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Abstract

This thesis is devoted to studying the electronic properties of bilayer graphene (BLG)
by focusing on the confined states, especially the topological states and the study of the
transport in this material, addressing charge transport for electrons with and without
magnetic field.

Electrostatic confinement in BLG is achieved by applying top and bottom micro-
electrodes acting with reversed signs on the two graphene sheets. We discuss in this
thesis two types of electrostatic confinement: trivial and topological.

Trivial electrostatic confinement in BLG is characterized by all micro-electrodes on the
top side having the same potential sign, which is opposed to the sign of all micro-electrodes
on the bottom side of the graphene sheets.

Topological electrostatic confinement in BLG is characterized by different micro-
electrodes of the top side having sign inversion of the potential. This creates boundaries
separating regions of opposite directions of the inter-layer electric field. The boundary
with a straight line shape is known as a kink, and the low energy electronic states prop-
agate along the kink.

Chapter 1 is a general introduction, discussing the fundamental aspects and theoretical
background of monolayer and bilayer graphene, quantum transport, and its paradigmatic
systems (quantum dots and quantum points contacts). In Chapter [2 we discuss the
trivial and topological confinement in bilayer graphene wires, comparing the two types
of confinement depending on the potential applied to the bilayer graphene sheets. We
discuss the behavior of the confined states in both cases. We found that for the trivial
confinement the spectrum opens a gap, and the states are confined in a region with a low
energy gap. Otherwise, in the topological confinement, in the middle of the gap, we found
states propagating in opposite directions for each valley. This phenomenon is known as
momentum-valley locking in bilayer graphene.

To investigate and know more about these states and their behavior, Chapter [3| de-
scribes a system where we can study and control the back-scattering of those topological
states under kink-antikink potentials. We demonstrate that a kink-antikink constriction
can modulate the transmission electrostatically.

If we change the geometry of bilayer graphene what will happen to the topological
states? The fourth Chapter answers this question when discussing the geometry depen-
dence on the bilayer graphene. We take four shapes from higher to lower symmetry (circle,
square, rectangle, and polygon). Our study shows that for small sizes the spectrum de-
pends on the loop shape. Magnetic field induces a valley splitting and asymmetry in the
spectrum.

We have also done a comparative study between the trivial and topological confinement
in the case of circular geometry (ring and dot), as discussed in Chapter . The study
discusses the trivial confinement where it shows bunching of levels into degenerate Landau
bands, with an energy asymmetric gap, while topological confinement shows no field-
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induced gap and a sequence of state branches always crossing zero energy.

Finally, a summary of our results is included in Chapter [6] In this Chapter we also
give a perspective and future works that would either treat systems not considered in this
work or extend the applicability range of our theoretical formalism.



Resumen

Esta tesis esta dedicada al estudio de las propiedades electronicas del grafeno bicapa
(BLG) centrandose en los estados confinados, especialmente en los estados topologicos y
en el estudio del transporte en este material, abordando el transporte de carga electrénica
con y sin campo magnético.

El confinamiento electrostatico en el BLG se consigue aplicando microelectrodos supe-
riores e inferiores que acttian con signos invertidos en las regiones opuestas de las dos hojas
de grafeno. En esta tesis discutimos dos tipos de confinamiento electrostético: trivial y
topologico.

El confinamiento electrostatico trivial en el BLG se caracteriza porque todos los mi-
croelectrodos de una determinada cara superior tienen el mismo signo de potencial, que
es opuesto al signo de todos los microelectrodos de la cara inferior de las hojas de grafeno.

El confinamiento electrostatico topoldgico en el BLG se caracteriza por que diferentes
microelectrodos de una determinada cara superior tienen la inversion del signo del poten-
cial. Esto crea fronteras que separan regiones de direcciones opuestas del campo eléctrico
entre capas. La frontera con forma de linea recta se conoce como kink, y los estados
electronicos de baja energia se propagan a lo largo del kink.

El capitulo 1 es una introduccién general, en la que se discuten los aspectos fundamen-
tales y los antecedentes teodricos del grafeno monocapa y bicapa, el transporte cuantico
y sus sistemas paradigmaticos (puntos cuanticos y contactos de puntos cuénticos). En
el capitulo [2] discutimos el confinamiento trivial y topologico en hilos de grafeno bicapa,
comparando los dos tipos en funcién del potencial aplicado a las hojas de grafeno bicapa.
Discutimos el comportamiento de los estados confinados en ambos casos. Encontramos
que para el confinamiento trivial el espectro abre una brecha, y los estados quedan con-
finados en una regién con una baja brecha energética. En cambio, en el confinamiento
topologico, en medio de la brecha, encontramos estados que se propagan en direcciones
opuestas para cada valle. Este fenémeno se conoce como bloqueo valle-momento en el
grafeno bicapa.

Para investigar y conocer mejor estos estados y su comportamiento, el capitulo
describe un sistema en el que podemos estudiar y controlar la retrodispersién de estos
estados topologicos bajo potenciales kink-antikink. Demostramos que una constriccion
kink-antikink puede modular la transmision electrostatica.

Si cambiamos la geometria del grafeno bicapa, jqué ocurriré con los estados topologi-
cos? El cuarto capitulo responde a esta pregunta al analizar la dependencia de la ge-
ometria del grafeno bicapa. Tomamos cuatro formas de mayor a menor simetria (circulo,
cuadrado, rectangulo y poligono). Nuestro estudio muestra que para tamanos pequenos
el espectro depende de la forma del bucle. El campo magnético induce un desdoblamiento
del valle y una asimetria en el espectro.

También hemos realizado un estudio comparativo entre el confinamiento trivial y el
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topologico en el caso de la geometria del circulo (anillo y punto), como se discute en el
capitulofpl El estudio discute el confinamiento trivial donde se muestra el agrupamiento de
los niveles en bandas de Landau degeneradas, con un gap energético asimétrico, mientras
que el confinamiento topolégico no muestra ningin gap inducido por el campo y una
secuencia de ramas de estado que siempre cruzan la energia cero.

Finalmente, un resumen de nuestros resultados se incluye en el Capitulo [6] En este
capitulo damos ademéas una perspectiva y trabajos futuros que tratarian sistemas no
considerados en este trabajo o ampliarfan el rango de aplicabilidad de nuestro formalismo
tedrico.



Resum

Aquesta tesi esta dedicada a ’estudi de les propietats electroniques del grafé bicapa
(BLG) centrant-se en els estats confinats, especialment en els estats topologics i en estudi
del transport en aquest material, abordant el transport de carrega Electréonica amb camp
magnetic 1 sense.

El confinament electrostatic al BLG s’aconsegueix aplicant microeléctrodes superiors i
inferiors que actuen amb signes invertits a les regions oposades de les dues fulles de grafée.
En aquesta tesi discutim dos tipus de confinament electrostatic: trivial i topologic.

El confinament electrostatic trivial al BLG es caracteritza perque tots els microeléc-
trodes d’una determinada cara (superior) tenen el mateix signe de potencial, que és oposat
al signe de tots els microeléctrodes de la cara inferior de les fulles de grafe.

El confinament electrostatic topologic al BLG es caracteritza perqué diferents mi-
croeléctrodes d’una determinada cara superior tenen la inversié del signe del potencial.
Aixo crea fronteres que separen regions de direccié oposades del camp eléctric entre capes.
La frontera amb forma de linia recta es coneix com a kink, i els estats electronics de baixa
energia es propaguen al llarg del kink.

El capitol 1 és una introduccié general, en qué es discuteixen els aspectes fonamentals i
els antecedents teorics del grafé monocapa i bicapa, el transport quantic i els seus sistemes
paradigmatics (punts quantics i contactes de punts quantics). Al capitol , discutim el
confinament trivial i topologic en fils de grafé bicapa, comparant els dos tipus en funcio
del potencial aplicat a les fulles de grafé bicapa. Discutim el comportament dels estats
confinats en tots dos casos. Trobem que per al confinament trivial ’espectre obre una
bretxa, i els estats queden confinats a una regié amb una baixa bretxa energética. En
canvi, al confinament topologic, enmig de la bretxa, trobem estats que es propaguen en
direccions oposades per a cada vall. Aquest fenomen es coneix com a bloqueig momentum-
valley al grafé bicapa.

Per investigar i conéixer millor aquests estats i el seu comportament, el capitol [3|descriu
un sistema on podem estudiar i controlar la retrodispersioé d’aquests estats topologics sota
potencials kink-antikink. Demostrem que una constriccié kink-antikink pot modular la
transmissio electrostatica.

Si canviem la geometria del grafé bicapa, qué passara amb els estats topologics? El
quart capitol respon aquesta pregunta en analitzar la dependéncia de la geometria del grafé
bicapa. Prenem quatre formes de major a menor simetria (cercle, quadrat, rectangle i
poligon). El nostre estudi mostra que per a petites mides I’espectre depén de la forma del
bucle. El camp magnétic indueix un desdoblament de la vall i una asimetria a l’espectre.

