posteriori                           
(Waskom et al. 2019; Dykstra 1966). 
 
Another common mistake is to overlook the specific analyses that will be necessary to test                             
your hypothesis before collecting the data, potentially leading to insufficient or inadequate                       
data for the comparisons of interest (see Rule 10). Relatedly, simulate your hypothesized                         
effect (Wilson and Collins 2019), with some assumptions about the noise in your measured                           
behavior. This is useful to validate your analyses and will help decide the sample size of                               
your experiments a priori, formalized in what is called a power analysis (Bausell and Li                             
2002). Alternatively, you might aim for sample sizes similar to previous studies, but bare in                             
mind that you might be overestimating the effect size (Button et al. 2013; Kvarven et al.                               
2020). 
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Finally, it is easy to get over-excited about an idea, so ask your colleagues for feedback -                                 
even better, ask explicitly for advice (Yoon et al. 2019). You can do that through lab                               
meetings or contacting your most critical collaborator that is good at generating alternative                         
explanations - the more boring the alternative explanations, the more seriously you should                         
take them. In sum, you should not cling to one idea, instead be your own critic and think of                                     
all the ways the experiment can fail - odds are it will. Before embarking on a project, look                                   
for any red flags that tell you to change substantially or maybe even abandon the project.  
 

Table 1. Open repositories of behavioral data.  

Database  Type of data  URL 

Generic data 

DataverseNL  All types of data, including behavior  dataverse.nl 

Dryad  Data from different fields of biology, including behavior  datadryad.org 

Figshare  All types of data, including behavior  figshare.com 

GIN  All types of data, including behavior  gin.g-node.org 

Google Dataset Search  All types of data, including behavior  datasetsearch.research.google.com 

Harvard Dataverse  All types of data, including behavior  dataverse.harvard.edu 

Nature Scientific Data  All types of data, including behavior  nature.com/sdata 

Neuroscience Information 
Framework 

Meta-search tool for data, models and software from all areas 
of neuroscience 

neuinfo.org 

OpenLists  All types of electrophysiology, including behavior  github.com/openlists/ElectrophysiologyData 

OSF  All types of data, including behavior and neuroimaging. 
Preregistration service 

osf.io 

Zenodo  All types of data, including behavior  zenodo.org 

Human data 

APA  Shared data are available for use in psychological science 
research, curated by APA 

apa.org/research/responsible/data-links 

CamCan  Cognitive and neuroimaging data of subjects across adult 
lifespan 

cam-can.org 

Confidence database  Behavioral data with confidence measures  osf.io/s46pr 

Human Brain Project  Mostly human and mouse recordings, including behavior  kg.ebrains.eu/search 

Oasis  Neuroimaging, Clinical, and Cognitive Dataset for Normal 
Aging and Alzheimer’s Disease 

oasis-brains.org 

Open Neuro  Human neuroimaging data, including behavior  openneuro.org 

PsychArchives  All fields of psychology  psycharchives.org 

The Healthy Brain Network  Psychiatric, behavioral, cognitive, and lifestyle phenotypes, as 
well as multimodal brain imaging of children and adolescents 

fcon_1000.projects.nitrc.org/indi/cmi_health
y_brain_network 

UCLA Library  Psychology data repositories compiled by trusted 
psychological authorities. 

guides.library.ucla.edu/psychology/data 

Animal data 

CRCNS  Animal behavior and electrophysiology  crcns.org 
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International Brain Lab  Mouse electrophysiology and behavior  data.internationalbrainlab.org 

Mouse Bytes  Mouse cognition, imaging and genomics  mousebytes.ca 

Rule 3. Check for existing datasets.  

Before running new experiments, check for existing data that you could use, even if only to                               
test simpler versions of your hypothesis. Researchers are increasingly open to sharing their                         
data (see Rule 10), either publically or upon request. If the data from a published article is                                 
not publicly available (e.g. check the data sharing statement in the article), don’t be afraid of                               
writing an email to the corresponding author to politely ask for data, that is what the contact                                 
email is for. In the best case scenario, you could find the perfect data to address your                                 
hypothesis, without having to collect it - but beware that data decay can become a problem                               
(Thompson et al. 2019). If you cannot find exactly what you were looking for, playing with                               
data from similar experiments will still help you get a feeling for the kind of data you can                                   
obtain, potentially suggesting ways to improve your own experiment. In Table 1 you can                           
find several repositories with all sorts of behavioral data, both from human subjects and                           
other species, often accompanied by neural recordings.  
 

