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Mataró) for their contributions and their invitation to participate in the project fi-
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Abstract

This Thesis is framed in the topic of Supervised Machine Learning, where we present a

theoretical study with applications. Specifically, contributions have been made at the

different moments of the Machine Learning life cycle from an integral point of view,

focusing our attention on the three fundamental stages of the cycle: preprocessing of the

dataset, construction of the predictive model (classifier), and validation of the model

using performance metrics.

The first work focuses on the preprocessing phase. We have proposed a novel

oversampling method that uses a Bayesian network constructed as the probabilistic

model for the relationships of dependence between the features in the minority class

setting, to generate artificial instances of the minority class for a dataset with both

categorical and/or continuous variables. It relies on the fact that the likelihood is a

measure of the goodness of fit of a model to a set of instances, which is a paradigm

different from that in which the existing oversampling methods are based: the idea

of distance between the features, which turns out to be a weakness when applied to

datasets with non-continuous variables.

The second paper is related to the construction of a predictive model, specifically,

a classifier. We have implemented an expert system based on an ensemble of Bayesian

classifiers to help in decision making in the Intensive Care Unit of the Hospital of

Mataró. The system predicts the vital outcome of the patient admitted to the ICU

(live/die) as well as the destination upon discharge from the ICU, if the prediction

is “live”, or the cause of death if it is “die”. The combination rule to decide the

prediction provided by the ensemble, from the predictions given by the base classifiers,

is a Weighted Average with specific weights based on the Area Under the Precision-

Recall curve (AUPR), suitable for deal with unbalanced datasets, which is compatible

with the MAP criterion.

The last contribution attends to the validation phase. We have introduced an im-

provement of the original definition of the Confusion ENtropy (CEN) metric, which is

based on the Shannon’s entropy from the field of Information Theory, as a measure

of the uncertainty entailed by the result of a classification process. This modifica-

tion allows to avoid the undesired behaviour showed by CEN, which in some cases is
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“out-of-range”, and in some others shows a lack of monotonicity when the situation

monotonically goes from perfect to completely wrong classification.
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Chapter 1

Introduction

This introductory chapter aims to give an overall overview of the thesis, providing

some of the motivations for the research work carried out, and some ideas on each of

the topics addressed in it. The chapter is organized as follows: Section 1.1 provides

brief definitions and basic notations on Supervised Machine Learning in general, and

Classification in particular. Section 1.2 explains the general objectives of the inves-

tigation, and in Section 1.3 the research methodology is briefly introduced, while in

Section 1.4 the general objectives are concretized in specific objectives framed in three

moments of the Machine Learning cycle: Preprocessing, Building the model (classifier),

and Validation.

The rest of the thesis is organized as follows: Chapter 2 presents overall results,

Chapter 3 concludes this thesis, and the Appendix includes the published papers that

constitute the thesis. Since the papers were written and published at different times,

months apart, keep in mind that the notation has varied from one to another since it

was adapted to the usual one in the specific field in which the work carried out falls. In

this thesis we have combined notations to avoid inconsistencies and facilitate reading,

but these notations do not always coincide with those of the corresponding papers.

1.1 Brief definitions and basic notations

Let start giving some brief definitions related to the topic of the thesis where contribu-

tions are given in Machine Learning (ML). In the summer of 1956, John McCarthy

presented his definition of Artificial Intelligence (AI) at the Dartmouth College conven-

tion, as “the science and engineering to make intelligent machines”. ML was introduced

in 1959 (see [1]) as a subset of AI in the field of Computer Science that often uses Math-

ematics and Statistics, to give computers the ability to learn. That is, ML is a part of

the AI in the intersection between Computer Science on the one side, and Mathematics

and Statistics on the other, as can be seen in Figure 1.1.
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Chapter 1. Introduction 8

Fig 1.1. Diagram of the relationship between the different disciplines related to Machine
Learning. From Kharkovyna, O. “A Gentle Intro to Probability and Statistics for Data
Science”. 2020, March 09; Available from: https://www.linkedin.com/pulse/gentle-intro-
probability-statistics-data-science-oleksii-kharkovyna

Machine Learning is subdivided in two main categories:

� Supervised Learning is defined by [2] as the ML task of learning a function

that maps an input to an output based on example input-output pairs. In other

words, it is the part of the ML devoted to the task of predict one or several

output variables from the input variables, through an algorithm learned from a

training dataset of instances for which both input and output variables are known.

The name comes from the fact that the output variables allow us to know if the

algorithm that predicts them has a good behavior or not and, therefore, they

“supervise” it.

� Unsupervised Learning is defined by [3] as the part of ML who deals with

the algorithms used for the task of discover relations between the variables in

a dataset, capturing patterns and allowing the instances to group in clusters,

for example, but in which there is no an output variable to predict that could,

therefore, act as a “supervisor”.

In the Thesis we focus in the Supervised ML. On the one hand, it covers Regression

tasks, that is, a linear approach to modelling the relationship between a quantitative

(continuous or discrete taking a large number of different values) response (which is

the output, or dependent variable) and one or more explanatory variables (which are

the input, or independent variables).



Chapter 1. Introduction 9

On the other hand, Supervised ML also includes Classification, which is the task

of identify to which of a set of categories (sub-populations) a new instance belongs, on

the basis of a training set of data containing instances whose category membership is

known. That is, classification tries to predict a categorical output variable, or what

is the same, to assign labels to new instances. We use “class”, “label” or “category”

interchangeably. This task is performed by a classifier, which is an algorithm imple-

mented in a programming language, learned from a dataset formed of instances with

known values of the input and output variables. What characterizes classification in

the context of ML is that the output variables are categorical (or convertible to cate-

gorical), while in the regression task, the output or predicted variable is continuous

or discrete, with a large number of possible values. Classification is the field within the

Supervised ML in which the research of the Thesis has been developed.

We are especially interested in studying the probabilistic classifiers, which do

not only predict the class of a new instance from its values for the input variables, but

assigns it a (discrete) probability distribution over the classes. Usually, the class with

the highest probability is the chosen one as the prediction, when following the maximum

a posteriori probability (MAP) criterion, being this probability the Confidence Level

associated to the prediction or classification.

As we have already mentioned, in the construction of the classifiers we follow a

data driven approach, that is, we learn the classifiers from a dataset. To get an idea

of how good the predictive behaviour of the classifier learned from a dataset is, as

well as to compare with other classifiers, a validation process must be carried out. Let

assume a dataset which instances have X1, . . . , Xn features and are labeled according

to the category or class to which they belong, corresponding to an output (or “class”)

variable, V , which is, or can be thought of as, categoric, with r ≥ 2 different categories:

ΩV = {v1, . . . , vr}. Input variables X1, . . . , Xn can be categoric or numeric (integer

or continuous).

To carry out the validation procedure of the classifier, first we need to prepare a

training set to learn the classifier, and a disjoint test set to validate it. As validation

technique we use k-fold cross-validation, which consists of dividing the database into

k disjoint folds at random, to construct the training dataset merging k − 1 folds and

the test set as the remaining fold. This process is repeated k times changing each

time the fold used as test set. In order to avoid bias, we select different seeds to make

the random partition of the dataset into folds. Each time we take a different seed we

are doing a different “run” of the procedure, learning the classifier from a different

training dataset, and therefore obtaining a different predictive model. In this way, we

avoid overfitting by generating a bit of “noise” to bypass obtaining a model excessively

adapted to specific data. Once the classifier is learned from a training dataset, we
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validate it using the test set. For that, we use the classifier to make the prediction of

the output variable of the test set instances, using the MAP criterion mentioned before.

In fact, for any instance of the test set, given the values of the input variables, this

criterion assigns to the instance, as a label, the class ṽ with the maximum a posteriori

probability, that is:

ṽ = arg max
v∈ΩV

P (V = v /X1, ..., Xn) = arg max
v∈ΩV

P (X1, ..., Xn / V = v) P (V = v)

P (X1, ..., Xn)

= arg max
v∈ΩV

P (X1, ..., Xn / V = v) P (V = v) (1.1)

where we have used Bayes’ Theorem. Note that in order to obtain ṽ, by (1.1), we only

need to know the marginal distribution of V ( that is, P (V = v) for v ∈ ΩV ) and the

conditional probabilities of the input variables to V : P (X1, ..., Xn / V = v) for v ∈
ΩV , which can be obtained from the parameters of the classifier.

For each instance of the test set, we then can compare the predicted and the observed

labels. Results of the prediction are summarized in the r × r confusion matrix C =

(Cij)i,j=1,..,r, which has the form

predicted

observed C =




C11 ... C1r

... ... ...

Cr1 ... Crr




(1.2)

where Cij is the number of instances in the test set that being of the class vi have been

predicted as belonging to the class vj . Note that if the test set has N instances, then

N =
∑r

i=1

∑r
j=1Cij . From the confusion matrix, different metrics can be calculated.

The golden standard in the general multiclass (r ≥ 2) classification is Accuracy and,

associated with it, the other side of the coin, which is the Error rate. Although we will

not introduce them in this section, other specific measures have been introduced in the

binary case r = 2 (see Section 1.4.2).

� Accuracy is the ratio between the number of correct predictions and the total

number of predictions, that is, the proportion of correct predictions:

Accuracy =

∑r
i=1Cii
N

� Error rate is the the proportion of wrong predictions:

Error rate = 1−Accuracy =
N −∑r

i=1Cii
N
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From the metric values obtained using k-fold cross-validation (in each run we get

k values) we can get an idea of how good the behavior of the classifier is in terms

of its mean and standard deviation, or even a confidence interval. In addition, using

the values of the metric it is possible to compare with other models (classifiers) by

performing suitable statistical hypothesis tests.

1.2 General objectives

The general objectives of the present project, framed into the Supervised Machine

Learning area, follow three lines of action.

1. Basic research. Starting from an analysis of the state-of-the-art, we make some

theoretical contributions in the area, mainly related to, although not limited to,

different aspects of the study of probabilistic classifiers, which is a subject of

great importance, both theoretical and applied. In particular, the question of the

extension to multi-class classification of the classifier behavior measures used for

binary classification, not always immediate or obvious, will be addressed.

2. Algorithmic/computing. In parallel with the basic research, we study in deep

some of the algorithms used in Supervised Machine Learning and introduce new

ones that are variants or alternatives, comparing them with those already known

in a heuristic way, following an adequate experimental methodology.

3. Applications. Finally, we also put into practice what was developed in the

two previous points. We work both with artificial families of confusion matrices

generated on purpose, and with real dataset, and within these, both with some

obtained from well known and contrasted repositories of public access, as well as a

real dataset provided by the Hospital de Mataró (Consorci Sanitari del Maresme)

in the context of a research project of the Fundació Marató de TV3.

1.3 Research methodology

The methodological procedure of investigation in all the papers that make up this thesis

has been the following:

(i) detect a deficiency, problem or failure (in short, something that could be im-

proved) in some aspect of Supervised Machine Learning,

(ii) propose an alternative or solution to it, and

(iii) test this proposal from a theoretical and/or empirical perspective.
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The computational/algorithmic part of the thesis has been programmed through

scripts in R ([4]), which has also been used to conduct analysis and procedures, with

the help of different available libraries. In particular, R has been used to implement

the algorithms that generate the families of confusion matrices we work with in paper

[5]

Databases from UCI 1 and KAGGLE 2 repositories have been used in the experi-

mental phase of our works.

High computational cost experiments have been carried out on the servers of the

Autonomous University of Barcelona (UAB) and the University of the Basque Coun-

try (UPV/EHU), while de rest of procedures have been performed in a laptop whose

processor is a intel core i7 10th generation (2.3 GHz) and 16 GB RAM.

1.4 Specific objectives

The specific objectives in which the aforementioned general objectives are concreted fit

into the three phases of Supervised Machine Learning: Preprocessing, Building the

model, and Validation. This is the context in which the three works that make up

the thesis show to have a thematic unity.

For each specific objective we will introduce the works addressed in this thesis and

after a brief introduction, the objective will be structured in the following steps: (i)

deficiency or problem, (ii) proposed alternative, and (iii) testing the proposed alterna-

tive, as mentioned in Section 1.3. These objectives are structured around three topics

of great interest in current research, that we will explain along this document:

(a) The class unbalanced problem.

(b) The cost-senstive paradigm.

(c) The entropy as a measure of the disorder.

We have addressed topic (a) both 1) from the cost-senstive perspective of topic

(b), by proposing an oversampling method that modifies conveniently the training set

before learning the classifier, in [6], and 2) by proposing an ensemble of classifiers,

that is, modifying the classification algorithm itself, in [7]. Finally, in [5] we have

worked on the redefinition of a metric based on the concept of entropy of the area of

the Information Theory, that gives a measure of the misclassification represented by a

confusion matrix through topic (c).

1https://archive.ics.uci.edu
2htpps://www.kaggle.com
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1.4.1 Preprocessing

In the lifecycle of Machine Learning, during the preprocessing phase the original dataset

is transformed in order to prepare it for the subsequent phases. There are several

things we can do during the first stage of this phase, in which transformations are

carried out whose need derives from the very nature of the dataset or from its necessary

adaptation to the characteristics of the Supervised Machine Learning methodology that

it is intended to apply. Some examples are: cleaning, normalization, discretization,

transformation of variables, and feature selection.

Sometimes, however, it is necessary to carry out a second stage in this phase but

only for the training dataset. Care must be taken since the training set changes with

each change of fold, if we use the k-fold cross-validation procedure. This preprocessing

modifies the part of the original data used for training and must be executed before the

learning process of the predictive model (classifier). The reason, in this case, has to do

with trying to learn a better predictive model from the (enlarged) training set, in the

sense that its behavior, evaluated in the validation procedure, when assigning labels

to the instances of the test set, be better. It is very important to remember that the

dataset used as test should never be modified in this second stage of the preprocessing

phase, since it is about handling the training set to learn a better classifier for the

original test set. The opposite would be like “cheating playing solitaire”.

We focus on the binary case r = 2 and in the scenario in which the dataset is

unbalanced (topic (a)). A dataset is balanced if the two classes are approximately

equally represented, otherwise it is said that the dataset is unbalanced [8]. This is

a typical situation in medical data domains, for instance: sick/healthy or alive/dead,

to cite two examples. As usual, in the binary case the two classes are denoted by +

(positive) and − (negative), and if the data set is unbalanced, typically the minority is

the + class.

(i) Deficiency or problem

If the dataset is unbalanced and if no preprocessing is done, after training a “usual”

classifier that does not take into account the unbalanced character, the classifier will

be biased to the majority class. For example, assume a dataset whose instances are

distributed as follows: 5% for the positive class (minority) and 95% for the negative

class (majority). Then, if the proportion 5-95% is maintained in the test set and it

contains 100 instances, we could obtain a confusion matrix like the following, where

classification clearly is in favor of the majority class:
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predicted

+ −

observed C1 =
+

−

(
1 4

5 90

)

occurring the accuracy paradox since globally the classifier has a good Accuracy of 91%

but while the instances of the majority class are well predicted (94.74% success), those

of the minority class are poorly predicted (20% success).

The bias towards the majority class is detrimental if we assume the existence of

different costs of misclassification (topic (b)). Considering the Accuracy as performance

metric, or equivalently the Error rate, reflects a cost insensitive approximation, while a

cost-sensitive approximation leads us to another metric, namely, the Total Cost (TC),

which definition is (see [9] for instance):

TC = c+ × C12 + c− × C21

where c+ and c− denote, respectively, the cost associated with misclassifying instances

belonging to the positive class (false negative error) and to the negative class (false

positive error).

Coming back to the example, let assume that c+ = 10 and c− = 1, then, the Total

Cost associated to confusion matrix C1 would be TC(C1) = 10×4+1×5 = 45. However,

if we managed to classify correctly one more element of the minority class, in exchange

of misclassifying three elements of the majority class (previously well classified), the

confusion matrix would be now:

predicted

+ −

observed C2 =
+

−

(
2 3

8 87

)

and the Total Cost would drop to TC(C2) = 10 × 3 + 1 × 8 = 38, which means a

reduction of more than 15%. This would imply a better classification in terms of Total

Cost despite the fact that the Accuracy has worsened (going down from 91% to 89%).

As said before, the are two main possibilities to deal with the problem of bias of the

classifier due to the unbalanced character of the dataset from which it is learned, and

the cost of the misclassification: handling in a convenient way the training set from

which the classifier is learned, or modify the classifier algorithm itself. In this section we

are focused in the first option, which is the use of a method that enlarges the training

dataset by creating new synthetic instances of the minority class (oversampling). The

classic method of oversampling that we find in the literature and is taken as a baseline is
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the Synthetic Minority Oversampling TEchnique (SMOTE) proposed by [8]. SMOTE

generates the new artificial instances of the minority class by interpolation between

existing minority instances that are close to each other. Then, it is based on the concept

of distance between instances, from their features values, which makes no sense if we

are working with categorical variables, being a weakness of the method. There are

other similar oversampling methods that have been proposed after SMOTE, such as

ROSE [10], which has been introduced for continuous variables and is also based on the

concept of distance between instances. Both have been adapted to deal with discrete

and/or categorical features as well, but continue to rely on the concept of distance,

which is counterintuitive given the nature of the features.

(ii) Proposed alternative

The alternative oversampling method to the existing ones that we propose relies in a

different paradigm that overcomes their weakness. We name it Bayesian OverSampling

Method (BOSME), a method to generate new artificial instances of the minority class

for a dataset with both categorical and/or continuous features. It generates artificial

instances randomly from the joint probability distribution entailed by a Bayesian net-

work that is constructed as the probabilistic model for the dependency relationships

between the features in the minority class setting.

The structure of this Bayesian Network is learned with a score-based structure

learning algorithm with the logarithm of the likelihood function (logLik) as score, and

parameters learning is carried out following the Maximum Likelihood Estimation, as

usual. BOSME is based on the fact that the likelihood is a measure of the goodness of fit

of a model to a set of instances, specifically, in this case, those instances corresponding

to the minority class.

(iii) Testing the proposed alternative

BOSME has been tested with several datasets from the UCI and KAGGLE open repos-

itories. Those datasets contain both categorical and/or continous features, and most

of them are unbalanced.

Before we start creating synthetic instances we need to fix in advance how many in-

stances we want to generate. This is usually done indicating the proportion of instances

of the minority class we want to achieve in the final enlarged (training) dataset. This

proportion can be decided attending to other criteria, or following the cost-sensitive

paradigm approach (topic (b)). Let give more detailed explanation of this second

option. Cost-sensitive learning is a subfield of machine learning that takes into

account misclassification costs when learning a classifier, with the aim of minimize the

expected cost of (mis)classification. We can differentiate two alternatives:
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� Direct cost-sensitive: which includes methods that modify the original learning

algorithm to take costs into account, without modifying the dataset.

� Indirect cost-sensitive: which comprises methods that handle the training dataset,

from which the classifier will be learned, without modifying the classifier algorithm

itself. The aim is to obtain a desired class distribution in the enlarged dataset,

based on the misclassification costs.

We follow the indirect cost sensitive approach, proposing a wrapper, which using

given costs, calculates the proportion that the minority class must represent in the

enlarged training set, say q, and then uses the oversampling method to generate the

corresponding number of artificial instances of the minority class, in such a way that the

proportion is achieved. The wrapper is based on the application of the Folk Theorem,

which states that “the classifier that minimizes the Expected Error when it is learned

from the enlarged training dataset is the same that minimizes the Expected Cost when

learned from the original training dataset, if the proportion q is the appropriate one”.

That is, the Folk Theorem determines the value that q must have, based on the mis-

classification costs.

Once we fix the proportion of synthetic instances we have to achieve, we proceed

with the experimental work that is divided into two stages. In the first stage, each

dataset is divided into k folds to then apply k-fold cross validation, with k = 10. Each

time, we preprocess the training set to generate artificial instances of the minority class

with our method (BOSME), in the context of the wrapper which allows us to follow

a cost-sensitive approach, as well as with the other oversampling methods (SMOTE

and ROSE). We train three classifiers (Support Vector Machine, Random Forest and

Logistic Regression) and we validate them with the corresponding test sets to obtain

the confusion matrices from which to get the Accuracy values (see Figure 1.2).

In the second stage we make statistical tests in order to determine which oversam-

pling method has obtained better (statistically) significant results, if any.

1.4.2 Building the model

Once the data set has been explored, and after the preprocessing phase, which includes

data cleaning and transformation, we split the data set into training and validation set,

depending on the procedure to be used, in our case the k-fold cross-validation. Then,

from any training set, a model will be learned, which, in our case, will be a classifier,

which will later be validated and deployed in reality.

We can select different types of classifiers from multiple libraries oriented to Machine

Learning, or we can even implement and/or modify some classifier learning algorithm

ourselves. This, of course, can and should depend on the nature of the situation to
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Fig 1.2. Testing proposed alternative: stage 1 out of 2, to compare BOSME with SMOTE
(analogously for ROSE).

which the classifier is intended to be applied, that is, the purpose for which it is created

and, in particular, on the nature of the data set on which it is based. We opted for the

second possibility, in such a way that the second specific objective of this thesis consists

in the creation/modification of a learning algorithm for a classifier, in our case oriented

to the construction of a predictive model to assist medical professionals in decision-

making at the Intensive Care Unit (ICU) of an hospital, from a data set provided by

the Hospital de Mataró.

This data set contains information relating to 1,354 critical patients who had passed

through the ICU of the hospital (that is, they had entered and left the ICU) from years

2016 and 2017, and has been used in this study to associate patients’ syndromic eval-

uation result and the APACHE II score, among other features of predictive relevance

chosen according to medical experts, with ICU mortality, as well as with destination

at ICU discharge, or cause of death, as appropriate, using a supervised ML model that

is built specifically for this purpose.
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(i) Deficiency or problem

The ICU of the Hospital de Mataró maintains a register of admissions and discharges

of all patients who have been treated in the unit. The volume of records (and the

information associated with each record) justifies the need for an Expert System as a

decision-making support tool. The implementation of the Expert System aims to cover

three needs of the unit:

� improvement of early mortality prediction.

� help to make more efficient medical decision on patients at higher risk.

� evaluation of the efficacy of new treatments or detection of changes in clinical

practice.

The traditional approach to mortality prediction, which is still the most widespread

today, is based on APACHE (the Acute Physiology And Chronic Health Evaluation

score), and its successive versions, from which APACHE II is the most used (see [11]).

Specifically, the individual risk of death (probability of die) of a patient in the ICU is

usually calculated by Logistic Regression as

elogit

1 + elogit
,

where logit is obtained from the following equation:

logit = −3.517 + 0.146×APACHE II + 0.113 (only if sepsis at admission is present)

+ 0.603 (only if the generic syndrome causing admission is urgent surgical)

+ coefficient β of the main cause of admission, (1.3)

where the main cause of admission and the corresponding coefficients β are given in

Table 1.1 below, taking into account that only one cause of admission is considered

to be the main one, and that the value of the β coefficients depends on whether the

patient suffered from sepsis on admission, and whether the generic syndrome causing

admission was from a surgical category (elective or urgent surgical) or not.

First, this approach, that we denote as the “APACHE II model”, presents significant

limitations derived from the fact that the parameters of the Logistic Regression are not

learned from the data at hand, but borrowed from a paper published in 1985:

� it does not incorporate variations between units or regions,

� it does not have good predictive behaviour in small populations,
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Main cause of admission
Sepsis or No sepsis and

non surgical category surgical category

F4 : Acute Coronary Syndrome -0.191 -0.797
F5 : Respiratory Failure -0.890 -0.610
F6 : Shock 0.493 -0.797
F7 : Coma -0.759 -1.150
F8 : Renal Failure -0.885 -0.196
F9 : Hepatic Failure 0.501 -0.613
F10 : Cardio Respiratory Arrest 0.393 0.393
F11 : Elective Surgical -0.248
F12 : Arrhythmia -1.368 -0.797
F13 : Cranial Trauma -0.517 -0.955
F14 : Other Trauma -1.228 -1.684
F15 : Intoxication -0.142 -0.196

Table 1.1. Main causes of admission to the ICU and the corresponding commonly used β
coefficients. This table has been adapted to our setting from [11].

� it presents high stiffness as predictive model, since if the value of some of the key

variables for the patient is not known, it cannot provide a prediction,

which make it highly unsatisfactory.

Second, from a Supervised Machine Learning point of view and focusing on the

target output variable “Result”, which refers to ICU mortality, we observe that it is a

binary class variable with r = 2 classes: “live” (85.3%) and “die” (14.7%), correspond-

ing to how the patient leaves the ICU, with a notable unbalance which places us in

the context of topic (a), with the problem of the bias towards the majority class that

classifiers learned from an unbalanced data set will suffer. As we have already men-

tioned in Subsection 1.4.1, one possibility to address this problem consists in modifying

the training data set previously to learning, by oversampling it with new instances

artificially generated of the minority class (see [6]), and another, the one that concern

us now, consists of modifying the classification algorithm itself, without modifying the

training data set.

Following this way, of the possible classifiers whose learning algorithm we can modify

to address the problem of bias towards the majority class we have chosen an ensem-

ble of classifiers, which is a meta-algorithm that is constructed following one of the

different possible combination rules to encompass two or more base classifiers. Indeed,

ensemble learning of classifiers is a ML paradigm which consists of multiple classifiers

that are trained to solve the same problem (in contrast to ordinary ML approaches

which try to learn a single classifier from training data), and they are merged to build

a classifier, which is the ensemble, by combining their predictions according to a com-

bination rule, and in this way, we obtain a joint prediction that, in principle, should be

better than that of the individual base classifiers that make up the ensemble.

Of the combination rules for ensembling, the best known is the Majority Vote (MV),
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which is clearly the most used, with or without weights. However, any use of this rule,

even if adapted to take into account the problem of unbalance in the distribution of

the class variable, for example by choosing appropriate weights, presents a significant

problem: it could well happen that the Confidence Level associated with the label

(prediction) assigned by the ensemble, that is, the probability with which the ensemble

assigns the label, be less than 0.5, which is completely counterintuitive.

We can see this better with some illustrative examples. We consider an ensemble

formed by 5 base (probabilistic) classifiers, combined by means of the MV rule, that is,

the final decision of the ensemble is the one that corresponds to the majority of votes.

As each classifier has two possible votes (“live” and “die”), the label that the ensemble

will assign to a patient will be the one assigned by 3 or more of the 5 base classifiers.

Let denote by p` the probability assigned to “die” by the `-th base classifier. Then, the

probability with which the ensemble assigns the label “die” to the patient is given by

the formula:

CLMV =

5∏

`=1

p` +

5∑

j=1

(
(1− pj)

5∏

`=1
`6=j

p`
)

+

5∑

j=1

5∑

k=1
k 6=j

(
(1− pj) (1− pk)

5∏

`=1
` 6=j, k

p`
)
. (1.4)

It is also very common to use the majority of votes with weights (Weighted Majority

Vote, WMV) as a combination rule, that is, the ensemble assigns the label whose sum

of weights of the base classifiers that assign that label is greater. To formalize this

combination rule, we introduce for any class (label) j, the discriminant function

Dj =
∑5

i=1wi di,j where di,j = 1 if classifier i assigns class j to the patient, and 0

otherwise, and wi, i = 1, . . . , 5 are the weights of the five base classifiers, that is, Dj

is the sum of weights corresponding to the base classifiers that assign the patient to

class j. The inferred class for the given patient by the WMV classifier is taken to be

the one that maximizes the discriminant function. (Note that with wi = wj for all

i, j = 1, . . . , 5, this rule corresponds to MV). In [7] we found the analogous of formula

(1.4) for the WMV ensemble, and apply both to two particular examples, given in

Tables 1.2 and 1.3.

Classifier Weigths Prob. of “die” Prediction Pred. MV Pred. WMV

BC1 w1 = 0.25 p1 = 0.55 die

die (0.24731<0.5) live (0.66236>0.5)
BC2 w2 = 0.10 p2 = 0.55 die
BC3 w3 = 0.05 p3 = 0.55 die
BC4 w4 = 0.30 p4 = 0.10 live
BC5 w5 = 0.30 p5 = 0.10 live

Table 1.2. Toy example 1. Confidence level for the prediction given by MV is < 0.5.
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Classifier Weights Prob. of “die” Prediction Pred. MV Pred. WMV

BC1 w1 = 0.25 p1 = 0.95 die

die (0.95324>0.5) live (0.32725<0.5)
BC2 w2 = 0.10 p2 = 0.95 die
BC3 w3 = 0.05 p3 = 0.95 die
BC4 w4 = 0.30 p4 = 0.45 live
BC5 w5 = 0.30 p5 = 0.45 live

Table 1.3. Toy example 2. Confidence level for the prediction given by WMV is < 0.5.

Note that in Table 1.2 the prediction for the MV ensemble would be “die” with

a Confidence Level of 0.24731 < 0.5. The same happens in Table 1.3 with the WMV

ensemble, where the prediction of the ensemble is “live” with a Confidence Level of

0.32725 < 0.5.

In short, neither the classical approach based on the use of the Logistic Regression

from the APACHE II score with fixed coefficients, nor the approach based on the

Supervised Machine Learning using an ensemble of classifiers as a meta-algorithm,

with MV or WMV decision rules, have result to be completely satisfactory, since both

present weaknesses.

(ii) Proposed alternative

Due to what was mentioned in the previous section, it seems necessary to develop an

alternative to the known algorithms that

1. we introduce and justify from a theoretical point of view (basic research), and

2. is implemented with the dataset and shows to produce good results, improving

the performance of the algorithms known from the state-of-the-art with which it

is compared (algorithmic/computing).

The alternative that we propose is an ensemble of classifiers based on 5 base classi-

fiers which are different types of Bayesian networks. It is necessary to define a strategy

or combination rule to decide the prediction of the target output provided by the en-

semble of classifiers, from the predictions given by the base classifiers, that take into

account the unbalanced character of the data set.

The two examples of typical strategies already mentioned, that are Majority Vote

(MV) and Weighted Majority Vote (WMV), are combination rules of the “fusion of

labels” type, since they only need to know which are the predictions of any of the base

classifiers. Other type of combination rules are that of “fusion of continuous-valued

outputs”, which are not based on the predictions themselves but on the probabilities

assigned to the classes by the base classifiers, as for example Ensemble Average (EA),

that assigns the class that maximizes the average of the probabilities assigned to each

class by the base classifiers, or its weighted version, named EWA (Ensemble Weighted
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Average) on which we will focus specifically. Both have the advantage of being com-

patible with the MAP criterion, assigning a Confidence Level not less than 0.5 to the

prediction (in the binary case, which is what concerns us), thus avoiding the problem

posed by the MV and WMV ensembles.

Indeed, we can formalize both EA and EWA ensembles, similarly to how it was

done with MV and WMV: fixed class (label) j, we introduce now the discriminant

function D̃j =
∑5

i=1wi d̃i,j where d̃i,j is the probability with which classifier i assigns

the class vj to the patient, and wi are the weights of the classifiers.

The inferred class by the EWA classifier is taken to be the one that maximizes the

discriminant function D̃. Therefore, with this criterion, the Confidence Level associated

to class vj is D̃j since D̃1 + D̃2 = 1, which implies compatibility with the MAP

criterion. (Note that with wi = wj = 1/5 for all i, j = 1, . . . , 5, this rule corresponds

to the simple mean combiner EA.)

For the examples in Tables 1.2 and 1.3, we can apply both the EA and the EWA,

and obtain the respective predictions and Confidence Level. Indeed, for the example in

Table 1.2,

EA : D̃1 =
5∑

i=1

pi
5

= 0.37 < D̃2 =
5∑

i=1

1− pi
5

= 0.63

EWA : D̃1 =
5∑

i=1

ωi pi = 0.28 < D̃2 =
5∑

i=1

ωi (1− pi) = 0.72

which bring us to the “live” prediction with both classifiers, and respective Confidence

Level of 0.63 and 0.72, both > 0.5. Analogously, for the toy example in Table 1.3, both

ensembles give as prediction “die”, with respective Confidence Level of 0.75 and 0.65,

both > 0.5. Although in these two examples the predictions of EA and EWA have

coincided with each other, this does not necessarily have to happen in general.

In this way, with the ensembles EA or its weighted version EWA, we can avoid the

problem that we have seen that both MV and WMV present of being counterintuitive

in terms of the Confidence Level of the prediction they provide. As we have said before,

our proposal is an EWA with adequate weights which, chosen appropriately, allow us

to address the problem of topic (a) (that is to say, the bias towards the majority class

caused by an unbalanced data set).

For the assignment of weights to the base classifiers, and bearing in mind that the

combination of unbalanced data (14.7% “die” in variable Result) and a small sample

size, we use the Area Under the Precision-Recall curve (AUPR), being the Precision-

Recall (PR) curve that obtained by plotting Precision over Recall. The PR curve

provides a more informative picture of the performance of the classifier than the Re-

ceiver Operator Characteristic (ROC) curve when dealing with highly skewed datasets,
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as is our case. Let us explain this a bit more.

Both, Precision and Recall (or Sensitivity) are measures of the quality of a positive

(minority) prediction. Instead, Specificity measures the quality of a negative (majority)

prediction. Their definitions are:

� Precision is the number of true positives divided by the total number of positive

predictions.

Precision =
C11

C11 + C21

� Recall or Sensitivity is the number of true positives divided by the total number

of positive observations.

Recall =
C11

C11 + C12

� False Positive Rate (FPR) is the number of false positives (true negatives classi-

fied as positives) divided by the total number of negative observations.

FPR =
C21

C21 + C22

Each one of the Receiver Operator Characteristic (ROC) curve and the Precision-

Recall (PR) curve allow to visualize two metrics at the same time. The area under

these curves is called, respectively, AUC (Area Under the ROC Curve) and AUPR

(Area Under the Precision-Recall curve), and ranges between 0 and 1, being used for

classifier validation as a behavioral metric. Their definitions are:

� ROC curve is the plot of Sensitivity (y-axis) versus FPR (x-axis).

� PR curve is the plot of Precision (y-axis) versus Recall (x-axis).

Finally, another performance metric that combines two other metrics and is com-

monly used is the F-score.

� F-score (also known as F1-score) is defined as the harmonic mean of Precision

and Recall.

F − score =
1

1
2

(
1

Precision + 1
Recall

) =
2C11

2C11 + C12 + C21

Considering the above, we assign a weight wi to the base classifier i, which is

obtained from its estimated AUPR, denoted by Ai ∈ [0, 1], in the following way:

wi =
hi∑5
j=1 hj

, where hi = log
( 1

2 (Ai + 1)

1− 1
2 (Ai + 1)

)
. (1.5)
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Note that
1

2
(Ai + 1) ∈ [0.5, 1], and therefore,

1
2 (Ai + 1)

1− 1
2 (Ai + 1)

≥ 1

and consequently hi ≥ 0. This transformation of the Ai’s is a dilatation since if Ai < Aj ,

therefore hj − hi > Aj − Ai > 0. With this assignment of weights, we magnify the

relevance of the base classifiers using weights based on the AUPR metric.

A part from this, we propose a recalibration for the logistic regression of the

“APACHE II method”, where the coefficients are learned from data and not borrowed

from [11] (see Table 1.1). We name this model “LR.APACHEII”.

(iii) Testing the proposed alternative

Our EWA model, with the weights given by (1.5), has been tested against both the

five Bayesian networks used as base classifiers, against three well known state-of-the-

art classifiers (Neural Network NN, Random Forest RF, and Support Vector Machine

SVM), and against three other ensembles constructed with different strategies as com-

bination rules: the Majority Vote (MV), the Weighted Majority Vote (WMV) using the

same weights as EWA, and the Ensemble Average (EA). In addition, we also compare

it with the two models based on the APACHE II score that use Logistic Regression,

the “APACHE II model”, with fixed coefficients, and with the “LR.APACHEII”, whose

coefficients learned from the data set.

AUPR, F-Score and AUC are the different performance measures that have been

used to evaluate the models and to compare them with each other. They are preferred

for the performance assessment in the binary case to the most commonly used mea-

sure Accuracy. Specifically, AUPR is particularly well suited to address the situation

of an unbalanced data set. For statistical significance studies, contrasts such as the

paired t-test or Wilcoxon signed-rank test, both making Holm-Bonferroni adjustments

for multiple comparisons, have been implemented, depending whether the samples of

the performance measures obtained through the validation procedure (k-fold cross-

validation), can be assumed to come from a Gaussian distribution or not.

1.4.3 Validation

The last step in the machine learning life cycle is the validation of the built model.

With the performance measures we can evaluate different aspects of the predictions

emitted by the classifiers, from the confusion matrices generated with the validation

procedure. Once a classifier is built from a training data set (previously preprocessed,

if needed), we use a performance measure to assess its behaviour and compare with

other classifiers. In the binary case there are several classical measures, in addition

to Accuracy, that are commonly used (see Section 1.4.2). Not of all these measures
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can be extended to the multi-class case, how does Accuracy do it. Another well known

performance measure, formerly introduced in the binary case but that extends without

problems to the multi-class, is Matthew’s Correlation Coefficient (MCC).

Matthews Correlation Coefficient (MCC) measures the correlation between the ob-

served and the predicted classes. It was introduced for the binary case in [12] as the

φ-coefficient, which is a measure of association obtained by discretization of the Pear-

son’s correlation coefficient for two binary vectors. In [13] an extended correlation

coefficient that applies to any number of categories is used to generalize the binary

MCC to classification with r > 2 classes (see more details in [14]). MCC ranges in

[−1,+1], where +1 indicates perfect agreement (all the instances are well classified,

and therefore matrix C is diagonal), −1 perfect disagreement (all the instances are

misclassified, and then all the elements of the diagonal of C are zero), and 0 indi-

cates no relationship (similar to a random classification). Its definition in the general

multi-class setting is:

MCC =

r∑
k=1

r∑
`=1

r∑
m=1

(
Ckk C`m − Ck`Cmk

)

√
r∑

k=1

(( r∑
`=1

Ck`
)( r∑

k′=1:k′ 6=k

r∑
`′=1

Ck′`′
))
√

r∑
k=1

(( r∑
`=1

C`k
)( r∑

k′=1:k′ 6=k

r∑
`′=1

C`′k′
))

In this section we are going to introduce the last work included in the thesis, which

is related to topic (c). The idea is to concentrate on the study/improvement of a behav-

ioral metric based on the Shannon’s concept of entropy from the field of Information

Theory. Entropy is originally defined as a measure of the molecular disorder, or ran-

domness, of a physical system. That is, it is a measure of the uncertainty entailed by

a random phenomenon. In our case, the random phenomenon will be the result of the

classification process, reflected in a given confusion matrix.

Let X be a (discrete) random variable on a probability space (Ω, A, P ), whose

support is S(X) and for any x ∈ S(X), p(x) denotes the probability assigned by X to

x, that is, p(x) = P (X = x). In Information Theory, the (Shannon’s) entropy H

associated to X, H(X), is defined as the expected value of the self-information carried

by X, which is: I (X) = − logb (p(X)), where usually the base of the logarithm is b = 2,

although not necessarily. That is:

H (X) = E (I(X)) =
∑

xεS(X)

p(x) I(x) = −
∑

xεS(X)

p(x) logb (p(x)) .

In other words, H(X) is the average level of uncertainty inherent to the possible out-

comes of the variable. Given a set of non-negative numbers, say {n1, . . . , ns}, the
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(Shannon’s) entropy generated by the set is defined as −∑s
i=1 pi logb(pi), with

pi = ni
n if n =

∑s
i=1 ni. That is, the (Shannon’s) entropy generated by the set is

H(X) with X defined as the discrete random variable with support S(X) = {1, . . . , s}
and pi = P (X = i) = ni/n. Note that the minimum entropy (minimum uncertainty)

corresponds to all the probability accumulated in a single point, that is, p` = 1 for

some ` = 1, . . . , s and the rest equal to 0, and in this case, entropy is 0. Maximum

entropy (maximum uncertainty) corresponds to the uniform distribution of probability,

with p1 = · · · = ps = 1/s, where entropy achieves the value logb(s), which is:

logb(s) =





< 1 if b > s

= 1 if b = s

> 1 if b < s

In terms of Machine Learning, and more specifically applied to a confusion matrix, we

can use the entropy to measure de degree of disorder in the classification.

Now we introduce the Confusion Entropy (CEN), which is a performance metric in

the general multi-class setting based in the concept of Shannon’s entropy that has been

introduced in [15]. Given a general confusion r × r matrix C as in (1.2), in [15] the

misclassification probability of classifying class-vi cases as being of class vj “subject to

class vj”, denoted by P ji,j , is introduced as:

P ji,j =
Ci,j

r∑
k=1

(Cj,k + Ck,j)

, i, j = 1, ..., r, i 6= j , (1.6)

that is, P ji,j is introduced as the relative frequency of class-vi cases that are classified as

being of class vj among all cases that are of class vj or that have been classified as being

of class vj . But it is not really, not exactly. The reason is that class-vj cases that have

been correctly classified, whose number is Cj,j , are counted twice in the denominator.