També hem realitzat un estudi comparatiu entre el confinament trivial i el topologic
en el cas de la geometria del cercle (anell i punt), com es discuteix al capitol . L’estudi
discuteix el confinament trivial on es mostra I’agrupament dels nivells en bandes de Lan-
dau degenerades, amb un buit energétic asimeétric, mentre que el confinament topologic no



mostra cap buit induit pel camp i una seqiiéncia de branques d’estat que sempre creuen
la energia zero.

Finalment, un resum dels nostres resultats s’inclou al Capitol [fl En aquest capitol
donem també una perspectiva i feines futures que tractarien sistemes no considerats en
aquest treball o ampliarien el rang d’aplicabilitat del nostre formalisme teoric.
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Chapter

Introduction

1.1 Motivation

Many devices in our daily life can operate using the electron’s charge. This property
allows us to transmit and store information. Typically, in classical electronics informa-
tion is encoded in digital bits (either 0 or 1). In the context of quantum mechanics, it
is possible to encode information by means of “quantum bits” or qubits, which represent
superpositions of 0 and 1. These can be implemented in certain materials by employing
an additional electronic degree of freedom, namely, its spin (see Fig [1,2]. Gener-
ation of spin-polarized electron currents can be achieved in semiconductors, leading to
sophisticated schemes that manipulate single electron spins in quantum dots [3]. In the
field called spintronics, thus, the electron spin is the main tool for electronic (classical or

quantum) applications.

Additionally, in a different class of materials, the electronic energy spectrum presents
two special points called valleys that play the role of an effective spin. Therefore, the
name valleytronics is coined for this new approach of making use of the valley degree of
freedom to encode bits of quantum information [5|. One of the candidate materials for
valleytronic applications is graphene [6]. Graphene is a system made up of a single layer
of carbon atoms that arrange themselves in a honeycomb structure with sp? hybridized

bonds. Charge carriers in graphene at low energy are massless Dirac fermions that exhibit
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Figure 1.1: Sketch representing three spin qubits under application of three gate
voltages. Image taken from Ref. [4].

minimal conductivity near the Dirac points where those points describe the two valleys.

On the other hand, topology is the study of the characteristics of space that remain
constant during repeated transformations. A topological current can be produced in
crystalline solids by the electronic wavefunction’s Berry phase. The spin Hall current
that results from spin-orbit coupling is one example, as is the quantum Hall current in a
magnetic field. Such topological transport is resilient against material imperfections and
flaws, which is a property much desired in prospective electronic applications. Switching
and continuously tuning the topological transport is essential in these applications |[7].
The massless Dirac equation that governs the behavior of electrons makes graphene’s
quantum Hall effect quite distinct from that seen in conventional semiconductors like

silicon which makes graphene topologically different.

This thesis aim is to study the electronic and topological properties of graphene nanos-
tructures near the Dirac points. We will focus on bilayer graphene (BLG), which comprises
two sheets of graphene. Remarkably, in BLG it is possible to open a gap by breaking the
inversion symmetry with the aid of an externally applied electric field. This unique prop-
erty opens the door for researchers to investigate the effect of different perturbations on
BLG such as magnetic fields or to configure voltage gates applied to the sample. We
consider in this thesis the case of BLG Bernal stacked structures. This system shows
important characteristics and properties. For example, BLG hosts electronic topological
states when the spatially inhomogeneous potential is applied to each layer with opposite

signs. These topological states are chiral and fourfold degenerate.

In our thesis, we want to further analyze the fundamental properties of electronic states

in BLG when topology plays a major role. This goal is achieved by confining electrons to
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one-dimensional (1D) and zero-dimensional (0D) structures like quantum point contacts
and dots, respectively. The gap generated under the application of an electric field across
the two sheets of graphene can be used to design tunnel barriers, which are a prerequisite

for engineering point contacts and dots.

The application of an electric field changing its sign along the graphene sheets creates
a domain wall for the chiral states, which then propagate along the wall. This type of
motion corresponds to a so-called kink state [8]. Its topological character is hence induced
by both band inversion and confinement. Noticeably, the kink states propagate in opposite

directions for each valley, thereby displaying valley-momentum locking.

We study in our thesis the scattering phenomena of those states by presenting a
system hosting kink states. We consider two types of systems, namely, constrictions and
side loops. We show that both work as a means of controlling the backscattering of
those kink states and consequently affecting the transport properties of the junction. We
examine the conductance and energy spectrum for each case. Furthermore, we discuss
another type of system that emphasizes geometrical effects in BLG quantum dots. Our
discussion is based on an analysis of the energy spectrum, considering loops of higher to
lower symmetry. We find that for small-size loops the topological spectrum is affected
by the loop shape. Importantly, our proposals discuss in detail the role of the electronic

valley and therefore can be interesting for valleytronics research.

This Ph.D. book is organized into six chapters: A first general chapter will serve as a
theoretical background for monolayer and bilayer graphene systems. We will additionally
consider fundamental ideas of quantum transport and its paradigmatic systems (quantum
dots and quantum point contacts). We continue with a second chapter where we describe
the trivial and topological confinement in bilayer graphene wires. The last three chapters

include our published works on BLG structures.

Our first paper |9] investigates the scattering of topological kink-antikink states in
BLG systems with lateral confinement. We propose a nanodevice for topological quantum

valley transport determined by kink-antikink potentials. Since motion is interlocked with
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the valley degree of freedom, the injection of electrons can be valley polarized. If we now
take into account the robustness of topological states, our device is then attractive for
possible applications within topological valleytronics. We calculate the conductance in
this system attached to the source and drain electrodes. We find that due to a central
region of scattering the conductance shows an anomalous behavior for the first proposal
(constriction) and resonance peaks for the second proposal (side loops). Interestingly, in
both cases, a study of the conductance reveals the system energy spectrum. We also find
that the systems can be valley polarized and present valley accumulation. This finding

makes our nanodevice interesting because it can work as a valley filter.

The second paper [10] discusses geometrical effects in topologically confined BLG
loops. Motivated by the previous results on side loops, we now explore how the geometry
or the perimeter of the loops affects the energy spectrum. We consider loops of higher
to lower symmetry (circle, square, rectangle, and irregular polygon) and find that for
short perimeters the spectrum depends on the loop shape. We also obtain that zero-
energy states exhibit a characteristic pattern that strongly depends on spatial symmetry.
When we apply a magnetic field of 500 mT we notice that the spectrum undergoes a
valley splitting and asymmetry. Consequently, these results are interesting as well for

valleytronic applications.

Finally, our third paper [11] discusses and compares the two different types of con-
finement (i.e., trivial and topological) in BLG gated with top and bottom symmetrical
microelectrodes. Trivial confinement corresponds to applying the same polarity to all
top gates, which is opposed to that of all the bottom ones. Topological confinement re-
quires the polarity of part of the top-bottom pairs of gates to be reversed. Our study
shows that the main qualitative difference between trivial and topological bound states
manifests itself in the magnetic field dependence. We illustrate this finding with an ex-
plicit calculation of the energy spectrum for quantum dots and rings. Trivial confinement
shows bunching of levels into degenerate Landau bands, with an energy asymmetric gap,
while topological confinement shows no field-induced gap and a sequence of state branches

always crossing zero-energy.
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Figure 1.2: (a) Graphene lattice in the real space defined by the base vectors a;
and ay and the sublattices A(black) and B(red). (b) Reciprocal lattice with I" the
center of the first Brillouin zone and by and b the corresponding base vectors.

1.2 Graphene

1.2.1 Monolayer graphene
1.2.1.1 Atomic properties

Graphene is a two-dimensional (2D) material composed of carbon atoms onto a hexagonal
lattice. In modern terms, graphene forms the building block for additional materials such
as graphite (stacked graphene layers), nanotubes (rolled-up graphene layers), etc. |[124[13].
The electronic orbitals in graphene are sp? hybridized. These wave functions that are
located in the plane form the covalent bonds which ensure the stability of the crystal
lattice and are at the origin of the mechanical properties of graphene. For the electronic
properties, the interesting aspect is that there is an orbital left, the p, orbital, hosting one
electron. This p, orbital is perpendicular to the plane formed by the carbon atoms and
forms 7 bonds. Since the p, orbital contributes with one electron, graphene is a system
with one electron per lattice site. The 7 orbitals are precisely the states responsible for

the unusual electronic properties of graphene [14].

