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1
I N T R O D U C T I O N

Aerodynamically, the bumblebee
shouldn’t be able to fly, but the
bumblebee doesn’t know that, so it
goes on flying anyway.

Mary Kay Ash

The biological world is subject to the laws of physics: from the meso-
scopic scale to entire ecosystems, biophysics aims at explaining natural
phenomena with the tools and methods of physics [1]. However, the
differences between the living systems studied by biologists, and the
inorganic matter that is traditionally the domain of the so-called hard
sciences, are discouraging. On the one hand, biology tends to be de-
scriptive and complex, while physics always tries to explain the essential
features underlying an ensemble of observations by proposing synthetic,
unifying theories. Indeed, life is complex, and understanding this com-
plexity requires very different approaches with respect to those used for
studying inert matter. Since the second half of the XX century, physics
has increasingly rejected a strictly reductionist approach. The idea that
phenomena may emerge at each level of observation instead of being
bottom-up dictated by "laws" has been gaining ground. This led to the
discovery that stochastic processes operate everywhere in the universe,

11
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Figure 1.1: From the macroscopic to the mesoscopic scale, biophysics studies
a wide variety of biological phenomena such as the collective behavior of bird
flocks (A), insects flight (B), effects of mechanical deformation of red blood cells
(C) and transport of cellular cargos toward microtubules opposite extremities by
kinesin motor proteins (D).

at every level, from subatomic particles to weather systems, to ocean
currents, to galaxies. Deterministic physical laws on the macroscopic
scale left room for the random behavior of molecules on the smaller
scale. The progressive discovery of similitudes between physical events,
notably in mechanics, energetics, electricity, and corresponding processes
occurring inside living cells, has been the vital motor of the increasing
interest in biophysics. Over the last century, biophysics had increasing
success, contributing to understanding a wide variety of biological phe-
nomena (see Fig.1.1), from bumblebee flight "infamous" problem [2] and
the collective behavior of bird flocks and fish schools [3], to the transport
of cellular cargos along microtubules by kinesin motor proteins [4], and
the link between red blood cells mechanics and pathologies [5].
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In particular, studying single molecules (SMs) has become central to
biology and physics research. SM experiments allow for measuring
forces in the range of a few piconewtons and have a spatial resolution
of a few nanometers. These are the ranges of forces and extensions
typically involved in many biomolecular reactions where high-energy
bonds are hydrolyzed and the energy released is subsequently used
to perform mechanical work. Most of these reactions take place in
an aqueous environment, so we can imagine that a specific molecular
reaction is continuously influenced by the interaction with hundreds of
water molecules per second. As the average kinetic energy carried by
one water molecule is comparable with that of a biochemical process,
such a process takes place in a highly noisy environment, i.e. in the
presence of strong Brownian fluctuations. Under these conditions, it is
reasonable to expect that, from time to time, water molecules with kinetic
energy much higher than the average will impinge the molecular reaction.
Such fluctuations can cause mutations during the replication processes
of DNA when a new strand is synthesized from the parental strand,
and the genetic information is transmitted to a new generation of cells.
Will these large deviations affect the performance of a generic molecular
reaction? In what way will they alter the molecular function? Even
more interesting, are these deviations an integral part of the function and
efficiency of the enzyme? Such questions are just a few among many
others that biophysicists and statistical physicists are ready to confront.

1.1 brief history of biophysics

Despite its success in modern years, biophysics is a relatively young field
of science and has flourished chiefly over the last century. Probably, the
first biophysicist in the contemporary sense was Luigi Galvani (Bologna,
1737 – 1798), who, around 1780, discovered animal electricity with his
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famous experiments on frogs (from which the term ‘galvanic current’ for
the electric currents generated by acid-salts solutions) [6]. During the
XIX century, many prominent scientists became interested in biological
phenomena. In the 1840s, the so-called "Berlin school of physiologists",
including Hermann von Helmholtz, Emil DuBois-Reymond, Ernst von
Brücke, and Carl Ludwig, started to conduct a "systematic investigation
of an extensive field of physiological phenomena in accordance with the
most rigorous physical methods" [7]. Their scientific approach to organic
physics still sounds like an ideal description of the scope and aims of
modern biophysics: “a vital phenomenon can only be regarded as ex-
plained when it has been proven that it appears as a result of the material
components of living organisms, interacting according to the laws which
those same components would follow in their interaction outside of living
systems”. However, it is only with the discovery of X-rays by Wilhelm
Röntgen in 1895 [8] that scientists were provided with a technique to
investigate the matter at a mesoscopic level. These developments were
fundamental in all fields of science. The use of X-rays, confined initially
to the inorganic domain, would have an enormous impact on biology
and medicine. In 1944, the physicist Erwin Schrödinger published the
book What is Life? [9]. In this work, he predicts the structure of the gene
as an "aperiodic crystal", building his model on fundamental biological
observations. The book essentially suggested a physical approach to the
questions concerning biology setting the basis of modern biophysics. A
few years later, in 1953, Watson and Crick discovered the double-helix
structure of the human genome by X-ray diffraction [10]. This achieve-
ment represents the starting point of biophysics, an independent field of
science mainly focused on the structure and interaction of biomolecules
and cells.
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A B

Figure 1.2: (A) Portrait of Wilhelm Conrad Röntgen (1845 – 1923), who dis-
covered the X-rays, which set the basis for countless applications across all
scientific fields. For his breakthrough, Röntgen has been awarded the inaugural
Nobel Prize in Physics in 1901. (B) James Watson and Francis Crick show the
double-helix structure of DNA in 1953.

1.2 from physics to biology and back

The success of biophysics as an independent scientific discipline elicited
a fundamental question: What is biophysics? Is it the study of biological
systems through physical methods or the development of new physics
by observing biological phenomena? A sharp division between these
two definitions cannot be drawn. Physics contributes to biology by
providing experimental techniques and mathematical tools. At the same
time, biology provides new physical phenomena that physicists try to
understand by formulating new concepts and laws.

An example of the latter approach is the experimental verification
of the Worm-Like Chain (WLC) model. One of the first SM pulling
experiments revealed that the elastic response of individual double-
stranded DNA (dsDNA) molecules are excellently described by the WLC
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model introduced in polymer theory by Kratky and Porod in 1949 [11].
By pulling an individual molecule, it was possible to experimentally
measure the force as a function of the molecular extension, also called the
force-extension curve (FEC) [12, 13]. These results verified the prediction
of the worm-like chain model for the FEC and provided the first direct
mechanical measurement of the persistence length of individual DNA
molecules. In this case, little contribution was made to biology, but the
experiment revealed a suitable environment to test a purely physical
model. On the other hand, a clear example of a biological approach to
biophysics is the discovery of the double helix of DNA. No new physics
was applied in this case, as X-ray diffraction was already known.

Nevertheless, the development of biophysics in the last decades pro-
gressively left behind this dualistic view. The constant "dialogue" between
physics and biology eventually shaped biophysics as an independent dis-
cipline defined by its scientific questions. At the same time, biophysicists
have become a new kind of researcher. They do not want to explain the
biological processes in detail or with an ideal model. Instead, they face
scientific issues by extracting general laws of natural systems without
excessive simplification [14].

1.3 summary of the thesis

This doctoral work investigates nucleic acids’ thermodynamic and kinetic
properties. The main objective is the characterization of the energetics
and the folding mechanisms driving the hybridization of DNA and RNA
molecules. A rigorous study of these processes is key to understanding
the diversity of behaviors observed for nucleic acids and predicting their
main features. The thesis is organized into four main parts.

In Part I, we overview single-molecule force spectroscopy and some
of the most common and relevant experimental techniques (Chapter 2).
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Among these, we describe optical trapping with laser optical tweezers,
the experimental method used to carry out this work. The experimental
setup is also accurately described (Chapter 3). Then, we discuss the bio-
logical concepts and the statistical tools used in the thesis. This includes
fluctuation relations (Chapter 4), nucleic acids structure, thermodynamic
modeling of the unzipping experiments (Chapter 5), and the transition
state theory in thermodynamic equilibrium (Chapter 6).

In Part II, we report the results of calorimetry force spectroscopy exper-
iments on long DNA hairpins. We studied the temperature dependence
of free energy, entropy, and enthalpy by carrying out unzipping experi-
ments in the temperature range of 7 � 42�C. Even though the effects of
temperature are known to be non-negligible, an accurate characterization
of the thermodynamics parameters at the single base pair level still needs
to be improved. Therefore, we developed a powerful method to accu-
rately assess the temperature dependence of the entropy and enthalpy
parameters, ultimately permitting us to measure the specific heat change
per base pair.

In Part III, we report the study of the energetics and kinetics of RNA
folding, focusing on the complex mechanisms underlying RNA hybridiza-
tion. By mechanically unzipping a long RNA hairpin, we derived the ten
nearest-neighbor base pair RNA free energies in sodium and magnesium
(Chapter 8). To characterize the irreversibility of the unzipping–rezipping
process and the folding dynamics, we hypothesize that stem-loops struc-
tures forming along the unpaired RNA strands drive the folding (Chapter
9). This phenomenon is modeled by introducing a barrier energy land-
scape of the stem-loop structures forming along the complementary
strands, which compete against the formation of the native hairpin.

Finally, in Part IV, the results of pulling experiments of short RNA
hairpins at low temperatures are reported. After reaching 5 � 7�C, short
RNA sequences designed to fold as simple duplexes exhibit misfolded
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states competing with the native fold. Despite different sequences form-
ing different misfolded structures, all of them share common features:
they are very compact and brittle, and their stability does not depend
on the presence of monovalent or divalent ions. RNA cold misfolding
appears to be a general phenomenon questioning our understanding of
RNA folding.



Part I

P R E L I M I N A R I E S





2
S I N G L E M O L E C U L E B I O P H Y S I C S

In molecular biophysics, accurate knowledge of the thermodynamics of
nucleic acids (NAs) and proteins is essential to obtain reliable predictions
of protein folding [15–18], DNA/RNA hybridization [19], and their
interactions with enzymes and ions [20]. Over the past century, most of
the knowledge on the functioning and structure of biomolecules has been
obtained through bulk techniques such as UV absorbance, fluorescence,
and calorimetry, among others [21]. A particularly relevant application
regards the study of DNA and RNA hybridization, critical reactions in
many biochemical processes, such as NA synthesis, RNA folding, and
DNA amplification by PCR. The energy parameters used to model the
hybridization reaction has been directly obtained from melting curves of
oligos of varying sequence and length. Unified energy parameters have
been derived from DNA and RNA melting temperature data obtained by
many laboratories worldwide [22, 23] and are currently used as reference
values by many prediction tools [24].

However, a typical bulk experiment involves studying a small volume
(µl) of a molecular sample at (µM) concentration. Even in these con-
ditions, more than N ⇠ 1012 molecules are contained in each sample
so that bulk techniques yield results that are incoherent temporal av-
erages over a large population of molecules that are in different states
(Fig.2.1, left). In these conditions, statistical fluctuations are of the order

21
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Bulk Single - Molecule
MT

LOT
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Figure 2.1: Information about biomolecules from bulk essays (left) is not a
straightforward procedure and is obtained from the global behavior of a large
number of molecules. On the contrary, single-molecule techniques (right)
such as atomic-force microscopy (AFM), magnetic tweezers (MT), and laser
optical tweezers (LOT), allow us to sample reactions one molecule at a time,
characterizing the molecules at the microscopic level.

of 1/
p

N and become negligible in the large N limit. Therefore, the
measured signal depends on the dominant species and reactions, limiting
the capability of detecting fast events, rare non-native states, and reaction
pathways [25]. For example, RNAs and proteins often become trapped in
non-productive, misfolded structures [17, 26–30]. Such structures have
been related to the development of many phenotype diseases such as
Huntington’s disease, fragile X-associated tremor ataxia syndrome, my-
otonic dystrophies, and spinocerebellar ataxias, among others [31–33]. In
contrast, the development of single-molecule (SM) techniques allowed for
the study of individual molecules giving access to their kinetics and the
characterization of the coupling between the observed mechanical steps
and the chemical reactions that drive them. In SM systems, the particle
number, N, is of order 1 so that 1/

p
N ⇠ 1: fluctuations are of the same

order of magnitude as the measured interaction between the system and
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the thermal bath [34, 35]. If the measurements are averaged over many
events (or are carried out over long times), SM experiments approach the
bulk limit to which results can be compared [36].

2.1 experimental techniques

Single-molecule measurements overcame the intrinsic limitations of bulk
essays, revolutionizing the field of statistical physics and inspiring the
development of new physical theories to understand non-equilibrium
phenomena. Among the SM techniques developed in the past years,
three of them stand out due to their widespread use and versatility:
atomic force microscopy (AFM), magnetic tweezers (MT), and laser-
optical tweezers (LOT) [37, 38] (Fig.2.1, right panel). Altogether, they
cover the whole range of forces relevant to biomolecular reactions, from
polymer entropic forces (⇠ 10�3pN) to the typical forces needed to break
the covalent bonds of the proteins and NA (⇠ 103pN). Here we will
briefly discuss the main features of each technique and their typical
applications (summarized in Table 2.1).

AFM MT LOT
Force Range (pN) 101 � 104 10�2 � 101 10�1 � 103

Spatial Resolution (nm) 0.1 1 1
Stiffness (pN/nm) 101 � 105 10�6 10�2 � 100

Temporal Resolution (s) 10�3 10�1 � 10�3 10�4

Probe Size (µm) 100 � 250 0.5 � 5 0.25 � 5

Table 2.1: Comparison between different single-molecule techniques (AFM, MT,
and LOT) [37].
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2.1.1 Atomic-Force Spectroscopy

The AFM [39] consists of a very soft cantilever with a sharp tip at its end
that is used to probe the roughness of a surface. The tip is moved to the
vicinity of the surface (metallic or insulating) and deflects by an amount
proportional to the tip’s proximity to the surface. The most important
application of the AFM is imaging, which can work in various modes:
the contact mode, tapping mode, and jumping mode [40]. For example,
in the tapping mode, the tip oscillates close to the sample surface. The
oscillation amplitude is recorded and controlled by a feedback loop that
keeps such amplitude constant. The amplitude decreases when passing
over a bump, so the distance between the tip and surface is increased to
keep the oscillation amplitude constant. When passing over a depression,
the tip is moved to the surface. The map of the tip’s distance from the
sample provides an accurate topographic image of the surface. The AFM
is also used to manipulate individual molecules. In this case, the surface
and tip must be conveniently treated to work with biological samples.
The surface has to be coated with the molecules to be manipulated.

The AFM covers forces in the range 101 � 104pN, depending on the
stiffness of the cantilever. Typical values of the stiffness are in the range
101 � 105pN/nm. Although AFM is a very versatile tool, it has a few
drawbacks for manipulating SMs. The most important one is probably
the presence of undesired interactions between tip and substrate (Van
der Waals, electrostatic, and adhesion forces) and the non-specificity of
the attachments that often occur between tip and substrate. Moreover,
thermal fluctuations limit spatial and force resolution in the AFM. When
the cantilever stage is held at a constant position, the force acting on
the tip and the extension between the tip and substrate fluctuate. The
respective fluctuations are given by hdx2i = kBT/k and hd f 2i = kBTk
where kB is the Boltzmann constant, T is the absolute temperature of
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the environment, and k is the stiffness of the cantilever. At room tem-
perature (kBT ⇡ 4.1pNnm), this respectively gives

p
hdx2i ⇡ 20nm andp

hd f 2i ⇡ 20pN if we take k ⇡ 100pN/nm . Therefore, the signal-to-
noise ratio of the force is small for forces of just a few tens of piconewtons
corresponding to the force range characteristic of weak interactions. This
makes AFM unsuitable for studying the mechanochemistry of weak in-
teractions in the lower piconewton regime. In contrast, AFM is ideal for
investigating strong to covalent interactions.

However, developments in AFM microscopy over the past two decades
yielded remarkable improvements. Among these, high-speed AFM [41]
revealed a powerful technique, allowing the direct visualization of the
structure and dynamics of single protein molecules in action at high
spatiotemporal resolution. This new tool has been successfully applied
to various biological systems, from motor proteins to membrane proteins,
antibodies, and enzymes [42, 43].

2.1.2 Magnetic Tweezers

The MT works on the principle that a magnetized bead experiences a
force when immersed in a magnetic field gradient F = �µrB. A bead is
trapped in the magnetic field gradient generated by two strong magnets.
Molecules are attached to the surface of the magnetic bead on one end
and a glass surface on the other. A microscopic objective with a CCD
camera is used to determine the bead’s position. Molecules are pulled
by moving the translation stage that supports the magnets. Moreover,
the rotation of the magnets permits twisting molecules: modifying the
basic set-up by using a third bead to create a single chemical bond swivel
allows the measurement of torques [44]. MT permits the measurement
of very weak forces due to the low value of the stiffness of the magnetic
trap (⇠ 10�6pN/nm). The typical force range is 10�2 � 101pN, where
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the force’s maximum value depends on the magnetic bead’s size. An
advantage of MT with respect to AFM and LOT is the possibility to do
experiments in passive constant-force mode, i.e. by keeping the magnet
stage fixed. The force can be kept constant because the spatial region
occupied by the bead is small enough for the magnetic field gradient to be
considered uniform. A constant force protocol can also be implemented
in the AFM and LOT setups by implementing force-feedback control
mechanisms. The main drawback of feedback loops is their working
frequency, typically limited to a few kilohertz, which does not allow for
the detection of dynamical processes faster than milliseconds.

2.1.3 Laser Optical Tweezers

LOTs use the optical gradient force generated by a focused beam of light
to trap an object with an index of refraction higher than the surrounding
medium. In the basic experimental LOT set-up, a near-infrared laser is
collimated by a high numerical aperture water immersion lens. Micron-
sized polystyrene or silica bead is then trapped in the laser’s focus by
exerting forces in the range 10�1 � 102pN depending on the size of the
bead and the power of the laser. SM manipulation is possible by tethering
the molecular construct between two beads: one is held to a fixed point
while the other is optically trapped. Therefore, moving the optical trap
makes it possible to exert a force on the molecule.

The trapping potential can be considered harmonic with excellent
approximation. Therefore forces acting on the bead are directly propor-
tional to the distance between the bead and the center of the trap, F = kx,
where k is the stiffness constant of the trap. To determine the stiffness
of the trap, noise measurements or Stokes force calibration are often
used. The typical trap stiffness varies in the range 10�2 � 100pN/nm
(102 � 104 times smaller than AFM tips), making LOT force resolution on



2.1 experimental techniques 27

the order of 0.1pN. This basic setup is significantly improved by using
dual counter-propagating laser beams passing through two identical
objectives [45]. There are several advantages to this more complex setup.
First, the axial scattering force is reduced. Second, the trapping forces
that can be reached (up to 102pN) are higher than in the one-beam set-up.
Finally, continued force calibration is not required because the force is
directly measured from the total amount of light deflected by the bead.
The bead position is measured using a light lever or reference beam,
where a low-power light beam passing through a small lens in the cham-
ber’s frame is collected using additional position-sensitive detectors. This
allows us to determine the molecular extension with a few nanometers
of precision.

The experimental work in this thesis has been entirely carried out with
LOT. A detailed description of the principles of optical trapping and the
experimental setup is given in the next chapter.





3
O P T I C A L T W E E Z E R S

In 1970, Arthur Ashkin demonstrated that the pressure of radiation
exerted by a focused laser beam could be used to accelerate a micrometer-
sized neutral particle suspended in liquids or gasses [46]. These first
experiments set the basis for developing a groundbreaking technique. In
1986, Ashkin and colleagues reported the first realization of laser optical
tweezers (LOT) [47] consisting of a focused laser beam controlling the
position of a particle in three dimensions. Thanks to this work, in 2018,
Ashkin was awarded the Nobel Prize in Physics [48]. Starting from the
late 1980s, the impact of LOT in single-molecule biophysics started to
grow. In 1990, Ashkin and colleagues used LOT to manipulate biological
samples, starting from an individual tobacco mosaic virus and E. Coli
bacterium [49]. Since then, LOT found many different applications across
many fields of physics [50–52], nanotechnology [53], soft matter [54], and
biology [55], among the others.

In particular, LOT revealed a powerful tool to investigate the prop-
erties of NAs. LOT permits the direct measurement of the mechanical
work (and therefore of the free energy) needed to unfold DNA and RNA
hairpins, rendering force spectroscopy a valuable tool for NA thermo-
dynamics [56, 57]. Moreover, single-molecule manipulation sets a new
bar for resolving complex molecular reactions [34], such as NAs’ elastic

29
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response [58, 59] and non-specific secondary structure formation [60], as
well as their protein and NA folding [61–63].

3.1 principles of optical trapping

The interaction between a collimated laser beam and a dielectric particle
can be modeled according to the physical law of conservation of momen-
tum and ray optics (Fig.3.2, A). Given one ray of light coming from the
laser beam, its linear momentum can be written as

~p = n
h
l

êl , (3.1)

where n is the number of ray photons, h is the Plank constant, l is the
light wavelength, and êl is the unitary vector indicating the propagating
direction of the ray. When the ray reaches the particle surface, a fraction of
it is reflected, and the rest refracts according to the Snell law. The refracted
ray of light propagates through the sphere until it reaches the other edge
surface, where reflection and refraction occur again (red arrows in Fig.3.2).
Usually, the fraction of the ray reflected on a transparent particle is much
smaller than the transmitted one, so the former can be neglected. The
amount of momentum transferred to the bead per unit of time defines
the force applied to the particle

~f =
d~p
dt

. (3.2)

This force can be decomposed into two components: a scattering force,
fscat, in the direction of light propagation, and a gradient force, fgrad, in
the direction of the spatial light gradient (black arrows). Notice that the
intensity of the force depends on the intensity of the incident light. In
the case of a collimated Gaussian laser beam, the scattering force always
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Figure 3.2: Ray optics description of the force exerted on a particle by an
incident beam. (A) Interaction between a collimated Gaussian laser beam and a
dielectric sphere. The refraction and reflection of a ray of light on the sphere
surfaces (red arrows). The resulting radiation pressure can be decomposed into
two components, the scattering force fscat (orange arrow) and the gradient force
fgrad (blue arrow). The resulting force, ftot (black arrow), pushes the particle
forward to the maximum intensity central region. (B) Optical trapping with a
focused (not collimated) laser beam. The addition of all light rays causes a net
gradient force ( fgrad) that compensates for the scattering force ( fscat), generating
a restoring axial force ( ftot) that pushes the particle toward the trap center.

pushes the particle along the beam direction so that the particle cannot
be trapped in a region of space.

However, optical trapping can be achieved by focusing the light beam
(see Fig.3.2, B). In this case, the rays of light reaching the particle create a
force gradient that can be positive or negative depending on the position
of the center of the sphere with respect to the focal point. Thus, the
resulting force pulls the sphere toward the trap’s center. Combining this
axial restoring force with the radial component produces a 3-dimensional
optical trap. For stable trapping in all three dimensions, the axial gradient
component of the force (blue arrow) pulling the particle toward the focal
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region must exceed the scattering component of the force (orange arrow)
pushing it away from that region. This condition necessitates a steep
gradient in the light, produced by sharply focusing the trapping laser
beam to a diffraction-limited spot. This can be achieved using an objective
with a high numerical aperture (NA).

Notice that, in a typical LOT experimental setup, the trapped beads
have a diameter d ⇡ 2 � 4µm, while the beam wavelength is l ⇡ 1µm so
that d ⇠ l. In this regime, geometrical optics correctly describes optical
trapping (whereas it does not when d ⌧ l).

3.2 experimental setup

The experimental setup used in this thesis has been invented by Steve
Smith and Carlos Bustamante [45, 64–66], which named it miniTweezers.
The instrument is a miniaturized evolution of the original version by
Ashkin, providing better stability and higher measurement resolution.
The miniTweezers uses two counter-propagating laser beams to create
a single optical trap [67, 68]. This is achieved using two microscope
objectives with high NA focused on the same point. The light beam
focused on one objective is collected by the opposite one after it emerges
from the trap. The fundamental principle of the measure is based on
detecting the change in the light momentum. One of the advantages
of a dual-beam setup is that the trapped particle is subject to equal but
opposite scattering forces that cancel out. This permits us to reduce
the diameter of the laser beam (low NA) and collect all the deflected
light exiting the trap using high NA objectives. Moreover, the Instrument
calibration for force measurements is independent of several experimental
conditions (bead size, index of refraction, etc.). Besides, the dual-beam
optical trap presents other advantages to the single-beam trap [14]. First,
the laser beams do not need to be highly focused, which minimizes
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the effect of spherical aberration of the lenses. A lens with spherical
aberration focuses the marginal rays of a laser beam more tightly than
those near the optical axis, producing a blurred focal point. Since the
intensity of a low NA laser beam is concentrated near the optical axis,
such a beam is less affected by spherical aberration. Moreover, a low-
focused beam has a longer focal distance, which makes it possible to
focus the laser beam deeper inside the fluidics chamber. It reduces the
hydrodynamic effects of the boundaries of the fluidics chamber (i.e.,
the coverslips) on the particle trapped in the optical trap. Moreover,
using low-focused lasers reduces the heating of the medium by infrared
absorption.

3.2.1 The MiniTweezers Setup

The schematic of the MiniTweezers optics is symmetric for each counter-
propagating laser. As shown in Fig.3.3, the lasers partially share the
same optical path but are generated, controlled, and measured inde-
pendently. The instrument features two near-infrared laser diodes of
power P = 200mW and wavelength l = 845nm. The absorption of
this wavelength by water (the medium in which experiments are carried
out) is quite low, preventing the heating of the sample. Each laser (Lu-
mix LU0845M200) produces a linearly-polarized electromagnetic mode
TEM00 with a Gaussian profile. Each laser is connected through a single-
mode optical fiber to a device called wiggler (one for each device). The
wigglers control the direction of the beam: piezoelectric actuators al-
low tilting of the optical fiber changing the direction in which the light
emerges.

The optical paths of counter-propagating lasers A and B are equal
but opposite. Here we describe the optical path of laser A (in green in
Fig.3.3). After exiting the wiggler, a beam-splitter pellicle splits the light
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Figure 3.3: Schematics of the MiniTweezers with temperature control (see text).
The optical paths of lasers A and B are depicted in green and yellow, respectively.
The optical path of the imaging system is depicted in blue. Finally, the optical
path of the heating laser is shown in red.

in two directions. About ⇠ 8% of the incident light is redirected to a
Position Sensitive Detector (PSD), the light-lever, measuring the beam
position. The remaining ⇠ 92% of the light goes through the pellicle
and is collimated by a lens that forwards it to a polarizing beam-splitter
(PBS).

The PBS selects the horizontally polarized light and redirects the beam
toward a water-immersion microscope objective with NA=1.2 (Olym-
pus UPLSAPO 60⇥W) that focuses the light forming the optical trap.
Before the objective, a quarter-wave plate (l/4) produces circular polar-
ization, ensuring the scattered light is an average between parallel and
perpendicular components.

The light exiting the trap is then collected by the opposite objective
and is converted into vertically polarized light by another l/4. The
light continues on the path through two consecutive BPSs and a relay
lens that redirects the light to the PSD, measuring the beam intensity.
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Notice that the first BPS along the path is common to lasers A and B: it
forwards the vertically polarized light of laser A at the second BPS, and
at the same time, it redirects the beam by laser B toward the l/4 and the
corresponding objective. As the two beams have orthogonal polarizations
(the exiting laser A beam is vertically polarized while the incoming laser
B beam is horizontally polarized), they do not interact along the path.

The light that reaches the photodetectors is split into two parts using a
(non-polarizing) beam-splitter. One part is redirected to a PSD detecting
the deflection of the beam in the transverse direction (PSD Force A),
permitting the measurement of the force along the x and y-axis (transverse
force). The other part reaches a bull’s eye (or bullseye) filter and is
measured with a photo-diode (PSD Iris A). The bullseye is an attenuator
with a suitable transmission profile: when the beam is axial, 100% of
the light is transmitted. If the beam is off-axis, the transmitted light is
attenuated, reducing the power that reaches the PSD. This attenuation
signal is called Iris and allows for measuring the force along the z-axis
(longitudinal force).

A blue LED (l = 470nm) and a CCD camera (Watec WAT-902H3
SUPREME EIA) are used to form a microscope and view the experiment.
From the LED, the light goes through a lens to create a Köhler illumina-
tion system at the focal plane of the laser beams. This allows for uniform
illumination of the field of view. After the lens, a 45� dichroic long-pass
filter (cold mirror) redirects the LED light toward the objectives.

After following identical (but opposite) optical paths, the optical trap
is obtained by focusing the two laser beams on the same point. The trap
is formed inside a microfluidics chamber, where the whole experiment is
carried out. The chamber is placed between the objectives and is held
by a x, y, z motorized stage that allows for position control. Even though
the optical trap (and not the stage) is moved during the experiment, the
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stage makes it possible to easily move the chamber during the experiment
setup and the calibration procedure.

3.2.2 The Temperature-Jump LOT

A fundamental feature of the miniTweezers setup used in this work is the
temperature-jump (TJ) LOT, which permits carrying out experiments in a
broad range of temperatures [69, 70]. To change the temperature of the
system inside the microfluidics chamber, it has been used a wavelength
l = 1435nm (depicted in red in Fig.3.3).

The light emerges from a single-mode optical fiber with NA=0.14 and
is focused by a relay lens on the back focal plane of the laser B objective.
Notice that the cold mirror (see above) along the path lets the heating
wavelength pass and only reflects the blue LED light. The objective
expands the heating light creating a Köhler illumination cylinder of
⇠ 33µm that is used to heat the sample in the microfluidics chamber
(Fig.3.4A). After exiting the chamber, the light focuses on the front focal
plane of the opposite objective, which expands it again and forwards it
to the CCD camera. Let us notice that the heating spot in the chamber
cannot be seen with the mounted CCD camera because the photosensor
is not sensible to the 1435nm wavelength. However, the laser position can
be checked by replacing it with one of l = 975nm (visible light). After
the laser has been collocated in the center of the chamber, it is exchanged
back with the heating laser.