Analogously, the misclassification probability of classifying class-vi cases as being of

class vj “subject to class vi”, with analogous interpretation, denoted by P ii,j , is defined

in the same paper by:

P ii,j =
Ci,j

r∑
k=1

(Ci,k + Ck,i)

, i, j = 1, ..., r, i 6= j . (1.7)

The Confusion Entropy associated to class vj is defined by:
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CENj = −
r∑

k=1,k 6=j

(
P jj,k log2(N−1)(P

j
j,k) + P jk,j log2(N−1)(P

j
k,j)
)

(1.8)

with the convention a logb(a) = 0 if a = 0. Finally, the overall Confusion Entropy

associated to the confusion matrix C is defined as a convex combination of the Confusion

Entropy of the classes as follows:

CEN =

r∑

j=1

Pj CENj , (1.9)

where the non-negative weights Pj , summing up to 1, are defined by:

Pj =

r∑
k=1

(Cj,k + Ck,j)

2
r∑

k,`=1

Ck,`

. (1.10)

(i) Deficiency or problem

This definition of CEN presents kind of problems. On the one hand, from a technical

perspective, while for r > 2 (multi-class setting), CEN ranges between 0 and 1 (indeed,

0 is attained with perfect classification, that is, the off-diagonal elements of matrix C

being zero, and 1 under complete misclassification, symmetry and balance in C, that

is, if all diagonal elements in C are zero, and the off-diagonal elements take all the

same value), in the binary case (r = 2), although CEN remains to be 0 with perfect

classification, and is 1 under complete misclassification with symmetry, in intermediate

scenarios we can also obtain CEN = 1 and even higher values. That is, in some cases

CEN is “out-of- range”, if what is intended is to introduce a measure ranging from 0

to 1. See, for example, the confusion matrices in Table 1.4.

(
6 0

0 6

) (
5 1

1 5

) (
4 2

2 4

) (
3 3

3 3

) (
2 4

4 2

) (
1 5

5 1

) (
0 6

6 0

)

CEN = 0.0000 0.5975 0.8617 1.0000 1.0566 1.0525 1.0000

Table 1.4. CEN: examples in the symmetric and balanced binary setting.

In addition, as can be seen in Table 1.4, there is no monotonicity in the behaviour

of CEN when the situation monotonously goes from perfect classification to completely

imperfect classification in the symmetric and balanced binary setting. That is, the
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value of CEN first increases, as expected, but after a certain moment it decreases,

which is totally counterintuitive. This fact is clearly a weakness of this metric.

On the other hand, from the point of view of its meaning, some of the quantities

that appear in the CEN definition, P ii,j (1.6) and P ji,j (1.7), are interpreted by their

authors as relative frequencies that in reality are not, as we have already mentioned.

Now we will explain the modifications in the definition of CEN that we have intro-

duced (denoted by MCEN) in [5], which allows us to address both types of problems

at the same time: on the one hand, we avoid its undesired behaviour, and on the other

hand, we further fine-tune the formal definition of the terms that make it up to the

meaning that they should have.

(ii) Proposed alternative

Instead of (1.6), we propose to introduce the probability of classifying class-vi cases as

being of class vj “subject to class vj”, as

P̃ ji,j =
Ci,j

r∑
k=1

(Cj,k + Ck,j)− Cj,j
, i, j = 1, . . . , r, i 6= j . (1.11)

that is, we overcome the fact that in (1.6) correctly classified class-vj cases are counted

twice in the denominator. With this definition, P̃ ji,j is really the relative frequency of

class-vi cases classified as belonging to class vj among all cases that are of class vj or

that have been classified as of class vj . Analogously, we modify definition (1.7) in the

same sense:

P̃ ii,j =
Ci,j

r∑
k=1

(Ci,k + Ck,i)− Ci,i
, i, j = 1, . . . , r, i 6= j , (1.12)

and P̃ ii,j is really the relative frequency of class-vi cases classified in class vj among

all cases that are of class vi or that have been classified as being of class vi. With

definitions (1.11) and (1.12) we solve the problem of meaning in the definition posed

by CEN in (1.6) and (1.7), respectively. Next, with the aim of solving the problem of

the inadequate behaviour of the CEN metric mentioned above, we modify definition of

the weights in (1.10) in the following way:

P̃j =

r∑
k=1

(Cj,k + Ck,j)− Cj,j

2
r∑

k,`=1

Ck,` − α
r∑

k=1

Ck,k

, where α =





1/2 if r = 2

1 if r > 2 .
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With respect to (1.10), P̃j avoids the repetition of the diagonal elements, which in Pj

are counted twice, both in the numerator and in the denominator, if r > 2. In the

binary case r = 2, an adjustment must be made so that the measure we define below

meets the technical conditions required to it. Note that when r > 2,
∑r

j=1 P̃j = 1,

so the modified overall Confusion Entropy is also defined as a convex combination of

the modified Confusion Entropy corresponding to the classes, while in the binary case

(r = 2), it is just defined as a conical combination since although the weights P̃j are

non-negative, they do not necessarily sum up to 1 (indeed, their sum is 1 if and only if

all the diagonal elements of the confusion matrix C are zero, that is, if all cases have

been misclassified).

We define the (modified) Confusion Entropy associated to class vj as in (1.8) by

MCENj = −
r∑

k=1,k 6=j

(
P̃ jj,k log2(N−1)(P̃

j
j,k) + P̃ jk,j log2(N−1)(P̃

j
k,j)
)
,

and the Modified Confusion Entropy (MCEN) as in formula (1.9), that is,

MCEN =
r∑

j=1

P̃j MCENj . (1.13)

(iii) Testing the proposed alternative

The proposed measure MCEN has been compared with the metric CEN as well as with

other metrics using different families of confusion matrices, among which there are

Accuracy (ACC) and Matthews Correlation Coefficient (MCC). Although the Accuracy

is between 0 (null hit rate) and 1 (total hit rate) and the MCC is between -1 (total

disagreement or total misclassification) and +1 (perfect prediction), for this work we

have made a modification (indeed, a change of scale) in order to facilitate the illustration

of the results in tables and graphs. Since MCEN indicates with the value 0 perfect

classification and with 1 perfect misclassification, we are going to modify Accuracy

and MCC to fit that range of values [0, 1], in such a way that ACC* = 1−Accuracy

will indicate with a 0 a hit rate total and with a 1 a zero success rate. Similarly,

MCC*= 1−MCC
2 will indicate 0 as perfect prediction and 1 as total misclassification.

As we can see in the examples in Table 1.5, unlike what happens with CEN, MCEN

(and also ACC* and MCC*, which coincide in this case) shows the desired behaviour.

Indeed, MCEN does not go above the desired maximum of 1, and it also distinguishes

between uniform distribution of instances (4th matrix) and perfect misclassification

(last matrix), which is something that CEN does not do.
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(
6 0

0 6

) (
5 1

1 5

) (
4 2

2 4

) (
3 3

3 3

) (
2 4

4 2

) (
1 5

5 1

) (
0 6

6 0

)

ACC∗ = MCC∗ = 0.0000 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000

CEN = 0.0000 0.5975 0.8617 1.0000 1.0566 1.0525 1.0000

MCEN = 0.0000 0.5910 0.8000 0.9057 0.9614 0.9891 1.0000

Table 1.5. CEN vs MCEN, ACC* and MCC*: examples in the symmetric and balanced
binary setting.

� From a theoretical perspective (basic research).

We have made a comparative study with different families of confusion matrices

starting with the perfectly symmetric and balanced case, with r ≥ 2. We consider

the case in which Ci,j = F for all i, j = 1, . . . , r, i 6= j and Ci,i = T , with

T ≥ 0, F > 0, that is, C =




T F . . . F F

F T . . . F F
...

... . . .
...

...

F F . . . T F

F F . . . F T




.

The comparative study collects the results of the metrics ACC*, MCC*, CEN,

and MCEN according to γ = T/F .

We proceed in the same way with other families. Table 1.6 shows studied families,

including the family mentioned above.




T F . . . F F
F T . . . F F
...

... . . .
...

...
F F . . . T F
F F . . . F T




(
1 A
A 0

) (
1 A
1 0

) (
A rA
rA 1

)

Symmetric case N ≥ 2 UA family VA family XA,r family

(
rA rA
A 1

)



1 ... ... 1
... ... ... ...
1 ... ... ...
A 1 ... 1




(
1 50
A 1

) (
50 1
1 A

)

YA,r family ZA family for N ≥ 2 MA family WA family

Table 1.6. Families of confusion matrices used to test the proposed alternative MCEN,
from a theoretical point of view.

� From an experimental perspective (algorithmic/computing).



Chapter 1. Introduction 31

To help clarify the utility of MCEN in the evaluation of improvements in classifi-

cation of the minority class while maintaining the same amount of imbalance, we

consider two different examples.

Example 1: Family of confusion matrices Xα
50, 2 =

(
50 100

101− α α

)
, with

α = 1, 2, . . . , 101. Note that when α = 1, the corresponding matrix belongs to

the family XA, r (Table 1.6) with A = 50 and r = 2. Imbalance in classes stays

fix, with 150 cases of the majority class, and 101 of the minority. When α = 1,

the minority class is classified very badly, improving classification as α increases

and reaching the perfect classification when α = 101. MCEN is able to detect

this behaviour. Unlike what happens with CEN, MCEN (as well as ACC* and

MCC*) monotonically decreases when classification of the minority class improves

(α increases). CEN incongruously first increases up to α = 18 and then starts to

decrease and behave like the other performance measures.

Example 2: A similar phenomenon can be observed with family Y β
100, 1 =(

100 100

101− β β

)
, with β = 1, 2, . . . , 101. With β = 1 the corresponding

matrix belongs to the family YA, r with A = 100 and r = 1. As in Example

1, imbalance in classes is constant and when β = 1, the minority class is classified

very badly, improving classification as β increases up to 101, when perfect classi-

fication is reached. MCEN as well as ACC∗ and MCC∗, monotonically decrease

when β increases, while CEN increases up to β = 14 and then starts to decrease

and behave like the other performance measures.

Fig 1.3. CEN, MCEN, ACC* and MCC* for families Xα
50, 2 (left) and Y β50, 2 (right).
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Different comparative works have been carried out between different performance

measures, some of them based on the definition of Shannon’s entropy. As examples,

we have considered the metrics PACC (Probabilistic Accuracy) and NIT (Normalized

Information Transfer) introduced by [16] and [17], respectively. Those two metrics

have been rescaled to facilitate comparison with the rest of the metrics considered, and

redefined as PACC* = 1−PACC and NIT*= 1/NIT. As we can see in the examples

in Tables 1.7 and 1.8, MCEN is a better measure of the entropy associated with a

confusion matrix than these two metrics.

Baseline (a) (b)

(
3 3
3 3

) (
2 3
3 4

) (
1 3
3 5

) (
0 3
3 6

) (
3 2
4 3

) (
3 1
5 3

) (
3 0
6 3

)

ACC∗= 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
MCC∗= 0.5000 0.5130 0.5625 0.6667 0.4881 0.4375 0.3333
CEN = 1.0000 0.9898 0.9575 0.8962 0.9591 0.8250 0.5000

MCEN = 0.9057 0.9006 0.8848 0.8571 0.8590 0.7057 0.3343

PACC∗= 0.5000 0.5071 0.5312 0.5833 0.4929 0.4687 0.4167

NIT∗ = 2.0000 1.9992 1.9840 1.8371 1.9992 1.9840 1.8371

Table 1.7. Toy example adding PACC and the NIT factor.

A =

(
10 0
10 10

)
B =

(
0 10
10 10

)
C =




10 0 0
10 10 0
0 0 10


 D =




10 0 0
0 10 10
10 0 0




ACC∗= 0.3333 < 0.6667 0.2500 < 0.5000
MCC∗= 0.2500 < 0.7500 0.1500 < 0.3500
CEN = 0.5283 < 1.0000 0.1981 < 0.3231
MCEN = 0.4000 < 0.9400 0.2000 < 0.3333

PACC∗= 0.2917 < 0.7083 0.1944 < 0.5000

NIT∗= 1.6799 = 1.6799 1.5000 = 1.5000

Table 1.8. Two toy examples. With N = 30 for r = 2, and with N = 40 for r = 3.

Finally, we introduce notations OUT(C) and IN(C), respectively, to denote the

Shannon’s entropy generated by the elements of outside and inside the main diagonal of

a confusion matrix C. While IN is the entropy generated by the number of well classified

cases of any of the classes, OUT is generated by the number of misclassified cases for

each combination of observed and predicted classes. The objective of introducing both

is to better understand the different behaviour of CEN and MCEN, since the two

measures are defined from Shannon’s entropy. We compare them in the examples of

Table 1.9.

In Table 1.9 the baseline confusion matrix is constant with all its entries equal to

3. First, maintaining the total sum equal to N = 12 and the out-diagonal invariant,

we reduce the entropy IN in (a). In the baseline case, the diagonal elements are the
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Baseline (a) (b)

(
3 3
3 3

) (
2 3
3 4

) (
1 3
3 5

) (
0 3
3 6

) (
3 2
4 3

) (
3 1
5 3

) (
3 0
6 3

)

Entropy= 1.0000 0.9183 0.6500 0.0000 0.9183 0.6500 0.0000
(8.17%) (35.00%) (100.00%) (8.17%) (35.00%) (100.00%)

ACC∗= 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
MCC∗= 0.5000 0.5130 0.5625 0.6667 0.4881 0.4375 0.3333

CEN = 1.0000 0.9898 0.9575 0.8962 0.9591 0.8250 0.5000
(1.02%) (4.25%) (10.38%) (4.09%) (17.50%) (50.00%)

MCEN = 0.9057 0.9006 0.8848 0.8571 0.8590 0.7057 0.3343
(0.56%) (2.31%) (5.37%) (5.16%) (22.08%) (63.09%)

Table 1.9. Example: binary case with N = 12. (a): Entropy reduction within the main
diagonal, IN. (b) Entropy reduction outside the main diagonal, OUT. In brackets the relative
reduction with respect to the baseline case. Entropy refers to IN in (a) and to OUT in (b).

set {3, 3}, whose entropy is 1 (maximum value). The corresponding values of IN in

case (a) are in Table 1.9, in a decreasing order. Analogously for (b) with changes

introduced outside the main diagonal. While ACC∗ remains insensitive to changes in

the arrangement of the elements of the matrix, since the sum of the main diagonal is

constant, MCC∗ only decreases with decreasing entropy OUT, while when IN decreases,

its value increases. As far as their interpretation is concerned, both CEN and MCEN

measure the overall entropy of the confusion matrix, giving less weight to the IN entropy

(the generated by the well classified cases) than to OUT entropy, corresponding to

misclassification. In this example we observe how their values are reduced when IN

decreases, maintaining its constant sum, or when the one that is reduced is OUT, but

in this second case the reduction is much more drastic, both for CEN and MCEN, and

more sharply for the second. The main difference between CEN and MCEN in this

sense is that the former is more sensitive to changes of IN entropy than MCEN, while

less than CEN to that of OUT (observe the percentages in brackets in Table 1.9, which

are the relative reduction in the measure with respect to that of the baseline case).
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Overall Results

Along this chapter we will present a global vision of the results obtained, focusing on

those that best represent our main contribution to the state-of-the-art. We leave the

deepening and details of the theoretical and experimental work of each of the parts

that make up this thesis for reading in the papers themselves. The chapter is orga-

nized as follows: Section 2.1 is devoted to the work done in the framework of the

Preprocessing phase of the life cycle of Supervised Machine Learning, specifically re-

garding a new method of oversampling (BOSME). Section 2.2 treats the work done on

the Building-the-model phase, with the introduction of the Ensemble Weighted Av-

erage (EWA) constructed from the data set of ICU patients. Finally, Section 2.3 treats

the research carried out during the completion of the thesis on the Validation phase,

studying the performance metrics defined from the Shannon’s Entropy as measure of

the disorder, specifically by introducing the MCEN metric, which is a modification of

the well-known CEN measure.

2.1 Preprocessing (BOSME)

In this section we present the paper “Bayesian network-based over-sampling method

(BOSME) with application to indirect cost-sensitive learning” [6].

The fundamental contribution of this work is the proposal of the novel oversampling

method BOSME based on a new paradigm consisting in building a model (Bayesian

network) for the joint probability distribution of the input variables X1, . . . , Xn in the

binary case, when the class is the minority class, that is, learned from the data subset

corresponding to V = “ + ”. To get a model as adjusted as possible to the data (of

the minority class), the Bayesian network is built by learning the structure in such a

way that the likelihood of the model associated to the data subset is maximized. The

new artificial instances are generated randomly from the model. Using this paradigm

we avoid the use of the concept of distance, which is key for the usual oversampling

34
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methods SMOTE and ROSE. We have empirically shown that our method is especially

suitable for datasets with categorical features, although it also can be used with discrete

and/or continuous features.

In addition to the BOSME method, we have built a form of wrapper based on the

costs of misclassification, such that through the wrapper any oversampling method,

in particular BOSME, can serve to the purpose of the indirect cost-senstive learning,

as explained in Section 1.4.1. With the wrapper we can calculate the desired final

proportion of the minority class in the enlarged dataset, once the synthetic instances

generated using the oversampling method have been added.

2.1.1 BOSME as oversampling method

Denote by S the original (unbalanced) training data set, with M instances. Let m+

be the number of instances corresponding to the minority (positive) class in S, and

m− that of the majority class. The original distribution of the class variable V in S is

therefore (p+, p−), where p+ = m+

M and p− = m−
M . BOSME is designed to generate a

number of artificial new instances, say n, of the minority class, such that in the enlarged

training data set augmented with the synthetically generated instances, denoted by S̃,

the minority class represents a desired proportion q of the total. We can see that in

order to achieve the desired proportion q, n must be:

n = round
( qM −m+

1− q
)

(2.1)

The steps of the BOSME over-sampling method can be seen schematically in Figure

2.1.

Fig 2.1. Graphical scheme of the BOSME algorithm.

The algorithm used to simulate the new instances generated randomly following the

joint probability distribution entailed by the Bayesian network, is (probabilistic)
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logic sampling (from rbn function implemented in the bnlearn package). This algo-

rithm is introduced in [18] and is the first one applying stochastic sampling to simulation

with Bayesian networks. The algorithm consists in generate values for the root nodes

sampling from their (unconditional) distribution, then those of their children using their

conditional distribution conditioned to the values already generated for their respective

parent, and so on, this is done iteratively until values have been sampled for all nodes.

2.1.2 The wrapper: cost-sensitive approach

We also design a wrapper to determine the desired proportion q that must represent the

minority class in the enlarged data set S̃. For that, associated to the classification of

a generic instance, in the context of cost-sensitive approach, we can define the random

variable Cost:

Cost =





c+ if instance is positive but classified as negative

c− if instance is negative but classified as positive

0 otherwise

whose expectation is

Expected Cost = c+ P ( instance is positive but classified as negative)

+ c− P ( instance is negative but classified as positive)

If approximation were cost insensitive, the variable Cost and the Expected Cost would

be respectively the variable Error and the Expected Error, just replacing c+ and c−

by 1. We assume that c+ > c−, and denote by γ = c+
c−
> 1 the cost rate.

We use a Folk Theorem (Translation Theorem 2.1 [19]) to determine the proper

proportion q. In fact, this result indicates how to modify the data set to reflect the

misclassification costs optimally: if we modify the distribution of the class variable V

on the data set to a new one, say (p̃+, p̃−), multiplying any of the components of the

original distribution (p+, p−) by a constant proportional to the associated misclassifica-

tion costs, the resulting distribution has the following property: choosing the classifier

that minimizes the Expected Error

Expected Error = P (instance is positive but classified as negative)

+ P (instance is negative but classified as positive)

under the new distribution is equivalent to choosing the classifier that minimizes the

Expected Cost under the original distribution.
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The cited Theorem is formally stated and proved in [19] in a more general context

than ours. We give an intuitive idea of the proof of the theorem in our context and

try to find the transformation of the original distribution to the new distribution that

suits us: consider a probabilistic classifier learned from S̃. Given a new instance, if

the classifier assigns it to the positive class, the Expected Cost (with respect to the

distribution of the class variable in S) is:

Expected Cost+ = c+ P
+( instance is positive but classified as negative)

+ c− P
+(instance is negative but classified as positive)

= c+ × 0 + c− P (instance is negative in S) = c− p−

(where the superscript + indicates we are conditioning to the fact that the instance

is assigned to the positive class). Similarly, if the classifier assigns the new instance

to the negative class, the expected cost is Expected Cost− = c+ p+. Anagously, the

corresponding values for the Expected Error, with respect to the distribution of the

class variable in S̃, are (by replacing c+ and c− by 1), are:

Expected Error+ = p̃− , Expected Error− = p̃+

Then, minimizing the Expected Cost is equivalent to minimize the Expected Error

provided that

p̃+ = C p+ c+ and p̃− = C p− c−

for some constant C > 0. Since p̃+ and p̃− must add up to 1, we obtain that the

constant necessarily has to be C = 1/(p+ c+ + p− c−). Therefore,

p̃+ =
p+ c+

p+ c+ + p− c−
and p̃− =

p− c−
p+ c+ + p− c−

That is, the value for the proportion q must be

q = p̃+ =
m+ γ

m+ γ +m−
(2.2)

with γ = c+
c−

the cost rate, showing the functional dependence of q on the initial number

of instances of each class and on the misclassification costs through γ.

2.1.3 Results

Once the first stage of the experimental work has been completed (see Figure 1.2),

we continue with the second stage to analyze the results through different statistical

hypothesis tests. First, we test whether we can assume normality. Next, we compare

the means (or medians, as appropriate) of paired samples to assess whether there are
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statistically significant differences (BOSME vs. SMOTE or BOSME vs. ROSE) using

Student’s t-test if we have not rejected the null hypothesis in the normality test, or

a Wilcoxon test otherwise. Provided that the contrast indicates that the difference of

means, or medians, is statistically significant, we will add a mark in favor of BOSME

when BOSME wins to SMOTE (or ROSE), while we will add a mark in favor or its

opponent if just the opposite happens. We repeat the described process 10 runs as

explained in Figure 2.2.

Fig 2.2. Comparing BOSME with the others oversampling methods. M(·) denotes the mean
or median, as appropriate.

As mentioned in the Subsection 2.1.2, γ = c+
c−

denotes the cost rate. In the

experimental phase we set γ values from 5 to 50 with incremental step of 5. Table
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2.1 below shows the obtained results for γ = 10, for each database that has returned

significant results, and for each classifier, in the comparison BOSME vs SMOTE.

γ = 10 SVM RF LR

Car eval.
+10

0.00098∗∗∗
+7

0.00781

Spect heart
+6

0.01563∗

Balance
+10

0.00098∗∗∗
+10

0.00098∗∗∗

Monks
+6

0.01563∗

Post-oper.
+9

0.00195∗∗

Tic-tac-toe
+10

0.00098∗∗∗
+10

0.00098∗∗∗
+10

0.00098∗∗∗

Solar flare
+8/−1
0.01758

+7
0.00781∗∗

Breast
+10

0.00098∗∗∗
+10

0.00098∗∗∗

Pizza
+10

0.00098∗∗∗

Haberman
/− 9

0.00195∗∗
+7

0.00781∗∗

Saheart
/− 7

0.00781∗∗

Happiness

Table 2.1. Number of runs (of the possible 10) for which there is statistical evidence in
favor of BOSME (positive number, counter+) or SMOTE (negative in red, counter−), and the
corresponding exact Binomial p-value, for any data set with significant differences, and
classifier: Support Vector Machine (SVM), Random Forest (RF) and Logistic Regression
(LR). γ = 10.

If we take as an example the results in Table 2.1, the Support Vector Machine

classifier and Spect heart database, +6 represents that BOSME has been better than

SMOTE a total of 6 times out of 10 possible. The value 0.01563∗ is the p-value obtained

from the exact Binomial test which give us the probability of observe that BOSME wins

SMOTE a total of 6 times of the 6 times we observe statistically significative differences,

if indeed, there are no differences between the two oversampling methods. That is,

p-value = P (B(n = 6, p = 0.5) = 6) =

(
6

6

)(1

2

)6 (1

2

)0
= 0.01563∗∗∗

In Table 2.2 we summarize the information given in Table 2.1, showing for each

dataset with how many classifiers BOSME has been significantly better than SMOTE

(in black) and how many classifiers SMOTE has been significantly better than BOSME

(in red). Since there are only three classifiers, the range of possible values varies from -3

to +3. We also introduce the measure β-score which is the difference. We observe that

BOSME has been significantly better 15 times while SMOTE only has been significantly

better 2 times. The difference is +13, in favor of BOSME.
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γ 5 10 15 20 25 30 35 40 45 50

Car eval. +2 +2 +3 +3 +3 +3 +3 +3 +3

Spect heart +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Balance +1 +2 +2 /-1 +2 /-1 +2 +2 +2 +2 +2 +2

Monks +1 +1 +2 +2 +2 +2 +2 +2 +2

Post-oper. +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Tic-tac-toe +3 +3 +3 +3 +3 +3 +3 +3 +3 +3

Solar flare +2 +2 +1 +1 +1 +1 +2 +2 +2

Breast +2 +2 +2 +2 +2 +2 +3 +2 +2 +3

Pizza +1 +2 +2 +2 +2 +2 +2

Haberman +1 /-1 +1 /-1 +1 /-1 +1 /-1 +1 /-1 +1 /-1 +1 /-1 +1 /-1 +1 /-1 +1 /-1

Saheart /-1 /-1 /-1 /-3 /-2 /-3 /-3 /-3 /-3

Happiness +1 +1 +1 +1 +1 +1

β-score +8 +13 +12 +14 +15 +16 +16 +16 +16 +17

Table 2.2. Summary of the results, by data set. The numbers in the boxes indicate for how
many classifiers, of the possible 3, there is statistical significance in favor of BOSME (positive)
or in favor of SMOTE (negative, in red). For each γ, we take count of the β-score.

Analogously, Table 2.3 also summarizes the information for each γ and classifier,

recording with how many datasets (of the 12 considered) BOSME has been significantly

better than SMOTE (in black) and with how many datasets SMOTE has been signifi-

cantly better than BOSME (in red). Since there are 12 data sets, the range of possible

values varies from -12 to +12. For example, for γ = 10 and Support Vector Machine,

there have been significant results in favor of BOSME in 7 databases and in favor of

SMOTE in 2 databases.

γ 5 10 15 20 25 30 35 40 45 50

SVM +5 +7/-2 +7/-2 +8/-2 +8/-2 +8/-2 +8/-2 +9/-2 +9/-2 +9/-2

RF +3 +6 +6 +7 +8/-1 +8/-1 +8/-1 +8/-1 +8/-1 +8/-1

LR +1/-1 +2 +2/-1 +2/-1 +3 /-1 +3 +4/-1 +3/-1 +3/-1 +4/-1

Table 2.3. Summary of the results, by classifier. The numbers in the boxes indicate for how
many data sets, of the possible 12, there is statistical significance in favor of BOSME
(positive) or in favor of SMOTE (negative, in red).

Figure 2.3 shows the evolution of the β-score as γ varies. We observe that the

β-score is always a positive value, which means that BOSME beats SMOTE for all

the considered γ. The corresponding p-value for the exact Binomial test for this event

(0.0009765625∗∗∗) implies a statistical significance in favor of BOSME. Furthermore,

the β-score tends to grow when the γ value increases. If there were no differences,

it would take positive and negative values randomly. We use Mann-Kendall test to

check the statistical significance of the trend monotonicity and Sen's slope to take the

magnitude of the trend. The results of the Mann-Kendall test, Sen’s slope and also

Spearman’s rank correlation test, are given in Table 2.4 below.
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Fig 2.3. Graphic representation of the β-score, where the evolution as the cost ratio γ
increases can be observed.

Mann-Kendall Spearman’s rank correlation

τ two-sided p-value Sen’s slope ρ p-value

0.649 0.000091∗∗∗ 1.34286 , 95% CI: (0.4, 2.5) 0.95672 0.000007∗∗∗

Table 2.4. β-score. Mann-Kendall test: τ statistic, two-sided p-value and Sen’s slope with a
confidence interval (CI) of 95%. Spearman’s rank correlation test: rho statistic and one-sided
p-value for the alternative hypothesis that ρ > 0.

Table 2.4 shows that there is indeed a significant monotonically increasing trend in

the β-score, as the cost ratio γ increases. The empirical evidence is in the sense that:

BOSME outperforms SMOTE for all the values tested in the experimental phase, but

it also does so more the higher the value of the cost ratio γ.

2.2 Building the model (Ensemble Weighted Average)

In this section we present the paper “Survival in the Intensive Care Unit: A prognosis

model based on Bayesian classifiers” [7].

In this paper we address the problem of imbalance dataset (topic (a)), giving a

proposal from a different paradigm (ensemble of classifiers) than the one presented in

the previous section, in addition to giving a solution to a need from another discipline

(medicine): our EWA model. As we have explained in the previous chapter, our model

is an ensemble of classifiers constructed using the Weighted Average combination rule,

with conveniently chosen weights to handle the imbalance problem, that assigns labels

maintaining consistency with the Confidence Level associated to the prediction.
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In addition, our EWA model allows to generate knowledge, and to identify protective

and risk factors for death in the hospital ICU. We have measured the importance of the

features (their “influence”) using measures of centrality and betweenness, among other

methodologies that we have applied. We also compute the Odds Ratio to quantify the

effect on the risk of death of the different features.

2.2.1 Comparing the models for the variable Result

In [7] we have introduced a hierarchical predictive model in which the variable Result

(live/die) is first predicted and then the Destination upon discharge from the ICU, in

the event that the prediction is “live”, or the Cause of death, in case the prediction

is “die”. However, in this chapter we are going to restrict ourselves to presenting the

results relative only to the Result variable, which is, in fact, the most important of the

three that are predicted.

In Table 2.5 we record the average over the runs of the averages and the standard

deviations, x̄ and s, respectively, over the folds, for the performance metrics AUPR,

F-score and AUC.

Result
AUPR F-score AUC

x̄ s x̄ s x̄ s

BC1 0.52058 (5) 0.08914 0.54445 (1) 0.06056 0.87230 (3) 0.02858

BC2 0.50671 0.08514 0.52763 (3) 0.06642 0.85987 0.03192

BC3 0.35161 0.13386 0.06805 0.02496 0.82825 0.04087

BC4 0.48450 0.07944 0.49974 0.06621 0.83958 0.03605

BC5 0.46424 0.07927 0.47569 0.06794 0.83277 0.03456

NN 0.27294 0.23893 0.43670 0.07689 0.70228 0.18079

SVM 0.43432 0.08309 0.32713 0.08628 0.79698 0.04014

RF 0.37071 0.08110 0.37567 0.08028 0.76864 0.04096

APACHEII 0.37899 0.09393 0.77518 0.04837

LR.APACHEII 0.42621 0.09342 0.30706 0.09075 0.83154 0.03744

MV 0.52467 (3) 0.08276 0.50274 0.06744 0.86440 (4) 0.03027

WMV 0.52317 (4) 0.08316 0.51137 (5) 0.06791 0.86377 (5) 0.03098

EA 0.53829 (2) 0.08510 0.52354 (4) 0.06666 0.87913 (2) 0.02538

EWA 0.54131 (1) 0.08423 0.53270 (2) 0.06766 0.88026 (1) 0.02522

Table 2.5. Average over the runs of the averages (x̄) and the standard deviations (s) over
the folds, for the metrics AUPR, F-score and AUC, with the different classifiers. In boldface,
the top five for each metric.

Note that we record the values for any of the classifiers considered: the five base classi-

fiers BC1, . . . ,BC5, the state-of-the-art Neural Network (NN), Support Vector Machine

(SVM) and Random Forest (RF), the predictive model based on the APACHE II score
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using the fixed coefficients (“APACHEII”), the corresponding but learning the coeffi-

cients from the training data (“LR.APACHEII”), and the ensembles considered with

the different combination rules: MV, WMV, EA and EWA, with the weights obtained

from the AUPR (see (1.5)). The blank cells indicate that the F-score can not be cal-

culated by the arrangement of the zeros in the confusion matrices generated by the

APACHEII model.

From the experiment, we can see that there is a clear advantage for the ensembles,

especially EWA and EA, over the rest of the classifiers, with AUPR and AUC, while

for the F-score, the best classifiers are BC1, EWA, BC2 and EA. That is why we focus

on the comparison between the ensembles EWA, EA, WMV and MV, to each other,

in addition to in their comparison with the rest. In this chapter we are only going to

collect the results for the AUPR metric, as an example. Indeed, Table 2.6 reports for

each run if there is a statistically significant (p-value < 0.1) improvement of either EWA

or EA, with respect to WMV and/or MV (“2” means that there is an improvement

over WMV and MV, “1” means that there is only over one of them, and “0” that there

is none for either), and we observe that in no case are WMV or MV better than EWA

or EA.

AUPR Run

Result 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EWA 0 0 1 2 2 0 2 0 2 1 1 2 2 0 1 1 1 1 2 2

EA 0 0 0 2 2 0 2 0 2 1 1 2 1 0 0 1 1 0 2 1

Table 2.6. AUPR: comparison between EWA/EA and WMV/MV.

The p-values of the comparisons are reported in Table 2.7 and have been adjusted

for multiple comparisons between the four ensembles by using the method of Holm-

Bonferroni, with the pairwise Wilcoxon signed-rank test to compare matched pairs of

samples corresponding to the same run. This statistical test is used as an alternative to

the Student’s t-test when the population cannot be assumed to be normally distributed

(according to the Shapiro-Wilk test, which has been previously performed).

From these tables se see that EWA and EA outperform WMV and MV, and that

in 5 runs, there are significant differences among EWA and EA and, in all the cases,

EWA shows to be better. This is confirmed in Table 2.8, where we observe that EWA

is significantly better than EA in 8 runs, when we compare only the two and, therefore,

the p-values have not been adjusted, and in all the cases, EWA shows to be better.

What significance does this fact have? We compute the p-value for the exact Binomial

test in order to compare the proportions of cases in which EWA outperforms EA and

vice versa, instead of use McNemar test, because the sample is small. The one-sided

p-value for the exact Binomial test is P (B(n = 5, p = 0.5) = 5) = 0.55 = 0.03125∗

when we compare EWA and EA but adjust for the comparison of the four ensembles,
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AUPR (Result) EWA EA WMV MV

EWA>

(5)

0.0059∗∗

(8)

0.029∗

(15)

0.0342∗

0.029∗ 0.018∗ 0.098 ·
0.0059∗∗ 0.024∗ 0.018∗

0.0342∗ 0.0117∗ 0.018∗

0.049∗ 0.039∗ 0.0098∗∗

0.029∗ 0.082 ·
0.012∗ 0.012∗

0.055 · 0.056 ·
0.074 ·
0.0059∗∗

0.029∗

0.093 ·
0.059 ·
0.012∗

0.018∗

EA>
(8)

0.049∗

(10)

0.098 ·
0.029∗ 0.027∗

0.056 · 0.039∗

0.0645 · 0.0146∗

0.024∗ 0.093 ·
0.049∗ 0.068 ·
0.012∗ 0.012∗

0.018∗ 0.034∗

0.029∗

0.021∗

Table 2.7. Adjusted p-values for the comparisons between the four ensembles,
corresponding to the statistical significances in Table 2.6 when we compare EWA/EA against
WMV and MV. Also, in boldface, the adjusted p-values corresponding to the comparison
between the two EWA and EA, that were not reported there.

AUPR (Result) Run 3 5 9 14 15 18 19 20
EWA>EA p-value 0.00098∗∗∗ 0.014∗ 0.00098∗∗∗ 0.042∗ 0.0068∗∗ 0.08 · 0.024∗ 0.042∗

Table 2.8. Non-adjusted p-values corresponding to the comparisons between EWA and EA
in Table 2.7, but only between them two (so the p-values are not adjusted). In boldface the 5
runs corresponding to the adjusted p-values that have been reported in Table 2.7.

which decreases to P (B(n = 8, p = 0.5) = 8) = 0.58 = 0.00391∗∗ if we consider the

non-adjust corresponding to comparison of EWA against EA alone. In both cases there

is a statistically significant evidence in favour or EWA as opposed to EA for prediction

of variable Result, with AUPR as performance measure.

As regards APACHEII and LR.APACHEII, both are clearly worse than any of

the ensembles, and we observe significant differences among them, in favour of the

latter. Indeed, for 18 runs there are differences between the two models for the

AUPR metric, and in all cases LR.APACHEII turns out to be better than the stan-

dard based on APACHE II, with a one-sided p-value for the exact Binomial test:

0.518 = 3.81470× 10−6∗∗∗ .
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2.2.2 Centrality measures

Centrality and betweenness: Each BC2, BC3, BC4 and BC5 model has a graphical

representation through a Directed Acyclic Graph (DAG) from which centrality and

betweenness measures defined in Graph Theory and network analysis can be extracted.

We can establish which features play the main role in the model by using centrality

and/or betweenness measures borrowed from the Network Analysis area applied to the

DAGs. In Graph Theory and Network Analysis, indicators of centrality identify the

most important (influential) nodes within a graph, where “importance” is conceived

as involvement in the cohesiveness of the network. For the features we compute four

different of these indicators:

a) Freeman’s degree of centrality, which counts paths which pass through each node,

that is, directed arcs which arrive at or depart from it.

b) Basic standard betweenness measure, which quantifies the number of times a

node acts as a “bridge” along the shortest path between two other nodes (called

“geodesic”). Nodes that have a high probability to occur on a randomly chosen

geodesic between two randomly chosen nodes, have a high betweenness. Fixed a

node v, this measure is defined by
∑

i,j, i6=j, i6=v, j 6=v(givj/gij) (with the convention

0/0 = 0), where gij is the number of geodesics from i to j in the graph, and givj

is the number of geodesics in the subset of those that pass through v.

c) Borgatti’s proximal source betweenness is a variant of basic standard betweenness

to accumulate only for the last intermediating vertex in each incoming geodesic.

This expresses the notion that, by serving as the “proximal source” for the target,

this particular intermediary node will in some settings have greater influence than

the rest. Fixed a node v, this measure is defined by
∑

i,j, i6=j, j 6=v, i→v(givj/gij) .

d) Borgatti’s proximal target betweenness is the counterpart to proximal source be-

tweenness that allows betweenness to accumulate only for the first intermediating

vertex in each outgoing geodesic. This expresses the notion that, by serving as

the “proximal target” for the source, this particular intermediary node will in

some settings have greater influence or control than others. Fixed a node v, this

measure is defined by
∑

i,j, i6=j, i6=v, j←v(givj/gij) .

Table 2.9 summarizes the most influential features because of their values of cen-

trality and betweenness. They act as gateways, and the arcs that connect them as

bridges through which information flows from one cluster of variables in the model to

another.
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Demographic characteristics F2: Age

Main cause of admission
F4: Acute Coronary Syndrome
F5: Respiratory Failure
F6: Shock

Admission
F18: Generic Syndrome
F19: Sepsis

Severity (on first 24 hours of admission)
F20: ICU Workload
F21: APACHE II

Table 2.9. The most influential features attending to centrality and betweenness.

2.2.3 Odds Ratio

Once we have chosen the predictive model with the best performance among those

we have compared, our EWA, we can learn it from the entire database, not just the

training set, and use it to evaluate the effect of the features in the assessment of the

risk of death in the ICU. An odds ratio (OR) is a measure of association between a

feature and the outcome (variable Result, in this case), which represents the odds in

favour of “die” given a particular value of a feature, compared to the odds in favour of

“die” given another value, fixed the other features. For instance, consider a critically

ill patient with the characteristics in Table 2.10.

Charlson Origin Generic syndrome Sepsis ICU Workload APACHE II

2 Emergency Room Medical yes M. unstable coma/shock 5–9

Table 2.10. Example of characteristics of a critically ill patient.

In Table 2.11 we record the OR, disaggregated by sex, in favour of the event “die”,

for a critically patient whose characteristics are given in Table 2.10, according to what

of the “Main cause of admission” has been reported for the patient (from F4 to F16).

F1: Sex Male Female
F2: Age 75–84 > 84 OR 75–84 > 84 OR

F4 0.07878 0.09715 1.25837 0.08084 0.10693 1.36138
F5 0.19627 0.30552 1.80145 0.22859 0.36471 1.93737
F6 0.20421 0.31516 1.79328 0.23714 0.37257 1.91022
F7 0.20070 0.31982 1.87257 0.23325 0.37825 1.99987
F8 0.46216 0.55110 1.42871 0.50267 0.57898 1.36059
F9 0.16010 0.16010 1.00000 0.16010 0.16010 1.00000
F10 0.49500 0.66774 2.05030 0.53169 0.72091 2.27516
F11 0.20996 0.26928 1.38660 0.23044 0.31191 1.51378
F12 0.07956 0.13082 1.74141 0.09336 0.16242 1.88317
F13 0.30486 0.38341 1.41787 0.35674 0.44058 1.42009
F14 0.07100 0.07003 0.98518 0.07433 0.07305 0.98137
F15 0.10251 0.20942 2.31921 0.11517 0.22107 2.18048
F16 0.08263 0.10638 1.32156 0.08962 0.12278 1.42184

Table 2.11. Example of Table 2.10: probabilities of “die” and OR in favour of “die”, for
each of the possible “Main cause of admission”. In boldface those probabilities > 0.5, which
carry a prediction of “die” for the patient.
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In Table 2.11, OR is defined as the odds of event “die” occurring in the group of

age >84 divided by the odds of it occurring in the group of age 75–84. For example,

continuing with the patient whose characteristics are given in Table 2.10, if the patient

is a male between 75 and 84 years old with renal failure (F8=1), thus, his risk of death

(probability of “die”) assigned by the model is 0.46216. This probability increases up

to 0.55110 if the age increases to be > 84. Therefore, the OR in favour of “die” is:

OR>84 / 75−84 =
0.55110/(1− 0.55110)

0.46216/(1− 0.46216)
= 1.42871

We also see that for patients having the characteristics recorded in Table 2.10 and

having cardio respiratory arrest (F10 = 1) or intoxication (F15 = 1), both for men and

women, the increase in age is an important risk factor (OR greater than 2 in Table

2.11).

