
i
i

“main” — 2023/2/17 — 12:41 — page 1 — #1 i
i

i
i

i
i

Representation Learning for Hierarchical
Reinforcement Learning

Lorenzo Steccanella

DOCTORAL THESIS UPF / 2023

THESIS SUPERVISORS
Dr. Anders Jonsson

Dept. of Information and Communication Technologies

i
i

“main” — 2023/2/17 — 12:41 — page 2 — #2 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page i — #3 i
i

i
i

i
i

Creative Commons Attribution-ShareAlike 4.0 International License

You are free to copy and redistribute the material in any medium or format, remix, trans-

form, and build upon the material for any purpose, even commercially. The licensor cannot

revoke these freedoms as long as you follow the license terms. Under the following terms: a)

Attribution – You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that suggests

the licensor endorses you or your use. b) ShareAlike – If you remix, transform, or build upon

the material, you must distribute your contributions under the same license as the original. No

additional restrictions — You may not apply legal terms or technological measures that legally

restrict others from doing anything the license permits. The complete terms of the license can

be found at: http://creativecommons.org/licenses/by-sa/4.0/legalcode

i

https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

i
i

“main” — 2023/2/17 — 12:41 — page ii — #4 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page iii — #5 i
i

i
i

i
i

Al mio papà.

iii

i
i

“main” — 2023/2/17 — 12:41 — page iv — #6 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page v — #7 i
i

i
i

i
i

Abstract

The concept of hierarchy has a strong appeal to researchers in the field of
artificial intelligence. Humans cope with the complexity of the world by
thinking in a hierarchical manner, and this same faculty is sought to be
imparted to autonomous agents.

Over the past few years, Reinforcement Learning (RL) methods have
achieved remarkable success, largely facilitated by the use of deep learning
models, reaching human-level performance in several domains, including
Atari games and complex board games such as Go and Chess. Neverthe-
less, it is still a challenge for RL agents to solve environments with sparse
rewards and long time horizons.

Hierarchical Reinforcement Learning (HRL) has the potential to sim-
plify the solution of such environments. The idea behind HRL is to de-
compose a complex decision-making problem into smaller, manageable
sub-problems, allowing an agent to learn more efficiently and effectively.

In this thesis, we aim to contribute to the field of HRL through the
study of state space partition representations. We aim to discover repre-
sentations that allow decomposing a complex state space in a set of small
interconnected partitions. We start our work by presenting which are the
properties of ideal state space partitions for HRL and then proceed to
explore different methods for creating such partitions. We present algo-
rithms able to leverage such representations to learn more effectively in
sparse reward settings. Finally, we show how to combine the learned rep-
resentation with Goal-Conditioned Reinforcement Learning (GCRL) and
additionally we present state representations useful for GCRL.

v

i
i

“main” — 2023/2/17 — 12:41 — page vi — #8 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page vii — #9 i
i

i
i

i
i

Resumen

El concepto de jerarqúıa tiene un fuerte atractivo para los investigadores
en el campo de la inteligencia artificial. Los humanos hacen frente a la
complejidad del mundo pensando de manera jerárquica, y se busca impar-
tir esta misma facultad a los agentes autónomos. En los últimos años, los
métodos de Reinforcement Learning (RL) han logrado un éxito notable,
facilitado en gran medida por el uso de modelos de Deep Learning, alcan-
zando un rendimiento de nivel humano en varios dominios, incluidos los
juegos de Atari y los juegos de mesa complejos, como Go y el Ajedrez. Sin
embargo, sigue siendo un desaf́ıo para los agentes de RL resolver entornos
con escasas recompensas y horizontes a largo plazo. El método Hiearchical
Reinforcement Learning (HRL) tiene el potencial de simplificar la solución
de dichos entornos. La idea detrás de HRL es descomponer un problema
complejo de toma de decisiones en subproblemas más pequeños y mane-
jables, lo que permite que un agente aprenda de manera más eficiente y
efectiva. En esta tesis, pretendemos contribuir al campo del HRL a través
del estudio de las representaciones de partición del espacio de estado. Nue-
stro objetivo es descubrir representaciones que permitan descomponer un
espacio de estado complejo en un conjunto de particiones interconectadas.
Comenzamos nuestro trabajo presentando cuáles son las propiedades de
las particiones de espacio de estado ideales para HRL y luego procede-
mos a explorar diferentes métodos para crear dichas particiones. Pre-
sentamos algoritmos capaces de aprovechar tales representaciones para
aprender de manera más efectiva en entornos de escasa recompensa. Fi-
nalmente, mostramos cómo combinar la representación aprendida con el
método Goal-Conditioned Reinforcement Learning (GCRL) y, adicional-
mente, presentamos representaciones de estado útiles para GCRL.

vii

i
i

“main” — 2023/2/17 — 12:41 — page viii — #10 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page ix — #11 i
i

i
i

i
i

Contents

Abstract v

Resumen vi

List of Figures xiii

List of Tables xvi

List of Algorithms xviii

1 Introduction 1

1.1 Thesis Structure . 3

1.2 Summary of Contributions 5

1.2.1 List of Talks . 6

1.2.2 Upcoming Publications 6

I Background 7

2 Reinforcement Learning and Markov Decision Processes 9

2.1 Markov Decision Process . 9

2.1.1 State Space . 10

2.1.2 Action Space . 10

2.1.3 Transition Dynamics 11

2.1.4 Rewards . 11

2.1.5 Policies . 11

2.1.6 Optimality Criteria 12

2.2 Value Functions and Bellman Equations 13

ix

i
i

“main” — 2023/2/17 — 12:41 — page x — #12 i
i

i
i

i
i

2.3 Dynamic Programming Algorithms 15

2.3.1 Policy Evaluation . 15

2.3.2 Policy Improvement 15

2.3.3 Policy Iteration . 16

2.3.4 Value Iteration . 16

2.3.5 Generalized Policy Iteration 16

2.4 Tabular Reinforcement Learning 17

2.4.1 Monte Carlo methods 17

2.4.2 Temporal Difference Learning 18

2.4.3 Q-learning . 19

2.5 Deep Reinforcement Learning 20

2.5.1 Deep Q Network . 21

2.5.2 Policy Gradient Methods 23

2.6 Goal Conditioned Reinforcement Learning 28

2.6.1 Setting . 28

2.6.2 Goal Conditioned Supervised Learning 28

3 Hierarchical Reinforcement Learning 29

3.1 Introduction . 29

3.2 Four-Room Task . 30

3.3 Temporally Extended Actions 31

3.4 Semi-Markov Decision Processes 31

3.4.1 SMDP Q learning 33

3.5 Structure . 33

3.6 Optimality . 34

3.7 Bottleneck States . 36

3.8 Options . 37

II State Space Partitioning and Option Learning 39

4 State Space Partitioning 41

4.1 State Space Partitions . 42

4.2 State Space Partitions Properties 43

x

i
i

“main” — 2023/2/17 — 12:41 — page xi — #13 i
i

i
i

i
i

5 Hierarchical reinforcement learning for exploration and
transfer 47
5.1 Methodology . 49

5.1.1 Task MDPs . 49
5.1.2 Invariant SMDP . 49
5.1.3 Option MDPs . 50
5.1.4 Algorithm . 51
5.1.5 Solving tasks . 52
5.1.6 Controllability . 54

5.2 Implementation . 55
5.2.1 Manager . 55
5.2.2 Worker . 56

5.3 Experiments . 56
5.3.1 Exploration . 58
5.3.2 Transfer Learning 58
5.3.3 Controllability . 60

5.4 Discussion . 60
5.5 Conclusion . 62

6 Hierarchical Representation Learning for Markov Deci-
sion Processes 63
6.1 Contribution . 65

6.1.1 Compression Function 65
6.1.2 Hierarchical Representation 66
6.1.3 Controllability . 68
6.1.4 Transfer . 68

6.2 Experimental Results . 69
6.2.1 Learning a Compression Function 70
6.2.2 Hierarchical Reinforcement Learning 71
6.2.3 Experiments . 77
6.2.4 Additional Empirical Evaluation 78

6.3 Hyperparameters . 79
6.4 Conclusion . 81

7 Distance Based Representation for Hierarchical Reinforce-
ment Learning 83
7.1 Minimum Action Distance 84

xi

i
i

“main” — 2023/2/17 — 12:41 — page xii — #14 i
i

i
i

i
i

7.1.1 Learning Minimum Action Distance from Adjacency
Matrix . 85

7.1.2 Symmetric embeddings 86
7.1.3 Asymmetric semi-norm embeddings 89

7.2 Minimum Action Distance State Space Partitions 91
7.2.1 Options Representation 93

7.3 Bottleneck State Discovery 94
7.4 Preliminary Results . 95
7.5 Conclusion . 99

III Representation Learning for Goal Conditioned Re-
inforcement Learning 101

8 State Representation Learning For Goal Conditioned Re-
inforcement Learning 103
8.1 Contribution . 104

8.1.1 Learning Transition Models 105
8.1.2 Latent space planning 106
8.1.3 Reward Shaping . 107

8.2 Experimental Results . 108
8.2.1 Dataset Collection and Domain Description 109
8.2.2 Learning a State Embedding 111
8.2.3 Learning Dynamics 112
8.2.4 Experiments . 112

8.3 Conclusion . 114

9 Conclusions and Future Work 117

Bibliography 120

xii

i
i

“main” — 2023/2/17 — 12:41 — page xiii — #15 i
i

i
i

i
i

List of Figures

2.1 The reinforcement learning framework, in which an agent
takes a series of actions, each of which generates a reward
and a new state. 10

2.2 Actor-Critic Architecture (Sutton and Barto 2018). 27

3.1 The four-room task in which an agent (A) has to reach
the goal (G). Green blocks (D1, D2, D3, D4) represents
doorways that the agent has to cross to move between rooms
(R1, R2, R3, R4) in the environment. 31

3.2 An example of hierarchy decomposing the four-room task.
X cells represent terminal states. 34

3.3 The policy shown in the left diagram is recursively optimal
but not hierarchically optimal. The policy in the right dia-
gram is hierarchically optimal but not recursively optimal.
The shaded cells indicate states where the two definitions
of optimality disagree (Dietterich 2000; Ghavamzadeh and
Mahadevan 2002). 36

5.2 Key-door-treasure-1 (a) and Montezuma’s Revenge (b) with
compression function superimposed. 58

5.3 Results in Key-door-treasure-1. 59

5.4 Results in Key-door-treasure-2, reward for all objects. . . . 59

5.5 Results in Montezuma’s Revenge with controllability. 60

5.6 Results of transfer learning, with reward given for all objects. 61

xiii

i
i

“main” — 2023/2/17 — 12:41 — page xiv — #16 i
i

i
i

i
i

6.1 Results on Key-Door0 gridworld environment. The first
row represents the environments, and the second row illus-
trates the corresponding learned deterministic compression
functions, where different colors represent different regions
z ∈ Z. 69

6.2 Results on geometric variations of the NineRooms0 grid
world environments. The first row represents the envi-
ronments, and the second row illustrates examples of the
corresponding learned deterministic compression functions,
where different colors represent different regions z ∈ Z. . . . 70

6.3 Absolute error of the compression function, evaluated on
increasing replay memory size. 72

6.4 The discovered invariant SMDP. 74

6.5 Results in the KeyDoor environment. 74

6.6 Results on the variations of nine room gridworld environ-
ments where the goal (green square) is placed at an in-
creasing distance from the agent (blue square). From left
to right: NineRoom1, NineRoom2, NineRoom3. 77

6.7 Results of the compression function in the MountainCar en-
vironment (axes represent location and velocity); different
colors represent different regions z ∈ Z. 79

7.1 Top: a simple grid world where an agent has to pick up
a key and open a door (key and door positions are fixed).
Bottom: the learned state embedding φ on R2. The state
(x, y, has key) is composed of the agent’s location and whether
or not it holds the key. 90

7.2 Left: a simple grid world where an agent has to pick up a
key (key position is fixed). Right: the learned Centrality
measure. The state (x, y, haskey) is composed of the agent
location and whether or not it holds the key. 95

7.3 Mean squared error of the MAD distance learned on the
EmptyGridWorld respect to the ground truth L1 distance . 96

7.4 EmptyGridWorld results, where we compare Q learning on
the original MDPM (FLAT) against SMDP Q learning on
the SMDP S (SKILL-SMDP). 98

xiv

i
i

“main” — 2023/2/17 — 12:41 — page xv — #17 i
i

i
i

i
i

7.5 KeyDoorGridWorld results, where we compare Q learning
on the original MDPM (FLAT) against SMDP Q learning
on the SMDP S (SKILL-SMDP). 99

8.1 Evaluation Tasks. Top row: MountainCar-v0, CartPole-v0,
AcroBot-v1 and Pendulum-v0. Bottom row: GridWorld
and SawyerReachXYZEnv-v1. 109

8.2 Results in the classic RL control suite. 111
8.3 Results in multi-goal environments. 113

xv

i
i

“main” — 2023/2/17 — 12:41 — page xvi — #18 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page xvii — #19 i
i

i
i

i
i

List of Tables

5.1 Hyperparameters used in the experiments. 62

6.1 Hyperparameters used to train HRL and HRL-Transfer agents. 80
6.2 Hyperparameters used to train SIL and DQN-PER agents. . 81

8.1 Dataset description. 110

xvii

i
i

“main” — 2023/2/17 — 12:41 — page xviii — #20 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page xix — #21 i
i

i
i

i
i

List of Algorithms

2.1 Tabular TD(0) for estimating V π (Sutton and Barto 2018) . 19
2.2 Tabular Q-learning (Watkins and Dayan 1992) 20

5.1 InvariantHRL . 53
5.2 Manager . 55
5.3 RunOption . 57

6.1 Manager . 76

7.1 MAD State Space Partition embedded in an Episodic RL
framework . 92

8.1 Plan-Dist . 107

xix

i
i

“main” — 2023/2/17 — 12:41 — page xx — #22 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 1 — #23 i
i

i
i

i
i

Chapter 1

Introduction

The concept of hierarchy has a strong appeal to researchers in the field of
artificial intelligence. Humans cope with the complexity of the world by
thinking in a hierarchical manner (Botvinick et al. 2015; Botvinick, Niv,
and Barto 2009; Eckstein and Collins 2020; Tenenbaum et al. 2011), and
this same faculty is sought to be imparted to autonomous agents.

Reinforcement learning (RL) (Sutton and Barto 2018) is a powerful
framework for decision-making in complex and uncertain environments.
However, when faced with large and complex state spaces, traditional
RL can become intractable, leading to the need for more sophisticated
techniques. One such technique is Hierarchical Reinforcement Learning
(HRL) (Barto and Mahadevan 2003), which breaks down a complex task
into smaller, more manageable subtasks, each with its own policy. In HRL
the agent must be able to recognize and isolate the relevant information
at each level of abstraction and use this information to make informed
decisions and learn a successful policy. This requires an appropriate model
of the state space, including the partitioning of the state space into smaller,
more manageable regions.

State space partitioning is a crucial component of HRL (Wen et al.
2020), as it determines how the task is decomposed into subtasks, and
how the policies for these subtasks are coordinated. The process of state
space partitioning involves defining the boundaries between different sub-
spaces, and mapping states in the original state space to the corresponding
subspaces. This mapping is referred to as state abstraction.

1

i
i

“main” — 2023/2/17 — 12:41 — page 2 — #24 i
i

i
i

i
i

Several approaches to state space partitioning have been proposed in
literature, including clustering-based and topological approaches (Ciosek
and Silver 2015; Ecoffet et al. 2021; Mannor et al. 2004; Menache, Man-
nor, and Shimkin 2002; Nachum et al. 2018b; Vezhnevets et al. 2017), and
model-based approaches (Asadi and Huber 2004; Castro and Precup 2010;
Castro and Precup 2012; Ferns, Panangaden, and Precup 2004, 2011; In-
fante, Jonsson, and Gómez 2022; Li et al. 2021; Ravindran and Barto
2002, 2004; Wan and Sutton 2022). Clustering-based and topological ap-
proaches involve grouping similar states together into the same subspace,
using metrics based on features of a state or based on the topological
structure of the state space. Model-based approaches are based on the
dynamics of the environment and involve defining subspaces based on the
behavior of the system in response to different actions and rewards. These
methods often require prior knowledge, struggle with large and continuous
Markov Decision Processes or fail to meet other requirements discussed in
Chapter 4.

In addition to state space partitioning, we will also be focusing on
another important aspect of HRL, namely goal-conditioned reinforcement
learning.

Goal-conditioned reinforcement learning (Liu, Zhu, and Zhang 2022)
involves learning policies that are conditioned on a specific goal or set of
goals, rather than on the entire state space. This can be particularly use-
ful in HRL (Nachum et al. 2018a,b), where the goal of a subtask may be
specified in terms of high-level objectives, rather than low-level state in-
formation. By learning goal-conditioned policies, HRL systems can better
capture the structure of the problem and can be more effective at solving
complex tasks.

The choice of state space partition and goal-conditioned reinforcement
learning method can have a significant impact on the performance of the
HRL system. For example, if the partition is too fine-grained or the goals
are too specific, the subtasks may be too complex to be learned effectively,
while if the partition is too coarse or the goals are too general, the subtasks
may not be primitive enough to capture the structure of the problem.
It is therefore important to carefully consider the trade-off between the
granularity of the partition and the specificity of the goals, and the ability
of the HRL system to learn the subtasks effectively.

2

i
i

“main” — 2023/2/17 — 12:41 — page 3 — #25 i
i

i
i

i
i

The goal of this thesis is to advance the area of Hierarchical Reinforce-
ment Learning (HRL) by addressing the challenges of state space parti-
tioning and goal-conditioned reinforcement learning. The aim is to create
new HRL algorithms that can effectively utilize and discover state space
partitions either through interaction with the environment or by utilizing
a pre-existing offline dataset. This thesis places a particular emphasis on
reward-free representations, as these have the potential to enhance the
transferability of the learned representations across multiple tasks in the
environment. To achieve these aims, we will build upon existing HRL liter-
ature and incorporate recent developments in deep reinforcement learning.

1.1 Thesis Structure

The remainder of this thesis is organized into three main parts: Back-
ground (Chapters 2 and 3), State Space Partitioning and Options Learn-
ing (Chapters 4, 5, 6 and 7), and Representation Learning for Goal Condi-
tioned Reinforcement Learning(Chapter 8). In the first part, we introduce
the methods on which our work is based and recent related work. In the
second part, we detail our contributions to Hierarchical Reinforcement
Learning. In the third part, we detail our contribution to learning repre-
sentation useful for Goal-Conditioned Reinforcement Learning.

I Background

• In Chapter 2 we delve into the background of Reinforcement Learning
(RL). The chapter covers the fundamental concepts of Markov Deci-
sion Processes (MDPs) and the application of Dynamic Programming
and Reinforcement Learning methods for solving them. Additionally,
we provide an overview of relevant Deep Reinforcement Learning al-
gorithms and introduce the concept of Goal-Conditioned Reinforce-
ment Learning (GCRL).

• In Chapter 3, we provide an introduction to Hierarchical Reinforce-
ment Learning (HRL). To start, we present the notion of Temporally
Extended (TE) Actions and extend the traditional Markov Decision
Process (MDP) to a Semi-Markov Decision Process (SMDP), allow-
ing for the consideration of TE actions. Additionally, we introduce

3

i
i

“main” — 2023/2/17 — 12:41 — page 4 — #26 i
i

i
i

i
i

the framework of Options as described by Sutton, Precup, and Singh
(1999).

II State Space Partitioning and Options Learning

• In Chapter 4, the topic of state space partitioning is addressed. The
properties necessary for an effective representation in Hierarchical
Reinforcement Learning are emphasized and discussed in detail.

• In Chapter 5, we present our first contribution to the field of Hi-
erarchical Reinforcement Learning (HRL). One of the challenges in
Reinforcement Learning is solving sparse-reward domains where sig-
nificant exploration is required before obtaining a reward. Our con-
tribution aims to address this challenge by introducing a novel HRL
framework based on the compression of an invariant state space that
is common to a range of tasks. The framework consists of dividing
the original problem into smaller subtasks, which focus on moving be-
tween the state partitions induced by the compression. By doing so,
the number of decisions required before obtaining a reward is reduced,
facilitating exploration. The results of our experiments indicate that
the proposed algorithm is capable of solving complex sparse-reward
domains, and it demonstrates transferability by quickly solving new,
previously unseen tasks.

• In Chapter 6, we present a novel method for learning hierarchical
representations of Markov decision processes. Our method works
by partitioning the state space into subsets and defining subtasks
for performing transitions between the partitions. We formulate the
problem of partitioning the state space as an optimization problem
that can be solved using gradient descent given a set of sampled tra-
jectories, making our method suitable for high-dimensional problems
with large state spaces. We empirically validate the method, by show-
ing that it can successfully learn a useful hierarchical representation
in a navigation domain. Once learned, the hierarchical representa-
tion can be used to solve different tasks in the given domain, thus
generalizing knowledge across tasks.

• In Chapter 7, we introduce the Minimum Action Distance (MAD)
metric and its properties. We show how the MAD can be learned
from sampled trajectories in an environment, used to partition the

4

i
i

“main” — 2023/2/17 — 12:41 — page 5 — #27 i
i

i
i

i
i

state space and to learn a set of options. Our preliminary results
demonstrate the effectiveness of this method, as it leads to faster
learning and improved exploration compared to flat agents.

III Representation Learning for Goal Conditioned Reinforce-
ment Learning

• In Chapter 8, we present a novel state representation for reward-free
Markov decision processes. The idea is to learn, in a self-supervised
manner, an embedding space where distances between pairs of em-
bedded states correspond to the minimum number of actions needed
to transition between them. We show how this representation can
be leveraged to learn goal-conditioned policies, providing a notion of
similarity between states and goals and a useful heuristic distance
to guide planning and reinforcement learning algorithms. Finally, we
empirically validate our method in classic control domains and multi-
goal environments, demonstrating that our method can successfully
learn representations in large and/or continuous domains.

Finally, we present our conclusion and future work in Chapter 9.

1.2 Summary of Contributions

The research conducted during the completion of this thesis resulted in
the following published works:

• Chapter 5: Lorenzo Steccanella, Simone Totaro, Damien Allon-
sius, Anders Jonsson. Hierarchical reinforcement learning for effi-
cient exploration and transfer. 4th Workshop on Lifelong Learning
(LifelongML) at ICML.

• Chapter 6: Lorenzo Steccanella, Simone Totaro, Anders Jons-
son. Hierarchical Representation Learning for Markov Decision Pro-
cesses. Workshop on Generalization in Planning (GenPlan) at IJ-
CAI.

• Chapter 8: Lorenzo Steccanella, Anders Jonsson. State Repre-
sentation Learning for Goal-Conditioned Reinforcement Learning.

5

i
i

“main” — 2023/2/17 — 12:41 — page 6 — #28 i
i

i
i

i
i

Workshop on Bridging the Gap Between AI Planning and Reinforce-
ment Learning (PRL) at ICAPS/IJCAI and ECML PKDD 2022.

1.2.1 List of Talks

The work presented in this thesis has been disseminated to the wider
academic community through the following talks:

• Eastern European Machine Learning Summer School 2020. Talk
about Hierarchical reinforcement learning for efficient exploration
and transfer.

• Arizona State University, AAIR lab. Talk about Representations for
Hierarchical reinforcement learning.

• Deep Learning Barcelona Symposium. Talk about State Represen-
tation Learning for Goal-Conditioned Reinforcement Learning.

1.2.2 Upcoming Publications

The results presented in Chapter 7 are based on our recent work, and we
plan to submit it for publication in the upcoming months. Furthermore,
we are working on a journal article that collects our works on representa-
tion learning for Hierarchical Reinforcement Learning.

6

i
i

“main” — 2023/2/17 — 12:41 — page 7 — #29 i
i

i
i

i
i

Part I

Background

7

i
i

“main” — 2023/2/17 — 12:41 — page 8 — #30 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 9 — #31 i
i

i
i

i
i

Chapter 2

Reinforcement Learning and
Markov Decision Processes

In this chapter, we will introduce the notation and concepts behind Markov
decision processes (MDPs) and a class of algorithms called Reinforcement
Learning for computing optimal behaviors.

2.1 Markov Decision Process

A Markov Decision Process (MDP) (Puterman 2014) is a framework for
decision-making with stochasticity. MDP can be seen as stochastic ex-
tensions of finite automata and also as Markov processes augmented with
actions and rewards.

Formally, a Markov Decision Process is a tupleM = 〈S,A,P, r〉 where:

• S is the state space, which contains all possible states the system
may be in.