The heating laser produces a non-uniform temperature profile inside
the microfluidics chamber and a heat current. The wavelength of the
heating laser has been chosen to minimize heat absorption and convective
effects between regions of the medium (water) at different temperatures.
In addition, the heat flux can be further reduced by minimizing the
region’s volume to be heated in the chamber [70]. Let us notice that
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Figure 3.4: Heating laser in the temperature-jump LOT. (A) Köhler illumination
cylinder (⇠ 33µm) generated by the heating laser in the microfluidics chamber.
The laser position is checked by replacing the l = 1435nm heating laser (not vis-
ible by the CCD camera) with one of l = 975nm (visible light). (B) Temperature
change, DT, as a function of the heating laser power output. The laser output is
controlled by four binary switches that can be combined to obtain a series of 16
discrete DT. Notice that not all the possible switches’ combinations are shown
here.

the standard miniTweezers setup features water immersion objectives.
However, water cannot be used as it would interfere with the heating
wavelength. Therefore, water has been replaced with Cargille Labs
Refracting Index matching Liquid, Series AAA, N = 1.330. This liquid is
placed between the objectives’ lenses and the microfluidics chamber.

The output power of the heating laser is controlled by a binary set of
switches incorporated into the power supply. The switches are labeled
as 1, 2, 4, and 8, and each has the option to be in 1 (powered on) or
0 (powered off). By starting at (0, 0, 0, 0) (all switches are powered off,
i.e. the output current of the heating laser is 0mA) up to (1, 1, 1, 1) (the
laser power is maximum with an output current of 160mA), there are
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Figure 3.5: Temperautre-jump LOT experimental setup. (A) Experiments above
room temperature. At T0 ⇠ 25�C, the heating laser changes the temperature
inside the microfluidics chamber up to ⇠ 55�C. (B) Experiments below room
temperature. An ice box is used to lower the temperature of the miniTweezers,
i.e. the "environment" temperature, to T0 ⇠ 5�C. A previously frozen water
reservoir keeps this temperature stable upon melting (see text). Inside the ice
box, the heating laser can be used to raise the temperature in the proximity of
the optical trap up to ⇠ 30�C.

14 different switches combinations. This gives 15 discrete temperature
increases, DT, with respect to the environment temperature, T0. Each
laser power is identified by the sum of the numbers associated with the
powered switches. For example, the combination (1, 0, 0, 0) correspond
to the laser power 1 (switch 1 powered on and switches 2, 4 and 8
powered off), while (0, 0, 0, 1) and (0, 1, 0, 1) correspond to positions 8
and 10, respectively. Fig.3.4 shows the temperature change as a function
of the laser power output (the corresponding switches’ positions are also
indicated).
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The TJ-LOT allows for increasing the system temperature to a max-
imum of DT ⇡ +30�C with respect to T0. Therefore, changing T0 al-
lows for exploring a broader range of temperatures. In particular, our
miniTweezers setup can work above (T0 ⇡ 25�C) and below (T0 ⇡ 5�C)
room temperature (Fig.3.5). To reach low temperatures, the whole in-
strument is placed inside a 1.5m3 top-opened ice box containing ⇠ 20
liters of water. After setting the experiments, the ice box is turned on
until it reaches the (minimum) temperature of ⇠ �30�C, and the water
is frozen into a block of ice. When the ice box is turned off, the ice starts
to melt slowly, maintaining the temperature at a constant 4 � 5�C for
several days. The LOT is then placed into the ice box using a pulley that
controls a suspension system isolating the instrument head by vibrations.
Inside the ice box, the temperature of the tweezers is measured by two
thermometers that monitor the temperature evolution in different parts of
the instrument. When the temperature inside the ice box becomes stable
(generally after 4 � 5 hours), it is possible to start the experiments. The
temperature around the optical trap can be changed using the heating
laser. Therefore, the current setup (ice box and TJ-LOT) permits us to
explore a wide range of temperatures, spanning between ⇠ 5�C and
⇠ 55�C (the 5 � 30�C range inside the ice box plus the 25 � 55�C range
at room temperature.)

3.2.3 The Microfluidics Chamber

The experiments are carried out in microfluidics chambers specifically
designed to be used with the TJ miniTweezers (see Fig.3.6) and are
realized manually.

The camber is made using two cover glasses (24mm ⇥ 60mm, No.2
VWR). One of them presents 6 holes for the buffer throughput. Between
the two layers is placed a layer of Nescofilm (Nesco-Karlan) with a
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Figure 3.6: Design of the microfluidics chamber (see text).

suitable design for the TJ-LOT. Both the holes in the coverglass and the
cutting of the Nescofilm are made with a laser cutter (Epilog Mini 18).
Three channels are drawn in the Nescofilm (Fig.3.6, top). Each channel
has a distinct input that allows for flowing different buffers (see the next
section). Even though the channels’ outputs are physically separated, all
the buffer exiting the chamber is collected into the same waste container.
As shown in Fig.3.6 (bottom), the upper and lower channels are connected
to the central channel by glass dispenser tubes (King precision glass, Inc.,
inner diameter of 0.04mm, outer diameter of 0.10mm and length ⇠ 6mm,
glass type KG�33). Through these tubes, the sample can enter the central
channel in a controlled way, drastically reducing undesired turbulences
in the buffer flux and avoiding the sample overabundance in the chamber
operative region.

A glass micropipette is placed on the Nescofilm layer, with the tip
positioned in the central area of the main channel. The micropipette
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Figure 3.7: Unzipping experimental setup. The molecular construct is tethered
between two beads in a dumbbell configuration: the antiDIG (AD)-coated bead
is optically trapped, while the Streptavidin(SA)-coated one is held by air suction
at the tip of a glass micropipette. The two tags specifically bind to the ds handles
of the molecule, one labeled with a digoxigenin tail (DIG) and the other with
biotin (BIO).

has a diameter of ⇠ 1µm and is produced by heating and pulling a
glass tube (King precision glass, Inc., inner diameter of 0.04mm, outer
diameter of 0.08mm, glass type KG�33). Notice that the design of the
Nescofilm has been made to avoid the obstruction of the lower channel
by the micropipette. A detailed description of the procedure to realize a
microfluidics chamber can be found in [68].

3.3 pulling experiments

Single-molecule unzipping experiments consist of controlling the position
(or the force) of micron-sized particles (beads) that are coated with the
molecule of interest (DNA, RNA, or proteins) inside a microfluidics
chamber (see Sec.3.2.3). The typical experimental setup is shown in
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Figure 3.8: Unzipping/rezipping pulling protocol. Starting with the molecule in
the completely folded configuration (the native state), the optical trap is moved
with respect to the (fixed) micro-pipette at a constant speed. As the unzipping
progresses, groups of bases open one after another in a stick-slip process. The
reverse protocol (rezipping) starts when the molecule is completely unfolded.
The FDC measured during unzipping (red) and rezipping (blue) exhibits a
saw-tooth pattern that depends on the sequence of the hairpin.

Fig.3.7. The molecules are designed to end with double-stranded handles
(with lengths varying from a few to hundreds of bases), one labeled with
a digoxigenin tail (DIG) and the other with biotin (BIO). The two tags
bind specifically to beads coated with anti-DIG (AD) and streptavidin
(SA), respectively. The molecule is tethered between the two beads in
a dumbbell configuration: the AD bead (⇠ 3µm diameter) is optically
trapped. In contrast, the SA one (⇠ 2µm diameter) is held by air suction
at the tip of a glass micropipette (Fig.3.7). The experiment setup proceeds
as follows. AD beads (already coated with the molecule of interest) are
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flown into the upper channel of the microfluidics chamber while the
lower one is filled with SA beads. The central channel of the chamber
is filled with the buffer in which the experiment has to be carried out.
The glass dispenser tubes connecting the side channels to the main one
allow the beads to enter the chamber’s central region. The optical trap is
used to (manually) select an SA and an AD bead and bring them to the
starting position of the experiment. The different sizes of the AD and SA
beads permit us to distinguish them during the experiment.

In an unzipping experiment, the optical trap is moved with respect to
the (fixed) micro-pipette at a constant speed. At the beginning of the pro-
tocol, the molecule is folded into its native double-stranded (ds) hairpin
configuration (Fig.3.8). As the optical trap moves away from the pipette,
the force applied to the hairpin increases until the intramolecular bonds
at the beginning of the stem break open. As the unzipping progresses,
groups of new bases sequentially open one after another. Unzipping is a
stick-slip process consisting of the succession of an elastic deformation
(stick) followed by the release of groups of bases that collectively unfold
cooperatively (slip), resulting in sudden force jumps. The unfolding pro-
tocol proceeds until the hairpin is fully unzipped and the single-strand
(ss) form is fully stretched (Fig.3.8). At this point, the reverse process
starts (rezipping), and the molecule refolds starting from the loop until
the native ds hairpin has been reformed. Upon rezipping, groups of bases
are cooperatively absorbed into the stem resulting in sudden increases in
force. The force-distance curve (FDC) measured during unzipping and
rezipping exhibits a saw-tooth pattern that depends on the sequence of
the hairpin.





4
F L U C T UAT I O N R E L AT I O N S

In macroscopic systems, fluctuations represent just minor deviations
from the average behavior. In a gas of molecules, where the number of
particles N ⇠ 1012, relative energy deviations are on order 1/

p
N with

respect to the average value. This implies that the typical magnitude
of the deviations is of the order of 10�6 making them negligible (and
experimentally not visible) in bulk experiments. In contrast, the advances
in SM manipulation during the last 20 years granted access to events
occurring at the level of individual molecules. In this microscopic scale,
work measurements and thermal fluctuations are of the same order, and
repetitions of the same experiment may lead to different outcomes [35].

The study of such systems takes the name of Nonequilibrium thermody-
namics of small systems [71] and Stochastic thermodynamics [72]. Since the
90s, the search for a thermodynamic description of small systems has
become increasingly active. The results obtained during these years went
under the name of fluctuation theorems (FTs) and laid the foundations
for a mathematical description of energy fluctuations for nonequilibrium
systems [35, 73].

The development of the FTs lead to crucial breakthroughs in SM bio-
physics: the measurement of the free energy of formation of DNA and
RNA [22, 23, 74, 75]; the study of the stability of the proteins native
domains [76]; the measurement of mechanical torque in rotary mo-
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tors [77]; the computation of free energy landscapes from work mea-
surements [78, 79]; the reconstruction of the free-energy branches for
a molecular construct exhibiting multiple stable states [56, 80], among
others.

4.1 crooks and jarzynski relations

Let us consider a system (Eg., a single molecule) initially (t = 0) in
thermal equilibrium at state A for a given value l(0) = lA of the control
parameter. In the case of LOT, the control parameter is the trap-pipette
distance. An experimental time-dependent forward (F) protocol, lF(t), is
applied by increasing l during a time interval t at a constant pulling rate,
v = dl/dt: the system starts in state A at lA and ends in state B at an
arbitrary l(t) = lB. The mechanical work, W, done along this process is:

W =
Z t

0
v f dt =

Z lB

lA

f dl . (4.3)

Now suppose that the time-reversed (R) experimental protocol is per-
formed: the system starts at equilibrium in state B at lB and the control
parameter changes according to the time-reverse transformation l(t � s)
until it reaches state A at lA. The work measured during the reverse
process is then

W =
Z t

0
(�v) f ds = �

Z lB

lA

f dl . (4.4)

The Crooks Fluctuation Theorem (CFT) [81] relates the mechanical
work done on a system during the forward and reverse processes, and it
reads:

PF(W)
PR(�W)

= exp
✓

W � DGAB
kBT

◆
, (4.5)
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where PF(W) and PR(�W) respectively are the probability distributions
of the work measured in the forward and reverse process, and DGAB =

G(lB)� G(lA) is the Gibbs free-energy difference between state A at lA

and state B at lB.
The CFT implies the well-known Jarzynski equality [82]. By multiply-

ing Eq.(4.5) by PR(�W) and integrating over W, one gets

⌧
exp

✓
�

W
kBT

◆�

F
= exp

✓
�

DG
kBT

◆
, (4.6)

where h· · · iF is the average over the forward trajectories. Note that the
analogous equality holds for the reverse process.

A fundamental consequence of Eq.(4.5) is that the value of the work,
W⇤, by which the probabilities of the forward and the reverse processes
are equal, i.e. PF(W⇤) = PR(�W⇤), gives the free-energy difference
W⇤ = DGAB. This value, which also corresponds to the reversible work,
is always the same no matter how far from equilibrium the system is
during the experimental process. A consequence of Eq.(4.6) is the second
law inequality, hWi � DGAB. Notice that the CFT predicts the possibility
of having trajectories where W < DGAB. In this case, transient violations
of the second law of thermodynamics are observed. However, such (rare)
events do not imply that the second law does not hold for small systems,
as thermodynamic quantities are not evaluated over one but an infinite
number of trajectories.

4.2 free energy estimators

In general, the extraction of free-energy differences from irreversible
work measurements can be obtained using bidirectional or unidirectional
free-energy estimators. The former, as the CFT in Eq.(4.5), can be applied
when both the forward and the reversed protocols are feasible. How-
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ever, when dissipation and hysteresis effects between the forward and
the reversed processes are large, the work distributions in the l.h.s of
Eq.(4.5) separate from each other up to a point where they do not cross
anymore, and only unidirectional estimators can be used. Typically, the
combination of information from the forward and reversed protocols
provides less biased free-energy estimates. Here we briefly introduce
the free-energy estimators used in this thesis. Their extension to the
out-of-equilibrium case where multiple intermediates appear during the
forward and reverse processes is discussed in Part III.

Let us first rearrange the terms in Eq.(4.5) to get

PF(W) exp
✓
�

W
kBT

◆
= PR(�W) exp

✓
�

DGAB
kBT

◆
. (4.7)

Let us now multiply both terms in Eq.(4.7) by a generic function f(W),
which gives

⌧
exp

✓
�

W
kBT

◆
f(W)

�

F
= hf(�W)iR exp

✓
�

DGAB
kBT

◆
, (4.8)

where h· · · iF(R) is the average over all possible forward (reverse) trajec-
tories. By properly choosing the function f(W), it is possible to obtain
different free-energy estimators. Notice that for f(W) = 1, the Jarzynski
equality in Eq.(4.6) is recovered.
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4.2.1 Bennett Acceptance Ratio Method

The Bennett Acceptance Ratio (BAR) method [83] is a bidirectional free-
energy estimator, i.e. it uses work measures from both the forward and
the reverse protocols. It is obtained from Eq.(4.8) by choosing the function

f(W) =
1

1 + nF
nR

exp
⇣

W�DGAB
kBT

⌘ , (4.9)

where nF(R) is the number of forward (reverse) work measurements. It has
been proved that the use of Eq.(4.9) in Eq.(4.8) minimizes the statistical
variance of the estimation of DGAB [83, 84]. Hence, for a given set of
forward (reverse) work measurements {WF(R)

i }i=1,...,nF(R) , the transition
free-energy from state A to state B is given by

u
kBT

= zR(u)� zF(u) , (4.10)

where
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The value of u that satisfies the transcendental equation (4.10) corre-
sponds to DGAB.

4.2.2 Jarzynski Free-Energy Estimator

When information from both forward and reverse protocols is not avail-
able, it is possible to infer the DGAB from unidirectional work measure-
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ments. The Jarzynski free-energy estimator can be obtained from Eq.(4.8)
by choosing f(W) = 1. In this case, for a given set of n forward (or
reverse) work measurements {Wi}i=1,...,n one gets

DGAB = kBT log

"
1
n

n

Â
i=1

exp
✓
�

Wi
kBT

◆#
. (4.12)

Notice that the exponential in Eq.(4.12) is dominated by the lowest work
values, and it is crucial to have a good sampling of rare events to avoid
the biased estimation of DGAB. In practice, a large number of trajectories,
n, is required to get a reliable estimation of the energy [85]. This implies
that unidirectional estimators have a slower convergence to the "true"
value of DGAB than bidirectional ones [86].
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U N Z I P P I N G O F N U C L E I C A C I D S

The discovery of nucleic acids and their importance to heredity took
more than a century. In 1865, Gregor Mendel’s observations on the
breeding of peas laid the foundations of genetics. In 1869, Friedrich
Miescher found evidence of the presence of a new substance (i.e. the
nucleic acids) in the cell’s nucleus. In 1900, Hugo de Vries noticed that
changes in the coloring of primroses are not gradual but occur abruptly
as spontaneous mutations. Hermann Müller and L. G. Stadler discovered
that the mutation rate could be increased by exposing the gamete cells to
X-rays. In 1926, Thomas Morgan suggested that genes are not separated
entities but grouped in the chromosomes.

In 1928, Frederick Griffith showed that the pneumonia bacterium,
Diplococcus pneumoniae, is virulent when its polysaccharide coat is intact.
Based on Griffith’s result, in 1944, Oswald Avery, Colin MacLeod, and
Maclin McCarthy carried out the following experiment: they inoculated
mice with avirulent bacteria (i.e. no polysaccharide coating) and heat-
killed bacteria. The experiment showed that removing the polysaccharide
coat had no effect, as successive generations of bacteria had an intact
coating and were virulent. However, if the bacterium’s DNA is removed
or denatured, its lethal potential is destroyed. Avery and his colleagues
had established that DNA is the repository of the genetic message and
that changes to an organism’s observable traits (phenotype) do not affect
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the information transmitted to the descendants (genotype). In 1953,
Watson and Crick discovered the structure of DNA using X-ray diffraction.
All these observations led to the discovery of the genetic code by Khorana,
Holley, and Nirenberg, which was awarded the Nobel prize in 1968.

At that time, it was clear that DNA is the carrier of genetic information
and that such information is transcripted from the DNA in an irreversible
process. In 1970, Francis Crick wrote [87]: ”The central dogma of molec-
ular biology deals with the detailed residue-by-residue transfer of sequential
information. It states that such information cannot be transferred back from
protein to either protein or nucleic acid.”. Since then, molecular biology
has undergone enormous progress. Although molecular activities such
as reverse transcription, ribozymes, and post-translational modification
significantly alter the linearity of the central dogma, its general meaning
is still valid nowadays.

In this chapter, we introduce the biological structure of nucleic acids
(DNA and RNA) and briefly discuss their main features and differences
(Sec.5.1). In Sec.5.2, we discuss the model describing the energetics of
NAs hybridization. In Sec.5.3 is described the theoretical modeling of
NAs unzipping. Finally, in Sec.5.4 and 5.5 we discuss the theoretical
modeling of the experimental FDC.

5.1 structure of nucleic acids

The fundamental building block of deoxyribonucleic acid (DNA) and ri-
bonucleic acid (RNA) is the nucleotide (Fig.5.9). A nucleotide is made of a
cyclic furanoside-type sugar (b-D-ribose in RNA and b-D-20-deoxyribose
in DNA) that is phosphorylated in the 50 position and forms a glycosyl
linkage in correspondence of the C0

1 position with one of four different
heterocycles. The heterocycles are divided into purines, i.e., Adenine
(A) and Guanine (G), and pyrimidines, i.e., Cytosine (C), Thymine (T),
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Figure 5.9: Structure of the nucleotides. (A) The basic structure of a nucleotide
(see text). By convention, the directionality of the chain is given from the 50 to the
30 end. (B) The double-ring (purines) and single-ring (pyrimidines) nitrogenous
bases make the DNA and RNA structure.

and Uracil (U). The latter is only present in the RNA structure and is
replaced by thymine in DNA. Two nucleotides concatenate by forming
a bond between the phosphoric group of the first nucleotide and the
third carbon of the second nucleotide. The concatenation of multiple
nucleotides forms a phosphate–deoxyribose backbone of linked bases
featuring a phosphate group on one terminus (50) and a hydroxyl group
on the other one (30). The resulting polynucleotide chain has asymmetric
ends (50 and 30), and it is conventionally described given as a sequence of
bases in the direction 50 ! 30 (see Fig.5.9A).

The secondary structure of NA results from the hybridization of two
complementary nucleotides sequences having antiparallel directions (i.e.
a 50 ! 30 strand pairs with a 30 ! 50 strand) that are linked together by
non-covalent interactions [88]. The canonical pairing between nucleotides
is given by the Watson–Crick complementarity rules [89] and account for
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Figure 5.10: DNA secondary structure. Two complementary DNA strands with
antiparallel directions hybridize according to the Watson–Crick base-pairing in-
teractions. An analogous representation can be made for dsRNA by substituting
T with U. Image from [90].

purine–pyrimidine bonding: A links to T (U in the RNA case) and G to C
with three and two hydrogen bonds, respectively. The two strands bond
through base-pairing, forming the characteristic NAs helical structure.
Although hydrogen bonding is responsible for the specificity of the
interaction of the bases, most of the stability of the structure is due
to base stacking [91]. Stacking is an intermolecular interaction that
tends to arrange molecules in a pile. Two forces stabilize base stacking:
the hydrophobicity of the aromatic rings of the bases and the London
dispersion of the dipoles (induced in the bases). Generally, the stacking
interaction between purines (A and G) is stronger than the one between
pyrimidines (C, T, and U).
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The tertiary structure of a biomolecule represents its three-dimensional
structure, i.e. the spatial localization of the atoms. In the case of NAs,
the two strands form a double-helix (Fig.5.10). The backbones of the
two single strands face each other and twist along the central axis of the
molecule. The bases of one strand are paired with the complementary
ones and are localized in the cavity left between the two backbones. The
outer envelope of the double helix exhibits two helical grooves: the major
and the minor groove having different widths and depths.

Compared to DNA, RNA exhibits more complex behavior. The re-
placement of deoxyribose for ribose and thymine for uracil makes RNA
catalytic due to the reactive polarizable 20–OH group of ribose. Ribose
also induces significant changes at the level of base stacking interactions
between contiguous bases. In their double-stranded forms, NAs form
distinct right-handed double helices, B-form and A-form. Although DNA
can adopt both A-form and B-form, RNA can only be found in A-form.
The predominant form of dsDNA is the B-form, which consists of a
right-handed double helix with a rise along the axis of 0.34nm/bp and
a helix diameter of 2.0nm requiring 10 bases to complete a whole turn.
In contrast, the dsRNA bases are tilted by approximately 19 degrees
relative to the helical plane, and the interphosphate distance is smaller
(0.28nm/bp) [92], ⇠ 20% wider and shorter than the DNA B-form. These
structural differences generate stacking between inter-strand bases and
tighter water molecular bridges between phosphates and bases in RNA.
Overall, base stacking tends to be stronger in RNA than in DNA. Base
stacking is due to the Van der Waals attractive forces of the fluctuating
dipole-dipole interactions between contiguous bases. Much weaker than
the covalent nature of hydrogen bonding, the latter’s effect is minimized
upon secondary structure formation due to the compensation effect of
hydrogen bonding with water. Overall, base stacking and hydrogen
bonding contribute equally to RNA helix stabilization, albeit the 1/r6
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dependence of Van der Waals forces makes stacking strongly sensitive to
the inter-base distance, r. Therefore, RNA structure strongly depends on
RNA stacking between intra-strand and inter-strand bases, making RNA
folding prediction a difficult problem.

5.2 the nearest-neighbor model

Nucleic acids are polymeric chains of monomers (nucleotides) organized
into increasingly complex structures. From the single-stranded form
to the complex tertiary double-helix structure, the nature of such inter-
actions defines the physico-chemical properties of a biomolecule. As
described in the previous section, the formation of such structures is
governed by the specific Watson–Crick base-pairing and the stacking
between adjacent base pairs (see Fig.5.11A). The specific and non-specific
interactions defining the duplex energetics can be described according to
the Nearest-Neighbor (NN) model [22, 93–95].

In the NN model, the base-pairing energy of two complementary bases
only depends on the base itself and the first neighbor located in the
same strand (in the 50 ! 30 direction). The nearest-neighbor base-pair
(NNBP) are denoted as XY/X Y, where X, Y = A, C, G, U, and X(Y) is the
complementary base of X(Y) and XY/X Y is the NNBP resulting from
hybridizing dinucleotides 50 � XY � 30 and 50 � Y X � 30. The energies of
XY/X Y and Y X/YX are equal due to complementary strand symmetry.

According to the NN model, the total hybridization free energy of a
duplex, DG0, is given by the sum over all the NNBP motifs along the
sequence:

DG0(N) =
N

Â
i=1

Dgi (5.13)

where Dgi is the free energy of motif i. Notice that the NNBP energies
are negative, as they are defined as the free-energy loss upon hybridizing



5.2 the nearest-neighbor model 57

A B
3′

5′ 3′

5′
A T

C G

Hydrogen Bonds
Stacking

5′ 3− ′

TT
AA
3′ 5− ′
′5 3− ′

GT
CA
3′ 5− ′
′5 3− ′

CT
GA
3′ 5− ′
′5 3− ′

AT
TA
3′ 5− ′

′5 3− ′

GG
CC
3′ 5− ′

′5 3− ′

TG
AC
3′ 5− ′

′5 3− ′

CG
GC
3′ 5− ′
′5 3− ′

AG
TC
3′ 5− ′

′5 3− ′

GC
CG
3′ 5− ′

′5 3− ′

TC
AG
3′ 5− ′

′5 3− ′

CC
GG
3′ 5− ′
′5 3− ′

AC
TG
3′ 5− ′

′5 3− ′

AA
TT
3′ 5− ′

′5 3− ′

CA
GT
3′ 5− ′

′5 3− ′

GA
CT
3′ 5− ′

′5 3− ′

TA
AT
3′ 5− ′

Figure 5.11: Nearest neighbour model. (A) The energetics of the (complemen-
tary) nucleotides forming the double-helix structure only depends on the base
itself and the first neighbor in the same strand. (B) Matrix of the 16 NNBP motifs
according to the NN model. Degenerate energies have the same cell color. Out of
the 10 independent parameters, circular symmetry allows expressing two NNBP
energies (TA/AT and GC/CG – red-bordered cells) as a linear combination of
the others (see Eq.(5.14)). An analogous matrix can be written for the RNA case
by changing T for U.

a base-pair, i.e., Dgi = gH
i � gO

i < 0, where gH
i (gO

i ) is the free-energy of
the hybridized (open) motif. There are 16 different motifs accounting
for all possible combinations of adjacent NNBPs (see Fig.5.11B). This
number is reduced from 16 to 10 by considering the degeneracy of the
free energies due to the Watson–Crick complementarity. It is possible
to further reduce this number from 10 to 8 independent parameters
by considering the circular symmetry of the NN model [96, 97]. This
symmetry yields additional self-consistent relations so that out of the
10 NNBP energies, 2 can be expressed as linear combinations of the
remaining 8 [74, 97, 98]. The two motifs TA/AT (UA/AU) and GC/CG
are those usually expressed as a function of the others:

DgTA(UA) = DgCG +
1
2
(DgAC + DgGA � DgAG � DgCA)

DgGC = DgAT(AU) +
1
2
(DgGA + DgCA � DgAG � DgAC) .

(5.14)
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For example, the RNA sequence 50 � CUUAGC � 30 forms a duplex with
its complementary strand, 50 � GCUAAG � 30. The total energy of this
sequence is DgCU/GA +DgUU/AA +DgUA/AU +DgAG/UC +DgGC/CG with
DgCU/GA = DgAG/UC due to complementary strand symmetry.

The accurate measure of the NNBP free energies is key for correctly
estimating the total free energy of formation of the duplex native state.
The 10 independent parameters have been extracted from melting experi-
ments of short duplexes of varying sequences and lengths [23, 99–101]
for both DNA and RNA and are accessible in the Mfold server [24].
Single-molecule techniques allow for much more accurate free-energy
measurements than bulk experiments. However, to derive the 10 (8 if
circular symmetry is considered) NNBP parameters from unzipping ex-
periments, it is fundamental to have a theoretical model of the unzipping
process to predict the experimental FDC.

5.3 modeling unzipping experiments

In unzipping experiments at a controlled position (see Sec.3.3), the trap–
pipette distance, l, is steadily increased (unzipping) or decreased (rezip-
ping) by moving the optical trap. As the trap-pipette distance changes,
the increasing (decreasing) force, f , exerted on the molecule causes the
number of open bases, n, to change and the hairpin to unfold (refold).
As shown in Fig.5.12, the total distance, l, can be written as

l( f ) =

8
<

:
xb( f ) + xh( f ) + xd( f ) + l0 (unzipping/rezipping)

xb( f ) + xh( f ) + xss( f ) + l0 (unfolded state) ,
(5.15)

depending on whether the stem of the molecule is formed during
unzipping–rezipping (Fig.5.12, left) or completely unfolded (Fig.5.12,
right). The total distance is a sum of various contributions [102]: xb( f )
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Figure 5.12: Unzipping experiment at controlled position. By moving the optical
trap, a force is applied to the molecular construct (see text). The trap–pipette
distance, xtot, is the result of several contributions (left): the distance of the bead
from the trap center (xb), the extension of the handles (xh), the extension of the
double-stranded molecule along the force axis (xd), and the extension of the
single-stranded molecule (xss). Notice that when the molecule is completely
unfolded (right), xd = 0.

is the displacement of the bead from the center of the optical trap,
xh( f ) = xh1( f ) + xh2( f ) accounts for the sum of the elongations of the
two double-stranded handles, xss( f ) is the end-to-end extension of the
single-stranded unfolded molecule, and xd( f ) is the average extension
of the folded hairpin. This last term is defined as the extension of
the NA double-helix projected along the force axis [103] and is usually
called "hairpin diameter", d (typically d = 2nm for DNA and RNA hair-
pins [104]). Notice that the l in Eq.(5.15) is a relative quantity so that it
is defined up to an additive constant, l0.

The total distance, l, can be described as the extension of a series of
different springs, each with a different elastic constant, k (see Fig.5.12).
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Upon changing l, the extension variation of each term in the r.h.s of
Eq.(5.15) depends on their physico-chemical properties. In general, a
small variation dl produces a small change in the applied force d f . The
extent of this variation is the effective stiffness of the system keff = d f /dl

and it equals the slope of the experimental FDC. Therefore, according to
Eq.(5.15), the inverse effective stiffness can be written as

1
kF

eff( f )
=

1
kb( f )

+
1

kh( f )
+

1
kd( f )

(unzipping/rezipping)

1
kU

eff( f )
=

1
kb( f )

+
1

kh( f )
+

1
kss( f )

(unfolded state) ,
(5.16)

where kb( f ) is the stiffness of the bead in the optical trap, kh( f ) is the sum
of the two handles’ stiffness, kd( f ) corresponds the molecular stiffness
of the folded molecule and kss( f ) stands for the stiffness of the single-
stranded molecule. Let us study in detail each one of these components.