On the other hand, we can study which of the “Main cause of admission” are risk

factors for a male who is more than 85 years old, and with the features in Table 2.10,

for example, and consider the question: “What is the Odds Ratio between F10 and F5

in favor of die?”, which is answered by computing the ratio between the odds in favour

of “die” when F10 = 1 and when F5 = 1, which is:

ORF10 /F5
=

0.66774/(1− 0.66774)

0.30552/(1− 0.30552)
= 4.56836

(see Table 2.11) that is, the odds in favour of “die” for a male who is more than 85 and

has the features in Table 2.10 is approximately 4.6 times greater if his main cause of

admission is a cardio respiratory arrest than if it is a respiratory failure.

2.2.4 Feature strength

We want to measure the strength of any of the features to predict the output variable

Result. We follow [20] and introduce a measure based on the conditional probability

tables of Result with respect to each feature, obtained with EWA, which uses the

Kolmogorov-Smirnov statistical distance and a correction parameter: for each feature

F, we introduce the Strength Distance (SD), as:

SD(F) = max
a, b∈F

dFa, b

where F is the set of the possible outcomes of variable F, and dFa, b denotes the Kolmogorov-

Smirnov statistical distance between the a posteriori conditional probability distribu-

tions of Result given the evidence F = a, and given the evidence F = b.

To take into account if different instantiations of a feature produce different predic-
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tions for Result, we introduce the correction term δ(F) = γ(F)/2 ∈ (0, 1] , where γ(F) is

the number of different predictions obtained from the classifier for Result given the evi-

dences of the form F = a, with a varying in F . Then, δ(F) is the proportion of different

predictions actually obtained by the classifier for Result among the possible we could

obtain from an evidence on F, which is 2, and we use it to correct strength measure

SD by introducing the Corrected Strength Distance (CSD) by CSD(F) = SD(F)× δ(F).

Note that CSD(F) ≥ 0, and that CSD(F) = 0 if and only if F and Result are indepen-

dent variables. In Table 2.12 we have recorded for each feature the correction term δ

and the feature strength measure SD and CSD as well.

Feature SD δ CSD(= SD× δ)
F1: Sex 0.03432 1/2 0.01716
F2: Age 0.09623 1/2 0.04812

F3: Charlson 0.14104 1/2 0.07052

F4: Acute Coronary Syndrome 0.17367 1/2 0.08684
F5: Respiratory Failure 0.03301 1/2 0.01651
F6: Shock 0.08698 1/2 0.04349
F7: Coma 0.02511 1/2 0.01256
F8: Renal Failure 0.00865 1/2 0.00433
F9: Hepatic Failure 0.13364 1/2 0.06682
F10: Cardio Respiratory Arrest 0.49694 1 0.49694
F11: Elective Surgical 0.15203 1/2 0.07602
F12: Arrhythmia 0.09849 1/2 0.04925
F13: Cranial Trauma 0.15729 1/2 0.07865
F14: Other Trauma 0.12650 1/2 0.06325
F15: Intoxication 0.07601 1/2 0.03801
F16: Other syndromes 0.12105 1/2 0.06053

F17: Origin 0.35811 1/2 0.17906
F18: Generic syndrome 0.17512 1/2 0.08756
F19: Sepsis 0.11333 1/2 0.05667

F20: ICU workload 0.43213 1/2 0.21607
F21: APACHE II 0.63546 1 0.63546

Table 2.12. SD, the correction term δ and CSD for the 21 features, with the EWA model

.

Attending to CSD as feature strength measure, we can rank the features as follows,

from stronger to weaker:

F21, F10, F20, F17, F18, F4, F13, F11, F3, F9,

F14, F16, F19, F12, F2, F6, F15, F1, F5, F7, F8 .
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2.3 Validation (MCEN)

In this section we present the last paper, entitled “Enhancing Confusion Entropy (CEN)

for binary and multiclass classification” [5].

In this work we have introduced a new measure, that we name MCEN, by modifying

conveniently the measure CEN (Confusion Entropy), which was inspired by Shannon’s

entropy. MCEN is introduced to avoid CEN’s unwanted behaviour in the binary case.

Now we summarize the main results in which MCEN and CEN (and other measures)

are compared, and it is verified that MCEN avoids the problem posed by CEN, which

has been the leitmotif to introduce it.

2.3.1 The perfectly symmetric and balanced case

We denote by “perfectly symmetric and balanced case” the case in which Ci,j = F for

all i, j = 1, . . . , N, i 6= j and Ci,i = T , with T ≥ 0, F > 0, that is, the confusion matrix

is of the form

C =




T F . . . F F

F T . . . F F
...

... . . .
...

...

F F . . . T F

F F . . . F T



.

Proposition 1. In the perfectly symmetric and balanced case,

If N > 2, CEN =
2 (N− 1)

δ
log2(N−1)(δ), MCEN =

2 (N− 1)

δ̃
log2(N−1)(δ̃), (2.3)

If N = 2, CEN =
1

1 + γ
log2(δ), MCEN =

1

1 + 3
4 γ

log2(δ̃),

where γ =
T

F
≥ 0, δ = 2 (N − 1) + 2 γ > 0 and δ̃ = 2 (N − 1) + γ > 0 ,

ACC∗ =
N − 1

γ + (N − 1)
and MCC∗ =

N

2 (γ + (N − 1))
=

N

2 (N − 1)
ACC∗ .

Note that ACC∗, MCC∗, CEN and MCEN depend on the matrix values T and F

only through its ratio γ.
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Corollary 1. In the perfectly symmetric and balanced case, we have that:

� For any N > 2, CEN, MCEN, ACC∗ and MCC∗ are monotonically decreasing

functions of γ ≥ 0, with

lim
γ→+∞

CEN(γ) = lim
γ→+∞

MCEN(γ) = lim
γ→+∞

ACC∗(γ) = lim
γ→+∞

MCC∗(γ) = 0 ,

CEN(0) = MCEN(0) = ACC∗(0) = 1, MCC∗(0) =
N

2 (N − 1)
→ 1

2
as N → +∞,

and if γ > 0, MCC∗ < ACC∗ < CEN < MCEN .

� Nevertheless, when N = 2, we have that although MCEN and ACC∗ = MCC∗

remain to be monotonically decreasing as functions of γ ≥ 0, CEN does not.

Indeed, CEN achieves its global maximum when γ = e
2−1, which is CEN( e2−1) ≈

1.06148 > 1. More specifically,

CEN(0) = CEN(1) = 1, CEN(γ) > 1 , for all 0 < γ < 1, lim
γ→+∞

CEN(γ) = 0,

MCEN(0) = 1 , lim
γ→+∞

MCEN(γ) = 0 ,

ACC∗(0) = MCC∗(0) = 1 , lim
γ→+∞

ACC∗(γ) = lim
γ→+∞

MCC∗(γ) = 0 .

Moreover, there exists γ0 ≈ 5.78 such that

MCC∗ = ACC∗ < MCEN < CEN if 0 < γ < γ0,

MCC∗ = ACC∗ < MCEN = CEN if γ = γ0, and

MCC∗ = ACC∗ < CEN < MCEN if γ > γ0 .

Remark 1. Note that if N = 2, CEN exhibits the unwanted behaviour, not showed by

MCEN, of being out-of-range [0, 1], which despairs for N > 2 (see Figura 2.4).

Fig 2.4. The symmetric case. CEN, MCEN, ACC∗ and MCC∗ for γ ∈ [0, 10], with N = 2
(left) and N = 3 (right).
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Remark 2. Consider the particular case in which T = F , that is, γ = 1. In other

words, the confusion matrix is constant, say




1 1 . . . 1
...

... . . .
...

1 1 . . . 1


. Then, ACC∗ = N−1

N

and MCC∗ = 1
2 . Moreover, δ = 2N and δ̃ = 2N − 1.

If N > 2, CEN = (1− 1
N ) log2(N−1)(2N) and MCEN = (1− 1

2N−1) log2(N−1)(2N − 1).

If N = 2, CEN = 1 and MCEN = 4
7 log2(3) < 1 .

As a consequence, we can easily check that if N > 2, MCC∗ < ACC∗ < CEN < MCEN,

with limN→+∞ACC∗ = limN→+∞CEN = limN→+∞MCEN = 1, while if N = 2,

MCC∗ = ACC∗ < MCEN < CEN.

2.3.2 The binary case

Symmetric but unbalanced UA family

Consider the particular case of a confusion matrix of type UA =

(
1 A

A 0

)
, with

A > 0. Both class-1 and class-2 cases are mainly misclassified if A > 1. Entropy out

of the main diagonal is 1 and within the diagonal is 0, regardless of the value of A.

When 0 < A < 1, say for example that A = 1/B with B > 1, then matrix UA is

equivalent to

(
B 1

1 0

)
, that is, corresponds to an unbalanced scenario in which class

2 is underrepresented and class-1 cases are mainly well classified. We can observe some

properties of CEN, MCEN, ACC∗ and MCC∗ (see Fig. 2.5) in Proposition 2.

Proposition 2. For confusion matrix UA with A > 0, we have:

CEN(A) =
A log2

(
(2A+ 1)2 − 1

)
− 2A log2(A)

2A+ 1
,

MCEN(A) =
4A log2

(
2A (2A+ 1)

)
− 8A log2(A)

3 (2A+ 1) + 2A
,

ACC∗(A) =
2A

2A+ 1
, MCC∗(A) =

2A+ 1

2 (A+ 1)
.

As a consequence:

CEN(A) < 1 if A < 1, CEN(1) = 1, CEN(A) > 1 if A > 1,

MCEN(A) < 1 and ACC∗(A) < MCC∗(A) < 1, for all A > 0,

MCEN, ACC∗ and MCC∗ are monotonically increasing functions of A > 0,
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CEN is not, and achieves its global maximum when A ≈ 2.54, which is > 1,

lim
A→0

CEN(A) = lim
A→0

MCEN(A) = lim
A→0

ACC∗(A) = 0 < lim
A→0

MCC∗(A) = 0.5,

lim
A→+∞

CEN(A) = lim
A→+∞

MCEN(A) = lim
A→+∞

ACC∗(A) = lim
A→+∞

MCC∗(A) = 1.

Moreover, there exists A0 ∈ (0, 1) (indeed, A0 ≈ 0.24) such that





MCEN(A) < CEN(A) if A > A0,

MCEN(A0) = CEN(A0) ,

MCEN(A) > CEN(A) if 0 < A < A0.

Fig 2.5. Famlily UA. CEN, MCEN, ACC∗ and MCC∗ for A ∈ (0, 10].

Symmetric VA family

Consider the particular case of confusion matrices of type VA =

(
1 A

1 0

)
, with A > 0.

This is an asymmetric and unbalanced case in which class 2 is systematically misclas-

sified and is underrepresented if A > 1. Class 1 is also mainly misclassified if A > 1.

As A → +∞, entropy out the diagonal, which is − A
A+1 log( A

A+1), decreases to zero.

Entropy within diagonal is zero, while the overall entropy of the elements of matrix

VA is log(A + 2) − A
A+2 log(A), which tends to 0 as A → +∞. When 0 < A < 1

with A = 1/B, B > 1, matrix VA is equivalent to

(
B 1

B 0

)
, which corresponds to an

almost balanced but asymmetric scenario in which class 1 is mainly well classified but

class 2 is not. As B increases (A → 0), entropy out the diagonal also drops to zero.

Some properties of CEN, MCEN, ACC∗ and MCC∗ are given in Proposition 3 (see also

Fig. 2.6).
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Proposition 3. For confusion matrix VA with A > 0, we have:

CEN(A) =
(A+ 1) log2((A+ 2)2 − 1)− 2A log2(A)

2 (A+ 2)
,

MCEN(A) =
2 (A+ 1) log2

(
(A+ 1) (A+ 2)

)
− 4A log2(A)

3 (A+ 2) + (A+ 1)
,

ACC∗(A) =
A+ 1

A+ 2
, MCC∗(A) =

1 +
√

A
2 (A+1)

2
.

As a consequence, there exists A1 ∈ (1, 2) (A1 ≈ 1.414) such that:

CEN(A) > 1 if 1 < A < A1, CEN(1) = CEN(A1) = 1, CEN(A) < 1 if A /∈ [1, A1],

MCEN(A) < 1, ACC∗(A) < 1, MCC∗(A) < 1 and MCEN(A) < CEN(A) for all A > 0,

lim
A→0

MCC∗(A) = lim
A→0

ACC∗(A) =
1

2
> lim

A→0
CEN(A) =

log2(3)

4
> lim

A→0
MCEN(A) =

2

7
,

lim
A→+∞

ACC∗(A)=1> lim
A→+∞

MCC∗(A)=
2 +
√

2

4
> lim
A→+∞

CEN(A)= lim
A→+∞

MCEN(A)=0.

Note that as in previous cases, CEN(A) does not stay always (that is, for any A > 0)

restricted to [0, 1], while MCEN does.

Fig 2.6. Family VA. CEN, MCEN, ACC∗ and MCC∗ for A ∈ (0, 10].

Asymmetric but unbalanced YA,r family

Finally, we consider a particular doubly indexed family of confusion matrices in the

binary case, denoted by YA, r, with A, r > 0. We define this family by YA, r =(
r A r A

A 1

)
. Class-2 is underrepresented and mainly misclassified if A, r > 1, while

class-1 cases are classified “at random”, that is, a class-1 case has the same probability

to be classified into any of the two classes.
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When 0 < A < 1, A = 1/B with B > 1, then matrix YA, r is equivalent to(
r r

1 B

)
. In Proposition 4 we give some properties of CEN, MCEN, ACC∗ and

MCC∗. See Fig. 2.7 for r = 0.1, Fig. 2.8 for r = 0.8, and Fig. 2.9 for a plot of them

as function of r, fixed A = 10.

Proposition 4. For confusion matrix YA, r with A, r > 0 we have:

CEN(A) =
(r + 1)A log2

((
(r + 1)A+ 2

)
(3r + 1)

)
+ (r − 1)A log2(A)− 2rA log2(rA)

2
(
(2r + 1)A+ 1

) ,

MCEN(A) =
2
(

(r + 1)A log2

((
(r + 1)A+ 1

)
(2r + 1)

)
+ (r − 1)A log2(A)− 2rA log2(rA)

)

3
(
(2r + 1)A+ 1

)
+ (r + 1)A

,

ACC∗(A) =
(r + 1)A

(2 r + 1)A+ 1
, MCC∗(A) =

1− r (1−A)√
2 r (A+1) (r+1) (r A+1)

2
.

As a consequence, LCEN(r) = limA→+∞CEN(A) = 1
2 (2 r+1) log2

( ((3 r+1) (r+1))r+1

r2 r

)
> 0,

and there exists R0 < 1 (R0 ≈ 0.71) such that LCEN(r)





> 1 if R0 < r < 1,

= 1 if r = R0, 1,

< 1 if r < R0 or r > 1.

Moreover, there exist 0 < R1 < R0 < 1 < R2 (R1 ≈ 0.5, R2 ≈ 1.4) such that





if r ∈ [R0, 1], there exists Ar > 0 such that CEN(A) < 1 if A < Ar,

CEN(Ar) = 1, CEN(A) > 1 if A > Ar,

if r ∈ (R1, R0) ∪ (1, R2), there exist 0 < Ar < Br such that CEN(A) < 1 if A < Ar

or A > Br, CEN(Ar) = CEN(Br) = 1,

CEN(A) > 1 if A ∈ (Ar, Br),

if r /∈ (R1, R2), CEN(A) ≤ 1 for any A > 0.

On the other hand, for any r > 0,

MCEN(A) < 1, ACC∗(A) < 1 and MCC∗(A) < 1, for all A > 0,

ACC∗ and MCC∗ are monotonically increasing functions of A,

CEN is not, and MCEN is or not, depending on the value of r,

lim
A→0

CEN(A) = lim
A→0

MCEN(A) = lim
A→0

ACC∗(A) = 0, lim
A→0

MCC∗(A) =
1−

√
r

2 (r+1)

2
,
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lim
A→+∞

ACC∗(A) =
r + 1

2 r + 1
= LACC∗(r), lim

A→+∞
MCC∗ =

1 + 1√
2 (r+1)

2
= LMCC∗(r),

LMCEN(r) = lim
A→+∞

MCEN(A) =
2

3 (2 r + 1) + (r + 1)
log2

(((2 r + 1) (r + 1))r+1

r2 r
)
< 1,

LMCEN(r) < LCEN(r) for all r > 0.

Note that LACC∗(r) < LMCC∗(r) if and only if r > −1+
√
5

4 > 0.

Fig 2.7. Family YA, r. CEN, MCEN, ACC∗ and MCC∗ as function of A > 0 for r = 0.1.

Fig 2.8. Family YA, r. CEN, MCEN, ACC∗ and MCC∗ as function of A > 0 for r = 0.8.

2.3.3 The multiclass ZA family

As noted in [21], the behaviour of the Confusion Entropy CEN is rather diverse from

that of MCC∗ and ACC∗ for the pathological case of the family of confusion matrices
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Fig 2.9. Family YA, r. CEN, MCEN, ACC∗ and MCC∗ as function of r for A = 10.

ZA = (ai,j)i,j=1,...,N , defined by ai,j =




A if i = N, j = 1

1 otherwise,
, with A > 0. That is,

ZA =




1 1 . . . 1

1 1 . . . 1
...

... . . .
...

1 1 . . . 1

A 1 . . . 1




. We want to study how MCEN behaves when applied to

elements of this family, and the results are in Proposition 5. See also Fig. 2.10.

Proposition 5.

If N > 2, CEN(ZA) =
1

N2 +A− 1

(
(N − 1) (N − 2) log2(N−1)(2N)

+ (2N +A− 3) log2(N−1) (2N +A− 1)−A log2(N−1)(A)
)
,

MCEN =
2

2 (N2 +A− 1)−N
(

(N − 1) (N − 2) log2(N−1) (2N − 1)

+ (2N +A− 3) log2(N−1) (2N +A− 2)−A log2(N−1) (A)
)
,

if N = 2, CEN(ZA) =
1

A+ 3

(
(A+ 1) log2(A+ 3)−A log2(A)

)
,

MCEN =
2

2A+ 5

(
(A+ 1) log2(A+ 2)−A log2(A)

)
.

In general (N ≥ 2),

MCC∗(ZA) =
N
(
N2 + 2 (A− 1)

)
−
(
N2 + (A− 1)

)

2 (N − 1) (N2 + 2 (A− 1))
, ACC∗(ZA) =

N2 −N + (A− 1)

N2 + (A− 1)

As a consequence,
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� If N = 2,

MCEN < CEN(ZA) for all A > 0,

MCEN < 1 for all A > 0, and there exists A3 ∈ (1, 2) (A3 ≈ 1.85) such that

CEN(Z1) = CEN(ZA3) = 1,

CEN(ZA) > 1 if A ∈ (1, A3) and CEN(ZA) < 1 if A /∈ [1, A3],

lim
A→0

MCC∗(A)=
1

4
< lim
A→0

ACC∗=
1

3
< lim
A→0

MCEN(A)=
2

5
< lim
A→0

CEN(A)=
log2(3)

3
,

lim
A→+∞

CEN(A) = lim
A→+∞

MCEN(A) = 0 < lim
A→+∞

MCC∗ =
3

4
< lim

A→+∞
ACC∗ = 1 .

� If N = 3 (we take this case as example of what happens with N > 2),

lim
A→0

MCC∗(A) =
13

28
< lim

A→0
ACC∗ =

5

8
<

< lim
A→0

CEN(A)=
2 log4(6) + 3 log4(5)

8
< lim
A→0

MCEN(A)=
2

13
(2 log4(5) + 3)<1,

lim
A→+∞

CEN(A)= lim
A→+∞

MCEN(A)=0< lim
A→+∞

MCC∗=
5

8
< lim
A→+∞

ACC∗=1.

Fig 2.10. Family ZA. CEN, MCEN, MCC∗ and ACC∗ as function of A > 0 for N = 2 (up)
and N = 3 (down).
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2.4 Relevance of the results

In this Section we describe the contribution and impacts of this Thesis. Although the

works considered in this Thesis report are sorted according to the life cycle of Machine

Learning, the chronological order of the works has been the following:

� The first contribution on “Enhancing confusion entropy as measure for evaluat-

ing classifiers” was presented in SOCO 2018 (International Conference on Soft

Computing Models in Industrial and Environmental Applications) and published

in “Advances in Intelligent Systems and Computing” as conference paper [22] in

2019. In this year we contributed with an extended version in PlosOne journal

under the title “Enhancing Confusion Entropy (CEN) for binary and multiclass

classification” [5].

Journal ranking:

PLOS ONE (2019). Category: Multidisciplinary Sciences.

2019 Journal Impact Factor: 2.740 (27/171, Q2). JIF percentile 62.68

2019 Journal Citation Indicator: 0.57 (29/126, Q1). JCI percentile 77.38

2019 Total Citations: 688,786

Cited by:

So far, and as far as we know, the published works that have referenced [22] or

[5] (we do not record self-references) are:

Preprints

– Wang Z.; Belecciu T.; Eaves J.; Reimers M.; Bachmann M.; Woldring

D.: “Phytochemical Drug Discovery for COVID-19 Using High-resolution

Computational Docking and Machine Learning Assisted Binder Prediction”.

(2022), ChemRxiv. Cambridge: Cambridge Open Engage.

PhD Thesis

– Xu, H.: “Three-dimensional quantitative analysis of bone microvasculature

in synchrotron micro-CT imaging. Signal and Image processing.” (2021),

Université de Lyon. English.

– Ouzounov, A. P.: “Speech Detection in Speaker Recognition Systems”.

(2020), Bulgarian Academy of Sciences. Institute of Information and Com-

munication Technologies.
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Conference papers

– Gosgens, M.; Zhiyanov, A.; Tikhonov, A.; Prokhorenkova, L.: “Good Clas-

sification Measures and How to Find Them” (2021) Advances in Neural

Information Processing Systems, 21, pp. 17136-17147.

– Huk, M.; Shin, K.; Kuboyama, T.; Hashimoto, T.; “Random Number Gen-

erators in Training of Contextual Neural Networks” (2021) Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), 12672 LNAI, pp. 717-730.

– Boyadjian, Q.; Vanderesse, N.; Toews, M.; Bocher, P.: “Detecting De-

fects in Materials Using Deep Convolutional Neural Networks”. (2020), In:

Campilho, A.; Karray, F.; Wang, Z.: (eds) “Image Analysis and Recogni-

tion”. ICIAR 2020. Lecture Notes in Computer Science, vol 12131. Springer,

Cham.

Journal papers

– Acuña-Rello, L.; Spavento, E.; Casado-Sanz, M.; Basterra, L.A.; López-

Rodŕıguez, G.; Ramón-Cueto, G.; Relea-Gangas, E.; Morillas-Romero, L.;

Escolano-Margarit, D.; Mart́ınez, R.D.; Balmori, J.A.: “Assessment of ma-

chine learning algorithm-based grading of Populus x euramericana I-214

structural sawn timber”. (2022), Engineering Structures, Volume 254, 113826,

– Valencia, O.; Ortiz, M.C.; Sánchez, M.S.; Sarabia, L.A.: “A modified entropy-

based performance criterion for class-modelling with multiple classes”. (2021),

Chemometrics and Intelligent Laboratory Systems, 217, art. no. 104423.

– Stapor, K.; Ksieniewicz, P.; Garćıa, S.; Wozniak, M.: “How to design the

fair experimental classifier evaluation”. (2021), Applied Soft Computing,

104, art. no. 107219.

– Shah, D.A.; de Wolf, E.D.; Paul, P.A.; Madden, L.V.: “Accuracy in the

prediction of disease epidemics when ensembling simple but highly correlated

models”. (2021), PLoS Computational Biology, 17 (3), art. no. e1008831.

– Chicco, D.; Starovoitov, V.; Jurman, G.: “The Benefits of the Matthews

Correlation Coefficient (MCC) over the Diagnostic Odds Ratio (DOR) in Bi-

nary Classification Assessment”. (2021), IEEE Access, 9, art. no. 9385097,

pp. 47112-47124.

– Chicco, D.; Jurman, G.: “The advantages of the Matthews correlation coeffi-

cient (MCC) over F1 score and accuracy in binary classification evaluation”.

(2020), BMC Genomics, 21 (1), art. no. 6.
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– Zirui Wang; Theodore Belecciu; Joelle Eaves; Mark Reimers; Michael Bach-

mann; Daniel Woldring: “Phytochemical drug discovery for COVID-19 using

high-resolution computational docking and machine learning assisted binder

prediction”, (2022), Journal of Biomolecular Structure and Dynamics.

Other evidences of relevance:

As impact, the Modified Confusion Entropy (MCEN) metric has been incorpo-

rated in 2018 to the pycm Phyton library https://pypi.org/project/pycm/

� Subsequently, we presented a contribution in LOD 2019 (International Confer-

ence on Machine Learning, Optimization, and Data Science) under the title “Vi-

tal Prognosis of Patients in Intensive Care Units Using an Ensemble of Bayesian

Classifiers” [23] published in Lecture Notes and Computer Science. Afterwards,

in 2021, a extended version “Survival in the Intensive Care Unit: A prognosis

model based on Bayesian classifiers” [7] has been published in Artificial Intelli-

gence in Medicine.

Journal ranking:

Artificial Intelligence in Medicine (2021). Category: Computer Science, Artificial

Intelligence.

2021 Journal Impact Factor: 7.011 (32/144, Q1). JIF percentile 78.13

2021 Journal Citation Indicator: 1.26 (34/189, Q1). JCI percentile 82.28

2021 Total Citations: 5,314

Cited by:

So far, and as far as we know, the published works that have referenced [7] (we

do not record self-references) are:

Journal papers

– Amador, T., Saturnino, S., Veloso, A., Ziviani, N. Early identification of

ICU patients at risk of complications: Regularization based on robustness

and stability of explanations (2022) Artificial Intelligence in Medicine, 128,

art. no. 102283.

– Karim, M.R., Islam, T., Lange, C., Rebholz-Schuhmann, D., Decker, S.

Adversary-Aware Multimodal Neural Networks for Cancer Susceptibility

Prediction from Multiomics Data (2022) IEEE Access, 10, pp. 54386-54409.

– Li, X., Zheng, R., Zhang, T., Zeng, Z., Li, H., Liu, J., Association between

blood urea nitrogen and 30-day mortality in patients with sepsis: a retro-

spective analysis, (2021), Annals of Palliative Medicine, vol 10 (11)
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– Garcia D.k Garcia K.; Â´Â´Artificial Intelligence for Medica Diagnosis,

Prognosis, and Treatment: A Brief Overview”. (2022) Industrial Vision

8 (1): 53-54.

Other evidences of relevance:

The paper [7] has received the mention of “position paper” by the journal Artificial

Intelligence in Medicine.

As impact, an expert system has been implemented in the Hospital de Mataró

based on this work. It is expected to develop the expert system in the whole

public health system of Catalonia in the context of the project of the Marató de

TV3.

� Finally, in 2022, we contributed in Scientific Reports journal with the paper

titled “Bayesian network-based over-sampling method (BOSME) with application

to indirect cost-sensitive learning” [6].

Journal ranking:

Scientific Reports (2022). Category: Multidisciplinary Sciences.

2021 Journal Impact Factor: 4.996 (19/73, Q2). JIF percentile 74.66

2021 Journal Citation Indicator: 1.05 (19/134, Q1). JCI percentile 86.19

2021 Total Citations: 699,320

Cited by:

Due to the recent publication, the publication has not yet received citations.

Other evidences of relevance:

As impact, it is expected to develop an R library based on the method proposed

in the paper.

Tables 2.13 and 2.14 summarize this information, including quartile of journals and

the number of cites which each contribution has achieved.
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Previous JCR Scopus Google Scholar

conference? quartile cites cites

BOSME no Q2 0 0

ENSEMBLE yes Q1 1(c.)+2(JCR)=2 1(c.)+4(JCR)=5

MCEN yes Q2 3(c.)+8(JCR)=11 10(c.)+14(JCR)=24

Table 2.13. Summary of contributions. ”c.” refers to conference paper. As example, in
Scopus the conference paper of the third work (MCEN) has 3 references and the journal paper
has 8 references. Self-references have not been counted. Last update on September 1st, 2022

Other impacts

BOSME R library (under construction)

ENSEMBLE Position paper, Expert System in Hospital de Mataró

MCEN Included in pycm3.5 library

Table 2.14. Summary of impacts
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Final conclusions

A few words by way of conclusion

In this Thesis we have made contributions to different moments of the life cycle of Ma-

chine Learning from an integral point of view, focusing our attention on the three funda-

mental stages of the cycle: preprocessing of the dataset, building the predictive

model (classifier), and validation of the model using performance metrics.

Since it is framed in a PhD. Program in Mathematics, the theoretical justification

has gained special importance in this Thesis, always trying to highlight the correct

conceptual use of the novel proposal over the simple improvement of results with respect

to other state-of-the-art works. Throughout the development of the Thesis, the research

methodology has been followed using a quantitative analysis, through a case study in

one of the works (the application to the ICU patient database).

In this sense, throughout the three works presented in this Thesis we have tried to

cover the three general objectives: basic research, algorithmic/computing, and applica-

tions. These objectives are concreted into some specific objectives, structured around

three topics, the first two with interaction between them: (a) the problem of having a

class unbalanced database, (b) the cost-sensitive approach to classification, and

(c) the use of Shannon’s entropy to measure the disorder of the elements of the con-

fusion matrix.

For each specific objective, we have approached the research following the same

three steps: (i) a methodology or procedure that can be improved, or problem, has

been identified, (ii) a solution or alternative has been proposed, and (iii) that solution

has been tested from a theoretical and/or empirical perspective.

Finally, we emphasize that Probability, and specifically its application to Super-

vised Machine Learning, has been a backbone around which the entire body of the

thesis has been built. Indeed, the introduced BOSME oversampling method as an

alternative to SMOTE is based on the construction of a probabilistic model, which

63
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is a Bayesian network that maximizes its likelihood associated with a suitable data

subset, which is nothing more than the probability of observing the instances that have

actually been observed, calculated with the probability distribution that the Bayesian

network represents. And the ensemble of classifiers EWA that we have introduced to

construct an expert system to help the corps of physicians to make decisions in their

clinical practice, is also based on the concept of probability, since the base classifiers

on which this meta-classifier is built are probabilistic, and the combination rule is a

weighted average based on the probabilities assigned by any of the base classifiers to

the classes, presenting the advantage over other combination rules of make predictions

consistent with their Confidence Level. Finally, the MCEN metric that we introduce

as a modification of CEN to overcome its unreliability in a twofold sense: the departure

of the range where it should be (the interval [0, 1]), and the lack of monotonicity when

predictive ability monotonically gets better/worse, is defined from probabilities and

uses the Shannon’s entropy, which is introduced for a discrete probability distribution.

“It is a remarkable fact that a science who started analyzing games of chance end

up becoming the most important object of human knowledge”

P.S. Laplace (1749-1827)

Some limitations

Like any research work, this Thesis is not without limits. We describe in the following

the limitations we are referring to:

� The experiments carried out in the different works presented in the Thesis have

been designed according to the available infrastructure and according to the es-

tablished timeline. Due to the computational cost of the experiments, they have

been prepared to be processed in a reasonable time.

� The pandemic suffered by COVID-19 has prevented further development of the

work initiated in the application of the Machine Learning methodology to medical

data. Regardless of the paralysis suffered by the project of collaboration with the

Hospital de Mataró during the (long) hardest period of the pandemic, for obvious

reasons, a hypothetical use of the data from the year 2020 would have biased

the proposed models due to the volume of patients infected by the SARS-COV-2

virus.

Future work

From the presented papers, new lines of research arise which are proposed as future

work.
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� According to oversampling techniques, we will try to deepen the study of the

effect of the type of features and the distribution of the class variable in the data

set, on the behavior of BOSME, and we will compare it with other methods of

oversampling using more data sets as well as modifications on the very proposal

introducing tree-width constraints on the learning structure that would lead to

less complex structures.

� In regards to the ICU database, the prediction of the variable length-of-stay in

the ICU is of interest for the optimization of hospital resources, and it would be

compelling to develop predictive models for it as an output variable, based on

the characteristics of the patients as input variables. Another aspect of interest

would be the study of how the incorporation of COVID patients to the database

affects the predictive models we learn from it, and the predictions we obtain with

them, highlighting the differences that could be observed in behaviour in the ICU

between COVID and non-COVID patients, for example.

� With respect to performance measures, in a stage after the Thesis we would like

to return to basic research. Specifically, we want to address the problem of ordinal

classification within multiclass classification, a particular situation in which the

performance metrics have to take into account not only if a classification error is

made, but between which classes that error occurs, since the error must penalize

more the further apart they are (according to the order given in the classes).

Final disposition

Despite the adversities that the preparation of this Thesis has gone through, such as

the fact of having done it remotely, part-time and with a pandemic in between, the

thesis has finally been concluded.

I would like to highlight that as far as I know, this is the first Thesis deposited in the

department that deals with issues related to Machine Learning, being, in my opinion,

relevant in a Mathematics doctorate program, giving rise to new lines of research,

adapting so to the new times.
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Bayesian network‑based 
over‑sampling method (BOSME) 
with application to indirect 
cost‑sensitive learning
Rosario Delgado  1* & J. David Núñez‑González1,2

Traditional supervised learning algorithms do not satisfactorily solve the classification problem on 
imbalanced data sets, since they tend to assign the majority class, to the detriment of the minority 
class classification. In this paper, we introduce the Bayesian network-based over-sampling method 
(BOSME), which is a new over-sampling methodology based on Bayesian networks. Over-sampling 
methods handle imbalanced data by generating synthetic minority instances, with the benefit that 
classifiers learned from a more balanced data set have a better ability to predict the minority class. 
What makes BOSME different is that it relies on a new approach, generating artificial instances of 
the minority class following the probability distribution of a Bayesian network that is learned from 
the original minority classes by likelihood maximization. We compare BOSME with the benchmark 
synthetic minority over-sampling technique (SMOTE) through a series of experiments in the context 
of indirect cost-sensitive learning, with some state-of-the-art classifiers and various data sets, showing 
statistical evidence in favor of BOSME, with respect to the expected (misclassification) cost.

Abbreviations
BOSME	� Bayesian network-based over-sampling method
SMOTE	� Synthetic minority over-sampling technique
SMOTE-NC	� Synthetic minority over-sampling technique-nominal continuous
SVDD	� Support vector data description
G-SMOTE	� Variant of SMOTE that allows the generation of synthetic instances in a geometric region 

around the selected instances
BN	� Bayesian network
DAG	� Directed acyclic graph (the graphical part of a BN)
PA	� Set of nodes that are parents, in the DAG, of a given node
MLE	� Maximum likelihood estimation method for parameters estimation
LS	� Logic Sampling algorithm
ROSE	� Random over-sampling examples
LR	� Logistic regression
RF	� Random forest
SVM	� Support vector machine
RBF	� Radial basis function kernel

In classification, an imbalanced data set is one with a skewed class distribution. We can assume we mean binary 
class data sets (otherwise non-minority classes can be merged into a single majority class), with a majority class 
(negative), and the minority class (positive) being generally the one we are most interested in predicting.

Imbalanced data sets are pervasive across a multitude of fields, making it difficult for machine learning 
algorithms to identify the minority cases. In fact, detecting instances belonging to the minority class is gener-
ally difficult, and the cost associated with misclassifying them (false negative) is often much higher than that of 
misclassifying an instance of the majority class (false positive). There are many real-world situations, such as spam 
detection, fraud identification, disease diagnosis, or vital prognosis, where misclassifying a positive class is clearly 
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worse than misclassifying a negative class. For example, in1 the minority class is the death of the patient in the 
ICU, and the cost of a false negative error, corresponding to classifying a patient who is going to die as a survivor, 
implies failing to recognize the severity of the situation and includes postponing or ruling out treatments that 
could actually improve the patient’s life expectancy, revealing the seriousness of this error.

This simple example shows the practical inadequacy of classical cost-insensitive classification, which focuses 
on maximizing accuracy but does not take into account the costs associated with different types of classification 
errors. This is because, due to the disparity of the class distribution, the algorithms learned from the data set 
tend to assign the majority class, misclassifying the minority cases, but at the same time giving the false impres-
sion of high accuracy. That is, algorithms learned from an unbalanced data set are biased towards the majority 
class and fail to learn the underlying patterns that distinguish between classes, so they are prone to overfit the 
majority class.

To address this issue, we focus on probably the most common approach, which is over-sampling.

Over‑sampling.  Over-sampling is a suitable methodology to modify the class variable distribution at a data-
level stage (pre-processing), before the learning process, to address the problem of learning classifiers from an 
imbalanced data set. In fact, it consists of creating new synthetic cases of the minority class based on the avail-
able data, and then learning the classification algorithm from the enlarged and more balanced data set, instead 
of using the original one.

The most widely used over-sampling algorithm is SMOTE (synthetic minority over-sampling technique) 
which was proposed in 20022 as an alternative to the standard random over-sampling, based on interpolation 
between neighboring cases of the minority class, and became a pioneer for the research community in imbal-
ance classification. Since then, it has become a benchmark for preprocessing imbalanced data for the purpose of 
learning classifiers from it, and has proven successful in a variety of applications from several different domains. 
Due to its popularity, SMOTE is the most influential over-sampling algorithm.

SMOTE is designed to deal with continuous features, since it over-samples the minority class by taking 
each minority class instance and introducing artificial cases by choosing points along line segments connect-
ing it with one of its (typically 5) nearest minority class neighbors in the feature space, and translates the same 
methodology to the categorical scenario, a methodology that makes no sense in this case, although it may (or 
may not) give good practical results. In fact, it generates the synthetic instances along the line segments joining 
neighbors of the k nearest neighbors in the minority class, where k is a hyper-parameter to be specified. More 
specifically, to generate a new synthetic instance, randomly selects one of two values of any categorial feature: the 
one corresponding to an instance and one of its neighbors (see details in3). Even works that generalize SMOTE 
to handle mixed data sets of categorical and continuous features have the same drawback. For example2, intro-
duces SMOTE-NC (Synthetic Minority Over-sampling TEchnique-Nominal Continuous) which, as described 
there, uses the median of the standard deviations of the continuous features of the minority class to define a 
“distance” between instances that differ in categorical features. Aside from the fact that this makes it impossible 
for this method to work with categorical data sets that do not contain continuous features (which BOSME can, 
however), it clearly lacks theoretical justification for this technique, regardless of whether experimentally it can 
experimentally give good results, since it requires working with the concept of “distance” between values taken by 
categorical variables. That is, the idea behind SMOTE lacks justification, in our opinion, for categorical features, 
and this method in no way approximates the distribution of minority instances.

In spite of this, until 2018, the date of the publication of3, a large number of SMOTE-based extensions have 
been proposed in the specialized literature. And nowadays, SMOTE is still used as the main method of over-sam-
pling. See for example4, where it is used in combination with a support vector data description SVDD model, or5, 
where the G-SMOTE algorithm used in classification is extended to regression tasks, being G-SMOTE a variant 
of SMOTE that allows the generation of synthetic instances in a geometric region around the selected instances 
instead of in the line segment that joins them. And work continues to find variants that somehow compensate 
for SMOTE’s weaknesses focusing, for example, on the definition of the neighborhood to generate new minor-
ity samples using the Euclidean distance (see6). However, some works critical of SMOTE have begun to appear 
recently in the same vein as ours. An example is7, where two imbalanced binary data classification methods based 
on diversity over-sampling by generative methods are proposed as an alternative, just as we propose BOSME.

Another approach to dealing with imbalanced data sets is under-sampling, which is just the opposite of over-
sampling, meaning a removal of instances of the majority class. There is even an intermediate approach, called 
hybrid-sampling, which uses a combination of both. See, for example, the wrapper framework for applying under-
sampling and over-sampling using SMOTE in8. Nevertheless, in this paper we will focus on over-sampling, since 
it avoids the loss of information that comes with deleting instances.

The objective of our work has been the introduction of a new general methodology of over-sampling, which 
represents a new paradigm, called Bayesian network-based over-sampling method (BOSME), which pre-pro-
cesses any set of imbalanced data by augmenting it with new cases of the minority class, so that any type of clas-
sifier can be learned from the enlarged data set. More specifically, BOSME consists of randomly generating new 
instances of the minority class using a Bayesian network. This Bayesian network is a model for the probabilistic 
relationships between the features that is learned from the subset of instances in the original data set that belong 
to the minority class, with the criterion of maximizing the likelihood.

