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Meshfree Methods: Moving Beyond the Cumulant Lattice Boltzmann Method

by MOHSEN GORAKIFARD

To enhance the current knowledge of complex flow systems, reliable and prac-

tical methods should be evolved. One of these valuable methods is the cumulant

lattice Boltzmann method (LBM), acclaimed for showing stability and robustness

at high Reynolds numbers in simulations of such systems. Thus, in this disserta-

tion, the fundamental acoustical properties of the cumulant LBM are first consid-

ered as one of the challenges of engineering problems. The propagation of point

and planar acoustic waves is studied, namely the temporal decay of a standing

plane wave, the spatial decay of a planar acoustic pulse, and the propagation of

spherical waves. Then, as a practical example of fluid structure interaction (FSI),

the coupled cumulant LBM- finite element method is applied to predict the effect

of adding hairy flaps to a cylinder on the noise emission at high Reynolds num-

bers. The cumulant LBM provides a good agreement with theoretical, experimental

and other numerical results. However, this method suffers from issues of accuracy

and computational efficiency related to the use of uniform meshes. Therefore, two

MFree local weak-form cumulant LB methods, the local radial point interpolation

cumulant lattice Boltzmann method (LRPIC-LBM) and the meshless local Petrov-

Galerkin cumulant lattice Boltzmann method (MLPGC-LBM) are suggested to over-

come these shortcomings. The LB equation is divided into collision and stream-

ing steps. The collision step is modeled by the cumulant method. In addition, the

streaming step, which is naturally a pure advection equation, is discretized in time

using the Lax-Wendroff scheme. It is also discretized in space, using the local radial

point interpolation method (RPIM) and the meshless local Petrov-Galerkin method
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(MLPG), for LRPIC-LBM and MLPGC-LBM, respectively. To substantiate the accu-

racy of these methods the same aeroacoustics benchmarks previously considered are

again compared with those from the cumulant LBM and their respective analytical

solutions. The comparisons illustrate that the LRPIC-LBM replicates the analyti-

cal results. They also show that MLPGC-LBM results are better than those of the

cumulant LBM, reproducing LRPIC-LBM results with relatively shorter runtimes.

Therefore, the MFree local weak-form cumulant LB methods can offer an alternative

to conventional methods, without parametric dependency on the number of points

per wavelength, Nppw, and the resolution σ, while the cumulant LBM is limited by

the need of mesh refinement.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Development of the cumulant lattice Boltzmann method

The lattice Boltzmann method (LBM), an explicit time marching scheme for a gen-

eral class of advection-diffusion models, has recently been proposed as a new com-

putational fluid dynamic method (CFD) (1). It evolved from the field of cellular

automata, notably lattice gases. The first idea of the lattice gas goes back to 1973

(2). However, a lattice gas that could correctly simulate fluid flow was presented in

1986 (3). To overcome some of the drawbacks of lattice gases, the lattice Boltzmann

method was developed (4). Even though traditional CFD methods discretize and

solve the macroscopic equations of fluid mechanics, the lattice Boltzmann method,

which is a discretization of the Boltzmann equation, models the weakly compressible

Navier-Stokes equations in the mesoscopic limit and a simpler form (5). The basic

idea is that flow motion is modeled by a discrete momentum distribution function,

to transfer momentum and energy through particle streaming and billiard-like par-

ticle collision on a Cartesian grid, at each time step (6). Depending on the number

q of directions or velocities in the momentum space for the moving particle, and

dimension d=2 or 3 for the lattice, a DdQq stencil can be defined (7). In our simu-

lations the D2Q9 lattice model is chosen for efficiency and accuracy reasons (Figure

1.1). The LBM consists of collision and streaming parts. For each mode at each time

step, the local distribution function relaxes toward local equilibrium in the collision

step, then it propagates to the neighboring nodes in the streaming step. Both of

these steps play key roles in the accuracy and the stability of the method (8). With
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2 Chapter 1. Introduction

the proper collision operator, simulations at large Reynolds numbers can be stable.

Bhatnagar, Gross and Krook (BGK) presented a simplified collision operator (9) by

using the local distribution function and the local equilibrium distribution function,

to obtain a new local distribution. It should be noted that the BGK method, with

only one relaxation parameter, is not stable at high Reynolds numbers. In general,

the LBM is slightly compressible having a finite bulk viscosity which is a function

of the relaxation rate. The bulk viscosity affects pressure waves (10), and with a

single relaxation rate for both the bulk and shear viscosities, the BGK LBM can not

capture pressure waves at high Reynolds numbers. To overcome this limitation,

the LBM model with different relaxation parameters (the so-called multi-relaxation

times (MRT) method) was developed (1). It utilizes a linear transformation into an

equivalent moment space to increase stability. These moments are related to physical

quantities. Basically, relaxation parameters are determined according to the physical

parameters and system stability conditions. These moments are transformed back

into the original space after the collision step. Although The MRT LBM is more stable

than the previous method, it is not fully applicable to engineering modeling, since

the moments are set based on the rest frame of reference which is relaxed on its own.

Thus, Galilean invariant problems are generated as a main reason for instability. To

rectify such problems, the cascade lattice Boltzmann model (CLBM) was proposed

by Geier (10, 11). The idea of CLBM is to perform the collision process in a frame

of reference shifted by the macroscopic velocity. Considering the moving-frame-of-

reference “central moments” instead of the moments on the rest frame of reference

or “raw moments”, could solve the violation of Galilean invariant problems. Cen-

tral moments of a specific order are equal to the lower or same order raw moments.

Therefore, lower-order raw moments have impact on higher-order central moments.

In addition, higher-order central moments are dependent on the lower ones which

cause a structured sequential calculation of relaxation rates in the CLBM. To improve

the CLBM, the cumulant LBM was suggested where higher order moments are inde-

pendent of lower order moments. Seeger presented a cumulant method for solving

the Boltzmann equation (12, 13). Geier used the cumulant method for solving the

LBM (14). This method is widely attracting the researchers’ interest.
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1.1. Overview 3

FIGURE 1.1: Lattice arrangement for D2Q9.

1.1.2 Application studies

To have a better estimation of the capability of the cumulant LBM to advance the

fundamental knowledge of complex flow systems found in engineering problems,

tracking instabilities and considering the sensitivity of the method is crucial. Two

simulation classes which show such instabilities can be sound propagation and fluid

structure interaction.

To begin with, the propagation of sound, as one of the challenging issues in engi-

neering and technology (15, 16), not only affects many industries such as transporta-

tion, basically limiting engine operation, causing discomfort to crews, and polluting

the environment, but also makes many simulations of engineering system (such as

wind turbines) computationally expensive, particularly for the need of an enormous

number of grid points or cells, and long enough time samples (17). Researchers

and centers such as the National Renewable Energy Laboratory (NREL) and the Na-

tional Wind Technology Center (NWTC) have initiated programs (18) to establish

efficient and appropriate computational aeroacoustic (CAA) implementations. Vari-

ous schemes have been devised in the field of computational aeroacoustics. Tam (19)
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and Wells et al. (20) presented compact and non-compact optimized schemes like the

high-order compact difference scheme (21) and the dispersion-relation-preserving

(DRP) scheme (22). Cheong et al. proposed grid-optimized dispersion-relation-

preserving (GODRP) schemes for curvilinear problems (23). Hybrid methods were

then developed to reduce the huge cost of CAA simulations. These methods use two

sets of equations, for the flow and for the acoustic disturbance field (24). However,

the direct numerical simulations of aerostatics are complicated due to the small ratio

between sound pressure and pressure variation as a whole, the spreading of acous-

tic fields over a large area, and the time-consuming nature of the above traditional

methods (25). For example, the direct numerical simulation of waves using Navier-

Stokes equations requires schemes of fifth-order accuracy in space and fourth order

accuracy in time (26, 27). Therefore, the lattice Boltzmann methods were proposed as

an alternative to the above schemes for simulating sound wave propagation. Buick

et al. (28) and Dellar et al. (29) studied sound wave propagation using LBM and

achieved acceptable results. Bres et al. (30) analyzed the dissipation and dispersion

of acoustic waves using the BGK-LBM. Furthermore, a regularized method for the

BGK-LBM (31) and the recursive and regularized LBM (LBM-rrBGK) (32, 33) have

been developed to model wave propagation.

In addition, most physical phenomena are not limited to fluids and occur in dif-

ferent phases (fluid or solid). As practical cases of such phenomena, self-adaptive

devices used to control the flow and sound side effects can be highlighted. These

devices manipulating vortex shedding perform a critical role in many industries.

As an illustration, splitter plates have been known as one of the effective ways for

controlling vortex shedding (34, 35). Recently, several investigations have been un-

dertaken on the effect an splitter plate on the flow pattern behind a cylinder (36–38).

Brucker et al. proposed the addition of flexible flaps and studied experimentally its

effect on the flow beyond a cylinder and the alteration of the shedding cycle (39,

40). They also showed that the motion pattern of the flaps changes to a wavy shape

with an increase of the amplitude beyond some specific Reynolds number, which

resulted in the decrease of the vortices transversal distance from the center line, re-

duction of structural vibrations, and sound generation. Due to the fact that in such

phenomena, a fluid solver has to be coupled with a solid solver and the coupling
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1.1. Overview 5

process of the LB methods with the finite element method is relatively straightfor-

ward, the LB methods have high potential for modeling fluid structure interaction

(FSI) problems. Thus, splitter plates attached to a cylinder that look like hair (SPCH)

as one of the self-adaptive devices to control the actual flow conditions, is a really

hard benchmark problem to study the stability and capabilities of these methods.

To sum up, these examples could effectively show the capability of the cumulant

LBM to simulate sound wave propagation by calculating the deviation from analyt-

ical results, notably the dissipation and dispersion errors. They could also assess the

effects of SPCH on the noise past bodies at high velocities, particularly, the acous-

tic damping effect of such flaps on sound propagation through interactions among

acoustic waves, solid walls and shear layers.

1.1.3 Improving weaknesses

In general, the implementation and parallelization of LB methods is efficient and

straightforward for simulating multiphase/component flows, complex fluid flows,

and flows with complicated geometries such as porous media, thermal flows, and

turbulent flows. They dramatically save time and efforts as compared to traditional

CFD methods.

However the lattice uniformity, generated from the lattice symmetry of the ve-

locity stencil, limits the LBM when modeling accurately and efficiently non-uniform

mesh problems (41) such as those with irregular boundaries. Even tough grid refine-

ment could improve accuracy substantially (42), this approach raises new challenges

such as higher computational costs and the appearance of additional perturbations

in acoustical simulations (43). To overcome such shortcomings, conventional non-

uniform LB methods have been developed including: Interpolation-supplemented

LBM (44, 45), combinations of LBM with finite difference methods (46), finite vol-

ume methods (47–49), finite element methods (50–52), and Taylor-series expansion

and least-squares-based lattice Boltzmann methods (53, 54).

However, the above methods have the shortcomings of all the numerical meth-

ods that depend on meshes in a predefined manner, such as high cost in creating the

mesh, low accuracy of stress calculations, and limitations in simulations of problems

with discontinuities or moving boundaries. Thus, the concept of meshless methods
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6 Chapter 1. Introduction

has been evolved, which based on Liu definition is “a method using a set of alge-

braic equations for the entire problem domain while ignoring a predefined mesh

for the discretization”. It means these methods scatter a set of nodes inside and at

the boundaries of the domain, which results in a system of algebraic equations to

interpolate or approximate the variables.

The evolution of some MFree methods derived toward collocation methods(55,

56) , vortex methods (57, 58), finite difference methods with arbitrary grids (59,

60), and the Smoothed Particle Hydrodynamics method proposed for astrophys-

ical modeling, especially exploding stars and dust clouds (61, 62). One way to

categorize MFree methods is based on the formulation procedure used, including

weak forms, strong forms, and weak-strong forms. In general, the weak forms give

a set of algebraic equations by a numerical integration process. Moreover, these

forms have achieved remarkable progress as compared with the other categories,

due to their robustness and focus on the finite element method. Therefore, a wide

group of this type of MFree methods has been developed such as the diffuse element

method (63), the element-free Galerkin method (64, 65), the reproducing kernel par-

ticle method (66), the point interpolation methods (67), the meshless local Petrov-

Galerkin method (MLPG) (68), the boundary node method (69), the boundary point

interpolation method (70), and others.

The possibility of using Mfree methods in LBM has resulted in acceptable out-

comes (71–74). However, this idea is still at an early stage of development and must

be improved in order to address challenging issues common in complex simulations.

As an illustration, the cited studies have used the standard Bhatnagar-Gross-Krook

(BGK) scheme in the collision part, which suffers from instability at high Reynolds

numbers and low viscosities, and violation of the principle of Galilean invariance

(6). Thus, replacing the BGK collision scheme by the more stable cumulant LBM

(5, 75) could provide better results. For this purpose, the local radial point interpo-

lation cumulant lattice Boltzmann method (LRPIC-LBM) (76) has been developed.

Moreover, the efficiency of LRPIC-LBM may increase by using MLPG in the Mfree

part, since the moving least squares (MLS) shape functions used in MLPG need less

computational resources than the RPIM shape functions used in LRPIM. This idea

resulted in the meshless local Petrov-Galerkin cumulant LB method (MLPGC-LBM)
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(77).

1.2 Thesis goals and structure

The title of the research project is “Meshfree Methods: Moving Beyond the Cumu-

lant Lattice Boltzmann Method”. The main objective of this project was to develop a

valuable tool that could advance the fundamental knowledge of complex flow sys-

tems and areas of knowledge that have been poorly studied. The project had four

main goals. The first aim of this work was to be familiar with one of the newest

LB methods, the cumulant lattice Boltzmann method, which could meet our main

purpose and simulate such systems with a really vast and extensive scope. The sec-

ond goal of this development was to investigate the weaknesses and strengths of the

cumulant LBM and improve the current understanding of the propagation of sound

waves in LB simulations as one of the challenges in complex flow engineering prob-

lems. In addition, most physical phenomena are not limited to fluids but occur in

different phases (fluid or solid). Therefore, a fluid solver often has to be coupled

with a solid solver. As a third aim, the Cumulant LBM was coupled with the finite

element method and its stability was studied, as well as its behavior in dealing with

instability and noise emitting processes propagating through the domain. Finally,

the fourth goal of this study was to develop new methods to improve the current cu-

mulant LBM, thus overcoming the issues of accuracy and computational efficiency

that arise due to the use of uniform meshes. Thus, two new MFree local weak-form

cumulant LB methods: the local radial point interpolation cumulant lattice Boltz-

mann method and the meshless local Petrov-Galerkin cumulant lattice Boltzmann

method were developed and analyzed.

This thesis is divided into two main parts. Part one discusses the cumulant lattice

Boltzmann method and its application to aeroacoustics and fluid structure interac-

tion. Part two proposes substitute methods to improve its weaknesses. Thus, the

thesis is arranged in the following chapters:

Chapter 1 This chapter.
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8 Chapter 1. Introduction

Chapter 2 studies the fundamental acoustical properties of the cumulant lattice Boltz-

mann method. Point and planar acoustic waves are considered including the

temporal decay of a standing plane wave, the spatial decay of a planar acous-

tic pulse, and the propagation of spherical waves. In addition, the cumulant

LBM as a fluid flow solver, coupled with a finite element structural mechanics

solver, is used to study the effects of splitter plates attached to a cylinder look-

ing like hair (SPCH). The noise generated by one and two circular cylinders

supplied with such flaps is studied at high Reynolds numbers, as an example

of fluid structure interaction (FSI) application.

Chapter 3 studies propagation of planar acoustic waves, including the temporal de-

cay of a standing plane wave and the spatial decay of a planar acoustic pulse

of Gaussian shape, modeled by the local radial point interpolation cumulant

lattice Boltzmann method (LRPIC-LBM). It presents the deviation from theo-

retical results and tries to determine whether this method might be useful as

a substitute for the cumulant lattice Boltzmann method in engineering prob-

lems.

Chapter 4 studies the propagation of point and planar acoustic waves, including

the temporal decay of a standing plane wave, the spatial decay of a planar

acoustic pulse of Gaussian shape, and the propagation of spherical waves

by means of the meshless local Petrov-Galerkin cumulant lattice Boltzmann

method (MLPG-LBM). The errors and deviations from the analytical solutions

are analyzed critically and compared with the results obtained with the regu-

lar cumulant lattice Boltzmann method as well as the LRPIC-LBM of chapter

3. The advantages and disadvantages of the method are discussed in view of

the results. This chapter tries to conclude whether this method might be use-

ful as a substitute for the cumulant lattice Boltzmann method in engineering

problems.