The bead in the optical trap is modeled as a Hookean spring of stiffness
kb:

f (xb) = kbxb . (5.17)

The extension upon orienting the double helix is modeled as a dipole of
length equal to the helix diameter, d, that aligns along the force axis:

xd( f ) = d


coth
✓

f d
kBT

◆
�

kBT
f d

�
, (5.18)

where kB is the Boltzmann constant and T is the system temperature.
Finally, the extension of double-stranded handles, xh, and of the single-

stranded molecule, xss, are modeled as elastic polymers. These terms are
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typically described by the inextensible or extensible Worm-Like Chain
(WLC) model and its interpolation formula [105]. In the inextensible case

f (x) =
kBT
4lp

"✓
1 �

x
nld

◆�2
� 1 + 4

x
nld

#
, (5.19)

where x is the average extension of the molecule (x = xss for the unfolded
hairpin, x = xh for the double-stranded handles). lp is the persistence
length, i.e. the typical distance along the polymer backbone over which
there is an appreciable bending due to thermal fluctuations, and ld is the
interphosphate distance, i.e. the typical distance between consecutive
bases (base-pairs in the double-stranded case) along the NA backbone.
Eq.(5.19) is usually written as a function of the contour length, Lc =

nld, i.e. the end-to-end distance of a fully straightened polymer of n
bases (base-pairs). Notice that computing xh( f , n) and xss( f , n) requires
inverting Eq.(5.19) [102], which is not an easy task and the solution
depends on the system parameters. The full computation is reported in
Appendix A. By recalling that in general k = ∂ f /∂x, the stiffness of the
polymer can be obtained by differentiation of Eq.(5.19), so that

k(x) =
∂ f (x)

∂x
=

kBT
2LcP

"✓
1 �

x
Lc

◆�3
+ 2

#
. (5.20)

Given Eq.(5.19), it is also possible to take into account the elastic
deformation of the stretched polymer by performing the substitution
Lc ! Lc(1+ f /Y), with Y the Young modulus of the stretchable polymer
[106, 107], i.e. the resistance to deformation of the system to applied
uniaxial stress. The contour length becomes force-dependent in this case,
and the corresponding model is called the extensible WLC. By contrast,
Eq.(5.19), where Lc is constant, is known as the inextensible WLC. The
latter has been shown to describe the elastic properties of single-stranded
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nucleic acids (ssDNA and ssRNA) with good accuracy [59] while the
former has for long been the standard to model the elastic properties of
double-stranded nucleic acids in the entropic regime.

The persistence length lp is a measure of the mechanical stiffness of
the polymer being strongly sensitive to environmental conditions (e.g.
ionic strength, temperature, solvation, etc.). Polymers with lp � Lc

effectively behave as rigid rods, whereas if lp  Lc polymers are bent
at the scale of the contour length by thermal forces. It is important to
mention that lp does not only depend on the ionic concentration and
temperature [69] (as predicted by polyelectrolyte theories) but also on
experimental parameters such as contour length [59], suggesting that lp is
an effective parameter. For example, at 1M NaCl, recent single-molecule
studies have shown that, for short (a few tens bases) ssDNA molecules,
lp = 1.35nm [108] whereas for long ssDNA ⇠ 13kbp lp = 0.76nm [109].
On the other hand, for short ssRNA molecules lp = 0.75nm [110] and for
long ⇠ 1kbp ssRNAs lp = 0.83nm [59, 60]. These values are significantly
lower than for double-stranded nucleic acids (dsDNA and dsRNA) where
lp = 50nm for dsDNA [13] and lp ' 60nm for dsRNA molecules [111].

5.4 computation of the system free-energy

Single-molecule unzipping experiments are reversible processes in which
a molecular construct (NA, protein, etc.) is repeatedly pulled between
two fixed positions by moving the optical trap. As discussed in Chapter 4,
the amount of energy needed to stretch the molecular construct depends
on the initial and final positions of the system: at the initial state, i.e. at
position l0, the molecule is subject to a (minimum) force f0 = fmin while
at the final state (at l1) the corresponding applied force is f1 = fmax.
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In general, given the model of the experimental setup discussed in
Sec.5.3, the total system free energy can be written as

DG = DG0 + DGm + DGb + DGh , (5.21)

where DG0 is the free energy of formation of the molecule at zero force, i.e.
the free energy difference between the folded state (completely hybridized
hairpin) and (unfolded) random coil conformations and DGi (i = m, b, h)
is the reversible work difference between the initial state (at position l0

where the hairpin is subject to a minimum force f0 = fmin) and final state
(at position l1 and force f1) of each setup element (molecule optically
trapped bead and handles, respectively)

5.4.1 Molecular Stretching Contribution

The molecular contribution DGm(x) in Eq.(5.21) accounts for the re-
versible work needed to stretch the molecular construct, i.e. ssNA and
dsNA,

DGm(x) =
Z xss( f1)

0
fss(x) dx �

Z xd( f1)

0
fd(x) dx , (5.22)

where fss(x) and fd(x) are the force applied to the stretched ssNA
(Eq.(5.19)) and dipole (Eq.(5.18)), respectively. The two terms on the
r.h.s of Eq.(5.22) respectively account for the reversible work to stretch
the single-stranded hairpin and orientate the molecular diameter along
the force axis at f = 0 up to f1. However, in unzipping experiments at a
controlled position, the force is the independent variable, so the calcula-
tion of the molecular contributions requires computing the integral

DGm(x) =
Z xm( f1)

0
fm(x)dx = f1 xm( f1)�

Z f1

0
xm( f 0)d f 0 , (5.23)
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where xm = xss, xd given by Eqs.(5.19) and (5.18), respectively. Notice
that the second term in the r.h.s of Eq.(5.22) is zero when the molecule is
completely unfolded.

5.4.2 Bead and Handles Contributions

The two terms DGb(x) + DGh(x) in Eq.(5.21) correspond to the sum of
the reversible work required to displace the bead from the center of the
optical trap (DGb) and the reversible work needed to stretch the double-
stranded handles (DGh). The trap contribution can be easily computed
by integrating Eq.(5.17), which gives

DGb(x) =
1
2

kx2
b . (5.24)

The dsNA term is modeled according to the WLC (see Sec.5.3). There-
fore, the handles contribution, DGh, is computed by integrating Eq.(5.19)
according to (5.23). Notice that this term needs to be counted twice, as
two double-stranded handles are used in the experimental setup.

5.5 prediction of the unzipping curve

The model of the NA elastic response described in Sec.5.3 and 5.4 allows
for the computation of the equilibrium force applied to the molecular
construct at each instant of the unzipping protocol. This ultimately gives
a theoretical prediction of the equilibrium FDC of a hairpin sequence.

At each position of the optical trap, l, the total system free energy is
given by Eq.(5.21) so that

DGtot(xtot, n) =DG0(n) + DGb(xb) + DGh(xh)+

+ DGss(xss, n) + DGd(xd) ,
(5.25)
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Figure 5.13: Prediction of the theoretical FDC of a 3.6kbp DNA hairpin at 1M
NaCl, 25�C (black) compared to experimental unzipping and rezipping data
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where xtot ⌘ l is the total system extension in Eq.(5.15) and n is the
number of open base-pairs.

5.5.1 Computation of the Equilibrium FDC

Let us consider the case where thermal fluctuations are not accounted
for in the FDC computation. Thus, at a given value of xtot, the system is
always in the state of minimum energy, DGeq(xtot) = DGtot(xtot, n⇤).

To compute the equilibrium free energy of the system, let us first
introduce the system partition function, Z. At each xtot, this is defined as
the sum over all the possible states, i.e., all the possible sequences of n
open base pairs, which is

Z(xtot) =
N

Â
n=0

exp
✓
�

DGtot(xtot, n)
kBT

◆
, (5.26)
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where N is the total number of base pairs of the sequence. Finally, by
recalling that DG = �kBT ln Z, the equilibrium force is given by:

feq(xtot) ⌘
∂DG(xeq)

∂xtot
= �kBT

∂ ln Z(xtot)
∂xtot

. (5.27)

Computing Eq.(5.26) requires solving the transcendental equation (5.15)
(that can be performed numerically) with respect to f and then comput-
ing Eq.(5.21) for all n 2 [0, N]. The value n⇤ minimizing the equilibrium
free-energy DGeq = DGtot(xtot, n⇤(xtot)) gives the most probable number
of open base-pairs at a given xtot. Eventually, the computation of the equi-
librium force in Eq.(5.27) gives a theoretical prediction for the unzipping
curve of a given sequence (see Fig.5.13).

5.5.2 Equilibrium Free Energy

The free energy in Eq.(5.25) is the sum of two terms: the hybridization
energy, which depends only on n, and the elastic contribution that de-
pends on both n and xtot. For a hairpin of N bases, n is a discrete variable
ranging from 0 (native state) to N � 1 (totally unfolded), which gives a
set of N � 1 possible functions for each value of xtot. By increasing xtot,
the system minimizes the total free energy by undergoing a cooperative
opening of base pairs. Let us suppose that the system starts with n1

open base pairs. When xtot is increased, the elastic term in Eq.(5.25) also
increases until DGtot(xtot, n1) ⌘ DGtot(xtot, n2), where n2 > n1 (Fig.5.14A,
top). Even though the total energy of these two states is the same, the
energetic internal balance is different (Fig.5.14A, bottom). If xtot keeps
increasing, the state n2 becomes more stable: the system minimizes the
elastic free energy and switches to state n2 by releasing Dn = n2 � n1

base-pairs. Notice that, despite opening Dn bp increases the system’s
energy, the released ssNA lowers the elastic contribution. In general,
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Figure 5.14: (A) Equilibrium of energies in a force rip. The molecule has n1 open
bp before the force rip (left) and n2 open bp after the rip (right). At the force rip
(black dots), the total free energy of the system is the same for both states. Still,
the elastic and the hybridization contributions are different: the system switches
to the configuration that minimizes the elastic energy and releases Dn = n2 � n1
base pairs. (B) Equilibrium free-energy of formation, DG0(n⇤), as a function of
the number of open base pairs, n⇤ (only a subregion of the total function has
been shown to point out the profile pattern). Each jump is due to the release of
Dn bases that convert from dsNA (hybridized) to ssNA.

DGel � DG0 so the global balance of the state n2 is lower than the one of
n1. Therefore, the equilibrium free energy is a step function increasing
with xtot (Fig.5.14B). At each discontinuity, several base pairs open, and
the system transitions to an equilibrium state of n⇤ open bases. At each
discontinuity of the equilibrium, energy corresponds to a drop in the
system’s elastic energy and then a rip along the equilibrium FDC.
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L A N D S C A P E

Biological processes, such as molecular unzipping/rezipping and protein-
protein or protein-DNA interaction, are chemical reactions in which
some reactants (R) convert into products (P). Accurate knowledge of the
relation between the reaction’s kinetic rates and the system’s macroscopic
behavior is key to interpreting the experimental observation.

Given a chemical reaction R � P, when the conversion from reactants
to product (and vice-versa) is in equilibrium, we can define the equilib-
rium concentration of products and reactants, Keq = [P]eq/[R]eq. In 1884,
van’t Hoff proposed the famous relation to describe the temperature
dependency of equilibrium concentration [112],

d log Keq

dT
=

DH
kBT2 , (6.28)

where DH is the system enthalpy change over converting one reactant
molecule into one of the products. A few years later, Arrhenius con-
sidered that the reactants must acquire a minimum energy [113], called
activation energy, to transform into products successfully. The reactants in
the active form R⇤ must be in equilibrium with the reactants according

to R
Keq

� R⇤ ! P. Therefore, the kinetic rate constant, k!, of the chemical
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reaction R � P is proportional to the normal-to-active equilibrium con-
stant, k! µ Keq. Based on van’t Hoff’s work, in 1889, Arrhenius proposed
the following equation:

d log k!
dT

=
DE‡

kBT2 , (6.29)

where DE‡ is the temperature-independent energy change between an
activated (R⇤) and a normal reactant molecule (R). By solving Eq.(6.29),
one gets

k! = k0 exp
✓
�

DE‡

kBT

◆
(6.30)

where k0 is a constant of integration often called attempt rate.
Arrhenius’ work laid the basis for the modern transition state (TS)

theory. Nowadays, the TS theory methods are widely used to study
reactions in equilibrium conditions. Given their high temporal (ms) and
spatial resolution (nm), SM pulling experiments (see Sec.3.3) provide an
excellent playground to apply these methods to biological processes.

6.1 the bell-evans model

To model unzipping experiments with the TS theory, the effect of force
must be included to model the kinetic rates. In the Bell-Evans (BE) model
[114, 115], the unfolding/refolding reaction is described as a thermally
activated process in which the system crosses a TS energy barrier. For a
two-state system, the molecular free-energy landscape (FEL) is made of a
single kinetic barrier linearly decreasing with force as B = B0 � f x‡. The
term B0 stands for the height of the kinetic barrier at zero force, and x‡

is the distance between the initial state and the TS. From Eq.(6.30), the
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Figure 6.15: Transition state theory (BE model) applied to a two states system.
(A) Unzipping/rezipping FDCs by pulling experiments with LOT of the RNA
hairpin CD4L4 at 4mM MgCl2. The unzipping is a two states process: upon
pulling, the molecule switches between the folded (F) and the unfolded (U)
state. The coexistence force between unzipping (red) and rezipping (blue) FDCs
is fc ⇡ 20pN (dashed grey line). (B) Molecular FEL according to the BE model
(see text). The system must overcome the energy barrier B at a distance x‡ to
switch from U to F (and vice-versa).

kinetic rates of an unzipping process starting in the folded (F) state and
ending in the unfolded (U) state (and vice-versa), can be written as

kF!U = km exp
✓

f x‡

kBT

◆
(6.31a)

kU!F = km exp
✓

DGFU � f (x‡ � xU)
kBT

◆
, (6.31b)

where km = k0 exp(�B0/kBT), being k0 the pre-exponential factor, x‡

(x‡ � xU) is the relative distance between state F (U) and the TS at
coexistence force fc, and DGFU = fcxFU is the free-energy difference
between states F and U (see Fig.6.15).

According to Eqs.(6.31a) and (6.31b), the logarithm of the unfolding
and folding kinetic rates are linear with force. However, the experimental
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observations deviate from the expected behavior, exhibiting curvature
over large force intervals [116, 117]. It has been shown [118] that the
description of the kinetic rates as given by the BE model is only valid
in the vicinity of the coexistence force fc, where the following relation
holds:

log
✓

kF!U( f )
kU!F( f )

◆
= ( f � fc)

xFU

kBT
, (6.32)

since DGFU = fcDxFU to a first order.

6.1.1 Folding and Unfolding Probability

Let us consider a two-states molecular system pulled at a force linearly
increasing with time as f = rt, being r the experimental pulling rate. The
probability, P( f ), of the system remaining in the folded state (F) is given
by

dP( f )
d f

= �
kF!U

r
P( f ) . (6.33)

By substituting Eq.(6.31a) into Eq.(6.33), one gets

log (�r log P( f )) = log
✓

kmkBT
rx‡

◆
+ log


exp

✓
f x‡

kBT

◆
� 1
�

, (6.34)

where km = k0 exp(�B0/kBT) and x‡ is the distance to the transition state.
By computing the derivative with respect to f of the latter expression, one
gets the average rupture force and the rupture force standard deviation
[118]:

h frupti =
kmkBT

rx‡ log
✓

rx‡

kmkBT

◆
, (6.35)

and

sf = log

 
3 +

p
5

2

!
kBT
rx‡ . (6.36)
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An analogous computation can be done for the reverse process, i.e., the
probability of the system remaining in the unfolded state (U). In this case,
the results are identical but km has to be replaced by k0 exp (DGFU/kBT)
and x‡ by xU � x‡.

6.2 continuous effective barrier analysis

In the BE model, the height of the kinetic barrier is assumed to decrease
linearly with the applied force (B( f ) = B0 � f x‡). This hypothesis is
relaxed in the kinetic diffusion (KD) model, in which the folding reaction
is assumed to be a diffusive process in a one-dimensional force-dependent
FEL. The Continuous Effective Barrier Approach (CEBA) is based on the
KD model. It can be used to extract the force-dependent behavior of
the kinetic barrier from unzipping experiments [116, 117, 119]. In CEBA,
the effective barrier between the native (N) and the unfolded state (U),
B( f ), is derived by imposing the detailed balance between the unfolding
(kFU( f )) and folding (kFU( f )) kinetic rates (see Eqs.(6.31)):

kF!U( f ) = k0 exp
✓
�

B( f )
kBT

◆
(6.37a)

kU!F( f ) = kF!U( f ) exp
✓

DGFU( f )
kBT

◆
, (6.37b)

where k0 is the attempt rate, B( f ) is the effective barrier at force f , is and
DGFU( f ) is the folding free energy at force f . The latter term is given by

DGFU( f ) = DG0 �

Z f

0

�
xU( f 0)� xF( f 0)

�
d f 0 , (6.38)

where DG0 is the folding free energy between F and U at zero force,
and the integral accounts for the free energy change upon stretching the
molecule in state U (F) at force f .
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We can derive two estimates for B( f ) by computing the logarithms of
Eqs.(6.37a) and (6.37b), which give

B( f )
kBT

= log k0 � log kF!U( f ) (6.39a)

B( f )
kBT

= log k0 � log kU!F( f ) +
DGFU( f )

kBT
. (6.39b)

By imposing the continuity of two estimations of B( f ) in Eqs.(6.39), we
can measure the folding free energy at force f , DGFU( f ). As the free
energy stretching contribution to the latter term (see Eq.(6.38)) can be
measured from the FDC unfolded branch, we ultimately get a direct
estimate of the folding free energy at zero force, DG0.



Part II

S I N G L E - M O L E C U L E C A L O R I M E T RY O F L O N G
D N A H A I R P I N S





7
D N A T H E R M O D Y N A M I C S F R O M U N Z I P P I N G
E X P E R I M E N T S

The duplex stability is the result of the compensation of two quantities, a
favorable enthalpy (DH) and an unfavorable entropy (DS), related by the
thermodynamics equation DG = DH � TDS, being T the environment
temperature. However, molecular stability is not only determined by the
direct interactions between the nucleotides forming the duplex backbone.
For example, in proteins, an important contribution is given by the
hydrophobicity of buried amino acid side chains exposed to the aqueous
environment. These effects result in a significant variation of the system’s
heat capacity (DCp) [120], yielding a strong temperature dependence of
enthalpy and entropy.

For a long time, the effects of temperature dependence on enthalpy
and entropy on DNA stability have been considered negligible, and the
process of DNA melting, i.e. the separation by heating of the dsDNA
into two single strands, was assumed as temperature independent. This
assumption mainly relied on the fact that, when the first experiments
were carried out, the scanning calorimeters could not detect DCp. Over
time, the development of the experimental techniques gave access to
instruments of increasing precision and accuracy, which showed the
significant role played by DCp for DNA hybridization.
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During the past 20 years, several studies have been carried out both in
bulk assays [121–125] and in SM pulling experiments [69, 126] to assess
the effects of temperature change on DNA hybridization and measure the
specific heat change, DCp. This yielded a multitude of different results,
with DCp values spread over several orders of magnitude (between ⇡

100 � 102 cal mol�1K�1 per bp) depending on the experimental technique
and DNA sequence. To our knowledge, a direct measurement of the
temperature effects on DNA hybridization at the NNBPs level is still
lacking.

The 10 NNBP DNA parameters have been measured from melting
experiments of short DNA duplexes by many laboratories worldwide
[95, 127–132]. These results have been unified by Santalucia et al. [22]
in the so-called Unified Oligonucleotide (UO) set. More recently, the 10
(8 if circular symmetry is applied) NNBP DNA energies have been de-
rived from SM pulling experiments of long DNA hairpins with LOT in
different monovalent and divalent salt conditions [74, 133]. However,
all these experiments have been carried out at a fixed temperature, and
the measured NNBP DNA entropies and enthalpies were considered
temperature-independent (DCp ⇡ 0 cal mol�1K�1).

Here, we derive the 8 independent NNBP DNA free energies, entropies,
enthalpies, and specific heat changes by unzipping a 3.6kbp DNA hairpin
with short handles (29bp). The experiments were carried out in a buffer
of 1M NaCl, 10mM Tris-HCl (pH 7.5), and 1mM EDTA in the temperature
range between 7�C and 42�C. The experiments have been carried out
using the temperature-jump LOT setup described in Sec.3.2.2. At each
temperature, we pulled 5 � 6 different molecules for a total of 40 � 50
unzipping/rezipping complete cycles. In Fig.7.1, we show the FDCs
averaged over all the trajectories obtained at each temperature.
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Figure 7.1: Experimental FDCs measured by pulling a 3.6kbp DNA hairpin at
1 M NaCl in the temperature range [7, 42]�C. At each temperature, the FDC
results from averaging over all the measured molecules. The error bars (plotted
for a fraction of the total data points) show the molecule-to-molecule variability.

7.1 temperature dependence of the dna fdcs

The energetics and the mechanical properties of DNAs are strongly
dependent on the environment’s temperature. In Fig.7.1, we show the
FDCs at different temperatures obtained by unzipping the same 3.6kbp
DNA hairpin. Let us define the average unzipping force, fm, as the
average force (evaluated between the first "peak" and the last "valley" of
the FDC) at which the hairpin unzips/rezips (red line in Fig.7.2). The
temperature change affects the stabilization of the NN base pairing and
stacking interactions: the lower the temperature, the more stable the
DNA double-helix. As a result, unzipping occurs at a higher fm upon
lowering T (see Fig.7.3A and Table 7.1). A linear fit to data gives the fm

temperature dependence, ∂ fm/∂T = �0.165 ± 0.03pN/K. Interestingly,
while fm changes with the temperature, the FDC sawtooth pattern, i.e.
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Figure 7.2: Unzipping FDC (black line) and FEC (grey line) at T = 25�C. The
FEC is computed by subtracting the measured bead and trap elastic contribu-
tions (orange dashed line) to the FDC (see text). The fit of the FEC unfolded
branch (green dashed line) allows for measuring the ssDNA elastic properties at
temperature T. Notice that the average unzipping force, fm, (red line) remains
unchanged upon computing the FEC.

the succession of slopes and rips, remains the same over the whole
temperature range.

At the same time, the hairpin extension increases upon increasing T.
To assess the effects of temperature on the ssDNA elastic properties, we
first need to compute the hairpin extension from the measured FDCs.
The FDC is a function of the total trap-pipette distance, which includes
contributions from the optical trap and the dsDNA handles (see Sec.5.3).
These two terms can be evaluated by using the effective stiffness method
[102] (see Eqs.(5.16)). According to it, the stretching contributions of
the experimental setup can be approximated by the effective stiffness,
k�1

eff ⇡ k�1
h + k�1

b , where kh and kb are the stiffness of the dsDNA handles
and the optically trapped bead, respectively. The use of short handles
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Figure 7.3: Temperature dependence of the DNA mechanical properties mea-
sured by unzipping the 3.6kbp DNA hairpin in the temperature range [280, 315]
K ([7, 42]�C). (A) Change of the average unzipping force, fm, measured from
the experimental FDCs at each temperature. A fit to data (solid line) gives
∂ fm/∂T = �0.165 ± 0.03pN/K. (B) Temperature dependence of the persistence
length, lp, (blue), and the interphosphate distance, ld, (orange). Linear fits to
data (blue and orange lines, respectively) give ∂lp/∂T = (6.2 ± 1.4) · 10�3nm/K
and ∂ld/∂T = (4.5 ± 1.0) · 10�4nm/K. The measured values of fm, lp, and ld are
reported in Table 7.1.

(29bp) makes the evaluation of the stretching terms easier. The stiffness of
short handles is much larger as compared to the trap stiffness (kh � kb),
implying that keff ⇡ kb. Moreover, if the force varies in a relatively narrow
range ( fmax � fmin . 10pN), trap stiffness can be considered nearly force-
independent so keff is constant along the folded branch of the FDC.
Therefore, we can estimate keff by fitting the slope preceding the first
FDC rip to the linear equation f = keffx (orange dashed-line in Fig.7.2).
This allows us to compute the (effective) contribution of the handles
and optical trap, xeff, to the total trap-pipette distance, l. By computing
l � xeff, we obtain the force-extension curve (FEC) corresponding to the
extension of the ssDNA upon unzipping (grey dashed-line in Fig.7.2).
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T ± 1 [�C] T ± 1 [K] fm [pN] lp [nm] ld [nm] Dsss [cal mol�1K�1]
7 280 19.72 (3) 0.74 (7) 0.647 (3) 3.33(2)

10 283 19.08 (4) 0.68 (2) 0.631 (9) 3.18(2)
13 286 18.71 (4) 0.73 (3) 0.662 (1) 3.07(2)
16 289 18.26 (7) 0.67 (2) 0.672 (1) 2.95(2)
19 292 17.87 (4) 0.78 (2) 0.655 (1) 2.84(2)
22 295 17.12 (2) 0.79 (3) 0.657 (1) 2.67(2)
25 298 16.75 (3) 0.77 (2) 0.647 (1) 2.58(2)
30 303 15.86 (2) 0.75 (2) 0.665 (1) 2.39(2)
35 308 14.96 (3) 0.88 (2) 0.639 (1) 2.21(1)
42 315 14.06 (4) 0.88 (4) 0.641 (1) 2.02(1)

Table 7.1: Experimentally measured average unzipping force, fm, persistence
length, lp, interphosphate distance, ld, and ssDNA entropy per base, Dsss, (see
text) in the studied temperature range (reported both in Celsius and Kelvin
degrees). The errors (in brackets) refer to the last digit.

We derived the elastic properties of the ssDNA by fitting the FEC un-
folded branch, i.e. the slope following the last FEC rip, to the WLC model
in Eq.(5.19) (green dashed-line in Fig.7.2). The measured persistence
length, lp, and interphosphate distance, ld, at each experimental temper-
ature are shown in Fig.7.3B and reported in Table 7.1. As temperature
increases, the ssDNA persistence length, lp (blues squares), varies from
l280K
p = 0.74 ± 0.07nm to l315K

p = 0.88 ± 0.04nm (⇡ +30%) in the studied
T range. A linear fit to data gives ∂lp/∂T = (6.2 ± 1.4) · 10�3nm/K (blue
line). Analogously, the interphosphate distance, ld (orange circles), also
depends on temperature as ∂ld/∂T = (4.5 ± 1.0) · 10�4nm/K (orange
line). As the ld variation is of O(10�3)nm over the whole temperature
range, it can be considered approximately constant.

7.2 nnbp free-energies and temperature

We derived the 8 NNBP DNA free energies at 1M NaCl from the experi-
mental FDCs at each studied temperature (see Fig.7.1). According to the
NN model, the NA energetics of hybridization is described by 16 NNBP
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Figure 7.4: The 10 NNBP DNA free energies measured from unzipping a 3.6kbp
hairpin in the temperature range [280, 315] K (see text). The free energy of the
two motifs GC/CG and TA/AT has been computed by applying the circular
symmetry relations. A fit to data (blue line) has been added to compare with the
temperature dependence of the free energies predicted with the UO 10 NNBP
values (grey line) and the 8 NNBP values of Huguet et al. [74] (black line).

parameters (see Sec.5.2). The number of parameters reduces to 10 due to
Watson-Crick complementarity and eventually to 8 independent values
by considering the circular symmetry relations given in Eqs.(5.14).

The NNBP DNA energies have been measured using a Monte-Carlo
optimization algorithm [74, 133]. Starting with an initial guess of the
8 NNBP DNA energies, at each step of the optimization, a random
increment of the energies is proposed, and a prediction of the FDC
is generated. The error in approximating the experimental FDC with
the theoretical one, E, drives a Metropolis algorithm: a change of the
energy parameters is accepted if the error difference to the previous step
is negative (DE < 0). Otherwise (DE > 0), the proposal is accepted
if exp(�DE/T) < r with r a random number uniformly distributed
r 2 U(0, 1). The algorithm continues until convergence is achieved, i.e.
until DE is smaller than a given threshold.
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Figure 7.5: Comparison of the experimental average FDCs (dark-colored lines)
with the theoretical predictions (light-colored lines) obtained by using the mea-
sured NNBP DNA free energies at 7�C, 25�C, and 42�C. Analogous results have
been obtained for the other temperatures experimentally studied.

We measured the NNBP free energies at each experimental temperature
using this algorithm. To generate the FDC prediction needed by the
Monte-Carlo algorithm at each T, we used the ssDNA elastic parameters
experimentally measured at the respective temperature (see Table 7.1).
The measured NNBP values are shown in Fig.7.4 and reported in Table
C.1 of Appendix C. Notice that the free energies of NNPB GC/CG and
TA/AT have been computed by applying the circular symmetry relations.
Remarkably, our results (blue circles and line) agree (within errors) both
with the UO set (black line) and the Huguet et al. values (grey line) over
the range [280, 315] K. Notice that the agreement with Huguet et al. is
better than with the UO set. Moreover, we tested the accuracy of the
extracted 8 NNBP energies at each T by computing the theoretical FDC
at different temperatures. The results are shown in Fig.7.5.
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7.3 dna thermodynamics at the single base-pair level

In an unzipping experiment, the mechanical work done along the forward
(reverse) process is given by Eq.(4.3) (Eq.(4.4)) so that W =

R lB
lA

f dl

(see Sec.4.1), where lA and lB are two arbitrary values of the control
parameter l (the trap-pipette distance).

Let us now consider an FDC unzipping curve: we can approximate
the typical sawtooth pattern by a horizontal line corresponding to the
average unzipping force, fm. In the plateau region, the contributions to
the total distance from the optical trap and the ds handles (xb( fm) and
xh( fm) in Eq.(5.15)) are approximately constant. Thus, the change in l

when moving from lA to lB corresponds to the change in the ssDNA
extension so that Dl = lB � lA ⇡ Dxss( fm).

