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Abstract

Until recently, most computer vision models remained illiterate, largely ignoring the
semantically rich and explicit information contained as scene text. Recent progress
in scene text detection and recognition has recently allowed exploring its role in a di-
verse set of open computer vision problems, e.g. image classification, image-text re-
trieval, image captioning, and visual question answering to name a few. The explicit
semantic of scene text closely requires specific modeling similar to language. However,
scene text is a particular signal that has to be interpreted according to a comprehen-
sive perspective that encapsulates all the visual cues in an image. Incorporating this
information is a straightforward task for humans, but if we are unfamiliar with a lan-
guage or scripture, achieving a complete world understanding is impossible (e.a. visit-
ing a foreign country with a different alphabet). Despite the importance of scene text,
modeling it requires considering the several ways in which scene text interacts with an
image, processing and fusing an additional modality. In this thesis, we mainly focus
on two tasks, scene text-based fine-grained image classification, and cross-modal re-
trieval. In both studied tasks we identify existing limitations in current approaches and
propose plausible solutions. Concretely, in each chapter: i) We define a compact way
to embed scene text that generalizes to unseen words at training time while perform-
ing in real-time. ii) We incorporate the previously learned scene text embedding to
create an image-level descriptor that overcomes optical character recognition (OCR)
errors which is well-suited to the fine-grained image classification task. iii) We de-
sign a region-level reasoning network that learns the interaction through semantics
among salient visual regions and scene text instances. iv) We employ scene text in-
formation in image-text matching and introduce the Scene Text Aware Cross-Modal
retrieval StacMR task. We gather a dataset that incorporates scene text and design a
model suited for the newly studied modality. v) We identify the drawbacks of current
retrieval metrics in cross-modal retrieval. An image captioning metric is proposed as a
way of better evaluating semantics in retrieved results. Ample experimentation shows
that incorporating such semantics into a model yields better semantic results while
requiring significantly fewer data to converge.

Keywords — Computer Vision, Pattern Recognition, Deep Learning, Scene Text Im-
age Retrieval, Fine-grained image retrieval, Cross-modal retrieval, Image-Text match-
ing, Vision and Language, Scene Text Aware Cross-modal retrieval, Semantic Adaptive
Margin, COCO-Text Captioned (CTC) Dataset

iii
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Resum

Fins fa poc, la majoria dels models de visi6 per computador seguien sent analfabets,
ignorant en gran mesura la informaci6 explicita i semanticament rica continguda com
a text d’escena. El progrés recent en la detecci6 i reconeixement de text d’escena ha
permeés recentment explorar el seu paper en un conjunt divers de problemes oberts de
visié per computador, p. classificacié d’imatges, recuperacié de text d’imatges, sub-
titols d'imatges i resposta visual a preguntes, per nomenar-ne alguns. La semantica
explicita del text de 'escena requereix un modelatge especific similar al llenguatge.
Tot i aix0, el text de 'escena és un senyal particular que s’ha d’interpretar d’acord amb
una perspectiva integral que encapsuli tots els senyals visuals en una imatge. Incorpo-
rar aquesta informacié és una tasca senzilla per als humans, pero si no estem famil-
iaritzats amb un idioma o escriptura, és impossible assolir una comprensié completa
del mén (per exemple, visitar un pais estranger amb un alfabet diferent). Tot i la im-
portancia del text de I’escena, modelar-lo requereix considerar les diverses formes en
que el text de 'escena interactua amb una imatge, processant i fusionant una modal-
itat addicional. En aquesta tesi ens centrem principalment en dues tasques, la clas-
sificacié d’imatges de granularitat fina basada en text d’escena i la recuperacié mul-
timodal. En totes dues tasques estudiades identifiquem les limitacions existents als
enfocaments actuals i proposem solucions plausibles. Concretament, a cada capitol:
i) Definim una forma compacta de respresentar text d’escena que es generalitza a pa-
raules invisibles en temps d’entrenament mentre es realitza en temps real. ii) Incor-
porem la representacié de text d’escena préviament apresa per crear un descriptor de
nivell d'imatge que supera els errors de reconeixement optic de caracters (OCR) que
s’adapten bé a la tasca de classificacié d’'imatges de gra fi. iii) Dissenyem una xarxa de
raonament a nivell de regié que apreén la interacci6 a través de la semantica entre re-
gions visuals excel-lents i instancies de text d’escena. iv) Fem servir informaci6 de text
d’escena a la coincidéncia d’'imatge i text i introduim la tasca StacMR de recuperaci6
Cross-Modal conscient de text d’escena. Recopilem un conjunt de dades que incor-
pora el text de I'escena i dissenyem un model adequat per a la modalitat estudiada
recentment. v) Identifiquem els inconvenients de les metriques de recuperacié actu-
als a la recuperacié multimodal. Es proposa una metrica de subtitols d'imatges com
una forma d’avaluar millor la semantica en els resultats recuperats. Una amplia ex-
perimentacié mostra que la incorporacié de la dita semantica en un model produeix
millors resultats semantics i requereix una quantitat significativament menor de dades
per convergir.
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Resumen

Hasta hace poco, la mayoria de los modelos de visién por computadora seguian siendo
analfabetos, ignorando en gran medida la informacién explicita y semanticamente
rica contenida como texto de escena. El progreso reciente en la deteccion y el re-
conocimiento de texto de escena ha permitido recientemente explorar su papel en un
conjunto diverso de problemas abiertos de visién por computadora, €j. clasificacién
de imégenes, recuperacién de texto de imégenes, subtitulos de imdgenes y respuesta
visual a preguntas, por nombrar algunos. La semdntica explicita del texto de la escena
requiere un modelado especifico similar al lenguaje. Sin embargo, el texto de la es-
cena es una sefal particular que debe interpretarse de acuerdo con una perspectiva
integral que encapsule todas las sefiales visuales en una imagen. Incorporar esta in-
formacién es una tarea sencilla para los humanos, pero si no estamos familiarizados
con un idioma o escritura, es imposible lograr una comprensién completa del mundo
(por ejemplo, visitar un pais extranjero con un alfabeto diferente). A pesar de la im-
portancia del texto de la escena, modelarlo requiere considerar las diversas formas en
que el texto de la escena interactia con una imagen, procesando y fusionando una
modalidad adicional. En esta tesis, nos centramos principalmente en dos tareas, la
clasificacién de imégenes de granularidad fina basada en texto de escena y la recu-
peracién multimodal. En ambas tareas estudiadas identificamos las limitaciones exis-
tentes en los enfoques actuales y proponemos soluciones plausibles. Concretamente,
en cada capitulo: i) Definimos una forma compacta de representar texto de escena
que se generaliza a palabras no vistas en el entrenamiento, mientras su inferencia es
realizada a tiempo real. ii) Incorporamos la representaciéon de texto de escena pre-
viamente aprendida para crear un descriptor de nivel de imagen que supera los er-
rores de reconocimiento 6ptico de caracteres (OCR) que se adapta bien a la tarea de
clasificaciéon de imégenes de grano fino. iii) Disefiamos una red de razonamiento a
nivel de regién que aprende la interaccion a través de la semdntica entre regiones vi-
suales sobresalientes e instancias de texto de escena. iv) Empleamos informacién de
texto de escena en la coincidencia de imagen y texto e introducimos la tarea de re-
cuperacion Cross-Modal consciente de texto de escena StacMR. Recopilamos un con-
junto de datos que incorpora el texto de la escena y disefiamos un modelo adecuado
para la modalidad recién estudiada. v) Identificamos los inconvenientes de las métri-
cas de recuperacion actuales en la recuperaciéon multimodal. Se propone una métrica
de subtitulos de imdgenes como una forma de evaluar mejor la semdntica en los re-
sultados recuperados. Una amplia experimentacién muestra que la incorporacién de
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dicha seméntica en un modelo produce mejores resultados seménticos y requiere una
cantidad significativamente menor de datos para converger.

Palabras Clave - Computer Vision, Pattern Recognition, Deep Learning, Scene
Text Image Retrieval, Fine-grained image retrieval, Cross-modal retrieval, Image-Text
matching, Vision and Language, Scene Text Aware Cross-modal retrieval, Semantic
Adaptive Margin, COCO-Text Captioned (CTC) Dataset
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Chapter 1

Introduction

Vision and language, two very different sources of information, have caught mo-
mentum lately in machine learning. Each discipline evolved independently un-
til the recent convergence of common visio-linguistic representations. However,
modeling the interaction between scene text as a particular visio-linguistic modal-
ity has remained fairly unexplored. Cues coming from different modalities, vision,
and language are used to form semantic concepts, while at the same time different
perspectives, ideas, and applications are explored.

The idea of enabling machines to think, reason, perceive and perform tasks as hu-
mans do has been a relentless goal of Al research. We can pinpoint this exceptional
capability that humans have due to the evolution of brains, a centralized information-
processing tool that has endowed humankind to be the rulers of our current world.
As a result of emulating nature, common algorithmic design is brain-inspired. How-
ever, biological brains are capable of processing different input signals coming from
the senses to allow us to process information coming from the world around us to cre-
ate a mental representation of it. In order to have centralized information processing
in computers, the incorporation and fusion of different modalities is a must, such that
computers can reason, obtain information about their surroundings and act accord-
ingly. In this thesis, we will focus on the incorporation and interaction of two different
types of signals, vision, and language in order to construct similar semantic represen-
tations that allow computers to perform different multimodal reasoning tasks.
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1.1 Vision

Human vision is one of the most well developed senses, which allows us to interpret
subtle differences in our environments. According to Marr [138], vision is the process
of discovering from images what is present in the world, and where it is. Humans ac-
quire visual information through the eyes, which is later processed by the brain to build
an internal world model. Visible light, is a range of the electromagnetic spectrum that
our eyes are sensitive to. Our eyes process incoming light from objects that reflect or
produce it, thus constructing depictions of color, shape, edges and locations of ob-
jects and their interactions with the environment. As with the brain, humans have
taken inspiration from eyes and designed cameras that are sensible to the visible elec-
tromagnetic spectrum while some of them are even able to detect and process higher
or lower frequencies. Current cameras often divide the visible light into three main
components, red, green and blue (RGB), which are employed later to represent them
digitally as color channels. The combination of such channels can recreate the hu-
man visual spectrum and given different of each channel create different colors and
tonalities. However, a single color channel may exist and if that is the case, a grey-scale
image is produced. On the other hand, the resolution of an image is given by pixels,
which describe the intensity of a color in a specific position of an image.

248 [245]210| 83 | 81 [120| 97 |193/264)

(260 [170(133] 84 |137]120{104(145/263)

241 [116]118|907|134(138| 96 | 92 |163

277 [142]121)|913[924(115[107| 71 |179)

234 [106] 84 | 125/ 87 [108]125)106/204

Figure 1.1: Steps of creation a digital image. From left to right, Analog Image, Digital
Sampling, and Pixel Quantization. The pixels determine the resolution of an image and
the intensity represent the color on a specific location.

Such pixels are involved in the digital sampling step, that involves manipulating
an analog signal (real world) into a digital representation of the visual input, see Fig-
ure 1.1'. Images in computers encode different light intensities of a pixel are as a 2-
dimensional matrix for each color channel. Usually the pixel quantization step is used
to represent the intensity of each channel with values ranging from 0 to 255 or are
normalized between 0 and 1. Dealing with this way of representing an image provide
several benefits to visualize, compress and retrieve large scale imaging data. However,
such abstract representation is hardly useful to obtain semantically rich information
(objects present, interactions, spatial relations, text, etc) from images by standard pro-
gramming approaches. Therefore, computer vision approaches have emerged to de-
velop algorithms that are able to see and interpret digital imagery. A compilation of
hand-crafted methods were employed initially, however, due to the success of neu-

Image source: http://hamamatsu.magnet.fsu.edu/articles/digitalimagebasics.html
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ral networks (NN), concretely convolutional neural networks (CNN) [107, 104] have
been the to-go approach in order to learn representations from images. More recently,
transformer-based [194] approaches [47] have been employed with success to obtain
compact image embeddings for specific tasks.

1.2 Language

The ability of speakers to comprehend and construct grammatical sentences is what
Chomsky [35] defines as language. Given that alanguage is a collection of (finite or infi-
nite) sentences, it can be used to transmit complex and unique ideas. Due to the afore-
mentioned reasons, one of the major evolutionary advantages of humans is the innate
capability of understanding and building representations of the world, all shaped by
language [70, 36]. Despite the importance of language, it has specific characteristics
that make it challenging when it comes to the design of computer algorithms that em-
ulate understanding human languages. By the usage of language, we can compose
infinite amount of ideas, in a discrete, symbolic, and categorical manner by the usage
of a signaling system. Thus as it is the case with images, there is not standard program-
ming approach that can solve this task.

Natural language processing (NLP) emerged as the field that studies methods to
design algorithms capable of understanding human languages. Numerically, we could
represent words with a one-hot vector encoding the position of each word given a dic-
tionary, however such approach will yield a very sparse and fixed dictionary incapable
of incorporating new words. Recent approaches rely on neural networks and usually
represent words as compact low-dimensional vector embeddings. Inherently, the main
idea is to teach a network to predict the most probable words that fit a common con-
text given by words. Such embeddings are designed to work with tokens that represent
the whole word [139, 151] or a given word can be sub-divided into the most common
n-grams [170] to obtain a semantic as well as a morphological embedding [21, 43]. The
resulting pre-trained embeddings yield rich representations that cluster similar words
together. Additionally, interesting mathematical properties appear in the learned em-
beddings as in the case of the vectors that represent the words:

king—man+ woman = queen

Paris—France+ Spain~= Madrid

thus allowing the operation of algorithms in semantic spaces that allow models to
better work with high-level concepts.

In order to encode longer sequences, current approaches directly employ single
word pre-trained embeddings to be later fed to a recurrent neural network (RNN) [164]
or variants as LSTM[75], GRU[34] or transformers[194].
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1.3 Scene Text

Scene text refers to the symbols that represent text which appear on natural scene im-
agery. The great data diversity of text in the wild makes the scene text detection and
recognition task a challenging one, encapsulating handwritten and machine-printed
text happening in the wild, refer to Figure 1.2.

ORLANDO
FURIOSO

Figure 1.2: There is a great variability and types of scene text. Natural images contain
text in handwritten and machine-printed form, but it is prone to different styles, glare
and occlusions, orientation, lightening conditions and context dependant, etc.

Natural scene imagery contain a significant amount of variability in text patterns.
The diversity of text, complexity of background and inference factors such as noise,
blur, distortion, occlusion and variance among samples adds up to the problem of text
detection and recognition in a non-trivial manner. According to [235], the three main
difficulties while recognizing text in natural scene images come from:

* Variability of Text in Scene Imagery: Scriptures in documents usually contain
a very homogeneous shape and style, in contrast, text in natural scenes have a
wide range of variability and diversity of colors, shapes, fonts, scales and orien-
tation.

e Complex Background: In natural scene images, the possible backgrounds that
may appear are unpredictable and the textures can vary from simple to complex
textures. Patterns found in stripes, nature, bricks, fences contain shapes that can
be easily mistaken as text.

¢ Interference and Imperfect Conditions: Most of the images and video that con-
tain text are produced in uncontrolled environments. This environments can
arise problems such as low resolution, distortion, blur, partial occlusion, inap-
propriate angles among other factors, which may give rise to errors in detection
and recognition.

The difficulties present in the text spotting task have been tackled by an ample use
of methodologies, while the most successful ones can be linked to the rise of deep
learning techniques. [125, 106, 90]. Despite the immense variability of scene text in the
wild, recent advances in scene text recognition have made it feasible to explore new
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computer vision challenges that previously appeared impossible. Some of these tasks
include fine-grained image classification and retrieval, where it may be necessary to
read and comprehend the text on the scene in order to distinguish between various
visual categories, or tasks like visual question answering and image captioning, where
it may be necessary to read and comprehend the text on an image in order to correctly
respond to a question or create a descriptive caption for a specific image.

1.3.1 Particularities of Scene Text

Due to the nature of scene text, it plays a very particular role when used in computer
vision applications. Interestingly and in order to exploit all the information that scene
text entails, we have to treat such distinct cue as a combination of two modalities.
Firstly, in order to detect and recognize textual symbols, the visual cues emerge with a
predominant role. However, and in order to fully incorporate semantics, scene text has
to be boarded with a language processing viewpoint. Therefore, to interpret scene text
we require a careful usage of both modalities for a posterior information exploitation
to solve a specific task. Similarly, the interaction of the overall visual cues and scene
text have to be considered in order to achieve an holistic image understanding and
interpretation. The ways the visual cues interact with scene text is very diverse and
complex, nonetheless we can broadly categorize it in 4 different types:

o—

Figure 1.3: Textual and visual information in a given image may (from left to right)
correlate, complement each other, reinterpret, and/or be totally orthogonal.

Correlated: Similar information may be learned using either modality and when
used together they can reinforce the idea learned using only a single input.

Complementary: Visual and textual cues convey distinct knowledge that, when
combined, the message can be enhanced by the combination of both modalities.

Interpretative: When seen in the context of the other modality, the original mes-
sage is altered; when combined, a new semantic interpretation results.

Orthogonal: The two modalities communicate separate information and are, in
some ways, unrelated to one another; attempting to merge them can be harmful since
they compete with one another.

However, modeling these categories is not straight-forward since various text in-
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stances can co-exist continuously in an image and can be interpreted specifically ac-
cording to the task. Due to the different nature of each of these modalities, diverse
approaches have been explored to fuse them. While initial work proposed a diverse set
of fusion mechanisms [16, 97, 71, 226, 17], current approaches rely on transformers,
which more often than not require large annotated datasets [32, 202].

1.4 Outline, Research Questions and Contributions

In this section, we enumerate the research questions and provide the reader with a
summary of each chapter that composes this thesis.

Chapter 2

Research Question 1: How can we embed scene text into a morphological representa-
tion that allows the generalization of unseen words during training time?

Research Question 2: What design choices can we propose to allow a detection-specific
model to represent words rather than a classification vector while allowing real-time
retrieval?

Previous state-of-the-art scene text retrieval pipelines comprise a multi-stage ap-
proach of detection, recognition, and search is performed. However, this approach has
several drawbacks, including slow processing of images, not being well suited for out-
of-vocabulary words, and not being efficient at a searching time to name a few. There-
fore, we propose a fully convolutional neural network that represents scene text with
a Pyramidal Histogram Of Characters (PHOC), therefore allowing out-of-vocabulary
queries unseen at training time. This approach yields a compact representation of the
scene text found in an image while performing in real-time. To perform retrieval, we
simply cast the nearest neighbor search of the PHOC representation of the query and
the predicted scene text.

Chapter 4

Research Question 1: How can we overcome OCR errors and rely on word morphology
to obtain richer scene text embeddings?

Research Question 2: Can we obtain a single scene text descriptor that incorporates
all the text instances found within an image?

We found out that models are prone to misclassify a given image if the OCR wrongly
recognized a scene text instance. Therefore, we design a syntactically-based embed-
ding by the incorporation of PHOCs, which encodes all the scene text instances within
an image. The resulting embedding space clusters similar words according to the mor-
phology, while at the same time representing all the scene text instances in an image,
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thus being suitable to overcome OCR errors and yielding state-of-the-art performance
in fine-grained image classification and retrieval.

Chapter 5

Research Question 1: Is it possible to design a model capable of reasoning of each
scene text instance along with the salient objects of an image to perform fine-grained
classification and retrieval?

Research Question 2: What design choices can we undertake to achieve richer region-
level features that model the interaction of visual and textual cues?

The reasoning at the image level requires modeling specific pipelines that enrich
features according to the interaction among visual regions with the occurring scene
text. In this work, we construct a model capable of learning the semantic interaction
between salient visual regions and text instances. We define a Graph Neural Network
(GNN) that considers the semantics found in each modality to yield richer node fea-
tures used to further classify a given image. We overcome the problem of employing
high-dimensional scene text descriptors found in the model of the previous chapter,
while at the same time obtaining a semantic space resulting in a significant boost in
text-based fine-grained image classification and retrieval.

Chapter 7

Research Question 1: How can we train a retrieval network considering the scarcity of
annotated datasets that model the interaction of scene text as a third modality aside
from images and captions?

Research Question 2: Since scene text can have different interactions with the visual
and language features, we pose the question of: how can we leverage scene text to
perform selective image retrieval?

Given the explicit information that scene text provides in an image, we hypothe-
size whether text instances can be used to obtain better retrieval results in cross-modal
pipelines. To the best of our knowledge, we are the first to study the role of this modal-
ity, therefore we propose the task of Scene Text Aware Cross-Modal Retrieval (StacMR).
To this end, we gather a dataset and provide different approaches to try to model the in-
teraction between language, images, and scene text. Moreover, we found an approach
that improves the retrieved samples when considering scene text as a fine-grained el-
ement that needs to be incorporated selectively.
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Chapter 8

Research Question 1: How much can we learn from the scarcity of many-to-many an-
notations regarding the relevance of images and captions in image retrieval pipelines
to obtain richer semantics in the retrieved proposals?

Research Question 2: Is there a way to measure the degree of semantic relevance be-
tween each image and the retrieved captions?

We discover the problem of lacking a proper metric to assess semantic relevance
in cross-modal retrieval literature. We employ image captioning metrics to define the
degree of semantic relevance among queries and retrieved results. By utilizing such
metrics, we define a semantic adaptive margin incorporated in a triplet loss that con-
structs a smoother retrieval space. When training models with such semantic margin
we obtain an improved sorted set of results according to a semantic viewpoint while
also improving on the commonly used recall metric. Importantly, the evaluated mod-
els that incorporate our margin require significantly fewer data to converge and out-
perform other approaches.

Chapter 9

Conclusion and Future Directions

We highlight this thesis’s major contributions, as well as its important discoveries,
and we provide open-ended research directions for further investigation.



Chapter 2

Real-time Lexicon-free Scene Text
Retrieval

In this Chapter we address the problem of scene text retrieval: given a text query,
the system must return all images containing the queried text. The proposed model
uses a single-shot Convolutional Neural Network(CNN) architecture that predicts
bounding boxes and builds a compact representation of spotted words. In this way,
this problem can be modeled as a nearest neighbor search of the textual represen-
tation of a query over the outputs of the CNN collected from the totality of an image
database. Our experiments demonstrate that the proposed model offers a signif-
icant increase in processing speed and unmatched expressiveness with samples
never seen at training time. Several experiments to assess the generalization capa-
bility of the model are conducted in a multilingual dataset, as well as an application
of real-time text spotting in videos.

2.1 Introduction

The development of language is one of the most influential inventions of humankind
that allows the communication of abstract and complex ideas. Similarly, written text
permits this set of complex ideas to be captured, stored, and communicated in an ex-
plicit manner. As is shown by several authors [196, 106], the text is present in a large
percentage of real-life imagery, especially in urban scenarios and documents. Adding
this to the fact that there is ample availability of visual data and the importance of text,
it becomes essential to develop algorithms that allow efficient information retrieval
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Figure 2.1: The visual appearance of different business places in images can be ex-
tremely variable. It seems impossible to correctly label them without reading the text
in the images. Our scene text retrieval method returns all the images shown here within
the top-10 ranked results among more than 10,000 distractors for the text query “ho-
tel”.

by exploiting the richness of the textual content found in images and video. Leverag-
ing text in scene imagery provides significant boosts to tasks such as image retrieval,
scene understanding, instant translation, human-computer interaction, robot naviga-
tion, assisted reading for the visually impaired, and industrial automation.

In previous years significant advances have been accomplished, particularly since
the introduction of AlexNet [187], architecture that won the ILSVRC2012 [165] contest
by using deep learning techniques. Text spotting has been diverging from older ap-
proaches that used hand-crafted features to current ones that employ automatic fea-
ture learning by exploiting deep learning methodologies [235, 125]. Nonetheless, text
spotting is not a trivial task and remains an open problem in the research commu-
nity. Putting aside the complexity of spotting text in the wild, the importance that text
encompasses is given by the high-level semantic and explicit information, which can
not be leveraged by using visual cues alone. For example, there is a high degree of com-
plexity involved in labeling images without considering the text found in them, even for
humans. This effect is evident in Figure 2.1, in which the storefronts alone can belong
to a wide plethora of businesses, but the exact label can be inferred if and only if the
text contained is read and leveraged appropriately. Research conducted by Movshovitz
et al. [144] showed that while training a shop classifier, the proposed model ended up
associating specific visual representations to textual information as the only way of dif-
ferentiating between diverse businesses. The described effect is evident and addressed
explicitly in later works conducted by [87, 11, 131], which focus on the fine-grained
classification of storefronts and bottles respectively. Additional tasks that require inte-
gration of scene text and visual information to generate a common domain knowledge
have been proposed such as in [179, 20], which opens up new research paths.

Closely related to our work, Mishra et al. [142] proposed the task of scene text re-
trieval. The input to the system is a text query, which the system must employ to return
all the images that contain the queried text. This task requires systems that are ro-
bust enough to perform fast word spotting while at the same time holding the capacity
of generalizing to out-of-dictionary queries never seen before. An intuitive approach
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to tackle such a problem is to make use of state-of-the-art reading systems, and use
their output predictions to find the closest match with the given query. However, as it
has been shown by [142], such attempts commonly have low performance caused by
limitations in end-to-end reading systems. On one hand, end-to-end reading systems
are evaluated on recognition, a different task that focuses on achieving high precision
scores, often using a specific language dictionary [82] or as it is proposed by [91, 90] a
short dictionary per image. On the other hand, a retrieval system requires a large num-
ber of proposals (high recall) which can be beneficial at the moment of finding close
matching detections when compared to a query. It is also worth noting that end-to-
end reading systems usually consist of at least two clearly defined stages that employ
the encoder-decoder paradigm. The pipelines comprised by these two stages, more of-
ten than not are slow at the moment of generating predictions of text contained in an
image. These time constraints hinder the use of such algorithms in real-time scenarios
or at the stage of indexing large-scale collections of images and documents.

In order to exploit the particular requirements that need to be addressed by a re-
trieval system, we propose in this Chapter a real-time, high-performance word spot-
ting method that detects and efficiently encodes text in a single calculation of a Fully
Convolutional Neural Network (FCNN). Inspired by backbones used for object detec-
tion, we have modified them to predict a PHOC (Pyramidal Histogram Of Charac-
ters) [5, 184] descriptor of detected scene text instances. Our experiments show that
by using a custom YOLOvV2 model [159] we obtain the best architecture in terms of the
trade-off between performance and efficiency. By employing this methodology, our
model is able to perform text detection and encoding proposals in a single end-to-end
calculation. This approach makes it suitable for real-time applications or for indexing
large-scale image collections at an unmatched speed while achieving a generalization
capability of unseen text instances at training time.

The main contributions of this Chapter are: (1) The usage of the PHOC as a word
representation instead of a direct word classification over a closed dictionary, thus pro-
viding an elegant mechanism to generalize to any text string, allowing the method to
tackle efficiently out-of-dictionary queries. (2) Differently from common scene text
detection and recognition pipelines, we present a model comprised of an end-to-end
trainable FCNN, capable to learn the morphology of scene text instances. (3) Due to
its design, the adoption of this method achieves an unmatched inference time of 42
images per second when processing images while at the same time achieving an un-
matched performance. Code has been released and can be found in the public reposi-
tory'.

2.2 Related Work

Initial approaches focused on hand-crafted features, thus the attention of the commu-
nity was centered on the design of relevant features that allowed generalization. Early

Lhttps://github.com/AndresPMD/Pytorch-yolo-phoc
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detection methods adopted Connected Components Analysis (CCA) [50, 78, 222] or
classification by the use of Sliding Window (SW) such as in [108, 205, 207]. Methods
that used CCA usually extract candidate regions by clustering them by color or accord-
ing to textures that resemble text. The regions proposed are later classified by algo-
rithms that are trained by the usage of hand-crafted features. In the Sliding Window
method, windows of different sizes and scales slide over the image and output a binary
classification of text or not text. The positive text regions were grouped into final de-
tections by morphological operations or graph-based methods.

Early text recognition was mostly focused on the usage of feature-based methods. La-
bel embeddings were used by [5, 65, 162] to perform a direct matching between in-
put images and strings. Character segment methods were proposed by [174, 220] to
recognize words. The recognition task has also been divided in a series of sub-tasks
such as text line segmentation [221], character segmentation [175, 163], text binariza-
tion [141, 199] and single character recognition [171, 30].

In the past years, several advances in Deep Learning have been accomplished due
to data availability and computing power [106], allowing deep learning models to sur-
pass several benchmarks in a wide range of tasks. The main advantage of using deep
learning methodologies is the possibility of automatic feature learning, rather than
hand-crafted ones. Most literature [125, 235, 29] divide the existing methods into text
detection, text recognition, and end-to-end systems.

2.2.1 Scene Text Detection

Deep learning methodologies usually follow a two-step pipeline that comprises an
end-to-end trainable detection network and a post-processing step. A branch of re-
search in text detection focuses on the pixel level of an image. In the work presented
by [71], a CNN is used to predict if a given pixel belongs to a character, forms part
of a text region, and its orientation. Analogously, in [15] an FCN is trained to classify
whether a pixel belonged to a specific character. Yao et al. [219] propose a CNN that
outputs text proposals, which are filtered by separating different text instances by em-
ploying a semantic segmentation model. Later works focus on simplifying the pipeline
and thus improving the speed and training of models.

The work presented by [115, 114] named Textboxes, adopts a modified version of a

popular object recognition model named Single Shot Detector [123]. It employs modi-
fied anchor boxes to regress the ground truth boxes followed by a non-maximum sup-
pression step (NMS). A performance-focused approach is given by EAST [234], which
up-samples feature maps gradually and uses [98] as the network backbone, and out-
puts a per pixel word or text line prediction followed by an NMS step.
Based on object detection frameworks proposed by R-CNN [59, 161, 72], alternative
text detection pipelines have been explored. The common approach consists of a Re-
gion Proposal Network (RPN) that produces candidate text regions, which later are
passed through a pooling layer that classifies the region as text or not text.

In the model presented by [129], rotated region proposals are presented, mostly to
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handle arbitrary oriented text. Analogously, R2CNN [85] the Region of Interest(ROI)
pooling stage uses different fixed sizes which are concatenated for regression and clas-
sification. The work conducted by [232] mainly focuses on adaptive weighted pooling
in different scales to further predict and regress region proposals.

2.2.2 Scene Text Recognition

Initial approaches explored by Jaderberg et al. [81] tackle text recognition as a classifi-
cation problem. After training a CNN on synthetically generated samples, the obtained
features are used to predict a vector that classifies the input word over approximately
90,000 classes. After the introduction of the Connectionist Temporal Classification
(CTC) by Graves et al. [67] in handwriting recognition, the same methodology has been
widely used in scene text as well. The work proposed by [172] employs the CTC layer
after passing the input image through a CNN that acts as the encoder and a Recurrent
Neural Network (RNN) that act as the decoder. By employing a slightly different ap-
proach, [55] adopts stacked convolutional layers to capture contextual dependencies
of the input sequence. The introduction of an attention mechanism was initially pro-
posed by [9] in the task of machine translation. This mechanism was briefly adopted
in several vision tasks, including text recognition. The work proposed by [33], namely
Focus Attention Network, employs attention to supervise relevant locations for word
recognition. Bai ef al. [10] introduce an edit probability to handle the misalignment
between the ground truth string and the attention output string. Jaderberg et al. [83]
proposed the Spatial Transformer Network, which is used by [173] to align detected
text horizontally to further employ an attention based recognizer.

