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Resum

El procés de descobriment i desenvolupament de fàrmacs (DDD) és costós

tant econòmic com temporalment, i el qual resulta en nivells d’èxit molt

reduïts. Una gran quantitat de compostos son analitzats i molts descartats

en cada estadi mentre que, ja en fases d’assaigs clínics, només un 10%

d’aquests acaben aprovats per les agències reguladores. Tot i que existeix un

gran ventall d’eines bioinformàtiques per les fases inicials del DDD, poques

opcions estan disponibles en fases posteriors, on s’hi inverteix una gran

quantitat de temps i diners. Aquest fet és bàsicament degut a la complexitat

existent en la parametrització d’assaigs clínics, on hi intervenen humans i

fàrmacs, i on múltiples eines s’haurien de fusionar per simular la realitat.

En aquesta tesi, descric una nova metodologia per realitzar assaigs clínics

in silico (ISCTs), basats en biologia de sistemes, amb l’objectiu d’assistir

en el procés de desenvolupament de fàrmacs. Aquesta eina usa pacients

virtuals, pel que ajudarà també a moure’s cap a una medicina personalitzada

o individualitzada.

Paraules clau: assaig clínic in silico; farmacologia de sistemes quantitativa;

biologia de sistemes; pacients virtuals.
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Abstract

Drug discovery and development (DDD) is a time consuming and expensive

process with low rates of success. A big amount of drug candidates are

tested and discarded in each phase and, in clinical trial phases, only about

10% of those are finally approved by regulatory agencies. While many

bioinformatic tools are available at early stages of DDD, few options have

been approved for posterior phases, where most investment and time is

required. This is mainly because of the complexity inherent in clinical

trials setting, where human cohorts are being tested with a drug, meaning

that multiple tools must be merged in order to fully match reality, or

have enough predictability. In this thesis, I describe a novel methodology

to undergo in silico Clinial Trials (ISCTs), based on a Systems Biology

approach, with the aim of assisting drug development process. It uses virtual

patient populations, which will also help shifting towards individualized,

personalized medicine.

Keywords: in silico Clinical Trial (ISCT); quantitative systems

pharmacology (QSP); systems biology; virtual patients (VPs).
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Chapter 1

General Introduction

1.1 Drug discovery/development and Motivation

Drug discovery and development (DDD) is a time consuming and expensive,

but necessary, process that allows to bring secure and effective drugs to

market. Its starting point is mainly a medical condition with no available

treatment, or which is not satisfactorily tackled using available treatment

procedures. Commonly referred as an unmet medical need, it triggers

and demands the search for new drugs/interventions which need be either

targeting a non-tackled disease, offering additional advantages over existing

treatments, presenting reduced adverse effects, or having fewer drug-drug

interactions. Hence, resulting in an overall quality improvement in a

patient’s life [360]. The current process pipeline consists of a series of

defined phases and steps (figure 1). As the name already suggests, two major

stages can be defined, Drug Discovery and Drug Development (figure 1).

While several reliable computational tools are available at early stages

of DDD, few options have been approved for posterior phases, during

3



4 Chapter 1. General Introduction

drug development stage, where most investment and time is required and

withdrawals at this point will lead to substantial financial losses [277]. This

is mainly due to the inherent complexity of modeling an in-vivo setting,

where many factors must be taken into account. Another barrier is that

simulations at this stage should be highly reliable, if animals or human

individuals are to be replaced by virtual subjects.

That being said, and due to the enhancement of computer models and

technologies, better and more reliable models are being developed on a

yearly basis. Patient-specific computational modeling is receiving much

attention and funding due to its potential in reliably modeling animal and

human experimentation, reducing their need in preclinical and clinical

phases [404]. This is very appealing to pharmaceutical industries as it will

save them money and time, while avoiding some ethical issues associated

with animal and human research.

1.2 Drug Discovery

Although other strategies are used, drug discovery process usually initiates

with a disease target identification via basic research; that is, a biomolecule

related to a disease that can be targeted and modulated to ameliorate or treat

a condition. A key point at this stage is to identify a target that is ’druggable’,

meaning that it can be accessible to a drug compound [178]. Next comes

the target validation step, which can make use of several in vitro, vivo

and/or silico techniques with the aim of demonstrating and confirming that

the modulation of the identified target molecule in a disease environment

does indeed correspond to a measurable benefit. Widely used approaches

include the identification of the structure activity relationship (SAR), the

knockdown or over expression mutants for the target, or the monitoring of
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known signaling pathways downstream the potential target [183].

Once defined and validated, the Lead Identification step proceeds, which

is the process carried out in order to find a potential drug candidate for

that specific target. The initial goal at this phase is to identify ’hit’

molecules or compounds which interact with the biological target, and

that show a measurable, reproducible response [168]. Hits will become

’lead’ compounds if they comply with a series of properties and if are able

to fulfill a list of requirements, like initial toxicity or specificity studies.

Dose-response curves will already be generated at this step, in order to

determine the biological activity of the compound. Finally, an a priori

save, effective and potent hit will go on as lead molecule [187]. Due to

the low success rates at this and subsequent stages, many compounds are

usually used and tested in parallel screening assays until one or several lead

candidates are found [48].

Figure 1: DDD process scheme and the main available computational tools.
Obtained from: Rodenhizer et al., 2018 [335].
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When a lead molecule is identified, an optimization process is

undergone by chemically modifying the selected compound to improve

its physicochemical properties. While the focus is put onto efficacy or

potency, much effort is also taken at improving absorption, metabolization,

distribution and excretion (AMDE) properties, especially drug’s solubility,

absorption or clearance, as they are often molecule drop-off limitations.

Both lead identification and optimization phases are often intertwined by

testing multiple lead molecules and variations at the same time, until a

proper, robust compound is selected [168]. Moreover, further analyses are

carried out to ensure the initial benefits of the compound and its compliance

with de standards defined. Those include a series of pharmacokinetic,

toxicity, efficacy, stability and bioavailability requirements, which are

restricting limitations before entering preclinical phase in the Drug

Development stage [177, 35].

Other strategies for drug discovery widely being used include: (i) drug

repurposing, which uses compounds already available in the market and

tests its efficacy over other diseases or pathological conditions; (ii) drug

repositioning, similarly to repurposing, is based on the usage of unapproved

drugs directed to other illnesses; and (iii) drug rescue, following the same

idea, focus on giving a second chance to chemical and biological entities

that were previously investigated but not further developed [283, 299].

1.3 Drug Development

Next step after a promising compound has been identified and tested, is

the scaling up to animal models and human individuals, in preclinical

and clinical trials (CT) phases I, II, III and IV. In order for a new

molecule to be accepted into CT phases, a permission must be requested
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by the submission of an Investigational New Drug (IND) application

[170]. This document, requested by the regulatory agencies like the

U.S. Food and Drug Administration (FDA) and European Medicines

Agency (EMA), must contain information on pharmacology and toxicology

studies in animal models, chemical manufacturing information (including

formulation, stability studies, and quality control measures), and detailed

clinical protocols describing how the clinical compound shall be used and

studied in subsequent human population CTs. After approval, the new drug

can move towards human clinical trials, where it will be tested for safety

and efficacy. Compound testing in humans is generally conducted in four

phases. Each one of them is carried out as a separate, independent trial,

where the researchers must submit the resulting output data gathered to the

corresponding regulatory agency for approval, before moving to next phase

[177, 35].

1.3.1 Preclinical Phase

Preclinical studies aim to ensure the new, promising compound will be valid

for subsequent human testing and usage, by proving the efficacy and safety

of the compound, as well as monitoring for possible side effects, in animal

models. Pharmacokinetic data is also gathered at this point to evaluate the

distribution of the lead molecule, and to calculate main parameters like

half-life or absorption. At this stage, and because several animal models

are usually being used, it is of upmost importance to carefully design

the experiments in order to ensure safety and ethics are respected in all

steps [95, 168]. Prior knowledge and early experimentation during drug

discovery stage is put into practice, especially in the pharmacokinetics and

pharmacodynamics fields, as a proportion of compounds fail to proceed

because of high toxicity of their by-products [187]. The aims at this point
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are to reduce to a minimum the risk to the healthy volunteers and the patients

to whom the drug will be given in clinical trials [168].

Rats are habitually the first animal model choice for preclinical studies

because of their small size, easy managing, low cost and wide understanding

[187, 168]. Increasing dosages are commonly applied orally or

intravenously, to evaluate the compound’s pharmacokinetic properties like

absorption and clearance, as well as monitoring toxicology and side effects.

Efficacy is also tested in diseased animal models. Finally, if both efficacy

and safety parameters lay within acceptable range, the IND is requested

and the initial doses for human trials is defined. Compound manufacture

(drug supply), dosing method, and formulation are also requirements for a

successful IND report [377].

1.3.2 Clinical Phase I

Also named First-in-Human (FIH) trials, clinical phase I goal is to determine

the safety of the new compound in human individuals. They comprise

between 20 and 100 healthy subjects, which are given ascending dose

profiles. The maximum tolerated dose, dose limiting toxicities, as well

as drug’s pharmacokinetic profile will be identified in these initial human

trials, and the gathered information will be used to select the appropriate

dosing profiles in subsequent phases [35]. Careful and thorough monitoring

is carried out by following each individual’s response to given dosages, in

order to identify possible signs of toxicity or side effects.

1.3.3 Clinical Phase II

When a compound has proven safe in initial FIH studies, clinical phase

II starts, focusing on effectiveness and response, while still monitoring
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safety and tolerance. Here, few hundred patients are included to test the

dose-response profiles regarding the disease or condition. After determining

the appropriate dosing schedule, the effectiveness is tested and the trials can

move on [35, 168]. In this phase, the treatment response is first evaluated in

diseased human patients. Many drugs fail to demonstrate enough effectivity,

or show high toxicity, and consequently they do not continue to further steps

[364].

1.3.4 Clinical Phase III

Clinical phase III trials aim to confirm the effectiveness found in previous

phase, as well as to keep ensuring safety, recruiting a broader number of

patients of many thousands. These usually include double-blinded and

randomized trials to confirm previous evidences, still monitoring for adverse

events, as they might appear in larger populations. Due to time and complex

designs, this is the costliest phase of the whole DDD process. Here,

the safety/effectivity trade-off is measured, and different patient cohorts

evaluated. When completed, a New Drug Application (NDA) is submitted

to the agencies to request market approval [35, 168].

1.3.5 Clinical Phase IV

Once a drug is approved for commercial use, post-marketing monitoring

stage begins. During that period, the compound has to be monitored by

the sponsor (typically the manufacturer) in the so-called Clinical Phase IV

or post-market studies. This is comprised by a pharmacovigilance group

of experts who will monitor the new medication users in order to detect

rare or late occurring adverse effect not earlier detected, or even to support

efficacy measures, in a wider population group. It also serves as means to

identify special cohorts of patients, not included or highly misrepresented
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in previous phases.

1.4 Drug development struggles

As described above, DDD is a time consuming and expensive process

only bearable by big pharmaceutical industries, and where successful rate

is very low. Many thousands of molecules and its derivates are tested

before entering clinical stages to bring a potential candidate molecule into

human trials, although only about 10% of those finally end up approved

by regulatory agencies and reach market [35, 160]. For that, a lot of

emphasis has been put to increase early identification of most promising

compounds, allowing to discard poor molecules as soon as possible in

order to avoid investing money in further development, lowering the risk

of withdrawal. Taking into account all these complexities and low success

ratios, the consequence is a high cost to bring a new drug into the market,

which is estimated in US$ 2.6 billion in average [97]. Time is also one of

the key factors in DDD, as it takes around 10 full years since a new target

is found, until the candidate compound is finally accepted by the regulatory

agencies [360].

1.5 Computer modeling in drug development

Several approaches have been developed in order to model or simulate

the effect and behavior of drugs. Their main objective is to increase

the pharmaceutical research and development productivity, by assisting in

the decision making during clinical stages, hence reducing the usage of

both animal and human experimentation [259, 340, 338]. Although many

approaches exist, focus is given here to the following fields: (i) drug

simulation using pharmacokinetics, able to model drug behaviour inside a
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body or compartments system; and (ii) systems biology modeling, widely

used for interpreting complex systems interactions.

1.5.1 Pharmacokinetics/pharmacodynamics

Pharmacokinetics (PK) and Pharmacodynamics (PD) fields are often

described as “what body does to the drug/chemical” and “what the

drug/chemical does to the body” respectively. These terms are hence used

to refer to the study of behavior and effect of drugs or chemicals in the

body. PK aims at describing the four elements of absorption, distribution,

metabolism and elimination (ADME) that describes the fate of a compound

inside the body. On the other hand, PD describes the interactions of drugs

and metabolites with biological targets and molecules, and their observed

effects.

There are two major types of PK models, Non-compartment Analysis

(NCA) and compartment physiological analysis [200]. For PD, models are

focused on empirically fitting tissue dose and response, and are also majorly

categorized into two types. The first group include direct effect models that

assume chemical effects are directly proportional to receptor occupancy (i.e.

linear transduction), while the other is the indirect effect model in which

response is due to chemicals indirect effect to the synthesis or degradation

of a response variable [201].

Both types of drug modeling, PK and PD, can be linked together which

is often referred as PBPK/PD models, or PBPK (Physiologically-based

pharmacokinetic models) [388, 125].
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Figure 2: Steps for the PBPK model development. Obtained from: Reddy et al.,
2005 [327].

Physiologically-based pharmacokinetic (PBPK) models

PBPK models (figure 2) use mathematical and computer modeling in

order to integrate physiological and compounds’ properties information to

predict or simulate drug and/or molecules behavior inside a whole-body

system [107]. They arouse during the 1980s in the need of improved

modeling systems capable of providing help in assessing the risk or

toxicity of drugs [118, 312]. However, it was not until 2010 that

its implementation was widely used, mainly in order to model ADME

properties of compounds [384, 231]. Thanks to the vast amount of data

available and higher-performance computing power, PBPK models have

been improved and are used nowadays within a wide variety of goals

by predicting and modeling how drugs and/or molecules will behave and

distribute inside the body.

While classical PK models use data from in vivo PK studies or scientific

literature information on ADME characteristics to build "virtual" single
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or multi compartment systems, PBPK adds the individuals’ anatomical

physiology data and biological processes to improve those models [118].

PBPK are based on a set of mathematical representations of the body

composed of many parameters describing the physiology of the individual

(eg. tissue/organ volumes, blood flows), and differential equations that will

describe the fate of the compound inside the system. Similar to some PK

models, they are composed of multiple compartments, representing all or

the main organs/tissues of the body. Those are usually interconnected by

blood flows, although alternative or more complex models also include

lymphatic or even respiratory system [432, 247, 197]. While simpler

models are preferred, complexity can increase until the user demands, by

adding additional information like drug metabolism, cytochrome clearance,

inter-organ compound dissemination, etc. [140, 386, 212, 191]. The

resulting models are finally solved by using complex software algorithms.

PBPK building and parametrization can be achieved by bottom-up or

top-down approaches. In the first one, drug or molecule characteristics

are used to predict the ADME properties in the model. In contrast,

top-down approaches use real observed experimental data to fit the missing

parameters.

As for the PD information of the models, referring to the molecular

events leading from the interaction of the drug/metabolite with a receptor

to a pharmacodynamic or pharmacologic response, the following basic

assumption can be applied:

[Drug −Receptorcomplex]→ Response/Effect

By applying the classical theory of drug-receptor interaction and the

well-known modified Hill equations, the effect can thus be calculated as:

E = Eo+ Emax ∗ C(t)/EC50 + C(t)
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Where, Emax is the maximum response, EC50 is the concentration at

which 50% of Emax occurs and Eo is the baseline response. C(t) is the

effective chemical concentration i.e. concentration at the target site. Again,

more complex models can include metabolites fate, as well as alternative

response models as sigmoidal or indirect response models.

PBPK Applications

PBPK models, aside for simulation purposes, are mainly applied for risk

assessment including: (i) in-vitro-to in-vivo extrapolation, or IVIVE [268],

used in prediction in-vivo toxicity as well as adverse effects based on

in-vitro dose response data [34, 39]; (ii) cross-species extrapolation, for

risk assessment when translating from animals to humans trials, offering

enhanced results compared to classical PK/PD approaches; (iii) cross-route

extrapolation, for comparing drug exposure between different intake routes;

(iv) dose extrapolation, especially useful for non-lineal response/toxicity

drugs due to metabolism saturation, can be simulated in PBPK models

bye, for example, including cytochrome interaction information; (v) time

extrapolation, for better predicting differences between single and multiple

dosages [78, 80]. Additionally, PBPK models allow the integration of other

useful information about different patient cohorts for specific modeling, as

pregnancy related characteristics or child individuals.

1.5.2 Systems Biology

Biological entities are mainly organized in complex systems of

interconnected parts or units, which can be studied at different scales or

levels like population, individual, organ, cellular or molecular. Systems

biology aims to study those systems by means of mathematical and

computer models, using a holistic approach [385, 213]. Two major pipelines
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can be followed in this field (figure 3) : (i) bottom-up, and (ii) top-down.

Bottom-up approaches aims at understanding and using information of the

system constitutive parts (bottom), in order to integrate the new data into

a bigger model and generate predictions on the system’s behavior (top).

They rely on detailed mechanistic studies or low-throughput proteomic

experiments in order to extract new relationship data into the corresponding

models, like yeast two-hybrid or tandem affinity purification yeast-2-hybrid

assays [55, 406], co-immunoprecipitation [251], co-expression of genes

[42], sequence homology [357], and others [333]. Nowadays, all this

data is integrated into big databases where it can be easily extracted and

included in the models. On the other hand, top-down methodologies

start from a wider view of the system, using data to fit the model, and

then extracting new insights from a molecular, bottom perspective. This

approach has been lately the predominant one in the molecular scale,

mainly because of the recent improvements in the -omics field. Top-down

approaches mainly focus on big high-throughput data analyses, with the

aim of characterizing the intrinsic or closer to the bottom pathways and/or

interactions, responsible of the results variance [56, 100].

Networks are usually used in the systems biology field in order to represent

and understand the behavior of the system as a whole, its components, and

subprocesses, as a subfield called Network Biology. Given the mentioned

interrelated nature of biological processes, network analysis is particularly

suited for the purpose. In Network Biology, the nodes of the networks

are being used for representing proteins, genes, or even diseases in higher

level schemes. Network edges, then, depict the relationships between those

biological entities. There exist four main types of network representations

for studying the human organism: (i) protein interaction networks, where
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Figure 3: ‘Top-down’ vs. ‘bottom-up’ approaches for modeling biological systems.
Obtained from: Edwards et. al 2013 [100].

nodes are proteins and edges are protein-protein physical interactions; (ii)

metabolic networks, where nodes are metabolites and proteins, and edges

are metabolic reactions; (iii) gene networks, where nodes are transcription

factors and genes, and edges are regulatory interactions; and (iv) disease

networks, where nodes are diseases, and edges represent different types of

relationships such as shared genes [314].

From the molecular perspective, networks have helped integrating and

englobing several types of information like protein-protein interactions

(PPIs), gene expression patterns or enzymatic catalysis, into one single

model, which can then be perturbed in order to extract new insights

on pathway understanding. However, initially, most models focused on
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describing and simulating rather small, specific networks, e.g., molecular

pathways or a disease interaction context, in an effort to use a simplistic

approach. Big effort has been put into trying to include all available

connections and processes describing the functioning of the entire human

cell, namely interactome (Box 1) [405] .

Network Medicine

Network medicine appeared as a sub-discipline of systems biology, with the

aim of using biological networks for understanding diseases [27]. Basically,

the idea of these model networks is that understanding complexity of gene

regulation, metabolic reactions, and protein-protein interactions as complex

networks, will shed light on the causes and mechanisms of diseases [145].

Cell systems have shown to have a highly complex interconnectivity of its

components, implying that a single abnormality or miss-regulation can have

an impact on a greater scale. For that, the understanding of diseases usually

complies the analysis of many parts of the network [146, 351]. Finally,

the ultimate goal of network medicine research is to develop a more general

understanding of how perturbations propagate in a system by identifying the

pathways, sub-types of disease states, and key components in the networks

that can be targeted, analyzed or modeled in clinical interventions [350].

There are two major steps at generating network medicine models: (i)

the construction of the network; and (ii) the analysis of the generated

system. As in other systems biology approaches, different networks

here can be built depending on the type of data used: (i) protein

networks, using PPIs; (ii) gene co-expression and regulatory networks,

which make use of phenotype-specific gene expression data mainly from

high-throughput analyses; (iii) metabolic networks, representing a set
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Box 1 - The Human Interactome
As more and more information become available, human protein
networks or human interactome arouses as a global network system
englobing all information related to human or human cell internal
interactions. Actually, most of the different level biological networks
are also interconnected between them, in a form of ‘network of
networks’ [28]. As such, interactomes are generated from an ensemble
of PPIs, gene expression relations, pathway activations/inhibitions
and/or complex formation. By creating these model networks, a
novel way to analyze the whole cell provides multiple insights for
investigators.

Figure 4: Interactome networks can be viewed as a merge of several
protein/gene link data like PPIs (blue), gene regulation (red), and/or enzymatic
reactions (gren). Obtained from: Lander et. al 2010 [235].
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of biochemical interactions between metabolites and enzymes; among

others; or (iv) interactome, which uses a merge of different information

like PPIs, co-expression or metabolic reactions. On the other hand, the

analysis of these systems requires the understanding their structural or

topological properties. Because of the complexity of the constructed

networks, the resulting models can be viewed in a global scale, searching for

properties like average path length, degree distribution, diameter, clustering

coefficients, or controllability (Liu et al., 2011). Alternatively, local

analyses are used by focusing on sub-network motifs including a fixed

number of connecting nodes (typically 3 or 4) to identify recurrent patterns

[278].

Different approaches have been developed in order to build and study

these complex networks and interactions between them, e.g.: (i) Passing

Attributes between Networks for Data Assimilation (PANDA) algorithm

[143]; (ii) INtegrated DiffErential Expression and Differential network

analysis (INDEED) [451] and DICER [16], focused on differential

network analyses for comparing control vs disease networks resulting from

differential expression analyses; (iii) ARACNe [264] and CLR [109], which

are gene-gene interaction network methods that attempt to understand

regulatory associations by accounting for connections within a shared

neighborhood of genes; or (iv) Therapeutic Mapping System (TPMS) [18],

which generates mathematical models to elucidate the mechanism of action

of drug-pathophysiology relations (Box 2).

1.5.3 Quantitative Systems Pharmacology

Quantitative Systems Pharmacology (QSP) is a novel discipline that

emerged as means to integrate systems biology approaches with
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Box 2 - Therapeutic Performance Mapping System (TPMS)
TPMS is a top-down systems biology approach that integrates
pharmacological knowledge to create mathematical models that
simulate human patho-physiology in silico [339, 164, 148, 182]. That
is, it uses protein network models to extract the possible pathways,
or mechanisms of action (MoAs), connecting drug targets and a set
of pathologically related proteins. Two core elements of the TPMS
technology are the human protein network (HPN) or interactome,
combined with a Sampling Method algorithm used for generating the
mathematical models. The HPN consists of a protein interaction
network built using information from a compendium of databases
like: (i) KEGG [205]; (ii) BioGRID [68]; (iii) IntAct [300]; (iv)
REACTOME [108]; (v) TRRUST [157]; (vi) and HPRD [319]. Thus,
it integrates several types of protein relations like PPIs, complexes
formation, gene co-regulation or reaction information.
Sampling Methods are used to solve the missing parameters of the
HPN, which is transformed into mathematical models capable of both
reproducing existing knowledge and predicting new data. A collection
of known drug-pathology/AEs relationships are considered as prior
information and integrated into a table (“truth table” [19]) as training
data, which ensure the models will reproduce the observed behavior
of a human cell. The truth table is constructed by using an array of
databases that accumulates biological and clinical data and provides
biological and pharmacological action-response relationships (such as
drug-indication pairs). In order to model both drugs and pathologies
in the HPN, drugs are translated, characterized, into protein targets and
pathologies into ‘effectors’, or proteins displaying a measurable effect
produced by the pathology. TPMS method then generates mathematical
models similar to Multilayer Perceptons where neurons are proteins
and edges are the links between proteins in the HPN, and signal is
transduced from input (drug target) to output (pathology effectors)
[198].
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Figure 5: TPMS modelling scheme. Obtained from:
https://www.anaxomics.com/tpms.php#tpms [18]

pharmacodynamic (PD), pharmacokinetic (PK) or physiologically-based

pharmacokinetic (PBPK) models. Together, they are able to include the

physiological characteristics and molecular/cellular/organ systems, leading

to the identification and design of safer and more effective drug therapies

[185, 243]. QSP concept is gaining more attention since the release in

2011 of a National Institutes of Health white paper based on a series

of workshops and discussions with field investigators and industry [1].