Therefore, by recalling that the total system’s free energy is the sum of
the double-helix hybridization energy, DG0, plus the elastic contributions
(see Eq.(5.21)), we can write

W = fmDl ⌘ DG = DG0(T) +
Z

fss(x)dx , (7.1)

where DG0(T) is the hybridization free energy at temperature T between
positions lA and lB. The integral accounts for the stretching of the
ssDNA, modeled with the WLC in Eq.(5.19). Integrating Eq.(7.1) by parts
and taking into account that Dl ⇡ Dxss, gives

DG0(T) = �

Z fm(T)

0
Dxss( f , T)d f . (7.2)

Let us notice that, following the convention by which the unfolded (initial)
state is taken as a reference, the hybridization free energy of NAs is taken
as negative (DG0 = GF � GU). In this case, DG0 is maximal when the stem
is completely formed, and it decreases upon unzipping the molecule. This
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convention is adopted for the definition of all thermodynamic quantities
in this thesis chapter.

7.3.1 The Clausius-Clapeyron Equation

The entropy change, DS, for a system subjected to mechanical deforma-
tion can be obtained from the Clausius-Clapeyron equation [134, 135]
where f and l are equivalent to pressure and volume. At constant
pressure and for a given value of the control parameter, l, the free
energy can be written as dG = �SdT � ld f . Let us consider an unzip-
ping process starting at lA and ending at lB. Therefore, at equilibrium,
�SBdT � lBd f = �SAdT � lAd f so the Clausius-Clapeyron equation
reads

∂ f
∂T

= �
SB � SA

lB � lA
= �

DS
Dl

. (7.3)

Notice that DS = SF � SU in Eq.(7.3) is defined as negative according to
the convention by which the unfolded (initial) state is taken as a reference.

To derive the entropy, let us recall that DS = �∂DG/∂T and that, at
fm, Dl ⇡ Dxss. Thus, from Eqs.(7.2) and (7.3), we eventually obtain the
entropy change at zero force,

DS0(T) =
∂ fm(T)

∂T
Dx( fm(T)) +

Z fm(T)

0

∂Dx( f , T)
∂T

d f . (7.4)

The second term on the r.h.s of Eq.(7.4) accounts for the (positive) con-
tribution, DSss, to stretch the ssNA and orient the molecule dipole from
zero up to force fm(T). To compute this term, we used the measured
elastic parameters (see Sec.7.1) to predict the temperature dependence
of the stretched ssDNA according to the WLC. The measured DSss

per base (Dsss) at each T are shown in Fig.7.6 and reported in Table
7.1. A fit to data according to the thermodynamic equation Dsss(T) =
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Figure 7.6: Temperature dependence of entropy change per base (Dsss) to stretch
the ssDNA and orient the molecule dipole from zero up to force fm(T) (see
Eq.(7.4)). The measured values at each T are reported in Table 7.1.

Dsss,0 + Dcss
p log(T/Tm) (orange dashed line), gives the ssDNA specific

heat change per base at zero force, Dcss
p = �11.2 ± 0.2 cal mol�1K�1.

7.3.2 Derivation of the NNBP Entropies

Given the DNA FEC at temperature T, we first measured the coordinates
of all the FEC peaks, i.e. the position and the force at which the rips
occur (orange dots in Fig.7.7). Then, we computed the distance between
all possible combinations of the positions of the peaks, Dx = xB �

xA, where A(B) denotes the initial (final) point of a segment. This
gives the set of segments {Dxk} with k = 1, 2, . . . , K at temperature T.
By knowing the dependency of the unzipping average force with the
temperature ∂ fm/∂T = �0.165 ± 0.03pN/K (see Fig.7.3A in Sec.7.1), the
Clausius-Calpeyron relation in Eq.(7.4) can be applied to measure the
total entropies set, {DSexp

0,k }.
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Figure 7.7: Application of the Clausius-Clapeyron relation (see Eq.(7.4)) to the
experimental FDC (see text).

Moreover, we computed the number of open bases, (nA, nB)k, cor-
responding to the extremal points, (xA, xB)k, of each Dxk. Given the
coordinates of a peak, (x, f )A(B)

k , we obtained nA(B)
k by inverting the

WLC (see Appendix A) passing for point (x, f )A(B)
k (dashed grey lines in

Eq.(5.19)). Notice that this computation requires the knowledge of the
ssDNA elastic properties at temperature T (see Fig.7.3B in Sec.7.1)). Given
(nA, nB)k for segment Dxk, we identified the corresponding NNBP motifs
that are released along the hairpin sequence (see Fig.7.7). Notice that
the Clausius-Clapeyron equation discussed in Sec.7.3.1 can be directly
applied to experimental curves (FDCs or FECs) as it relates the system
entropy with an extension change. In fact, at the average unzipping
force, we can assume Dlk ⇡ Dxss,k. However, estimating the number of
open bases, nk, at each point, xk, from unzipping data requires account-
ing for the elastic contributions of the optical trap and dsDNA handles.
Therefore, in what follows, we will work with the experimental FECs,
computed as described in Sec.7.1.
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In Sec.5.2 we introduced the NN model according to which the hairpin
free-energy of formation can be described by considering all possible
motifs given by two complementary bases (according to the Watson-Crick
complementarity rules) and their nearest-neighbors along the 50 ! 30

direction. This allows us to describe the NA energetics with 16 NNBP
parameters, reduced to 8 once the appropriate symmetry relations are
considered. Therefore, the hairpin hybridization free energy is given
by DG0 = ÂN

i Dg0,i, where N is the total number of base pairs of the
sequence and Dg0,i denotes the free energy of the i-th NNBP motif.
The NN model can be straightforwardly extended to the total system
entropy and enthalpy, which gives DS0 = ÂN

i Ds0,i and DH0 = ÂN
i Dh0,i,

respectively. Hereafter, we will adopt the lightened notation Dq0,i ! Dqi

for the thermodynamic parameter, Dqi, of NNBP motif i at zero force.
By combining the NN description of the total hairpin entropy and

the Clausius-Clapeyron equation, the total entropy of each segment, Dxk

(with k = 1, 2, . . . , K), can be written as

DSexp
k = Â

i=AA,CA,...
ck,iDsi + nkDsss , (7.5)

where the sum runs over all NNBP motifs, Dsi is the NNBP entropy of
motif i, ck,i is the multiplicity coefficient of motif i, i.e. the number of
times motif i appears in the interval (nA, nB)k, nk is the total bp number
of segment k, and Dsss is the ssDNA stretching entropy (see Eq.(7.4) in
Sec.7.3.1). Notice that, by construction, Âi ck,i ⌘ nk.

The derivation of the 8 independent NNBP entropies of DNA corre-
sponds to solving the non-homogeneous linear system of K equations
and I = 8 parameters (being K � I) in Eq.(7.5). Different methods can be
used to do this computation. Given its fast convergence when handling
large data sets [136, 137], here we chose a stochastic gradient descent
(SGD) optimization algorithm (see Appendix B for more details). The
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Figure 7.8: The 10 NNBP DNA entropies measured from unzipping a 3.6kbp
hairpin in the temperature range [280, 315] K (see text). The entropy of the
two motifs GC/CG and TA/AT has been computed by applying the circular
symmetry relations. A fit to data (grey dashed line) according to Eq.(7.7a) allows
for extracting the specific heat change per motif (see Sec.7.4).

measured NNBP DNA entropies are reported in Fig.7.8 as a function of
the temperature in the studied range, [280, 315] K. The complete set of
results is reported in Table C.2 of Appendix C.

7.3.3 Measure of the NNBP Enthalpies

We derived the NNBP enthalpies from the experimental measurements
of the free energies and entropies per motif. Let us first recall that at a
given environment temperature, T (in Kelvin degrees),

Dgi = Dhi � TDsi , (7.6)

where Dgi, Dhi, and Dsi are the free energy, enthalpy, and entropy of
motif i, respectively.
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Figure 7.9: The 10 NNBP DNA enthalpies measured from unzipping a 3.6kbp
hairpin in the temperature range [280, 315] K (see text). The enthalpy of the
two motifs GC/CG and TA/AT has been computed by applying the circular
symmetry relations.

Given Eq.(7.6), it is straightforward to get the NNBP entropies as
Dhi = Dgi + TDsi. The measured parameters are shown in Fig.7.9 and
reported in Table C.3 of Appendix C.

7.4 the nnbps specific heat change

The entropy and enthalpy of NNBP motif i depend on temperature
according to the thermodynamic relations

Dsi(T) = Ds0,i + Dcp,i log(T/Tm,i) (7.7a)

Dhi(T) = Dh0,i + Dcp,i(T � Tm,i) , (7.7b)

where Dcp,i is heat capacity change at constant pressure, T is the environ-
ment temperature (in Kelvin degrees), and Tm,i is the melting temperature,
i.e. the temperature (in Kelvin) at which motif i can be found in the
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Figure 7.10: DNA NNPB thermodynamics. (A) Measured heat capacity change
per motif. (B) Melting temperatures (top), entropies, and enthalpies at Tm
(bottom) for each of the 10 NNBP parameters. Notice that results for motifs
GC/CG and TA/AT have been derived by applying circular symmetry relations.

melted or hybridized state with equal probability. Finally, Ds0,i and Dh0,i

are the entropy and enthalpy at T = Tm,i, respectively.
Given Eq.(7.7a), we measured the heat capacity change per motif,

Dcp,i, by fitting the experimentally measured entropies to the equation
Ai + Dcp,i log(T), being Ai = Ds0,i � Dcp,i log(Tm,i) (grey dashed line in
Fig.7.8). The results are shown in Fig.7.10A and Table 7.2 (column 1).

To derive Ds0,i, Dh0,i and Tm,i from the experimental data, let us fit
the NNBP enthalpies to Eq.(7.7b), which can be rewritten as Bi + Dcp,iT,
where Bi = Dh0,i � Dcp,iTm,i (grey dashed line in Fig.7.9). Then, by
plugging in Eqs.(7.7) in Eq.(7.6), one gets

Dgi(T) = Dhi(T)� TDsi(T) =

= Dh0,i + Dcp,i(T � Tm,i)� T
✓

Ds0,i + Dcp,i log
✓

T
Tm,i

◆◆

= Bi + Dcp,iT � T
�

Ai + Dcp,i log (T)
�

.

(7.8)
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Dcp,i Ds0,i Dh0,i Tm,i ± 1
NNBP [cal mol�1K�1] [cal mol�1K�1] [kcal mol�1] [K] [�C]

AA/TT �49(4) �24.7(0.8) �9.1(1.4) 366 93
AC/TG �35(1) �23.9(0.2) �8.6(0.4) 363 89
AG/TC �37(2) �22.7(0.4) �8.5(0.6) 376 103
AT/TA �25(2) �21.0(0.4) �7.6(0.8) 361 88
CA/GT �48(2) �27.0(0.6) �10.2(0.9) 378 104
CC/GG �31(3) �23.0(0.9) �9.1(1.3) 396 122
CG/GC �18(3) �27.9(0.9) �10.8(1.3) 386 113
GA/CT �38(2) �23.1(0.5) �8.6(0.7) 371 98

GC/CG �25(4) �29.2(1.1) �11.5(1.5) 394 120
TA/AT �17(2) �19.5(0.3) �6.9(0.5) 352 79

Table 7.2: Experimentally measured heat capacity change (Dcp,i), entropy (Ds0,i)
and enthalpy (Dh0,i) at the melting temperature (Tm,i) for each NNBP motif i
(both in [K] and [�C]). The experimental error is reported in brackets. Motifs
GC/CG and TA/AT have been derived by applying circular symmetry relations.

By definition, the free energy is zero at the melting temperature (T =

Tm,i). As all parameters in Eq.(7.9) have been determined by fitting
entropies and enthalpies, we measured the NNBP melting temperatures
by searching for the temperature at which Dgi(Tm) ⌘ 0 kcal/mol. The
measured values are shown in Fig.7.10B (top) and Table 7.2 (column 4).
Given Tm,i per motif, a new fit of the entropies and enthalpies to Eqs.7.7
allowed to derive Ds0,i and Dh0,i. The results are reported in Fig.7.10B
(bottom) and Table 7.2 (columns 2 and 3, respectively).

7.5 prediction of dna melting temperatures

We tested the validity of our NNBP thermodynamics parameters by
computing the melting temperatures, Tm, for the set of 92 DNA oligonu-
cleotides (with a length between 10bp and 30bp) that were initially stud-
ied in bulk experiments by Owczarzy et al. [138].
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The melting temperature of NAs is defined as

Tm =
DH0

DS0 + R log
⇥ cT

4
⇤ , (7.9)

where DH0 (DS0) is the total enthalpy (entropy) of the oligo at Tm,
R = 1.987 cal mol�1K�1 is the ideal gas constant, and [cT] is the oligonu-
cleotide concentration in [M] (in this case [cT] = 2 · 10�6 M [138]). The
factor 1/4 must be included for non-self-complementary molecules. For
each oligo, DH0 (DS0) has two contributions: the NNBP contribution and
the initiation term. The initiation term depends on the sequence’s first
and last bp. We used the initiation terms reported in [22], assuming that
these values depend on the temperature.

We solved Eq.(7.9) by minimizing the loss function (T � T⇤)2. At
each iteration of the algorithm, a new temperature T is proposed, and
the corresponding DH(T) and DS(T) are computed. Then, the latter
values are used to compute T⇤ according to Eq.(7.9). At the end of the
optimization, the temperature minimizing the loss function corresponds
to the melting temperature, Tm. Our predictions (Tunz

m ) for the set of 92
oligos at 1M NaCl are reported in Table C.4 of Appendix C together with
the experimentally measured values [138] (Texp) and the predictions by
the UO set (TUO

m ) and the Huguet et al. parameters [133] (THug
m ).

To check the accuracy of our results, we defined the error function

c2 =
1
N

N

Â
j=1

⇣
Texp

m,j � Tpred
m,j

⌘2
, (7.10)

which accounts for the difference between the experimental measure
Texp

m,j [138] and the predicted value Tpred
m,j (being pred = unz, UO, Hug) for

each of the N = 92 oligos. Our predictions give cunz = 5.1(�C)2 with an
average temperature error, hTunz

m i = 2�C. Remarkably, our predictions
agree with the experimental measurement (Texp) within errors. However,
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let us notice that a comparison with the other data sets (cUO = 9.1(�C)2

and cHug = 3.4(�C)2, respectively [74]) shows that our results are more
accurate than Mfold but are less accurate than Huguet et al.. This is
because we used temperature-independent values for the initiation factors
enthalpy and entropy [22, 74] to compute the oligos Tm. Even though
our current methodology does not allow for measuring the initiation
factors, the error committed is small, and our predictions agree with the
literature.

7.6 discussion and conclusions

We studied the temperature dependence of the 8 NNBP DNA indepen-
dent parameters (free energies, entropies, and enthalpies) by carrying
out calorimetric unzipping experiments of a 3.6kbp DNA hairpin with
a temperature-jump LOT in the range [7, 42]�C. We used the Clausius-
Clapeyron thermodynamic relation (Eq.(7.3)) to extract the 8 NNBP en-
tropy parameters from the unzipping curves at each temperature (see
Sec.7.3.1). To do this, we developed a suitable stochastic gradient descent
(SGD) algorithm to relate the experimentally measured entropies with
the NN model prediction (see Sec.7.3.2 and Appendix B). We notice
that an accurate characterization of the temperature dependence of the
ssDNA elastic response is crucial to this task (Sec.7.1). In particular, we
found that the T-dependence of the ssDNA entropy is significant, and its
contribution cannot be neglected compared to the NNBP one (see Table
7.1). Given the 8 NNBP free energies measured from the experimental
FDCs at each T (Sec.7.2), we obtained the 8 NNBP enthalpy parameters
(Sec.7.3.3), thoroughly characterizing the NNBP DNA thermodynamics.
These results allowed us to derive the specific heat change (Dcp) for the 8
NNBP parameters (Sec.7.4).
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To our knowledge, this is the first time that the specific heat variation
is measured at the single bp level. Ultimately, we tested the valid-
ity of our results by computing the melting temperatures for the set
of DNA hairpins experimentally studied by Owczarzy et al. [138]. Fi-
nally, let us notice that the measured Dcp values (⇡ �32 cal mol�1K�1

per motif) are in agreement with several studies reported by the lit-
erature [121, 124]. However, bulk experiments yield a broad range of
measured Dcp ([�20,�160] cal mol�1K�1 per bp), depending on the ex-
perimental technique, setup, and molecular structure. DNA calorimetric
bulk experiments are mostly done with short hairpins to avoid inter-
actions between the unpaired ssDNA (knots formation, base-pairing
between different hairpins) during the heating/cooling protocols. In
short DNA sequences (a few tens of bases), stacking interactions are
detrimental to the DNA folding process. The number of stacked bases is
often comparable to the total number of bases in the sequence, largely
affecting the ssDNA elastic properties and, ultimately, the free energy of
hybridization. In contrast, in long DNA hairpins (a few kbp), stacking can
involve several consecutive bases (a maximum of 11 consecutive purines
has been found in our 3593bp sequence), but it weakly affects the overall
folding dynamics as the number of stacked bases is small compared to
the total number of bases in the sequence. By overcoming the limitations
of bulk techniques, single-molecule calorimetry experiments on long
DNAs permit an accurate estimation of the NNBP thermodynamic DNA
parameters.
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Unzipping experiments allows for studying the physico-chemical proper-
ties of NAs, from the thermodynamics of duplex formation to the folding
of secondary and tertiary structures. In particular, DNA hybridization
finds diverse applications in DNA nanotechnology, the construction of
DNA origami, molecular robots, DNA walkers, switches, and nanomo-
tors [139–143]. In the past decades, DNA unzipping permitted testing the
validity of the NN model [22,93–95] and to extract the NNBP free-energy
parameters at different salt conditions [74, 133]. A precise knowledge of
these parameters is key to unraveling hidden energy codes in molecular
evolution [144]. In contrast, SM experiments on RNAs are much more
complex than for DNAs, so most of the RNA characterization (especially
at the level of single motif) relies on bulk experiments carried out at
the end of the past century [23, 99–101]. In addition, the difficulties in
preparing molecular constructs suitable for SM techniques and the com-
plex phenomenology typical of RNAs make it hard to study in pulling
experiments.

Here we derive the ten NNBP RNA energies from unzipping exper-
iments on a 2kbp RNA hairpin in monovalent (sodium) and divalent
(magnesium) salt conditions. To our knowledge, the NNBP RNA free-
energies in magnesium have never been measured before. The large
number of parameters of the NN model (10 or 8, if circular symmetry is

99
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applied) requires a sufficiently long hairpin to infer the NNBP energies
from unzipping experiments reliably. Two are the main difficulties of
these experiments: first, the molecular synthesis of a long RNA hairpin
is challenging; second, the FDC along the RNA sequence alternates re-
versible unzipping regions with irreversible ones that exhibit hysteresis,
and multiple long-lived intermediates [145, 146]. Compared to DNA,
where unzipping is practically reversible, a similar derivation of the RNA
energies from irreversible FDCs is not possible. Here we derive the full
equilibrium FDC in RNA by the piecewise assembly of the reversible
parts and the reconstructed equilibrium ones for the irreversible regions.
These are obtained by repeatedly unzipping and rezipping the RNA
hairpin in these irreversible regions and using statistical physics methods
based on fluctuation theorems.

Moreover, we validate the 100/1 salt-equivalence rule of thumb, stating
that the concentration of a divalent salt equals 100-fold that of a monova-
lent one [110]. We demonstrate that NNBP free-energy parameters for a
given magnesium concentration equal those in 77(±49)-fold sodium. We
verify this phenomenological result by measuring the energies in sodium
and magnesium at the level of individual NNBP.

Finally, we investigate the irreversibility and hysteresis in the FDCs, hy-
pothesizing that they are caused by the formation of stem-loop structures
along the unpaired single strands. Remarkably, the hysteresis along the
unzipping-rezipping pathway directly correlates with the barrier energy
landscape (BEL) defined by the stem-loops forming at the junction sepa-
rating single strands and duplex. The analysis of the hairpin sequence in
correspondence with the regions of large irreversibility shows that base
stacking and base-pairing within the ssRNA promote the formation of
stem-loop structures transiently stabilized at forces as high as 20pN. The
stem-loops mechanism explains the slow kinetics and multiple trapping
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conformations observed in RNA folding, with implications for the RNA
folding problem [15, 145, 147–149].

8.1 unzipping of long rna hairpins

We use the LOT setup described in Chapter 3 to unzip a 2027bp RNA
hairpin with short (29bp) hybrid DNA/RNA handles. A long RNA se-
quence is essential to extract the NNBP energy parameters. The synthesis
of such a molecular construct required the development of a protocol
tailored for the OT setup (see Appendix D.1 for details).

The experiments have been performed in buffers containing 100mM
Tris-HCl (pH 8.1), 1mM EDTA and 500mM NaCl (monovalent salt) or
100mM Tris-HCl (pH 8.1) and 10mM MgCl2 (divalent salt). Notice that
the ionic strength of the buffers has to be corrected by adding 100mM Tris-
HCl ⌘ 52mM [Mon+]. The measured FDCs in sodium and magnesium
are shown in Figs.8.1 and 8.2, respectively.

The data show that changing from [Na+] to [Mg++] strongly increases
the irreversibility and hysteresis of the FDC. This makes experimentally
inaccessible the beginning (the first 200bp, between 400nm and 650nm)
and the end (the last 600bp, between 1800nm and 2200nm) of the FDC in
magnesium. The observed hysteresis occurs in correspondence of specific
regions along the FDC, each limited by at-equilibrium left (L) and right
(R) states, and exhibiting intermediate states Ip, with p = 1, . . . , P. To effi-
ciently sample these intermediates, we repeatedly unzipped and rezipped
the RNA between the two limit positions (L, R), typically collecting a
hundred trajectories per region. We identified 8 irreversible regions in
sodium (Fig.8.1, insets) and 3 in magnesium (Fig.8.2, insets). Regions
in sodium are numbered from 1 to 8. In magnesium, regions are num-
bered from 2 to 4/5 to underline the matching of the RNA sequences in
those regions in sodium and magnesium, as evidenced by the number of
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Figure 8.1: Unzipping/rezipping FDCs (red/blue) in 500mM NaCl. Black
frames separate the different irreversible regions. The insets show repeated
pulling cycles in regions of increasing complexity. The intermediate states
(dashed grey lines) and the recovered equilibrium FDC (solid black line) are
also shown. (A) shows a 2-states region (L/R) with no intermediates. Inset
(B) shows a 3-states region (L,R and the intermediate I1), while (C) reports a 6-
states region (L,R and intermediates Ip with p = 1, . . . , 4). The equilibrium FDC
in the main box (black line) results by merging the reversible FDCs obtained for
each region.

opened base pairs. The larger hysteresis observed in magnesium makes
regions 4 and 5 in sodium merge into a single irreversible region (4/5).
As explained above, the missing regions (1 and 6 � 8) in magnesium
result from their inaccessibility. Although a few regions do not contain
intermediates (e.g., region 5 in Fig.8.1A), most exhibit more than one.
The level of complexity of the unzipping-rezipping FDCs can be high,
e.g., region 3 in magnesium shows 7 states (5 intermediates plus L and
R, Fig.8.2B).
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Figure 8.2: Unzipping/rezipping FDCs (red/blue) in 10mM MgCl2. Black
frames separate the different irreversible regions. The insets show repeated
pulling cycles in regions of different complexity. Intermediate states (dashed
grey lines) and the equilibrium FDC (solid black line) are shown. (A) shows
a 5-states region (L,R and intermediates I1, I2, I3), (B) shows a 7-states region
(L,R and intermediates Ip with p = 1, . . . , 5) and (C) shows a 4-states region
(L,R and intermediates I1, I2). The equilibrium FDC in the main box (black line)
results by merging the reversible FDCs obtained for each region.

8.2 recovery of the equilibrium fdc

RNA unzipping is an out-of-equilibrium process exhibiting a large hys-
teresis between unfolding and refolding FDCs. Therefore, an equilib-
rium FDC (black line in Figs.8.1 and 8.2) had to be computed from the
experimental data. To do this, we applied the extended fluctuation re-
lations (EFR), which have been introduced to recover the free energy
of thermodynamic branches [56], kinetic states [80], and ligand binding
energies [150, 151].

Given an irreversible region of the FDC limited by starting (left, L)
and ending (right, R) equilibrated states, let S be the set of all the states
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in that region S = (I0 = L, I1, I2 . . . , IP, IP+1 = R) being (I1, . . . , IP) the
partially equilibrated intermediates. During the experimental forward
process (F) the trap position l is moved at a constant speed starting in
I0 at l0 and ending in Ip at l. Similarly, in the time-reversed protocol
(R), the trap position is moved back at the same speed, starting in Ip at
l and ending in I0 at l0. Thus, in analogy with Eq.(4.5), the extended
fluctuation theorem (EFR) reads

f
I0!Ip
F

f
Ip!I0
R

PI0!Ip
F (W)

PIp!I0
R (�W)

= exp

"
W � DGI0 Ip(l)

kBT

#
, (8.1)

where PI0!Ip
F (W) (PIp!I0

R (�W)) is the partial distribution of the work
W measured along the F (R) protocol, DGI0 Ip(l) = GIp(l)� GI0(l0) is

the free-energy difference between states Ip at l and I0 at l0 and f
I0!Ip
F

(f
Ip!I0
R ) is the fraction of paths starting in I0 (Ip) at l0 (l) and ending in

Ip (I0) at l (l0). kB is the Boltzmann constant and T is the environment
temperature.

To compute the free-energy, DGI0 Ip , from bidirectional work measure-
ments, let us define the extended Bennett acceptance ratio (EBAR) method.
By using Eq.(4.9) and repeating the same computation shown in Sec. 4.2.1,
one gets

u
kBT

= � log

 
f

I0!Ip
F

f
Ip!I0
R

!
+ zR(u)� zF(u) , (8.2)

where zR(u) and zF(u) are, once again, given by Eqs.(4.11). The log-
arithmic correction in the r.h.s of Eq.(8.2) accounts for the fraction of
trajectories that end in state p. We notice that, in general, this number
can be small, i.e. the number nF(R) of forward (reverse) trajectories that
are in state p for a given l is small, ranging from 1 to 20 � 25 per state.
However, it has been shown that they lead to reasonable free energy
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estimates when applying the extended fluctuation relations to analogous
cases [80, 150].
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Figure 8.3: Reconstruction of the equilibrium FDC in the 3-states region mea-
sured in 500mM NaCl (from Fig.8.1). The protocol involves four main steps.
(A) Given the unzipping/rezipping experimental trajectories, each state (Native,
Intermediate, Unfolded) is identified and labeled (green, orange, and purple
lines, respectively). (B) The experimental points are assigned to the closest state
through a least-square fit. (C) The free energy of each state (U, I, N) is computed
as the result of the combination of the Bennett and Jarzynski equations (see
text). The equilibrium free energy between all the states (black line) is computed
through (8.4). (D) Eventually, the equilibrium FDC (black line) is recovered by
computing (8.5).

Thus, Eq.(8.2) is a self-consistent relation that returns the free energy
of the transition I0 ! Ip at position l by using information from both the
folding and refolding trajectories. However, for given l, some intermedi-
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ates may only occur in the forward (reverse) process. This implies that
nR = 0 (nF = 0) in Eqs.(4.11) and the EBAR cannot be computed. Because
hysteresis affects the forward and the reverse processes differently, the
number of intermediates is generally different between unzipping and
rezipping, making EBAR unsuitable for our purpose. This is clearly
shown in Fig.8.3A, where the unzipping FDCs always exhibit three states,
whereas most of the rezipping trajectories directly go from R to L.

Let us introduce the extended Jarzynski estimator (EJE) to solve this
problem. Given Eq.(4.12), it reads

⌧
exp�

WF(R)

kBT

�

F(R)
= f

S0(p)!Sp(0)
F(R) exp

 
�

DGI0 Ip(l)

kBT

!
, (8.3)

which allows computing DGI0 Ip(l) by only taking into account the trajec-
tories of the forward (reverse) protocol that visits state Ip (unidirectional
estimator). However, unidirectional free-energy estimators are slow-
converging, requiring a larger number of trajectories than bidirectional
estimators to obtain reliable free-energy measures (see Sec. 4.2.2). There-
fore, to correct the bias of the measures obtained with the EJE, we used
the results of the EBAR as a reference. This has been obtained with the
following method.

Let us consider a state Ip stretching over the positions set {l}. Firstly,
we computed the energies {DG(l)I0 Ip}

EBAR by solving (8.2) for all those l

having nF(l), nR(l) 6= 0. Then, the energies of the forward, {DGI0 Ip(l)}
EJE
S ,

and reverse, {DGIp I0(l)}
EJE
R , processes have been separately computed

for all the l by using (8.3). By using the energy values computed with the
EBAR {DGIp I0(l)}

EBAR as a reference, the closest intersection point with
the Jarzynski energy sets {DGIp I0(l)}

EJE
F ({DGIp I0(l)}

EJE
R ) is computed.

Eventually, the bias is corrected by applying a rigid shift to {DGIp I0(l)}
EJE
F

({DGIp I0(l)}
EJE
R ) to match the Bennett set. The bias correction is shown
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Figure 8.4: Free energy computation of the 3-states (Native, Intermediate,
Unfolded) region showed in Fig.8.3. The free energy of each state is computed
by combining (8.2) and (8.3). EBAR method (blue dots) only holds if nF, nR 6= 0
for each position l, often leading to free energy estimations limited to a restricted
data fraction (see the Intermediate state panel). The forward and reverse EJE are
used to compute the energies of the forward (yellow dots) and reverse (red dots)
trajectories for each l. The (biased - see text - ) results are eventually corrected
(pink dots) according to the computed EBAR values, used as reference. This
procedure gives the complete free-energy set of each state (black dots).

in Fig.8.4 for each state (Native, Intermediate, Unfolded) exhibited by the
3-states region in Fig.8.3.

Given the set {DGI0 Ip(l)} for all the intermediates, Ip, the equilibrium
free energy of one region (black line in Fig.8.3C) is given by

DGeq(l) = �kBT log

 
P+1

Â
p=0

exp�
DGI0 Ip(l)

kBT

!
(8.4)

for any l. Eventually, the equilibrium FDC (black line in Fig.8.3D) is
recovered by computing

feq(l) =
∂

∂l
DGeq(l) . (8.5)
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This method has been used to compute the equilibrium FDC in all
8 irreversible regions in NaCl and the 4 irreversible regions in MgCl2.
Eventually, the piecewise merging of the equilibrated FDC segments
recovered the full equilibrium FDC. This allowed us to reconstruct the
equilibrium FDCs for 7 molecules in sodium and 4 in magnesium.