2.2.3 End-to-End Text Recognition

Text detection and recognition tasks are highly correlated from an end-to-end perspec-
tive, in the sense that learned features can be used to solve both problems. An intro-
ductory approach proposed by Jaderberg et al. [82] employs a sliding window to extract
proposals, which are filtered and a CNN is used to regress the bounding boxes. Later
the filtered regions that surpass a threshold are classified. In another work, Gupta et al.
[69] defined a Fully Convolutional Regression Network for text detection and bounding
box regression and the same classification network proposed by [82] for text recogni-
tion, being one of the first models that were fully trainable based on deep learning
methodologies solely. In [24] a YOLO[159] based CNN is adopted to detect text in-
stances, which later are passed through a Connectionist Temporal Classification mod-
ule for recognition. These two stages are trained separately and later connected to-
gether to form an end-to-end architecture. The research presented by [110]introduces
a CNN that is used as an encoder and a Long Short-Term Memory (LSTM) along with
an attention mechanism module as a decoder, both employed for detection and recog-
nition. He et al. [74] use a CNN to extract proposals, which are fed into an LSTM to
refine the bounding boxes that are later employed as input to yet another LSTM to per-
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form recognition that fixes misalignment between attention maps and ground truth
character labels. In parallel, additional work has been conducted on the development
of multilingual scene text recognizers, such as the work of [25] which consists of two
CNNs. The first one is optimized to detect text and a second one employs a Connec-
tionist Temporal Classification (CTC) [67] module for recognition while training both
in an end-to-end manner. In concurrent work, [124] uses EAST [234] to obtain text re-
gions and employs a CTC recognition module to obtain an end-to-end reading system.
Lyu et al. [128] use a variation of Mask R-CNN[72] to detect text in arbitrary shapes
and segment an image in different instances to recognize similar text regions. Sim-
ilarly, in order to detect and recognize oriented text, the model FOTS was proposed
by [124], which comprises a CNN followed by a ROI Rotate operation, which applies a
transformation on oriented text to obtain axis-aligned features maps that are further
recognized by a bi-directional LSTM and a CTC decoder.

2.2.4 Scene Text Retrieval

In the scene text retrieval task, the goal is to retrieve all images that contain instances
of the queried words in a dataset partition. Given a query, the database elements are
sorted with respect to the probability of containing the queried word. We use the mean
average precision as the accuracy measure, which is the standard measure of perfor-
mance for retrieval tasks and is essentially equivalent to the area below the precision-
recall curve. Notice that, since the system always returns a ranked list with all the im-
ages in the dataset, the recall is always 100%. An alternative performance measure
consists of considering only the top-n ranked images and calculating the precision at
this specific cut-off point (P@n).

It is important to note that the scene text retrieval problem slightly differs from
classical scene text recognition methodologies. In a retrieval scenario, the user de-
fines a textual query that he wants to retrieve, whereas most recognition approaches
are based on employing a predefined vocabulary of the words one might come along
within scene images. For instance, both Mishra et al.[142], who introduced the scene
text retrieval task, and Jaderberg et al. [82], use a fixed vocabulary to create an inverted
index that contains the presence of a word in the image. These approaches limit the
freedom of queries to a set of predefined vocabulary words.

To address such a problem, text string descriptors based on n-gram frequencies, like
the PHOC descriptor (Figure 2.2), have been successfully used for word spotting ap-
plications [5, 58]. By using a vectorial codification of text strings, users can query any
string at inference time without being limited to a specific set of predefined vocabu-
lary words. After the publication of this Chapter’s work, an additional method [201]
has achieved state-of-the-art. The pipeline from [201] directly optimizes scene text
detection along with cross-modal similarity learning. Two branches, one specialized
in text recognition and another that focuses on embedding text transcriptions are op-
timized for similarity in a common space. Queries are embedded through the second
branch and the results are ranked according to the similarity of the text detected within
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the image.
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Figure 2.2: Pyramidal histogram of characters (PHOC) [5] of the word “beyond” at lev-
els 1, 2, and 3. The final PHOC representation is the concatenation of these partial
histograms.

In the proposed method, we make use of the PHOC descriptor along with an object
detection framework based on YOLOV2 [159] that encodes found text instances in an
image. We suggest that this approach brings many benefits, mostly due to the high re-
call and single shot calculation required to locate and recognize text contained within
an image, accompanied by an unmatched processing speed.

2.3 Single Shot Scene Text Retrieval

The proposed architecture, illustrated in Figure 2.3, consists in a single shot CNN model
that predicts at the same time bounding boxes and a compact text representation of the
words within them. To accomplish this we adapt the YOLOv2 object detection model
[157, 158] and recast it as a PHOC [5] predictor.

The YOLOV2 architecture is composed of 21 convolutional layers with a leaky ReLU
activation and batch normalization [80] and 5 max pooling layers. It uses 3 x 3 filters
and doubles the number of channels after every pooling step as in VGG models [177],
but also uses 1 x 1 filters interspersed between 3 x 3 convolutions to compress the fea-
ture maps as in [9]. The backbone includes a pass-through layer from the second con-
volution layer and is followed by a final 1 x 1 convolutional layer with a linear activation
with the number of filters matching the desired output tensor size for object detection.
For example, in the PASCAL VOC challenge dataset (20 object classes) it needs 125 fil-
ters to predict 5 boxes with 4 coordinates each, 1 objectness value, and 20 classes per
box ((4 + 1+ 20) x 5 = 125). The resulting model achieves state-of-the-art object detec-
tion, has a smaller number of parameters than other single-shot models, and runs in
real time.

A straightforward application of the YOLOvV2 architecture to the word spotting task
would be to treat each possible word as an object class. This way the one hot classifica-
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Figure 2.3: Our Convolutional Neural Network predicts at the same time bounding box
coordinates x, y, w, h, an objectness score ¢, and a pyramidal histogram of characters
(PHOC) of the word in each bounding box.

tion vectors in the output tensor would encode the word class probability distribution
among a predefined list of possible words (the dictionary) for each bounding box pre-
diction. The downside of such an approach is that we are limited in the number of
words the model can detect. For a dictionary of 20 words the model would theoreti-
cally perform as well as for the 20 object classes of the PASCAL dataset, but training for
alarger dictionary (e.g. the list of 100,000 most frequent words from the English vocab-
ulary [82]) would require a final layer with 500, 000 filters, and a tremendous amount of
training data if we want to have enough samples for each of the 100,000 classes. Even
if we could manage to train such a model, it would still be limited to the dictionary size
and not able to detect any word not present on it.

Instead of the fixed vocabulary approach, we would like to have a model that is
able to generalize to words that were not seen at training time. This is the rationale be-
hind casting the network as a PHOC predictor. PHOC [5] is a compact representation
of text strings that encodes if a specific character appears in a particular spatial region
of the string (see Figure 2.2). Intuitively a model that effectively learns to predict PHOC
representations will implicitly learn to identify the presence of a particular character
in a particular region of the bounding box by learning character attributes indepen-
dently. This way the knowledge acquired from training data can be transferred at test
time for words never observed during training, because the presence of a character at
a particular location of the word translates to the same information in the PHOC rep-
resentation independently of the other characters in the word. Moreover, the PHOC
representation offers unlimited expressiveness (it can represent any word) with a fixed
length low-dimensional binary vector.

The PHOC version we propose in this model employs a higher dimensional binary
vector of a length of 820 dimensions. This vector is formed by concatenating the L2 to
the L6 unigram levels along with 2 levels of the 50 most common English language bi-
grams. In order to adapt the YOLOV2 object detection network for single-shot detection
and PHOC prediction, it is necessary to define the nature of the proposed descriptor.
Firstly, the PHOC descriptor does not resemble a one-hot vector as in a classification
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scheme. To treat the PHOC as a multi-hot binary vector, the last layer does not employ
a softmax function. Secondly, the predicted PHOC vector comprises a set of numbers
that satisfy the condition given by:

S={x|xeR,0<x<1} 2.1)

Where S represents the set of possible PHOC values. In order to have such a rep-
resentation, a sigmoid activation function after the last convolutional layer is used to
predict the PHOC vectors rather than the original softmax function.

To accomplish this, a sigmoid activation function was used in the last layer. Third,
we propose to modify the original YOLOvV2 loss function in order to help the model
through the learning process. The original YOLOv2 model optimizes the following
multi-part loss function:

L(b,C,¢,b,C, &) = ApoxLpox (b, b) + Lop; (C,C, Aopjs Anoobj) + ActsLeis(c, &) (2.2)

where b is a vector with coordinates’ offsets to an anchor bounding box, C is the prob-
ability of that bounding box containing an object, ¢ is the one hot classification vector,
and the three terms Ly,y, Lopj, and L are respectively independent losses for bound-
ing box regression, objectness estimation, and classification. All the aforementioned
losses are essentially the sum-squared errors of ground truth (b, C,c) and predicted
(b, C, &) values. In the case of PHOC prediction, with ¢ and ¢ being binary vectors but
with an unrestricted number of 1 values we opt for using a cross-entropy loss function
in L. as in a multi-label classification task:

L.s(c,6) =clogé+(1—-c)log(l1-¢) 2.3)

Similarly as in [157] the combination of the sum-squared errors Ly, and L,p; with
the cross-entropy loss Ly is controlled by the scaling parameters Apox, Aobj» Anoobj
and A.;.

Aside from the modifications made so far on top of the original YOLOv2 architec-
ture, we also changed the number, the scales, and the aspect ratios of the pre-defined
anchor boxes used by the network to predict bounding boxes. As an enhancement
strategy when compared to our previous model, we ran a K-Means model with 13 cen-
troids to obtain the initial priors for the anchor boxes that better capture the real distri-
bution of text shapes. The centroids were obtained by gathering the width and height
of all the text instances found in the datasets used at training time. Finally, the pro-
posed model predicts 13 anchor boxes per grid cell as output features. Figure 2.4 illus-
trates the 13 bounding boxes found to be better suited for our training data and their
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difference from the ones used in object detection models.
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Figure 2.4: Anchor boxes used in the original YOLOv2 model for object detection in
COCO (a) and PASCAL (b) datasets. (c) Our set of anchor boxes for text detection.

At test time, our model provides a total of W /32 x H/32 x 13 bounding box propos-
als, with W and H being the image input size, each one of them with an objectness
score (C) and a PHOC prediction (¢). The original YOLOv2 model filters the bound-
ing box candidates with a detection threshold 7 considering that a bounding box is a
valid detection if Cmax(é) = 1. If the threshold condition is met, a non-maximal sup-
pression (NMS) strategy is applied in order to get rid of overlapping detections of the
same object. In our case the threshold is applied only on the objectness score (C) but
with a much smaller value (7 = 0.0025) than in the original model (r = 0.2), and we do
not apply NMS. The reason is that any evidence of the presence of a word, even if it is
small, may be beneficial in terms of retrieval if its PHOC representation has a small dis-
tance to the PHOC of the queried word. With this threshold, we generate an average of
500 descriptors for every image in the dataset and all of them conform to our retrieval
database.

In this way, the scene text retrieval of a given query word is performed with a sim-
ple nearest neighbor search of the query PHOC representation over the outputs of the
CNN in the entire image database. While the distance between PHOC: is usually com-
puted using the cosine similarity, we did not find any noticeable downside when using
a Euclidean distance for the nearest neighbor search.

In this section, we explore different frameworks and backbones inspired by the
most common object detection pipelines. Additionally, we present exhaustive experi-
ments on the effect of different PHOC sizes, which yields an incremental improvement
when compared to our previous model. We also analyze deeply the capacity of our
model in dealing with out-of-vocabulary queries, by conducting several experiments
in two multi-lingual datasets. These experiments prove that the proposed method is
able to transfer knowledge acquired at training time to construct word representations
of previously unseen text samples at inference time.

Lastly, we propose an application of real-time text spotting on video, in which the
model corroborates its robustness to noise, blur, and distortions while at the same time
maintaining its characteristic high processing speed.
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2.4 Datasets

2.4.1 IIIT Scene Text Retrieval (STR)

The STR dataset [142] is a scene text image retrieval dataset composed of 10,000 images
collected from the Google image search engine and Flickr. The dataset has 50 prede-
fined query words and for each of them, a list of 10 — 50 relevant images (that contain
the query word) is provided. It is a challenging dataset where relevant text appears in
a wide range of different fonts and styles, and from different viewpoints, among many
distractors (images without any text).

2.4.2 IIIT Sports-10k Dataset

The Sports-10k dataset [142] is another scene text retrieval dataset composed of 10,000
images extracted from sports video clips. It has 10 predefined query words with their
corresponding relevant images’ lists. Scene text retrieval in this dataset is especially
challenging because images are low resolution and often noisy, occluded, or blurred,
with small text generally located on advertisements signboards.

2.4.3 Street View Text (SVT) Dataset

The SVT dataset [205] is comprised of images harvested from Google Street View where
text instances are present. The scene text found exhibits great variability and is usually
related to business names and descriptions. It contains more than 900 words anno-
tated in 350 different images. In our experiments, we use the official partition that
splits the images into a train set of 100 images and a test set of 249 images. This dataset
also provides a lexicon of 50 words per image for recognition purposes, but we do not
make use of it. For the image retrieval task, we consider as queries the 427 unique
words annotated on the test set.

2.4.4 Multi-lingual Scene Text (MLT) Datasets

These two datasets MLT2017 [1] and MLT2019 [2] are scene text detection and recog-
nition datasets that contain 7,200 and 10,000 images respectively in 10 different lan-
guages (Chinese, Japanese, Korean, English, French, Arabic, Italian, German, Bangla,
and Hindi) in equal proportions, representing 7 different scripts. These datasets mostly
comprise focused text in natural images, and even though the main task is text detec-
tion and recognition, we adapted it to conduct text retrieval experiments. We employ
this dataset to assess the generalization power of the PHOC representation of unseen
words at training time.
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2.4.5 Textin Videos (TiV) Dataset

The TiV dataset [3] contains 25 videos (13450 frames in total) and a test set of 24 videos
(14374 frames in total) recorded from 4 different cameras. We use this dataset to asses
the performance in real-time of our model at the moment of retrieving a specific text
query. The challenge in this dataset remains in the fact that usually video frames con-
tain a lower quality when compared to static images. The problems of text spotting
usually relate to rotation, blur, and occlusion of text found on each frame due to move-
ment and focusing issues while including loss of information at the moment of video
compression.

2.5 Experimental Results

2.5.1 Training Details

The model was trained with a combination of several datasets. The first one is a modi-
fied version of the synthetic dataset of Gupta et al.[69]. The dataset generator has been
evenly modified to use a custom dictionary with the 90K most frequent English words,
as proposed by Jaderberg et al.[82], instead of the Newsgroup20 [105] dataset dictio-
nary originally used by Gupta et al.. The rationale was that in the original dataset there
was no control over the word occurrences, and the distribution of word instances had
a large bias towards stop-words found in newsgroups’ emails. Moreover, the text cor-
pus of the Newsgroup20 dataset contains words with special characters and non-ASCII
strings that we do not include in our PHOC representations. Finally, since the PHOC
representation of a word with a strong rotation does not make sense under the pyrami-
dal scheme employed, the dataset generator was modified to allow rotated text up to
15 degrees. This way we generated a dataset of 1 million images for training purposes.
Figure 2.5 shows a set of samples of our training data. Additional 10k synthetic images
proposed by [228] were added to the training data. This dataset has been shown to im-
prove scene text detectors and recognizers. Real images taken from the 1,233 training
images found in the ICDAR2013 [91] and ICDAR2015 [90] datasets were also added to
the training set.
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Figure 2.5: Synthetic training data generated with a modified version of the method
of Gupta et al. [69]. We make use of a custom dictionary with the 90K most frequent
English words, and restrict the range of random rotation to 15 degrees.
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We trained the proposed model with an initial learning rate of 0.001 and a batch
size of 16, however, a gradient accumulation strategy was employed every 4 iterations,
thus resulting in a total batch size of 64. The training process involved the combination
of two recent optimizers, RAdam [121] and the Lookahead [230] which when working
in combination yielded the best results. We initialized the weights of our model with
the YOLOv2 backbone pre-trained on Imagenet. At this stage, we employed a fixed
input image size of 448 x 448. After the initial 20 epochs, we decreased the learning
rate to 0.0001 and trained the model for 5 additional epochs. At this point, we also
adopted multi-scale training by randomly resizing input images among 13 possible
sizes in the range from 352 x 352 to 768 x 768 to increase the generalization ability of
the model towards different-sized images. As a way to fine-tune the model to predict
text instances in real images, a final epoch was employed, which involved the usage
of images only from the ICDAR2013 and ICDAR2015 datasets. Through the training
process, we kept the parameter 1.5 set to 2.0 to increase the weight placed to learn
accurate PHOCs, the parameter 1j,, was set to 5.0 and the rest of the parameters were
fixed to 1.0. During the whole training stage, we used a data augmentation strategy that
involved randomly cropping the center of an image without affecting text instances
and adding saturation and hue.

2.5.2 Backbone Comparison

Several works analyzing a wide range of backbones have been proposed to tackle the
object detection task [117, 161, 123, 157]. More often than not, these frameworks are
used as a starting point to construct text detectors and recognizers which rather than
focusing on objects, are designed to detect and recognize textual instances. The model
presented in our previous work [61] employs a customized backbone inspired by YOLOv2 [159].

Additionally, we include the results of the following frameworks: YOLOv3 [160],
Faster R-CNN [161] and RetinaNet [117] modified to predict a PHOC embedding given
that a text instance was detected. Adapting each of the mentioned frameworks for
scene text retrieval required specific design choices and training methodologies that
are explained as follows.

YOLOV3 [160] is an incremental improvement on the YOLOvV2 model. A signifi-
cantly bigger number of convolutional layers were added and if considering additional
layers such as routing, upsampling, and shortcut layers, the total number increases to
106 layers. The custom YOLOv3 used in our experiments makes predictions at each
grid cell through 3 different scales and employs 4 different anchors boxes per scale.
The initialization of the model is given by the original YOLOv3 weights pre-trained on
ImageNet [41]. Rather than predicting a class label, a PHOC prediction is performed
on the detected text, and the most confident PHOCs are employed as scene text re-
trieval features. Since YOLOvV3 already uses binary cross entropy to make predictions,
we did not make any changes to the original loss function when working with a PHOC
descriptor.

The second framework is taken from the work by [117], which presents a model
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named RetinaNet. This model leverages a Feature Pyramid Network (FPN) [116] to
extract features across different layers of a network. The resulting features are further
used to perform bounding box regression and classification by two separate branches.
A novel loss function that focuses on hard, misclassified samples while reducing the
relative loss on well-classified ones is adopted. In our experiments we used as the FPN
backbone a ResNet-18 [73] pre-trained on ImageNet. Since the RetinaNet model does
not output a confidence parameter, we modified the bounding box regression branch.
The network was trained to predict a confidence value based on the IoU between the
predicted anchor boxes and the ground truth text annotations. We added an MSE Loss
term to predict this new confidence output which was added to the total function to
be optimized. The evaluated model outputs 9 anchor predictions per each FPN level,
across 5 different levels (L3-L7) readjusted to capture text shape. Similar to the idea
from [61], at inference time we use the confidence values to sort the most confident
PHOC:s predicted from the scene text contained in an image.

The third evaluated framework is a Faster R-CNN, a multi-stage object detector [161].
The Faster R-CNN comprises of two stages, a Region Proposal Network (RPN) and a
Region Of Interest (ROI) Pooling stage used for later classification and regression. The
backbone of this model is a VGG-16 [177] which extracts common features for the RPN
and ROI layers. In the RPN layer, 9 anchors are proposed at each sliding window, yield-
ing coordinates and scores. The coordinates refer to the location of regions from the
convolutional features to be used as input into the ROI stage to be later regressed and
used to predict PHOCs by two different branches. The scores indicate the presence
of text and background according to the IoU between predicted anchors and ground
truth labels. We use this score to sort the PHOC predictions at inference time accord-
ingly.

It is paramount to indicate that training and finding a global optimum among all
these models is not a trivial task. The additionally explored frameworks contain a
significantly larger amount of parameters compared to the original model based on
YOLOV2, which in turn produces a slower training procedure. Such models use sev-
eral hyper-parameters that can be further tuned but are specific to each one. Due
to the computational resources involved in fine-tuning and optimizing each hyper-
parameter of the explored models individually, we trained all models for 10 epochs.
The PHOC dimension was kept constant across all of them by using the most com-
mon size in literature 604-d [5][61][184]. A gradient accumulation policy was em-
ployed to train the additional frameworks in a way that the resulting gradient at back-
propagation was applied to a larger batch of samples, in a similar manner as the orig-
inal YOLOV2 model. This methodology was adopted because the explored backbones
contained a big number of parameters that could not be optimized by using a single
GPU otherwise.

The results obtained by using different models are summarized in Table 2.1. We
note that by employing the YOLOv3 backbone better results are obtained in the Sports10K
dataset. However, the outcome of increased performance on one dataset comes at the
cost of a longer convergence time for the model at training stage and also a significant
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decrease at inference (50%) measured by frames per second.

Framework Backbone  Training Hours IIIT Sports10K  SVT FPS

RetinaNet ResNet 18 888 63.29 74.64 79.31 11
Faster R-CNN VGG 16 960 66.21 76.08 80.53 5
YOLOv3 Darknet 53 288 67.99 79.33 83.59 20
YOLOv2 Darknet 19 144 69.92 78.01 85.12 43

Table 2.1: Comparison of different frameworks and backbones in the scene text re-
trieval task. Each model predicts PHOCs of textual instances found and the most con-
fident ones are employed as textual features for retrieval. The metric employed is the
mean average precision (mAP).

We should remark that Faster R-CNN and RetinaNet due to their slow processing
speed are not suitable for the purpose of obtaining a real-time and efficient text spotter.
The complexity of these two models is significantly higher than YOLOv2 or YOLOvV3,
bringing in a substantial time required to achieve convergence, a key asset, especially
when working with limited computational resources. In order to preserve real-time
processing capabilities, efficient large-scale indexing, and faster convergence time at
training we have decided to employ the YOLOv2 backbone for the rest of our experi-
ments.

2.5.3 Effect of PHOC Dimension

In order to assess the effect of the PHOC vector size, various retrieval experiments were
conducted by incrementally adding up the pyramidal unigram levels and the redun-
dancy of the bigrams that form the descriptor. Due to computational constraints and
in order to provide a grounded comparison, all the evaluated models were trained for
10 epochs. The backbone employed was the custom variation of YOLOv2 [159] and the
different loss function hyper-parameters were kept similar in all scenarios.

Table 2.2 shows the results obtained by employing different PHOC sizes. It is evi-
dent that using single unigram levels do not yield good results because spatial infor-
mation of the characters found within a word is lost. It is important to point out that
higher unigram levels contain richer spatial information that is discriminative when
differentiating similar words, thus achieving a higher score than employing lower un-
igrams. Intuitively, concatenating several unigram levels provide a more informative
vector of the positioning of characters in a word, thus resulting in higher precision. It
is worth mentioning that combinations of PHOCs of higher levels usually yield better
results than combinations of lower unigram levels since higher levels contain more
discriminative information, particularly for longer words. Also, we should indicate
that unigram levels contain information that is more relevant for the retrieval task than
the one contained in bigrams, nonetheless adding bigram levels contribute to the im-
provement of the model. Lastly, by employing bigrams combined with several unigram
levels, a more informative vector is obtained at the expense of a higher dimensional
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PHOC Evaluated Dataset

Unigram Levels Bigram Levels Dimension IIIT  Sportsl0K  SVT

L1 0 36 47.84 67.31 70.17
L2 0 72 54.83 69.54 73.07
L3 0 108 53.94 69.92 73.67
L4 0 144 54.69 69.33 73.21
L5 0 180 56.53 68.44 72.39
L6 0 216 57.14 69.47 73.56
L2+L3 0 180 58.77 68.56 74.68
L2+1L3+L4 0 324 62.35 70.73 75.84
L3+L4+L5 0 432 61.46 68.87 76.51
L2+L3+L4+L5 0 504 62.19 72.52 76.98
L2+L3+L4+L5+L6 0 720 64.57 75.29 78.16
L1+L2+L3+L4+L5 0 540 61.29 72.76 76.19
L3+L4+L5 1 482 62.53 70.79 75.15
L3+L4+L5 2 532 63.35 73.28 76.72
L2+L3+L4+L5 1 554 62.62 73.41 77.55
L2+L3+L4+L5 2 604 62.89 73.88 77.76
L2+L3+L4+L5+L6 1 770 63.64 73.31 78.63
L2+L3+L4+L5+L6 2 820 66.60 74.35 79.19

Table 2.2: Comparison of the effect of different PHOC sizes by employing different
unigram and bigram levels. The backbone employed on all the experiments is a cus-
tomized version of YOLOv2 [159]. The metric employed is the mean average precision
(mAP) across all datasets.

representation. As such, the best performing PHOC in our experiments is the one that
combines 5 levels (L2-L6) jointly with the concatenation of 2 bigrams levels, resulting
in a 820 dimensional vector.

2.5.4 Comparison with State-of-the-Art

The performance of the presented model as well as the previous state-of-the-art meth-
ods is shown in Table 2.3. The models are evaluated for scene text image retrieval on
the IIIT-STR, Sports-10K, and SVT datasets. At inference time our model employs an
input image size of (608 x 608), and the processing time has been calculated using a
Titan X (Pascal) GPU with a batch size of 1.

Our method outperforms the previous best retrieval model [61] by more than 6
points on mAP on the Sports dataset. The improvement is smaller on the other two
datasets, nonetheless, it is still relevant. However it is important to highlight that our
model does not employ a multi-resolution strategy at inference time to predict PHOCs
at different scales as in our previous work [61], and by using just a fixed input size
of 608 x 608 is able to surpass previously obtained results. We should mention that
our method achieves a slightly slower measurement in frames per second (fps) when
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Method IIIT mAP)  Sports (mAP) SVT (mAP) fps
SWT [50]+ Mishra et al. [143] - - 19.25

Wang et al. [205] - - 21.25*%
TextSpotter [148] - - 23.32* 1.0
Mishra et al. [142] 42.7 - 56.24 0.1
Ghosh et al. [57] - - 60.91

Mishra [140] 44.5 - 62.15 0.1
Almazéan et al. [5] - - 79.65
TextProposals [60] + DictNet [81] 64.9" 67.5" 85.90" 0.4
Jaderberg et al. [82] 66.5 66.1 86.30 0.3
Busta et al.[26] ICCV 2017 62.94F 59.62F 69.37" 44.21
Liu et al.[124] CVPR 2018 52.82F 65.627 68.98" 20.26
Busta et al.[25] ACCV 2018 64.39" 68.291 76.441 12.2
He et al.[74] CVPR 2018 50.16" 50.74F 72.82% 1.25
He et al.[74] (With dictionary) 66.95" 74.27" 80.54" 2.35
He et al.[74] (PHOC) 46.34F 52.04F 57.617 2.35
YOLO-PHOC 604-d (576 x 576) [61] 68.13 72.99 82.02 53.0
YOLO-PHOC 604-d (608 x 608) [61] 69.83 73.75 83.74 43.5
YOLO-PHOC 604-d (multi-res.) [61] 71.37 74.67 85.18 16.1
YOLO-PHOC 820-d (608 x 608) 71.67 80.96 85.74 42.2

Table 2.3: Comparison to previous state of the art for text based image retrieval: mean
average precision (mAP) for IIIT-STR, and Sports-10K, and SVT datasets. (*) Results
reported by Mishra et al. in [142], not by the original authors. (1) Results computed
with publicly available code from the original authors.

compared to the model that uses a PHOC of 604 dimensions at the 608 x 608 input
resolution, due to the usage of a bigger PHOC descriptor. Nevertheless, the previously
mentioned effect is almost negligible when compared to single resolution models, es-
pecially if we consider the significant boost in mAP. The improvement comes into place
due to larger preservation of spatial information of words by employing a larger de-
scriptor with redundant information, resulting in greater performance achieved on all
three evaluated datasets. Lastly, we compare the performance to additional state-of-
the-art text recognizers, such as [24, 25, 124, 74]. We also include results from a variant
of He et al. [74], but rather than direct string matching, the model’s results are first
transformed to PHOC descriptors, and the look-up is based on similarity in the PHOC
space. It can be seen that the PHOC space does not offer any advantage compared to
end-to-end recognition methods.

Table 2.4 further compares the improved method to the previous state-of-the-art
by showcasing the retrieval precision at 10 (P@10) and 20 (P@20) cut-off points on the
Sports-10K dataset. Due to the significant improvement in the evaluated dataset, our
YOLOvV2-820-d model is able to achieve better precision and obtain state-of-the-art
performance when compared to other methods.
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Method Sports-10K (P@10)  Sports-10K (P@20)
Mishra et al. [142] 44.82 43.42
Mishra [140] 47.20 46.25
Jaderberg et al. [82] 91.00 92.50
YOLO-PHOC 604-d 92.00 90.00
YOLO-PHOC 820-d 93.50 93.00

Table 2.4: Comparison to the previous state of the art for text-based image retrieval:
precision at n (P@n) for the Sports-10K dataset.

Figure 2.6: Top-5 retrieved images for the query “adidas”. Our model successfully re-
trieves partially occluded and blurred words.

In Figure 2.6 we provide qualitative results by showing the top-5 retrieved images
for the query “adidas” and in Figure 2.7 for the query “castrol” on the Sports10k dataset.
We achieve a 100% precision despite the fact that the images contain blurred, partially
occluded, and rotated text instances.

To offer additional insights, Figure 2.8 depicts the heat maps of our model by calcu-
lating the closest matching PHOCs and the corresponding bounding boxes in relation
to a given query. As can be seen in the showcased figure, several predicted PHOCs
closely match the queried word. By revisiting the implementation details defined in
the previous section, we confirm the fact that avoiding the usage of an NMS post-
processing strategy is indeed a safe way to preserve high-matching PHOC proposals
that could be discarded otherwise.

2.5.5 Multi-Lingual Scene Text Retrieval

As an extension to our previous work [61], we focus on analyzing the generalization
capability of the proposed models. It becomes essential to note that designing an algo-
rithm that learns to construct a compact representation of a string, such as the PHOC,
paves the road to further development of models that are not constrained to a fixed
dictionary or training data samples. In order to assess the expressiveness of our archi-
tecture, we make use of two Multi-lingual datasets 2017 [1] and 2019 [2] in which we
can easily find out-of-vocabulary words (text not seen at training time) with different
distributions and characteristics. These datasets are used by the research community
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Figure 2.7: Top 10 ranked images for the query “castrol”. Our model has not seen this
word at training time.

noo«

Figure 2.8: Bounding box heat-maps for queried words “honda", “police", “tea" and
“sony" respectively.

to perform text detection and recognition tasks, but not text-based image retrieval.
Therefore, we have selected a set of 100 queries for in-vocabulary experiments and
another set of 100 queries for out-of-vocabulary experiments for each dataset taken
from the training split. Out-of-vocabulary queries are selected by choosing the Latin
words with the most occurrences after removing stop-words and words that contain
non-alphanumeric characters. For in-vocabulary queries, we also remove stop-words
and words with non-alphanumeric characters before searching for Latin words with
similar frequencies as the ones obtained in the out-of-vocabulary queries. Therefore,
we end up with queries that have comparable occurrences in both datasets with an
average of 13.32 and 13.99 for IV and OOV queries respectively.

Tables 2.5 and 2.6 show the ability for our model to perform retrieval with the same
accuracy for in-vocabulary queries and out-of-vocabulary queries in both datasets. As
we stated previously, this is because our model is learning how to build a PHOC from
text rather than performing a classification along a fixed dictionary. It is important to
note that our model performs significantly better than a state-of-the-art reading sys-
tem presented by [74] at the text retrieval task. Additionally, the method from [74] was
trained using the dictionary from [105] which contains English words, thus performing
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MLT 2017 MLT 2019
Method v (6]0)% v ooV
He et al. [74] 24.79  19.47 27.6 24.99
YOLO-PHOC 604-d  46.52  46.87 46.41 46.03
YOLO-PHOC 820-d 47.61 47.75 47.55 47.19

Table 2.5: Comparison to previous state of the art method for text based image retrieval
methods when queries are words already seen during the training process (IV) or not
(O0V). The metric employed is the mean average precision (mAP).

MLT 2017 MLT 2019
v oov v oov
Method P@5 P@10 P@20 P@5 P@10 P@20 P@5 P@10 P@20 P@5 P@10 P@20
He et al.[74] 0.51 0.37 0.22 046  0.33 0.20 0.62 0.44 0.27 0.60 0.40 0.23
YOLO-PHOCG604-d  0.77  0.57 0.34 0.78  0.59 0.34 0.80 0.64 0.41 0.80 0.64 0.40
YOLO-PHOC820-d 0.79  0.59 0.35 0.80 0.61 0.36 0.82 0.66 0.43 0.83 0.65 0.41

Table 2.6: Comparison to the previous state of the art method for text-based image
retrieval methods when queries are words already seen during the training process (IV)
or not (OOV): precision at n (P@n)

poorly when dealing with out-of-vocabulary words mostly belonging to different lan-
guages. We can also observe that a slight increase in the performance of the proposed
model is obtained when dealing with OOV queries rather than IV queries in the MLT
2017 dataset. Due to the similar occurrences of positive samples of queries both for IV
and OOV words, this difference is negligible and rather proves the generalization and
knowledge transfer capability of our model to construct PHOCs of unseen samples at
training time.