The primitive cell of graphene is made up of two carbon atoms, which we hereafter
label A and B (see Fig.|1.2| (a)). We can then speak about two corresponding sublattices,
namely, A and B. The first Brillouin zone is also hexagonal (see Fig.|1.2| (b)). Therefore,
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the lattice is defined by the following two base vectors with a = 1.42 A the lattice spacing:
L a . a
i =53, V3), @y = (3 —V3), (1.1)
while the vectors connecting neighboring atoms are:

5 = 3(1,\/5), 5y = g(l, —V3), 8 =—a(1,0). (1.2)

1.2.1.2 Electronic properties

The starting point for a careful investigation of the electronic structure of graphene is a
tight-binding model [15]. This model yields the electronic bands around the two points
K and K’ defined as: K = 2= (1,7z) and K’ = 37 (1,—\%). As we show below, close
to these points, the electronic states are described at low energy by a relativistic Dirac

equation [16|, which is crucially not like the non-relativistic Schrodinger equation valid

for the low-energy states of 2D electron gases in I1I-V semiconductors (GaAs, InAs, etc.).

Let (af, bf , ax, by) be the operators of creation and annihilation for electrons in
reciprocal space for sites A and B with £ the momentum characterizing the two Bloch
functions. 7y is the overlap between the orbitals of the closest neighbors in the plane with

a value between 2.7 and 3 eV. Then, the tight-binding Hamiltonian reads:

0 — k a
H =3 (e b}) of ()] o] (1.3)
k —f(k) 0 by
where
f(E) — ei];gl + ei]zgz + eiE(%. (14)
The eigenvalues of Eq. (1.3]) are:
E =20/ f(k)f(k)*, (1.5)

or

E =451+ 4cos <;kma) cos <\/7§k’ya> + 4 cos? (?kya) (1.6)
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Figure 1.3: Graphene band structure where the valence band and the conductance
band touch each other at the two points K and K’ with 9 = 2.74 eV and a = 1.42 A.
Image taken from Ref. .

Figure shows the result from Eq. (1.6 as a function of momentum. In the electri-
cally neutral case, the Fermi level separates all filled bands from the empty ones at zero
temperature and lies right at the tips of the cones. Therefore, undoped graphene is a

semimetal.

The first band (the minus sign in Eq. (1.6))) below the Fermi level is the valence band
whereas the first band (the plus sign in Eq. ) is located above this is the conduction
band. For all possible values of k there is a gap between both bands except at six points
(two are inequivalent—the valleys), where the gap is zero. At these points the dispersion
relationship is linear in the momentum (see below), which is a peculiarity of graphene.
Consequently, the regions around those points of the electron band structure of graphene
are called the “Dirac cones”. Inside the Dirac cone, the density of states is zero at its

vertex and increases linearly further away from it.

To describe the low energy electronic states in the Dirac cone (see Fig. [1.4)), we must
consider wave vectors k close to the Dirac points. Thus, we obtain two electron Hamiltoni-

ans, one per valley. Let us then write the function f (E) in terms of the small perturbation
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Figure 1.4: The bands near a Dirac point K or K’, known as a Dirac cone, show
a linear dispersion.

q_’:l%)—}_('as

- . . . 3(K,
f(K-i—(j) _ e—szae—qua 1 +2613(Kx+Qw)a/2 oS <M)] . (17)

Therefore, in a Taylor expansion up to the first order in ¢ we find:

- 3a

f(K+4q) = —7(% +igqy). (1.8)

The Hamiltonian near the K valley becomes

0 —'}/of(ﬁ —+ Q) Qe
H=S (aibh) g . (1.9)
2 (b o f(E+ 0 by

We define the constant vp = 3av,/2h, termed the Fermi velocity, whereas ¢,, —

—i0/0x,y is the momentum operator. Then, the Hamiltonian can be further simplified

as
O qz — iQy
H(q) = Ty (1.10)
qx + gy 0
Near K’ we can make a similar calculation, with now K = K, and K = —K,.

The results presented above highlight the necessity of including both sublattices A

and B as well as both crossing points K and K’ in our wave functions, which are denoted
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as npj p Where =+ is the valley index. The total Hamiltonian for the system including the

two valleys can then be represented in the following way:

0 Gz — 1qy 0 0 YA+
. 0 0 0 +
H=hop |77 SN (1.11)
0 0 0 —(z +1qy YA—
|0 0 —(qy — 1iqy 0 | |¥B—]

An even more convenient representation utilizes the Pauli matrices |18-20] since the two

lattice sites are mathematically equivalent to a two-level system, i.e., a pseudospin:

oq O
H = hvp ) (1.12)
0 —ogq
or
H = hvp a.q, (1.13)
o 0
where @ = . For reference purposes, we recall the three Pauli matrices:
0 —0o
0 1 0 —1 1 0
Op = , Oy = , O, = : (1.14)
10 0 0 -1

Therefore, the sublattice pseudospin represents in the wave function the weight amplitude

on the A and B sublattices.

Equation (|1.13]) is a linear equation in the momentum, and the Fermi velocity vg plays
the role of fixed electronic velocity or effective speed of light. At small energies, the Dirac
fermions have therefore zero mass. This is the relativistic limit that we mentioned before,

However, caution is here in order since at higher energies this approximation is no longer

valid and Eq. (1.13]) breaks down.

1.2.2 Bilayer graphene

When two sheets of graphene are coupled together, the hexagonal lattice of each layer

consists of two Bravais sublattices of sites A; By for layer 1 and Ay By for layer 2.
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Figure 1.5: Bilayer graphene structure with sublattice atoms for layers 1 and 2
being A1, By, A2 and Bs respectively, and - is the interlayer coupling.

Therefore, in the plane the hopping is parametrized by the coupling parameter v4,5, =
Ya,B, = Yo as in Eq. . In the case of Bernal stacking (AB stack) considered in this
book, the interlayer coupling between the planes is given by v4,5, = 71, which takes the
value of 0.3 eV. Because of this strong coupling, dimers produced from pairs of A; — By

orbitals form a high energy band.

To calculate the band structure and study the electronic properties of bilayer graphene
(BLG), we apply the tight-binding model similar to the monolayer case (see Sec. [I.2.1)),
the difference being that for bilayers we have two layers with two atoms for each sublattice.
We are interested in low energy properties, which are dominated by the band structure

near the valleys K and K’ .

Near the center of the valleys, the Hamiltonian is a 4 x 4 matrix as opposed to the
two 2 x 2 matrices of the monolayer (see Eq. (1.10)). The Hamiltonian can be divided
into 4 subblocks that connect graphene layers between 1 and 2 and between themselves.

In the basis (4; By Ay By) the Hamiltonian reads :

%A VT 0 0

1
g UF7T+ §A 71 0
0 Y —%A UpT
0 0 wvpmt —%A

(1.15)

The resulting four bands are four times degenerate in spin and valley. As discussed earlier,
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Figure 1.6: Bilayer graphene band structure as a function of momentum near the
center of the first Brillouin zone and in the presence of an externally applied electric
field A # 0. K and K’ are the two valleys. The inset represents the gapless bands
when A = 0. Image taken from Ref. |21].

they arise from a linear combination of the p, orbitals of each site A and B of the two
layers of graphene. In Eq. we define m = h(7,q, + igy), 77 = R(T.q, — ig,). The
index 7, — = describes K and K’ valleys, respectively. Finally, A is the asymmetry
between onsite energies in the two layers. When A = 0, the two bands (valence and
conduction bands) touch at the neutrality point whereas two other bands are higher in
energy due to the aforementioned interlayer coupling. The electronic transport properties
are determined by the electronic states of bands closest to the Fermi level, which in the

undoped case is taken as the origin of energies (E = 0).

Similary to Eq. (1.12) the Hamiltonian can be written as :
1
H=vp 7, py 0 +vp py oy + n(Apo_ + A_oy) + §A Az (1.16)

with p, , = hq,, the momentum operators. The sublattice o, , valley 7,,. and layer A,

operators are Pauli matrices for these three discrete degrees of freedom. At zero magnetic
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field, the diagonalization of Eq. (1.16]) gives the following eigenergies:

1
B = 5\/ Yk R A2 AR A AR 4 A1 - ), (1.17)
and
1
B = —# A AR A A1 — /), (1.18)

with € = hvp\/m . Inset of Fig. shows these eigenergies that determine the band
structure of bilayer graphene. For A = 0 the spectrum is gapless. More importantly,
for A # 0 a gap opens between the two lowest lying bands. Unlike monolayer graphene,
which has a linear spectrum, bilayer graphene shows a parabolic dependence at small
energies due to the interlayer coupling. As a consequence, electrons become massive in

bilayer graphene although their effective mass is very small (m* = 3% = 0.033 m,) [22].
F

1.2.3 Magnetic field dependence

We now discuss the magnetic properties. Let us begin with monolayer graphene. The
interesting case arises when the magnetic field B is orthogonal to the graphene layer. By
using the Peierls substitution in the Hamiltonian obtained from the tight-binding model
(Eq. (1.12))), the momentum can be accordingly modified [23]. This substitution amounts
to ¢ — ¢} = q; + eA;, where A; is the i-th component of the vector potential. The vector

potential can be chosen in the Landau gauge as A= (—By,0).