Chapter 5 collects the remarks obtained in the previous chapters and draws a brief

conclusion to the thesis.
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Chapter 2

The cumulant LBM

Splitter plates attached to a cylinder looking like hair (SPCH) is one of the self-

adaptive devices used to control actual flow conditions, which in turn interact with

Aeolian tones constituting a typical case of study in engineering industries. The di-

rect numerical simulation of the sound waves stimulated by such devices is a com-

plicated task due to the small levels of sound pressure and the time-consuming ex-

isting solvers. However, the cumulant lattice Boltzmann method (LBM) provides

stability and robustness at high Reynolds numbers and carries out these simulations

satisfactorily. First, the fundamental acoustical properties of the cumulant LBM are

studied in this work. Propagation of point and planar acoustic waves is consid-

ered including the temporal decay of a standing plane wave, the spatial decay of

a planar acoustic pulse, and the propagation of spherical waves. Then, the cumu-

lant LBM as a fluid flow solver is coupled with a finite element structural mechanics

solver to predict the effects of SPCH on the noise generated by cylinders at high

Reynolds numbers as a practical fluid structure interaction (FSI) application. The

spectral modification and possible acoustic damping impact of such flaps, plus the

sound propagation from one and two circular cylinders are studied. A comparison

of the theoretical and numerical results shows a reasonable capability of the cumu-

lant LBM to predict acoustical events with small errors in dissipation and dispersion.

Furthermore, the results show that SPCH alter the phase of the vortex shedding cy-

cle and decrease the transversal distance from the center line of the shed vortices.

Flaps, thus, control the wake generated past a cylinder and have an effective impact

on reducing sound generation.
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12 Chapter 2. The cumulant LBM

2.1 Introduction

Noise reduction is an important part of engineering design in transportation indus-

tries such as aircraft, high speed trains, automobiles, and so on. In general, noise

limits engine operation, disturbs passengers and operators, and pollutes the envi-

ronment. As a result, the understanding and controlling of noise is fundamental.

A typical case of aerodynamic noise is the Aeolian tone, named after the god

of winds Aeolus in the Hellenic mythology. The first observations of Aeolian tones

(78–80) were made in sound generated from bluff bodies like cylinders immersed in

a flow (81, 82). Researchers believe that the hydrodynamic instability of the wake

behind a cylinder after a specific critical Reynolds number, results in sound with

strong tonal components based on the vortex shedding frequency. Strouhal’s studies

on the existence of these vortex shedding tones (83) lead to the non-dimensional

Strouhal number, which is the relation between the frequency of the vortex shedding

tone, the characteristic length, and the free stream velocity.

Hardin et al. (84) calculated the sound generated by an incompressible and time

dependent flow over a cylinder at low Reynolds numbers. Cox et al. (85) studied the

tonal noise generated from a circular cylinder for a wide range of Reynolds numbers,

and compared with experimental studies. In addition, Inoue et al. (86) simulated the

sound generated by two squares at a Mach number equal of 0.2 using direct solution

of the 2D unsteady compressible Navier-Stokes equations. Tam (87) and Wells et al.

(20) studied different popular numerical schemes in the the field of computational

aeroacoustics (CAA). They presented compact and non-compact optimized schemes

which are mostly based on linear wave propagation, such as the high-order compact

difference schemes (21, 88) and the dispersion-relation-preserving (DRP) scheme

(22). Among these methods, the DRP scheme is the most simple thanks to the use

of symmetric finite differences on uniform Cartesian grids. To simulate curvilinear

problems in aeroacoustics, grid-optimized dispersion-relation-preserving (GODRP)

schemes were developed (23). However, the prediction of aerodynamic noise is bur-

densome because of the huge cost of CAA simulations, which resulted in developing

hybrid methods. Hybrid methods use two sets of equations, one for the flow and an-

other one for the acoustic disturbance field.
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2.1. Introduction 13

To control the flow and sound side effects, self-adaptive devices can be utilized.

The devices for manipulating vortex shedding play a critical role in many engineer-

ing problems. As an illustration, splitter plates have been known as one of the ef-

fective ways for controlling vortex shedding (34, 35). Recently, several investiga-

tions have been carried out on the effect of an attached rigid splitter plate on the

flow pattern behind a cylinder (36–38). They showed that the length of the splitter

plate strongly influences the character of the vortex shedding for different fluid flow

regimes. Mazellier et al. (89) studied flexible membranes, similar to bird’s feathers,

to control the flow behind a square. Brucker et al. experimentally studied the effects

of flexible flaps on the flow around a cylinder. They showed that flaps can alter the

shedding cycle (39, 40). In addition, the motion pattern of the flaps changes to a

wavy shape when the amplitude is increased beyond some specific Reynolds. As

a result, the vortices transversal distance from the center line, structural vibrations,

and sound generation decrease.

The direct numerical simulation of sound waves stimulated by controlling de-

vices is complicated since the sound pressure is much smaller than the whole pres-

sure variation. In addition, the acoustic field spreads in large regions and this is

a time-consuming process. For example, the direct numerical simulation of sound

waves based on Navier-Stokes equations needs schemes of fifth-order accuracy in

space and fourth-order accuracy in time (26, 90, 91). On the other hand, the lattice

Boltzmann method (LBM) is a new and reliable method of computational fluid dy-

namics (CFD) which has been developed from the lattice gas method and can be

used as an alternative to simulate sound wave propagation. Furthermore, the cou-

pling of the LB method with the finite element method is relatively straightforward.

Generally, the LB method, an explicit time marching scheme, is used for a broad

category of advection-diffusion problems (1).

The LBM has been widely used in many applications in the field of acoustics.

Buick et al. (28) and Dellar et al.(29) studied sound wave propagation using LBM,

achieving acceptable results. Crouse et al. (92) investigated the propagation of

standing acoustic waves and showed that the LBM can yield relatively good results

on fundamental acoustic phenomena. Mari et al. (93) and Bres et al. (30) presented

the dissipation and dispersion of acoustic waves using the BGK-LBM. Viggen (94)
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14 Chapter 2. The cumulant LBM

proposed the sound propagation properties of the lattice Boltzmann equation for

both free and forced waves. In addition, he proposed an extended model containing

a bulk viscosity correction term with the idea that all equilibrium distributions must

be identical for the one-dimensional D1Q3 velocity set. Dhuri et al. (95) investigated

linear acoustic wave propagation in heterogeneous media with the BGK approxima-

tion and the multi-relaxation-time collision operators for the D2Q5 model. It should

be noticed that many different schemes have been used because of numerical in-

stabilities appearing when dealing with high Reynolds numbers (96–98) or specific

characteristics of the fluid: the Taylor expansion method (99), the dual entropy ap-

proach (100), the local/global lower bound on the relaxation time (101), selective

viscosity filtering (102), dissipation/dispersion optimized multiple relaxation times

(103–105), augmenting hyper-viscosities in non-uniform grids (106–108), the entropy

H-theorem (109–112), a regularized method for the BGK-LBM (31), the recursive and

regularized LBM (LBM-rrBGK) (32, 33), and the cumulant LBM (5, 6, 43, 75). The re-

cursively regularized LBM has been recently expanded and used for isothermal and

weakly compressible flows at high Reynolds numbers, and fully compressible flows

(113–115). Among these schemes, all of them having advantages and disadvantages,

here the cumulant LBM is chosen due to the number of existing studies in the field of

acoustics. Therefore, the aim of this work is to study the capability of the cumulant

LBM to simulate sound wave propagation by calculating the deviation from analyt-

ical results, notably the dissipation and dispersion errors. Moreover, it tries to assess

the effects of SPCH at high velocities on the noise beyond the cylinders, particularly,

the acoustic damping effect of such flaps on sound propagation through interactions

among acoustic waves, solid walls and shear layers.

2.2 Methodology

To study the effects of SPCH on the fluid domain and sound wave propagation,

this section presents an explanation of the mathematics behind this complex phe-

nomenon. First, the general description of the cumulant lattice Boltzmann method

as a flow field solver is provided. Second, the finite element system of equations
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2.2. Methodology 15

derived for the structural solver and the Newmark Method is explained. Then, de-

tails on the fluid structure coupling are considered. Finally, to analyze the results

of the cumulant LBM for the wave propagation, the general form of the lossy wave

equation is obtained.

2.2.1 Cumulant lattice Boltzmann

The lattice Boltzmann method (LBM), a suitable substitute for Navier-Stokes solvers,

can simulate complex fluid flows. This mesoscopic method is obtained from Ludwig

Boltzmann’s kinetic theory of gases. Although the LBM is regarded as a finite dif-

ference method for solving the Boltzmann transport equation, it leads to the Navier-

Stokes equations by using the Chapman-Enskog expansion. The basic idea is that

gas or fluid motion is modeled by a discrete momentum distribution function, to

transfer momentum and energy through particle streaming and billiard-like particle

collision on a Cartesian grid, at each time step (1). In general, the lattice is denoted

by DdQq where d and q are the number of dimension and the number of the discrete

speeds, respectively. The lattice Boltzmann equation without an external force is

fi
(
x + exic∆t, y + eyic∆t, t + ∆t

)
− fi (x, y, t) = Ωi (2.1)

where fi, Ωi and c = ∆x/∆t are, respectively the particle distribution function, the

collision operator and the lattice speed, respectively.

In general, the LBM contains two key steps: collision and streaming. For the col-

lision term, different choices give rise to methods like BGK, MRT, cascade, cumulant,

and so on. This work considers the cumulant method as one of the newest and most

robust LB methods.

The probability density function (PDF) is (8)

f (ξ, η) = ∑
ij

f (ξi, ηj)δ(ξ − ξi)δ(η − ηi), (2.2)

where f is the probability mass function (PMF) and ξ, η are discrete random vari-

ables with ranges Rξ = {ξ1, ξ2, . . .}, Rη = {η1, η2, . . .} corresponding to the micro-

scopic velocities in x, y directions.
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16 Chapter 2. The cumulant LBM

The moments of such PDF, without any discontinuity problems can be calculated

as

µ′ξmηn =
∂m∂n

∂Ξm∂Hn M(Ξ, H)

∣∣∣∣
Ξ=H=0

, (2.3)

where M(Ξ, H) = ∑
ij

f (ξi, ηj)eΞξi eHηj is the moment generating function and H, Ξ are

the normalized wave numbers.

To reduce the Galilean invariant problems of the collision step, the moment gen-

erating function is shifted into the moving frame of reference of the fluid. Then, the

central moments can be calculated as

µξmηn =
∂m∂n

∂Ξm∂Hn
ıM(Ξ, H)

∣∣∣∣
Ξ=H=0

(2.4)

where ıM(Ξ, H) = e−Ξu/c−Hv/c M(Ξ, H) is the central moment generating function.

To use the advantage of the logarithmic form of the moment generating function,

the cumulant generating function is defined as (41)

cξmηn =
∂m∂n

∂Ξm∂Hn ln(M(Ξ, H))

∣∣∣∣
Ξ=H=0

. (2.5)

Each cumulant relaxes with an individual relaxation rate

c∗ξmηn = cξmηn + ωξmηn(ceq
ξmηn − cξmηn) (2.6)

where ceq
ξmηn are the cumulants of the equilibrium state. The equilibrium state for the

cumulant generating function is CGFeq = Ξu/c + Hv/c + ç2(Ξ2+H2)
2c2 (14). The sound

speed and the kinematic viscosity are calculated respectively, (116)

çs =
∆x√
3∆t

, (2.7)

ν =∆tç2
s (

1
ω
− 1

2
). (2.8)

To itemize the algorithm: First the central moments of the distribution function

are calculated using equation (2.4). Second, the cumulants are obtained from the

central moments. Third, the post-collision cumulants from the collision operator are

UNIVERSITAT ROVIRA I VIRGILI 
MESHFREE METHODS: MOVING BEYOND THE CUMULAN! LATTICE BOLTZMANN METHOD 
Mohsen Gorakifard 



2.2. Methodology 17

quantified based on equation (2.6). Fourth, post-collision central moments from the

post-collision cumulants are extracted. Fifth, the post-collision central moments are

transferred back to the distribution functions (1).

2.2.2 Structural analysis

One of the numerical methods to simulate structural phenomena, is the finite ele-

ment method (FEM). The FEM, generally, describes a set of algebraic equations for

a domain subdivided into small-interconnected parts called finite elements. The

elements are linked together by common boundaries, containing nodes, boundary

lines, and surfaces. In this study the Euler-Bernoulli beam is used as structure. The

transverse deflection w of the beam is governed by

d2

dx2

(
b

d2w
dxx

)
= f (x) , 0 < x < L (2.9)

where b = b(x), f = f (x), and f is the transversely distributed load. The function

b = EI where E is the elasticity modulus and I is the moment of inertia. Equa-

tion (2.9) needs four boundary conditions. The structural domain is divided into

a set of N line elements. To derive the element equations (117), a typical element

Ωe = (xe, xe+1) is isolated and the weak form of equation (2.9) over this element is

constructed as

0 =

xe+1∫
xe

v
[

d2

dx2

(
b

d2w
dx2

)
− f

]
dx

=

xe+1∫
xe

[
−dv

dx
d

dx

(
b

d2w
dx2

)
− v f

]
dx +

[
v

d
dx

(
b

d2w
dx2

)]xe+1

xe

=

xe+1∫
xe

(
b

d2v
dx2

d2w
dx2 − v f

)
dx +

[
v

d
dx

(
b

d2w
dx2

)
− dv

dx
b

d2w
dx2

]xe+1

xe

(2.10)

where v(x) is a weight function. Due to the two integrations by parts, an examina-

tion of the boundary terms makes it clear that the essential boundary conditions in-

volve the deflection w and its derivative dw/dx, whereas the natural boundary con-

ditions involve the bending moment bd2w/d2 and the shear force (d/dx)(bd2w/dx2)
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18 Chapter 2. The cumulant LBM

at the endpoint of the element. Using the following notation,

θ = −dw
dx

,

Φe
1 ≡

[
d

dx

(
b

d2w
dx2

)]
xe

, Φe
2 ≡

(
b

d2w
dx2

)∣∣∣∣
xe

,

Φe
3 ≡ −

[
d

dx

(
b

d2w
dx2

)]
xe+1

, Φe
4 ≡ −

(
b

d2w
dx2

)∣∣∣∣
xe+1

, (2.11)

equation (2.10) results in

0 ≡ B (v, w)− L (v) (2.12)

B (v, w) =

xe+1∫
xe

b
d2v
dx2

d2w
dx2 dx,

L (v) =
xe+1∫
xe

v f dx + v (xe)Φe
1 +

(
−dv

dx

)∣∣∣∣
xe

+ Φe
2 + v (xe+1)Φe

3 +

(
−dv

dx

)∣∣∣∣
xe+1

Φe
4,

which is a statement of the principle of virtual displacements, known as total poten-

tial energy of the beam element. Equation (2.12) requires interpolation functions (φ)

for the element, which are continuous with nonzero derivatives up to order two. By

satisfying the interpolation properties the functions are calculated as

we (x) = ue
1φe

1 + ue
2φe

2 + ue
3φe

3 + ue
4φe

4 =
4

∑
j=1

ue
j φ

e
j , (2.13)

ue
1 = w(xe), ue

2 = θ|xe
, ue

3 = w(xe+1), ue
4 = θ|xe+1

,

φe
1 = 1− 3

(
x− xe

he

)2

+ 2
(

x− xe

he

)3

, φe
2 = − (x− xe)

(
1− x− xe

he

)2

,

φe
3 = 3

(
x− xe

he

)2

− 2
(

x− xe

he

)3

, φe
4 = − (x− xe)

[(
x− xe

he

)2

− x− xe

he

]
.