Figure 2.9 shows the top-5 ranked images for the queries “vodafone" in IIIT-STR
dataset, “uscita” (italian) and “parkausweis" (german) in MLT 2017 and “werden" (ger-
man) in MLT 2019, all of them being unseen samples at training time. In all of them
our model reaches a 100% precision at 5.

2.5.6 Real-time Text Spotting in Videos

Given the high processing frame rates that we achieve (c.f. Table 2.3), we can use the
proposed method for spotting text in video streams in real-time.

This application might be interesting in scenarios like assistance to driving sys-
tems, in order to spot certain words in the open world or to track advertisement ex-
posure in sports broadcasting. In such cases, the user casts a textual query that has
to be sought within videos. We shall take into account that video recorded in natural
scenes contains text instances that are extremely susceptible to imperfect conditions.
Low-quality recording devices and rapid camera movement tend to produce blurred
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Figure 2.9: From top to bottom, top-5 ranked images for the queries “vodafone”, “us-

cita”, “werden” and “parkausweis”. Although our model has not seen these words at
training time it is able to achieve a 100% P@5 for all of them. Best viewed in color.

and rotated content. Text found in video is also vulnerable to unintended occlusions
that affect several consecutive frames. In order to test the performance of the proposed
method in such a scenario, we have used the Text in Videos challenge dataset [91], in
which the train partition consists of 25 videos, 13,450 frames in total, with their cor-
responding ground-truth annotation. We decided to use as queries the top 20 most
occurring words in the dataset that have more than three characters in length. Having
set a threshold on the distance between the query PHOC representation and the clos-
est word hypothesis in each frame, we decide whether the queried word appears or not
in that frame. We evaluate the text spotting in the videos task by using the F-score so
that we penalize both missing frames where the query word appears and false positive
frames. Overall we achieved an F-score of 76.70, and we provide some results for the
topmost 15 queries in Table 2.7. Video demos are available in our public repository?.

’https://github.com/AndresPMD/Pytorch-yolo-phoc
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Figure 2.10: From top to bottom, top-5 ranked images for the queries “apollo”, “bata”,

“bawarchi”, “maruti” and “newsagency”. Although our model has not seen these words
at training time it is able to achieve a 100% P@5 for all of them.

Figure 2.11: Error analysis: most of the errors made by our model come from text in-
stances with a particular style, font type, size, etc. that is not well represented in our
training data.
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Query Occurrences F-score
flor 539 94.05
Marie 426 83.89
Renfe 314 78.26
createurs 303 72.40
Dixan 278 87.54
FONTANEDA 261 84.44
VOTRE 257 91.01
Digestive 254 90.00
USHIP 245 75.35
ACCASTILLEUR 241 66.26
Applus 237 91.96
Rectorat 237 88.96
CONSEIL 230 83.18
mundi 230 85.24
Accastillage 199 61.41
MISTOL 186 57.51
Average 277.31 76.70

Table 2.7: Top 15 most frequent words with their number of occurrences and the
reached F-score.

2.6 Conclusions and Future Work

In this Chapter, we presented a real-time performing word spotting method, based on
a fully convolutional neural network that allows to detect and recognize text in a single
pass which yields real-time processing capability.

A comparison of different backbones was presented and the results were analyzed.
The proposed model achieves state-of-the-art performance while using fewer parame-
ters, fewer computational resources, and converging in a considerably shorter training
time. The effect of different PHOC sizes was undertaken as well. It was shown that a
bigger PHOC, with redundant unigram and bigram levels, tends to better preserve and
encode spatial information of a word yielding superior retrieval results at a minor cost
of performance at inference time. The newly proposed model significantly improves
the previous state-of-the-art results on the scene text retrieval task on the IIIT-STR and
Sports-10K dataset while obtaining comparable results in the SVT Dataset. Moreover,
it can do so by achieving speeds 50x to 150x faster when compared to other methods
while using a single input resolution, which opens up the possibility of employing this
model for real-time scenarios, such as video, and indexing large-scale databases.

Importantly, it has been shown that the proposed method is able to construct a
compact vectorial representation of out-of-dictionary queries at inference time while
keeping a similar performance as of words seen at training time. Achieving this re-
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sult is only possible by employing the PHOC as a word representation instead of tack-
ling the task as a direct word classification. The method showcased is able to gener-
alize unseen samples in a powerful and efficient way, as the evidence strongly points
out in experiments performed in two multilingual datasets. Future work can be con-
ducted to investigate the use of word embeddings that exploit the morphology of a
word other than PHOC or diverse tasks in which morphology can be leveraged. The
code, pre-trained models, data, and demo videos used in this work are publicly avail-
able athttps://github.com/AndresPMD/Pytorch-yolo-phoc.


https://github.com/AndresPMD/Pytorch-yolo-phoc

Partl

Leveraging Scene Text for
Fine-grained Image
Classification

33






Chapter 3

Scene Text for Fine-grained Image
Classification and Retrieval

3.1 Introduction

Written communication is arguably one of the most important human inventions that
allows the transmission of information in an explicit manner. Given the fact that text
is omnipresent in man-made environments [196, 90], as well as the implicit relation
between visual information and scene text instances, the design of holistic computer
vision models for scene interpretation is fundamental. With the purpose of designing
such a holistic model, in this Chapter, we leverage textual information in the scene to
address the problem of scene text-based fine-grained image classification and image
retrieval.

Fine-grained image classification (FGIC) tackles the problem of classifying differ-
ent object instances that are visually similar and difficult to discriminate. The com-
plexity of this task lies in finding discriminative features which often require domain-
specific knowledge [137, 212]. A lot of research on this problem has been oriented to
differentiate visually similar objects such as birds[56], aircrafts [137], and dog breeds[94]
among others, which more often than not require domain-specific knowledge. The
importance often lies in extracting discriminative features that even though subtle,
provide enough information to make a prediction. However, differentiating objects
by leveraging available textual instances in the scene is an omnipresent practice in
daily life. In this work, we focus on exploiting scene-text as the main discrimina-
tory feature to perform FGIC. An early work that demonstrated the importance of text
(domain-specific knowledge) for fine-grained storefront classification was put forward
by Movshovitz et al. [144], in which the trained classifier learned automatically to
attend to the text found in an image as the sole way of solving the task. In the case
of blurred or occluded text instances, the classification task is extremely challenging
for humans as well. Consequently, scene text found in an image serves as an addi-
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tional discriminative signal that a model should incorporate into its design. Since then,
there has been additional research that explicitly combines textual and visual cues. The
works presented by Karaoglu et al. [89, 87] and Bai et al.[12] are the most related ones
to our work.

3.2 Related Work

3.2.1 Fine-Grained Classification

Fine-grained classification is the task of classifying visually similar objects in which
subtle differences are key to finding discriminative features between classes. Finding
these subtle features is a challenging task that keeps this problem an active topic in
computer vision. Lately ample research has been done, specially in task-specific do-
mains such as animal[94], objects[136] and plants[186] classification. Recent works on
fine-grained classification base their approach on localizing salient parts of an image
[42, 215], and use the saliency maps to classify the objects. Later approaches such as
the one of Tang et al. [190], use a weakly supervised method to find discriminative fea-
tures and leverage them to perform the classification between similar instances. Other
methods use existing prior knowledge from unstructured text to propose a semantic
embedding that differentiates similar classes [213]. A self-supervision method is in-
troduced in [217] that learns to propose significant image regions to find inter-class
discriminative features.

Different from solely visual-based FGIC methods, there has been growing inter-
est to use textual cues to achieve this task by incorporating two modalities. More re-
lated to our work, [87] tackles this task by extracting visual features with a pre-trained
GoogleNet [188] and a Bag of Words feature to represent the text instances found in an
image and further classify them. More recently, Bai et al. [12] use a similar approach
and extract visual features using a GoogleNet and a combination of two models: [115]
to detect and [172] to recognize text. The text found is represented as GloVe features
[151], a word embedding that is further used with attention to the visual features to
find a semantic relation between the two modalities to classify the image.

3.2.2 Multimodal Fusion

In computer vision tasks, the interaction of contents coming from different modali-
ties usually can be described in multiple kinds of ways. The combination of differ-
ent modalities provides a richer content description rather than one modality alone,
therefore the contained knowledge should be leveraged to further exploit explicit in-
formation according to the task [182]. Traditional methods divide the fusion pipeline
into early and late fusion. Early fusion integrates the features extracted from domain-
specific models immediately after obtaining them. Late fusion integrates the features
once each modality has made a decision such as regression or classification [13]. Ap-
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proaches such as the work from [95] experiment with the early fusion of multimodal
features by concatenating them before classifying them. Regarding similar work as
ours, [87] and [12] both employ concatenation as a fusion method of combining tex-
tual and visual features. In this Chapter we explore other fusion methods used in mul-
timodal learning, that show a performance increase, especially in tasks that require
exploiting two modalities such as Visual Question Answering (VQA) and Visual Rela-
tionship Detection (VRD).

One of the initial works presented by [16], modeled a Tucker decomposition of the
bilinear interaction of two distinct modalities. Later, a Multimodal Low-rank Bilinear
Attention Network (MLB) was proposed by [97], in which the result of the fusion of two
modalities was based on a low-rank bilinear pooling operation using the Hadamard
product along with an attention mechanism. A factorized bilinear pooling (MFB) is
proposed by [225], where each third mode section of the tensor is constrained by a
rank. Later methods, such as a Multimodal Factorized High-order pooling (MFH) fu-
sion presented by [226], use a high-order fusion formed by cascaded MFB modules. In
the work conducted by [16], a bilinear pooling is performed where the tensor is rep-
resented as a Tucker decomposition. The obtained main tensor has the same rank
constraint as the MFB technique. Lately, a Multimodal Bilinear Superdiagonal Block
(Block) fusion strategy based on the work presented by [17], has achieved state-of-the-
art results in VQA and Visual Reasoning.

3.2.3 Attention and Reasoning

To model the interaction among different modalities, attention-based [9] approaches
also have been proposed [8, 214, 93]. With the aim of designing models capable of rea-
soning, the intrinsic synergy between visual and textual features has been explored.
Work such as [227, 111] employ variations of an LSTM and a Gated Recurrent Unit
(GRU) to perform reasoning in a sequential manner. However, significant advances
have been made by the usage of Graph Convolutional Networks (GCN) [100], due to
the proven capability of modeling relationships [167] between nodes in a given graph.
Along this road, GCNs have been successfully used in tasks that require reasoning such
as VQA [147, 178, 54], image captioning [112, 216] and image-sentence retrieval [111,
120].
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Chapter 4

Combining Visual and Locally Pooled
Textual Features

Text contained in an image carries high-level semantics that can be exploited to
achieve richer image understanding. In particular, the mere presence of text pro-
vides strong guiding content that should be employed to tackle a diversity of com-
puter vision tasks such as image retrieval, fine-grained classification, and visual
question answering. In this Chapter, we address the problem of fine-grained clas-
sification and image retrieval by leveraging textual information along with visual
cues to comprehend the existing intrinsic relation between the two modalities. The
novelty of the proposed model consists of the usage of a PHOC descriptor to con-
struct a bag of textual words along with a Fisher Vector Encoding that captures the
morphology of text. This approach provides a stronger, multimodal representa-
tion for this task and as our experiments demonstrate, it achieves state-of-the-art
results on two different tasks, fine-grained classification, and image retrieval.

4.1 Introduction

In this Chapter, we propose the use of a state-of-the-art text scene-text retrieval model
introduced in the previous Chapter and published by Mafla et al. [134] to detect and
obtain the Pyramidal Histogram of Characters (PHOC) of scene text. We use the PHOC
descriptors extracted from images and explore different fusion strategies to merge the
visual and textual modalities. Additionally, we construct a Fisher Vector (FV) encod-
ing from the obtained PHOCs to obtain a fixed-length text feature in our pipeline and
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further improve the classifier results. Our model leverages the visual features com-
bined with the morphology of a word (refer to Figure 4.1), that belong to specific fine-
grained classes, without the need to understand them semantically. Contrary to previ-
ous methods, this approach is especially useful when dealing with text recognition er-
rors and named entities which are often difficult to encode in a purely semantic space.
The combination of these two modalities produces an output probability vector that
addresses the classification task at hand. As an additional application, we evaluate the
proposed model on fine-grained image retrieval in available datasets.

Overall, the main contributions of our work are:

* We propose a novel architecture that achieves state of the art on fine-grained
classification by jointly considering the textual and visual features of an image.

e We show that by using Fisher Vectors obtained from PHOCs of scene text, we
obtain a more robust representation in which words with similar structures get
encoded on the same Gaussian component, thus creating a more powerful dis-
criminative descriptor than PHOCs alone.

* We provide exhaustive experiments in which we compare the performance of
different alternative modules in our model and previous state of the art.
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Figure 4.1: T-SNE Visualization [130] of the 300 dimensional PCAed PHOC: in a two
dimensional space. Words with similar morphology are clustered together by a Gaus-
sian Mixture Model, thus making such a descriptor suitable and powerful enough to
discriminate text for a fine-grained classification task.
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4.2 Fine-grained Classification Model

In this model, we leverage the Pyramidal Histogram Of Characters (PHOC) descrip-
tor [5, 185] (see Figure 2.2) commonly used to query a given text instance in handwrit-
ten documents and natural scene images. The PHOC of a word encodes the position
of a specific character in a particular spatial region of the detected text instance. Such
a descriptor has proven to perform as the state of the art in scene text retrieval [62],
and as our experiments show, encoding it with the Fisher Vector [152] provides an im-
proved text descriptor for fine-grained classification.

The devised model consists mainly of four processing blocks: visual features ex-
traction, textual features extraction, attention unit, and classification. The whole model
pipeline is shown in Figure 4.2.
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Figure 4.2: Proposed model pipeline. The PHOCs obtained from [135] are used to com-
pute a Fisher Vector that yields a compact morphology-based descriptor suitable to
discriminate features from visually similar objects.

The first block extracts the visual features from a given image and produces a fixed-
size representation of it. The second block consists of extracting the PHOC representa-
tion of each text instance found in an image and using a pre-trained Gaussian Mixture
Model (GMM) to obtain the corresponding FV descriptor. The third block consists of
an attention unit that multiplies learned weights with the encoded FV depending on
the visual features extracted previously. Finally, the last block consists of a concate-
nation of the two different modalities followed by a fully connected layer to obtain a
probability output vector which is used for classification. For the rest of the Chapter,
let € be the set of all possible categories in a given dataset; & = {xi}i.v be the set of
images; I : & — € be the labeling function.
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4.2.1 Visual Features

In our model, we use a Convolutional Neural Network (CNN) [73] pre-trained on Im-
ageNet [41] as a visual feature extractor, denoted as ¢(-). We use the output of the last
convolutional block of ¢(-) before the last average pooling layer as the visual features,
denoted as Vy. Attention to visual features has proven to yield improved performance
on several tasks. As it is presented by [44], we compute a soft-attention mechanism
due to its differentiable properties, thus allowing end-to-end learning. The proposed
attention function learns an attention mask att which assigns weights to different re-
gions of an image given a feature map V. The attention mask is learned by applying
1 x 1 convolution layers on the output features from the CNN. Lastly, to obtain the final
output of the attention module along with the visual features, the operation is com-
puted by: Via=V¢+(Vyxatt).

4.2.2 Textual Features

Methods shown in previous works [87, 12] contain mainly three drawbacks. First, the
employed text recognizers are bound to a fixed dictionary, which may or may not in-
clude the exact words that are present in the image. Second, some words that are con-
tained in the fixed recognition dictionary may not exist in the proposed semantic em-
bedding (GloVe, Word2Vec) such as license plates, brand names, acronyms, etc. Third,
any mistake committed by the recognizer will yield a vector embedding that lies far
from the semantic embedding of the correct word. Contrary, correct recognition of se-
mantically similar words that might indicate different fine-grained classes will lead to
embeddings close to each other, which are not discriminative enough to perform cor-
rect classification. This is the case of similar semantic words such as restaurant and
steakhouse, cafe and bistro, Coke and Pepsi among some other sample classes from
the datasets used.

In order to exploit the morphology of a word to obtain discerning features, we em-
ploy the PHOC representation. The PHOC representation employed in the proposed
pipeline is composed of the concatenation of vectors from the levels 2 to 5 plus the 50
most common bi-grams in the English language. This yields a 604-dimensional dis-
crete binary vector that represents the characters contained in a word (see Figure 2.2).
A dictionary given by [82] is employed to obtain a PHOC per word, in this way, we pop-
ulate a matrix of this compact representation. In order to reduce the dimensionality
and to find linearly uncorrelated variables of this compact vector, a Principal Compo-
nent Analysis (PCA) is performed. This procedure yields a more compact but at the
same time informative vectorial representation of a given word.

The obtained data points were used to construct a Gaussian Mixture Model (GMM)
[68] formed by K Gaussian components. We denote the parameters of the K-component
GMM by A = {wy, g, Zk, k = 1,..., K}, where wy, i and I, are respectively the mixture
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weight, mean vector and covariance matrix of Gausssian k. We define:

K
uyp(x) = ) wru(x) (4.1
k=1

where u; denotes Gaussian k:

k - (2]’[)D/2|Zk|1/2 p 2 le k .uk .

and we require:

K
Viiwe=0, Y wp=1 4.3)
k=1

Once the GMM model is trained, it will be used to extract a single Fisher Vector
representation per image which encodes its contained textual information. The tex-
tual features per image are obtained by using the model from [62]. Given an input im-
age, the model outputs a list of 48 bounding boxes, each one containing a confidence
score C and a PHOC prediction. We get the top-m proposals ranked according to their
conference score.

We get the top-m object proposals set 0, := {0€ C;:0=c,VceC;}. The resulting
PHOCs € [0,1]%*N, where d is the dimensionality of the PHOC embedding obtained
and N the recognized words embedded in the PHOC space. It is essential to note that
the model from [62] is able to generalize and construct PHOCs from previously unseen
samples, out-of-vocabulary words, and different languages that employ a similar char-
acter set (e.g. Latin), making it suitable for the task at hand. Afterward, we project each
embedded textual instance of the obtained descriptors into a reduced dimensional
space by employing PCA. The resulting vectors are used to obtain the Fisher Vector
[152] from the previously trained GMM. The GMM associates each PCAed vector o; to
a component k in the mixture model with a weight given by the posterior probability:

exp [—% (0i —#k)TZEI (0i - Nk)]

qdik = (4.4)
1 T «—
T exp [—z (0 —pe)” = (0i - Ht)]
For each mode k, consider the mean and the co-variance deviation vectors
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where j =1,2,...,D spans the vector dimensions. The FV of a given image I is simply
the concatenation of the obtained vectors u; and v for each of the K components in
the Gaussian mixture model.

Tf:[ uy Vi ]T (46)

The FV and the GMM encode inherently similar information. This takes place because
they both include statistics of order 0, 1 and 2 [166, 152]. However, the FV provides a
vectorial representation that is more compact, faster to compute, and suitable for pro-
cessing. The dimension of the FV obtained, noted as Ty, is given by (2 x d x K), where
d is the PHOC dimension after performing the PCA and K is the number of Gaussian
clusters. The intuition captured by the FV is to compute the gradient of a PHOC sample
(bag of textual features) that shows the probability of belonging to each of the Gaussian
components, which can be understood as a probabilistic textual vocabulary based on
its morphological structure (see Figure 4.1).

4.2.3 Attention on features

In the proposed fine-grained classification task we can intuitively state that there will
be some recognized text that is more relevant than others at the moment of discrim-
inating similar classes. Therefore, it is important to capture the inner correlation be-
tween the textual and visual features. To adhere this idea into our pipeline, we propose
amodified attention mechanism inspired from [223]. The attention mechanism learns
atensor of weights W that is used between the visual features and the obtained FV. The
implemented attention is defined by:

W, = Softmax(tanh(V} -W - Tp)) 4.7)

Tfa =W, Tf (4.8)

The resulting tensor W,, contains a normalized attention vector that is multiplied with
the textual features T to obtain the final attended textual features T',.

The obtained attended textual features Tr, and the visual features Vy, are concate-
nated, such that the final features are formed by F = [Vf,, T¢4]. Finally, the resulting
vector serves as input to a final classification layer that outputs the probability of a
given class. The proposed network is trained to optimize the cross entropy loss func-
tion

N %€ R
Y Y 1Mog(h 4.9)

n=1ij=1
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4.3 Experiments and Results

4.3.1 Datasets
Con-Text Dataset

Originally presented by [89], is a dataset taken from the ImageNet [41] "building" and
"place of business" sub-categories. It consists of 28 categories with 24,255 images in
total. The classes from this dataset are visually similar (Pizzeria, Restaurant, Dinner,
Cafe) and require text to successfully perform fine-grained classification. The dataset
was not built for text recognition purposes, thus not all images contain text in them.
High variability of text size, location, and font styles make text recognition on this
dataset a challenging task.

Drink Bottle Dataset

Dataset presented by [12] comprises the sub-categories soft drink and alcoholic drink
found on ImageNet[41]. There are 18,488 images divided into 20 categories. The dataset
contains several not common, occluded, rotated, low quality, and blurred text instances
which increase the difficulty of performing successful text recognition.

4.3.2 Implementation Details

The visual features of the proposed model are taken by attending to the features of the
output of the last block layer of the Resnet152 before the last average pooling layer.
These features are passed through a fully connected layer to down-sample them to a
final dimension of 1 x 1024. To construct the textual features, a maximum number of
Nmax = 15 PHOC proposals are obtained per image. If a lesser number of PHOC pro-
posals are obtained, a zero padding scheme is employed to fix the size of the input
features. The resulting PHOCs are reduced in size through PCA, to obtain features of a
dimensionality of N4 x 300.

The Fisher Vector is calculated from the PCA-ed PHOCs by employing a pre-trained
Gaussian Mixture Model as it is described in Section 4.2.2. The trained GMM employs
64 Gaussian components thus yielding an FV of 1 x 38400 dimension. The obtained
textual features are down-sampled by passing them through a fully connected layer
to finally obtain a resulting size of 1 x 512 before the attention mechanism is com-
puted. The attention between both modalities produces an output vector of 1 x 512,
that multiplies the learned weights to the textual features. As the last step, a concate-
nated vector of the visual and textual features (dim = 1 x 1536) is used to produce the
final classification probability vector.

The network is trained for 30 epochs with the combination of RAdam [122] and the
Lookahead [230] optimizers. The batch size employed in all our experiments is 64, with
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alearning rate of 0.001, the momentum of 0.9 that decays by 0.1 every 10 epochs.

4.3.3 Classification Results

When comparing our method to the current state of the art, it is evident that the pro-
posed pipeline consistently outperforms previous approaches. The performance of
our method is shown in Table 4.1. As it can be seen, our method surpasses [12] in
the Drink Bottle dataset by a significant margin, however, this margin is smaller in
the Con-Text dataset. Nonetheless, it is important to note that the method presented
by [12] employs two additional classifiers to solve this task, thus relying on an ensem-
ble model. Such kind of adopted approaches require longer training times, as well as
more computation resources since several deep networks need to be trained. There-
fore, when compared to the single classifier presented by [12], our model offers a signif-
icantimprovement. In the upcoming sections, we provide explanations and exhaustive
experimentation that shows the main strengths and advantages of our model.

Method Con-Text | Bottles
Karaoglu[89]|39.0 -
Karaoglu[87]|77.3 -

Bai[12] 78.9 -
Bai*[12] 79.6 72.8
Ours 80.2 77.4

Table 4.1: Classification performance for two state-of-the-art methods and our pro-
posed model on the Con-Text and Bottles dataset. The results presented by [12] de-
picted with * are based on an ensemble model.

4.3.4 Importance of Textual Features

Several baselines of growing complexity were defined in order to: assess the effective-
ness of the proposed model, discern the added performance of employing textual fea-
tures along with visual ones, and verify the improvement obtained from using a fusion
mechanism.

Visual Only: This baseline assesses the performance of the CNN encoder based on vi-
sual features solely. To this end, the 2048 dimensional output features Vy, serve as the
input to a fully connected layer according to the number of classes of the evaluated
dataset.

Textual Only: We evaluate the performance of two current state of the art text recogniz-
ers: Textspotter [74] and E2E_MLT [25] along with the most confident PHOCs obtained
from the model presented by [62].
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We evaluate the performance of two current state-of-the-art text recognizers: Textspot-
ter [74] and E2E_MLT [25] along with the most confident PHOCs obtained from the
model presented by [62]. For illustration purposes, Figure 4.3 shows heat maps ob-
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Figure 4.3: Heat maps obtained according to the confidence detection score of the pre-
dicted PHOCs.

tained by employing the model from [62] according to the confidence scores obtained
when a text instance is detected. It is important to note that Textspotter [74] is bound
to a dictionary to output the final recognized word, whereas the multilingual model
E2E_MIT from [25] is not. The recognized text is embedded with pretrained versions
of GloVe [151], FastText [21] and Word2Vec [139], finally outputting tensors of size
Npax % 300, which in our experiments Ny, = 15. When working with PHOCs, the
output vector has a size Ny,4x x 604. As we can observe in Table 4.2, in the visual-only
baseline, the ResNet152 CNN [73] performed better in this task, due to the major ex-
pressiveness of the model and the residual block architecture that it is based on.



Combining Visual and Locally Pooled Textual Features 48

Fusion T+W | T+G T+F E+W | E+G E+F PHOC | FV(F) | FV(P)
Concat 73.84 | 74.11 | 7433 | 77.04 | 77.58 | 77.77 | 77.45 77.31 80.217
B Block [17] 73.12 | 73.86 | 73.18 | 76.97 | 78.34 | 78.34 | 77.96 77.87 | 79.27
& Mutan [16] | 72.46 | 72.08 | 73.47 | 77.67 | 77.26 | 78.05 | 76.97 76.01 78.51
g MLB [97] 73.17 | 72.18 | 74.09 | 77.45 | 76.28 | 78.81 | 76.96 76.46 | 78.49
o MEFB [225] 73.62 | 73.23 | 7442 | 77.68 | 76.79 | 78.55 | 77.56 76.27 | 78.03
MFH [226] 7295 | 72.43 | 7448 | 773 76.64 | 78.23 | 77.42 76.39 | 77.58
© Concat 75.05 | 75.12 | 75.25 | 74.62 | 7491 | 75.4 75.93 75.15 | 77.38"
k= Block [17] 75.18 | 75.31 | 7539 | 74.17 | 74.87 | 7494 | 7591 75.11 76.23
;% Mutan [16] | 74.48 | 73.91 | 74.72 | 73.62 | 75.12 | 76.05 | 75.95 74.48 | 75.97
-é MLB [97] 7434 | 73.02 | 75.54 | 73.55 | 75.42 | 75.19 | 76.37 75.07 | 76.18
E MEFB [225] 74.25 | 74.25 | 7521 | 74.23 | 74.88 | 75.84 | 76.21 74.78 | 76.01
MFH [226] 73.99 | 73.61 | 7536 | 74.77 | 75.26 | 75.72 | 75.98 74.56 | 75.85

Table 4.3: Results obtained by employing different fusion strategies on both the Con-
Text and Drink Bottle dataset. For presentation purposes, acronyms are used to rep-
resent each combination of text recognizers (Textspotter (T), E2E_MLT (E), PHOC (P))
and word embeddings (Word2Vec (W), GloVe (G), FastText (F), Fisher Vector (FV)). The
f refers to the proposed model.

Model Con-Text | Bottles
. GoogLenet 61.21 64.93
Visual | pocnet-152 63.70 66.56
Texspotter+w2v 35.09 50.68
Texspotter+glove 34.52 50.26
Texspotter+fasttext 36.71 51.93
Textual | E2E_MLT+w2v 44.36 43.98
E2E_MIT+glove 44.25 42.64
E2E_MLT+fasttext 45.07 44.31
PHOC 49.18 52.39
Fisher Vector (PHOC) | 63.93 62.41

Table 4.2: Visual only and Textual only results. The textual-only results were performed
on the subset of images that contained spotted text. The metric depicted is the mean
Average Precision (mAP in %).

In the text-only baseline, by using standard text recognizers we can observe that
the E2E_MLT performs better in the Con-Text dataset, whereas the Textspotter model
surpasses E2E_MLT in the Drink Bottle dataset. Nonetheless, both of them are out-
performed by employing the PHOCs obtained from [62] as the word embedding. This
effect is due to the inherent morphological nature of the PHOC embedding.

Overall, the best results in the textual-only baseline are obtained by the Fisher Vec-
tor obtained from the PHOCs. Qualitatively shown in Figure 4.1, the Gaussian Mixture
gracefully captures the morphology of words obtained from PHOCs. Therefore, words
with similar syntax are clustered together in the GMM, thus allowing the Fisher Vector
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to be a powerful descriptor relevant for this task that yields even more discriminative
features than other embeddings. It is important to note as well that in our experiments,
FastText performs better than Word2Vec or GloVe because it can produce embeddings
of out-of-vocabulary words while considering word n-grams which strengthens our
conjecture on the importance of morphology of text to solve this task.

4.3.5 Comparison of Models

Extensive experiments were conducted regarding the different combinations of text
recognizers, word embeddings, and fusion techniques. Table 4.3 show the results ob-
tained in both the Con-Text and Drink Bottle datasets.

When introducing fusion techniques to the models, traditional text recognizers
such as E2E_MLIT performs better in Con-Text compared to Textspotter, thus achiev-
ing a higher mAP. The opposite effect is found in the Drink Bottle dataset, in which
Textspotter behaves better than its E2E_MLT. It is interesting to note that the PHOCs
obtained perform consistently in both datasets, yielding comparable results to the tra-
ditional recognizers employed. Regarding the embedding mechanism utilized, mor-
phological embeddings (FastText, PHOC) work better than purely semantic embed-
dings due to the discriminative space learned.

We can observe that the usage of fusion techniques usually improves the mAP per-
formance obtained on each method aside from the cases when the models employ
Fisher Vector features. Nonetheless, in our experiments, we have not found a specific
fusion technique that can be generalized for every tested method. Each fusion tech-
nique increases the performance for a specific model, being MFH and Block slightly
more consistent than others. It is necessary to indicate that employing Fisher Vector
features obtained from PHOCs consistently achieves the best performance in a general
and consistent manner across both datasets.

In order to assess the efficacy of using the Fisher Vector along with another embed-
ding that captures out-of-vocabulary words while at the same time considering the
character morphology, we employ the Fisher Vector obtained from FastText. To this
end, FastText employs character n-grams to construct a relevant vectorial representa-
tion of a word, thus it also uses the syntax of a detected word. The results of the con-
ducted experiments using Fisher Vector features from FastText and PHOC are shown in
the last two columns of Tables 4.3. There are two results to highlight obtained from this
experiment. Firstly, working with PHOCs along FVs always yield better performance
compared to Fasttext. The cause might be the information captured by Fasttext encap-
sulates morphology in the form of character n-grams, as well as semantics. Whereas
the PHOC is a compact representation based solely on word morphology.

Secondly, by combining the explored fusion methods along with Fisher Vectors did
not provide a significant advantage. A straightforward concatenation operation be-
tween the FV and the visual features reinforces the notion that both modalities contain
discriminative and orthogonal features well suited for this task. As an additional ad-
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vantage, by employing concatenation the model convergences faster while at the same
time providing better performance.

4.3.6 Qualitative Results

»
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Figure 4.4: Classification results. The top-3 probabilities of a given image assigned
by the output of our model are shown along the Ground Truth. Notice that without
reading, the classification task is impossible to perform even for humans. Blue and red
are used to display correct and incorrect predictions respectively.