Bayesian networks.  Bayesian networks (BN) are graphical models representing the probabilistic relation-
ships among variables affecting a phenomenon, which can be (and usually are) used for probabilistic inference. 
For a set of random variables V = {X1, . . . , Xn} , a BN is a model that represents their joint probability distribu-
tion P, the graphical part of the model consisting of a directed acyclic graph (DAG), whose n nodes represent 
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the random variables. The directed arcs among the nodes represent conditional dependencies (not necessarily 
causal) governed by the Markov condition, which we explain below.

Node X is a “parent” of node Y (and Y is a “child” of X) if there is a directed arc in the DAG from X to Y. We 
denote by PA(Y) the set of parents of Y. If PA(Y) = ∅ we say that Y is a root node. If there is a path from node 
Z to node T (that is, a concatenation of directed arcs connecting them), then we say that T is a “descendant” of 
Z; if a node has no descendants, we say that it is a “leaf ”. What characterizes the BN is the Markov condition, 
which can be expressed as follows: each variable in V is conditionally independent of any of its non-descendants 
conditioning to the state of all its parents. Moreover, P can be expressed as the product of the conditional distribu-
tions of all nodes given the values of their parents, whenever these conditional distributions exist. This is what 
is known as chain rule and is formally expressed for discrete/categorical variables as follows:

for all the possible values (instantiations) xi for Xi , i = 1, . . . , n (see Neapolitan9). The chain rule is very useful 
because it allows to obtain the joint distribution of the variables from the conditional distributions of each node 
to its parents, and from the marginal distributions of the root nodes. The probability values of these conditional 
and marginal distributions are the parameters of the BN to be learned from data.

We adopt the hill climbing greedy search-and-score-based structure learning algorithm to learn the DAG, 
which is the structure of the BN. This algorithm explores the space of the directed acyclic graphs by single-arc 
addition, removal and reversals, to find the structure that maximizes the score function, taking advantage of 
the score decomposability to decrease its complexity and make it computationally feasible. For our purpose we 
choose the logarithm of the likelihood function (logLik) as score function to be maximized, since it is a measure 
of how well the model fits the actually observed data when the parameters are estimated by using the maximum 
likelihood estimation (MLE) method.

Once we have learned from data the BN that represents the probabilistic dependency relations between the 
variables of V, both the structure and the parameters, we can obtain samples of instances following the prob-
ability distribution P entailed by the BN. For that, we will use the logic sampling (LS) algorithm10, that generates 
instances from the network distribution by randomly selecting values for each node, weighted by the probability 
of that value occurring. Indeed, LS generates the values of a new instance starting from the root nodes, which 
are sampled from their marginal probability distributions. The nodes are traversed from the “roots” down to the 
“leaves”, so at each step the weighting probability is either the marginal or the conditional probability distribution 
entry for the sampled parent values: once the values for the root nodes have been generated, the values of their 
children in the DAG are sampled from their conditional distributions (conditional on the values already sampled 
from the parents), and so on, iteratively, until that all nodes have been visited and the values of the “leaf ” nodes 
have been sampled, and with them, those of all the nodes, finishing the process. That the instances generated in 
this way follow the distribution of P is a consequence of the chain rule.

Its character as a graphic model given by the DAG, together with the Markov condition and the Chain rule, 
which allow obtaining the joint probability distribution of the model variables (and, therefore, any other prob-
ability) from the conditional probabilities of each node to its parents in the DAG, make this probabilistic model 
a really versatile, useful and unique model in the current landscape of machine learning models.

BOSME is original and different from the other over-sampling methods in that it generates the new cases from 
a model chosen using the likelihood criterion: the more likely the model is for cases of the minority class, the 
more representative of this class the cases artificially generated from the model will be, and thus allow a classifier 
learned from the enlarged data set to better discriminate the classes.

But how many cases of the minority class must be artificially generated? It depends on what is intended with 
it. We will make sense of this question and answer it in the context of cost-sensitive learning.

Cost‑sensitive approach to classification.  Cost-sensitive learning is a subfield of machine learning that 
takes into account misclassification costs when learning a classifier. It is closely related to the study of classifica-
tion in the scenario of imbalanced data sets, so they share techniques and procedures (see11). The aim of a cost-
sensitive classifier is to minimize the expected cost of (mis)classification.

Cost-sensitive learning techniques can be categorized into two groups: black box and transparent box (see12), 
which coincide, respectively, with the data-level and the algorithm-level approaches referred in13. The second 
category includes methods that modify the original learning algorithm to take cost into account, which makes it 
necessary to have a deep understanding of the algorithm itself, and thus the methods are algorithm-dependent. 
In contrast, the first category (also known as indirect methods14) uses techniques as sampling, relabeling and 
weighting before the learning of the classifier, to modify the training data set in a pre-processing phase, with the 
aim of obtaining a desired class distribution based on the misclassification costs. In this paper we focus on the 
sampling indirect methods for cost-sensitive learning, what are shared with the imbalanced classification problem. 
SMOTE has been chosen as the over-sampling method for the preprocessing of imbalanced data sets in relation 
to cost-sensitive learning by different authors8,15. In this paper we propose to use BOSME alternatively.

Much effort has been devoted so far to the development of cost-sensitive decision tree learners, but much 
less to the development of cost-sensitive Bayesian networks. See the recent paper16, in which direct and indirect 
approaches to cost-sensitive learning of Bayesian networks were followed, and experimentally compared with a 
cost-sensitive decision tree learning algorithm, showing that they are better in terms of misclassification costs 
and accuracy. In17, the indirect approach has been applied to some state-of-the-art Bayesian network classifiers, 

P(X1 = x1, . . . , Xn = xn) =

n∏

i=1

P(Xi = xi/PA(Xi))
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which perform better than when derived from the original training data set, and in18 cost-sensitive Bayesian 
networks apply to rock burst prediction.

In12, the authors used resampling and reject sampling as cost-sensitive basic indirect methods, the former 
presenting the risk of severe overfitting, and the latter requiring the averaging of different classifiers to improve 
predictive performance, which might not be very good since reject sampling implies a reduction of cases in the 
data set. Compared to them, the approach we focus on, based on the use of an over-sampling method, is a meth-
odology that avoids these two sources of poor performance: overfitting and data set reduction.

When dealing with an imbalanced data set in the cost-sensitive approach scenario, considering over-sampling 
as a sampling indirect method and the expected cost as the performance metric, we see as application of the Folk 
Theorem how from the misclassification costs, we can determine a priori how many cases we should artificially 
generate from the minority class, so that the classifier that maximizes accuracy with the enlarged data set is the 
same that minimizes the expected cost with the original. In fact, the Folk Theorem states that for that, the 
distribution of the class variable must be modified with a factor proportional to the costs of misclassification. In 
this way, we can transform any supervised learning problem with costs into a costless one suitable for applying 
any cost-insensitive classifier learning algorithm, simply by conveniently extending the data entering the learning 
process with an appropriate number of new artificial instances of the minority class.

The layout of the paper is as follows. In “Section Bayesian network-based over-sampling method (BOSME)” 
we introduce and describe BOSME, including the pseudo-algorithm that implements it. “Section Application: 
sampling indirect method for cost-sensitive learning” explains the use of the Folk Theorem to determine 
the number of new artificial cases that will be generated from the minority class by applying BOSME. “Sec-
tion Experiments” describes the experimental phase to evaluate BOSME and compare it with other methods of 
over-sampling such as SMOTE, considered as benchmark, and ROSE (Random Over-Sampling Examples). The 
results of these experiments are given in “Section Results”, and we conclude with a few words in “Section Conclu-
sion”. To lighten “Section Results”, we moved to the “Appendix” some auxiliary tables.

Bayesian network‑based over‑sampling method (BOSME)
We introduce BOSME as a theoretically well-motivated over-sampling preprocessing technique that can be used 
for general data sets. That is, it can be applied both when the features are (or can be transformed into) categori-
cal, when they are mixed (categorical and continuous), and when they are all continuous. The goal is to generate 
new artificial instances of the minority class, and this method consists of randomly generate them from the joint 
probability distribution entailed by a Bayesian network that is constructed as the probabilistic model for the 
dependency relationships between the features in the minority class setting, with the highest likelihood. This 
makes BOSME a new paradigm for over-sampling methods.

The Bayesian network is learned from the subset of the data set corresponding to the instances belonging 
to the minority class. While parameters learning is carried out following the Maximum Likelihood Estimation, 
structure learning is performed following a score-based structure learning algorithm with the logarithm of the 
likelihood function (logLik) as the score function. In the case of mixed categorical and continuous features, we 
assume that

•	 categorical nodes can only have other categorical nodes as parents,
•	 the distribution of continuous nodes is a conditional linear Gaussian, that is, conditional on any combina-

tion of values of the categorical parents, and on any value of the continuous parents, the distribution of a 
continuous node is Gaussian with a linear function of the values of the continuous parents as mean value.

If all the features are continuous, we assume that they follow a joint Gaussian distribution and each variable is 
normally distributed, being its mean a linear function of its parents, and having a common standard deviation.

The learned Bayesian network is a pseudo-optimal probabilistic model for the relationship between the 
features of the minority class, since it reaches a local maximum of the likelihood function. Since the likelihood 
function is a measure of the goodness of fit of a model to the set of instances for given unknown parameters, it 
sounds quite natural to randomly generate a sample of new synthetic instances for the minority class following 
the joint probability distribution of the features entailed by the learned Bayesian network. The intuition of this 
method is clear, leaving aside its efficacy as an over-sampling method, which we will evaluate in the experimenta-
tion section, contrary to what happens with the benchmark over-sampling method SMOTE.

We introduce some notations: denote by S the original (imbalanced) data set, with M instances and with 
binary class variable V. Let m+ be the number of instances corresponding to the minority (positive) class in S, 
and m− be the number of instances in the majority class, that is, m− = M −m+ . We assume that m+

M < 0.5 (usu-
ally, but not necessarily, << 0.5 ). The original distribution of the class variable V in the data set S is therefore 
(p+, p−) , where p+ =

m+

M  and p− =
m−

M  . Therefore, BOSME’s goal is to generate a number of new instances, say 
n, of the minority class, such that in the enlarged data set augmented with the synthetically generated instances, 
denoted by S̃ , the minority class represents a desired proportion q of the total.

For the sake of explanation, we want to determine the number of instances that the over-sampling method 
will generate, n, such that

Isolating from this equation, we get that

m+ + n

M + n
= q .
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rounding to the nearest integer, since n must be a (positive) integer. In this way, the proportion actually achieved 
will be approximately q.

The steps of the BOSME over-sampling method are detailed below (see Fig. 1 and the pseudo-code in 
Algorithm 1): 

Step 1:	 Extract from the data set S the subset of the minority class, that is, the cases for which V is the positive 
class “+”, and denote it with S+ , which is composed of m+ instances. Only if it makes sense, that is, if the 
proportion we would like for the minority class is greater than what it initially represents and less than 1 
( m+

M < q < 1 ), we can continue.
Step 2:	 Construct a Bayesian network named BN as a model for the relationship between the model features (all 

variables except the class variable V) from the data set S+ , using a score-based structure learning algorithm 
with score the log-likelihood function (logLik). In this sense, BN is a pseudo-optimal model that (locally) 
maximizes the probability of the observed instances of the minority class.

Step 3:	 Simulate from BN as many new instances as needed by using the LS algorithm, to reach the desired 
n given by (1), with no missing values, forming a set of complete instances indicated by S′+ . Note that the 
class variable V does not appear in the generated synthetic instances, and must be added manually, taking 
the value of the minority (positive) class.

Step 4:	 Bind the synthetically generated instances corresponding to the minority class, S′+ , and the original S, 
to obtain the new enlarged data set S̃ = S ∪ S′+.

(1)n = round
( qM −m+

1− q

)

Figure 1.   Graphical scheme of the BOSME algorithm.
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Algorithm 1 BOSME algorithm

Input data set S, variable name V , minority class “+”, proportion q
Output enlarged data set S̃

1: Separate S into S+ (with V = “+”) and S− (with V = “-”).
2: Get

m+, the number of instances in S+,
m−, the number of instances in S−, and
M = m+ + m−

3: if m+

M < q < 1 then
4: Build a Bayesian network BN using a score-based structure learning

algorithm with score=log-Likelihood, from D = S+ without V .
5: Compute the number of new instances to be generated

n = round
(

q M−m+

1−q

)

6: Initialize S′
+ = ∅ and Count = 0

7: while Count < n do
8: Randomly generate a new instance x, following the joint probability

distribution entailed by BN
9: Update S′

+ = S′
+∪ x

10: Update Count = Count+1
11: end while
12: end if
13: Tack on S′

+ a new variable called V with all values “+”

14: Enlarge the data set by S̃ = S ∪ S′
+

Note that the amount of over-sampling, n, is a parameter of the algorithm that is deduced by (1) from the 
input q ∈ (

m+

M , 1) , which is the desired proportion for the over-sampled minority class in the final data set, 
including the new synthetic instances.

Application: sampling indirect method for cost‑sensitive learning
We denote by c+ and c− , respectively, the cost associated with misclassifying instances belonging to the positive 
(false negative) and the negative (false positive) classes. We assume that c+ > c− . So, if γ =

c+
c−

 denotes the cost 
rate, we assume that γ > 1.

We use a Folk Theorem (Translation Theorem 2.119) to determine the proper proportion q. In fact, this 
result indicates how to modify the data set to reflect the misclassification costs optimally: if we modify the dis-
tribution of the class variable V on the data set to a new one, say (p̃+, p̃−) , multiplying any of the components 
of the original distribution (p+, p−) by a constant proportional to the associated misclassification costs, the 
resulting distribution has the following property: choose the classifier that minimizes misclassification error rates 
(maximizes accuracy) under the new distribution is equivalent to choosing the classifier that minimizes the expected 
cost under the original distribution.

The rationale behind this theorem is as follows: consider a probabilistic classifier learned from the modified 
data set. Given a new instance, if the classifier assigns it to the positive class, the expected cost (with respect to 
the class distribution of the original data set) is: 0× p+ + c− p− = c− p− . Similarly, if the classifier assigns it 
to the negative class, the expected cost is 0× p− + c+ p+ = c+ p+ . Then, the assigned class that minimizes the 
expected cost (with respect to the class distribution of the original data set) is

which matches the class that minimizes misclassification error rates under the new distribution, which are p̃− if 
the predicted class is “+”, and p̃+ if the predicted class is “−”, provided that

for some constant C > 0 . Since p̃+ and p̃− must add up to 1, we obtain that the constant necessarily has to be

{
+ if c− p− < c+ p+
− if c− p− > c+ p+,

p̃+ = C p+ c+ and p̃− = C p− c−
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Therefore, to account for misclassification costs in the sampling indirect method for cost-sensitive learning, 
we will enlarge the original data set by over-sampling the minority class, and by the Folk Theorem we will 
choose the proportion q that the minority class will represent in the enlarged data set such that the modified 
distribution of the class variable is

That is,

with γ =
c+
c−

 , showing the functional dependence of q on the initial number of instances of each class and on 
the misclassification costs rate γ.

Remark 1: Note that by (2), q ∈ (
m+

M , 1) . Indeed, since m+ γ +m− > m+ γ we have that q < 1 . On the other 
hand, using M = m+ +m−,

which is true by assumption.

Experiments
We have performed some experiments to evaluate BOSME and compare it to the benchmark SMOTE. For that, 
we consider different open access data sets and some state-of-the-art classifiers. In addition to SMOTE, we also 
compare BOSME with the over-sampling method ROSE20, which is based on a smoothed bootstrap form of re-
sampling from data, used to draw artificial samples from the feature space neighborhood around the minority 
class using a probability distribution centered at a randomly selected case and based on a smoothing matrix of 
scale parameters.

Data sets.  In the experimentation phase, the data sets summarized in Tables 1 and 2 were considered, some 
with only categorical features, others with mixed features (categorical and continuous), and the rest with all 
the features continuous. In the data preprocessing phase, the missing cases of the categorical variables have 
been consigned as a new category different from the others, while for the continuous variables they have been 
eliminated. Also, when the class variable originally had more than two categories, it has been made binary by 
category merging.

Classifiers.  In the experiments, we used the following three supervised machine learning algorithms for 
classification to compare BOSME with SMOTE and ROSE. 

C =
1

p+ c+ + p− c−
.

p̃+ =
p+ c+

p+ c+ + p− c−
and p̃− =

p− c−

p+ c+ + p− c−

(2)q = p̃+ =
p+ c+

p+ c+ + p− c−
=

p+ γ

p+ γ + p−
=

m+ γ

m+ γ +m−

q =
m+ γ

m+ γ +m−

>
m+

M
⇐⇒ γ (m+ +m−) > m+ γ +m− ⇐⇒ γ > 1 ,

Table 1.   Summary of data sets. For the data set Car evaluation, the categories good and v-good on one 
side, and acc and unaccc on the other, were merged. For Solar flare, we have taken the second data section 
flare.data2 as the data set as it seems to be more reliable. In Pizza price, extra-cheese has been taken as 
output class variable.

Data set Repository Instances Minority class Majority class Categorical features Continuous features

Car evaluation UCI 1728 134 (7.75%) 1594 (92.25%) 6 0

Spect heart UCI 267 55 (20.6%) 212 (79.4%) 22 0

Balance scale UCI 625 49 (7.84%) 576 (92.16%) 4 0

Monks UCI 415 186 (44.82%) 229 (55.18%) 6 0

Post-operative patient UCI 88 24 (27.27%) 64 (72.73%) 8 0

Tic-tac-toe endgame UCI 958 332 (34.66%) 626 (65.34%) 9 0

Solar Flare UCI 1066 43 (4.03%) 1023 (95.97%) 11 0

Breast cancer UCI 286 85 (29.72%) 201 (70.28%) 9 0

Pizza price KAGGLE 129 43 (33.33%) 86 (66.67%) 4 2

Haberman KEEL 306 81 (26.47%) 225 (73.53%) 0 3

Saheart KEEL 462 160 (34.63%) 302 (65.37%) 1 8

Happiness UCI 143 66 (46.15%) 77 (53.85%) 6 0
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1.	 Logistic Regression (LR) is a Supervised Machine Learning method dedicated to classification tasks that 
has gained popularity during the last two decades, especially in the financial sector. This method uses a 
linear regression equation to produce discrete binary outputs. We implement it through the R function 
stats::glm, using the argument “family = binomial” (see21). Note that stats package is a part of R 
(R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.)

2.	 Random Forest (RF)22 is an ensemble learning method for classification, based on a series of decision trees 
as basic classifiers (we use the default 500). The output is the mode of the classes of the individual trees 
(according to the majority vote criterion). We use its implementation in the mlearning R package (see 
“R packages references” at end of paper).

3.	 Support Vector Machine (SVM)23 uses a representation of the instances of the data set by mapping them as 
points in a space, in such a way that they are separated in the two categories by a gap as wide as possible. A 
new instance is then mapped into this space; depending on which side of the gap its point representation 
falls on, the instance class is predicted to be one or the other. We use the radial basis function (RBF) kernel 
to define the map, and the implementation of the algorithm in the mlearning R package (see “R packages 
references” at end of paper).

Implementation.  The implementation of the experimental phase has been carried out in two stages. In 
Stage 1, for any of the data sets described in “Section Data sets”, since we will be using k-fold cross-validation 
(with k = 10 ), we first randomly divide the data set into k folds of rougly the same dimension, and for any fold, 
we reserve it for later use as a validation set, and use the rest as a training set. Then, for any pair of training/vali-
dation sets, we follow the steps below (see the architecture of the proposed implementation in Fig. 2). 

Step 1:	 Use the BOSME over-sampling technique (Algorithm 1), as well as SMOTE and ROSE, for cost-
sensitive learning of the classifiers from the initial training data set, using misclassification costs and the 
initial distribution of the class variable. That is, determine the proportion q that the minority class “+” 
should represent in the enlarged training set by (2), and apply the over-sampling technique to obtain it. 
To learn the Bayesian network in Algorithm 1, we use the hill-climbing algorithm implemented in the R 
package bnlearn by means of the function hc. As score we use the option loglik when all features are 
categorical, loglik-cg in the conditionally Gaussian mixed Bayesian network case, and loglik-g in 
the Gaussian case with all the features continuous. For the simulation of the new instances corresponding 
to the minority class from the Bayesian network with the LS algorithm, we use the rbn function from the 
bnlearn package. We use the implementation of SMOTE given by the smote function of the R package 
performanceEstimation, and function ROSE of the R package of the same name, for the implementa-
tion of the ROSE oversampling method. See “R packages references” at the end of the paper.

Step 2:	 Learn the classifiers introduced in “Section Classifiers” from the enlarged training data sets, obtained 
in Step 1, with BOSME, SMOTE and ROSE for comparison.

Step 3:	 Evaluate the classifiers using the original validation set. As performance metric we use accuracy, as 
explained in “Section Application: sampling indirect method for cost-sensitive learning”.

Therefore, for each data set we get a 10-dimensional vector of values for any classifier and any of the over-
sampling methods as output of Stage 1 (see the output in the scheme depicted in Fig. 2).

To avoid possible bias, in a second stage we repeat the described procedure 10 runs with different seeds for 
the random splitting of the data set into the k folds. Next, we analyze the results obtained to make comparisons 
between BOSME, SMOTE and ROSE as shown in the flowchart described in Fig. 3, which encompasses the 
architecture portrayed in Fig. 2.

For that, we have performed pairwise statistical tests of hypotheses to determine the significance of the results. 
More specifically, for any data set and for any run, given the classifier, we can perform a paired test to compare 
the mean (or median, as appropriate) accuracy of the two corresponding samples of size 10 obtained using the 

Table 2.   Summary of data sets whose results are statistically insignificant to compare BOSME with SMOTE.

Data set Repository Instances Minority class Majority class Categorical features Continuous features

Congresional Voting UCI 435 168 (38.62%) 267 (61.38%) 16 0

Lymphography KEEL 148 6 (4.05%) 142 (95.95%) 18 0

Diabetes UCI 520 200 (38.46%) 320 (61.54%) 15 0

Zoo UCI 101 5 (4.95%) 96 (95.05%) 16 0

Qualitative Bankrupcity UCI 250 107 (42.8%) 143 (57.2%) 6 0

Dishonest UCI 322 97 (30.12%) 225 (69.88%) 4 0

Lung KAGGLE 309 39 (12.62%) 270 (87.38%) 14 1

Indian KAGGLE 399 195 (48.87%) 204 (51.13%) 5 0

TAE UCI 151 29 (19.21%) 122 (80.79%) 2 3

Bupa KEEL 345 145 (42.03%) 200 (57.97%) 0 6
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BOSME, SMOTE and ROSE over-sampling methods. We use the Shapiro-Wilk normality test to choose between 
the parametric t-test and the paired non-parametric Wilcoxon signed-rank test, with the criterium that if its p 
value is < 0.05 , normality cannot be assumed and therefore the last one must be carried out; otherwise, we can 
use the paired t-test.

In this way, for each data set, each classifier and each over-sampling method, we have two counters that col-
lect the number of runs, of the 10, in which BOSME outperforms the other over-sampling method (counter+ ) 
and the number of runs for which just the opposite happens (counter− ), which are shown as the output of the 
procedure described in Fig. 3. The above procedure is performed for different values of the cost ratio γ =

c+
c−

 , 
varying between 5 and 50, from 5 to 5. The results obtained are explained in the next section.

Results
BOSME versus SMOTE.  Tables 8, 9, 10, 11 and 12 in the "Appendix" summarize the results of the experi-
mental process when comparing BOSME with SMOTE. They record the number of runs (out of 10 possible) 
for which there is statistical evidence in favor of BOSME (positive number, counter+ ) and in favor of SMOTE 
(negative number, counter− ). If only a positive number appears in a box, it means that counter− = 0 , and the 
same happens if only a negative number appears, which means that counter+ = 0 . As usual, ∗ means statistical 
significance at the 0.05 level, ∗∗ at 0.01, and ∗∗∗ at 0.001.

The corresponding exact Binomial p values (used instead of the McNemar test, because the sample is small) 
have also been recorded in these tables, provided that they are significant ( < 0.05 ), for any data set and classifier, 
for the different values of γ . For example, in Table 8 with γ = 10 , for the SVM classifier and the Post opera-
tive data set, counter+ = 9 and counter− = 0 , that is, there are 9 of the 10 runs with statistical differences 
between BOSME and SMOTE, all in favor of BOSME, with a one-sided p value for the exact Binomial test equal to

One more example: in the same table, for the data set Flare with the SVM classifier, counter+ = 8 and coun-
ter− = 1 , which means that out of 10 runs, there are 9 with statistical differences between BOSME and SMOTE, 
8 in favor of BOSME and 1 in favor of SMOTE, giving a one-sided p value for the exact Binomial test in favor 
of BOSME equal to

P(B(n, 0.5) = counter+) = P(B(9, 0.5) = 9) =

(
9

9

)(1
2

)9(1
2

)0
= 0.001953125∗∗

Figure 2.   Implementation: Stage 1 architecture to compare BOSME with SMOTE (analogous with ROSE).
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In Table 3 we summarize by data set the results given in Tables 8, 9, 10, 11 and 12, showing with a positive number 
for how many classifiers BOSME has been statistically successful against SMOTE (p value < 0.05 and counter+ >

counter− ). On the contrary, a negative number expresses the number of classifiers with which SMOTE has been 
significantly better than BOSME (p value < 0.05 and counter− >counter+ ). Since we have used 3 different clas-
sifiers, +3/− 3 are the best and worst ratings, respectively, in favor of BOSME. The white boxes do not show 
significant results in any sense. The information from Table 3 is represented in Fig. 4, where we can observe 
the behavior of BOSME with respect to SMOTE for the different values of the cost ratio γ and any data set. As 
expected, although this behavior varies with the data set, in all the cases except the Saheart data set, BOSME 
outperforms SMOTE, especially for high values of γ . In Table 3 we also record the value of the β-score, which 
we enter as the sums per column. So β ranges from −36 to +36 ( 36 = 12× 3 , with 12 data sets and 3 classifiers).

Both in Table 3 and in Fig. 4 the data sets “Haberman” and “Saheart” appear to behave differently of the rest. 
These data sets have a characteristic that, together with “Pizza”, differentiates them from the rest, and that is the 
fact that some of the features are continuous, so the Bayesian network that is learned in the BOSME method is 
no longer a standard but a Gaussian Bayesian network (“Haberman”) or a hybrid Bayesian network (“Saheart”, 
“Pizza”). Therefore, it is not surprising that with these datasets BOSME does not behave so well with respect to 
SMOTE, since this last method has been designed for datasets with continuous features, and although SMOTE 
can also be used with categorical features, seems that in this case BOSME outperforms it. For both “Haberman” 
and “Saheart”, all the features (in the first), or almost (8 of 9 in the second), are continuous. However, “Pizza” is a 
hybrid case in which of the 6 features, only 2 are continuous, behaving more in line with the rest of the datasets.

Table 4 below is complementary to Table 3 in summarizing by classifier the results given in Tables 8, 9, 10, 11 
and 12. Since we have considered 12 different data sets for which there are significant results, +12/− 12 are the 
best and worst ratings, respectively, in favor of BOSME. Figure 5 below represents the information in this table 
and allows comparing the behavior of BOSME with respect to SMOTE for the different values of the cost ratio 
γ and any type of classifier. We see in Fig. 5 that although with some classifiers the behavior of BOSME relative 

P(B(n, 0.5) = counter+) = P(B(9, 0.5) = 8) =

(
9

8

)(1
2

)8(1
2

)1
= 0.01757812∗

Figure 3.   Implementation: Stage 2 procedure flowchart covering the Stage 1 architecture shown in Fig. 2. The 
letter “M” in the decision boxes denotes the mean/average or the median, depending on whether or not the 
normality of the distribution of the sample x − y can be assumed, respectively, where x and y are the output of 
Stage 1 (Fig. 2).
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to that of SMOTE is better than with others (it seems that with the Logistic Regression it is clearly worse), in 
general it improves when γ increases, regardless of the chosen classifier.

We can represent the β-score provided by Table 3 with the help of the graph in Fig. 6, where we can observe 
two interesting results: (a) the β-score turns out to be always positive, and (b) it increases with the cost ratio γ.

We can perform some statistical tests of hypotheses to check the importance of these two observed 
phenomena. 

Table 3.   Summary of the results, by data set, for different values of the cost ratio γ =
c+

c−
 . The numbers in the 

boxes indicate for how many classifiers, of the possible 3, there is statistical significance in favor of BOSME 
(positive) or in favor of SMOTE (negative, in bold). For each γ , we take count of the β-score.

γ 5 10 15 20 25 30 35 40 45 50

Car eval. +2 +2 +3 +3 +3 +3 +3 +3 +3

Spect heart +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Balance +1 +2 +2/−1 +2/−1 +2 +2 +2 +2 +2 +2

Monks +1 +1 +2 +2 +2 +2 +2 +2 +2

Post-oper. +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Tic-tac-toe +3 +3 +3 +3 +3 +3 +3 +3 +3 +3

Solar flare +2 +2 +1 +1 +1 +1 +2 +2 +2

Breast +2 +2 +2 +2 +2 +2 +3 +2 +2 +3

Pizza +1 +2 +2 +2 +2 +2 +2

Haberman +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1 +1/−1

Saheart /−1 /−1 /−1 /−3 /−2 /−3 /−3 /−3 /−3

Happiness +1 +1 +1 +1 +1 +1

β-score +8 +13 +12 +14 +15 +16 +16 +16 +16 +17

Figure 4.   Representation of the information in the Table 3, by data set, for the different values of γ.
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(a)	 Positiveness of the β-score: Indeed, in Table 3, of the 10 considered values of γ , the number of them for 
which the corresponding β-score is strictly positive is 10. The corresponding p value for the exact Binomial 
test is 

which implies a statistical significance in favor of BOSME (the one associated with the positive value of 
the β-score).

(b)	 Trend monotonicity of the β-score with respect to γ : We observe in Table 3 that, in general, the values 
of the β-score increase with γ (see Fig. 6). To check the statistical significance of this trend monotonicity, 
we use the Mann–Kendall test24,25, which statistically evaluates whether there is a monotonic upward or 
downward trend of the variable of interest, which is the β-score, relative to an ordered variable like γ (which 
does not necessarily have to be temporary in nature). A monotone up (down) trend means that the variable 
consistently increases (decreases) as γ increases. If the Mann–Kendall test gives a significant positive or 
negative trend (p value < 0.05 ), which in this case will be positive, Sen’s slope captures the magnitude of 

P(B(n = 10, p = 0.5) = 10) =

(
10

10

)(1
2

)10 (1
2

)0
= 0.0009765625∗∗∗ ,

Table 4.   Summary of the results, by classifier, for different values of the cost ratio γ =
c+

c−
 . The numbers in the 

boxes indicate for how many data sets, of the possible 12, there is statistical significance in favor of BOSME 
(positive) or in favor of SMOTE (negative, in bold).

γ 5 10 15 20 25 30 35 40 45 50

SVM +5 +7/−2 +7/−2 +8/−2 +8/−2 +8/−2 +8/−2 +9/−2 +9/−2 +9/−2

RF +3 +6 +6 +7 +8/−1 +8/−1 +8/−1 +8/−1 +8/−1 +8/−1

LR +1/−1 +2 +2/−1 +2/−1 +3/−1 +3 +4/−1 +3/−1 +3/−1 +4/−1

Figure 5.   Graphic representation of the information in Table 4, by type of classifier, for the different values of γ.
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that trend (that is, it provides an estimate of the average increase in the β-score per increase of a section 
of γ ). The results of the Mann–Kendall test, and also Spearman’s rank correlation test, are given in Table 5 
below.

Table 5 shows that there is indeed a significant monotonically increasing trend in the β-score, as the cost 
ratio γ increases, which is associated with a better behavior of BOSME with respect to SMOTE. The empirical 
evidence is in the sense that: BOSME outperforms SMOTE for all the values tested in the experimental phase, 
but it also does so more the higher the value of the cost ratio γ.

BOSME versus ROSE.  Comparing BOSME with ROSE similarly to the comparison with SMOTE, we find that 
there are significant differences only for the 3 data sets: Pizza price, Haberman, and Saheart. The 
results are in Tables 6 and 7.

Positiveness of the β-score for BOSME versus ROSE: in Table 6 we observe that of the 10 values considered 
for γ , the number of them for which the corresponding β-score is strictly positive is 10. The corresponding p 
value for the exact Binomial test is the same as when compared to SMOTE: 0.0009765625*** in favor of BOSME. 
Since, except in one case, all values of the β-score are constant with γ , there is not statistical significance for trend 
monotonicity (two-sided Mann–Kendall p value 0.1616).

Conclusion
The introduced BOSME is an over-sampling method that has achieved moderate to good performance against 
the SMOTE and ROSE over-sampling methods, through a series of experiments, in the context of the indirect 
cost-sensitive learning approach. This approach consists of enlarge the original imbalanced data set with a 
number of artificially generated minority instances, which is determined from the misclassification costs. In 

Figure 6.   Graphic representation of the β-score for the results of Table 3, where the evolution as the cost ratio γ 
increases can be observed.

Table 5.   β-score. Mann–Kendall test: τ statistic, two-sided p value and Sen’s slope with a confidence interval 
(CI) of 95% . Spearman’s rank correlation test: rho statistic and one-sided p value for the alternative hypothesis 
that ρ > 0.

Mann–Kendall Spearman’s rank correlation

τ Two-sided p value Sen’s slope ρ p value

0.649 0.000091*** 1.34286, 95% CI: (0.4, 2.5) 0.95672 0.000007***

Table 6.   Summary of the results, by data set, for different values of the cost ratio γ =
c+

c−
 . The numbers in the 

boxes indicate for how many classifiers, of the possible 3, there is statistical significance in favor of BOSME 
(positive) or in favor of ROSE (negative, in bold). For each value of γ , we take count of the β-score.

γ 5    10    15   20   25 30 35 40 45 50

Pizza /−1 /−1 /−1

Haberman +1 +1 +1

Saheart +2 +2 +2 +2 +2 +2 +2 +2 +3 +2

β-score +2 +2 +2 +2 +2 +2 +2 +2 +3 +2
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this way, we use over-sampling methods and take misclassification costs into account, to extend the data used 
to feed cost-insensitive supervised learning algorithms.

In fact, the results empirically show that in the context of the cost-sensitive approach, 

(a)	 there is statistical evidence in favor of BOSME dominance over SMOTE,
(b)	 this evidence is stronger as the cost ratio γ increases, and for data sets with all categorical features (above 

continuous or mixed type),
(c)	 there is slight evidence in favor of BOSME’s dominance over ROSE, which remains constant as γ varies.

Other highlights of this new method that distinguish it from SMOTE are: 

1.	 BOSME is a novel over-sampling method based on a new paradigm, using Bayesian networks.
2.	 The generation of the artificial instances of the minority class is carried out from a model for the relationship 

between the features, instead of using the idea of distance between instances, which is the paradigm followed 
by SMOTE and its derivatives.

3.	 Maximizing the likelihood function is the criterion for choosing the Bayesian network to use as a model. In 
this way, the model will be the most plausible given the minority instances, and approximates their prob-
ability distribution.

4.	 The Bayesian network is then a good model that captures the relationship between the features for the minor-
ity class, with which generate new instances of this class that are really representative, and from them, learn 
classifiers that can better differentiate between the two classes, improving their predictive power.

5.	 This method has wide applicability, for all kinds of features.

Table 7.   Summary of the results, by classifier, for different values of the cost ratio γ =
c+

c−
 . The numbers in 

the boxes indicate for how many data sets, of the possible 3, there is statistical significance in favor of BOSME 
(positive) or in favor of ROSE (negative, in bold).

γ 5 10 15 20 25 30 35 40 45 50

SVM +1/−1 +2/−1 +2/−1 +1 +1 +1 +1 +1 +1

RF +1 +1 +1

LR +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Table 8.   Number of runs (of the possible 10) for which there is statistical evidence in favor of BOSME 
(positive number, counter+ ) or SMOTE (negative in bold, counter− ), and the corresponding exact Binomial 
p value, for any data set with significant differences, and classifier: Support Vector Machine (SVM), Random 
Forest (RF) and Logistic Regression (LR). γ = 5, 10.

γ = 5 γ = 10

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+7
0.00781**

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

+10
0.00098***

Monks +6
0.01563*

Post-oper. +7
0.00781**

+9
0.00195**

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +8/−1
0.01758*

+7
0.00781**

Breast +9
0.00195**

+10
0.00098***

+10
0.00098***

+10
0.00098***

Pizza +10
0.00098***

Haberman +5
0.03125*

/−6
0.01563*

/−9
0.00195**

+7
0.00781**

Saheart /−7
0.00781**

Happiness
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As a consequence, we conclude that BOSME, which is the method presented in this paper, is a reasonable over-
sampling method that has shown very promising results for implementing indirect cost-sensitive learning, in 
the duel against the benchmark SMOTE, especially in the case of having data sets with all features of categorical 
type, and for a moderate to high cost ratio. In the case of data sets with mixed features, BOSME does not perform 
better but it can withstand SMOTE’s onslaught. With respect to ROSE, significant differences are only observed, 
in favor of BOSME, in the case of mixed features. Therefore, given that its results in the experimental phase 

Table 9.   Analogous to Table 8 but with γ = 15, 20.

γ = 15 γ = 20

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+10
0.00098***

+10
0.00098***

+7
0.00781**

+10
0.00098***

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

−10
0.00098***

+10
0.00098***

+10
0.00098***

−9
0.00195**

Monks +10
0.00098***

+5
0.03125*

+9
0.00195**

Post-oper. +9
0.00195**

+9
0.00195**

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +6
0.01563*

+8
0.00391**

+8
0.00391**

Breast +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Pizza +8
0.00391**

Haberman /−10
0.00098***

+10
0.00098***

/−10
0.00098***

+10
0.00098***

Saheart /−10
0.00098***

/−10
0.00098***

Happiness

Table 10.   Analogous to Table 8 but with γ = 25, 30.

γ = 25 γ = 30

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+8
0.00391**

+10
0.00098***

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Monks +6
0.01563*

+10
0.00098***

+9
0.00195**

+10
0.00098***

Post-oper. +9
0.00195**

+9
0.00195**

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +8
0.00391**

+9
0.00195**

Breast +10
0.00098***

+10
0.00098***

+10
0.00098***

+9
0.00195**

Pizza +7
0.00781**

+5
0.03125*

+10
0.00098***

+6
0.01563*

Haberman /−10
0.00098***

+10
0.00098***

/−10
0.00098***

+10
0.00098***

Saheart /−10
0.00098***

/−5
0.03125*

/−6
/0.01563*

/−10
0.00098***

/−7
0.00781**

Happiness +5
0.03125*

+6
0.01563*
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have been very promising, we promote the use of BOSME as an over-sampling methodology with completely 
general applicability.

In future research, we will try to deepen the study of the effect of the type of features and the distribution of 
the class variable in the data set, on the behavior of BOSME, and we will compare it with other methods of over-
sampling using more data sets. We are also interested in considering extensions/modifications of the version of 

Table 11.   Analogous to Table 8 but with γ = 35, 40.

γ = 35 γ = 40

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Monks +10
0.00098***

+10
0.00098***

+7
0.00781**

+10
0.00098***

Post-oper. +10
0.00098***

+10
0.00098***

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +9
0.00195**

+5
0.03125*

+9
0.00195**

Breast +10
0.00098***

+10
0.00098***

+6
0.01563*

+10
0.00098***

+10
0.00098***

Pizza +9
0.00195**

+6
0.01563*

+8
0.00391**

+5
0.03125*

Haberman /−10
0.00098***

+10
0.00098***

/−10
0.00098***

+10
0.00098***

Saheart /−10
0.00098***

/−9
0.00195**

/−6
/0.01563*

/−10
0.00098***

/−9
0.00195**

/−8
/0.00391**

Happiness +7
0.00781**

+7
0.00781**

Table 12.   Analogous to Table 8 but with γ = 45, 50.

γ = 45 γ = 50

SVM RF LR SVM RF LR

Car eval. +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Spect heart +6
0.01563*

+6
0.01563*

Balance +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Monks +9
0.00195**

+10
0.00098***

+10
0.00098***

+10
0.00098***

Post-oper. +10
0.00098***

+10
0.00098***

Tic-tac-toe +10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

+10
0.00098***

Solar flare +7
0.00781**

+9
0.00195**

+7
0.00781**

+9
0.00195**

Breast +10
0.00098***

+10
0.00098***

+10
0.00098***

+9
0.00195**

+5
0.03125*

Pizza +10
0.00098***

+7
0.00781**

+10
0.00098***

+6
0.01563*

Haberman /−10
0.00098***

+10
0.00098***

/−10
0.00098***

+10
0.00098***

Saheart /−10
0.00098***

/−8
0.00391**

/−9
/0.00195**

/−10
0.00098***

/−8
0.00391**

/−9
/0.00195**

Happiness +8
0.00391**

+7
0.00781**
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BOSME that we present in this paper, for example by introducing tree-width constraints on the learning structure 
that would lead to less complex structures.

R packages references

•	 performanceEstimation (version 1.1.0). Function: smote. Reference: Torgo, L. An Infra-Structure 
for Performance Estimation and Experimental Comparison of Predictive Models in R (2014). arXiv:​1412.​
0436 [cs.MS]

•	 ROSE (version 0.0-3). Function: ROSE. Reference: Lunardon, N., Menardi, G.,Torelli, N. ROSE: a Package 
for Binary Imbalanced Learning. R Journal, 6:82–92 (2014).