Rule 4. Choose the right equipment and environment.  

If the hypothesis you are testing needs you to control for things such as luminosity, noise,                               
eye-movement, precise timing of events or the exact placement of hardware, then you                         
should run your experiment in an appropriate lab. Typical psychophysical set-ups consist of                         
a small room in which you can ideally control, or at least measure, these factors. If your                                 
experiment is long, it is particularly important that the subject sits comfortably (see Rule 8).                             
In the lab, you can ensure that experiments will not be interrupted (e.g. by the subject’s                               
mobile phone, lab mates or other people working closeby). Especially, think of all possible                           
confounds for your variable of interest. For example, if eye movements can be a confound,                             
you can attempt to control by design, by eliminating the incentive of moving the eyes or, if                                 
not possible, use an eye tracker. There are several affordable options, including some that                           
you have to build from scratch (Hosp et al. 2020; Mantiuk et al. 2012), and work reasonably                                 
well if ensuring fixation is all you need (Funke et al. 2016). If your lab has an EEG setup, you                                       
can record EOG signals to have rough measures of eye movements (e.g. Quax et al. 2019).                               
For open source, low-cost “brain and body sensors”, check OpenBCI products (Frey 2016).                         
Before buying any expensive equipment, check if someone in your community already has                         
the tool you need, and importantly, if it is compatible with the rest of your toolkit, such as                                   
response devices, available ports, eye trackers, but also software, and your operating                       
system. 
 
The “keep it simple” mantra (Rule 2) is important also during this stage. If you conclude that                                 
some or all of the above factors won’t affect your results, consider running your experiment                             
on more flexible and maybe cheaper devices, such as tablets (Linares et al. 2018).                           
Alternatively, you can take it online. An online experiment allows you to scale things up                             
(Stewart et al. 2017; Difallah et al. 2018), effectively speeding up data collection by orders                             
of magnitude - but it comes at the cost of losing experimental control (Crump et al. 2013),                                 
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and data collected online is much noisier than when collected in the lab. Additionally, the                             
average low payment in crowdsourcing platforms biases us to pay less than what is                           
ethically correct. For example, data-hungry companies are known to exploit vulnerable                     
populations in online platforms (Alana Semuels 2018). A minimum should be defined by the                           
minimum wage in the country you recruit your subjects from. It will likely be above the                               
average payment in the platform, but still cheaper than running the experiment in the lab,                             
where you would have to pay both the subject and the experimenter. Paying well is not only                                 
ethically correct, but it will allow you to filter for best performers and ensure faster and                               
higher data quality (Stewart et al. 2017).  
 
Finally, choose a good programming language, especially if you do not have strong                         
preferences - yet. Python, for example, is open source, free, versatile and becoming the                           
go-to language in data science (Kaggle 2019) with plenty of tutorials for all levels of                             
proficiency. PsychoPy is a great option to implement your experiment, should you choose                         
to do it in Python. If you are a proficient Matlab user, Psychtoolbox (Borgo et al. 2012) is a                                     
great tool, too. If you are considering running your experiment on a tablet or even a                               
smartphone, you could use StimuliApp (Marin-Campos et al. 2020). Otherwise check Hans                       
Strasburger’s page (Strasburger 1994) that has provided a comprehensive and up-to-date                     
overview of different tools, among other technical tips, for the last 25 years.  
 

Rule 5. Submit early to the ethics committee.  