The finite element model is calculated by substituting w from (2.13) and v = φi

into equation (2.12),
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2.2. Methodology 19

Kxe+1
ij =

xe+1∫
xe

b
d2φe

i
dx2

d2φe
j

dx2 dx, (2.14)

Fxe+1
i =

xe+1∫
xe

φe
i f dx + Φe

i , (2.15)

4

∑
j=1

Ke
iju

e
j − Fe

i = 0. (2.16)

To obtain the time-dependent form of the equation of motion, the mass matrix is

calculated as (118)

Me
ij =

xe+1∫
xe

mφe
i φe

j dx. (2.17)

And with the same b = EI, the matrix elements of M, K, and F are

Ke =
EI
h



12
h2

−6
h

−12
h2

−6
h

−6
h 4 6

h 2

−12
h2

6
h

12
h2

6
h

−6
h 2 6

h 4


, (2.18)

Fe = − f h
12



6

−h

6

h


+



Φ1

Φ2

Φ3

Φ4


, (2.19)

Me = mh



13
35 h 11

210
9
70 −h 13

420

h 11
210 h 1

105 h 13
420 −h 1

140

9
70 h 13

420
13
35 −h 11

210

−h 13
420 −h 1

140 −h 11
210 h 1

105


. (2.20)

The governing equation for the linear dynamic response of the finite element

system is

Mẍ + Cẋ + Kx = F, (2.21)
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20 Chapter 2. The cumulant LBM

where M, C, K are the mass, damping, and stiffness matrices. F is the external force

vector and x is the displacement vector (119).

The discrete equation system (2.21) is solved using the Newmark method, which

is a direct integration method (119). In this work, the standard Newmark method is

used as follows. It is first assumed that

xt+∆t = xt + (∆t)ẋt + (∆t)2 [(0.5− β)ẍt + βẍt+∆t] , (2.22a)

ẋt+∆t = ẋt + (∆t) [(1− γ)ẍt + γẍt+∆t] , (2.22b)

where β and γ are constant. Substituting equations (2.22a) and (2.22b) into the sys-

tem equation (2.21) and solving for ẍ results in

Kl ẍt+∆t = Fr
t+∆t, (2.23a)

Kl =
[
Kβ(∆t)2 + Cγ∆t + M

]
, (2.23b)

Fr
t+∆t = Ft+∆t − K

{
xt + (∆t)ẋt + (∆t)2(0.5− β)ẍt

}
− C {ẋt + (∆t)(1− γ)ẍt} .

(2.23c)

Thus, the accelerations ẍt+∆t can be calculated by solving the matrix equation system

(2.23a). The velocities and displacements can be obtained by means of equations

(2.22a) and (2.22b). The Newmark method is unconditionally stable provided that

γ = 0.5 and β ≥ (2γ + 1)2/16.

2.2.3 Coupling scheme

Fluid-structure interaction (FSI) is the coupling between the laws of fluid dynamics

and those of structural mechanics. Forces exerted on the object lead to deformations

depending on the pressure and velocity of the flow and the material properties of the

structure. Therefore, the velocity and pressure fields have effects on the structural

deformations, and vice versa.

In general, partitioned and monolithic solution procedures have been developed

for the numerical simulation of FSI problems (120). In this work, as in reference (120)
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2.2. Methodology 21

the partitioned method is used which means that separate solvers are chosen: The

cumulant LBM for the fluid solver and the finite element method for the structural

solver.

There are two possibilities to obtain forces on boundaries in LBM calculations:

Momentum exchange and Stress integration (121). Even though the Momentum

exchange scheme predicts well integral forces on large structural elements, when it

comes to consider the resolution order of the fluid mesh this scheme is not reliable

due to the considerable reduction of matching links. Therefore, to evaluate the forces

on boundaries with the LBM, here the Pressure/stress integration scheme is chosen.

Such scheme benefits from the locally available stress tensor in LBM calculated as

SI J = −ç2
s ρδI J + σI J (2.24)

where δ is the Kronecker-Delta. The stresses on the boundary node can be extrapo-

lated from neighboring cells through the matching squares algorithm (122) by gen-

erating isolines on fixed Cartesian grids. In general, there are 16 possibilities of inter-

section of a structure boundary node and a fluid cell, as discussed in reference (120).

Figure 2.1 shows two possibilities for the position of the structure inside the fluid do-

main and the extrapolation of the stresses on the boundary node from neighboring

cells. The extrapolation of the stresses for Structure 1 reads

FIGURE 2.1: Two possibilities for the position of the structure inside
the fluid domain.
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22 Chapter 2. The cumulant LBM

SSW = 2SNE − SNENE, (2.25)

and the extrapolation for Structure 2,

SSW = 2SNW − SNMW ,

SE = 2SNE − SNNE. (2.26)

The next step after extrapolation is a bilinear interpolation for the stresses

S = (1− w1) (1− w2) SSW + w1 (1− w2) SSE + w1w2SNE + (1− w1)w2SNW (2.27)

where w1 and w2 are normalized weight factors.

By integrating along the boundary Γ the scalar product of the stress tensor times

the unit normal vector, the load vector is calculated,

F =
∫
Γ

S · n dΓ. (2.28)

Considering the fact that the stress components are linear (figure 2.2), the load

vector at point BB using equation 2.28 equals to

FBB = (0.25SAA + 0.75SBB) nAABB0.5lAABB + (0.75SBB + 0.5SCC) nBBCC0.5lBBCC.

(2.29)

Owing to the two different grids for structure and fluid, an interface mesh is used

to couple both meshes. This mesh is made of a polyline at which physical quantities

are required to be stored. The interface mesh can be adapted by the FEM and LBM

solvers. Due to the effect of the fluid and the structure on each other there is the

possibility that after some structure movement a node in the fluid domain relocates

to the solid domain and vice versa. Therefore, the algorithm must activate and de-

activate the nodes inside the domains (Fig 2.3). In addition, the local velocity at the
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2.2. Methodology 23

FIGURE 2.2: Force calculation from stress.

new fluid node is obtained from linear interior extrapolation. The pressure and the

higher order moments are calculated based on a local Poisson type of iteration (123).

The distribution functions of the new active node (fluid) are constructed or initial-

ized as the summation of the equilibrium functions, calculated by extrapolating the

velocity and the density, plus the non-equilibrium parts, obtained by the previously

determined pressure and higher order moments (120, 121, 123).

FIGURE 2.3: Active (fluid) and inactive (structural) nodes in the LBM
grid.

The FSI algorithm is depicted in Fig 2.4: First the fluid solver calculates the load

vector on the interface mesh points. Second, the loads are transferred through the in-

terface mesh. Third, the structural solver calculates the new displacements. Fourth,

the new displacements are transferred through the interface mesh. Fifth, the position

of the interface surface geometry is calculated by the fluid solver. Sixth, the previous

steps are repeated in a sequence.
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24 Chapter 2. The cumulant LBM

FIGURE 2.4: Coupling algorithm.

2.2.4 The wave equation

Acoustic waves constitute one kind of pressure fluctuations that cause the propa-

gation of energy through a medium: gas, liquid, and solid. Even though there are

different ways to obtain the lossy wave equation (124), here it is derived based on

references (125, 126).

The general form of the nonlinear Navier-Stokes equation, without external body

forces, is

ρ

(
∂u
∂t

+ (u.∇) u
)
= −∇p +

(
4
3

η + ηB

)
∇ (∇.u)− η∇×∇× u, (2.30)

where η is the coefficient of shear viscosity, ηB is the coefficient of bulk viscosity, and

η∇ × ∇ × u is the dissipation of acoustic energy, which has few effects on linear

acoustics.

In general, a quantity called condensation is defined in linear acoustics, s =

(ρ− ρ0) /ρ0 which is the ratio between the deviation from the equilibrium density

and the equilibrium density itself, and must be small. In addition, the total pressure

equation is written as p = p0 + p′ where p0 is the atmospheric pressure and p′ is the

acoustic pressure.

Using the linearized form of equation (2.30) and the linearized continuity equa-

tion ∇ · u = −∂s/∂t, plus the equation of state p′ = ρ0ç2
s s, leads to a lossy wave

equation,
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2.3. Results and Discussion 25

(
1 + τs

∂

∂t

)
∇2 p′ =

1
ç2

s

∂2 p′

∂t2 (2.31)

where

τs =
1

ρ0ç2
s

(
4
3

η + ηB

)
.

2.3 Results and Discussion

In this section, the cumulant LBM is used first to calculate the acoustic dissipation

and dispersion for benchmark cases, and the results are compared with theoretical

values. Second, spherical wave propagation at a very low viscosity is studied by

means of different LB methods and the results are compared with the theoretical

solution. Finally, the cumulant LBM is coupled with a finite element method to

study the effect on the flow and sound propagation around one single and two twin

cylinders due to SPCH at high Re numbers, as a real engineering FSI case of study.

2.3.1 Acoustic properties of the cumulant lattice Boltzmann method

The LBM has been used to model the aerodynamic and hydrodynamic character-

istics of different phenomena, moreover, it has the capability to directly obtain the

acoustic field without additional computational cost. In this section, the aim is to

study the accuracy of the cumulant LBM in predicting acoustic properties for bench-

mark cases before extending it to fluid-structure interaction applications in the fol-

lowing sections. Initially, the dispersion and dissipation relations of the propaga-

tion of a plane wave are presented based on the temporal and spatial analyses from

equation (2.31) as in Bres et al.’s work (30). Then, the propagation of a standing

plane wave and a planar acoustic pulse of Gaussian shape is implemented using the

cumulant LBM. Numerical errors, finally, for the dissipation and dispersion param-

eters are computed for these cases.

Planar standing wave

A standing plane acoustic wave is considered for a temporal analysis as a first config-

uration. The calculated dissipation and dispersion relations based on the temporal
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26 Chapter 2. The cumulant LBM

analysis of equation (2.31) (30) lead to

cT = çs

√
1−

(
kν

çs

)2

, (2.32a)

αT = k2ν, (2.32b)

where k is the wave-number. The assumptions for this set-up are listed in table

2.1. For a linear acoustic problem, the perturbation amplitude p′ is chosen small

compared to the average pressure p0. Periodic boundary conditions are applied in

both directions. The time step is chosen so that we have dispersion and dissipation

effects, but not boundary side effects.

TABLE 2.1: Parameters for the planar standing wave

Variables p′(x, y, 0) ρ′ u′ v′ A

Description A sin
( 2πx

λ

) p′

ç2
s

p′
ρ0çs

0 10−3 p0

The acoustic pressure at time t is (30)

p′(x, y, t) = A exp [− (αT + αnum
T ) t] sin [k (x− (cT + cnum

T ) t)] , (2.33)

where the superscript "num" denotes the deviation between the numerical and theo-

retical values. Therefore, cnum
T and αnum

T are the deviation phase speed and temporal

dissipation rate, respectively. These coefficients can be derived, for any location,

from the plot of the perturbation versus time using nonlinear least-squares fitting

and equations (2.32a) and (2.32b). In addition, the results can be presented either

as a function of the number of the points per wavelength Nppw = λ/∆x or the non

dimensional wave-number k∆x = 2π/Nppw.

To study the accuracy of the propagation of waves using the cumulant LBM,

various viscosities and different resolutions (i.e. number of points per wavelength)

are considered. One of the most important properties for characterizing fluid flow

which has a vital effect on the accuracy of acoustics simulations is the bulk viscosity

(1, 6, 14). Figure 2.5 shows the comparison between numerical results for two differ-

ent choices of the bulk viscosity against the analytical solution. The subfigures show

UNIVERSITAT ROVIRA I VIRGILI 
MESHFREE METHODS: MOVING BEYOND THE CUMULAN! LATTICE BOLTZMANN METHOD 
Mohsen Gorakifard 



2.3. Results and Discussion 27

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time Step 10-3

-1

-0.5

0

0.5

1

1.5

p
/A

Numerical result for case 1
Analytical result
Numerical result for case 2

(A) ν = 1.5× 10−3m2/s.
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(B) ν = 1.5× 10−1m2/s.

FIGURE 2.5: Non-dimensional acoustic pressure p′/A vs. time his-
tory [s] at (0,0) for the planar standing wave considering two differ-
ent choices for the bulk viscosity: Case 1 where the relaxation time
for the bulk viscosity is chosen based on equation (2.8)) and Case 2
where the value of the relaxation time for the bulk viscosity is chosen

as 1.

the results for values ν = 1.5× 10−3m2/s and ν = 1.5× 10−1m2/s of the kinematic

viscosity and Nppw = 18 point per wavelength. Case 1: the relaxation time for the

bulk viscosity is chosen based on equation (2.8). Case 2: the value of the relaxation

time for the bulk viscosity is chosen as 1. Therefore, a wrong selection of the bulk

viscosity leads to inaccurate results.

Figure 2.6 presents the acoustic pressure time-history for ν = 1.5 × 10−2m2/s

with Nppw = 12 points per wavelength. The relative numerical error of the phase

speed and temporal dissipation rate are presented as functions of the non dimen-

sional wave-number in table 2.2. The table shows that the deviations from the theo-

retical values are small, even for a relatively low resolution with 12 points per wave-

length: about 0.77 percent in the phase speed and 0.018 percent in the dissipation

UNIVERSITAT ROVIRA I VIRGILI 
MESHFREE METHODS: MOVING BEYOND THE CUMULAN! LATTICE BOLTZMANN METHOD 
Mohsen Gorakifard 



28 Chapter 2. The cumulant LBM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time Step 10-3

-1

-0.5

0

0.5

1

p
/A

Numerical result
Analytical result

FIGURE 2.6: Non-dimensional acoustic pressure p′/A vs. time his-
tory [s] at (0,0) for the planar standing wave.

rate. It should be noted that by reducing the viscosity, the phase speed and dissi-

pation errors are almost constant. Thus the results are only a function of Nppw and

are independent of viscosity in the range of interest. It can be concluded that the

results of the cumulant LBM show a good agreement with the theoretical values and

behave similarly to the numerical values of reference (30).

TABLE 2.2: Relative numerical error of the specified acoustic proper-
ties as a function of the non-dimensional wave-number (k∆x) for the

planar standing wave.

k∆x π/12 π/6 π/4 π/3 π/2

cnum
T /cT −1.8× 10−3 −7.7× 10−3 −1.7× 10−2 −3.1× 10−2 −7.2× 10−2

αnum
T /αT −7.5× 10−4 −1.8× 10−4 −1.2× 10−3 −4.3× 10−3 −2.5× 10−2

Planar pulse wave

A planar pulse wave is studied for a spatial analysis where acoustic waves of fixed

frequencies propagate through the domain. The dissipation and dispersion relations

derived, based on the spatial analysis from equation (2.31) (30) are

cS =
√

2çs

√√√√ 1 + (ωτs)
2√

1 + (ωτs)
2 + 1

, (2.34a)

αS =
ω√
2çs

√√√√√
1 + (ωτs)

2 − 1

1 + (ωτs)
2 . (2.34b)
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With the assumptions presented in table 2.3, a planar pulse of Gaussian shape ini-

tially propagates from the origin through the domain where periodic boundary con-

ditions are imposed. The time step is chosen in a way that the pulse passes without

interfering with the boundaries.

TABLE 2.3: Parameters for the planar pulse wave

Variables p′(x, y, 0) ρ′ u′ v′ A σ

Description A exp
(
− ln (2) x2

σ2

)
p′

ç2
s

p′
ρ0çs

0 10−3 p0 0.03

The Fourier transform of the pressure time history of the passing wave gives the

Fourier coefficient of pressure p̂′ (x, ω)

p̂′ (x, ω) = p̂′ (x, 0) exp [− (αS + αnum
S ) x] exp

[
iω

x
cS + cnum

S

]
(2.35)

which is similar to the solution of equation (2.31) (30), where cnum
S and αnum

S are the

deviation phase speed and spatial dissipation rate, respectively. The coefficients are

calculated as a function of the frequency using the phase and amplitude of the ratio

p̂′ (x, ω) / p̂′ (x, 0) and the dissipation and dispersion relations given in equations

(2.34a) and (2.34b).
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p
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FIGURE 2.7: Non-dimensional acoustic pressure p′/A vs. time his-
tory [s] at origin ( ), 0.056m (−·−·−) and 0.128m (−−−−−) from

the reference position, for the planar pulse wave.

Figure 2.7 presents the acoustic pressure time-history of the propagation of the

planar Gaussian pulse for ν = 2.36× 10−2m2/s with a resolution ∆x = 0.004m. It

shows the planar wave as it moves toward the positions 0.056m and 0.128m from

the reference position. In addition, the amplitude of the wave changes with the
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FIGURE 2.8: Numerical error of the specified acoustic properties for
the planar pulse wave as functions of the angular frequency [Hz] (ν =

2.36× 10−2m2/s and different resolution).