More recently, according to an expert consensus, QSP was defined as

"a quantitative or computational framework to support translational drug

discovery and development by integrating knowledge on biochemical,

biological, physiological, pharmacological, and clinical systems" [290].

While systems biology or networking methodologies aims at generating

a general interaction model for identifying MoAs, biomarkers, or adverse

events at a mechanistic level, QSP focus on overcoming the gap between

pre-clinical and clinical science by integrating pre-clinical knowledge and



22 Chapter 1. General Introduction

methods from Systems Biology with clinical pharmacology. It does so by

understanding the clinically relevant mechanisms of action of drugs, and

using this knowledge to optimize therapy in a way that achieves maximum

effect and minimal toxicity in a given individual [12, 410].

Several approaches for QSP have been tackled, including statistical

(Bayesian), Boolean, temporal (ordinary differential equations),

spatio-temporal (partial differential equations), agent-based, integrative,

empirical curve fitting, and machine learning that enable integrating

molecular pathways with clinical results and pharmacology [139]. However,

many already published QSP models are constructed as multi-compartment

nonlinear systems of ordinary differential equations (ODE) [70]. Table 1

summarizes some examples of QSP models approaches developed so far.

Table 1: List of published QSP models and their company/institution affiliations.

Title Institutions Reference

A Strategy for Developing

New Treatment Paradigms

for Neuropsychiatric and

Neurocognitive Symptoms in

Alzheimer’s Disease

In Silico Biosciences/

University of

Pennsylvania/ Oregon

Health & Science

University

[138]

A Computer-Based Quantitative

Systems Pharmacology Model

of Negative Symptoms in

Schizophrenia: Exploring Glycine

Modulation of Excitation-Inhibition

Balance

In Silico Biosciences/

Oregon Health &

Science University/

University of

Pennsylvania

[374]

table continues
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Title Institutions Reference

Systems pharmacology of the nerve

growth factor pathway: use of

a systems biology model for the

identification of key drug targets

using sensitivity analysis and the

integration of physiology and

pharmacology

Xenologiq/ Astellas/

Pfizer

[37]

Development and Application of a

Quantitative Systems Pharmacology

(QSP) Model of Complement

Pathway to Evaluate Treatments for

Autoimmune Diseases

GlaxoSmithKline [26]

A Humanized Clinically Calibrated

Quantitative Systems Pharmacology

Model for Hypokinetic Motor

Symptoms in Parkinson’s Disease

In Silico Biosciences/

Washington State

University/ University of

Pennsylvania

[334]

Systems Pharmacology Modeling

in Neuroscience: Prediction and

Outcome of PF-04995274, a 5-HT4

Partial Agonist, in a Clinical

Scopolamine Impairment Trial

Pfizer [289]

A Dynamic Quantitative

Systems Pharmacology Model

of Inflammatory Bowel Disease:

Part 1 - Model Framework

Pfizer/ Janssen/ Takeda [337]

table continues
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Title Institutions Reference

Benefits and Challenges of a QSP

Approach Through Case Study:

Evaluation of a Hypothetical

GLP-1/GIP Dual Agonist Therapy

Pfizer [332]

Effects of IL-1β-Blocking

Therapies in Type 2 Diabetes

Mellitus: A Quantitative Systems

Pharmacology Modeling Approach

to Explore Underlying Mechanisms

AstraZeneca/

MedImmune

[302]

Radiation and PD-(L)1 Treatment

Combinations: Immune Response

and Dose Optimization via a

Predictive Systems Model

AstraZeneca [228]

Clinical Responses to ERK

Inhibition in BRAF V600E-Mutant

Colorectal Cancer Predicted Using

a Computation Model

Genentech [222]

Computational Modeling of

ERBB2-Amplified Breast Cancer

Identifies Combined ErbB2/3

Blockade as Superior to the

Combination of MEK and AKT

Inhibitors

Merrimack [221]

table continues
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Title Institutions Reference

Systems Pharmacology-Based

Approach for Dissecting the Active

Ingredients and Potential Targets

of the Chinese Herbal BJF for the

Treatment of COPD

Henan University of

Traditional Chinese

Medicine

[247]

QSP Toolbox: Computational

Implementation of Integrated

Workflow Components for

Deploying Multi-Scale Mechanistic

Models

Bristol-Myers Squibb [70]

Characterization and Prediction

of Cardiovascular Effects of

Fingolimod and Siponimod Using

a Systems Pharmacology Modeling

Approach

Novartis/ Leiden

Academic Centre

for Drug Research

[365]

The role of quantitative systems

pharmacology modeling in the

prediction and explanation of

idiosyncratic drug-induced liver

injury

DILIsym Services [430]

1.5.4 Precision medicine

Precision medicine, often referred as personalize medicine, is a rather

new field focused on using patient’s specific characteristics, like genotype

or physiological data, in order to adapt or choose the best treatment

scheduling approach. The National Research Council’s Toward Precision

Medicine agreed on using the following definition of precision medicine:
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“The tailoring of medical treatment to the individual characteristics of

each patient. . . to classify individuals into subpopulations that differ in their

susceptibility to a particular disease or their response to a specific treatment.

Preventative or therapeutic interventions can then be concentrated on those

who will benefit, sparing expense and side effects for those who will not”

[293]. Basically, its goal is to identify cohorts or sub-groups of patients

for which a specific treatment has been proven beneficial or an unfavorable

and use this knowledge for future similar individuals. This field has gained

interest in last few years due to the enhancement of technologies allowing

data obtention wider and faster for both investigators and medical care

doctors [267].

In several modeling fields like systems biology, but especially in PBPK

or the newly QSP modelling, in order to reflect world’s variability,

personalized or precision medicine are gaining importance with the aim

of accounting for population variabilities. In an effort of moving from

the standard/global-patient models to grasping different cohort/patient

characteristic responses, and thanks to current computer capabilities, there

has been an increase interest in the usage of Virtual Patients (VPs) and

Virtual Populations (VPop). VPs and VPops allow the generation of

patient distributions with varying characteristics, which can then be used

for modeling and analyzing different plausible settings [11].

However, VPop generation techniques must prove reliable and able to

compute real-like, robust population distribution values. Several algorithms

have been proposed and used in that sense [11, 71].
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1.5.5 In silico clinical trials (ISCT)

While the concept of clinical trial simulation (CTS) had already emerged in

the early 2000s [147, 79, 142], in silico clinical trials appeared a few years

later [17, 411, 248], and was only recently during 2010s when the term

was properly defined and accepted thanks to the foundation of organizations

like VPH Institute and the Avicenna consortium [412, 22, 304]. The latter

took a first step in designing and preparing a first draft englobing a series

of standards towards this new line of software development and provided

a consensus definition for ISCT: "the use of individualised computer

simulation in the development or regulatory evaluation of a medicinal

product or medical device/medical intervention" [403].

Although the perception is changing, there are still some barriers in the

usage of ISCT approaches: (i) cultural resistance from the researchers

-mainly biologists, pharmacologists, and medics with limited computer

modeling background; (ii) regulators, albeit some are now indeed promoting

their use, they historically did not accept in silico obtained evidences; and

(iii) the already mentioned complexities associated with the construction

and predictability for quantitative modeling of living organisms [304].

However, both regulatory agencies and industry have already started

promoting and encouraging the usage of computer models. In 2016, the

FDA issued the draft guidance “Reporting of Computational Modeling

Studies in Medical Device Submissions", aimed at FDA staff and industry

[113]. They also participated in the formation of committees and

consortiums focused on advancing in computational modeling of medical

devices [21, 353]. Governments are also pushing forward in silico

approaches, as US approved a Congress bill stating: “...urges FDA to

engage with device and drug sponsors to explore greater use, where
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appropriate, of In Silico trials for advancing new devices and drug therapy

applications” [396]. In parallel, the European Parliament suggested the

European Medicine Agency (EMA) to "...develop a framework for the

regulatory acceptance of alternative models and shall take into consideration

the opportunities presented by these new concepts which aim at providing

for more predictive medicines. These concepts may be based on human

relevant computer or cellular models, pathways of toxicity, or adverse

outcome pathways" [103].

The aim of ISCTs is to move toward a more patient-specific modeling

approaches, while using reliable modeling techniques. Different types

of methodologies, similar to those of QSP, have been proposed for that

purpose: (i) agent-based modeling (ABM), used in precision medicine to

find optimal, personalized dosage and timing for drug administration or

vaccine development [59, 216]; (ii) differential equations, widely used in

pharmacokinetic modeling with good results, but also to model tumor and

pathogen dynamics [348, 328, 152]; (iii) machine learning, and systems

biology, which uses artificial intelligence technology to investigate drug

mechanism of action and drug effects [65].

Despite the initial doubts, carefully implemented ISCT offer many

advantages for DDD either in combination or supplementing real CTs, and

especially for drug repurposing cases were many information is already

available: (i) lower cost and implementation time; (ii) the possibility of

generating and testing thousands of virtual patients; (iii) the possibility

of testing extreme, rare cases; and (4) the possibility of testing several

treatment variations [402]. An example of the promising benefits are the

few groups that have already started developing their ISCT tools with

encouraging results [306, 65, 361, 206].



Chapter 2

Objectives

The main goal of this thesis is to define the general strategy and to

develop the computational tools to perform in silico Clinical Trials (ISCTs).

They will work over a powerful systems biology approach and allow the

individual patient evaluation of different scenarios where a treatment can be

applied. All this can be divided in the following working objectives:

• Usage of a Systems Biology approach, namely Therapeutic Mapping

System (TPMS). It is focused in extracting the Mechanisms of Action

(MoA) of drugs by using sampling methods over a Human Protein

Network (HPN).

– Use the TPMS methodology in a head-to-head study in NSCLC

to explore the efficacies of two treatments. Additionally,

undergo a thorough analysis in the MoA models generated

to extract information on possible resistances, metastasis

prevention, and harmful drug-drug interactions.

– As TPMS models contain not one but an ensemble of

29
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MoA solutions, extend the approach application by analyzing

generated models as prototype-patients in a Heart Failure

context, in a first approach to moving towards personalized

medicine. The working hypothesis is that prototype-patient

models can be grouped and compared to explore the molecular

differences between best and worst treatment responders.

• Development and implementation of an ISCT platform, a software

dedicated to the simulation of Clinical Trials in silico by computing

and evaluating treatment responses in virtually generated patients.

– Design of a general physiologically-based pharmacokinetic

(PBPK) model method able to simulate any, or most, drugs’

behavior inside a human body system. For that, use a

data-driven approach which models drug using their information

on compound administration, body distribution and excretion

properties.

– Develop a tool to generate Virtual Patients (VPs) containing

both PBPK and SB descriptors in order to move towards

personalized medicine, by providing demographic and

molecular patient variability.

– Combine PBPK with the TPMS approach to generate

Quantitative Systems Pharmacology (QSP) models. For

that, use the PBPK output compound concentrations as input

restrictions for the TPMS-SB approach.

– Apply the ISCT platform in an ADHD head-to-head case-study.

Then, analyze the generated virtual patients for demographic

and molecular differences influencing treatment effect or

predisposition.



Part II

SYSTEMS BIOLOGY

APPROACH (TPMS)
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Chapter 3

Using TPMS models to

compare two first-line

treatments for ALK+ NSCLC

3.1 Introduction

As explained in Box2, TPMS consists of a Systems Biology technology

focused on understanding the Mechanisms of Action (MoA) of stimulus

(e.g., drugs)-response (e.g., disease) pairs. The resulting models, which

contains an ensemble of solutions, are able to explain the study region

of the Human Interactome and can be used, among other possibilities, to

understand the protein pathways linking stimulus and response, look for

possible biomarkers, or predict probable adverse reactions [309, 164, 339].

In the following article, TPMS was used in the context of ALK+ non

scamous cell lung carcinoma (NSCLC) to evaluate two first-line treatments,

alectinib and brigatinib. The TPMS models were computed to generate

33
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their respective MoAs with the aim of predicting their mechanistic

effect, possible resistance mechanisms bypass, and the impact of potential

resistances and other treatment interferences. In this article, I participated

in the supervision of the models generated, as well as generating part of the

data analysis.

3.2 Head to head evaluation of second generation

ALK inhibitors brigatinib and alectinib as

first-line treatment for ALK+ NSCLC using an

in silico systems biology-based approach
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3.2.1 Abstract

Around 3-7% of patients with non-small cell lung cancer (NSCLC), which

represent 85% of diagnosed lung cancers, have a rearrangement in the

ALK gene that produces an abnormal activity of the ALK protein cell

signaling pathway. The developed ALK tyrosine kinase inhibitors (TKIs),

such as crizotinib, ceritinib, alectinib, brigatinib and lorlatinb present

good performance treating ALK+ NSCLC, although all patients invariably

develop resistance due to ALK secondary mutations or bypass mechanisms.

In the present study, we compare the potential differences between

brigatinib and alectinib’s mechanisms of action as first-line treatment for

ALK+ NSCLC in a systems biology-based in silico setting. Therapeutic

performance mapping system (TPMS) technology was used to characterize

the mechanisms of action of brigatinib and alectinib and the impact of

potential resistances and drug interferences with concomitant treatments.

The analyses indicate that brigatinib and alectinib affect cell growth,

apoptosis and immune evasion through ALK inhibition. However, brigatinib

seems to achieve a more diverse downstream effect due to a broader

cancer-related kinase target spectrum. Brigatinib also shows a robust

effect over invasiveness and central nervous system metastasis-related

mechanisms, whereas alectinib seems to have a greater impact on the

immune evasion mechanism. Based on this in silico head to head study,

we conclude that brigatinib shows a predicted efficacy similar to alectinib

and could be a good candidate in a first-line setting against ALK+ NSCLC.

Future investigation involving clinical studies will be needed to confirm

these findings. These in silico systems biology-based models could be

applied for exploring other unanswered questions.
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3.2.2 Introduction

Lung cancer (LC) remains the leading cause of death worldwide, with

an estimated 1.6 million deaths each year [389, 429]. Despite significant

therapeutic advances over the last decade, over half of patients diagnosed

with LC die within one year of diagnosis and the five-year survival is around

18% [173]. About 85% of LCs are diagnosed as the subtype non-small

cell lung cancer (NSCLC), adenocarcinoma being one of the most common

histological subtypes. In adenocarcinoma, several driver mutations have

been identified, including mutations/alterations of the epidermal growth

factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and ROS1,

among others; most of them are therapeutically targetable [150]. Around

3–7% of NSCLC cases present active ALK rearrangement (ALK+ NSCLC)

that produces an abnormal activity of the ALK protein cell signaling

pathway and causes the cancer cells to grow and metastasize [343, 281].

Central nervous system (CNS) metastasis is a common finding in NSCLCs,

occurring in 10% of patients, and even more frequent in ALK+ NSCLCs,

were the frequency of CNS metastasis is around 20–30% at the time of

diagnosis [149, 195]. CNS is also the most common site of relapse [439].

Thus far, three generations of ALK tyrosine kinase inhibitors (TKIs) have

been developed. Some of the drugs that target the abnormal ALK protein

are crizotinib (first generation), ceritinib, alectinib, brigatinib, ensartinib

(second generation) and lorlatinib (third generation) [378]. However,

despite their effectiveness in ALK+ NSCLC cases, all patients invariably

develop treatment resistance at some point. Consequently, it is of the

upmost importance to adequately use the currently available treatments in

the correct order to maximise the life span of NSCLC patients. The most

common progression mechanisms for all ALKi are: 1) ALK secondary
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mutations, which affect not only crizotinib-treated patients (around 20–30%

of patients [434]), but also second and third generation ALKi [245, 250];

and 2) bypass mechanisms (i.e., activation of other parallel pro-proliferative

signaling pathways [132]). Crizotinib has been used as first-line since its

approval in 2011 in the United States [435] and in 2015 in Europe[434]. The

results of its phase III trial (PROFILE 1014) demonstrated that crizotinib

was superior to standard chemotherapy [367]. Second and third generation

ALK TKIs are effective in treating numerous crizotinib-resistant ALK

mutations and are used after crizotinib, and some of them have even

replaced crizotinib as first-line option among patients with ALK-rearranged

NSCLC [10, 397, 445]. Second generation ALKi ceritinib, alectinib and

brigatinib have been approved for the treatment of ALK+ NSCLC patients

after treatment with crizotinib (ceritinib in 2014 [124] and in 2015 [452];

alectinib in 2015 [114] and in 2017 [9], while brigatinib in 2017 [14] and

2018 [13] for the United States and Europe, respectively) and as first-line

TKI treatments (in 2017, ceritinib [122, 452] and alectinib[9, 121] and, in

2020, brigatinib [13, 123], for the United States and Europe, respectively).

At the time of the design and performance of the study, clinical trials had

provided promising results for both brigatinib and alectinib as first-line TKIs

in TKI-naïve ALK+ NSCLC patients, compared to crizotinib. The ALEX

phase III study (https://clinicaltrials.gov/ number, NCT02075840), showed

that alectinib had a superior investigator-assessed PFS versus crizotinib

(HR, 0.47; P < 0.001 [311]). At the second interim analysis of the ALTA-1L

phase III trial (https://clinicaltrials.gov/ number, NCT02737501) the blinded

independent review committee (BIRC)-assessed HR of PFS was 0.49 (log

rank P < 0.0001) [63]. Moreover, both drugs present relevant intracranial

efficacy: alectinib demonstrated superior efficacy versus crizotinib
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regardless of baseline CNS metastases [60] and brigatinib significantly

delayed both CNS progression (without prior systemic progression) and

systemic progression (without prior intracranial progression) compared with

crizotinib [62]. Regarding ceritinib, direct comparison in first line has

only been performed with chemotherapy [116, 371], although indirect

comparison showed better results for ceritinib than crizotinib [246]. At the

time of the beginning of the current study, two other ALK inhibitors were

being tested in first line in comparison to crizotinib, although no results were

available (ensartinib in eXalt3, NCT02767804, or lorlatinib in CROWN,

NCT03052608).

Although no direct comparison between alectinib, brigatinib and ceritinib

has been performed in a first-line setting, there are indirect comparisons in

second line from which hypotheses can be drawn. Ceritinib, alectinib and

brigatinib are effective in crizotinib-refractory ALK+ NSCLC patients [356,

291, 176], but no direct comparison between these drugs after crizotinib

is available. An ongoing trial, ALTA-3 (https://clinicaltrials.gov/ number,

NCT03596866), compares the efficacy of alectinib versus brigatinib in

ALK+ NSCLC patients who had progressed on crizotinib; besides, and

according to the current lack of direct comparisons, indirect analyses

using available data have been performed to compare them. In fact, a

matching-adjusted indirect comparison (MAIC) [326] between these drugs

in crizotinib-refractory ALK+ NSCLC patients (using clinical data from

the ALTA trial – date February 21, 2017 –, ASCEND-1 [215], ASCEND-2

[280] NP28761 [61] and NP28673 [30]) suggested that brigatinib may have

prolonged PFS and OS versus ceritinib and prolonged PFS versus alectinib

in patients after progression with crizotinib.

From a safety perspective, all ALKi are considered to be safe and tolerable
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in a similar fashion [52], although they show adverse events (AE), some

of them common and others drug-specific. A systematic review [208]

concluded that crizotinib was associated with more gastrointestinal and

visual events, alectinib tended to have more hepatic and musculoskeletal

AEs, ceritinib presented the highest incidence of clinically significant

gastrointestinal AEs and laboratory abnormalities and brigatinib had a

unique profile of increased early onset pulmonary AEs and hypertension

associated with the 180 mg dose; these pulmonary AEs were found to be

reduced when using the recommended initial dose of 90 mg [347]. This

systematic review also suggested ceritinib to be less preferred by clinicians

due to its safety profile. Regardless of their differences, most of the safety

concerns associated with the mentioned ALKi can be minimized reducing

administration dose [208] .

According to first-line results with brigatinib and alectinib and indirect

results of ceritinib, this last drug seems to have a lower efficacy both at

systemic and cerebral levels when compared to brigatinib and alectinib

[326]. As tolerability of all these ALKi is similar and alectinib has become

the standard of care, a head to head clinical trial comparing brigatinib and

alectinib as first-line therapy would be very interesting. However, since this

head to head is not planned, results obtained with these second generation

ALKi in the ALTA-2 study in second line, as well as in the MAIC analysis,

will help to elucidate and refine the first-line therapy outline. Besides,

in silico investigational approaches may be an alternative to compare the

potential benefits of both drugs.

Concerning the mechanism of action of alectinib and brigatinib, both

share ALK as a protein target, but they display completely different target

profiles that could be determinant to define each drug mechanism. Beside
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ALK, brigatinib targets other tyrosine-protein kinases receptors such as

EGFR [15, 189, 394], receptor-type tyrosine-protein kinase FLT3 [15, 175],

tyrosine-protein kinase FER [375], ROS1 [175, 325], and insulin-like

growth factor 1 receptor (IGF1R) [15, 189, 175, 276]. On the other hand,

alectinib inhibits RET with comparable potency to ALK [225].

In silico tools are useful resources for predicting several (bio)chemical

and (patho)physiological characteristics of likewise potential drugs [431].

These methods are used to improve in vivo and in vitro models and refine

experimental programs of clinical and general biomedical studies involving

lab work [390], and, in the long run, can reduce lab work and effectively

succeed in 3R (reduce, reuse, recycle) [193]. Overall, these systems can be

employed for the exploration of anticancer drug mechanisms of action and

their efficacy in specific patient profiles.

In the present study, we created in silico systems biology-based mechanistic

models of two first-line approved second generation ALKi, brigatinib

and alectinib, in order to explore the potential differences between them

with the aim of providing information or raising hypotheses towards the

identification of strengths and weaknesses of the mechanisms of action of

both drugs as first-line treatment for ALK+ NSCLC patients.

3.2.3 Results

The main pathophysiological processes (namely “motives”) described to

be involved in ALK+ NSCLC were: (1) Cell growth and proliferation,

(2) Sustained angiogenesis, (3) Evading apoptosis, (4) Tissue invasion

and metastasis, (5) Immune evasion (Table 4). Subsequently, each

pathophysiological process was functionally characterized at protein level

to determine its molecular effectors and used for focusing the analysis
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towards ALK+ NSCLC in a human biological network context (Figure 6 and

Supplementary Table 2). Brigatinib and alectinib protein target profiles were

also carefully characterized and used in the posterior analyses (Figure 6 and

Table 5). Mechanistic systems biology models of brigatinib and alectinib

obtained with TPMS technology were constructed with accuracy values of

94% to evaluate their mechanism of action and potential treatment efficacy

in ALK+ NSCLC. Two distinct modelling approaches were used for that

purpose: Artificial neural networks (ANN) [339], with the aim of detecting

biological relationships; and sampling-based methods [198], in order to

explain those relationships. A Sobol sensibility analysis was applied

to brigatinib and alectinib mechanistic models in order to evaluate their

robustness. The results of this analysis are available in the Supplementary

Methods.

Effect of brigatinib and alectinib on cell growth, apoptosis and immune

evasion through ALK and non-ALK inhibition

The relationships of each drug target with ALK+ NSCLC main

pathophysiological motives were evaluated by the ANN and the results are

shown in Table 1. The ANN analysis showed that, in general, alectinib

presented a slightly lower correlation with ALK+ NSCLC pathophysiology

than brigatinib (around 80% of the score obtained by brigatinib).