8.3 derivation of the nnbp rna energies

We derived the RNA NNBP and loop energies from the equilibrium
FDCs in sodium and magnesium. Let us remember that in the NN
model (see Sec.5.2), the free energy of formation DG0 of a NA duplex
is defined as the sum over all couples of neighboring bases along the
sequence, DG0 = Âi Dg0,i with Dg0,i the free energy of NNBP motif i. This
gives 16 different NNBP motifs that reduce to 10 due to Watson-Crick
complementarity. It is possible to further reduce this number from 10 to
8 independent parameters by considering the circular symmetry relations
given in Eqs.(5.14). The 10 NNBP energies have been measured from
melting experiments of short RNA duplexes of varying sequence and
length [23, 99–101]. These values are accessible in the Mfold server [24].
Hereafter we will refer to such energies as the RNA Mfold values.

The NNBP energies have been measured using a Monte-Carlo Metropo-
lis optimization based on comparing the equilibrium FDC with a the-
oretical prediction of the FDC (see Sec.5.5). The method has already
been introduced in Sec.7.2 and is analogous to the one used in the DNA
case [133], where equilibrium FDCs can be obtained within the experi-
mental pulling speeds. Starting with an initial guess of the 8 independent
NNBP parameters, at each step of the optimization, a random increment
of the energies is proposed, and a prediction of the FDC is generated. The
error made in approximating the experimental curve with the theoretical
one, E, drives a Metropolis algorithm: a change of the energy parameters
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(1) (2) (3) (4) (5) (6)
NNBP DgNa

500mM,i DgMg
10mM,i DgNa

0,i DgMg
0,i DgMg

14mM,i Mfold

AA/UU �0.99 (6) �1.11 (1) �1.06 (6) �1.57 (5) �1.14 (7) �1.12
CA/GU �1.81 (6) �2.12 (1) �1.88 (6) �2.58 (5) �2.15 (7) �2.14
GA/CU �2.45 (7) �2.77 (2) �2.52 (7) �3.23 (5) �2.80 (7) �2.73
AU/UA �1.20 (4) �1.06 (4) �1.27 (4) �1.52 (6) �1.09 (8) �1.09
GU/CA �2.43 (6) �2.53 (6) �2.50 (6) �2.99 (7) �2.56 (9) �2.41
CC/GG �3.33 (4) �3.21 (4) �3.40 (4) �3.67 (6) �3.25 (8) �3.26
CG/GC �2.45 (7) �2.35 (4) �2.56 (7) �2.81 (6) �2.38 (8) �2.23
AG/UC �2.16 (5) �1.96 (5) �2.23 (5) �2.42 (7) �2.00 (9) �1.93

GC/CG �2.94 (8) �2.95 (2) �3.01 (8) �3.41 (5) �2.99 (8) �3.82 [�2.77]
UA/AU �1.03 (10) �1.26 (7) �1.10 (10) �1.72 (8) �1.29 (10) �1.36 [�1.37]

Loop 0.16 (3) — 0.09 (3) — — 0.14

Table 8.1: NNBP and loop RNA energies at T = 298K. (Columns 1, 2) NNBP
energies in 500mM NaCl and 10mM MgCl2, respectively. The last two values
(GC/CG, UA/AU) have been computed with circular symmetry. (Columns 3, 4)
NNBP values at the standard conditions of 1M NaCl and 1M MgCl2, respectively.
(Column 5) NNBP energies in magnesium reported at the concentration equiva-
lent to 1M Na+ ⌘ 14mM Mg++. (Column 6) The Mfold 10 NNBP energies at
1M NaCl. NNBP values computed with circular symmetry are also reported
(square brackets). Notice that the free energy of the loop in magnesium is not
given (see text). All energies are in kcal/mol and have been reported with the
statistical error computed over the different molecules (brackets).

is accepted if the error difference to the previous step is negative (DE < 0).
Otherwise (DE > 0), the proposal is accepted if exp(�DE/T) < r with r
a random number uniformly distributed r 2 U(0, 1). The algorithm con-
tinues until convergence is achieved, i.e. until DE is smaller than a given
threshold. Let us note that because of the high number of parameters,
only experimental data from the unzipping of long molecules (a few kbp)
allow for an accurate estimation of the NNBP energies. The algorithm
relies on the sawtooth pattern characteristic of the sequence to accept or
reject an energies proposal: the longer the sequence is, the more accurate
the values of the NNBP energies are. The elastic parameters of the model
include the persistence and contour lengths of the hybrid DNA/RNA
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Figure 8.5: NNBP free-energy parameters. (A) Measured energies at 500mM
NaCl (orange) and 10mM MgCl2 (red). (A) Validation of the 100/1 salt equiva-
lence rule. A fit to data according to Eq.(8.6) (gray line) gives the salt equivalence
factor a = 77 ± 49 (see text). Notice that here only the 8 NNBP independent
parameters are shown.

handles (PDNA/RNA = 10nm and LDNA/RNA = 7.8nm) and those of the
ssRNA (lp = 0.805nm and interphosphate distance ld = 0.68nm). The
results, averaged over the different molecules, are summarized in Table
8.1 (columns 1, 2) and plotted in Fig.8.5A.

8.4 the salt equivalence rule

The measured NNBP energies support the validity of a salt equivalence
rule between sodium and magnesium. To derive the equivalence rule, we
plotted the measured energies in [Mg++] = 0.01M as a function of the
energies in [Na+] = 0.5M fitting them to the relation

DgMg
i ([Mg++]) = DgNa

i ([Na+])� m · log

 
[Na+]eq

[Na+]

!
, (8.6)
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where [Na+]eq ⌘ a ⇥ [Mg++] is the magnesium concentration in sodium
equivalents and a is the equivalence factor. DgMg

i ([Mg++]) and DgNa
i ([Na+])

are the experimentally derived energies of motif i in (Mg++) and (Na+) at
the respective salt concentrations in molar units. Finally, m = 0.10 ± 0.01
kcal/mol is the NNBP-homogeneous monovalent salt correction parame-
ter experimentally derived in [110],

DgNa
i ([Na+]) = DgNa

0,i � m · log ([Na+]) . (8.7)

A least-squares fit to data gives a = 77 ± 49 (Fig.8.5B), which is compat-
ible with the value a ⇡ 100 of previous studies [110]. We expect that
(8.6), with a constant over a broad range of magnesium concentrations,
holds if Mg++ correlations and competitive effects between sodium and
magnesium are weak. This implies diluted magnesium solutions, i.e.
[Mg++] < 0.05M [152, 153]. With added sodium, Mg++ effects dominate
when R =

p
[Mg++]/[Na+] > 0.22M�1/2 [138], which is the case in our

experimental conditions (R = 2M�1/2).
Given the measured energies (columns 1,2 in Table 8.1), we calculated

the NNBP and loop values at the reference salt conditions of 1M NaCl
(DgNa

0,i ) and 1M MgCl2 (DgMg
0,i ). By combining (8.6) and (8.7), we get

DgMg
i ([Mg++]) = DgNa

i ([Na+]eq) = DgNa
i (a ⇥ [Mg++]) . (8.8)

The resulting energies in sodium and magnesium are given in columns 3
and 4 of Table 8.1, respectively.

For a direct comparison with the Mfold set, we use (8.8) to report the
energies at 14mM Mg++ ⌘ 1M Na+ (Column 5 in Table 8.1), obtained by
using (8.8). Column 6 in the table shows the ten independent RNA Mfold
energies plus the free energy of the loop. The last two NNBP values
(indicated in brackets) are obtained from the circular symmetry relations
applied to the other eight Mfold parameters. Notice that the Mfold value
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Figure 8.6: Comparison of the Mfold energies (blue) with the 1M NaCl and (the
equivalent) 14mM MgCl2 free-energy sets. The last two parameters (GC/CG
and UA/AU – grey band) result from applying the circular symmetry relations.
Notice that the free energy of the loop has not been measured in magnesium
(see text).

for GC/CG (�3.82) is very different from our value in sodium (�3.01,
column 3). This discrepancy arises from using eight parameters in our
model, while Mfold uses ten. Interestingly, by applying the circular
symmetry property to the Mfold set, we get for GC/CG the value �2.77,
which is in better agreement with our value (�3.01). Notice that we do
not give the free energy of the loop in magnesium, as this value cannot
be measured due to the inaccessibility of the last part of the unzipping
curve. Results in Table 8.1 (columns 3, 5, and 6) are plotted in Fig.8.6,
which shows the overall agreement between the unzipping free-energy
values and those of Mfold. For the total hybridization free energy of the
RNA hairpin, the unzipping values predict DGNa

0 = 4031 kcal/mol (1M
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with the theoretical prediction obtained from Mfold (orange), and the measured
energies reported in columns 1 and 2 of Table 8.1 (green). Notice that in
magnesium, the comparison is limited to the experimentally accessible region of
the molecule (see text).

NaCl) and DGMg
14mM = 4082 kcal/mol (14mM of equivalent MgCl2). These

numbers compare well to the Mfold value in sodium DGMfold = 4086
kcal/mol (1% relative error). In Fig.8.7A and B, we show the predicted
FDCs from the measured energies in sodium and magnesium (columns 1
and 2 in Table 8.1), respectively. Notably, our predictions better agree with
the experimental data than Mfold, particularly for magnesium (green and
orange lines versus the black). Ultimately, a comparison of the theoretical
FDCs predicted by the Mfold set with those obtained with our energies
at 1M NaCl and 14mM MgCl2 is shown in Fig.8.8.
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8.5 conclusions

Detailed knowledge of the energetics of RNA hybridization is key to de-
termining the thermodynamic stability of RNA structures, from dsRNA
to tertiary RNAs, essential in many biophysical processes. By repeatedly
unzipping and rezipping the RNA, we measured the sequence-dependent
FDCs in sodium and magnesium. The large hysteresis observed along
the FDCs demanded nonequilibrium physics methods to derive the fully
reversible FDC from the irreversible pulling data. Quasi-static RNA
unzipping experiments are not feasible as the lifetime of the intermedi-
ates requires exceedingly low pulling speeds. Estimates based on the
Bell-Evans model range from 0.1nm/s to 1pm/s for irreversible hairpin
segments of 30 � 40 bp.

By using an optimization algorithm, we derived the free energies of
the ten nearest-neighbor base pairs (NNBP) in RNA (Fig.8.6), finding
good agreement with the Mfold values reported for sodium. The high-
est difference between our energies and Mfold is found for CG/GC
in sodium, a relevant motif prone to methylation that accumulates in
many regulatory regions [154, 155]. Moreover, the results for magne-
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sium show the validity of a general salt equivalence rule 80/1 for which
10mM Mg++ corresponds to 800mM Na+ (Fig.8.5). Although the scope
of this result has been tested in a single salt condition, its validity should
span the dilute salt regime where cooperative salt effects are negligi-
ble ([Mg++] < 0.05M) and competition effects with sodium are weak
(R =

p
[Mg++]/[Na+] > 0.22 M�1/2). A salt equivalence rule has been

disputed based on experimental data obtained in bulk experiments us-
ing atomic emission spectroscopy in buffer equilibrated samples [156].
Although this technique can determine the fraction of cations that are
dissociated and bound to the RNA, it does not provide a direct measure-
ment of free energies. Here we have demonstrated the validity of an 80/1
salt equivalence rule at the level of individual NNBP motifs. This is the
most direct confirmation of the 100/1 rule of thumb for the equivalence
of the non-specific binding energy of sodium and magnesium in RNA
structures.
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K I N E T I C S O F R N A A N D S T E M - L O O P S M O D E L

To characterize the irreversibility observed along the RNA unzipping
FDCs (Figs.8.1 and 8.2), we hypothesize a scenario where stem-loop
structures forming along the unpaired RNA strands slow down the stem
formation and kinetically trap the system into the observed off-pathway
metastable states, Ip [75]. The size of the force jumps in Figs.8.1, 8.2
indicate the number Dn 2 [50 � 150] of unzipped-rezipped bps between
consecutive states, Ip. The large stacking free energy of RNA loops fa-
cilitates the formation of stem-loop structures at forces as high as 20pN
where rezipping occurs (Fig.9.9A). The stabilizing effect induced by loop
formation has been demonstrated in experiments of blocking oligos in
nucleic acids hairpins. By hybridizing to the complementary loop region,
these oligos prevent the formation of the native stem [58,157]. Stem-loops
often contain hairpin-like folds with non-canonical base pairs (each col-
ored structure in Fig.9.9A corresponds to a different number of bases)
stabilized by stacking and base pairing interactions. To form the native
stem, the two single strands pulled under opposite forces must come
close to each other. However, this process facilitates the formation of
off-pathway (misfolded) stem-loop structures in the single strands. In
Fig.9.9B, we depict the hairpin unzipping at position n (middle) between
two consecutive states, Ip ! Ip+1, which is slowed down by the transient
formation of misfolded structures (Mp, left) consisting of stem-loops

117
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Figure 9.9: Stem-loops formation. (A) During the unzipping (rezipping) process,
segments of different lengths (represented with different colors) along each
RNA single strand form transient stem-loop structures. (B) Transition between
intermediates Ip and Ip+1 (black arrows). The formation of the off-pathway
(misfolded) structures consisting of stem-loops (Mp) kinetically traps (red ar-
rows) the RNA at Ip slowing down transitions Ip ! Ip+1 (Ip ! Ip�1) during
unzipping (rezipping).

in the single strands (blue segments). The intermediate Ip+1 (right) is
rescued upon releasing Dn bases forming the stem-loops (Mp) that ki-
netically trap the hairpin. Notice that kinetic trapping occurs during
rezipping for transitions Ip ! Ip�1. In the reversible regions, the mis-
folded states have very short lifetimes and are not observed, meaning that
kinetic trapping and hysteresis effects are negligible at the experimental
pulling speeds.

9.1 the barrier energy landscape

The irreversibility of the unzipping-rezipping reaction can be modeled
by introducing a many-valley barrier energy landscape (BEL) accounting
for the off-pathway competing folds that can form along the two single
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strands. The BEL describes the propensity of the hairpin to become kinet-
ically trapped at a particular value of n by off-pathway conformations of
high kinetic stability. The complexity of including all possible structures
is enormous. Therefore we restricted the analysis to the single stem-loops
(loop-BEL) stabilized by stacking and base pairing.

Let us consider all possible segments of L bases along the two un-
paired RNA strands (referred to as 1 and 2). Let S

(1,2)
L be the set of

all segments of length L contained in each strand of the RNA hairpin,
S
(1,2)
L = {[bi, bi+L]; 1  i  N0 = N � L}, where bi and bi+L stand for the

initial and final base of the segment on strands (1, 2) (N being the total
number of bases in the hairpin). For a given L-segment, [bi, bi+L], there
are several competing folds, most of them stabilized by short complemen-
tary stems plus one or more loops of varying sizes (mostly 3 � 8 bases).
We have searched for the optimal fold of lowest free energy, e0

L,i, by using
the DINAmelt web application [158, 159] based on Mfold. This yields the
optimal set of energies {e0

L,i}
(1,2) for S (1,2)

L at standard conditions.
To construct the loop-BEL, one should consider all possible excitations

(i.e. higher energy states) formed by multiple stem-loops folding along
the two ssDNA strands at both sides of the junction. In principle, any
number of stem-loops can form at arbitrary positions along the two
strands. As the complexity of including all possible structures is enor-
mous, in the most straightforward approach, we restricted the analysis to
a single stem-loop (loop-BEL) per strand located at an arbitrary position.
However, even if energetically favorable, stem-loops situated far away
from the junction cannot interfere with the unzipping-rezipping of the
hairpin, a reaction occurring precisely at the junction. Thus, for a given
L, the loop-BEL at force f and junction position n is defined as

DGL(n, f ) = �kBT log
N�n

Â
j1,j2=0

exp

 
�

Dg(1)L (j1, f ) + Dg(2)L (j2, f )
kBT

!
, (9.9)



120 kinetics of rna and stem-loops model

where Dg(1,2)
L (j, f ) is the free-energy of forming a single stem-loop in

strand (1, 2) of length L plus the work at force f to bring it from position
j to the junction located at position n. Note that in Eq.(9.9) we assumed
that all L-segments at the back of the junction are already hybridized
into the native stem and do not contribute to the loop-BEL (green bps in
Fig.9.9B). The term Dg(a,b)

L (i, f ) is given by,

Dg(1,2)
L (j, f ) = e0(1,2)

L,j +
Z f

0
xL+j( f 0)d f 0 , (9.10)

where e0(1,2)
L,j is the (negative) free energy of formation at zero force of

the stem-loop [bj, bj+L] in strand (1, 2). The integral is the energy cost to
bring the L + i bases from A to C at force f (Fig.9.9B). This term penalizes
stem-loops that form far away from the junction as they cannot kinetically
trap the stretched RNA. It has been modeled with the WLC model in
Eq.(5.19) with ld = 0.68nm the interphosphate distance [110, 160] and
lp = 0.805nm the RNA persistence length [59, 110]. Integration required
inverting the WLC as described in Appendix A. Note that Eq.(9.10) equals
the free energy difference between structures Mp and Ip in Fig.9.9B.

We computed DGL(n, f ) at the average unzipping force f ⇡ 19 pN at
500mM NaCl for L-segments in the range L = [8, 28], with L = 8 the
minimum number of bases needed to form stem-loops. In Fig.9.10 we
show the native free-energy landscape (FEL), DGNative(n, f ) (relative to
the fully unzipped state) as a continuous black line. The contribution by
the loop-BEL for L = 20 has been added to the native FEL (dashed line)
to stress the fact that it kinetically traps off-pathway stem-loop structures
at fixed n (red arrows). The dashed line for the loop-BEL emphasizes
that this is a kinetic trapping landscape that does not describe transi-
tions between contiguous n values. In Fig.9.11 (bottom) we show the
loop-BEL DGL(l) (dashed black line) for L = 20 together with the ex-
perimental FDC (top). The position n along the sequence in Eq.(9.9) has
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Figure 9.10: Loop-BEL (dashed line) computed with (9.9) for L = 20 added
to the native-FEL of the hairpin (solid line). For a fixed n, the loop-BEL is
the free-energy difference between structures Ip and Mp (equal to the vertical
distance between red points). Red arrows depict the kinetic trapping effect
induced by the loop-BEL.

been converted to trap-pipette distance l by using the elastic parameters,
DGL(l) ⌘ DGL(n, f ). The position of the loop-BEL minima shows a cor-
relation with the FDC regions of large hysteresis (indicated by rectangles
R1 � R8). To compare with the DNA case, we computed the loop-BEL
for the DNA analogous 2027bp sequence (obtained by replacing uracils
with thymines) at the predicted average unzipping force (⇠ 16.4pN) at
500mM NaCl [133]. Despite the profiles appearing to be similar, the
average barrier energy in DNA (⇠ 47kBT, solid gray line) is lower than
in RNA (⇠ 57kBT, solid black line) because of the lower DNA unzipping
force (yielding a lower elastic contribution in Eq.(9.10)). We notice that
the loop-BEL is overestimated as we have considered a restricted set (sin-
gle stem-loops) among all possible competing structures: the lower the
energy profile of the loop-BEL, the more stable the competing structures
and the larger the irreversibility effects. The larger hysteresis in RNA
correlates with the higher kinetic stability of the stem-loops for RNA.
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Figure 9.11: Experimental FDCs in 500mM NaCl (top) and loop-BELs at 19pN
(bottom) computed for the RNA hairpin (dashed black line) and the equivalent
DNA sequence (dashed gray line) for L = 20 bases. The mean values of the
loop-BEL (solid lines) are also shown. Loop-BEL minima correlate with the
hysteresis regions R1-R8.

9.2 loop-bel and hysteresis

To quantify the correlation between the loop-BEL and the irreversibility,
we introduced the following measure of the hysteresis: for a given
position l, the hysteresis is the dissipated work over a given distance Dl

(= 3nm), which is

DGHyst
ab (l) = �

Z l+ Dl
2

l� Dl
2

| fa(l
0)� fb(l

0)| dl0 , (9.11)

where a, b denote the unfolding (U), refolding (R), and equilibrium (E)
FDCs, leading to three distinct profiles DGHyst

ab (l) with ab = UR, UE, ER.
The minus sign in (9.11) has been introduced to positively correlate loop-
BEL minima (maxima) with maximal (minimal) hysteresis. Equation
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Figure 9.12: Pearson test between the loop-BEL and the hysteresis profiles. (Top)
Loop-BEL DGL(l) computed for L = 20 (black line) and hysteresis profiles
DGHyst

ab (l) with ab = UR (red), ER (orange), UE (blue) computed for the 500mM
NaCl case. (Bottom) Pearson correlation coefficients rw(l) resulting from the
comparison between loop-BEL and the DGHyst

ab (l) over windows of length
w ⇡ 100.

(9.11) has been averaged over several cycles and different molecules.
Given the loop-BEL, DGL(l) ⌘ DGL(n, f = 19pN) in Eq.(9.9), and the
hysteresis profile, DGHyst

a (l), we computed the Pearson correlation coeffi-
cient rw(l) 2 [�1, 1] over a given spatial window of size w as a function
of l. rw(l) = 1 (rw(l) = �1) indicates fully correlated (anticorrelated)
landscapes in that region. Correlation profiles rw(l) have been calculated
for DGHyst

ab (l) with ab ⌘ UR, UE, ER (Fig.9.12, top). To assess the correla-
tion between the loop-BEL and the hysteresis profile ab, we defined the
average rolling correlation, hrwiab, as the average taken over the entire
landscape rw(l). We used a sliding window of size w ⇡ 100nm, the result
being insensitive to w as far as it is comparable to the typical number of
bases released in a force rip along the FDC (⇠ 50 � 150 bases) [75, 161].
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Figure 9.13: Average rolling correlation hrwiab as a function of the shift s
between loop-BEL and hysteresis profile for ab ⌘ UR, ER, UE (top). Maximal
average rolling correlation hrwi

Max
ab (corresponding to s ⇡ 0,�10,+10 for UR,

ER, and UE, respectively) for each L (bottom). Hysteresis is maximally correlated
with stem-loops of length L ⇠ [18, 22] bases.

In Fig.9.13 (top), we show hrwiab as a function of the shift s (in bases) of
the loop-BEL relative to the hysteresis profiles. hrwiab has been calculated
for the L-segment length L = 20 at which correlation is maximal (see
below). A positive shift s > 0 means that we are testing the correlation
with the loop-BEL in the rezipped region close to the junction (green bp
in Fig.9.9B), whereas a negative shift s < 0 implies testing the correlation
with the loop-BEL ahead of the junction in the unzipped region (grey
and blue bp in Fig.9.9B). Remarkably, maximum correlation is found for
ab ⌘ UR and s = 0 (red circles in Fig.9.13, top), showing that stem-loops
formation and hysteresis are highly correlated precisely at the junction.
The position of the maximum in hrwiab shifts to s > 0 (s < 0) for ab ⌘ UE
(ER) (blue squares and orange triangles respectively, Fig.9.13, top). We
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notice that for ab ⌘ ER the maximum in hrwiER is shifted leftwards by
s ⇡ �10 bases (orange triangles). Its value almost coincides with the ab ⌘

UR case (hrwi
Max
ER ⇠ hrwi

Max
UR ⇡ 0.25, red circles). Therefore, the formation

of stem-loops at a distance of ⇠ 10 bases in the unzipped region slows
down the hairpin refolding, leading to the hysteresis observed during
the rezipping process. In contrast, the maximum of hrwiUE (blue squares)
is shifted rightwards (s ⇡ +10) with hrwi

Max
UE ⇡ 0.1 < hrwi

Max
UR ⇡ 0.25

(red circles). The asymmetry between UE and ER demonstrates that the
refolding process is the largest source of irreversibility in the unzipping-
rezipping experiment. Analogously, the rightwards shift (⇠ +10 bases)
in hrwi

Max
UE is related to breathing of stem-loops and the hysteresis effects

observed in the unfolding FDCs. Finally, we analyzed the dependence
of hrwi

Max
ab with the length L of the segments forming the stem-loops

(Fig.9.13, bottom). All curves show a broad maximum for L ⇡ 18 � 22,
corresponding to the characteristic size of the stem-loops kinetically
trapping the RNA. Several tests support the results on control sequences
(see Appendix E)

9.3 sequence dependency of the hysteresis

The hysteresis is observed in some specific regions of the FDC but not
in others (Figs.8.1, 8.2). To explain this behavior, we have searched
for specific sequence motifs that promote stacking, hybridization, and
stem-loop formation within the RNA single strands.

Here we studied the composition of all segments of length N � 6 bases
containing consecutive purine and consecutive Watson-Crick complemen-
tary bases along the two unpaired strands of the RNA hairpin. The aim is
to identify differences in purine content (for stacking) and Watson-Crick
base pairs (for hybridization) between the two regions, demonstrating
that irreversible effects are sequence-dependent. We do not discriminate
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between purines G and A for the stacking motifs, being both counted in
the same set. For example, irreversible region 1 in Fig.8.1 contains 220bp
and a total of 3 segments of 6 consecutive purines (a single GGGGGG
and GGAAAG on one strand and AGGGGA on the other strand) and
2 segments of 7 consecutive purines (AGGAGAA, AGAGAAA on one
strand). An analogous count is made on segments capable of forming
Watson-Crick complementary bases on the two strands by counting the
number of segments containing consecutive A, U, or G, C. For exam-
ple, the same irreversible region 1 has 1 segment of 9 consecutive G, C
(CGCGGGGGG) and 1 segment of 10 consecutive G, C (CGCCGCCGCG).

Therefore, for each region, the fraction of bases of a given type (stacking
or base-pairing) is defined as fN = (MN N)/Dn, where MN is the total
number of segments of length N and Dn is the total number of bases
in that region. Given the values of fN , for each N, we computed the
average fraction of bases (stacking or base-pairing) over all the irreversible
(reversible) regions

fN =
1

nregions
Â

regions
fN , (9.12)

where nregions is the number of irreversible (reversible) regions (nregions =

8 and 4, respectively). Finally, we defined the average segment length hNi

of a given type (stacking or base-pairing) for the irreversible (reversible)
regions as the weighted average over fN , which is

hNi =
ÂN N fN

ÂN fN
(9.13)
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Figure 9.14: Sequence analysis of the irreversible and reversible regions. (A,B)
Stacking analysis. Fraction of consecutive stacked purines (A, G) as a function
of the segment length per each irreversible (left) and reversible (right) region.
(C,D) Watson-Crick base pairing analysis. Fraction of consecutive (A, U or C,
G) as a function of the segment length per each irreversible (left) and reversible
(right) region. The analysis shows both a larger average segment length hNi and
variance of the length of the segments hN2i � hNi2 in the irreversible regions.
The error (in brackets) is the statistical uncertainty in the last digit.

Analogously, the variance of the segment length for the irreversible
(reversible) regions and the two types of analysis (stacking or base-
pairing) has been computed as

hN2
i � hNi

2 =
ÂN N2 fN

ÂN fN
�

 
ÂN N fN

ÂN fN

!2

(9.14)

The results are shown in Fig.9.14 and point out that stacking and base-
pairing effects are larger in the irreversible regions than in the reversible
ones. Overall, we found that stacking and base-pairing contribute to
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the observed hysteresis facilitating the formation of stem-loop structures
along the single strands.

9.4 the loop-bel model applied to dna

The formation of stem-loops structures may contribute to explaining the
broad phenomenology of heterogeneous RNA folding, from misfolding
and multiplicity of native states to the formation of complex tertiary struc-
tures. In particular, the loop-BEL model can be extended to the formation
of non-specific secondary structures observed in pulling experiments of
ssDNA and ssRNA. Although this phenomenon has not been investigated
in RNA, it has been extensively studied in DNA [58, 60, 162–164]: upon
stretching, the ssDNA elastic response deviates from the expected ideal
behavior of a polymeric chain (described for example with the WLC)
forming a shoulder below f ⇠ 10 � 12pN (see Fig.9.16, right).

To model this phenomenon, let us consider a ssDNA of N bases of
a random sequence which, at difference with the previous case, cannot
form a native hairpin (i.e. there is no hybridization junction). We consider
the set of all possible excitations consisting of multiple stem-loops of a
given length L along the sequence. The free energy of such a L-set of
excitations equals

DGL( f ) = �kBT log
K

Â
k=0

exp
✓
�

DgL(k, f )
kBT

◆
, (9.15)

where DgL(k, f ) is the total free-energy contribution of k � 0 stem-loops
and K = bN/Lc is the maximum number of stem-loops that can form
along the single strand. This is given by

DgL(k, f ) = EL(k) +
h
(N � kL)DG1

ss( f ) + kDGd( f )
i

. (9.16)
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Figure 9.15: Loop-BEL model for ssDNA. All possible configurations of k =
1, 2, . . . , K stem-loops of length L randomly positioned along the sequence (left)
compete for folding against the applied force f . The ssDNA loop-BEL defined
in Eq.(9.15) gives the most energetically stable configuration (right).

The term EL(k) accounts for the most energetically stable configuration
of k stem-loops randomly positioned along the sequence (Fig.9.15, left).
The term (N � kL)DG1

ss( f ) is the energy gain upon stretching the free
N � kL bases at force f corrected by the (smaller) energy contribution,
kDGd( f ), of orienting k stem-loops along the force axis. Notice that (N �

kL)DG1
ss( f ) is an extensive quantity, equal to the number of monomers,

N � kL, times the energy cost to stretch a single monomer, DG1
ss( f ) =

�
R f

0 x1
ss( f 0)d f 0, where x1

ss( f ) is the extension per monomer and has been
modeled according to the WLC in Eq.(5.19). The same consideration holds
for the dipole contribution of k stem-loops, DGd( f ) = �

R f
0 xd( f 0)d f 0,

where xd( f ) is the dipole extension and has been modeled according to
Eq.(5.18).