• A is the action space, which contains all possible actions the agent
may take when interacting with the system.

• P : S × A 7→ ∆(S) is the transition dynamics. Here ∆(S) is the
probability simplex on S, i.e. the set of all probability distributions
over S. For each state s, action a and next state s′, P(s, a, s′)
indicates the probability of ending up in state s′ after doing action

9

i
i

“main” — 2023/2/17 — 12:41 — page 10 — #32 i
i

i
i

i
i

a in state s. We sometimes write the conditional probability of
transitioning into state s′ as P(s′|s, a).

• r : S ×A×S 7→ R is the reward function. The value r(s, a, s′) gives
the amount of ”reward” associated with transitioning into state s′

when taking action a from state s.

Figure 2.1: The reinforcement learning framework, in which an agent takes
a series of actions, each of which generates a reward and a new state.

2.1.1 State Space

In an MDP we define states in S as a complete description of the state of
the world. There is no information about the world that is hidden from
the state. Some environments, like Atari, have discrete state space while
others, like robotics, have continuous state space.

We represent states as finite vectors or matrices. For instance, a visual
observation could be represented by the RGB matrix of its pixel values;
the state of a robot might be represented by a vector of its joint angles
and velocities.

2.1.2 Action Space

Actions in A can be used to control the system state and different envi-
ronments allow different kinds of actions. The set of actions that can be
applied in some particular state s ∈ S, is denoted A(s), where A(s) ⊆ A.
Some environments, like Atari and Go, have discrete action spaces, where

10

i
i

“main” — 2023/2/17 — 12:41 — page 11 — #33 i
i

i
i

i
i

only a finite number of moves are available to the agent. Other environ-
ments, like the control of a robot in a physical world, have continuous
action spaces. In continuous spaces, actions are real-valued vectors.

2.1.3 Transition Dynamics

The transition function P : S ×A 7→ ∆(S) describes the dynamics of our
environment.

To define an order in which actions occur, we will define a discrete
global time, t = 1, 2, For example, the notation st denotes the state at
time t and st+1 denotes the state at time t+ 1.

The system being controlled is Markovian if the result of an action does
not depend on the previous action and visited states, but only depends on
the current state, i.e.

P (st+1|st, at, st−1, at−1, ...) = P(st+1|st, at) = P(st, at, st+1). (2.1)

The idea of Markovian dynamics is that the current state s provides
enough information to make an optimal decision.

2.1.4 Rewards

Along with this thesis, we considered deterministic reward functions that
map a particular transition (s, a, s′), obtained by applying action a in state
s and transitioning to state s′, to a real-valued reward r(s, a, s′). The
reward function is used to define how the system i.e. the MDP, should be
controlled.

2.1.5 Policies

Given an MDP, a policy is a computable function that outputs for each
state s ∈ S an action a ∈ A(s). A policy can be either deterministic or
stochastic.

A deterministic policy is a function π : S → A that directly maps a
state to an action to take when in that state.

A stochastic policy π : S → ∆(A) assigns a distribution over actions
to each state. As with the dynamics, we write the action distribution that

11

i
i

“main” — 2023/2/17 — 12:41 — page 12 — #34 i
i

i
i

i
i

π assigns to state s as π(·|s), but the conditional probability of action a
in state s when executing policy π as π(a|s).

At each time step the policy π outputs an action at ∼ π(·, st) and
the action is performed. Based on the transition function P and reward
function r a transition is made to state st+1 with probability P(st, at, st+1)
and a reward rt = r(st, at, st+1) is received.

2.1.6 Optimality Criteria

In the previous sections, we have defined the environment (the MDP) and
the agent (i.e. the controlling element, or policy). Before we can talk
about algorithms for computing optimal policies, we have to define what
the agent optimizes.

We refer to a trajectory τ as a sequence of states and actions in the
environment τ = (s0, a0, r0, s1, a1, r1, . . . , sT) of length T . The return
associated with a trajectory R(τ) is the sum of (discounted) rewards:

R(τ) =
T∑
t=0

γtrt, (2.2)

where γ ∈ (0, 1] is the discount factor that defines how much we take into
account immediate reward and future reward at each time step. We also
define Rt(τ) as the return received from time step t.

Rt(τ) = rt + γrt+1 + γ2rt+2 + ... =
T∑
k=t

γk−trk. (2.3)

The standard objective for solving an MDP is to find a policy that
maximizes the return:

π∗ ∈ argmax
π∈Π

E [R(τ)] (2.4)

Episodic MDPs

In Episodic MDPs there exists a specific subset of states Se ∈ S de-
noted as terminal states where the process ends. The agent in this setting
interacts with the MDP over k = 1, ...,K episodes. We refer to this

12

i
i

“main” — 2023/2/17 — 12:41 — page 13 — #35 i
i

i
i

i
i

setting by augmenting the MDP tuple with the set of terminal states
M = 〈S,A,P, r,Se〉.

The return associated with a trajectory R(τ) in an episodic MDP is
usually defined as above, with T <∞ and possibly undiscounted, γ = 1.

Infinite Horizon MDPs

In the infinite horizon setting the system is modeled as an infinite horizon
where T = ∞ and with a discount factor γ ∈ (0, 1). The discount factor
γ < 1 ensures that even with an infinite horizon the sum of the discounted
rewards obtained is finite.

2.2 Value Functions and Bellman Equations

Most learning algorithms compute the optimal policy by learning the value
function V : S → R or the action-value function Q : S×A → R. Through-
out this section, we will consider the infinite-horizon discounted return
setup E [R(τ)] = E

[∑∞
t=0 γ

trt
]
, but the formulation can be simply ex-

tended to the episodic case by means of including the time-dependency in
the equations.

V π(s) = E [R(τ)|s0 = s] = E

[∞∑
t=0

γtrt|s0 = s

]
, (2.5)

Qπ(s, a) = E [R(τ)|s0 = s, a0 = a] = E

[∞∑
t=0

γtrt|s0 = s, a0 = a

]
. (2.6)

In words, V π(s) gives the expected return when starting in state s,
and acting according to π. Similarly, Qπ(s, a) gives the expected return
starting in state s, taking action a, and acting according to π.

An important property of the value function is that it can be calculated

13

i
i

“main” — 2023/2/17 — 12:41 — page 14 — #36 i
i

i
i

i
i

recursively in terms of the so-called Bellman Equation (Bellman 1957)

V π(s) = E [Rt(τ)|st = s]

= E
[
rt + γrt+1 + γ2rt+2 + . . . |st = s

]
= E [rt + γV π (st+1) |st = s]

=
∑
a∈A

π(a|s)
∑
s′∈S
P(s, a, s′)(r(s, a, s′) + γV π(s′)).

(2.7)

The solution of an MDP consists of the optimal policy π∗. This opti-
mal policy can be learned through the computation of an optimal value
function such that V ∗(s) ≥ V π(s) ∀s ∈ S:

V ∗(s) = max
π

V π(s)

= max
a∈A

∑
s′∈S
P
(
s, a, s′

) (
r
(
s, a, s′

)
+ γV ∗

(
s′
))
.

(2.8)

In the same way, we can define an optimal action-value function as:

Q∗(s, a) = max
π

Qπ(s, a)

=
∑
s′∈S
P
(
s, a, s′

)(
r
(
s, a, s′

)
+ γmax

a′
Q∗
(
s′, a′

))
.

(2.9)

The optimal action-value function plays a fundamental role in the ma-
jority of RL algorithms:

Q∗(s, a) =
∑
s′∈S
P
(
s, a, s′

) (
r
(
s, a, s′

)
+ γV ∗

(
s′
))
,

V ∗(s) = max
a

Q∗(s, a)
. (2.10)

Another important function is the so-called advantage function A :
S ×A → R defined as:

Aπ(s, a) = Qπ(s, a)− V π(s). (2.11)

The advantage function Aπ(s, a) corresponding to a policy π describes
how much better it is to take a specific action a in state s, compared to
simply following the policy π.

14

i
i

“main” — 2023/2/17 — 12:41 — page 15 — #37 i
i

i
i

i
i

2.3 Dynamic Programming Algorithms

When the reward function and transition probabilities are known we can
use dynamic programming (DP) algorithms to solve an MDP. Two core DP
methods are policy iteration (Howard 1960) and value iteration (Bellman
1958). Along this section, we will consider MDPs with finite state and
action spaces (|S| <∞, |A| <∞).

2.3.1 Policy Evaluation

In Policy Evaluation we are interested in computing the value function for
an arbitrary policy V π.

Consider a sequence of approximate value functions V0, V1, The
initial approximation V0, is chosen arbitrarily (except that the terminal
state, if any, must be given value 0), and each successive approximation is
obtained by using the Bellman equation as an update rule:

Vk+1(s)←
∑
a∈A

π(a|s)
∑
s′∈S
P(s, a, s′)(r(s, a, s′) + γVk(s

′)), (2.12)

for all s ∈ S. Clearly, limk→∞ Vk = V π is a fixed point for this update rule
because the Bellman equation for V π assures us of equality in this case.

2.3.2 Policy Improvement

The reason for computing the value function for a policy V π is to help find
better policies. In policy improvement, a new policy πk+1 is constructed
that is guaranteed to be at least as good as the current policy πk:

πk+1(s) = arg max
a∈A

Qπk(s, a)

= arg max
a∈A

∑
s′∈S
P
(
s, a, s′

) (
r
(
s, a, s′

)
+ γV πk

(
s′
))
,

(2.13)

for all s ∈ S. Note that here we consider the special case of deterministic
policies, but these ideas extend to stochastic policies (Sutton and Barto
2018).

15

i
i

“main” — 2023/2/17 — 12:41 — page 16 — #38 i
i

i
i

i
i

2.3.3 Policy Iteration

Once a policy, π, has been improved using V π to yield a better policy, π′,
we can then compute V π′ and improve it again to yield an even better π′′.
We can thus obtain a sequence of monotonically improving policies and
value functions:

π0
E−→ V π0 I−→ π1

E−→ V π1 I−→ π2
E−→ · · · I−→ π∗

E−→ V ∗,

where
E−→ denotes a policy evaluation and

I−→ denotes a policy improve-
ment. Each policy is guaranteed to be a strict improvement over the
previous one (unless it is already optimal). Because a finite MDP has
only a finite number of deterministic policies, this process must converge
to an optimal policy and the optimal value function in a finite number of
iterations. This way of finding an optimal policy is called Policy Itera-
tion(PI).

2.3.4 Value Iteration

Value Iteration (VI) directly updates the value function by taking the
maximum expected future return over all possible actions at each state.
The policy is then extracted from the updated value function. This ap-
proach can be more efficient than Policy Iteration as it does not require a
full policy evaluation before each policy improvement step.

In VI, the value function is updated as follows:

Vk+1(s)← max
a∈A

∑
s′∈S
P(s, a, s′)(r(s, a, s′) + γVk(s

′)), (2.14)

for all s ∈ S.
The VI algorithm continues until convergence, i.e., until Vk(s) no

longer changes after an iteration.

2.3.5 Generalized Policy Iteration

Policy Iteration consists of two processes: policy evaluation (making the
value function consistent with the current policy) and policy improvement
(making the policy greedy with respect to the current value function). The
two processes alternate until convergence to the optimal value function V ∗

16

i
i

“main” — 2023/2/17 — 12:41 — page 17 — #39 i
i

i
i

i
i

and policy π∗. In VI, only one iteration of policy evaluation is performed
between each policy improvement. We use the term Generalized Policy
Iteration (GPI) to refer to the general idea of letting the policy evaluation
and policy improvement processes interact, independent of the granularity
and other details of the two processes.

2.4 Tabular Reinforcement Learning

In the previous section, we saw how to solve an MDP assuming that the
transition model P and reward function r are given.

Reinforcement Learning (RL) is primarily concerned with how to ob-
tain an optimal policy π∗ when such a transition model and reward func-
tion are unknown.

The lack of a model generates a need to sample the MDP to gather
statistical knowledge about this unknown model. Many model-free RL
techniques exist that probe the environment by doing actions, thereby
estimating the value and action-value functions.

RL approaches can be classified as being either on-policy or off-policy.
We distinguish between the behavior policy, which is the policy used to act
in the environment and the target policy, which is the policy updated. On-
policy methods use the current policy both as a behavior policy to generate
samples and as the target policy to update, while off-policy methods use
a behavior policy to generate samples and update a different target policy
with the generated samples.

This section will review model-free methods for solving MDPs relevant
to the work presented in this thesis. We will consider a finite number of
states |S| < ∞ and actions |A| < ∞ and a tabular representation that
stores each value of the value function V or action-value function Q in a
lookup table.

2.4.1 Monte Carlo methods

Monte Carlo (MC) methods are an on-policy approach that aims to solve
reinforcement problems with episodic tasks, where no model of the envi-
ronment exists. It is an iterative approach and converges as the number
of episodes tends towards infinity toward the optimal policy.

17

i
i

“main” — 2023/2/17 — 12:41 — page 18 — #40 i
i

i
i

i
i

MC methods keep frequency counts N(s) and sums of returns R(s) for
each state s ∈ S and base their values on these estimates. MC methods
only require samples to estimate the average sample returns. For example,
in MC policy evaluation, for each state st visited, the value function V π(st)
is estimated as:

V (st) = R(st)/N(st). (2.15)

2.4.2 Temporal Difference Learning

An alternative to Monte Carlo methods is Temporal Difference (TD) (Sut-
ton 1988). In contrast with MC methods TD learning can be applied to
infinite horizon problems.

Temporal difference (TD) differs from the Monte Carlo methods in
the policy evaluation step. Instead of using the total cumulative reward,
the methods calculate a temporal error, which is the difference between
the new estimate of the value function and the old estimate of the value
function, by considering the reward received at the current time step and
using it to update the estimated value of the next state. This kind of
update reduces the variance but increases the bias in the estimate of the
value function.

The Bellman Equation for the value function according to a policy π
can be written as:

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S
P
(
s, a, s′

) (
r
(
s, a, s′

)
+ γV π

(
s′
))
, (2.16)

where the value of the next state is an expectation over next states. Since
we do not know the transition probabilities, the agent can sample a state
s′ from that expectation, removing the need of a transition model.

V π(s) = E
[
r(s, a, s′) + γV π

(
s′
)]
. (2.17)

Now since we are sampling the next state s′ and learning the Value
function V π at the same time, the equation will be violated. This is in
fact called the TD error :

TD = r(s, a, s′) + γV π
(
s′
)
− V π(s). (2.18)

18

i
i

“main” — 2023/2/17 — 12:41 — page 19 — #41 i
i

i
i

i
i

TD(0) is a member of the family of TD learning algorithms (Sutton
1988). It estimates V π, in an online, incremental fashion without the need
for a transition model just by sampling on-policy transitions (s, a, r, s′) and
performing the following update rule:

Vk+1(s)← Vk(s) + αk
[
r + γVk(s

′)− Vk(s)
]
, (2.19)

where αk ∈ (0, 1] is the learning rate that determines how much the values
get updated.

Algorithm 2.1 Tabular TD(0) for estimating V π (Sutton and Barto
2018)

Input: the policy π to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, for all s ∈ S)
for each episode do

s← initial state of the episode
for each step of episode do

a← action given by π for s
Take action a, observe r, s′

V (s)← V (s) + αk [r + γV (s′)− V (s)]
s← s′

end
until s is terminal

end

2.4.3 Q-learning

Q-learning (Watkins and Dayan 1992) is the most famous RL algorithm for
off-policy learning. Q-learning uses a behavior policy to sample transitions
(s, a, r, s′) from the environment and incrementally estimates Q-values for
the state action tuple (s, a). The agent observes a transition (s, a, r, s′)
and the update takes place on the Q-value of action a in the state s from
which this action was executed.

The update rule for this algorithm is:

Qk+1 (s, a)← Qk (s, a) + α

(
r + γmax

a′
Qk
(
s′, a′

)
−Qk (s, a)

)
. (2.20)

19

i
i

“main” — 2023/2/17 — 12:41 — page 20 — #42 i
i

i
i

i
i

Q-learning is considered an off-policy method because it uses two sep-
arate policies to learn: the behavior policy and the target policy.

The behavior policy, also known as the exploration policy, is used to
control the agent’s actions in the environment and gather data. This pol-
icy is often stochastic, meaning that it selects actions randomly with some
probability, to encourage exploration and avoid getting stuck in subopti-
mal solutions.

The target policy used in Q-learning is the greedy policy:

max
a′∈A(s′)

Q
(
s′, a′

)
,

which, unlike the behavior policy, does not explore.

Algorithm 2.2 Tabular Q-learning (Watkins and Dayan 1992)

Initialize Q arbitrarily
for each episode do

s← initial state of the episode
for each step of episode do

a← action based on Q and an exploration strategy
Take action a, observe r, s′

Q(s, a)← Q(s, a) + αk
(
r + γ ·maxa′∈A(s′)Q (s′, a′)−Q(s, a)

)
s← s′

end
until s is terminal

end

2.5 Deep Reinforcement Learning

The methods we presented so far rely on a tabular representation of the
value function V or the action-value function Q. These methods are af-
fected by the curse of dimensionality (Bellman 1957), limiting their ap-
plicability to finite state and action spaces. In real world problems, the
state space can be large or even continuous and it is not feasible to visit all
possible states nor storing large V or Q tables due to memory constraints.

To overcome these restrictions the RL community has proposed the
use of deep neural networks (DNNs) (LeCun, Bengio, and Hinton 2015)

20

i
i

“main” — 2023/2/17 — 12:41 — page 21 — #43 i
i

i
i

i
i

as function approximations, leading to the Deep Reinforcement Learning
(DRL) revolution (Li 2017).

Many of the successes in DRL are based on scaling up prior work in
RL to high-dimensional problems, replacing value tables and/or the policy
with DNNs. The ability of DNNs to approximate non-linear functions and
to extract relevant features from raw inputs allows DRL to generalize over
unseen states.

2.5.1 Deep Q Network

Deep Q Network (DQN) (Mnih et al. 2013) combines Q-learning (see Sec-
tion 2.4.3) with Deep Neural Network function approximation to approx-
imate the optimal action-value function Q∗.

Let us define the neural network parametrized action-value function
as Qθ with parameters θ. DQN updates the parameters θ performing
stochastic gradient descent with the squared TD-error loss:

L(θ) = E(s,a,r,s′)∼D

[(
rt + γmax

a′
Qθ−

(
s′, a′

)
−Qθ (s, a)

)2
]
, (2.21)

where the gradient is:

∇θL (θ) = −2E(s,a,r,s′)∼D

[(
rt + γmax

a′
Qθ−

(
s′, a′

)
−Qθ (s, a,)

)
∇θQθ (s, a)

]
.

(2.22)
Here D is a dataset of transitions (s, a, r, s′) that is referred to as the

replay memory and Q−θ is a copy of Qθ updated at a slower timescale.
The training of the neural network encompasses two additional mech-

anisms, called experience replay and target network.
Experience Replay: The idea of experience replay is to store tran-

sitions (s, a, s′, r) in a buffer D and uniformly sampling mini-batches of
transitions from D.

Target Network: The second mechanism is a frozen target network
that is used to alleviate the fact that we are trying to calculate our loss
based on a moving target that changes while learning. Two networks with
the same structure, but different weights are used: θ for the Q-network and

21

i
i

“main” — 2023/2/17 — 12:41 — page 22 — #44 i
i

i
i

i
i

θ− for the target network. The Q-network is regularly updated according
to the loss function from equation 3.1, while the target network is updated
by copying the parameters of the Q-network to the target network θ− = θ
every C time steps. Thus, the weights of the target network θ− are held
frozen for C time steps. The target network θ− is updated much less
frequently than θ in order to increase the stability of learning.

Double DQN

Double DQN (DDQN) (Van Hasselt, Guez, and Silver 2016) has been
proposed as an improvement over DQN by fixing the problem of overesti-
mation of Q values.

The new update rule is:

L (θ) = E(s,a,r,s′)∼D

[(
r + γQθ−(s′, arg max

a′
Qθ(s

′, a′))−Qθ(s, a)

)2
]
.

(2.23)
The DDQN update rule uses the Q-network to select the action and the

target network to evaluate the action. This decoupling of the selection and
evaluation processes helps to reduce over-estimation and results in more
stable and accurate action value estimates.

Prioritized Experience Replay

One of the possible improvements over DQN is Prioritized Experience
Replay (Schaul et al. 2015a)(PER). PER does improve the way experience
is sampled. The main idea is that we prefer to learn from transitions
(s, a, s′, r) that do not fit well over our current approximation of the Q
value.

We can define an error e of a sample (s, a, s′, r) as a distance between
Q(s, a) and its target T (s, a, r, s′) :

e = |Q(st, at)− T (s, a, r, s′)|, (2.24)

where T (s, a, r, s′) in the case of DDQN would be:

T (s, a, r, s′) = r + γQθ−(s′, arg max
a′

Qθ(s
′, a′)). (2.25)

22

i
i

“main” — 2023/2/17 — 12:41 — page 23 — #45 i
i

i
i

i
i

This error is then converted to a priority of each sample (s, a, s′, r):

p = (e+ ε)ϑ, (2.26)

where ε is a small positive constant that ensures that no transition has
zero priority. The parameter ϑ, 0 ≤ ϑ ≤ 1 controls the relative difference
between high and low error. It determines how much prioritization is used.
With ϑ = 0, we would get the uniform case.

Priority is translated to the probability of being chosen for replay. A
sample i has a probability of being picked during the experience replay
determined by:

Pi =
pi∑
k pk

. (2.27)

The algorithm is simple - during each learning step we will sample
a batch of transitions using this probability distribution and train our
network on it.

2.5.2 Policy Gradient Methods

Policy Gradient (PG) methods try to learn a parametrized policy directly
without consulting a value function (Sutton et al. 2000) or by using it as
a critic for the policy (Konda and Tsitsiklis 1999).

Let us consider a parametrized policy πθ with parameters θ and some
performance measure of this policy J(θ). PG methods seek to maximize
the performance of this measure by performing approximate gradient as-
cent on J .

θ∗ = arg max
θ

J(θ), (2.28)

with update rule:

θt+1 = θt + α∇̂J (θt), (2.29)

where ∇̂J (θt) is a stochastic estimate whose expectation approximates
the gradient of the performance measure with respect to its argument θt.

All methods that follow this general schema are called policy gradient
methods, whether or not they also learn an approximate value function.

23

i
i

“main” — 2023/2/17 — 12:41 — page 24 — #46 i
i

i
i

i
i

One advantage of Policy Gradient algorithms is their stable conver-
gence property due to the policy updating directly and thus improving
smoothly at each time step. In comparison, Value-Based algorithms up-
date the value function at each time step. A small change in the value
function can lead to a drastic change in the policy often resulting in big
oscillations during training.

Policy Gradient algorithms can deal with infinite and continuous ac-
tion spaces. Instead of determining a Q-value for each possible discrete
action, the action can be estimated directly with the parametrized policy
πθ. These algorithms offer a natural way to learn stochastic policies, pro-
moting exploration. This is in contrast with many value-based methods,
where an explicit exploration strategy, such as ε-greedy, must be devised
to explore the environment. The major disadvantage of Policy Gradient
algorithms is that they often converge to a local maximum (Sutton and
Barto 2018).

Policy Gradient Theorem

Let us consider the infinite horizon case where we can define our perfor-
mance measure as:

J(θ) =
∑
s∈S

dπθ(s)V πθ(s) =
∑
s∈S

∑
a∈A

πθ(a|s)Qπθ(s, a), (2.30)

where dπθ(s) = limt→∞ P (st = s|s0, πθ) is the stationary distribution of
the Markov chain for πθ.

Computing the gradient ∇θJ(θ) could be hard since it depends on
both the policy πθ and the transition dynamics P and as we have seen in
RL the environment dynamics are usually unknown.

The Policy Gradient theorem (Sutton et al. 2000) provides a nice refor-
mulation of the gradient that does not involve the derivative of the state

24

i
i

“main” — 2023/2/17 — 12:41 — page 25 — #47 i
i

i
i

i
i

distribution dπθ .

∇θJ(θ) = ∇θ
∑
s∈S

dπθ(s)
∑
a∈A

Qπθ(s, a)πθ(a | s)

∝
∑
s∈S

dπθ(s)
∑
a∈A

Qπθ(s, a)∇θπθ(a | s)

=
∑
s∈S

dπθ(s)
∑
a∈A

Qπθ(s, a)πθ(a | s)
∇θπθ(a | s)
πθ(a | s)

= E [Qπθ(s, a)∇θ log πθ(a|s)] .