10
3

10
4

-0.05

-0.025

0

0.025

0.05

S

S

num

S

FIGURE 2.9: Numerical error of the dissipation rate [Np/m] for the
planar pulse wave as a function of angular frequency [Hz] (for ν =

2.35× 10−4m2/s and resolution ∆x = 0.004m).

propagation distance from the reference point. The relative numerical error of the

phase speed cnum
S /cS and the dissipation rate αnum

S (in Np/m, where Np is a dimen-

sionless unit called neper) are depicted in figures 2.8a and 2.8b as functions of the

angular frequency, for resolutions ∆x = 0.004m (Case 1), ∆x = 0.002m (Case 2), and
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∆x = 0.001m (Case 3). Errors are small as in the planar standing wave example,

even for the relatively low resolution ∆x = 0.004m. Various viscosities, as in the first

set-up, are used to study the predictive accuracy of the cumulant LBM in a traveling

planar pulse. Figure 2.9 presents the relative numerical error of the dissipation rates

for ν = 2.35× 10−4m2/s and resolution ∆x = 0.004m. It shows the same behavior as

in the planar standing wave case regarding the reduction of viscosity. To conclude,

the results of the cumulant LBM show a good agreement with the theoretical values

for the dissipation rate.

2.3.2 Spherical wave

Unlike section 2.3.1 where the wave propagates in a straight line, in most real cases,

sources generate a wave which expands in a set of spherical wave fronts. The an-

alytic solution for an outgoing cylindrical wave obtained from equation (2.31) in

cylindrical coordinates is

ρ′ (x, y, t) = AH(2)
0 (kr) exp (iωt) , (2.36)

where H(2)
0 is the zeroth-order Hankel function of the second kind (126). In the

following section, spherical wave propagation is studied using the cumulant LBM

for a low value of the viscosity ν = 1.5× 10−5m2/s.

Acoustic pulse

A pseudo-2D acoustic pulse is investigated as a first configuration of spherical wave

propagation, where the pulse assumes a Gaussian shape. This is the most stan-

dard aeroacoustic 2D benchmark case (127). Table 2.4 shows the assumptions of this

setup. Periodic boundary conditions are chosen. However, the time step as well as

the total simulation time are set to avoid any boundary effects.

For very low viscosities and small amplitudes of the acoustic perturbation, equa-

tion (2.36) results in the density fluctuation ρ′ (x, y, t) (128):

ρ′ (x, y, t) =
A
2α

∞∫
0

exp
(
−s2

4α

)
cos (çsts) J0 (rs) s ds, (2.37)

UNIVERSITAT ROVIRA I VIRGILI 
MESHFREE METHODS: MOVING BEYOND THE CUMULAN! LATTICE BOLTZMANN METHOD 
Mohsen Gorakifard 



32 Chapter 2. The cumulant LBM

where J0 is the zeroth-order Bessel function of the first kind.

In this set-up, an acoustic pulse is generated by an initial Gaussian pressure dis-

tribution from the center of the computational domain, then the wave front of the

pulse expands rapidly throughout the domain.

TABLE 2.4: Parameters for the pseudo-2D acoustic pulse

Variables ρ′ u′ v′ ε α b r

Description ε exp
(
−αr2) 0 0 10−3 ln(2)

b2 10−1 √
x2 + y2

Figure 2.10 draws a comparison between the numerical and analytical solutions

for the density function of the acoustic pulse propagation. There is a good agree-

ment between the cumulant LBM and the analytical solution at time steps 10 (figure

2.10a) and 100 (figure 2.10b). The results show that the cumulant LBM faithfully

reproduces the spherical acoustic pulse wave at a very low viscosity.
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(B) Time step=100.

FIGURE 2.10: The comparison of the analytical and numerical values
of the perturbation ρ′[kg/m3].
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Acoustic point source

In the preceding section, finite acoustic waves propagate throughout the domain

from an initial wave distribution. It is time to study infinite waves such as those

produced by a point source which emits a sinusoidal signal. The assumptions for

this set-up are presented in table 2.5.

TABLE 2.5: Parameters for the acoustic point source

Variables ρ′ ω B r T

Description B sin(ωt) 2π
T 10−2 √

x2 + y2 20

To simulate this point source, a sinusoidal density function is fixed to the LBM

lattice at the center of the domain as in references (129) and (126). Furthermore, the

velocity can be chosen as a constant (u = 0) or based on the particles streaming into

the source node to guarantee conservation inside the domain. In addition, periodic

boundary conditions are imposed.

In order to make a meaningful assessment of the results of different LB meth-

ods regarding the stationary analytic solution for the point source cylindrical waves

given by equation (2.36), we used the same method as Viggen (126) and Sagaut et

al. (130). Figures 2.11 and 2.12 show the comparison between the numerical result

and the stationary analytical solution for the propagation of the density function of

the acoustic point source wave. The comparison shows a good match between the

cumulant LBM result and the stationary analytical solution at time steps 60 (figure

2.11a), 120 (figure 2.11b), and 160 (figure 2.11c). It should be noted that the reason

why the numerical density is 0 beyond a certain point is that the spherical waves

spreading from the source have not yet reached those points at that time. The plots

for different time steps show that the unsteady spherical waves follow the station-

ary analytical solution by overlapping it over time. In addition, as Viggen (126) and

Sagaut et al. (130) have shown, the stationary analytical graph can give a mature and

understandable prediction of the wave motion throughout the whole domain. On

the contrary, the comparison does not draw a good match between the BGK LBM

and the analytical solution at time steps 60 (figure 2.12a), 120 (figure 2.12b), and 160

(figure 2.12c). Even though, the numerical results follow the analytic solution, they
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FIGURE 2.11: Comparison of the stationary analytical and numerical
values of the perturbation ρ′ [kg/m3] for the cumulant LBM.

display noisy behavior, as the method is unstable at low viscosities. In a nutshell, the

acoustic point source example can illustrate the power of the cumulant lattice Boltz-

mann method to naturally simulate acoustic behavior even at a very low viscosity.

2.3.3 Splitter plates attached to a cylinder looking like hair (SPCH)

There is a growing need for the SPCH to control flow and Aeolian tones in many

industries. Aeolian tones, i.e. sound generated by flow over objects, is relevant to
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FIGURE 2.12: Comparison of the analytical and numerical values of
the perturbation ρ′ [kg/m3] for the BGK LBM.

airframes at high Reynolds numbers. To have a good assessment of such devices, the

finite element method as a structural solver is coupled with the cumulant LBM as a

fluid solver. Thus, this section will challenge the cumulant LBM in a real engineering

FSI modeling problem, by focusing on the influence of the SPCH on the dynamics of

a cylinder wake flow.

Six cases are examined in this section, presented in table 2.6 and figure 2.13.

UNIVERSITAT ROVIRA I VIRGILI 
MESHFREE METHODS: MOVING BEYOND THE CUMULAN! LATTICE BOLTZMANN METHOD 
Mohsen Gorakifard 



36 Chapter 2. The cumulant LBM

These cases consist of a single cylinder and two twin cylinders aligned perpendic-

ularly to the free stream and whose centers are 3 diameters apart. The origin of

coordinates is the mid-point between the two cylinder centers. Case 1 and Case 4

should be considered as references for Cases 2 and 3, and Cases 5 and 6, respec-

tively, when describing figures 2.14, 2.17, and 2.18. Table 2.7 shows the assump-

tions for the fluid and the domain in these setups. The Reynolds number is chosen

based on the cylinder diameter and the free stream velocity. The fluid character-

istics are set based on air. The flexible flaps are distributed homogeneously along

the aft part of the segments facing the downstream direction at 60 degrees from the

center. In addition, the Young modulus is 12.525 × 106kg/ms2 and the structural

density is ρsolid = 1000kg/m3. The boundary conditions include velocity inlet (U0),

non-reflecting (14) and pressure outlet boundary conditions, plus the bounce back

scheme (120). It should be noted that we used the modified bounce back scheme de-

veloped in (131, 132) for the velocity, which is second order accurate for arbitrarily

shaped boundaries.

TABLE 2.6: Cases studied for the SPCH (r is the radius of the cylinder)

Cases Figures Cylinders Flaps Length of flaps Width of flaps State of flaps

1 2.13a 1 0 × × ×
2 2.13c 1 3 r 0.001 m Stationary

3 2.13e 1 2 2r 0.001 m Moving

4 2.13b 2 0 × × ×
5 2.13d 2 3 r 0.001 m Stationary

6 2.13f 2 2 2r 0.001 m Moving

To validate the results, the cumulant LBM results for Cases 1 and 4 are compared

with experimental and several previous numerical studies.

TABLE 2.7: Parameters for the SPCH study

Variables U∞ D fluid Domain length Domain width

Values 24.5 m/s & 73.5 m/s 0.00955 m air 60 D 30 D

Table 2.8 presents the comparison between experimental (133, 134) and cumulant

LBM results on the Strouhal number, a dimensionless number describing oscillating
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(A) Case 1. (B) Case 4.

(C) Case 2. (D) Case 5.

(E) Case 3. (F) Case 6.

FIGURE 2.13: Computational domain of the cases studied for the
SPCH problem.

flow mechanisms. It is defined as St = 2r/(U∞T) = (2r f )/U∞, where T and f are

the period and the frequency of the vortex shedding, respectively. The results in

table 2.8 are for Case 1 of figure 2.13 at Re = 1.58× 104. The results are presented for

three grid resolutions. The Strouhal number for grid resolutions 2 and 3 shows less

than 1 percent deviation from the reference data.

TABLE 2.8: The Strouhal number for Case 1

St

Experimental result (133, 134) 0.201

Cumulant LBM result for grid resolution 1 (nodes=525056) 0.185± 0.001

Cumulant LBM result for grid resolution 2 (nodes=1050112) 0.203± 0.005

Cumulant LBM result for grid resolution 3 (nodes=2100225) 0.202± 0.011

Table 2.9 shows a similar comparison for Case 4 and Re = 1.58× 104. It shows
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that the results for grid resolutions 2 and 3 are between the results of Guenanff and

Lockard (135). Therefore, to reduce the computational cost, the grid resolution 2 is

used.

TABLE 2.9: The Strouhal number for Case 4

St

Kia et al. (136) 0.205

Cheong et al. (137) 0.204

Guénanff et al (135) 0.212

Lockard (135) 0.222

Loh et al. (135) 0.239

Cumulant LBM result for grid resolution 1 (nodes=525056) 0.194± 0.001

Cumulant LBM result for grid resolution 2 (nodes=1050112) 0.218± 0.004

Cumulant LBM result for grid resolution 3 (nodes=2100225) 0.215± 0.009

The generation of vorticity past the cylinders under consideration can give a

good estimation of the effects of SPCH. Figure 2.14 shows the spread of the vorticity

in the wake past the cylinder for Cases 1-3 and Re = 4.7× 104. Figure 2.14a shows a

wavy layer of discrete vorticity moving downstream in the wake of the cylinder for

Case 1. Near the cylinder, the wave pattern is sharper than in farther downstream,

due to momentum transport within the system caused by random and chaotic time-

dependent motion occurring in the region. In addition, the figure shows that the

spatial generation of vorticity is asymmetrical. The position of the vortices changes

with time; in fact, vorticity oscillates and radiates sound waves into the flow. Figure

2.14b depicts the spread of vorticity created by three flaps which are not allowed to

move. It shows that the use of a sparse set of such flaps can passively manipulate

the vortex shedding generated in the wake of bluff bodies. The transverse distance

of the vorticity from the center-line reduces. Figure 2.14c depicts the spread of the

vorticity caused by two flaps with length L = 2r allowed to move. The mobility of

flaps is one of the major elements having great effects on the vorticity. It is clear that

the presence of flaps alters the phase within the vortex shedding cycle such that the

transversal dislocation of the shed vorticity is reduced. Accordingly, the vorticity is

not arranged in the same manner as in Case 1, instead it is shed in a row along the
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(A) Case 1.

(B) Case 2.

(C) Case 3.

FIGURE 2.14: Spread of the vorticity [1/∆t] in the wake behind a
cylinder for Cases 1-3.

center-line. Figure 2.15 illustrates the flap displacement vs. time for Case 3. The

black and red lines show the upper and lower flaps. In addition, the ’*’ symbols

indicate the times chosen to depict the state of the flaps in figure 2.16.

Figure 2.17 illustrates the spread of the vorticity in the street behind two twin

cylinders (Cases 4-6) and Re = 4.7× 104. In Figure 2.17a, the contour plots show

that the noise source for Case 4 is of dipolar nature. Far from the twin cylinders,

however, the pattern of the vorticity changes. The use of three flaps limits their

motion. The size and location of the vorticity change, especially when moving away
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FIGURE 2.15: Displacement [m] vs. time [s]

from the twin cylinders as depicted in Figure 2.17b. By using the length L = 2r for

flaps and letting them fluctuate as in Case 6, the arrangement of the vorticity in the

wake changes considerably. Figure 2.17c demonstrates that the vorticity is broken

into smaller pieces and its strength reduces. Therefore, there is a significant effect of

such moving flaps on the flow over twin cylinders.

The point located at (0D, 0.63D) from the center of the single cylinder (or the

upper cylinder in the twin-cylinder configurations) is selected for recording data

to depict the sound pressure level (SPL), where D is the cylinder diameter. Fig-

ure 2.18 shows the SPL vs. frequency, computed by Fast Fourier transform, for

Re = 4.7× 104. The SPL in dB is relative to the level of 20mPa. The figure shows

that the cylinder without flaps has higher frequency, however, its SPL is lower than

cylinders with 3 flaps. In addition, it shows that for twin cylinders, L = 2r and

moving flaps, the frequency and the SPL reduce. It means that flaps with special

characteristics can modify the shedding cycle past the cylinder, having an effect on

the generated sound, and can reduce the wake deficit. Young’s modulus has a great

effect on the flexibility and the mobility of the flaps, resulting in changes in sound

and flow patterns. Figure 2.19 shows the SPL vs. frequency for one cylinder with

two flaps of length 3r for two different Young’s modulus (E1 = 36.21× 106kg/ms2,

E2 = 36.23× 106kg/ms2) and Re = 4.7× 104. It should be noted that the Young’s

modulus is chosen to let flaps move but not touch each other. The less the Young’s

modulus, the higher the SPL and the frequency.
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(A) Time 0.006 s. (B) Time 0.0012 s.

(C) Time 0.002 s. (D) Time 0.0028 s.

(E) Time 0.0034 s. (F) Time 0.0043 s.

(G) Time 0.005 s. (H) Time 0.0056 s.

FIGURE 2.16: State of the flaps for eight selected times.

2.4 Conclusion

In this work a theoretical and numerical study of different types of sound wave

propagation, their dissipation and dispersion rates, was carried out using the cumu-

lant LBM. In addition, the cumulant LBM was coupled to a finite element method

creating a FSI platform to model the effects of simpler splitter plates attached to the

cylinder which look like hair on the flow and sound pattern in cylinder wakes.
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(A) Case 4.

(B) Case 5.

(C) Case 6.

FIGURE 2.17: Spread of the vorticity [1/∆t] in the wake behind twin
cylinders for Cases 4-6.

The temporal and spatial analyses of the acoustic properties for the standing

plane wave and the Gaussian planar pulse show that the cumulant LBM reproduces

the dissipation and dispersion rates of the theoretical solutions. In general, the phase

speed and dissipation errors are almost constant, even for a relatively low resolution

mesh, and they are independent of viscosity and fluid regime, but a function of the

number of points per wavelength.

The comparison with analytical solutions shows that the cumulant LBM correctly

reproduces the spherical acoustic pulse wave propagation, as well as the infinite
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(A) Single cylinder cases.
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(B) Twin cylinder cases.

FIGURE 2.18: Sound pressure level [dB] as a function of frequency
[Hz].
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FIGURE 2.19: Sound pressure level [dB] as a function of frequency
[Hz] for single cylinder case

spherical wave emitted from a point source. However, the BGK LBM has difficul-

ties reproducing infinite spherical wave propagation. The solution displays chaotic

behavior due to a numerical instability at low viscosities.

The FSI study of the effect of flaps on the vorticity and the frequency of the flow
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pattern using the cumulant LBM ends up with the idea that the mobility of such

flaps is one of the major factors altering the phase within the vortex shedding cycle.

They reduce the transversal dislocation of the shed vorticity, causing the vortices

being shed in a row along the center-line of the flow over a single cylinder.

As a final conclusion, the cumulant LBM correctly predicts the aerodynamic, hy-

drodynamic, and acoustic characteristics of different phenomena at high Re and dif-

ferent flow regimes in a simple way without additional computational cost.
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Chapter 3

The local radial point interpolation

cumulant LBM

The lattice Boltzmann method (LBM) has recently been used to simulate wave prop-

agation, one of the challenging aspects of wind turbine modeling and simulation.