Using the linear approximation for monolayer graphene in Eq. (1.13]) we replace the

momentum at a finite magnetic field in the vicinity of the K point:

/ p—

= N = / / 0 4z iq?;
H = hvp(q+ eA).¢ = hop(o.q, + 0yq,) = hvr (1.19)
q, +iq, 0
Thus,
0 V2eBa h 0 a
H = hop = Vo : (1.20)
v2eBa' 0 B |4t 0

with v2eBa = ¢, — iq, , V 2eBa’ = (¢, + iq,) and lp = %. Here, a and a' are ladder
operators. The eigenenergies can be obtained by diagonalizing Eq. ([1.20]) considering the
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Figure 1.7: (a) Landau levels as a function of the magnetic field B for monolayer
graphene, and (b) for bilayer graphene. Image taken from Ref. .

square of the Hamiltonian:

h 2lata+1 0
H2 =2 2E : (1.21)
Ip 0 a'a

where we have used the property [a,a™] = 1. As usual, a®a is the number operator. For
an electron wavefunction ¢,,, a*a | ¥, > = n | ¢, >. The Hamiltonian can be diagonalized

by the eigenstates ¢, = (| n—1>,+ |n>), withn =0,+1,+£2.. ..

We solve the equation

H? | >= )\ | >, (1.22)
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and find the eigenergies

€ =sgn(n)v2eB vphy/| n |, (1.23)

e = sgn(n)hw/| n |, (1.24)

with w =v2eBup the effective cyclotron frequency. The Landau level index, n, can be
positive or negative. Positive values correspond to electrons (conduction band) while
negative values correspond to holes (valence band). The spectrum of graphene as a
function of magnetic field is plotted in Fig.[1.7(a). Interestingly, there is a Landau level
with zero energy. Its eigenstate is (0,| 0 >) for the K valley, which implies that only the
B sites are occupied. (The A sites are respectively occupied for the K’ valley). Moreover,
the Landau levels are not equidistant unlike the nonrelativistic Landau levels found in,

e.g., GaAs 2D electron gases [25].

For bilayer graphene, we neglect for the moment the effect of the potential difference
between layers and use the same Peierls subtitution as in the monolayer (Eq. (L.19)). At
low energies (E < 7,/4), bilayer graphene can be described with an approximate 2-band
model that yields a 2 x 2 Hamiltonian obtained from the 4-band Hamiltonian given by
Eq. (1.17)), integrating out the higher energy dimers B1, A2 [21]. Then, for small energies

the Hamiltonian becomes

0 ¢ 0 a?
HBLG = hUF == hwc . (125)
gt 0 (ah)? 0
from which we derive
a(a')? 0
(Hpra)® = (hw,)? , (1.26)
0 (a")%a?

with w, = ;—% the cyclotron frequency and m* the previously inferred effective mass of
bilayer graphene electrons. Since a?(a’)? = (n + 1)(n + 2) and (a)?a® = (n — 1)n, the

eigenstate is 1 = (| n — 2 >, £ | n >)T and the energy levels are represented by

€n = sgn(n)hwe/| n| (| n | —1). (1.27)
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Figure 1.8: A ballistic conductor between two contacts represented with electron
reservoirs. Image taken from Ref. |25]

As compared the Eq. (1.23)), the Landau spectrum of Eq. (1.27) (see figure Fig. [1.7/b)
presents a doubly degenerate zero energy state. Moreover, Eq. ([1.27)) is equidistant at

high values of n similarly to the nonrelativistic behavior found in conventional 2D electron

systems.

1.3 Quantum Transport

Electronic transport describes the response of electrons, which interact with the lattice
and with themselves, to the application of electric or magnetic fields. In this section, we
will discuss the fundamentals of transport in mesoscopic systems, which are conductors
that have characteristic dimensions smaller than the mean free path (L,, = vg7;) and
the phase-relaxation length (L, = vp7,), where 7; is the transport relaxation time and
74 is the typical time for phase-breaking collisions. We will also discuss two prototypical
mesoscopic systems that are relevant for the purpose of this book, namely, quantum dots

and quantum point contacts.

1.3.1 Landauer-Biittiker model

We will summarize the Landauer-Biittiker scattering approach valid for the ballistic
regime of transport. Our discussion is based on Ref. [25]. A ballistic 2D conductor,
see Fig. [1.8, whose length L and width W satisfies L,, > L, W, is a system where no
diffusion phenomena occur. The Landauer-Biittiker model considers in that case the
transport phenomena by taking into account the current in the system in terms of trans-

mission probabilities.
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To compute the current in a ballistic conductor one first calculates the current which

is carried by each transverse mode. Semiclassically, we can write this current as:

e

]-l—
L

SortB) = £ 200 14 m), (1.28)
k k

where v is the electron velocity and f is the Fermi distribution function for electrons trav-
eling in the positive direction. Using the continuum limit Y, — 2(for spin) x (L/27) [ dk
we obtain

_ 2e toe

== FH(E)M(E)dE, (1.29)

with M(E) = )" 0(E —ey) is a function defining the number of modes that are at energy

—0o0

E above the energy of transverse modes €.
To find the net current I, we must substract the current contribution of electrons
traveling in the negative direction:

2¢ +o00

h

AE(f+(B) — f~(B)M(E) = 2 / " AEM(E). (1.30)

I
h R

—0o0
where in the last equality we have assumed zero temperature for simplicity. The current

that traverses the ballistic channel (and measured at the contacts) is therefore

2e

I'=—M(us = pr), (1.31)

where M is the total number of open modes. Our simplifications have led to a linear
dependence of [ for arbitrary applied voltage pu;, — pgr. In general, this is true only for
very small voltages. We focus on that case because the main results of this thesis are

obtained for the linear regime of transport, which is easily accessible in the lab.
If the transmission through the transverse modes is imperfect, namely, 7" < 1, then

Eq. (1.31)) should be modified as

2e
]+ = EMT(/VLL - ,U,R), (132)
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Since the linear conductance formula in general is given by

I
G = G e (1.33)

we arrive at the Landauer’s formula for the conductance:

2 2
G = %MT. (1.34)

This is a remarkable result. It states that the dissipative response of a ballistic channel
is given in terms of the quantum-mechanical transmission of the channel. Notably, for
transparent channels (7' = 1) the conductance becomes quantized in units of 2¢%/h =

7.7 x 1075 S.

1.3.1.1 Current for nonzero temperature and bias

Finite temperature effects lead to thermal smearing of the conductance quantization. To

see this, let us calculate the influx of electrons per unit energy from the lead left

i7(B) = (2¢/W)MfL (E), (1.35)
and substract the influx from right contact,

in(E) = (2e/h)M' fr(E), (1.36)

where M’ is the number of modes in the right lead. Since the outflux from the two leads
is given by

i (E)=(1-T)if(E)+T';(E), (1.37)
for the left lead

ig(E) = (D)ig(E) + (1= T")i, (E), (1.38)
for the right lead, the net current results in

CMBYT(E)fu(B) - M(EYT'(B)fa(E)]. (139

i(B)=if —ip =if,—iy =
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We define T(E) = M(E)T(E). Hence,

iW(E) = [ T(E)fu(E) = T'(E)fa(E) |. (1.40)
The total current is then
I = /z’(E)dE, (1.41)
where i(E) = 2T (E)[fL(E) — fr(E)] and T(E) = T"(E). We find

I=— [ ([TB)fL(E) = [a(E)leq + [fo(E) = fr(E)]eT(E)]) dE. (1.42)

This equation is exact for independent electrons. Out of equilibrium we can use a Taylor

expansion up to first order in the applied bias:

of af
fL(E) = fr(E) = [ur — pr] (8_> = (——0) L — pr], (1.43)
1) eq E
with fy is the Fermi function at equilibrium. As a consequence, the linear conductance
in this case can be written as
262 = 8f0
G=— | T(E) (—==)dE. 1.44
- [TE) -5 (1.44)
At low temperature one has (—%) ~ §(FEr — E) and we recover Eq. l} with M = 1.
At higher temperatures, the effective transmission is smeared out and the conductance

presents deviations from flat steps.

A final remark: despite the fact that our derivation is semiclassical, it can be justified

with a fully quantum mechanical calculation, see Ref. [26].

1.3.2 Transport through a quantum dot

The advances in the semiconductor and nanotechnology domains made it possible in
the 1980’s and 90’s to grow 0D nanostructures called quantum dots (QD) [27]. The
peculiarity of a quantum dot is that they are around ten nanometers in size, in which
carriers (electrons) are confined in all three directions of space. In this part, we will

discuss the transport properties of a quantum dot using the Landauer-Biittiker formalism
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Figure 1.9: Schematic representation of a gated quantum dot connected to source
and drain electronic reservoirs. These are are massive terminals (not in scale in the
plot) while the dot size is of the order of ~ 10 — 100 nm

presented earlier. To this end, we need the transmission probability in the system.