This is a mandatory, yet tedious step. Do it early to avoid surprises that could halt your                                 
progress. Depending on the institution, the whole process can take several months, which                         
you can use for piloting (see Rule 6). In your application, describe your experiment in terms                               
general enough as to accommodate for changes in the paradigm that will inevitably occur.                           
This is of course without neglecting potentially relevant ethical issues, especially if your                         
target population includes vulnerable populations (such as patients or minors of age). You                         
will have to describe factors concerning the sample, such as the details of participant                           
recruitment planned and justified sample sizes (see Rule 3), and how the subjects’ data will                             
be anonymized and protected. You should also provide insight into the details of the                           
experiment, including its duration, the experimental setup or platform (some ethics                     
committee might not allow crowdsourcing experiments, for example), potential                 
physiological recordings or interventions and whether they could harm the subjects in any                         
way or how the subjects will be compensated for their participation (e.g. whether                         
performance-dependent rewards will be used). You should also provide the consent form                       
that you will ask participants to sign. Each committee has specific requirements, so ask                           
colleagues for their documents and experiences, and start from there - often, the basic                           
elements of an ethics application are widely recyclable, and this is the one case in research                               
where copy-pasting is highly recommendable. Finally, keep in mind that as you want to go                             
through the least rounds of review as possible, you should make sure you are abiding by all                                 
the rules. 
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Rule 6. Polish your experimental design through piloting.  

Take time to run several pilots while fine-tuning your task parameters, especially the                         
changes with respect to previous studies. Pilot yourself first. Then, pilot your friends and                           
colleagues - chances are they will do the same to you, if they didn’t already. In some cases,                                   
it is worth considering using online platforms to run pilot studies, especially when you want                             
to sweep through many parameters (but see Rule 5). Typical parameters that need piloting                           
to adjust are the size and duration of stimuli, masking, the duration of the inter-trial-interval,                             
the modality of the response and feedback, and so on. Using values from previous studies                             
can spare you some piloting. For example, if you plan to use a fixation cross, use the best                                   
one (Thaler et al. 2013). You should perform quality checks on pilot data, making sure that                               
typical findings are confirmed (e.g. higher accuracy and faster reaction times for easier                         
trials, post-error slowing of responses, preference of higher rewards in economic decision                       
making, etc.), that most responses occur within the allowed time window, etc. These sanity                           
checks can form the basis for what your exclusion criteria will be, e.g. applying cutoff                             
thresholds on the proportion of correct trials, proportion of very fast responses (e.g. below                           
200 ms), lapse rate, etc. Make sure your exclusion criteria are always orthogonal to your                             
main question. You can decide the criteria after you collect a cohort of subjects but always                               
make decisions about whom (or which trials) to exclude before testing the main hypotheses                           
in that cohort. By doing these sanity checks, you will also reveal potential bugs in your                               
code, such as incorrectly saved data or an incorrect assignment of stimuli to task                           
conditions (Table 2).  
 
Find the right pace for the experiment to avoid boredom, tiredness or impulsive responses.                           
Make conscious decisions on what aspects of the task can be fixed-paced or self-paced.                           
At this stage you should also pay attention to the lapse rate of your pilots, a proxy of task                                     
engagement (Fetsch 2016) (see also Rule 8). A high lapse rate might, depending on the                             
goals of your experiment, reflect random responses from that subject (Fetsch 2016), which                         
would introduce noise in your dataset and generally does not involve a cognitive process of                             
interest (but see Pisupati et al. 2019). If you are interested in computing psychometric                           
curves, you should sample stimuli from a broad range of difficulties (Rule 2) (Waskom et al.                               
2019), including the easiest ones if you want to compute lapse rates, for example to                             
compare different populations (Linares et al. 2019). If you want to make sure all subjects                             
perform at similar levels of performance, or if you are interested in studying individual                           
psychophysical thresholds, consider using a staircase procedure (Cornsweet 1962;                 
Kingdom and Prins 2016) to adjust task difficulty for each subject, or alternatively a                           
psi-marginal adaptive method (Prins 2013), that takes attention lapses into account.                     
Relatedly, make sure that the performance of your pilots is reasonably stable across                         
experimental sessions or blocks, so that learning or fatigue does not play a substantial role.                             
You should also decide whether to sample the stimulus sequence randomly or in a                           
balanced way (i.e., sampling with or without replacement from the pool of possible stimuli).                           
In general, balanced sampling is the best option, since unbalanced stimulus sequences can                         
introduce confounds difficult to control a posteriori (Dykstra 1966) . When imposing a                       
balanced sequence, make sure stimulus predictability will not confound your interpretation.                     
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If your design really needs truly random sequences, make sure you have enough trials to                             
avoid strong imbalances due to undersampling.  
 