Evaluation of the relations between individual pathophysiological motives

and drug targets suggested that both drugs affect cell growth and

proliferation, apoptosis evasion and immune evasion through ALK

inhibition. Regarding alectinib, its inhibition of RET might occur through

modulation of the tumour immune response. On the other side, brigatinib

non-ALK targets might affect the pathophysiological motives already
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Figure 6: Human protein networks around ALK+ NSCLC molecular
pathophysiology.
General overview (A) and centered on main disease players (indicating their
pathophysiological motives) and their relationship to alectinib (B) and brigatinib
(C) drug targets.

Table 2: Effect of brigatinib’s and alectinib’s drug targets in ALK+ NSCLC.
Percentage of effectors reversed indicate the proportion of proteins in each motive
with a significant difference (FDR < 0.05) and stronger modulation considering the
total number of effectors affected in the mechanism of action (MoA) for each drug.
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affected by ALK inhibition (FLT3, IGF1R, and especially EGFR), as well

as angiogenesis and invasiveness through FER and IGF1R inhibition.

Brigatinib and alectinib non-ALK targets affect differently

cancer-related processes, including proliferation, apoptosis evasion,

invasiveness and immune evasion

The comparison of the predicted mechanisms of action obtained by the

mechanistic systems biology modeling using TPMS technology (Figure

7 and Supplementary Table 4) shows that both drugs act through ALK

and some overlapping intracellular mechanisms (involving SHC1, GRB2,

RASK). However, brigatinib seems to achieve a more diverse downstream

effect, through PI3K, ERK and JAK/STAT.

A further evaluation of the impact of each drug on the activity of each

protein present in the mechanisms of action, and on the pathophysiological

motives previously defined was carried out. This analysis showed that

brigatinib, compared to alectinib, has a stronger effect (TSignal) on most of

the proteins and all the motives defining ALK+ NSCLC (Figure 8) except

in immune evasion (Table 2), for which alectinib presents a greater effect.

Effect of brigatinib and alectinib on invasiveness and central nervous

system metastasis

As shown in Table 2, brigatinib was predicted to have a potential stronger

effect on metastasis effectors, which are related to invasiveness promotion

and metastasis-site characteristics. In order to assess the possible role of

each drug on brain metastasis, eight protein/gene effectors known to have

a more important role in brain metastasis than in primary tumours were

considered: FGFR1 [288, 318, 320]; Ki-67 [418, 270], ROBO1 [391];
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Figure 7: Overview of brigatinib’s and alectinib’s mechanisms of action.
Receptor targets of each drug are depicted through the cell membrane and the
following pathways and pathophysiological motives affected are depicted from
the cell surface to the nucleus. Alectinib acts through ALK and RET, involved
mainly in survival and proliferation, while brigatinib acts also through ALK and
FLT3, IGF1R, and EGFR, signaling through overlapping intracellular mechanisms
affecting cell survival and proliferation, metastasis, apoptosis and migration.
Bibliographical validation information of interactions on the predicted mechanisms
of action are shown in Supplementary data (Supplementary Table 1).

S100A7 [174, 427]; S100B [33, 69]; SIRT1 [159]; SLIT2 [392]; and

VEGFA [288, 174]. Out of these, six (Ki-67, ROBO1, S100A7, S100B,

SLIT2, VEGFA) were found to be significantly more inhibited by brigatinib

than alectinib (FDR < 0.05 and a change in TSignal > 20%). The current
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Figure 8: Heatmap of the effect induced by brigatinib and alectinib in each model
solution over the effectors of the pathology.
The vertical bars indicate the pathological effect of the effectors (1 if activated in
the pathology, -1 if inhibited in the pathology, 9 if complex role) and whether the
proteins appear in Figure 7 (“MoA”).

analysis also showed an association between brigatinib and prevention of

brain metastasis, mainly through EGFR and IGF1R.

Susceptibility of brigatinib and alectinib to bypass resistance

mechanisms

The impact of resistance mechanisms, via protein mutations, on brigatinib’s

and alectinib’s mechanisms of action TPMS models was evaluated over

a total of 935 proteins and 2805 modifications (activation, inhibition,

deletion) (Supplementary Table 5). Of those, 55 different modifications
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Table 3: Effect of brigatinib and alectinib over each pathophysiological motive
measured by Tsignal.
Percentage of effectors reversed indicate the proportion of proteins in each motive
with a significant difference (FDR < 0.05) and stronger modulation considering the
total number of effectors affected in the mechanism of action (MoA) for each drug.

were identified as potential treatment resistances for brigatinib and 93 for

alectinib. Among them, 37 were shared between the two drugs. The

potential resistance mechanisms that affected alectinib to a greater extent

than brigatinib were, mostly, related to the alternative pro-proliferative

signaling mechanisms by which NSCLC cells could continue to proliferate.

These mechanisms included proteins like MET, ERBB, FGFR, NTRK1

or PDGFR, among others. On the other hand, the potential resistance

mechanisms that affected either both drugs or brigatinib to a greater extent

than alectinib were mainly potential downstream mediators such as SHC1,

KRAS, PI3K or ERK.

Effect of concomitant treatments on the mechanism of action of

brigatinib and alectinib

The potential interference with brigatinib or alectinib mechanisms of

action was evaluated using a total of 654 drugs (Supplementary Table

6). The drugs that may impact the brigatinib mechanism may include

angiotensin-receptor blockers, barbiturates and bisphosphonates. This can

be mitigated by adjusting the brigatinib dose. For alectinib, drugs such as

non-peptide inhibitors of the antidiuretic hormone can also interfere with
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it. However, concomitant use of brigatinib with strong/moderate CYP3A

inhibitors/inducers can be managed [392].

3.2.4 Discussion

The second generation ALKi brigatinib and alectinib have demonstrated

efficacy in second line treatment in crizotinib-refractory ALK+ NSCLC

patients, and in the first-line setting in ALEX (alectinib) and ALTA-1L

(brigatinib) clinical trials. In the absence of a head to head trial between

brigatinib and alectinib in the first-line setting, and beside the efficacy data

and toxicity profile information obtained in independent trials, information

from clinical trials in a second-line setting and indirect approaches may help

to elucidate the best therapy against ALK+ NSCLC. In the present study,

we applied in silico systems biology approaches to compare brigatinib and

alectinib as first-line treatment for ALK+ NSCLC at a mechanistic level and

thus highlighting the strengths and weaknesses of each ALK inhibitor. The

present study indicates that both brigatinib and alectinib could be reasonable

choices for first-line treatment, as also previously suggested by other authors

[347]. The results obtained by our in silico model allow differentiating

between the mechanisms of action of each drug, suggesting that both drugs

may have similar efficacy as first-line treatment, and brigatinib may have

higher impact in most studied pathways than alectinib. Other specific

characteristics were highlighted for each drug.

According to previous publications [10, 347], brigatinib acts as a

multi-kinase inhibitor with a broad-spectrum activity against ALK, FLT3,

FER, ROS1, IGF1R, and EGFR targets, while alectinib acts on ALK and the

proto-oncogene RET [225]. The analyses performed in this study to further

determine the differences between brigatinib and alectinib’s mechanisms
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of action point towards a potentially relevant role of RET, EFGR, IGF1R

and FLT3 (besides ALK) in treating NSCLC. All these targets had been

previously related to a greater or lesser extent to NSCLC development

[382, 40, 449, 186, 249].

As predicted by TPMS analyses (Figure 7), brigatinib targets appear to

show a more diverse range of effects compared to alectinib, mediated

by ALK inhibition on NSCLC, such as: cell growth and proliferation

(as for example STAT3 [330], PI3K [266], K-Ras [330, 282] or erbB2

[75] signaling); evading apoptosis (through EGFR-CASP3 interplay [369]);

acting over sustained angiogenesis (IGF1R signaling [163, 294]); and tissue

invasion and metastasis processes (modulating the E-cadherin-β-catenin

axis [253, 420, 421, 192]). These predicted results and the observed

broad range of different effects of brigatinib could be explained by a

wider cancer-related target profile of brigatinib. Moreover, it could also

be associated with the relatively longer PFS observed with brigatinib in the

crizotinib-refractory setting as compared to alectinib [133]. On the other

hand, the analyses also suggest that alectinib might have a greater effect on

immune evasion regulation through RET inhibition.

Central nervous system (CNS) is one of the most common sites of first

progression in ALK+ NSCLC [133]. Even while receiving crizotinib (in

around 25–50% of cases), efficacy end points are lower in relation to the

CNS than overall [92, 324, 443]. In our study, brigatinib was predicted

to have a potentially more robust impact on brain metastasis effectors than

alectinib. Inhibition of EGFR might prevent CADH1 reduction mediated

by PI3K/FAK1 and thus inhibit tissue invasion. Blocking EGFR and

IGF1R pathways might also prevent β-catenin (CTNB1) upregulation,

accumulation in the nucleus and transcription factor function. Intracranial
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responses to TKIs have also been observed in previous studies. In

the phase III trial ALTA-1L (https://clinicaltrials.gov/: NCT02737501)

brigatinib was associated with a higher intracranial objective response rate

(iORR) (78%) in individuals with ALK TKI-naive ALK+ NSCLC with

baseline brain metastases compared to crizotinib (26%) [347]. Alectinib

also showed superior intracranial activity versus crizotinib (81% and 50%,

respectively) in the ALEX clinical trial, although progression in the brain

with both agents has also been observed [131]. This intracranial efficacy

is clearly explained by brain bioavailability in the case of alectinib,

which shows a very good blood-brain barrier penetration [131], without

being affected by MDR1/p-gp modulation [9, 4]. Brigatinib might be

susceptible to MDR1/p-gp modulation [244], although no major concerns

were raised by the regulatory bodies [13]. Thus, some other factors

might explain brigatinib’s activity in the brain. The mechanistic study of

the current analysis suggests that brigatinib might be able to reverse the

activation of a greater percentage of metastasis effectors and, specifically,

brain-related metastasis effectors, compared to alectinib. These effectors

include the well-known proliferation marker Ki-67 [383] overexpressed

in brain metastasis when compared to primary tumours [418, 270]; the

ROBO1/SLIT2 axis, increased in brain metastasis [391] and involved in

cell migration [227]; the pro-angiogenic VEGFA, related to increased

brain metastatic potential [449, 199, 380]; and damage signal proteins

(DAMPS) S100 proteins, involved in increased proliferation, anti-apoptotic,

and migration capabilities [303, 194]], which are increased in serum of brain

metastatic patients and brain metastasis models [33, 69, 449, 303, 194].

Enhanced mechanistic impact over these - and other non brain-specific -

metastasis effectors by brigatinib might explain its activity in the brain

despite its lower blood-brain barrier penetration. The ongoing ALTA-3 trial
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will provide valuable information including intracranial progression after

brigatinib versus alectinib in crizotinib-refractory patients that might help

better understand their anti-metastatic mechanisms.

The acquisition of resistance to TKI therapy still seems inevitable. However,

next generation TKIs are able to more strongly inhibit ALK – both in its

wild type form and presenting secondary mutations – suggesting a better

control over these progression mechanisms. In fact, brigatinib presents a

high selectivity for ALK and low propensity for pharmacological failure [10,

445], showing higher potency than alectinib towards ALK-rearrangement

fusions [132, 120, 66]. Brigatinib selectivity over ALK has been also

proven in patients with ALK fusion proteins with and without secondary

mutations [32, 209]. Little is known about the capacity of ALK TKIs

to prevent bypass resistance mechanisms. The evaluation of the impact

of developing non-ALK-related resistances on the efficacy of the drugs

performed in the current study suggests that alectinib might be more

susceptible to bypass resistance mechanisms. The results of our in silico

analysis also suggest that brigatinib might block or prevent the development

of upstream bypass resistance mechanisms more effectively than alectinib,

which could translate into resistance-free treatment for a longer period of

time. This would probably occur due to a mechanism of action that reaches

a larger number of intracellular effectors involved in ALK-independent

resistance mechanisms, including JAK/STAT, MEK/ERK, PI3K or PLCγ

[209, 342]. According to our in silico results, brigatinib is predicted

to modulate these pathways that are involved in different NSCLC-related

pathophysiological processes, more strongly than alectinib. Thus, given

the broader impact of brigatinib on ALK secondary mutations compared to

other ALK TKIs [10, 445] and the results of the current analysis regarding
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bypass mechanisms, it could be hypothesized that brigatinib would prevent

the generation of a wider spectrum of resistance mechanisms compared

to alectinib. This low resistance predisposition of brigatinib could be

related to the efficacy results in terms of PFS observed in the indirect

comparison (MAIC) between brigatinib and alectinib/ceritinib by Reckamp

[326]. However, further pre-clinical and clinical studies are needed to

validate these hypotheses, and ALTA-3, comparing brigatinib to alectinib

in ALK+ NSCLC patients who had progressed on crizotinib, might provide

interesting conclusions in this regard.

There are two dimensions in which drugs can affect each other: through

metabolic and mechanistic interactions. According to the recommendations

of the technical specifications [9, 13], whereas both drugs interact with

CYP3A – among other enzymes and transporters–, only brigatinib has strict

interactions with the usage of inductors, inhibitors and substrates of CYP3A

family cytochromes [13, 383]. The current study evaluated the mechanistic

interaction between drugs commonly used in cancer patients, regarding the

interference of the signal induced by the targets of co-treatments.

According to the current knowledge and the data herein presented, brigatinib

might be more prone to present relevant metabolic and mechanistic

interactions with other drugs than alectinib, which might be a safer option

in poly-treated patients. Use of more than one drug (e.g., to treat cancer or

treatment-derived complications, or pre-existing conditions) is common in

cancer patients, and polypharmacy (5 or more concomitant drugs) has been

shown to occur at a higher frequency in cancer survivors than in non-cancer

age- and sex-matched controls [285]. Polypharmacy is especially common

among the elderly or in end-of-life settings [238]. Thus, drug interactions

must be carefully taken into account when considering different treatment
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options. However, as NSCLC adenocarcinoma patients tend to be younger

and tend to be non-smokers compared to other cancer patients [120, 336],

potential drug interference due to polypharmacy might not represent a

determinant factor for treatment selection in clinical practice.

As previously stated, ALKi activity is affected by several factors,

including tumour intrinsic characteristics (e.g., ALK fusion gene variants

or presence of other primary gene co-mutations) and extrinsic factors

(e.g., impact of prior treatments such as presence of ALK secondary

mutations, or development of by-pass resistances), and also drug-dependent

characteristics (e.g., blood-brain barrier crossing).

The current study aimed to explore mechanistic differences between

brigatinib and alectinib that could affect efficacy of both drugs in an in

silico approach. However, beside efficacy data, drug toxicity profile is

an important determinant of treatment selection. According to previous

publications, we considered that although all ALKi present common and

specific adverse events, alectinib and brigatinib are similarly well tolerated

and can be managed by reducing dose or interrupting treatment [208].

In order to better contextualize the hypotheses raised from the mechanistic

analyses, other parameters need to be considered and have been herein

discussed (ALK secondary mutations, safety concerns), and must be taken

into account in the clinical practice. Besides, in silico modelling approaches

can be used as predictive tools and hypothesis generators, limited by the

information about diseases and drugs. For example, unknown targets or

not yet described pathophysiological processes might have a role in the

mechanisms of action of the evaluated drugs. Nevertheless, the models

were built by considering the whole human protein network and a wide

range of drug-pathology relationships (Supplementary Table 7) [198],
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not only limited to NSCLC or oncologic indications, and they present

cross-validation accuracies above 80% in the case of ANN models and

above 90% in sampling methods-based models. Thus, even if modelling

approaches based on systems biology are limited by the amount of available

information and some assumptions have to be made, in silico techniques

are helpful for understanding fundamental processes in cancer [136, 233].

These approaches allow us to explore investigational or marketed drugs

with reduced experimental cost and in different settings. This proves to

be especially important if clinical investigations are not going to be done

soon or are complex to be conducted, as in the case of the brigatinib versus

alectinib head to head study in a first-line setting. Similarly, a comparison

to other second and third generation ALKi that have recently shown benefit

with respect to crizotinib in the first line setting (ensartinib in eXalt3,

NCT02767804, or lorlatinib in CROWN, NCT03052608) could provide

further insights into the mechanisms behind ALK+NSCLC treatment. Thus,

systems biology and artificial intelligence approaches can contribute to

exploring unanswered questions and this may guide the development of

ALK TKIs and the identification of the optimal treatment sequence in ALK+

NSCLC patients. Further in silico studies with the aim of identifying the

best treatment sequence after brigatinib are ongoing.

3.2.5 Materials and methods

Molecular characterization of ALK+ NSCLC pathophysiology and

drugs

To carefully characterize the pathophysiology of ALK+ NSCLC, we

conducted an extensive and detailed full-length review of relevant review

articles over the last 5 years in the PubMed database (from December
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3rd 2013 to December 3rd 2018) using the following search string:

((“ALK+-positive” [TITLE] or “ALK+” [TITLE]) and (“Non-Small Cell

Lung Cancer” [TITLE] or “NSCLC” [TITLE]) AND (“MOLECULAR”

[TITLE/ABSTRACT] or “PATHOGENESIS” [TITLE/ABSTRACT] or

“PATHOPHYSIOLOGY” [TITLE/ABSTRACT]) and Review[ptyp]) and

((“Non-Small Cell Lung Cancer” [TITLE] or “NSCLC” [TITLE])

AND (“MOLECULAR” [TITLE/ABSTRACT] or “PATHOGENESIS”

[TITLE/ABSTRACT] or “PATHOPHYSIOLOGY” [TITLE/ABSTRACT])

and Review[ptyp]). The search was also expanded using article reference

lists. The main pathophysiological processes (motives) described to be

involved in ALK+ NSCLC were identified (Table 2). Subsequently,

each motive was further functionally characterized at protein level to

determine its molecular effectors. A total of 174 proteins were identified

(Supplementary Table 2).

For drug protein target profile definition (brigatinib and alectinib),

a dedicated review of databases (DrugBank [425], STITCH [381],

SuperTarget [161]) and of scientific literature was performed

(Supplementary Table 3).

TPMS technology: systems biology-based model creation

Therapeutic Performance Mapping System (TPMS) (Anaxomics Biotech,

Barcelona, Spain) is a top-down systems biology approach based on

artificial intelligence and pattern recognition models. This methodology

integrates available biological, pharmacological and medical information to

generate mathematical models that simulate the mechanisms of action of

drugs in a pathophysiological human context (Figure 9). TPMS models are

trained using a compendium of biological and clinical data characteristics
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of the human physiology (Table 6).

Figure 9: Study workflow.
Overview of the in silico study approach showing the main phases employed to
simulate the mechanisms of action (MoA) of brigatinib and alectinib with respect to
ALK+NSCLC molecular characterization. TPMS is a validated top-down systems
biology approach that integrates all available biological, pharmacological and
medical knowledge (protein network, truth table and specific data compilation)
by means of pattern recognition models and artificial intelligence to create
mathematical models that simulate in silico the behavior of human physiology.

Mechanism of action models

In order to obtain the mechanism of action (MoA) of brigatinib and

alectinib, drug-ALK+ NSCLC mathematical models were generated

following the same methodology as described in Jorba [198] and applied in

previous studies [320, 257, 181]. As input, TPMS takes the activation (+1)

and inactivation (–1) of the drug target proteins (Supplementary Table 3),

and as output the protein states of the pathology of interest (Supplementary

Table 2). It then optimizes the paths between both protein sets and computes

the activation and inactivation values of the full human interactome. The

resulting subnetwork of proteins with non-null outputs and their values will

define the MoA of the drug. The impact of each drug over the activity of the

proteins effectors of the pathophysiological disease was quantified using the
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Tsignal (i.e., the average signal values of the protein effectors), as described

in Jorba [198]. More detailed information on the modelling methodology

can be found in Supplementary Methods.

Sobol sensibility analysis

In order to analyze the impact of the noise in the final MoAs affecting the

biological conclusions reached, a Sobol sensibility analysis was performed

over the constructed TPMS mathematical models [446]. Detailed of the

analysis implementation can be found in Supplementary Methods.

Drug-(patho)physiology motive relation finding

Artificial neural networks (ANN) were used to identify relations between

proteins (e.g., drug targets) and clinical elements of the network [47],

which is an approach previously used and validated by several publications

[325, 119, 164, 165]. This strategy was used to perform an efficacy

evaluation of brigatinib and alectinib from each of their targets towards

ALK+ NSCLC pathophysiological motives and its corresponding proteins.

Detailed information on the modelling methodology can be found in

Supplementary Methods.

Evaluation of the impact of potential resistances over the mechanisms

of action

In order to identify possible cancer resistances, the TPMS models were

evaluated for possible mutations to identify the key nodes or proteins with

higher impact on the effector proteins TSignal. Because both brigatinib and

alectinib mechanisms of action had a vast amount of proteins or nodes (>

5000), the universe of possible key nodes was reduced to the list of proteins

around ALK+ NSCLC effectors and around the drugs’ target proteins.
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To evaluate the addition of a mutation in the system, the impact of a

protein activation, inhibition and deletion over the mechanisms of action

of brigatinib and alectinib was tested. To do so, the resulting TSignal of

the altered models was computed and compared to the original one. Finally,

the p-value of the difference between the Tsignals over ALK+ NSCLC with

and without the mutation was calculated, and the ones with p-values≤ 0.022

were selected (Supplementary Table 5).

Evaluation of drug interferences over the mechanisms of action

To identify possible co-treatment interferences, a list of pharmacological

treatments potentially co-administered with brigatinib or alectinib was

created and evaluated. To do so, we generated a list of all treatments for

common conditions (either in the general population and in the ALK+

NSCLC population) and treatments for brigatinib/alectinib-associated

adverse drug reactions, according to DrugBank database [425]. After that,

the mechanisms of action of brigatinib and alectinib was perturbed by

activating the co-treatment protein targets, each drug one by one, and the

TSignal was computed. Finally, the differences in the TSignal between

the original and the perturbed system and the corresponding p-values

were calculated, and the ones with p-values < 0.1 and 0.05 were selected

(Supplementary Table 6).

3.2.6 Conclusions

An in silico head to head based on the mechanism of action evaluation

between brigatinib and alectinib has been performed highlighting the

advantages of using one before the other from an efficacy point of view.

Brigatinib appears to have a wider mechanism of action, presenting

targets that potentially act more strongly in most of the ALK+ NSCLC
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pathophysiological pathways, including invasiveness to the CNS. On the

other side, alectinib-induced RET inhibition might contribute to reducing

the tumour immune evasion mechanisms. In general, both drugs are

known to be well-tolerated and, although shown and predicted to have a

similar efficacy for the treatment of ALK+ NSCLC in a first-line setting,

the differences in their target profiles might allow for identification, in

subsequent studies, of different patient profiles that might benefit from

either of them, beside considering potential safety concerns in specific

patient subpopulations. Future clinical studies will be needed to confirm

these findings. The used approach can be applied for the evaluation of

other next-generation ALKi, even if not yet approved, or exploring other

questions, such as optimal treatment sequence.

3.2.7 Author contributions

AFN, AL and EC contributed to setting up fundamental questions regarding

ALK+ NSCLC treatment. EC, CSV and MC contributed to the study design.

AFN, AL, CSV, CM and AN contributed to data acquisition. CSV, MC,

GJ, JMM and BO contributed to data analysis. EC contributed to clinical

interpretation of data. AFN, AL, CM, AN and CSV contributed to writing

the manuscript. EC and MC contributed to the critical revision of the

manuscript.

3.2.8 Acknowledgements

The authors thank Cristina Lorca-Oró for her assistance in writing and

editing the manuscript and Pedro Filipe for his assistance in the sensitivity

analysis. Medical writing was funded by Takeda Farmacéutica España.