If we model the dot as a double barrier system, the transmission of an electron with

longitudinal energy Ej, is:

T\15
1 —2vRiRycosO(EL) + R Ry’

where 717,75 are the transmission probabilities through barrier scatterers 1 and 2 and

Ry, Ry are the reflection probabilities. In Eq{l.45] 6 is the phase shift acquired in one

TL(EL) = (1.45)

round-trip between the scatterers. We consider thick barriers (R;, Ry ~ 1) to calculate

an approximate transmission near resonance,

- 2 T . (1.46)
[T1J2rT2} +2(1 — cos6(EL))

Then, around the resonant energy E, we can make the approximation 1 — cosf(E}) ~

%(%)Z(EL — E,)%. Thus, the transmission becomes

'y

T,(E,) = ,
L( L) (EL_ET-)2+(F1—5F2>2

(1.47)

where '] = %Tl and I'y = %Tg can be interpreted as the width associated to the

coupling between the resonance and the tunnel barriers.
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Figure 1.10: Transmission probability of an electron from source to drain (7' = 1
is perfect transmission) through a quantum dot. Parameters: 'y = 1, I's = 1 and
E.=0.

Figure [1.10] shows the behavior of the transmission coefficient given by Eq. (1.48).
Perfect transmission occurs when the electrons energy hits the resonance. Eq. (1.48) is

then a Lorentzian function.

Defining
r

with I' = I'y 4+ I'y, the total transmission in the presence of multiple resonances FE,, is:

Ae) = (1.48)

I\T,
T A(E - E,,) 1.4
()= T, Z (1.49)

Using Eq. (1.45) we can give the linear conductance for a quantum dot:

26 FIFQ
G = A(E - E, 1.50
T 2 (1.50)

which consists of a series of resonant peaks as the resonances are scanned with the aid of

an external gate electrode.
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constriction

Figure 1.11: Sketch of a quantum point contact system with V' the potential bias
applied to the attached terminals. Image taken from Ref. .

1.3.3 Quantum point contact

A quantum point contact (QPC) is a narrow constriction between two wide, electrically
conducting regions. The width of a QPC is of the order of few nanometers . By
applying the potential bias V' as in Fig. [[.11] electrons are allowed to pass through the
constriction. As in the case of QDs, we now sketch the derivation of the QPC transmission

in order to derive the conductance for this system.

We consider the Schrodinger’s equation for independent electrons in two dimensions

(xy plane):
h? 82

where V(x,y) is the confining potential that defines the QPC. Since confinement is in y

direction and is translationally invariant in the x direction, the total wave function can

be decomposed as:
V(z,y) = x(y)e™. (1.52)
Here, k is the momentum along the propagation direction (z).

The total energy for electrons is then:

h2 k>
- 2m*

E. (k) (1.53)

ns

where F,, are the energy subbands due to the transversal confinement potential. Assuming
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Figure 1.12: Point-contact conductance as a function of gate voltage. Image taken

from Ref. [30].

that the confinement is a hard wall potential, F, = gjﬂ’f{{; where W is the QPC width

and n = 1,2,3.... These energies define the onsets above which the mode becomes
conductive. We call T,,(F) the transmission of each mode with energy F. Since in linear
response the functions are evaluated at the Fermi energy, the conductance for a QPC, like

in the case of a quantum dot, can be calculated from Eq. ((1.45)):
o2
G=2— ;Tn(EF) . (1.54)

If one assumes that each mode turns on when the electron’s energy surpasses F,, and the

transmission for each mode is 1, then the conductance will jump in steps of 2e?/h (see

Fig. for a theoretical simulation).

1.3.4 Transport in graphene

Let us now discuss the transport properties of a homogeneous monolayer graphene system

of length L and width W.
1.3.4.1 Chirality in graphene

The graphene Hamiltonian near the Dirac points K and K’ satisfy Hg» = H%. Since the
two Hamiltonians are proportional to ¢ - ¢, Eq. (L.13]), the resulting dispersion relation
for both valleys is linear and isotropic. In this case, we can discuss the helicity or chi-

rality produced from this relation [31]. The helicity is the projection of the pseudospin
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Figure 1.13: Schematic representation of chirality in graphene for two valleys K
and K.

(sublattice) on the wave vector ¢. Specifically, the chirality operator is introduced as:

— q_»
| 7|
The eigenvalues of this operator are h, — +1 and h, — —1. If h, = —1 the pseudospin

and ¢ are aligned but in opposite directions. If h. — +1 the two will be parallel and
aligned along the same direction. Since h. commutes with the Hamiltonian, in monolayer
graphene the electronic states are chiral, as should be for massless Dirac fermions. A
consequence is that chirality is reversed when moving from K to K’ (see Fig. . In
transport, this nicely implies that backscattering is forbidden if intervalley scattering is

absent.

1.3.4.2 Transmission coefficient and conductance

For a common metal, the conductance is zero when the density of carriers becomes zero.
However, in the case of Dirac carriers present in graphene the conductance is not zero
despite the fact that graphene is a semimetal. We consider a sample of graphene in the xy

plane without disorder and connected to two contacts made of doped graphene to which
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Electrode

Figure 1.14: Sketch of a graphene strip with L the distance between the two
electrodes and W the width of the strip.

we apply a potential bias V' (see Fig. [1.14)).

According to the Landauer picture (see Sec. [1.3.1]), we can consider the transport of
electrons in graphene as the transmission of electronic waves. From Eq. (1.41)) the electric

CurI‘ent Cal"l"ied by eleC(I"OIlS IS gi\/en by
h —00 ’ ‘ ‘

We assume that the sample is wide and therefore the sum over transverse modes can be

transformed into a integral in the continuum limit:

W[t
w . 1.
> = ) dq (1.57)
q
where ¢ = N(E)sin(f) is the transverse momentum, N(E) = % is the momentum

magnitude and tan(f) = g—z is the wave vector angle. Therefore, the current in graphene
Y

for each valley is

I— 2?2/ " s db / " T(E.0) N(E) [[u(E) — fa(B)] dE. (158)

Since we have valley degeneracy in graphene, the total current should be multiplied by 2:
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I — 21. To calculate the linear conductance we make a Taylor expansion of Eq. ((1.58))

up to the first order in V' and consider the zero temperature limit. Hence, we find [32]
w/2
G = GO/ T(Ep,0)cosf db. (1.59)
0

Here, Gy = 2e*W Np/mh = 4e*W Er/h*vr is the maximum conductance of an ideal
graphene layer with a continuous distribution of modes. The transmission is evaluated
at the Fermi energy and depends on the wave vector angle. If the tranmission is 1

independently of 8, we trivially obtain G = Gj.

1.4 Berry Phase in graphene

In classical and quantum mechanics, the Berry phase is the phase appearing in systems
that undergo slow evolution. The phase is defined when the quantum system’s Hamil-
tonian performs a loop in its parameter space. The phenomenon was independently dis-
covered by T. Kato (1950) [33], S. Pancharatnam (1956) 34|, and H. C. Longuet-Higgins
and later generalized by Sir Michael Berry (1984) [35].

The Berry phase in graphene can be calculated taking the two-band Hamiltonian

Eq. (1.10) as a reminder:

H= h'UF
Pz + 1Dy 0

with p= (p,,p,) = I ¢ the momentum operator. The obtained eigenstates of the Hamil-

tonian with (A, B) the two graphene sublattice atoms are:

Wy 1 1
U= = . (1.60)
\IIB \/§ j:e“f’

where ¢ is the polar angle of the momentum ¢ and ¢, = gcos ¢ and ¢, = gsin ¢.

From Eq. (|1.13]) we obtain:



26 CHAPTER 1. INTRODUCTION

E(q) = +hoplql, (1.61)

From Eq. (1.60), the Berry phase is the phase that the obtained eigenstate acquires
when the momentum evolves on a complete circle at constant energy around a Dirac

point [36]. The Berry phase can then be calculated as [35}36]:

(I)Berry = %‘ A(q) dqa (162)
C

with A(q) = —i < VU|9,|¥ > is the Berry connection, which is related to the parallel

transport of the eigenstates along the parameter space.

In monolayer graphene the pseudospin rotates by 27 and the Berry connection is

then [37],

i a1
A<q):7’[1 e] 3|l (1.63)
e
Thus,
Alg) = ; 1 e, Vo199 (1.64)

The obtained Berry phase is then:
2T 1 1 -
(DBerry - / d¢§ = 5 [Cb]g =T (165)
0

As a consequence, the Berry phase of monolayer graphene is m. As we already dis-
cussed, bilayer graphene has two sheets of graphene. The pseudospin in that case rotates

by 4m. Thus the Berry phase in bilayer graphene is 27 [37].
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Figure 1.15: Graphene quantum dot realized by etching

1.5 Experimental overview

This thesis examines the confined states in various quantum systems, focusing on the
cases of trivial and topological confinement. Wire and circular (rings and dots) structures
are used as examples. In this section, we will go over the experimental overview of several
recent projects by experimental groups on graphene, bilayer graphene quantum dots, and

kink devices (kink states hosts).