Fine-grained classification probabilities obtained from our model output are de-
picted in Figure 4.4. The textual features employed are able to generalize to unseen
textual instances or named entities such as the case of bottle brands or business places.
We can observe that our model has a hard time reading handwritten text or vertical tex-
tual occurrences, thus wrongly predicting a class, such as an example shown in the first
row, seventh column. Nonetheless, the model seems to be capturing text morphology,
as can be seen in the prediction of the class 'pawn shop’. Finally, on the last two sam-
ples on each row, there are not enough guiding textual features and the model relies
only on similar visual features. Nonetheless, classifying these samples correctly is a
hard task even for humans.
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4.3.7 Fine-grained Image Retrieval

In the same manner, as in the work presented in [87] and [12], we conduct a retrieval
experiment by utilizing the computed vector of the last output layer of the proposed
model as retrieval features.

Method|Con-Text Drink Bottle
Bai*[12]]62.87 60.80
Ours 64.52 62.91

Table 4.4: Retrieval results on the evaluated datasets. The results on Con-Text are based
on our implementation of the method by [12] since there is no publicly available code.
The retrieval scores are depicted in terms of the mAP(%).

We take the approach of query by example, that is, given a sample image that be-
longs to a specific class, the system must return a ranked list of similar classes as the
query. The metric employed to conduct this experiment is the cosine similarity. The
proposed method is more robust at the moment of employing a combination of vi-
sual and textual features which are discriminative enough to conduct a different task
successfully as is the case in fine-grained image retrieval.

4.4 Conclusions and Future Work

In this Chapter, we have presented a deep neural network framework suitable for a
fine-grained classification task. Through extensive experiments conducted, we have
presented that leveraging textual information is a key approach to extracting infor-
mation from images. Exploiting these textual cues can pave the road towards more
holistic computer vision models of scene understanding. We have shown that current
text recognizers that are limited by a dictionary are not the best alternative for this
task, because it requires a recognizer able to generalize out of vocabulary words from
unseen samples. Additionally, we have analyzed the fact that using semantic embed-
dings in a fine-grained classification task does not produce the best results due to the
related semantic space shared across similar classes. By integrating state-of-the-art
techniques and constructing a powerful morphological descriptor from the text con-
tained in images, we show that a better-suited feature for this task can be learned. Such
afeature proves to be useful for a fine-grained classification task as well as for query-by-
example image retrieval. Leveraging this robust textual feature yields state-of-the-art
results in both tasks across the assessed datasets. Successful classification and retrieval
are possible due to the discriminative features learned by the model. In future work,
we plan to develop a descriptor that captures the same discriminative features using
a smaller feature dimension. A continuous valued embedding can replace the binary
PHOC while preserving the generalization ability of unseen samples. We want to ex-
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plore the usefulness of this embedding in other computer vision tasks such as visual
question answering [18, 180] and text-based image retrieval.



Chapter 5

Multi-Modal Reasoning Graph for
Fine-Grained Image Classification

Scene text instances found in natural images carry explicit semantic information
that can provide important cues to solve a wide array of computer vision prob-
lems. In this Chapter, we focus on leveraging multi-modal content in the form of
visual and textual cues to tackle the task of fine-grained image classification and re-
trieval. First, we obtain the text instances from images by employing a text reading
system. Then, we combine textual features with salient image regions to exploit
the complementary information carried by the two sources. Specifically, we em-
ploy a Graph Convolutional Network to perform multi-modal reasoning and obtain
relationship-enhanced features by learning a common semantic space between
salient objects and text found in an image. By obtaining an enhanced set of visual
and textual features, the proposed model greatly outperforms previous state-of-
the-art in two different tasks, fine-grained classification and image retrieval.

5.1 Introduction

In this Chapter we propose a method to learn a richer set of visual features and model
a more discriminative semantic space by employing a Graph Convolutional Network
(GCN). To the best of our knowledge, this is the first approach that integrates multi-
modal sources that come in the form of visual along with textual features jointly with
positional encoding into a GCN pipeline that performs reasoning. We explore the role

of such multi-modal cues, specifically in the form of visual and textual features.

53
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R ———

BAKERY

Multi-Modal Reasoning

Figure 5.1: The proposed model uses a Graph-based Multi-Modal Reasoning (MMR)
module to enrich location-based visual and textual features in a combined semantic
representation. The network learns at the output of the MMR to map strong com-
plementary regions of visual (blue) and text (green) instances to obtain discriminative
features to perform fine-grained image classification and retrieval.

Departing from previous approaches, we exploit a structural representation be-
tween the studied modalities. Our work, summarized in Figure 5.1 with publicly avail-
able code at !, focuses on learning an enhanced visual representation that incorporates
reasoning between salient regions of an image and scene text to construct a semantic
space over which fine-grained classification is performed. In this example, we can ob-
serve that relevant regions such as the text "Bakery" and "Bread" are associated with a
visual region that depicts pastry, both important cues to classify the given image. Ad-
ditionally, we show experiments of fine-grained image retrieval, using the same multi-
modal representation, in the two evaluated datasets. Overall, the main contributions
can be summarized as follows:

* We propose a novel architecture that greatly surpasses previous state-of-the-art
results in two datasets by more than 5% on fine-grained classification and 10%
on image retrieval by considering text and visual features of an image.

* We design a fully end-to-end trainable pipeline that incorporates a Multi-Modal
Reasoning module that combines textual and visual features that do not rely on
ensemble models or pre-computed features.

Ihttps://github.com/AndresPMD/GCN_classification
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* We provide exhaustive experiments in which we analyze the effectiveness of dif-
ferent modules in our model architecture and the importance of scene text to-
wards comprehensive models of image understanding.

5.2 Multimodal Reasoning Model

In this section, we detail each of the components that comprise the proposed archi-
tecture. Figure 5.2 depicts the overall scheme of the proposed model, which is formed
by 6 different modules: global image encoder, local feature encoder, text encoder, po-
sitional encoder, multi-modal reasoning graph and classification module. The local
feature encoder employs features extracted based on the regions of interest obtained
by a Faster R-CNN [161] in a similar manner as the bottom-up attention model [8]. The
scene text encoder uses an OCR model to obtain scene text and further embed it into a
common space. The goal is to obtain multi-modal node representations that leverage
the semantic relationships found between salient objects and text instances within an
image that are discriminative enough to perform fine-grained classification.

Global image encoder Classifier
ResNet-152

- u
o =t = =

I— .
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Figure 5.2: Detailed model architecture. The proposed model combines features of re-
gions of scene text and visual salient objects by employing a graph-based Multi-Modal
Reasoning (MMR) module. The MMR module enhances semantic relations between
the visual regions and uses the enriched nodes along with features from the Global
Encoder to obtain a set of discriminatory signals for fine-grained classification and re-
trieval.

5.2.1 Global Image Encoder

We employ a CNN as an encoder, which in our case is a ResNet-152 [73] pre-trained
on ImageNet [41] to acquire global image features. Particularly, given an image I we
take the output features before the last average pooling layer, which output is denoted
as Gy = w(I). In order to obtain a more descriptive set of global features and due to
its differentiable properties, we compute a soft attention mechanism on top of the
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global features. This self-attention mechanism yields an attention mask, attn,, sk,
that assigns weights on different regions of the input image. The attention weights are
learned in an end-to-end manner by convolving 1 x 1 kernels projected into a single-
dimensional filter and later followed by a Softmax function. In order to obtain the final
attended global features, the attention mask is broadcasted and multiplied with the
global features, which result is added to the global features G to later be used as input
of a Fully-Connected layer, FC, in the form of:

Ga=FC(Gp+(Gf x attnyase)) (5.1)

where G, € RVP,Gp e RFWXD attn,, o € RA*W stands for the final encoded global
features, where D =2048, H=7and W =7.

5.2.2 Local Feature Encoder

Following [8], we employ a Faster R-CNN [161] pre-trained on Visual Genome [103] as
the extractor of local visual features. This approach allows us to obtain salient im-
age regions that are potentially discriminative for our task. We use an IoU thresh-
old of 0.7 and a confidence threshold of 0.3, and sort the obtained predictions be-
fore the last average pooling layer to use the top n most confident regions of inter-
est. Thus, we can represent the output of an image I with a set of region features
Ry = {(r1,bbox;))..., (rp, bboxy, )}, 1; € [Rd, where r; is the jth region of interest and
bbox;, is the r;’s corresponding bounding box coordinates normalized with respect to
the image. In our experiments, we set n = 36 and the obtained features have a dimen-
sion of d = 2048. In order to encode the local visual features, we project the features
through a fully-connected layer.

In this manner, we obtain the final encoded local features that will serve as input
to the multi-modal GCN in the form of Vi ={v1,..., Un}, Vi € RP, where D = 1920 is the
dimension of the final embedding space. We use D = 1920 to further add positional
encoding information D = 128 to have a final feature representation of D = 2048. The
bounding boxes obtained to represent these regions are later used as input into the
positional encoder module. If there are less than n = 36 regions in an image, a zero
padding scheme is adopted.

5.2.3 Text Encoder

To extract text contained in an image, we ran several public state of the art text recog-
nizers as well as a commercial OCR model provided by Google?. We extract the tran-
scriptions of each word, denoted as w;, as well as the corresponding bounding boxes,
bbox,,;. In particular, we extract the top m most confident textual instances found
in an image. The transcriptions are embedded using fastText [21] and the bounding

’https://cloud.google.com/vision/
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boxes will be used as input in the positional encoder branch. We employ the fastText
embedding due to its capability of encoding word morphology in the form of n-grams
as well as preserving a semantic space similar to Word2Vec [139] while at the same
time dealing with out of vocabulary words. Analogously to the case of local features,
we project the obtained embedded textual features by passing them through a fully-
connected layer. The final textual features are represented by Tr=At1,.tmh ti € RD,
where D = 1920 is the dimension of the final embedding space and m = 15 is the num-
ber of text proposals extracted from an image. In the case that there is no text found in
a given image, similarly to the local encoder module, zero padding is employed.

5.2.4 Positional Encoder

Encoding the position of objects and text instances within an image can provide im-
portant relational information about the scene. For example text found on top of a
building often refers to its class in a explicit manner contrary to text found in any other
location in the image. To meet this end, we design a positional encoding that takes
as input a predicted bounding box of an object or text instance. The input to the po-
sitional encoder describes the top left (x;, y1), and bottom right (x», y») coordinates
normalized according to the image size, and is a concatenation of the bounding boxes
of the local and text regions of interest. The bbox matrix is given by: bboxes;pys =
{bbox;,,..,bbox;,,bboxy,, ..., bbox, } where bbox; = (x1, y1, X2, y2). In order to encode
them, we pass the bounding boxes over a fully-connected in a similar way as the same
as previous sections. The final encoded representation can be described as: bboxes =
{bbox,,,..,bbox;,,bboxy,,...,bboxy,}, bbox; € R?, in which the dimension b = 128 rep-
resents the final encoded bounding boxes.

5.2.5 Multi-modal Reasoning Graph

Due to the showcased capability of graphs to describe reasoning between objects [178,
216, 54, 120], we construct a richer set of region-based visual descriptors that exploit
the semantic correlation between visual and textual features. In order to do so, we
initialize the node features as local visual features and textual features concatenated
with their respective positional encoding of bounding boxes. We can describe the node
features as:

V ={(v1,bboxy,),..(vy, bbox;,), (t1,bboxy,), ...
oo (tm, bOX;, )}, V € RUVFM*D
where n,m is the number of visual and textual features, respectively. In our case,

n+m =51 and D = 1920 + 128 = 2048. Furthermore, we construct the affinity ma-
trix R which measures the degree of correlation of between two visual regions. The
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construction of the affinity matrix is given by:
Rij =k y(k)) (5.2)

where k;, k;j € V, ¢() and y(.) are two fully connected layers that are learned end-to-
end by back propagation at training time. If we define k = n + m, then the obtained
affinity matrix consists of a shape k x k. Once R is calculated, we can define our graph
by G = (V, R), in which the nodes are represented by the local and textual features V,
and the edges are described by R. The obtained graph describes through the affinity
matrix R the degree of semantic and spatial correlation between two nodes. We use the
formulation of Graph Convolutional Networks given by [100] to obtain reasoning over
the nodes and edges. Particularly, we use residual connections in the GCN formulation
as it is presented by [111]. We can write the equation that describes a single Graph
Convolution layer performed as:

I _ywliplyIl-11/1 -1
Ve=W,(RV" " W)+V (5.3)

where R € R¥*K is the affinity matrix, V € R¥*D the local visual features, W € RDP*D g
a learnable weights matrix of the GCN, W, € R¥*¥ corresponds to the residual weights
matrix and [ is the number of GCN layer. Notice that passing V through the GCN layer,
a richer set of multi-modal features is obtained. In order to find an enhanced repre-
sentation of the visual features we apply /! = 8 GCN layers in total, which finally yields
a set of enriched nodes that represent the visual features V; such that:

kxD
VG = {Ugl)--) ng})VG eR *

5.2.6 Classification

In order to combine the global G, and the enriched local and textual V¢ visual fea-
tures, firstly we perform an average pooling of the Vi tensor. Specifically, we can
rewrite the final local feature vector Vs as:

1 k
Vor =1 Zl Vgi (5.4)
n=

Lastly, we simply concatenate the two obtained vectors Vg and Gy, to obtain the
final vector F that is used as input for the final fully-connected layer for classification
denoted by: F = [Gfq, Viyl

By applying a softmax to the output of the final layer, we obtain a probability dis-
tribution of a class label given an input image. The model is trained in an end-to-end
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fashion optimized with the cross entropy loss function described by:

1 N €
JO) = -~ YN yllog(ph (5.5)

=li=1

S

Where, C is the number of classes, N the dataset samples such that each pair con-
tains an annotation {x, y‘")}ln =1,2,..,N, and p" is the predicted output label.

5.3 Experiments and Results

This section presents an introduction to the datasets employed in this Chapter, as well
as the implementation details, ablation studies performed, and a thorough analysis of
the results obtained in the experiments conducted.

5.3.1 Datasets

The Con-Text dataset was introduced by Karaoglu ef al. [89] and is a subset of Im-
ageNet [41], constructed by selecting the sub-categories of "building" and "place of
business". This dataset contains 24,255 images in total divided into three-folds to di-
vide training and testing sets. This dataset introduces 28 visually similar categories of
images such as Cafe, Pizzeria, and Pharmacy in which in order to perform fine-grained
classification, text is a necessary cue to solve otherwise a very difficult task even for
humans. This dataset closely resembles natural circumstances due to the fact that the
images are taken without considering scene text instances, thus some images do not
have text present in them.

The Drink Bottle dataset was presented by Bai ef al. [12] and as the Con-Text
dataset, it is a subset of images of ImageNet [41], specifically taken from the sub-categories
of soft drink and alcoholic drink. The dataset is divided in three-folds as well and con-
tains 18,488 images. There are 20 image categories which include visually similar in-
stances such as Coca Cola, Pepsi Cola and Cream Soda. Akin to the Con-Text dataset,
some images contain scene-text while others do not have it.

5.3.2 Implementation Details

In our experiments in order to extract visual regions of an image, we use the same
settings as [8]. We take the top n = 36 ROIs and encode them along with their bound-
ing boxes into a common space of 2048-d. The transcribed text is sorted by confi-
dence score and we take the top m = 15 confident predictions. We embed the textual
instances by a using a pre-trained fastText model with 1 million 300,; word vectors,
trained with sub-word information on Wikipedia2017, UMBC webbase corpus and
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statmt.org news dataset. The obtained 300-d textual vectors are projected with the cor-
responding bounding boxes into a 2048-d space. The Faster R-CNN [161] from [8] and
the OCR models, both employed as initial feature extractor modules use pre-trained
weights and are not updated at training stage. The rest of the weights of each module
in the model are learned in an end-to-end manner during training. The graph-based
multimodal reasoning module employs 8 multi-modal GCN layers to obtain the final
enriched visual features. In the last full-connected layer before classification, we em-
ploy a dropout rate of 0.3 to avoid over-fitting on the evaluated datasets. In general,
we employ Leaky ReLU as an activation function in all layers except the last one, in
which we use a Softmax to compute the class label probabilities. The proposed model
is trained for 45 epochs, but an early stop condition is employed. We use a combi-
nation of optimizers comprised by RAdam [122] and Lookahead [230]. The batch size
employed in all our experiments is 64, with a starting learning rate of 0.001 that de-
cays by a factor of 0.1 on the epochs 15, 30 and 45. The momentum value used on the
optimizers is 0.9 and the weight decay is 0.0005.

5.3.3 Comparison with the State-of-the-Art

We show the experimental results of our method compared to previous state-of-the-
art on Table 5.1. We can note that the performance obtained in the Con-Text signifi-
cantly surpasses the previous best performing method by 5.9%. The improvement in
the Drink-Bottle dataset is more modest, of about 1.98%, however it is still significant.

Method |OCR Emb. Con-Text Bottles
Karao.[89] |Custom  BoB! 39.0 -
Karao.[87] |Jaderberg Probs? 77.3 -
Bai[12] Textboxes  GloVe 78.9 -
Bai[12]" |Textboxes GloVe 796  72.8
Bai[12]'  |Google OCR GloVe 805 745
Mafla[131]|SSTR-PHOC FV 80.2 774
Proposed |E2E-MIT  fastText 82.36 78.14
Proposed |SSTR-PHOC PHOC 82.77 7827
Proposed |SSTR-PHOC FV 83.15 77.86
Ours Google OCR fastText 85.81 79.87

Table 5.1: Classification performance of state-of-the art methods on the Con-Text and
Drink-Bottle datasets. The results depicted with T are based on an ensemble model.
The embeddings labeled as ! refer to a Bag of Bigrams, and ? is a probability vector
along a dictionary. The acronym FV stands for Fisher Vector. The metric depicted is
the mean Average Precision (mAP in %).

We believe the improvement is greater in Con-Text due to the text instances found
in it, which refer mostly to business places without much out of vocabulary words,
therefore a semantic space for classification is more discriminative when compared to
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Con-Text |Drink Bottle
I+T I-T [I+T I-T
Bai [12] |78.92 71.63|71.61 62.25
Mafla [131]|80.94 72.59|78.57 68.97
Ours [86.76 74.31|82.75 69.19

Method

Table 5.2: Classification performance of the proposed method on the subset of images
from the test set of the Con-Text and Drink-Bottle datasets such that the images: con-
tain scene-text (I + T) and do not contain scene-text (I - T). The metric depicted is the
mean Average Precision (mAP in %).

the Drink-Bottle dataset. To provide further insights, we conducted experiments by
employing the final model along with different OCRs and word embeddings in both
datasets. It is essential to note that state-of-the-art results are achieved by the usage
of other OCRs as well, showing that the proposed pipeline still outperforms previous
methods.

When comparing to previous methods, it is worth revisiting previous approaches.
The results reported by [12] used an ensemble of classifiers to reach the obtained per-
formance. An additional experiment to showcase the effect of using the same OCR as
our proposed model is included, and it shows that our model vastly outperforms the
evaluated pipeline not because of the OCR system employed. On the other side, the
work presented in the previous Chapter by [131] requires offline pre-computation of
the Fisher Vector by training a Gaussian Mixture Model and tuning the hyper-parameters
involved. In this manner, the method proposed in this model does not require an en-
semble, and the features used are learned in an end-to-end manner at training time.
We clearly show that the proposed pipeline surpasses other approaches even when
employing a set of different scene-text OCRs.

With the aim of offering additional insights, we present in Table 5.2 the perfor-
mance of the previous state-of-the-art methods compared with our proposed method
in a subset of the test set such that the evaluated images either contain scene-text or
not. The results show the average performance along with 3 different splits of each
dataset. We can observe that our model is able to perform better than previous ap-
proaches in both scenarios while a more significant improvement is achieved in im-
ages that contain scene text, which we treat as the major discriminative feature to per-
form the task of fine-grained classification.

5.3.4 Importance of Textual Features

In order to assess the importance of the scene text found in images, we follow the pre-
vious works [87, 12, 131] by defining two different evaluation baselines, the visual fea-
tures based and the textual features based. Moreover, due to the fact that the evaluated
datasets do not contain text transcriptions as ground truth, we evaluated the effective-
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Model Con-Text|Bottles
Visual CNN 62.11 65.15
CNN + Self Attention 63.78 66.62
Texspotter+w2v' 35.09 | 50.68
Texspotter+gloveJr 34.52 | 50.26
Texspotter-+fastText" 36.71 | 51.93
Textual g2E_MIT+w2v 44.36 | 43.98
E2E_MLT+glove’ 4425 | 42.64
E2E_MLT+fastTeXtJr 45.07 | 44.31
FOTS+w2v 43.22 | 41.33
FOTS+glove 43.71 | 41.85
FOTS+fastText 44.19 | 42.69
Google OCR+w2v 53.87 | 53.47
Google OCR+glove 54.48 | 54.39
Google OCR+fastText | 55.61 | 55.16
PHOC 49.18 | 52.39
Fisher Vector (PHOC)'| 63.93 | 62.41

Table 5.3: Visual only and Textual only results. The textual-only results were performed
on the subset of images that contained spotted text. The results with T were reported
by [131]. The metric depicted is the mean Average Precision (mAP in %).

ness of the OCR employed in the fine-grained classification task.

The visual only evaluates all the test set images by only employing the global en-
coder features Gy in the first scenario and the global encoder along with the self-attention
features G faq N the second scenario. In both cases, the output of the global encoder, a
2048-d feature vector, is directly passed through a fully connected layer to obtain the
final classification prediction. In the textual only, the baselines are evaluated only in
the subset of images that contained spotted scene text. The results of each baseline by
employing visual only, different OCRs, and word embeddings are shown in Table 5.3.

Following a previous approach [131], we employ m = 15 text instances and pre-
trained word embeddings that yield 300-d vectors in the case of Word2Vec [139], GloVe [151]
and fastText [21]. The textual tensor obtained is used as input to a fully connected layer,
which output is used for classification purposes. In our experiments, we evaluate two
additional state-of-the-art scene text recognizers, FOTS [124] and the commercially
used Google OCR Cloud Vision based on an API. We note that the embedding that per-
forms the best is fastText due to the capability of embedding out of vocabulary words
by using character n-grams. Regarding the results, it was found that the best perform-
ing standard recognizer is the Google OCR, which employs a more compact (300-d)
vector compared to a PHOC or a Fisher Vector. The PHOC embedding employs a 604-d
feature vector along with m = 15 and the Fisher Vector is a single 38400-d vector in our
experiments. Overall, by using only textual features, the Fisher Vector based on PHOCs
remains the best-performing descriptor. However, besides the high dimensional vec-
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Features Con-Text|Drink Bottle
G f 62.11 65.15
G fa 63.78 66.62
without MMR
Gfa + Vf 70.48 73.21
Gfa + Vf + Tf 78.72 76.43
Ggaq+Vy+ Ty +bboxes | 80.12 77.51
with MMR
Ga+ Vs 72.88 74.96
Gfa + Vf + Tf 82.51 77.46
Vf + Tf + bboxes 84.33 75.42
Gfq+Vyp+Tr+bboxes| 85.81 79.87

Table 5.4: Quantitative results of the different components that form the proposed
model. Gy: Global features, Gra: Gp + Self-Attention, Vy: Local Features, Ty: Text
Features, bboxes: Bounding Box information used by the Positional Encoder, MMR:
Multi-modal Reasoning. Results are shown in terms of the mAP(%).

tor employed, extensive offline pre-computation is required to obtain such a descrip-
tor. Nonetheless, as it can be seen in Table 5.1, the FV descriptor does not achieve the
best results in our final model.

5.3.5 Ablation studies

In this section, we show the incremental improvements and the effects obtained by the
addition of each module that comprises the final architecture in the method proposed.
Table 5.4 shows the quantitative results of adding components in the baseline model.
Namely, we evaluate the effect of using self-attention and the multi-modal reasoning
(MMR) module. We successively add to the attended global features (G fa) local fea-
tures (Vy), textual features (Ty), and the bounding boxes (bboxes) of both used in the
Positional Encoder. In order to assess the effectiveness of the multi-modal reason-
ing graph module, we compare a model that uses the Faster R-CNN ROIs without the
usage of the MMR. It is observed that solely by using the Faster R-CNN features, an
important boost is achieved. One of the biggest improvements is reached by the usage
of scene text, which enforces the idea that textual information is essential to success-
fully discriminate between visually similar classes. By the incorporation of scene text,
an improvement of 9.7% is gained in Con-Text and 2.5% in the Drink-Bottle datasets.
Nonetheless, the improvement is accentuated by the usage of the MMR module, which
produces as output richer local and textual features coming from the graph nodes. Fi-
nally, by adding the positional encoder module into the MMR, another increase in the
results is achieved. This encourages us to think that the MMR module learns relation-
ships coming from semantic and spatial information. Insights into the attention masks
learned and the reasoning coming from the MMR by using visual and textual regions
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Projection Fusion |Con-Text|Drink Bottle
Attention MLB [97] | 80.83 78.26
Attention Block [17]| 80.82 78.42
Attention  Concat 81.09 78.45

GRU MLB [97] | 83.12 78.21
GRU  Block[17]| 83.8 78.74
GRU Concat | 83.93 78.89

Avg Pooling MLB [97] | 84.23 78.56

Avg Pooling Block [17]| 85.11 79.15

Avg Pooling Concat | 85.81 79.87

Table 5.5: Results obtained by employing different Projection and Fusion strategies on
all the modules of our pipeline. Results are shown in terms of the mAP(%).

can be found in the Supplementary Material section.

Furthermore, we explore in our work several projections and fusion methods which
are shown in Table 5.5. In our experiments, Projection refers to the strategy used to re-
duce the dimensionality of the output tensor coming from the MMR as V;; to obtain a
single vector V. Late Fusion showcases the method employed to combine the fea-
tures coming from Vg and Gy,. Due to several works showing performance gains by
the usage of attention [223, 214] and Recurrent Neural Networks [111, 27] as reasoning
modules, we explored those alternatives, however, no improvements were found. In
the same manner, as it is presented by [131], we explored two additional fusion mech-
anisms, MLB [97] and Block [17] but no gains were obtained compared to feature con-
catenation.

5.3.6 Qualitative Results

Qualitative results of the fine-grained image classification task are shown in Figure 5.3.
By reviewing the samples obtained, we can note that our model is capable of learning
a semantic space that combines successfully visual and textual signals coming from a
single image. Classified samples such as “Pizzeria”, “Tea House” and “Diner” often con-
tain similar semantic classes ranked in second and third positions. Images belonging
to the Drink Bottle dataset on the second row, are correctly classified even though text
instances belong to specific brands, thus showing the generalization capability of our
method. The seventh image on the first row is wrongly classified as "Theatre" due to
OCRrecognition errors and a lack of strong enough visual cues. The remaining wrongly
classified images are very challenging and contain some degree of ambiguity even for
humans.
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Figure 5.3: Classification predictions. The top-3 probabilities of a class are shown as
well as the Ground Truth label performed on the test set. Without recognizing textual
instances some images are extremely hard to classify even for humans. Text in blue
and red is used to show correct and incorrect predictions respectively. Best viewed in
color.

5.4 Fine-Grained Image Retrieval

As an additional experiment that highlights the capabilities of the proposed model, we
show the results obtained in Table 5.6 by performing query-by-example (QbE) image
retrieval. In QbE, a system must return images in the form of a ranked list that be-
longs to the same class as the image used as a query. To provide comparable results
and follow the work from [12, 131], we use the vector of class probabilities as the image
descriptor without using a specific metric-learning method. This vector is used to re-
trieve the nearest samples computed by the usage of the cosine similarity as a distance
metric.

In our experiments, the query, as well as the database is formed by unseen sam-
ples at training time. The results demonstrate that a very significant boost of 10.98%
and 2.48% in Con-Text and Drink-Bottle is achieved respectively. The lower gain in
the Drink-Bottle dataset directly depends on the harder-to-recognize text instances, as
well as the low image quality of several samples that directly affect the model perfor-
mance.
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Figure 5.4: Qualitative results in Con-Text Dataset. The first image corresponds to the queried
image class. The images are ranked from left to right. The red border represents a mistaken
retrieved image that does not correspond to the queried class. (Best viewed in color).
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Figure 5.5: Qualitative results in Drink-Bottle Dataset. The first image corresponds to the
queried image class. The images are ranked from left to right. The red border represents a mis-
taken retrieved image that does not correspond to the queried class. (Best viewed in color).
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Method |Con-Text Drink Bottle
Bai[12] 62.87 60.80
Mafla[131]| 64.52 62.91
Proposed | 75.50 65.39

Table 5.6: Retrieval results on the evaluated datasets. The retrieval scores are depicted
in terms of the mAP(%).

5.4.1 Qualitative Retrieval Results

Qualitative results that show the robustness of the model, as well as experiments ad-
dressing the importance of text, are shown in this section. We present qualitative re-
sults based on the Query by Example (QbE) task on Figures 5.4 and 5.5 for the Con-Text
and Drink-Bottle datasets respectively. In a QbE scenario, a system receives as an input
a specific image, which belongs to a class seen in training time. The goal of the system
is to retrieve a ranked list of the closest images that belong to the queried class. In or-
der to measure the distance between the queried image and the retrieved samples, we
employ the cosine similarity as it is described in the Fine-Grained Image Retrieval sec-
tion. In all the Figures showcased, the first image (blue border) represents the image
employed as a query. Images with a green border represent a correct retrieval, whereas
images with a red border represent wrongly retrieved samples. We can observe suc-
cessful retrieval results in both Figures except in the third row of Figure 5.4, in which
the model fails to retrieve the first sample. This effect is due to an incorrect OCR recog-
nition of the text from the queried image. Added this to the fact that the visual features
closely resemble the wrongly retrieved sample, outcomes in a wrong prediction. The
rest of the samples show that an appropriate space that clusters similar labels is learned
by employing textual along with visual features.

5.4.2 Relevance of Textual Features

To further provide insights into the relevance of scene text as discriminative features,
we perform qualitative experiments in two scenarios. In the first scenario, we blurry
the text found in an area given by a text detector and preserve the remaining visual
features. In the second scenario, we blurry all the non-textual regions in a queried
image and preserve only the scene text. In both scenarios, we used the same queried
images as in Figures 5.4 and 5.5. Depending on the images used as queries in the first
scenario, blurring the text makes the retrieval task a very complicated problem to be
solved even by humans. Figures 5.6 and 5.8 show the retrieved images for the Con-
Text and Drink-Bottle datasets in the first scenario. It is worth noting the significant
drop in the retrieved images in both Figures. Specifically, in the first row in Figure 5.6,
we observe that the model learns to recognize pastry in the storefront, which results
in some correct retrieved samples. On the third row, the effect is similar to the one
based on visual cues alone. The remaining rows contain all wrongly retrieved images.
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Figure 5.6: Qualitative results in Con-Text Dataset when the text in the queried image is blurred.
(Best viewed in color).

A similar effect is found in Figure 5.8, which produces correct retrieved images in the
first and fourth row due to the shared visual features between samples but incorrect
retrievals at the second and third rows. Figures 5.7 and 5.9 depicts the outcomes of the
second mentioned scenario. By using textual regions only, we can obtain better results
than in the first scenario, strongly suggesting that there are several cases in images that
contain scene text, in which textual features can be more discriminative than visual
ones. Nonetheless, in the third row in Figure 5.7, wrong OCR recognition produces
erroneous retrieval of samples. The effect is similar in Figure 5.9 on the fourth row in
the case of the Drink-Bottle Dataset.
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Figure 5.7: Qualitative results in Con-Text Dataset. Results are obtained when everything but
the text is blurred in a queried image. (Best viewed in color).

Figure 5.8: Qualitative results in the Drink-Bottle Dataset when the text in the queried image is
blurred. (Best viewed in color).

5.4.3 Visualizing Reasoning

To offer an understanding of the effect that the learned attention maps and the MMR
module have on the predictions of the model, we show in Figure 5.10 and Figure 5.11
the original images, attention maps, and affinity visualizations of the Con-Text and
Drink-Bottle dataset respectively. The attention map is simply a self-learned mask by
the CNN over a 7 x 7 grid. The affinity visualizations are defined by selecting the high-
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Figure 5.9: Qualitative results in the Drink-Bottle Dataset. Results are obtained when every-
thing but the text is blurred in a queried image. (Best viewed in color).

Figure 5.10: Visualization of the learned attention and enriched nodes of the model in the Con-
Text dataset. First row: Original input images, second row: attention masks learned, third row:
highest semantically correlated regions. (Best viewed in color).

est regions that present semantic correlation in the affinity matrix R in the last layer of
the Graph-based MMR module. It is interesting to note that in Figure 5.10, third row, a
strong semantic correlation is learned by attending to text regions and visual regions.
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Figure 5.11: Visualization of the learned attention and enriched nodes of the model in the
Drink-Bottle dataset. First row: Original input images, second row: attention masks learned,
third row: highest semantically correlated regions. (Best viewed in color).