(2.31)

The main disadvantage of this approach is the high variance and subse-
quent algorithms have been proposed to reduce the variance while keeping
the bias unchanged (Greensmith, Bartlett, and Baxter 2004; Weaver and
Tao 2013; Williams 1992).

REINFORCE

REINFORCE algorithm (Williams 1992) proposes to update a policy
through gradient ascent and Monte Carlo sampling leveraging the fol-
lowing equality:

Qπθ(st, at) = E[Rt|st, at]. (2.32)

The gradient of J(θ) then becomes:

∇θJ(θ) = E[Qπθ(s, a)∇θ log πθ(a|s)]
= E[Rt∇θ log πθ(at|st)].

(2.33)

Baseline

The policy gradient theorem can be trivially generalized to include a com-
parison of the action value to an arbitrary baseline b(s):

∇J(θ) ∝
∑
s∈S

dπθ(s)
∑
a∈A

(Qπθ(s, a)− b(s))∇θπθ(a | s). (2.34)

25

i
i

“main” — 2023/2/17 — 12:41 — page 26 — #48 i
i

i
i

i
i

The baseline can be any function that does not vary with a.

∑
a

b(s)∇πθ(a|s) = b(s)∇
∑
a

πθ(a|s) = b(s)∇1 = 0. (2.35)

In general, the baseline leaves the expected value of the update un-
changed, but it can have a large effect on its variance. One natural choice
for the baseline is an estimate of the value function V .

Actor Critic Methods

Actor-Critic methods (Konda and Tsitsiklis 1999) combines policy gra-
dient and TD learning. The Critic represents the value function V π ap-
proximated through TD learning, while the Actor represents the current
policy updated through policy gradient with baseline b(s) = V π(s) (see
Fig. 2.2).

In Actor-Critic algorithms we use a parametrized critic Vφ and update
the parameters φ through gradient descent minimizing the following TD
learning loss:

LCritic =
1

2
(Vφ(st)− (rt + Vφ(st+1)))2 , (2.36)

while the Actor defines a separate neural network to parametrize the policy
πθ and performs gradient descent with baseline b(s) = Vφ(s) to improve
the policy :

LActor = −(Rt − Vφ(st)) log πθ(at|st). (2.37)

26

i
i

“main” — 2023/2/17 — 12:41 — page 27 — #49 i
i

i
i

i
i

Figure 2.2: Actor-Critic Architecture (Sutton and Barto 2018).

Self Imitation Learning

Self Imitation Learning (SIL) (Oh et al. 2018) is an actor-critic algorithm
that leverages an agent’s past good experiences to improve exploration.

The basic idea introduced in this paper is to use a Prioritized Expe-
rience Replay buffer to exploit past good experiences that can indirectly
drive better exploration.

To this end, authors propose to store past episodes with cumulative
rewards: D = {(st, at, Rt)} where st, at are a state and an action at time-
step t, and Rt =

∑∞
k=t γ

k−trk is the discounted sum of rewards. To exploit
only good state-action pairs in the replay buffer the following off-policy
loss is used:

Lsil = E(s,a,R)∈D[LsilActor + βsilLsilCritic]

LsilActor = − log πθ(a|s) (R− Vφ(s))+

LsilCritic =
1

2

(
(R− Vφ(s))+

)2
,

(2.38)

where (·)+ = max(·, 0), πθ, Vφ are the Actor and the Critic parameterized
respectively by θ and φ, and β ∈ R+ is a hyperparameter controlling the
importance of LsilCritic.

If the return in the past is greater than the agent’s value estimate
(R > Vθ), the agent learns to choose the same action chosen in the past in

27

i
i

“main” — 2023/2/17 — 12:41 — page 28 — #50 i
i

i
i

i
i

the given state. Otherwise, (R ≤ Vθ), and such a state action pair is not
used to update the parameter due to the (·)+ operator. This encourages
the agent to imitate its own decisions in the past only when such decisions
resulted in larger returns than expected.

2.6 Goal Conditioned Reinforcement Learning

An alternative setting that we consider in our work is the setting of
Goal-Conditioned Reinforcement Learning (GCRL) (Liu, Zhu, and Zhang
2022). Different from standard RL, GCRL augments the observation with
an additional goal that the agent is required to achieve when making a
decision in an episode (Andrychowicz et al. 2017; Schaul et al. 2015b).

2.6.1 Setting

In GCRL the agent is required to master multiple tasks simultaneously. To
tackle such a challenge we augment the MDP tupleM = 〈S,A,P, r,G, pg〉,
where G ⊆ S denotes the space of goals describing the tasks and pg
represents the desired goal distribution of the environment and the re-
ward function r : S × A × G → R is defined on goals G. Therefore the
objective of GCRL is to reach goal states via a goal-conditioned policy
π : S × G → ∆(A).

2.6.2 Goal Conditioned Supervised Learning

When we consider the goal space to be equal to the state space G = S we
can treat any trajectory τ = {s0, a0, ..., at, st+1} and any sub-trajectory
τi,j = {si, ai, ..., aj , sj+1} as a successful trial for reaching their final states.
Goal Conditioned Supervised Learning (GCSL) (Ghosh et al. 2019) itera-
tively performs behavioral cloning on sub-trajectories collected in a dataset
D by learning a policy π conditioned on both the goal and the horizon h.

Formally, the policy is performing maximum-likelihood estimation (MLE)
via supervised learning.

arg max
θ

E((s,g,h),a)∼D[log πθ(a|s, g, h)]. (2.39)

28

i
i

“main” — 2023/2/17 — 12:41 — page 29 — #51 i
i

i
i

i
i

Chapter 3

Hierarchical Reinforcement
Learning

In this chapter, we will review Hierarchical Reinforcement Learning (HRL)
approaches with a focus on algorithms that are of interest to the work
presented in this thesis.

3.1 Introduction

Recently, Deep Reinforcement Learning (DRL) has achieved significant
success in many domains (Bellemare et al. 2020; Mnih et al. 2013; Silver
et al. 2016; Vinyals et al. 2019). Nevertheless, it is still a challenge for DRL
agents to solve environments with sparse rewards and long time horizons,
such as Minecraft (Guss et al. 2019; Johnson et al. 2016).

Hierarchical reinforcement learning holds the promise to reduce the
complexity of solving long horizon and sparse rewards environments (Ba-
con, Harb, and Precup 2017; Barto and Mahadevan 2003; Dayan and
Hinton 1992; Dietterich 2000; Kaelbling 1993; Nachum et al. 2018a; Parr
and Russell 1997; Sutton, Precup, and Singh 1999; Vezhnevets et al. 2017;
Wen et al. 2020). HRL works by reducing complex problems to a smaller
set of interrelated problems. The smaller problems are solved separately
and the results are re-combined to find a solution to the original prob-
lem. This hierarchical decomposition can achieve multi-level control where
long-horizon planning and high-level meta-learning guide the lower-level

29

i
i

“main” — 2023/2/17 — 12:41 — page 30 — #52 i
i

i
i

i
i

controllers. The modularization of hierarchical structures also allow trans-
ferability and interpretability.

3.2 Four-Room Task

Throughout this Chapter, we will use a simple four-room task as a running
example to help illustrate concepts.

In the four-room task in Figure 3.1, the four rooms are labeled R1,
R2, R3, R4, the agent is represented as the red block labeled as A in
room R1 and the doorways are the green blocks labeled D1, D2, D3,
D4. The goal of the agent is to reach the blue cell labeled G where the
episode terminates. Each cell represents a possible agent position and
the position is uniquely described by the position in each room and the
room id (x, y, room id). The rooms have the same dimensions and similar
positions in each room are assumed to be described by the same (x, y)
coordinates. The agent can move one step in any of the four cardinal
directions. When an action is taken there is an 80% chance that the agent
will move in the intended direction and a 20% chance that it will stay in
place.

30

i
i

“main” — 2023/2/17 — 12:41 — page 31 — #53 i
i

i
i

i
i

Figure 3.1: The four-room task in which an agent (A) has to reach the goal
(G). Green blocks (D1, D2, D3, D4) represents doorways that the agent
has to cross to move between rooms (R1, R2, R3, R4) in the environment.

3.3 Temporally Extended Actions

HRL employs actions that persist for multiple time steps. Once selected,
a temporally extended (TE) action hides the multistep transition and
reward detail until termination. As an example, consider the four-room
task (Figure 3.1) where we can define a temporally extended action in room
R1 that moves the agent from R1 to D1. This TE action can be seen as
a subtask that the agent needs to solve to reach its goal G. Moreover, we
can learn a ”local” policy to perform this TE action that will consider a
smaller MDP comprising only the states of R1 ∪D2.

Special case TE actions that terminate in one time step are just ordi-
nary actions, and we refer to them as primitive actions.

3.4 Semi-Markov Decision Processes

We can extend the MDP formulation to include temporally extended ac-
tions, and MDPs that include TE actions are called semi-Markov Decision
Processes (SMDPs) (Puterman 2014).

31

i
i

“main” — 2023/2/17 — 12:41 — page 32 — #54 i
i

i
i

i
i

We define a random variable N ≥ 1 to be the number of time steps
that a TE action a takes to complete, starting in state s and terminating
in state s′.

A discrete-time SMDP is a tuple S = 〈S,A,P, r〉 where S represent
the state space, A represent the action space that can include temporally
extended actions and primitive actions.

The transition function P : S×A → ∆(S×N) gives the probability of
the TE action a terminating in state s′ after N steps, having been initiated
in state s.

P(s, a, s′, N) = P (st+N = s′|st = s, at = a). (3.1)

The reward function r : S × A × S ×N → R accumulates single-step
rewards according to the optimality criteria selected. Here we consider
the infinite horizon discounted case where:

r(s, a, s′, N) = E

[
N−1∑
n=0

γnrt+n|st = s, at = a, st+N = s′

]
. (3.2)

The value function V π can also be generalized for SMDPs:

V π(s) =
∑
a∈A

π(a|s)
∑

s′∈S,N
P(s, a, s′, N)(r(s, a, s′, N) + γNV π(s′)). (3.3)

The optimum value function for an SMDP can then be defined:

V ∗(s) = max
a∈A

∑
s′∈S,N

P(s, a, s′, N)(r(s, a, s′, N) + γNV ∗(s′)). (3.4)

Similarly, we can define the optimal Q-function Q∗:

Q∗(s, a) =
∑

s′∈S,N
P(s, a, s′, N)(r(s, a, s′, N) + γNV ∗(s′)), (3.5)

where V ∗(s′) = maxa′ Q
∗(s′, a′).

32

i
i

“main” — 2023/2/17 — 12:41 — page 33 — #55 i
i

i
i

i
i

3.4.1 SMDP Q learning

All the methods developed for solving Markov decision processes in Chap-
ter 2 for reinforcement learning using primitive actions can be applied to
problems using TE actions.

Here we highlight the extension of Q learning to SMDPs that is of
interest in our work. We refer to it as SMDP Q learning (Sutton, Precup,
and Singh 1999).

Under the SMDP model, decisions are taken at certain decision times
spaced by random time intervals, we observe transition (s, a, r,N, s′) and
the update rule for SMDP Q-learning becomes:

Qk+1 (s, a)← Qk (s, a) + αk

(
r + γN max

a′
Qk
(
s′, a′

)
−Qk (s, a)

)
, (3.6)

where the update is performed on a transition from state s to s′ under TE
action a that has taken time N and received reward r =

∑N−1
n=0 γ

nrt+n.
As in Chapter 2 αk is the learning rate.

3.5 Structure

Temporally extended actions together with SMDPs naturally lead to a
hierarchical structure. With TE actions we may be able to learn a policy
with less effort than it would take to solve the problem using primitive
actions.

As an example consider the four-room task and the four room−leaving
temporally extended actions in Figure 3.2. The four TE actions are ap-
plicable in any room and when successful move the agent from the actual
room to a neighboring room. Consider the TE action to leave the room
through the north doorway. When selected in a room R1 this action will
move the agent through the doorway D1 to room R4.

TE actions themselves in this case are policies for smaller MDPs of
the size of a single room and can be ”transferred” to any room in the
four-room task.

At the high level, we can use the room− leaving TE actions to reduce
the task to an SMDP with 4 states to represent only the rooms R1, R2,
R3, R4.

33

i
i

“main” — 2023/2/17 — 12:41 — page 34 — #56 i
i

i
i

i
i

The parent-child relationship between SMDPs that we have seen leads
to task-hierarchies (Dietterich 2000). A task-hierarchy is a directed acyclic
graph of sub-tasks. The root-node is the top-level SMDP that can invoke
its child-node SMDP/MDP policies as TE actions.

The benefit of decomposing a large MDP through task hierarchies is
that it will hopefully lead to state abstraction opportunities to help reduce
the complexity of the problem. An abstracted state space is smaller than
the state space of an original MDP.

In HRL the task-hierarchy is usually assumed to be given and auto-
matically discovering hierarchies for HRL is an active area of research
(Bacon, Harb, and Precup 2017; Bar, Talmon, and Meir 2020; Barto and
Mahadevan 2003; Jinnai et al. 2019a,b; Machado, Bellemare, and Bowling
2017; Mannor et al. 2004; Nachum et al. 2018a,b; Vezhnevets et al. 2017;
Wan and Sutton 2022).

Figure 3.2: An example of hierarchy decomposing the four-room task. X
cells represent terminal states.

3.6 Optimality

In Hierarchical Reinforcement Learning we have to depart from the notion
of optimal policy π∗ we have seen in Chapter 2 since we can not guarantee
that the decomposed problem will in general yield the optimal solution.
It depends on the problem and the quality of the decomposition in terms

34

i
i

“main” — 2023/2/17 — 12:41 — page 35 — #57 i
i

i
i

i
i

of the TE actions available and the structure of the task-hierarchy.

• Hiearchical Optimal: A hierarchical optimal policy for MDP M
is a policy that archives the highest cumulative reward among all
policies consistent with the given hierarchy (Dietterich 2000).

• Recursively Optimal: In recursive optimality (RO) the final pol-
icy is optimal given the policies learned by its sub-task children. In
RO the sub-task policies to reach the goal terminal state are context-
free and only locally optimal ignoring the needs of their parent tasks.
This formulation has the advantage that sub-tasks can be re-used
in various contexts, but they may not, therefore, be optimal in each
situation (Dietterich 2000).

Consider the simple example in Figure 3.3 that demonstrates the dif-
ference between recursively and hierarchically optimal policies (Dietterich
2000; Ghavamzadeh and Mahadevan 2002). Suppose a robot starts some-
where in the left room and it must reach the goal G in the right room.
In addition to three primitive actions, North, South and East, the robot
have a high level task room − leaving in the left room and a high-level
task go − to − goal in the right room. Task room − leaving terminates
when the robot exits the left room and go− to−goal terminates when the
robot reaches the goal G. The arrows in Figure 3.3(a) shows the locally
optimal policy within each room. The arrows in the left room seek to exit
the room by the shortest path. The arrows in the right room follow the
shortest path to the goal. However, the resulting policy is not hierarchi-
cally optimal. Figure 3.3(b) shows the hierarchically optimal policy that
would always exit the left room by the upper door. This policy would
not be locally optimal because the states in the shaded region would not
follow the shortest path to a doorway.

35

i
i

“main” — 2023/2/17 — 12:41 — page 36 — #58 i
i

i
i

i
i

Figure 3.3: The policy shown in the left diagram is recursively optimal
but not hierarchically optimal. The policy in the right diagram is hier-
archically optimal but not recursively optimal. The shaded cells indicate
states where the two definitions of optimality disagree (Dietterich 2000;
Ghavamzadeh and Mahadevan 2002).

3.7 Bottleneck States

Bottlenecks states have been the first response to the need of discovering
TA actions automatically (Barto and Mahadevan 2003). Bottlenecks have
been defined as those states which appear frequently on successful trajec-
tories to a goal but not on unsuccessful ones (McGovern and Barto 2001)
or as nodes that allow for densely connected regions of the interaction
graph to reach other such regions (Menache, Mannor, and Shimkin 2002;
Şimşek and Barto 2004).

An alternative point of view is through the network centrality mea-
sure called betweenness (Şimşek and Barto 2008). Betweenness centrality
measures the fraction of shortest paths passing through a given vertex of
the graph. Nodes with high betweenness are deemed more important as
they would appear more frequently on the shortest path, therefore more
likely to be optimal trajectories to a goal.

The canonical HRL domain for motivating the bottleneck concept has
been mainly concerned with the four-room task (Sutton, Precup, and
Singh 1999) (see Figure 3.1) where we can identify four bottleneck states
D1, D2, D3, D4. These states connect two nearby rooms, so they connect
strongly connected regions.

36

i
i

“main” — 2023/2/17 — 12:41 — page 37 — #59 i
i

i
i

i
i

3.8 Options

The options framework is at the crossroads of MDPs and SMDPs. It
considers a base MDP overlaid with variable-length TE actions represented
as options. It is shown by Sutton, Precup, and Singh (1999) (Theorem
1) how an MDP and a pre-defined set of options form a semi-Markov
Decision Process. Most of the theory on SMDPs can thus be reused for
options. As opposed to the usual theory of SMDPs that treats TE actions
as indivisible and opaque decision units, the options framework allows us
to look at the structure within.

Options formalize temporally extended actions as a triplet 〈Io, πo, βo〉,
where Io ⊆ S is an initiation set, πo : S → ∆(A) is a policy, and βo : S →
[0, 1] is a termination condition.

An option o can be executed in a state s ∈ S only if s ∈ Io. This
allows restricting the starting states only to a subset of S. Once chosen,
the option generates a trajectory τ following the policy πo. The option
terminates according to a function βo.

Based on the termination condition we distinguish two types of options:

1. Markov options: the termination function βo depends only on the
current state s.

2. Semi-Markov options: the termination function βo depends on some
other factors apart from the current state s (i.e. the full history of
states).

Given the definition of option, it is easy to see that a primitive ac-
tion does fit in this formalism. A primitive action a is an option 〈Io =
S, πo(s, a) = 1.0, βo(s) = 1〉 for all s ∈ S.

Highlighting the formalism of a primitive action as an option, we can
see that the option policies πo can call options, allowing the possibility to
create hierarchical structures of an arbitrary depth.

37

i
i

“main” — 2023/2/17 — 12:41 — page 38 — #60 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 39 — #61 i
i

i
i

i
i

Part II

State Space Partitioning
and Option Learning

39

i
i

“main” — 2023/2/17 — 12:41 — page 40 — #62 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 41 — #63 i
i

i
i

i
i

Chapter 4

State Space Partitioning

The description of state space partitioning in HRL traces back to the
work of Dietterich (2000) that defines two conditions under which state
abstraction for Hierarchical Reinforcement Learning can be introduced:

• Subtask Irrelevance.

• Abstract actions that ”funnel” the agent to a small subset of states.

Subtask Irrelevance consists of the elimination of irrelevant variables
for a subtask. As an example consider the task-hierarchy (see Figure 3.2)
on the four-room task (see Figure 3.1). At the low level, we have four
room− leaving temporally extended (TE) actions, while at the high level,
we have an SMDP with 4 states to represent only the rooms R1, R2,
R3, R4. The four-room MDP state space is described by three variables
(x, y, room id). Subtask Irrelevance allows us to ignore the room id state
variable at the low level and ignore the (x, y) state variables at the high
level. This condition opens up the possibility to transfer and reuse sub-
tasks and can be exploited in state space partitioning by partitioning the
state space into subtasks that repeat across the MDP.

The second condition highlighted by Dietterich (2000) is the funneling
state abstraction described as a type of state abstraction where TE ac-
tions move the environment from a large number of initial states to a small
number of resulting states. Funnelling can be observed in the four-room
environment. Room− leaving TE actions move the agent from any posi-
tion in a room to the respective doorway. Funnelling allows the four-room

41

i
i

“main” — 2023/2/17 — 12:41 — page 42 — #64 i
i

i
i

i
i

task to be state-abstracted at the root node to just 4 states (see Figure
3.2), because irrespective of the starting position in each room, the TE
actions have the ability to move the agent via doorways and reach the goal
state.

Based on these guiding principles in this chapter we will highlight the
desired characteristics of a state partition that can be used for Hierarchical
Reinforcement Learning.

4.1 State Space Partitions

State space partitions on an MDP allow a large problem to be broken down
into sub-problems, which could be tackled and solved independently. Sub-
problem solutions could then be ”stitched” together to (approximately)
solve the entire problem. Wen et al. (2020) proved that if these sub-
problems are relatively small and repeated, this approach can lead to
large computational gains.

Definition 1. Given an episodic MDP M = 〈S,A,P, r,Se〉, where Se is
a set of terminal states, consider a partition of the non-terminal states
S \ {Se} into L disjoint subsets Z = {Si}Li=1, i.e. S \ Se = S1 ∪ · · · ∪ SL
and Si ∩ Sj = ∅ for each pair (Si,Sj) ∈ Z2.

We define an induced subMDP Mi = 〈Si ∪ Ei,A,Pi, ri, Ei〉 as follows:

• Si is the internal state set, and the action space is still A.

• The exit state set Ei is defined as Ei = {e ∈ S\Si : ∃(s, a) ∈ Si ×A
s.t. P (e | s, a) > 0}. Is important to notice that the exit state set
Ei will belong to a different partition in Sj ∈ Z with j 6= i that is
reachable in one step from some state in Si.

• The state space of Mi is Si ∪ Ei.

• Pi : Si × A → ∆(Si ∪ Ei) and ri : Si × A × (Si ∪ Ei) → R are
respectively the restriction of P and r to domain Si ×A.

• The subMDP Mi terminates once it reaches a state in Ei (i.e., an
exit state).

42

i
i

“main” — 2023/2/17 — 12:41 — page 43 — #65 i
i

i
i

i
i

4.2 State Space Partitions Properties

We identify several properties that a state partition should have in order
to define a good representation for Hierarchical Reinforcement Learning.

• Induced subMDP must be easy to solve:

The maximum size of an induced subMDP M is defined as:

Definition 2. M = maxi |Si ∪ Ei|.

If M is small, all subMDPs have small size |Si ∪ Ei| ≤ M , so they
would be relatively easy to solve. This definition characterizes the
hardness in terms of state space size of a subMDP. Complexity re-
sults with tabular representation have shown that finite MDPs can
be solved in polynomial time in the size of the state space and ac-
tion space (Littman, Dean, and Kaelbling 2013) when the transition
matrix P is known, proving that the smaller the state space size is,
the easier it is to solve the MDP.

Note that this is the easiest and most general definition of hard-
ness since it does not take into account the reward ri nor transition
probability Pi inside the subMDPs.

• Equivalent SubMDPs:

Two subMDPs Mi and Mj are equivalent if there is a bijection
between Si, Ei and Sj , Ej , such that the subMDPs have the same
transition probabilities and rewards at internal states.

Definition 3. Two subMDPs Mi and Mj are equivalent if there is
a bijection f : Si ∪ Ei → Sj ∪ Ej s.t. f (Si) = Sj , f (Ei) = Ej, and,
through f , the subMDPs have the same transition probabilities and
rewards at internal states.

Note that the constraints f (Si) = Si and f (Ei) = Ej ensure that
each internal (or exit) state in Mi is mapped to each internal (or
exit) state in Mj .

Let K ≤ L be the number of equivalence classes of subMDPs in-
duced by a particular partition Z of M. When there is no repeat-
able structure, K = L. When the partition produces repeatable
structure, K < L.

43

i
i

“main” — 2023/2/17 — 12:41 — page 44 — #66 i
i

i
i

i
i

A desirable state partition Z is such a partition where K � L. With
such a partition we can learn to solve a single subMDP and reuse
the solution on many partitions of the state space S.

• Bottleneck states:

The set of all exit states for a given partition is defined as:

Definition 4. E = ∪Li Ei.

If |E| is small, intuitively we have a few states that connect the
sub-problems. We can think of these as “bottleneck” states in M,
which have been shown before to enable computationally efficient
planning (see e.g. (McGovern and Barto 2001; Şimşek and Barto
2008; Solway et al. 2014; Stolle and Precup 2002; Sutton, Precup,
and Singh 1999)).

We highlight that a trade-off exists between the maximal size of an
induced subMDP M and the size of the set of all exit states |E|.
It is desirable for M to be small to simplify the solving process for
every subMDP. However, trivially partitioning every single state as
an independent subMDP can result in a significant increase in the
size of |E|.

• Strongly connected SubMDPs

Another desired property of a partition Z is that it should induce
strongly-connected subMDPs.

Definition 5. A subMDP Mi is strongly connected if for each pair
of states si, sj ∈ Si ∪ Ei there exists a policy π which, when starting
in si, reaches sj with a positive probability.