1.5.1 Monolayer graphene quantum dot

Due to the distinctive structure-related features of (GQDs), including optical, electrical,
and optoelectrical capabilities, these materials have received a lot of attention recently.
The intrinsic inert carbon feature of graphene quantum dots makes them a novel type of

(QD), as they are chemically and physically stable [38§].

It will be impossible to utilize potential gate techniques, widely known for semicon-
ductor quantum dots, to fabricate graphene QDs. Because if we want to apply a potential
to the two sublattice atoms in graphene and since the distance between these atoms is
very small, methods like lithographic surface alteration are not feasible. Another method

discovered for this realization is by etching graphene into tiny flakes which are solids that

resemble disks and have a fixed size (see Fig. [L.15]). A problem that arises in this device
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Figure 1.16: Bilayer graphene quantum dot experimental setup from Ref.

is that this type of quantum dot shows edge disorder.

1.5.2 Bilayer graphene quantum dots

Bilayer graphene has a configurable energy gap due to the application of an electric field,
which offers a novel method for building nanostructures like quantum dots. This type
of dot allows for fine-tuning of the confinement as shown theoretically in this thesis (see
Chaps. EL , which eliminates both edge and substrate disorder by adjusting the gate
profile potential.

Figure. [1.16] shows the experimental setup of bilayer graphene quantum dot realized
by the group of Ref. [39], in which they report direct visualization of BLG QDs states by

using a scanning tunneling microscope.

The development of electrostatically defined bilayer graphene (BLG) quantum point
contacts, quantum dots, and double quantum dots was made possible by improvements
in ultraclean van der Waals heterostructures, particularly the utilization of local graphite
gates. Banszerus et al. have presented a device that is made of two hexagonal boron
nitride (hBN) crystals and a BLG flake that was mechanically exfoliated and picked up
using a dry van der Waals process. As a back gate, the heterostructure is mounted on a
graphite flake; for more detail about the fabrication setup see Ref. [40]. By using a finite
bias applied to the bilayer graphene quantum dot they confine the electrons and calculate

the conductance. Different experimental groups have succesfully fabricated such devices



1.5. EXPERIMENTAL OVERVIEW 29

400nm

Figure 1.17: Bilayer graphene kink-states experimental device. Figure from Ref.

[44]

for bilayer quantum dots such as Refs. [41}-43]

1.5.3 Experimental realization of a valleytronic device

The motivation and the aim of this thesis is the study of kink states, the topological
states under kink potential for valleytronic application. The first valleytronic experimental
device which hosts kink state has been realized by Jing Li et al. in which they describe
how to make a dual-split-gate structure in bilayer graphene and provide experimental

proof of valley-polarized kink states.

The experiment of was inspired by the theoretical work of Martin et al. 8] which
is experimentally challenging, where the four split gates must be perfectly matched and

aligned, which is not easy in lithography.

For this purpose, they develop strategies to get through these barriers and provide
proof of the kink states’ ballistic conduction. They create the device by stacking h-BN;,
BLG and h-BN atop multi-layer graphene split bottom gates supported on a SiO2/doped
Si substrate. They show the experimentally obtained results once the device fabricated
and characterized (see Fig, . The device’s kink states were seen experimentally
by measuring the junction conductance as a function of the silicon back-gate voltage,
as shown in Figll.18 They discovered that when the Fermi energy is outside the bulk

bandgap, the conductance is high. The conductance increases in the (+-) configuration
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Figure 1.18: (a) The junction conductance as a function of the potential V in the
fabricated device at fixed deplacement field. (b) Conductance as a function of the
potential along the yellow dashed lines. Figure from Ref.

and falls in the (- -) configuration for Fermi energy inside the band gap, showing the pres-
ence of extra conducting channels. The experimental design and findings are consistent
with Martin et al. prediction that kink states occurs (see the paper for more details [44]).

This serves as a solid starting point for future study in valleytronics.

Another publication by Mania et al Ref. describes an additional experiment and
a fabricated device that hosts the kink states at curved boundaries of folded bilayer
graphene. They demonstrate long-range ballistic transport at such topological channels
with the four terminal resistance being near zero and the two terminal resistance being

close to the ballistic resistance at zero magnetic fields.

In order to build the valleytronic device, Mania and colleagues sandwiched folded
bilayer graphene between two crystals of boron nitride (hBN). As a consequence of this
device and by the application of the gate potential with a potential changing its signs to

two sheets of graphene, the inversion symmetry is broken.
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Figure 1.19: Bilayer graphene valleytronic device. Figure from Ref.
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Figure 1.20: Potential applied to the two sheets and the creation of the kink states
inside the gap. Figure from Ref.

The curved boundary of the folded bilayer graphene in this case transforms into a

domain wall and the kink states created in the middle of the gap (see Fig as
expected from the theoretical work of Martin et al .

Direct imaging of topological edge states at the bilayer graphene domain wall was also
presented experimentally by the group of Yin et al , where they observe the topological
states at the bilayer graphene domain wall using a scanning tunneling microscope. In an
ultrahigh vacuum chamber, they set up the sample and perform the scanning tunneling

and spectroscopic measurements. Their research shows that one-dimensional topological



32 CHAPTER 1. INTRODUCTION

VVV
AAA

Figure 1.21: Topological states occurs in the middle of the gap in the domain wall.
Figure from Ref. .

systems can maintain their stability even in the presence of strong magnetic fields.

All those experiments have achieved and explored kink states in the wire case for
bilayer graphene. They give hope that in the future, other experimental groups may create
a valleytronic device employing bilayer graphene quantum dots or rings as mentioned

theoretically in this thesis.

1.6 Conclusion

To summarize, graphene is a two-dimensional material hosting massless Dirac electrons
and a linear dispersion at low energies. This dispersion changes if another layer is added
as in bilayer graphene, leading to a parabolic spectrum and massive fermions. This is the
starting point to studying electronic transport phenomena when graphene is subjected to

an external field like a magnetic or electric field.

In this chapter, we have discussed background material about monolayer and bilayer
graphene such as their electronic properties as well as the Landau levels in both cases.
The applied electric fields are homogeneous. In the next chapters, we will consider inho-
mogeneous potentials that can even change their sign, leading to electronic confinement

as we have discussed here for quantum point contacts and quantum dots.

Additionally, we have briefly discussed the generalities of electronic quantum transport
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in the ballistic regime. A most suitable framework, in this case, is the Landauer-Biittiker
model, which expresses the conductance in terms of transmission probabilities. We will
extensively make use of this formalism in the remainder of this thesis when we calculate

the current in bilayer graphene constrictions and loops.
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Chapter

Confinement in bilayer graphene electrostatic

wires

This thesis studies the electrostatic confinement of charge carriers in bilayer graphene
structures in different geometries and conditions. Particularly, this chapter discusses two
possible general cases of such confinement in a translationally invariant wire geometry.
The first case corresponds to so-called trivial confinement, described in Sec. in which
the system sprectrum of eigenstates always shows a gap around zero energy. The second
case is the nontrivial or, as we call it, topological confinement, where in-gap zero-energy
states can be present, with two types of potential profiles: single kink and double kink (or
kink-antikink). They are described in Secs. and respectively, where we identify

characteristic features in the corresponding spectra.

2.1 Trivial confinement

An easy way of opening a gap for confined charge carriers in the bilayer graphene sys-
tem is by applying an electric field across the two sheets of graphene [47-49|. This is
sketched in Fig. where we have the two bilayer graphene (BLG) sheets under condi-
tions representing a wire along x on the xy plane. The colored microelectrodes on top

and bottom of the two graphene sheets are creating the mentioned electric field by means

35
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Figure 2.1: Sketch representing an electrostatic BLG wire created by gated top and
bottom microelectrodes. Blue and orange are indicate applied potentials of opposite
signs. The white region describes the unbiased zone representing the electrostatic
wire. The small sketch is a side view showing the electric field which is always in
parallel (upwards) direction.

of the applied biases V, and —V,, indicated by the blue and orange colors, respectively.
As shown in the lower inset, the electric field is pointing upwards for y < —L,/2 and
y > L, /2, while the field vanishes in the central region of width L, where V, = 0. When
we apply a positive voltage to the top electrodes and a negative voltage to the bottom
electrodes, a voltage difference between the layers of bilayer graphene is created. Such
potential difference causes an opening of the local gap underneath the electrodes. As a
consequence, the electrons are confined to the white region with a vanishing local gap.
We refer to this type of confinement as trivial confinement. Its main characteristic is the
exclusion of the electrons from the wire sides by the vertical electric field. Notice that the
electrostatic confinement is smooth on the atomic scale and the effective wire borders are
very far from the physical borders of the graphene sheets. In electrostatic confinement we
can disregard any dependence on the type of specific atomic arrangements at the physical

edges of the graphene sheets, like armchair edge or zigzag edge.
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Figure 2.2: Parameterized asymmetric potential profile as a function of y for two
values of the diffusivity parameter s.