For example, in the first two images, the text "Barber" is highly correlated to people
cutting hair and to the red, white, and blue barber pole. This effect is also evident in
the text region that contains the text "Liquor" and the barrel located at the storefront.
In the fifth sample, the text "pet shop" contains a strong semantic relation with a cat
shown in the image. In the Drink-Bottle dataset, due to its noisy and low-quality na-
ture, the local visual regions extracted do not contain as rich features as the ones in
the Con-Text dataset. The model learns to attend to textual regions as well as the more
salient visual regions that generalize to a specific class of image.

5.5 Conclusions and Future Work

In this paper, we have presented a simple end-to-end model that employs a Multi-
Modal Reasoning graph to encounter semantic and positional relationships between
text and salient visual regions. The learned space is composed of enriched features ob-
tained from nodes in a graph, a module that acts as an appropriate reasoning scheme.
Exhaustive experiments in two datasets and two different tasks validate the robustness
of the presented model which achieves state-of-the-art results by a significant mar-
gin over previous methods. Moreover, our end-to-end pipeline does not require pre-
computed handcrafted features or a collection of ensemble models as in earlier works.
In the future, we expect to explore the effectiveness of this approach in other vision
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Chapter 6

Image-Text Cross-Modal Retrieval

6.1 Introduction

Language provides a medium to explain our perceptual experience while being dis-
cretely infinite. “Discrete infinity” is referred to as a property in which language is
constructed by using a few discrete elements albeit giving an infinite variety of inter-
pretations [35, 183]. In other words, the language’s discrete infinity property dictates
that a potentially infinite number of semantically correct sentences can be used to ex-
press the same idea, for example, in describing an image. Framing the previous notion
into consideration, we explore the task of Image-Text Matching (ITM) in a cross-modal
retrieval scenario. Image-text matching refers to the problem of retrieving a ranked
list of relevant representations of the query portrayed by a different modality. How-
ever, we identify mainly two unexplored areas in the ITM task. First, the incorporation
of scene text information into a retrieval pipeline, and, secondly, the lack of semantic
annotations to evaluate and train models in commonly used datasets.

As a starting point, the textual content is omnipresent in most man-made envi-
ronments and plays a crucial role as it conveys key information to understand a visual
scene. Scene text commonly appears in natural images, especially in urban scenarios,
for which about half of the images habitually contain text [196]. This is especially rel-
evant when considering vision and language tasks, and in particular, related to cross-
modal retrieval. Scene text is rich, explicit, and semantic source of information that
can be used to disambiguate the fine-grained semantics of a visual scene and can help
to provide a suitable ranking for otherwise equally probable. Thus explicitly taking ad-
vantage of this third modality should be a natural step toward more efficient retrieval
models. Nonetheless, and to the best of our knowledge, scene text has never been used
for the task of cross-modal retrieval, and the community lacks a benchmark to prop-
erly address this research question. Chapter 7 addresses these two open directions.
Chapter 8, tackles the lack of annotations in the ITM task. Current datasets assume
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that only 5 sentences correctly describe a single image, labeling it in a binary manner
as relevant or irrelevant. Consequently, the lack of many-to-many annotations causes
a direct effect on the way the ITM task is evaluated. Sentences that are not relevant
according to the ground truth can describe an image in various degrees of correctness
and coverage, thus making the way we evaluate current models on ITM incomplete.

6.2 Related Work

6.2.1 Cross-modal retrieval

The task of ITM is a subset of cross-modal retrieval which aims to map the images and
sentences in such a way that a suitable space for retrieval is learned, where the query
and the search data come from distinct modalities. Initial approaches [51, 53] learned
to align the global visual and textual features by applying a learned non-linear trans-
formation to project both modalities into a common space. A similar pipeline is pro-
posed by [146] with the incorporation of an attention mechanism. However, the main
drawback of such approaches is that semantic concepts fall short of capturing fine-
grained semantic interactions between visual regions and sentences. In the work pre-
sented by [8], several visual regions that describe an image in a more detailed manner
are used for the task of Visual Question Answering (VQA) and Image Captioning. Ini-
tial works [149] incorporated visual regions along with a hierarchical Long Short-Term
Memory (LSTM) [75] module. Following up, [109] proposed a stacked cross-attention
network to model the latent alignments between image regions and words. Additional
models have explored the role of attention mechanisms [119, 181, 209, 211, 231], and
Graph Convolutional Neural Networks (GCN) [45, 100, 111, 120]. External modules
have been explored to improve retrieval results such as the usage of an iterative recur-
rent attention module [28] and an external consensus knowledge base [203]. In order
to uselanguage as a visual altering feature, Vo et al. [198] proposes to use text modifiers
along with images to retrieve relevant images.

More recently, Transformers [194] have been used to learn intra and inter-modality
attention maps for a wide range of visual and language tasks [113, 84, 127, 126], often
achieving state-of-the-art. However, these approaches require an additional order of
magnitude of training samples, giving rise to a large increase in computational costs.

6.2.2 Scene Text in Vision and Language

Methods for vision and language tasks typically align both modalities and often per-
form visual reasoning. Several tasks that combine vision and natural language require
developing models that are capable of scene understanding, visual reasoning, lan-
guage semantics, and cross-modal alignment. Considerable efforts and improvements
have been accomplished in a wide arrange of vision and language tasks. However, it is
essential to take advantage of scene text due to the explicit semantic information it
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contains in order to get closer to holistic computer vision systems capable of perform-
ing full scene reasoning. Works such as Text-VQA [180] and Scene-Text VQA [18] focus
on models capable of reading text in the wild as well as reasoning about the inherent
relations with visual features to properly answer a question given in natural language.
Scene text has also been used to perform fine-grained image classification: [12, 88, 132]
learn a shared semantic space between visual features and text to perform classifica-
tion while [131] uses the Pyramidal Histogram Of Characters (PHOC) [5, 62, 134] de-
scriptor as a way of overcoming OCR limitations and learning a morphological space
suitable for the task. Other works [61, 142] perform scene-text-based image search,
where we query with a word and retrieve images containing such query. Additionally,
the TextCaps dataset [176] includes scene text in the task of generating textual descrip-
tions of an image.

6.2.3 Image Captioning evaluation metrics

Image captioning is the task of transcribing an image into natural language. There are
metrics proposed specifically for image captioning models, specifically, CIDEr [195]
and SPICE [6]. These recently proposed metrics not only have been widely accepted to
evaluate the captioning models but also they have been shown to correlate better with
human judgments across different datasets [6, 195] when compared to machine trans-
lation metrics. Machine translation metrics use n-gram statistics to calculate precision
or recall to evaluate the language models. For example, BLEU-n is a precision-based
metric calculated according to n-gram match between the ground truth set (reference)
and the generated samples (hypothesis). However, the limitation of BLEU is that it
treats each n-gram as having the same weight. This results in stop words and nouns
having the same importance on the resulting score. On the other hand, CIDEr solves
this limitation by using tf-idf [86] to weigh the importance of each n-gram. Moreover,
CIDEr employs cosine distance between tf-idf values of reference and hypothesis in-
stead of using a direct match, which accounts for both precision and recall. SPICE is
the first captioning metric that does not follow the classic n-gram matching. Instead,
they run arule-based version of the Stanford Scene Graph Parser [168] to obtain triplets
consisting of object classes, relation types, and attribute types. These triplets are later
used to build tuples of (¢), (¢, a), (¢, a, r). Finally, the SPICE score is an F-score calcu-
lated by direct matching between the tuples of reference and hypothesis. Despite their
strengths, CIDEr and SPICE still have certain limitations regarding synonyms, word or-
der, style, and sentence grammar among others [48, 96]. Aside from the limitations,
they remain good automatic metrics to measure semantic similarity, especially when
data comes from a similar distribution. Hence we employ the aforementioned metrics
in a classical retrieval scenario.
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6.2.4 Semantics and Metric Learning.

Initial work [145] highlights the main flaws of current metric learning approaches,
which shows that metrics are not consistent for the task at hand. Also, it is shown that
the gap between methods is less significant when evaluation is properly done. In this
work, we refer to the problem of captions that can correctly describe an image that is
not annotated in the GT, as semantic gap. Trying to overcome the existing semantic gap
in current datasets, [79] employs a network to predict the semantic concepts from an
image, however they rely to a binary annotation of relevance. Other works [63, 66] pro-
pose a model to learn a visual embedding where the image similarity is correlated with
the paired text. Similarly [191] proposes a novel within-modality loss that leverages se-
mantic coherency between text and images, which do not necessarily align with visu-
ally similar images. In order to address non-paired relevant images and captions, [229]
proposes to build denotation graphs to link these two modalities. Trying to overcome
the non-exhaustive annotation in datasets, [37] models the probability of an image
belonging to a set of specific contexts. A newly introduced CrissCrossed [150] dataset,
is an extension of MS-COCO that collects human judgments on the matching images
and sentences. In parallel, [233] proposes the usage of a ladder loss among samples
based on BERT [43] to define similarities. However, calculating BERT for every sample
is very expensive computationally, thus they rely on a threshold given by a CBOW [200]
to refine the comparison. Another drawback of this approach is that the similarity is
computed among two captions alone, thus not all information available (5 captions) is
leveraged.



Chapter 7

Scene-Text Aware Cross-Modal Retrieval

Recent models for cross-modal retrieval have benefited from an increasingly rich
understanding of visual scenes, afforded by scene graphs and object interactions to
mention a few. This has resulted in an improved matching between the visual rep-
resentation of an image and the textual representation of its caption. Yet, current
visual representations overlook a key aspect: the text appearing in images, which
may contain crucial information for retrieval. In this Chapter, we first propose a
new dataset that allows exploration of cross-modal retrieval where images con-
tain scene-text instances. Then, armed with this dataset, we describe several ap-
proaches that leverage scene text, including a better scene-text aware cross-modal
retrieval method that uses specialized representations for the text from the cap-
tions and text from the visual scene, and reconciles them in a common embedding
space. Extensive experiments confirm that cross-modal retrieval approaches ben-
efit from scene text and highlight interesting research questions worth exploring
further.

7.1 Introduction

Scene text is a rich, explicit and semantic source of information which can be used
to disambiguate the fine-grained semantics of a visual scene and can help to provide
a suitable ranking for otherwise equally probable results (see example in Figure 7.1).
Thus explicitly taking advantage of this third modality should be a natural step towards
more efficient retrieval models. Nonetheless, and to the best of our knowledge, scene
text has never been used for the task of cross-modal retrieval, and the community lacks
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Which of these two images best correspond to the query caption?

A group of people eating pizza

Query caption \

X

Joint embedding space
for cross-modal retrieval

X

lmage 2

Image 1

Figure 7.1: This Chapter introduces the scene-text aware cross-modal retrieval
(StacMR) task and studies scene text as a third modality for cross-modal retrieval. For
the example query above, the restaurant name provides crucial information to disam-
biguate two otherwise equally relevant results.

a benchmark to properly address this research question.

Scene text has been successfully leveraged to improve several semantics tasks in
the past, such as fine-grained image classification [12, 88, 131, 144], visual question
answering (VQA) [18, 180] or image captioning [176]. Current mainstream methods
tackle cross-modal retrieval by either learning to project images and their captions into
ajoint embedding space [52, 101, 111, 203] or by directly comparing image regions and
caption fragments to compute a similarity score [92, 109]. Although significant gaps
have been overcome by previous methods, and the lack of integration between scene
text and the other modalities still hinder fuller image comprehension. The intuition
that serves as the foundation of this work stems from the notion that scene text, found
in natural images, can be exploited to obtain stronger semantic relations between im-
ages and their captions. Obtaining such relations opens up the path toward improved
retrieval systems in which scene text can serve as a guiding signal to provide more rel-
evant and precise results.

This Chapter introduces the Scene-Text Aware Cross-Modal Retrieval (StacMR) a
task that aims to capture the interplay between captions, scene text, and visual sig-
nals. To overcome the data scarcity of the proposed task, we have constructed a dataset
based on COCO images [118] which we name COCO-Text Captioned (CTC). It exhibits
unique characteristics compared to other datasets employed for multi-modal tasks
and does not share their bias towards scene text as the main component present in
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an image.

We also evaluate the performance of different state-of-the-art cross-modal retrieval
models, and their limitations, and we propose distinctive baselines to solve this task.
Concretely, the contribution of this Chapter is threefold. First, we introduce a new task
called Scene-Text Aware Cross-Modal Retrieval (or StacMR in short), as an extension
to cross-modal retrieval. In this task, leveraging the additional modality provided by
scene text is crucial to further reduce the heterogeneity gap between images and cap-
tions. Second, we describe a new dataset, COCO-Text Captioned (CTC), as the first
dataset properly equipped to evaluate the StacMR task. We highlight the importance
of the role that incidental scene text plays when interpreting an image and its positive
impact on retrieval results. We also compare the properties of our CTC dataset with
similar existing datasets containing scene text and captions.

Finally, we provide an extensive analysis of CTC. In particular (1) we benchmark
the combination of different cross-modal baselines to model the interaction between
scene text, visual, and caption information, and (2) we propose and evaluate a new
model, STARNet, which explicitly learns to combine visual and scene-text cues into a
unified image-level representation.

7.2 The CTC Dataset

This section introduces the proposed COCO-Text Captioned (CTC) dataset. We first
describe how it was gathered and tailored for the new StacMR task, which extends tra-
ditional cross-modal retrieval to leverage information from a third modality: scene fext.
Then we present CTC statistics and discuss the dataset in the light of other benchmarks
and in particular the most related dataset: TextCaps [176] (Section 7.2.3).

7.2.1 Data Collection and Statistics

Building the Dataset. A suitable dataset for the proposed StacMR task requires the
availability of these three modalities: images, captions and scene text. The most com-
monly used datasets for the cross-modal retrieval task [49, 52, 102, 109, 111, 189, 203,
206] are COCO Captions [31], commonly known as MS-COCO in the cross-modal liter-
ature, and Flickr30K [224]. Only very few images from Flickr30K contain scene text
(see Table 7.1), so we decided to start from COCO Captions, a subset of the COCO
dataset [118]. Additionally, the reading systems community commonly uses the COCO-
Text dataset [196]. It contains a sample of 63,686 COCO images with fully annotated
scene-text instances. Among the COCO-Text images, we selected the ones that contain
machine-printed, legible text in English, leading to a total of 17,237 images. In order
to gather only images with the three modalities, we finally select the intersection be-
tween the filtered COCO-Text and COCO Captions. This leads to a multimodal dataset
of 10,683 items, each item consisting of an image with scene text and five captions, re-
ferred to as as COCO-Text Captioned (CTC). Note that the resulting CTC dataset shares
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COCO-Text Captioned (CTC) dataset
COCO Captions

COCO Text
(Filtered)

CTC Full

= Test sets
CTC Explicit

Two testsets: | CTC-1k | @€ | CTC-5k |

Figure 7.2: Proposed CTC dataset, which is designed to allow a proper evaluation of the
task StacMR, as all entries contain three modalities: image, scene text and caption.

92.47% of its images with the original COCO caption training split. As a consequence,
we can not use any models trained on COCO caption in our experiments, as their train-
ing set would inevitably share images with our test set. The dataset’s construction is
illustrated in Figure 7.2.

Statistics. Our only driver for building the CTC dataset has been to identify sam-
ples where all three modalities are available, without explicitly requiring at any point
that scene text had any semantic relation to the captions. This is the most important
requirement for a dataset where scene text is truly incidental and captions are not bi-
ased towards this additional modality. Despite this, to be coherent with the StacMR
task definition, it is paramount to show that the proposed CTC dataset contains some
inherent semantic relations between scene text found in an image and the captions
that describe it. To this end, we design three scenarios which illustrate this semantic
relevance at the image, caption and word-level.

More precisely, we first remove stop-words from captions and scene-text annota-
tions, and embed each remaining word with Word2Vec [139] vectors trained on the
Google News dataset. The semantic relevance between two words is defined as the co-
sine similarity between their Word2Vec embeddings. We then consider three scenarios
to showcase the relevance of scene text to image captions. The first scenario considers
the highest semantic similarity between any scene-text word and any word from the
set of 5 captions, for each image. This scenario visualizes the semantic relation with
images, seen as sets of captions. The second scenario considers the highest semantic
similarity between any scene-text word and any word from a corresponding caption. It
highlights the semantic relation with individual captions. The third scenario considers
how many caption words are related to scene-text words. This captures the semantic
relation with individual words in captions.

The three histograms of Figure 7.3 correspond to the three previously described
scenarios. The fact that many words have a strong similarity at all three levels con-
firms that scene text can be used to model the semantics between the three studied
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Figure 7.3: CTC full statistics. Cumulative histograms (as thresholds over similarity
vary) of the semantic similarity between instances of scene-text tokens and a) all cap-
tions for an image (Images), b) individual captions (Captions), and c)individual words
in captions (Words).

modalities to further leverage them in order to obtain a better performing cross-modal
retrieval system.

As scene text provides fine-grained semantic information, its importance is query-
dependant and it should be used selectively. An algorithm designed for the task should
be able to decide, for each image, to which extent scene text is relevant for the cross-
modal retrieval task. In order to better capture this, we define two partitions of the
CTC dataset. CTC presents a natural semantic split that is evident in Figure 7.3 - a) that
quantifies semantic similarity at the image level. The first quantization (threshold =
1) corresponds to images for which at least one word appears in both the scene text
and one of the captions. We refer to this set of 1,738 images as CTC explicit. We expect
scene text from this set to often be relevant to the retrieval task. We employ the full
CTC dataset, here referenced as CTC full to avoid ambiguity, and to evaluate the more
generic scenario where the role of scene text for retrieval is a priori unknown. This
second set contains the previously mentioned explicit partition as well as images in
which scene text is less relevant according to the annotated captions. Example image-
caption pairs from CTC explicit are shown in Figure 7.4. This illustrates that scene text
provides a strong cue and fine-grained information for cross-modal retrieval.

For evaluation purposes, we define two test splits. The first one, which we refer to as
CTC-1K, is a subset of CTC explicit. The second test set, CTC-5K, contains the previous
1,000 explicit images of CTC-1K plus 4,000 non-explicit images. The remaining 738
explicit plus 4,945 non-explicit images are used for training and validation purposes.
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Captions

Sign warns against runaway vehicles along a hilly roadway.

A white signing telling people how to park their cars on a steep hill.
A sign explaining how to park on a hill is posted on the street.

A warning sign is fastened to a post.

Street sign with instructions on parking the hilly city roads.

A person holding up a tasty looking treat.

& A person holding up a gummy hot dog in their hand..

AN a closeup of a candy gummy hot dog in plastic packaging.
N A hotdog that appears to be a gummy hotdog.

# A gummy hot dog that is for sale.

Parked school bus with a banner attached to it and people looking at it.
A man and a woman outside a school bus.
school bus parked outside of a building.
A school bus sits parked as people walk by.
& A school bus sitting on the side of the road near a pink car.

Figure 7.4: Image-caption pairs from the CTC dataset. These images belong to CTC
explicit, i.e. their scene text and captions share at least one word (marked in bold).

7.2.2 Dataset Samples

Figure 7.5 showcases more samples of image-caption pairs that belong to the full CTC
dataset. On the other hand, in Figure 7.6 we depict image-caption pairs that belong
to the explicit set of the CTC dataset, the bold words in captions reference appearing
scene text. We can note that scene text provides strong cues to better discriminate each
image. Leveraging scene-text can provide important complementary information for
vision and language-oriented tasks, such as in the case of cross-modal retrieval.

7.2.3 Comparison with other Datasets

Table 7.1 provides a comparison with the previously mentioned datasets with statistics
on the three modalities. Scene-text from COCO Captions [31] and Flickr30K [224] was
acquired using a scene-text detector [134]. As mentioned earlier, none of the existing
benchmarks contains samples where all three modalities are annotated.

Closely related to the proposed CTC dataset, TextCaps [176] is an image captioning
dataset that contains scene-text instances in all of its 28,408 images. TextCaps is bi-
ased by design, as annotators were asked to describe an image in one sentence which
would require reading the text in the image. From the statistics shown in Figure 7.7 it
can be seen first, that TextCaps images were selected to contain more text tokens than
should be naturally expected, and second, that many more of these tokens end up be-
ing used in the captions compared to the unbiased captions of CTC. The existing bias
in TextCaps is also evident by analyzing the intersection of 6,653 images it has with the
recently published Localized Narratives dataset [154].
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Image Captions

A blue bus at a bus stop with its doors open.

‘= A bus with its doors open is waiting at a bus stop.
] A bus sits parked on the side of a street.

A picture of a bus on the side of the street.

The blue and white trolley is waiting on passengers.

A woman, man and two dogs in an inflatable raft on some water.

The two ladies are in the row boat.

Man and woman with two dogs on a power boat on a lake.

A train on the tracks with people standing and walking by it

.~ A crowd of people are walking in front of a train

g A man swinging a tennis racket during a tennis match.
A tennis player in mid air action on the court.
& A tennis player about to serve the ball as a small crowd looks on.

A tennis player is in the air making an overhead swing.

A red double decker bus on street next to building.

- A bus that is driving in the street.

-8 A ride double-decker bus stands out against a black and white background.
A double decker bus with few passengers turning at a corner.

A red double decker bus driving down a city street.

Figure 7.5: Image-caption pairs taken from the full proposed CTC dataset, in which
appearing scene-text does not have a semantic relation with the annotated captions,
i.e.there are no scene-text and captions common words.

From those 6,653 images, only 512 (10%) of them were annotated with captions
that make use of any text tokens in the Localised Narratives dataset, where annotators
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Captions

An emergency response person is on a motorcycle.
A medical person riding a motorcycle with ambulance on back.
A police officer on a motorcycle pulling over a black car.
7 A police motorcycle gets down to business when someone speeds.

A motorcycle with a sign on the back that says ambulance.

A China Airlines Airplane sitting on a waiting area of an airport.
A big commuter plane sits parked in a air port.

{ A China Airlines airliner is parked at an airport near another jet.
Some white red and blue jets at an airport.

China airplane airline is parked at a dock.

A motorcycle parked in a parking lot next to a car.

An antique Indian motorcycle is parked next to the sidewalk.
Motorcycle parked on the edge of a street.

An old Indian motorcycle parked at the curb of a street.

A motorcycle parked on a sidewalk next to a street.

Looks like a portrait of a distinguished gentleman.

A painting of Walter Camp, siting on bench.

A painting of a man in brown jacket and hat sitting at a bench.
This a painting of Walter Camp in a trench coat.

A painting of an older man on a city bench holding a rolled up magazine.

A professional baseball player standing on the field while holding a mitt.
A baseball player wearing a catchers mitt on top of a field.
A Twins baseball player holding his glove walking on the field.

The pitcher is resigned to losing the important game.

A Twins baseball player walking to the dugout.

Figure 7.6: Image-caption pairs from the proposed CTC explicit dataset, i.e.the scene-
text and captions have at least one word in common (marked in bold).

were not instructed to always use the scene text.

According to our statistics, this is already higher than expected in the real world.
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Figure 7.7: Histograms of the number of OCR tokens found in images (seen as sets of
captions, left) and in individual captions (right) for the CTC and TextCaps datasets.

Total Images Annotations
Dataset e
Images w/ Text |Scene Text Captions
Flickr30K [224] 31,783 3,338% X
TextCaps [176] 28,408 28,408+

X
COCO Captions [31]|123,287 15,844 X
COCO-Text [196] | 63,686 17,2377 v

v

AR TN NN

COCO-Text Caps | 10,683 10,683

Table 7.1: Datasets’ statistics for standard benchmarks and the proposed CTC. 1 refers
to COCO-Text filtered selecting machine printed, English and legible scene text only.
* numbers obtained with method from [134]. f numbers obtained with method
from [22].

This is because the Localised Narratives captions are long descriptions and tend to
venture to fine-grained (localized) descriptions of image parts where text is more rele-
vant. The proposed CTC is a much less biased dataset in terms of caption generation.
The objective is to provide realistic data that permit algorithms to explore the complex,
real-life interaction between captions, and visual and scene-text information, avoiding
assuming or forcing any semantic relation between them.

7.3 Methods

This section describes approaches to tackle the StacMR task. First, we propose strate-
gies to directly apply standard pretrained cross-modal retrieval models to our new task
and its three modalities: images, captions and scene text (Section 7.3.1). Second, we
propose an architecture to learn a joint embedding space for cross-modal retrieval in
which the image embedding function learns to fuse both the visual and the scene-text
information (Section 7.3.2).
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7.3.1 Re-Ranking Strategies

This subsection considers the image-to-caption retrieval task. Note that everything
can easily be rewritten to consider the caption-to-image case. For StacMR, images
are multimodal objects: they contain visual information as well as textual information
coming from scene text. On the other hand, captions contain textual information only.
This asymmetry allows decomposing the StacMR task into two independent retrieval
problems: visual-to-caption and scene-text-to-caption. The first visual-to-caption re-
trieval task performs comparisons between a purely visual descriptor of the query im-
age and the textual descriptor of the captions. This corresponds to the standard cross-
modal retrieval task as performed on Flickr30K or COCO Captions. The second, scene-
text-to-caption retrieval task, performs comparisons between the textual descriptors
of the scene text from the query image and the captions. Any textual descriptor could
be used. In our experiments, we use the textual descriptor of a cross-modal retrieval
model as it has been tailored for capturing concepts relevant to images.

A pretrained cross-modal retrieval model relies on a metric space equipped with a
similarity function that can indistinguishably compare visual and textual descriptors
and allows ranking all database elements according to a query.

Notations. Given a query image g and a caption from the gallery d, let s,(q, d) be
the score between g and d using the image-to-caption similarity from a cross-modal
retrieval model and s;(q, d) the score between g and d using the scene-text-to-caption
similarity from that same model.

Re-Ranking Strategies. The most straightforward way to obtain StacMR results is
simply to perform a late fusion (LF) of the ranking results obtained using both s, and
s:. More formally, we compute the linear combination s;r of the scores s, and s;, using
a parameter a:

str(g,d) = asy(q,d)+ (1 —a)s:(q,d). (7.1)

One weakness of the late fusion strategy is that it combines all gallery items. In-
stead, we can limit the influence of the tails to avoid misranking by using different
fusion strategies. Given k > 0, let I} be the indicator function that a gallery item is in
the top-k ranked items according to s;, i.e. Ix(gq,d) = 1if d is in the top-k results when
querying with g and similarity s;, and Ix(q, d) = 0 otherwise. Following [4, 39, 40], we
then define the late semantic combination (LSC) and product semantic combination
(PSC) with Equations (7.2) and (7.3) respectively. Note that LSC is equivalent to the late
fusion if k is equal to the gallery size.

SLSC(q) d) = asl}(qr d) + (1 - a)St(q, d)Ik(q) d) (72)
spsc(q,d) = sy(q,d)s:(q,d)I(q,d) (7.3)

These different re-ranking strategies do not require any training and rely on existing
pretrained cross-modal retrieval models. We simply use the part of CTC disjoint from
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the two test sets to choose the hyper-parameters a and k.

7.3.2 STARNet: A Dedicated Trimodal Architecture

All previously described approaches rely on a pretrained cross-modal retrieval model.
Here, we introduce a new architecture able to handle the trimodality of the StacMR
task. We start from the model presented in [111] and extend it to integrate scene text.
First, we assume that scene text has been detected within an image. Then we adapt
the model of [111] to be able to read scene-text instances. We include a positional
information encoder along with a scene-text Graph Convolutional Network (GCN) and
a customized fusion module into the original pipeline. Sharing intuition with [198], we
assume that scene text acts as the modifier in the joint embedding space applied to the
visual descriptor of an image.

We propose the STARNet (Scene-Text Aware Retrieval Network) model, illustrated
in Figure 7.8. It is composed of the following modules: a joint encoder @ for both
an image and its scene text, a caption encoder 0, and a caption generation module V.
Given an image I; and its scene-text OCR;, the global feature encoding for both modal-
ities are Ir; = ®(I;, OCR;). The image encoder follows [8] and uses a customized Faster
R-CNN [161] to extract visual features for all regions of interest represented by V;. Sim-
ilarly, the employed OCR [64] extracts scene-text instances as well as their bounding
boxes and is represented by T;.

For both modalities, image and scene text, we use a GCN [100] to obtain richer
representations. For notation purposes, we refer to the visual or textual features as F;
since the formulation of both visual and textual GCNs is similar. The inputs to each
GCN are features Fy; € R**DPwhere D = 2048 and, k = 36 in the case of V; and k =
15 in the case of T;. A zero padding scheme is employed for both modalities if the
number of features is smaller than k. We define the affinity matrix R, which computes
the correlation between two regions and is given by: R;; = p(k,')Tw(k i), where ki, k;
represent the two features being compared and p(.) and w(.) are two fully connected
layers that are learned in an end-to-end manner by backpropagation.

The obtained graph can be defined by F 'ri = (F;, R), in which the nodes are rep-
resented by the features F; and the edges are described by the affinity matrix R. The
graph describes through R the degree of semantic relation between two nodes. In our
method, we employ the definition of Graph Convolutional Networks given by [100] to
obtain aricher set of features from the nodes and edges. The equation that describes a
single Graph Convolution layer is:

I _wiliplgl-11/1 -1
Fi=w!R'F7'w)H +F] (7.4)

where R € R¥*¥ is the affinity matrix , F; € R¥*P are the input features of a previous
layer, W, € RP*D is a learnable weights matrix of the GCN, W, € R¥*k is a residual
weights matrix and [ is the number of GCN layer. Particularly, we employ a total num-
ber of I = 4 for both GCNs used in the proposed pipeline.
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Figure 7.8: Our proposed STARNet model. Visual regions and scene-text instances are
used as input to a GCN. The final learned representations are later combined to lever-
age complementary semantic information.

The output of the visual GCN goes through a GRU [38] to obtain the global image
representation denoted by Vy;. Textual features from the output of the scene-text GCN
are average-pooled to obtain a final textual representation denoted by T¥;.

The final image representation I¢; is the dot product between the visual and final
scene-text features (which act as a modifier) added to the original visual features: Ir; =
Vfl' © Tf,' + Vfl'.

Caption C; from the corresponding training image-caption pair is encoded with a
GRU [38, 52], leading to Cr; = ©(C;). To align image features with their caption features
in a joint embedding space, we train ® and © using a triplet ranking loss [52, 109] by
employing the hardest negative sample on each mini-batch.

In order to provide the model with a stronger supervision signal, the learned image
representation Iy; is also used to generate a caption as an auxiliary task. We train the
third encoder ¥ so that the generated caption equals to: GCy; = ¥ (I¢;). This sequence-
to-sequence model uses an attention mechanism similar to [197] and we optimize the
log-likelihood of the predicted output caption given the final visual features and the
previously generated word.
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7.4 Experiments and Results

We present results on CTC. They are split into two parts: visual-only and scene-text-
only baselines, as well as their unsupervised re-ranking (Section 7.4.2), and supervised
trimodal fusion results from STARNet (Section 7.4.3). Following cross-modal retrieval
(CMR) evaluation standards, we report performance with recall at K (R@K) for K in
{1,5, 10} for both image-to-text and text-to-image retrieval.

7.4.1 Implementation Details

In the baselines of supervised models, SCAN [109] and VSRN [111] use the same hyper-
parameters as the correspondent work published and it is based on public code avail-
able. We introduce modifications to each of those models, in a way that scene-text
instances are treated similarly to visual regions. We expanded the number of visual
region inputs from the original 36 to add 15 scene-text instances that sum in total 51
combined visual and textual regions. Text instances are sorted according to the con-
fidence value. If text is not present, or the instances are less than 15, we use a zero-
padding scheme.

The proposed supervised model, STARNet was trained for 30 epochs along with
a batch size of 128 samples per iteration on each experiment. The learning rate em-
ployed was 0.0002 and was decreased by a factor of 10 every 10 epochs. The visual
features have a dimension of 2048-d. The FastText [21] textual vectors that serve as in-
put to the model have a dimension of 300-d, which are linearly projected into a similar
feature space of 2048-d as the visual features. We use 4 GCN-based reasoning layers
on the visual and textual GCN to enrich and reason from the visual and scene-text fea-
tures. The final semantic space learned contains 2048-d, which is used to project the
final image representation and captions.