Finally, make sure you will be using your resources wisely. For example, should you run few                               
subjects with many trials or many subjects with relatively few trials? There is no silver bullet                               
for these questions, as it depends largely on the type of question you are trying to answer.                                 
A rule of thumb is that if you are interested in studying different strategies or other individual                                 
characteristics (e.g. Tversky and Kahneman 1974), then you should focus on collecting data                         
from as many subjects as possible (Waskom et al. 2019), but beware that even large                             
numbers of subjects can lead to poor test-retest reliability (Elliott et al. 2020). On the other                               
hand, classical psychophysics is interested in the computational principles behind a given                       
perceptual or cognitive process that are common to all normally-functioning humans (Read                       
2015) and therefore requires subjects whose performance is stable, and whose                     
performance threshold is thoroughly sampled with many trials (Smith and Little 2018;                       
Waskom et al. 2019). 
 
Table 2. Top 10 most common coding and data handling errors committed by the authors                             
when doing psychophysics and how to avoid them. These are loosely sorted by type of                             
error (crashes, incorrect runs, saving data issues), not by frequency.  

Common mistake  How to avoid 

1) Code breaks in the middle of a session, and all data is 
lost. 

Save your data at the end of each block or, if possible, at 
the end of each trial. 

2) Your code breaks when a certain key is hit, or when 
secondary external hardware (e.g. eye tracker) 
unexpectedly stops sending signals. 

Check which keys are assigned in your paradigm, and 
which lead to the interruption of the program. Check in 
advance what happens if external hardware problems 
emerge. Perform a crash test of your code to make sure it is 
resilient to wrong keys being hit, or keys being hit at the 
wrong time. 

3) You made an “improvement” just before the experimental 
session. Your code now breaks unexpectedly or doesn’t 
run at all during data collection. 

Avoid using untested code. 

4) Some software sends notifications, such as software 
updates, in the middle of a session. The experiment is 
interrupted, and the subject might not even notify you. 

Switch off all software you don’t need, disable automatic 
updates. Disable the internet connection. 

5) The randomization of stimuli or conditions is wrong, or 
identical for all subjects. 

Make sure to use a different seed whenever you want your 
data to be independent. After piloting, inspect the 
distribution of conditions in your data. 

6) Your subject is not doing what they should and you don’t                       
notice. 

Have a control screen or a remote connection to mirror the 
subject’s display (e.g. with Chrome Remote Desktop), but 
make sure it will not introduce delays. There, also print 
ongoing performance measures. 

7) You overwrite data/code from earlier sessions or 
subjects. This data is now lost. 

Add a line of code that checks if a filename already exists 
before writing. Backup output directory regularly through 
git. Alternatively or additionally, save your data directly on 
dropbox, google drive or another automatic system. 

8) You save participant data with the wrong identifier and 
later cannot assign it correctly. 

Use multiple identifiers to name a file: subject and session 
ID + date and time + computer ID, for example. 

169 

http://sciwheel.com/work/citation?ids=220136&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7599753&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=9016018&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3457029&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3457029&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=4965389,7599753&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=4965389,7599753&pre=&pre=&suf=&suf=&sa=0,0


 

9) You decided at some point to adjust “constant” 
experimental parameters during data collection. Now, 
which participants saw what? 

Define all experimental parameters  at the beginning of your 
code, preferably in a flexible format such as a python 
dictionary,  and save them in a separate log file for each 
session or include them in your table repeatedly for each 
trial.  

10) After data collection, you start having doubts about the 
timing of events, and the temporal alignment with 
continuous data, possibly stored on another device (fMRI, 
eye tracking). 

Save “time stamps” in your data table for each event of a 
trial (fixation onset, stimulus onset, etc.). Make sure your 
first event is temporally aligned to the onset of continuous 
data. 

 

Rule 7. Preregister or replicate your experiment. 