An exact computation of EL(k) in Eq.(9.16) requires considering non-
overlapping stem-loops: if a stem-loop of length L forms at position n
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along the sequence, the next stem-loop can only form outside the inter-
val [n � L : n + L]. We simplified this unaffordable mathematical task
by considering overlapping stem-loops in a mean-field approximation.
In this approximation, EL(k) is taken as the typical total energy of k
stem-loops randomly chosen over the ensemble of Ck different realiza-
tions without imposing any constraints on these loops (i.e. they can be
overlapping or non-overlapping). In contrast, the stretching contribution
(N � kL)DG1

ss( f ) + kDGd( f ), is taken independent of the k stem-loops
realization. Therefore, we have,

EL(k) ⇡ min
Ck

(

Â
k

e0
L,k

)
� kBT log (Ck) , (9.17)

where for the typical energy of k stem-loops (e0
L,k < 0, 8k, L), we took

the most stable configuration (i.e. the one of lowest energy) within the
ensemble Ck. The second term in the r.h.s. of Eq.(9.17) is an entropic
contribution stabilizing stem-loops formation. The total number of con-
figurations is given by the binomial coefficient, Ck = (K

k), or the number
of ways k objects (stem-loops) can be arranged into K = bN/Lc differ-
ent positions. For large N, the total number of configurations in Ck is
enormous. For example, the maximum number of configurations of
a N = 2000bp sequence with L = 20 bases is (100

50 ) ⇠ 1029. Thus, we
restricted the sampling to a few hundred configurations (typically 500).

From Eqs.(9.15), (9.16), we can compute the average ssDNA extension
for a given L, which is defined as

xss,L( f ) = �
∂DGL( f )

∂ f
=

1
ZL

K

Â
k=0

xL(k, f ) exp
✓
�

DgL(k, f )
kBT

◆
, (9.18)
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where ZL is the system’s partition function for a given L (c.f. Eq.(9.15)),

ZL = exp
✓
�

DGL( f )
kBT

◆
=

K

Â
k=0

exp
✓
�

DgL(k, f )
kBT

◆
(9.19)

and xL(k, f ) is the ssDNA extension when k stem-loops are formed,

xL(k, f ) = (N � kL)x1
ss( f ) + kxd( f ) . (9.20)

Finally, the thermodynamic free energy and the ssDNA extension aver-
aged over all L-segments are computed as

DG( f ) = �kBT log Â
L

exp
✓
�

DGL( f )
kBT

◆
. (9.21)

and
xss( f ) =

1
Z Â

L
xss,L( f ) exp

✓
�

DGL( f )
kBT

◆
, (9.22)

where Z = ÂL ZL is the system’s partition function.
In Fig.9.16, we show the ssDNA extension predicted by the loop-BEL

model for a random DNA sequence of N = 2027 bases at 10mM (left
panel) and 1M (middle panel) NaCl salt concentrations. These results are
compared with experimental data from pulling experiments of a long
DNA hairpin at the same salt conditions (right panel). The expected
ssDNA elastic response for L 2 [10, 100] computed with Eq.(9.18) (solid
lines) is shown along with xss( f ) in Eq.(9.22) (dashed black line). The
loop-BEL model reproduces the deviation from the ideal-WLC model
(dashed gray line) experimentally observed below ⇠ 10pN. This behavior
results from the competition between the stem-loops of different sizes:
the lower the force, the larger the contribution to Eq.(9.22) by larger
stem-loops. Therefore, as the ssDNA approaches the random coil state
( f = 0pN), the energetic gain to stretch large L-segments in Eq.(9.16)
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Figure 9.16: Loop-BEL prediction of ssDNA pulling experiments for different
L-segments (solid lines) and by averaging over all L (dashed black lines) at
10mM and 1M NaCl (left and middle panels). The comparison between these
predictions (solid lines) and experiments (solid dots) shows that the model
reproduces the observed formation of (non-specific) secondary structure (right
panel).

tends to zero while EL(k) remains constant, favoring the formation of
large stem-loop structures. Remarkably, as the force approaches the
dsDNA unzipping force ( f ⇡ 15pN), stem-loops of length L ⇠ 30 � 40
bases become the most likely folds, as can be seen by comparing the
average loop-BEL (dashed black line) to the loop-BEL at each L (solid
lines) in Fig.9.16 A and B. This number is not far from what has been
reported for RNA where L ⇠ 20 is the optimal stem-loop size (see above
and Ref. [75]). At higher forces, the elastic response collapses to the
WLC, as experimentally observed. Let us notice that both at 10mM and
1M NaCl, the predicted extension differs from the experimental data
(solid dots in Fig.9.16, right) when f < 6pN. This is particularly evident
at 10mM NaCl, where our model indicates that stem-loops still form
at low force while no secondary structure is observed in the pulling
trajectories. This and other potential inconsistencies come from the crude
approximations made in Eq.(9.17). This approximation only holds when



9.5 conclusions 133

k ⌧ K, i.e. when the typical distance between consecutive stem-loops
is much larger than L, so the overlapping is negligible. Despite the
simplicity of the mean-field approximation, the loop-BEL model helps to
study the complex behaviors observed in NA. A more rigorous analytical
treatment may lead to a deeper understanding of heterogeneous folding
in NA.

9.5 conclusions

We have shown that the large irreversibility observed between RNA
unzipping and rezipping FDCs is driven by the collective effects of
multiple stem-loop structures that kinetically trap the RNA. The effect is
stronger in magnesium than in sodium, probably because the two charges
of magnesium transiently stabilize nucleotide contacts to a higher extent.
To model this mechanism, we used the free-energy landscape formalism
to understand protein and NA folding into complex tertiary structures
[63, 79]. By defining a stem-loops barrier energy landscape (loop-BEL,
Fig.9.9B), we found a correlation between the sequence regions where
stem-loops are maximally stable (minima of the loop-BEL) with those
where hysteresis along the FDC is large. To support this interpretation, we
measured the correlation between the loop-BEL and the hysteresis profiles
(Eq.(9.11)). We have found that the hysteresis observed in the FDCs
maximally correlates with the stem-loop formation at the hybridization
junction. Typical stem-loop sizes of about 20 bases are responsible for
the observed hysteresis effects. Interestingly, this number is similar to
the number of foldon residues in protein folding [18]. We stress that the
loop-BEL as a function of n is not a standard free-energy landscape as
neither the trap-pipette distance l nor n are actual reaction coordinates
for the stem-loops. For a given n (l), the loop-BEL is a kinetic trapping
landscape that quantifies off-pathway (misfolded) configurations Mp that
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compete with the folding intermediates Ip. Future work should lead to a
better understanding of the stabilizing kinetics of these structures and
the energy landscape describing transitions between them. We notice that
along the reversible regions, the signal-to-noise ratio is very low due to
instrumental drift and noise effects, which are detrimental in evaluating
the correlation between sequence and hysteresis.

Remarkably, hysteresis is observed in some specific FDC regions but not
in others. To explain this, we have searched for specific sequence motifs
that promote stacking, hybridization, and stem-loop formation within
the RNA single strands (Sec.9.3). We found that the irreversible regions
are characterized by a high frequency of purine stacks and Watson-
Crick bonds along the unpaired strands, which lead to the multiple
peaks observed in the experimental FDCs, even for forces as high as
20pN. Stacking alone could not transiently stabilize stem-loops at such
high forces, so the concurrent formation of base pairs within each RNA
strand is necessary. It is quite reasonable that such stem-loop structures
also exhibit some degree of cooperativity; the more they proliferate,
the more they facilitate the formation of additional nearby stem-loops
inhibiting native folding. Cooperative folding effects have been also found
in DNA [60, 165], RNA [147, 166, 167] and proteins [76, 168, 169]. The
intermediates Ip in the unzipping-rezipping experiments are reminiscent
of the cooperative foldons hypothesized to drive protein folding [18, 149].
This cannot be otherwise, as the only way to form the native stem is to
sequentially form the intermediates, one after the other, starting from the
unfolded state. The remarkable effect of force is to increase the lifetime of
the intermediates that would be difficult to detect in melting experiments.

Moreover, the loop-BEL model allows for predicting the formation
of non-specific secondary structure in ssDNA pulling experiments [60].
This feature appears to be caused by the competition between multiple
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stem-loop folds of different sizes that make the extension deviate from
the ideal WLC behavior (Fig.9.16).

Stem-loops formation appears as a general mechanism driving RNA
hairpins folding and refolding processes and the elastic response of
ssDNA sequences. Moreover, it may help to understand the broad
phenomenology shown by NAs. However, the predictions obtained by the
present model are limited by crude approximations introduced to simplify
the enormous complexity of complete stem-loops modeling. Firstly, in
the computation of the stem-loops free-energy (Eqs. (9.16) and (9.17)), we
disregarded overlapping effects between consecutive L-segments. This
implies that partially overlapping L-segments can simultaneously fold
into stem-loops. Moreover, we neglected cooperativity effects that favor
the nucleation of contiguous stem-loops, a phenomenon reminiscent
of domain coarsening in helix-coil models. Ultimately, full loop-BEL
modeling would require allowing for the simultaneous formation of
stem-loops of different lengths L. In contrast, the current model accounts
for this effect through a mean-field approximation (Eqs. (9.21) and (9.22)).
Despite the lack of comprehensive modeling of stem-loops formation, the
phenomenon might explain many features of heterogeneous NA folding.
The development of a more accurate description of the loop-BEL model
accounting for the complex phenomenology discussed above is left for
future work.
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R N A AT L O W T E M P E R AT U R E

Natural evolution has produced living organisms of utmost complexity.
It is acknowledged that biological systems evolve under the rules of
Darwinian selection, led by the survival of the fittest to environmental
pressure. Free energy governs the spontaneous evolution of all thermo-
dynamic transformations determining their stability. The change in the
environmental conditions at which a biological process occurs may alter
the existing equilibrium promoting the stabilization of previously penal-
ized structures [170]. In recent years, evidence has emerged that RNAs
can fold into multiple conformations at sufficiently low temperatures
triggering a new phenomenology that we call RNA cold misfolding, the
tendency of native RNAs to form mechanically compact and kinetically
stable disordered structures [75, 147].

RNAs directly impact biological diversity and life [171, 172]. The
promiscuity of base pairing and stacking interactions makes RNA a
unique biopolymer with many functions, from information carrier to reg-
ulatory and enzymatic activity. As a result, RNAs can fold into multiple
configurations stabilized by secondary and tertiary structures [173, 174],
multivalent cations, and ligands [175–178]. RNA exhibits significant
heterogeneity at the sequence and conformational level [179–182]. Upon
folding, RNA can form native and non-native structures (such as mis-
folded and intermediates) [147], with critical roles at the level of genomic

139
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maintenance and the cellular function [183, 184], therapeutics [185, 186],
and diseases [31–33]. Although new RNAs with new functionalities
and structures are being discovered, the role of many RNAs remains un-
known. Besides the much-studied tRNA, rRNA, microRNA, riboswitches,
ribozymes, and artificially evolved RNAs, novel behaviors have been ob-
served in response to environmental cues such as temperature (e.g., RNA
cold denaturation [187, 188], RNA thermometers [124, 189]), and in con-
certed action with proteins (catalytic complexes, chaperones, packaging,
condensation, etc.). Moreover, a knowledge gap has appeared not only
at the level of RNA transcriptomics but also at the level of non-coding
RNAs (ncRNAs), and their remarkable variety of functions in concert
with ligands and proteins [184, 190–194].

Despite the enormous progress in next-generation sequencing and big
data analysis, our current knowledge of RNA diversity is compromised
by the limited accuracy, sensitivity, and specificity of available methods to
detect different RNA conformations across RNA populations. Moreover,
determining the folding pathways and the energetics of the various
RNA structures is essential to understanding RNA function. Single-
molecule techniques have represented a big step in addressing RNA
complexity [37, 195]. Their great sensitivity and accuracy permit us to
detect and measure the folding energies of rarely occurring conformations
that escape detection by the standard bulk methods. Powerful techniques
such as single-molecule FRET [196, 197] and force spectroscopy [168,
198] can monitor RNA conformational transitions in real-time. More
recently, solid-state nanopore microscopy for RNA target detection can
analyze thousands of single RNAs without amplification offering exciting
prospects [199, 200].

We studied short RNA duplexes at low temperatures by calorimetric
unzipping experiments with a temperature-jump LOT. These experiments
showed that RNA hairpins at low temperatures systematically misfold.
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The stability of these structures increases upon lowering the temperature
and overtakes the native state at T ⇠ 7�C. We characterized the change
with the temperature of the free energy of formation and the elastic
properties of the native and misfolded states. These results point out that
the misfolded state has a more compact conformation suggesting that
the molecule folds into a complex tertiary structure. RNA misfolding is
not predicted by current secondary structure prediction folding models
such as Mfold [24], Vienna package [201], McGenus [202] and pKiss [203].
RNAs’ ability to adapt to changing environments may have consequences
for the reservoir of microbial life in the arctic soil and the permafrost
where ancient frozen RNAs that have remained intact and protected for
eons may come to life due to climate change [204, 205].

10.1 unzipping of short rna hairpins

We used a temperature-jump LOT (see Sec.3.2.2) to unzip six fully-
complementary Watson-Crick RNA hairpins featuring two 20bp stem
sequences (H1 and H2) and loops of different lengths (L = 4, 8, 10, 12
nucleotides) and compositions (poly-A or poly-U). For the pulling experi-
ments, the RNA hairpin is flanked by long hybrid DNA/RNA handles
(⇠ 500bp). Further details about the sequences and the synthesis protocol
are given in Appendix D.2. Each molecule has been named after its
stem and loop type. For example, hairpin H1L4A is made by hairpin H1
and a poly-A loop of 4 bases. The unzipping experiments were carried
out at temperatures in the range 42 � 7�C at 4mM MgCl2 (divalent salt)
and 1M NaCl (monovalent salt). Both buffers have been prepared by
adding the salt (divalent or monovalent) to a solution of 100mM Tris-HCl
(pH 8.1), 1mM EDTA. The pulling protocols have been carried out at
a constant pulling speed, v = 100nm/s. We sampled 5 � 6 different
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Figure 10.1: Unzipping of different RNA hairpins at different temperatures.
Unfolding traces are shown in blue, and refolding traces are in red. (A) The
H1L12A hairpin in the range [7, 42]�C. At T � 25�C, only the native state is
present. Below 25�C, a misfolded structure appears with an increasing frequency
upon lowering T. At 7�C, the misfolded is predominant on the native structure.
(B) FDCs at 25�C and 7�C for different molecules. Hairpins H1L4A, H1L8A,
and H1L10A show the effect of increasing the loop size (L = 4, 8, 10 bases,
respectively) on misfolding. Hairpin H1L12U features stem H1 and the 12 bases
poly-U loop, while hairpin H2L12A features stem H2 and the 12 bases poly-A
loop. All hairpins exhibit a misfolded structure at low temperatures competing
with the native state, except H1L4A. Molecules H1L12U and H2L12A also show
a second misfolded state at low forces (insets). The different hairpin sequences
are shown in the corresponding panels.

molecules at least for each hairpin and at each temperature, collecting
⇠ 200 unfolding-folding trajectories per molecule.

Fig.10.1A shows the temperature-dependence of the force-distance
curves (FDCs) for the H1L12A sequence at 4mM magnesium. Above
room temperature (T = 25�C), the hairpin unfolds around 20pN (blue
force rips): the rupture force distribution is unimodal. However, upon
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lowering the temperature, for T  17�C, high-force unfolding events are
observed (⇠ 30 � 40pN, dashed black ellipse) that are above the native
unfolding events (⇠ 20 � 25pN, dashed grey ellipse). The latter events
reveal the formation of misfolded structures different from the native.
Analogous results have been obtained for the sodium experiments. The
misfolded state prevails over the native below T = 10�C with occupancy
larger than 50%. Moreover, refolding forces (red curves in Fig.10.1A)
decrease with temperature with larger hysteresis at low T, a signature
of the increasing competition between native and misfolded structures.
This is in contrast to DNA unzipping, where no misfolding is observed
and refolding forces increase with lowering T [206, 207].

Remarkably, RNA cold misfolding is not unique to the H1L12A hairpin
but appears to be a general phenomenon for RNA. Our results show that
it strongly depends on the molecular length and composition (Fig.10.1B).
Below T = 25�C, nearly all the studied sequences feature misfolding. The
only exception is the H1L4A hairpin (loop of L = 4 bases) that only folds
into the native state, independently of temperature. Misfolding appears
for L > 8 bases (H1L8A hairpin), and its occurrence increases with
increasing L. At 7�C, the H1L12A hairpin is the only case of misfolding
prevailing over the native state.

Loop composition also affects misfolding: the unzipping of hairpin
H1L12U, featuring the same stem as H1L12A but with a 12 bases poly-U
loop, shows two misfolded structures forming at 7�C (see inset 10.1B).
Finally, stem sequence modulates misfolding, as we observe H2L12A
to feature two distinct misfolded states at low temperatures. Although
the appearance of misfolding does not primarily depend on the RNA
sequence, the exact feature of each misfolded state does. For instance, the
misfolded structures formed by H1L12U are different from those formed
by H2L12A.
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To better understand the molecular characteristics that promote and
modulate the low-T misfolding, we first studied the temperature depen-
dence of the ssRNA elastic response, focusing on the effects of stacking
interactions and secondary structure formation.

10.2 temperature-dependence of rna elastic properties

In the unfolded state, the RNA molecule is a stretched polymeric chain
of monomers (the nucleotides). The mechanical properties of the single-
stranded RNA (ssRNA) drive the folding dynamics as they play a crucial
role in determining the specific and non-specific secondary structure of
the molecule upon refolding. In Fig.10.2, we studied the ssRNA elastic
properties of the H1L12A hairpin in the temperature range [7, 42]�C.

We used two different and independent methods to measure the ex-
perimental RNA force-extension curves (FECs): the force-jump and the
two-branches method [108, 208] (triangles and circles in Fig. 10.2A, re-
spectively – see Appendix F). The results of both methods have been put
together for an accurate derivation of the ssRNA elastic properties at
each T. Notice that the force range accessible for studying the ssRNA
increases with lowering T. This is a consequence of the increasing hys-
teresis (Fig.10.1A) between unzipping and rezipping FDCs: the larger
the hysteresis is, the longer the ssRNA unfolded branch (red traces on
Fig.10.1) extends to low forces.

The RNA elastic response has been modeled according to the worm-
like chain (WLC) model (see Eq.5.19 in Sec.5.3). To accurately derive the
ssRNA WLC elastic parameters (persistence length, lp, and interphos-
phate distance, db) at all temperatures, we first fit the FECs at each T to
a WLC independently (red lines in Fig.10.2A). This analysis revealed a
linear dependency of lp and db with T. The measured elastic parameters
at each T are shown in Fig.10.3 (red dots) and are reported in Table 10.1.
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Figure 10.2: Temperature dependence of the H1L12A hairpin elastic properties.
(A) ssRNA elastic response at different T measured with the two branches
(magenta triangles) and the force-jump (black circles) methods (see text). The
WLC ideal elastic response is also shown for both the single-T fit (red line) and
the multi-T fit (blue line). Notice that the accessible force range increases with
lowering T as the rezipping force also decreases (larger irreversibility). (B) The
multi-T fit of the WLC to the experimental FECs. The data featuring non-specific
secondary structure (empty dots) have not been considered for the WLC fit (grey
lines).

Thus, by imposing the linear T dependence of the elastic parameters, we
do a simultaneous fit of the FECs at all temperatures, which allows for
the accurate measurement of the T dependence of the elastic parameters
(black lines in Fig.10.3).

The results of this multi-T fit are shown in Fig.10.2A (blue lines) and
Fig.10.2B. Excepted at 42�C, the FECs exhibit an increasing deviation from
the ideal WLC behavior at low forces. This is due to the temperature-
dependent staking interactions along the ssRNA, a phenomenon already
observed in pulling experiments of ssDNA and ssRNA [58, 60, 162, 209].
Therefore, only the ssRNA high-force behavior has been fitted (solid dots
and solid lines in Fig.10.2B) down to the point at which this deviation
starts (empty dots and grey lines in Fig.10.2B).
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dashed lines mark the prediction error.

The persistence length, lp, (Fig.10.3A) exhibits a strong linear depen-
dence with T, increasing by ⇠ 2.5 times over the studied temperature
range. A fit-to-data gives a slope of ∂lp/∂T = 0.17 ± 0.02 Å/K. In con-
trast, the interphosphate distance, db, (Fig.10.3B) decreases with T with
a linear dependence of slope ∂db/∂T = �0.04 ± 0.01 Å/K. Notice that
the T-dependence of db (changing ⇠ �20% over the explored T range) is
much weaker than the lp one (⇠ +250%). As a consequence, the ssRNA
becomes stiffer with decreasing T. Thus, it progressively becomes more
and more difficult for the ssRNA to bend on itself upon refolding and
aligning the complementary ssRNA unpaired strands for hybridization.
This hinders the refolding of the molecule into the native state, promot-
ing mismatching of the ssRNA strands and the formation of misfolded
structures.
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T [�C] T [K] lp [nm] db [nm]
42 315 0.99 (3) 0.64 (1)
36 309 0.81 (2) 0.66 (1)
32 305 0.79 (3) 0.65 (1)
25 298 0.70 (2) 0.67 (1)
17 290 0.46 (2) 0.76 (1)
10 283 0.42 (3) 0.75 (2)
7 280 0.38 (3) 0.75 (2)

Table 10.1: Temperature dependence of the persistence length (lp) and the
interphosphate distance (db) measured from the ssRNA elastic response of the
H1L12A hairpin. The error (in brackets) refers to the last digit.

These effects are sequence-dependent, as we deduce by studying the
elastic properties of the other RNA sequences (Fig.10.4). In fact, while
changing the loop size does not significantly affect the ssRNA behavior,
a different loop sequence (H1L12U hairpin) or stem (H2L12A hairpin)
produces a different elastic response. In the first case, the poly-U loop
features weaker stacking interactions than its poly-A counterpart, allow-
ing the ssRNA to elongate more under an applied force. In contrast, the
H2L12A stem features stronger non-specific secondary structure interac-
tions making the ssRNA stiffer and less stretchable.

10.3 low-temperature misfolding

The FDC rupture force upon unfolding and the corresponding released
extension characterize a molecular state (native or misfolded) as they
depend on the folded configuration’s secondary structure and its free
energy of formation. Accurate characterization of the energetics and
kinetics of molecular folding is crucial to study the low-T misfolding,
Therefore, we first separated the experimental trajectories generated
by unzipping from the native state from those due to unzipping from
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Figure 10.4: Comparison of the hairpins ssRNA FECs (normalized over the total
number of bases of each hairpin) at T = 25�C. (A) ssRNA FECs of the H1 hairpin
family. Despite the extension being dependent on the total number of bases
(inset), the normalized extension (main) is the same for all hairpins. (B) ssRNA
FECs for the hairpins with different sequences. The normalized extensions
do not collapse as different sequences have diverse stacking interactions: the
molecule with the strongest stacking (H2L12A) is the shortest, and that with the
less stacking (H1L12U) is the longest.

the misfolded state. To do this, we developed a Bayesian classification
algorithm using the rupture force and the released extension to assess
native and misfolded FDCs (see Appendix G). The H1L12A hairpin
results are shown in Fig.10.5A.

Misfolding (red circles) appears below 25�C and becomes more fre-
quent (top panels in Fig.10.5A) by lowering the temperature. Finally, at
T ⇠ 7�C, misfolding is predominant on the native, featuring more than
50% of the total number of trajectories. Moreover, the misfolded state
unfolds in a broader range of forces than the native. It is characterized by
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Bayesian clustering applied to the H1L12A data: misfolded (red points) and
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T. The predicted elastic response corresponding to each state is also shown
(dashed lines). The rupture forces distributions (top panels) show the increasing
misfolded/native ratio. (B) Bayesian clustering for the different hairpins at
T = 7�C. H1L4A, H1L8A, and H1L10A show the misfolding dependence with
the loop size. H1L12U and H2L12A exhibit two different misfolded states, M1
and M2. The dashed lines show the expected elastic response for each state.

a shorter released extension, pointing out that the number of hybridized
base pairs of the misfolded structure is smaller than in the native. In
contrast, the native state (blue circles) features a narrow rupture force
distribution whose average value moves from ⇠ 20pN to ⇠ 25pN with
decreasing T.

Low-T misfolding exhibits similar behavior for all temperatures and
sequence composition (Fig.10.5B). Although the loop size modulates the
percentage of misfolding (compare hairpins from H1L4A to H1L12A),
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it always unfolds in the same force range with a characteristic released
extension. Moreover, the clustering shows the sequence dependency
of the number of misfolded states, with the H1L12U and the H2L12A
hairpins featuring an additional low-force misfolded state (M2). Let
us remark that, despite both featuring similar unfolding distributions,
different stem sequences have different misfolded structures, i.e. M2

state of the H1L12U hairpin is different from the M2 state of the H2L12A
hairpin.

In what follows, we used the results from the Bayesian clustering to
study the temperature dependence of the folding free energy of the native
and misfolded states for the H1L12A hairpin.

10.3.1 Derivation of Folding Free Energies

The stability of a molecular state (native or misfolded) is measured by
its free energy of formation, DG0 = GU � GF, which is the (positive) free
energy difference between the unfolded and the folded configurations
of the molecule when no external force is applied ( f = 0). We used the
fluctuation theorem (FT) [210, 211] to extract DG0 from irreversible work
(W) measurements (see Chapter 4). The work is computed by integrating
the FDCs between a minimum (lmin) and a maximum (lmax) optical-
trap positions where the molecule is folded and unfolded, respectively
(inset in Fig.10.6A). The crossing point between the forward (F) work
distribution, PF(W), and the reverse (R) work distribution, PR(�W), gives
the free energy of formation, DG. Finally, DG0 is obtained by subtracting
to DG the ssRNA elastic contribution, which is the energy needed to
stretch the polymer between lmin and lmax.

In Fig.10.6 we show PF(W) (PR(�W)) for the H1L12A hairpin at the
different experimental temperatures. At high-T (Fig.10.6A), the work
distributions progressively separate with lowering T due to the increasing
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Figure 10.6: Study of the H1L12A hairpin. (A) Forward (dashed line) and
reverse (solid line) work distributions computed from the experimental FDC
(inset) above 25�C. The free energy of formation (see text) increases (gray band)
with decreasing T. Notice that also irreversibility increases, i.e. PF(W) and
PF(�W) get further apart. The results include work measurements of several
H1L12A molecules (⇠ 5 � 6 molecules at each T). (B) PF(W) (dashed line) and
PR(�W) (solid line) for the native (blue) and misfolded (red) state at 7�C. The
insets show the results of the matching method applied to native and misfolded
states (see text).

hysteresis between the unzipping and rezipping FDC (gray bands). As
a consequence, PF(W) and PR(�W) do not cross. In the absence of
crossing, we used the matching method [63, 210], the Bennett acceptance
ratio (BAR) method [83], and the continuous effective barrier analysis
(CEBA) [116, 117, 119] to measure the free energy, DG (see Sec.4.2 and
Sec.6.2). The large molecule-to-molecule statistical variability and the
hysteresis made it essential to cross-validate results by different methods
to extract reliable free energy values. At 7�C (Fig.10.6B), the Bayesian
clustering has been used to assess the FDCs to the correspondent state
(native or misfolded) before computing the forward and reverse work
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distributions. In analogy with the high-T regime, the native state (in
blue) features skewed work distributions, although the large hysteresis
and the low refolding forces make PR(�W) asymmetric. In contrast,
misfolding (red) exhibits spread work distributions suggesting a large
variability in the free energy of the formed structures. In the matching
method, the crossing point (and then DG) between the work distributions
is determined by matching PF(W) and PR(�W) exp ((W � DG)/kBT). In
practice, this is done by fitting the latter functions to a single Gaussian
distribution [63] (dashed black line in Fig.10.6, insets). At 7�C, this
method can be successfully applied to the FDCs of the native state
but not to the FDCs of the misfolded state as the work distributions
cannot be matched to a single Gaussian distribution (inset of Fig.10.6B,
bottom). This can be explained by considering misfolding due to different
structures with similar features. As a single function cannot characterize
more the one structure, the matching method fails.

Given DG and knowing the ssRNA elastic response with T, we mea-
sured the free energy of formation (DG0) for the H1L12A at all T for
native and misfolded states (Fig.10.7). Above 25�C, the native state
(right panel of Fig.10.7 and Table 10.2) becomes more stable with de-
creasing T as the base paring interactions become stronger. Our results
(red and blue dots) agree with the predictions by Mfold [24] (black
triangles) only at 36�C, whereas they exhibit a progressive deviation
from the expected behavior at higher (lower) T This difference can be
quantitatively assessed by measuring the enthalpy (DH0) and entropy
(DS0) of the native state. By fitting the T-dependence of DG0 accord-
ing to the linear relation DG0 = DH0 + TDS0, we derived DHBAR

0 =

105 ± 33kcal mol�1, DSBAR
0 = 238 ± 11cal mol�1K�1 (for the BAR re-

sults) and DHCEBA
0 = 104± 25kcal mol�1, DSCEBA

0 = 231± 8cal mol�1K�1

(for the CEBA results). In contrast, we get DHMfold
0 = 196kcal mol�1,

DSMfold
0 = 533cal mol�1K�1 for the Mfold values, which almost double
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Figure 10.7: Temperature dependence of the folding free energy in K (bottom
label) and �C (top label). Left. Native (blue) and misfolded (red) free energies at
low T. The large dispersion of the results indicates that there are many different
misfolded structures. Results in magnesium (empty bars) and in sodium (solid
bars) are plotted together. For the comparison, the 100/1 equivalence rule
between monovalent and divalent salt concentrations (see Sec.8.4) has been
applied to the sodium results. Right. At high T, only the native state is present.
Results obtained with BAR (red) and CEBA (blue) methods are compared with
the prediction by Mfold (black). The experimental variability (empty dots) is
also shown along with the average values (solid dots) for the BAR case.

the experimentally measured enthalpy and entropy. The current charac-
terization of the RNA energetics at the single base pair level does not
account for the temperature dependence of entropies and enthalpies
upon forming the stem. As shown by calorimetric experiments, this effect
is not negligible [124,212–214] leading to large deviations of the predicted
RNA hybridization free energies from the experimental values measured
far from the physiological (reference) temperature of 37�C.