In our experiments, when the Flickr30K [224] dataset is employed, we use the same
training, validation and testing split as in [92], which contain 28,000, 1,000 and 1,000
images respectively. When using only the TextCaps [176] dataset, the original train-
ing set is used and the validation set is employed as the evaluation set since the test
set is currently publicly unavailable. At the moment of training the proposed STAR-
Net model, we employ the validation set of TextCaps to achieve the best-performing
weights.

7.4.2 Baselines and Re-Ranking Results

This section first introduces visual-only CMR models. These allow observing how stan-
dard CMR models tackle the StacMR task on CTC. Then, we propose scene-text-only
metric spaces, where the only information extracted from the image is its scene text.
These baselines should help judge the semantic relevance of the scene text with re-
spect to the captions. The remaining results correspond to different combinations: a
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Scene-text | Trained on | Scene-text CTC-1K CTC-5K

Visual Model Model Source Re-rank | Image to Text ‘ Text to Image | Image to Text ‘ Text to Image
F30K TC R@1 R@5 R@IO‘R@I R@5 R@10|R@1 R@5 R@IO‘R@I R@5 R@10

(1) VSE++(52] X v X 20.5 42.8 54.5/154 352 48.4|133 302 402| 84 21.5 30.1
(2) VSE++ X v v 239 50.6 63.2|16.5 39.6 53.3|12.6 30.1 40.2| 7.9 21.0 29.7
(3) VSRN[111] X v X 27.1 50.7 62.0{19.7 42.8 55.7|19.2 38.6 49.4|12.5 29.2 39.1
(4) VSRN X v v - 35.6 64.4 76.0|24.1 50.1 63.8|22.7 45.1 56.0(14.2 32.1 42.6
(5) X VSE++ GRU | v v GT - 26.3 40.4 47.3/10.0 20.3 25.6| 44 7.1 82| 1.6 3.5 4.7
6) X VSRNGRU | v v GT - 123 25.1 30.1| 6.8 153 200 1.9 40 52| 1.1 28 3.8
(7) X Fasttext+FV| X X GT - 21.7 36,5 443| 32 66 9.0/ 35 59 75| 06 1.3 1.7
8) AVG 34.6 53.1 61.0{14.5 31.0 39.4|10.0 21.5 29.5| 5.0 14.1 214
9 3 - - LF 31.0 60.0 72.3|20.4 44.7 57.3|13.4 309 41.5| 7.4 205 29.1
g VB |VSEwGRU) v/ Cr PSC |37.4 62.8 73.6|155 42.6 57.1|12.2 32.1 42.4| 41 193 292
an LSC 31.6 57.8 70.2|20.3 44.7 57.8|13.7 31.7 41.6| 7.7 21.0 29.6
12) AVG 36.8 62.2 729|186 40.5 529|153 335 443| 6.4 189 28.0
13) LF 40.3 68.5 79.9(23.9 499 63.4|22.6 450 56.3|11.8 29.5 40.0
14) VSRN VSRNGRU | v/ v Gr PSC 33.5 65.9 78.2|15.8 48.1 64.3|18.5 445 56.0| 53 28.7 41.0
(15) LSC 38.6 67.5 78.5/24.3 50.4 64.0/23.4 45.6 56.5|12.1 30.6 41.1
(16) LF 45.8 72.7 81.4|26.5 52.7 66.1|24.2 46.1 57.1|12.9 31.0 41.2
an VSRN VSE++GRU | v v GT PSC 422 71.5 82.8/189 51.1 66.4|20.1 464 57.5| 6.7 29.5 41.6
(18) LSC 45.3 71.5 80.7|26.7 53.0 66.2|24.4 46.9 57.4/13.2 31.8 423
19) LF 41.5 70.1 79.8|25.1 51.2 64.3|23.3 45.0 58.9|12.6 30.5 41.1
(20) VSRN VSE++ GRU| v v OCR PSC 38.5 69.6 80.6|17.9 50.1 65.1|19.8 45.7 57.2| 7.0 29.8 41.7
@n LsC 42.2 68.6 78.5/25.5 51.8 64.9|19.8 45.7 57.2|13.2 31.5 42.2

Table 7.2: Results on CTC for visual and scene-text baselines, and their re-ranking com-
binations. Visual model and Scene-text model indicate image-caption and scene-text-
caption retrieval, respectively. GT stands for ground-truth scene-text annotations and
OCR for scene-text prediction obtained from [64]. Bold numbers denote the best per-
formances of visual, scene-text, and re-ranking methods for each ensemble of models.

naive average of visual and scene-text embeddings for metric spaces that allow it and
the different re-ranking strategies introduced in Section 7.3.1.

Visual-only Baselines. We use two CMR models based on global features for both
images and captions,

VSE++ [52] and VSRN [111]. Both works provide public training code, used for all
models in this section, with the exception of the VSE++ model trained on Flickr30K,
for which we use the model provided by [52]. We train these architectures either with
Flickr30K or Flickr30K + TextCaps. As mentioned in Section 7.2.1, models pretrained
on COCO Captions are not considered due to the overlap between the training set of
COCO Captions and our test sets.

Results are presented in Table 7.2, rows (1-4). VSRN surpasses VSE++, mirroring
their relative performance from CMR benchmarks. Furthermore, models trained on
the additional data of TextCaps outperform models trained only on Flickr30k. This is
interesting, as TextCaps image-captions pairs are more dependent on their scene text
than those from Flickr30k. Enlarging the dataset size with the inclusion of TextCaps ex-
plains this improvement to an extent, as the training set of Flickr30k is relatively small.
Moving forward, we only report models trained on F30K+TC.

Scene-Text only Baselines. We use the textual embedding part of our two previ-
ously used CMR models (denoted by VSE++ GRU and VSRN GRU respectively). We also
consider FastText [21] word embeddings followed by a Fisher vector encoding [152]
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(denoted by FastText+FV), which is able to deal with out-of-vocabulary words. For
these experiments, we use ground-truth OCR annotations as scene text. Results are
presented in Table 7.2, rows (5-7). We observe much weaker results than the purely
visual baselines. For CTC-1K, this approach can rely on shared words between scene
text and one of the captions. For the more realistic CTC-5K, we see that scene text
brings very little in isolation. Note that the VSE++ GRU outperforms VSRN GRU for
this task, while VSRN is better for the purely visual case. This motivates the hybrid
strategies merging both models that we report later. Fasttext+FV yields strong results
on image-to-caption retrieval on CTC-1K, but shows poor results on the other evalu-
ated scenarios.

Average Embedding. If an image and scene text are represented using the same
CMR model, all three modalities are represented in the same embedding space. This
allows a naive combination that consists in averaging visual and scene-text embed-
dings to represent the image, reported as AVG on the Table 7.2, rows (8) and (12). This
brings a non-negligible improvement on CTC-1K Image to Text compared to their re-
spective visual-only baseline and it is the first proof that scene text, even naively used,
improves on some StacMR queries.

However, we observe a decline in CTC-5K in the same comparison. This hints at the
fact that scene text provides fine-grained information that should be used selectively,
and giving equal weight to both modalities is too crude an approach.

Re-Ranking Results. Some re-ranking results are presented in Table 7.2, rows (9-
21). We test the best pairing of visual-only and scene-text-only models with three com-
bination strategies: late fusion (LF), product semantic combination (PSC), and late se-
mantic combination (LSC). Hyper-parameters of each re-ranking strategy are chosen
for VSRN with VSE++ GRU and applied to all other combinations as is. We use the part
of CTC explicit which is not used for testing as validation. For LE a = 0.8. For PSC,
a=0.95and k = 3. For LSC, ¢ = 0.8 and k = 100.

When compared to the unimodal baselines, all combinations improve results on
CTC-1K. Both LF and LSC match the results of their visual baselines on CTC-5K, show-
ing that these methods are more robust to scene-text information unrelated to the cap-
tions.

For the three best-performing re-ranking variants, we repeat the experiment us-
ing OCR predictions instead of the ground-truth scene-text annotations. Results are
shown in rows (19-21). When compared with their counterparts in rows (16-18), we
observe an R@10 loss on average of 1.7% in CTC-1k and stable results for CTC-5k. This
validates the stability of these re-ranking strategies to loss of information due to im-
perfect OCR predictions.

7.4.3 Supervised Results

The latest cross-modal retrieval models rely on region-based visual features [109, 111,
203] rather than a global image representation [52]. In this section, we include the
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i CTC-1K CTC-5K
Uses Scene-Text Trained on
Model Scene Text| Source Image to Text Text to Image Image to Text Text to Image
F30K TextCaps CTC|R@1 R@5 R@10|R@1 R@5 R@10|R@1 R@5 R@10[R@1 R@5 R@10
X - % X X 264 486 61.1 [152 36.8 493 [17.5 36.7 47.1 [ 7.6 21.2 304
v OCR X v X 195 438 57.1 [102 28.7 421 |7.0 200 29.7 |32 117 181
SCAN [109] v OCR v v X 350 629 744 193 440 583 |21.1 43.0 546 | 9.6 254 356
v OCR v X v |27.5 489 61.9 |165 37.7 51.1 |18.6 37.3 47.6 | 8.1 21.6 30.6
v OCR v v v |363 63.7 75.2 |26.6 53.6 65.3 |22.8 45.6 54.3 |12.3 28.6 39.9
X - v X X [27.1 50.7 62.0 [19.7 42.8 557 [19.2 38.6 49.4 125 292 39.1
v OCR X v X 186 404 522 117 31.0 442 (6.6 179 258 |45 13.0 19.8
VSRN [111] 4 OCR v v X |356 643 76.0 [24.0 50.1 63.1 [22.6 45.0 559 |14.2 32.1 425
v OCR v X v/ |36.1 64.1 75.8 |26.2 53.1 65.2 |24.6 48.1 588 |15.4 357 46.9
v OCR v v v |382 67.4 79.1 |26.6 54.2 66.2 |23.7 47.6 59.1 |14.9 34.7 45.5
X OCR %4 X X 294 523 626 [21.8 443 57.2 [19.9 39.6 50.1 [13.4 30.7 40.4
v OCR X v X |234 480 610 142 349 473 |51 151 223 |39 119 251
STARNet 4 OCR 4 v X 1393 654 76.8 |25.9 523 652 |21.1 41.8 529 [13.8 31.8 42.0
v OCR v X v |365 64.6 74.3 |26.4 53.8 65.6 |255 48.4 59.8 |15.7 353 46.6
v OCR v v v/ |44.1 74.8 82.7 |31.5 60.8 72.4 |26.4 51.1 63.9 |17.1 37.4 48.3
Re-rank. (21) v OCR v v X 422 686 785 255 51.8 64.9 [19.8 457 57.2 [13.2 315 422
STARNet-GT| v [ GT [V v v/ [454 749 839[320 612 73.3 [26.8 51.4 64.1 [17.4 37.8 487

Table 7.3: Retrieval results on the CTC-1K and CTC-5K test set of supervised models.
The second-to-last row shows the result from the unsupervised re-ranking baseline
described in Table 7.2, line 21. OCR stands for the textual features obtained from [64],
whereas GT refers to the Ground-truth annotated scene text. Results depicted in terms
of Recall@K (R@K).

results of two state-of-the-art models, SCAN [109] and VSRN [111] that employ such
region-based visual features.

The original cross-modal retrieval models, SCAN and VSRN are used only when
trained on Flickr30K. In order to leverage scene text, we have modified them to include
OCR features. In both models, the OCR features are projected into the same space as
the visual features, and the default hyper-parameters are employed. All the obtained
results are reported in Table 7.3. The second column depicts the usage of scene-text
instances by each model, and the third column depicts the source of the scene text. We
make the following observations.

First, we see that using standard models trained on a common cross-modal re-
trieval dataset, such as Flickr30k, does not yield good performances on the StacMR
task. Second, we note the different behaviors when each dataset is used for training
and testing is done on the CTC test sets. In particular, it is worth noting that by training
solely on TextCaps [176], the performance of any model decreases significantly, espe-
cially in the CTC-5K dataset. This effect is caused by the bias in Textcaps that places a
big focus on scene-text instances to describe an image, rather than combining visual
and textual features in an unbiased way.

However, all datasets provide complementary statistics to train the STARNet model.
For instance, Flickr30k focuses on relevant visual regions, whereas the combination of
TextCaps and CTC can be seen as a reciprocal set of datasets that aim toward modeling
the relevance of scene-text from an image in a more natural manner.

It is worth pointing out that STARNet almost doubles the performance in the CTC-
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1K subset when compared to common retrieval models. We believe this effect is due
to the explicit scene-text instances that reinforce the notion of the relevance of this
modality. A smaller improvement is achieved in the CTC-5K. This result is caused by
the fact that even though scene text does not appear explicitly in the captions, a varying
degree of semantics between image and scene text can still be found.

Finally, we also show an upper bound at test time assuming a perfect OCR (using
ground truth scene-text annotations in CTC), which adds a slight boost to the pro-
posed method. This effect shows and confirms the importance of accurate scene-text
recognizers in the StacMR task.

7.4.4 Qualitative Results

In Figure 7.9 we illustrate qualitative results when performing Image to Text cross-
modal retrieval. The text contained within an image usually serves as discriminatory
signal, such as the word "samsung" in the third image and the number "15"in the fifth
query. Scene text also provides a strong complementary cue to be used along with
visual features as the rest of the queried samples suggest.

It is important to note, that even though some samples are not entirely correct, the
model still preserves semantics between image and retrieved captions.

We illustrate in Figure 7.10 the results obtained when performing Text to Image
cross-modal retrieval. In the queries performed, scene-text works as fine-grained and
discriminative information to retrieve correctly an image. Similarly to the previous
scenario, wrongly retrieved samples still preserve semantics.

By exploring the qualitative results obtained, added to the quantitative tables in
previous sections, we can reinforce the notion that modeling scene-text along with vi-
sual features does improve retrieval granularity thus yielding higher performing cross-
modal retrieval pipelines.
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Queried Image Retrieved Captions

j Clock at a train station showing the time of the next trains arrival. v/
A clock with the words next train written about it. v/
A clock on a train platform during day time. X
v A clock attached to a pole at a train station. T X

A clock that is sitting on the side of the pole. v/

{d A large number of police motorcycles are lined up. T X
g Ml A bunch of police officers on motorcycles waiting for something. v/

A group of police officers that are riding on motorcycles. t X

A line of police are riding motorcycles down the street. X

People riding on the upper level of a samsung bus in a parade. v/
48 A blue tow truck carrying a boat. X

A blue truck is pulling a white boat. X

A police vehicle on a tow truck that is being taken away. X

A group of police standing at the back of a moving truck. X

A tall lighthouse sign with a clock on the tower of a plaza. v/
A tall church building with a massive clock on front of it. X

A modern clock tower is embellishing a market which sits beneath a clear
blue sky. v/

Tall tower with clock near well lit building at night. X

A large tower that has a clock on the very top of it. T X

~ Two woman near the interstate 15 sign in las vegas. v/

Two women standing on a sidewalk next to a street sign at night while cars
g drive on the street next to them and behind them. v/

Two young ladies standing on the sidewalk under a street sign. v/

Two people standing on a street with a street sign. v/

Two women on street next to cars and traffic signs. v/

Figure 7.9: Qualitative samples obtained when an image is used as a query (Image to
Text) in the proposed CTC explicit dataset. Correct results are marked with v'. Incorrect
results are marked with X. Reasonable mismatches are depicted with t but still marked
by a X.
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Query 1: A marc passenger drains rides a/ong railroad tracks.

Figure 7.10: Qualitative samples when a caption is used as a query (Text to Image) in
the proposed CTC explicit dataset. Correct results are marked in a green box. Incorrect
results are marked in a red box. Words in bold in queried captions depict the scene-text
that helps to discriminate retrieved images, which otherwise are ambiguous. Query 1
contains an annotator typo "drains".
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7.5 Conclusion

In this Chapter, we highlight the challenges stemming from including scene-text in-
formation in the cross-modal retrieval task. Although of high semantic value, scene
text proves to be a fine-grained element in the retrieval process that should be used se-
lectively. We introduce a realistic dataset, CTC, where annotations for both scene text
and captions are available. Contrary to datasets constructed with scene text in mind,
CTC is unbiased in terms of scene-text content and of how it is employed in the cap-
tions. A comprehensive set of baseline methods showcase that combining modalities is
beneficial, while a simple fusion cannot tackle the newly introduced task of scene-text
aware cross-modal retrieval. Finally, we introduce STARNet a supervised model that
successfully combines all three modalities. Public available code and collected dataset
can be found at https://github.com/AndresPMD/StacMR and https://europe.
naverlabs.com/stacmr.


https://github.com/AndresPMD/StacMR
https://europe.naverlabs.com/stacmr
https://europe.naverlabs.com/stacmr

Chapter 8

Is An Image Worth Five Sentences? A
New Look into Semantics for
Image-Text Matching

The task of image-text matching aims to map representations from different modal-
ities into a common joint visual-textual embedding. However, the most widely
used datasets for this task, MSCOCO, and Flickr30K, actually image captioning
datasets that offer a very limited set of relationships between images and sen-
tences in their ground-truth annotations. This limited ground truth information
forces us to use evaluation metrics based on binary relevance: given a sentence
query we consider only one image as relevant. However, many other relevant im-
ages or captions may be present in the dataset. Therefore, we propose two metrics
that evaluate the degree of semantic relevance of retrieved items, independently
of their annotated binary relevance. Additionally, we incorporate a novel strategy
that uses an image captioning metric, CIDEF, to define a Semantic Adaptive Margin
(SAM) to be optimized in a standard triplet loss. By incorporating our formulation
into existing models, a large improvement is obtained in scenarios where available
training data is limited. We also demonstrate that the performance on the anno-
tated image-caption pairs is maintained while improving on other non-annotated
relevant items when employing the full training set.

99
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8.1 Introduction

According to [35, 183], language offers a discretely infinite number of opportunities
to explain perceived information. However, this notion of “discrete infinity” is dis-
regarded in current cross-modal retrieval metrics and models. We study the task of
Image-Text Matching (ITM) in a cross-modal retrieval situation while keeping the dis-
crete infinity idea in mind. However, widely used datasets for the image-text matching
(ITM) task lack thorough annotations of many-to-many mappings between pictures
and captions, which seems to go counter to the idea of discrete infinity.

Consequently, the lack of many-to-many annotations causes a direct effect on the
way the ITM task is evaluated. Sentences that are not relevant according to the ground
truth can describe an image in various degrees of correctness and coverage, thus mak-
ing the way we evaluate current models on ITM incomplete. We can see an example
of such a problem in Figure 8.1. The widely adopted metric employed to evaluate the
performance of a model in the ITM task is Recall@K [51, 109, 111, 113, 120, 127]. The
Recall@K as it is used in IMT is binary by definition: it returns 1 if at least one of the
relevant items according to the ground truth is retrieved within the top-k positions for
a given query, otherwise, it returns 0. Due to this binary definition, the metric can not
fully assess the degree of accuracy and coverage of the retrieved sentences given an
image or the other way around.

Additionally, the to-go strategy from standard approaches for ITM, firstly intro-
duced by [51], relies on hard-negative mining at the moment of constructing samples
to be used in a Triplet loss function to be optimized. Current state-of-the-art methods
rely heavily on such formulation, which requires a carefully handcrafted fixed mar-
gin [51, 109, 111, 120, 133, 209]. In this Chapter, we propose solutions to the afore-
mentioned problems by introducing the usage of image captioning metrics such as
SPICE [6] and CIDEr [195] as a part of an additional metric formulation for the eval-
uation of the ITM task. Image captioning metrics have been widely studied and ac-
cepted as automatic tools to evaluate the similarity of sentence meanings that closely
correlate with human judgment. We utilize such metrics that allow a transition from a
traditional recall to a Normalized Cumulative Semantic (NCS) Recall by incorporating
the continuum of language into the evaluation. Secondly, considering the continuous
nature of language, we re-formulate a triplet loss by introducing a Semantic Adaptive
Margin (SAM). We calculate a SAM according to image captioning metrics, which does
not rely on a hard-negative mining approach (see Figure 8.2). Our formulation em-
ployed in scenarios with limited data achieves state-of-the-art by a significant retrieval
improvement.

Our contributions are as follows: (1) We identify shortcomings from the commonly
used Recall@K in the ITM task. By adopting image captioning metrics we model the
many-to-many semantic relationships between images and captions. (2) We propose
anovel Semantic Adaptive Margin (SAM) that takes into consideration image caption-
ing metrics to define the similarity among samples. (3) We show that by relying on
image captioning metrics and incorporating them into our proposed adaptive margin,
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Text Query: A baseball player attempting to score a run
before the catcher tags the player out.

Method A (Top-5 results)

Figure 8.1: According to the Recall@5 metric, defined for Image Text Matching, both
methods A and B are equally good: it considers only one image as relevant for a given
sentence query. We propose two metrics and an adaptive margin loss that takes into
account that there might be other relevant images in the dataset. In this Figure, we
represent the semantic similarity of images to the query by their colored border (the
greener the more similar).

a substantial boost is achieved in scenarios with reduced training data. (4) We provide
exhaustive experiments on two benchmark datasets, which show that by incorporat-
ing our adaptive margin formulation an increase in performance is achieved across a
variety of state-of-the-art pipelines.

8.2 Metrics

Before we move with our formulation, we introduce the reader the nomenclature used
in the rest of this work. First, the image and caption sets will be referred to as I and
C, while the respective test set will be represented by I, Cr. We refer as G; to all the
ground truth captions corresponding to an image / € I. We use ¢ to indicate an evalua-
tion metric function such as CIDEr or SPICE. Finally, Q; represents the retrieved items
for a given query i at a top-k cut-off threshold.

8.2.1 Isanimage worth 5 sentences?

Both of the most commonly used datasets in ITM, namely Flickr30k [153] and

MSCOCO [118], contain 5 ground truth sentences per image. A direct outcome is
that the current evaluation solely considers those 5 sentences as relevant to a single
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image. However, it is a known fact that in MSCOCO or Flickr30k there are many sen-
tences that can perfectly describe a non-paired image [150, 204, 208]. In other words,
there are sentences (images) that are relevant to images (sentences) even though they
are not defined as such in the retrieval ground truth. We refer to these samples as non-
ground truth (non-GT) relevant items. Specifically, ITM models are tested on 5k images
and 25k sentences in MSCOCO. In the case of image-to-text retrieval, recall completely
ignores the retrieved order of the remaining 24995 sentences (99.98% of the test set).
Yet, it is crucial to consider all semantically relevant items (including non-GT) to prop-
erly evaluate a model’s capability.

Aside from the prior problems, Recall@K (R@K) as used in the ITM task is a binary
metric, i.e. it is a hard metric that does not take into account the semantic continuum
of language. When it comes to language, even ground truth paired sentences do not
explain a given image to the same degree as they are not paraphrases from each other.

Another identified drawback is that the recall formulation used in ITM is different
than the original recall employed in information retrieval. The recall metric used in
ITM, referred to as R", takes the definition from [76]. In the image-to-text scenario,
the RV only cares about the first GT annotated caption retrieved in the top-k relevant
results. This formulation discards the remaining 4 annotated samples in the GT. On
the other hand, recall defined by [169], referred as R, considers all other relevant items
in the formulation. It is important to note that both formulations agree on the text-
to-image scenario due to the existence of only 1 relevant image in the GT. Both recall
formulations can be appreciated better in Equation 8.1 and 8.2.

1 G;inQ;
R@k=— ) R;@k, where R;@k = 1Gi 0 Qi (8.1)
|IT| ielr |G1|
1
RY@k=— Y R} @k, where R/ @k = 16,00 #0} (8.2)

|IT| ielr

When formulating our metrics in the following sections, we use R instead of RV, as
it includes the remaining 4 items at evaluation. Nevertheless, it is important to note
here that both R and RV completely disregard the possible semantic relevance of non-
GT samples. The existent limitations of employing solely recall as a metric lie in the
fact that it misses evaluating those non-GT-relevant items.

8.2.2 Semantic Recall (SR)

Our metrics rely on the evaluations of captions with CIDEr and SPICE to decide which
images are semantically similar to other sentences in the test set. Concretely, for a
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given image i and sentence j such that i € Ir, ¢cj € Ct, we construct a matrix N where:

Nij = ¢(Gj, cj) (8.3)

where N;; € R and ¢ is one of the captioning metrics (CIDEr or SPICE). Once the sim-
ilarity matrix N is defined, we can easily extend the ground truth relevant items for
each possible query. Formally, we define G; as the extension of ground truth relevant
items for a query image i as the most similar m sentences from N;. Now we define the
Semantic Recall (SR) metric as follows:

|G N Qi

SR
Rif@k=— =
l

(8.4)

This metric allows a transition from the classic recall R" to a metric that considers
semantic relevance. However, the limitation on binary scoring associated with recall
still persists. Another drawback is how to select a threshold m that captures how many
non-GT images or sentences are relevant in the whole data corpus.

8.2.3 Normalized Cumulative Semantic (NCS) Score

The Normalized Cumulative Semantic Score (NCS) aims at addressing the limitations
of the Semantic Recall (SR) described in the previous section. The NCS score is calcu-
lated as the division between the image captioning similarity ¢ of the retrieved samples
and the maximum image captioning similarity score ¢ at a cut-off point K. Formally,
we define our metric as:

LiNij . . . .
N;@k = Jdfor je GinQjrand [ € G; (8.5)
>INy

For illustrative purposes, methods A and B from Figure 8.1, both equally good at re-
call (RV), will score very differently at NCS. Method A will achieve a maximum score of
0.2. On the contrary, Method B will achieve a higher score since the retrieved samples
contain a closer degree of semantics compared to the query.

With this formulation, we specify a solution to the binary nature of Recall@K (R@K)
when it addresses the semantics of the language. Moreover, NCS can properly take into
account the non-GT items when evaluating a model without the need of selecting a
threshold m. In Section 8.4 we use these metrics to provide us with additional insights
about the current model’s performance.
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8.2.4 Correlation with Human Judgements

Related to our work, the recently introduced CrissCrossed [150] dataset, is an extension
of MS-COCO that comprises human judgments on the degree of similarity between
captions and images. In this dataset, each annotator assesses how well an image and
a sentence match on a 5-point Likert scale on MSCOCO. They collect these judgments
not only for the predefined ground truth pairs but also for other pairs. Despite the ex-
tensive annotation process required, the test set contains 44k judgment pairs, of which
25k are ground truth pairs. We utilize these human judgments to calculate the Pearson-
R correlation coefficient for Recall and NCS.

As it can be seen in Table 8.1, when all the pairs are considered, our metric has a
better correlation with human judgments [6] with both SPICE and CIDEr. We observe
that CIDEr has a better correlation when we take into account the 44k pairs, nonethe-
less, SPICE is better on Non-GT, Which is why we always evaluate our models with
SPICE. Furthermore, this also extends to the case of non-ground truth relevant pairs.
In non-GT relevant pairs the classic recall is uninformative due to the metric defini-
tion, while the NCS provides an acceptable estimation that correlates well with human
judgment.

All Non-GT
Binary relevance (GT) 0.711 0.00
NCS with SPICE 0.729 0.536
NCS with CIDEr 0.734 0.453

Table 8.1: Pearson-R correlation coefficient results between human judgments and im-
age text matching metrics on the CrissCrossed [150] dataset.

8.3 Semantic Adaptive Margin

In this section, we introduce our Semantic Adaptive Margin (SAM) formulation, which
aims to alleviate common problems of the usage of a triplet loss on non-exhaustive
many-to-many data mappings. Before we elaborate on the details, we present the
reader with the original triplet formulation along with a formal definition of the ITM
task. Let D = {(iy, cn)}]nV:1 be the training set of image and caption pairs. These pairs
are further divided into positive and negative samples where (i), ¢;)) are considered as
positive samples while (i, cn) (k,m)# p @s negative samples. Then, the embedded im-
ages and captions are represented as ec, = 0c(Cp) and e, = oi(ip) where o¢,0; are
embedding functions for captions and images respectively. Given a similarity function
v, the classic formulation of the triplet loss in ITM [51], L7, is defined as:

Ly =maxla+vylei, ec,)—vy(ei, ec,),0] +

maxla+yl(e,ec,)—ylei,ec,),0] (8.6)
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Figure 8.2: Comparison of a fixed margin loss function (left) and our adaptive mar-
gin (right). We consider an image anchor I, their positive sentences according to the
ground truth (c!, c?, ¢), and four other sentences (¢!, ¢?,¢3,¢*) that are negative ac-
cording to the ground-truth but have some degree of semantic similarity with I. In
our method, we dynamically adapt the margin of each possible triplet (anchor, pos-
itive, and negative items) to the value given by a similarity function ¢ that measures
the semantic similarity of positive and negative items. In this Figure, we represent the
similarity of sentences with the anchor by its color (the bluish the more semantically
similar they are, the reddish the less similar).

where a is known as the margin. The intuition behind the triplet formulation is that
given an n-sphere with radius a, positive samples should be projected inside and neg-
ative samples on the external region of the n-sphere. This can be observed in the left
section of Figure 8.2. It is important to remark that the margin employed in the triplet
loss is fixed despite the relatedness of hard-negative pairs.

8.3.1 SAM Formulation

Even though a fixed margin might be acceptable in image-to-image metric learning
tasks, a fixed margin can not capture the continuum of language properly. Looking at
the right on Figure 8.2, we can acknowledge that even the non-GT items can properly
explain the provided image. Therefore, using a fixed margin and treating every nega-
tive as equal is unfeasible if the semantics is to be modeled properly. Due to this fact,
creating an adaptive margin is imperative to teach our models the continuous nature
of language.

Consequently, we formulate the Semantic Adaptive Margin (SAM) to dynamically
calculate the similarity between images and sentences. More formally, given a positive
pair (i;,c;;) with negative samples (il‘, ) (i,,, ¢;;,), we use the ground truth caption
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set Gy, to calculate the triplet loss by incorporating a SAM (Lsan):

Lsam = max(aio; +w(ei;,ec;n) —w(ei;,ecg),O] +
max|a; +w(ei;,eC;) —w(ei;,eC;),O]
aize = (P(Gp, c,) = P(Gp, ¢/ T
ar2i = (P(Gp, ¢,) = p(Gp, ;)T

(8.7)

where v is a similarity function such as cosine similarity, ¢ stands for an aforemen-
tioned captioning metric (SPICE or CIDEr) and 7 is a temperature parameter to be
controlled on how wide or small the margin is desired. In other words, 7 is used as
a scaling factor. In essence, if ¢, (a negative caption) is close to G, then a;»; will be
lower and when it is farther away, the margin will be higher. As it can be appreciated by
Equation 8.7, we incorporate a SAM into the original triplet formulation, which assigns
a unique margin value specific to each sampled pair. SAM still can be optimized jointly
with the original triplet formulation.

8.4 Experiments

In this section, we present the results obtained by evaluating state-of-the-art models
with and without the adoption of the proposed SAM. Section 8.4.2 shows the perfor-
mance of state-of-the-art methods evaluated on the introduced Semantic Recall met-
ric. In Section 8.4.3 we present the significantly better performance achieved at re-
trieval when using considerably less training data compared to current state-of-the-
art models. Section 8.4.4 showcases several state-of-the-art models with and without
the adoption of our adaptive margin formulation. Finally, Section 8.4.5 presents the
effects of employing the original triplet formulation, different values of a temperature
parameter 7, and different sampling strategies.

In all our experiments, we employ publicly available code from the authors and
train the models from scratch according to the original strategy and hyper-parameters.
In order to perform a fair comparison, we do not use ensembles in our experiments.
We employed CIDEr to assess the similarity between samples at training time (¢»). With
the purpose of avoiding training and evaluating in similar metrics, we employ SPICE
when NSC is used as an evaluation metric.

8.4.1 Implementation Details

In this section, we describe the hyper-parameters and the training procedure used to
obtain the models shown in the main paper for the reduced data scenario (Table 2 -
main paper) and the state-of-the-art comparison (Table 3 - main paper). Specifically,
for each model, we employ the training procedure described in the original paper. Each
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of the models use the 36 most confident regions obtained by a Faster R-CNN [59] from
the object detector proposed by [7]. The visual features used by each model are the
same in all cases. The best model is selected according to the sum of NCS with CIDEr
as a similarity metric on the validation set. It is important to note that NCS with SPICE
is the one we employ for evaluation.