•	 mlearning (version 1.0-0). Functions: mlSvm and mlRforest. Reference: Grosjean, Ph., Denis, K. 
mlearning: Machine learning algorithms with unified interface and confusion matrices (2013). https://​
CRAN.R-​proje​ct.​org/​packa​ge=​mlear​ning

•	 bnlearn (version 4.7). Functions: hc and rbn. Reference: Scutari, M. Learning Bayesian Networks with 
the bnlearn R Package. Journal of Statistical Software vol. 35(3), pp. 1–22 (2010). http://​www.​jstat​soft.​org/​
v35/​i03/

Code availability
The data sets analyzed during the current study are available in the following repositories: (1) UCI: https://​archi​
ve.​ics.​uci.​edu/, (2) KAGGLE: https://​www.​kaggle.​com/, (3) KEEL https://​sci2s.​ugr.​es/​keel/​data sets.​php.

Data availability
The R source code for this project is available upon reasonable request.

Appendix
See Tables 8, 9, 10, 11 and 12. 
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A B S T R A C T   

We develop a predictive prognosis model to support medical experts in their clinical decision-making process in 
Intensive Care Units (ICUs) (a) to enhance early mortality prediction, (b) to make more efficient medical de
cisions about patients at higher risk, and (c) to evaluate the effectiveness of new treatments or detect changes in 
clinical practice. It is a machine learning hierarchical model based on Bayesian classifiers built from some 
recorded features of a real-world ICU cohort, to bring about the assessment of the risk of mortality, also pre
dicting destination at ICU discharge if the patient survives, or the cause of death otherwise, constructed as an 
ensemble of five base Bayesian classifiers by using the average ensemble criterion with weights, and we name it 
the Ensemble Weighted Average (EWA). 

We compare EWA against other state-of-the-art machine learning predictive models. Our results show that EWA 
outperforms its competitors, presenting in addition the advantage over the ensemble using the majority vote 
criterion of allowing to associate a confidence level to the provided predictions. We also prove the convenience of 
locally recalibrate from data the standard model used to predict the mortality risk based on the APACHE II score, 
although as a predictive model it is weaker than the other.   

1. Introduction 

Medical care is one of the most exciting frontiers in data mining and 
machine learning. Although the methodology of prognostic research, 
including the prediction rules and the approaches to validate them, is 
still relatively underdeveloped, accurate prognosis, which refers to a 
prediction of the course and outcomes of a patient based on the most 
likely trajectory of a disease or health problem, has become a key 
concept in patient care today. 

Clinical decision-making for critically ill patients admitted in 
Intensive Care Units (ICU) is a costly and complex process, which suffers 
from excessive variability between the opinion of physicians, since it is 
largely driven by experience and instinct [1,2]. Apart from age, 
comorbidities or organ failures, there are other aspects related to he 

death of patients in ICU, such as delay on attention or inadequate 
management, which are also linked to the length of stay and costs, as 
well as to the decrease in quality of life at ICU discharge in survivors 
[3–5]. In order to improve the quality of the attention, it is important to 
establish protocols for the management of the healthcare process [6,7]. 

The traditional approach to improve the performance of ICUs is 
founded on the development of scores which try to predict the likelihood 
of negative outcomes (e.g. risk of death). From them, the Acute Physi
ology And Chronic Health Evaluation (APACHE) is a commonly used 
scoring system to quantify the severity of illness and to group adult ICU 
patients by predicted risk of mortality, based on patient data corre
sponding to the first 24 h after admission to the ICU. This prediction is 
carried out by means of a logistic regression model in which APACHE is 
one of the regressors, validated on previous groups of ICU patients [8]. 
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Although there are different versions of this score, APACHE II [9] is still 
the most used today (see for example the recent works [10], [11] and 
[12]). This traditional approach based on APACHE II and its successive 
versions presents some limitations, such as:  

(a) not incorporating variations between units or regions,  
(b) better behaviour in large populations than in small ones, and  
(c) stiffness as predictive model, since if the value of any of the key 

variables for the patient is not known (variables related with the 
kind of admission and the severity score APACHE itself), cannot 
provide a prediction, 

which make it unsatisfactory. With its more than 40 years, in some sense 
APACHE score has become obsolete, taking into account the evolution of 
medical practice today. In addition, the impact of age on survival, one of 
the items that scores the most on it, has changed, as well as the life 
expectancy of neoplastic, coronary or HIV patients, for example. 
APACHE has not adapted to this new reality. 

Thus, there is a need to find out new methods to address these 
shortcomings and to improve the predictions of the risk of mortality for 
ICU patients. The application of Artificial Intelligence to Medicine to 
build predictive prognostic models may represent an opportunity for 
improvement over scale-based models, such as the one that uses the 
APACHE score. It is our purpose in this work to present a machine 
learning methodology that will be validated with a real database. 
Experimentally we see that it provides good results and avoids the weak 
points of the traditional approach, so it proves to be a better alternative 
to the regression models based on the APACHE score. 

1.1. Literature review 

Different data-driven models have been considered in the literature 
to support medical experts in their clinical decision-making process in 
hospital ICUs, to improve quality and for benchmarking purposes on the 
one hand, and for a greater personalization of care on the other. These 
models could reduce the inter-clinical variability and are able of treating 
a large number of variables, finding complex relationships between 
them. In recent years we can find several works on the state-of-the-art of 
the use of quantitative methods to assist in medical prognosis and 
decision-making in health centers and hospitals [13–15]. Some of these 
methods use machine learning tools to face with different situations; in 
particular, there have been several attempts to apply machine learning to 
improve the management of ICUs (see [16–20]). 

Examples of recent works are: [21], in which the authors introduce a 
predictive model for the survival probability via support vector ma
chines (SVM), making comparisons with other based on logistic 
regression (LR), where the APACHE score is recalibrated, and they show 
that SVM outperforms others. Benchmark results for mortality and 
length of stay predictions using Deep Learning have been presented in 
[22], where an ensemble of machine learning models and some scores 
have also been considered, using the Medical Information Mart for 
Intensive Care III (MIMIC-III) publicly available dataset [23], and 
showing that Deep Learning models consistently outperform the other 
approaches. To predict the risk of death from some quantitative mea
sures based on the heart rate signals of ICU patients suffering cardio
vascular diseases, eight supervised classifiers have been introduced in 
[24] with the MIMIC-III dataset: decision tree, linear discriminant, lo
gistic regression, SVM, random forest (RF), boosted trees, Gaussian 
SVM, and K-nearest neighbors (K-NN), showing that the former per
forms better than the others. A deep multi-scale convolutional archi
tecture trained on the MIMIC-III dataset for mortality prediction has 
been introduced in [25], to address the problem that although deep 
neural networks are able to outperform the score approach, they suffer 
from lack of interpretability. The same problem has been considered in 
[26], proposing a different solution: an interpretable Bayesian neural 
network architecture which offers the flexibility of neural networks 

without sacrificing interpretability in terms of the selected features, and 
that has been evaluated using two real-world ICU datasets, MIMIC-III 
and CENTER-TBI [27]. We finish this review on related works with 
[28] and [29], which use multiple machine learning methods to improve 
prediction performance. 

1.2. Black versus white box models in pattern recognition 

Pattern recognition consists of classifying objects or individuals, 
which are described by a set of characteristics or features, using a model 
built on the basis of some data, assigning them a class label. In the su
pervised learning pattern recognition problems, each object or individual 
in the data comes with an observed label, and all the information 
relating to an object or individual forms a “case”. Then, the task of 
pattern recognition is to construct (train) a model, that is, a classifier, to 
assign a class to each new case. 

Neural networks (NN), which are designed to mimic the performance 
of the human brain, is by far the most widely used machine learning 
methodology for pattern recognition in the environment of an hospital 
ICU so far. Its major weakness, however, is that the procedure by which 
NN discovers relationships or patterns in the data is hidden or opaque (it 
is said that NN is a black box) and therefore it is not easily understood nor 
explained. That is, although the predictive capacity of this classifier 
usually shows its adequacy in practice, the classification knowledge 
learned by the NN turns out to be obscure. 

Instead, using Bayesian Networks (BN) is a good way to model sit
uations under uncertainty since, unlike what happens with the black box 
models, they are characterized by being white box models that show the 
relationships and patterns found between the variables in a completely 
understandable (transparent) way. For this reason BN have been gaining 
popularity as classifiers in health care applications, thanks to their 
versatility and power. Just to mention some examples, they have been 
used in public health evaluation [30], for risk assessment with emerging 
diseases [31] or for medical diagnosis [32]. BN have been used in the 
Intensive Care Unit to evaluate EEGs [33] and to establish prognosis in 
patients with head injuries [34]. To finish this brief summary, the 
application of Dynamic Bayesian network has been useful for the pre
diction of organic failure sequences in patients admitted to the ICU in 
[35]. 

The authors of [36] use Naive Bayes, jointly with other machine 
learning methodologies, as predictive tools for the inference of lactate 
level and mortality risk regarding sepsis. Just one comment on this: 
although Naive Bayes is a particular case of BN, it is not a white box 
model but a black box, since its structure (DAG) is fixed and not learned 
from the data, so it does not reflect the dependency relationships be
tween the variables included in the model. Naive Bayes is based on a 
very strong independence assumption between the features conditioned 
to the class variable; despite that, it has shown to work quite well in 
many complex real-world situations. 

1.3. The methodology 

With the aim of helping in the vital prognosis of patients admitted to 
the ICU of a hospital, we propose a machine learning methodology for 
pattern recognition purpose, consisting in the use of ensembles of BN to 
build a hierarchical predictive prognosis model. 

The idea behind the ensembles of classifiers is to combine several in
dividual classifiers to get a new one that beats them all. It seems a 
natural strategy since we tend to seek input from different people before 
making our important decisions, and this is especially so in the field of 
clinical diagnosis, where the opinions of different experts can be taken 
into account to reach the final decision about a patient. Instead of 
putting the emphasis on choosing a good classifier, if there is one, we put 
it on the combination of various classifiers, in the hope that by 
combining them, the faults of some will be compensated by the others, 
and the joint result improves each of the parts. 

R. Delgado et al.                                                                                                                                                                                                                                
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The prediction process with the hierarchical model consists of two 
stages: (1) predicting the class variable Result (live/die), (2) predicting 
the class variables Destination (at ICU discharge) or Cause (of death), 
depending on the prediction in the previous stage. We consider the cause 
of death as an essential element in the hierarchical predictive prognostic 
model, whose prediction can help to improve the evaluation of the 
quality of the care process at the ICU level. Both stages lean on an 
ensemble of five base Bayesian classifiers, that we denote by EWA, 
constructed using the weighted average criterion with appropriate 
weights. This criterion is of the type “fusion of continuous-valued out
puts”, that unlike what happens with the criteria based on the “fusion of 
labels”, such as the majority vote, is based not on the prediction, but on 
the probabilities assigned to the classes by each of the classifiers that 
make up the ensemble, and has the advantage of being compatible with 
the MAP (Maximum A Posteriori) criterion. About the weights, our 
proposal is to use an adequate transformation of the Area Under the 
Precision-Recall curve (AUPR), which is used instead of Accuracy as 
performance metric since our dataset is quite skewed for the class 
variable. 

Up to our knowledge, this is a novel approach for vital prognosis of 
critically ill patients, both by the fact of using a hierarchical model, and 
by the use of an ensemble of BN as machine learning methodology for 
pattern recognition, which is based on the weighted average criterion 
with weights defined from the AUPR with an adequate transformation. 

1.4. Evaluation 

We apply the proposed methodology to a real-world dataset of crit
ical patients admitted to the ICU of a hospital. To show its usefulness to 
aid in the vital prognosis, we carried out an experimental evaluation to 
make comparisons with other pattern recognition proposals, since the 
performance of the prediction models appears to be, usually, context 
dependent. 

For that, we compare EWA with other state-of-the-art machine 
learning methodologies, such as NN, SVM and RF, without intending to 
be exhaustive, but rather to highlight its strengths and weaknesses. We 
also compare the standard mortality prediction based on the APACHE II 
score using a logistic regression against a locally recalibrated model that 
we also built using APACHE II, for which coefficients are estimated from 
the data by means of a logistic regression, and then compare them both 
with the EWA ensemble. In addition, we compare EWA with the 
ensemble but without weights, denoted by EA (or, to be more rigorous, 
with weights all the same), and also with the ensembles obtained from 
the same base Bayesian classifiers by using both the majority vote cri
terion (denoted by MV) and the weighted majority vote criterion 
(denoted by WMV), that have already been introduced in our pro
ceedings paper [37]. 

Both from the medical and from the management of the ICU points of 
view, the hierarchical model based on the EWA ensemble gave inter
esting results from where we get relevant conclusions. Besides, it allows 
to associate a reasonable confidence level to predictions, issue on which 
the ensembles MV and WMV fail. Moreover, we have implemented this 
model as inference engine of an expert system that helps in the vital 
prognosis at the ICU level, and developed a computational tool intended 
to make easier the communication between the medical staff and the 
expert system. 

1.5. A further utility 

In each specific context it may happen that some of the features 
might be irrelevant for the prognosis of patients (they are only “noise”), 
while others show to be important for prediction, and even some fea
tures might be important but only in relation to others. That is, they are 
not all equally relevant. 

As said in Section 1.2, one of the advantages of our predictive 
prognosis model is that it is a white box and, therefore, allows us to to 

carry out a study (see Section 4) on the importance of the features that 
are included in the model based on the consideration of two different 
aspects: centrality and betweenness and feature strength. Centrality and 
betweenness, on the one hand, are concepts of the field of Graph Theory 
and Network Analysis that can be applied to BN to identify the most 
“influential” variables in the model, in a sense that will be specified. On 
the other hand, we introduce a measure of the feature strength based on 
a statistical distance between the a posteriori conditional probability 
distributions of the class variable given different values of a fixed 
feature. In Section 4 we also consider the odds ratio (OR), which is a well 
known quantification of the strength of the association between two 
events, that in our context will be “die” when a fixed feature is present, 
and when it is absent. 

The organization of the rest of the paper is as follows: in Section 2 we 
present the data set and the hierarchical model that we will use to 

Table 1 
List of variables (part I).  

1. Demographic characteristics % respect to non-missing values 
F1 : Sex  

Male 63.6% 
Female 36.4%  

F2 : Age Median: 70 
Q1, Q3: 59, 7 

Ranges:  
<45 8.8% 
45–54 9.8% 
55–64 19.4% 
65–74 24.9% 
75–84 26.2% 
> 84 10.9%  

2. Comorbidities 
F3 : Charlson comorbidity index  

0 31.7% 
1 24.2% 
2 15.9% 
3 10.5% 
>3 17.7%  

3. Admission 
F17 : Origin (location before ICU admission)  

Ward 20.2% 
Operation Room 14.0% 
Emergency Room 41.0% 
Extra Hospital Emergency 1.7% 
Other Hospital 23.1%  

F18 : Generic syndrome (causing admission)  
Elective Surgical 6.5% 
Urgent Surgical 9.8% 
Coronary 17.5% 
Medical 64.3% 
Trauma 1.9%  

F19 : Sepsis (at admission)  
Yes 35.7% 
No 64.3%  

Main cause of admission (yes/no) % of yes 
F4: ACS (Acute Coronary Syndrome) 18.7% 
F5: RF (Respiratory Failure) 33.0% 
F6: Shock 27.1% 
F7: Coma 7.3% 
F8: Renal F (Renal Failure) 4.1% 
F9: Hepatic F (Hepatic Failure) 0.2% 
F10: CRA (Cardio Respiratory Arrest) 4.8% 
F11: ES (Elective Surgical) 6.7% 
F12: Arrhythmia 4.1% 
F13: CT (Cranial Trauma) 0.2% 
F14: OT (Other Trauma) 1.3% 
F15: Intoxication 1.0% 
F16: Other syndromes 6.3%  
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predict the risk of mortality in the ICU, as well as the destination for 
those patients who are expected to survive, or the cause of death for the 
rest. Specifically, we introduce Bayesian networks, used as base models, 
and the ensembling of classifiers. We also explain the standard method 
used to predict the risk of mortality at the ICU level based on the 
APACHE II score, as well as the implementation and validation pro
cedures. Section 3 shows the results we have obtained, Section 5 is 
devoted to the final comments and conclusions, and the appendices 
include some figures and tables. 

2. Materials and methods 

2.1. Dataset description 

Our dataset is a cohort of 2510 critical patients admitted to the ICU of 
the Mataró Hospital (Mataró, Spain) from years 2016 (661 patients), 
2017 (693), 2018 (663) and 2019 (493). With the aim of predicting 
mortality/survival at the ICU first, and then the destination at ICU 
discharge for patients who survive their stay, or the cause of death for 
patients who pass away, different features of the patients have been 
considered (see Tables 1 and 2 ). ICUs can be thematic (related to a 
specific kind of patient, as can be neuro-trauma ICU, Coronary unit, 
medical ICU, post-surgical ICU, …) or polyvalent, as in our case. To 
clarify the syndromic classification of critically ill patients, as is usual in 
polyvalent ICUs, we use four categories:  

1. Demografic characteristics 
Sex (F1) 
Age (F2)  

2. Comorbidities (Charlson comorbidity index, F3)  

3. Admission 
Origin (location of patient before ICU Admission, F17) 
Generic syndrome (that cause admission, F18) 
Sepsis (F19) 
Main cause of admission (F4–F16)  

4. Severity (on first 24 h of admission) 
ICU workload (therapeutic requirements, F20) 
APACHE II score (F21) 

In general, on admission we classify critically ill patients attending to the 
generic syndrome (F18) into 

–Surgical (a major invasive procedure is related to the cause or the 
treatment of admission). We distinguish between “elective” and 
“urgent”. 
–Coronary (admission related to a coronary syndrome). 
–Medical (no acute coronary syndrome neither major invasive pro
cedures related to the cause or treatment of admission). 
–Trauma (in case of physical external agent damage). 

Related to severity on first 24 h of admission, the therapeutic re
quirements (ICU workload F20) of medical (including coronary) or sur
gical (including trauma) patients, depending on the presence or not of 
organ failure, can be   

Medical patient Surgical patient 

Presence of organ failure Medical unstable Medical monitoring 
Absence of organ failure Post-surgical unstable Post-surgical monitoring  

Stable patients without organ failure just require monitoring to 
prevent complications, while unstable patients require specific organ 
failure support, and in this case, we distinguish if they are (or not) in 
coma or shock. Patients in coma (if Glasgow Coma Score is under 9) or 
shock (requirement of vasoactive agents to maintain organ perfusion) 
present the highest mortality and require the highest therapeutic effort. 

The presence or absence of sepsis at admission (F19) allows a better 
understanding of the patient’s characteristics. But this is a too nonspe
cific classification, so we can make an additional classification according 
to more specific syndromes grouped in the category of “Main cause of 
admission” (see Table 1). Note that despite that some syndromes can 
overlap in the same patient, we only identify the most severe condition 
that causes the ICU admission. For example, in case of a patient in coma, 
due to a shock secondary to a pancreatitis infarction, the primary spe
cific syndrome is shock (F6 = “yes”), the generic syndrome is 
F18 = “Medical”, without sepsis (F19 = “no”) and the ICU workload is 
F20 = “Medical unstable with coma or shock”. 

Although some variables (F9, F13, F14, F15) or categories (F17 = “Extra 
Hospital Emergency”, F18 = “Trauma”) have very little presence in the 
current cohort, they have been kept in the study to be able to explore all 
the possibilities of patient flow, when the database grows. 

All variables were, or have been transformed into type factor through 
a discretization procedure. Age variable has been categorized as well as 
is done with APACHE II score. In the same way, variable “Charlson co
morbidity index”, that can show integer values from 0 to 29, has been 
discretizated into 5 categories: 0, 1, 2, 3 and >3. Missing values are 
infrequent, and only appear in 9 of the 24 variables, none of them of the 
“Main cause of admission” category. As expected, patients with missing 
values in variable Result also have missing values in Destination (at ICU 
discharge) if the variable Result is live and in Cause (of death) for patients 
for which the variable Result is die. 

We observe that 63.6% of patients are male, with a median age of 70 
years (average of 67.34) and that mortality at the ICU is 14.7%. “First 
attention hospital” is the destination at ICU discharge for 91% of pa
tients that survive, and among the patients that did not survive, the 
cause of death of the 78.4% was the cause of admission, and only for a 
21.6% it was a complication suffered at the ICU, of which, half are of a 

Table 2 
List of variables (part II). Destination = “Morgue” if Result = “die”. Cause  = “Not 
Dead” if Result = “live”. We have merged classes “Septic Complications” and 
“Non-septic Complications” (1.57% and 1.53%, respectively) for variable Cause, 
into the single class “Complications”.  

4. Severity (on first 24 h of admission) 
F20 : ICU workload (therapeutic requirements)  

Medical monitoring 25.4% 
Medical unstable with coma or shock 22.4% 
Medical unstable without coma neither shock 21.2% 
Post-surgical monitoring 5.1% 
Post-surgical unstable 25.9%  

F21 : APACHE II Median: 13 
Q1, Q3: 8, 18.25 

Ranges:  
<5 9.0% 
5–9 25.6% 
10–14 23.6% 
15–19 19.6% 
20–24 11.5% 
25–29 6.2% 
30–34 2.7% 
>34 1.8%  

Outcomes 
Result 

live 85.3% 
die 14.7%  

Destination (at ICU discharge) 
First Attention Hospital 77.7% 
Major Complexity Hospital 7.6% 
Morgue 14.7%  

Cause (of death) 
Cause of Admission 11.2% 
Complications 3.1% 
Not Dead 85.7%  
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septic nature. 
In Fig. 2 in Appendix A we observe the temporal evolution of the rate 

of mortality at the ICU, both for the overall population and dis
aggregated by sex. Instead, in Fig. 3 we see the evolution of the mortality 
rate with age, also disaggregated by sex and for the overall population. 
We can observe that the mortality rate is greater for females (except for 
the youngest patients), and that it increases form young to older people 
but decreases for the oldest. Finally, in Figs. 4 and 5 we show the dis
tribution of the missing values. The colors in Fig. 5, from white to black 
in the gray scale, correspond to the different categories that each of the 
variables takes, while the red color is reserved to indicate missing 
values. We do not observe any pattern in the distribution of missing 
values among cases, and as for the variables, those that present missing 
values are those of the “Admission” and “Severity (on first 24 h of 
admission)” categories, especially F21: APACHE II, with a 12.67%. 

2.2. Building the hierarchical model 

The hierarchical model consist of three parts, namely, the classifier 
for predicting the variable Result (live/die), at the first stage, and two 
more classifiers at the second stage, one for predicting the variable 
Destination, and the other for predicting Cause, depending on whether 
the prediction in the first stage was “live” or “die”, respectively, as can 
be seen in Fig. 1. 

Each of the parts consists of an ensemble of BN built using the 
weighted average criterion with appropriate weights, denote by EWA. 
Next we explain what Bayesian networks are and how ensembles are 
constructed. 

2.2.1. Bayesian networks 
Bayesian networks (BN) are graphical models representing the 

probabilistic relationships among variables affecting a phenomenon, 
which are used for probabilistic inference. For a set of random variables, 
a BN is a model that represents their joint probability distribution P, the 
graphical part of the model consisting of a directed acyclic graph (DAG), 
whose nodes represent the random variables. The directed arcs among 
the nodes represent conditional dependencies (not necessarily causal) 
governed by the Markov condition, which establishes that each node in 
the DAG is independent of those who are not its descendants given its 
parents are known. When a Bayesian network is used to classify cases 
into a set of categories or classes, we term it Bayesian classifier. 

(Bayesian) inference is the term used to refer to the update of prob
abilities of the network from a given evidence: we compute a posteriori 
probabilities from evidences and a priori probabilities. Prediction of a 
query variable X given the evidence E is the instantiation of X with the 
largest a posteriori probability, and this probability is said to be the 

confidence level of the prediction. 
To predict the risk of death of critically ill patients, we learn five 

different base Bayesian classifiers from data, say BC1, …, BC5, by 
considering the features and the class variable Result. This allows further 
enquiry into the relationships between the features and the vital prog
nosis, being this an advantage over typically black box machine learning 
methods, such as Neural Networks, which are unable to provide expla
nations for their predictions. In Table 3 we report the traits of con
struction of these classifiers, including the score function for the 
structure learning (learning of the DAG) and the restrictions on the 
allowed directed arcs, in the form of whitelist/blacklist of forced/ 
forbidden arcs. Maximum Likelihood Estimation is used to estimate the 
parameters. 

Naive Bayes has a fixed structure (DAG) which is not learned from 
the data, and assumes that features are independent of each other given 
the class, which can be unrealistic in many applications. The other four 
classifiers in Table 3 are different attempts to improve classification by 
relaxing this assumption and trying, at the same time, to maintain 
simplicity and efficiency as much as possible. In particular, TAN (Tree 
Augmented Naive) relaxes the feature independence assumption of the 
Naive Bayes through a tree structure, in which each feature only de
pends on the class and one other feature. Note that both, BC2 and BC4 are 
Augmented Naive Bayes classifiers [39] since the class variable is 
assumed to be a root node parent of every feature, and the subgraph of 
the features is an unrestricted Bayesian network. 

2.2.2. Ensembles based on the fusion of labels outputs 
In [37] we built an ensemble of classifiers to predict the class vari

able Result, say WMV, acronym for Weighted Majority Vote (denoted by 
EBC there), from the five base classifiers BC1, …, BC5, with the weighted 
majority vote criterion, which is a single-winner voting system but in 
which more power is given to more “competent” base classifiers. This 
criterion, as the majority vote, falls into the fusion of labels outputs 
ensemble methods. Concretely, fixed a critical patient and a class j, we 

Fig. 1. Processing pipeline of vital prognosis (survival/mortality) prediction for patients in Intensive Care Units.  

Table 3 
Traits of the five base Bayesian classifiers used to construct the ensembles.  

Classifier Score Restriction on the directed arcs 

BC1 (Naive)  Whitelist: from class to each feature. Blacklist: among 
features 

BC2 BIC Whitelist: from class to each feature 
BC3 AIC Blacklist: from each feature to class 
BC4 AIC Whitelist: from class to each feature 
BC5 (TAN)  Whitelist: from class to each feature   

Each feature has an extra incoming arc from other feature  
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consider the discriminant function Dj =
∑5

i=1widi,j where di,j = 1 if 
classifier i assigns class j to the patient, and 0 otherwise, and wi, i = 1,… 
, 5 are the weights of the five base classifiers, that is, Dj is the sum of 
weights corresponding to classifiers that assign the patient to class j. The 
inferred class for the given patient by the WMV classifier is taken to be 
the one that maximizes the discriminant function. (Note that with wi =

wj for all i, j = 1, …, 5, this rule corresponds to the mere criterion of the 
majority vote and we denote by the acronym MV the corresponding 
ensemble.) 

For the assignment of weights to the base classifiers, and bearing in 
mind that the combination of unbalanced data (14.7% “die” in variable 
Result) and a small sample size (2, 510 patients) prevents the use of 
Accuracy as an evaluation metric in classification, we followed [40] and 
[41] when considering a measure based on the Recall (also called 
Sensitivity) and the Precision, with “positive class” the minority class die, 
which provides a good representation of performance assessment in the 
binary classification: the Area Under the Precision-Recall curve (AUPR), 
being the Precision-Recall (PR) curve that obtained by plotting Precision 
over Recall. The PR curve provides a more informative picture of the 
performance of the classifier than the Receiver Operator Characteristic 
(ROC) curve when dealing with highly skewed datasets, as is our case. 
For example, in [42] AUPR has been used for mortality and decom
pensation tasks since the MIMIC-III dataset, which is the one used by the 
authors for experimentation purposes, suffers from class imbalance. 
Considering the above, we assign a weight wi to the base classifier i, 
which is obtained from its estimated AUPR, denoted by Ai ∈ [0, 1], in the 
following way: 

wi =
hi

∑5
j=1hj

, where hi = log

⎛

⎜
⎝

1
2(Ai + 1)

1 − 1
2(Ai + 1)

⎞

⎟
⎠ (1)  

Note that 

1
2
(Ai + 1) ∈ [0.5, 1],

and that therefore, 

1
2(Ai + 1)

1 − 1
2(Ai + 1)

≥ 1  

and consequently hi ≥ 0. This transformation of the Ai’s is a dilatation 
since if Ai <Aj, therefore hj − hi >Aj − Ai > 0. With this assignment of 
weights, we magnify the relevance of the base classifiers using weights 

based on the AUPR metric. 
The WMV classifier proved to have a good performance in [37] but it 

presents the problem of not following the criterion of maximum a 
posteriori probability (MAP), which is optimal in the sense of mini
mizing the expected 0–1 loss. For this reason, it is perfectly possible that 
the predicted class in the binary case may have an associated confidence 
level less than 0.5, what is counterintuitive and difficult to justify. Let us 
show two toy examples in Tables 4 and 5 , exemplifying this paradoxical 
situation, with classes “die” (j = 1) and “live” (j = 2), and the confidence 
levels in brackets. In both examples, weights are the same and the pre
diction of any base classifier as well, so the MV classifier gives 3 votes to 
“die” class and 2 votes for “live” class, that is, 

D1 = 3 > D2 = 2,

bringing us to “die” as prediction, while for the WMV, 

D1 = ω1 + ω2 + ω3 = 0.4 < D2 = ω4 + ω5 = 0.6,

resulting from this that the prediction is “live”, which is the opposite of 
the class predicted with the MV. What changes from one example to the 
other is the probability of “die” of the base classifiers. We can observe 
that in the first example, the confidence level associated to the predic
tion provided by the MV is <0.5, while the same happens for the WMV in 
the second example. 

The confidence levels in Tables 4 and 5 have been computed in the 
following way: for the MV, the confidence level is the probability that 
the majority of the votes (3, 4 or 5) be for “die”, that is: 

CLMV =
∏5

ℓ=1

pℓ +
∑5

j=1
((1 − pj)

∏5

ℓ=1

ℓ∕=j

pℓ) +
∑5

j=1

∑5

k=1

k∕=j

((1 − pj)(1 − pk)
∏5

ℓ=1

ℓ∕=j,k

pℓ),

with pℓ being the probability of “die” for the ℓth base classifier. For the 
WMV, the confidence levels have been computed as the probability that 
the sum of the weights of the base classifiers that vote “die” be >0.5, 
which is dependent on weights, by means of the following formula (note 
that in this case ties are not possible since there is no combination of 
weights whose sum is exactly 0.5): 

CLWMV =
∏5

ℓ=1

pℓ +
∑4

r=1

∑5

i1 ,…,ir=1

(i1 ,…,ir )∈Δr
w1 ,…,w5

⎛

⎜
⎜
⎜
⎜
⎝

∏r

h=1
(1 − pih )

∏5

ℓ=1

ℓ∕=i1 ,…,ir

pℓ

⎞

⎟
⎟
⎟
⎟
⎠

Table 4 
Toy example 1. Confidence level for the prediction given by MV is <0.5.  

Classifier Weigths Prob. of “die” Prediction Pred. MV Pred. WMV 

BC1 w1 = 0.25  p1 = 0.55 die 

die (0.24731<0.5) live (0.66236>0.5) 
BC2 w2 = 0.10  p2 = 0.55 die 
BC3 w3 = 0.05  p3 = 0.55 die 
BC4 w4 = 0.30  p4 = 0.10 live 
BC5 w5 = 0.30  p5 = 0.10 live  

Table 5 
Toy example 2. Confidence level for the prediction given by WMV is <0.5.  

Classifier Weights Prob. of “die” Prediction Pred. MV Pred. WMV 

BC1 w1 = 0.25  p1 = 0.95 die 

die (0.95324>0.5) live (0.32725<0.5) 
BC2 w2 = 0.10  p2 = 0.95 die 
BC3 w3 = 0.05  p3 = 0.95 die 
BC4 w4 = 0.30  p4 = 0.45 live 
BC5 w5 = 0.30  p5 = 0.45 live  
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where 

Δr
w1 ,…,w5

= {(i1,…, ir) : 1 ≤ i1,…, ir ≤ 5, i1 ∕= ⋯ ∕= ir,
∑r

ℓ=1

wiℓ < 0.5}.

2.2.3. Ensembles based on the fusion of continuous-valued outputs 
In this paper we consider, as the main novelty regarding [37], two 

ensembles based on combiners that fall into the fusion of 
continuous-valued outputs, which are the simple mean (average), denoted 
by EA hereinafter, and the weighted average with the weights given by 
(1), denoted by EWA from now on. More specifically, fixed a critical 
patient and a class j, let us introduce the discriminant function D̃j =
∑5

i=1wid̃i,j where ̃di,j is the probability that classifier i assigns the class j to 
the patient, and weights wi are given by (1). 

The inferred class for the given critical patient by the EWA classifier 
is taken to be the one that maximizes the discriminant function D̃. 
Therefore, with this criterion, the confidence level associated to class j is 
D̃j since D̃1 + D̃2 = 1, which implies compatibility with the MAP cri
terion. (Note that with wi = wj = 1/5 for all i, j = 1, …, 5, this rule 
corresponds to the simple mean combiner EA.) In the toy examples 1 and 
2 (Tables 4 and 5, respectively) we can apply both the EA and the EWA, 
and obtain the respective predictions and confidence levels. Indeed, for 
the EA in Table 4, 

D̃1 =
∑5

i=1

pi

5
= 0.37 < D̃2 =

∑5

i=1

1 − pi

5
= 0.63  

while for the EWA, 

D̃1 =
∑5

i=1
ωipi = 0.28 < D̃2 =

∑5

i=1
ωi(1 − pi) = 0.72  

which bring us to the “live” prediction with both classifiers, and 
respective confidence levels of 0.63 and 0.72, both >0.5. Analogously, 
for the toy example in Table 5, both ensembles give as prediction “die”, 
with respective confidence levels of 0.75 and 0.65, both >0.5. Although 
in these two toy examples the predictions of EA and EWA have coincided 
with each other, this does not necessarily have to happen in general. For 
instance, consider the third toy example in Table 6. 

2.3. Implementation 

The processing pipeline of the vital prognosis is summarized in 
Fig. 1. After survival/mortality prediction, outcome variable Destination 
will be predicted in a second step, if the prediction for Result is “live”, by 
using an appropriate classifier which will be an ensemble similar to that 
used for predicting Result but substituting the response variable Result 
for Dest. Otherwise, if the prediction for Result is “die”, another ensemble 
similar to that used for Result but substituting Result as outcome for 
Cause, will be used to predict the cause of death. 

Learning and prediction algorithms have been implemented in R 

language. For structure learning of the base Bayesian networks BC2, BC3 
and BC4, hill-climbing score-based structure learning algorithm has been 
used, implemented by function hc of the bnlearn package [43], whereas 
for BC5 the tree.bayes function has been used which implements the 
Tree-Augmented naive Bayes classifier. BC1 represents classic Naive 
Bayes algorithm, whose structure (DAG) is fixed and must not be learned 
from the data. The estimation of the other parameters, for the other 
classifiers, are got using the maximum likelihood estimation (MLE) 
method. We used gRain package [44] to carry on the Bayesian 
inferences. 

We make some comparisons among the ensemble we construct from 
the five Bayesian classifiers and other classifiers from state-of-the-art: 
Neural Network (NN), Support Vector Machine (SVM) and Random 
Forest (RF), which have been constructed, respectively, with the func
tions mlNnet, mlSvm and mlRforest of the mlearning package of R,1 by 
using the default values in the first two (maximum number of itera
tions = 1000 for NN and radial kernel for SVM), and 5 trees to generate 
for RF. 

In the literature on predicting the risk of mortality for hospital pa
tients, it is common to use APACHE II, which is a severity of disease 
classification system that uses basic physiologic principles, to stratify 
acutely ill patients prognostically by risk of death. The standard 
approach (see for example [9]) is to compute the individual risk of death 
(probability of “die” for the variable Result) as 

elogit

1 + elogit,

where logit is obtained from the following equation: 

logit= − 3.517+0.146×APACHEII(thenumericvalueof F21)

+0.603 (onlyif post-emergencysurgical, thatis,F18 = `UrgentSurgical’)
+coefficient β (weight)of thediagnosticcategoriesF4 toF15 andF19.

(2)  

(coefficients β are fixed and have been recorded in Appendix D). When 
we follow this approach the data is just used for validation, not for 
training. With the intention of improving this classifier, we construct a 
locally recalibrated model based on APACHE II using the same training 
sets used for the base classifiers BC1 to BC5, NN, SVM, RF, and the en
sembles EWA, EA, WMV and MV, on which the coefficients in Eq. (2) are 
learned on each training dataset, instead to be fixed. We name this 
model by LR.APACHEII, and it is built using logistic regression, imple
mented by the function glm of R (with argument family equal to 
“binomial”), from the same data used to construct the other classifiers, 
with regressors: F4 to F15, F18 and F19. The individual risk of death 
(probability of “die” for the variable Result) with the model LR.APA
CHEII has been computed as 

Table 6 
Toy example 3. Predictions with EA and EWA are different (confidence levels are in brackets).  

Classifier Weights Prob. of “die” Prob. of “live” Prediction Pred. EA Pred. EWA 

BC1 w1 = 0.25  p1 = 0.90 1 − p1 = 0.10 die 

die (0.60>0.5) live (0.55>0.5) 
BC2 w2 = 0.10  p2 = 0.90 1 − p2 = 0.10 die 
BC3 w3 = 0.05  p3 = 0.90 1 − p3 = 0.10 die 
BC4 w4 = 0.30  p4 = 0.15 1 − p4 = 0.85 live 
BC5 w5 = 0.30  p5 = 0.15 1 − p5 = 0.85 live   

D̃1 = 0.60  D̃1 = 0.45   

D̃2 = 0.40  D̃2 = 0.55   

1 Grosjean, Ph., Denis, K.; (2013) mlearning: Machine learning algorithms 
with unified interface and confusion matrices. R package version 1.0-0. htt 
ps://CRAN.R-project.org/package=mlearning. 
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eLR.logit

1 + eLR.logit,

where LR.logit is obtained from the following equation, learned from 
data: 

LR.logit = α0 + α1 × APACHE II (the numeric value of F21)

+α2 × F18 + α3 × F19 +
∑15

j=4
αj × Fj.

(3)  

That is, the coefficients α of the diagnostic categories are learned from 
data. In our case, when we learn the model from the complete dataset, 
the corresponding coefficients α have been recorded in Table 34 in 
Appendix D, with the p-values for statistical significance. Referring to 
mortality, in Table 34 we can see what is the only protection factor, 
which is F4 (in boldface), and what are the risk factors (the remaining in 
the table). 

2.4. Validation and comparison with other classifiers 

We choose to carry out the process of k− fold cross-validation with 
k = 10 folds to validate our proposed hierarchical model. We use four 
different performance metrics to make comparisons between the EWA 
classifier and its single component base classifiers BC1, …, BC5, as well 
as with the other pattern recognition methods: NN, SVM and RF, and with 
the ensembles EA and that based on the fusion of labels outputs intro
duced in [37], MV and WMV. If a tie takes place with the latter, what 
happens when the evidence consisting of the patient’s features has an 
estimated probability equal to zero with any of the five base classifiers, 
the tiebreaker rule will assign one of the categories at random, with 
equal probabilities. A further comparison is against the classifiers based 
on the APACHE II score following the traditional approach, the usual 
one and the enhancement we proposed, which is the locally recalibrated 
LR.APACHEII. 

We randomize in order to reduce the possible bias due to the 
(random) choice of the folds in the validation process. Moreover, we 
repeat the process 20 times, using a different seed (randomly selected) in 
each case to carry out the partition of the database into the k = 10 folds. 
The metrics used to make comparisons between the classifiers are: 

–AUPR: as we have already commented, this is considered a good 
measure when the database is unbalanced with respect to the class 
variable, as is our case. 

–F-score: our goal has been to enhance the prediction of the minority 
class (identified with the “positive” class). For that, our interest is 
focused on the improvement of sensitivity (recall), which together 
with precision are the two measures that make up the F-score, defined 
as their harmonic mean. 
–AUC (Area Under the ROC2 Curve): very popular in the medical 
literature. An advantage of incorporating it as a metric in the vali
dation process is that the results obtained in our study may be 
compared with those of others made with different populations and 
methodologies. 

We must highlight the imbalance of the class distribution in the case of 
the output variable Result, with minority class “die” (14.7%), and also in 
the case of output variable Destination, with minority class “Major 
Complexity Hospital” representing a 8.9% (of the cases with known 
destination and different from “Morgue”). In the case of the output 
variable Cause, the minority class “Complications” represents 21.6% of 
the cases with known cause of death, so the imbalance is not so extreme. 