At low-T (left panel of Fig.10.7 and Table 10.3), we reported the hy-
bridization free energies measured from magnesium (empty boxes) and
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DG0 [kcal/mol]

T [�C] T [K] BAR CEBA Mfold
42 315 28 (3) 30 (3) 28
36 309 32 (1) 33 (2) 31
32 305 31 (4) 31 (4) 34
25 298 34 (2) 35 (1) 37

Table 10.2: Free energies of the H1L12A hairpin native state in the high-T
regime measured with BAR and CEBA methods, and predicted by Mfold. The
error (in brackets) refers to the last digit.

sodium (full boxes) experiments. A divalent salt increases the instability
of the pulling experiments, lowering the sampled statistics per molecule
and making results in sodium more accurate. Remarkably, results for
both salt conditions show that misfolding (red) has a much larger vari-
ability than the native (blue). These results support our hypothesis of
misfolding being due to the formation of different structures of similar
size but involving various secondary and tertiary folding.

Moreover, misfolded states appear to be less stable than the native
(lower free energy), which points to the kinetic nature of misfolding.
However, even at 7�C, the native state is more stable than the misfolded
one, implying that the hairpin should mostly fold into the native. There-
fore, kinetic effects contribute to the formation of the misfolded structures
as they overtake the native at low T. We note that above 7�C (at 10�C and
17�C), the sparse misfolding statistics with respect to the native do not
allow for a reliable sampling of the work distributions and, ultimately,
for the extraction of DG0.
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DG0 [kcal/mol]

T [�C] T [K] State Mg2+ Na+

7 280 N 38 (9) 37 (3)
M 31 (10) 31 (8)

Table 10.3: Free energies of the H1L12A hairpin native (N) and misfolded (M)
states at T = 7�C (derived with the BAR method). To be compared, the 100/1
equivalence rule between monovalent and divalent salt concentrations has been
applied to the sodium results. The error (in brackets) refers to the last digit.

10.4 universality of the rna cold misfolding

Cold misfolding appears as a general phenomenon involving the forma-
tion of one or more multiple structures that compete with the native fold.
On the one hand, the appearance of these structures does not appear to
be related to the salt type (monovalent or divalent salt). On the other
hand, misfolding is sequence-dependent, meaning that different RNA
molecules fold into misfolded structures with different features. However,
misfolding shows common traits for all the studied hairpins.

The unfolding (folding) transition can be described as an activated
process along the molecular free energy landscape (FEL) [79, 215, 216]. By
varying the reaction coordinate (the end-to-end molecular extension), the
system switches from the folded (F) to the unfolded (U) state by crossing
a transition state (TS) of height B. The folded structure and its behavior
upon stretching are regulated by the force-dependent position of the
TS (x‡) mediating the transition [217–219]. We used the Bell-Evans (BE)
model [114,115] to extract information about the FEL from the unzipping
data. The BE model relates the standard deviation of the rupture forces
distribution, sf , and the distance to the kinetic barrier, x‡ (see Sec.6.1).

As T decreases, the mean of the unzipping rupture force (squares in
Fig.10.8A) increases for both native (bottom) and misfolded states (top)
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Figure 10.8: RNA unfolding kinetics. (A) Mean (orange squares) and variance
(grey circles) of the rupture forces distribution for native (bottom) and misfolded
(top) at each experimental T (in Celsius and Kelvin degrees).(B) Percentage
of native and misfolded trajectories for the studied RNA hairpins at 7�C. The
H1L12U and the H2L12A molecules exhibit a second misfolded state (green).
The inset shows the T-dependence of the weight of the native for the H1L12A
hairpin.

according to the increasing hysteresis and hybridization free energy of the
folded state. At high forces, the TS moves closer to the F state, increasing
the instability of the native state [217] and favoring misfolding. Moreover,
the variance of the unzipping rupture force (grey circles in Fig.10.8A)
associated with misfolding events is much larger than the native one
(s2

f ,M ⇠ 20 � 50 s2
f ,N). This gives a x‡

M = 0.9 ± 0.1 nm for misfolding,

while x‡
N = 3.7 ± 0.4 nm for the native pointing out that the misfolded

structures are compact, kinetically very stable and brittle. Brittleness is
related to the deformability of the folded structure upon stretching, a
high brittleness implying that the molecule folds into a compact non-
deformable configuration. The closer the TS is to the folded state, the
more brittle the molecular structure.

Despite low-T misfolding being a universal RNA feature, its recurrence
is strongly sequence-dependent. Fig.10.8B shows the fraction of native
(blue) and misfolded (red and green) trajectories for each studied hairpin.
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compact molecular states and are not real misfolded structures.

For a loop of L = 4 bases (H1L4A), only the native fold is present. Upon
increasing L, the misfolded to native ratio increases as the total ssRNA
length increases accordingly. These additional degrees of freedom allow
the molecule to arrange into structures other than the native. Notice that
only for L = 12 bases (H1L12A) at 7�C (Fig.10.8B, inset), the fraction of
misfolded is higher than the native. As pointed out in Sec.10.2, the ssRNA
elastic response depends on the stacking interaction between the loop
bases. When stacking is weaker (poly-U loop), the ssRNA is more flexible,
and a second misfolded state appears (H1L12U). In addition, base-pairing
interactions also affect the misfolded phenomenology, H2L12A showing
two misfolded states. The H2L12A stem features six consecutive A, U
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NNBP motifs (AU/UA or UA/AU), which have lower hybridization free
energy than G, C motifs. Consequently, the hairpin does not unfold in
a single cooperative event: the sequential opening of the A/U bp, one
after the other (the so-called fraying), precedes the cooperative melting
of the second part of the stem. This can be seen as a slope change in the
measured FDCs preceding the force rip (see Fig.10.1B). Upon refolding,
the weaker stability of the first base pairs of the H2L12A stem allows for
forming a second misfolded state (M2) at low forces.

The study of the unfolding (folding) kinetics allows for the characteri-
zation of the FELs associated with the native and misfolding transitions
(Fig.10.9). At T � 25�C, only the native fold is observed. The molecule
can only explore the native FEL (blue line) as the kinetic barrier to mis-
folding is too large to compete with the native one. At ⇠ 15�C, the native
is still the prevalent fold but misfolding starts to appear. By decreasing T,
both the native B and DGFU increase, i.e. more energy is needed for the
system to switch from U to F (and vice versa) along the native FEL. Thus,
the misfolded FEL (red line) becomes accessible, and misfolding com-
petes with the native transition. The probability of misfolding and the
number of misfolded configurations increases as T is further lowered. At
⇠ 5�C, multiple misfolded FELs (red and green lines) compete with the
native FEL: misfolding becomes the prevalent transition in the unfolding
(folding) reaction.

10.5 conclusions

We reported evidence of RNA cold misfolding in unzipping experiments
of short RNA hairpins (44 to 52 bases) with a temperature-jump LOT.
To study this phenomenon, we unzipped six RNA hairpins made of a
20bp fully complementary Watson-Crick stem (H1 or H2) ending in loops
of different sizes (L = 4, 8, 10, 12 bases) and compositions (poly-A and
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poly-U). Although these hairpins have been designed to only fold into
the native (hairpin-like) state (as supported by the available secondary
structure prediction tools, such as Mfold and Vienna package, among
others), they exhibit one or more misfolded states at low temperatures
(Fig.10.1). Above T = 25�C, the experimental observations only show
the formation of the native state in agreement with the expected be-
havior. In contrast, misfolded states are formed upon lowering T. At
T  17�C, misfolding appears with increasing prevalence (Fig.10.5). Al-
though exhibiting sequence-dependent features (number of misfolded
states, misfolded/native ratio, etc.), RNA cold misfolding appears as a
general RNA phenomenon with common traits: the formed structures
are compact and brittle (distance to the TS, x‡

M ⇠ 1/4 x‡
N) and unfold in

a broad range of forces (10 � 40pN).
The large molecule-to-molecule variability of the measured hybridiza-

tion free energies (Fig.10.7) indicates that a single misfolded state may
be due to the formation of different folds, characterized by different sec-
ondary and tertiary structures. This suggests that RNA cold misfolding
may have a more rich and complex phenomenology than previously
anticipated. However, the accurate characterization of these structures
may exceed the instrumental precision, making it hard to distinguish
them using the currently available experimental techniques.

The discovery of the RNA cold misfolding enlarges the already rich
RNA phenomenology. RNAs’ ability to adapt to changing environments
may help in understanding the diversity of behaviors observed in RNA,
shading light to the underlying mechanisms driving RNA folding.





Part V

A P P E N D I X E S





A
T H E W O R M - L I K E C H A I N I N V E R S I O N

The inextensible WLC model described in (5.19) gives a very direct way
to compute f = f (x). On the contrary, the computation of x = x( f ) is
not straightforward. Although numerical inversion is possible [220], it
is helpful to retrieve the explicit inversion formula [102]. Therefore, we
show that (5.19) can be inverted to express z := x/Lc as a function of f .

Let us first define the normalized quantity f̃ = (4P/kbT) f . Thus,
Eq.(5.19) can be rewritten as f̃ = (1 � z)�2

� 1 + 4z. By multiplying both
sides of the previous by (1 � z)2 and by moving all terms to the r.h.s.,
one gets

0 = z3 + a2z2 + a1z + a0

with a2 = �
9
4
�

f̃
4

, a1 =
3
2
+

f̃
2

, a0 = �
f̃
4

.
(A.1)

Thus, obtaining z as a function of f maps to find a cubic polynomial’s
roots. The approach taken here is the canonical one [221, 222]. Let us
start defining the following intermediate quantities:

R :=
9a1a2 � 27a0 � 2a3

2
54

Q :=
3a1 � a2

2
9

, (A.2)
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from which we obtain the standard determinant D for cubic equations:

D := Q3 + R2 (A.3)

If D > 0, there is only one real solution to Eq.(A.1). To express the
solution, let us define

T :=
3
q

R +
p

D S :=
3
q

R �

p

D (A.4)

(since D > 0, we also have that
p

D is real, and thus there is indeed at
least one real cubic root for T and S). The desired inverse value z⇤ = z( f )
is then finally obtained as:

z⇤ = �
1
3

a2 + S + T . (A.5)

If D < 0, the cubic equation has three real roots, which can be obtained
by introducing the following intermediate quantity:

q := arccos

 
Rp
�Q3

!
, (A.6)

from which the three real roots z1, z2, z3 can be obtained directly as:

zi = 2
p
�Q cos

✓
q + qi

3

◆
�

1
3

a2

with q1 = 0, q2 = 2p, q3 = 4p .
(A.7)

Notice that the roots of Eq.(A.6) can be obtained by re-using the quantities
S and T defined above, but doing so is a more complex task that requires
using complex number algebra.

The root of interest is the one lying in the interval [0, 1] since z =

x/Lc, and the inextensible WLC fulfills the property that the extension



the worm-like chain inversion 165

x is always smaller than the contour length Lc. Using the standard
trigonometric formula and the fact that 2

p
�Q > 0, it is pretty easy to

verify that z1 � z2 > 0 and z3 � z2 � 0 for the given range of q (which
must belong to [0, p] by definition of the arccosine), which implies that z2

is the smallest of all the roots. Moreover, notice that all the roots must be
positive, since 8z < 0, f (z) < 0 in Eq.(5.19) and it is strictly monotonically
decreasing. As all the roots are positive and z2 is the smallest one in [0, 1],
z2 = z⇤ = z( f ) when D < 0. This result also extends to the D = 0 case
as from Eq.(A.6) we get that q = 0 and then z3 = z2.

Let us finally note that in the extensible WLC case, the main difference
with the inextensible case consists in the replacement Lc ! Lc(1 + f /Y),
where Y the Young Modulus, i.e. the contour length is now force depen-
dent. It can be shown that the following relationship exists between the
two models:

xext
WLC( f ) = xinext

WLC( f ) (1 + f /Y) (A.8)

so that the explicit inversion of the inextensible WLC model directly
yields the explicit formula for the extensible model.





B
S T O C H A S T I C G R A D I E N T D E S C E N T I N A N U T S H E L L

The basic principle behind stochastic approximation can be traced back
to the Robbins–Monro algorithm of the 1950s [223]. Since then, stochastic
gradient descent (SGD) methods have become one of the most widely
used optimization methods [224–227].

SGD is an iterative method for optimizing an objective function, J(w),
with suitable smoothness properties (e.g., differentiable or subdiffer-
entiable). The set of parameters, w⇤, minimizing J(w), is iteratively
approximated according to an update algorithm proportional to the anti-
gradient of the objective function, �rw J(w). Starting from an initial
guess of w, at each step of the algorithm, the parameters are updated
according to 8

<

:
wt+1 = wt + vt+1

vt+1 = bvt � hrwt J(w) ,
(B.1)

where vt is the velocity of the optimization and h � 0 is the step size
(called learing rate). The parameter b (the so-called momentum coefficient)
accounts for a fraction of the previous step in the current update. The
critical difference between SGD and standard gradient descent algorithms
is that information (total entropy and coefficients) from only one segment
at a time is used to calculate the step, and the segment is picked randomly
at each step.
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The SGD convergence rate can be improved by considering Nesterov’s
Accelerated Gradient (NAG), introduced in 1983 [228, 229]. According to
NAG, the update equations are

8
<

:
wt+1 = wt + vt+1

vt+1 = bvt � hrwt+bvt J(w) .
(B.2)

While the classic momentum (CM) algorithm updates the velocity vector
by computing the gradient at wt, the NAG algorithm computes the
gradient at wt + bvt. To make an analogy, while CM faithfully trusts
the gradient at the current iterate, NAG puts less faith in it and looks
ahead in the direction suggested by the velocity vector; it then moves in
the direction of the gradient at the look-ahead point. If rwt+bvt J(w) ⇡

rwt J(w), then the two updates are similar. The advantage of using NAG
is that it converges at a rate of O(1/t2), while CM converges at a rate of
O(1/t).

To derive the DNA NNBP entropies from unzipping experiments
of a 3.6kbp DNA hairpin (see Sec.7.3), we used an SGD minimization
implementing NAG update equations. The application to our case is
straightforward. Let us rewrite Eq.(7.5) as DSexp = CDs, where DSexp

is the K elements vector of entropies measure for all segments with
the Clausius-Clapeuron equation, Ds is the vector of the I = 9 entropy
parameters (the 8 independent NNBP entropies plus the ssDNA stretching
entropy), and C is the K ⇥ I matrix of the coefficients, ck,i. We notice that
the last parameter, Dsss, is kept constant and only the remaining 8 NNBP
parameters are minimized by the algorithm.

Thus, for a given loss function (ex., least squares), the algorithm has to
minimize

J(w) =
K

Â
k=1

(ŵk � wk)
2 =

K

Â
k=1

(DSexp
k � CkDs)2 . (B.3)
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By using this method, we measured the DNA entropies at the single
base-pair level for each experimental temperature in the range [280, 315]
K (see results in Fig.7.8 of Sec.7.3.2 and Table C.2 of Appendix C).





C
N N B P D N A T H E R M O D Y N A M I C S : TA B L E S O F R E S U LT S

In the tables that follow, we report the DNA NNBP free energies (Dgi –
Table C.1), entropies (Dsi – Table C.2), and enthalpies (Dhi – Table C.3)
studied as a function of temperature in the range [7, 42]�C ([280, 315] K).
These results have been obtained from unzipping experiments of a 3.6kbp
DNA hairpin with the temperature-controlled LOT.

A detailed discussion of the experimental technique and the method
developed to derive these results can be found in Chapter 7. In particular,
the derivation of the NNBP free energies is reported in Sec.7.2. At the
same time, the extraction of the NNBP entropies and enthalpies are
discussed in Sec.7.3.2 and Sec.7.3.3, respectively.

Ultimately, we tested the NNBP parameters measured from unzipping
experiments by computing the melting temperatures for the 92 oligos of
Ref. [138] (experimentally measured in bulk assays). Our predictions are
reported in Table C.4.
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Table C.4: DNA Oligos Melting Temperatures [�C]
Sequence (50 ! 30) Texp ± 1.6� Tunz ± 2� TUO THug

ATCAATCATA 33.6 32 34.0 33.4
TTGTAGTCAT 36.0 34 36.7 33.5
GAAATGAAAG 34.4 36 34.6 32.6
CCAACTTCTT 40.6 39 40.4 36.9
ATCGTCTGGA 44.9 42 46.2 43.3
AGCGTAAGTC 40.3 42 45.1 41.8
CGATCTGCGA 49.1 49 50.5 48.2
TGGCGAGCAC 55.3 54 56.3 51.8
GATGCGCTCG 53.5 53 54.0 51.7
GGGACCGCCT 57.0 53 58.6 53.3
CGTACACATGC 49.9 49 51.2 48.9
CCATTGCTACC 48.9 50 49.6 46.6
TACTAACATTAACTA 51.1 51 51.9 50.8
ATACTTACTGATTAG 51.5 52 49.7 49.4
GTACACTGTCTTATA 54.8 53 54.8 53.7
GTATGAGAGACTTTA 55.4 54 54.8 53.9
TTCTACCTATGTGAT 53.7 56 55.1 54.3
AGTAGTAATCACACC 57.1 56 56.9 55.8
ATCGTCTCGGTATAA 58.6 58 58.9 58.5
ACGACAGGTTTACCA 61.3 62 63.6 61.5
CTTTCATGTCCGCAT 62.8 64 63.0 62.4
TGGATGTGTGAACAC 60.4 61 62.3 60.4
ACCCCGCAATACATG 62.9 66 65.6 63.7
GCAGTGGATGTGAGA 63.3 64 64.6 62.6
GGTCCTTACTTGGTG 60.3 61 62.0 59.4
CGCCTCATGCTCATC 65.8 67 66.5 65.1
AAATAGCCGGGCCGC 70.4 73 72.7 69.1
CCAGCCAGTCTCTCC 66.7 67 67.7 64.7
GACGACAAGACCGCG 68.6 67 69.7 68.2
CAGCCTCGTCGCAGC 72.0 72 73.0 70.6
CTCGCGGTCGAAGCG 70.7 71 72.9 71.3
GCGTCGGTCCGGGCT 74.1 73 77.8 74.2
TATGTATATTTTGTAATCAG 61.2 62 58.6 59.6
TTCAAGTTAAACATTCTATC 61.5 65 60.6 60.9
TGATTCTACCTATGTGATTT 64.4 67 63.7 64.2
GAGATTGTTTCCCTTTCAAA 65.3 70 66.3 65.4
ATGCAATGCTACATATTCGC 68.9 73 69.2 69.7
CCACTATACCATCTATGTAC 64.4 65 63.9 63.9
CCATCATTGTGTCTACCTCA 68.5 70 69.4 68.7
CGGGACCAACTAAAGGAAAT 68.5 72 70.3 69.3
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Table C.4: DNA Oligos Melting Temperatures [�C]
Sequence (50 ! 30) Texp ± 1.6� Tunz ± 2� TUO THug

TAGTGGCGATTAGATTCTGC 71.2 72 71.1 70.6
AGCTGCAGTGGATGTGAGAA 73.1 76 74.5 73.8
TACTTCCAGTGCTCAGCGTA 73.6 74 76.0 74.8
CAGTGAGACAGCAATGGTCG 72.5 74 73.5 73.1
CGAGCTTATCCCTATCCCTC 70.3 73 71.3 70.1
CGTACTAGCGTTGGTCATGG 71.1 72 72.9 72.2
AAGGCGAGTCAGGCTCAGTG 76.3 77 77.2 76.3
ACCGACGACGCTGATCCGAT 77.3 76 78.7 79.4
AGCAGTCCGCCACACCCTGA 78.5 80 81.6 78.8
CAGCCTCGTTCGCACAGCCC 78.1 80 81.1 78.6
GTGGTGGGCCGTGCGCTCTG 81.0 81 83.6 80.2
GTCCACGCCCGGTGCGACGG 81.1 81 85.4 82.0
GATATAGCAAAATTCTAAGTTAATA 66.1 70 64.2 65.6
ATAACTTTACGTGTGTGACCTATTA 71.8 72 71.2 72.3
GTTCTATACTCTTGAAGTTGATTAC 67.7 70 67.3 68.6
CCCTGCACTTTAACTGAATTGTTTA 72.5 76 73.4 73.0
TAACCATACTGAATACCTTTTGACG 71.3 74 72.2 72.5
TCCACACGGTAGTAAAATTAGGCTT 73.8 76 74.6 74.2
TTCCAAAAGGAGTTATGAGTTGCGA 73.8 78 75.2 74.6
AATATCTCTCATGCGCCAAGCTACA 76.5 80 76.7 77.0
TAGTATATCGCAGCATCATACAGGC 75.0 77 75.5 75.8
TGGATTCTACTCAACCTTAGTCTGG 73.6 76 73.9 73.6
CGGAATCCATGTTACTTCGGCTATC 74.8 77 75.5 75.6
CTGGTCTGGATCTGAGAACTTCAGG 75.6 78 76.6 76.7
ACAGCGAATGGACCTACGTGGCCTT 81.0 82 82.7 82.2
AGCAAGTCGAGCAGGGCCTACGTTT 81.5 83 82.8 82.4
GCGAGCGACAGGTTACTTGGCTGAT 80.1 81 81.3 81.1
AAAGGTGTCGCGGAGAGTCGTGCTG 82.4 82 83.0 83.2
ATGGGTGGGAGCCTCGGTAGCAGCC 83.4 86 86.6 83.6
CAGTGGGCTCCTGGGCGTGCTGGTC 83.4 86 87.5 84.3
GCCAACTCCGTCGCCGTTCGTGCGC 84.6 85 88.1 86.3
ACGGGTCCCCGCACCGCACCGCCAG 88.3 89 93.0 88.9
TTATGTATTAAGTTATATAGTAGTAGTAGT 66.6 70 65.8 68.1
ATTGATATCCTTTTCTATTCATCTTTCATT 70.4 76 70.3 72.9
AAAGTACATCAACATAGAGAATTGCATTTC 73.2 77 73.0 75.0
CTTAAGATATGAGAACTTCAACTAATGTGT 71.8 76 71.8 74.1
CTCAACTTGCGGTAAATAAATCGCTTAATC 75.5 79 75.2 76.2
TATTGAGAACAAGTGTCCGATTAGCAGAAA 76.4 80 77.5 78.3
GTCATACGACTGAGTGCAACATTGTTCAAA 76.9 79 78.0 79.0
AACCTGCAACATGGAGTTTTTGTCTCATGC 78.7 82 80.3 80.6
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Table C.4: DNA Oligos Melting Temperatures [�C]
Sequence (50 ! 30) Texp ± 1.6� Tunz ± 2� TUO THug

CCGTGCGGTGTGTACGTTTTATTCATCATA 77.6 80 80.0 80.5
GTTCACGTCCGAAAGCTCGAAAAAGGATAC 78.7 80 79.5 80.3
AGTCTGGTCTGGATCTGAGAACTTCAGGCT 80.6 83 82.2 83.5
TCGGAGAAATCACTGAGCTGCCTGAGAAGA 80.9 84 82.5 82.6
CTTCAACGGATCAGGTAGGACTGTGGTGGG 80.1 83 83.3 82.5
ACGCCCACAGGATTAGGCTGGCCCACATTG 84.0 87 87.5 85.4
GTTATTCCGCAGTCCGATGGCAGCAGGCTC 84.1 86 85.9 84.8
TCAGTAGGCGTGACGCAGAGCTGGCGATGG 84.6 87 88.1 87.1
CGCGCCACGTGTGATCTACAGCCGTTCGGC 84.5 87 89.0 88.2
GACCTGACGTGGACCGCTCCTGGGCGTGGT 86.4 88 91.2 89.5
GCCCCTCCACTGGCCGACGGCAGCAGGCTC 87.7 92 93.8 89.9
CGCCGCTGCCGACTGGAGGAGCGCGGGACG 88.6 92 94.8 92.2

Melting temperature (Tunz) prediction at 1 M NaCl for the 92 oligos of Ref.
[138] obtained with our parameters. Texp are the experimentally measured
temperatures by Owczarzy et al. in Ref. [138]. TUO and THug are the predictions
obtained by using the unified oligonucleotide [22] and the Huguet et al. [133]
parameters, respectively. All temperatures are given in Celsius degrees.





D
S Y N T H E S I S O F R N A M O L E C U L E S

LOT pulling experiments require using NAs molecular constructs suit-
able for the setup (see Sec.3.3) and the study that has to be carried out.
In what follows, we report the protocols for synthesizing the RNA molec-
ular constructs used in this thesis. In Sec.D.1, we describe the protocol
developed to synthesize the 2kbp long RNA hairpin studied in Part 8.
In Sec.D.2, we report the synthesis of the different short RNA hairpins
studied in Part 10.

d.1 long rna hairpins

We synthesized an RNA hairpin made of a stem of 2027 equally repre-
sented canonical Watson-Crick base pairs (Table D.1), ending in a GAAA
tetraloop and inserted between short hybrid DNA/RNA handles (29bp).
The realization of this molecule has been challenging (see main text),
requiring the development of a tailored synthesis protocol. This protocol
(schematically depicted in Fig.D.1) can be split into 7 main steps.

1. PCR amplification of target sequence

The target sequence was selected inside a l-DNA (J02459) region (30286�
38650) that was previously shown to be efficiently transcribed in both
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Figure D.1: RNA hairpin synthesis protocol. (A) A PCR amplicon of 2027bp
in length obtained from l-DNA and containing EcoRI sites (E) at its termini
was cloned into pBR322 plasmid in both orientations, generating the pRNA1
and pRNA2 constructs. The pRNA1 and pRNA2 constructs were then used
as templates for PCR reactions. Both PCR products were used as templates
for in vitro transcription reactions to synthesize RNA1 and RNA2 molecules.
Regions 1.1 and 2.1 are derived from the pBR322 sequence, regions 1.2 and
2.2 from the l-DNA sequence, and region 1.3 from the RNA1 reverse primer.
(B) RNA hairpin structure and assembly. The hairpin is formed by annealing
molecules RNA1 and RNA2, a digoxigenin (DIG)-labeled, and biotin (BIO)-
labeled oligonucleotide. RNA1 molecule contains three regions: region 1.1
anneals with DIG-labeled oligonucleotide to form RNA1 handle. Region 1.2
anneals with RNA2 and together with region 2.2 from RNA2 forms most of the
hairpin stem. Finally, region 1.3 forms the hairpin loop and the upper part of
the stem. Apart from region 2.2, the RNA2 molecule also contains a 30 portion
(region 2.1) that anneals with BIO-labeled oligonucleotide to form the RNA2
handle.
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strands by T7 RNA polymerase, the same enzyme used in our ex-
periments [111]. A PCR reaction was performed to obtain an ampli-
con of 2027bp in length using 1µM of Univ_hairpin_F and 1µM of
EcoRI_2.0kb_R primers (Table D.2), 25ng of l-DNA (Dam-) as DNA
template, 1.5mM MgCl2, 1X Opti and 1X HiSpec buffers, dNTPs 0.2mM
each, and 4U of Eco Taq Plus DNA Polymerase (Ecogen). Primer se-
quences were selected using Primer3Plus software [230]. EcoRI sites were
added at 50 termini of both primers (Table D.2, sequence in bold). Cycling
parameters were as follow: initial denaturation step (94�C) for 1 min 30
sec, enzyme addition (hot start), 30 cycles of denaturation at 94�C for 45
sec, annealing at 60�C for 1 min and extension at 72�C for 6 min, with a
final extension step at 72�C for 7 min.

2. Synthesis of pRNA1 and pRNA2 constructs

The 2kbp PCR amplicon was digested with EcoRI (NEB, New Eng-
land Biolabs) and cloned into vector pBR322/EcoRI [231, 232]. Plasmid
DNA was purified using Illustra PlasmidPrep Mini Spin Kit (GE Health-
care). The insert orientation was evaluated by digesting plasmids with
EcoRV, and according to it, constructs were defined as pRNA1 or pRNA2
(Fig.D.1). These constructs were used as templates for PCR reactions us-
ing primers RNA1_T7Forw and RNA1_Rev (pRNA1) or RNA2_T7Forw
and RNA2_Rev (pRNA2) (Table D.2).

3. PCR amplification of templates for in vitro transcription

The pRNA1 and pRNA2 constructs were used as templates for PCR
reactions using primers RNA1_T7Forw and RNA1_Rev (pRNA1) or
RNA2_T7Forw and RNA2_Rev (pRNA2) (see Table D.2). RNA_T7Forw
primer contains a cytidilate nucleotide (in bold) upstream the minimal T7
RNA Polymerase Promoter (50 � CTAATACGACTCACTATAGGGA �

30) to improve transcription efficiency [233], followed by a pBR322-
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NNBP Frequency (%)
AA/UU 17.1
CA/GU 14.7
GA/CU 12.7
AU/UA 9.6
GU/CA 10.0
CC/GG 8.7
CG/GC 4.1
AG/UC 11.0
GC/CG 5.6
UA/AU 6.3

Table D.1: Occurrence of NN motifs in the RNA sequence.

annealing sequence (50 � ATAAAAATAGGCGTATCACGAG � 30). This
sequence codes for part of the RNA1 handle. Primer RNA1_Rev an-
neals at its 30 termini (50-GAAAAACGCCTCGAGTGAAG-30) with the
Univ_hairpin_F binding site located at the end of pRNA1 insert op-
posite to RNA1_T7Forw binding site (see Fig.D.1). The 50 termini of
RNA1_Rev (50 � CTCATCTGTTTCCAGATGAG � 30) codes for the last
8bp of the RNA hairpin near the loop and the GAAA tetraloop itself
(in bold, reverse complement). The sequence 50 � GGGA � 30 was in-
troduced between 50 and 30 portions of RNA1_Rev in order to intro-
duce the sequence 50 � UCCC � 30 into RNA1. This tetranucleotide
RNA sequence is located between the hairpin stem portion formed
by sequences from the 2kbp insert and the last 8bp-stem and loop re-
gions coded by RNA1_Rev sequence and serves to base pair the first
four nucleotides (50 � GGGA � 30) at the 50 end of RNA2 molecule.
RNA2_T7Forw anneals with same sequence that pairs with RNA1_Rev
primer (50 �GAAAAACGCCTCGAGTGAAG� 30), but it is used in PCR
reactions with pRNA2 construct. As in the case of RNA1_T7Forw, its
50 termini contain an optimized T7 promoter containing an upstream
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Oligonucleotides Sequence

Univ_hairpin_F 50 � ACGAATTCGAAAAACGCCTCGAGTGAAG � 30
EcoRI_2.0kb_R 50 � ACGAATTCTTGGGGTGTGTGATACGAAA � 30
RNA1_T7Forw 50 � CTAATACGACTCACTATAGGGAATAAAAATAGGCGTATCACGAG � 30
RNA1_Rev 50 � CTCATCTGTTTCCAGATGAGGGGAGAAAAACGCCTCGAGTGAAG � 30
RNA2_T7Forw 50 � CTAATACGACTCACTATAGGGAGAAAAACGCCTCGAGTGAAG � 30
RNA2_Rev 50 � GAACATACGAAACGGATGATAAGCTGTCAAACA � 30
S Handle A 50 � ACGAAAGGGCCTCGTGATACGCCTATTTTT � 30
S Handle B2 50 � Bio � GAACATACGAAACGGATGATAAGCTGTCAA � 30

Table D.2: List of the oligonucleotides used in the synthesis of the 2027bp RNA
hairpin.