For the model VSRN [111] + SAM, we start with the public pretrained weights. We
add our SAM loss function and re-train the model for 30 epochs. For Flickr30K we em-
ploy a soft negative sampling, with a temperature parameter T = 3 and a weight on the
SAM triplet loss of 20. When training on MSCOCO, we employ a soft negative sam-
pling, with a temperature parameter 7 = 10 and a weight on the SAM triplet loss of 5.
In both datasets, the original triplet loss is kept alongside with our SAM formulation.
As in the original paper, the word embedding size is 300-d and the dimension of the
final joint embedding space is 2048-d. The mini-batch size employed is 128. At train-
ing, the Adam optimizer [99] is used. The original triplet loss margin is 0.2. The model
is trained for 30 epochs, with a learning rate of 0.0002 for the initial 15 epochs, and is
divided by 10 for the remaining 15 epochs.

In the CVSE [203] + SAM model, we train the model from scratch alongside the
proposed SAM loss function as follows. In Flickr30K, we employ a random sampling
strategy with a temperature parameter T = 7 and a weight on the SAM triplet loss of 5
alongside with the original triplet. In MSCOCO, we employ a soft negative sampling
strategy, with a temperature parameter 7 = 5 and a weight on the SAM triplet loss set
to 5, and only our SAM triplet loss is used. Following the original CVSE model, the
joint space dimension is 1024-d. The consensus exploitation is performed with a 300-
d GloVe [151] representation. The loss formulation contains the following weights for
each term are kept, 1; = 3,1, = 5,13 = 1,14 = 2. The mini-batch size employed is 128.
At training, the Adam optimizer [99] is used. The original triplet loss margin is 0.2. The
model is trained for 30 epochs, with a learning rate of 0.0002 for the initial 15 epochs
and is divided by 10 for the remaining 15 epochs.

Finally, for the SGR [45] + SAM model, we train the model from scratch in both
datasets. In Flickr30K, we employ a random sampling strategy, with a temperature
parameter 7 = 10 and a weight on the SAM triplet loss of 10. In MSCOCO, we use a
random sampling strategy, with a temperature parameter 7 = 5 and a weight on the
SAM triplet loss of 5. In both datasets, the original triplet is kept alongside with our
SAM triplet. Training of the original model is performed as described by the authors.
The word embedding size is 300-d and the number of hidden states is 1024-d. The
dimension of the similarity representation is 256. The original triplet loss margin is
0.2. The number of reasoning steps is 3. The initial learning rate is set to 0.0002 for 10
epochs and is decreased by a 10 on the final 10 epochs on MSCOCO. For Flickr30K, the
initial learning rate is kept for 30 epochs and it decays by 0.1 for the next 10 epochs.
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Figure 8.3: Text-to-Image Top-5 retrieved results evaluated with Recall and the pre-
sented Semantic Recall for Non-GT items.

8.4.2 Insights on State-of-the-Art Retrieval

In this section, we compare the behavior of existing systems by evaluating them on the
newly proposed metrics. We evaluate the following state-of-the-art models: VSE++ [51],
SCAN [109], VSRN [111], CVSE [203], SGR and SAF [45]. The experiment depicting the
top-5 text-to-image retrieval scores for non-ground truth relevant items is shown in
Figure 8.3. The scores shown are in terms of Recall and Semantic Recall at a cut-off
point 5.

It is worth noting in Figure 8.3 that according to the recall (R@5), the models have
a steady raise in recall scores as the number of relevant images m increases. How-
ever, the opposite effect is found when the models are evaluated with the previously
introduced Semantic Recall (SR) formulation. The behavior of the models according
to these two metrics seems to have an inversely proportional relation. The reason is
due to the different definition between R and R" . Merely evaluating the models on the
first correctly retrieved item does not provide a complete landscape of its performance.
Instead, our formulation shows that the models tend to have a decreasing score when
more relevant items are considered. Furthermore, we observe that the big difference in
numbers between models seems to diminish when we increase the relevant items for
both metrics. Our conclusion is that the performance boost we obtain in the literature
is not reflected well on the non-GT relevant items, suggesting that the generalization
power of the models is overestimated.
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Recall Normalized Cumulative Semantic Score
Method 12T T21 12T T2I
R@1 R@5 R@10|R@1 R@5 R@10|Rsum|N@1 N@5 N@10|N@1 N@5 N@10|Nsum
CVSE [203]1] 13.0 16.2 23.9|12.5 30.9 42.2|138.7| 19.0 24.4 28.3|25.7 34.0 36.3| 167.6
CVSE+SAM [34.6 60.4 70.9(23.9 50.6 62.8)303.2|37.4 40.2 44.1|38.6 46.3 47.1| 253.6
SGR [45]t 03 0.7 1.3] 0.2 0.6 1.1 4.2 2.8 4.2 5.7 5.7 9.7 11.7| 39.8
SGR+SAM [37.9 64.8 77.5/26.6 53.4 64.4|324.6/40.1 41.0 44.6/41.4 48.1 48.5|263.7
CVSE [203]1] 30.4 47.5 59.6]28.8 58.1 69.7| 294.1| 30.8 39.9 43.7|42.4 48.0 47.7| 252.5
CVSE+SAM |48.7 73.2 81.8/37.9 66.2 76.0|383.8|46.2 49.7 52.4|51.0 52.7 50.9( 302.8
SGR [45]t 11.0 29.3 40.0| 7.3 21.4 31.6| 140.6( 20.3 24.1 29.7|22.7 33.4 37.3| 167.6
SGR+SAM |54.0 81.4 87.8/41.3 68.0 77.5(410.0|52.7 52.5 53.8/54.2 53.9 51.9|319.0
CVSE [203]1] 28.2 49.0 63.6] 24.9 58.5 74.4| 298.6| 34.9 40.6 43.3| 44.6 57.5 59.8| 280.9
CVSE+SAM |41.1 71.8 82.1|32.2 65.4 77.2|369.8|47.2 49.5 51.6|/50.6 59.8 59.8| 318.5
SGR [45]F 02 1.1 21| 0.1 0.6 1.2 53| 41 5.1 59| 42 6.7 8.1 34.2
SGR+SAM [23.7 59.0 74.3|24.9 56.4 72.3|310.6|33.8 39.2 43.5/45.3 58.6 61.7|282.1
CVSE [203]t| 48.5 77.8 85.7|36.2 69.7 81.6| 399.5|51.4 53.8 54.8|54.5 62.7 62.3| 339.7
CVSE+SAM |48.6 77.3 86.5/37.9 71.1 82.6|404.0| 50.7 54.2 55.4|55.9 62.9 62.3|341.5
SGR [45]t 1.0 3.0 53| 02 05 13| 11.3] 69 79 9.0 29 4.2 5.7| 36.6
SGR+SAM [30.4 62.6 79.1/29.4 63.1 77.6|342.2|39.2 42.6 46.9/49.6 61.3 63.6| 303.3

F-10%

F-25%

C-3%

C-5%

Table 8.2: Quantitative results on reduced training data samples. The acronyms used
in the first column stand for Flickr30K (F), MSCOCO 1K (C). The (%) denotes the pro-
portion of the training data used in relation to the original dataset size. Results are de-
picted in terms of Recall@K (R@K) and Normalized Cumulative Semantic Score (N@K).
The T depicts that models are trained with the publicly available code released by the
original authors.

8.4.3 Reduced Data Scenario

Further investigating our suggested formulation, we experiment on the low data regi-
men. We hypothesize that our adaptive margin formulation based on CIDEr is better
equipped to deal with scarce training data scenarios, as it can better exploit the seman-
tics over the whole data. More explicitly, we set aside a similar proportion of training
samples from Flickr30k (29,000) and MSCOCO (113,287). In Flickr30K we employed
10% and 25% of the training set, resulting in 2,900 and 7,250 samples respectively. In
the case of MSCOCO we employed 3% and 5% of the training set, thus yielding 3,398
and 5,664 data points. We evaluate all the models on the standard 1K test set split of
each dataset. We employ two state-of-the-art methods, CVSE [203] and SGR[45] for ex-
perimentation. Similar to the previous section, all the experiments are performed with
publicly available code as described by the authors disregarding the adoption or not of
our formulation. The results of these experiments can be found in Table 8.2.

In the 10% data scenario of Flickr30k, CVSE with SAM achieves almost 3 times the
performance when compared to the original model. It is paramount to note that by the
adoption of our formulation SGR achieves an enormous improvement. On the other
hand, the original SGR model is barely capable to learn useful information due to the
bigger number of parameters compared to CVSE.

As more data is used on each scenario, the original models tend to improve in per-
formance and the retrieval gap decreases. Results in Flickr30k tend to be stronger when
adopting the proposed SAM. This is due to the significantly higher descriptive nature of
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captions found in Flickr30K training dataset compared to the less granular ones found
in MSCOCO.

The significant improvement in scarce training data also translates into an increased
rate of convergence. By employing an adaptive margin with CIDEr, a model exploits a
strong guiding cue about the semantic space to be learned according to weighted n-
gram statistics.

8.4.4 Comparison with State-of-the-Art

The results obtained by comparing state-of-the-art methods with and without our for-
mulated SAM are shown in Table 8.3. First, by incorporating SAM, calculated from an
image captioning metric into a state-of-the-art pipeline, a boost in the recall is ob-
tained. A similar effect is achieved in most of the models when they are also evalu-
ated with the proposed NCS metric. Second, both depicted metrics have a strong de-
gree of correlation, however, obtaining an improvement in recall does not necessarily
translate into an increase in NCS. This effect can be observed in particular with the
MSCOCO dataset with the SGR model.

This is due to the fact that Recall and NCS are inherently different metrics that pro-
vide complementary information. Recall shows how well a model ranks a single image
or sentence labeled as relevant. Whereas, the NCS shows what is the degree of seman-
tics captured by a model at a cut-off point k. Therefore, an increase in Recall or NCS
should not necessarily be treated as equally significant.

Third, it is evident that a greater improvement is achieved on Flickr30k than in
MSCOCO. All of our models on Flickr30k perform better than the baselines on every
metric, while in MSCOCO, the boost attained is more conservative. The reason is that
captions of Flickr30k are more detailed and longer compared to the ones in MSCOCO,
which are shorter and less specific. This difference in the nature of the captions allows
CIDEr to provide a more precise and discriminative margin per sample in intricate cap-
tions, due to the CIDEr formulation which relies on a weighted tf-idf n-gram matching.

Finally, it is important to note that while the Recall score increases as the cut-off
point increases, in our proposed NCS metric this behaviour is not present. The NCS
shows the normalized capability of a model to capture the greatest amount of semantic
similarity on a specific cut-off point.

8.4.5 Effect of Temperature and Sampling

In this section, we study the effect of the temperature parameter 7, sampling tech-
niques, and whether the original triplet is kept or only a SAM is employed. Several
sampling techniques are explored to find the negative items in our SAM formulation,
namely random (RS), hard negative (HN), and soft negative(SN). In HN, the negative
item in each triplet is selected as the closest to the anchor in a batch [51]. We refer to
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Flickr30K
Recall Normalized Cumulative Semantic Score
Method 12T T2I 12T T2I
R@1 R@5 R@10|R@1 R@5 R@10|Rsum|N@1 N@5 N@10|N@1 N@5 N@10|Nsum
VSRN[111]+|68.1 88.4 93.9 |51.6 78.3 85.8 |466.1|60.3 62.9 62.9 [63.2 58.8 55.0 |363.4
VSRN+SAM (68.4 89.7 94.8 [52.4 78.7 86.6 |470.6|60.2 62.7 63.1 |64.1 59.4 55.7 |365.2
CVSE [203]1|68.6 87.7 92.7 {53.2 81.1 88.3 [471.6(59.0 63.5 63.1 [64.1 59.6 55.5 |364.9
CVSE +sam |70.0 89.2 93.1 |55.0 82.6 89.0 |478.9|59.6 64.6 64.2 (65.5 59.8 55.3 |387.9
SGR[45]1 |74.4 92.9 96.3 |55.8 81.1 87.9 |488.4|68.1 65.6 63.8 [66.0 58.6 54.5 |376.7
SGR+SAM [75.9 92.4 96.6 |57.6 83.1 89.7 (495.3|69.4 66.2 64.0 [67.5 59.2 55.0 |381.4

MSCOCO 1K
Recall Normalized Cumulative Semantic Score
Method 12T T2I 12T T2I
R@1 R@5 R@10|R@1 R@5 R@10|Rsum|N@1 N@5 N@10|N@1 N@5 N@10|Nsum
VSRN[111]t|72.4 94.7 97.8 |61.2 89.3 94.9 |510.3|68.3 72.1 68.2 [74.4 71.1 66.4 |420.6
VSRN+SAM | 74.6 93.6 97.5 |61.5 89.6 94.9 |511.7|69.3 72.2 68.1 |74.5 70.9 66.5 |421.5
CVSE[203]1 | 77.0 94.2 97.3 [64.3 91.1 95.9 [519.8(69.7 73.3 69.3 [76.2 71.4 67.1 |427.2
CVSE+SAM |79.8 95.1 97.7 |67.0 93.0 97.3 |529.9|71.8 76.3 71.0 (78.6 72.9 69.1 | 439.6
SGR[45]t [79.9 97.4 98.3 [63.2 90.5 95.4 |524.774.7 73.1 67.9 [76.1 70.7 67.2 |429.9
SGR+SAM [80.7 97.2 98.6 [63.8 90.5 95.9 [526.7|73.2 72.9 67.8 |76.2 70.9 67.4 | 428.5

MSCOCO 5K
Recall Normalized Cumulative Semantic Score
Method 12T T2I 12T T2I
R@1 R@5 R@10|R@1 R@5 R@10|Rsum|N@1 N@5 N@10|N@1 N@5 N@10|Nsum
VSRN[111]+|48.4 78.9 87.9 |37.2 67.9 79.6 [399.9|55.8 58.6 61.2 [60.2 63.4 62.8 |362.2
VSRN+SAM (49.1 79.0 87.4 [37.5 68.1 79.5 [400.6|56.4 58.8 61.7 |60.6 63.5 62.9 |363.9
CVSE[203]1 |53.1 79.6 88.0 {40.5 72.2 83.1 |[416.5[57.1 61.1 63.2 [62.2 64.4 63.4 |371.4
CVSE+SAM [56.4 82.4 90.1 [42.3 73.9 84.5 (429.6|59.2 63.0 64.5 [63.8 65.3 64.4 |380.2
SGR[45]t [56.0 83.3 90.7 [40.1 69.3 80.2 |419.6 60.4 59.1 60.4 [61.7 62.5 61.6 |366.0
SGR+SAM |55.7 83.2 91.2 [40.5 69.7 80.5 [420.8|59.5 59.3 60.4 [62.0 62.4 61.4 | 365.0

Table 8.3: Comparison of retrieval results of the original VSRN, CVSE and SGR models
with and without the proposed SAM. Results are depicted in terms of Recall@K (R@K)
and Normalized Cumulative Semantic Score (N@K). The column Rsum and Nsum is
the summation of the overall retrieval scores in image-to-text and text-to-image for
Recall and NCS respectively. The t depicts that models are trained with the publicly
available code released by the original authors.

random sampling when a negative item is randomly picked in a batch. SN refers to
picking the furthest negative item to the anchor within the batch. We investigate the
effect of these parameters by employing CVSE [203] model as a baseline. The majority
of the best performing models obtained were by employing a Soft Negative (SN) sam-
pling, thus we provide the results on both datasets in Table 8.4. The results of the effect
of Random Sampling (RS) and Hard Negative (HN) sampling in Flickr30k are shown in
Table 8.5. In both tables, we provide the sum of the Recall and NCS metrics at the top
1, 5, and 10 in image-to-text and text-to-image scenarios. When the NCS is employed,
we show two variations. One, by preserving the GT images labeled as relevant, and the
second one by removing only the GT images, denoted with the acronym N in Table 8.4
and 8.5.

Initially, it is important to notice that improvements on the recall score do not nec-
essarily go in hand with better scores at NCS. This can be seen in the MSCOCO-1K
results between the fifth row and the first row in Table 8.4. In these experiments, we
obtain a score of 521 on Rsum and 429 on NCS sum in the fifth row. Comparing it to
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s |T F30K MSCOCO-1K
Nsum Nsum(N) Rsum | Nsum Nsum(N) Rsum
3 |SN|v [371.29 257.42 479.1 | 429.41 312.2 517.9
3 |SN| X |369.73 258.12 476.5 | 427.32 313.06 515
5 |SN|v [369.97 25721 477.5|429.74 311.53 520.5
5 |SN| X |371.31 258.75 478.2 | 428.2 312.89 518
10 |SN | v [ 369.74 257.64 477.2 | 429.09 306.51 521.3
10 [SN | X | 370.17 257.85 475.8 | 429.88 309.27 520.6

Table 8.4: Experiments of the effect of (7), soft negative (SN) sampling, and the whether
the original triplet is kept (v') or only our formulation is employed (X). The acronym
Nsum(N) refers that GT elements have been removed.

st F30K

Nsum Nsum(N) Rsum
3 |RS|v|355.87 257.93 460.1
3 |RS |X|344.44 257.67 441.7
5|RS |vV/|367.02 258.25 473.4
5|RS|X|363.27 259.83 468.3
10| RS |V|370.09 257.42 478.7
10| RS |X|365.72 258.82 471.2
3 |HN|v/'[338.94 249.04 435.1
3 |HN|X|344.19 258.27 439.5
5 |HN|v/|369.94 257.97 478.8
5 |HN|X|351.68 257.64 450.4
10|HN|v/|369.04 256.85 477.2
10|HN| X |351.18 257.83 448.6

Table 8.5: Experiments of the effect of (r), random (RS), and hard negative (HN) sam-
pling. The third column (T) shows whether the original triplet is kept (v') or only our
formulation is employed (X). The acronym Nsum(N) refers that GT elements have been
removed.

the first row, there is a 4% drop in recall, however, the score of 429 remains on NCS.
Although NCS and Recall are correlated, they provide different information about our
models.

In general, we obtain our best NCS scores when the temperature parameter 7 is in-
creased to 10. The smaller margin gives the model more freedom in shaping the space
on which to project the data points. By increasing the margin, we restrict the mod-
els on where to project the positive and negative samples, resulting in a drop in NCS
and Recall. However, a trade-off between NCS scores on GT and non-GT items exists.
The increase in the margin (lower values in 7) seems to improve the results on non-GT
items, this is especially evident on MSCOCO. We discover that on average, we obtain
the best results with SN. Regarding the usage of the original triplet formulation, we
notice that it is complementary to SAM since each one focuses on learning a different
task. The hard negative focuses solely on GT samples, while SAM learns to measure the
degree of similarity.
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8.4.6 Dwelving into Temperature and Sampling

In this section, we extend the results of the effect of setting different temperature values
7 and sampling strategies. In all the experiments in this section, CVSE [203] is used.
We evaluate the impact of these parameters on Flickr30K on Table 8.6 and removing
GT items (non-GT) on Table 8.7. When calculating the results on MSCOCO 1K, we
keep the soft negative (SN) sampling strategy while the impact of different values of 7
and the usage of the original triplet is measured. Table 8.8 shows the results with the
inclusion of GT and Table 8.9 depicts the results obtained with non-GT relevant items.

Recall Normalized Cumulative Semantic Recall

12T T2I 12T T2I

R@1 R@5 R@10|R@1 R@5 R@10|Rsum|N@1 N@5 N@10|N@1 N@5 N@10 |[Nsum
69.8 87.8 93.1 [55.5 83.2 89.7 |479.1|59.6 65.4 64.6 [65.9 60.1 55.8 |371.3
70.0 88.1 92.6 |54.1 82.4 89.3 |476.5|60.0 64.7 64.5 [64.8 60.0 55.8 |369.7
69.7 88.4 93.1 |54.5 82.4 89.4 |477.5|59.9 65.2 64.4 [65.2 59.7 55.5 |370.0
70.4 88.2 92.5 |55.1 82.6 89.4 |478.2|60.3 65.6 64.3 [65.5 59.8 559 |371.3
69.6 89.1 92.3 (549 82.2 89.1 |477.2|60.0 65.4 64.2 |65.3 59.6 55.3 |369.7
70.6 86.5 929 [54.1 82.3 89.4 |475.8(60.9 65.1 64.3 [64.7 59.6 55.7 |370.2
65.4 85.7 91.6 [50.9 79.1 87.4 |460.1|56.3 61.1 61.5 [62.1 59.1 55.9 |355.9
60.9 84.3 89.4 (469 76.0 84.2 |441.7|53.8 58.9 59.7 [59.0 58.0 55.1 |344.4
68.3 88.1 92.7 |54.0 81.5 88.8 |473.4|59.1 63.9 63.8 [64.7 59.6 56.0 |367.0
67.5 87.4 92.1 |52.9 80.3 88.1 |468.3|58.1 63.0 63.0 [63.8 59.4 56.0 |363.3
70.7 87.8 93.7 |54.7 82.4 89.4 |478.7(60.9 64.8 64.0 [65.2 59.8 55.4 |370.1
68.0 87.9 93.0 [52.8 81.2 88.3 |471.2(59.5 63.9 63.5 [63.8 59.5 55.5 |365.7
59.6 81.4 89.3 (449 75.6 84.3 |435.1|54.1 57.4 58.9 [56.9 57.2 54.4 |338.9
60.5 85.8 91.5 [44.6 73.9 83.2 |439.5|55.5 58.7 59.6 [57.8 57.5 55.0 |344.2
71.1 88.7 92.7 |54.4 82.6 89.3 |478.8|60.6 64.6 64.1 [65.1 59.8 55.7 |369.9
62.9 86.3 92.7 |47.4 76.7 84.4 |450.4|57.6 60.1 60.9 [59.6 58.2 55.3 |351.7
70.0 88.3 92.6 [54.7 82.4 89.2 |477.2|60.2 64.5 64.0 [65.1 59.8 55.5 |369.0
63.5 85.1 92.0 [47.2 76.3 84.5 |448.6|57.2 60.6 60.8 [59.5 58.1 55.0 |351.2
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Table 8.6: Experiments on Flickr30K regarding the effect of (7), soft (SN), random (RS),
and hard negative (HN) sampling. The third column (T) shows whether the original
triplet is kept (v/) or only our formulation is employed (X). For all the experiments
shown, CVSE[203] is employed. Results are depicted in terms of Recall@K (R@K) and
Normalized Cumulative Semantic Score (N@K).

8.4.7 Qualitative Samples for the Reduced Data Scenario

In this section, we provide qualitative samples on image-to-text and text-to-image in
Flickr30K and MSCOCO 1K coming from the reduced data scenario by only using 10%
of the training set in Flickr30K and 5% in MSCOCO. To offer additional insights, we
provide the Recall (RY) and NCS per sample. It is evident from Tables 8.10, 8.11 and
Figures 8.4, 8.5, 8.6 and 8.7, that the incorporation of the proposed SAM improves not
only the standard Recall metric but also the semantics of retrieved non-GT items on
both scenarios, image-to-text and text-to-image.
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Normalized Cumulative Semantic Recall (Non-GT)
TS |T 12T T21
N@1 N@5 N@10|N@1 N@5 N@10|Nsum

3 (SN |v/[40.9 42.4 43.1 [42.7 44.1 44.4 257.5
3 [SN|X|41.2 42.3 43.1 |42.8 44.2 445 258.1
5|SN|v/[41.4 423 428 [42.8 439 44.1 257.2
5|SN|X[41.5 42.6 43.4 [42.7 44.0 44.6 258.8
10|SN |v/'|42.3 42.3 42.8 |42.6 43.7 439 257.6
10(SN [X|41.3 42.5 43.0 |42.7 44.0 444 257.8
3|RS|vV[40.4 42.1 43.1 [42.6 44.6 45.1 257.9
3 |RS|X|40.7 42.2 43.0 |42.4 444 45.0 257.7
5|RS|v|40.9 42.6 43.1 |42.5 44.2 45.0 258.3
5|RS|X[41.0 43.1 435 [42.6 44.5 45.1 259.8
10| RS |v/|41.7 42.6 42.8 |42.6 43.8 43.9 257.4
10( RS [X|41.5 43.0 43.3 |42.5 44.1 444 258.8
3 |HN|v/[38.4 40.5 41.4 [41.1 43.5 44.3 249.0
3 [HN|X|41.2 41.9 42.7 |42.8 444 453 258.3
5 |HN|v/|41.2 42.4 43.0 |42.9 440 444 258.0
5 |HN|X|40.1 42.3 43.0 |42.6 444 452 257.7
10|HN|v/'|41.0 42.4 43.0 |42.3 43.9 44.1 256.8
10{HN|X|41.2 42.6 43.0 |42.1 44.3 44.6 257.8

Table 8.7: Experiments on Flickr30K (Non-GT) regarding the effect of (7), soft (SN),
random (RS) and hard negative (HN) sampling . The third column (T) shows whether
the original triplet is kept (v') or only our formulation is employed (X). For all the ex-
periments shown, CVSE[203] is employed. Results are depicted in terms of Recall@K
(R@K) and Normalized Cumulative Semantic Score (N@K).

Recall Normalized Cumulative Semantic Recall

T|S|T 12T T2I 12T T21
R@1 R@5 R@10|R@1 R@5 R@10|Rsum|N@1 N@5 N@10|N@1 N@5 N@10|Nsum
3 [SN[vV/|76.2 93.7 96.3 |63.6 91.7 96.4 |517.9(69.2 73.7 69.7 |75.8 72.5 68.6 |429.4
3 |SN|[X|74.8 93.5 96.8 [62.2 91.5 96.2 |515.0|68.3 73.2 69.4 |74.8 72.7 69.0 | 427.3
5|SN|[v/|76.4 94.0 97.3 |64.2 92.2 96.4 [520.5|68.8 74.1 70.0 |76.1 72.5 68.4 |429.7
5[SN|X[76.1 93.8 96.9 [63.2 91.4 96.6 |518.0|68.2 73.6 69.6 |75.5 72.4 68.9 | 428.2
10|SN|V[76.9 94.2 97.7 |64.4 91.8 96.3 |521.3(69.9 73.8 69.6 |76.3 71.9 67.7 |429.1
10|SN|X|76.8 94.2 97.4 |64.2 91.8 96.2 |520.6|70.1 73.7 69.7 [76.3 72.1 68.0 |429.9

Table 8.8: Experiments on MSCOCO 1K regarding the effect of (7), employing a soft
negative sampling strategy (SN). The third column (T) shows whether the original
triplet is kept (v) or only our formulation is employed (X). For all our experiments,
we employ CVSE[203]. Results are depicted in terms of Recall@K (R@K) and Normal-
ized Cumulative Semantic Score (N@K).
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Normalized Cumulative Semantic Recall (Non-GT)
T|S|T 12T T21

N@1 N@5 N@10|N@1 N@5 N@10 |Nsum
3 |SN|v/[45.4 46.0 46.0 |56.9 58.9 59.0 312.2
3 |SN|X|[45.2 46.2 46.2 |56.9 59.1 59.5 313.1
5[SN|v/|45.4 462 46.2 |56.6 58.6 58.6 311.5
5|SN|X|453 46.2 46.2 |56.9 59.1 59.3 312.9
10|SN|v'|44.1 45.2 45.1 |56.6 57.8 57.7 306.5
10|SN|X|44.4 45.7 45.5 |57.1 58.3 58.2 309.3

Table 8.9: Experiments on MSCOCO 1K (Non-GT) regarding the effect of (), employ-
ing a soft negative sampling strategy (SN). The third column (T) shows whether the
original triplet is kept (v') or only our formulation is employed (X). For all our exper-
iments, we employ CVSE[203]. Results are depicted in terms of Recall@K (R@K) and
Normalized Cumulative Semantic Score (N@K).
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) Ground Truth:
" Three zebras and other wild animals out in a semi-green field.
Three zebras and two other animals grazing.
& |Wildlife standing near water area in natural setting.

» || Three zebras near the shore line of a body of water.
A group of animals stand next to a watering hole.
Three zebras near the shore line of a body of water. R; : 1,
S;:0.46
A heard of zebra on the plains at a watering hole. R; : 0, S;:0.21
A group of animals stand next to a watering hole. R; : 1, S; : 0.33
A group of zebras and birds are gathered around water. R; : 0,
S;:0.17
There is a herd of zebras standing around. R; : 0, S; : 0.06
Ri@5=1,N;@5=0.61
Three zebras near the shore line of a body of water. R; : 1,
S;:0.46
There is a herd of zebras standing around. R; : 0, S; : 0.06
A heard of zebra on the plains at a watering hole. R; : 0, S; : 0.21
There are several zebras grazing near the water as a bird flies
over them. R;:0, S;:0.05
A group of zebras and birds are gathered around water. R; : 0,
S;:0.17
R;@5=1,N;@5=0.47
Three zebras near the shore line of a body of water. R; : 1,
S;:0.46
Two zebras fighting in a cloud of dust. R; : 0, S; : 0.05
Three zebra in the middle of a field with a body of water in the
distance. R; : 0, S;: 0.24
Three zebras standing in a sandy desert area. R; : 0, S;:0.17
Three zebras and other wild animals out in a semi-green
field. R;: 1, S;:0.42
R;@5=1,N;@5=0.67
A zebra grazing on long dry grass in a field. R; :0,S; : 0.05
Four zebras are grazing at a nature reserve. R; : 0, S; : 0.06
A group of animals stand next to a watering hole. R; : 0, S; : 0.06
Three zebras standing in a sandy desert area. R; : 0, S;: 0.17
The small herd of sheep are grazing on the grassy field. R; : 0,
§;:0.05
R;@5=0,N;@5=0.19

CVSE + SAM

CVSE

SGR + SAM

SGR

Table 8.10: Image-to-Text qualitative results in MSCOCO 1K. The initial row depicts
the queried image and the associated ground truth captions. Each retrieved caption
shows the Recall (R;) and SPICE (S;) score when compared with the GT captions. Each
sample showcases the final per sample Recall (R;@5) and NCS (N;@5) score obtained.
Bolded captions represent the correctly retrieved ground truth items.
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Ground Truth:
Two children and a woman are sitting on a sofa, one of the
children has a camera.

J5 Three Asian children sitting on a couch with tapestries hanging

in the background.

An Asian woman and her two children sit at a table doing crafts.
A woman in a red shirt sitting with two young girls in dresses.
Three young girls in arts and crafts room.

CVSE + SAM

Two children and a woman are sitting on a sofa, one of the
children has a camera. R; : 1, S; : 0.39

An Asian woman and her two children sit at a table doing
crafts. R;: 1, S;:0.43

Three Asian children sitting on a couch with tapestries
hanging in the background. R; : 1, S;: 0.39

A woman and three children are in a room full of toys.