3.2. ALK inhibitors for ALK+ NSCLC evaluation with SB 59

3.2.9 Conflicts of interest

EC: Speaker or advisory board: Takeda, Astra Zeneca, Roche, MSD,

Novartis, Boheringer Ingelheim, Pfizer, BMS; Travel expenses: Roche,

Pfizer, Takeda, BMS. AL, CM, AN and AFN are full time employees of

Takeda Farmacéutica España S.A. CSV, GJ, MC and JMM are full time

employees of Anaxomics Biotech. BO declares no competing interests.

3.2.10 Funding

The study was funded by Takeda Farmacéutica Spain. GJ has received

funding from the European Union’s Horizon 2020 research and innovation

programme under the Marie Skłodowska-Curie grant agreement (ref:

765912).

3.2.11 Supplementary files

www.ncbi.nlm.nih.gov/pmc/articles/PMC7899557/bin/oncotarget-12-316-

s001.pdf

www.ncbi.nlm.nih.gov/pmc/articles/PMC7899557/bin/oncotarget-12-316-

s002.xlsx

3.2.12 Supplementary materials

TPMS technology: systems biology-based model creation and analysis

for ALK+ NSCLC

Systems biology-based models were created using the Therapeutic

Performance Mapping System (TPMS) to investigate the molecular

Mechanisms of Action (MoA) of brigatinib and alectinib towards the

modulation of ALK+ NSCLC. TPMS is a validated top-down systems
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biology approach that integrates all available biological, pharmacological

and medical knowledge by means of pattern recognition models and

artificial intelligence to create mathematical models that simulate in silico

the behavior of human physiology. The methodology employed and

detailed herein has been previously described [198] and applied elsewhere

[339, 257, 181, 165]. Biological maps were transformed into a mathematical

model capable of both reproducing existing knowledge and predicting new

data. TPMS technology uses a set of artificial intelligence algorithms

to generate the human physiology over the human biological network

[339, 220, 87, 346].

Human protein network (HPN) and truth table construction

A human protein network (HPN) was created in order to obtain the MoAs by

including information from many public and private databases (KEGG [204,

205], REACTOME [93], INTACT [300], BIOGRID [349], HPRD [319],

and TRRUST [158] and information extracted from scientific literature.

For the construction of the truth table, a selected collection of known

input-output physiological signals considered the “truths” were collated

into a table (Supplementary Table 7) and was used for training the models

[19]. The truth table was based on a compendium of different databases

that contain biological and clinical data [426, 232] and provides biological

and pharmacological input-output relationships (such as drug indication

pairs). Information relating biological processes (adverse drug reactions,

indications, diseases and molecular pathways) to their molecular effectors,

i.e., each one of the proteins involved in the physiological process, was

extracted from the biological effectors database (BED) (Anaxomics Biotech

SL, [198]). The biological or pathological conditions under study were also



3.2. ALK inhibitors for ALK+ NSCLC evaluation with SB 61

included in the truth table and molecularly characterized through specific

scientific literature search and hand-curated assignment of proteins to the

conditions (Supplementary Table 2). The obtained final models had to be

able to reproduce every rule contained in the truth table, and we defined the

error of a model as the percentage of all the rules with which the model does

not comply, while the accuracy was defined as the percentage of all the rules

complied with.

Modelling strategies

Two complementary modelling strategies were used, (a) TPMS Artificial

Neural Networks (ANNs) [339] and (b) TPMS Sampling-based Methods

[198], to compare the efficacy of the drugs (defined as their targets, see

Supplementary Table 3) and to compute the MoA models.

(a)ANNs are supervised algorithms that identify relations between proteins

(e.g., drug targets) and clinical elements of a protein network [339, 47,

164, 269, 321] by inferring the probability of the existence of a specific

relationship between two or more protein sets, based on the validation of

the predictive capacity of the model towards the truth table. The learning

methodology used consisted in an architecture of stratified ensembles of

neural networks as a model, trained with a gradient descent algorithm to

approximate the values of the given truth table. The neural network model

used consisted in a Multilayer Perceptron (MLP) neural network classifier.

MLP gradient descent training depends on randomization initialization and

to avoid random errors 1000 MLPs are trained with the training subset and

the best 100 MLPs are used. In order to correctly predict the effect of a

drug independently of the number of targets, a different ensemble of neural

networks are trained for a different subset of drugs according to their number
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of targets (drugs with 1 target, 2 targets, 3 targets). Then, the predictions for

a query drug are calculated by all the ensembles, and pondered according

to the number of targets of the query drug (the difference between the

number of targets of the query and the number of targets of the drugs used

to calculate each ensemble is used to ponder the result of each ensemble).

A cross-validation with the truth table information showed that the accuracy

of the described ANNs to reproduce the indications compiled in DrugBank

[426, 425] is 81.7% for those drugs with all targets in the human biological

network.

(b)Sampling-based methods generate models similar to a MLP over the

previously constructed HPN, where neurons are the proteins and the edges

of the network are used to transfer the information (Figure 10) [198]. This

methodology was used for describing with high capability all plausible

relationships between an input (or stimulus) and an output (or response).

Sampling-based methods use optimization algorithms [87] to solve each

parameter of the equation, i.e. the weights associated to the links between

the nodes in the human protein network. In this approach, the network

is limited by considering only interactions that connect drug targets with

protein effectors in a maximum of three steps. The values of activation

(+1) and inactivation (–1) of the protein targets of the drugs in the truth

table were considered as input signals whereas the output is defined as

the values of activation and inactivation of the proteins describing the

phenotype (as retrieved from the BED). Each node of the protein network

receives as input the output of the connected nodes in the direction flow

from targets to effectors, weighted by each link weight (Figure 10). The

sum of inputs is transformed by a hyperbolic tangent function to generate

the score of the node (neuron), which becomes the ‘output signal’ of the
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current node towards the nodes. The weight parameters are obtained by

Stochastic Optimization Method based on Simulated Annealing [87], which

uses probabilistic measures derived from the biological evidence to adjust

network interaction types and strengths. Since the number of entries in the

truth table is always smaller than the number of parameters (link weights)

required by the algorithm, any process modelled by TPMS considers a

population of different solutions.

Mechanisms of action elucidation

The MoAs obtained with the TPMS simulates potential interactions between

drug targets and protein effectors associated to prototype-ALK+ NSCLC

patients. In order to validate this approach, the intensity of the model’s

response, divided in TSignal and number of protein effectors activated, was

used to understand the relationships between all potential mechanisms and

compare sets of MoAs from different views (Figure 10) [198].

Intensity of the response

We defined the “intensity” of the response as follows: 1) the quantity of

protein effectors (#) that reach an expected signal sign; and 2) the strength

or amount of the output signal reaching the effectors (i.e., a global measure

of the output signal, named TSignal). Given a protein effector “i”, which

reaches a signal value yi , and vi being the effector sign according to the

BED (active or inactive) and n is the total number of effectors described for

a phenotype, it was determined:

Number of effectors achieving the expected sign

Assuming that a drug may be able to activate/ inactivate protein effectors

reverting a disease/indication model phenotype. Using Dirac’s δ (i.e.
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δ(0) = 1, and zero otherwise), the equation to calculate number of effectors

achieving the expected sign for drug indications was defined as:

#indication = sumi=1
n δ

(
vi +

yi
|yi|

)
TSignal

The average output values of the protein effectors. For each effector, it

was counted as positive signal if the sign is correct, and negative otherwise.

When a drug affects a disease phenotype, vi and yi have opposite sign and

it is necessary to change the sign in the corresponding equation:

TSignalindication = − 1
n

∑n
i=1 viyi

Sobol sensitivity analysis

An adapted methodology for ensembles of high dimensional algorithms

was applied following the definition of Sobol Sensitive Analysis [446].

According to the Sobol terminology, TPMS models can be redefined as

follows:

TSignal = TPMS(X)forX = {X1, X2. . .Xn}

Where xi is each of the parameters used in the TPMS models. Then, the

variation of TSignal for each xi parameter can be expressed as:
dTSignal

dXi
= dTPMS(X)

dXi

Consequently, the variation of the simultaneous parameters xi and xj can

be estimated as:
dTSignal
dXidXj

= dTPMS(X)
dXidXj

Using the previous equation descriptions, we measured the impact of

varying random parameters over output TSignal in two different approaches,

those being local analysis and global analysis [446].

Local sensitivity analysis

Local sensitivity analysis evaluates changes in the model outputs (TSignal)
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Table 4: Pathophysiological processes (motives) and number of seeds proteins of
ALK+ NSCLC

Table 5: Brigatinib and alectinib characterized protein targets

with respect to variations in a single model parameter. This effect was

measured in the TPMS-models for both alectinib and brigatinib MoA

models (Figure 11).

Global sensitivity analysis

In the global sensitivity analysis, all parameters are varied simultaneously

over the entire parameter space to measure the effects of their interactions

on the model output. Given the high dimensionality of the TPMS ensemble

models, this measure has been estimated by a MonteCarlo experiment to

introduce random values (noise) in sets of 1200 candidate parameters. These

final TSignal effects were measured by altering combinations of parameters

in subsets of 1, 2, 3, 4, 5, 10, 15, 20 and 30 parameters simultaneously, from

the candidate parameters list (Figure 12).
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Table 6: Summary of data used for model construction (Human Protein Network
(HPN) and truth table)

Figure 10: TPMS schematic representation of the input/output signals information
over the Human Protein Network (HPN) using a Multilayer Perceptron-like and
sampling method to predict the Mechanisms of Action (MoAs) of a drug

Sensitivity results

Although TPMS-models have about 5000 parameters, only a small

percentage of them showed a real impact on the output, which was less

notorious in brigatinib than alectinib (Figures 11 and 12). Nevertheless, the

impact of some of the protein parameters are of great importance, meaning

that TPMS models had to carefully adjust to all the restrictions defines in

the truth table, while completing the drug-pathology model. We can see this

as most protein parameters are actually part of the ALK+ NSCLC effectors

(like P27361, P28482 and P414921, among others), which will definitely
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Figure 11: MoA models difference of TSignal measured for each individual
parameters variation.
(A and B) show the % of variation of the output TSignal for the 25 most sensible
parameters in brigatinib and alectinib MoA models, respectivelty. (C and D) show
the % of variation of the output TSignal for all parameters in brigatinib and alectinib
MoA models, respectively. Parameters are ordered from the ones affecting the most
to the models, to the ones affecting the less. For the sake of visual simplicity, the
parameter names of C and D are not displayed in the x axis.

Figure 12: MoA models TSignal measured for individual and multiple parameters
variation.
The output TSignal when variating 1 until 30 random parameters simultaneously
in brigatinib and alectinib MoA models, respectively, is shown. The gray, dashed
line represents the original TSignal values for each of the drugs MoA.

have a huge effect on the final TSignal according to its definition in Equation

2.
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3.3 Discussion

Both alectinin and brigatinib, second generation ALK tyrosine kinase

inhibitors (TKIs), are drugs that had already demonstrated good efficacy

in second line treatments in patients with ALK+ non-squamous cell lung

carcinoma (NSCLC) in previous clinical trials, ALEX and ALTA-1L

respectively [60, 63]. However, no head-to-head study to compare the

two drugs had been performed. Here, TPMS systems biology and ANN

approaches were used to compute both mechanisms of action (MoA) and

explore their mechanistic differences in silico.

3.3.1 TPMS models

Systems biology models were constructed with TPMS technology in order

to mechanistically explain the relation between brigatinib and alectinib

drugs with NSCLC. Those models were able to explain the MoA linking

each drug with the study disease, in order for posterior comparison of

highlighted pathways. The systems accuracy were above 94%, that is, the

percentage of truth table or known biological relationships complied after

model optimization.

A Sobol sensibility analysis was performed over the constructed models in

order to analyze the impact of noise in the final MoAs and the weight of each

parameter or protein. Although less notorious in brigatinib than alectinib,

a portion of them showed a real impact on the output, highlighting their

importance in the predicted pathways.
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3.3.2 ANNs

Artificial neural network models were constructed over the same protein

network as the MoA models, but with the aim of detecting relationship

between an input protein set, stimulus (e.g., drugs), and a response (e.g.,

disease).

These networks are build using topological and functional measures of the

protein nodes, and after being trained with known protein relationship data,

can be used to predict protein sets relationships. The resulting models were

able to reproduce more than 80% of the training set data.

3.3.3 Response effect

Using the ANN response profiles, both drugs appear to show similar

intensity effect towards ALK+ NSCLC, with brigatinib presenting a slightly

higher relation to the disease effectors. However, when focusing on

the specific activated pathways, britgatinib showed a wider interplay of

functions compared to alectinib, such as: (i) cell growth and proliferation;

(ii) apoptosis evasion; (iii) sustained angiogenesis; and (iv) tissue invasion

and metastasis processes. Those functions were linked to its more

diverse cancer-related target profile, which correlate with previous findings

associating brigatinib to relatively longer progression free survival times

compared to alectinib [133].

3.3.4 Brain metastasis

Central nervous system progression in ALK+ NSCLC patients is rather

common [134]. In previous studies, both drugs had already showed higher

intracranial objective response rate (iORR) than another NSCLC drug,

crizotinib, in individuals with ALK TKI-naive ALK+ NSCLC [347, 131].
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Here, when analyzing both drug models, brigatinib was predicted to be less

prone to brain metastasis, which could help explain its prevention levels

despite having low BBB penetration. Specifically, we found that brigatinib

targets are able to reach brain-related metastasis proteins, including: (i)

the well-known proliferation marker Ki-67 [383]; (ii) the ROBO1/SLIT2

axis, increased in brain metastasis [391] and involved in cell migration

[227]; (iii) the pro-angiogenic VEGFA, related to increased brain metastatic

potential [449, 199, 380]; and (iv) damage signal proteins (DAMPS) S100

proteins, involved in increased proliferation, anti-apoptotic, and migration

capabilities [303, 194], which are increased in serum of brain metastatic

patients and brain metastasis models [33, 69, 449, 303, 194]. In contrast,

alectinib intracranial efficacy can be easily explained by its elevated

blood-brain barrier (BBB) penetration [131].

3.3.5 Drug resistances

Although these two next generation TKIs are able to strongly inhibit ALK,

both in its wild type form and with secondary mutations, resistance to

TKI therapy is still an issue [32, 209]. In that sense, little is known

about the capacity of ALK TKIs to prevent bypass resistance mechanisms.

For that, we use both TPMS models to test the effect of random single

or multiple pinpoint mutations, by activating or inhibiting proteins from

the network systems. The in silico evaluation of the robustness towards

non-ALK-related resistances suggests that brigatinib might be able to block

or prevent the development of upstream bypass resistance mechanisms

more effectively than alectinib. This could translate into resistance-free

treatment for a longer period of time. That effect was predicted to occur

due to a mechanism of action that reaches a larger number of intracellular

effectors involved in ALK-independent resistance mechanisms, including
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JAK/STAT, MEK/ERK, PI3K or PLCγ [209, 342]. The effect was also

seen on the Sobol analyses, were alectinib presented more sensitive proteins.

So, brigatinib would modulate these pathways that are involved in different

NSCLC-related pathophysiological processes more robustly than alectinib.

3.3.6 Drug-drug interactions

The usage of more than one drug (e.g., to treat cancer or treatment-derived

complications, or pre-existing conditions) is common in cancer patients,

and polypharmacy (5 or more concomitant drugs) has been shown to occur

at a higher frequency in cancer survivors than in non-cancer age- and

sex-matched controls [285]. Whereas both drugs interact with CYP3A,

among other enzymes and transporters, only brigatinib has been described

to interact with other inductors, inhibitors and substrates of CYP3A family

cytochromes [13, 383].

In this study, the generated models were evaluated with an array of over

600 drugs. The results indicated that brigatinib might be more prone

to drug interactions, including angiotensin-receptor blockers, barbiturates

and bisphosphonate; hence alectinib, which still shoed interaction with

non-peptide inhibitors of the antidiuretic hormone, may be a safer option

in poly-treated patients.

3.4 Concluding remarks

TPMS systems biology models allowed a fast in silico evaluation and

comparison of alectinib and brigatinib as treatments for ALK+ NSCLC. The

results were centered on the MoAs of both drugs but not their physiological

properties which, in the case of brain metastasis pharmacological action,

helped understand the similar effect of both drugs although presenting
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different BBB penetration ratios.

Moreover, these MoA models are resourceful in the sense that not only the

drug’s highlighted pathways could be investigated, but also drug resistances

and interactions could be evaluated. So, these types of models come handy

when investigating with complex diseases like cancer were many signaling

pathways take part in the pathogenesis [323].
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Systems biology network

approaches to simulate and

analyze prototype-patients

4.1 Introduction

In collaboration with Joaquim Aguirre-Plans, the other first co-author of

the following article and investigating at GRIB (Research Programme on

Biomedical Informatics), we applied the systems biology network tools

of TPMS [18] and GUILDify v2.0 [6] to model the response of the drug

combination sacubitril+valsartan towards the phenotypes of heart failure

(HF) and macular degeneration (MD), using the theoretical models as

“prototype-patients”.

Briefly, TPMS generates an ensemble of solutions that can include clusters

of solutions defining an array of MoAs for a particular stimulus-response

relationship. Because TPMS searches for all MoA pathway possibilities,

73
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resulting in not one but several MoA pathways evaluated as a whole, that

could be extrapolated to the response of different patients, here named

prototype-patients. The sampling system allows for the finding of pathways

that may not appear on a one-solution approach used in other models and

comes handy for relating to distinct patient responses; specially in heart

related diseases, where much variability is observed [254]. It is also a

step forward precision or personalized medicine, were individual patients

are modeled. So, we assumed that MoAs associated to good or bad

patient responders to the treatment can be identified by their intensity of

model’s outcome measure, namely tSignal. We stratified prototype-patients

in two categories, best and worst, belonging to the highest 25% solutions or

prototype-patients, and worst 25%. Then, we identified several biomarker

proteins that allowed to differentiate such prototype-patients in best vs

worst responders. Posteriorly, we applied GUILDify v2.0, which uses

diffusion-based algorithms to identify the modules associated to a disease

or side effect, to detect the disease components of heart failure and macular

degeneration, assess how the treatment combination target proteins’ signal

were overlapping in both phenotypes, and search the biomarker proteins

identified by TPMS in this context.

4.2 In-silico simulated prototype-patients using

TPMS technology to study a potential adverse

effect of sacubitril and valsartan

PLoS One. 2020 Feb 13;15(2):e0228926.

PMID: 32053711

PMCID: PMC7018085

DOI: 10.1371/journal.pone.0228926
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4.2.1 Abstract

Unveiling the mechanism of action of a drug is key to understand

the benefits and adverse reactions of a medication in an organism.

However, in complex diseases such as heart diseases there is not a unique

mechanism of action but a wide range of different responses depending

on the patient. Exploring this collection of mechanisms is one of the

clues for a future personalized medicine. The Therapeutic Performance

Mapping System (TPMS) is a Systems Biology approach that generates

multiple models of the mechanism of action of a drug. Each molecular

mechanism generated could be associated to particular individuals, here

defined as prototype-patients, hence the generation of models using TPMS

technology may be used for detecting adverse effects to specific patients.



76 Chapter 4. Using SB for simulating and analyzing prototype-patients

TPMS operates by (1) modelling the responses in humans with an

accurate description of a protein network and (2) applying a Multilayer

Perceptron-like and sampling strategy to find all plausible solutions. In

the present study, TPMS is applied to explore the diversity of mechanisms

of action of the drug combination sacubitril/valsartan. We use TPMS

to generate a wide range of models explaining the relationship between

sacubitril/valsartan and heart failure (the indication), as well as evaluating

their association with macular degeneration (a potential adverse effect).

Among the models generated, we identify a set of mechanisms of action

associated to a better response in terms of heart failure treatment, which

could also be associated to macular degeneration development. Finally,

a set of 30 potential biomarkers are proposed to identify mechanisms (or

prototype-patients) more prone of suffering macular degeneration when

presenting good heart failure response. All prototype-patients models

generated are completely theoretical and therefore they do not necessarily

involve clinical effects in real patients. Data and accession to software are

available at http://sbi.upf.edu/data/tpms/.

4.2.2 Introduction

Systems biology methods are an increasingly recurring strategy to

understand the molecular effects of a drug in complex clinical settings

[304]. Some of these methods apply computer science techniques and

mathematical approaches to simulate the responses of a drug. In 2005, the

Virtual Physiological Human initiative was founded with the objective of

developing computational models of patients [401]. Later, they defined the

concept of In Silico Clinical Trials as “the use of individualized computer

simulation in the development or regulatory evaluation of a medicinal

product, medical device, or medical intervention” [403]. Since then, In
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Silico Clinical Trials have been adopted in several occasions in preclinical

and clinical trials [304].

However, current methodologies do not consider the inter-patient variability

intrinsic to pharmacological treatments, missing relevant information that

should be incorporated into the models. Indeed, there are many parameters

influencing the Mechanisms of Action (MoA) in such therapies, including

demographic data of the patient, co-treatments or clinical history. Thus,

by modelling all molecular mechanisms affected by the drug, the diversity

of responses observed in patients during or after the treatment could be

explained.

The Therapeutic Performance Mapping System (TPMS) [18] is a method

used to elucidate all the possible MoAs that could exist between an input

drug and a pathology or adverse effect. It is a systems biology approach

based on the simulation of patient-specific protein-protein interaction

networks. TPMS incorporates data from different resources and uses the

information from the drugs and diseases under study to generate multiple

models of potential MoAs. In the last years, TPMS has been broadly

used in different clinical areas and with different objectives [321, 164, 148,

309, 181, 339, 257, 182], in some cases being validated in the posterior

experiments [164, 257, 182]. Our working hypothesis is that a set of MoAs

can represent the different responses to a drug in cells and that a real

population of patients is the result of a myriad of cell responses. Thus,

we define a prototype-patient as an abstract case with all cells responding to

a single MoA.

Here, we propose the application of TPMS and protein-network approaches

in the specific case study of the drug combination sacubitril/valsartan,

used for the treatment of Heart Failure (HF). HF is becoming a major



78 Chapter 4. Using SB for simulating and analyzing prototype-patients

health problem in the western world due to its increasing hospitalization

rates [101], with a prevalence being influenced by many factors like age,

nutritional habits, lifestyles or genetics. This complicates the development

of treatments and the identification of universal biomarkers to stratify the

population. To facilitate this segmentation, it is necessary to understand the

molecular details of the treatment and the pathology. Sacubitril/valsartan

(marketed by Novartis as Entresto R©) is a drug combination that shows

better results than conventional treatments by reducing cardiovascular

deaths and heart failure (HF) readmissions [274]. In pharmacological terms,

it is an angiotensin receptor-neprilysin inhibitor. Consequently, it triggers

the natriuretic peptide system by inhibiting neprilysin (NEP) and inhibits

renin-angiotensin-aldosterone system by blocking the type-1 angiotensin II

receptor (AT1R) [359]. In a previous work, TPMS was already applied to

unveil the MoA of sacubitril/valsartan synergy, revealing its effect against

two molecular processes [181]: the left ventricular extracellular matrix

remodeling, mediated by proteins like gap junction alpha-1 protein or matrix

metalloproteinase-9; and the cardiomyocyte apoptosis, through modulation

of glycogen synthase kinase-3 beta. However, several publications warned

about the potential long-term negative implications of using a neprilysin

inhibitor like sacubitril [359, 317, 115, 331, 448]. Neprilysin plays a

critical role at maintaining the amyloid-β homeostasis in the brain, and

the alteration of amyloid-β levels has been linked to a potential long-term

development of Alzheimer’s disease or Macular Degeneration (MD) [359,

115, 448, 29, 297]. During the clinical trials PARADIGM-HF and

PARAGON-HF with sacubitril/valsartan no serious effects were detected

[274, 368]. Still, their patient follow-up was relatively short and not

specialized in finding neurodegenerative specific symptoms. For this

reason, in a forthcoming PERSPECTIVE trial (NCT02884206) a battery of
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cognitive tests was taken [331]. In line with this, the application of systems

biology methods may shed light to the potential relationship between the

treatment and the adverse effect.