This property ensures that when we enter a subMDP Mi we can
choose a policy π that with positive probability will let us reach
a desired exit state e ∈ Ei. As an example consider the partition
in Fig 4.1. Here the partition creates regions that are not strongly
connected.

44

i
i

“main” — 2023/2/17 — 12:41 — page 45 — #67 i
i

i
i

i
i

Figure 4.1: The four-room task with a state space partition superimposed
in blue. The partition highlighted in yellow violates the strongly connected
condition.

45

i
i

“main” — 2023/2/17 — 12:41 — page 46 — #68 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 47 — #69 i
i

i
i

i
i

Chapter 5

Hierarchical reinforcement
learning for exploration and
transfer

In this chapter, we present our first contribution: a novel hierarchical
reinforcement learning framework based on the compression of an invariant
state space that is common to a range of tasks.

We use a fixed, state-dependent compression function to define a hi-
erarchical decomposition of complex, sparse-reward tasks. The agent de-
fines subtasks which consist in navigating across state-space partitions by
jointly learning the policy of each temporally extended action. The com-
pression function makes it possible to use tabular methods at the top level
to effectively explore large state spaces even in sparse reward settings. Fur-
thermore, we show that our method is suitable for transfer learning across
tasks that are defined by introducing additional learning components.

State Space Partition properties

Here we summarize and briefly discuss only the state space partition prop-
erties (see Chapter 4) of the methodology presented in this chapter. We
will follow this procedure for each chapter of Part II.

Pros:

X Small SubMDPs: The compression function f : SI → N+ pro-

47

i
i

“main” — 2023/2/17 — 12:41 — page 48 — #70 i
i

i
i

i
i

posed in this chapter is assumed to have access to the invariant
part of the state space SI (see Section 5.1.2). The invariant part
of the state space SI is defined as the part of the state space that
is common to multiple tasks in the environment. This is achieved
for example in a grid world environment by assuming that we have
access to the (x, y) position of the agent in the grid, and the com-
pression of SI is simply achieved by an integer division of these two
coordinates f(x, y) = bx/dintc + by/dintc. Tuning the hyperparam-
eter dint allows us to control the maximum size M(see Section 4.2)
of each induced subMDP.

X Equivalent subMDPS: The compression function f : SI → N+

creates different regions z only for the invariant part of the state
space SI . This implies that we will have equivalent SubMDPs (see
Section 4.2). As we can see in the Key-Treasure example (Figure 5.1)
we consider to be in the same subMDP either if the agent collected
or didn’t collect the key.

Cons:

× Prior knowledge of invariant state space and compression
function: The main drawback of the state partitioning approach
presented in this chapter is that it needs prior knowledge about the
invariant state space SI and compression function f .

× Bottleneck exit states: The compression function presented here
is not able to create partition regions that minimize the set of all
exit states E (see Section 4.2). In this work, we consider solely state
space partitions that simply divide the invariant state space features
into equal-sized partitions. This limits the need for prior knowledge
of the MDP with the drawback of not being able to represent more
complex partitions that take into account bottleneck exit states.

× Strongly connected subMDPs: Partitioning the state space sim-
ply by an integer division over the invariant state space features does
not guarantee that each subMDP state space Sz ∪ Ez is going to be
strongly connected(see Section 4.2).

48

i
i

“main” — 2023/2/17 — 12:41 — page 49 — #71 i
i

i
i

i
i

5.1 Methodology

5.1.1 Task MDPs

We assume that each task T is described by an MDP MT = 〈SI ×
ST ,AI ∪ AT ,PI ∪ PT , rT 〉. Crucially, the state-action space SI × AI
as well as the transition kernel PI : SI × AI → ∆(SI) are invariant,
i.e. shared among all tasks. On the other hand, the state-action space
ST × AT , reward function rT : ST × AT → R and transition kernel
PT : (SI ∪ST)×AT → ∆(ST) are task-specific. We assume that actions
in AI incur zero reward, and that states in SI are unaffected by actions in
AT . Task T is only coupled to the invariant MDP through the transition
kernel PT , since the effect of actions in AT depend on the states in SI .

5.1.2 Invariant SMDP

We further assume that the agent has access to a partition Z =
{
SIi
}L
i=1

of the invariant state space, i.e. SI = SI1 ∪ · · · ∪ SIL and SIi ∩ SIj = ∅ for

each pair (SIi ,SIj) ∈ Z2. Even though each element of Z is a subset of

SI , we often use lower-case letters to denote elements of Z, and we refer
to each element z ∈ Z as a region. We use the partition Z to form an
SMDP over the invariant part of the state-action space. This SMDP is
defined as SI = 〈Z,O,PZ〉, where Z is the set of regions, O is a set of
options, and PZ : Z ×O → ∆(Z) is a transition kernel.

We first define the set of neighbors of a region z ∈ Z as:

N (z) = {z′ : ∃(s, a, s′) ∈ z ×AI × z′,PI(s′|s, a) > 0}.

Hence, neighbors of z can be reached in one step from some state in
z. For each neighbor z′ ∈ N (z), we define an option oz,z′ = 〈Iz, πz,z′ , βz〉
whose subtask is to reach region z′ from z. Hence, the initiation set is z,
i.e. I‡ = Sz, the termination function is βz(s) = 0 if s ∈ z and βz(s) = 1
otherwise, and the policy πz,z′ should reach region z′ as quickly as possible.

The set of options available to the agent in the region z ∈ Z is Oz =
{oz,z′ : z′ ∈ N (z)} ⊆ O, i.e. all options that can be initiated in z and that
transition to a neighbor of z. Note that the option sets Oz are disjoint,
i.e. each region z has its own set of admissible options. The transition
kernel PZ determines how successful the options are; ideally, PZ(z′|z, oz,z′)

49

i
i

“main” — 2023/2/17 — 12:41 — page 50 — #72 i
i

i
i

i
i

should be close to 1 for each pair of neighboring regions (z, z′), but can be
smaller to reflect that oz,z′ sometimes ends up in a region different from
z′.

5.1.3 Option MDPs

We do not assume that the policy πz,z′ of each option oz,z′ is given; rather,
the agent has to learn the policy πz,z′ from experience. For this purpose,
we define an option-specific MDP Mz,z′ = 〈Sz,AI ,Pz, rz,z′〉 associated
with option oz,z′ . Here, the state space Sz = z∪N (z) consists of all states
in the region z, plus all the neighboring regions of z. The set of actions AI
are those of the invariant part of the state-action space. All the states in
N (z) are terminal states. The transition kernel Pz is a projection of the
invariant transition kernel PI onto the state-action space z×AI involving
non-terminal states, and is defined as:

Pz(s′|s, a) =

{
PI(s′|s, a), if s′ ∈ z,∑

s′′∈s′ PI(s′′|s, a) if s′ ∈ N (z).

Hence, the probability of transitioning to a neighbor s′ of z is the sum
of probabilities of transitioning to any state in s′.

In the definition ofMz,z′ , the state-action space Sz×AI and transition
kernel Pz are shared among all options in Oz. They only differ in the
reward function rz,z′ : z ×AI × Sz → R defined on triples (s, a, s′), i.e. it
depends on the resulting next state s′. The theory of MDPs easily extends
to this case. Specifically, the reward function rz,z′ is defined as

rz,z′(s, a, s
′) =

{
+1, if s′ = z′,
−0.1, if s′ ∈ N (z) \ {z′}. (5.1)

In other words, successfully terminating in the region z′ is awarded a
reward of +1 while terminating in a region different from z′ is penalized
with a reward of −0.1. If the option can’t terminate within a time limit
of 100 steps the same negative reward of −0.1 is given. In practice, op-
tion oz,z′ can compute the policy πz,z′ indirectly by maintaining a value
function Vz,z′ associated to the option MDP Mz,z′ .

50

i
i

“main” — 2023/2/17 — 12:41 — page 51 — #73 i
i

i
i

i
i

5.1.4 Algorithm

In practice, we do not assume that the agent has access to the invariant
SMDP SI = 〈Z,O,PZ〉. Instead, the agent can only observe the current
state s ∈ SI , select an action a ∈ AI , and observe the next state s′ ∼
PI(·|s, a). Rather than observing regions in Z, the agent has oracle access
to a compression function f : SI → N+ from invariant states to non-
negative integers. Each region z has an associated integer ID ID(z) and
is implicitly defined as z = {s ∈ SI : f(s) = ID(z)}. To identify regions,
the agent has to repeatedly query the function f on observed states and
store the integers returned. By abuse of notation, we often use z to denote
both a region in Z and its associated ID.

Our algorithm iteratively grows an estimate of the invariant SMDP
SI = 〈Z,O,PZ〉. Initially, the agent only observes a single state s ∈ S
and associated region z = f(s). Hence the state space Z contains a single
region z, whose associated option set OZ is initially empty. In this case,
the only alternative available to the agent is to explore. For each region z,
we add an exploration option oez = 〈Iz, πez, βz〉 to the option set O. This
option has the same initiation set and termination condition as the options
in Oz, but the policy πez is an exploration policy that selects actions at
random or implements a more advanced exploration strategy.

Once the agent discovers a neighboring region z′ of z, it adds region z′

to the set Z and the associated option oz,z′ to the option set O. The agent
also maintains and updates a directed graph whose nodes are regions and
whose edges represent the neighbor relation. Hence next time the agent
visits region z, one of its available actions is to select the option oz,z′ .
When option oz,z′ is selected, it chooses actions using its policy πz,z′ and
simultaneously updates πz,z′ based on the rewards of the option MDP
Mz,z′ . Figure 5.1 shows an example representation discovered by the
algorithm.

Algorithm 5.1 shows the pseudocode of the algorithm. As explained,
Z is initialized with the region z of the initial state s, and O is initialized
with the exploration option oez. In each iteration, the algorithm selects an
option o which is applicable in the current region z. This option then runs
from the current state s until terminating in a state s′ whose associated
region z′ is different from z. If this is the first time region z′ has been
observed, it is added to Z and the exploration option oez′ is appended to

51

i
i

“main” — 2023/2/17 — 12:41 — page 52 — #74 i
i

i
i

i
i

Figure 5.1: Example of an SMDP learned on top of a simple grid world
Key-treasure environment. In this environment, agent A has to collect the
key K and open the treasure T , black cells represent walls. Each different
region is represented with a different color and as we can notice we have
the same regions either if we do have or we don’t have the key.

O. If this is the first time z′ has been reached from z, the option oz,z′ is
appended to O. The process then repeats from state s′ and region z′.

The subroutine GetOption that selects an option o in the current
region z can be implemented in different ways. If the aim is just to esti-
mate the invariant SMDP SI = 〈Z,O,PZ〉, the optimal choice of option
is that which maximizes the chance of discovering new regions or, alter-
natively, that which improves the ability of options to successfully solve
their subtasks. If the aim is to solve a task T , the optimal choice of option
is that which maximizes the reward of T . On the other hand, the subrou-
tine RunOption executes the policy of the option while simultaneously
improving the associated option policy.

5.1.5 Solving tasks

Recall that each task T is defined by a task MDP MT = 〈SI ×ST ,AI ∪
AT ,PI ∪ PT , rT 〉. Given an estimate SI = 〈Z,O,PZ〉, we define an
associated task SMDP ST = 〈ZT ,O ∪ OT ,PZ ∪ P̄T , rT 〉. Here, OT is a
set of task-specific options whose purpose is to change the task state in
ST , and P̄T is the transition kernel corresponding to these options. The
state space is ZT = Z × ST , i.e. a state (z, s) ∈ ZT consists of a region z

52

i
i

“main” — 2023/2/17 — 12:41 — page 53 — #75 i
i

i
i

i
i

Algorithm 5.1 InvariantHRL

Input: Action set AI , oracle compression function f
s← initial state, z ← f(s)
Z ← {z}, O ← {oez}
while within budget do
o← GetOption(z,O)
s′ ← RunOption(s, o, AI), z′ ← f(s′)
if z′ /∈ Z then
Z ← Z ∪ {z′}
O ← O ∪ {oez′}

end if
if oz,z′ /∈ O then
O ← O ∪ {oz,z′}

end if
s← s′, z ← z′

end while

and a task state s.

As before, we do not assume that the agent has access to options in
OT . Instead, the agent has to discover from experience how to change the
task state in ST . For this purpose, we redefine the exploration option oez
of each region z so that it has access to actions in AT . When selected in
state (z, s), oez may terminate for one of two reasons: either the current
region changes, i.e. the next state is (z′, s) for some neighbor z′ of z, or
the current task state changes, i.e. the next state is (z, s′) for some task

state s′. In the latter case, the agent will add an option os,s
′

z to OT which
is applicable in (z, s) and whose subtask is to reach state (z, s′). Option

os,s
′

z has an associated option MDPMs,s′
z , analogous toMz,z′ except that

it assigns positive reward to (z, s′).

To solve task T , the agent need to maintain and update a high-level
policy πT : ZT → ∆(O ∪ OT) for the task SMDP ST . In a state (z, s),
policy πT has to decide whether to change regions by selecting an option
in O, or to change task states by selecting an option in OT . Because of
our previous assumption on the reward rT , only options in OT will incur a
non-zero reward, which has to be appropriately discounted after applying

53

i
i

“main” — 2023/2/17 — 12:41 — page 54 — #76 i
i

i
i

i
i

each option. Note that in Algorithm 1, policy πT plays the role of the
subroutine GetOption.

The transition kernel P̄T measures the ability of task options in OT
to successfully solve their subtasks. Hence, P̄T ((z, s′)|(z, s), os,s

′
z) should

be close to 1, but is lower in case option os,s
′

z sometimes terminates in the
wrong state. In our experiments, however, the agent performs model-free
learning and never estimates the transition kernel P̄T .

5.1.6 Controllability

According to the definition of the option reward function rz,z′ in (5.1),
option oz,z′ is equally rewarded for reaching any boundary state between
regions z and z′. However, all boundary states may not be equally valu-
able, i.e. from some boundary states the options in Oz′ may have a higher
chance of terminating successfully. To encourage option oz,z′ to reach
valuable boundary states and thus make the algorithm more robust to the
choice of compression function f , we add a reward bonus when the option
successfully terminates in a state s′ belonging to region z′.

One possibility is that the reward bonus depends on the value of state
s′ of options in the set Oz′ . However, this introduces a strong coupling
between options in the set O: the value function Vz,z′ of option oz,z′ will
depend on the value functions of options in Oz′ , which in turn depend on
the value functions of options in neighboring regions of z′, etc. We want
to avoid such a strong coupling since learning the option value functions
may become as hard as learning a value function for the original invariant
state space SI .

Instead, we introduce a reward bonus which is a proxy for control-
lability, by counting the number of successful applications of subsequent
options after oz,z′ terminates. Let K be the number of options that are
selected after oz,z′ , and let G ≤ K be the number of such options that
terminate successfully. We define a controllability coefficient ρ as

ρ(z) =
G

K
. (5.2)

We then define a modified reward function r̄z,z′ which equals rz,z′ ex-
cept when oz,z′ terminates successfully, i.e. r̄z,z′(s, a, s

′) = rz,z′(s, a, s
′) +

ρ(z) if s′ ∈ z′. In experiments, we use a fixed horizon K = 10 after which

54

i
i

“main” — 2023/2/17 — 12:41 — page 55 — #77 i
i

i
i

i
i

we consider successful options transitions as not relevant. In practice, the
algorithm has to wait for 10 more options before assigning a reward to the
last transition of option oz,z′ .

5.2 Implementation

In this section, we describe the implementation of our algorithm. We
distinguish between a manager in charge of solving the task SMDP ST ,

and workers in charge of solving the option MDPsMz,z′ (orMs,s′
z for task

options).

5.2.1 Manager

Since the space of regions Z is small, the manager performs tabular SMDP
Q-learning (Sutton, Precup, and Singh 1999) over the task SMDP ST .
This procedure is shown in Algorithm 6.1. Similar to Algorithm 1, the
task state space ST and option set OT are successively grown as the agent
discovers new states and transitions.

Algorithm 5.2 Manager

1: Input: Task action set AT , invariant SMDP S
2: z ← initial region, s← initial task state
3: ST ← {s}, OT ← ∅
4: πT ← initial policy
5: while within budget do
6: o← GetOption(πT , (z, s),O ∪OT)
7: (z′, s′), r ← RunOption((z, s), o,AI ∪ AT)
8: UpdatePolicy(πT , (z, s), o, r, (z′, s′))
9: if s′ /∈ ST then

10: ST ← ST ∪ {s′}
11: end if
12: if os,s

′
z /∈ OT then

13: OT ← OT ∪ {os,s
′

z }
14: end if
15: (z, s)← (z′, s′)
16: end while

55

i
i

“main” — 2023/2/17 — 12:41 — page 56 — #78 i
i

i
i

i
i

5.2.2 Worker

The worker associated with option oz,z′ ∈ O (resp. os,s
′

z ∈ OT) should learn

a policy πz,z′ (resp. πs,s
′

z) that allows the manager to transition between
two abstract states z, z′ (resp. task states s, s′). We use Self-Imitation
Learning (SIL) (Oh et al. 2018) which benefits from an exploration bonus
coming from the self-imitation component of the loss function. Moreover,
since the critic update is off-policy, one can relabel failed transitions in
order to speed up learning of the correct option behavior, similar to Hind-
sight Experience Replay (Andrychowicz et al. 2017).

The architecture is made of two separate neural networks, one for
the policy πθz,z′ , parameterized on θ, and one for the value function V ψ

z,z′ ,
parameterized on ψ. The agent minimizes the loss in (5.3) via mini-batch
stochastic gradient descent, with on-policy samples:

L(θ, ψ) = L(η̂θ) + αHπ + L(V̂ψ). (5.3)

Algorithm 5.3 shows the algorithm for executing an option. All options
act in a region z and stop as soon as the region changes (for options of

type os,s
′

z we also have to track the task state). In each iteration, the
policy π of the option selects an action in state s from action set A, and
this action is simulated to obtain a next state s′ and reward rt. The
option then uses the modified reward function rz(s, a, s

′) to compute its
local reward r̄, and adds the transition (s, a, r̄, s′) to a buffer B. Once the
region changes, execution stops, and the policy and value function of the
worker is updated using the subroutine UpdateWorker.

5.3 Experiments

To evaluate the proposed algorithm we use two benchmark domains: a
Key-door-treasure grid world, and a simplified version of Montezuma’s
Revenge where the agent only has to pick up the key in the first room.
In both domains, the invariant part of the state consists of the agent’s
location, and the compression function f imposes a grid structure on top
of the location (cf. Figure 5.2) by performing an integer division over
the (x, y) coordinates of the agent position f(x, y) = bx/dintc+ by/dintc.
Results are averaged over 5 seeds and each experiment is run for 4e5 all

56

i
i

“main” — 2023/2/17 — 12:41 — page 57 — #79 i
i

i
i

i
i

Algorithm 5.3 RunOption

1: Input: region z, action set A
2: Retrieve buffer B and policy π from memory
3: s← current state in z
4: while f(s) = z do
5: a← SelectAction(s,A, π)
6: s′, rt ← Simulate(s, a)
7: r̄ ← r̄z(s, a, s

′)
8: B ← B ∪ (s, a, r̄, s′)
9: s← s′

10: end while
11: UpdateWorker(B)
12: return f(s),

∑
t rt

the agents have been trained with the choice of hyperparameters in Figure
5.1.

In the Key-door-treasure domain, we make the reward progressively
more sparse. In the simplest setting the agent obtains a reward in each
intermediate goal state, while in the hardest setting the agent obtains a
reward only in the terminal state. We also tested the transfer learning
ability of our algorithm in new tasks generated by moving the position of
the Key, Door and Treasure objects.

In Montezuma’s Revenge, we evaluate whether our controllability proxy
helps transition between regions. Montezuma does present an ideal envi-
ronment to test this since imposing a grid set of regions on it does not
respect the structural semantics of the environment and transitioning to
the wrong state in another region may cause the agent to fall and die.

Key-door-treasure is a stochastic variant of the original domain (Oh
et al. 2018) taking random actions with probability 20%. The agent has a
budget of 300 time steps. We define two variants and randomly generate
multiple tasks by changing the location of the Key, Door and Treasure. In
Key-door-treasure-1 (Oh et al. 2018) the key is in the same room as the
door, while in Key-door-treasure-2 the key is in a different room, making
exploration harder.

57

i
i

“main” — 2023/2/17 — 12:41 — page 58 — #80 i
i

i
i

i
i

(a) (b)

Figure 5.2: Key-door-treasure-1 (a) and Montezuma’s Revenge (b) with
compression function superimposed.

5.3.1 Exploration

To investigate the exploration advantage of the proposed algorithm, we
compare it against SIL (Oh et al. 2018) and against a version of SIL
augmented with count-based exploration (Strehl and Littman 2008) that
gives an exploration bonus reward rexp(s, a) = β/

√
N(s), where N(s)

is the visit count of state s and β is a hyperparameter. In the figures,
our algorithm is labeled HRL-SIL, while SIL and SIL-EXP refer to SIL
without/with the exploration bonus.

In Key-door-treasure-1 (Figure 5.3) we observe that when the reward is
given for every object, all the algorithms perform well, while by making the
reward more sparse, our algorithm clearly outperforms the others, because
of its ability to act on different timescales through the compressed state
space and the options action space.

We further investigate this in Key-door-treasure-2 (Figure 5.4) where
the key and door are placed in different rooms. This makes exploration
harder, and SIL struggles even in the setting with intermediate rewards,
only learning to pick up the key, while SIL-EXP slowly learns to open the
door and get the treasure thanks to the exploration bonus.

5.3.2 Transfer Learning

To investigate the transfer ability of the algorithm, we train ’HRL-SIL’
subsequently on a set of tasks and compared it to ’SIL-EXP’. In the first
task, the goal is just to pick up a key and open a door. Once trained

58

i
i

“main” — 2023/2/17 — 12:41 — page 59 — #81 i
i

i
i

i
i

(a) Reward for all objects. (b) Reward for treasure only.

Figure 5.3: Results in Key-door-treasure-1.

Figure 5.4: Results in Key-door-treasure-2, reward for all objects.

on this task, the agent is presented with a more complex task that also
involves a treasure. The third task is the same as the second with the
location of the objects mirrored.

Our agent is evaluated by resetting the manager policy from task to
task, while ’SIL-EXP’ is evaluated by clearing the Experience Replay
buffer between every task. We omit ’SIL’ since it always performs worse
than ’SIL-EXP’. From Figure 5.6 we observe that the learned set of options
O and set of regions Z transfer well across tasks. In contrast, ’SIL-EXP’
struggles to solve new tasks. In the figure, ’NO-TRANSFER-HRL-SIL’
and ’NO-TRANSFER-SIL-EXP’ refer to the versions that relearn tasks
from scratch.

59

i
i

“main” — 2023/2/17 — 12:41 — page 60 — #82 i
i

i
i

i
i

Figure 5.5: Results in Montezuma’s Revenge with controllability.

5.3.3 Controllability

Lastly, we test whether the controllability proxy helps transition success-
fully between regions. We compare two versions of our algorithm, one with
controllability (’HRL-CO’) and one without (’HRL’), in the first room of
Montezuma’s Revenge with the task of collecting the key. This environ-
ment is challenging since the agent could learn unsafe transitions that lead
to successful moves between regions but subsequently dying. As we can
see from Figure 5.5 the controllability proxy does indeed help in learning
successful and safe transitions between regions, outperforming the simpler
reward scheme of ’HRL’.

5.4 Discussion

In spite of the encouraging results in Section 5.3, the current version of
the proposed algorithm has several limitations. In this section, we discuss
potential future improvements aimed at addressing these limitations.

Invariant state-action space The current version of the algorithm as-
sumes that the agent has prior knowledge of the invariant part of the
state-action space, i.e. SI × AI . In some applications, this seems like a
reasonable assumption, e.g. in environments such as MineCraft or Deep-
Mind Lab where the agent has access to a basic set of actions and is later
asked to solve specific tasks.

60

i
i

“main” — 2023/2/17 — 12:41 — page 61 — #83 i
i

i
i

i
i

(a) Env 0 (b) Env 1 (c) Env 2

(d) results in Env 0 (e) results in Env 1 (f) results in Env 2

Figure 5.6: Results of transfer learning, with reward given for all objects.

Compression function The algorithm also assumes that the agent has
access to a compression function f which maps invariant states to regions.
In case such a function is not available, the agent would need to automati-
cally group states into regions. We believe that the algorithm is reasonably
robust to changes in the compression function, but an important feature is
that neighboring states should be grouped into the same region. Dilated
recurrent neural networks (Chang et al. 2017) are designed to maintain
constant information during a given time period, similar to the idea of re-
maining in a given region for multiple timesteps, and have been previously
applied to hierarchical reinforcement learning (Vezhnevets et al. 2017).