Although it is the most common of the metrics, we do not include the 
Accuracy in this study because it is not very suitable in cases of imbal
ance by the accuracy paradox. In Table 7 below we report as illustrative 
example the confusion matrices obtained in the validation procedure for 
each the fourteen classifiers predicting output variable Result, for the 
first run and the first fold, jointly with the corresponding Accuracy (Acc) 
and F-score (F) values. In the matrices, predicted classes are given by 
row, while observed by column, in order: +“die”, − “live”. Note that the 
number of observed cases for APACHEII and LR.APACHEII models is 219 
while for the rest is 250; the reason is that the first cannot provide any 
prediction if F18, F19 or F21 are missing. Although it is only an example 
and the matrices are subject to variability, from them we can get an idea 
of what is happening with the different models: APACHEII always pre
dicts “live” (BC3 and NN only do it sometimes), having exactly the Ac
curacy given by the proportion of the majority class in the validation set, 
and F-score cannot be computed. The rest of classifiers sacrifice the 
correct prediction of all the majority class in order to be able to correctly 
predict some patients of the minority class, that is, patients that died, 
which is what we are interested in from a clinical point of view. How
ever, the Accuracy of the ensembles EA and EWA is comparable to that 
of APACHEII and LR.APACHEII, having a higher F-score value. This idea 
is confirmed with the statistical comparison among them explained in 
Section 3. 

Table 7 
Confusion matrices, with the corresponding Accuracy (Acc) and F-score (F), for the fourteen classifiers predicting output variable Result, for the first run and the first 
fold. Predictions are given by row, and observed classes by column, with the order of the classes, +“die”, − “live”. NaN means “not a number”.  

BC1 :

(
22 28
4 196

)

BC2 :

(
14 17
12 207

)

BC3 :

(
0 0
26 217

)

BC4 :

(
11 9
15 211

)

BC5 :

(
10 12
16 208

)

Acc=0.872, F=0.2895 Acc=0.844, F=0.491 Acc=0.893, F=NaN Acc=0.902, F=0.478 Acc=0.886, F=0.417  

NN :

(
0 0
26 224

)

SVM :

(
7 5
19 219

)

RF :

(
8 13
18 211

)

Acc=0.896, F=NaN Acc=0.904, F=0.368 Acc=0.876, F=0.340    

APACHEII :
(

0 0
19 200

)

LR.APACHEII :
(

2 1
17 199

)

Acc=0.913, F=NaN Acc=0.918, F=0.091     

MV :

(
11 11
15 213

)

WMV :

(
11 10
15 214

)

EA :

(
15 11
11 213

)

EWA :

(
16 11
10 213

)

Acc=0.896, F=0.458 Acc=0.900, F=0.468 Acc=0.912, F=0.577 Acc=0.916, F=0.604   

2 The ROC, Receiver Operating Characteristic curve serves to illustrate the 
capacity of diagnostic of a binary classifier as the discrimination threshold 
varies; it plots the sensitivity (or True Positive Rate) against the False Positive 
Rate (1-specificity). 

R. Delgado et al.                                                                                                                                                                                                                                



Artificial Intelligence In Medicine 115 (2021) 102054

9

3. Results 

3.1. For the variable Result 

The boxplots in Fig. 6 (Appendix A) correspond to the values of 
AUPR, F-score and AUC obtained by using k-fold cross validation with 
k = 10, for prediction of the output variable Result with positive class 
“die”, for the first run and the fourteen classifiers considered in the study 
(including the two based on APACHE II for predicting mortality at the 
ICU level, which are the standard one and the locally recalibrated LR. 
APACHEII). 

We record the average over the 20 runs of the averages and the 
standard deviations, x and s, respectively, over the folds, for AUPR, F- 
score and AUC when considering the output variable Result, in Table 8. 
The blank cells indicate that the F-score could not be calculated by the 
arrangement of the zeros in the confusion matrices generated by the 
APACHEII model. 

From the experiment, we can see that there is a clear advantage for 
the ensembles, especially EWA and EA, over the rest of the classifiers 
that have been considered, using AUPR and AUC as performance mea
sures while for the F-score, the best classifiers are BC1, EWA, BC2 and EA. 
That is why we will focus on the comparison between the ensembles 
EWA, EA, WMV and MV, to each other, in addition to in their compar
ison with the rest. For each of the metrics, below we detail some of the 
results. 

AUPR: Table 17 (Appendix B) reports for each run if there is a sta
tistically significant (p-value <0.1) improvement of either EWA or EA, 
with respect to WMV and/or MV. Here “2” means that there is an 
improvement over WMV and MV, “1” means that there is only an 
improvement over one of them, and “0” that there is none for either. In 
no case are WMV or MV better than EWA or EA. p-values3 are reported in 
Table 18 and have been adjusted for multiple comparisons between the 
four ensembles by using the method of Holm-Bonferroni, with the 
pairwise Wilcoxon signed-rank test [45] to compare matched pairs of 
samples corresponding to the same run. This statistical test is used as an 
alternative to the Student’s t-test when the population cannot be 
assumed to be normally distributed (according to the Shapiro-Wilk test 
[46], which has been previously performed). 

From these tables se see that EWA and EA outperform WMV and MV, 
and that in 5 runs, there are significant differences among EWA and EA 

and, in all the cases, EWA shows to be better. This is confirmed in 
Table 19, where we observe that EWA is significantly better than EA in 8 
runs, when we compare only the two and, therefore, the p-values have 
not been adjusted, and in all the cases, EWA shows to be better. What 
significance does this fact have? We compute the p-value for the exact 
Binomial test in order to compare the proportions of cases in which EWA 
outperforms EA and vice versa, instead of use McNemar test, because the 
sample is small. The one-sided p-value for the exact Binomial test is P(B 
(n = 5, p = 0.5) = 5) = 0 .55 = 0.03125* when we compare EWA and EA 
but adjust for the comparison of the four ensembles, which decreases to 
P(B(n = 8, p = 0.5) = 8) = 0 .58 = 0.00391** if we consider the non- 
adjust corresponding to comparison of EWA against EA alone. In both 
cases there is a statistically significant evidence in favour or EWA as 
opposed to EA for prediction of variable Result, with AUPR as perfor
mance measure. 

As regards APACHEII and LR.APACHEII, both are clearly worse than 
any of the ensembles, and we observe significant differences among 
them, in favour of the latter. Indeed, for 18 runs (see details in Table 20 
in Appendix B) there are differences between the medians for the AUPR 
metric, and in all cases LR.APACHEII turns out to be better than the 
standard based on APACHE II, with a one-sided p-value for the exact 
Binomial test: 0 . 518 = 3 . 81470 × 10− 6***. 

F-score: We repeat the procedure with the F-score and obtain 
Tables 21–23 in Appendix B. We observe that EWA and EA outperform 
WMV and MV (and also that WMV behaves better than MV), and that 
EWA is better than EA. From Table 23 we have that in 14 runs there are 
significant differences among EWA and EA, when comparing the only 
two, and in all the cases, EWA is better, which has the following one- 
sided p-value for the exact Binomial test: 0 . 514 = 6 . 10352 × 10− 5***, 
which gives a clear statistical significance in favour of EWA against EA. 

If we compare the best of the ensembles, EWA, against the base 
classifiers (with the adjusted p-values for multiple comparisons) we see 
that the median of the F-score of both EWA and BC1 is significantly 
greater than that of BC4 and BC5, and that the median of BC2 is signif
icantly greater than that of BC5. We can no obtain statistical significance 
with respect to BC3, which has the lowest F-score values due to the large 
number of missing values. They are not observed either significant dif
ferences between EWA, BC1 and BC2 as far as the F-score is concerned, if 
we compare the three with each other as a single block, and even if we 
compare independently in pairs. 

The locally recalibrated LR.APACHEII is clearly worse than the four 
ensembles when using the F-score as performance metric. Note that it is 
not possible to calculate the F-score for the standard based on APACHE II 
since in all cases the prediction with this classifier for the output variable 
Result was the majority class “live”, resulting in degenerate confusion 

Table 8 
Average over the runs of the averages (x) and the standard deviations (s) over the folds, for the metrics AUPR, F-score and AUC, with the different classifiers. Output 
variable Result. In boldface, the top five for each metric.  

Result AUPR F-score AUC  

x  s x  s x  s 

BC1 0.52058 (5) 0.08914 0.54445 (1) 0.06056 0.87230 (3) 0.02858 
BC2 0.50671 0.08514 0.52763 (3) 0.06642 0.85987 0.03192 
BC3 0.35161 0.13386 0.06805 0.02496 0.82825 0.04087 
BC4 0.48450 0.07944 0.49974 0.06621 0.83958 0.03605 
BC5 0.46424 0.07927 0.47569 0.06794 0.83277 0.03456 
NN 0.27294 0.23893 0.43670 0.07689 0.70228 0.18079 
SVM 0.43432 0.08309 0.32713 0.08628 0.79698 0.04014 
RF 0.37071 0.08110 0.37567 0.08028 0.76864 0.04096  

APACHEII 0.37899 0.09393   0.77518 0.04837 
LR.APACHEII 0.42621 0.09342 0.30706 0.09075 0.83154 0.03744  

MV 0.52467 (3) 0.08276 0.50274 0.06744 0.86440 (4) 0.03027 
WMV 0.52317 (4) 0.08316 0.51137 (5) 0.06791 0.86377 (5) 0.03098 
EA 0.53829 (2) 0.08510 0.52354 (4) 0.06666 0.87913 (2) 0.02538 
EWA 0.54131 (1) 0.08423 0.53270 (2) 0.06766 0.88026 (1) 0.02522  

3 As usual, throughout the paper ⋅ denotes significance at 10%, superscript * 
denotes statistical significance at 5%, ** at 1% and *** at 1‰, for all the p- 
values. 
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matrices with a row equal to zero. 
AUC: Comparing the fourteen classifiers all at one, we see that the 

ensembles jointly with BC1 and BC2 are the best, the rest being far below. 
Then, first we compare the ensembles between them. In Table 24 (Ap
pendix B), which is analogous to Table 17, we report for each run if there 
is a statistically significant (p-value <0.1) improvement of either EWA or 
EA, with respect to WMV and/or MV, and the corresponding p-values are 
in Table 26 (note that they have been adjusted for multiple comparisons 
between the four ensembles). We see clearly that EWA and EA outper
form WMV and MV, and that EWA does with respect to EA in 6 runs. 
Previously, in Table 25 we record the results of the comparison between 
only EWA and EA, and in 12 runs EWA shows to be better (one-sided p- 
value for the exact Binomial test: 0 . 512 = 0 . 00024***). Consequently, 
EWA is the best of the ensembles. 

It only remains for us to compare it with BC1 and BC2. In comparing 
the three at one, with the corresponding adjustment of the p-values, we 
observe that BC1 is significantly better than BC2 in 8 runs, and both are 
worst than EWA (in 5 and 18 of the runs, respectively, with one-sided p- 
values for the exact Binomial test: 0 . 55 = 0 . 03125* and 
0 . 518 = 3 . 8 ×10− 6***). Definitely, then, EWA is the best of the clas
sifiers for output variable Result attending to AUC metric. 

As regards comparison between APACHEII and LR.APACHEII, the 
latter turns out to be better in all the runs, with a one-sided p-value for 
the exact Binomial test: 0 . 520 = 9 . 5367 × 10− 7***. 

3.2. For the variable Destination 

Fig. 7 in Appendix A shows the boxplots for AUPR, F-score and AUC 
for first run and the twelve classifiers, for prediction of the output var
iable Destination with positive class “Major Complexity Hospital”. Anal
ogous results to that of Table 8 are in Table 9. Below we specify a little 
more the results by metrics. 

AUPR: Regarding the comparison between ensembles, Table 28 in 
Appendix C shows the adjusted p-values for multiple comparisons be
tween the four ensembles MV, WMV, EA and EWA. We can see that EWA 
clearly outperforms EA, and WMV also outperforms EA in two runs. 
Table 29 refers to the comparison between EWA and EA alone (non- 
adjusted p-values), showing again that the former beats the last one in 19 
of the runs. The corresponding one-sided p-value for the exact Binomial 
test in favour of EWA is 0 . 519 = 1 . 90735 × 10− 6***. 

However, the classifier that performs the best in general is not one of 
the ensembles but BC3. See Table 30 in Appendix C where the com
parison of BC3 with two different groups of classifiers is shown: the base 
classifiers on the one hand, and the ensembles on the other. It is 

observed that BC3 surpasses them all. 
F-score: With regard to the F-score metric, there is no significant 

differences considering all the classifiers at once (although for some runs 
RF shows to have a lower F-score than classifiers BC3, BC4 or the en
sembles), nor considering the four ensembles together, but there are if 
we consider EWA and EA alone, showing that EWA is the best of both. 
The corresponding p-values are in Table 31, showing that in 7 runs, EWA 
outperforms EA; the one-sided p-value for the exact Binomial test in 
favor of EWA is 0 . 57 = 0 . 00781**. Regarding BC3, there are no sig
nificant differences between this classifier and the ensembles, when we 
compare the five together (using adjusted p-values), although there are 
if we compare in pairs (BC3 vs. each ensemble). 

AUC: If we compare the twelve classifiers all at one, we see that the 
ensembles EWA and EA are significantly better than NN, SVM and RF, 
slightly better than BC4 and BC5, and no differences have been observed 
with BC1, BC2 and BC3. For that, we decide to compare as a block these 
last with EWA and EA, since the adjustment of the p-values when making 
a large number of multiple comparisons can mask differences that are 

Table 9 
Average over the runs of the averages (x) and the standard deviations (s) over the folds, for the metrics AUPR, F-score and AUC, with the different classifiers. Output 
variable Destination In boldface, the top five for each metric.  

Destination AUPR F-score AUC  

x  s x  s x  s 

BC1 0.26687 0.10371 0.28345 0.11281 0.75532 (4) 0.07043 
BC2 0.27571 0.09357 0.26376 0.10863 0.74604 (5) 0.07077 
BC3 0.36120 (1) 0.11843 0.33922 (1) 0.12737 0.75596 (3) 0.06692 
BC4 0.26142 0.09548 0.31516 (2) 0.11396 0.70311 0.07645 
BC5 0.24706 0.09042 0.26310 0.11213 0.70424 0.07592 
NN 0.16834 0.11205   0.67487 0.10562 
SVM 0.22107 0.08253 0.13317 0.04624 0.66455 0.07480 
RF 0.21222 0.07203 0.21634 0.09616 0.65715 0.066328  

MV 0.29333 (4) 0.10329 0.30076 (4) 0.12116 0.73914 0.07266 
WMV 0.29598 (3) 0.09814 0.30463 (3) 0.12205 0.73493 0.07158 
EA 0.28726 (5) 0.10200 0.28635 0.11838 0.76802 (2) 0.057239 
EWA 0.29766 (2) 0.10470 0.29444 (5) 0.11912 0.77201 (1) 0.05715  

Table 10 
Average over the runs of the averages (x) and the standard deviations (s) over the 
folds, for the metrics AUPR, F-score and AUC with the different classifiers. 
Output variable Cause. In boldface, the top five for each metric.  

Cause AUPR F-score AUC  

x  s x  s x  s 

BC1 0.28843 
(2) 

0.13782 0.35156 0.13504 0.66947 0.13908 

BC2 0.26481 
(5) 

0.14900 0.40100 0.15465 0.68449 
(3) 

0.15798 

BC4 0.23687 0.14077 0.41818 0.14623 0.64460 0.21162 
BC5 0.19745 0.14208 0.49238 

(1) 
0.17201 0.53813 0.21570 

NN 0.19639 0.14891   0.55821 0.10866 
SVM 0.30422 

(1) 
0.12329   0.62733 0.11411 

RF 0.18800 0.09173 0.42469 0.11681 0.52595 0.12109  

MV 0.27028 
(4) 

0.15662 0.48086 
(2) 

0.16753 0.70198 
(1) 

0.17819 

WMV 0.27764 
(3) 

0.16227 0.46805 
(3) 

0.15084 0.69832 
(2) 

0.17886 

EA 0.26473 0.15841 0.43952 
(5) 

0.13424 0.68046 
(4) 

0.19690 

EWA 0.26479 0.15690 0.44878 
(4) 

0.13594 0.67563 
(5) 

0.19324  
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really significant. There is only a slight evidence in favour of EWA, since 
it proves to have a significantly higher AUC median than BC2 and EA in 3 
of the runs, while none of the other classifiers beat it in any run, and if 
we compare in pairs (without adjusting the p-values), EWA outperforms 
each of EA, BC1, BC2 and BC3 (see Table 32) so it turns out to be the 
favorite, although relative to BC3, it is only slightly higher. 

3.3. For the variable Cause 

The boxplots for AUPR, F-score and AUC for first run and the twelve 
classifiers, for prediction of the output variable Cause with positive class 
“Complications”, are in Fig. 8 (Appendix A). The average over the 20 
runs of the averages and the standard deviations over the folds, for the 
output variable Cause, are recorded in Table 10 below. 

There are few significant differences between the classifiers for any 
of the metrics (AUPR, F-score and AUC), so the results do not seem 
conclusive, and we will have to wait for more data. The problem with 
the output variable Cause is that, due to the scarcity of cases in which the 
patient died in ICU (367 patients in our cohort), there are a large number 
of zeros in the confusion matrices, and consequently, a large number of 
missing values in the metrics. For example, if we compare AUPR for the 
classifiers SVM, EWA and EA with the pairwise Wilcoxon signed-rank 
test and making Holm-Bonferroni adjustments for multiple compari
sons, we cannot see significant differences. We have to make compari
sons in pairs to find something. Specifically, in 4 of the runs the median 
of SVM is statistically significantly greater than that of EWA (one-sided 
p-value for the exact Binomial test: 0 . 54 = 0 . 0625⋅), while this number 
increases to 6 for the comparison with EA instead of EWA (p-value 
0 . 56 = 0 . 015625*). 

4. Centrality, odds ratio and feature strength 

Centrality and betweenness: Directed Acyclic Graphs (DAGs) from 
Figs. 9 and 10 represent the relationships of conditional independence 
entailed by the Bayesian networks BC2, BC3, BC4 and BC5, which are 
helpful to interpret the EWA ensemble, defined as an ensemble of them, 
jointly with BC1, which is a Naive Bayes. We can establish which fea
tures play the main role in the model by using centrality and/or 
betweenness measures borrowed from the Network Analysis area 
applied to the DAGs, as it was done in [47]. In Graph Theory and 
Network Analysis, indicators of centrality identify the most important 
(influential) nodes within a graph, where “importance” is conceived as 
involvement in the cohesiveness of the network. For each feature we 
compute four different of these indicators (see [48]), which are shown in 
Tables 35 and 36 (Appendix E), normalized in order to sum up 100:  

(a) Freeman’s degree of centrality, which counts paths which pass 
through each node, that is, directed arcs which arrive at or depart 
from it.  

(b) Basic standard betweenness measure, which quantifies the number 
of times a node acts as a “bridge” along the shortest path between 
two other nodes (which we will call “geodesic” from now on). 
Nodes that have a high probability to occur on a randomly chosen 
geodesic between two randomly chosen nodes, have a high 
betweenness. Fixed a node v, this measure is defined by 
∑

i,j,i∕=j,i∕=v,j∕=v(givj/gij) (with the convention 0/0 =0), where gij is the 
number of geodesics from i to j in the graph, and givj is the number 
of geodesics in the subset of those that pass through v. 

(c) Borgatti’s proximal source betweenness is a variant of basic stan
dard betweenness to accumulate only for the last intermediating 
vertex in each incoming geodesic; this expresses the notion that, 

by serving as the “proximal source” for the target, this particular 
intermediary node will in some settings have greater influence 
than the rest. Fixed a node v, this measure is defined by 
∑

i,j,i∕=j,j∕=v,i→v(givj/gij)

(d) Borgatti’s proximal target betweenness is the counterpart to prox
imal source betweenness that allows betweenness to accumulate 
only for the first intermediating vertex in each outgoing geodesic; 
this expresses the notion that, by serving as the “proximal target” 
for the source, this particular intermediary node will in some 
settings have greater influence or control than others. Fixed a 
node v, this measure is defined by 

∑
i,j,i∕=j,i∕=v,j⟵v(givj/gij)

Features F9 (Hepatic F), F13 (CT), F14 (OT) and F15 (Intoxication), all 
of them corresponding to the category of “Main cause of admission”, do 
not appear in Tables 35 and 36 because their value of the three 
betweenness variants is 0 for BC2, BC3, BC4 and BC5, and at the same 
time, their Freeman’s centrality value is very small. They are, therefore, 
the least important for the cohesiveness of the network, which is logical 
since none of them exceeds 1.5% of prevalence in the cohort. At the 
other extreme, there are the most important features in this regard, with 
higher values of centrality and betweenness (see Table 11): they are the 
most influential for the predictive model but in relation with others. 
Note that those that are in the “Main cause of admission” category, are 
the three most prevalent. 

Features in Table 11 act as gateways, and the arcs that connect them 
as bridges, through which information flows from one cluster of vari
ables in the model to another. We can see from the DAG of BC3 in Fig. 9 
(we consider this DAG because it is built without forcing any directed 
arcs, see Table 3) that 

–The link between F4 and F18 is a bridge, and while F4 is a gateway to 
F21 and to the demographic characteristics, F18 is to F20, to the main 
features of the “Main cause of admission” category, and to that of 
“Admission”. 
–The information between the two clusters mentioned in the above 
item, “Demographic Characteristics” and “Comorbidities” on one 
hand, and “Admission” on the other, also flows through the concat
enation of two bridges: between F20 and F21, the features of “Severity 

Table 11 
The most influential features attending to centrality and betweenness.  

Demographic characteristics F2: Age  

Main cause of admission 
F4: ACS 
F5: RF 
F6: Shock  

Admission F18: Generic Syndrome 
F19: Sepsis  

Severity (on first 24 h of admission) F20: ICU Workload 
F21: APACHE II  

Table 12 
Example of characteristics of a critically ill patient.  

F3: 
Charlson 

F17: Origin F18: 
Generic 
syndr. 

F19: 
Sepsis 

F20: ICU 
Workload 

F21: 
APACHE II 

2 Emergency 
Room 

Medical Yes M. unstable 
coma/shock 

5–9  
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(on first 24 h of admission)”, and between F21 and F2. The latter is 
very natural since the APACHE II score is calculated based on age. 
–Within the cluster of features of “Admission”, there is a bridge be
tween F5 and F6, connecting sub-clusters; F5 is a gateway to F17: 
Origin and F19: Sepsis, while F6 is to F10: CRA and F16: Other 
syndromes. 

Odds Ratio: Besides, we can use EWA, which has proven to be the 
best of those we have considered, to evaluate the effect of the features in 
the evaluation of the risk of death. For example, for each of the “Main 
cause of admission” we can compute the Odds Ratio (OR) in favour of 
“die” when the feature is present compared to when it is not, being the 
other absents. An odds ratio (OR) is a measure of association between a 
feature and the outcome (variable Result, in this case), which represents 
the odds in favour of “die” given a particular value of a feature, 
compared to the odds in favour of “die” occurring given another value. 
For that, we fix the other features. 

Just as an example of this, consider a critically ill patient with the 
characteristics in Table 12, in the year 2018. 

In Table 13 we record the odds ratio, disaggregated by sex, in favour 
of the event “die”, for a critically patient whose characteristics are given 
in Table 12, according to what of the “Main cause of admission” has been 
reported for the patient (from F4 to F16). The odds ratio is defined as the 
ratio of the odds of event “die” occurring in the group of age >84 to the 
odds of it occurring in the group of age 75–84. Let continue with the 
example of the patient whose characteristics are given in Table 12: a 
male between 75 and 84 years old and with renal failure (F8 = 1). Thus, 
the risk of death (probability of “die”) is 0.46216. This probability in
creases up to 0.55110 if the age increases to be > 84. Therefore, the 
Odds Ratio in favour of “die” is: 

OR>84/75− 84 =
0.55110/(1 − 0.55110)
0.46216/(1 − 0.46216)

= 1.42871 

With respect to the risk of death, we observe the following, which is 
consistent with what is observed in Figs. 2 and 3 in Appendix A: 

–it is greater for women than for men, for both intervals of age 75–84 
and >84 and for all of the “Main cause of admission” features except 
for F9, in which case no variation in risk is observed (F9, Hepatic 
Failure, is one of the features less important from the perspective of 
centrality, we have seen). 

–within each sex, it is greater for older people, except when Other 
Trauma (F14) is present, case in which the variation is very small (the 
same thing happens than with F9). 

We also see that for patients having the characteristics recorded in 
Table 12 and having cardio respiratory arrest (F10: CRA) or intoxication 
(F15: Intoxication), both for men and women, the increase in age is an 
important risk factor (OR greater than 2 in Table 13). 

On the other hand, we can study which of the “Main cause of 
admission” are risk factors for a male who is more than 85 years old, and 
with the features in Table 12, for example, and consider the question: 
“What is the Odds Ratio between F10: CRA and F5: RF in favor of die?”, 
which is answered by computing the ratio between the odds in favour of 
“die” when F10 = 1 and when F5 = 1, which is: 

ORF10/F5 =
0.66774/(1 − 0.66774)
0.30552/(1 − 0.30552)

= 4.56836  

(see Table 13) that is, the odds in favour of “die” if F10 = 1 (Cardio 
Respiratory Arrest) is approximately 4.6 times greater than if F5 = 1 
(Respiratory Failure), for a patient with the mentioned characteristics, 
on which this result may depend, obviously. 

Feature strength: Finally, we compute a measure of the feature 
strength to predict the output Result. For that, we follow [49] and 
introduce a measure based on the conditional probability tables of Result 
with respect to each feature, obtained with EWA (see Appendix F). This 
measure uses the Kolmogorov-Smirnov statistical distance and a 
correction parameter. Indeed, we first introduce a strength measure for 
each feature, say F, named Strength Distance (SD), in this way: 

SD(F) = max
a,b∈ℱ

dF
a,b  

where ℱ is the set of the possible outcomes of variable F, and dF
a,b de

notes the Kolmogorov–Smirnov statistical distance between the a pos
teriori conditional probability distributions of Result given the evidence 
F = a, and given the evidence F = b. The values of SD have been recorded 
in Table 14 below. To take into account if different instantiations of a 
feature produce different predictions for Result, we introduce the 
correction term δ(F) = γ(F)/2 ∈ (0, 1], where γ(F) is the number of 
different predictions obtained from the classifier for Result given the 

Table 14 
SD, the correction term δ and CSD for the 21 features.  

Feature SD δ CSD(= SD × δ) 

F1 0.03432 1/2 0.01716 
F2 0.09623 1/2 0.04812 
F3 0.14104 1/2 0.07052 
F4 0.17367 1/2 0.08684 
F5 0.03301 1/2 0.01651 
F6 0.08698 1/2 0.04349 
F7 0.02511 1/2 0.01256 
F8 0.00865 1/2 0.00433 
F9 0.13364 1/2 0.06682 
F10 0.49694 1 0.49694 
F11 0.15203 1/2 0.07602 
F12 0.09849 1/2 0.04925 
F13 0.15729 1/2 0.07865 
F14 0.12650 1/2 0.06325 
F15 0.07601 1/2 0.03801 
F16 0.12105 1/2 0.06053 
F17 0.35811 1/2 0.17906 
F18 0.17512 1/2 0.08756 
F19 0.11333 1/2 0.05667 
F20 0.43213 1/2 0.21607 
F21 0.63546 1 0.63546  

Table 13 
Example of Table 12: probabilities of “die” and odds ratio in favour of “die”, for 
each of the possible “Main cause of admission”. In boldface those probabilities 
>0.5, which carry a prediction of “die” for the patient.  

F1: Sex Male Female 

F2: Age 75–84 >84 OR 75–84 >84 OR 

F4 0.07878 0.09715 1.25837 0.08084 0.10693 1.36138 
F5 0.19627 0.30552 1.80145 0.22859 0.36471 1.93737 
F6 0.20421 0.31516 1.79328 0.23714 0.37257 1.91022 
F7 0.20070 0.31982 1.87257 0.23325 0.37825 1.99987 
F8 0.46216 0.55110 1.42871 0.50267 0.57898 1.36059 
F9 0.16010 0.16010 1.00000 0.16010 0.16010 1.00000 
F10 0.49500 0.66774 2.05030 0.53169 0.72091 2.27516 
F11 0.20996 0.26928 1.38660 0.23044 0.31191 1.51378 
F12 0.07956 0.13082 1.74141 0.09336 0.16242 1.88317 
F13 0.30486 0.38341 1.41787 0.35674 0.44058 1.42009 
F14 0.07100 0.07003 0.98518 0.07433 0.07305 0.98137 
F15 0.10251 0.20942 2.31921 0.11517 0.22107 2.18048 
F16 0.08263 0.10638 1.32156 0.08962 0.12278 1.42184  
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evidences of the form F = a, with a varying in ℱ . Then, δ(F) is the pro
portion of different predictions actually obtained by the classifier for 
Result among the possible we could obtain from an evidence on F, which 
is 2, and we use it to correct strength measure SD by introducing the 
Corrected Strength Distance (CSD) by CSD(F) = SD(F) × δ(F). Note that 
CSD(F) ≥ 0, and that CSD(F) = 0 if and only if F and Result are inde
pendent variables. In Table 14 we have recorded for each feature the 
correction term δ and the feature strength measure CSD as well. 

Attending to CSD as feature strength measure, we can rank the fea
tures as follows, from stronger to weaker, attending to their capacity to 
modify prediction of the output Result: 

F21, F10,F20,F17, F18, F4, F13,F11,F3,F9,

F14, F16,F19,F12, F2, F6, F15, F1, F5, F7, F8.

5. Conclusions 

It is unlikely that intelligent software will replace the clinician in 
medical diagnosis and prognosis for patients care. Machine learning 
expert systems are more likely to act as intelligent agents for specialized, 
complicated problems, and are intended to enhance the performance of 
the expert physician, given place to smart Intensive Care Units in the 
future. Our primary goal in this work has been to demonstrate the 
feasibility and benefits of routinely collecting information from criti
cally ill patients admitted to ICU. The development of automatic tools to 
assist in clinical decision-making remains a challenge, although steps 
have already been taken in this direction. Our research is directed to
wards the construction of a machine learning hierarchical classifier to 
predict the risk of death in the ICU, as well as destination, for those who 
survive their stay in the ICU, or the cause of death for the rest, from 
multiple data streams (“Demographic Characteristics”, “Comorbidities”, 
“Admission” and “Severity (on first 24 h of admission)”). 

In a first step, an ensemble of Bayesian classifiers (EWA) is developed 
to predict the risk of death (output variable Result), while another is used 
to predict the destination of the patient at ICU discharge if the predicted 
value for the variable Result is live, or his/her cause of death if the 
prediction is die. EWA is constructed as an ensemble of five different 
base Bayesian networks, with the weighted average rule with appro
priate weights, which are obtained from the estimations of the AUPR 
values of the base classifiers to give more power to more “competent” 
base classifiers in the average criterion. When dealing with highly un
balanced and sparse datasets, AUPR, F-score and AUC are preferred as 
representation of performance assessment in the binary classification to 
the most commonly used measure, the Accuracy. 

We compare the performance of EWA with that of the base Bayesian 
classifiers from which it has been constructed, and with some state-of-the- 
art machine learning methodologies (Neural Networks, Support Vector 
Machine and Random Forest), as well as with the ensembles of the same 

base classifiers obtained using the average rule without weights, the ma
jority vote and the weighted majority vote criteria, finding that EWA has 
best overall performance. We also see as expected, that EWA improves the 
models based on scales, such as the traditional approach based on the 
APACHE II score, which suffers from not incorporating elements that 
clinical practice reveals to be of great value, such as the origin of the pa
tient (collected in our model in variable F17, that has been ranked fourth in 
importance, according to CSD as measure of the feature strength), since 
depending on the origin, the patient may have a very different evolution in 
the ICU, presenting fragility to a greater or lesser degree. EWA even out
performs a local recalibration of this model obtained from the dataset, LR. 
APACHEII, both with the AUPR and AUC metrics, and between them, LR. 
APACHEII behaves better from a predictive point of view than APACHEII. 
When we consider the F-score metric, what happens is that, on the one 
hand, all the classifiers show better than LR.APACHEII while, on the other, 
it is not possible to calculate the F-score for the standard based on the 
APACHE II (accuracy paradox). 

Table 15 shows the best classifier for each output variable and per
formance metric. Note that Cause does not appear since for this output 
variable, there are no significant differences among the classifiers. 

The conclusion from the statistical point of view of LR.APACHEII’s 
superiority compared to APACHEII is that the logistic regression model 
based on the score APACHE II is a better predictor when estimates the 
parameters from the current database, which seems quite logical, since 
in this way the model better reflects the characteristics of the patients for 
whom the mortality risk prediction is intended and, in particular, it 
catchs the changes and improvements in medical practice. Indeed, 
APACHE II score was described and validated by means of a logistic 
regression model based on the management and results of critically ill 
patients in 1985, and since then, some obvious advances, in preventive 
and primary medicine or in the control of chronic diseases, have 
changed the relevance of age and comorbidities in the prognosis of 
critically ill patients, and in our century there has been a dramatic 
reduction in mortality due to sepsis, coronary syndromes and trauma. 
Therefore, healthcare professionals must take this into account when 
faced with the need to use scoring systems in their daily practice. 

We also delve into interpretability of the EWA ensemble, both from 
the DAGs of the base classifier from which EWA has been constructed, 
using centrality and betweenness measures, and from the conditional 
probability tables of the outcome Result conditioned to any of the fea
tures, which allow us to rank the features attending to a measure of their 
strength. While this last approach discovers which features are impor
tant for prediction, features that are important but in relation with 
others, that is, the most “influential”, stand out using centrality and 
betweenness, the rest of features being irrelevant for prognosis purpose. 

The top five features are, in order of strength, in Table 16 below, with 
the categories that maximize the mortality risk, obtained from tables in 
Appendix F. Of these, F18, F20 and F21 are also influential from the point 
of view of centrality and betweenness, so they appear as clearly 

Table 15 
Best classifier(s) for the output variables Result and Destination and performance 
metrics, according to our experimental evaluation. If the classifiers are not in 
boldface, it means that only slightly exceeds its competitors. In each scenario, it 
is indicated by Yes/No if LR.APACHEII is significantly better than APACHEII, 
when the comparison makes sense.    

Performance metric   

AUPR F-score AUC 

Output Result 
EWA BC1,EWA,BC2 EWA 
Yes  Yes 

Destination BC3 BC3 EWA  

Table 16 
Top five features, with the category that maximizes risk of death for each, and 
the associated risk.  

Feature Category that maximizes risk Risk 

F21: APACHE II >34 64% 
F10: CRA (Cardio Respiratory 

Arrest) 
Yes 62% 

F20: ICU Workload Medical unstable with coma or 
shock 

44% 

F17: Origin Extra Hospital Emergency 46% 
F18: Generic Syndrome Medical 19.5%  
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highlighted as basic characteristics to take into account to predict the 
risk of death in patients admitted to a hospital ICU. Note that a feature 
can be influential from the point of view of centrality and betweenness 
but have little predictive importance; for example, F2: Sex has a rela
tively low value of CSD (meaning that the risk of death is similar for men 
and women, but it is influential since acts as connecting node between 
the features of the “Demographic Characteristics” and “Comorbidities” 
categories, which also have weak importance, and the rest of features. 

Top five features are followed by F4: ACS (Acute Coronary Syn
drome), which is the only one characteristic of the “Main cause of 
admission” category that acts as factor of protection (its presence re
duces the risk of death). From Table 38 we compute the OR in favour of 
“die” corresponding to the presence of ACS (F4 = 1) with respect to its 
absence (F4 = 0), regardless of the other features: 

ORF4=1/F4=0 =
0.00390/(1 − 0.00390)
0.11757/(1 − 0.11757)

= 0.02939  

That is, the odds in favour of “die” divides by approximately 34 when 
ACS is present with respect to when it is absent, in general, without 
taking into account the other characteristics of the patient. This fact may 
seem counterintuitive, but it must be taken into account that clinical 
practice indicates that among the patients admitted to the ICU of a 
hospital, those who do so with “Generic Syndrome” F18 = “Coronary”, 
which is clearly associated with ACS (F4 = “yes”), are the ones with the 
best prognosis. Keep in mind, that if it is not due to that reason, the 
admission will be for another with a worse prognosis. For example, if 
they present a respiratory failure RF (F5 = “yes”), which is associated 
with “Generic Syndrome” F18 = “Medical”, their prognosis worsens 
(increases the risk of death), what is consistent with the information in 
Table 16. Note that 95.2% of the patients with F18 = “Coronary” present 
ACS, while only 0.7% of them present RF; from the patients with 
F18 = “Medical”, 47.8% present RF but only 2.8% ACS. 

Among the top five features ranked by strength, there is only one of 
the “Main cause of admission” category which seems to be the most 
important risk factor, F10: CRA. From Table 40 we obtain similarly that 
the OR in favour of “die” corresponding to the presence of CRA (F10 = 1) 
with respect to its absence (F10 = 0) is 

ORF10=1/F10=0 =
0.62298/(1 − 0.62298)
0.12604/(1 − 0.12604)

= 11.45758  

That is, the odds in favour of “die” multiplies by approx. 11.5 when CRA 
is present with respect to when it is absent. For a specific patient, based 
on its known characteristics, these result can be adjusted, as we have 
done in Section 4 in some cases to evaluate the effect of the features in 
the evaluation of the risk of death by means of the OR. 

It would be very interesting to extrapolate our model to a database 
with a case mix of different ICUs, which would make it possible to 
compare the performance of different units; to do this, the characteris
tics of a typical patient would be introduced into the model and the risk 
of death would be predicted with each ICU. This tool would also make it 
possible to carry out a longitudinal study and analyze the improvement 
over time of the healthcare processes of a specific ICU, as well as 
adapting the model to the different types of ICU, from the trauma center 
to the thematic respiratory or cardiovascular ICU, if we learn it from 
data collected in these more specific scenarios. 

To the extent that it can help physicians in undertaking patient- 
tailored therapeutic decisions, and to the health authorities to manage 
more optimally the available resources, the local data-driven machine 
learning methodology introduced in this work for estimating the risk of 
death and predicting the destination at ICU discharge or the cause of 
death, using an ensemble of Bayesian classifiers, seems to be a useful and 
promising tool with important clinical applicability. 
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Appendix A. Plots  

Appendix B. Tables for output Result  

Fig. 3. Evolution of mortality rate at the ICU with age, disaggregated by sex, 
and for the overall population. 

Fig. 2. Evolution of mortality rate at the ICU with year, disaggregated by sex, 
and for the overall population. 
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Appendix C. Tables for output Destination  

Fig. 4. Variables ordered by the number of missing values. (For interpretation of the references to color in the text, the reader is referred to the web version of 
this article.) 

Fig. 5. Distribution of missing values (in red), where cases have been ordered by year. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 6. Boxplots for output variable Result in the first run. AUPR, F-score and 
AUC. F-score cannot be computed for the standard approach based on APACHE 
II (“APII” as x-axis label), but it can for the locally recalibrated LR.APACHEII 
(“LR.AP” as x-axis label). 
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Fig. 7. Boxplots for output variable Destination in the first run, for AUPR, F- 
score and AUC. 
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Fig. 8. Boxplots for output variable Cause in the first run, for AUPR, F-score and AUC.  
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Fig. 9. DAGs for the base classifiers BC2 (top) and BC3 (bottom), learned from the whole database set.  
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Fig. 10. DAGs for the base classifiers BC4 (top) to BC5 (bottom), learned from the whole database set.  
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Table 18 
Adjusted p-values for the comparisons between the four ensembles, corre
sponding to the statistical significances in Table 17 when we compare EWA/EA 
against WMV and MV. Also, in boldface, the adjusted p-values corresponding to 
the comparison between the two EWA and EA, that were not reported there.  

AUPR 
(Result) 

EWA EA WMV MV 

EWA>

(5) 

0.0059** 

(8) 

0.029* 

(15) 

0.0342*  
0.029 *  0.018* 0.098⋅  
0.0059** 0.024* 0.018*  
0.0342 *  0.0117* 0.018*  
0.049 *  0.039* 0.0098**    

0.029* 0.082⋅    
0.012* 0.012*    
0.055⋅ 0.056⋅      

0.074⋅      
0.0059**      
0.029*      
0.093⋅      
0.059⋅      
0.012*      
0.018*  

EA>
(8) 

0.049* 

(10) 

0.098⋅    
0.029* 0.027*    
0.056⋅ 0.039*    
0.0645⋅ 0.0146*    
0.024* 0.093⋅    
0.049* 0.068⋅    
0.012* 0.012*    
0.018* 0.034*      

0.029*      
0.021*  

Table 22 
Adjusted p-values for the comparisons between the four ensembles, corre
sponding to the statistical significances in Table 21 when we compare EWA/EA 
against WMV and MV. Also, in boldface, the adjusted p-values corresponding to 
the comparison between the two EWA and EA, that were not reported there.  

F-score (Result) EWA EA WMV MV 

EWA>

(2) 0.054 ⋅  

(5) 

0.027* 

(9) 

0.027*  
0.0391 *  0.027* 0.034*    

0.0977⋅ 0.029*    
0.066⋅ 0.0059**    
0.0391* 0.027*      

0.059⋅      
0.0059**      
0.082⋅      
0.018*  

EA>

(1) 0.0645⋅ 

(5) 

0.027*      
0.049*      
0.0146*      
0.032*      
0.0146*  

WMV> (2) 
0.0907 ⋅       
0.090 ⋅   

Table 20 
(Non-adjusted) p-values corresponding to the comparison between LR.APACHEII and the standard based on the APACHE II score, for the alternative hypothesis that the 
former has greater AUPR median.  