In this study, we used TPMS and GUILDify v2.0 to analyze the relationship

between sacubitril/valsartan, HF and MD in entirely theoretical models.

Because these are theoretical models it is important to note that they are not

associated with clinical effects in real patients, they only point on potential

mechanisms to explain potential adverse effects. We analyzed a population

of MoAs that describe the possible protein links from a sacubitril/valsartan

treatment to HF and MD phenotypes. We clustered the MoAs in groups

according to their response intensity and labelled them as high or low

efficacy of treating HF and possibility of causing MD. We then compared

these sets of MoAs and proposed a list of biomarkers to identify potential

cases of MD when using sacubitril/valsartan. Simultaneously, we used

GUILDify v2.0 web server [6] as an alternative approach to compare the

biomarkers proposed by TPMS and reinforce the results.

4.2.3 Materials and methods

Biological Effectors Database (BED) to molecularly describe specific

clinical conditions

Biological Effectors Database (BED) [321, 363] describes more than 300

clinical conditions as sets of genes and proteins (effectors) that can be

“active”, “inactive” or “neutral”. For example, in a metabolic protein-like

network, an enzyme will become “active” in the presence of a catalyst, or

become inactivated when interacting with an inhibitor (see further details in

supplementary material).
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TPMS modelling

The Therapeutic Performance Mapping System (TPMS) is a tool that creates

mathematical models of the protein pathways underlying a drug/pathology

to explain a clinical outcome or phenotype [18, 321, 164, 148, 309, 181,

339]. These models find MoAs that explain how a Stimulus (i.e. proteins

activated or inhibited by a drug) produces a Response (i.e. proteins

active or inhibited in a phenotype). In the present case study, we applied

TPMS to the drug-indication pair sacubitril/valsartan and HF. Regarding

the drug, we retrieved the sacubitril/valsartan targets from DrugBank [425],

PubChem [217], STITCH [381], SuperTarget [161] and hand curated

literature revision. As for the indication, we retrieved the proteins associated

with the phenotype from the BED [321, 363].

Building the Human Protein Network (HPN)

To apply the TPMS approach and create the mathematical models of

MoAs, a Human Protein Network (HPN) is needed beforehand. In this

study, we used a protein-protein interactions network created from the

integration of public and private databases: KEGG [205], BioGRID [68],

IntAct [300], REACTOME [108], TRRUST [157], and HPRD [319].

In addition, information extracted from scientific literature, which was

manually curated, was also included and used for trimming the network.

The resulting HPN considers interactions corresponding to different tissues

to take into account the effect of the Stimulus in the whole body.

Defining active/inactive nodes

We define the state of human proteins as active or inactive for a

particular phenotype, including its expression (as active) or repression (as

inactive) extracted from the GSE57345 gene expression dataset [254] as in
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Iborra-Egea et al [181] (see further details in supplementary material).

Description of the mathematical models

The algorithm of TPMS takes as input signals the activation (+1) and

inactivation (-1) of the drug target proteins, and as output the BED protein

states of the pathology. It then optimizes the paths between both protein

sets and computes the activation and inactivation values of all proteins in the

HPN. Each node of the protein network receives as input the output of the

incoming connected nodes and every link is given a weight (ωl). The sum of

inputs is transformed by a hyperbolic tangent function that generates a score

for every node, which becomes the “output signal” towards the outgoing

connected nodes. The ωl parameters are obtained by optimization, using a

Stochastic Optimization Method based on Simulated Annealing [88]. The

models are then trained by using the general restrictions (i.e. defined as

edges and nodes with the property of being active or inactive) and the

specific conditions set by the user. Details of the approach are shown in

Fig 1 and supplementary material.

Measures to compare sets of MoAs

To understand the relationships between all potential mechanisms we

defined some measures of comparison between different sets of solutions.

We expect that a drug will revert the conditions of a disease phenotype;

subsequently, a drug should inactivate the active protein effectors of a

pathology-phenotype and activate the inactive ones. In this section we

describe the measures used in the present study to analyze and compare

sets of MoAs from different views (see further details in supplementary

material).

TSignal
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To quantify the intensity of the response of a MoA, we defined TSignal

as the average signal arriving at the protein effectors (equation in

supplementary material).

Distance between two sets of MoAs

We used the modified Hausdorff distance (MHD) introduced by Dubuisson

and Jain [99] as the distance between two or more sets of MoAs in order

to determine their similarity. Details of the equations are explained in the

supplementary material.

Potential biomarkers extracted from MoAs

In order to extract potential biomarkers when comparing sets of MoAs,

we first defined the best-classifier proteins. These are proteins inside

the HPN that allow to better classify between groups of models and are

identified following a Data-Science strategy (see supplementary material).

Best-classifier proteins are usually strongly related to the intensity of a

response and are proteins with values differently distributed between the

groups of MoAs analyzed. For this study, and for the sake of simplicity,

we focused only on the 200 proteins (or pair of proteins) showing the higher

classification accuracy. Assuming the hypothesis that the selected MoAs are

representative of individual prototype-patients, these proteins could be used

as biomarkers to classify a cohort of patients.

Then, we applied the Mann-Whitney U test to compare the distributions

of the best-classifier proteins values between the groups and selected those

proteins with significant difference (p-value< 0.01). We also restricted the

list to proteins having an average value with opposite sign among groups

(i.e. positive vs. negative or vice versa) and named them as differential

best-classifier proteins. By following this strategy, we can identify two

groups of differential best-classifier proteins: those active in the first group
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(positive output signal in average) and inactive in the other (negative output

signal in average), and the opposite.

Figure 13: Scheme of how to apply TPMS to find the Mechanisms of Action (MoA)
of a drug.
(a) Scheme of the method, transmitting information over the Human Protein
Network (HPN) using a Multilayer Perceptron-like and sampling. (b) After a given
number of iterations, we obtain a collection of Mechanisms of Actions (MoA).
Rows represent the MoAs and columns the output signal values of the proteins
(nodes of the network). The final column shows the accuracy of the model as a
percentage of the number restrictions accomplished. (c) 200 MoAs are selected
(coloured in the slide) and sorted by TSignal. The first quartile is defined as the
Low-disease group, and the fourth quartile as High-disease group. The distribution
of the output signals of the two groups of MoA are shown in (d) (High-disease in
red and Low-disease is in blue).

4.2.4 Results and discussion

We applied TPMS to the HPN using as input signals the drug targets

of sacubitril/valsartan (NEP / AT1R) and as output signals the proteins

associated with HF extracted from the BED. Out of all MoAs found by

TPMS, we selected the 200 satisfying the largest number of restrictions (and

at least 80% of them) to perform further analysis.

Note that TPMS was only executed once, optimizing the results to satisfy

the restrictions on HF data. The values of MD are obtained by measuring
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the signal arriving at the MD effectors, which are part of the HPN and also

receive signal. This procedure was chosen because we defined HF as the

indication of the drug (sacubitril/valsartan), while MD is a potential adverse

effect.

Stratification of MoAs

In order to compare models related to a good or bad response to the

treatment, or those more prone to lead towards potential MD adverse effect,

we stratified the MoAs. For HF, or treatment response, MoAs were ranked

by their TSignal and then split in four quartiles. The first quartile (top

25%) contains MoAs with higher intensity of the response, which in turn

corresponds to lower values of the effectors associated with HF phenotype

(we named them as “Low”-disease MoAs). On the contrary, the fourth

quartile (bottom 25%) collects MoAs with lower intensity of response (thus,

we named as “High”-disease MoAs) (S1 File). On the other hand, for MD,

the first quartile (top 25%) contains MoAs with higher intensity, which as

an adverse event, correspond to models with high values of the effectors

associated to MD (we named them as High-adverseEvent MoAs). The

fourth quartile (bottom 25%) collects MoAs with lower intensity of response

(thus, we named as Low- adverseEvent MoAs) (S1 File). Note that, in

the following steps and because HF and MD groups were extracted from

the same 200 set of models, common MoAs between different HF and

MD-defined sets could be expected.

Comparison of MoAs with high/low TSignal associated to HF or MD

We calculated the modified Hausdorff distance between the groups of MoAs

(High-MD, Low-MD, High-HF and Low-HF) to elucidate their similarity

values (S1 File). In this sense, the higher the distance between the groups
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is, the more different they are. We used these distances to calculate a

dendrogram tree (see S1 File) showing that MoAs associated with a bad

response to sacubitril/valsartan for HF (high-HF) are more similar (i.e.

closer) to MoAs linked to a stronger MD adverse effect (high-MD). It is

remarkable that the distances between Low- and High-HF and between

Low- and High-MD are larger than the cross distances between HF and

MD. However, by the definition of distance (equation 3 in supplementary

material), it cannot account for the dispersion among the MoAs within

and between each group. Therefore, for each set we calculated the mean

Euclidean distance between all the points and its center, defined by the

average of all points (see S1 File). As a result, all groups showed very

similar dispersion values.

In order to have a global and graphical view of the distance between the

individual MoAs, we generated a multidimensional scaling (MDS) plot

calculated using MATLAB (see Fig 2). MDS plots display the pairwise

distances in two dimensions while preserving the clustering characteristics

(i.e. close MoAs are also close in the 2D-plot and far MoAs are also far in

2D). Focusing on the Low-HF group depicted in blue circles, we observe

that there is no clear tendency to cluster with any of the MD groups. There

are few cases of Low-HF MoAs coinciding in the space with Low- or

High-MD MoAs. This implies that a good response to sacubitril/valsartan

of HF patients would not be usually linked to the development of MD.

Moreover, no clear distinction is found when plotting only the MD MoAs

within the Low-HF group (see S1 File). However, regarding the set of

High-HF MoAs, we can differentiate two clusters of MoAs: one related

to the High-MD group (green crosses); and the other close to MoAs of the

Low-MD group (black crosses) (see S1 File).
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Assuming the hypothesis that different MoAs correspond to distinct

prototype-patients, we conclude that for the specific set of patients for

which sacubitril/valsartan works best reducing HF, it would be more

difficult to differentiate between those presenting MD and those who do

not. Instead, for the High-HF group, patients having MD could indeed

be easily distinguished from those not presenting MD as side effect.

However, because Low-HF group has more relevance to the clinics, specific

functional analyses were performed in this specific group, as seen in

following sections. Finally, we highlight that, as these distinct groups of

prototype-patients are theoretical simulations, they don’t reflect the clinical

effects of real patients.

Figure 14: Multidimensional scaling plot of the distances between the Mechanisms
of Action (MoA) of the four groups defined.
Each point represents a MoA. Axes are defined by the most representative
dimensions.
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Identification and functional analysis of potential biomarkers

For this section, we identified the nodes (i.e. proteins) significantly

differentiating two groups of models (using a Mann-Whitney U test) for

which the average of output signals have opposite signs (see methods in

refsect33). After that, the function of the identified proteins was extracted

from Gene Ontology (GO).

Identification of best-classifier proteins differentiating HF responses

After comparing High- vs Low- HF groups, we found a total

of 45 differential best-classifier proteins associated with the

treatment response (6 Low-HF-active/High-HF-inactive and 39

Low-HF-inactive/High-HF-active) (see Fig 3A and S1 File). To

pinpoint the biological role of these proteins, we first identified the

GO enriched functions (see S1 File) and then searched in the literature

for evidences linking them with HF. As a result, we found that the

differential best-classifier proteins Low-HF-active/High-HF-inactive

point towards an important role for actin nucleation and polymerization

mechanisms in drug response (reflected by the functions regulation

of actin nucleation, regulation of Arp2/3 complex-mediated actin

nucleation, SCAR complex, filopodium tip, or dendrite extension). In

fact, the alteration of actin nucleation and polymerization mechanisms

has been reported in heart failure [307, 207, 72]. Interestingly, a

role for the activation of another differential best-classifier candidate,

ATGR2, has been proposed to mediate some of the beneficial effects of

angiotensin II receptor type 1 antagonists, such as valsartan [255, 355].

On the other hand, the results of the differential best-classifier proteins

Low-HF-inactive/High-HF-active are linked to phosphatidylinositol

kinase mediated pathways (phosphatidylinositol-3,4-bisphosphate 5-kinase
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activity) and MAP kinase mediated pathways (MAP kinase kinase

activity, best classifier proteins MAPK1, MAPK3, MAPK11, MAPK12 or

MAPK13). In this case, both signaling pathways have been associated to

cardiac hypertrophy and subsequent heart failure [20, 104]. These outcomes

clearly lead towards the idea that High-HF models are a representation of

prototype-patients with a worst response to the treatment, while Low-HF

models are related to more beneficial response to the medication. A more

detailed explanation can be found in the supplementary material.

Identification of best-classifier proteins differentiating MD responses

We identified 57 differential best-classifier proteins

of MD (28 Low-MD-active/High-MD-inactive and 29

Low-MD-inactive/High-MD-active) (see Fig 3B and S1 File). Again,

we searched for relationships between these proteins and MD by

identifying the GO enriched functions (see S1 File) and searching for links

in the literature. Some of the proteins and functions highlighted in the

current analysis had been related to MD in previous works. The presence

of dendritic spine development and dorsal/ventral axon guidance related

proteins emphasizes the role of sacubitril/valsartan in dendritic and synaptic

plasticity mechanisms, which had been previously linked to MD [379].

Furthermore, valsartan treatment has been reported to promote dendritic

spine development in other related neurodegenerative diseases, such as

Alzheimer’s disease [366]. Other enriched functions are implicated in

growth factor related pathways, which are known to be involved in wet MD

pathogenesis [127]. Moreover, neovascularization in the wet variant of MD

has been linked to the signaling of some of the growth factors detected as

sacubitril/valsartan-associated MD classifiers in this study, including FGF1

[127] and PDGF [144, 151]. A more detailed explanation can be found in
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the supplementary material.

Figure 15: Scatter plot of the mean signal values of Low and High-“disease”
Mechanisms of Action (MoA).
Scatter plot of the mean signal values of Low-“disease” and High-“disease”
MoAs for each protein using as disease Heart Failure (HF) in (a) and Macular
Degeneration (MD) in (b) . The average of the output signal of each protein in
High-group is presented versus its value in Low-group. Differential signals (Diff.,
shown as triangles) are defined as those with opposite sign when comparing High
versus Low average, and a p-value < 0.01 when calculating the Mann-Whitney
U test between the two distributions of signals. Best-classifier proteins (BCP)
are colored in red, otherwise they are blue. Sizes of markers are proportional to
p-values of the Mann-Whitney U test.

Identification of potential biomarkers differentiating MD responses in

Low-HF

Because of its clinical relevance, we decided to focus on analyzing

the special case of prototype-patients in which the treatment reduces

HF (Low-HF) but produces MD adverse effect (High-HF). In order to

find these prototype-patients, we: (i) identified 13 Low-HF ∩ Low-MD

MoAs and 12 Low-HF ∩ High-MD MoAs; and (ii) compared the protein

signal of the two groups and proposed 30 potential biomarkers (Table

1). Among the proposed biomarkers, we found 16 proteins active in

Low-HF ∩ Low-MD MoAs but inactive in Low-HF ∩ High-MD (15 of

them shared with MD best-classifier proteins). On the other hand, 14

proteins were identified as inactive in Low-HF ∩ Low-MD and active
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in Low-HF ∩ High-MD MoAs (12 of them were MD best-classifier

proteins). We calculated the GO enriched functions of these two groups

and observed that “phosphatidylinositol bisphosphate kinase activity” is

enriched among proteins that are active in Low-HF ∩ Low-MD MoAs.

Instead, “fibrinolysis” was found to be enriched among proteins active in

Low-HF ∩ High-MD MoAs (Table 2). With this, we conclude that among

the group of prototype-patients for which sacubitril/valsartan improves HF

treatment response, the modulation of fibrinolysis could play a role at

inducing the MD adverse effect. Moreover, we propose 12 best-classifier

proteins that may be considered as biomarkers for good prognosis of the

side effect.

In fact, since neovascular MD development is characterized by subretinal

extravasations of novel vessels derived from the choroid (CNV) and the

subsequent hemorrhage into the photoreceptor cell layer in the macula

region [292], it might be reasonable to think that the modulation of

fibrinolysis and blood coagulation pathways could play a role. The reported

implication of some fibrinolysis related classifiers, such as FGB, SERPINE1

(PAI-1), and SERPING1, in neovascular MD development seems to support

this hypothesis [440, 239, 167]. Besides, valsartan might be implicated

in this mechanism, since it has been reported to modulate PAI-1 levels

and promote fibrinolysis in different animal and human models [279, 301].

In addition, the presence of several other MD related classifiers in this

list, such as IRS2 [8], PTGS2 [419], DCN [419] and FGF1 [362], further

supports the interest of the classifiers as biomarkers of MD development in

sacubitril/valsartan good responders. Still, we would like to highlight that

the biomarkers have been proposed using a theoretical approach, and that

the clinical effects studied may not be present in real patients.



4.2. In-silico prototype-patients using TPMS technology 91

Table 7: Potential biomarker proteins, with opposite signal in Low-HF ∩ Low-MD
and Low-HF ∩ High-MD MoAs.

Analysis of proposed biomarkers with GUILDify

In the previous section, we proposed 30 proteins that could potentially

help to identify HF patients at risk of developing MD. To corroborate

these biomarkers, we tested how many of them are found using a different

approach also based on the use of functional networks. For this purpose,

we used GUILDify v2.0 [6], a web server that extends the information of

disease-gene associations through the protein-protein interactions network.

GUILDify scores proteins according to their proximity with the genes

associated with a disease (seeds). Using this web server, we identify a list
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Table 8: Top 10 Gene Ontology functions enriched from proteins with opposite
signal in Low-HF ∩ Low-MD and Low-HF ∩ High-MD MoAs.

of top-scoring proteins that are critical on transmitting the perturbation of

disease genes through the network. The network used by GUILDify is

completely independent from the HPN used in the TPMS, becoming an

ideal, independent context to test the potential biomarkers.

Thus, we used GUILDify to indicate which of the potential biomarkers

identified by TPMS may have a relevant role in the molecular mechanism

of the drug. We ran GUILDify using the two targets of sacubitril/valsartan

(NEP, AT1R) as seeds, and selected the top 2% scored nodes (defined as the

“top-drug” set). We did the same with the phenotypes of HF and MD, using

as seeds the 124 effectors of HF and 163 effectors of MD from the BED

database. We merged the top scored sets of HF, MD and top-drug (“top-drug

∪ top-HF ∪ top-MD”) and studied the overlap with the set of 30 biomarkers

proposed in the previous section. 10 of the candidate biomarkers are found

in the merged set “top-drug ∪ top-HF ∪ top-MD” and are consequently

significant (see S1 File).

Some of these candidates can be functionally linked to both diseases and the
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drug under study. For example, among these 10 classifiers, AGER has been

implicated in both HF [162], through extracellular matrix remodeling, and

MD development [25], through inflammation, oxidative stress, and basal

laminar deposit formation between retinal pigment epithelium cells and

the basal membrane; furthermore, this receptor is known to be modulated

by AT1R [313], valsartan target. Similarly, FGF1 has been proposed to

improve cardiac function after HF [137], as well as to promote choroid

neovascularization leading to MD [127]. Moreover, FGF1 is regulated by

angiotensin II through ATGR2 [234], another protein suggested as classifier

in the current analysis that is known to mediate some of the effects of AT1R

antagonists, such as valsartan [255, 355]. Another candidate, NRG1, has

been linked to myocardial regeneration after HF [135] and is known to

lessen the development of neurodegenerative diseases such as Alzheimer’s

disease [437], which shares similar pathological features with MD [202].

NRG1 is also linked to the expression of neprilysin [437], sacubitril target.

ITGB5 has been identified as risk locus for HF [400] and its modulation has

been linked to lipofucsin accumulation in MD [203]. Interestingly, ATGR1

inhibitors have been reported to modulate ITGB5 expression in animal

models [211]. Finally, IL1A has been proposed as an essential mediator of

HF pathogenesis [57, 393] through inflammation modulations, and serum

levels of this protein have been found increased in MD patients [286]. In

addition, as described in previous sections, classifiers FGB, SERPINE1, and

SERPING1 have been linked to MD [440, 239, 167] and are also known

to play a role in HF development [442, 442, 275, 67]. According to these

findings, the 10 potential biomarkers proposed by TPMS and identified with

GUILDify might be prioritized when studying good responder HF patients

at risk of MD development.
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4.2.5 Limitations

Although TPMS returns the amount of signal from the drug arriving to the

rest of the proteins in the HPN, this signal is only a qualitative measure. We

are not using data about the dosage of the drug or the quantity of expression

of the proteins. However, we are already working to make TPMS move

towards the growing tendency of Quantitative Systems Pharmacology. The

quantification of the availability of drugs in the target tissue for each patient

opens the opportunity to have an accurate patient simulation to do in silico

clinical trials.

4.2.6 Conclusions

It exists an increasing need for new tools to get closer to real life clinical

problems and the Systems Biology-based computational methods could be

the solution needed. The specific case of sacubitril/valsartan stands out

because of the amount of resources invested in the safety of the drug and the

concern on the possible risk of inducing amyloid accumulation-associated

conditions, such as macular degeneration (MD), in the long term. In this

study, we applied TPMS technology to uncover different Mechanisms of

Action (MoAs) of sacubitril/valsartan over heart failure (HF) and reveal

its molecular relationship with MD. For this approach, we hypothesize

that each MoA would correspond to a prototype-patient. The method

is then used to generate a wide battery of MoAs by performing an in

silico trial of the drug and pathology under study. TPMS computes the

models by using a hand curated Human Protein Network and applying

a Multilayer Perceptron-like and sampling method strategy to find all

plausible solutions. After analyzing the models generated, we found

different sets of proteins able to classify the models according to HF
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treatment efficacy or MD treatment relationship. The sets include functions

such as PI3K and MAPK kinase signaling pathways, involved in HF-related

cardiac hypertrophy, or fibrinolysis and coagulation processes (e.g. FGB,

SERPINE1 or SERPING1) and growth factors (e.g. FGF1 or PDGF) related

to MD induction. Furthermore, we propose 30 biomarker candidates to

identify patients potentially developing MD under a successful treatment

with sacubitril/valsartan. Out of this 30, 10 biomarkers were also found

in the alternative, independent molecular context proposed by GUILDify,

including some HF and MD effectors such as AGER, NRG1, ITGB5

or IL1A. Further studies might prospectively validate the herein raised

hypothesis.

We notice that the models generated with TPMS are completely theoretical

and thus, they are not associated with clinical effects of real patients.

Consequently, the biomarkers proposed on the basis of these models are

also theoretical and would require an experimental validation. Still, TPMS

represents a huge improvement for studying the hypothetical relationship

between a drug and an adverse effect. Until now, there were not enough

tools that allow to perform an exhaustive study on the MoAs of an adverse

effect. Now, with the MoAs and biomarkers proposed by TPMS, we provide

the tools for this type of research.
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4.2.9 Extended version of materials and methods

Biological Effectors Database (BED) to molecularly describe specific

clinical conditions

Patient-like characteristics are modelled using clinical data and/or

experimental molecular data. There are many databases providing clinical

data of patients, adverse drug reactions, diseases or indications (e.g.

ClinicalTrials.gov, SIDER, ChEMBL, PubChem, DrugBank. . . ). Many

other databases provide molecular data defining the existing human genes

and/or proteins and describing the relationships between them (IntAct,

BioGRID, REACTOME. . . ). Combining both, clinical and molecular

information available, the BED describes more than 300 clinical phenotypes

as sets of genes and proteins (effectors) that can be “active”, “inactive” or

“neutral” [363, 321]. For example, in a metabolic protein-like network,

an enzyme will become “active” in the presence of a catalyst, or become
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inactivated when interacting with an inhibitor. Alternatively, in a genetic

network, genes are active when they are expressed (experimentally detected

as over-expression) and inactive when they are repressed (experimentally

detected as under-expression). Additionally, in protein-protein interaction

(PPI) networks, some proteins carry out their interactions only when

they are phosphorylated, thus becoming active, and vice versa by

dephosphorylation. By default, neutral proteins remain unaffected, neither

active nor inactive, for a particular phenotype.