Option policies Another limitation of the algorithm is that it needs to
learn a large number of policies that scale as the number of regions times
the number of neighbors. In large-scale experiments, it would be necessary
to compress the number of policies in some way. Since regions are mutually
exclusive, in principle one could use a single neural network to represent
the policy of |Z| different options. However, in preliminary experiments
such a representation suffers from catastrophic forgetting, struggling to
maintain the optimal policy of a given option while training the policies

61

i
i

“main” — 2023/2/17 — 12:41 — page 62 — #84 i
i

i
i

i
i

Hyperparameters Value

Architecture
- FC(64)
- FC(64)

Learning rate 0.0007

N steps per iteration 6

Entropy reg (α) 0.01

SIL update per iteartion (M) SIL: 4, HRL: [1, 4]

SIL batch size 512

SIL loss weight 1

SIL value loss weight (βsil) 0.01

Replay buffer size 104

Exponent for prioritization 0.6

Bias correction, prioritized replay 0.4

Manager ε-greedy [0.05, 0.005]

Count exploration β 0.2

Observation in Key-door-treasure (x, y, inventory)

Observation in Montezuma (x, y)

Table 5.1: Hyperparameters used in the experiments.

of other options. We believe that a more intelligent compression scheme
would be necessary for the algorithm to scale, potentially sharing a single
policy among a carefully selected subset of options.

5.5 Conclusion

We presented a hierarchical reinforcement learning algorithm that decom-
poses the state space using a compression function and introduces subtasks
that consist in moving between the resulting partitions. Furthermore, we
illustrated that the algorithm can successfully solve relatively complex
sparse-reward domains. As discussed in Section 5.4, there are many op-
portunities for extending the work in the future.

62

i
i

“main” — 2023/2/17 — 12:41 — page 63 — #85 i
i

i
i

i
i

Chapter 6

Hierarchical Representation
Learning for Markov
Decision Processes

In this chapter, we present a novel method for learning hierarchical rep-
resentations of Markov decision processes. Our method works by parti-
tioning the state space into subsets and defining subtasks for performing
transitions between the partitions. At the high level, we use model-based
planning to decide which subtask to pursue next from a given partition.
We formulate the problem of partitioning the state space as an optimiza-
tion problem that can be solved using gradient descent given a set of
sampled trajectories, making our method suitable for high-dimensional
problems with large state spaces. We empirically validate the method, by
showing that it can successfully learn useful hierarchical representations
in domains with high-dimensional states. Once learned, the hierarchical
representation can be used to solve different tasks in the given domain,
thus generalizing knowledge across tasks.

State Space Partition properties

Here we summarize and briefly discuss the state space partitions properties
(see Chapter 4) of the methodology presented in this chapter.

Pros:

63

i
i

“main” — 2023/2/17 — 12:41 — page 64 — #86 i
i

i
i

i
i

X Small SubMDPs: The parametrized compression function fψ :
S → ∆(Z) proposed in this chapter is able to control and balance the
size of each subMDP by tuning the number of regions |Z| to fit on the
state space S. Moreover, the second term in the loss proposed (see
eq. 6.1) constrains the representation to balance the probabilities
of belonging to regions, forcing the region size to be balanced and
allowing us to control the maximum size M(see Section 4.2) of each
induced subMDP.

X Bottleneck exit states: The compression function presented here
implicitly favors partitions that minimize the set of all exit states
E (see Section 4.2) as we can see in Figure 6.2 and 6.1. From loss
6.1 we can notice that the two terms LZ , LH will be minimized
when the compression function fψ clusters strongly connected states
together and at the same time balance the probabilities of belonging
to regions. By tuning the weights wH we could allow different sizes
of regions and better match clusters that minimize the set of all exit
states E .

X Strongly connected subMDPs: By minimizing the first term
in loss 6.1 we as well incentive the partitions that induce strongly
connected subMDPs (see Section 4.2)

Cons:

× Prior knowledge on number of regions: The main drawback of
the state partitioning approach presented in this chapter is that he
needs prior knowledge about the number of regions |Z|

× Equivalent subMDPs: The state partition presented in this chap-
ter is not able to identify equivalent subMDPs(see Section 4.2)

× Dependency to the behavior policy used to collect the dataset:
The learned representation demonstrates a coupling to the behav-
ior policy used to collect the dataset, which indirectly defines the
distance between states (i.e. which states cluster together).

64

i
i

“main” — 2023/2/17 — 12:41 — page 65 — #87 i
i

i
i

i
i

6.1 Contribution

In this section, we present our main contribution, a method for learning a
hierarchical representation of a given MDP.

6.1.1 Compression Function

The first step is to learn a compression function from MDP states to re-
gions. We first define a set Z of regions (see Chapter 4) that will represent
the partitions of the state space. Without loss of generality, the elements
of Z are simply integers, i.e. Z = {0, . . . , |Z|−1}, where |Z| is an input pa-
rameter of the method. Our goal is to learn a parameterized compression
function fψ : S → ∆(Z) that maps MDP states to probability distribu-
tions over regions. Ideally, fψ should be deterministic, but the learning
framework we consider favors probabilistic compression functions.

Intuitively, for regions to represent partitions of the state space, on a
given trajectory the region should remain the same most of the time, and
only change occasionally. We formalize this intuition as a loss term, which
will later be part of the objective that the learner attempts to minimize.
Let χ = (st, at, rt, st+1) be a transition, and let D = {χ1, . . . , χm} be a set
of transitions. The loss associated with D is given by

LZ(D) = −
∑
χ∈D

∑
z∈Z

fψ(z|st) log fψ(z|st+1).

Here, −
∑

z∈Z fψ(z|st) log fψ(z|st+1) is the cross-entropy loss for consecu-
tive states st and st+1 in χ, measuring the distance between the distribu-
tions fψ(·|st) and fψ(·|st+1).

On its own, the above loss term will not yield a meaningful compression
function, since it can be minimized by mapping all states to the same
region. To ensure that all regions appear in the compression, we define
a second loss term equivalent to the negative entropy of the compression
function across the same set of transitions D. Given a region z ∈ Z,
let F (z|D) = 1

|D|
∑

χ∈D fψ(z|st) be the average probability of being in z
across the first state st of each transition χ ∈ D. We define a loss term

LH(D) = −H(F (·|D)) =
∑
z∈Z

F (z|D) logF (z|D),

65

i
i

“main” — 2023/2/17 — 12:41 — page 66 — #88 i
i

i
i

i
i

where H(F (·|D)) is the entropy of the function F (·|D). This loss is min-
imized when the probabilities of regions are uniform, i.e. each region is
equally likely.

Finally, as already stated, we would like the compression function fψ
to be as deterministic as possible. For this reason, we define a third loss
term equivalent to the entropy of the compression function for individual
states. We use the same set of transitions D, and define this loss term as

LD(D) =
1

|D|
∑
χ∈D

H(fψ(·|st))

= − 1

|D|
∑
χ∈D

∑
z∈Z

fψ(z|st) log fψ(z|st).

This loss term is minimized when the compression function fψ(·|st) is
deterministic, i.e. assigns probability 1 to a single region, for the first
state st of each transition χ ∈ D.

The overall loss function L(D) is a combination of the three individual
loss terms, i.e.

L(D) = LZ(D) + wHLH(D) + wDLD(D), (6.1)

where wH and wD are weights that we can tune to determine the relative
importance of each loss term. Note that for wD = −1, LZ(D)+wDLD(D)
is the average Kullback-Leibler divergence between fψ(·|st) and fψ(·|st+1);
however, our intention is to use positive values of wD.

To train our compression function we use experience replay (Mnih et
al. 2013) to randomize the transitions in D. We first sample a set of
trajectories using some exploration policy, which constitutes our memory.
However, learning directly from consecutive transitions along the same
trajectory is inefficient, due to the strong correlations between the sam-
ples. Instead, we form the set of transitions D by randomly sampling
individual transitions from the memory. Randomizing the sampled tran-
sitions this way breaks the correlations and therefore reduces the variance
of the updates.

6.1.2 Hierarchical Representation

Once we have learned a compression function fψ for a given MDP M =
〈S,A,P, r〉, we use it to define a set of options O and an SMDP S. First,

66

i
i

“main” — 2023/2/17 — 12:41 — page 67 — #89 i
i

i
i

i
i

we introduce a deterministic compression function g : S → Z, defined in
each state s as g(s) = arg maxz fψ(z|s). Given a region z ∈ Z, let Sz be
the subset of states that map to z, i.e. Sz = {s ∈ S : g(s) = z}.

Our algorithm then uses the compression function in an online manner,
by exploring the environment and finding region transitions, i.e. consecu-
tive states st and st+1 such that g(st) 6= g(st+1). Let Y ⊆ Z × Z be the
subset of pairs of distinct regions (z, z′) that appear as region transitions
while exploring, i.e. there exist two consecutive states st and st+1 such
that g(st) = z and g(st+1) = z′. For each pair (z, z′) ∈ Y, we introduce
an option oz,z′ = 〈Iz, πz,z′ , βz〉 whose purpose is to perform a region tran-
sition from z to z′. Option oz,z′ is applicable in region z, i.e. Iz = Sz and
terminates as soon as we reach a region different from z, i.e. βz(s) = 0 if
s ∈ Sz and βz(s) = 1 otherwise.

To learn the policy πz,z′ of option oz,z′ , we define an option-specific
Markov decision process Mz,z′ = 〈Sz,A,Pz, rz,z′〉. Note that Mz,z′ needs
only be defined for states in Sz, since option oz,z′ always terminates outside
this set. The local reward function rz,z′ is defined for each state-action
pair as rz,z′(s, a, s

′) = r(s, a, s′), i.e. equal to the environment reward. We
also introduce a bonus +1 for terminating in a state s such that g(s) = z′.
As a consequence, the policy πz,z′ has the incentive to leave region z, and
prefers to transition to region z′ whenever possible.

Let O = {oz,z′ : (z, z′) ∈ Y} be the set of options for performing re-
gion transitions and let Oz = {o ∈ O : Iz = Sz} be the subset of options
applicable in region z. We define an SMDP S = 〈Z,O,PZ , rZ〉, i.e. the
high-level choices of the learning agent are to select region transitions to
perform. Once the individual option policies have been trained, explo-
ration is typically more efficient since the single decision of which option
to execute results in a state that is many steps away from the initial state.
In addition, one can approximate the SMDP policy as π : Z → ∆(O),
i.e. the choice of which option to execute only depends on the current re-
gion. This has the potential to significantly speed up learning if |Z| � |S|.

The system is trained using a Manager-Worker architecture (Dayan
and Hinton 1993). The Manager performs tabular Value Iteration over
the SMDP. The motivation for using tabular learning is that the number
of regions |Z| is typically small, even if states are high-dimensional. On
the other hand, the Worker uses off-policy value-based methods to learn

67

i
i

“main” — 2023/2/17 — 12:41 — page 68 — #90 i
i

i
i

i
i

the policies of the options oz,z′ .

6.1.3 Controllability

As in Chapter 5.1.6 we introduced a reward bonus which is a proxy for
controllability, by counting the number of successful applications of sub-
sequent options after oz,z′ terminates. Let K be the number of options
that are selected after oz,z′ , and let G ≤ K be the number of such options
that terminate successfully. We define a controllability coefficient ρ as

ρ(z) =
G

K
. (6.2)

We then define a modified reward function r̄z,z′ which equals rz,z′ except
when oz,z′ terminates successfully, i.e. r̄z,z′(s, a, s

′) = rz,z′(s, a, s
′) + ρ(z)

if s′ ∈ z′. In experiments, we use a fixed horizon K = 4 after which we
consider successful option transitions as irrelevant.

6.1.4 Transfer

The hierarchical representation in the form of the SMDP S defined above
can be used to transfer knowledge between tasks. Concretely, we assume
that the given MDP M can be extended to form a task by adding states
and actions. Imagine for example that M models a navigation problem
in a given environment. A task can be defined by adding objects in the
environment that the learning agent can manipulate, while navigation is
still part of the task.

Formally, given an MDPM = 〈S,A,P, r〉, a task T is an MDPMT =
〈S ×ST ,A∪AT ,P ∪PT , r∪ rT 〉. The states in ST represent information
about task-specific objects, and the actions in AT are used to manipulate
these objects. The transition kernel PT : (S×ST)×AT → ∆(ST) governs
the effects of the actions in AT , which may depend on the states of the
original MDP (e.g. the location of the agent). Finally, the reward function
rT : (S × ST) × AT → R models the reward associated with actions in
AT .

To solve a task, we can replace the MDP M with the learned SMDP
S = 〈Z,O,PZ , rZ〉, forming a task SMDP ST = 〈Z × ZT ,O ∪ AT ,PZ ∪
P T , rZ ∪ rT 〉. Here, the options in O are used to navigate in the original

68

i
i

“main” — 2023/2/17 — 12:41 — page 69 — #91 i
i

i
i

i
i

Figure 6.1: Results on Key-Door0 gridworld environment. The first row
represents the environments, and the second row illustrates the corre-
sponding learned deterministic compression functions, where different col-
ors represent different regions z ∈ Z.

state space S, while the actions in AT are used to manipulate the task-
specific objects. If the policies of the options in O have been previously
trained, the task SMDP ST can significantly accelerate learning compared
to the task MDP MT . To ensure that the learning agent can navigate to
individual objects inside a partition of Z, we consider states in ST to be
different regions; hence our algorithm will automatically add options for
manipulating objects.

6.2 Experimental Results

The experiments are designed to answer the following questions:

• Is the learned compression function suitable for learning a hierarchy?

• Does the learned hierarchy transfer across different tasks in the same
environment?

• How does our HRL algorithm compare against state-of-the-art flat

69

i
i

“main” — 2023/2/17 — 12:41 — page 70 — #92 i
i

i
i

i
i

Figure 6.2: Results on geometric variations of the NineRooms0 grid world
environments. The first row represents the environments, and the sec-
ond row illustrates examples of the corresponding learned deterministic
compression functions, where different colors represent different regions
z ∈ Z.

algorithms, such as Self Imitation Learning (Oh et al. 2018) and
Double-DQN with Prioritized Experience Replay (Schaul et al. 2015a)?

6.2.1 Learning a Compression Function

We designed two different empty navigation environments without tasks,
KeyDoor0 (c.f. Figure 6.1), with grid size 10 × 10, where an agent (blue
square) always starts in position (1, 1), has to collect a key (yellow square).
And NineRooms0 (c.f. Figure 6.2), a nine rooms grid environment with
grid size 19 × 19 where at each episode the agent is placed at a random
initial position, which promotes exploration. For all the environments the
states are (x, y)-positions which are mapped to images, and the discrete
action space is A = {up, down, left, right}.

The first step of our procedure consists in a pre-training phase where
we form a replay memory of trajectories. We use a random exploration
policy to repeatedly generate trajectories from the random initial states,
using a fixed episode length of 100. During this phase, we can vary the
number of trajectories generated to test the robustness of the approach.

We then use the replay memory and a number of regions |Z| = 2 for
KeyDoor0 and |Z| = 9 for NineRoom0 to train the compression function
fφ using the AdamW optimizer (Loshchilov and Hutter 2017) by minimiz-

70

i
i

“main” — 2023/2/17 — 12:41 — page 71 — #93 i
i

i
i

i
i

ing the loss in (6.1) over 4000 iterations, randomly sampling a set of 32
transitions D from the replay memory in each iteration. The learned com-
pression functions for 1000 trajectories are shown in Figures 6.1 and 6.2,
respectively.

To asses the robustness of our procedure, in Figure 6.2 we evaluate how
the compression function changes by introducing different geometries of
the NineRooms0 environment. As we can see, if we make the room sizes
imbalanced, the resulting compression function does not exactly match
the shape of the rooms, due to the second term LH of the loss in (6.1),
which promotes all regions z to be equally likely. However, the resulting
compression function still partitions the states and translates into a correct
SMDP.

In Figure 6.3, we evaluate how the size of the replay memory affects
the accuracy of the compression function in terms of the absolute error
deviation with respect to a correct representation. For this experiment,
we use the left-most room in Figure 6.2 with balanced room sizes and
vary the number of trajectories in the replay memory. When the replay
memory contains at least 200 trajectories, the procedure converges to an
absolute error very close to 0, while less than 200 trajectories result in an
increasing absolute error.

In the supplementary material, we present additional experiments with
learning a compression function in the MountainCar environment. We also
list all hyperparameters of the algorithm.

6.2.2 Hierarchical Reinforcement Learning

Following the pre-training phase, we can use the learned compression func-
tion to solve any task in the same environment. In what follows we use
the compression function learned in the left-most room in Figure 6.2 with
a replay memory of 1000 trajectories. We distinguish between a manager
in charge of solving the task SMDP ST and workers in charge of solving
the option MDPs Mz,z′ .

Manager

Our algorithm iteratively grows an estimate of the SMDP S. Initially, the
agent only observes a single state s ∈ S and associated region z = g(s).

71

i
i

“main” — 2023/2/17 — 12:41 — page 72 — #94 i
i

i
i

i
i

Figure 6.3: Absolute error of the compression function, evaluated on in-
creasing replay memory size.

Hence the state space Z contains a single region z, whose associated option
set Oz is initially empty. In this case, the only alternative available to the
agent is to explore. For each region z, we add an exploration option oez =
〈Iz, πez, βz〉 to the option set O. This option has the same initiation set and

termination condition as the options in Oz, but the policy πexplorationz is an
exploration policy that selects actions uniformly at random, terminating
when it leaves region z or exhausts a given budget.

Once the agent discovers a neighboring region z′ of z, it adds z′ to
the set Z and the associated option oz,z′ to the option set O. The agent
also maintains and updates a directed graph whose nodes are regions and
whose edges represent the neighbor relation. Hence next time the agent
visits region z, one of its available actions is to select option oz,z′ . When
option oz,z′ is selected, it chooses actions using its policy πz,z′ and updates
πz,z′ based on the rewards of the option MDPMz,z′ . Figure 6.4 shows an
example representation discovered by the algorithm.

Algorithm 6.1 shows the pseudo-code of the algorithm. As explained,
Z is initialized with the region z of the initial state s, and O is initialized
with the exploration option oexplorationz . In each iteration, the algorithm

72

i
i

“main” — 2023/2/17 — 12:41 — page 73 — #95 i
i

i
i

i
i

selects an option o which is applicable in the current region z. If we
transition to a new region z′, it is added to Z and the exploration option
oexplorationz′ and transition option oz,z′ are appended to O. The process
then repeats from the next state s′.

The subroutine GetOption that selects an option o in the current
region z can be implemented in different ways; in our case, we use an
ε-greeedy policy.

Since the set of region Z is small, the manager performs tabular Value
Iteration over the task SMDP ST .

In order to recognize new goal states, while exploring we define any
terminal state in the environment as a new region z; hence the manager
will introduce options for reaching this terminal state.

Planning with a learned SMDP

We have seen how the state space of the task SMDP ST is discovered
online given a compression function g(s). In order to apply a model-based
method to this learned compression function, we still need to be able to
estimate the transition kernel P T and reward function rT .

Estimating the transition probability associated with an option oz,z′ of
our task SMDP is not easy, since the policy πz,z′ is trained online while ex-
ploring the environment, making the transition probability non-stationary.
In order to alleviate the cost of estimating the transition probability, we
assume that oz,z′ will become deterministic once the training phase termi-

nates, i.e. P̂ T (z′|z, oz,z′) = 1. Though this is an approximation, the aim
of option oz,z′ is precise to reach region z′, and constructing the SMDP is
intended to simplify high-level decision-making.

On the other hand, for each state-option pair (z, o) of the task SMDP
ST , we estimated the task SMDP reward rT as an average of the reward
encountered in the environment:

r̂T (s, o) =

∑C(z,o)
i=1 Ri(z, o)

C(z, o)
, (6.3)

where C(z, o) counts the number of times the state-option pair (z, o) has
been observed, and Ri is the cumulative reward obtained while applying
option o for the i-th time.

73

i
i

“main” — 2023/2/17 — 12:41 — page 74 — #96 i
i

i
i

i
i

Figure 6.4: The discovered invariant SMDP.

Figure 6.5: Results in the KeyDoor environment.

Since the model changes over time, the subroutine UpdatePolicy
updates the Q values of the Manager at regular intervals by applying
value iteration on the learned SMDP ŜT .

Workers

The workers are in charge of learning the policies of each option oz,z′ in
O, allowing the manager to transition between two regions z, z′. We use
Double DQN (Van Hasselt, Guez, and Silver 2016), a version of DQN
that addresses the overestimation of Q-values, combined with Prioritized
Experience Replay (PER) (Schaul et al. 2015a) that improves the way
experience is sampled from the Experience Replay. The rewards that

74

i
i

“main” — 2023/2/17 — 12:41 — page 75 — #97 i
i

i
i

i
i

the worker observes are defined in Section 6.1.2 and implemented in the
routine TrainOption from Algorithm 6.1.

Since Double DQN is able to evaluate Q-values off-policy, one can
relabel failed transitions to speed up learning of the correct option behav-
ior, similar to Hindsight Experience Replay (Andrychowicz et al. 2017).
The architecture is made of a neural network Qθ parametrized on θ, and
a frozen target network Qθ̄ used to alleviate the non-stationarity of the
targets TQ = r(s, a) + γ maxa′ Qθ(s

′, a′).

The parameters of the neural network are updated as:

θ ← θ + α (TD−Qθ(s, a))∇θQθ(s, a), (6.4)

where TD is the target value computed as:

TD = r (s, a) +γQθ̄

(
st+1, argmax

a
Qθ (st+1, a)

)
. (6.5)

The target network is then updated with Polyak updates (Heess et al.
2015):

θ̄ = ωθ + (1− ω) θ̄, (6.6)

where ω ∈ [0, 1]

75

i
i

“main” — 2023/2/17 — 12:41 — page 76 — #98 i
i

i
i

i
i

Algorithm 6.1 Manager

1: Input: environment e, previously discovered SMDP S in case of
transfer learning, compression function g

2: s← initialstate
3: z ← g(s)
4: if z 6∈ Z then
5: Z ← Z ∪ {z}
6: O ← oexplorationz

7: end if
8: πT ← initial policy
9: o← None

10: while within budget do
11: if o is None or Terminate then
12: o← GetOption(πT , z,O)
13: R = 0
14: end if
15: s′, r, done← e(o(s))
16: TrainOption(o, s, r, s′, done)
17: R = R + r
18: z′ ← g(s′)
19: if z′ 6∈ Z then
20: Z ← Z ∪ {z′}
21: O ← O ∪ {oez′ , oz,z′}
22: end if
23: if z 6= z′ then
24: UpdatePolicy(πT , z, o, R, z′)
25: o← GetOption(πT , z′, O)
26: end if
27: if s′ is terminal and s′ not in Z then
28: O ← O ∪ {oz,s′z }
29: Z ← Z ∪ {s′}
30: end if
31: (z, s)← (z′, s′)
32: end while

76

i
i

“main” — 2023/2/17 — 12:41 — page 77 — #99 i
i

i
i

i
i

Figure 6.6: Results on the variations of nine room gridworld environments
where the goal (green square) is placed at an increasing distance from
the agent (blue square). From left to right: NineRoom1, NineRoom2,
NineRoom3.

6.2.3 Experiments

In our experiments, we evaluate the performance of our agent in two en-
vironments, on a KeyDoor environment in Figure 6.5 where an agent has
to collect a key (yellow square) and open a door (green square) and a
NineRooms environment in Figure 6.6 where an agent has to reach the
goal (green square). In both environments, the initial position is fixed to
(1, 1). In the NineRooms environment, we defined three variants where
the goal is positioned at an increasing distance from the initial state to
make exploration harder, c.f. NineRooms1, NineRooms2 and NineRooms3
in Figure 6.6. Results are averaged over 5 seeds and each experiment is
run for 100,000 iterations. Even though the compression function is given,
the goal location is unknown, so the agent has to explore the environment
in order to find the goal location for the first time.

We set the maximum number of steps in the environment to 40 for
the KeyDoor environment and to 200 for NineRooms environment, mak-
ing exploration hard, especially in NineRooms3 where the goal is at the
maximum distance from the initial state. Results in Figures 6.5 and 6.6
show the total reward with a running average smoothing of 100 episodes
and shaded standard deviation. In the KeyDoor environment, the agent
receives a reward of +1 only once it opens the door (green square) with

77

i
i

“main” — 2023/2/17 — 12:41 — page 78 — #100 i
i

i
i

i
i

the key (yellow square) while in NineRooms the agent receives a reward
of +1 when it reaches the goal position (green square) and a reward of 0
elsewhere.