C nucleotide (50 � CTAATACGACTCACTATAGGGA � 30). RNA2_Rev
primer contains a pBR322-annealing region and codes for the RNA2 han-
dle. PCR reactions were performed using the same conditions previously
described. Amplification products were purified from PCR mixtures
using the GFX PCR DNA and Gel Band Purification Kit (GE Healthcare).

4. In vitro transcription of RNA1 and RNA2 molecules

in vitro transcription reactions were performed using the T7 MEGAscript-
High Yield transcription Kit (ThermoFisher Scientific/Ambion) according
to the manufacturer’s recommendations. Samples were incubated with
3µL of TURBO DNase (2U/µL) for 15 min at 37�C, and synthesized RNA
was precipitated by adding 90µL of LiCl Precipitation solution (7.5M
lithium chloride, 50mM EDTA). Reactions were incubated overnight at
�20�C, centrifuged for 15 min at 13, 000 rpm, washed twice with 70%
ethanol, and resuspended in 15µL of nuclease-free water.

5. Treatment of RNA2 molecules with Calf Intestinal Phosphatase (CIAP) and
Polynucleotide Kinase (PNK)

in vitro transcribed RNA2 molecules were treated with 1U of CIAP (Roche)
for 1h at 50�C to remove their 50 triphosphate ends. Dephosphorylated
RNA2 molecules were treated with Polynucleotide Kinase (PNK) to
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produce RNA molecules containing 50 monophosphate termini accord-
ing to the manufacturer’s recommendations. The reactions were heat-
inactivated by incubating for 20 min at 65�C and precipitated with LiCl,
as described in the following section.

6. Digoxigenin 30 tailing of S Handle A oligonucleotide

S Handle A (Table D.2) tailing with digoxigenins was performed by using
the DIG oligonucleotide Tailing Kit 2nd Generation (Roche), according
to the manufacturer’s recommendations. DIG-labeled S Handle A was
purified using the Qiaquick Nucleotide Removal kit (Qiagen).

7. Assembling RNA1 and RNA2 molecules to form the 2kbp RNA hairpin

The assembly of RNA hairpin was performed in one annealing step,
where RNA1, CIAP, and PNK-treated RNA2, S Handle A and biotin-
labeled S Handle B2 oligonucleotides (Table D.2) were incubated together.
A total of 20µg of RNA1 and 20µg of CIAP/PNK-treated RNA2 were
incubated with 5µL of DIG-tailed S Handle A (2µM), 5µL of 50-Bio-S
Handle B2 (2µM), 2µL of Tris 1M, pH 7.0, 2µL of NaCl 5M and water
to a final volume of 80µL. Reactions were incubated for 1 h at 65�C and
cooled to 10�C at a rate of 0.5�C/min using a thermocycler. After a final
cooling step at 10�C for 1 h and 30 min, the samples were subjected
to microdialysis. The annealing reaction was pipetted over a 0.05µm
Millipore membrane which was put in a plate containing 50mL of 20mM
Tris.HCl, 5mM NaCl, pH 7.5, and allowed to stay for 1 h. Microdialyzed,
annealed molecules were then incubated with 1µL of T4 RNA ligase
2 (RNL2 1U/µL) (NEB) and 1X RNL2 Reaction Buffer for 2 h at 37�C
to covalently join RNA1 and RNA2 molecules. Ligated RNA hairpin
molecules were microdialyzed against Tris.HCL 100mM, EDTA 14mM as
described above and stored at �20�C or directly used in single-molecule
experiments.
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Figure D.2: Molecular structure of the six RNA hairpins. Each hairpin is named
after the sequence (H1 or H2), the loop size (L4, L8, L10, or L12), and the loop
composition (poly-A or poly-U). The sequences are reported in Table D.3.

d.2 short rna hairpins

We synthesized six short RNAs with long hybrid RNA/DNA hetero-
handles (⇠ 500bp). The hairpins are made of a 20bp stem chosen be-
tween two possible sequences (H1 and H2) and loops of various lengths
(L = 4, 8, 10, 12 bases) and composition (poly-A or poly-U). The different
RNA sequences are shown in Fig.D.2 and reported in Table D.3. The dif-

Table D.3: Sequences of the six RNA hairpins (50 ! 30 direction).
Molecule Stem Sequence Loop Sequence

H1L4A GCGAGCCAUAAUCUCAUCUG GAAA
H1L8A GCGAGCCAUAAUCUCAUCUG GAAAAAAA

H1L10A GCGAGCCAUAAUCUCAUCUG GAAAAAAAAA
H1L12A GCGAGCCAUAAUCUCAUCUG GAAAAAAAAAAA
H1L12U GCGAGCCAUAAUCUCAUCUG GUUUUUUUUUUU
H2L12A AUAUAUUGCGGCUCUGCUCA GAAAAAAAAAAA



186 synthesis of rna molecules

Hind III
EcoRI

4359 290

pBR322
4361bp

1000

2000

3000

4000
Hand

le A
Handle B

Seq

A B

Annealing
and hairpin

formation

In vitro
transcription

DNA handle A DNA handle BRNA

Final construct

A for

A rev

B for

B rev

T7 for

T7 rev

Figure D.3: Synthesis of short RNA hairpins (see text). (A) The RNA hairpin
(orange) sequence is cloned into the pBR322 plasmid vector. The flanking
regions are used to create the handles for the LOT setup (green and yellow).
(B) Steps of the synthesis protocol. The templates for the RNA transcription
and the handles are obtained via PCR amplification of different regions of the
plasmid (top and middle). Handles A and B (green and yellow) are tagged with
digoxigenin and biotin and annealed to the RNA transcript (magenta) to create
the hairpin (bottom).

ferent sequences have been cloned between the EcoRI and HindIII sites of
plasmid pBR322 (Fig.D.3A), and the flanking regions of the plasmid were
used to engineer DNA/RNA heteroduplex handles for single-molecule
pulling experiments (Fig.D.3B). In what follows, we describe each step of
the synthesis protocol (adapted from [234]).

1.1 Preparation of the DNA template

The molecular template for the RNA hairpins (Eg. the H1L12A RNA hair-
pin in Table D.3) is made by two complementary DNA oligonucleotides
with the sequence of the molecule of interest (see Table D.4). Each oligo
has EcoRI and HindIII compatible overhang at one end. The oligonu-



D.2 short rna hairpins 187

Table D.4: DNA template for the H1L12A hairpin synthesis.

Oligo 1 50 – AATTC AA GCGAGCCATAATCTCATCTG
GAAAAAAAAAAA CAGATGAGATTATGGCTCGC AA A – 30

Oligo 2 50 – AGCTT TT GCGAGCCATAATCTCATCTG
TTTTTTTTTTTC CAGATGAGATTATGGCTCGC TT G – 30

The DNA oligo 1 and the complementary sequence oligo 2 cloned between the
EcoRI and Hind III sites of pBR322 plasmid. The sequences include the enzyme
restriction sites (in italics) and ssDNA spacers for the LOT setup (in bold).

cleotides are phosphorylated and annealed into their dsDNA using T4
DNA kinase:

1.1 Phosphorylation and annealing:

MilliQ water 40µl
Oligo A (100µM in Tris 10mM) 20µl
Oligo B (100µM in Tris 10mM) 20µl
T4 polynucleotide kinase (10U/µl) 10µl
10X T4 ligase buffer 10µl

Total volume 100µl

Protocol: Incubate 1h at 37�C, then anneal the oligos using a temperature
gradient (95�C to 4�C in 2h).

1.2 Digestion of the pBR322 plasmid

To obtain the recombinant plasmid for RNA transcription of the molecular
construct, the dsDNA template obtained at step 1.1 is inserted between
the HindIII and EcoRI sites of the pBR322 plasmid (Fig.D.3A). To do this,
the plasmid is incubated with the two restriction enzymes and with Calf
Intestinal Alkaline Phosphatase (CIP):
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1.2 Vector digestion:

MilliQ water 131µl
pBR322 (0.25µg/ml) 50µl
CIP enzyme 4.5µl
HindIII 3µl
EcoRI 3µl
10X NEB EcoRI buffer 20µl

Total volume 211.5µl

Protocol: Incubate 1h at 37�C.

The digested vector is then gel purified (0.8% agarose gel, 1XTBE)
using Sybr Safe staining (5µl) and blue illumination to minimize DNA
damage and nicking. The vector is extracted using the Qiaquick gel
extraction kit (Qiagen).

1.3 DNA template and vector ligation

The linearized and dephosphorylated vector is ligated with the dsDNA
template from step 1.1. In this way, the plasmid is circularized again, but
it now contains the DNA insert that is the template of the desired RNA
molecule.

1.3 Ligation of recombinant plasmid:

MilliQ water 3µl
pBR322 (DNA template) 2µl
ATP 10µM 1µl
Digested vector (100 ng/µl) 2µl
T4 DNA ligase (20U/µl) 1µl
10X T4 ligase buffer 1µl

Total volume 10µl

Protocol: Incubate at 16�C overnight (or at least for 4 hours).
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After the incubation, the product is gel purified (1% agarose gel, 1XTBE)
to ensure the correct ligation of the recombinant plasmid. Finally, the
vector is extracted using the Qiaquick gel extraction kit (Qiagen). NOTE:
The recombinant plasmid can be frozen for successive usage at this step.

2.1 Clonation of the recombinant plasmid

To increase the concentration of recombinant plasmid obtained at the
end of step 1.3, we cloned the plasmid using ultra-competent cells (UCC)
XL10-GOLD (Quickchange II XL site-directed mutagenesis kit). The
transformation has been done following the kit instructions (but replacing
the NZY+ Broth with LB):

1. Aliquot 45µl UCC on microtubes previously pre-cooled on ice.

2. Add 2µl b-mercaptoethanol. Mix and incubate for 10 min on ice,
mixing every 2 min.

3. Add 1µl plasmidic DNA (20 ng/µl). Mix well and incubate for 30
min on ice. Meanwhile, preheat LB at 42�C.

4. Heat-pulse the transformation reaction at 42�C for exactly 30 sec-
onds. Incubate on ice for 2 min.

5. Add 1ml LB preheated at 42�C and incubate on a shaker at 37�C at
225 � 250rpm for 1 hour.

6. Prepare Petri dishes with an Agar medium substrate for cell culture.
Apply ⇡ 15 � 20ml of Agar medium per dish. Store solidified
plates at 4�C facing down in a sealed bag. We prepared 15 plates.

7. Prepare increasing dilutions of the preparation. We prepared 3
different dilutions:

• Concentrated. Centrifuge 400µl preparation for 2 min, remove
300µl supernatant and inoculate the remaining 100µl.
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• Normal. Inoculate 100µl of the preparation.

• Eluted. Inoculate 10µl of the preparation +90µl of LB.

8. Place the dilutions on the dry agar plates (5 per dilution) and
spread with a glass spreader sterilized by immersion in 95% ethanol
and burnt off with a Bunsen flame before and after inoculation
(cooldown by touching an agar plate before culturing). Incubate
overnight at 37�C with agar facing down (without agitation). NOTE:
The bacteria grown on the LB agar plate can be stored at 37�C for a
few weeks.

2.1 LB liquid culture:

Triptone 5g
Yeast extract 2.5g
NaCl 5g
MilliQ water 500ml

Total volume 500ml

Protocol: Autoclave and use in sterile conditions.

2.1 Agar medium:

Triptone 2g
Yeast extract 1g
NaCl 2g
Agar 3g
MilliQ water 200ml

Total volume 200ml

Protocol: Autoclave, let cool down to ⇡ 50�C and add 400µl of Ampicillin
(50µg/ml) in sterile conditions.
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Table D.5: Primers sequence

A–for 50–ggaattccGACTGGTGAGTACTCAACCAAGTC–30
A–rev 50–ATTCTTGAAGACGAAAGGGC–30
B–for 50–GCTTTAATGCGGTAGTTTATCACAG–30
B–rev 50–Digoxigenin-GCATTAGGAAGCAGCCCAGTAGTAGG–30
T7–for 50–taatacgactcactatagggaCTGGTGAGTACTCAACCAAGTC–30
T7–rev 50–TAGGAAGCAGCCCAGTAGTAGG–30

Primers for amplifying the handles and the transcription of the molecular
construct. Lowercase sequences correspond to non-hybridizing fragments.

2.2 Selection of recombinants colonies

Prepare 15ml Falcon tubes (as many as the Petry dishes) with 3ml sterile
LB medium and add Ampicillin (50µg/ml) in sterile conditions. Select
the colonies of bacteria, picking them up from agar plates with a sterile
micropipette tip or tooth stick. Inoculate a single colony per tube, taking
the biggest from each plate. Incubate the liquid cultures overnight at
37�C with agitation. NOTE: leave the tubes’ cap slightly loose.

After growing the cultures overnight, select the Falcon tubes showing
the highest cell concentration. Centrifuge the selected tube to precipitate
the cultures and remove the supernatant fluid with a pipette. Then,
the recombinant plasmid is extracted using a miniprep extraction kit
(Qiaprep from Qiagen)

3 PCR amplification of DNA handles and template for in vitro transcription

The recombinant vector is used both to create the DNA heterohandles
and the template for in vitro transcription of the RNA structure (see
Fig.D.3B). To do this, we performed three different PCR amplifications
corresponding to the template for the in vitro transcription (Fig.D.3B,
green, orange, and yellow), handle A (Fig.D.3B, green), and handle B
(Fig.D.3B, yellow). The sequences of the primers used for the different
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PCRs are reported in Table D.5. The primers are designed to create a
handle that hybridizes with one end of the RNA transcript (handle A,
535bp), and a handle that hybridizes with the other end of the transcript
(handle B, 599bp). The reverse primer for handle B contains a digoxigenin
at its 50 end for the molecular construct tethering with the LOT setup.
To improve the reaction performance, both forward primers (following
50 ! 30 direction), and reverse primers (following 30 ! 50 direction) have
been used.

Before performing the PCR, the circular plasmid is linearized by diges-
tion with the PtsI restriction enzyme at 37�C for 1 hour. The PtsI enzyme
was chosen because it cuts the plasmid close to the T7 primer attaching
point. Then, the PCR amplifications of the three segments can be done:

3 1X PCR reaction (handle A, handle B, DNA template):

MilliQ water 52.2µl
KOD buffer 10µl
KOD enzyme 0.8µl
dNTPs 2mM 10µl
MgCl2 4µl
Primer Forward 10µM 10µl
Primer Reverse 10µM 10µl
Recombinant Plasmid 1ng/µl 3µl

Total volume 100ml

Protocol (DNA template): 95�C for 1 min; 30⇥(95�C for 45 sec, 60�C for 1 min,
72�C for 90 sec); 72�C for 5 min.

Protocol (handle A/B): 95�C for 1 min; 30⇥(95�C for 45 sec, 54�C for 1 min,
72�C for 90 sec); 72�C for 5 min.

The PCR products were gel purified (1% agarose gel, 1XTBE) and
extracted using the QIAquiak PCR purification kit (QIAgen).
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4 Handle A tailing

The handles of the molecular construct have different tags (biotin and
digoxigenin, respectively), allowing for specific binding with the SA and
AD beads of the LOT experimental setup. This requires tailing the two
handles: handle A with biotin and handle B with digoxigenin. In this
case, handle B has been purchased already tailed with digoxigenin. The
purified strand from the PCR of handle A (step 3) is biotinated according
to the following protocol:

4 Biotination of handle A:

MilliQ water 44µl
Handle A 30µl
T4 polymerase Buffer (NEB2) 10µl
T4 DNA polymerase 5µl
BSA 100x 1µl
Biotin 16dUTP 1M 10µl

Total volume 100ml

Protocol: Incubate at room temperature for 20 min.

5 In vitro transcription of RNA

The transcription of the DNA template to RNA is performed using
the T7 Megascript Kit (Ambion). First, the PCR amplified template is
concentrated by centrifugal evaporation or ethanol precipitation and
eluted in 20µl RNase-free water.

Transcription is then performed according to the kit instructions:
The reaction is stopped by adding to the sample 3µl of TURBO DNase

and incubating for 15 min. The RNA template was then purified accord-
ing to the following protocol:
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5 In vitro transcription:

Sample Control

MilliQ water (nuclease-free) 5µl 6µl
Ribonucleotides mix 24µl 8µl
10X reaction buffer 6µl 2µl
Recombinant plasmid 19µl 0µl
pTri-Xef control DNA 0µl 2µl
T7 enzyme mix 6µl 2µl

Total volume 60µl 20µl

Protocol: Keep reagents on ice except for the buffer. Prepare the reaction at
room temperature and incubate for 3 hours at 37�C. Seal cap with parafilm.

1. Add 90µl nuclease-free water and 75µl LiCl precipitation solution
to the reaction. Mix and chill at �20�C for at least 1 hour.

2. Centrifugate 4�C for 15 min at maximum speed.

3. Remove supernatant, wash the pellet with 1ml 70% ethanol, and
centrifuge again.

4. Carefully remove the ethanol, let it dry out, and resuspend in 15µl
nuclease-free water. Store at �80�C.

The RNA transcription product can be checked on a 4% a 1.2% RNA
denaturing agarose gel (TAE/formamide).

6 Final construct annealing

The RNA transcript is finally annealed with the DNA handles to form
a hairpin with two dsDNA/RNA heterohandles with biotin and digoxi-
genin tags at each end. The annealing reaction is done according to the
reaction:
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6 Annealing reaction:

Annealing buffer 80µl
Handle A 9µl
Handle B 5µl
RNA transcript 1µl

Total volume 95µl

Protocol: 85�C for 10 min, 62�C for 90 min, 52�C for 90 min, ramp to 10�C in 10
min.

6 Annealing buffer:

Fomamide 800µl
EDTA (0.5M, pH 8.0) 2µl
Pipes (1M, pH 6.3) 40µl
NaCl (5M) 80µl

Total volume 922µl

The resulting hairpin can be stored at �80�C to preserve it from
degradation.

The above synthesis protocol has been repeated for all six RNA hairpins
in Table D.3.
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B E L A N D H Y S T E R E S I S C O R R E L AT I O N I N R N A :
C O N T R O L T E S T S

We performed tests on different control sequences to validate the corre-
lation between loop-BEL and the measured hysteresis of RNA (Sec.9.2).
First, starting from the original RNA sequence, for a given stem-loops
size, L (in the range L = [8, 28]), we generated an equivalent 2027bp
hairpin by randomly shuffling sequence segments of size L. Thus, a
different shuffled sequence is obtained for each of L. For each of these
sequences, we computed the loop-BEL and the maximum average rolling
correlation hrwi

Max
UR (shift s = 0) with respect to the hysteresis between

unfolding and refolding (Eq.(9.11) with ab = UR) for a window of size
w = 100. Fig.E.1A shows the results of this analysis (orange circles) along
with the results obtained for the original sequence (blue squares). As
discussed in the main text (see Fig.9.13), the correlation of the original
sequence increases with the stem-loops size L and has a maximum at
hrwi

Max
UR ' 0.25 for L ⇡ 18 � 22 bases. On the contrary, the correlation for

the shuffled sequences varies in the range [�0.06 : 0.07] with no apparent
trend. As a second control, we generated three random RNA hairpins
with the same GC content as the original sequence. Then, we computed
the loop-BEL and the average rolling correlation with the hysteresis for
the case L = 20 (which roughly corresponds to the maximum correlation
observed). The results are shown in Fig.E.1B. Analogously to the previous
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Figure E.1: Maximum average rolling correlation hrwi
Max
UR (shift s = 0) between

hysteresis and loop-BEL for different control sequences. (A) Average rolling
correlation computed for the shuffled sequences (orange circles) and the original
sequence (blue squares) for each value of L = [8, 28]. (B) Average rolling
correlation of the hysteresis with the Loop-BEL for the random sequences (see
text) at the maximally correlated case L = 20. The value for the original sequence
(blue square) is also reported for a direct comparison.

case, the random sequences (red triangles) do not appear to be correlated
with the hysteresis. The correlation falls in the range [�0.04 : �0.005] so
that the average of hrwi

Max
UR over the random sequences is roughly equal

to �0.02 which magnitude (in absolute number) is ten times lower than
the value of the original sequence (' 0.25).

The normalized correlation (as defined by the Pearson coefficient) be-
tween the hysteresis and the loop-BEL is sensitive to several factors. First,
the hysteresis landscape computed in Eq.(9.11) is much more accurate
in the regions where the irreversibility is large, i.e. where the differ-
ence between the unzipping and rezipping FDCs is large. When the
hysteresis is small, i.e. along the reversible regions, Brownian fluctu-
ations and instrumental effects reduce the signal-to-noise ratio of the
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measured correlation of the hysteresis landscape with the loop-BEL. In
the reversible regions, thermal (Brownian) fluctuations in the unzipping
and the rezipping FDCs mask the correlation between the (low) hysteresis
and the loop-BEL. The loop-BEL is noiseless by construction, whereas
the computed hysteresis is not, so the noise dominates the correlation
along the reversible regions. Moreover, instrumental effects are also
detrimental in estimating such a correlation in the reversible regions.
Slight misalignments between the experimental trajectories produce a
spurious contribution to the measured hysteresis that is comparable with
that due to the actual irreversibility. Finally, correlation measurements
require matching the experimental measure of the hysteresis profile and
the loop-BEL, further reducing correlation estimates. These sources of
error render the Pearson coefficient in the reversible regions inaccurate.





F
E L A S T I C P R O P E RT I E S M E A S U R E I N T W O S TAT E S
S Y S T E M S

The accurate measure of the elastic properties of ssNAs is key to char-
acterizing their mechanical properties and understanding their folding
mechanisms. In unzipping experiments of short NAs (typically of a
few tens of bp) with two states (folded and unfolded), the measured
FDC exhibits one force rip corresponding to the complete denaturation
(hybridization) of the stem. In this case, the ssNA elastic properties can
be measured using two independent methods: the force-jump method
and the two branches method [108, 208]. In what follows, we describe
these two approaches.

f.1 the force-jump method

In unzipping a two states hairpin (folded and unfolded), the FDC exhibits
a sudden force jump, D f = fF � fU , when the hairpin changes confor-
mation (from folded to unfolded and vice-versa). At the same time, the
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corresponding total trap-pipette distance, l, remains constant (Dl = 0).
Therefore, from Eq.(5.15), we can write

l( fF) = l( fU)

xb( fF) + xh( fF) + xd( fF) = xb( fU) + xh( fU) + xss( fU) .
(F.1)

Let us now divide the force jump, D f , by the effective stiffness of the
folded branch in Eq.(5.16). Thus, we get

D f
kF

eff
= D f

✓
1
kh

+
1
kb

+
1
kd

◆
=

= Dxh + Dxb + Dxd =

= [xh( fF)� xh( fU)] + [xb( fF)� xb( fU)] + [xd( fF)� xd( fU)] .

(F.2)

Finally, by substituting Eq.(F.2) into Eq.(F.1), one gets

xss( fU) =
D f
kF

eff
+ xd( fF) , (F.3)

which allows for obtaining the ssNA elastic response from unfolding and
folding force-jump measurements.

f.2 the two branches method

When hysteresis effects between unfolding and folding processes are large
enough, both the folded (dsNA) and the unfolded (ssNA) branches can
be measured from pulling experiments for an extensive range of forces.
In this case, the effective stiffnesses kF

eff( f ) and kU
eff( f ) can be measured

for the respective FDC branches. Notice that kF
eff( f ) > kU

eff( f ) and that
the range of forces where the stiffnesses can be measured increases
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with the hysteresis (i. e., with decreasing temperature, increasing salt
concentration and loop size). Thus, from Eq.(5.16), we can write

1
kU

eff( f )
�

1
kF

eff( f )
=

1
kss( f )

�
1

kd( f )
. (F.4)

The stiffness of the ssNA is modeled according to the WLC and is given
by Eq.(5.20). As discussed in Sec.5.3, the extension upon orienting the
double helix is modeled as a dipole of length equal to the helix diameter,
d = 2nm. By recalling that k�1 = ∂x/∂ f , from Eq.(5.18) we get

1
kd( f )
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d2

kBT
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f d
kBT
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f d

kBT

◆2
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G
T H E B AY E S I A N C L A S S I F I E R

To model the RNA unzipping phenomenology at low temperatures,
we used the Bayesian network approach (mixture hierarchical Bayesian
model) developed in [235]. This has two advantages. On the one hand,
using latent state variables in the model allows for retrieving posterior
distributions for the state of each data point, permitting a probabilistic
soft clustering of each unfolding trace, i.e. we can assign to each point
a probability of being misfolded or native. On the other hand, the use
of appropriate likelihood functions in the model gives a range of useful
physical parameters, such as the mode and scale parameter of the rupture
force distribution of each state (related to the average and the variance of
the force distribution), or the weight of each state with respect to the total
population. In what follows, we describe the clustering model resumed
in Fig.G.1.

Let us recall that Bayesian network models posit that the prior dis-
tributions of the parameters to be estimated are known. Given these
prior parameters, the likelihood function to observe each data point is
also known. The estimation of the model parameters is then obtained by
maximizing the posterior distribution of the model, given by the Bayes
theorem,

posterior µ Likelihood ⇥ prior . (G.1)
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Figure G.1: The Bayesian clustering algorithm. (Left) Specification of the prior
(in green) and likelihood (in blue) functions used. The hyper-parameters are
indicated by Greek letters. G stands for the gamma distribution, N for the
normal distribution. (Right) Probabilistic graph view of the Bayesian network.
Misfolded and native states are represented by the superscript 1, 2 and are
encoded in the latent variable zi = 1, 2. We highlight in red the part of the
model which depends on zi: the rupture force distribution through its mode
M and scale s parameters and the number of monomers released within an
unfolding event n.

The model’s input data are the pairs ( f , x), which characterize the
rupture force and the released extension of each unfolding event in
the forward process. The released extension (x) in an unfolding event
depends on the molecule’s initial folded state (through the number of
released bp, n) and the rupture force as x( f , n) ⇡ ndbx̂( f ), where x̂( f )
is the extension of a single ssRNA monomer and has been modeled
by inverting the WLC in Eq.(5.19) (see Sec.5.3 and Appendix A). We
assumed this relation holds in the presence of experimental noise, which
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can be considered Laplace distributed around 0 with precision t. Thus,
for each datapoint ( fi, xi), one can write

xi � nzi · db · x̂( fi) ⇠ Laplace(0, t) , (G.2)

where the dependence on the number of released bp (n) for the i-th
unfolding event is introduced through the (categorical) latent variable
zi = 1, 2 that account for the initial system state (z = 1 for the native
and z = 2 for misfolding). Moreover, we posit that the rupture force
distribution also depends on z. Thus, we assumed that rupture forces are
Gompertz distributed with mode Mzi and scale 1/szi depending on the
initial state, zi (native or misfolded).

Therefore, the overall likelihood of observing the experimental point
( fi, xi) is then:

Likelihood = p (x( fi, nzi)� xi| 0, t)⇥ p ( fi| Mzi , szi)⇥ p (zi| ~w) . (G.3)

The first term in the r.h.s of Eq.(G.3) is given by Eq.(G.2), being x( fi, nzi) ⌘

nzi · db · x̂( fi) The second term is given by the above-mentioned Gompertz
likelihood. Finally, the third term represents the likelihood of the latent
variable zi given a weight vector ~w = (w1, w2) whose components give the
average occupancy of each state. For zi, we used the standard conjugate
pair of a Categorical distribution for the likelihood p combined with a
Dirichlet prior for ~w.

To complete the model, we defined appropriate priors for the parame-
ters to infer, namely n(1,2), M(1,2), s(1,2), t, and ~w. As already mentioned,
we use for ~w a Dirichlet prior, while we parameterize t and s(1,2) with
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gamma priors, n(1,2) with a normal prior, and finally M(1,2) with a Laplace
prior. Thus, the overall prior is ultimately given by:

Prior = p(nzi | µzi , nzi)⇥ p (Mzi | µ̃zi , t̃zi)⇥ p (szi | f̃zi , w̃zi)⇥

⇥ p(~w|~a)⇥ p(t| f, w) ,
(G.4)

where the model hyper-parameters are made explicit and are given by
the greek variables µ(1,2), n(1,2), µ̃(1,2), µ̃(1,2), t̃(1,2), w̃(1,2), a, f, and w.

Given the likelihood function (Eq.(G.3)) and the priors distributions
(Eq.(G.4)), the posterior distribution of the parameters is computed using
the Bayes theorem in Eq.(G.1), which gives

p({zi}
N
i=1; n(1,2); w(1,2); M(1,2); s(1,2); s) µ Likelihood ⇥ prior , (G.5)

where we defined for convenience s = 1/t. Posterior distributions were
obtained running at least 3 Monte Carlo Markov Chains (MCMC) with
a burn-in of 1000 iterations and followed by 5000 iterations. We ran the
usual convergence and diagnostics test for MCMCs (Gelmann, chain
intercorrelation coefficient) and visually inspected the MCMC noise term.
We always took the median of the posterior distribution of interest for
point estimates (e.g., n1, n2).
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