The methodology used for assigning the protein effectors to each pathology

starts by defining the pathophysiological processes (functions) according to

the general definitions used by the scientists studying the disease. Then, a

review of the most recent, relevant and accepted information in the field is

performed through PubMed queries, starting from general pathophysiology

reviews. An expansion of the effector candidate’s identification is done

through reading the relevant original papers from the references or adding

searches of important concepts that are not covered enough (molecularly

wise) within the reviews read. The final goal of the characterization is

to select proteins with an accepted functional role within the disease, and

specifically within the functions that define the disease to center the analysis.

HF effectors

Regarding the molecular basis of HF BED proteins, they were characterized

as described above and in Iborra-Egea et al. (2017) [181]. The definition

used of heart failure in the current study has been performed according

to the indication of Entresto and to the EMA Assessment report [105].

Thus, it is centered in processes associated to long term changes related to

cardiac remodeling (as discussed in the paper were the models were initially

presented [181]), that can be cause and consequence of heart failure, not
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necessarily caused by ischemic causes. The identified functions are detailed

in Supplementary Table 12.

MD effectors

MD pathophysiology is tightly related to protein accumulation [242,

180, 73]. However, the characterization used for the current study

not only included this function, but also other processes associated to

MD pathophysiology, including neovascularization, characteristics of wet

Age-Related MD and changes associated to geographic atrophy (late stage

dry Age-Related MD) [292]. The functions are detailed in Supplementary

Table 13.

TPMS modelling

The Therapeutic Performance Mapping System (TPMS) is a tool that creates

mathematical models of a drug/pathology protein pathways to explain a

clinical outcome or phenotype [321, 181, 18, 164, 148, 309, 339]. These

models find MoAs that explain how a Stimulus (i.e. proteins activated

or inhibited by a drug) produces a Response (i.e. proteins active or

inhibited in a phenotype). As an example of usage, here we applied

TPMS to the drug-indication pair sacubitril/valsartan and HF. Regarding

the drug, we retrieved the sacubitril/valsartan targets from DrugBank [425],

PubChem [217], STITCH [381], SuperTarget [161] and hand curated

literature revision. As for the indication, we retrieved the proteins whose

modulations had been associated with HF from the BED [363, 321]. Finally,

after applying the TPMS methodology, we obtained a set of connected

proteins (subnetworks) with associated activities, each subnetwork with a

potential explanation of the molecular mechanism of the drug in agreement

with what had been previously described (i.e. a potential MoA).
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Building the Human protein network (HPN)

To apply the TPMS approach and create the mathematical models of MoAs,

an HPN is needed beforehand. In this study, we used a PPI network

created from the integration of public and private databases: KEGG [205],

BioGRID [68], IntAct [300], REACTOME [108], TRRUST [157], and

HPRD [319]. In addition, information extracted from scientific literature,

which was manually curated, was also included and used for trimming

the network. The resulting HPN considers interactions corresponding to

different tissues to take into account the effect of the Stimulus in the whole

body.

Defining model restrictions

A collection of restrictions, defined as the true set of edges and nodes

with the property of being active or inactive, are used for validating the

models obtained with TPMS. We define two types of restrictions depending

on its specificity. The general or global restrictions are those used in

all approaches and describe a wide expanse of knowledge about protein

interactions and relations. This information is obtained from HPRD

[319], DIP [349], TRRUST [157], INTACT [300], REACTOME [108],

BIOGRID [68], SIDER [232] and DrugBank [425]. These set of restrictions

help indicate what proteins are active or inactive, and their interactions,

in a general human being. Additionally, specific restrictions regarding

the phenotype under study can also be used, usually derived from high

throughput data or additional protein knowledge.

For this study, we added specific information to our models concerning

the changes of gene expression induced by sacubitril/valsartan on HF

patients. Specifically, we used the GSE57345 gene expression dataset [254]

, extracted from GEO database, as in Iborra-Egea et al. (2017) [181]. We
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calculated the expression fold change of genes associated with the HPN and

mapped them as activated or inhibited proteins (active if they corresponded

to over-expressed genes and inactive -inhibited- for under-expressed).

Description of the mathematical models

The algorithm of TPMS for generating the models is similar to a Multilayer

Perceptron of an Artificial Neural Network over the HPN (where neurons

are the proteins and the edges of the network are used to transfer the

information). It takes as input signals the activation (+1) and inactivation

(-1) of the drug target proteins and as output the BED protein states of

the pathology phenotype. The network is limited to only interactions that

connect the drug targets with any other protein in the HPN in a maximum of

three steps to avoid signal noisiness. Once set, the algorithm optimizes the

paths between both input and output protein sets and computes the activation

and inactivation values of the all proteins in the HPN. The parameters

to solve are the weights associated to the links between every node pair

(ωi). Each node of the protein network receives as input the output of the

incoming connected nodes, which are weighted by each link weight. The

sum of inputs is transformed by a hyperbolic tangent function to generate

the score of the node (neuron), which become the “output signal” of the

current node towards outgoing nodes. Details of the approach are shown

in Fig 1a, where n5 is linked to n1 and n2. The output signal of n5 is

n5 = tanh(n1 ∗ ω1−5 + n2 ∗ ω2−5). The ωi parameters are obtained by

optimization, using a Stochastic Optimization Method based on Simulated

Annealing [87], such that the values of the effector nodes are the closest

to their expected values, and always adjusting to the maximum of the

restrictions mentioned above. The iterative process of optimization usually

requires between 106 and 109 iterations, until satisfying at least the 80%
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of the restrictions and the values of the effectors. However, the number of

ωi parameters can be very high (between 100,000 and 400,000 depending

on the size of the subnetwork) and the size of the collection of restrictions

(approximately 107) is usually not enough to find a unique solution. For

that, many final models can be obtained and manual curation can be applied

to select and modify the network and reduce the space of exploration.

Measures to compare sets of MoAs

TPMS returns a set of MoAs describing potential relationships between

the targets of a drug and the biological protein effectors of a disease.

We hypothesize that TPMS solutions represent MoAs in different

prototype-patients. Therefore, we needed to define some comparison

measures in order to understand the relationships between all potential

mechanisms and compare sets of MoAs from different views.

Intensity of the response

We defined the “intensity” of the response as a pair: 1) the number of protein

effectors (#) achieving an expected signal sign; and 2) a measure of the

strength of the output signal of the effectors (i.e. a global measure of the

output signal, named TSignal). For the present study, however, only the

TSignal was used.

Assuming yi as the value achieved by a protein effector “i”, while vi is the

effector sign according to the BED (active or inactive) and n is the total

number of effectors described for a phenotype, we define:

• Number of effectors achieving the expected sign: We expect that a

drug will revert the conditions of a disease phenotype, while it may

reach the effectors of an adverse event. Consequently, a drug should
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inactivate the active protein effectors of a pathology-phenotype and

activate the inactive ones, but it could activate/inhibit other adverse

event effectors with the same sign as described in the BED. Using

Dirac’s δ (i.e. δ(0) = 1, and zero otherwise), for drug indications the

formula is defined as following:

#indication = sumi=1
n δ

(
vi +

yi
|yi|

)
Therefore, in the case of the disease effectors we only count the

effectors with a BED value of opposite sign to the signal arriving

from the drug.

However, for adverse events, the formula changes because we count

the effectors that are affected by the drug, such that the signal arriving

from the drug has the same sign as in the BED:

#adverseevent = sumi=1
n δ

(
vi − yi

|yi|

)
• TSignal: The average of the output values of the protein effectors such

that the proteins with correct sign are considered as positive signal,

and the ones with the incorrect sign considered as negative signal.

For a drug affecting the phenotype of a disease, this implies that vi

and yi have opposite sign and we need to change the sign:

TSignalindication = − 1
n

∑n
i=1 viyi

On the contrary, to test if a drug induces an adverse event, we check

if the output signal has the same sign as the effectors of the desired

phenotype, and therefore TSignal is defined as:

TSignaladverseevent =
1
n

∑n
i=1 viyi

Distance between two sets of MoAs

We used the modified Hausdorff distance (MHD) introduced by Dubuisson

and Jain [99] as the distance between two or more sets of MoAs in order
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to determine their similarity. We used the distance measures between

two (finite) point sets A and B as following: For a ∈ A, d (a, b) =

min(b∈B)d (a, b)

and

dA (B) = 1
|A|
∑

a∈A d (a, b)

Where |A| is the number of elements in A, d(·, ·) is the Euclidean distance

and “a” and “b” are n-tuples of the activities (output signals) of the nodes of

two MoAs (a in A and b in B). Then, we defined the MHD as:

dMHD (A,B) = max(dA(B), dB(A))

Note that the MHD is a semimetric and not a metric, since the triangular

inequality does not hold.

Potential biomarkers extracted from MoAs

Identification of Best-Classifier Proteins

In order to extract potential biomarkers from comparing sets of MoAs,

we first defined the best-classifier proteins, specific proteins helping us

to infer biological associations and distinguish the responses of drugs on

a population (i.e. potential biomarkers). Best-classifier proteins (single

or pairs) are the proteins inside the HPN that allow to better classify

samples between groups of MoAs. These classifiers are determined by

a Data-Science strategy, which is based on a set of Feature Selection

algorithms combined with several Base Classifiers. The feature selection

used for single proteins was brute force [153], so analyzing one feature or

protein at a time, while for protein pairs the following selection methods

were used: elastic net [450]; entropy and correlation [308]; LASSO

[387]; random forest [169]; GLM random sets [260]; ReliefF [219];
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Ridge regression [438]; simple regression [129]; Wilcoxon test [74]; and

Wilcoxon test with correlation [74]. Several base classifiers were applied

to distinguish the two groups using the selected features: optimal threshold;

linear regression [129]; Multilayer Perceptron Network [230]; Generalized

Linear Model [260]; elastic net [298]; and optimal quadratic threshold

[358]. Finally, after a k-fold cross-validation (k=10) [226] was applied, the

proteins were sorted by the balanced accuracy [46] of the classification. For

this study, only the 200 proteins (or pair of proteins) with highest balanced

accuracy were selected as best-classifier proteins. Assuming the hypothesis

that the selected MoAs are representative of individual prototype-patients,

these proteins could then be used as biomarkers to classify a cohort of

patients by the activity or absence of activity of the proteins.

Identification of differential Best-Classifier Proteins

Each best-classifier protein has a specific distribution of signal values

corresponding to each group of MoAs. We applied the Mann-Whitney U

test to compare the two distributions and selected those proteins having a

significantly different distribution (p-value< 0.01). We also restricted the

list to proteins having an average value with opposite sign among groups

(i.e. positive vs. negative or vice versa), and named them as differential

best-classifier proteins. By following this strategy, we can identify two

groups of differential best-classifier proteins: those active in the first group

(positive output signal in average) and inactive in the other (negative output

signal in average), and the opposite.

Types of proteins not considered

• Non-differential Best-Classifier Proteins: Those are proteins in
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which, even if the mean signal in both groups is very similar, the

machine learning algorithms are still able to differentiate High- and

Low- MoAs based on their distribution values. For example, in

the upper right corner of Figure 2a we find the protein P29353,

the 181st best protein to classify High- and Low- HF models

(cross-validation AUC = 0.67, P-value = 1.12·10-4). P29353 has

a Low-HF mean signal of 0.99999999948 and a High-HF mean

signal of 0.9999999985. As showed in Supplementary Fig 4a, the

High- and Low- HF signals values are both very close to each other.

However, if we explore the distribution of signals considering all the

decimals given by TPMS (Supplementary Fig 4b), we can observe a

slight difference between the two distributions. This fact allowed the

machine learning algorithms to include the protein as a best-classifier

protein, but was then rejected as a differential best-classifier protein

after applying the Mann-Whitney U test.

• Differential non-Best-Classifier Proteins: Those are proteins that,

when comparing the signals between groups, they have significantly

opposite sign. However, they are not considered Best-Classifier

Proteins because they are not among the top 200 proteins selected by

the machine learning algorithms. For example, the protein P40763 is

the 241st best feature on distinguishing High- and Low- Heart Failure

Mechanisms of Action (cross-validation AUC = 0.66, P-value =

1.22·10-3). The distribution of High- and Low signals are represented

in Supplementary Fig 5. In the figure we can appreciate how the

distributions of High- and Low- signals are overlapped, complicating

their differentiation. Still, the p-value of the cross-validation is below

0.05, reflecting the potential of this feature to differentiate the distinct

types of Mechanisms of Action.
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4.2.10 Extended version of results and discussion

We applied TPMS to the HPN using as input signals the drug targets

of sacubitril/valsartan (NEP / AT1R) and as output signals the proteins

associated with HF extracted from the BED. Out of all MoAs found by

TPMS, we selected the 200 satisfying the largest number of restrictions (and

at least 80% of them) to perform further analysis.

Note that TPMS was only executed once, optimizing the results to satisfy

the restrictions on HF data. The values of MD are obtained by measuring

the signal arriving at the MD effectors, which are part of the HPN and also

receive signal. This procedure was chosen because we defined HF as the

indication of the drug (sacubitril/valsartan), while MD is a potential adverse

effect.

Stratification of MoAs

In order to compare models related to a good or bad response to the

treatment, or those more prone to lead towards potential MD adverse

effect, we stratified the MoAs. For HF, or treatment response, MoAs were

ranked by their TSignal and then split in four quartiles. The first quartile

(top 25%) contains MoAs with higher intensity of the response, which

in turn corresponds to lower values of the effectors associated with HF

phenotype (we named them as “Low”-disease MoAs). On the contrary,

the fourth quartile (bottom 25%) collects MoAs with lower intensity of

response (thus, we named as “High”-disease MoAs) (Supplementary Fig

1a). On the other hand, for MD, the first quartile (top 25%) contains

MoAs with higher intensity, which as an adverse event, correspond to

models with high values of the effectors associated to MD (we named

them as High-adverseEvent MoAs). The fourth quartile (bottom 25%)
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collects MoAs with lower intensity of response (thus, we named as Low-

adverseEvent MoAs) (Supplementary Fig 1b). Note that, in the following

steps and because HF and MD groups were extracted from the same 200

set of models, common MoAs between different HF and MD-defined sets

could be expected.

Comparison of MoAs with high/low TSignal associated to HF or MD

We calculated the modified Hausdorff distance between the groups of

MoAs (High-MD, Low-MD, High-HF and Low-HF) to elucidate their

similarity values (Supplementary Table 5). In this sense, the higher

distance between the groups, the more different they are. We used these

distances to calculate a dendrogram tree (see Supplementary Fig 2) showing

that MoAs associated with a bad response to sacubitril/valsartan for HF

(high-HF) are more similar (i.e. closer) to MoAs linked to a stronger

MD adverse effect (high-MD). It is remarkable that the distances between

Low-HF and High-HF and between Low-MD and High-MD are larger than

the cross distances between HF and MD. However, by the definition of

distance (equation 3 in supplementary material), we cannot account for the

dispersion among the MoAs within and between each group. Therefore, for

each set we calculated the mean Euclidean distance between all the points

and its center, defined by the average of all points (see Supplementary Table

6). As a result, all groups showed very similar dispersion values.

In order to have a global and graphical view of the distance between the

individual MoAs, we generated a multidimensional scaling (MDS) plot

calculated using MATLAB (see Fig 2). MDS plots display the pairwise

distances in two dimensions while preserving the clustering characteristics

(i.e. close MoAs are also close in the 2D-plot and far MoAs are also far in
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2D). Focusing on the Low-HF group depicted in blue circles, we observe

that there is no clear tendency to cluster with any of the MD groups. There

are few cases of Low-HF MoAs coinciding in the space with Low- or

High-MD MoAs. This implies that a good response to sacubitril/valsartan

of HF patients would not be usually linked to the development of MD.

Moreover, no clear distinction is found when plotting only the MD MoAs

within the Low-HF group (see Supplementary Fig 3a). However, regarding

the set of High-HF MoAs, we can differentiate two clusters of MoAs: one

related to the High-MD group (green crosses); and the other close to MoAs

of the Low-MD group (black crosses) (see Supplementary Fig 3b).

Assuming the hypothesis that different MoAs correspond to distinct

prototype-patients, we conclude that for the specific set of patients for

which sacubitril/valsartan works best reducing HF, it would be more difficult

to differentiate between those presenting MD and those who do not.

Instead, for the High-HF group, patients having MD could indeed be easily

distinguished from those not presenting MD as side effect. However,

because Low-HF group has more relevance to the clinics, specific functional

analyses were performed in this specific group, as seen in following

sections.

Identification and functional analysis of potential biomarkers

For this section, we identified the nodes (i.e. proteins) significantly

differentiating two groups of models (using a Mann-Whitney U test) for

which the average of output signals have opposite signs (see methods in

3.3). After that, the function of the identified proteins was extracted from

Gene Ontology (GO).

Identification of best-classifier proteins differentiating HF responses
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After the model stratification regarding the HF groups, we selected the 200

best-classifier proteins to differentiate the two groups of MoAs. Among

these proteins, we identified the differential best-classifier proteins as

explained in the methodology, and ended up with two groups: those active

in Low-HF (the average of output signals in Low-HF MoAs is positive)

and inactive in High-HF (the average of output signals in High-HF MoAs

is negative); and those active in High-HF but inactive in Low-HF. Out of

the starting 200 best-classifier proteins, we found a total of 45 differential

best-classifier proteins associated with the treatment response (6 in the first

group and 39 in the second) (see Supplementary Table 1). Fig 3a displays

all the proteins average signal values for the MoAs of Low-HF vs High-HF.

Most of the proteins with opposite signs between the two cohorts were also

selected as differential best-classifier proteins.

To pinpoint the biological role of these proteins, we first identified the

GO enriched functions (see Supplementary Table 2) and then searched

in the literature for evidences linking them with HF. The enrichment

used for this proceeding was calculated using the software FuncAssociate

[38]. Among the enriched functions, we found processes associated

with the SCAR complex, the positive regulation of actin nucleation,

the regulation of neurotrophin TRK receptor and dendrite extension.

We used the same procedure to extract the GO functions associated to

the differential best-classifier proteins that are inactive in Low-HF but

active in High-HF. We detected functions such as phosphatidylinositol

kinase activity, MAP kinase activity, DNA damage induced protein

phosphorylation and superoxide anion generation. Although some enriched

functions are shared by both sets, such as Fc gamma receptor signaling, the

majority of functions identified are different (see Supplementary Table 2).
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Some of the proteins and functions highlighted in the current analysis have

been related to myocardial function. On the one hand, our findings show

that differential best-classifier proteins Low-HF-active/High-HF-inactive

point towards an important role for actin nucleation and polymerization

mechanisms in drug response (reflected by the functions regulation of actin

nucleation, regulation of Arp2/3 complex-mediated actin nucleation, SCAR

complex, filopodium tip, or dendrite extension). In fact, the alteration of

actin nucleation and polymerization mechanisms has been reported in heart

failure [307, 207, 72]. Interestingly, a role for the activation of another

differential best-classifier candidate, ATGR2, has been proposed to mediate

some of the beneficial effects of angiotensin II receptor type 1 antagonists,

such as valsartan [255, 355].

On the other hand, the results of the differential best-classifier proteins

Low-HF-inactive/High-HF-active are linked to phosphatidylinositol

kinase mediated pathways (phosphatidylinositol-3,4-bisphosphate 5-kinase

activity) and MAP kinase mediated pathways (MAP kinase kinase

activity, best classifier proteins MAPK1, MAPK3, MAPK11, MAPK12 or

MAPK13). In this case, both signaling pathways have been associated to

cardiac hypertrophy and subsequent heart failure [20, 104]. These outcomes

clearly leads towards the idea that High-HF models are a representation of

prototype-patients with a worst response to the treatment, while Low-HF

models are related to more beneficial response to the medication.

Identification of best-classifier proteins differentiating MD responses

We similarly classified MoAs in High-MD and Low-MD identified

the differential best-classifier proteins active in Low-MD but

inactive in High-MD, and vice versa. As before, we compared

the distributions of Low-MD and High-MD output signals of the
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best-classifier proteins and calculate the average of the signal

in all MoAs in Low- and High- MD. Out of 200 best-classifier

proteins, we identified 28 Low-MD-active/High-MD-inactive and 29

Low-MD-inactive/High-MD-active (see Supplementary Table 3). Fig 3b

shows the plot for all proteins classified by their average output signal in

Low-MD and High-MD models.

Again, we calculated the GO enriched functions for these groups

of proteins (see Supplementary Table 4). For the first group

(Low-MD-active/High-MD-inactive) we obtained unique functions such as

dendritic spine development, positive regulation of vascular endothelial

growth factor production and phosphotyrosine binding. For the second

group (Low-MD-inactive/High-MD-active), we found functions such as

dorsal/ventral axon guidance, fibroblast growth factor receptor binding and

response to toxic substance. However, phosphatidylinositol bisphosphate

kinase activity showed up as enriched function in both groups.

Some of the proteins and functions underlined in the current analysis had

previously been related to MD. The presence of dendritic spine development

and dorsal/ventral axon guidance related proteins among the differential

best-classifiers points towards a role for sacubitril/valsartan-associated

MD in dendritic and synaptic plasticity mechanisms, which had been

previously linked to the condition [379]. Furthermore, valsartan treatment

has been reported to promote dendritic spine development in other

related neurodegenerative diseases, such as Alzheimer’s disease [366].

Other functions enriched within the differential best-classifier proteins

(Low-MD-inactive/High-MD-active) are implicated in growth factor related

pathways, which are known to be involved in wet MD pathogenesis

[127]. Moreover, neovascularization in the wet variant of MD has
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been linked to the signaling of some of the growth factors detected as

sacubitril/valsartan-associated MD classifiers in this study, including FGF1

[127] and PDGF [144, 151].

Identification of potential biomarkers differentiating MD responses in

Low-HF

We previously mentioned that some MoAs could be shared between the

different groups of HF and MD (Supplementary Table 7). Knowing that,

we focused on the shared MoAs between Low-HF and High-MD to analyze

the special case comprising prototype-patients in which the treatment best

reduces HF disease but increases MD adverse effect. In order to identify

these patients, we compared the Low-HF ∩ Low-MD with Low-HF ∩

High-MD MoAs; Table 1 shows the 30 biomarkers identified. On the

one hand, we found 16 proteins active in Low-HF ∩ Low-MD MoAs but

inactive in Low-HF ∩ High-MD (15 of them shared with MD best-classifier

proteins). On the other hand, 14 proteins were identified as inactive in

Low-HF ∩ Low-MD and active in Low-HF ∩ High-MD MoAs (12 of

them were MD best-classifier proteins). We calculated the GO enriched

functions of these two groups and observed that “phosphatidylinositol

bisphosphate kinase activity” is enriched among proteins that are active

in Low-HF ∩ Low-MD MoAs. Instead, “fibrinolysis” was found to be

enriched among proteins active in Low-HF ∩ High-MD MoAs (Table 2).

With this, we conclude that among the group of prototype-patients for which

sacubitril/valsartan improves HF treatment response, the modulation of

fibrinolysis could play a role at inducing the MD adverse effect. Moreover,

we propose 12 best-classifier proteins that may be considered as biomarkers

for good prognosis of the side effect.

In fact, since neovascular MD development is characterized by subretinal
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extravasations of novel vessels derived from the choroid (CNV) and the

subsequent hemorrhage into the photoreceptor cell layer in the macula

region [292], it might be reasonable to think that the modulation of

fibrinolysis and blood coagulation pathways could play a role. The reported

implication of some fibrinolysis related classifiers, such as FGB, SERPINE1

(PAI-1), and SERPING1, in neovascular MD development seems to support

this hypothesis [440, 239, 167]. Besides, valsartan might be implicated in

this mechanism, since it has been reported to modulate PAI-1 levels and

promote fibrinolysis in different animal and human models [279, 301].

In addition, the presence of several other MD related classifiers in this

list, such as IRS2 [8], PTGS2 [444], DCN [419] and FGF1 [362], further

supports the interest of the classifiers as biomarkers of MD development in

sacubitril/valsartan good responders.