We compared our algorithm against state of the art flat reinforce-
ment learning agents designed to perform well in sparse reward settings,
namely Self Imitation Learning (SIL) (Oh et al. 2018) and Double DQN
with Prioritized Experience Replay (DQN-PER) (Schaul et al. 2015a), im-
plemented on top of the Reinforcement Learning framework Machin (Li
2020).

We refer to ”HRL” as our algorithm in which the task SMDP ST has
to be learned online while exploring, but the compression function g is
given. ”HRL-TRANSFER” refers to our algorithm where the agent is
first pretrained in order to learn the options on NineRooms0 in Figure 6.1
without any task and then exposed to NineRooms1, NineRooms2, Nine-
Rooms3 in sequence. In this case, the algorithm benefits from the transfer
of the SMDP S while the manager policy (i.e. Q-values) is reset to 0 after
training in each environment.

We can observe that the HRL algorithm learns faster than SIL and
DQN-PER in all the environments. SIL and DQN-PER both rely only
on random exploration, but once they find a positive reward, they can
exploit it. In contrast, the exploration of HRL and HRL-TRANSFER
is aided by the hierarchical structure. Both SIL and DQN-PER present
high variance, and for some seeds, they are not even able to solve the
task, given the budget of 100,000 iterations. We can also observe that
HRL-TRANSFER does improve over HRL, and we would argue that this
improvement could be larger if we choose harder tasks where the option
policies for transitioning between regions become harder to learn.

6.2.4 Additional Empirical Evaluation

In this section, we present an additional empirical evaluation of our ap-
proach to learning a compression function, complementing the analysis
reported in the previous sections.

Concretely, we evaluate our approach in the MountainCar environ-
ment, in which the state consists of the current location and velocity of
the agent. In this environment, we collected a replay memory consisting
of 200 trajectories of length 200 using a sub-optimal policy that can reach

78

i
i

“main” — 2023/2/17 — 12:41 — page 79 — #101 i
i

i
i

i
i

the goal state and can approximately cover all the state space, and learned
a compression function with 20 regions.

In Figure 6.7 we show the result of this compression function where
different colors represent different regions z ∈ Z. Note that the com-
pression function is able to cluster together states that are close in the
environment, i.e. states where the car is at a similar position and velocity.
In particular, states with low velocity near the center are not very similar
to states with high velocity in the same location, and this is captured by
the compression function.

Figure 6.7: Results of the compression function in the MountainCar envi-
ronment (axes represent location and velocity); different colors represent
different regions z ∈ Z.

6.3 Hyperparameters

Table 6.1 reports the values of the hyperparameters used to train the
compression function and the HRL agent.

Table 6.2 reports the value of the hyperparameters used to train the
DQN-PER and SIL agents.

79

i
i

“main” — 2023/2/17 — 12:41 — page 80 — #102 i
i

i
i

i
i

Hyperparameters Value

Worker Hyperparameters

Neural Network
Architecture

CONV1(32, (7, 7), (1, 1))
FC1(32)
FC2(32)

Activation Function Relu

Learning rate 0.001

Optimizer Adam

E-Greedy decay 0.9998

Batch size 100

Target network
poliak update

0.05

Discount Factor 0.95

Replay buffer size 5 ∗ 105

Replay type: PrioritizedExperience Replay

Exponent for prioritization 0.6

Bias Correction 0.1

Manager Hyperparameters

E-Exploration to learn the model 0.995

Discount Factor 0.95

Compression Function Hyperparameters

Neural Network
Architecture

CONV1(16, (1, 1), (1, 1))
BatchNorm2D(16)
CONV2(32, (5, 5), (1, 1))
BatchNorm2D(32)
CONV3(32, (3, 3), (1, 1))
BatchNorm2D(32)
FC1(64)
BatchNorm1D(64)
FC1(1)

Activation Function Selu

wH , wD on GridWorld 0.2, 0.1

wH , wD on Mountain Car 2, 0.1

Learning rate 0.001

Optimizer AdamW

Batch size 32, 64

Epochs 4000

Table 6.1: Hyperparameters used to train HRL and HRL-Transfer agents.

80

i
i

“main” — 2023/2/17 — 12:41 — page 81 — #103 i
i

i
i

i
i

Hyperparameters Value

DQN-PER Hyperparameters

Same as Worker

SIL Hyperparameters

Neural Network
Architecture

Same as Worker

Discount Factor 0.95

Replay type: Prioritized Experience Replay

Exponent for prioritization 0.6

Bias Correction 0.1

Additional Hyperparameters
Same as reported in
Self Imitation Learning paper

Table 6.2: Hyperparameters used to train SIL and DQN-PER agents.

6.4 Conclusion

We present a novel method for learning a hierarchical representation from
sampled transitions in high-dimensional domains. The idea is to gener-
ate regions that partition the original state space and introduce options
for performing transitions between regions. Experiments show that the
learned representation can successfully be used to solve multiple tasks in
the same environment, significantly speeding up learning compared to a
flat learner.

An important direction for future work is to sample trajectories using a
more informed exploration policy, since learning the compression function
depends on having a variety of trajectories in different states. Another
possible extension is to interleave representation learning with policy im-
provement, which may successively improve the quality of the sampled
trajectories. Yet another possibility is to correct the compression function
in states from which some region transitions are not possible.

81

i
i

“main” — 2023/2/17 — 12:41 — page 82 — #104 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 83 — #105 i
i

i
i

i
i

Chapter 7

Distance Based
Representation for
Hierarchical Reinforcement
Learning

In this chapter, we present a novel method for learning a state space
partition of Markov decision processes. Our method partitions the state
space by selecting representative centroids based on the notion of Mini-
mum Action Distance (MAD) and defines subtasks for performing transi-
tions between these centroids’ regions. At the high level, we use SMDP
Q-learning (Sutton, Precup, and Singh 1999) to decide which subtask or
action to pursue next from a given centroid region or state. We formulate
the problem of learning the MAD as a constrained optimization problem,
and we show how it is possible to transform the constraints into a penalty
term and solve the new objective via stochastic gradient descent. Prelim-
inary results on grid world environments validate the method, by showing
that it can learn options that accelerate learning.

State Space Partition properties

Here we summarize and briefly discuss only the state space partition prop-
erties (see Chp. 4) of the methodology presented in this chapter.

83

i
i

“main” — 2023/2/17 — 12:41 — page 84 — #106 i
i

i
i

i
i

Pros:

X Small SubMDPs: The state space partitioning based on MAD
proposed in this chapter is able to directly balance the size of sub-
MDP by setting the hyperparameter dt (see Section 7.2). This allows
us to control the maximum size M(see Section 4.2) of each induced
subMDP.

X Strongly connected subMDPs: By construction of the state
space partitions each subMDP will be strongly connected (see Sec-
tion 4.2). Clustering with the MAD distance dMAD ensures that
there will always be a path from any state belonging to a region to
any other state of that region.

Cons:

× Bottleneck exit states: As we can see in Section 7.3, the MAD
can be used to identify bottleneck states, however, the state space
partitioning presented in this chapter does not favor partitions that
allow having bottleneck exit states, and we leave this as future work.

× Equivalent subMDPs: The state partition presented in this chap-
ter is not able to identify equivalent subMDPs (see Section 4.2).

7.1 Minimum Action Distance

In this section, we describe the notion of Minimum Action Distance, and
we derive useful ways of computing this measure on finite MDPs and
continuous or large MDPs.

We start by introducing some notation. We refer to the Minimum
Action Distance (MAD) as the minimum number of actions to transition
between any pair of states (s, s′) ∈ S2.

Definition 6. (Minimum Action Distance) Let T (s′ | π, s) be the random
variable denoting the first time step in which state s′ is reached in the MDP
when starting from state s and following policy π. Then dMAD : S2 → R+

is defined as:
dMAD(s, s′) := min

π
min

[
T
(
s′ | π, s

)]
.

84

i
i

“main” — 2023/2/17 — 12:41 — page 85 — #107 i
i

i
i

i
i

Similarly, we refer to the Shortest Path Distance (SPD) dSPD(s, s′) as
the expected minimum number of actions to transition between any pair
of states (s, s′) ∈ S2.

Definition 7. (Shortest Path Distance) Let T (s′ | π, s) be the random
variable for the first time step in which state s′ is reached in the MDP.
Then dSPD : S2 → R+ is defined as:

dSPD(s, s′) := min
π

E
[
T
(
s′ | π, s

)]
.

Note that SPD differs from MAD in the change from expected reaching
time E [T (s′ | π, s)] to minimum reaching time min [T (s′ | π, s)] and the
two definitions match in the case of deterministic MDP.

We can observe that the MAD is an asymmetric distance function
(Mennucci 2013) and must satisfy the following properties:

• dMAD ≥ 0 and ∀s ∈ S, dMAD(s, s) = 0.

• dMAD(s, s′) = dMAD(s′, s) = 0 implies s = s′.

• dMAD(s, s′) ≤ dMAD(s, s′′) + dMAD(s′′, s′) ∀(s, s′, s′′) ∈ S.

7.1.1 Learning Minimum Action Distance from Adjacency
Matrix

In discrete and finite MDPs we can compute the state-transition graph
G = (V,E) of an MDP. In this section, we will revise how to learn the
minimum action distance from the graph adjacency matrix.

A state-transition graph G = (V,E) of an MDP M = 〈S,A,P, r〉
is a graph with nodes representing the states in the MDP and the edges
representing state adjacency in the MDP. More precisely, V = S, e (s, s′) ∈
E iff ∃a P (s, a, s′) > 0. An adjacency matrix represents a graph with a
square matrix of size |S|× |S| with (i, j)-value being 1 if e (si, sj) ∈ E and
0 otherwise.

AGij =

{
0 si = sj or e(si, sj) /∈ E
1 e(si, sj) ∈ E

i, j = 1, . . . , |S|. (7.1)

85

i
i

“main” — 2023/2/17 — 12:41 — page 86 — #108 i
i

i
i

i
i

Having access to the adjacency matrix AG we can simply compute the
minimum action distance by using the Floyd-Warshall algorithm (Floyd
1962; Roy 1959; Warshall 1962).

The Floyd-Warshall algorithm compares all possible paths through the
graph between each pair of vertices. It is able to do this with Θ

(
|V |3

)
comparisons in a graph, even though there may be up to Ω

(
|V |2

)
edges

in the graph, and every combination of edges is tested. It does so by
incrementally improving an estimate on the shortest path between two
vertices until the estimate is optimal.

This dynamic programming procedure relies on having access to the
edge weights, which in the case of MAD reduces to having access to the
adjacency matrix AG of ai,j = 1 when si, sj are connected by an edge.

Thanks to this we can define the shortest path on the AG by just first
computing the base cases:

d(si, sj) =

0 si = sj
1 ai,j = 1
∞ ai,j = 0 and si 6= sj

i, j = 1, . . . , |S|, (7.2)

and subsequently computing the recursive case leveraging the triangle in-
equality property:

d(si, sj) = min(d(si, sj), d(si, sk) + d(sk, sj)) ∀(si, sj , sk) ∈ S3. (7.3)

Note that in case we do not have access to the adjacency matrix AG

this can be retrieved by interacting with the environment by visiting all
the (s, s′) transitions.

7.1.2 Symmetric embeddings

The Minimum Action Distance between states is a priori unknown and is
not directly observable in continuous and/or noisy state spaces where we
cannot simply enumerate the states and construct the adjacency matrix
of the MDP. Instead, we will approximate an upper bound using the dis-
tances between states observed on trajectories. We introduce the notion
of Trajectory Distance (TD) as follows:

86

i
i

“main” — 2023/2/17 — 12:41 — page 87 — #109 i
i

i
i

i
i

Definition 8. (Trajectory Distance) Given any trajectory τ = s0, ..., sn ∼
M collected in an MDPM and given any pair of states along the trajectory
(si, sj) ∈ τ such that 0 ≤ i ≤ j ≤ n, we define dTD(si, sj | τ) as

dTD(si, sj | τ) = (j − i), (7.4)

i.e. the number of decision steps required to reach sj from si on trajectory
τ .

We start by observing that given any state trajectory τ = {s0, ..., sn},
choosing any pair of states (si, sj) ∈ τ with 0 ≤ i ≤ j ≤ n, their distance
along the trajectory represents an upper bound of the MAD.

dMAD(si, sj) ≤ dTD(si, sj | τ). (7.5)

Given a dataset of trajectories D collected by any unknown behav-
ior policy, we can retrieve the MAD dMAD by solving the following con-
strained optimization problem:

min
θ

∑
τ∈D

∑
(s,s′)∈τ

(dθ(s, s
′)− dTD(s, s′ | τ))2,

s.t. dθ(s, s
′) ≤ dTD(s, s′ | τ) ∀τ ∈ D, ∀(s, s′) ∈ τ,

dθ(si, sj) ≤ dθ(si, sk) + dθ(sk, sj), ∀(si, sj , sk) ∈ S3
D

(7.6)

where (s, s′) ∈ τ refers to a one-step transition (i.e. dTD(s, s′|τ) = 1) in
the trajectory τ ∈ D while (si, sj , sk) ∈ S3

D indicates all the combinations
of 3 states contained in the trajectory dataset SD.

Note that the first constraint in 7.6 imposes an upper bound on one-
step transitions, i.e. it says that two states (s, s′) at distance one along
a trajectory dTD(s, s′|τ) = 1 are either the same state s = s′ or they
must satisfy dMAD = 1. This allows us to approximate the MAD without
having to identify whether two states along a trajectory are the same state
or not.

As we can notice the second constraint in 7.6 imposes the triangle
inequality that we have seen to be a property of the Minimum Action Dis-
tance. Moreover, this second constraint implies that we have to calculate
it for all the combinations of 3 states contained in SD which can become
intractable for large state spaces.

87

i
i

“main” — 2023/2/17 — 12:41 — page 88 — #110 i
i

i
i

i
i

To address this issue we rely on an alternative formulation based on
embedding the MAD in a parametric embedding space φθ : S → Rdim
where a chosen distance metric that respects the triangle inequality (e.g.
any norm || · ||p) can be used to enforce the triangle inequality constraint.

Our goal is to learn a parametric state embedding φθ : S → Rdim such
that the distance d between any pair of embedded states approximates the
Minimum Action Distance.

We first show how to favor symmetric embeddings since it allows us to
use norms as distance functions, e.g. the L1 norm d(z, y) = ||z−y||1. Later
we discuss possible ways to extend it to asymmetric distance functions.
If we use symmetric embeddings we will have that for any pair of states
(si, sj) ∈ S,

d(φθ(si), φθ(sj)) ≈ min(dMAD(si, sj), dMAD(sj , si)). (7.7)

We then formulate the problem of learning this embedding as a con-
strained optimization problem:

min
θ

∑
τ∈D

∑
(si,sj)∈τ

(‖φθ(si)− φθ(sj)‖p − dTD(si, sj | τ))2,

s.t.
∥∥φθ(s)− φθ(s′)∥∥p ≤ dTD(s, s′ | τ) ∀τ ∈ D,∀(s, s′) ∈ τ.

(7.8)

Intuitively, the objective is to make the embedded distance between
pairs of states as close as possible to the observed trajectory distance while
respecting the upper bound constraints. Without constraints, the objec-
tive is minimized when the embedding matches the expected Trajectory
Distance E [dTD] between all pairs of states observed on trajectories in the
dataset D. In contrast, constraining the solution to match the minimum
TD with the upper-bound constraints ‖φθ(s)− φθ(s′)‖p ≤ dTD(s, s′ | τ)
allows us to approximate the MAD. The precision of this approximation
depends on the quality of the given trajectories.

To make the constrained optimization problem tractable, we relax the
hard constraints in (7.8) and convert them into a penalty term to re-
trieve a simple unconstrained formulation. Moreover, we rely on sampling
(si, sj , dTD(si, sj | τ)) and (s, s′, dTD(s, s′ | τ)) from the dataset of trajec-
tories D making this formulation amenable for gradient descent and to fit

88

i
i

“main” — 2023/2/17 — 12:41 — page 89 — #111 i
i

i
i

i
i

within the optimization scheme of neural networks.

L = E(si,sj ,dTD(si,sj |τ))∼D

[
γdTD(si,sj |τ)(‖φθ(si)− φθ(sj)‖p − dTD(si, sj | τ))2

]
+ C, (7.9)

where C is our penalty term defined as

C = E(s,s′,dTD(s,s′|τ))∼D

[
max

(
0, ‖φθ(s)− φθ(s′)‖p − dTD(s, s′ | τ)

)2
]
.

(7.10)

The penalty term C introduces a quadratic penalization of the ob-
jective for violating the upper-bound constraints ‖φθ(s)− φθ(s′)‖p <=

dTD(s, s′ | τ), while the term γdTD(si,sj |τ) ∈ (0, 1] prioritizes small tra-
jectory distances (i.e. distances between states that are close along a
trajectory). Intuitively, this makes sense since there is more uncertainty
regarding the MAD of pairs of states that are further apart on a trajec-
tory. In Figure 7.1 we can see a symmetric MAD representation learned
in a simple grid world.

7.1.3 Asymmetric semi-norm embeddings

In the previous section, we have seen how it is possible to define the MAD
embedding problem with the use of norms || · ||p. While the formulation is
useful to understand how it is possible to remove the triangle inequality
constraint in 7.6 the Minimum Action Distance is naturally asymmetric
and we would like embedding that preserves this asymmetry.

A norm is a function ‖ · ‖ : X → R satisfying, ∀x, y ∈ X , α ∈ R+:

• N1 (Pos. def.). ‖x‖ > 0, unless x = 0.

• N2 (Pos. homo.). α‖x‖ = ‖αx‖, for α ≥ 0.

• N3 (Subadditivity). ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

• N4 (Symmetry). ‖x‖ = ‖ − x‖.

An asymmetric semi-norm satisfies, N2, N3 but not necessarily N1,
N4.

89

i
i

“main” — 2023/2/17 — 12:41 — page 90 — #112 i
i

i
i

i
i

Figure 7.1: Top: a simple grid world where an agent has to pick up a key
and open a door (key and door positions are fixed). Bottom: the learned
state embedding φ on R2. The state (x, y, has key) is composed of the
agent’s location and whether or not it holds the key.

A convex function f : X → R is a function satisfying C1 : ∀x, y ∈
X , α ∈ [0, 1] : f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y). The commonly
used ReLU activation, relu(x) = max(0, x), is convex.

Is easy to observe that any N2 and any N3 function is convex and
thus that any asymmetric semi-norm is convex.

Motivated by this relationship between convex functions and norms
Pitis et al. (2020), introduced Wide Norms a parametric distance that
models symmetric and asymmetric norms.

A Wide Norm is any combination of symmetric/asymmetric semi-
norms. They are based on the Mahalanobis norm of x ∈ Rdim, parametrized
by W ∈ Rm×n, defined as ||x||W = ||Wx||2.

Symmetric Wide Norms are then defined as:

90

i
i

“main” — 2023/2/17 — 12:41 — page 91 — #113 i
i

i
i

i
i

||x||WN = maxmeani (‖Wix‖2) where Wi ∈ Rmi×n with mi ≤ n.

Where maxmean indicates:

maxmean (x1, x2, . . . , xn) = αmax (x1, x2, . . . , xn) + (1− α) mean (x1, x2, . . . , xn)

While asymmetric Wide Norms are defined as:

||x|WN = ||Wrelu(x :: −x)||2 where Wi ∈ Rmi×n with mi ≤ n.

We can then use the parametrized Wide Norm distance to constrain
the triangular inequality on the embedding space:

L = E(si,sj ,dTD(si,sj |τ))∼D
[
γdTD(si,sj |τ)(||φθ(si)− φθ(sj)|WN − dTD(si, sj | τ))2

]
+ C,

(7.11)
where C is our penalty term defined as

C = E(s,s′,dTD(s,s′|τ))∼D

[
max

(
0, ||φθ(s)− φθ(s′)|WN − dTD(s, s′ | t)

)2]
.

(7.12)

7.2 Minimum Action Distance State Space Par-
titions

In the previous section, we have seen how it is possible to learn the MAD
from a dataset of trajectory. In this section, we will use the MAD to
partition the state space of an MDP.

Given an MDP M and a distance threshold hyperparameter dt ∈
[0,max(si,sj) dMAD(si, sj)], we propose to partition the state space S on-
line by acting in M (see Algorithm 7.1), collecting transitions (s, a, s′, r)
and adding centroids c to a list C when dMAD(c, s) > dt, ∀s ∈ S. Note
that dMAD is learned in an online manner, simply by minimizing Loss
7.11 on an increasing dataset of collected trajectories D. It is worth high-
lighting that it is enough to have an accurate dMAD for every (si, sj) ∈ S

91

i
i

“main” — 2023/2/17 — 12:41 — page 92 — #114 i
i

i
i

i
i

where dMAD(si, sj) ≤ (dt + 1) in order to create a correct dt-partition of
the state space.

The set of centroids C together with the MAD distance defines our
deterministic state space partition function g : S → C:

g(s, C) = min{c ∈ C | dMAD(c, s) ≤ min
c′∈C

dMAD(c′, s)} (7.13)

Algorithm 7.1 MAD State Space Partition embedded in an Episodic RL
framework

Input: distance treshold dt
C = ∅, T = ∅
while within episodes budget do
t = ∅
s← initial state
if C = ∅ then
C ← {s}

else if dMAD(c, s) > dt, ∀c ∈ C then
C ← C ∪ {s}

end if
while episode not terminate do
a← agent(s)
(s′, r, done)← env(a)
if dMAD(c, s) > dt, ∀c ∈ C then
C ← C ∪ {s′}

end if
t = t ∪ {(s, a, s′, r, done)}
s← s′

end while
T = T ∪ {t}
Train dMAD on D
Refine C

end while

92

i
i

“main” — 2023/2/17 — 12:41 — page 93 — #115 i
i

i
i

i
i

7.2.1 Options Representation

The agent then uses the compression function in an online manner, by ex-
ploring the environment and finding centroid region transitions, i.e. con-
secutive states st and st+1 such that g(st, C) 6= g(st+1, C). Once a new
centroid region c′ is discovered the agent adds it to the set of centroids
C and the associated options o·,c′ to the option set O. The agent also
updates and maintains a directed graph whose nodes are centroid regions
and whose edges represent the option neighbor relation. Hence, the next
time that the agent visits centroid region c, it knows which options are
available.

We refer to Y ⊆ C×C to be the subset of pairs of distinct regions (c, c′)
that appear as region transitions while exploring. By abuse of notation,
we often use c to denote both the centroid state and the centroid region.

To learn the options we define a Goal-Conditioned Reinforcement Learn-
ing (GCRL) MDP (Andrychowicz et al. 2017; Schaul et al. 2015b)MO =
〈S, C,A,P, r〉 where C represent the set of goal states, and we change the
usual notation by defining G = C. In GCRL the observation is augmented
with a goal g sampled from G that the agent is required to achieve when
taking a decision in an episode, and in our case, each goal is a centroid
c ∈ C. The reward r : S ×A×S × C → R is then defined on centroids C:

r(s, a, s′, c) =

{
−1, if g(s′, C) 6= c,

0, otherwise.
(7.14)

Therefore, the objective of GCRL is to reach a centroid state via a
centroid-conditioned policy πGC : S × C → ∆(A) that maximizes the
expectation of the cumulative return over the goal distribution.

Given a centroid region c ∈ C, let Sc be the subset of states that map
to c, i.e. Sc = {s ∈ S : g(s, C) = c}. For each pair (c, c′) of adjacent
centroid regions, we introduce an option oc,c′ = 〈Ic, πc,c′ , βc〉 to transition
from centroid region c to c′. Option oc,c′ is applicable in centroid region
c, i.e. Ic = Sc, uses the goal conditioned policy πc,c′ = πGC(·, c′), and
terminates as soon it reaches the goal centroid region, i.e. βc(s) = 1 if
g(s, C) = c′, or it consumes the budget steps for the option.

We then define O = {oc,c′ : (c, c′) ∈ Y} to be the set of options for
performing region transitions, and let Oc = {o ∈ O : Ic = Sc} be the
subset of options applicable in centroid region c.