Ri :0, S,‘ :0.18

A group of children sitting on the floor, eating snacks at school
R;:0,S;:0.05

R;@5=1,N;@5=0.72

CVSE

Three college-age women sit in upholstered chairs. R; : 0, S; : 0.05
Three young women face each other while sitting on red

plush chairs. R; : 0, S; : 0.04

A plat is sitting on the floor next to a blond girl. R;: 0, S;:0.05
Three girls talking in a lobby. R; : 0, S;:0.10

Two kids sitting at a table eating. R;:0, S;:0.17
R;@5=0,N;@5=0.16

SGR + SAM

Three Asian children sitting on a couch with tapestries
hanging in the background. R; : 1,S;:0.39

An Asian woman and her two children sit at a table doing
crafts. R;: 1, S;:0.43

Six children are sitting around taking notes together. R; : 0,
S;:0.05

Woman on four way seesaw with 2 kids. R; : 0, S; : 0.14

A group of mostly asian children sitting at cubicles in blue
chairs. R; : 0, S;:0.09

R;@5=1,N;@5 =0.54

SGR

A child playing in the ocean. R; :0, S;:0.05

Construction workers deal with removing railroad tracks.
R;:0,S;:0.00

A mural of children on a brick wall. R; : 0, S; :0.05

Four people in the subway are having fun. R; : 0, S; : 0.00
Several elderly men are grouped around a table. R; : 0, S; : 0.05
R;@5 =0, N;@5 =0.07

Table 8.11: Image

-to-Text in Flickr30K. The first row shows the queried image and the

GT captions. Metrics are Recall (R;) and SPICE (S;) score. Each row showcases the final

per sample Recall

(R;@5) and NCS (IV;@5) score obtained.
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§;:0.23 S;:0.07 S;:0.10 S;:0.49 S;:0.06
R;@5=1, NCS;@5=0.59

CVSE

§;:0.07 §;:0.06 §5;:0.16 §;:0.06 §;:0.25
R;@5=0, NCS;@5=0.38

SGR + SAM

$;:0.49 §;:0.06 §;:0.06 §;:0.11
R;@5=1, NCS;@5 =0.54

SGR

§;:0.31 §5;:0.14 §;:0.06
R;@5=0, NCS;@5=0.37

Figure 8.4: MSCOCO 1K text-to-image qualitative samples. Each retrieved image
shows the SPICE (S;) score when compared with the GT. Recall (R;) is shown as green
(1) or red (0) border on retrieved images. The final score per sample is presented in
terms of Recall (R;@5) and NCS (IV; @5).
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CVSE + SAM

—SiKEA i
S§;:0.14 S;:0.00
R;@5=1, NCS;@5=0.45

§;:0.07

CVSE

§;:0.00 §;:0.00
R;@5=1, NCS;@5=0.34

S;:0.07

SGR + SAM

S;:0.00

§;:0.14 §;:0.07
R;@5=1, NCS;@5=0.54

§;:0.14 §;:0.00 $;:0.00
R;@5=0, NCS;@5=0.12

Figure 8.5: MSCOCO 1K text-to-image qualitative samples. Each retrieved image
shows the SPICE (S;) score when compared with the GT. Recall (R;) is shown as green
(1) or red (0) border on retrieved images. The final score per sample is presented in
terms of Recall (R;@5) and NCS (IV; @5).
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Query 1: A man

is sitting playing guitar.

CVSE + SAM

S;:0.09 §;:0.14 §;:0.12 §;:0.24
Ri@5=1, NCS;@5=0.79

S;:0.24
Ri@5=1, NCS;@5=0.56

$;:0.09

SGR + SAM

$;:0.09 S;:0.14
R;@5=1, NCS;@5=0.81

S;:0.06 §;:0.00 $;:0.0 $;:0.00
R;@5=0, NCS;@5=0.18

Figure 8.6: Flickr30K text-to-image qualitative samples. Each retrieved image shows
the SPICE (S;) score when compared with the GT. Recall (R;) is shown as green (1) or
red (0) border on retrieved images. The final score per sample is presented in terms of
Recall (R;@5) and NCS (IV; @5).
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Query 1: People walking on a trail in a tree filled park.

CVSE + SAM

S;:0.00 S;:0.06 S;:0.31 S;:0.06 S;:0.11
R;@5=1, NCS;@5=0.52

CVSE

S;:0.00 S;:0.04 S;:0.00 S;:0.14 S;:0.04
R;@5=0, NCS;@5=0.21

_SGR + SAM

S;:0.06 §;:0.31 S;:0.04 S;:0.17 S;:0.12
R;@5=1, NCS;@5=0.66

§;:0.00 §;:0.06 §$;:0.12 $;:0.11
R;@5=0, NCS;@5=0.27

Figure 8.7: Flickr30K text-to-image qualitative samples. Each retrieved image shows
the SPICE (S;) score when compared with the GT. Recall (R;) is shown as green (1) or
red (0) border on retrieved images. The final score per sample is presented in terms of
Recall (R;@5) and NCS (IV; @5).
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8.5 Conclusion

In this Chapter, we highlight the challenges stemming from the lack of annotations
in the task of image-text matching. Inspired by image captioning metrics, we present
a formulation that addresses the many-to-many mapping problem between images
and captions. The introduced metric, namely Normalized Cumulative Semantic Score
(NCS), shows a higher degree of semantic correlation to human judgment compared
to the standard Recall. Additionally, we show a comprehensive set of experiments that
considers the usage of IC metrics to learn an adaptive margin. The incorporation of
such margin yields a big improvement in scenarios when training data is scarce (e.g.
semi-supervised learning), as well as increasing the semantics of the retrieved non-GT
items.



Chapter 9

Conclusions and Future Directions

This chapter provides a summary of this thesis’ contributions to the machine learn-
ing and computer vision domain, with a focus on exploiting scene text for a more
holistic image understanding. We also point out the primary successes and short-
comings of the suggested methods from previous chapters. We direct the reader
toward potential future study directions and logical expansions of the suggested
approaches.

9.1 Conclusions

Modeling the rich and diverse information contained in scene text found in natural
imagery is still a challenging task that intersects between scene text recognition and
vision and language. In this PhD thesis, our goal was to exploit textual information
and incorporate it into the tasks of fine-grained image classification and scene text and
cross-modal retrieval pipelines. The final goal is to integrate this relatively new modal-
ity to obtain holistic computer vision models capable of a full image understanding.
Following, we present the conclusions of each chapter on the studied tasks.

In Chapter 2, we introduced a novel approach to perform lexicon-free single-shot
scene text retrieval in real time. The proposed model incorporates a hierarchical and
morphological way of representing scene text given by PHOCs, which enables the net-
work to learn how to construct out of vocabulary words unseen at training time. More
specifically, our design choices customize an object detection model and adapt it to
embed text to perform retrieval. Conducted experiments show that the suggested tech-
nique yields state-of-the-art performance while performing significantly faster than

123
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previous methods. Moreover, our approach is able to outperform other approaches
due to the capability of generalizing unseen text instances.

In Chapter 4, we identify the limitation of current approaches while employing se-
mantic embeddings due to OCR mistakes. We devise a pipeline that employs the model
introduced in Chapter 2 to represent scene text with a morphological embedding given
by PHOC. We construct an image-level scene text descriptor, that clusters similar words
in a common space, which is later used as features to perform scene text-based image
classification and retrieval. We evaluate the importance of scene text as well as dif-
ferent fusion methods when undertaking these tasks. Ample experimentation shows
state-of-the-art results of both tasks, showing the versatility of the constructed scene
text descriptor.

In Chapter 5, we hypothesize that a model capable of reasoning about the inter-
action of regions within an image can provide rich information for the fine-grained
image classification task. To meet this end, we employ a GCN that learns to reason
about salient objects and scene text instances within an image. Interestingly, this ap-
proach maps common scene text instances and objects in a semantic manner to better
perform the aforementioned task. Relations of the GCN nodes, given by edges show
the degree of the reasoning and correlation among visual and textual regions. Finally,
this method improves previous state-of-the-art by a great margin, thus allowing us to
model the interaction of scene text in a more specific manner.

Chapter 7 contemplates the possibility of improving image-text cross-modal re-
trieval by leveraging scene text information. Due to the lack of exploration in current
research, we propose the StacMR task and gather a dataset Coco-Text Captioned (CTC)
which contains all the 3 modalities studied, images, captions, and scene text. We fur-
ther propose two subsets, explicit and non-explicit splits according to the scene text
occurrences in the captions. We present several benchmarks alongside two possible
approaches designed for this task. Finally, we discover that a nontrivial gain can be
obtained by employing scene text in current cross-modal pipelines, however, it should
be used selectively to obtain fine-grained retrieval results. We conclude that more an-
notated data is needed to capture the complex interaction among all three modalities,
especially the human caption-centered viewpoint when employing scene text.

In Chapter 8, we explore current approaches and metrics employed in the image-
text matching literature. We found out that Recall only captures whether a retrieved
item was annotated as relevant while discarding the rest of the ranked items. In or-
der to obtain a more descriptive metric, we employ image captioning metrics to define
a way to assess the semantic relevance of ranked results, namely Normalized Cumu-
lative Semantic (NCS) score. Furthermore, we incorporate the semantic relatedness
given by captioning metrics among images and captions to define a margin. The Se-
mantic Adaptive Margin (SAM) is plugged-in a triplet loss, which yields a model that
learns a smoother semantic space well-suited for retrieval. Extensive experimentation
show: firstly, that older and current state-of-the-art models under-perform if GT el-
ements are not included. Secondly, the proposed metric captures well the semantic
similarity among query and retrieved results. Thirdly, a model trained with SAM im-
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prove the results measured by the standard Recall and NCS. Finally, by employing our
formulation, models converge to a suitable solution while employing several magni-
tudes of less data.

We conclude this research with two final ideas. First, the incorporation of the in-
formation that scene text conveys into different computer vision tasks was largely un-
explored. Until recently, most computer vision models were illiterate and thanks to
recent progress in text detection and recognition, textual features have been incorpo-
rated into novel and complex tasks that require holistic image understanding. We have
solidly shown through extensive experimentation that integrating scene text is key in
order to improve visio-linguistic applications.

Secondly, the incorporation of scene text as an additional modality is not straight-
forward. Despite several improvements in late research, scene text modeling often re-
quires a context-specific perspective that encloses the interplay of three modalities.
Moreover, the relevance of specific scene text instances relies on a human perspective
that may consider consistent or not to a specific query. Despite such challenges, de-
signing proper pipelines and gathering data proves to be paramount in order to achieve
models that are able to reason and understand images in an “intelligent” manner.

9.2 Future Directions

In this section, we will further discuss the future research directions as well as the open
challenges that remain when employing scene text as an additional source of infor-
mation. Currently, the incorporation of high computational models along with the
capability of scrapping bigger datasets than ever have allowed significant advances in
machine learning, especially with the introduction of the Transformer [194]in Natural
Language Processing (NLP). High-performing models such as BERT [43], GPT-3 [23],
T5 [156] and their variants have allowed the incorporation of such models into vision
and language tasks, despite the huge computational requirements, billions of param-
eters, and Petabytes of web crawling as in C4 (Colossal Clean Crawled Corpus) data.
These advances have translated into computer vision, with a transformer variant, the
ViT [47] and inspired variants [193, 192, 14, 46], that yield state-of-the-art in several
vision tasks. Additionally, visio-linguistic models have emerged, such as CLIP [155], in
which vision pipelines can benefit from language as a supervisory signal.

First, we believe that the usage of pre-trained language models can benefit all the
tasks studied in this thesis, therefore opening a path for future research. On one hand,
the previously mentioned high-performing language models, contain a well-defined
pre-training stage. It has been shown that incorporating pre-trained models helps to
boost performance in transfer learning tasks. On another hand, computer vision mod-
els can benefit from current NLP models and the emergent abilities [210] that incorpo-
rate few-shot learning, mathematics, words in context, and world-knowledge extrac-
tion. This performance boost has been seen in the Scene Text Visual Question An-
swering (STVQA) and Image Captioning tasks [218, 19], and cross-modal retrieval [32].
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Therefore, successfully incorporating scene text as an additional modality requires a
specific viewpoint that combines a human-centered and language-based perspective
as well as world knowledge that can be obtained from pre-trained models.

Secondly, we believe that fully understanding the way deep learning works remains
a goal far from being reached in the short term. To this end, explainable research can
be undergone. Concretely, due to the complex synergy between language and vision,
explainability can offer new insights into how computer models fuse the information
of totally different information sources. Additionally, the incorporation of scene text
can pave new methods that study such interaction by an analysis of attention maps in
transformer-based models or by GCNs given the existing relationship among nodes
through edges by crafted design. Learning these interactions, can well be inspired
and provide intuitions on how humans grasp and reason about the world giving all
the modalities that interplay to form mental representations.

Thirdly, as we showed in Chapter 8, current metrics in image and text cross-modal
retrieval are not well suited to assess the real performance of a retrieval model. Due to
the complexity of measuring semantic relations among languages, as in the case of im-
age captioning, coming up with metrics for two modalities (image and text) comes at
a magnitude higher complexity. Despite the major consensus in the research commu-
nity on employing a specific metric, we firmly believe that metrics such as the proposed
NCS should be incorporated and explored into further research. The resulting advan-
tage of employing such an ideai.e. into a semantic margin yields major improvements
while requiring significantly less labeled data, thus probably producing better few-shot
learning models.

Additionally, we would like to point out that current models are computationally
expensive, thus increasing the gap between institutions that can afford such techno-
logical requirements and academy that usually lags behind. On top of that, environ-
mental impact is a must in order to preserve current limited resources and the effect it
has on global warming. Considering the previous notions, we can opt for smaller and
more efficient models. It has been shown that large language models are somehow in-
efficient [77], therefore the need for algorithms that model the interaction of different
modalities in more efficient manners, namely, pre-training, distillation, network prun-
ing, or knowledge retrieval to name a few. As a final remark, we would like to point out
that incorporating scene text and the visual/semantic information that it entails comes
as a natural progression of truly intelligent systems capable of efficient exploitation of
available cues that could enrich and simulate human-like mental representations.
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Appendix

A.1 Scene Text Aware Cross-Modal Retrieval

A.1.1 Introduction

In this document, we provide additional details about the proposed CTC dataset as
well as experiments that offer more insights into the different re-ranking strategies and
the proposed supervised model that we describe in the main dissertation.

A.1.2 Additions to Baselines and Re-Ranking
Full Table of Results on CTC

Table A.1 presents a more extensive version of the results presented in Section 5.1 from
the main paper. This section dives into some parts of these results.

Scene-Text-only Baselines. Here we discuss additional scene-text baselines we ap-
plied to our task. As described in the main paper, we first experimented with the GRU
(textual embedding) of the cross-modal models to describe the scene text and compare
it to the captions. Their results are shown in Table A.1, rows (5-8). In contrast to the
visual model, where VSRN consistently outperformed VSE++, for scene text the later
performs better than the former. Models trained on Flickr30K + TextCaps also perform
better than their counterparts trained on Flickr30K only.

We also experimented with training a GRU for a caption-to-scene-text retrieval
in Flickr30K. We directly applied the training code of VSE++ to these two modalities
(scene text and captions) and simulated the scene text of an image as the intersection
between two of its captions. The results of this method, called GRU++, are presented
in row (9).
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CTC-1K CTC-5K
Sc;:Ied-th‘ Train cs 1eXt | Re-rank 2T T2 2T T21

odel  [mok T1C| SoUree R@1 _RG5 _R@I0 Rl _R@5 RGI0 | R@l__RG@5 _R@I0 | RGI__R@5 _R@I0
M) VSEr+ X VX 205 428 545] 154 352 484] 133 302 402] 84 215 301
@) VSE++ X VR 239 506 632| 165 396 533| 126 300 402| 7.9 210 297
(3 VSRN X V't 271 507 620| 197 428 557| 192 386 494 125 292 39.1
@) VSRN X v v 356 644 760| 241 501 63.8| 227 451 560| 142 321 426
® X | VSEwGRU | 7/ X GT E 174 299 371| 83 175 232 24 48 58] 13 30 42
&) X | VSE++GRU | v x| OCR - 124 217 260| 65 145 189| 19 36 44| L1 26 36
® X | VSEmGRU | v v Gr - 263 404 47.3| 100 203 256| 44 71 82| 16 35 47
6) X | VSEwGRU | v /| OCR - 199 308 364| 88 161 208| 34 54 63| 15 30 40
@ X | VSRNGRU | v X GT - 77 188 260| 52 127 188| 11 24 33| 09 22 33
® X | VSRNGRU | v v GT - 123 251 301| 68 153 200| 19 40 52| 11 28 38
© X GRU++ V] GT - 160 209 351| 87 177 224| 14 25 35| 08 20 29
10) X |FastextsFvw) | X X GT - 195 358 431| 05 14 21| 31 54 71| 01 03 04
1) X | FastexttFV | X X GT - 217 365 443| 32 66 90| 35 59 75| 06 13 17
) AG | 311 545 657] 172 372 476] 72 164 240] 47 135 207
13) LF 253 519 636| 17.3 395 522| 134 301 404| 75 203 292
(g VSErr| VSEw+GRU |/ X Gr PSC 258 517 632| 135 374 5L0| 109 305 413| 42 198 295
a5 ISC | 259 518 631 172 394 525| 136 311 415 79 208 300
16) F 356 612 713| 218 454 580| 192 392 502| 107 267 369
(17) VSRN | VSE++GRU | v X Gr PSC | 306 593 695| 162 432 582| 148 388 502| 60 264 381
(18) IsC | 380 603 703| 219 458 582| 203 400 506| 111 278 382
a9 F 322 563 693| 203 435 565| 183 378 485 106 27.0 368
20) VSRN | VSE++GRU | v X | OCR PSC | 267 560 667| 150 442 57.4| 145 381 495| 62 264 380
@1 1S | 328 570 685| 207 440 57.1| 197 396 503| 113 27.9 383
@2 AVG | 346 531 61.0| 145 310 394| 100 215 295| 50 141 214
@3) LF 310 60.0 723| 204 447 573| 134 309 415| 7.4 205 291
(2a) VSErr| VSERGRU | v/ Gr PSC 374 628 736| 155 426 57.1| 122 321 424| 41 193 292
@5 ISC | 316 578 702| 203 447 578| 137 317 416| 77 210 296
@6) AVG | 368 622 729| 186 405 529| 153 335 443| 64 189 280
@7 LF 403 685 799| 239 499 63.4| 226 450 563 | 118 205 40.0
(28 VSRN | VSRNGRU | v v Gr PSC | 335 659 782| 158 481 643 185 445 560| 53 287 410
29) ISC | 386 675 785| 243 504 640| 234 456 565| 121 306 411
30) F 117 686 789| 251 520 655| 225 444 557 128 310 413
31 . v v " PSC | 328 673 799| 176 494 649 161 446 562| 65 293 413
(g2 VSRN | VSEGRU |y Gt ISC | 422 679 785| 255 520 656 231 459 561| 133 317 422
33) Oracle LF | T63.2 T829 T893|T379 Toas T755[Ts10 Ts39 Toas|[T197 Taos Tags
31 S F 391 667 79.1| 241 503 643| 212 438 554 128 318 430
@5 VSRN | vseeGRU | Y % | ocm PSC | 316 652 785| 166 486 646| 158 439 558| 67 294 414
36) ISC | 393 674 787| 247 509 646| 227 453 563| 133 316 422
@0 F 158 727 814 265 527 661 242 461 57.1| 129 310 412
38) . " PSC | 422 715 828| 189 511 664| 201 464 575| 67 295 416
(39) VSRN | VSEw+GRU | v v Gt 1SC | 453 715 807 267 530 662| 244 469 57.4| 132 318 423
0) Oracle LF | T67.9 T8a8 To1.1| 7302 Toas T762[Ts29 Ts53 Tesz[Ta0a Tao7 Tsos
@n F 115 701 798| 251 512 643| 233 450 589| 126 305 4Ll
@2) VSRN | VSE++GRU | v v | OCR PSC | 385 696 806| 179 501 651| 198 457 572| 70 298 417
43) ISC | 422 686 785| 255 518 649 198 457 572| 132 315 422

Table A.1: Results on CTC-1k and CTC-5k for visual-only baselines, scene-text-only
baselines and re-ranking combinations of these baselines. Bold results denote the best
performance at each of visual model, scene-text model and re-ranking methods. t
denotes theoretical upper-bounds to the linear combination re-rankings. (see Section
Al.2)

Using GRU trained for cross-modal retrieval (CMR) as scene-text descriptors has
its limitations. The scene text is described with a descriptor learned to represent cap-
tions, which is not optimal. For scene text, the order of the words is not as relevant
as for a caption. However, since the CMR models use a GRU, the scene-text represen-
tation is dependent on the order their words are fed to the model. The Fasttext+FV
baseline aims to address these limitations. FastText [21] uses a larger vocabulary than
other Word2Vec based models, and uses word n-grams to embed words. In this man-
ner, FastText is a more robust embedding that learns the syntax as well as the semantics
of a given word. On top of FastText, a Fisher kernel [152] is employed to aggregate word
embeddings. Additionally, an advantage of such an approach is that the scene-text in-
stances are not order dependent and the only training required is at the moment of
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Trained on TextCaps
Visual Model | Scene-Text Model Combination | Image to Text Text to Image

F30K TC R@l R@5 R@10|R@1 R@5 R@10
[@))] VSE++ X v X |- 5.6 15.1 21.5| 4.1 11.1 16.6
2) VSRN X v X |- 6.2 145 20.2| 45 11.7 16.6
3) VSE++ X X o 14.7 30.9 40.4| 10.0 24.3 329
4) X VSE++ GRU v X |- 11.5 18.7 22.0( 103 17.5 20.1
(5) X VSE++ GRU X v |- 34.6 45.7 49.7| 25.1 35.0 37.9
(6) AVG 42.8 56.6 62.8| 30.8 46.2 52.7
(@] LF 33.5 54.7 63.7| 22.6 40.8 50.2
8)  VSE++ Xif;taGggR X v/ |psC 400 563 64.6| 247 423 507
9) LSC 25.7 46.0 56.1| 18.0 36.0 453
(10) Oracle LF 757.3 772.3 778.0{739.6 755.9 763.0

Table A.2: Results on TextCaps (validation set) for visual-only baselines, scene-text-
only baselines and re-ranking combinations of these baselines. T denotes theoretical
upper-bounds to the linear combination re-rankings. (see Section A.1.2)

constructing a Gaussian Mixture Model (GMM) that models the FastText vocabulary
distribution. The best performing implementation of Fasttext+FV approach is pre-
sented in row (11). On top of it, we show in row (10) a first implementation of this
method before lemmatisation and removal of stop words.

Finally, we show results for the two best models (two different flavors of VSE++
GRU) when using OCR prediction from [64] in rows (5’) and (6’). These models are
also used in combination with visual-only baselines in rows (19-21), (34-36) and (41-
43). We observe a considerable decline in performance between (5) and (5°), (6) and
(6"). This can be attributed to errors in OCR prediction. Indeed, COCO-Text is a very
challenging dataset for scene-text recognition due to its many small bounding boxes,
and CTC inherits these annotations. These results highlight the importance of good
scene-text recognition for StacMR. When comparing combinations to their equivalents
with ground-truth annotations, the decline in performance is less pronounced.

Models trained on Flickr30K In the main paper, we highlighted how the best per-
formance are obtained from cross-modal retrieval models trained on Flickr30K+TextCaps.
We recommend models trained on this combination of datasets for benchmark on
CTC. For completeness, we include here re-ranking results for combining models trained
on Flickr30K only. Their performance is shown in rows (12-18) using ground-truth
scene-text annotations and rows (19-21) using OCR predictions from [64]. In compari-
son to the models trained on Flickr30K+TextCaps, models trained on Flickr30K obtain
similar improvements on CTC-1K and more significant gains on CTC-5K.

In addition to these, a few hybrid models (where visual-only models are trained on
F30K+TC and scene-text-only models are trained on F30K) are shown in rows (30-36).
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Performance on TextCaps

In order to describe why TextCaps is not fit as an evaluation dataset for StacMR, we per-
formed similar experiments to those described in the Chapter Chapter 5.1 of the main
paper. The main results are shown in Table A.2. Here we see how a model trained for
cross-modal retrieval with no access to the scene-text information performs better as
a scene-text model than a visual model. This highlights the bias of the dataset towards
scene text as its main information and the fact that purely visual information comes
second.

Oracle Late Fusion

In addition to providing strong multimodal baselines from separated visual and scene-
text models, combination methods are very intuitive to understand. For example, late
fusion scores of two models consist of a linear combination of the scores given by two
different models. The hyper-parameter a corresponds to the best linear combination
factor when averaging for all queries, both images, and captions.

A natural extension to the late fusion combination is to make a a parameter depen-
dent on the values of the the image-to-caption similarity s, (g, d) and the scene-text-
to- caption score s;(q, d). Based on this extension, we propose an oracle combination
method s7,, called oracle late fusion, where the parameter « is query dependent and
hand-picked to optimize the ranking for the query. More precisely, this oracle opti-
mizes the median rank of the first retrieved positive item:

$te(,d) = a* (@)s0(,d) + (- a* (@)si(q, ), A-D
a*(g) = argmin (Ranks;r(g,d)), (A2
a€(0,1]

where Rank denotes the rank of the first retrieved positive item. Given a visual-
only and a scene-text-only model, the oracle late fusion provides us with a theoretical
upper-bound to the performance of any combination obtained by linearly combining
these models. Moreover, we can analyze the values of @ obtained for each query to
understand how often does a combination prefers to use the visual model or the scene-
text model. Indeed, a*(g) ~ 1 indicates that, for this query, the visual model is enough
and the scene text should be ignored, a*(q) ~ 0 means that the scene text is enough,
and a* (g) in between implies a balanced optimal weighting of both modalities.

We present the performance for oracle late fusion, evaluated both for CTC and
TextCaps, on Table 7.2 rows (33) and (40), and Table A.2 row (10). We observe a consid-
erable improvement compared to combination methods. While for instance, looking
at R@10 results, row (39) improved upon row (4) by 4.7%, 2.4%, 1.4% and -0.3%, row
(40) beats row (39) by 10.4%, 10%, 7.8% and 8%. More importantly, these theoretical
upper-bounds show the unexplored potential of combining visual and scene-text in-
formation to improve StacMR results.



131 Appendix

Performance on Flickr30K and TextCaps

In Table A.3 we show the performance of our proposed model with SCAN [109] and
VSRN [111]. In order to obtain comparable results, we have obtained features from our
implementation to extract visual regions as [8]. Publicly available code for SCAN [109]
and VSRN [111] was used to train those models.

Trained on Flickr30K TextCaps

Model Image to Text Text to Image Image to Text Text to Image
F30K TextCaps CTC|R@1 R@5 R@10|R@1 R@5 R@10|R@]1 R@5 R@10|R@1 R@5 R@10
57.2 844 90.5 |38.6 684 79.1 | 93 21.7 298 | 4.7 141 21.2
14.1 34.6 450 | 7.8 22.7 32.1 |23.2 50.5 63.5 |14.1 37.6 52.1
57.6 85.3 92.4 |39.2 70.0 80.2 [16.6 36.6 48.7 | 93 254 36.4
58.1 83.2 91.5 (396 69.8 813 | 44 11.2 162 |24 72 113
55.1 79.6 87.1 |35.,5 67.2 773 |154 352 469 [134 37.1 51.8
63.1 86.5 92.1 |47.1 753 838 | 6.3 149 214 | 42 114 16.6
11.7 30.1 40.2 | 9.2 23.7 32.8 |143 349 46.2 |9.53 26.2 37.2
62.5 86.1 92.3 [48.1 76.8 84.3 [19.6 419 53.1 |[13.9 32.8 43.8
64.9 88.0 93.2 |49.0 769 849 (821 18.6 254 |556 14.0 19.5
60.7 85.2 90.4 |45.7 739 81.8 [18.7 38.6 50.1 [12.4 30.0 41.2
63.9 86.9 92.4 |48.6 76.7 84.7 [6.79 155 21.6 | 46 121 175
13.3 29.6 39.6 | 9.8 245 34.1 |28.7 53.7 651 |[19.8 40.1 51.6
62.4 85.8 92.1 |47.1 76.1 84.1 [24.0 489 60.7 [17.3 379 49.8
63.2 87.2 925|495 78.1 852 | 75 175 251 | 52 13.6 195
67.5 88.1 93.6 |50.7 78.0 85.4 |29.5 53.8 65.3 |20.8 42.9 53.6

SCAN

VSRN

STARNet

AN AR R VAN N N
AN NN A T N N T N NN Y
NN X X X NN X X XN\ XXX

Table A.3: Quantitative comparison of experimental results of image-to-text and text-
to-image retrieval on the Flickr30K (test) and TextCaps (val) sets of supervised models.
Metric depicted in terms of Recall@K (R@K).

Results show that by leveraging scene-text retrieval improvements can be achieved.
It is important to note the effect of employing different datasets in the training proce-
dure. As it is expected, training on TextCaps and due to the dataset nature that focuses
only on scene text instances, as well as their captions, it does not yield good results
when used alone. Even adding samples from the CTC dataset at training time, can
yield an improvement when evaluated on the TextCaps validation set.

It is worth noting as well that in standard cross-modal retrieval models, adding
TextCaps training data achieve a minor improvement (SCAN) or lower the performance
(VSRN) when compared in the Flickr30k dataset. However a slight improvement is
achieved when adding the CTC training set.

However, the proposed model learns to model the interactions between scene-
text and visual descriptors to combine them appropriately. STARNet achieves better
a performance among both datasets even when scene-text is not widely available in
Flickr30k.
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List of Publications

Topics

The main topic of this dissertation, is the incorporation of scene text information into
fine-grained image classification and cross-modal retrieval systems. Nonetheless, the
novel contributions can also be applied into another different vision and language
tasks. However, this thesis has also yielded additional contributions in other computer
vision topics which we following enumerate.

International Journals

¢ Andres Mafla, Ruben Tito, Sounak Dey, Lluis Gomez, Marcal Rossinyol and Di-
mosthenis Karatzas, "Real-Time Lexicon-Free Scene Text Retrieval", in Pattern
Recognition, 2020.

e Lluis Gomez, Ali Furkan Biten, Rubén Tito, Andres Mafla, Marcal Rusifiol, Ernest
Valveny, Dimosthenis Karatzas, "Multimodal grid features and cell pointers for
scene text visual question answering", in Pattern Recognition Letters, 2021.

International Conferences

e Lluis Gomez*, Andres Mafla*, Marcal Rossinyol and Dimosthenis Karatzas, "Sin-
gle shot scene text retrieval", in European Conference on Computer Vision (ECCV),
2018.

e Ali Furkan Biten*, Ruben Tito*, Andres Mafla* Lluis Gomez, Marcal Rusifiol,
Ernest Valveny, CV Jawahar, Dimosthenis Karatzas, "Scene Text Visual Question
Answering", IEEE/CVF International Conference on Computer Vision (ICCV), 2019

e Ali Furkan Biten*, Ruben Tito*, Andres Mafla*, Lluis Gomez, Marcal Rusinol, Mi-
nesh Mathew, CV Jawahar, Ernest Valveny, Dimosthenis Karatzas, "Icdar 2019
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competition on scene text visual question answering", International Conference
on Document Analysis and Recognition (ICDAR), 2019

* Andres Mafla, Sounak Dey, Ali Furkan Biten, Lluis Gomez and Dimosthenis Karatzas,
"Fine-grained Image Classification and Retrieval by Combining Visual and Lo-
cally Pooled Textual Features", in Winter Application in Computer Vision (WACYV),
2020.

¢ Andres Mafla, Sounak Dey, Ali Furkan Biten, Lluis Gomez and Dimosthenis Karatzas,
"Multi-Modal Reasoning Graph for Scene-Text Based Fine-Grained Image Classi-
fication and Retrieval", in Winter Application in Computer Vision (WACV), 2021.

* Andres Mafla, Rafael Sampaio de Rezende, Lluis Gomez, Diane Larlus and Di-
mosthenis Karatzas, "Stacmr: scene-text aware cross-modal retrieval", in Winter
Application in Computer Vision (WACV), 2021.

¢ Ali Furkan Biten*, Andres Mafla*, Lluis Gomez, Dimosthenis Karatzas, "Is An Im-
age Worth Five Sentences? A New Look into Semantics for Image-Text Match-
ing", Winter Application in Computer Vision (WACV), 2022

International Workshops

¢ Emanuele Vivoli, Ali Furkan Biten, Andres Mafla, Lluis Gomez and Dimosthenis
Karatzas, "MUST-VQA: MUItilingual Scene-text VQA", European Conference on
Computer Vision (ECCV), 2022

» Sergi Garcia-Bordils*, Andres Mafla*, Ali Furkan Biten*, Oren Nuriel, Aviad Ab-
erdam, Shai Mazor, Ron Litman and Dimosthenis Karatzas, "Out-of-Vocabulary
Challenge Report", European Conference on Computer Vision (ECCV), 2022

arXiv

* Mohamed Ali Souibgui, Sanket Biswas, Andres Mafla, Ali Furkan Biten, Alicia
Fornés, Yousri Kessentini, Josep Lladés, Lluis Gomez, Dimosthenis Karatzas, "Text-
DIAE: Degradation Invariant Autoencoders for Text Recognition and Document
Enhancement", in arXiv, 2022.

Under Review

e Van Khanh Nguyen, , Ali Furkan Biten, Andres Mafla, Lluis Gomez and Dimos-
thenis Karatzas, "Show, Interpret and Tell: Entity-aware Contextualised Image
Captioning in Wikipedia", under review, 2022.
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