Analysis of proposed biomarkers with GUILDify

In the previous section, we proposed 30 proteins that could potentially

help to identify HF patients at risk of developing MD. To corroborate

these biomarkers, we tested how many of them are found using a different

approach also based on the use of functional networks. For this purpose,

we used GUILDify v2.0 [6], a web server that extends the information of

disease-gene associations through the protein-protein interactions network.

GUILDify scores proteins according to their proximity with the genes

associated with a disease (seeds). Using this web server, we identify a list

of top-scoring proteins that are critical on transmitting the perturbation of

disease genes through the network. The network used by GUILDify is

completely independent from the HPN used in the TPMS, becoming an

ideal, independent context to test the potential biomarkers.
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Thus, we used GUILDify to indicate which of the potential biomarkers

identified by TPMS may have a relevant role in the molecular mechanism

of the drug. We ran GUILDify using the two targets of sacubitril/valsartan

(NEP, AT1R) as seeds, and selected the top 2% scored nodes (defined as the

“top-drug” set). We did the same with the phenotypes of HF and MD, using

as seeds the 124 effectors of HF and 163 effectors of MD from the BED

database. We merged the top scored sets of HF, MD and top-drug (“top-drug

∪ top-HF ∪ top-MD”) and studied the overlap with the set of differential

best-classifier proteins associated with MD and HF. Supplementary Table

8 shows the result of this analysis, with a significant representation of

best-classifier proteins in most of the sets, especially on MD best-classifier

proteins. Supplementary Table 9 shows the list of 13 proteins involved in

this overlap. We have also checked the overlap with the 30 biomarkers

proposed in the previous section, of which 10 are found in the merged

set “top-drug ∪ top-HF ∪ top-MD” and are consequently significant (see

Supplementary Tables 10 and 11).

Some of these candidates can be functionally linked to both diseases and the

drug under study. For example, among these 10 classifiers, AGER has been

implicated in both HF [162], through extracellular matrix remodeling, and

MD development [25], through inflammation, oxidative stress, and basal

laminar deposit formation between retinal pigment epithelium cells and

the basal membrane; furthermore, this receptor is known to be modulated

by AT1R [313], valsartan target. Similarly, FGF1 has been proposed to

improve cardiac function after HF [137], as well as to promote choroid

neovascularization leading to MD [127]. Moreover, FGF1 is regulated by

angiotensin II through ATGR2 [234], another protein suggested as classifier

in the current analysis that is known to mediate some of the effects of AT1R



4.3. Discussion 115

antagonists, such as valsartan [255, 355]. Another candidate, NRG1, has

been linked to myocardial regeneration after HF [135] and is known to

lessen the development of neurodegenerative diseases such as Alzheimer’s

disease [437], which shares similar pathological features with MD [202].

NRG1 is also linked to the expression of neprilysin [437], sacubitril target.

ITGB5 has been identified as risk locus for HF [400] and its modulation has

been linked to lipofucsin accumulation in MD [203]. Interestingly, ATGR1

inhibitors have been reported to modulate ITGB5 expression in animal

models [211]. Finally, IL1A has been proposed as an essential mediator of

HF pathogenesis [57, 393] through inflammation modulations, and serum

levels of this protein have been found increased in MD patients [286]. In

addition, as described in previous sections, classifiers FGB, SERPINE1, and

SERPING1 have been linked to MD [440, 239, 167] and are also known

to play a role in HF development [447, 442, 275, 67]. According to these

findings, the 10 potential biomarkers proposed by TPMS and identified with

GUILDify might be prioritized when studying good responder HF patients

at risk of MD development.

4.3 Discussion

Heart failure (HF) related hospitalizations are rising, especially in the

developed countries [101]. Its prevalence is being influenced by

different factors like age, nutritional habits, lifestyles or genetic, which

complicates the development of treatments and the identification of

universal biomarkers. Sacubitril/valsartan (marketed by Novartis as

Entresto) is a drug combination that shows better results than conventional

treatments, reducing both cardiovascular deaths and HF readmissions

[274]. Many resources have been invested in the safety of this treatment,
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although recent concern was risen on the possible risk of inducing

amyloid accumulation-associated conditions in the long term, such as

macular degeneration (MD). In this study, TPMS technology [18] was

applied to uncover the different Mechanisms of Action (MoAs) of

sacubitril/valsartan over HF and reveal its molecular relationship with

MD. For this approach, we hypothesize that each generated MoA could

correspond to a prototype-patient, and we stratified them in best vs worst

responders to extract possible biomarkers. Additionally, we used GUILDify

v2.0 [6] to compare the biomarkers proposed by TPMS and reinforce the

results.

4.3.1 From TPMS models toward prototype-patients

TPMS was used to generate a model for understanding the pathways linking

Sacubitril/valsartan treatment towards HF. As an ensemble model, a total

of 200 MoA solutions satisfying the largest number of restrictions of the

training set (and at least 80% of them) were computed. We then used

the model intensity signal parameter, tSignal, to define four groups each

bearing 50 prototype-patients, or MoA solutions. On one hand, we selected

the models showing the highest (first quartile) or lowest (forth quartile)

signal values for HF, and on the other the highest and lowest for MD.

The cohorts were then analyzed to extract different sets of proteins able to

classify the models according to treatment efficacy (as tSignal) toward HF

or MD adverse event relationship, proposed as potential biomarkers. The

GO enriched functions of these sets were then identified in order to pinpoint

their biological role.
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4.3.2 Identification and functional analysis of potential

biomarkers

For the HF group comparison, best MoA-prototype-patient responders

vs worst, we identified 6 proteins differentially active in best treatment

responders, but inactive in bad responders. GO functions related to this

protein set were found to be associated to processes like: (i) the SCAR

complex; (ii) the positive regulation of actin nucleation; (iii) the regulation

of neurotrophin TRK receptor; and (iv) to dendrite extension. These results

coincide with previous findings in HF, where alteration of actin nucleation

and polymerization mechanisms was observed [307, 207, 72]. Next, 45

additional proteins were found to be inactive in best responders, but active

in the other group. Those were linked to: (i) phosphatidylinositol kinase

mediated pathways; and (ii) MAP kinase mediated pathways. In this case,

both signaling pathways had been associated to cardiac hypertrophy and

subsequent HF [38, 292].

In case of MD groups, we identified 28 proteins differentially active in the

group of lower probability of displaying MD, but inactive in the high group.

The GO functions related to this set were: (i) dendritic spine development;

(ii) positive regulation of vascular endothelial growth factor production; and

(iii) phosphotyrosine binding. The presence of dendritic spine development

and dorsal/ventral axon guidance had been previously linked as a role

for sacubitril/valsartan-associated MD [440]. Additionally, valsartan had

been reported to promote dendritic spine development in other related

neurodegenerative diseases, such as Alzheimer’s disease [239]. Regarding

the proteins inactive in low MD group but active in high MD group

comparison, 29 proteins were identified. The set was involved in functions

such as: (i) dorsal/ventral axon guidance; (ii) fibroblast growth factor
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receptor binding; and (iii) response to toxic substance. Those are functions

implicated in growth factor related pathways, which are known to be

involved in wet MD pathogenesis [167]. Interestingly, phosphatidylinositol

bisphosphate kinase activity showed up as enriched function in both groups.

4.4 Concluding remarks

The differences found in the functional analyses support the initial

hypothesis that the MoA models could represent possible different patients,

where high response signals are related to a good response, and low response

signals to bad or lower response. It also corroborates the previous usage

of TPMS, by linking tSginal to the goodness of a response, as applied

elsewhere [182, 181, 148, 257].

Finally, it favors the interpretation of individual or prototype models to be

used in the finding of stereotype patients in order to develop or apply more

accurate treatments.
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Chapter 5

An ISCT platform using

TPMS models

5.1 Introduction

In order to move towards a more real-like or clinical application of

the TPMS MoA models, I designed and applied a series of algorithms

which enabled the generation of in silico clinical trials. The main idea

was to exponentiate the generation of MoA models into multiple models

representing multiple patients. Moreover, quantitative restrictions were

included, by means of a Physiologically-based Pharmacokinetic (PBPK)

modeling, in order to be able to simulate and differentiate distinct dosing

and treatment schemes.

Because of the complexity of the resulting approach, involving different

modeling types and procedures, a platform was defined as a semi-supervised

stepwise protocol, mimicking real Clinical Trial’s (CTs) pipeline. The

resulting platform is divided into three main parts or phases: (i) initiation,
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(ii) modeling, and (iii) analysis (Figure 16).

5.2 Initiation Phase

The first phase is the study definition which, asides from a data recollection

step, includes the molecular characterization of the study pathology, adverse

events and drug targets, as well as any other principal or secondary

variable linked to the CT. This step is the same followed by any previous

TPMS model analysis in order to map diseases and effects in the human

protein network models, and which is also described in both Publication 1

(section 3.2) and 2 (section 4.2) of the present thesis.

Another key aspect of the platform is the definition of a Virtual Population

(VPop), intended to represent and assign particular parameters to each of

the models to be generated, now as Virtual Patients (VPs). Because a

quantitative approach was added in the modeling procedure, I designed an

algorithm able to assign both qualitative (e.g., molecular) and quantitative

(e.g., physiological) parameters to the VPs. In this first phase, the

characterization of the population details is defined.

Finally, a sample size algorithm was included in order to provide

information on the statistical power attributed to the resulting models, and

guide in choosing the appropriate number of patients.

5.3 Modeling Phase

Next, the modeling phase follows with the actual generation of the VPs.

Here, the VPop algorithm is used, which is divided in two steps. The

first is focused on assigning the physiological values (e.g., age, gender,

weight) to the VPs for generating specific PBPK models. The second
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one consists in using the population disease/molecular information ratios

to assign pathological tags to the VPs, which will be later translated into

molecular restrictions by the TPMS models.

After VPs are defined, a PBPK model is generated for each of patient. For

that, I implemented a PBPK model strategy based on the SimBiology tool

of MATLAB [184], consisting of a general whole-body model, which can

then be parametrized for each VP depending on their physiological and drug

treatment characteristics.

Subsequently, using the Interactome maps and PBPK outcome data, a QSP

model using the TPMS is generated for each VP, including both molecular

and pharmacological restrictions.

5.4 Analysis Phase

Finally, a set of tools were set available in order to analyze the generated

models and data by using the Data Science strategy implemented in

Anaxomics [198].

In the following publication, I described the details regarding the

methodology used for carrying out an ISCT, in the case study of ADHD.

5.5 Methods to develop an in silico clinical trial:

Computational head-to-head comparison of

lisdexamfetamine and methylphenidate

Frontiers in Psychiatry. 2021 Nov 3;12:741170.

PMID: 34803764

PMCID: PMC8595241
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5.5.1 Abstract

Regulatory agencies encourage computer modelling and simulation to

reduce the time and cost of clinical trials. Although still not

classified in formal guidelines, system biology-based models represent

a powerful tool for generating hypotheses with great molecular detail.

Herein, we have applied a mechanistic head-to-head in silico clinical

trial (ISCT) between two treatments for attention-deficit/hyperactivity

disorder, to wit lisdexamfetamine (LDX) and methylphenidate (MPH). The

ISCT was generated through three phases comprising (i) the molecular

characterization of drugs and pathologies, (ii) the generation of adult
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and children virtual populations (vPOPs) totaling 2,600 individuals

and the creation of physiologically based pharmacokinetic (PBPK) and

quantitative systems pharmacology (QSP) models, and (iii) data analysis

with artificial intelligence methods. The characteristics of our vPOPs

were in close agreement with real reference populations extracted from

clinical trials, as did our PBPK models with in vivo parameters. The

mechanisms of action of LDX and MPH were obtained from QSP models

combining PBPK modelling of dosing schemes and systems biology-based

modelling technology, i.e. therapeutic performance mapping system.

The step-by-step process described here to undertake a head-to-head

ISCT would allow obtaining mechanistic conclusions that could be

extrapolated or used for predictions to a certain extent at the clinical level.

Altogether, these computational techniques are proven an excellent tool for

hypothesis-generation and would help reach a personalized medicine.

Keywords: attention-deficit/hyperactivity disorder, lisdexamfetamine,

methylphenidate, mathematical modeling, in silico clinical trial

5.5.2 Introduction

To reduce clinical trials time and cost and to improve their outcomes’

conclusiveness, regulatory agencies encourage the use of computer

modeling and simulation (CM&S) approaches to optimize randomized

clinical trials [171]. CM&S approaches are based on the analysis of existing

data and experience, including real-world data studies, pharmacometrics

modeling or, more recently, in silico clinical trials (ISCT). Although

the concept emerged in the early 2000s [147, 79, 142], the term and

proper definition of ISCT was widely established and accepted during

the 2010 decade with the foundation of specific organizations to promote
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the implementation of these approaches, such as the VPH Institute in

2011 or the Avicenna Alliance, founded by the European Commission, to

create the research roadmap for ISCT [403]. In addition to its economic

advantages, ISCT allow the exploration of drugs and diseases in many

settings, thus, reducing risks for patients and the use of animal models to

test hypotheses. CM&S and artificial intelligence-based approaches are

crucial to achieving personalized, preventive, predictive, participative, and

precise—the so-called 5P—medicine and healthcare [49].

Systems Biology and MID3 Guidelines

One of the most promising computational tools encompassing these

concepts is systems biology or systems medicine [403, 51, 428, 417].

During the last 20 years, the US and European medicines agencies (FDA

and EMA), in collaboration with the pharmaceutical industry, have been

developing the guidelines and good practices to which these computational

approaches should adhere. One of these guidelines is MID3, which

describes the quantitative framework for predicting and extrapolating

models’ conclusions [409, 263]. Establishing three categories based

on the relevance of the conclusions, MID3 is meant to guide industry

decision-making [265] or regulatory assessment [102]. Accordingly, models

can be classified as (i) “LOW” impact, when information obtained from

them cannot be directly used to make clinical or commercial decisions [e.g.,

physiologically based pharmacokinetic (PBPK)] models; (ii) “MEDIUM”

impact, for models providing helpful information for strategic conditioning

of future trial data [e.g., studies to determine optimal dosing, target

population, sample size, design of future trials, or study of mechanisms

of action (MoA) of compounds]; and (iii) “HIGH” impact, for cases

where conclusions support decision-making without the need for additional
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experimental or trial studies (e.g., simulations replacing direct clinical trial

data in children or oncologic patients that provide evidence on efficacy

and safety to uphold regulatory submission package and labeling). While

pharmacometric models are under evaluation for acceptance as HIGH

impact models, systems biology-based models are still in debate [287].

However, they possess an undeniable great potential in providing molecular

detail, generating hypotheses, and suggesting specific molecular solutions

to complex pathophysiological problems.

Proof-of-Concept: ADHD

Attention-deficit/hyperactivity disorder (ADHD) is a complex ailment with

a prevalence in children ranging from 6 to 10% [5]. Besides, ADHD

exhibits an important long-term persistence [5], affecting 5̃% of adults

[214, 316, 436]. Around 30–50% of children with ADHD continue

to manifest symptoms, inattention in particular, in adulthood [3, 424].

Comorbid psychiatric disorders are present in up to 67% of ADHD

pediatric-adolescent patients [236] and almost 80% of adults [210]. These

comorbidities can complicate ADHD diagnosis and treatment [273, 296]

and include depression, anxiety, bipolar disorder, binge eating, tics, conduct

disorder, personality disorder and non-alcoholic substance abuse, among

others [424, 262]. Recent findings suggest a direct relationship between

ADHD and the development of these comorbidities [296, 172, 43], likely

involving a genetic connection [224], although results on this subject remain

controversial.

ADHD management comprises pharmacologic and non-pharmacologic

treatments. Medications include stimulant [amphetamines and

methylphenidate (MPH)] and non-stimulant drugs (atomoxetine,
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extended-release clonidine, and guanfacine), with the former being

recommended as first-line treatment [91]. Several modifications to improve

the characteristics of amphetamines have been performed, among which

the design of the prodrug lisdexamfetamine (LDX, Vyvanse c©in the

US and Elvanse c©in Europe) and the development of extended-release

formulations [such as the osmotic release oral system (OROS) of MPH,

Concerta c©or Medikinet c©retard]. Although a pediatric clinical trial

analyzing LDX and MPH is currently ongoing [84, 85], there are no

explicitly designed head-to-head trials comparing these treatments, neither

on the pediatric nor adult population.

We present here the methods of the Therapeutic Performance Mapping

System (TPMS) technology, which allow the generation of virtual patients

and PBPK and systems biology-based models with the purpose of

performing ISCTs. To demonstrate the applicability of the method, we

used as case-study a mechanistic head-to-head ISCT between LDX and

MPH (Elvanse c©vs. Concerta c©in the pediatric-adolescent population

and Elvanse c©vs. Medikinet c©retard in the adult population) using a

crossover–like design. The objective of this ISCT was to model the

efficacies of the two drugs and compare them in a virtual head-to-head

setting. Additionally, we describe an approach to measure and compare

the output results in terms of efficacy of the two medications, the molecular

mechanisms triggered, and the response to ADHD management in a diverse

population of virtual patients, including patients with the most common

psychiatric comorbidities.
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5.5.3 Methods

This methods study details the steps and modeling approaches to carry

out the ISCT (Figure 16). Before the study trial (phase I), drugs

and pathological conditions were molecularly characterized and reference

populations defined. In the modeling stage (phase II), a series of

virtual populations and PBPK and quantitative systems pharmacology

(QSP) models were generated and embedded in the ISCT as a means

of virtual patient recruitment. At this step, the models were optimized

to reproduce known clinical efficacy findings according to the primary

outcome of the study, i.e., the model-based clinical efficacy-related measure

herein proposed, based on modeled protein activity over ADHD molecular

definition. Finally, in the analysis phase (phase III), the molecular variability

among patients was explored by analyzing all ADHD models, patient by

patient.

Population Definition—Virtual Patients

Two types of virtual populations (vPOPs) were generated: adult (>18

years old) and pediatric-adolescent (6–17 years old) vPOPs. As

reference demographic and comorbidity parameters to generate the VPOPs,

the following studies were used: NCT00730249 [329] (MPH) and

NCT00337285 [141] (LDX) for adults; and NCT00763971 study [84] (LDX

and MPH) for the pediatric-adolescent population. These clinical trials

presented standard inclusion and exclusion criteria for ADHD evaluation,

which were appropriate for the case-study herein proposed and showed

homogeneous demographic values when compared to other clinical trials

with equivalent inclusion and exclusion criteria.

Additionally, standard population distribution data was used to fill
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Figure 16: In silico clinical trial protocol overview.
The protocol is divided into three main stages: Phase I, including trial design and
information compilation; Phase II, comprising mathematical modeling; and Phase
III, consisting of data analysis according to the trial design. ISCT, in silico clinical
trial; PBPK, Physiologically based pharmacokinetic; QSP, Quantitative systems
biology.

incomplete demographic parameters. For adults, ESS Round 7 [106]

was used, while data from the World Health Organization (WHO) growth

information [258] was retrieved for the pediatric-adolescent population.

All virtual patients created had ADHD, and specific branches for the

different comorbidities were also generated, as previously described

[198]. ADHD and comorbidities definitions were obtained by thorough

literature review of current molecular knowledge on each condition (see
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Supplementary Methods in Supplementary Material 1; Supplementary

Tables A, B in Supplementary Material 2).

Sample Size Calculation

Since data on treated and non-treated patients is not available, we considered

that a number of patients large enough to discriminate among ADHD

patients and healthy individuals would also be large enough to detect

efficacy-associated changes for each drug. Therefore, to generate enough

patients and ensure having sufficient statistical power when performing

data analyses, the sample size approach described below was carried out.

Because TPMS’ drug efficacy outcomes are based on predicted protein

activity (i.e., tSignal, Equation 1—defined in section Systems Biology Maps

and Models), this methodology was based on experimental measures that

can relate to protein activity variability, particularly gene expression.

Figure 17: Expected percentage of best accuracy as a function of sample size.
Dotted blue and discontinuous green lines correspond to the mean % best accuracy
reached for each sample size at statistical power 95 and 99%, respectively,
assuming a normal distribution of the accuracy variation and estimating the means
and the standard deviation for each sample size. The red line shows the 85% Max
accuracy level.
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First, gene expression data groups identified as control- “healthy” and

case- “disease” were retrieved from Gene Expression Omnibus (GEO)

experiments [31] and then treated and normalized using R packages,

parameters, and steps defined by Law et al. [237]. Afterwards, a

protocol based on the method introduced by Mukherjee et al. [284]

and Figueroa et al. [117] was followed to explore the variation

in accuracy and statistical power induced by changes in the sample

size. To that end, GEO patient-normalized gene expression datasets

are submitted to sampling-without-replacement combined with a linear

regression classification method [129]. The latter allows the identification of

the best classifiers (proteins) to separate control-healthy from case-disease

patients, and these classifiers are used to compute the highest possible

accuracy (“Max accuracy”). Progressive sampling is then applied to obtain

subsets of balanced samples from both cohorts (case-disease vs. control)

in a 1:1 ratio. These subsets are tested for sample sizes ranging from

eight to the number of the smallest cohort performing 100 repetitions per

sample size. Each subset is used to train a linear classifier based on

two features extracted by feature selection procedures previously described

[198]. The accuracy achieved for each classifier is estimated using k-fold

cross-validation (k = 10) [226]. Finally, taking as reference the Max

accuracy, the percentage of max accuracy reached for each subset of samples

and total samples is calculated using the classifiers obtained for that subset.

For the present ADHD study-case, RNAseq records from the entry

GSE159104 [272] were selected, where two cohorts of patients were already

identified and labeled as control (healthy) and ADHD (case-disease). The

variability within the genes or proteins involved in the ADHD molecular

definition (see Supplementary Methods in Supplementary Material 1;
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Supplementary Tables A, B in Supplementary Material 2) was evaluated for

the 154 samples (78 control, 76 ADHD) included in the GEO experiment.

After finalizing the abovementioned procedure, statistical powers of 95

and 99% were used, based on classification errors [284], and a value of

85% of Max accuracy was set as minimum valid threshold (Figure 17).

Considering a statistical power of 95%, we deemed 68 samples (34 control

and 34 ADHD) to be enough to achieve the objectives of the analysis in our

simulation. Under these premises, 142 samples (71 control and 71 ADHD)

were adequate to reach the target accuracy with 99% power (although

more RNAseq samples would be required to ensure curve stabilization).

Accordingly, at least 100 virtual patients were built per each patient group

(minimum sample size of 200 samples per analysis).

Patient Distribution

The two populations, adult and pediatric-adolescent, were segmented into

nine arms each (a total of 18 arms) to facilitate the simulation and the

analysis. One arm accounted for ADHD without any comorbidity, while

the eight additional arms contained patients with ADHD and one, or a

combination, of comorbid psychiatric conditions.

Each of the arms accounting for comorbidities had 100 patients, while

arms related to ADHD alone consisted of 500 patients, with the aim

of maximizing the number of patients with different demographical

characteristics. Consequently, a total of 2,600 patients were included in

the simulation: 1,300 adults (Figure 18) and 1,300 children-adolescents

(Figure 19). All of them were treated sequentially with LDX and MPH

using the adequate dosing scheme. According to the study’s in silico nature,

the files containing the models of each virtual patient could be cloned; thus,

no wash-out period was needed.
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Figure 18: Comorbidities distribution and treatment allocation in the adult virtual
population.
ADHD, Attention-deficit/hyperactivity disorder; LDX, Lisdexamfetamine; MPH,
Methylphenidate; QSP, Quantitative systems biology; vPOP, Virtual population.

Intervention Definition

According to their population group, the patients included in the ISCT

were treated with different formulations and doses of LDX and MPH in a

two-period crossover-like study design. For all patients, the same initial
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Figure 19: Comorbidities distribution and treatment allocation in the
pediatric-adolescent virtual population.
ADHD, Attention-deficit/hyperactivity disorder; LDX, Lisdexamfetamine; MPH,
Methylphenidate; QSP, Quantitative systems biology; vPOP, Virtual population.

state was used at each period, hence carryover effect was assumed zero.