93

i
i

“main” — 2023/2/17 — 12:41 — page 94 — #116 i
i

i
i

i
i

Skill SMDP

We are now ready to introduce the SMDP S. We consider skills in RL
(Bowling and Veloso 1998; Pickett and Barto 2002; Sutton, Precup, and
Singh 1999; Thrun and Schwartz 1994). Skill in this context refers to any
mapping from states to actions that could aid in the learning of a task.
We define a skill SMDP S = 〈S,A ∪O,P ′, r〉, where we keep the original
state space S, and we consider an extended action space A ∪ O. In this
way we endow the agent with the ability to reach centroid partitions c ∈ C
that could help the agent to explore the state space in a more effective
way. Note that in this SMDP S we can retrieve the optimal policy of the
original MDP M since the primitive actions A are still available in the
SMDP S.

7.3 Bottleneck State Discovery

In this section, we show how the MAD can be used to discover bottleneck
states based on the graph centrality measure. Here we consider a simple
definition of centrality (Bavelas 1950):

centrality(s) =

(∑
s′∈S

dist
(
s, s′

))−1

, (7.15)

where dist is a generic distance measure. We propose to use the MAD
dist = dMAD to discover bottleneck states. In Figure 7.2 we calculate
centrality(s) for all states, and as we can see the states with higher cen-
trality measure indeed concentrate around the position of the key that is
a bottleneck state since it connects two highly dense regions.

94

i
i

“main” — 2023/2/17 — 12:41 — page 95 — #117 i
i

i
i

i
i

Figure 7.2: Left: a simple grid world where an agent has to pick up a
key (key position is fixed). Right: the learned Centrality measure. The
state (x, y, haskey) is composed of the agent location and whether or not
it holds the key.

7.4 Preliminary Results

We report some preliminary results on using the Minimum Action Distance
representation. We learn the minimum action distance using a neural net-
work parametrization, and with Wide Norm distance by minimizing loss
7.11 on an increasing dataset of trajectories D. Using the same dataset D
we learned the goal-conditioned options in an offline manner using DDQN
(Van Hasselt, Guez, and Silver 2016) and relabeling transitions in hind-
sight (Andrychowicz et al. 2017). For each transition (s, a, s′, r, done) we
transform it in a goal-conditioned transition (s, a, s′, c, rc, donec) by includ-
ing a goal c ∈ C and transforming the reward 7.14 and done condition in
accordance with the goal.

We experiment on two simple grid worlds: where SMDP tabular Q
learning (Sutton, Precup, and Singh 1999) can be used at the SMDP
level.

1. EmptyGridWorld: In this first environment we considered an
empty grid world of size 25 × 25.The agent starts in si = (1, 1)
and has to reach a goal state placed at position sg = (25, 25) and
only then it receives a reward of +1. The environment is modeled
as episodic with a maximum number of steps of 200 after which the

95

i
i

“main” — 2023/2/17 — 12:41 — page 96 — #118 i
i

i
i

i
i

agent is reset to the initial position si. The agent acts in the en-
vironment by selecting to move UP, DOWN, LEFT or RIGHT and
actions are deterministic.

2. KeyDoorGridWorld: In this environment, we consider a grid
world of size 8× 8. The agent starts in si = (1, 1, 0) and has to pick
up a key positioned at skey = (8, 8, 0) and open a door at position
sdoor = (8, 1, 1) and only then receives a reward of +1. The environ-
ment is modeled as episodic with a maximum number of steps of 100
after which the agent is reset to the initial position si. The agent
acts in the environment by selecting to move UP, DOWN, LEFT or
RIGHT and actions are deterministic.

Figure 7.3: Mean squared error of the MAD distance learned on the Emp-
tyGridWorld respect to the ground truth L1 distance

We first analyze whether we can learn the MAD in the EmptyGrid-
World where we have a ground truth reference that is the L1-norm. In
Figure 7.3 we compute the mean squared error between the MAD dis-
tance learned and the ground truth distance over the entire state space∑

(si,sj)∈S×S
||φθ(si)−φθ(sj)|WN−‖si−sj‖1)2

|S×S| . Remember that this distance is
learned online and as we can see we are able to correctly learn the MAD
state embedding with WN parametric distance.

96

i
i

“main” — 2023/2/17 — 12:41 — page 97 — #119 i
i

i
i

i
i

Figure 7.4 compares a Q learning agent on the original EmptyGrid-
World MDP M (FLAT agent) against SMDP Q learning on the Skill
SMDP S (SKILL-SMDP agent). Distance dMAD and optionsO are learned
online and centroids C discovered online using the learned dMAD. Both
agents use the same ε-greedy exploration with εdecay = 0.9995 updated at
each step as ε = ε · εdecay. Results are averaged using a moving window
average of 100 episodes and execution is interrupted once it converged to
the maximum reward. In Figure 7.4 top, we can observe the maximum
reward collected against the number of steps executed in the environment.
Both SKILL-SMDP agent and FLAT agent are eventually able to converge
to the maximum reward but SKILL-SMDP converges faster needing less
samples to learn the optimal policy. In Figure 7.4 bottom, we can observe
that both agents are able to find the shortest path to the goal. This is
possible since we consider a Skill SMDP with action set A ∪O.

Figure 7.5 considers the KeyDoorGridWorld environment. As we can
see on the top we have similar results where SKILL-SMDP agent outper-
forms FLAT agent in terms of sample time. Surprisingly on the bottom we
can see that SKILL-SMDP has been able to find the shortest path while
FLAT agent could not learn the shortest path in the limited exploration
time.

97

i
i

“main” — 2023/2/17 — 12:41 — page 98 — #120 i
i

i
i

i
i

Figure 7.4: EmptyGridWorld results, where we compare Q learning on
the original MDP M (FLAT) against SMDP Q learning on the SMDP S
(SKILL-SMDP).

98

i
i

“main” — 2023/2/17 — 12:41 — page 99 — #121 i
i

i
i

i
i

Figure 7.5: KeyDoorGridWorld results, where we compare Q learning on
the original MDP M (FLAT) against SMDP Q learning on the SMDP S
(SKILL-SMDP).

7.5 Conclusion

We presented a novel method to learn a partition of the state space that
induces strongly connected subMDPs. The idea is to discover centroids
C that partition the state space using a learned Minimum Action Dis-
tance dMAD in an online manner. We then introduce options to transition
between different centroid regions creating a Skill SMDP S. Preliminary
experiments show that the induced skill SMDP can significantly speed up
learning compared to a flat learner.

This work is still at a preliminary phase and more work is necessary

99

i
i

“main” — 2023/2/17 — 12:41 — page 100 — #122 i
i

i
i

i
i

in order to understand when and how much the introduced options will
help in speeding up learning and exploration. Moreover, in this work,
we consider using the state space partition only to augment the action
space with options that help reach distant states in terms of dMAD. A
possible alternative would be to use the learned representation to create
a hierarchy as we did in Chapters 5, 6

100

i
i

“main” — 2023/2/17 — 12:41 — page 101 — #123 i
i

i
i

i
i

Part III

Representation Learning for
Goal Conditioned

Reinforcement Learning

101

i
i

“main” — 2023/2/17 — 12:41 — page 102 — #124 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 103 — #125 i
i

i
i

i
i

Chapter 8

State Representation
Learning For Goal
Conditioned Reinforcement
Learning

In this chapter, we present a novel state representation for reward-free
Markov decision processes. The idea is to learn, in a self-supervised man-
ner, an embedding space where distances between pairs of embedded states
correspond to the minimum number of actions needed to transition be-
tween them. Compared to previous methods, our approach does not re-
quire any domain knowledge, learning from offline and unlabeled data. We
show how this representation can be leveraged to learn goal-conditioned
policies, providing a notion of similarity between states and goals and a
useful heuristic distance to guide planning and reinforcement learning al-
gorithms. Finally, we empirically validate our method in classic control
domains and multi-goal environments, demonstrating that our method can
successfully learn representations in large and/or continuous domains.

In comparison to the previous chapter where we aim to learn repre-
sentations useful for Hierarchical Reinforcement Learning, here our focus
shifts to learning representations useful for Goal Conditioned Reinforce-
ment Learning.

103

i
i

“main” — 2023/2/17 — 12:41 — page 104 — #126 i
i

i
i

i
i

8.1 Contribution

In this section, we present our main contribution, a method for learning
a state representation of an MDP that can be leveraged to learn goal-
conditioned policies. The state representation learned here resembles the
one that we introduce in 7.1 with just a few differences for the choice of
regularizer and norm distance.

We formulate the problem of learning this embedding as a constrained
optimization problem, using the symmetric L1 norm as embedding dis-
tance:

min
θ

∑
τ∈D

∑
(si,sj)∈τ

(‖φθ(si)− φθ(sj)‖1 − dTD(si, sj | τ))2,

s.t. ‖φθ(si)− φθ(sj)‖1 ≤ dTD(si, sj | τ) ∀τ ∈ D,∀(si, sj) ∈ τ.
(8.1)

In contrast with the representation we have seen in 7.1, here the con-
straint is defined over all state pairs (si, sj) ∈ D.

Intuitively, the objective is to make the embedded distance between
pairs of states as close as possible to the observed trajectory distance while
respecting the upper bound constraints. Without constraints, the objec-
tive is minimized when the embedding matches the expected Trajectory
Distance E [dTD] between all pairs of states observed on trajectories in the
dataset D. In contrast, constraining the solution to match the minimum
TD with the upper-bound constraints ‖φθ(s)− φθ(s′)‖1 ≤ dTD(s, s′ | τ)
allows us to approximate the MAD.

To make the constrained optimization problem tractable, we relax the
hard constraints in (8.1) and convert them into a penalty term in order to
retrieve a simple unconstrained formulation. Moreover, we rely on sam-
pling (si, sj , dTD(si, sj | τ)) from the dataset of trajectories D making this
formulation amenable for gradient descent and to fit within the optimiza-
tion scheme of neural networks.

L = E(si,sj ,dTD(si,sj |τ))∼D

[
1

dTD(s,s′|t)2 (‖φθ(si)− φθ(sj)‖1 − dTD(si, sj | τ))2
]

+ C, (8.2)

104

i
i

“main” — 2023/2/17 — 12:41 — page 105 — #127 i
i

i
i

i
i

where C is our penalty term defined as

C = E(si,sj ,dTD(s,s′|τ))∼D
1

dTD(s,s′|τ)2

[
max (0, ‖φθ(s)− φθ(si)‖1 − dTD(s, s′ | τ))2

]
.

(8.3)

The penalty term C introduces a quadratic penalization of the ob-
jective for violating the upper-bound constraints ‖φθ(s)− φθ(s′)‖1 <=
dTD(s, s′ | τ), while the term 1

dTD(s,s′|τ)2
normalizes each sample loss to be

in the range [0, 1]. The normalizing term also has the effect of prioritizing
pairs of states that are close together on a trajectory, while giving less
weight to pairs of states that are further apart. Intuitively, this makes
sense since there is more uncertainty regarding the MAD of pairs of states
that are further apart on a trajectory.

8.1.1 Learning Transition Models

In the previous section, we showed how to learn a state representation that
encodes a distance metric between states. This distance allows us to iden-
tify states st that are close to a given goal state, i.e. ‖φθ(st), φθ(sgoal)‖1 <
ε, or to measure how far we are from the goal state, i.e. ‖φθ(st), φθ(sgoal)‖1.
However, on its own, the distance metric does not directly give us a policy
for reaching the desired goal state.

In this section we propose a method to learn a transition model of
actions, that combined with our state representation allows us to plan
directly in the embedded space and derive policies to reach any given goal
state. Given a dataset of trajectories D and a state embedding φθ(s), we
seek a parametric transition model ρζ(φθ(s), a) such that for any triple
(s, a, s′) ∈ D, ρζ(φθ(s), a) ≈ φθ(s′).

We propose to learn this model simply by minimizing the squared error
as

min
ζ

T∑
t

t∑
s,a,s′

[
(ρζ(φθ(s), a)− φθ(s′))2

]
. (8.4)

Note that in this minimization problem, the parameters θ of our state
representation are fixed, since they are considered known and are thus not
optimized at this stage.

105

i
i

“main” — 2023/2/17 — 12:41 — page 106 — #128 i
i

i
i

i
i

8.1.2 Latent space planning

The functions ρζ and φθ together represent an approximate model of the
underlying MDP.

We propose a Model Predictive Control algorithm that we call Plan-
Dist, which computes a policy to reach a given desired goal state sgoal ∈ S
by unrolling trajectories for a fixed horizon H in the embedded space.
Plan-Dist uses the negative distance between the actual state st and the
goal state sgoal as the desired reward function to be maximized, i.e. r(s) =
−‖φθ(st), φθ(sgoal)‖1. Our algorithm considers discrete action spaces and
discretizes the action space otherwise. Plan-Dist samples a number N of
action trajectories TN,H from the set of all possible action sequences of
length H, TN,H ⊂ AH . The trajectories are then unrolled recursively in
the latent space starting from our actual state st and using the transition
model φθ(st+1) ≈ ρζ(φθ(st), at). At time step t, the first action of the
trajectory that minimizes the distance to the goal is performed and this
process is repeated at each time step until a terminal state is reached
(cf. Algorithm 8.1).

106

i
i

“main” — 2023/2/17 — 12:41 — page 107 — #129 i
i

i
i

i
i

Algorithm 8.1 Plan-Dist

1: Input: environment e, state embedding φθ, transition model ρζ ,
horizon H, number N of trajectories to evaluate

2: s← initialstate
3: sgoal ← goalstate
4: zgoal ← φθ(sgoal)
5: while within budget do
6: TN,H ← sample N action sequences of length H
7: tMaxReward ← None
8: rmax ←MinReward
9: for ta ∈ TN,H do

10: z = φθ(s)
11: r = r − ‖z, zgoal‖1

12: for at ∈ ta do
13: zt+1 = ρζ(z, at)
14: r = r − ‖zt+1, zgoal‖1

15: end for
16: if r > rmax then
17: rmax = r
18: tMaxReward ← ta
19: end if
20: end for
21: s′ ← apply action tMaxReward[0] in state s
22: s = s′

23: end while

8.1.3 Reward Shaping

Our last contribution is to show how to combine prior knowledge in the
form of goal states and our learned distance function to guide existing
reinforcement learning algorithms.

We assume that a goal state is given and we augment the environ-
ment reward r(s, a, s′) observed by the reinforcement learning agent with
Potential-based Reward Shaping (Ng, Harada, and Russell 1999) of the

107

i
i

“main” — 2023/2/17 — 12:41 — page 108 — #130 i
i

i
i

i
i

form:

r(s, a, s′) = r(s, a, s′) + F (s, γ, s′), (8.5)

where F is our potential-based reward:

F (s, γ, s′) = −γ‖φθ(s′), φθ(sgoal)‖1 + ‖φθ(s), φθ(sgoal)‖1. (8.6)

Here, ‖φθ(·), φθ(sgoal)‖1 represents our estimated Minimum Action Dis-
tance to the goal sgoal. Note that for a fixed goal state sgoal, −‖φθ(·), φθ(sgoal)‖1
is a real-valued function of states which is maximized when−‖φθ(·), φθ(sgoal)‖1 =
0.

Intuitively our reward shaping schema is forcing the agent to reach the
goal state as soon as possible while maximizing the environment reward
r(s, a, s′). By using potential-based reward shaping F (s, γ, s′) we are en-
suring that the optimal policy will be invariant (Ng, Harada, and Russell
1999).

8.2 Experimental Results

In this section, we present results from experiments where we learn a
state embedding and transition model offline from a given dataset of tra-
jectories. We then use the learned models to perform experiments in two
settings:

1. Offline goal-conditioned policy learning: Here we evaluate the per-
formance of our Plan-Dist algorithm against GCSL (Ghosh et al.
2020).

2. Reward Shaping: In this setting we use the learned MAD distance
to reshape the reward of a DDQN(Van Hasselt, Guez, and Sil-
ver 2016) agent (DDQN-PR) for discrete action environments and
DDPG(Lillicrap et al. 2015) for continuos action environment (DDPG-
PR), and we compare it to their original versions.

108

i
i

“main” — 2023/2/17 — 12:41 — page 109 — #131 i
i

i
i

i
i

Figure 8.1: Evaluation Tasks. Top row: MountainCar-v0, CartPole-
v0, AcroBot-v1 and Pendulum-v0. Bottom row: GridWorld and
SawyerReachXYZEnv-v1.

8.2.1 Dataset Collection and Domain Description

We test our algorithms on the classic RL control suite (cf. Figure 8.1).
Even though termination is often defined for a range of states, we fix
a single goal state among the termination states. These domains have
complex dynamics and random initial states, making it difficult to reach
the goal state without dedicated exploration. The goal state selected for
each domain is:

• MountainCar-v0: [0.50427865, 0.02712902]

• CartPole-v0: [0, 0, 0, 0]

• AcroBot-v1: [-0.9661, 0.2581, 0.8875, 0.4607, -1.8354, -5.0000]

• Pendulum-v0: [1, 0, 0]

Additionally, we test our model-based algorithm Plan-Dist in two multi-
goal domains(see. Fig. 8.1):

• A 40x40 GridWorld.

109

i
i

“main” — 2023/2/17 — 12:41 — page 110 — #132 i
i

i
i

i
i

• The multiworld domain SawyerReachXYZEnv-v1, where a multi-
jointed robotic arm has to reach a given goal position.

In each episode, a new goal sgoal is sampled at random, so the set of
possible goal states G equals the entire state space S. These domains are
challenging for reinforcement learning algorithms, and even previous work
on goal-conditioned reinforcement learning usually considers a small fixed
subset of goal states.

In each of these domains, we collect a dataset that approximately cov-
ers the state space, since we want to be able to use any state as a goal
state. Collecting these datasets is not trivial. As an example, consider the
MountainCar domain where a car is on a one-dimensional track, positioned
between two mountains. A simple random trajectory will not be enough
to cover all the state space since it will get stuck in the valley without
being able to move the cart on top of the mountains. Every domain in the
classic control suite presents this exploration difficulty and for these envi-
ronments, we rely on collecting trajectories performed by the algorithms
DDQN(Van Hasselt, Guez, and Silver 2016) and DDPG(Lillicrap et al.
2015) while learning a policy for these domains. Note that we use DDPG
only in the Pendulum domain, which is characterized by a continuous
action space.

In Table 8.1 we report the size, the algorithm/policy used to collect the
trajectories, the average reward and the maximum reward of each dataset.
Note that the average reward is far from optimal and that both Plan-Dist
(our offline algorithm) and GCSL improve over the dataset performance
(cf. Figure 8.2).

Environments
Trajectories
Dataset

Algorithm to
Collect Trajectories

Avg Reward
Dataset

Max Reward
Dataset

MountainCar-v0 100 DDQN -164.26 -112

CartPole-v0 200 DDQN +89.42 +172

AcroBot-v1 100 DDQN -158.28 -92.0

Pendulum-v0 100 DDPG -1380.39 -564.90

GridWorld 100 RandomPolicy – –

SawyerReach-
XYZEnv-v1

100 RandomPolicy – –

Table 8.1: Dataset description.

110

i
i

“main” — 2023/2/17 — 12:41 — page 111 — #133 i
i

i
i

i
i

8.2.2 Learning a State Embedding

The first step of our procedure consists in learning a state embedding
φθ from a given dataset of trajectories D. From each trajectory τi =
{s0, ..., sn} ∈ D we collect all samples (si|τi , sj|τi , dTD(si|τi , sj|τi | τi)), 0 ≤
i ≤ j ≤ n, and populate a Prioritized Experience Replay (PER) memory
(Schaul et al. 2015a). We use PER to prioritize the samples based on how
much they violate our penalty function in (8.2).

We used mini-batchesB of size 512 with the AdamW optimizer (Loshchilov
and Hutter 2017) and a learning rate of 5 ∗ 10−4 for 100,000 steps to train
a neural network φθ by minimizing the loss in (8.2). Moreover, we used an
embedding dimension of size 64 with an L1 norm as the metric to approx-
imate the MAD distance. Empirically, the L1 norm turns out to perform
better than the L2 norm in high-dimensional embedding spaces. These
findings are in accordance with theory (Aggarwal, Hinneburg, and Keim
2001).

Figure 8.2: Results in the classic RL control suite.

111

i
i

“main” — 2023/2/17 — 12:41 — page 112 — #134 i
i

i
i

i
i

8.2.3 Learning Dynamics

We use the same dataset of trajectories D to learn a transition model.
We collect all the samples (s, a, s′) in a dataset D∫ and train a neural
network ρζ using mini-batches B of size 512 with the AdamW optimizer
(Loshchilov and Hutter 2017) and a learning rate of 5 ∗ 10−4 for 10,000
steps by minimizing the following loss derived from (8.4):

L(B) =
B∑

s,s′,dTD

[
(ρζ(φθ(s), a)− φθ(s′))2

]
(8.7)

8.2.4 Experiments

We compare our algorithm Plan-Dist against an offline variant of GCSL,
where GCSL is trained from the same dataset of trajectories as our models
φθ and ρζ . The GCSL policy and the models φθ and ρζ are all learned
offline and frozen at test time.

Ghosh et al. (Ghosh et al. 2020) propose two variants of the GCSL al-
gorithm, a Time-Varying Policy where the policy is conditioned on the re-
maining horizon π(a|s, g, h) (in our experiments we refer to this as GCSL-
TVP) and a horizon-less policy π(a|s, g) (we refer to this as GCSL).

112

i
i

“main” — 2023/2/17 — 12:41 — page 113 — #135 i
i

i
i

i
i

Figure 8.3: Results in multi-goal environments.

We refer to our reward-shaping algorithms as DDQN-PR/DDPG-PR
and their original counterpart without reward-shaping as DDQN/DDPG.
DDQN is used in domains in which the action space is discrete, while
DDPG is used for continuous action domains.

For all the experiments we report results averaged over 10 seeds where
the shaded area represents the standard deviation and the results are
smoothed using an average window of length 100. All the hyper-parameters
used for each algorithm are reported in the appendix.

In the multi-goal environments in Figure 8.3 we report two metrics:
the distance to the goal with respect to the state reached at the end of the
episode, and the length of the performed trajectory. In both domains, the
episode terminates either when we reach the goal state or when we reach
the maximum number of steps (50 steps for GridWorld, and 200 steps
for SawyerReachXYZEnv-v1). We evaluate the algorithms for 100,000
environment steps.

We can observe that Plan-Dist is able to outperform GCSL, being

113

i
i

“main” — 2023/2/17 — 12:41 — page 114 — #136 i
i

i
i

i
i

able to reach the desired goal state with better precision and by using
shorter paths. We do not compare to reinforcement learning algorithms
in these domains since they struggle to generalize when the goal changes
so frequently.

On the classic RL control suite in Figure 8.2 we report the results show-
ing the total reward achieved at the end of each episode. Here we com-
pare both goal-conditioned algorithms and state-of-the-art reinforcement
learning algorithms for 200,000 environment steps. Plan-Dist is still able
to outperform GCSL in almost all domains while performing slightly worse
than GCSL-TVP in CartPole-v0. Compared to DDQN-PR/DDPG-PR,
Plan-Dist is able to reach a similar total reward, but in MountainCar-v0,
DDQN-PR is eventually able to achieve a higher reward.

The reward shaping mechanism of DDQN-PR/DDPG-PR is not help-
ing in the domains CartPole-v0, Pendulum-v0 and Acrobot-v0. In these
domains, it is hard to define a single state as the goal to reach in each
episode. As an example, in CartPole-v0 we defined the state [0, 0, 0, 0] as
our goal state and we reshape the reward accordingly, but this is not in
line with the environment reward that instead cares only about balancing
the pole regardless of the position of the cart. While in these domains we
do not observe an improvement in performance, it is worth noticing that
our reward shaping scheme is not adversely affecting DDQN-PR/DDPG-
PR, and they are able to achieve results that are similar to those of their
original counterparts.

Conversely, in MountainCar-v0 where the environment reward resem-
bles a goal-reaching objective since the goal is to reach the peak of the
mountain as fast as possible, our reward shaping scheme is aligned with
the environment objective and DDQN-PR outperforms DDQN in terms
of learning speed and total reward on the fixed evaluation time of 200,000
steps.

8.3 Conclusion

We propose a novel method for learning a parametric state embedding φθ
where the distance between any pair of states (s, s′) in embedded space ap-
proximates the Minimum Action Distance, ‖φθ(s), φθ(s′)‖1 ≈ dMAD(s, s′).
One limitation of our approach is that we consider symmetric distance

114

i
i

“main” — 2023/2/17 — 12:41 — page 115 — #137 i
i

i
i

i
i

functions, while in general, the MAD in an MDP could be asymmetric,
dMAD(s, s′) 6= dMAD(s′, s). In Chapter 7.1 we have already seen how to
extend our approach to asymmetric distance embeddings.