However, standard LB methods suffer from the instability that occurs at low viscosi-

ties and from its characteristic lattice uniformity, which results in issues of accuracy

and computational efficiency following mesh refinement. The local radial point in-

terpolation cumulant lattice Boltzmann method (LRPIC-LBM) is proposed in this

work to overcome these shortcomings. The LB equation is divided into collision and

streaming steps. The collision step is modeled by the cumulant method, one of the

most stable LB methods at low viscosities. In addition, the streaming step, which is

naturally a pure advection equation, is discretized in time and space using the Lax-

Wendroff scheme and the local radial point interpolation method (RPIM), a mesh

free method. We describe the propagation of planar acoustic waves, including the

temporal decay of a standing plane wave and the spatial decay of a planar acoustic

pulse. The analysis of these specific benchmark problems has yielded qualitative

and quantitative data on acoustic dispersion and dissipation, and their deviation

from analytical results demonstrates the accuracy of the method. We found that the

LRPIC-LBM replicates the analytical results for different viscosities, and the errors

of the fundamental acoustic properties are negligible, even for quite low resolutions.

Thus, this method may constitute a useful platform for effectively predicting com-

plex engineering problems such as wind turbine simulations, without parameter

dependencies such as the number of points per wavelength Nppw and resolution σ
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or the detrimental effect caused by the use of coarse grids found in other accurate

and stable LB models.

3.1 Introduction

Evidences of early sailing boats on the Nile and of Persian pumps and mills from the

first century B.C. show humans were interested in Wind Energy since ancient times

(138). In general, a wind turbine is defined as a device which converts the wind’s

kinetic energy into electrical energy (139, 140). It plays a key role on producing inter-

mittent renewable energy and implementing a strategy to lower costs and reducing

the reliance on fossil fuels (141, 142). Wind turbines have unique aerodynamic and

aeroacoustic behavior that makes their prediction most challenging (15, 16), partic-

ularly their simulation needs an enormous number of grid points or cells, and long

enough time samples (17). Researchers and centers such as the National Renew-

able Energy Laboratory (NREL) and the National Wind Technology Center (NWTC)

have initiated multi-year programs on aeroacoustic wind turbine modeling (18) to

develop efficient and appropriate computational aeroacoustic (CAA) implementa-

tions. Among particular issues specified to wind turbine problems, the propagation

of sound is always a significant computational challenge (143, 144). With this aim,

different numerical approaches were developed in the field of computational aeroa-

coustics. Tam (19) and Wells et al. (20) proposed popular numerical schemes such

as compact and non-compact optimized schemes like the high-order compact differ-

ence scheme (21) and the dispersion-relation-preserving (DRP) scheme (22). Cheong

et al. proposed grid-optimized dispersion-relation-preserving (GODRP) schemes

for aeroacoustic simulations (23). Due to the huge cost of CAA simulations, hybrid

methods using two sets of equations, one for the flow and another one for the acous-

tic disturbance field were developed (24).

Direct aerostatic simulations are computer-intensive due to the small ratio be-

tween sound pressure and pressure variation as a whole, the spreading of acoustic

fields over a large area, and the time-consuming nature of traditional methods (25).

As an illustration, the direct numerical simulation of waves using Navier-Stokes
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equations requires schemes of fifth-order accuracy in space and fourth order accu-

racy in time (26, 27). Therefore, the lattice Boltzmann method (LBM), an explicit time

marching scheme (8), has been widely used as an alternative to simulate sound wave

propagation due to its kinetic nature, relative simplicity of implementation and par-

allelization. The LBM as a mesoscopic method uses probability density functions

(probability of finding particles within a certain range of velocities at a certain range

of locations at a given time) to model the momentum distribution in discrete space,

thereby economizing computer resources (1). Buick et al. (28) and Dellar et al. (29)

studied sound wave propagation using LBM and achieved acceptable results. Bres

et al. (30) and Gorakifard et al. (145) presented the dissipation and dispersion of

acoustic waves using the BGK-LBM and the cumulant LBM, respectively. Further-

more, a regularized method for the BGK-LBM (31) and the recursive and regularized

LBM (LBM-rrBGK) (32, 33) have been developed to model wave propagation.

One of the drawbacks of the LBM is lattice uniformity, originated from symmet-

ric lattice velocity models such as the square and cubic lattice meshes in 2D/3D

simulations (146). Lattice uniformity causes the streaming step to occur at uniform

neighboring grid points. Thus, the LBM is only applied to uniform meshes, whereas

issues of accuracy and computational efficiency mainly affect simulations of prob-

lems that require non-uniform meshes. For example, numerical simulations with

curved and irregular boundaries, common in wind turbine simulations, encounter

difficulties when fitting the grids to the boundaries or adapting complex compu-

tational domains. Grid refinement schemes or adaptive LBM can help to simulate

curved and moving boundaries more accurately (42). Wood (147) used refinement

in LBM simulations to analyze wind energy and utilized adaptive LBM for moving

boundaries (148). However, these schemes are associated with higher computational

costs and even additional perturbations in acoustical problems (43).

Generally, the methods commonly used along with the LBM on non-uniform

meshes include three distinct categories (149). The first is the interpolation sup-

plemented LBM (IS-LBM) (44, 45). This method adds an interpolation step to the

collision and streaming steps of the LBM. Two major drawbacks of the IS-LBM are

its inefficiency due to the need to interpolate at each time-step, and the appearance

of negative particle distributions (150). The second method is the combination of
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the LBM with the finite difference method (46), finite volume methods (47–49), or

finite element methods (50–52) used to stabilize the computation. The third method

is the Taylor-series expansion and least-squares-based lattice Boltzmann method (53,

54) instead of direct interpolation. These methods, the implementation of which is

somewhat simple, use continuous distribution functions in physical space.

Although the above numerical schemes show robustness for complex problems,

they are affected by the inherent shortcomings of using meshes in numerical meth-

ods, such as the enormous cost of generating meshes, the low level of stress accuracy

in fluid-structure interaction simulations (FSI) (119), obstacles in the adaptive anal-

ysis, and limitations in simulations of physical phenomena with singular, or nearly

singular behavior. Mesh-free or meshless methods have been devised to eliminate

mesh-related problems (151). The MFree method based on Liu’s definition (152)

is “a method that generates a system of algebraic equations for the entire problem

domain without consideration of a predefined mesh.” This means that the method

needs a set of scattered nodes inside the problem domain and on the boundaries of

the domain called field nodes. In addition, the relationship between the nodes for

the interpolation or approximation of the unknown field variables is not required

(151). Some of these well-known methods are the local point interpolation method

(LPIM) (153), the local radial point interpolation method (LRPIM) (154), and the

meshless local Petrov-Galerkin method (MLPG) (68, 155).

The coupling of LBM and MFree methods has achieved acceptable results in

some applications (71–73, 156); however, this approach is at an early stage of de-

velopment and must be improved to address instability in low viscosities and high

Re numbers. A key point in the stability and the accuracy of these methods is the

collision operator, which is not remarkable in early LB methods such as the BGK

model and the multi-relaxation times (MRT) model (6), both of which also violate

the principle of Galilean invariance. Therefore, using a suitable collision operator to

simulate complex engineering problems accurately has been recognized as a neces-

sity. The advent of the more stable cumulant LBM (5, 75) could dramatically improve

MFree-LB methods and contribute to their advancement as powerful numerical tools

for complex simulations.
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The aim of this work is to study the capability of the local radial point interpo-

lation cumulant LBM (LRPIC-LBM) to simulate the propagation of planar acoustic

waves, including the temporal decay of a standing plane wave and the spatial decay

of a planar acoustic pulse of Gaussian shape and calculate the deviation from theo-

retical results, and to determine whether this method might be useful for wind tur-

bine problems. The LB equation is deconstructed into collision and streaming parts.

The collision step is performed by means of the cumulant method. The streaming

step, which represents a pure advection equation, is discretized first in time using

the Lax-Wendroff scheme, and then in space using the local radial point interpola-

tion method (RPIM).

3.2 The lattice Boltzmann method

The lattice Boltzmann method (LBM) is obtained from the kinetic theory of gases. In

the LBM, a key point for modeling the momentum distribution in discrete space is

the use of probability density functions (1). The lattice Boltzmann equation without

an external force is

fi (x + ci∆t, t + ∆t)− fi (x, t) = Ωi (3.1)

where x and ci are vectors of the position and lattice speed and fi is the particle

distribution function and Ωi is the collision operator.

In general, the LBM consists of collision and streaming steps. In the local radial

point interpolation cumulant LBM (LRPIC-LBM), the cumulant method is used for

the collision part and the local radial point interpolation method (RPIM) is used for

the streaming parts.

3.2.1 Collision Step

The cascade method has been proposed (10, 157) as a way to overcome the instability

problems and modeling artifacts of previous LB methods. However, it is hindered

by the effects of lower order moments over higher order moments. The cumulant

method, presented by Seeger to solve the Boltzmann equation (12, 13), effectively
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resolves these issues. Cumulants can be efficiently generated from central moments.

The cumulant method for solving the LBM is described in section 2.2.1.

3.2.2 Streaming Step

To model the streaming step, the second most important part of the LBM, a pure

advection equation is normally solved from a Lagrangian approach within uniform

structured meshes with CFL numbers equal to one. However, considering the Eule-

rian perspective for the calculation can effectively resolve this step when meshes are

non-uniform and unstructured. The pure advection equation is

∂ fi

∂t
+ ci,α

∂ fi

∂xα
= 0, (3.2)

One alternative is a semi-discrete formulation with time and space derivatives

discretized separately. Thus, equation (3.2) is discretized using the explicit Lax-

Wendroff scheme in time, followed by the local radial point interpolation method

(LRPIM) in space. In addition, it is important to approximate the unknown field

functions using trial (shape) functions as an approximate solution for the partial dif-

ferential equation.

MFree shape function construction – Radial point interpolation shape functions

Radial point interpolation method (RPIM) shape functions were developed to cir-

cumvent the singularity problem arising in the point interpolation method (PIM).

The RPIM interpolation augmented with polynomials is

f h(x, t) =
n

∑
i=1

Ri(x)ai(t) +
m

∑
j=1

pj(x)bj(t) = RT(x)a(t) + pT(x)b(t) (3.3)

where Ri(x) is a radial basis function (RBF), and pj(x) is monomial in the coordinate

space xT = [x, y]: RT = [R1(x) R2(x) · · · Rn(x)] and pT = [p1(x) p2(x) · · · pm(x)].

Parameters n and m are the number of RBFs and polynomial basis functions. Vari-

ables ai and bj are time dependent unknown coefficients. It should be noted that the

independent variable in RBF Ri(x) is the distance between the point of interest x and

a node at xi.
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Different radial basis functions (RBF), and their characteristics have been studied

extensively in the meshless RPIM. In this work, the multi-quadrics (MQ) function is

used as

Ri =
(

r2
i + (αcdc)

2
)q

(3.4)

where αc = 1.0, q = 1.03, and dc = 3.0.

To determine the n + m unknown coefficients in equation (3.3), some specific

constraint equations and the Kronecker delta function property are dictated. These

constraints are

n

∑
i=1

pj (xi)ai (t) = PT
ma(t) = 0, j = 1, 2, ..., m (3.5)

where

PT
m =



1 1 · · · 1

x1 x2 · · · xn

y1 y2 · · · yn
...

...
. . .

...

pm(x1) pm(x2) · · · pm(xn)


(3.6)

Thus, the approximation function can be obtained as

f h(x, t) =
n

∑
i=1

φi (x) fi (t) = Φ (x) F (t) (3.7)

where F is a vector containing the nodal values of the distribution function and Φ is

a vector containing the first n components of the Φ̃ vector

Φ̃ =
[

RT pT
]

G−1 (3.8)

where

UNIVERSITAT ROVIRA I VIRGILI 
MESHFREE METHODS: MOVING BEYOND THE CUMULAN! LATTICE BOLTZMANN METHOD 
Mohsen Gorakifard 



52 Chapter 3. The local radial point interpolation cumulant LBM

G =

R0Pm

PT
m0

 , (3.9)

R0 =



R1(r1) R2(r1) · · · Rn(r1)

R1(r2) R2(r2) · · · Rn(r2)
...

...
. . .

...

R1(rn) R2(rn) · · · Rn(rn)


, (3.10)

rk =

√
(xk − xi)

2 + (yk − yi)
2. (3.11)

Semi-discrete formulation – Time discretization

The Taylor series expansion of the particle distributions is

f n+1
i = f n

i + ∆t
∂ fi

∂t

∣∣∣∣n + ∆t2

2
∂2 fi

∂t2

∣∣∣∣n + O(∆t3), (3.12)

where here n refers to the time step. Substituting the time derivatives in terms of the

t derivatives up to second order results in the time discretization of equation (3.2)

based on the Lax-Wendroff scheme,

f n+1
i = f n

i − ∆tci,α
∂ f n

i
∂xα

+
∆t2

2
ci,αci,β

∂2 f n
i

∂xα∂xβ
. (3.13)

Semi-discrete formulation – Space discretization

The local radial point interpolation method (LRPIM) was developed to avoid the

side effects of using global background cells in the global weak-form. In this method,

the numerical integration is performed within the local domain consisting of a set of

distributed nodes. The LRPIM is based on the RPIM shape functions with the delta

function property. The main advantage of the LRPIM is the excellent interpolation

stability of RBFs.

MFree local weak-form methods use the weak form of the problem obtained from

the method of weighted residuals (MWR). The weighted residual statement of equa-

tion (3.13) on the local domain ΩI of point I bounded by ΓI is posed as
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∫
ΩI

wI f n+1
i dΩ =

∫
ΩI

wI f n
i dΩ− ∆t

∫
ΩI

wIci,α
∂ f n

i
∂xα

dΩ

+
∆t2

2

∫
ΩI

wIci,αci,β
∂2 f n

i
∂xα∂xβ

dΩ
(3.14)

where wI is the local weight function of node I considered as

wI (r) =



2
3 − 4r2 + 4r3 r ≤ 0.5

4
3 − 4r + 4r2 − 4

3 r3 0.5 < r ≤ 1

0 r > 1

(3.15)

where r = |x− xi| /dmax and dmax is the radius of the compact support. Equation

(3.14) is applied to all nodes in the problem domain.

To work with a continuous approximate solution, it is necessary to decrease the

differentiation requirements of the unknown in the weighted residual statement by

employing integration by parts in equation (3.14),

∫
ΩI

wI f n+1
i dΩ =

∫
ΩI

wI f n
i dΩ−

∫
ΩI

(
∆twIci,α

∂ f n
i

∂xα
+

∆t2

2
ci,αci,β

∂wI

∂xβ

∂ f n
i

∂xα

)
dΩ

+
∆t2

2

∫
ΓI

wIci,αci,β
∂ f n

i
∂xα

nβ dΓ
(3.16)

where ΓI is the boundary of the local domain ΩI and nβ is the unit outward normal

vector.

Substitution of the approximate solution given in equations (3.7) into the weak

form given by equation (3.16) leads to

NI

∑
J=1

MI J f n+1
i,J =

NI

∑
J=1

[MI J + Ki,I J ] f n
i,J (3.17)

where MI J and Ki,I J are the nodal mass and stiffness matrix, respectively, defined as
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MI J =
∫

ΩI

wIΦJ dΩ (3.18)

Ki,I J = −
∫

ΩI

(
∆twI +

∆t2

2
ci,β

∂wI

∂xβ

)
ci,α

∂ΦJ

∂xα
dΩ +

∆t2

2

∫
ΓI

wIci,α
∂ΦJ

∂xα
ci,βnβ dΓ (3.19)

Thus, the global equation system for all nodes in the entire domain is obtained

as

M f n+1
i = [M + Ki] f n

i (3.20)

where M, K, and fi are the global mass matrix, stiffness matrix, and particle distri-

bution vector, respectively. This system has N equations with N unknowns which is

solved separately for each direction.

To numerically evaluate the area and the curve integrals in equations (3.18) and

(3.19) the Gauss quadrature scheme is used as follows

MI J =
ng

∑
k=1

w̃kwI (xk)ΦJ (xk)
∣∣∣JΩI

∣∣∣ (3.21)

Ki,I J = −
ng

∑
k=1

w̃k

(
∆twI(xk) +

∆t2

2
ci,β

∂wI

∂xβ

∣∣∣∣
xk

)
ci,α

∂ΦJ

∂xα

∣∣∣∣
xk

∣∣∣JΩI

∣∣∣
+

∆t2

2

nb
g

∑
k=1

w̃kwI(xk)ci,α
∂ΦJ

∂xα

∣∣∣∣
xk

ci,βnβ

∣∣∣JΓI

∣∣∣
(3.22)

where ng and nb
g are the total number of Gauss points in the quadrature domain

and boundaries, w̃k is the Gauss weight factor for Gauss point xk, JΩI and JΓI are the

Jacobian matrix for the domain and boundary integrations, respectively.