AUPR 
Run 2 3 4 5 7 8 9 10 11 
p-Value 0.042* 0.0049** 0.014* 0.032* 0.0068** 0.0098** 0.0049** 0.0098** 0.032*  

(Result) Run 12 13 14 15 16 17 18 19 20 
p-Value 0.042* 0.065⋅ 0.053⋅ 0.0068** 0.08⋅ 0.0049** 0.024* 0.065⋅ 0.014*  

Table 21 
F-score median for EWA/EA is significantly greater (p-value<0.1) than that of WMV and/or MV, for output variable Result and for each run? (“2” if it is greater for both, 
WMV and MV, “1” if it is greater for only one, “0” if it is not greater for either of them).  

F-score Run 

Result 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

EWA 0 0 0 0 2 0 2 0 0 1 2 2 0 1 0 0 2 1 0 1 
EA 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 2 0 0 0  

Table 19 
Non-adjusted p-values corresponding to the comparisons between EWA and EA in Table 18, but only between them two (so the p-values are not adjusted). In boldface 
the 5 runs corresponding to the adjusted p-values that have been reported in Table 18.  

AUPR (Result) Run 3 5 9 14 15 18 19 20 

EWA>EA p-Value 0.00098*** 0.014* 0.00098*** 0.042* 0.0068** 0.08⋅ 0.024* 0.042*  

Table 17 
AUPR median for EWA/EA is significantly greater (p-value<0.1) than that of WMV and/or MV, for output variable Result and for each run? (“2” if it is greater for both, 
WMV and MV, “1” if it is greater for only one, “0” if it is not greater for either of them).  

AUPR Run 

Result 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

EWA 0 0 1 2 2 0 2 0 2 1 1 2 2 0 1 1 1 1 2 2 
EA 0 0 0 2 2 0 2 0 2 1 1 2 1 0 0 1 1 0 2 1  
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Table 26 
Adjusted p-values for the comparisons between the four ensembles, corresponding to the statistical significances in Table 24 when we compare EWA/EA against WMV 
and MV. Also, in boldface, the adjusted p-values corresponding to the comparison between the two EWA and EA, that were not reported there, indicating to which run 
they correspond.  

AUC (Result) EWA EA WMV MV 

EWA>

(6) 

0.018 *  (run 3) 

(14) 

0.029* 

(14) 

0.029*  
0.012 *  (run 5) 0.041* 0.023*  
0.034 *  (run 9) 0.018* 0.018*  
0.059 ⋅  (run 10) 0.049* 0.049*  
0.039 *  (run 15) 0.012* 0.020*  
0.012 *  (run 19) 0.074⋅ 0.034*    

0.029* 0.034*    
0.074⋅ 0.059⋅    
0.029* 0.029*    
0.012* 0.012*    
0.039* 0.029*    
0.018* 0.012*    
0.012* 0.015*    
0.082⋅ 0.082⋅  

EA>

(14) 

0.039* 

(14) 

0.039*    
0.049* 0.023*    
0.020* 0.020*    
0.049* 0.049*    
0.012* 0.029*    
0.097⋅ 0.029*    
0.034* 0.034*    
0.084⋅ 0.074⋅    
0.029* 0.029*    
0.012* 0.012*     
0.039* 0.029*     
0.012* 0.041*     
0.012* 0.015*     
0.082⋅ 0.082⋅  

Table 23 
Non-adjusted p-values corresponding to the comparisons between EWA and EA in Table 22, but only between them two (so the p-values are not adjusted). In boldface 
the 2 runs corresponding to the adjusted p-values that have been reported in Table 22.  

F-score (Result) Run 1 2 3 5 8 9 10 
p-Value 0.062⋅ 0.078⋅ 0.026* 0.018* 0.029* 0.071⋅ 0.038*  

EWA>EA 
Run 11 13 14 17 18 19 20 
p-Value 0.062⋅ 0.054⋅ 0.022* 0.012* 0.029* 0.030* 0.029*  

Table 24 
AUC median for EWA/EA is significantly greater (p-value<0.1) than that of WMV and/or MV, for output variable Result and for each run? (“2” if it is greater for both, 
WMV and MV, “1” if it is greater for only one, “0” if it is not greater for either of them).  

AUC Run 

Result 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

EWA 2 0 2 2 2 0 2 2 2 2 0 2 2 0 2 2 0 0 2 2 
EA 2 0 2 2 2 0 2 2 2 2 0 2 2 0 2 2 0 0 2 2  

Table 25 
Non-adjusted p-values corresponding to the comparisons between EWA and EA when comparing them alone (non-adjusted p-values), for the AUC metric and the output 
variable Result.  

AUC (Result) Run 1 2 3 4 5 9 10 14 15 18 19 20 
EWA>EA p-Value 0.08⋅ 0.024* 0.0029** 0.096⋅ 0.002** 0.0068** 0.0098** 0.08⋅ 0.012* 0.065⋅ 0.02* 0.065⋅  
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Table 27 
(Non-adjusted) p-values corresponding to the comparison between LR.APACHEII and APACHEII, for the alternative hypothesis that the former has greater AUPR 
median.  

AUPR Run 2 3 4 5 7 8 9 10 11 
p-Value 0.042* 0.0049** 0.014* 0.032* 0.0068** 0.0098** 0.0049** 0.0098** 0.032*  

(Result) 
Run 12 13 14 15 16 17 18 19 20 
p-Value 0.042* 0.065⋅ 0.053⋅ 0.0068** 0.08⋅ 0.0049** 0.024* 0.065⋅ 0.014*  

Table 29 
Non-adjusted p-values corresponding to the comparisons between EWA and EA in Table 28, for output variable Destination and AUPR. In boldface the 10 runs for which 
there is statistical significance when considering adjusted p-values for comparison of the four ensembles in Table 28, for comparison between EWA and EA.  

AUPR (Destination) 
Run 1 2 3 4 5 6 7 8 9 10 
p-Value 0.019* 0.0068** 0.042* 0.00098*** 0.0029** 0.002** 0.002** 0.0029** 0.053⋅ 0.024*  

EWA>EA Run 11 12 13 14 15 16 17 18 20  
p-Value 0.002* 0.014* 0.042* 0.019* 0.014* 0.032* 0.019* 0.042* 0.014*  

Table 28 
Adjusted p-values for the comparisons between the four ensembles. Only sig
nificant p-values (<0.1) have been recorded.  

AUPR (Destination) EA 

EWA> (10) 

0.041* 
0.0059** 
0.018* 
0.012* 
0.012* 
0.018* 
0.012* 
0.082⋅ 
0.082⋅ 
0.082⋅  

WMV> (2) 0.082⋅ 
0.059⋅  

Table 30 
Number of runs, say n, for which AUPR of BC3 model (for the output variable Destination) is statistically greater than that of the other classifiers, when considering 
adjusted p-values for comparison of five classifiers at the same time (BC1 to BC5 first, and secondly BC3 and the ensembles). Below appear the corresponding p-values 
for the exact Binomial test in favour of BC3, which are 0 . 5n.  

AUPR (Destination) BC1 BC2 BC4 BC5 EWA EA WMV MV 
9 10 16 20 6 10 8 7 

BC3> 0.002** 0.0009*** 1.53 × 10− 5*** 9.54 × 10− 7*** 0.016* 0.0009*** 0.004** 0.008**  

Table 32 
Number of runs for which there are statistically significant differences between 
EWA and each of the classifiers EA, BC1, BC2 and BC3, for the output variable 
Destination and the metric AUC. These differences are always in the sense that 
the median of EWA is greater than that of the others. The one-sided p-values for 
the exact Binomial test for the statistical significance of the number of runs is 
also given in the second column.  

AUC (Destination) Number of runs p-Value 

EWA>EA 15 0 . 515 = 3.05 × 10− 5*** 
EWA>BC1 7 0 . 57 = 0.0078** 
EWA>BC2 9 0 . 59 = 0.0020** 
EWA>BC3 4 0 . 54 = 0.0625⋅  

Table 31 
(Non-adjusted) p-values corresponding to the comparison between EWA and EA for output variable Destination and F-score.  

F-score (Destination) Run 3 8 10 11 13 14 15 
EWA>EA p-Value 0.03* 0.05⋅ 0.09⋅ 0.05⋅ 0.05⋅ 0.02* 0.08⋅  

R. Delgado et al.                                                                                                                                                                                                                                



Artificial Intelligence In Medicine 115 (2021) 102054

23

Appendix D 

D.1 Coefficients (weights) β for Eq. (2)  

D.2 Coefficients (weights) α for Eq. (3)  

Appendix E. Centrality and betweenness measures  

Table 35 
(Normalized to sum up 100) Freeman’s degree of centrality and Basic standard 
betweenness measure of the features. In boldface the highest 5 values of each 
column.  

Feature Freeman’s centrality (%) Basic standard betw. (%)  

BC2 BC3 BC4 BC5 BC2 BC3 BC4 BC5 

F1 1.5 2.0 2.0 1.5 0.0 6.1 0.0 0.0 
F2 1.5 3.0 4.5 10.0 0.0 13.0 7.0 0.0 
F3 1.5 2.0 2.0 3.5 0.0 0.0 0.0 14.5 
F4 12.0 9.5 6.5 3.5 0.0 15.6 0.0 0.0 
F5 10.5 10.5 11.0 5.0 16.7 6.9 7.0 0.0 
F6 12.0 9.5 10.0 3.5 38.9 4.8 23.3 3.6 
F7 6.0 6.5 5.5 3.5 0.0 4.7 5.5 0.0 
F8 3.0 4.0 3.5 3.5 0.0 3.1 0.0 0.0 
F10 4.5 5.5 4.5 3.5 0.0 0.2 0.0 0.0 
F11 4.5 3.0 3.5 3.5 5.6 0.4 0.0 0.0 
F12 4.5 3.0 4.5 3.5 0.0 1.5 7.8 0.0 
F16 6.0 6.5 5.5 3.5 0.0 0.0 14.6 0.0 
F17 3.0 2.0 3.5 5.0 0.0 0.0 0.4 0.0 
F18 10.5 10.5 10.0 16.5 38.9 19.6 5.2 3.6 
F19 4.5 3.0 6.5 3.5 0.0 0.0 10.9 29.0 
F20 4.5 7.5 5.5 5.0 0.0 12.6 8.9 0.0 
F21 3.0 4.0 4.5 10.0 0.0 11.4 9.4 26.1  

Table 36 
(Normalized to sum up 100) Borgatti’s proximal source and proximal target 
betweenness measures of the features. In boldface the highest 5 values of each 
column.  

Feature Borgatti’s proximal source (%) Borgatti’s proximal target (%)  

BC2 BC3 BC4 BC5 BC2 BC3 BC4 BC5 

F1 0.0 8.5 0.0 0.0 0.0 2.4 0.0 0.0 
F2 0.0 14.6 12.5 0.0 0.0 6.1 2.8 0.0 
F3 0.0 0.0 0.0 6.7 0.0 0.0 0.0 33.3 
F4 0.0 14.6 0.0 0.0 0.0 21.8 0.0 0.0 
F5 18.75 8.8 7.9 0.0 15.6 6.7 12.5 0.0 
F6 43.75 6.0 27.5 8.3 34.4 4.2 17.8 1.7 
F7 0.0 6.6 9.7 0.0 0.0 3.0 4.2 0.0 
F8 0.0 4.4 0.0 0.0 0.0 2.4 0.0 0.0 
F10 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 
F11 6.25 0.6 0.0 0.0 6.25 0.6 0.0 0.0 
F12 0.0 0.6 1.4 0.0 0.0 2.1 13.9 0.0 
F16 0.0 0.0 3.2 0.0 0.0 0.0 13.4 0.0 
F17 0.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0 
F18 31.25 22.2 6.0 8.3 43.75 24.6 9.3 1.7 
F19 0.0 0.0 19.4 53.3 0.0 0.0 8.3 16.7 
F20 0.0 7.6 4.6 0.0 0.0 17.0 11.6 0.0 
F21 0.0 5.1 6.9 10.0 0.0 8.6 5.6 20.0  

Table 33 
Sepsis means F19 = 1. Non surgical category means F18 = Coronary, Medical or 
Trauma, while surgical category means F18 = Elective or Urgent Surgical. Blanc 
spaces mean excluding category. This table has been adapted to our setting from 
[9].  

Features Sepsis or non surgical category No sepsis and surgical category 

F4 − 0.191 − 0.797 
F5 − 0.890 − 0.610 
F6 0.493 − 0.797 
F7 − 0.759 − 1.150 
F8 − 0.885 − 0.196 
F9 0.501 − 0.613 
F10 0.393 0.393 
F11  − 0.248 
F12 − 1.368 − 0.797 
F13 − 0.517 − 0.955 
F14 − 1.228 − 1.684 
F15 − 0.142 − 0.196 
F19 0.113   

Table 34 
Coefficients α for Eq. (3) (only those with significant p-values, that is >0.10, 
have been recorded). (a): the odds in favour of “die” where the regressors are at 
their reference value (all equal to “0”, including APACHE II). (b): increase in 
odds in favour of “die” for a one-unit increase in APACHE II score, holding the 
other regressors at a fixed value. (c): increase in odds in favour of “die” for the 
regressor taken the value “1”, with respect to value “0”, holding the other re
gressors at a fixed value. (d): decrease in odds in favour of “die” for F4 taken the 
value “1”, with respect to value “0”, holding the other regressors at a fixed value.  

Features α estimated p-Value interpretation 

Intercept α0 = − 4.85711 5.72 × 10− 14*** 0 . 00777(a) 

APACHE II α1 = 0.11544 <2 ×10− 16*** 12.2 % (b) 

F19 α3 = 0.48604 0.00212** 62.6 % (c) 

F4 α4 = − 1.83024 0.03768* 84.1 % (d) 

F5 α5 = 0.62866 0.00126** 87.5 % (c) 

F6 α6 = 0.52522 0.00896** 69.1 % (c) 

F7 α7 = 0.49130 0.05651⋅ 63.4 % (c) 

F10 α10 = 1.82376 4.38 × 10− 9*** 519.5 % (c)  
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Appendix F. CPT tables for the output Result 

Each table is obtained computing the a posteriori conditional prob
ability of the output Result to the feature, assuming the rest of features 
are not observed, except in the case of the “Main cause of admission” 

category, for which when one is present, the others are necessarily ab
sent, since thery are mutually exclusive4 ; instead, if it is absent, we 
assume the others are not observed.  

Table 37 
CPT of variable Result conditioned to F1 and to F2.   

F1: Sex F2: Age  

Male Female <45 45–54 55–64 65–74 75–84 >84 

live 0.86575 0.83143 0.90517 0.89967 0.89313 0.84506 0.80894 0.82340 
die 0.13425 0.16857 0.09483 0.10033 0.10687 0.15494 0.19106 0.17660  

Table 38 
CPT of variable Result conditioned to F3 and to F4.   

F3: Charlson comorbidity index F4: ACS  

0 1 2 3 >3 0 1 

live 0.90627 0.86975 0.84657 0.81614 0.76523 0.82243 0.99610 
die 0.09373 0.13025 0.15343 0.18386 0.23477 0.17757 0.00390  

Table 39 
CPT of variable Result conditioned to F5, to F6, to F7 and to F8.   

F5: RF F6: Shock F7: Coma F8: Renal F  

0 1 0 1 0 1 0 1 

live 0.87220 0.83919 0.88342 0.79644 0.86008 0.83497 0.85822 0.84957 
die 0.12780 0.16081 0.11658 0.20356 0.13992 0.16503 0.14178 0.15043  

Table 40 
CPT of variable Result conditioned to F9, to F10, to F11 and to F12.   

F9: Hepatic F F10: CRA F11: ES F12: Arrhythmia  

0 1 0 1 0 1 0 1 

live 0.85302 0.98666 0.87396 0.37702 0.84377 0.99580 0.85084 0.94933 
die 0.14698 0.01334 0.12604 0.62298 0.15623 0.00420 0.14916 0.05067  

Table 41 
CPT of variable Result conditioned to F13, to F14, to F15 and to F16.   

F13: CT F14: OT F15: Intoxication F16: Other syndromes  

0 1 0 1 0 1 0 1 

live 0.85369 0.69640 0.85177 0.97827 0.85271 0.92872 0.84672 0.96777 
die 0.14631 0.30360 0.14823 0.02173 0.14729 0.07128 0.15328 0.03223  

Table 42 
CPT of variable Result conditioned to F17.   

F17: Origin  

Ward Operation Room Extra Hospital Emergency Other Hospital Emergency Room unknown 

live 0.77059 0.89578 0.53767 0.87632 0.88156 0.71747 
die 0.22941 0.10422 0.46233 0.12368 0.11844 0.28253  

4 Although it is possible for a patient to present more than one of the features 
of the “Main cause of admission” category, in practice, there were cases in 
which several were recorded, in principle only the most significant had to be 
reported and, in fact, this is so for almost 89% of patients. 
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Abstract

Different performance measures are used to assess the behaviour, and to carry out the

comparison, of classifiers in Machine Learning. Many measures have been defined on the

literature, and among them, a measure inspired by Shannon’s entropy named the Confusion

Entropy (CEN). In this work we introduce a new measure, MCEN, by modifying CEN to

avoid its unwanted behaviour in the binary case, that disables it as a suitable performance

measure in classification. We compare MCEN with CEN and other performance measures,

presenting analytical results in some particularly interesting cases, as well as some heuristic

computational experimentation.

Introduction

Machine Learning is the subfield of Computer Science, as well as the branch of Artificial Intel-

ligence, whose objective is to develop techniques that allow computers to learn. It has a wide

range of applications, such as search engines or pattern recognition. Examples are: medical

diagnosis, fraud detection, stock market analysis, classification of DNA sequences, recognition

of speech and written language, images, games and robotics.

Machine learning tasks are typically grouped into two broad categories: Supervised and

Unsupervised Learning. Classification falls in the former, since it deals with some input vari-

ables (features or characteristics) and an output variable (the class), and uses an algorithm to

infer the class of (that is, to classify) a new case from its known features. Different models are

used to build classifiers. Decision Trees (J48, Random Forest), Rules (Decision Table, JRip,

ZeroR), Neural Networks (Multilayer Perceptron, Extreme Learning Machines, RBFN), Sup-

port Vector Machines, and Bayesian Networks (Naive Bayes, TAN) are some, although not the

only ones, approximations to supervised classification.

Once a classifier is built, a performance measure is needed in order to assess its behaviour

and to compare it with other classifiers. In the binary case, in which the class variable has

only two labels or classes, there are several classical measures that have been widely used:

Accuracy, Sensitivity, Specificity and F-score, only to mention some of the most commonly

used. Not of all them allow a natural extension to the multi-class case (more than two labels),

and only few measures have been specially designed for multi-class classification, which is a

more complex scenario. Accuracy, by far the simplest and widespread performance measure
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in classification, extends seamlessly its definition in the binary case to multi-class classifica-

tion. Another well known performance measure, formerly introduced in the binary case but

that extends without problems, is Matthew’s Correlation Coefficient (MCC), introduced by

Matthews in [1].

In this work, whose seed is [2], we focus on a different performance measure, named Con-

fusion Entropy (CEN), which measures the uncertainty generated by classification, and has

been recently introduced by Wang et al. in [3] as a novel measure for evaluating classifiers

based on the concept of Shannon’s entropy. CEN measures generated entropy from misclassi-

fied cases considering not only how the cases of each fixed class have been misclassified into

other classes, but also how the cases of the other classes have been misclassified as belonging

to this class, as well as entropy inside well-classified cases. Given a set of non-negative num-

bers, say {n1, . . ., nr}, the Shannon’s entropy generated by the set can be defined as the sum
Pr

i¼1
� pi log ðpiÞ, with pi ¼

ni
n if n ¼

Pr
i¼1

ni, where log can be, as usual, the logarithm in

base 2.

CEN is compared in [3] with Accuracy and other measures, showing a relative consistency

with them: higher Accuracy tends to result in lower Confusion Entropy. This performance

measure, which is more discriminating for evaluating classifiers than Accuracy, specially when

the number or cases grows, has also been studied in [4], where the authors show the strong

monotone relation between CEN and MCC, and that both, MCC and CEN, improve over

Accuracy.

There are some works in the recent literature using Confusion Entropy. For example, in [5]

the authors propose a novel splitting criterion based on CEN for learning decision trees with

higher performance; experimental results on some data sets show that this criterion leads to

trees with better CEN value without reducing accuracy. The authors of [6] and [7] use CEN,

among other performance measures, to compare several common data mining methods used

with highly imbalanced data sets where the class of interest is rare. Other works propose modi-

fications of this measure, as [8], in which a Confusion Entropy measure based on a probabilis-

tic confusion matrix is introduced, measuring if cases are classified into true classes and

separated from others with high probabilities. A similar approach to that of [8] is followed in

[9] to analyze the probability sensitivity of the Gaussian processes in a bankruptcy prediction

context, by means of a probabilistic confusion entropy matrix based on the model estimated

probabilities. In the context of horizontal collaboration, the system global entropy is intro-

duced in [10] analogously to CEN (see also [11] and [12]), and it is used in the collaborative

part of a clustering algorithm, which is iterative with the optimization process continuing as

long as the system global entropy is not stable.

It is remarkable that CEN shows to have a weakness in the binary case that invalidates it

as a suitable performance measure: in some situations CEN gets values larger than one,

unlike what happens in the multi-class case, in which CEN ranges between zero and one.

CEN is a measure of the “overall” entropy associated to the confusion matrix, that can be

thought as generated by two sources: entropy within the main diagonal, and the one gener-

ated by the values outside it, corresponding to misclassification. We will show that CEN is

more sensible to the later. A second but not least important point in the weakness of the

behaviour of CEN is its lack of monotonicity when the overall entropy does increase (or

decrease) monotonously. Along the paper we will show different situations to stand out

these items.

Our aim is to introduce an enhanced CEN measure, that we denote by MCEN, and com-

pare it with CEN, MCC and Accuracy. This new measure will show to be highly correlated

with CEN. Two aspects deserve to be highlighted:

CEN for classification
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1. definitions of probabilities involved in the construction of CEN have been modified in

MCEN to improve interpretability as real probabilities,

2. weakness of CEN in the binary case (out-of-range and lack of monotonicity) are overcome

with MCEN.

The paper is structured as follows: first we introduce the Modified Confusion Entropy

MCEN and deal with the multi-dimensional perfectly symmetric and balanced case, which is

deeply studied, performing a cross comparison between CEN, MCEN, Accuracy and MCC.

The general binary case is treated next, focusing on different families of matrices and carrying

out the corresponding cross comparisons. Next part is devoted to study the ZA family of confu-

sion matrices. Then, we compare CEN, MCEN, Accuracy and MCC with two recently intro-

duced measures: the Probabilistic Acuracy PACC ([13]) and the Entropy-Modulated Accuracy

EMA ([14]). Finally, some experiments performed in the binary setting to compare CEN with

MCEN through four real database sets are included in the Supporting Information file. These

experiments show that their behaviour is mostly analog, but when it is not the case, MCEN is

the one that behaves more according to entropy generated by misclassification. The paper fin-

ishes with a conclusion section.

Methods

Given a multi-class classifier learned from a training dataset, with N� 2 classes labelled {1,

2, . . ., N}, we apply it in order to classify cases from a testing dataset, that is, to infer the class of

the cases from their known features or characteristics. Since for the cases in the testing dataset

we actually know the class to which they belong, we can construct the N × N confusion matrix

C = (Ci,j)i,j=1, . . ., N, which collects the results issued by the classifier over the testing dataset. Ci,j

is the number of cases of class i that have been classified as belonging to class j. We denote by S
the sum of values of the matrix, that is, the total number of cases in the testing dataset,

S ¼
PN

i¼1

PN
j¼1

Ci;j.

We introduce notations OUT(C) and IN(C), respectively, to denote the Shannon’s entropy

generated by the elements of outside (respectively, inside) the main diagonal of matrix C.

That is, while IN is the entropy generated by the well classified cases, OUT is generated by

misclassification.

In [3] the misclassification probability of classifying class-i cases as being of class j “subject

to class j”, denoted by P j
i;j, is introduced as:

P j
i;j ¼

Ci;j
PN

k¼1
ðCj;k þ Ck;jÞ

; i; j ¼ 1; :::;N; i 6¼ j ; ð1Þ

that is, Pj
i;j is “almost” the relative frequency class-i cases that are classified as being of class j

among all cases that are of class j or that have been classified as being of class j. But not exactly.

The reason is that class-j cases that have been correctly classified, whose number is Cj,j, are

counted twice in the denominator.

Analogously, the misclassification probability of classifying class-i cases as being of class-j
“subject to class i”, with analogous interpretation, denoted by Pi

i;j, is defined in the same paper

by:

Pi
i;j ¼

Ci;j
PN

k¼1
ðCi;k þ Ck;iÞ

; i; j ¼ 1; :::;N; i 6¼ j : ð2Þ

CEN for classification
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Then, the Confusion Entropy associated to class j is defined in [3] by:

CENj ¼ �
XN

k¼1;k6¼j

ðP j
j;k log 2ðN� 1ÞðP

j
j;kÞ þ P j

k;j log 2ðN� 1ÞðP
j
k;jÞÞ ð3Þ

with the convention a logb(a) = 0 if a = 0. Finally, the overall Confusion Entropy associated to

the confusion matrix C is defined as a convex combination of the Confusion Entropy of the

classes as follows:

CEN ¼
XN

j¼1

Pj CENj ; ð4Þ

where the non-negative weights Pj, summing 1, are

Pj ¼

PN
k¼1
ðCj;k þ Ck;jÞ

2
PN

k;‘¼1
Ck;‘

: ð5Þ

Note that CEN is an invariant measure; if we multiply all elements of the confusion matrix

by a constant we obtain the same result. The same convenient and useful property holds with

Accuracy, MCC and the modified Confusion Entropy measure MCEN, that we will introduce

below. As MCC lives in [−1, 1] while Accuracy, CEN and MCEN range in [0, 1], we scale

MCC and introduce MCC� ¼ 1� MCC
2
2 ½0; 1�. Besides, since Accuracy usually has an inverse

relationship with both CEN and MCEN, we choose to consider ACC� = 1–Accuracy instead of

Accuracy itself.

For N> 2, CEN ranges between 0 and 1, 0 is attained with perfect classification (the off-

diagonal elements of matrix C being zero), while 1 under complete misclassification, symmetry

and balance in C, that is, if all diagonal elements in C are zero, and the off-diagonal elements

take all the same value. In the binary case (N = 2), although CEN remains to be 0 with perfect

classification, and is 1 under complete misclassification with symmetry, in intermediate sce-

narios we can also obtain CEN = 1 and even higher values. That is, in some cases CEN is out-

of-range. See, for example, the confusion matrices in Table 1, which have already been consid-

ered in [4]. The lack of monotonicity when the situation monotonously goes from perfect clas-

sification to completely symmetric and balanced misclassification, as showed by the sequence

of matrices in Table 1, represents a great inconvenience of CEN in the binary case, and is our

main motivation for introducing a modified version of it.

Definition

Instead of (1), we propose to introduce the probability of classifying class-i cases in class j “sub-

ject to class j”, as

~Pj
i;j ¼

Ci;j
PN

k¼1
ðCj;k þ Ck;jÞ � Cj;j

; i; j ¼ 1; :::;N; i 6¼ j :

Table 1. Examples in the perfectly symmetric and balanced binary case with S = 12. Only CEN values.

6 0

0 6

 !
5 1

1 5

 !
4 2

2 4

 !
3 3

3 3

 !
2 4

4 2

 !
1 5

5 1

 !
0 6

6 0

 !

CEN = 0.0000 0.5975 0.8617 1.0000 1.0566 1.0525 1.0000

https://doi.org/10.1371/journal.pone.0210264.t001

CEN for classification
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that is, we overcome the fact that in (1) correctly classified class-j cases are counted twice in

the denominator. With this definition, ~Pj
i;j is really the relative frequency of class-i cases classi-

fied as belonging to class j among all cases that are of class j or that have been classified as

being of class j. Analogously, we modify definition (2) in the same sense:

~Pi
i;j ¼

Ci;j
PN

k¼1
ðCi;k þ Ck;iÞ � Ci;i

; ; i; j ¼ 1; :::;N; i 6¼ j ;

and ~Pi
i;j is really the relative frequency of class-i cases classified in class j among all cases that

are of class i or that have been classified as being of class i.
Next, we modify definition of the weights in (5) in the following way:

~Pj ¼

PN
k¼1
ðCj;k þ Ck;jÞ � Cj;j

2
PN

k;‘¼1
Ck;‘ � a

PN
k¼1

Ck;k

;

where

a ¼
1=2 if N ¼ 2

1 if N > 2 :

(

Then, we define the Confusion Entropy associated to class j as in (3) by

MCENj ¼ �
XN

k¼1;k6¼j

ð~Pj
j;k log 2ðN� 1Þð

~Pj
j;kÞ þ

~Pj
k;j log 2ðN� 1Þð

~Pj
k;jÞÞ ;

and the modified Confusion Entropy as in formula (4), that is,

MCEN ¼
XN

j¼1

~Pj MCENj : ð6Þ

Note that when N > 2;
PN

j¼1
~Pj ¼ 1, so the modified overall Confusion Entropy is also

defined as a convex combination of the modified Confusion Entropy corresponding to the

classes, while in the binary case (N = 2), it is just defined as a conical combination since

although the weights ~Pj are non-negative, they do not necessarily sum up to 1 (indeed, their

sum is 1 if and only if all the diagonal elements of the confusion matrix C are zero, that is, if all

cases have been misclassified).

We see from (4) and (6) that both measures CEN and MCEN, are decomposable along clas-

ses, which makes it easy to assess the effect on the behaviour of the classifier of a simple modifi-

cation affecting just one class.

We can start performing a preliminary comparison of the behaviour of ACC�, MCC�, CEN

and MCEN in the toy example in dimension 2 of Table 2. In this example, the baseline confu-

sion matrix is constant with all its entries equal to 3. First, maintaining the total sum equal to

S = 12 and the out-diagonal invariant, we reduce the entropy IN in Table 2(a). In the baseline

case, the diagonal elements are the set {3, 3}, whose entropy is 1 (maximum value). The corre-

sponding values of IN in case (a) are consigned in Table 2, in a decreasing order. Analogously

for Table 2(b) but in this case changes have been introduced outside the main diagonal. We

observe that while ACC� remains insensitive to changes in the arrangement of the elements of

the matrix, since the sum of the main diagonal remains constant, MCC� only decreases with

decreasing entropy OUT, while when IN decreases, its value increases. As far as their interpre-

tation is concerned, both CEN and MCEN measure the overall entropy of the confusion

CEN for classification
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matrix, giving less weight to the IN entropy, that is, that generated by the well classified cases,

than to OUT entropy, corresponding to misclassification. In this example we observe how

their values are reduced when IN decreases, maintaining its constant sum, or when the one

that is reduced is OUT, but in this second case the reduction is much more drastic, both for

CEN and MCEN, and more sharply for the second. The main difference between CEN and

MCEN in this sense is that the former is more sensitive to changes of IN entropy than MCEN,

while less than CEN to that of OUT (observe the percentages in brackets in Table 2, which are

the relative reduction in the measure with respect to that of the baseline case).

We can extend this comparison to matrices of type MA ¼
1 50

A 1

 !

, with A = 1, . . ., 100,

for example. Their main diagonal stays constant. Fig 1 shows the behaviour of CEN, MCEN,

ACC� and MCC� as OUT increases. We can observe that indeed, CEN is less correlated with

this entropy than MCEN. The same can be observed from the correlations matrix given in

Table 3.

Instead, if we consider matrices WA ¼
50 1

1 A

 !

, with A = 1, . . ., 100, the values outside

the main diagonal stay constant. Fig 2 shows the behaviour of CEN, MCEN, ACC� and MCC�

as IN increases. CEN shows more correlation with this entropy than MCEN (see Table 4),

although IN is less correlated (and in an inverse sense that could not be appreciated in the toy

example of Table 2) than OUT, both with CEN and MCEN.

The perfectly symmetric and balanced case

In this section we consider the case in which Ci,j = F for all i, j = 1, . . ., N, i 6¼ j and Ci,i = T,

with T� 0, F> 0, that is, C ¼

T F . . . F F

F T . . . F F

..

. ..
.

. . . ..
. ..

.

F F . . . T F

F F . . . F T

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

.

Table 2. Toy example: Binary case with S = 12. (a): Entropy reduction within the main diagonal, IN. (b) Entropy reduction outside the main diagonal, OUT. In brackets

the relative reduction in each measure with respect to the baseline case. Entropy refers to IN in (a) and to OUT in (b).

Baseline (a) (b)

3 3

3 3

 !
2 3

3 4

 !
1 3

3 5

 !
0 3

3 6

 !
3 2

4 3

 !
3 1

5 3

 !
3 0

6 3

 !

Entropy = 1.0000 0.9183 0.6500 0.0000 0.9183 0.6500 0.0000

(8.17%) (35.00%) (100.00%) (8.17%) (35.00%) (100.00%)

ACC� = 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

MCC� = 0.5000 0.5130 0.5625 0.6667 0.4881 0.4375 0.3333

CEN = 1.0000 0.9898 0.9575 0.8962 0.9591 0.8250 0.5000

(1.02%) (4.25%) (10.38%) (4.09%) (17.50%) (50.00%)

MCEN = 0.9057 0.9006 0.8848 0.8571 0.8590 0.7057 0.3343

(0.56%) (2.31%) (5.37%) (5.16%) (22.08%) (63.09%)

https://doi.org/10.1371/journal.pone.0210264.t002

CEN for classification
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Proposition 1 In the perfectly symmetric and balanced case,

If N > 2; CEN ¼
2 ðN � 1Þ

d
log 2ðN� 1ÞðdÞ; MCEN ¼ 2 ðN � 1Þ~d log 2ðN� 1Þð

~dÞ;

If N ¼ 2; CEN ¼
1

1þ g
log 2ðdÞ; MCEN ¼

1

1þ
3

4
g

log 2ð
~dÞ;

ð7Þ

where

g ¼
T
F
� 0; d ¼ 2 ðN � 1Þ þ 2 g > 0 and ~d ¼ 2 ðN � 1Þ þ g > 0 ;

ACC� ¼
N � 1

gþ ðN � 1Þ
and MCC� ¼

N
2 ðgþ ðN � 1ÞÞ

¼
N

2 ðN � 1Þ
ACC� :

Fig 1. CEN, MCEN, ACC� and MCC� for matrix MA, as function of entropy outside the diagonal.

https://doi.org/10.1371/journal.pone.0210264.g001

Table 3. Correlation matrix (Pearson) for the measures of the family of matrices MA, A = 1, . . ., 100.

CEN MCEN MCC� ACC� OUT

CEN 1.0000000 0.9999334 0.9229026 0.7783573 0.9999320

MCEN 1.0000000 0.9233945 0.7855300 0.9999963

MCC� 1.0000000 0.7340543 0.9241870

ACC� 1.0000000 0.7852756

OUT 1.0000000

https://doi.org/10.1371/journal.pone.0210264.t003

CEN for classification
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Note that ACC�, MCC�, CEN and MCEN depend on the matrix values T and F only

through its ratio γ. In (7) (case N> 2), CEN and MCEN have the same expression except that

CEN depends on δ, which is function of 2γ, while MCEN does on ~d ¼ d � g, which is the

same function but of γ. Therefore,

if N > 2; MCENð2 gÞ ¼ CENðgÞ ;

where in the notation we highlight the dependency of CEN and MCEN on γ.

Corollary 1 In the perfectly symmetric and balanced case, we have that:

Fig 2. CEN, MCEN, ACC� and MCC� for matrix WA, as function of entropy inside the diagonal.

https://doi.org/10.1371/journal.pone.0210264.g002

Table 4. Correlation matrix (Pearson) for the measures of the family of matrices WA, A = 1, . . ., 100.

CEN MCEN MCC� ACC� IN

CEN 1.0000000 0.9995962 0.5499231 0.9672182 -0.6062876

MCEN 1.0000000 0.5355098 0.9609698 -0.5857654

MCC� 1.0000000 0.7340543 -0.9241870

ACC� 1.0000000 -0.7852756

IN 1.0000000

https://doi.org/10.1371/journal.pone.0210264.t004

CEN for classification
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• For any N> 2, CEN, MCEN, ACC� and MCC� are monotonically decreasing functions of γ�
0, with

lim
g!þ1

CENðgÞ ¼ lim
g!þ1

MCENðgÞ ¼ lim
g!þ1

ACC�ðgÞ ¼ lim
g!þ1

MCC�ðgÞ ¼ 0 ;

CENð0Þ ¼ MCENð0Þ ¼ ACC�ð0Þ ¼ 1; MCC�ð0Þ ¼
N

2 ðN � 1Þ
!

1

2
as N ! þ1;

and if γ> 0, MCC� < ACC� < CEN < MCEN.

• Nevertheless, when N = 2, we have that although MCEN and ACC� = MCC� remain to be
monotonically decreasing as functions of γ� 0, CEN does not. Indeed, CEN achieves its global
maximum when g ¼ e

2
� 1, which is CEN e

2
� 1

� �
� 1:06148 > 1. More specifically,

CENð0Þ ¼ CENð1Þ ¼ 1; CENðgÞ > 1 ; for all 0 < g < 1; lim
g!þ1

CENðgÞ ¼ 0;

MCENð0Þ ¼ 1 ; lim
g!þ1

MCENðgÞ ¼ 0 ;

ACC�ð0Þ ¼ MCC�ð0Þ ¼ 1 ; lim
g!þ1

ACC�ðgÞ ¼ lim
g!þ1

MCC�ðgÞ ¼ 0 :

Moreover, there exists γ0� 5.78 such that

MCC� ¼ ACC� < MCEN < CEN if 0 < g < g0;

MCC� ¼ ACC� < MCEN ¼ CEN if g ¼ g0; and

MCC� ¼ ACC� < CEN < MCEN if g > g0 :

Proof 1 The proofs of both Proposition 1 and Corollary 1 are straightforward, and then
omitted. However, it is worth mentioning that in order to prove CEN < MCEN in case N> 2

we use that function f ðxÞ ¼ 1

x log bðxÞ is strictly decreasing for any base b> 1 (in our case, b =

2(N − 1)� 4), and x> e. We apply that fact to see that f(x0)> f(x1) with x0 = 2(N − 1) + γ<
x1 = 2(N − 1) + 2γ, since x0� 4> e.

The same property of function f allows to prove that both CEN and MCEN are monotonically
decreasing as functions of γ, with x = δ = 2(N − 1) + 2γ and x ¼ ~d ¼ 2 ðN � 1Þ þ g, respectively,
being both> e for any γ� 0. Note that since for N = 2 the expression of CEN as function of δ is
as in case N> 2, the monotonous decrease fails since x = δ = 2 + 2γ< e for g < e

2
� 1.

The rest of proofs are also omitted.

Remark 1 Note that if N = 2, CEN exhibits the unwanted behaviour, not showed by MCEN,

of being out-of-range [0, 1], which despairs for N> 2 (see Figs 3 and 4).

Remark 2 Consider the particular case in which T = F, that is, γ = 1. In other words, the con-

fusion matrix is constant, say

1 1 . . . 1

..

. ..
.

. . . ..
.

1 1 . . . 1

0

B
B
@

1

C
C
A. Then, ACC� ¼ N� 1

N andMCC� ¼ 1

2
. More-

over, δ = 2N and ~d ¼ 2N � 1.

If N> 2, CEN ¼ 1 � 1

N

� �
log 2ðN� 1Þð2NÞ andMCEN ¼ 1 � 1

2N� 1

� �
log 2ðN� 1Þð2N � 1Þ:

If N = 2, CEN = 1 andMCEN ¼ 4

7
log 2ð3Þ < 1 :

As a consequence, we can easily check that if N> 2, MCC� < ACC� < CEN <MCEN, with
limN!+1 ACC� = limN!+1 CEN = limN!+1MCEN = 1, while if N = 2, MCC� = ACC� <

MCEN< CEN.

CEN for classification
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Fig 3. The symmetric case. CEN, MCEN, ACC� and MCC� for γ 2 [0, 10], with N = 2.

https://doi.org/10.1371/journal.pone.0210264.g003

Fig 4. The symmetric case. CEN, MCEN, ACC� and MCC� for γ 2 [0, 10], with N = 3.

https://doi.org/10.1371/journal.pone.0210264.g004

CEN for classification
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The particular pathological case of matrices ZA will be studied in the multi-class setting, but

before we consider in some detail the binary case.

The general binary case

The binary case (N = 2) can be studied in more detail. We will use the following notation for

the confusion matrix in the most general setting, taking class 1 as reference:

C ¼
TP FN

FP TN

 !

; ð8Þ

where TP is the true positive or number of class-1 cases that have been correctly classified, and

the same for the true negative number of cases TN with class 2. On the other hand, FP denotes

false positives or number of class-2 cases that have been miscllassified, and FN false negatives.