2.1.1 Effective Hamiltonian

We are interested in the low energy sector near the two Dirac points for the two valleys
K and K'. This section presents the details of our low-energy description applied to

electrostatic BLG wires in a Dirac-like continuum approach.

2.1.1.1 Model

The effective Hamiltonian extends Eq. (1.16) to the case of magnetic and inhomogenous
electric potentials.

H=up (pm - l%) 0o To 4 Up Py 0y +t(Ap 0- + A 0) + Vi + Va(y)As (2.1)
with the three pseudospins characteristic of bilayer graphene are described by Pauli ma-
trices. As explained in Sec. we use different symbols for valley 7, ,, ., sublattice o, .
and layer \,, , Pauli matrices, where Ay = (A, £1i)\,)/2 and analogous definitions for .
The parameters in Eq. (2.1)) are vp, t, [, while V; and V, are the symmetric and asym-
metric potentials, respectively. Parameters v and t are intrinsic of BLG (see Sec. [1.2.2)),

and [, is the magnetic length is defined by I;2 = eB/hc representing a magnetic field in z
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direction. We assume a vanishing symmetric potential V; = 0, and a y-dependent asym-
metric potential V,(y), acting on the two layers as created by the gated microelectrodes

(Fig. P-1).

The continuum model includes the asymmetric potential V,(y). We assume a param-
eterized V,(y) with the shape of a channel, increasing on both sides along y, defining
an effective electronic confinement channel. We have to bear in mind, however, that the
spectrum of Hamiltonian eigenvalues is not bounded either from below or above. More

specifically, the potential reads

1 1
Va(y) = Va(O) o+ Va(O) <1 B yyz) 7 (2.2)
1 + e s ]_ —|— € s
where y; = —y, = —L,/2 are the position of the electrostatic wire edges, Va(o) is the

asymmetric potential to the left (y < y;) and right (y > y2) of the wire and s is a
diffusivity length modelling the smoothness of the transition from one to zero of the

Fermi-like function.

Figure shows the V,(y) potential profile in the cases of a sharp (s = 2.5 nm) and
a smooth (s = 37.5 nm) potential. In the results discussed below we have used the latter
value,(the smooth profile), because it seems to be a more realistic value when compared

to experiments [50L51].

2.1.2 Band structure

The energy bands of the system can be numerically obtained by solving for the Hamilto-
nian eigenvalues assuming a specific potential with a transverse dependence V,(y). Figure
2.3(a) shows the energy spectrum of a trivial BLG electrostatic wire as a function of the
momentum k by applying a potential bias with V9 =10 meV in Eq. . As could be
anticipated for a trivial system, the spectrum shows a gap around zero energy. To see
the spatial distribution of the states, we plot in Fig. [2.3(b) the density distribution of the
lowest state at a given k as a function of y. We observe that the state is indeed confined

and localized around y = 0.
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Figure 2.3: a): Band structure of a trivial BLG wire with a value of potential v =
10 meV and the transverse width L, = 150 nm b) Probability density distribution
of a selected k state indicated with an arrow.

2.1.3 Magnetic field dependence

Next, we consider the effect of an external magnetic field perpendicular to the BLG
sheets, of constant modulus B = 78 mT. We plot the energy spectrum as a function
of the momentum in Fig. 2.4k, the spectrum showing a qualitative difference with the
preceding zero-field results. We observe that the magnetic field has the ability to break

the valley degeneracy, with blue lines referring to valley K and red lines to valley K.

For a given valley and a given momentum we plot the energy spectrum as a function
of magnetic field in Fig. [2.4(b). In agreement with Sec. , where the magnetic field
dependence of BLG levels were discussed, we see that the wire spectrum shows bunching
of levels as a function of magnetic field. The plot shows that the spectrum is characterized
by the emergence of discrete Landau levels. It can be seen in Fig. [2.4b) the emergence
of a two-fold degenerate Landau level close to zero energy, as well as linearly-dispersing

Landau levels at higher positive and negative energies. The BLG wire eigenenergies merge
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Figure 2.4: a) Band structure of an electrostatic BLG wire in a magnetic field
B = 78 mT. Different colors are used for the two valleys. b) Energy spectrum as a
function of magnetic field at a fixed k¥ = 0.004 nm~".

into Landau levels, discussed in Chap. [I with precise values

E =0, 1=0,1
By, = +hw JI1—1), 1=2,3,...

with w, = eB/m* and m* = t/2v% = 0.03m,.

2.1.4 Width effect on the energy spectrum

The width L, of the unbiased region V, = 0 (white color in Fig. affects the spectrum
details. We study two cases: the first one when L, = 150 nm and the second case when
L, = 300 nm. Figure shows that when L, increases the spectrum zero-energy gap
rapidly reduces, eventually approaching the gapless 2D limit (Fig. 2.5b). Reversedly, a
small L, yields a larger zero-energy gap as shown in Fig. 2.5p.

The trivial character of Fig. 2.5 spectra, from the point of view of topology classifica-
tion, corresponds to the observation that no energy branch is ever crossing zero energy,

such that band curvatures are always opposite in the upper and lower energy semiplanes.
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Figure 2.5: Band structure of electrostatic BLG wire with value of potential V, = 10
meV and widths: a) L, = 150 nm, b) L, = 300 nm.

In a sense, there is no band inversion and the two sectors are disconnected. We will
study next a situation where such behavior no longer holds, band inversion is present

and, therefore, the topology classification is qualitatively different.

2.2 Topological confinement

This Section discusses a qualitatively different type of electrostatic confinement, when
the microlectrodes on the same side of the BLG planes take values of different signs,
i.e., such that domain walls separating regions of different signs emerge (see Fig. .
Particularly, we will investigate two cases of this type of confinement: a) a so-called single
kink, corresponding to a straight-line domain wall, which is an alternative way to create
one dimensional localized states in bilayer graphene; b) a double kink which is just the
case when we take into account two parallel kinks where the sign inversions of the two
kinks occur in reverse order along y. The double kink is also known as a kink-antikink

system.
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Figure 2.6: Sketch representing the bilayer graphene under kink potential .

2.2.1 Single kink potential profile

In this type of confinement, as represented in Fig. [2.6] we have the two sheets of BLG
(gray) where the microelectrodes on the two sides of bilayer graphene (blue and orange)
in the top and in the bottom are separated by a small width L, ~ 0. The potentials of
the microelectrodes change their sign (V, and —V,) in the zy plane. We also consider the

role of an electric field in perpendicular direction to the graphene planes.

The spatial degrees of freedom are x (longitudinal) and y (transverse) and confinement
along the line (white) is due to the difference in sign of potential. In the kink configuration,
a one dimension localized states in bilayer graphene are around the line of potential
inversion, and the term kink is used for the area in the boundary of the potential changing

sign from + to —, or from — to +.

The topological type of confinement has been discussed in 2007 by Martin, Blanter
and Morpurgo (MBM) in Ref. also by other authors [53], where they investigate
the properties of the localized states propagating along the kink potential and also in a
double kink. Those states have a predominant one dimensional and topological character.

In a matrix representation of Eq. (2.1)), the low energy bilayer Hamiltonian for the system,
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in one valley K, is:

—% UF7T+ 0 0
v,
VpT  —=2 t 0
H=|" 2 , (2.4)
0 t % vpT T
0 0 wpm G

with 7 = p, + ip, and 7t = p, — ip,. For the moment, we consider the case when
magnetic field B = 0 (I, — oo0). MBM in their paper used a two-band simplified and
reduced Hamiltonian which in the literature is used to describe the bilayer graphene in
a simpler way. This Hamiltonian is valid at low energy range (|F| < t/4) and can be
obtained from the 4 by 4 Hamiltonian H given by Eq. by a further reduction as
detailed in [8] (setting h = 1)

—% vprt 0 0
V.
VpT  —2 t 0 Hy H
I — F 5 N 11 12 (2.5)
0 t % UF7T+ H21 HQQ
0 0 VpT %

To find the reduced effective hamiltonian we consider [54]
Heduced = Hi1 — Hya Hyy' Hoy. (2.6)

After diagonalization and with V, < ¢ the reduced Hamiltonian becomes

Va ’U2 p2 U27TT2
, .
—EE L R0-4E)

o=-

with P = /p2 + pz. The dispersion relation for the spectrum is then

V2 02, P2 2 vh pA
2 __ Ya F F
E° = e (1 R ) + T (2.8)

When we apply an electric field, a gap opens in the spectrum and vpP ~ V, /2. If V, <t
we neglect P? in the first term, and Eq. (2.8)) becomes:

G o

E? = —
TR

(2.9)
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The eigenstates of the obtained Hamiltonian are two-component spinors ¥(z,y) =
(Uo(z,y), Uy(z,y)]*. In Ref. [§], the momentum along the y direction is conserved and

therefore the wavefunction is

. Pa()
U(x,y) = exp(ipyy) , (2.10)
()
with p, the wave vector along y direction. After diagonalization of the dimensionless

Hamiltonian the wave equation components have to fulfill two equations
— M(2)pa + (02 +py)* 05 = €a, (2.11)

— M (z)pp + (0n + Py)°Pu = €00, (2.12)

where M (z) is defined as M(z) = V, t a*/2v%, with a the lattice constant.
Those two equations are not easily analytically solvable for an arbitrary potential
profile. MBM consider first the case of single kink where M (z) = M sign(z) (sharp kink).