3.3 Results and Discussion

One of the complicated phenomena that has recently received major interest from

researchers using the LBM is wind turbine aeroacoustics (147, 148, 158, 159), which

can be directly simulated without additional computational cost. In this section, our

aim is to demonstrate the standard analysis procedure using the local radial point
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interpolation cumulant lattice Boltzmann method (LRPIC-LBM) to predict acous-

tic properties for benchmark cases. Thus, numerical studies are conducted for the

propagation of planar acoustic waves, concentrating on numerical dissipation and

dispersion. A quantitative assessment of the method’s two setups, including the

temporal decay of a standing plane wave in a periodic domain and the spatial decay

of a propagating planar acoustic pulse of Gaussian shape for regular and irregular

nodal distributions (shown in Figures 3.1a and 3.1b) are discussed below. It should

be noted that the default nodal arrangement is a regular distribution; the base units

are in the LB system.
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(A) Regular nodes.
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(B) Irregular nodes.

FIGURE 3.1: Nodal arrangement for the propagation of planar acous-
tic waves in LRPIC-LBM simulations.
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3.3.1 Planar standing wave

As an initial case study, we performed a temporal analysis on a standing plane

acoustic wave in a periodic domain. The dissipation and dispersion relations based

on the temporal analysis as represented in subsection 2.3.1 are

cT = çs

√
1−

(
kν

çs

)2

, (3.23a)

αT = k2ν (3.23b)

where k is the wave number. The assumptions for this set-up are presented in Table

3.1. They were chosen as in reference (145) for ease of comparison.

TABLE 3.1: Parameters for the planar standing wave

Variables p′(x, y, 0) ρ′ u′ v′ A

Description A sin
( 2πx

λ

) p′

ç2
s

p′
ρ0çs

0 10−3 p0

The acoustic pressure at time t is (145)

p′(x, y, t) = A exp [−αTt] sin [k (x− cTt)] (3.24)

It should be noted that the results of the temporal analysis can be considered

as a function of the number of points per wavelength Nppw = λ/∆x or the non-

dimensional wave-number k∆x = 2π/Nppw.

In accordance with the concepts discussed in (145) to study the accuracy of the

propagation of waves using the local radial point interpolation cumulant lattice

Boltzmann method (LRPIC-LBM), various viscosities and different resolutions (i.e.

the number of points per wavelength) were studied. Figure 3.2 shows the acoustic

pressure time history for ν = 1.0× 10−2 [ ∆x2

∆t ] with Nppw = 12 points per wavelength.

The analytical result is represented by a solid black line, whereas the cumulant LBM

and the LRPIC-LBM are shown with a red dashed line and a blue five-pointed star,

respectively. The deviations of the numerical phase speed and the temporal dissipa-

tion rate from the theoretical values are less than one percent for the BGK LBM (30)
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and the cumulant LBM (145) for resolutions lower than 12 points per wavelength.

However, the LRPIC-LBM exhibits even better behavior in predicting the acoustic

pressure of the analytical values.
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FIGURE 3.2: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 12 points per wavelength.

The acoustic pressure time history for ν = 1.0× 10−4 [ ∆x2

∆t ] with Nppw = 12 points

per wavelength is presented in Figure 3.3. It shows the comparison between the an-

alytical solution, the cumulant LBM and the LRPIC-LBM numerical solution at low

viscosities. One of the most problematic issues in the BGK LBM is the low viscos-

ity limit, which makes the solution unstable. However, the cumulant LBM, with

phase speed and temporal dissipation rate errors of less than 1 percent, as in refer-

ence (145), did not present difficulties at low viscosity. Although both approaches

were successful, the new method exhibited better performance, closely following the

theoretical result for the same viscosity value.

An important characteristic highlighted by some researchers (30, 145) is that

these numerical deviations are only a function of Nppw and are independent of other

parameters such as frequency and viscosity. They found that the errors of the BGK

(30) and the cumulant LBM (145) are about 7 percent for Nppw = 4. However, the

acoustic pressure time history for ν = 1.0× 10−2 [ ∆x2

∆t ] with Nppw = 4 points per

wavelength illustrated in Figure 3.4 for the analytical solution, the cumulant LBM

and the LRPIC-LBM reveals that the deviation is less than 2 percent for the LRPIC-

LBM, with ∆t = 0.25. Thus, the LRPIC-LBM is much more successful in predicting

theoretical results even with a low number of points per wavelength.
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FIGURE 3.3: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−4 [ ∆x2

∆t ] with Nppw = 12 points per wavelength.
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FIGURE 3.4: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 4 points per wavelength with ∆t = 0.25.

The choice of the time step size has an influence on the accuracy and stability

of the solution. A smaller time step leads to more accurate results, especially in

a hyperbolic partial differential equation (PDE). To minimize the phase speed and

dissipation rate errors, the time step was reduced. Figure 3.5 shows the acoustic

pressure time history for ν = 1.0× 10−2 [ ∆x2

∆t ] with Nppw = 4 points per wavelength

and ∆t = 0.1. The LRPI-CLBM replicates the analytical results with negligible errors.

Therefore, this method makes it possible to predict wave motion more accurately

with no dependency on the number of points per wavelength Nppw.

Although the results of the propagation of acoustic waves for regular nodal dis-

tributions were good, it is important to adequately estimate accuracy when con-

sidering irregular nodes (Figure 3.1b). The acoustic pressure time history for ν =
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FIGURE 3.5: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 4 points per wavelength with ∆t = 0.1.

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 12 points per wavelength is presented in Figure 3.6.

The results show that the local radial point interpolation cumulant lattice Boltzmann

method (LRPIC-LBM) with irregular nodal distributions again very closely repro-

duced the analytical acoustic pressure.
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FIGURE 3.6: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 12 points per wavelength with irregular
nodal distributions.

3.3.2 Planar pulse wave

Next, we studied a planar pulse wave by replacing the plane wave with a Gaussian

shape planar pulse, initially located at the center of the domain. The dissipation and
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dispersion relationships derived from the spatial analysis as represented in subsec-

tion 2.3.1 are

cS =
√

2çs

√√√√ 1 + (ωτs)
2√

1 + (ωτs)
2 + 1

, (3.25a)

αS =
ω√
2çs

√√√√√
1 + (ωτs)

2 − 1

1 + (ωτs)
2 . (3.25b)

The variables and parameters for this case are presented in Table 3.2. A planar

pulse emits from the origin throughout the domain, where periodic boundary con-

ditions are imposed.

TABLE 3.2: Parameters for the planar pulse wave

Variables p′(x, y, 0) ρ′ u′ v′ A σ

Description A exp
(
− ln (2) x2

σ2

)
p′

ç2
s

p′
ρ0çs

0 10−3 p0 0.06− 0.1

To assess the accuracy of the LRPIC-LBM in simulating the pulse wave emission,

we proceeded as in reference (145). Different viscosities and resolutions (which are

related to the choice of σ) were studied. Figure 3.7 depicts the acoustic pressure

time history for ν = 1.0 × 10−2 [ ∆x2

∆t ] with σ = 0.1. The cumulant LBM results

(dashed red line) are compared to the LRPIC-LBM (solid black line). As stated in (30,

145) the intensity loss at any location is proportional to the distance of propagation,

regardless of the precise location. Thus, the data were extracted from the center of

the domain, and at 5, 11, and 17 nodes apart from the center. For resolutions up to

σ = 0.1, deviations between the cumulant LBM and the LRPIC-LBM results were

less than 1 percent.

The acoustic pressure time history for ν = 1.0× 10−4 [ ∆x2

∆t ] with σ = 0.1 is shown

in Figure 3.8. It presents the comparison between the cumulant LBM and the LRPIC-

LBM at low viscosity. While the standard BGK LBM creates instabilities and noisy

results, less than 1 percent deviation was found between the cumulant LBM and this

method, with stable behavior at low viscosities. In addition, as in the case of the

temporal results shown in Figure 3.3, reducing the viscosity in the considered range
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FIGURE 3.7: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with σ = 0.1: the cumulant LBM (dashed red line),
LRPIC-LBM (solid black line).

did not substantially impact the results.
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FIGURE 3.8: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−4 [ ∆x2

∆t ] with σ = 0.1: the cumulant LBM (dashed red line),
LRPIC-LBM (solid black line).

Like the parameter Nppw introduced in the temporal analysis of the first set up,

σ is another effective parameter used in spatial analysis which affects the accuracy

of the LBM results.The acoustic pressure time history is depicted in Figure 3.9 for

ν = 1.0× 10−2 [ ∆x2

∆t ], with σ = 0.06. It shows that the deviations between the cumu-

lant LBM and the LRPIC-LBM results increase after the reduction of σ. The wiggling

observed in the results of the cumulant LBM is due to the reduction of the number

of nodes inside the pulse, which brings the accuracy of the results into question.

However, the LRPIC-LBM graphs are smooth and unaffected by the lesser number
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FIGURE 3.9: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with σ = 0.06: the cumulant LBM (dashed red line),
LRPIC-LBM (solid black line).

of nodes. To better assess the accuracy of the LRPIC-LBM compared to the cumu-

lant LBM, the data shown in Figure 3.9 were compared with the analytical results.

The Fourier transform of the pressure time history of the passing wave yields the

Fourier coefficient of pressure p̂′ (x, ω) = p̂′ (x, 0) exp [−αSx] exp
[
iω x

cS

]
which is

the solution to equation (2.31) (30). Figure 3.10 shows the ratio p̂′ (x, ω) / p̂′ (x, 0) as

a function of angular frequency for the analytical solution. This figure shows that

the LRPIC-LBM is more successful than the cumulant LBM at predicting theoreti-

cal results with σ = 0.06. Thus, this method can model wave propagation more

accurately even at smaller resolutions.

0 0.2 0.4 0.6 0.8 1 1.2
-1.5
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1.5

LRPICLBM
Cumulant LBM
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FIGURE 3.10: The ratio p̂′ (x, ω) / p̂′ (x, 0) as a function of angular
frequency [ 1

∆t ] for the analytical solution, the cumulant LB and the
LRPIC-LB methods.

Figure 3.11 illustrates the acoustic pressure time history for ν = 1.0× 10−2 [ ∆x2

∆t ]
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FIGURE 3.11: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for

ν = 1.0× 10−2 [ ∆x2

∆t ] with σ = 0.1 considering irregular nodal dis-
tributions: the cumulant LBM (dashed blue line), LRPIC-LBM (solid

black line).

with σ = 0.1 considering irregular nodes (Figure 3.1b). The cumulant LBM and the

LRPIC-LBM results are represented by a dashed blue line and a solid black line,

respectively. The data are extracted as in Figure 3.7. The results show that the

LRPIC-LBM with irregular nodal distributions reproduced the behavior observed

previously.

3.4 Conclusions

This work presents a numerical study of the propagation of acoustic waves, one

of the challenging issues occurring in wind turbine simulations, that includes the

temporal decay of a standing plane wave and the spatial decay of a planar acoustic

pulse, using the local radial point interpolation cumulant lattice Boltzmann method

(LRPIC-LBM). The LB equation is divided into collision, modeled by the cumu-

lant method, and streaming, discretized in time and space, using the Lax-Wendroff

scheme and the local radial point interpolation method (RPIM). The LRPIC-LBM

results were compared with the cumulant LBM and the analytical solutions. Both

methods showed a similar acoustic pressure time history, and the deviations for

the phase speed and the dissipation rate were minor for high number of points per

wavelength Nppw and resolution σ. In addition, they showed that reduced viscosity

does not affect the stability of either LB method due to the intrinsic characteristics of
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the cumulant method. Unlike LB methods such as the BGK LBM and the cumulant

LBM, the time history for the acoustic pressure and the phase speed and dissipa-

tion rate predicted by LRPIC-LBM showed considerably smaller errors for low Nppw

and σ due to the construction of the meshless method itself. Moreover, the LRPIC-

LBM with irregular nodal distributions reproduces the same propagation of acoustic

waves obtained with regular nodal distributions.

In summary, the freedom to scatter nodes based on problem conditions and the

occurrence of sharp gradients plus the accuracy obtained from the RPIM along with

the good stability and simplicity achieved by the cumulant LBM may provide an

adequate platform with which to model wind turbine problems.
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Chapter 4

The meshless local Petrov-Galerkin

cumulant LBM

As we have emphasized in previous chapters, the lattice Boltzmann method (LBM)

suffers from an instability at low viscosities and from having to compromise between

accuracy and computational efficiency due to its lattice uniformity. Thus, here, the

meshless local Petrov-Galerkin cumulant lattice Boltzmann method (MLPGC-LBM)

is proposed to remedy these shortcomings. The collision step is modeled by the cu-

mulant method, stable at low viscosities, and the streaming step is discretized first

in time based on the Lax-Wendroff scheme, then in space according to the mesh-

less local Petrov-Galerkin method, a mesh-free method (MLPG). To substantiate the

accuracy of this method in aeroacoustics, the temporal decay of a standing plane

wave, the spatial decay of a planar acoustic pulse, and the propagation of circular

waves are considered, and the results are compared with numerical and analytical

solutions. The comparisons show that MLPGC-LBM presents better results than

standard LB methods, replicating the local radial point interpolation cumulant lat-

tice Boltzmann method (LRPIC-LBM) results with relatively shorter runtimes, and

being in a good agreement with the analytical solutions. The errors of the acous-

tic dispersion and dissipation are irrelevant, even for quite low resolutions. There-

fore, MLPGC-LBM can offer an alternative to conventional aeroacoustics simula-

tions alongside LRPIC-LBM with shorter runtimes, without parametric dependency

on the number of points per wavelength and the resolution.
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4.1 Introduction

The lattice Boltzmann method (LBM) is restricted by the lattice uniformity resulting

from the symmetries of the lattice velocity model assumed. To overcome this restric-

tion, conventional non-uniform LB methods have been proposed, categorized in dif-

ferent types: interpolation-supplemented LBM (44, 45), combinations of LBM with

finite difference methods (46), finite volume methods (47–49), finite element meth-

ods (50–52), and Taylor-series expansion and least-squares-based lattice Boltzmann

methods (53, 54). These methods have succeeded in simulating different problems,

however, they suffer from drawbacks such as mesh generating costs, low accuracy

of the computed stress in fluid-structure interaction simulations (119), and a disabil-

ity to model singular physical phenomena. Thus, Mesh-Free methods are devised

to deal with such obstacles (151, 152) by using a set of nodes called field nodes, scat-

tered inside and on the boundaries of the domain. These methods generate a system

of algebraic equations for the field nodes, without the need to explicitly link them in

order to interpolate or approximate the unknown variables.

MFree methods have been developed along with old methods like the colloca-

tion method (160, 161), vortex method (57), finite difference method (162–164), and

smoothed particle hydrodynamics (165, 166). Among the MFree methods classified

according to their formulation procedure, the so called weak-form methods have

attracted the interest of many researchers and are broadly expanded (151), such as

the diffuse element method (63), the local radial point interpolation method (LR-

PIM) (154), the local point interpolation method (LPIM) (153), and the meshless local

Petrov-Galerkin method (MLPG) (68). The idea of combining LBM and Mfree meth-

ods has led to acceptable results in some cases (71–73). These studies use the stan-

dard Bhatnagar-Gross-Krook (BGK) approach which is not stable at high Reynolds

numbers and low viscosities (6, 74). Thus, combining the more stable cumulant LBM

(5, 75) with Mfree-LB methods could provide better results in different engineering

problems. This is the case when using the local radial point interpolation cumulant

lattice Boltzmann method (LRPIC-LBM) (76). It can predict analytical results with-

out parameter dependencies such as the number of points per wavelength Nppw, and

the resolution σ. In addition, as it will be shown in the following, the efficiency of
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Mfree-LB methods could be increased by substituting the local radial point interpo-

lation method with meshless local Petrov-Galerkin method in the Mfree part, due

to the fact that radial point interpolation method shape functions used in LRPIM

need more computational resources than moving least squares (MLS) shape func-

tions used in MLPG.