An alarming proportion of researchers in the field of psychology reports to have been                           
involved in some form of questionable research practices (John et al. 2012; Fiedler and                           
Schwarz 2016). The line between right and wrong here is, at best, a blurry one. Sometimes,                               
making the right or the wrong call needs a degree of statistical sophistication, and even so,                               
we are humans and our decisions are often not solely determined by rationality. Two                           
common forms of questionable practices, p-hacking and HARKing (Stroebe et al. 2012),                       
increase the likelihood of obtaining false positive results. In p-hacking (Simmons et al.                         
2011), significant tests are not corrected for the multiple alternative hypotheses tests that                         
were performed, while harking refers to the formulation of a hypothesis after the results are                             
known (Kerr 1998). It is sometimes very difficult to avoid the temptation to decide that, in                               
fact, what we need to use as the dependent variable is the median, after we have seen that                                   
the mean gave an unsatisfactory outcome. Additionally, the journals where we aim at                         
publishing have a traditional bias for positive findings, while our negative results often                         
remain unpublished (Rosenthal 1979). These practices posit a substantial threat to the                       
efficiency of research, and they are believed to underlie the replication crisis in psychology                           
(Open Science Collaboration 2015). Ironically, the failure to replicate is highly replicable                       
(Klein et al. 2018; Klein et al. 2014).  
 
This crisis has motivated the practice of preregistering experiments before the actual                       
research is conducted (Kupferschmidt 2018). In practice, this consists of a short document                         
that answers standardized questions about the experimental design and planned statistical                     
analyses. The optimal time for preregistration is once you finish tweaking your experiment                         
through piloting and power analyses (Rule 2-6). Preregistration may look like an extra hassle                           
before finally collecting data, but it will actually often save you time: by forcing you to write                                 
down explicitly all your analyses, you may find some inconsistencies and go back to your                             
paradigm. Additionally, the text you generate at this point can be reused for the methods                             
section of your manuscript. Alternatively, you can opt for registered reports, where you                         
submit a prototypic version of your final manuscript, without the results, to peer-review (D.                           
Stephen Lindsay 2016). If your report survives peer-review, it is accepted in principle, which                           
means that whatever the outcome, the manuscript will be published (given that the study                           
was rigorously conducted). High-impact journals suchs as eLife, Nature Human Behavior,                     
and Nature Communications already accept this format.  
 
There are several databases that manage preregistrations, such as Open Science                     
Framework (OSF.io), which is the most popular one, or AsPredicted.org, that offers more                         
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concrete guidelines. Importantly, these platforms keep your registration private, so there is                       
no added risk of being scooped. Preregistering your analyses does not mean you can’t do                             
exploratory analyses, just that these analyses will be explicitly marked as such. This                         
transparency strengthens your arguments when reviewers read your manuscript and                   
protects you from committing scientific misconduct involuntarily.  
 

Rule 8. Take care of your subjects.  

Remember that your subjects are volunteers, not your employees. In a way, they are                           
helping science progress, so acknowledge that and treat them with respect (Wichmann and                         
Jäkel 2018). Be generous with the compensation, it is also in your interest to avoid low                               
turn-out. Send emails with enough information well in advance. Set up an online booking                           
system, for example through Doodle, where subjects can select their preferred schedule                       
from the available slots. This will avoid an unnecessary back and forth of emails. If you                               
cannot rely on an existing database of participants for recruitment, create one and ask your                             
participants for permission to include them in it (make sure to comply with the regulations                             
on data protection). Try to maintain a long and diverse list, but eliminate unreliable                           
participants.  
 
Make sure your subjects come fully awake, healthy and without the influence of any drugs                             
or medication that might alter their perception or performance. Systematize a routine to                         
when participants arrive at the lab. It is very easy for participants to confuse the meaning of                                 
events within a trial (e.g. what is fixation, cue, stimulus, response prompt, feedback),                         
especially if they occur in rapid succession. To avoid this, write a clear and concise                             
instruction sheet and have your participants read it before the experiment. This will make                           
sure they have all the needed information and will avoid framing effects (Tversky and                           
Kahneman 1989). Allow time for clarifying questions and repeat instructions on the screen                         
during the corresponding stages of the experiment (introduction, practice block, break, etc).                       
If a collaborator is collecting the data for you, spend some time training them and designing                               
a clear protocol (e.g. checklist including how to calibrate the eye tracker), including                         
troubleshooting. Be their first mock subject, and be there for their first real subject.  
 