By applying the matching conditions at the kink MBM are able to obtain a homogeneous

system with four equations. From its determinant we need to solve the following equation
40*(a? + B2) + 4p,Ma — M* = 0, (2.13)

with a(8) = 272[(p} + M?* — €%)!/% + (—p,)?]"/%. This equation has a solution near zero
only if p, < 0 and M > 0 The obtained dispersion is

—e4+ M/V2

b e v 214)

where we define the momentum and the energy of the two topological branches.

Our aim now is to perform a similar analysis for a kink using the four by four Hamil-
tonian for a given valley 7 = +. We intend to be rigorous or fundamental in our analysis

in order to check whether the differences originate in the Hamiltonian reduction or not.

First step is to clarify the wave function continuity conditions. Assume a step kink

given by:
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Va(y) = Vasgn(y) . (2.15)

The wave function is then a 1D four-component function ®,,(y), where o, A = +. On
general physical grounds we demand the wave function components to be continuous at
the position of the kink. Its first derivative is discontinuous however. The discontinuity
condition is determined from the eigenvalue equation AV = EW. We simply write the
equation for y = € and for y = —e and subtract. Based on the continuity of the wave
function components, only the p, term and the V, term will survive. This leads to a
condition on the first derivative at the kink position. Notice that the usual treatment of
integrating the eigenvalue equation as

+e +e

6 HV(y)dy = /E E Y (y)dy. (2.16)
in our case leads to the trivial identity 0 = 0 and, therefore, gives no relevant information.

Summarizing, the conditions right at the kink position are

(O —W(O0) = 0, (2.17)
T (0Y) - (07) = Z;UV \oo, U(0) . (2.18)

Notice that Egs. (2.17)) and (2.18) are valid for each component of the wave function, i.e.,

they amount to a total of 8 equations. They are valid for a sharp interface kink.

Next, we characterize the wave function in each region of constant parameters, y < 0
and y > 0. With constant parameters the Hamiltonian is locally invariant by translation

and we can introduce wavenumbers ¢ such that the wave function can be expanded as:
ZC ¢ ) (2.19)

The g wavenumbers are complex, with a non-vanishing imaginary part, since the states
decay for y = +00 . The set of evanescent wave numbers and modes ¢, @gq; is obtained

from the eigenvalue problem with H given by Eq. (2.1).

H® = Ed . (2.20)
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We transform Eq. (2.20]) from a Hermitian problem to a non-Hermitian ¢ eigenvalue
problem by multiplying both sides by o,7,:

¢ Va
wp hk s, o, + 5(2/\3C 0, —N\y) £ 7)\2% +FEoy| @ =vphq?. (2.21)
Equation ([2.21)) is a linear eigenvalue problem of dimension 4 x 4. It yields 4 complex
wavenumbers ¢; from the diagonalization of the 4 x 4 matrix in each region (£ signs in

V, are for y > 0 and y < 0, respectively).

The wave function has to be regular for y — +o0o and this excludes two ¢'s in Eq.
for each region (out of the 4 possible ones); i.e., those having Im(q) > 0 for y < 0
and those with Im(q) < 0 for y > 0 have to be excluded. They normally come in groups
of 4 with different signs of the real and imaginary parts as ¢ = +¢q, £ iq;. We are thus
left with two wave numbers on each side and, equivalently, 2 coefficients C7s for the wave

function on each side. Let us assume
for y > 0, W,\(y) = Crevdl) 1 Che'eva?), (2.22)
for y > 0, Woy(y) = Cse' %) + Cyeitrvd?). (2.23)
The linear system of Eqs. — now reads
oo+ 0%, — ooy, — oY e, =o. (2.24)

Notice that imposing the wave function continuity with wave functions given by Eq.
on each y-side automatically guarantees that the condition on the derivative discontinuity
Eq. is also fulfilled. This is true because the chosen wave functions of Eq.
already fulfill Eq. by construction when the proper complex wavenumbers ¢'s for a

given energy FE are used.

Equations ([2.24]) is a linear system of 4 equations (since 0,7 = £+ ) and 4 unknowns
{C;,i =1—4}. The linear system is homogenous and, therefore, it always has the trivial
solution of vanishing amplitudes C; = 0. In addition, however, a nontrivial solution

may exist at particular energies such that the determinant of the linear system vanishes.



2.2. TOPOLOGICAL CONFINEMENT 47

These are the energies of the in-gap eigenstates we are interested in. In conclusion, we
need to determine the linear system coefficients ®’s of Eq. (2.21) and then look for the
determinant associated with Eq. ([2.24)).

We define the solutions for the equation (2.21]) and call the set of solutions {g, CID((Tq)f}
the complex band structure. It is a non-Hermitian eigenvalue problem for the ¢’s and
this explains why the wave numbers are in general complex. Equation (2.21)) has some

symmetries, namely:

i) Taking the complex conjugate of Eq. (2.21)) we notice the solutions come in pairs

{0, 99} & {¢", 09"} (2.25)

ii) Using the symmetry transformation of Eq. (2.21)) by A\,0, one can relate the solutions
of V, and —V, as

{g, 09} with V, < {¢, \yo,®'%} with —V, . (2.26)

iii) As will be shown below, the ¢ wavenumbers only depend on the square of the energy

and kink potential, E? and V2 .

iv) Using the symmetry transformation of Eq. (2.21)) by 7, one can relate the solutions

of s, =+ and s, = — as

{q, CID((TQQ} with s, = + {q,TJCCI)(f)?} with s, = — . (2.27)

As already anticipated above, the symmetries imply that with a fixed F the set of ¢'s
is the same on both sides of a sharp kink; i.e., four wavenumbers of type ¢ = +¢q, + iq;.
We use a matrix representation such the 4 x 4 matrices are split in bigger blocks for

valley (A) and in smaller blocks for sublattice (o). For instance we have the following
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correspondence: i i
0 0 1 O
0 0 0 -1
A0, = (2.28)
1 0 0 0
0 -1 0 O
In the above representation, the matrix M for Eq. (2.24]) reads:
a [f it 0
a = thkvgps,,
-8 —a 0 0
M = , where B=i(% - E), (2.29)
0 0 a —v ‘
v = z(% +E).
0 —it v —«
The g wave numbers are given by the secular equation determinant:
det(M — hvp qI) = 0. (2.30)

Expanding the determinant by the minors of the first column (for instance) it is

straightforward to derive the analytic expression of the wave numbers:

hvpq=+va?—95, where 0= 5

£ VO PR AR ). (231)

We stress that Eq. (2.31]) only depends on the parameter combinations

2

B4y = -2 (%) + E?|, (2.32)
2

B = - (%) — E? (2.33)

This confirms the above-mentioned result that the wave numbers only depend of the
squares of the energy E and antisymmetric potential V,, i.e., they are not affected by
the signs of these quantities. The complex wavenumbers are the same on both sides of a

sharp kink where V, just changes sign.
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Figure 2.7: Smooth single kink potential representation.

2.2.1.1 Single kink numerical results

We calculate the energy spectrum for a single kink with a smooth potential see( Fig.
2.7). We find that the energy spectrum as a function of the momentum for each valley
presents two branches crossing zero energy, in the region of the gap for the case of gated

bilayer graphene.

Energy(meV)
> b

-0.04 0.00 0.04 -0.04 0.00 0.04
k(nm-1) k(nm-1)

Figure 2.8: Bands of bilayer graphene kink for the two valleys: a) valley K and b)
valley K’ for a smooth potential s = 12.5 nm.
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Figure 2.9: (a) Magnetic field dependence of the kink spectrum (K : orange, K':
red) on the valleys at B = 78 mT, (b) Magnetic field dependence of energy at
k=0.01 nm~!

Those states are propagated in opposite direction for each valley, confirming the valley
momentum locking of the single kink. Figure [2.§ shows the energy spectrum as a function
of momentum for each valley K and K’. We observe that two branches occur at the low

energy in th