The main objective of this work is to study the ability of the meshless local

Petrov-Galerkin cumulant LBM (MLPG-LBM) to simulate aeroacoustics problems

and compute the errors and deviations from the experimental and standard LBM,

and LRPIC-LBM results. Thus, the LB equation is split into the collision part, mod-

eled through the cumulant method, and the streaming part which is discretized first

in time using the Lax-Wendroff scheme, then in space utilizing MLPG.

4.2 Lattice Boltzmann method

The lattice Boltzmann method (LBM) has been a good substitute for solving the

Navier–Stokes equations to model different fluid flow phenomena. The LBM is di-

vided into collision and streaming steps. The cumulant method as introduced in

section 3.2.1 is used for the collision part, while the meshless local Petrov-Galerkin

method (MLPG) instead of the local radial point interpolation method (RPIM) for the

streaming part is adopted to introduce the meshless local Petrov-Galerkin cumulant

lattice Boltzmann method (MLPG-CLBM) as follows.

4.2.1 Collision Step

The cumulant LBM was proposed by Seeger to solve the Boltzmann equation (12,

13). We refer to section 2.2.1 for the explanation of the cumulant LBM.

4.2.2 Streaming Step

The second key element of LBM is the streaming process, which is implemented by

solving a pure advection equation (as presented in section 3.2.2)

∂ fi

∂t
+ ci,α

∂ fi

∂xα
= 0 (4.1)
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The Lax-Wendroff scheme and meshless local Petrov-Galerkin method (MLPG)

are separately used for time and space discretization of Equation (4.1). Moreover,

the unknown field function fi can be estimated by trial (shape) functions as an ap-

proximate solution for the PDE. In this work, moving least-squares shape functions

are chosen.

Mfree shape function construction - Moving least squares shape functions

The moving least-squares (MLS) approximation developed by mathematicians in

the field of data fitting (167) has been used for constructing MFree shape functions.

It is classified as a method of series approximation of functions.

In the MLS approximation, the distribution function is approximated by f h(x, t)

as

f (x, t) ≈ f h(x, t) =
m

∑
i=1

pi (x)ai (x, t) = pT(x)a (x, t) (4.2)

where m, pi (x), and ai (x, t) are the number of basis functions, the basis functions,

and their corresponding coefficients, respectively. The coefficient a is determined by

minimizing the difference between the local approximation and the function accord-

ing to the formula

J =
n

∑
i=1

wi(x)
[

pT(xi)a(x, t)− fi(t)
]2

, (4.3)

where n is the number of nodes in the support domain of x for the weight function

wi(x) = w(x− xi) 6= 0 with a compact support associated with node xi and maxi-

mum at node xi. In addition, fi(t) = f (xi, t) is the nodal value of the function f (x, t).

It is called nodal parameter given that fi(t) 6= f h(xi, t) in the MLS approximation.

Minimizing the functional J leads to

A (x) a (x, t) = B (x) F (t) , (4.4)

where
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A (x) =
n

∑
i=1

wi p (xi) pT (xi) =



n
∑

i=1
wi

n
∑

i=1
xiwi

n
∑

i=1
yiwi

n
∑

i=1
xiwi

n
∑

i=1
x2

i wi
n
∑

i=1
xiyiwi

n
∑

i=1
yiwi

n
∑

i=1
xiyiwi

n
∑

i=1
y2

i wi

 , (4.5)

B (x) = [w1 (x) p (x1) , w2 p (x2) , · · · , wn p (xn)]

=


w1 w2 · · · wn

x1w1 x2w2 · · · xnwn

y1w1 y2w2 · · · ynwn

 ,
(4.6)

F (t) = [ f1(t), f2(t), · · · , fn(t)]
T. (4.7)

Estimating a (x, t) from equation (4.4), and substituting it into equation (4.2),

results in the following final form

f h(x, t) =
n

∑
i=1

φi (x) fi (t) = Φ (x) F (t) , (4.8)

where

ΦT (x) = pT (x) A−1 (x) B (x) , (4.9)

and the shape function φi for the i-th node is φi (x) = pT (x)
(

A−1B
)

i.

Unlike the finite-element approximation, the continuity of the MLS approxima-

tion depends not only on the basis functions, but also on the weight functions. Hav-

ing Cl and Ck as the continuity classes for the basis functions and the weight func-

tions respectively, results in Cmin(l,k) for the continuity of the MLS shape function.

Since the base functions are infinitely differentiable monomial functions, the proper-

ties of the weight functions become thus determinant. Among the different types of

weight functions employed in meshless methods, the cubic spline function is used

in this work
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Vi (r) =



2
3 − 4r2 + 4r3 r ≤ 0.5

4
3 − 4r + 4r2 − 4

3 r3 0.5 < r ≤ 1

0 r > 1

(4.10)

where r = |x− xi| /dmax and dmax is the radius of the compact support.

Semi-discrete formulation - Time discretization

Using the Taylor series expansion of the particle distributions and substituting the

time derivatives with the spacial derivatives up to second order, the time discretiza-

tion of equation (4.1) according to the Lax-Wendroff scheme is obtained as

f n+1
i = f n

i − ∆tci,α
∂ f n

i
∂xα

+
∆t2

2
ci,αci,β

∂2 f n
i

∂xα∂xβ
. (4.11)

where here n refers to the time step.

Semi-discrete formulation - Space discretization

The meshless local Petrov-Galerkin (MLPG) method, a local weak-form, is proposed

to avoid global background cells for either function approximation or integration.

The numerical integrations are executed over a local quadrature domain consisting

of a set of distributed nodes. It should be mentioned that the MLS approximation is

utilized to construct the shape functions in MLPG, which results in improving the

efficiency of the scheme beyond that of the LRPM.

Generally, the weak form of the problem generated from the method of weighted

residuals is used for MFree local weak-form methods. Thus, the weighted residual

form of equation (4.11) on the local domain ΩI of point I bounded by ΓI is

∫
ΩI

VI f n+1
i dΩ =

∫
ΩI

VI f n
i dΩ− ∆t

∫
ΩI

VIci,α
∂ f n

i
∂xα

dΩ

+
∆t2

2

∫
ΩI

VIci,αci,β
∂2 f n

i
∂xα∂xβ

dΩ
(4.12)
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where VI is the local weight function of node I introduced in equation (4.10). Equa-

tion (4.12) is employed for all nodes in the domain.

Using integration by parts in equation (4.12), a continuous approximate solution

is obtained and the differentiation requirements of the unknowns in the weighted

residual form are reduced,

∫
ΩI

VI f n+1
i dΩ =

∫
ΩI

VI f n
i dΩ−

∫
ΩI

(
∆tVIci,α

∂ f n
i

∂xα
+

∆t2

2
ci,αci,β

∂VI

∂xβ

∂ f n
i

∂xα

)
dΩ

+
∆t2

2

∫
ΓI

VIci,αci,β
∂ f n

i
∂xα

nβ dΓ
(4.13)

where ΓI and nβ are respectively the boundary of the local domain ΩI and the unit

outward normal vector.

Substitution of the approximate solution (4.8) into equation (4.13) gives

NI

∑
J=1

MI J f n+1
i,J =

NI

∑
J=1

[MI J + Ki,I J ] f n
i,J (4.14)

where MI J is the nodal mass matrix and Ki,I J is the nodal stiffness matrix, written as

MI J =
∫

ΩI

VIΦJ dΩ (4.15)

Ki,I J = −
∫

ΩI

(
∆tVI +

∆t2

2
ci,β

∂VI

∂xβ

)
ci,α

∂ΦJ

∂xα
dΩ +

∆t2

2

∫
ΓI

VIci,α
∂ΦJ

∂xα
ci,βnβ dΓ (4.16)

Therefore, the global equation system for all nodes in the whole domain is ex-

pressed by

M f n+1
i = [M + Ki] f n

i (4.17)

where fi , M, and K and are the particle distribution vector, the global mass matrix,

and stiffness matrix, respectively. This system is worked out separately for each

direction.

Using the Gauss quadrature scheme leads to the numerical area and curve inte-

gration of equations (4.15) and (4.16),
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MI J =
ng

∑
κ=1

ζ̃κVI (xκ)ΦJ (xκ)
∣∣∣JΩI

∣∣∣ (4.18)

Ki,I J = −
ng

∑
κ=1

ζ̃κ

(
∆tVI(xκ) +

∆t2

2
ci,β

∂VI

∂xβ

∣∣∣∣
xκ

)
ci,α

∂ΦJ

∂xα

∣∣∣∣
xκ

∣∣∣JΩI

∣∣∣
+

∆t2

2

nb
g

∑
κ=1

ζ̃κVI(xκ)ci,α
∂ΦJ

∂xα

∣∣∣∣
xκ

ci,βnβ

∣∣∣JΓI

∣∣∣
(4.19)

where ng, nb
g, ζ̃κ, JΩI , and JΓI are respectively the total number of Gauss points in the

quadrature domain, the total number of Gauss points at the boundaries, the Gauss

weight factor for Gauss point xκ, the Jacobian matrix for the domain integrations,

and the Jacobian matrix for boundary integrations.

4.3 Results and Discussion

For direct simulations with reduction of computational costs, aeroacoustics has lately

adopted the LBM. In this section, the standard analysis consisting of obtaining acous-

tic properties for benchmark cases is studied using the meshless local Petrov-Galerkin

cumulant lattice Boltzmann method (MLPGC-LBM). Here, as in previous chapters,

the propagation of planar acoustic waves is considered, focusing on numerical dis-

sipation and dispersion. In addition, spherical wave propagations are studied. To

have a better assessment of MLPGC-LBM, four setups based on (76, 145) are exam-

ined including the temporal decay of a standing plane wave in a periodic domain,

the spatial decay of a propagating planar acoustic pulse of Gaussian shape, a 2D

acoustic pulse with Gaussian shape, and acoustic point source for regular (default)

and irregular nodal distributions (shown in Figures 4.1a and 4.1b). The base units

are in the LB system.

4.3.1 Planar standing wave

As a first configuration, a standing plane acoustic wave in a periodic domain is stud-

ied. The dissipation and dispersion relations according to a temporal analysis as
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(B) Irregular nodes.

FIGURE 4.1: Nodal arrangement for the propagation of planar acous-
tic waves in MLPGC-LBM simulations.

represented in subsection 2.3.1 are

cT = çs

√
1−

(
kν

çs

)2

, (4.20a)

αT = k2ν (4.20b)

where k is the wave-number. The assumptions for this set-up are given as a reference

in Table 4.1 (76, 145) (Where "′" is perturbation quantity). The results of such study

can be expressed either as a function of the number of points per wavelength Nppw =

λ/∆x, or the non dimensional wave-number k∆x = 2π/Nppw.

The acoustic pressure at time t is (76, 145)
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TABLE 4.1: Parameters for the planar standing wave

Variables p′(x, y, 0) ρ′ u′ v′ A

Description A sin
( 2πx

λ

) p′

c2
s

p′
ρ0cs

0 10−3 p0

p′(x, y, t) = A exp [−αTt] sin [k (x− cTt)] (4.21)

To study the pros and cons of the meshless local Petrov-Galerkin cumulant lat-

tice Boltzmann method (MLPGC-LBM), the propagation of waves with various vis-

cosities, ν, and different resolutions (i.e. the number of points per wavelength)

was investigated. The acoustic pressure time-history for ν = 1.0× 10−2 [ ∆x2

∆t ] with

Nppw = 14 points per wavelength is presented in figure 4.2. The analytical result is

drawn with a solid black line while MLPGC-LBM with linear basis functions (m = 3)

and quadric basis functions (m = 6) are shown with a blue five-pointed star and a

red asterisk, respectively. It is shown that this method with linear and quadric basis

functions gives a good prediction of the analytical acoustic pressure values.

Figure 4.3 shows the acoustic pressure time history for ν = 1.0× 10−4 [ ∆x2

∆t ] with

Nppw = 14 points per wavelength. It draws a comparison between the analytical so-

lution and the meshless local Petrov-Galerkin cumulant lattice Boltzmann method

results with linear basis functions (m = 3) at low viscosities. One major drawback of

standard LB methods is the instability that develops at low viscosities, however, this

method even with linear basis functions, shows a good performance and closely pre-

dicts the theoretical solution with negligible phase speed and temporal dissipation

rate errors.

The numerical deviations of the acoustical properties for current standard LB

methods are functions of Nppw and are independent of other parameters such as the

frequency and the viscosity. For example, the errors of the BGK (30) and the cu-

mulant LBM (145) are about 7 percent for Nppw = 4 for such properties. However,

the advent of combined Mfree-LB methods such as the local radial point interpola-

tion cumulant lattice Boltzmann method (LRPIC-LBM), makes it possible to predict

wave motion with no dependency on the number of points per wavelength Nppw.

Figure 4.4 shows the acoustic pressure time history for ν = 1.0 × 10−2 [ ∆x2

∆t ] with
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FIGURE 4.2: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 14 points per wavelength.

0 5 10 15 20 25 30 35

Time Step

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p

10-3

Analytical
MLPGCLBM (m=3)

FIGURE 4.3: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−4 [ ∆x2

∆t ] with Nppw = 14 points per wavelength.

Nppw = 4 points per wavelength for the analytical solution (a solid black line), the

cumulant LBM (a dash red line) and the meshless local Petrov-Galerkin cumulant

lattice Boltzmann method (MLPGC-LBM) with linear basis functions (magenta as-

terisk), with ∆t = 0.1. It shows that MLPGC-LBM with linear basis functions is more

successful in predicting theoretical results than the cumulant LBM, with a reduced

number of points per wavelength.

In general, one of the characteristics of MLPGM is that the Kronecker delta con-

dition is not satisfied, so the accuracy of the results obtained in the nodes is reduced.

Among the ways presented in reference (151) to improve accuracy, we are interested

in increasing the polynomial degree of the basis functions. Thus, by replacing the

linear basis functions with quadric ones in meshless local Petrov-Galerkin cumulant
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FIGURE 4.4: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 4 points per wavelength and ∆t = 0.1.

lattice Boltzmann method (MLPGC-LBM), an improvement is achieved as we will

show. Figure 4.5 shows the acoustic pressure time history for ν = 1.0× 10−2 [ ∆x2

∆t ]

with Nppw = 4 points per wavelength for the analytical solution (black solid line), the

local radial point interpolation cumulant lattice Boltzmann method (LRPIC-LBM)

(blue five-point star) and the meshless local Petrov-Galerkin cumulant lattice Boltz-

mann method (MLPGC-LBM) solution with quadric basis functions (m = 6) (ma-

genta asterisk), for ∆t = 0.1. This figure shows that both MLPGC-LBM and LRPIC-

LBM replicate the analytical results. On the other hand, one of the pros of MLPGM

is that its efficiency is higher than that of LRPIM due to the difference in the inter-

polation procedures (the moving least squares (MLS) shape functions). Therefore,

MLPGC-LBM benefits from this feature. Moreover, for the acoustic pressure time

history shown in figure 4.5, the average run time for the MLPGC-LBM is 0.285 times

that of the LRPIC-LBM. Both methods give similar results, predicting wave motion

accurately with no dependency on the number of points per wavelength Nppw, but

MLPGC-LBM needs lesser run times.

In many engineering problems such as those of acoustics, it is necessary to use ir-

regular nodes. We have seen how MLPGC-LBM performs efficiently when it comes

to predict the propagation of acoustic waves through domains with regular nodal

distributions. However, the accuracy of this method should also be examined with

irregular nodes (Figure 4.1b). Figure 4.6 presents the acoustic pressure time history
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FIGURE 4.5: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 4 points per wavelength with ∆t = 0.1.

for ν = 1.0× 10−2 [ ∆x2

∆t ] with Nppw = 14 points per wavelength. It shows the compar-

ison between analytical (solid black line) and MLPGC-LBM results determined with

linear basis functions (m = 3) (blue five-pointed star) and quadric basis functions

(m = 6) (red asterisk). It is shown that MLPGC-LBM with linear basis functions can-

not reliably predict the motion of waves and results soon depart from the theoretical

solution. This issue is related to the lack of a delta function in parts of the MLPGC-

LBM solver. We observe instead how the results of MLPGC-LBM with quadric basis

functions dramatically improve and very closely reproduce the analytical acoustic

pressure.
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FIGURE 4.6: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0× 10−2 [ ∆x2

∆t ] with Nppw = 14 points per wavelength with irregular
nodal distributions.
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4.3.2 Planar pulse wave

As a second case, the study of a planar pulse wave is carried out by choosing a planar

pulse of Gaussian shape located at the center of the domain. The dissipation and

dispersion relations generated from the spatial analysis as represented in subsection

2.3.1 are

cS =
√

2çs

√√√√ 1 + (ωτs)
2√

1 + (ωτs)
2 + 1

, (4.22a)

αS =
ω√
2çs

√√√√√
1 + (ωτs)

2 − 1

1 + (ωτs)
2 . (4.22b)

The planar pulse propagates throughout the domain. The assumptions are shown

in Table 4.2. It should be noted that periodic boundary conditions are imposed.