Proposition 2 If the confusion matrix C is given by (8), we have that with S = TP + TN + FP
+ FN,

CEN ¼
ðFN þ FPÞ log 2ðS2 � ðTP � TNÞ2Þ

2 S
�

FN log 2ðFNÞ þ FP log 2ðFPÞ
S

;

MCEN ¼
2ðFN þ FPÞ log 2ððS � TNÞðS � TPÞÞ

3Sþ ðFN þ FPÞ
�

4ðFN log 2ðFNÞ þ FP log 2ðFPÞÞ
3Sþ ðFN þ FPÞ

;

ACC� ¼
FP þ FN

S
and MCC� ¼

1 � MCC
2

;

with MCC ¼
TPTN � FP FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞ ðFP þ TNÞ ðTP þ FPÞ ðTN þ FNÞ

p :

ð9Þ

To carry out a deeper study, we have to consider particular situations; is what we do in the

subsections below, where different particular scenarios have been introduced and developed.

The perfectly symmetric and balanced case. Table 5 below shows some examples of

2 × 2 confusion matrices of type
T F

F T

 !

, that is, in which TP = TN = T and FP = FN = F.

All of them correspond to S = 12 and have already been considered in [4]. This is a particular

case of the previously considered setting, and Proposition 1 and Corollary 1 apply here. We

can observe again the anomalous behaviour of CEN, in contrast with the other measures.

The symmetric but unbalanced family UA. Consider the particular case of a confusion

matrix of type UA ¼
1 A

A 0

 !

, with A> 0. Both class-1 and class-2 cases are mainly misclas-

sified if A> 1. Entropy out of the main diagonal is 1 and within the diagonal is 0, regardless of

the value of A. When 0< A< 1, say for example that A = 1/B with B> 1, then matrix UA is

equivalent to
B 1

1 0

 !

, that is, corresponds to an unbalanced scenario in which class 2 is

Table 5. Examples in the perfectly symmetric and balanced binary case with S = 12.

6 0

0 6

 !
5 1

1 5

 !
4 2

2 4

 !
3 3

3 3

 !
2 4

4 2

 !
1 5

5 1

 !
0 6

6 0

 !

ACC� = MCC� = 0.0000 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000

CEN = 0.0000 0.5975 0.8617 1.0000 1.0566 1.0525 1.0000

MCEN = 0.0000 0.5910 0.8000 0.9057 0.9614 0.9891 1.0000

https://doi.org/10.1371/journal.pone.0210264.t005

CEN for classification
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underrepresented and class-1 cases are mainly well classified. We can observe some properties

of CEN, MCEN, ACC� and MCC� (see Fig 5) in Proposition 3, which is derived from Proposi-

tion 2.

Proposition 3 For confusion matrix UA with A> 0, we have:

CENðAÞ ¼
A log 2ðð2Aþ 1Þ

2
� 1Þ � 2A log 2ðAÞ

2Aþ 1
;

MCENðAÞ ¼
4A log 2ð2A ð2Aþ 1ÞÞ � 8A log 2ðAÞ

3 ð2Aþ 1Þ þ 2A
;

ACC�ðAÞ ¼
2A

2Aþ 1
; MCC�ðAÞ ¼

2Aþ 1

2 ðAþ 1Þ
:

As a consequence:
CEN(A) < 1 if A< 1, CEN(1) = 1, CEN(A) > 1 if A> 1, MCEN(A) < 1 and ACC�(A) <

MCC�(A)< 1, for all A> 0, MCEN, ACC� and MCC� are monotonically increasing functions
of A> 0, CEN is not, and achieves its global maximum when A� 2.54, which is> 1,

lim
A!0

CENðAÞ ¼ lim
A!0

MCENðAÞ ¼ lim
A!0

ACC�ðAÞ ¼ 0 < lim
A!0

MCC�ðAÞ ¼ 0:5,

lim
A!þ1

CENðAÞ ¼ lim
A!þ1

MCENðAÞ ¼ lim
A!þ1

ACC�ðAÞ ¼ lim
A!þ1

MCC�ðAÞ ¼ 1:

Fig 5. Famlily UA. CEN, MCEN, ACC� and MCC� for A 2 (0, 10].

https://doi.org/10.1371/journal.pone.0210264.g005

CEN for classification
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Moreover, there exists A0 2 (0, 1) (indeed, A0� 0.24) such that

MCENðAÞ < CENðAÞ if A > A0;

MCENðA0Þ ¼ CENðA0Þ;

MCENðAÞ > CENðAÞ if 0 < A < A0:

The overall entropy associated to the four elements of the confusion matrix, which results

to be � 2 A
2 Aþ1

log A
2 Aþ1

� �
, increases to 1 when A! +1 and decreases to 0 when A! 0, and

both CEN and MCEN, are sensible to this fact. Note that the lack of monotonicity of CEN(A)

as A (and then, as the overall entropy) monotonically increases, is an anomalous behaviour

that MCEN has managed to overcome. Moreover, MCEN ranges between 0 and 1. We can

also observe this phenomenon in the examples in Table 6.

The asymmetric family VA. Consider the particular case of confusion matrices of type

VA ¼
1 A

1 0

 !

, with A> 0. This is an asymmetric and unbalanced case in which class 2 is

systematically misclassified and is underrepresented if A> 1. Class 1 is also mainly misclassi-

fied if A> 1. As A! +1, entropy out the diagonal, which is � A
Aþ1

log ð A
Aþ1
Þ, decreases to

zero. Entropy within diagonal is zero, while the overall entropy of the elements of matrix VA is

log ðAþ 2Þ � A
Aþ2

log ðAÞ, which tends to 0 as A! +1. When 0< A< 1 with A = 1/B,

B> 1, matrix VA is equivalent to
B 1

B 0

 !

, which corresponds to an almost balanced but

asymmetric scenario in which class 1 is mainly well classified but class 2 is not. As B increases

(A! 0), entropy out the diagonal also drops to zero. Some properties of CEN, MCEN, ACC�

and MCC� are given in Proposition 4 (see also Fig 6).

Proposition 4 For confusion matrix VA with A> 0, we have:

CENðAÞ ¼
ðAþ 1Þ log 2ððAþ 2Þ

2
� 1Þ � 2A log 2ðAÞ

2 ðAþ 2Þ
;

MCENðAÞ ¼
2 ðAþ 1Þ log 2ððAþ 1Þ ðAþ 2ÞÞ � 4A log 2ðAÞ

3 ðAþ 2Þ þ ðAþ 1Þ
;

ACC�ðAÞ ¼
Aþ 1

Aþ 2
; MCC�ðAÞ ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffi

A
2 ðAþ1Þ

q

2
:

As a consequence, there exists A1 2 (1, 2) (A1� 1.414) such that:
CEN(A) > 1 if 1< A< A1, CEN(1) = CEN(A1) = 1, CEN(A) < 1 if A =2 [1, A1], MCEN(A)

< 1, ACC�(A) < 1, MCC�(A)< 1 and MCEN(A) < CEN(A) for all A> 0,

Table 6. Examples in the binary case for famlily UA.

103 1

1 0

 !
102 1

1 0

 !
10 1

1 0

 !
1 1

1 0

 !
1 10

10 0

 !
1 102

102 0

 !
1 103

103 0

 !

A = 1/103 1/102 1/10 1 10 102 103

ACC� = 0.00200 0.01961 0.16667 0.66667 0.952381 0.995025 0.9995002

MCC� = 0.50050 0.50495 0.54545 0.75000 0.954545 0.995050 0.9995005

CEN = 0.01194 0.08488 0.45495 1.00000 1.017859 1.002167 1.0002210

MCEN = 0.01459 0.09964 0.48263 0.93999 0.997778 0.9998483 0.9999856

https://doi.org/10.1371/journal.pone.0210264.t006

CEN for classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0210264 January 14, 2019 13 / 30



lim
A!0

MCC�ðAÞ ¼ lim
A!0

ACC�ðAÞ ¼
1

2
> lim

A!0
CENðAÞ ¼

log
2
ð3Þ

4
> lim

A!0
MCENðAÞ ¼

2

7
,

lim
A!þ1

ACC�ðAÞ ¼ 1 > lim
A!þ1

MCC�ðAÞ ¼
2þ

ffiffiffi
2
p

4
> lim

A!þ1
CENðAÞ ¼ lim

A!þ1
MCENðAÞ ¼ 0:

Note that as in previous cases, CEN(A) does not stay always (that is, for any A> 0)

restricted to [0, 1], while MCEN does. See Fig 6 and some examples in Table 7.

Apart from the fact that CEN is out-of-range for some values of A, its behaviour is similar

to that of MCEN, both decreasing with entropy, while nor ACC� nor MCC� are sensitive to

the decrease of entropy when A! +1.

Fig 6. Family VA. CEN, MCEN, ACC� and MCC� for A 2 (0, 10].

https://doi.org/10.1371/journal.pone.0210264.g006

Table 7. Examples in the binary case for famlily VA.

103 1

103 0

 !
102 1

102 0

 !
10 1

10 0

 !
1 1

1 0

 !
5 6

5 0

 !
1 10

1 0

 !
1 102

1 0

 !
1 103

1 0

 !

A = 1/103 1/102 1/10 1 1.2 10 102 103

ACC� = 0.5002 0.5025 0.5238 0.6667 0.6875 0.9167 0.9902 0.9990

MCC� = 0.5112 0.5352 0.6066 0.7500 0.7611 0.8371 0.8518 0.8535

CEN = 0.4019 0.4361 0.6217 1.0000 1.0041 0.5133 0.0934 0.0128

MCEN = 0.2921 0.3309 0.5387 0.9400 0.9429 0.4702 0.0866 0.0121

https://doi.org/10.1371/journal.pone.0210264.t007

CEN for classification
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The symmetric but unbalanced family XA, r. Now we introduce the family of confusion

matrices XA; r ¼
A r A

r A 1

 !

, with A, r> 0. Both class-1 and class-2 cases are mainly misclassi-

fied if A, r> 1. Overall entropy of XA, r is � A
ð2 rþ1Þ Aþ1

log ð A
ð2 rþ1Þ Aþ1

Þ � 2 r A
ð2 rþ1Þ Aþ1

log ð r A
ð2 rþ1Þ Aþ1

Þ,

which drops to 0 when A! 0, and when A! +1 converges to log ð2 r þ 1Þ � 2 r
2 rþ1

log ðrÞ,
which in turn converges to 1 as r! +1. Fixed A> 0, overall entropy converges to 1 as

r! +1, and as r! 0, it converges to � A
Aþ1

log A
Aþ1

� �
, which in turn converges to 0 both when

A! 0 and when A! +1.

When 0< A< 1, A = 1/B with B> 1, matrix XA, r is equivalent to
1 r

r B

 !

. We have

some properties of CEN, MCEN, ACC� and MCC� in Proposition 5 below. Moreover, for

r = 0.5, 5 Figs 7 and 8 show how the measures evolve as function of A, while Figs 9 and 10

show their plots as function of r, fixed A = 0.5, 10.

Proposition 5 For confusion matrix XA, r with A, r> 0 we have:

CENðAÞ ¼ �
r A

ð2 r þ 1ÞAþ 1
log 2

r2 A
4 ðr þ 1Þ ðr Aþ 1Þ

� �

;

MCENðAÞ ¼ �
4 r A

ð8 r þ 3ÞAþ 3
log 2

r2 A
ð2 r þ 1Þ ð2 r Aþ 1Þ

� �

;

ACC�ðAÞ ¼
2 r A

ð2 r þ 1ÞAþ 1
; MCC�ðAÞ ¼

2 r2 Aþ r Aþ r
2 ðr þ 1Þ ðr Aþ 1Þ

:

Fig 7. Family XA, r. CEN, MCEN, ACC� and MCC� as function of A> 0 for r = 0.5.

https://doi.org/10.1371/journal.pone.0210264.g007

CEN for classification
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As a consequence, ‘CENðrÞ ¼ limA!þ1CENðAÞ ¼ r
2 rþ1

log 2

4 ðrþ1Þ

r

� �
> 0, and there exists r0 < 1

(r0� 0.8) such that for any r> r0, there exists Ar> 0 such that CEN(A) < 1 if A< Ar, CEN

(Ar) = 1, CEN(A) > 1 if A> Ar and

‘CENðrÞ

> 1 if r > 1;

¼ 1 if r ¼ 1;

< 1 if r0 < r < 1:

8
>>><

>>>:

If r� r0, CEN(A)� 1 for any A> 0 and ℓCEN(r) < 1.

On the other hand, for any r> 0,

MCEN(A) < 1, ACC�(A)< 1 and MCC�(A) < 1, for all A> 0, MCEN, ACC � and MCC �

are monotonically increasing functions of A, CEN is not, and has a global maximum, which is>

1 if r> r0, lim
A!0

CENðAÞ ¼ lim
A!0

MCENðAÞ ¼ lim
A!0

ACC�ðAÞ ¼ 0; lim
A!0

MCC�ðAÞ ¼
r

2ðr þ 1Þ
,

0 < lim
A!þ1

ACC�ðAÞ ¼
2r

2r þ 1
< lim

A!þ1
MCC� ¼

2r þ 1

2ðr þ 1Þ
¼ ‘MCC� ðrÞ < 1,

0 < lim
A!þ1

MCENðAÞ ¼
4r

8r þ 3
log

2

2ð2r þ 1Þ

r

� �

¼ ‘MCENðrÞ < 1; lim
r!þ1

‘MCENðrÞ ¼ 1.

Fig 8. Family XA, r. CEN, MCEN, ACC� and MCC� as function of A> 0 for r = 5.

https://doi.org/10.1371/journal.pone.0210264.g008

CEN for classification
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Moreover, there exist 0< r3 < r2 < r1 < r0 < 1 (r3� 0.13, r2� 0.15, r1� 0.23) such that:

‘MCCðrÞ > ‘MCENðrÞ > ‘CENðrÞ if 0 < r < r3;

‘MCCðrÞ ¼ ‘MCENðrÞ > ‘CENðrÞ if r ¼ r3;

‘MCENðrÞ > ‘MCCðrÞ > ‘CENðrÞ if r3 < r < r2;

‘MCENðrÞ > ‘MCCðrÞ ¼ ‘CENðrÞ if r ¼ r2;

‘MCENðrÞ > ‘CENðrÞ > ‘MCCðrÞ if r2 < r < r1;

‘MCENðrÞ ¼ ‘CENðrÞ > ‘MCCðrÞ if r ¼ r1;

‘CENðrÞ > ‘MCENðrÞ > ‘MCCðrÞ if r > r1:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Finally, for any fixed, A> 0, while MCEN, ACC� and MCC� are monotonically increasing func-
tions of r, CEN is not, as can be seen in Figs 9 and 10, for two values of A. Given A> 0, there
exists rA> r0 such that CEN(A) > 1 for all r> rA.

Note that although we do not specify it in the notations so as not to complicate them, the

performance measures depend on both A and r in the case of this doubly indexed family XA, r.

The asymmetric family YA, r. Finally, we consider another particular doubly indexed

family of confusion matrices in the binary case, with the same overall entropy as XA, r,

denoted by YA, r, with A, r> 0. We define this family by YA; r ¼
r A r A

A 1

 !

. Class-2 is

Fig 9. Family XA, r. CEN, MCEN, ACC� and MCC� as function of r> 0 for A = 0.5.

https://doi.org/10.1371/journal.pone.0210264.g009

CEN for classification
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underrepresented and mainly misclassified if A, r> 1, while class-1 cases are classified “at ran-

dom”, that is, a class-1 case has the same probability to be classified into any of the two classes.

Although entropy is as for XA, r, we will see that performance measures behave in a different

way for this family of confusion matrices. When 0< A< 1, A = 1/B with B> 1, then matrix

YA, r is equivalent to
r r

1 B

 !

. In Proposition 6 we give some properties of CEN, MCEN,

ACC� and MCC�. See in Fig 11 for r = 0.1, in Fig 12 for r = 0.8, and see Fig 13 for a plot of

them as function of r, fixed A = 10.

Proposition 6 For confusion matrix YA, r with A, r> 0 we have:

CENðAÞ ¼
ðr þ 1ÞA log 2ðððr þ 1ÞAþ 2Þð3r þ 1ÞÞ þ ðr � 1ÞA log 2ðAÞ � 2rA log 2ðrAÞ

2ðð2r þ 1ÞAþ 1Þ
;

MCENðAÞ ¼
2ððr þ 1ÞA log 2ðððr þ 1ÞAþ 1Þð2r þ 1ÞÞ þ ðr � 1ÞA log 2ðAÞ � 2rA log 2ðrAÞÞ

3ðð2r þ 1ÞAþ 1Þ þ ðr þ 1ÞA
;

ACC�ðAÞ ¼
ðr þ 1ÞA

ð2 r þ 1ÞAþ 1
; MCC�ðAÞ ¼

1 �
r ð1� AÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 r ðAþ1Þ ðrþ1Þ ðr Aþ1Þ
p

2
:

As a consequence, LCENðrÞ ¼ limA!þ1CENðAÞ ¼ 1

2 ð2 rþ1Þ
log 2ð

ðð3 rþ1Þ ðrþ1ÞÞrþ1

r2 r Þ > 0, and there

exists R0 < 1(R0� 0.71) such that LCENðrÞ

> 1 if R0 < r < 1;

¼ 1 if r ¼ R0; 1;

< 1 if r < R0 or r > 1:

8
><

>:
Moreover, there exist 0

Fig 10. Family XA, r. CEN, MCEN, ACC� and MCC� as function of r> 0 for A = 10.

https://doi.org/10.1371/journal.pone.0210264.g010

CEN for classification
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< R1 < R0 < 1< R2(R1� 0.5, R2� 1.4) such that

if r 2 ½R0; 1�; there exists Ar > 0 such that CENðAÞ < 1 if A < Ar;

CENðArÞ ¼ 1; CENðAÞ > 1 if A > Ar;

if r 2 ðR1; R0Þ [ ð1; R2Þ; there exist 0 < Ar < Br such that CENðAÞ < 1 if A < Ar

orA > Br; CENðArÞ ¼ CENðBrÞ ¼ 1;

CENðAÞ > 1 if A 2 ðAr; BrÞ;

if r =2 ðR1; R2Þ; CENðAÞ � 1 for any A > 0:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

On the other hand, for any r> 0,

MCEN(A) < 1, ACC�(A)< 1 and MCC�(A) < 1, for all A> 0, ACC� and MCC� are mono-
tonically increasing functions of A, CEN is not, and MCEN is or not, depending on the value of r,

lim
A!0

CENðAÞ ¼ lim
A!0

MCENðAÞ ¼ lim
A!0

ACC�ðAÞ ¼ 0; lim
A!0

MCC�ðAÞ ¼
1 �

ffiffiffiffiffiffiffiffiffi
r

2ðrþ1Þ

q

2
,

lim
A!þ1

ACC�ðAÞ ¼
r þ 1

2r þ 1
¼ LACC� ðrÞ; lim

A!þ1
MCC� ¼

1þ 1ffiffiffiffiffiffiffiffiffi
2ðrþ1Þ
p

2
¼ LMCC� ðrÞ, LMCENðrÞ ¼

lim
A!þ1

MCENðAÞ ¼
2

3ð2r þ 1Þ þ ðr þ 1Þ
log

2
ð
ðð2r þ 1Þðr þ 1ÞÞ

rþ1

r2 r
Þ < 1; LMCEN(r) < LCEN(r)

for all r> 0.

Fig 11. Family YA, r. CEN, MCEN, ACC� and MCC� as function of A> 0 for r = 0.1.

https://doi.org/10.1371/journal.pone.0210264.g011
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Note that LACC�(r) < LMCC�(r) if and only if r > � 1þ
ffiffi
5
p

4
> 0.

Improving classification of the minority class while maintaining the imbalance between

the classes. Up to now, we have evaluated binary confusion matrices with different balances

of the two classes but not different classification results. Now let’s do just the opposite. To help

clarify the utility of MCEN in the evaluation of improvements in classification of the minority

class while maintaining the same amount of imbalance, we consider two different examples.

Example 1: We introduce the family of confusion matrices Xa
50; 2
¼

50 100

101 � a a

 !

,

with α = 1, 2, . . ., 101. Note that when α = 1, the corresponding matrix belongs to the family

{XA, r} with A = 50 and r = 2. Imbalance in classes stays fix. When α = 1, the minority class is

classified very badly, improving classification as α increases and reaching the perfect classifica-

tion when α = 101. Is MCEN able to detect this behaviour? Yes, it is. Unlike what happens

with CEN, MCEN (as well as ACC� and MCC�) monotonically decreases when classification

of the minority class improves (α increases). CEN incongruously first increases up to α = 18

and then starts to decrease and behave like the other performance measures (see Fig 14).

Example 2: A similar phenomenon can be observed with family Yb

100; 1 ¼
100 100

101 � b b

 !

,

with β = 1, 2, . . ., 101 (with β = 1 the corresponding matrix belongs to the family {YA, r} with

A = 100 and r = 1. As in Example 1, imbalance in classes is constant and when β = 1, the

Fig 12. Family YA, r. CEN, MCEN, ACC� and MCC� as function of A> 0 for r = 0.8.

https://doi.org/10.1371/journal.pone.0210264.g012

CEN for classification
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minority class is classified very badly, improving classification as β increases up to 101, when

perfect classification is reached. MCEN as well as ACC� and MCC�, monotonically decrease

when β increases, while CEN increases up to β = 14 and then starts to decrease and behave

like the other performance measures (see Fig 15).

The ZA family

As noted in [4], the behaviour of the Confusion Entropy CEN is rather diverse from

that of MCC� and ACC� for the pathological case of the family of confusion matrices

ZA = (ai,j)i,j = 1, . . ., N, defined by ai;j ¼
A if i ¼ N; j ¼ 1

1 otherwise;

(

, with A> 0. That is,

ZA ¼

1 1 . . . 1

1 1 . . . 1

..

. ..
.

. . . ..
.

1 1 . . . 1

A 1 . . . 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

. We want to study how MCEN behaves when applied to elements of

this family.

Fig 13. Family YA, r. CEN, MCEN, ACC� and MCC� as function of r for A = 10.

https://doi.org/10.1371/journal.pone.0210264.g013
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Proposition 7

If N > 2; CENðZAÞ ¼
1

N2 þ A � 1

�

ðN � 1Þ ðN � 2Þ log 2ðN� 1Þð2NÞ

þð2N þ A � 3Þ log 2ðN� 1Þ ð2N þ A � 1Þ � A log 2ðN� 1ÞðAÞ
�

;

MCEN ¼
2

2ðN2 þ A � 1Þ � N

�

N � 1ð Þ N � 2ð Þ log 2ðN� 1Þ 2N � 1ð Þ

þð2N þ A � 3Þ log 2ðN� 1Þð2N þ A � 2Þ � A log 2ðN� 1ÞðAÞ
�

;

if N ¼ 2; CENðZAÞ ¼
1

Aþ 3
ðAþ 1Þ log 2ðAþ 3Þ � A log 2ðAÞð Þ;

MCEN ¼
2

2Aþ 5
ðAþ 1Þ log 2ðAþ 2Þ � A log 2ðAÞð Þ:

In general (N� 2),

MCC�ðZAÞ ¼
N ðN2 þ 2 ðA � 1ÞÞ � ðN2 þ ðA � 1ÞÞ

2 ðN � 1Þ ðN2 þ 2 ðA � 1ÞÞ
;

ACC�ðZAÞ ¼
N2 � N þ ðA � 1Þ

N2 þ ðA � 1Þ

As a consequence,

Fig 14. Family Xa
50; 2

with α = 1, 2, . . ., 101. CEN, MCEN, ACC� and MCC� as function of α.

https://doi.org/10.1371/journal.pone.0210264.g014
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• If N = 2,

MCEN< CEN(ZA) for all A>0,

MCEN< 1 for all A> 0, and there exists A3 2 (1, 2)(A3� 1.85) such that

CENðZ1Þ ¼ CENðZA3
Þ ¼ 1;

CENðZAÞ > 1 if A 2 ð1; A3Þ and CENðZAÞ < 1 if A =2 ½1; A3�;

lim
A!0

MCC�ðAÞ¼
1

4
< lim

A!0
ACC�¼

1

3
< lim

A!0
MCENðAÞ¼

2

5
< lim

A!0
CENðAÞ¼

log 2ð3Þ

3
;

lim
A!þ1

CENðAÞ ¼ lim
A!þ1

MCENðAÞ ¼ 0 < lim
A!þ1

MCC� ¼
3

4
< lim

A!þ1
ACC� ¼ 1 :

• If N = 3 (we take this case as example of what happens with N> 2),

lim
A!0

MCC�ðAÞ ¼
13

28
< lim

A!0
ACC� ¼

5

8
<

< lim
A!0

CENðAÞ¼
2 log 4ð6Þ þ 3 log 4ð5Þ

8
< lim

A!0
MCENðAÞ¼

2

13
ð2 log 4ð5Þ þ 3Þ<1;

lim
A!þ1

CENðAÞ¼ lim
A!þ1

MCENðAÞ¼0< lim
A!þ1

MCC�¼
5

8
< lim

A!þ1
ACC�¼1:

Fig 15. Family Yb
50; 2 with β = 1, 2, . . ., 101. CEN, MCEN, ACC� and MCC� as function of β.

https://doi.org/10.1371/journal.pone.0210264.g015
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In Figs 16 and 17 we can observe this behaviour when N = 2 and N = 3, respectively.

Table 8 shows some examples of confusion matrices of the family ZA, first with N = 2, and

secondly with N = 4.

Note that CEN and MCEN exhibit a very different behaviour comparing with ACC� and

MCC�, since the former are sensitive to the overall entropy associated to the elements of the

matrix, which is log ðN2 þ A � 1Þ � A
N2þA� 1

log ðAÞ. Entropy decreases to log(N2 − 1) when

A! 0, and drops to 0 when A! +1.

Comparing with other performance measures

Several works have considered the question of the introduction and comparison of different

performance measures for classification, inspired, in one way or another, by Shannon’s

entropy. For example, in [13] the authors introduce a novel measure called PACC (Probabilis-

tic Accuracy) in the multi-class setting, making a comparative study of it with other measures

as Accuracy, MCC and CEN, among others.

Besides, Entropy-Modulated Accuracy (EMA), introduced in [14], is a performance mea-

sure of classification tasks based on the concept of perplexity, the latter being defined as the

effective number of classes a classifier sees. The authors also introduce NIT (Normalized Infor-

mation Transfer) factor, which is a correction of EMA. They compare both EMA and NIT fac-

tor with Accuracy and CEN, rejecting rankings of classifiers based in Accuracy and choosing

more meaningful and interpretable classifiers. They show in some examples that MCC is

Fig 16. Family ZA. CEN, MCEN, MCC� and ACC� as function of A> 0 for N = 2.

https://doi.org/10.1371/journal.pone.0210264.g016
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highly correlated with Accuracy, while rankings obtained with CEN, EMA and NIT factor are

comparable in some cases but disagree in others.

Although PACC, EMA and NIT factor are useful measures to assess classifiers, in our opin-

ion none of them is completely satisfactory in grading the effectiveness of the classifier learning

process, since all reflect some concrete feature of the classification process, being insufficient

for covering all the aspects of this complex task, so they should be used cautiously and in a

complementary way. That is, all the measures suffer from certain weaknesses that are evident

in specific, more or less gimmicky situations. This comment extends also to both CEN and

MCEN, although it should be noted that the latter solves the problems showed by CEN in the

binary setting, as well as to MCC and Accuracy, the last one having been widely treated (see,

for example, the Introduction section in [14]).

Let us exemplify this fact by going back to the toy example in Table 2. In Table 9 we add the

calculated values of PACC� = 1-PACC and 1/NIT to that of Table 2. We use NIT factor

(inverted to make it comparable with the other measures) instead of EMA since the probability

distribution of classes in the validation set is not uniform. Note that our confusion matrices

are transposed with respect to that in [14], and also that for the NIT factor we use formula (4).

We have used the corrected definition provided by the authors, which had already acknowl-

edged an erratum in Eq (4) in the comments of https://www.researchgate.net/publication/

259743406_100_Classification_Accuracy_Considered_Harmful_The_Normalized_

Information_Transfer_Factor_Explains_the_Accuracy_Paradox/.

The behaviour of PACC� showed in Table 9 is consistent with that of MCC�, increasing

when IN entropy decreases (a) and decreasing when OUT decreases (b). However, the

Fig 17. Family ZA. CEN, MCEN, MCC� and ACC� as function of A> 0 for N = 3.

https://doi.org/10.1371/journal.pone.0210264.g017
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behaviour of 1/NIT is consistent with that of CEN and MCEN, decreasing in both cases. Nev-

ertheless, unlike what happens with CEN and MCEN, NIT factor does not distinguish among

scenarios (a) and (b). This is because both EMA and NIT factor are invariants to permutations

of the columns.

Another example is that of the MEGmind reading challenge organized by the PASCAL (Pat-

tern Analysis, Statistical modeling and ComputAtional Learning) network in [15], already

considered in [14]. We restrict our comparison to the group of the four most outstanding sys-

tems, denoted C1 (Huttunen et al.), C2 (Santana et al.), C3 (Jylänki et al.) and C4 (Tu & Sun),

since for them, unlike what happens with the rest, we could access to the confusion matrices in

[15]. The results are in Table 10, and from them we see that the most comparable rankings are

that given by the NIT factor, CEN and MCEN, showing clusters {C4, C2} and {C1, C3}, with

very small differences inside the clusters, specially the second. The authors of the report [15]

were specially interested in comparison C1 vs. C4, and 1/NIT factor, as well as CEN and

MCEN, give the same ordering: C4 is better (lower value) than C1, in concordance with

interpretability given in [14].

Table 8. Examples with different matrices ZA in cases N = 2 and N = 4.

10 10

1 10

 !
2 2

1 2

 !
1 1

1 1

 !
1 1

2 1

 !
1 1

10 1

 !

A = 1/10 1/2 1 2 10

ACC� = 0.3548 0.4286 0.5000 0.6000 0.8462

MCC� = 0.2955 0.4167 0.5000 0.5833 0.7045

CEN = 0.6864 0.9174 1.0000 0.9932 0.5758

MCEN = 0.5806 0.8276 0.9057 0.8889 0.4972

ZA = 102 102 102 102

102 102 102 102

102 102 102 102

1 102 102 102

0

B
B
B
B
B
@

1

C
C
C
C
C
A

10 10 10 10

10 10 10 10

10 10 10 10

1 10 10 10

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1 1 1 1

1 1 1 1

1 1 1 1

10 1 1 1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1 1 1 1

1 1 1 1

1 1 1 1

102 1 1 1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

A = 10−2 10−1 1 10 102

ACC� = 0.7335 0.7351 0.7500 0.8400 0.9652

MCC� = 0.4882 0.4894 0.5000 0.5441 0.5771

CEN = 0.8284 0.8391 0.8704 0.7132 0.2068

MCEN = 0.8883 0.9001 0.9309 0.7338 0.2016

https://doi.org/10.1371/journal.pone.0210264.t008

Table 9. Toy example of Table 2 revisited, adding PACC and the NIT factor.

Baseline (a) (b)

3 3

3 3

 !
2 3

3 4

 !
1 3

3 5

 !
0 3

3 6

 !
3 2

4 3

 !
3 1

5 3

 !
3 0

6 3

 !

ACC� = 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

MCC� = 0.5000 0.5130 0.5625 0.6667 0.4881 0.4375 0.3333

CEN = 1.0000 0.9898 0.9575 0.8962 0.9591 0.8250 0.5000

MCEN = 0.9057 0.9006 0.8848 0.8571 0.8590 0.7057 0.3343

PACC� = 0.5000 0.5071 0.5312 0.5833 0.4929 0.4687 0.4167

1/NIT = 2.0000 1.9992 1.9840 1.8371 1.9992 1.9840 1.8371

https://doi.org/10.1371/journal.pone.0210264.t009
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One more example to show the variability when performance measures are compared: in

Table 11 we see that the NIT factor (equivalently, EMA), unlike the other measures, is not able

to distinguish between classifiers whose confusion matrices are A and B in the binary case, nor

between C and D in multi-class classification.

Supporting information file: Experiments and results

The advantages of using Modified Confusion Entropy MCEN measure against CEN have been

tested on different binary classifiers, constructed from four available datasets from the UCI

ML Repository (https://archive.ics.uci.edu). From each dataset we construct and assess eight

different classifiers, five of which are Bayesian networks, while the rest are other standard

machine learning procedures used in supervised classification problems.

Because of the comparisons carried out previously with different examples, we have to rec-

ognize the impossibility of deciding what measure of behaviour, of the considered ones, can

allow to decide in the case that the rankings of classifiers obtained with CEN and MCEN were

different. We decided, then, to use OUT entropy as such a reference when there is disparity;

in case of a tie, we will use IN entropy to break it. This is what we will call “the criterion of

entropy”.

To compare rankings obtained from CEN and MCEN and that obtained by the criterion of

entropy, we use both the Hamming distance and the degree of consistency indicator c (see

[16]).

The results obtained with all the considered datasets heuristically reinforce that MCEN is

more correlated with entropy than CEN. (see S1 File and Tables A-F in S1 File).

Conclusion

We introduced MCEN as a modification of the original Confusion Entropy performance mea-

sure CEN introduced in [3], both for binary and multi-class classification, proving some

Table 10. Results for the first four systems of the MEGmind reading challenge. Confusion matrices have been

obtained from [15].

System ACC� MCC� CEN MCEN PACC� 1/NIT

C1 0.3201 0.2010 0.4360 0.5694 0.3230 2.5877

C2 0.3675 0.2286 0.4043 0.4981 0.3668 2.4715

C3 0.3721 0.2319 0.4483 0.5645 0.3667 2.6151

C4 0.3783 0.2369 0.4213 0.5279 0.3737 2.4545

https://doi.org/10.1371/journal.pone.0210264.t010

Table 11. Two toy examples. With S = 30 for N = 2, and with S = 40 for N = 3.

A ¼
10 0

10 10

 !

B ¼
0 10

10 10

 !

C ¼

10 0 0

10 10 0

0 0 10

0

B
B
@

1

C
C
A D ¼

10 0 0

0 10 10

10 0 0

0

B
B
@

1

C
C
A

ACC� = 0.3333 < 0.6667 0.2500 < 0.5000

MCC� = 0.2500 < 0.7500 0.1500 < 0.3500

CEN = 0.5283 < 1.0000 0.1981 < 0.3231

MCEN = 0.4000 < 0.9400 0.2000 < 0.3333

PACC� = 0.2917 < 0.7083 0.1944 < 0.5000

1/NIT = 1.6799 = 1.6799 1.5000 = 1.5000

https://doi.org/10.1371/journal.pone.0210264.t011
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properties. We compared this measure with CEN, MCC and Accuracy, showing that in the

binary case, MCEN overcomes the unreliability of CEN in a twofold sense: the departure of

the range where it should be (the interval [0, 1]), and the lack of monotonicity when the

entropy increases or decreases. These features made CEN an inappropriate measure in the

binary case, proving MCEN to be a good alternative, and we study different scenarios to high-

light this fact. Moreover, while nor Accuracy nor MCC can distinguish among different mis-

classification distributions of cases in the confusion matrix, MCEN and CEN have an high

level of discrimination.

First, we show that in the binary case (see Table 2), both CEN and MCEN are sensitive to

the decreasing in the entropy within the main diagonal IN, an also to that outside the diagonal

OUT, but while CEN is more sensitive than MCEN to IN, the opposite occurs with OUT. By

contrast, ACC is insensitive as long as the sum of the diagonal and the total sum remain con-

stant. Secondly, we consider the multi-class perfectly symmetric and balanced case in which

the main diagonal elements are equal to T and the elements outside the diagonal are equal to

F, which is analytically studied in detail, showing the output-of-range of CEN in the binary

case when γ = T/F 2 (0, 1).

After that, se consider different particular situations in the binary setting, through the study

of some families of confusion matrices. Family UA is symmetric and unbalanced, showing the

out-of-range of CEN for any A> 1, and in addition a lack of monotonicity that contrast with

the behaviour of the overall entropy associated to the elements of the matrix. Family VA is

asymmetric and unbalanced, and also shows the out-of-range of CEN but only for A in the

interval (1, A1), where A1� 1.4.

Two doubly indexed families have been considered in the binary case. CEN has an anoma-

lous behaviour for family XA, r, which is symmetric but unbalanced, for r> r0 (with r0� 0.8)

since it is not only out-of-range from a certain value of A, but its limit when A! +1 is >1 if

r> 1, showing lack of monotonicity. The same happens from a certain value of r, fixed A.

Family YA,r is also unbalanced but asymmetric. When r is in the interval (R0, 1) with R0� 0.71,

CEN is not only out-of-range from a certain value of A, but its limit when A! +1 is >1 if

r> 1, showing lack of monotonicity. But there are other two intervals of values for r in which

CEN>1 for A living in a certain bounded interval.

Besides evaluating binary confusion matrices with the same classification results for the

minority class but different balances of the two classes, we compare through two examples the

behaviour of MCEN with that of CEN, ACC� and MCC�, in evaluating improvements in clas-

sification of the minority class while maintaining the same amount of imbalance. We show

that CEN is the only one that does not show a monotonous decrease as the classification

improves, for which MCEN proves, also in this sense, that it outperforms CEN.

Finally, we also consider the multi-class family ZA, which is asymmetric and unbalanced,

and observe that in the binary case, CEN is out-of-range for A 2 (1, A3), with A3� 1.85.

In all of these examples, MCEN behave appropriately. Comparing with the overall Shan-

non’s entropy associated to the set of elements of the confusion matrix, both CEN and MCEN

are sensitive to it but CEN sometimes does not show the same behaviour in terms of monoto-

nicity than entropy. With respect to Accuracy and MCC, conveniently scaled, they show some-

times a behaviour in contradiction with Shannon’s entropy, as for families VA and ZA.

A further comparison has been carried out with the Probabilistic Accuracy (PACC) intro-

duced in [13], and the Entropy-Modulated-Accuracy EMA and the Normalized Information

Transfer (NIT) factor, both introduced in [15]. We consider different examples in which

sometimes PACC� = 1–PACC behaves consistently with MCC�, increasing when IN entropy

decreases and decreasing when OUT decreases, while 1/NIT behaves in accordance with CEN

and MCEN, decreasing in both cases, but with the handicap that unlike what happens with

CEN for classification
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CEN and MCEN, NIT factor does not distinguish between IN and OUT. But not always. Actu-

ally, no measure seems to be completely satisfactory since each one reflects a specific character-

istic of the classification process, so they should be used in a complementary way and none can

be taken as a gold standard to compare the others.

Finally, to make clear the improvement of MCEN over CEN, we carry out experimentation

consisting in the comparison of the rankings of some classifiers obtained from four different

real datasets by using both measures. Mostly the classifiers orderings match, but when they do

not, it is the MCEN that most agrees with the criterion of entropy. To see that, we use both the

Hamming distance and the degree of consistency indicator c. These results heuristically sup-

port the use of MCEN as a better alternative to CEN in the binary case, when a performance

measure based in entropy is required.

Supporting information

S1 File. Supporting information: Experiments and results. Table A. Datasets used in the

experiments. Table B. Classifiers used in the experiments. Table C. Results for the Breast can-

cer dataset. Table D. Results for the SPECT heart dataset. Table E. Results for the Congressio-

nal voting dataset. Table F in S1 File. Results for the MONK’s Problems.

(PDF)

S2 File. Breast cancer dataset.

(CSV)

S3 File. Breast cancer description.

(PDF)
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(CSV)

S5 File. SPECT description.

(PDF)

S6 File. UCB admissions dataset.

(CSV)

S7 File. UCB admissions description.

(PDF)
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14. Valverde-Albacete F.J., Peláez-Moreno C.: 100% Classification Accuracy Considered Harmful: The

Normalized Information Transfer Factor Explains the Accuracy Paradox. Plos One. Vol 9, Num 1, 1–10

(2014).

15. Klami, A., Ramkumar, P., Virtanen, S., Parkkonen, L., Hari, R., Kaski, S.: ICANN / PASCAL 2 Chal-

lenge: MEG Mind Reading –Overview and Results. In: Klami, A., editor, Proceedings of ICANN/PAS-

CAL2 Challenge: MEG Mind Reading. Espoo, Aalto University Publication series SCIENCE +

TECHNOLOGY 29/2011, pp. 3–19. http://urn.fi/URN:ISBN:978-952-60-4456-9

16. Huang J., Ling C.: Using AUC and Accuracy in Evaluating Learning Algoritms. IEEE Transactions on

Knowledge and Data Engineering, vol. 17, 299–310 (2005). https://doi.org/10.1109/TKDE.2005.50

CEN for classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0210264 January 14, 2019 30 / 30


	Acknowledgements
	Abstract
	Introduction
	Brief definitions and basic notations
	General objectives
	Research methodology
	Specific objectives
	Preprocessing
	Building the model
	Validation


	Overall Results
	Preprocessing (BOSME)
	BOSME as oversampling method
	The wrapper: cost-sensitive approach
	Results

	Building the model (Ensemble Weighted Average)
	Comparing the models for the variable Result
	Centrality measures
	Odds Ratio
	Feature strength

	 Validation (MCEN)
	The perfectly symmetric and balanced case
	The binary case
	The multiclass ZA family

	Relevance of the results

	Final conclusions
	Articles
	Bayesian Network-based Over-Sampling MEthod
	Ensemble of Bayesian Classifiers
	Modified Confusion Entropy


	Títol de la tesi: Supervised machine learning:
a theoretical study with
applications
	Nom autor/a: José David Núñez Gonález