While our work focuses on estimating the MAD between states and
empirically shows the utility of the resulting metric for goal-conditioned
reinforcement learning, the distance measure could be uninformative in a
highly stochastic environment where the expected shortest path distance
better measures the distance between states. One possible way to approx-
imate this measure using our self-supervised training scheme would be to
minimize a weighted version of our objective in (8.1):

min
θ

∑
τ∈D

∑
(s,s′)∈τ

1/dαTD(
∥∥φθ(s)− φθ(s′)∥∥1

− dTD(s, s′ | τ))2. (8.8)

Here, the term 1/dTD is exponentiated by a factor α which decides
whether to favor the regression over shorter or longer Trajectory Distances.
Concretely, when α < 1 we favor the regression over shorter Trajectory
Distances, approximating a Shortest Path Distance.

In this work, we focus on single goal-reaching tasks, in order to have a
fair comparison with goal-conditioned reinforcement learning agents in the
literature. However, the use of our learned distance function is not limited
to this setting and we can consider multi-goal tasks, such as reaching a goal
while maximizing the distance to forbidden (obstacle) states, reaching the
nearest of two goals, and in general any linear and non-linear combination
of distances to states given as input.

Lastly, it would be interesting to use this work in the context of Hierar-
chical Reinforcement Learning, in which a manager could suggest subgoals
to our Plan-Dist algorithm.

115

i
i

“main” — 2023/2/17 — 12:41 — page 116 — #138 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 117 — #139 i
i

i
i

i
i

Chapter 9

Conclusions and Future
Work

In conclusion, this thesis has presented an investigation into the area of
Hierarchical Reinforcement Learning (HRL) through state space partition
and into the area of Goal Conditioned Reinforcement Learning (GCRL).

In Chapter 5 we first presented an HRL algorithm that decomposes
the state-action space using a given compression function and introduces
subtasks that consist in moving between the resulting partitions. Here
we demonstrate how a given compression function over the invariant part
of the state-action space allows the discovery of equivalent subMDPs re-
peated across the state-action space defined by multiple tasks. Experi-
ments demonstrate that the proposed HRL approach outperformed state-
of-the-art flat agents in terms of improved exploration and reduced sample
complexity on a set of sparse reward environments.

The algorithm assumes prior knowledge of the invariant part of the
state-action space, i.e. SI × AI . In some applications, this seems like
a reasonable assumption, e.g. in environments such as MineCraft (Guss
et al. 2019; Johnson et al. 2016) or Deep-Mind Lab (Beattie et al. 2016)
where the agent has access to a basic set of actions and is later asked to
solve specific tasks. But in general, we believe this is a strong assumption,
and further research is needed to automatically discover the invariant part
of the state-action space.

Another prominent scientific question raised from our first work in

117

i
i

“main” — 2023/2/17 — 12:41 — page 118 — #140 i
i

i
i

i
i

Chapter 5 is how to learn the compression function of the state space that
respects some of the properties we highlighted in Chapter 4.

In Chapter 6 we address this question, and we proposed a novel method
for learning a hierarchical representation from sampled trajectories in
high-dimensional domains. The learned representation exhibits desired
properties such as controlling the size of the subMDPs, discovering bot-
tleneck exit states, and creating strongly connected subMDPs. However,
it does not have the capability of discovering equivalent subMDPs, it as-
sumes prior knowledge of the number of clusters, and its quality depends
on the quality of the behavior policy used to collect the trajectory data.
Indeed, the learned representation demonstrates a coupling to the behav-
ior policy used to collect the dataset, which indirectly defines the distance
between states (i.e. which states cluster together).

In Chapter 7 we took a different approach and propose to learn an
HRL representation directly from the Minimum Action Distance (MAD)
metric. The study demonstrated how to estimate the MAD from inter-
actions in the environment and shows how to use the learned MAD to
cluster the state space based on the discovery of centroids C. The learned
representation demonstrates some desired properties, such as the ability
to control the size of each subMDP and the ability to define strongly con-
nected subMDPs. On the contrary, the representation cannot discover
bottleneck exit states and equivalent subMDPs.

As we have seen we are interested in equivalent subMDP because this
open ups the possibility of transfer learning. We highlight that while
the representation is not able to discover equivalent subMDPs the algo-
rithm presented in the experiments can exhibit some transfer learning
since the representation based on centroids can be used in conjunction
with Goal-Conditioned Reinforcement Learning to learn transitions be-
tween partitions, offering the possibility of transfer learning. Indeed, the
option policies are all parametrized by the same set of parameters. As a re-
sult, learning to move between a pair of centroids can potentially transfer
knowledge on how to move between other pairs of centroids.

Contrary to the method presented in Chapter 6 the representation
learned here is not dependent on the behavior policy used to collect data
and can be learned in an online manner.

The research presented in this chapter is in its early stages. Prelimi-

118

i
i

“main” — 2023/2/17 — 12:41 — page 119 — #141 i
i

i
i

i
i

nary results show that augmenting the action space of an agent with op-
tions that allow it to reach states that are far in terms of MAD improves
sample efficiency and in future work, we are interested in understand-
ing why and when such options are useful. A possible starting point is
through the work of Jinnai et al. (2019a,b) or the analysis of Fruit and
Lazaric (2017) and Fruit et al. (2017).

Finally, in Chapter 8 we presented a novel state representation for
reward-free Markov decision processes. As in Chapter 7 we leverage the
notion of MAD to define an embedding space where distances between
pairs of embedded states correspond to the MAD to transition between
them. We then used this state embedding in the context of Goal Con-
ditioned Reinforcement Learning showing how this representation can be
leveraged to learn goal-conditioned policies, providing a notion of similar-
ity between states and goals and a useful heuristic distance to guide plan-
ning and reinforcement learning algorithms. We empirically validate our
method in classic control domains and multi-goal environments, demon-
strating that our method can successfully learn representations in large
and/or continuous domains.

In summary, this thesis has explored the field of Hierarchical Rein-
forcement Learning (HRL) employing state space partitioning and the
field of Goal Conditioned Reinforcement Learning (GCRL). Through dif-
ferent approaches, we have presented algorithms to decompose the state-
action space into subtasks that can help improve exploration and sample
efficiency. However, there is still room for further research in learning hier-
archical representation that can discover equivalent subMDPs and transfer
knowledge. Moreover, we presented state space representations useful for
GCRL.

119

i
i

“main” — 2023/2/17 — 12:41 — page 120 — #142 i
i

i
i

i
i

i
i

“main” — 2023/2/17 — 12:41 — page 121 — #143 i
i

i
i

i
i

Bibliography

Aggarwal, Charu C, Alexander Hinneburg, and Daniel A Keim (2001).
“On the surprising behavior of distance metrics in high dimensional
space”. In: International conference on database theory. Springer,
pp. 420–434.

Andrychowicz, Marcin et al. (2017). “Hindsight experience replay”. In:
Advances in Neural Information Processing Systems, pp. 5048–5058.

Asadi, Mehran and Manfred Huber (2004). “State Space Reduction For Hi-
erarchical Reinforcement Learning.” In: FLAIRS Conference, pp. 509–
514.

Bacon, Pierre-Luc, Jean Harb, and Doina Precup (2017). “The option-
critic architecture”. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence. Vol. 31. 1.

Bar, Amitay, Ronen Talmon, and Ron Meir (2020). “Option discovery
in the absence of rewards with manifold analysis”. In: International
Conference on Machine Learning. PMLR, pp. 664–674.

Barto, Andrew G and Sridhar Mahadevan (2003). “Recent advances in hi-
erarchical reinforcement learning”. In: Discrete event dynamic systems
13.1-2, pp. 41–77.

Bavelas, Alex (1950). “Communication patterns in task-oriented groups”.
In: The journal of the acoustical society of America 22.6, pp. 725–730.

Beattie, Charles et al. (2016). “Deepmind lab”. In: arXiv preprint
arXiv:1612.03801.

Bellemare, Marc G et al. (2020). “Autonomous navigation of stratospheric
balloons using reinforcement learning”. In: Nature 588.7836, pp. 77–
82.

121

i
i

“main” — 2023/2/17 — 12:41 — page 122 — #144 i
i

i
i

i
i

Bellman, RICHARD (1957). “Dynamic programming, princeton univ”. In:
Press Princeton, New Jersey.

Bellman, Richard (1958). “Dynamic programming and stochastic control
processes”. In: Information and control 1.3, pp. 228–239.

Botvinick, Matthew et al. (2015). “Reinforcement learning, efficient cod-
ing, and the statistics of natural tasks”. In: Current opinion in behav-
ioral sciences 5, pp. 71–77.

Botvinick, Matthew M, Yael Niv, and Andew G Barto (2009). “Hierarchi-
cally organized behavior and its neural foundations: A reinforcement
learning perspective”. In: Cognition 113.3, pp. 262–280.

Bowling, Mike and Manuela Veloso (1998). “Reusing learned policies be-
tween similar problems”. In: in Proceedings of the AI* AI-98 Workshop
on New Trends in Robotics. Citeseer.

Castro, Pablo and Doina Precup (2010). “Using bisimulation for policy
transfer in MDPs”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 24. 1, pp. 1065–1070.

Castro, Pablo Samuel and Doina Precup (2012). “Automatic construction
of temporally extended actions for mdps using bisimulation metrics”.
In: Recent Advances in Reinforcement Learning: 9th European Work-
shop, EWRL 2011, Athens, Greece, September 9-11, 2011, Revised Se-
lected Papers 9. Springer, pp. 140–152.

Chang, S et al. (2017). “Dilated Recurrent Neural Networks”. In: Advances
in Neural Information Processing Systems.

Ciosek, Kamil and David Silver (2015). “Value iteration with options and
state aggregation”. In: arXiv preprint arXiv:1501.03959.

Dayan, Peter and Geoffrey E Hinton (1992). “Feudal reinforcement learn-
ing”. In: Advances in neural information processing systems 5.

Dayan, Peter and Geoffrey E Hinton (1993). “Feudal reinforcement learn-
ing”. In: Advances in neural information processing systems, pp. 271–
278.

Dietterich, Thomas G (2000). “Hierarchical reinforcement learning with
the MAXQ value function decomposition”. In: Journal of Artificial
Intelligence Research 13, pp. 227–303.

Eckstein, Maria K and Anne GE Collins (2020). “Computational evidence
for hierarchically structured reinforcement learning in humans”. In:

122

i
i

“main” — 2023/2/17 — 12:41 — page 123 — #145 i
i

i
i

i
i

Proceedings of the National Academy of Sciences 117.47, pp. 29381–
29389.

Ecoffet, Adrien et al. (2021). “First return, then explore”. In: Nature
590.7847, pp. 580–586.

Ferns, Norm, Prakash Panangaden, and Doina Precup (2004). “Metrics
for Finite Markov Decision Processes.” In: UAI. Vol. 4, pp. 162–169.

Ferns, Norm, Prakash Panangaden, and Doina Precup (2011). “Bisimu-
lation metrics for continuous Markov decision processes”. In: SIAM
Journal on Computing 40.6, pp. 1662–1714.

Floyd, Robert W. (1962). “Algorithm 97: Shortest Path”. In: Commun.
ACM 5.6, pp. 345–. issn: 0001-0782. doi: 10.1145/367766.368168.

Fruit, Ronan and Alessandro Lazaric (2017). “Exploration-exploitation in
mdps with options”. In: Artificial intelligence and statistics. PMLR,
pp. 576–584.

Fruit, Ronan et al. (2017). “Regret minimization in mdps with options
without prior knowledge”. In: Advances in Neural Information Pro-
cessing Systems 30.

Ghavamzadeh, Mohammad and Sridhar Mahadevan (2002). “Hierarchi-
cally optimal average reward reinforcement learning”. In: ICML,
pp. 195–202.

Ghosh, Dibya et al. (2019). “Learning to reach goals via iterated super-
vised learning”. In: arXiv preprint arXiv:1912.06088.

Ghosh, Dibya et al. (2020). “Learning to Reach Goals via Iterated Super-
vised Learning”. In: International Conference on Learning Represen-
tations.

Greensmith, Evan, Peter L Bartlett, and Jonathan Baxter (2004). “Vari-
ance Reduction Techniques for Gradient Estimates in Reinforcement
Learning.” In: Journal of Machine Learning Research 5.9.

Guss, William H et al. (2019). “The minerl competition on sample efficient
reinforcement learning using human priors”. In:

Heess, Nicolas et al. (2015). Learning Continuous Control Policies by
Stochastic Value Gradients. arXiv: 1510.09142 [cs.LG].

Howard, Ronald A (1960). “Dynamic programming and markov pro-
cesses.” In:

Infante, Guillermo, Anders Jonsson, and Vicenç Gómez (2022). “Globally
Optimal Hierarchical Reinforcement Learning for Linearly-Solvable

123

https://doi.org/10.1145/367766.368168
https://arxiv.org/abs/1510.09142

i
i

“main” — 2023/2/17 — 12:41 — page 124 — #146 i
i

i
i

i
i

Markov Decision Processes”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 36. 6, pp. 6970–6977.

Jinnai, Yuu et al. (2019a). “Discovering options for exploration by mini-
mizing cover time”. In: International Conference on Machine Learning.
PMLR, pp. 3130–3139.

Jinnai, Yuu et al. (2019b). “Finding options that minimize planning time”.
In: International Conference on Machine Learning. PMLR, pp. 3120–
3129.

Johnson, Matthew et al. (2016). “The Malmo Platform for Artificial In-
telligence Experimentation.” In: Ijcai. Citeseer, pp. 4246–4247.

Kaelbling, Leslie Pack (1993). “Hierarchical learning in stochastic do-
mains: Preliminary results”. In: Proceedings of the tenth international
conference on machine learning. Vol. 951, pp. 167–173.

Konda, Vijay and John Tsitsiklis (1999). “Actor-critic algorithms”. In:
Advances in neural information processing systems 12.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learn-
ing”. In: nature 521.7553, p. 436.

Li, Muhan (2020). Machin. https://github.com/iffiX/machin.
Li, Siyuan et al. (2021). “Learning subgoal representations with slow dy-

namics”. In: International Conference on Learning Representations.
Li, Yuxi (2017). “Deep reinforcement learning: An overview”. In: arXiv

preprint arXiv:1701.07274.
Lillicrap, Timothy P et al. (2015). “Continuous control with deep rein-

forcement learning”. In: arXiv preprint arXiv:1509.02971.
Littman, Michael L., Thomas L. Dean, and Leslie Pack Kaelbling (2013).

On the Complexity of Solving Markov Decision Problems. doi: 10.

48550/ARXIV.1302.4971.
Liu, Minghuan, Menghui Zhu, and Weinan Zhang (2022). “Goal-

conditioned reinforcement learning: Problems and solutions”. In: arXiv
preprint arXiv:2201.08299.

Loshchilov, Ilya and Frank Hutter (2017). “Decoupled weight decay regu-
larization”. In: arXiv preprint arXiv:1711.05101.

Machado, Marlos C, Marc G Bellemare, and Michael Bowling (2017). “A
laplacian framework for option discovery in reinforcement learning”.
In: International Conference on Machine Learning. PMLR, pp. 2295–
2304.

124

https://github.com/iffiX/machin
https://doi.org/10.48550/ARXIV.1302.4971
https://doi.org/10.48550/ARXIV.1302.4971

i
i

“main” — 2023/2/17 — 12:41 — page 125 — #147 i
i

i
i

i
i

Mannor, Shie et al. (2004). “Dynamic abstraction in reinforcement learn-
ing via clustering”. In: Proceedings of the twenty-first international
conference on Machine learning, p. 71.

McGovern, Amy and Andrew G Barto (2001). “Automatic discovery of
subgoals in reinforcement learning using diverse density”. In:

Menache, Ishai, Shie Mannor, and Nahum Shimkin (2002). “Q-
cut—dynamic discovery of sub-goals in reinforcement learning”. In:
European conference on machine learning. Springer, pp. 295–306.

Mennucci, Andrea CG (2013). “On asymmetric distances”. In: Analysis
and Geometry in Metric Spaces 1.2013, pp. 200–231.

Mnih, Volodymyr et al. (2013). “Playing atari with deep reinforcement
learning”. In: arXiv preprint arXiv:1312.5602.

Nachum, Ofir et al. (2018a). “Data-efficient hierarchical reinforcement
learning”. In: Advances in neural information processing systems 31.

Nachum, Ofir et al. (2018b). “Near-optimal representation learn-
ing for hierarchical reinforcement learning”. In: arXiv preprint
arXiv:1810.01257.

Ng, Andrew Y, Daishi Harada, and Stuart Russell (1999). “Policy invari-
ance under reward transformations: Theory and application to reward
shaping”. In: Icml. Vol. 99, pp. 278–287.

Oh, Junhyuk et al. (2018). “Self-imitation learning”. In: arXiv preprint
arXiv:1806.05635.

Parr, Ronald and Stuart Russell (1997). “Reinforcement learning with
hierarchies of machines”. In: Advances in neural information processing
systems 10.

Pickett, Marc and Andrew G Barto (2002). “Policyblocks: An algorithm
for creating useful macro-actions in reinforcement learning”. In: ICML.
Vol. 19, pp. 506–513.

Pitis, Silviu et al. (2020). “An inductive bias for distances: Neural nets that
respect the triangle inequality”. In: arXiv preprint arXiv:2002.05825.

Puterman, Martin L (2014). Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons.

Ravindran, Balaraman and Andrew G Barto (2002). “Model minimiza-
tion in hierarchical reinforcement learning”. In: Abstraction, Refor-
mulation, and Approximation: 5th International Symposium, SARA

125

i
i

“main” — 2023/2/17 — 12:41 — page 126 — #148 i
i

i
i

i
i

2002 Kananaskis, Alberta, Canada August 2–4, 2002 Proceedings 5.
Springer, pp. 196–211.

Ravindran, Balaraman and Andrew G Barto (2004). “Approximate ho-
momorphisms: A framework for non-exact minimization in Markov
decision processes”. In:

Roy, Bernard (1959). “Transitivité et connexité”. In: Extrait des comptes
rendus des séances de l’Académie des Sciences. http://gallica.bnf.
fr/ark:/12148/bpt6k3201c/f222.image.langFR. Gauthier-Villars,
pp. 216–218.

Schaul, Tom et al. (2015a). “Prioritized experience replay”. In: arXiv
preprint arXiv:1511.05952.

Schaul, Tom et al. (2015b). “Universal value function approximators”. In:
International conference on machine learning. PMLR, pp. 1312–1320.

Silver, David et al. (2016). “Mastering the game of Go with deep neural
networks and tree search”. In: nature 529.7587, p. 484.

Şimşek, Özgür and Andrew Barto (2008). “Skill characterization based on
betweenness”. In: Advances in neural information processing systems
21.

Şimşek, Özgür and Andrew G Barto (2004). “Using relative novelty to
identify useful temporal abstractions in reinforcement learning”. In:
Proceedings of the twenty-first international conference on Machine
learning, p. 95.

Solway, Alec et al. (2014). “Optimal behavioral hierarchy”. In: PLoS com-
putational biology 10.8, e1003779.

Stolle, Martin and Doina Precup (2002). “Learning options in reinforce-
ment learning”. In: International Symposium on abstraction, reformu-
lation, and approximation. Springer, pp. 212–223.

Strehl, Alexander L and Michael L Littman (2008). “An analysis of model-
based interval estimation for Markov decision processes”. In: Journal
of Computer and System Sciences 74.8, pp. 1309–1331.

Sutton, Richard S (1988). “Learning to predict by the methods of temporal
differences”. In: Machine learning 3.1, pp. 9–44.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning:
An introduction. MIT press.

126

http://gallica.bnf.fr/ark:/12148/bpt6k3201c/f222.image.langFR
http://gallica.bnf.fr/ark:/12148/bpt6k3201c/f222.image.langFR

i
i

“main” — 2023/2/17 — 12:41 — page 127 — #149 i
i

i
i

i
i

Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between
MDPs and semi-MDPs: A framework for temporal abstraction in re-
inforcement learning”. In: Artificial intelligence 112.1-2, pp. 181–211.

Sutton, Richard S et al. (2000). “Policy gradient methods for reinforce-
ment learning with function approximation”. In: Advances in neural
information processing systems, pp. 1057–1063.

Tenenbaum, Joshua B et al. (2011). “How to grow a mind: Statistics,
structure, and abstraction”. In: science 331.6022, pp. 1279–1285.

Thrun, Sebastian and Anton Schwartz (1994). “Finding structure in re-
inforcement learning”. In: Advances in neural information processing
systems 7.

Van Hasselt, Hado, Arthur Guez, and David Silver (2016). “Deep reinforce-
ment learning with double q-learning”. In: Thirtieth AAAI conference
on artificial intelligence.

Vezhnevets, Alexander Sasha et al. (2017). “Feudal networks for hierarchi-
cal reinforcement learning”. In: Proceedings of the 34th International
Conference on Machine Learning. JMLR. org, pp. 3540–3549.

Vinyals, Oriol et al. (2019). “Grandmaster level in StarCraft II using multi-
agent reinforcement learning”. In: Nature 575.7782, pp. 350–354.

Wan, Yi and Richard S Sutton (2022). “Toward Discovering Options that
Achieve Faster Planning”. In: arXiv preprint arXiv:2205.12515.

Warshall, Stephen (1962). “A Theorem on Boolean Matrices”. In: J. ACM
9.1, pp. 11–12. issn: 0004-5411. doi: 10.1145/321105.321107.

Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning”. In: Ma-
chine learning 8.3-4, pp. 279–292.

Weaver, Lex and Nigel Tao (2013). “The optimal reward base-
line for gradient-based reinforcement learning”. In: arXiv preprint
arXiv:1301.2315.

Wen, Zheng et al. (2020). “On efficiency in hierarchical reinforcement
learning”. In: Advances in Neural Information Processing Systems 33,
pp. 6708–6718.

Williams, Ronald J (1992). “Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning”. In: Machine learning
8.3, pp. 229–256.

127

https://doi.org/10.1145/321105.321107

	Abstract
	Resumen
	List of Figures
	List of Tables
	List of Algorithms
	 Introduction
	Thesis Structure
	Summary of Contributions
	List of Talks
	Upcoming Publications

	I Background
	 Reinforcement Learning and Markov Decision Processes
	Markov Decision Process
	State Space
	Action Space
	Transition Dynamics
	Rewards
	Policies
	Optimality Criteria

	Value Functions and Bellman Equations
	Dynamic Programming Algorithms
	Policy Evaluation
	Policy Improvement
	Policy Iteration
	Value Iteration
	Generalized Policy Iteration

	Tabular Reinforcement Learning
	Monte Carlo methods
	Temporal Difference Learning
	Q-learning

	Deep Reinforcement Learning
	Deep Q Network
	Policy Gradient Methods

	Goal Conditioned Reinforcement Learning
	Setting
	Goal Conditioned Supervised Learning

	 Hierarchical Reinforcement Learning
	Introduction
	Four-Room Task
	Temporally Extended Actions
	Semi-Markov Decision Processes
	SMDP Q learning

	Structure
	Optimality
	Bottleneck States
	Options

	II State Space Partitioning and Option Learning
	 State Space Partitioning
	State Space Partitions
	State Space Partitions Properties

	 Hierarchical reinforcement learning for exploration and transfer
	Methodology
	Task MDPs
	Invariant SMDP
	Option MDPs
	Algorithm
	Solving tasks
	Controllability

	Implementation
	Manager
	Worker

	Experiments
	Exploration
	Transfer Learning
	Controllability

	Discussion
	Conclusion

	 Hierarchical Representation Learning for Markov Decision Processes
	Contribution
	Compression Function
	Hierarchical Representation
	Controllability
	Transfer

	Experimental Results
	Learning a Compression Function
	Hierarchical Reinforcement Learning
	Experiments
	Additional Empirical Evaluation

	Hyperparameters
	Conclusion

	 Distance Based Representation for Hierarchical Reinforcement Learning
	Minimum Action Distance
	Learning Minimum Action Distance from Adjacency Matrix
	Symmetric embeddings
	Asymmetric semi-norm embeddings

	Minimum Action Distance State Space Partitions
	Options Representation

	Bottleneck State Discovery
	Preliminary Results
	Conclusion

	III Representation Learning for Goal Conditioned Reinforcement Learning
	 State Representation Learning For Goal Conditioned Reinforcement Learning
	Contribution
	Learning Transition Models
	Latent space planning
	Reward Shaping

	Experimental Results
	Dataset Collection and Domain Description
	Learning a State Embedding
	Learning Dynamics
	Experiments

	Conclusion

	 Conclusions and Future Work
	Bibliography