TABLE 4.2: Parameters for the planar pulse wave

Variables p′(x, y, 0) ρ′ u′ v′ A σ

Description A exp
(
− ln (2) x2

σ2

)
p′

c2
s

p′
ρ0cs

0 10−3 p0 0.06− 0.11

To study the behavior of meshless local Petrov-Galerkin cumulant lattice Boltz-

mann method (MLPGC-LBM) in a pulse wave emission, we followed references

(76, 145). Thus, different viscosities and resolutions σ are considered. The acous-

tic pressure time-history for ν = 1.0 × 10−2 [ ∆x2

∆t ] with σ = 0.11 is presented in

figure 4.7. It shows the comparison between the cumulant LBM (dashed red line)

and the MLPGC-LBM results with linear basis functions (m = 3) (blue pentagram)

and quadric basis functions (m = 6) (solid black line). Data are taken at 0, 5, 11,

and 17 nodes apart from the center of the domain showing that the intensity loss at

any location is proportional to the propagation distance (30, 76, 145). It should be

noted that the deviations between the cumulant LBM and MLPGC-LBM with linear

or quadric basis functions are minor.

In general, the resolution σ is a parameter which can have an effective impact

on the accuracy of LBM results. Figure 4.8 shows the acoustic pressure time history

for ν = 1.0× 10−2 [ ∆x2

∆t ], with σ = 0.06. It shows that by reducing σ, the number of
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FIGURE 4.7: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0 × 10−2 [ ∆x2

∆t ] with σ = 0.11: cumulant LBM (dashed red line),
MLPGC-LBM (m=6) (solid black line), and MLPGC-LBM (m=3) (blue

pentagram).

nodes inside the pulse reduces, which produces wiggling in the cumulant LBM re-

sults (dashed red line). On the other hand, combinations of LBM and Mfree methods

such as local radial point interpolation cumulant lattice Boltzmann method (LRPIC-

LBM) (solid black line) and meshless local Petrov-Galerkin cumulant lattice Boltz-

mann method (MLPGC-LBM) with linear basis functions (blue pentagram) behave

smoothly. These two Mfree-LB methods give the same results for this setup, but the

average run time for MLPGC-LBM is 0.289 times the LRPIC-LBM run time per itera-

tion. The comparison of the ratio p̂′ (x, ω) / p̂′ (x, 0), as a function of the angular fre-

quency, between LRPIC-LBM and analytical solutions (76) shows that LRPIC-LBM

with σ = 0.06 successfully predicts theoretical results. And since MLPGC-LBM data

closely follow those of LRPIC-LBM, therefore, this method can successfully simulate

wave propagation even at low resolutions.

The acoustic pressure time history for ν = 1.0× 10−2 [ ∆x2

∆t ] with σ = 0.11 for ir-

regular nodes (Figure 4.1b) is depicted in figure 4.9. Cumulant LBM and meshless lo-

cal Petrov-Galerkin cumulant lattice Boltzmann method (MLPGC-LBM) results with

linear basis functions (m = 3) and quadric basis functions (m = 6) are represented

by a dashed red line, blue pentagram with blue line, and a solid black line, respec-

tively. Figure 4.9 shows that this method with linear basis functions cannot predict

wave propagation, which traces back to the lack of a delta function property in the

MLPGM scheme. Therefore, as in the temporal analysis of section 4.3.1, the solution

UNIVERSITAT ROVIRA I VIRGILI 
MESHFREE METHODS: MOVING BEYOND THE CUMULAN! LATTICE BOLTZMANN METHOD 
Mohsen Gorakifard 



80 Chapter 4. The meshless local Petrov-Galerkin cumulant LBM

0 5 10 15 20 25 30 35

Time Step

0

2

4

6

8

10

p

10-4

FIGURE 4.8: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0 × 10−2 [ ∆x2

∆t ] with σ = 0.06: cumulant LBM (dashed red line),
LRPIC-LBM (solid black line), and MLPGC-LBM (m=3) (blue penta-

gram).

shows instabilities. On the other hand, by using quadric basis functions, one can

obtain the same results as with a regular nodal distribution.
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FIGURE 4.9: Acoustic pressure [ kg
∆x∆t2 ] versus time step [∆t] for ν =

1.0 × 10−2 [ ∆x2

∆t ] with σ = 0.11: cumulant LBM (dashed red line),
MLPGC-LBM (m=6) (solid black line), and MLPGC-LBM (m=3) (blue

pentagram with blue line).

4.3.3 Acoustic pulse

A 2D acoustic pulse is studied as the most standard aeroacoustic 2D benchmark case

(127). This is categorized as a type of spherical wave propagation,with a pulse which

is considered as Gaussian in shape. The assumptions of the setup are written in Table

4.3. Even though periodic boundary conditions are chosen, the total simulation time
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is limited so as to prevent any boundary effects. In this study, an acoustic pulse

generated by an initial Gaussian pressure distribution expands from the center of

the domain.

TABLE 4.3: Parameters for the 2D acoustic pulse

Variables ρ′ u′ v′ ε α σ r

Description ε exp
(
−αr2) 0 0 10−3 ln(2)

σ2 0.11− 0.04
√

x2 + y2
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FIGURE 4.10: Propagation of the density perturbation through the
domain for ν = 1.0× 10−2 [ ∆x2

∆t ] with σ = 0.11: cumulant LBM (solid
black line), MLPGC-LBM (m=6) (dashed red line).

Figure 4.10 draws a comparison between the solutions of the cumulant LBM

(solid black line) and the meshless local Petrov-Galerkin cumulant LBM with quadric

basis functions (m = 6) (dashed red line). The plot represents the density perturba-

tion obtained with the parameters ν = 1.0× 10−2 [ ∆x2

∆t ] and σ = 0.11 as a function

of the radial distance. There is a good agreement between both methods when σ is

equal to 0.11 or greater, and the deviations are small.

In the study of the propagation of the spherical acoustic pulse, the parameter σ

can also affect the accuracy of the LBM results. This is shown in Figure 4.11, which

represents the density function of the acoustic pulse propagation for ν = 1.0× 10−2

[ ∆x2

∆t ] with σ = 0.04. Here, the same behavior as in planar acoustic waves is found:

by reducing σ, the number of nodes inside the pulse is also reduced, which causes

the wiggling seen in the cumulant LBM density wave. Figure 4.10 shows that the

cumulant LBM is less stable at low resolutions.
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FIGURE 4.11: Propagation of the density perturbation through the
domain for ν = 1.0× 10−2 [ ∆x2

∆t ] with σ = 0.04: cumulant LBM (solid
black line), MLPGC-LBM (m=6) (dashed red line).
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FIGURE 4.12: Propagation of the density perturbation through the
irregular nodal distribution for ν = 1.0× 10−2 [ ∆x2

∆t ] with σ = 0.04:
cumulant LBM (solid black line), MLPGC-LBM (m=6) (dashed red

line).

The propagation of the spherical acoustic pulse for ν = 1.0 × 10−2 [ ∆x2

∆t ] with

σ = 0.11 for an irregular nodal distribution (Figure 4.1b) is illustrated in Figure 4.12.

The results of the meshless local Petrov-Galerkin cumulant LBM with quadric basis

functions (m = 6) and the cumulant LBM are represented by a dashed red line and

a solid black line, respectively. Figure 4.12 shows that this method, using quadric

basis functions, can predict the same results as with regular nodes.
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4.3.4 Acoustic point source

In this section, to further demonstrate the abilities of the meshless local Petrov-

Galerkin cumulant LBM in simulating 2D problems, another test case will be stud-

ied: the infinite waves generated by a point source which transmits a sinusoidal

signal. The assumptions for this set-up are listed in table 4.4. To model this point

source, a sinusoidal density function is set up at the center node of the domain as in

references (145) and periodic boundary conditions are used.

TABLE 4.4: Parameters for the acoustic point source

Variables ρ′ ω B r T

Description B sin(ωt) 2π
T 10−2 √

x2 + y2 10− 20
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FIGURE 4.13: Comparison of the values of the density perturbation
with a period T = 20 [∆t].

The propagation of the density function of the acoustic point source wave for ν =

1.0× 10−2 [ ∆x2

∆t ] with a period T = 20[∆t] is shown in Figure 4.13. The meshless local

Petrov-Galerkin cumulant (MLPGC-LBM) result is drawn with a dashed red line

while the standard cumulant and standard BGK LBM results are shown with a solid

black line and a solid blue line, respectively. MLPGC-LBM shows a good agreement

with the cumulant LBM at a relatively suitable period T = 20[∆t]. The BGK LBM

result follows the other curves, but it displays noisy behavior, as the method is here

unstable.

The period T, like σ, is a parameter which can have effects on the accuracy of

LBM results. Figure 4.14 presents the propagation of the density function of the
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FIGURE 4.14: Comparison of the values of the density perturbation
with a period T = 10 [∆t].

acoustic point source wave for ν = 1.0× 10−2 [ ∆x2

∆t ], with periods T = 10. It illus-

trates that by reducing the period, the number of nodes inside the waves is reduced,

which yield worse results for the BGK LBM (solid blue line) than the previous sim-

ulation. In fact, the deviation between the cumulant (solid black line) and the mesh-

less local Petrov-Galerkin cumulant LBM (dashed red line) increases for T = 10.

A similar analysis can be conducted on the same problem using an irregular

nodal distribution for the methods under consideration, with analogous results. As

an example, the propagation of the density function of the acoustic point source

wave for ν = 1.0× 10−2 [ ∆x2

∆t ] with period T = 20[∆t] for an irregular nodal distribu-

tion is depicted in Figure 4.15. It shows small deviations between the meshless local

Petrov-Galerkin cumulant (MLPGC-LBM) (dashed red line) and the cumulant LBM

(solid black line).

4.4 Conclusions

In this work, propagation of point and planar acoustic waves comprising the tempo-

ral decay of a standing plane wave, the spatial decay of a planar acoustic pulse, and

the propagation of spherical waves, in most real cases, are modeled by the meshless

local Petrov-Galerkin cumulant lattice Boltzmann method (MLPGC-LBM). In this

model the collision step is modeled by the cumulant method and the streaming step

is discretized first in time based on the Lax-Wendroff scheme, then in space accord-

ing to the meshless local Petrov-Galerkin method, a mesh-free method (MLPG). The
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FIGURE 4.15: Comparison of the values of the density perturbation
with a period T = 20 [∆t] propagating through an irregular nodal

distribution.

comparison drawn between the results of MLPGC-LBM and LRPIC-LBM, cumulant

LBM, and the analytical solution, illustrates that the acoustic pressure time-history

for LB methods has a similar behavior and the errors of the phase speed and the

dissipation rate at high enough Nppw and σ are negligible. Moreover, the decrease

of the viscosity does not undermine the stability of these two LB methods due to the

advantages of the cumulant method. However, the meshless local Petrov-Galerkin

cumulant lattice Boltzmann method predicts the same acoustic pressure time-history

as the local radial point interpolation cumulant lattice Boltzmann method but with

shorter run times, and the error of both the phase speed and the dissipation rate for

low Nppw and σ are negligible thanks to the properties of the Mfree method. Further-

more, using MLPGC-LBM with irregular nodal distributions and linear basis func-

tions to simulate the propagation of acoustic waves does not give correct results,

thus quadric basis functions are needed due to inaccuracies generated by the lack

of delta function properties in the MLPGM scheme. Moreover, simulating spheri-

cal propagations (acoustic 2D pulse and acoustic point source) show that when the

number of point per wavelength is high, the deviations between the MLPGC-LBM

and cumulant LBM are low and vice versa, reproducing the same results as planar

acoustic waves. To conclude, the possibility of scattering the computational nodes

through the domain depending on problem conditions (such as geometries), the ac-

curacy achieved by MLPG, and the high stability provided by the cumulant LBM,

make MLPG-LBM a good alternative to conventional methods to model complex
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engineering problems, especially in aeroacoustics.
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Chapter 5

Conclusions

In this thesis we studied one of the newest LB methods, “the cumulant lattice Boltz-

mann method” and developed new MFree local weak-form cumulant LB methods

which can aid in the modeling of challenging engineering problems. To begin with,

the cumulant lattice Boltzmann method was used to improve the standard numerical

treatment of sound wave propagation as one of the demanding topics of nowadays

modeling. Thus, different types of sound wave propagation, their dissipation and

dispersion rates were considered. Moreover, due to the fact that in the most com-

mon phenomena, fluid and solid phases coexist and interact, and the coupling of

fluid and solid solvers is always challenging, the cumulant LBM was coupled with

the finite element method and its behavior was investigated. The problem selected

for this purpose was a fluid-structure interaction problem: the wake post a cylinder

with flexible flaps attached. This challenging example served to show the stability of

the cumulant LBM and study the effects of splitter plates which look like hair on the

flow and sound pattern of cylinder wakes. The major conclusions are the following,

the cumulant LBM based on the temporal and spatial analyses of the acoustic prop-

erties replicated the dissipation and dispersion rates of the theoretical solutions for

the standing plane wave and the Gaussian planar pulse. The phase speed and dis-

sipation errors are a function of the number of points per wavelength. In addition,

the cumulant LBM reproduces the propagation of a spherical acoustic pulse and the

infinite spherical wave generated from a point source, while the BGK LBM did not

succeed due to a numerical instability at low viscosities. Besides this, the coupled

cumulant LBM-FEM simulations show that the mobility of flaps the phase within

the vortex shedding cycle, resulted in the reduction of the transversal dislocation of
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the shed vorticity, causing the vortices being shed in a row along the center-line of

the flow over a single cylinder.

Even though the cumulant method showed remarkable results for above sim-

ulations with low viscosities and high Re numbers, it was important to find new

methods and substitute the cumulant LBM to overcome the issues of dependency to

the number of points per wavelength. Therefore, the propagation of acoustic waves,

including the temporal decay of a standing plane wave and the spatial decay of a

planar acoustic pulse were chosen as case studies. As a first method, the local radial

point interpolation cumulant lattice Boltzmann method (LRPIC-LBM) was proposed

and used to study of the propagation of acoustic waves in the aforementioned cases.

This method uses the cumulant method in the collision step, and the Lax-Wendroff

scheme and the local radial point interpolation method (RPIM) for the time and

space discretization in the streaming step. The results showed minor deviations

for the phase speed and the dissipation rate for high number of points per wave-

length Nppw and resolution σ, similarly to the cumulant LBM. However, unlike the

cumulant LBM, the time history for the acoustic pressure obtained by LRPIC-LBM

showed considerably smaller errors for low Nppw and σ due to use of the meshless

method. In addition, using irregular nodal distributions instead of regular nodal

distributions did not affect the results of the propagation of acoustic waves. As a sec-

ond method, the meshless local Petrov-Galerkin cumulant lattice Boltzmann method

(MLPGC-LBM) was introduced, where the meshless local Petrov-Galerkin method

(MLPG) is used instead of the local radial point interpolation method (RPIM). The

acoustic pressure time-history for this method has a similar behavior to the pervi-

ous methods at high enough Nppw and σ. MLPGC-LBM predicts the same acoustic

pressure time-history as LRPIC-LBM, but with shorter run times, for low Nppw and

σ. However, MLPGC-LBM with irregular nodal distributions and linear basis func-

tions did not correctly model the propagation of acoustic waves due to inaccuracy

made by the lack of delta function properties in the MLPGM scheme, which cause

the use of the quadric basis functions. To conclude, the freedom to scatter nodes

according to the problem conditions inside the domain and boundaries, the accu-

racy achieved by RPIM and MLPG, and the high stability provided by the cumulant

UNIVERSITAT ROVIRA I VIRGILI 
MESHFREE METHODS: MOVING BEYOND THE CUMULAN! LATTICE BOLTZMANN METHOD 
Mohsen Gorakifard 



Chapter 5. Conclusions 89

LBM, make MFree local weak-form cumulant LB methods good alternatives to con-

ventional methods to model engineering simulations.
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