To ease subjects into the task, have a practice block with very easy trials that become                               
progressively more similar to actual trials, for example by changing the event timings or the                             
stimulus contrast. If you avoid overwhelm their attentional capacities, the subjects will more                         
rapidly automatize parts of the process (e.g. cue-rule associations, button associations,                     
etc.). Moreover, bad performance on these very easy trials could reflect the subjects’                         
misunderstanding even the basic rules. Unless you have a reason to do otherwise, do short                             
blocks allowing for quick breaks (humans get bored quickly) every ~5 minutes (Wichmann                         
and Jäkel 2018). Include the possibility for one or two longer breaks, because some                           
subjects might need more or longer breaks than others. Incentivize them to perform well if                             
possible and approved by the ethics committee, for example by offering a bonus if they                             
reach a certain performance level, but let them know it is normal to make errors. Even                               
better, try to gamify your paradigm, for example by providing quick feedback after each                           
trial, or block-wise scores. In general, we recommend giving performance feedback after                       
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each trial. There are however circumstances where you want to avoid it, in particular when                             
you think it might interfere with the cognitive process under study. We think this could                             
happen in two situations. First, feedback is known to influence the next few trials due to                               
win-stay-lose-switch strategies (Abrahamyan et al. 2016; Urai et al. 2017; Hermoso-                     
Mendizabal et al. 2020) or other types of superstitious behavior (Ono 1987). This nuisance                           
should have very limited impact on your analyses of interest, unless you are precisely                           
interested in sequential effects (Hermoso-Mendizabal et al. 2020; Lak et al. 2020). Second,                         
feedback can be used as a learning signal by the participants (Massaro 1969), but not much                               
for low sensory detection tasks as it is for strategy-based paradigms or paradigms that                           
include confidence reports (Schustek et al. 2019). Finally, at the end of every block of trials,                               
display the remaining number of blocks - show them the stairway to heaven. 
 

Rule 9. Record everything. 

Once you have laid out what data you need to test your hypothesis, record everything else                               
you can record. The dataset you are generating might be useful for others or your future self                                 
in ways you cannot predict now. Use an eye tracker if you need to ensure fixation, or if you                                     
are interested in rapid pupil dilatations as a proxy for information processing (Cheadle et al.                             
2014) or decision confidence (Urai et al. 2017). If you are using a mouse to register the                                 
subjects report, record all the mouse movements, reaction times, etc. Save your data in a                             
tidy table format (Wickham 2014) (e.g. manipulate in pandas, but store as csv). Save your                             
data as a table with one trial per line and all the relevant variables as columns (both                                 
presentation and behavioral variables), they are easier to analyze and to share. However, if                           
some modality gives continuous output, such as pupil dilation or cursor position, save it in a                               
separate file rather than creating kafkaesque data structures. If you use an eye-tracker or                           
neuroimaging device, make sure you save synchronized timestamps in both data streams                       
for later data alignment (see Table 2). Don’t be afraid of having redundant columns (e.g.                             
response and response accuracy), redundancy enables robustness to your mistakes. If you                       
end up changing your paradigm, even if with small changes, save those version names in a                               
lab notebook. If the lab does not use a lab notebook, start using one (Schnell 2015). Mark                                 
all incidents there, even those that seem uninteresting now. Back up your code and data                             
regularly (see also Rule 10). Finally, don’t stop data collection after the experiment is done:                             
sometimes it is useful to include an informal questionnaire at the end, e.g. demographics                           
(should you have approval from the ethics committee), but also important questions like                         
“did you see so-and-so?” or “tell us about the strategy you used to solve part II”.  
 

Rule 10. Be transparent, and share your data.  

Upon publication, share everything needed to replicate your findings in a repository or                         
shared database (see Table 1). That includes your data and code. You should aim at                             
properly documented code, but don’t let that be the reason not to share. After all, bad code                                 
is better than no code (Barnes 2010; Gleeson et al. 2017). If possible, avoid proprietary                             
software. Use python or R notebooks (Rule et al. 2019) to develop your analyses and git for                                 
version control (Perez-Riverol et al. 2016). Notebooks make code sharing easier with the                         
community, but also with advisors or colleagues, when asking for help.  
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