Dosage, molecular target profile, and pharmacokinetic information were

needed for the QSP modeling herein proposed.
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Table 9: Identified protein targets for lisdexamfetamine and methylphenidate.

Dosage

Dosage schemes were simulated differently in the pediatric-adolescent and

adult populations according to usual clinical practices. Adults were treated

with LDX (Elvanse c©) 70 mg and children with LDX 50 mg. Different

doses and types of modified release systems for MPH were considered in

the simulation, corresponding to different commercial formulations: (i) for

adults, Medikinet

copyright 60 mg with modified-release (also known as Medikinet c©XL

or Medikinet c©Retard), based in multiarticular beads that combine

50% immediate and 50% extended-release [89]; and (ii) for the

pediatric-adolescent population, Concerta c©36 mg, an osmotic release

system (OROS technology) with a 22% of the total amount available for

immediate release (the remaining 78% corresponding to the osmotically

controlled extended-release) [98].

Molecular Target Profile The molecular target profile identification was

performed through a review of official regulatory sources [European

Medicines Agency—EMA, European Public Assessment Report

(EPAR)—and Food and Drug Administration—FDA, Multidisciplinary and

Chemistry reviews and Label], drug-target–dedicated databases [DrugBank

[425], STITCH [381], SuperTarget [161]] and the scientific literature (the
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Table 10: Summary of pharmacometrics information used for PBPK modeling.

specific searches performed can be found in Supplementary Methods in

Supplementary Material 1). This information was integrated into the TPMS

technology-based MoA models for each drug. Table 9 contains the proteins

defining the target profile of LDX and MPH.

Pharmacokinetics Information

Bioavailability and drug’s information on main clearance organ were

retrieved from published studies and set for the corresponding PBPK models

(Table 10). Moreover, previous PK studies were used to fit the generated

PBPK models, to parameterize absorption and drugs’ clearance ratios, and

to validate the models. The reference studies used were Krishnan and Zhang

[229] for LDX in adults, Boellner et al. [50] for LDX in children, the

EPAR [41] for Medikinet c©with modified-release, and Maldonado [261]

for Concerta c©. All three drugs were administered orally and crossed the

blood-brain barrier.

Modeling Methodology

TPMS ISCT is divided into three types of modeling approaches (Figure 16).

First, virtual patients are generated containing demographic information

and disease tags. Afterwards, PBPK models are constructed using each

patient’s demographic variables, which are then used to infer inter-patient
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specific drug concentration-related knowledge. Finally, the patient-specific

drug concentration and disease-related data, and protein mapping according

to pathophysiological information, are used for generating patient-specific

MoA-QSP models of the drugs under study, here MPH and LDX.

Virtual Population Modeling

For the construction or recruitment of vPOPs, randomized populational

demographic characteristics are generated using two types of data sources:

(i) original or reference population with demographic characteristics to be

mimicked [age, weight, height, and/or body mass index (BMI)]; and (ii)

standard population distributions, retrieved from populational studies. For

the present ADHD study-case, the recruitment of each vPOP was based

on the demographical parametric descriptors defined in section Population

Definition—Virtual Patients’ [reference clinical trials (30, 32, 33), European

standard population [106], and WHO growth information [258]].

For adult population, an adapted version of the algorithm proposed by

Allen et al. [11] was used to generate the population of individuals

virtually recruited in the trial. As a first step, this algorithm generates a

multivariate normal distribution (MVND) with the demographic means and

standard deviations from the original population. The standard population

distribution values are used to fill in the potential missing demographic

information. A simulated annealing strategy is then used to minimize a cost

function by using the patients generated in the MVND as starting points (see

Supplementary Methods in Supplementary Material 1).

In the pediatric-adolescent population, a modification of the protocol

used for adult population was applied to adjust better the dependence

of morphometric measures for ages 0–17 years. First, the standard

population distribution, taken from the growth information published by
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the WHO [258], was used to create a reference MVND. Then, a sampling

strategy based on a Metropolis-Hastings method [71] was applied to

reach the original population distributions (see Supplementary Methods in

Supplementary Material 1).

The final distribution values for adult and pediatric-adolescent populations

were statistically compared (one sample z-test) to the original means

and standard deviations; only populations not significantly different from

the original population (p-value > 0.05) were accepted and kept for

posterior modeling steps. For both population types, corresponding

comorbidity-related tags were assigned to the patients allocated to each of

the 18 ISCT arms (Figure 19).

Demographic parameters were used to obtain accurate and individualized

PBPK models of the drugs, while comorbidity data, once translated into

molecular information, influenced the patients’ corresponding QSP models.

Systems Biology Maps and Models

TPMS technology [198] generates mathematical models that use known

biological, medical, and pharmacological information as training data

(see Supplementary Table C in Supplementary Material 2) to simulate

the behavior of drugs and the pathophysiology of diseases in terms of

changes in protein activity. This methodology uses supervised machine

learning methods based on a human protein functional network to infer

information at the clinical and protein levels. Here, TPMS was used

to build the mathematical models to simulate the behavior of LDX and

MPH over ADHD by modeling the changes in proteins’ activity defining

the disease. While generating TPMS models, molecular information

relating to psychiatric comorbidities was added to denote the different

neurophysiological ADHD patient types.
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The resulting models allowed the extraction of several protein activity

measures. Therefore, the model-derived parameter tSignal (Equation 1)

[198], which ranges between 1 and -1, applied to the molecular definition

of clinical conditions (in this case, ADHD molecular definition, as detailed

in Supplementary Table B in Supplementary Material 2) permitted access to

clinically relevant information at a model-patient level.

TSignal = 1
n

∑n
i=1 viyi

Where n is the number of proteins defining the protein set; vi are the protein

signs (active or inactive) according to each disease/comorbidity definitions;

and yi are the resulting modeled signal values achieved by each protein “i”

after stimulating the model with the corresponding drug.

Physiologically Based Pharmacokinetic Models

A PBPK model per virtual patient was built to describe the relationship

between drug doses and drug concentration in different organs within the

human body. The PBPK model structure used consists of 14 predefined

compartments representing the human body’s main organs and tissues,

a simplified version of a previously reported model [310] (Figure 20).

Blood acts as the central compartment by interconnecting the rest of the

system through blood flows, and the whole system can be disturbed by

administering a drug dose in any of the following organs or compartments:

gut (oral drugs), blood (intravenous drugs), or skin (subcutaneous drugs).

Similarly, clearance of drugs and compounds is restricted to three

compartments: gut, liver, and kidneys. The equations associated with blood

flow rates and organ/tissue volumes are taken from Brochot and Quindroit

[53]. These variables depend on cardiac frequency, age, BMI, and gender

and yield individualized models as described elsewhere [77]. Here, blood

volume was readjusted to fit the volume of distribution of each compound
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for optimized modeling.

Figure 20: Schematic representation of the multi-compartment model for
physiologically based pharmacokinetic modeling.

Parameters related to the anatomy and physiology of each specific

patient’s human body were used to mathematically describe drugs’ internal

flow, i.e., drugs’ absorption, distribution, metabolism, and excretion

(ADME) processes [341]. The drug’s absorption and clearance constant

parameters were calculated by fitting the general model to existing
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real pharmacokinetics data points for d-amphetamine (d-Amph, active

compound for LDX) and MPH (Table 10) [229, 50, 41, 261]. For other

ADHD drugs (see Supplementary Methods in Supplementary Material 1),

pharmacokinetics data used can be found in Supplementary Table D in

Supplementary Material 2. Regarding MPH, as extended-release capsules

are not easily simulated, an approximation using repeated administration

of lower doses was used. This strategy had already been described for

the two MPH extended-release formulations used here, and resulted in

similar concentration dynamics: (i) for Medikinet c©with modified-release,

considered to have an equivalent MPH bioavailability to Ritalin c©[96], a

twice-a-day administration was simulated with half the dosage for each

simulated administration, and (ii) for Concerta c©, three administrations

were simulated with one-third of the original dose for each administration

[154].

The whole PBPK compartments model is implemented in MATLABTM,

and differential equations describing the kinetics of the compounds and the

fitting procedures are integrated by using SimBiology Toolkit [184].

Quantitative Systems Pharmacology Models—Quantitative Mechanism of

Action

A QSP model enclosing PBPK model outputs and TPMS model maps

was generated for each patient of the vPOPs. QSP models are

generated following the TPMS methodology previously described [198] but

incorporating drug concentration data at different timepoints in addition

to molecular inputs, which add patient-specific quantitative data. To this

end, a set of drug concentration timepoints in the target tissue—brain in

this study—can be associated with the modulation of the drug’s target

proteins. Additionally, by applying the EC50 equation definition and using
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clinical efficacy observations, the drug’s effect on the disease-characterized

proteins in the target tissue can also be calculated (see Supplementary

Methods in Supplementary Material 1). Accordingly, the resulting MPH

and LDX drug’s target modulation-efficacy relationships were used as extra

parameters in the TPMS training set, resulting in the final QSP models.

The latter had the same output format as the systems biology MoA models

previously described [198], but included quantitative information related to

drug concentration. Hence, these models were used to answer additional

questions related to individual differences among patients or treatment

comparisons. At least 50 mathematical solutions per patient were computed

during the QSP modeling to account for intra-patient variability, with

accuracies >85% with respect to the TPMS training set [198].

Efficacy Outcomes and Measures Definition and Optimization

Molecular Measures

Due to the systems-biology–based nature of the virtual patients’ resulting

models, all measures were centered on protein activity. As previously

described [198], after modeling a drug MoA on each patient, a protein

activity value in the range (-1, 1) was obtained. These values can be either

analyzed individually or combined in protein functional groups to evaluate

biological concepts, such as diseases or comorbidities.

Efficacy Outcome

As for any clinical trial, in which the primary outcome is usually related

to the drug’s efficacy, our primary case-study goal was to identify and

compare both drug’s efficacies. Accordingly, a selection and conversion

methodology were defined to select the protein set within the ADHD

definition that best explained a chosen efficacy metric, and we transformed
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the protein activities of that set into a model-derived measure that correlated

with an actual clinical measure. The clinical variable used here was the

ADHD Rating Scale IV (ADHD-RS IV, change from baseline). Three steps

were followed to convert TPMS-model protein activities into ADHD-RS

IV values: (i) select a model-derived activity measure (i.e., tSignal) that

could be used as a proxy for efficacy; (ii) carry out ADHD molecular

characterization, which consisted on a curated review of the scientific

literature available in the PubMed database to identify proteins functionally

involved in ADHD (see Supplementary Methods in Supplementary Material

1; and Supplementary Tables A, B in Supplementary Material 2; and (iii)

optimize by trimming the ADHD molecular definition using real clinical

trial efficacy observations (using ADHD-RS IV). In the third step, a series of

eligible ADHD clinical trials meeting our inclusion criteria and measuring

ADHD-RS IV in relevant drugs (Table 11; Supplementary Methods in

Supplementary Material 1) were compiled. The reported ADHD-RS IV

values were then used for ADHD molecular definition refinement through

Pearson’s correlation (Supplementary Methods in Supplementary Material

1); the final ADHD definitions used for outcome measurement are displayed

in Supplementary Table E in Supplementary Material 2.

Model-derived ADHD outcome measures were optimized separately for

adults’ and pediatric-adolescent’s clinical trials to reduce noise on the

molecular definition.

Data Analysis

For the analysis of the population demographic and PBPK parameters,

descriptive statistics were used (mean and standard deviation, frequency

tables, or pie charts), and appropriate parametric and non-parametric tests
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Table 11: List of clinical trials used for attention-deficit/hyperactivity disorder
model-derived efficacy measure optimization.

applied. The p-value was taken as a measure of the significance of the fitting

to the reference population.

The data was analyzed employing MATLABTM functions and Python or

R packages to compare means and/or standard deviation between data

distributions. Analyses with <30 samples were treated with non-parametric

tests, while comparisons involving more than 30 samples were performed

assuming a normal distribution and treated with parametric tests; in all

cases, the applied test was reported. The statistical significance level was

set at p < 0.05. False discovery rate (FDR) was used to control type I errors

by applying the Benjamini-Hochberg [36] multi-test correction method,

whenever relevant. All analyses were performed according to the described

analytical strategy.
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The accuracies of systems biology and QSP models were calculated for

each solution within each individual model and expressed as the percentage

of compliance of all drug-pathophysiology relationships included in the

training set [198].

To evaluate the sensitivity of systems biology models, a local sensitivity

analysis based in the SOBOL methodology [446] was performed to explore

whether the variation in the protein activity (-1, 1) of the proteins in the

models influenced the MoA models response of the two drugs (ADHD,

as defined in Supplementary Tables A, B in Supplementary Material 2).

According to the SOBOL terminology, TPMS models could be redefined

as:

tSignal(ADHD) = TPMS(X) for X = X1, X2, X3, . . . , Xn

Where Xi corresponds to each one of the parameters (here protein nodes

activity) used in the models. Then, the variation of response model tSignal

for each Xi parameter variation can be expressed as:

dTPMSd(Xi) = d(tSignal)d(Xi)

The tSignal difference compared to the original model was computed for

all values in the range tested, and the mean for each protein was calculated

and evaluated as a percentage with respect to the maximal possible tSignal

variation, set as 2 [(-1, 1) difference] minus the original tSignal.

An unsupervised clustering strategy was applied to obtain groups of two

to seven clusters of MoAs to evaluate the molecular variability of the

generated models. The two (adults and children-adolescents) complete

sets of 1,000 QSP ADHD patient mechanistic models (500 for LDX and

500 for MPH) were evaluated separately, taking into account the final

activation values of the ADHD protein effectors modulated by both drugs.
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Clusters were obtained using K means algorithm [130]. The clustering

analysis was performed using all features (effector proteins) and principal

component analysis (PCA) dimensionality reduction with five dimensions

[196]. Four quality indicators were used to select the optimal number of

clusters: Hopkins statistics [24] to measure the cluster tendency of a data

set; Silhouette index [344] to weigh the cohesion of the clusters and Jaccard

Bootstrap Index [76] to gauge the similarity and diversity of sample sets.

Clusters were also filtered by heavily unbalanced groups, according to the

Silhouette index ratio [344]. Classification analysis, as described elsewhere

[198], were applied to molecularly describe the identified clusters.

Ethics

Only aggregated patient data from published clinical trials were used in

the current project [84, 329, 141, 373, 423, 82, 179, 58, 422, 372, 44,

81, 376, 190, 166, 86, 83]. Aggregated patient data prevents individual

patients’ identification and, thus, avoids the need for approval from an ethics

committee or institutional review board.

Computational Availability

All simulations described in this project were executed in the Anaxomics’

cloud computing, which integrates more than 800 computational threads in

machines with 64 Gigabytes of RAM. Software, databases, and tools are the

property of Anaxomics Biotech.
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Table 12: Demographic characteristics of the adult virtual population and the
reference population.

5.5.4 Results

Demographic Characteristics

The characteristics of adult and pediatric-adolescent vPOPs of ADHD

patients were generated from the proportions of demographic characteristics

reported in the corresponding clinical trials. Additionally, eight

subpopulations with different comorbidities (depression, anxiety, bipolar

disorder, tics, and binge eating disorder) were created using the same

method for both populations to evaluate the impact of comorbidities on

the drugs’ efficacy. The characteristics of our modeled vPOPs can be

found in Figure 21A for adults and Figure 21B for the pediatric-adolescent

population. The characteristics of the adult vPOP showed no significant

differences with real reference populations extracted from clinical trials

(Table 12). The same was true for the pediatric-adolescent vPOP (Table

13).
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Figure 21: Demographic characteristics (sex, age, BMI, height, and weight) of
(A) the adult virtual population (N = 500) and (B) the pediatric-adolescent virtual
population (N = 500).

Local Sensitivity Analysis of Systems Biology-Based Models

TPMS-derived MoA models were subjected to sensitivity SOBOL analysis

to evaluate whether the variation of molecular parameters would affect the

models’ response and to identify key molecules. The sensitivity evaluation

was carried out for a range of values (-1, 1) for each protein. Although these

models have about 5000 parameters, less than a third of them showed a real
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Table 13: Demographic characteristics of the pediatric-adolescent virtual
population and the reference population.

impact (difference >15%) on the output, which was less notorious in MPH

(max difference 1̃7%) than in LDX (max difference 3̃2%) (Supplementary

Table F in Supplementary Material 2). Interestingly, from the 30 most

sensitive proteins, some were shared between both mechanisms (namely,

NFKB1, PRKCA, PRKCZ, TRAF6, and PRKCB).

Physiologically Based Pharmacokinetic Models

PBPK models simulating the available drug concentration in blood over

time were obtained for LDX and MPH and for the two studied populations.

Drug concentration models were fitted to real data resulting in similar blood

drug concentration levels for a standard adult (male, 40 years old, 175 cm,

70 kg) and child (male, 8 years old, 30 kg, 130 cm) (Figure 22). PBPK

model simulations complied with the observed in vivo curves, even for

the case of MPH in children and adults, where approximating repeated

administration of lower doses was required to model the modified-release
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formulations.

Figure 22: Blood d-Amph and MPH concentration comparison between real
datapoints and the curve resulting from the PBPK model.
(A) Generated for a standard adult patient after a single 70 mg dose of LDX, real
datapoints obtained from Krishnan et al. [229]; (B) generated for a standard adult
patient after two 10 mg doses of MPH every 4 h, real datapoints obtained from
BfArM [41]; (C) generated for a standard pediatric patient after a single 50 mg
dose of LDX, real datapoints obtained from Boellner et al. [50]; and (D) model
generated for a standard pediatric patient after three 5 mg doses of MPH every 4 h,
real datapoints obtained from Maldonado et al. [261]. d-Amph, d-Amphetamine;
LDX, Lisdexamfetamine; MPH, Methylphenidate; PBPK, Physiologically based
pharmacokinetic.

Efficacy Outcomes and Measures Definition and Optimization

After the process of optimizing by trimming, 83 proteins (out of 86) were

included in the pediatric-adolescent ADHD definition (ρ = -0.81) and 66

proteins (out of 86) in the adult ADHD definition (ρ = -0.79). The

resulting molecular definitions found after optimizing the model-derived

efficacy measures for each conditions’ clinical efficacy can be found in

Supplementary Table G in Supplementary Material 2. The subsequent

regression lines, as well as the different study points used, are represented
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in Figures 24 and 25.

Quantitative Systems Pharmacology Models in the Virtual Populations

The MoA of LDX and MPH in our populations of interest, inferred from

QSP models, were obtained by combining PBPK models of the dosing

schemes of these drugs and TPMS technology, which modeled the MoA

of both drugs in ADHD. The simulation analyzed the whole available data

on pathologies, drugs, and the population. The mean accuracy values

obtained in mechanistic models for ADHD virtual patients were: 91.63%

(adults treated with LDX), 91.71% (adults treated with MPH), 91.68%

(children-adolescents treated with LDX), and 91.69% (children-adolescents

treated with MPH). Thus, for each patient, activation/inhibition patterns of

all proteins associated with the MoA of LDX and MPH were obtained.

Drugs’ efficacy on ADHD measured over each virtual patient was

exclusively estimated using the above mentioned tSignal formula (Equation

1), which summed up the activity values of ADHD effector proteins. The

tSignal formula was applied to the list of ADHD effector proteins optimized

to fit clinical observations and provided high accuracy QSP models for the

whole set of 1,300 patients comprising adults and children.

The ADHD population was subjected to clustering analysis to explore

molecular variability within the LDX and MPH mechanistic models. The

optimal number of clusters for adults was four different clusters, whereas

three main clusters were identified for children, according to Hopkins

statistics (0.82 and 0.89, respectively), Silhouette index (0.31 and 0.33,

respectively), and Jaccard Bootstrap index (0.52 and 0.57, respectively).

These results reflected drug-independent patient intrinsic variability since

they clustered in a non–drug-dependent manner (Table 14). Clusters were
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Table 14: Distribution of LDX and MPH mechanistic models in the generated
clusters.

represented using the two main components of PCA (Figure 23), which

explained 66.7 and 12.4% of the observed variability in adults, and 61.4 and

19.4% in children-adolescents, respectively. The five most relevant proteins

in the PC1 (eigenvector 1) of each population were – IL4, AKT3, NTRK2,

IL5, and NTF3 for adults and – CRY1, AKT3, CRY2, AKT1, and AKT2

for children-adolescents.

We also found that clustering was associated to differences in treatment

efficacy in adults (ANOVA p-value = 2.515e-08) and children-adolescents

(ANOVA p-value = 1.194e-09). In adults, cluster 4 showed the highest mean

tSignal (p-value = 2.263e-09), while cluster 2 was the one presenting the

lowest (p-value = 6.835e-04). In children-adolescents, the tSignal of cluster

1 was significantly higher (p-value = 2.752e-05) and that of cluster 3 was

significantly lower (p-value = 7.397e-04) than the rest (Student’s T-test).

To further characterize the clusters, we performed an ANOVA analysis to
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Figure 23: PCA representation, based on the modulation of ADHD effectors, of
LDX and MPH mechanisms of action in (A) ADHD adult patients and (B) ADHD
children-adolescent patients.
ADHD, Attention-deficit/hyperactivity disorder; LDX, Lisdexamfetamine; MPH,
Methylphenidate; PCA, Principal component analysis.

identify potential differences on the demographic characteristics within the

clusters. In the overall analysis, only weight was significantly different

(p-value < 0.05) in adults (ANOVA p-value = 0.019), and no differences

were found in children-adolescents. When comparing each cluster against
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Table 15: Results of the comparison analysis between demographic characteristics
within the clusters.

the rest in adults, we found that BMI, weight, and gender ratio were

significantly lower in cluster 4, while weight was slightly higher in cluster 2.

In children- adolescents, BMI and weight were significantly lower in cluster

1, while weight was slightly higher in cluster 3 (Table 15).

5.5.5 Discussion

Herein, the technology to create populations of virtual patients and

the subsequent ISCT is described in the case-study of LDX and MPH

head-to-head comparison in the context of ADHD treatment. Adult and

pediatric-adolescent vPOPs were obtained, and PBPK and QSP models

were generated successfully to provide the basis for identifying mechanistic

differences between the two drugs, patient cohort differences, inter- and

intra-patient response variability.

Preliminary evaluation of the models revealed some insights on the factors

affecting MoA-related treatment efficacy. The sensitivity analysis of

systems biology MoA models provided a list of common proteins that
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might affect both drugs’ efficacy: proteins involved in the NF-κB signaling

pathway (NFKB1 and TRAF6) and PKC (alpha, beta, and zeta types).

The pleiotropic nature of these proteins and their involvement in several

signaling processes could explain their potential impact in the sensitivity

of mechanistic models. However, a detailed evaluation of each drug

mechanistic model should provide further knowledge on the key proteins

involved.

QSP model clustering analysis indicated the presence of several response

patterns, not clearly defined by drug treatment. The protein activity-based

unsupervised clustering was somehow associated to response level, and

PCA analysis revealed some relevant proteins that could be exerting

this effect, including: dopamine signaling-related AKT proteins [223],

neurotrophins related to neural viability and dopamine regulation in ADHD

[252, 23, 45, 305], circadian rhythm proteins related to ADHD and

comorbidities–associated sleep disturbances [2, 295, 90], and cytokines

related to neuroinflammation and Th2 response and ADHD [241, 398,

399, 188]. Regarding clinical characteristics, a possible correlation was

found between lower weight, female gender, and lower BMI, with a higher

tSignal or better efficacy in adult population. Similar results were found

in the children-adolescent population, were higher tSignals were found in

the group with lower weight and BMI. In this sense, previous reports had

already suggested a relationship between drug efficacy and BMI [112].

Related Work

Virtual populations have been generated in the past to assist in solving

complex medical issues. The FDA has accepted a type 1 diabetes

simulator to replace animal testing in pre-clinical trials [407]. Besides,
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in silico cloning of data from individual type 1 diabetes patients to

improve algorithms for closed-loop insulin delivery systems has been

reported in 12 and 47 virtual patients in studies that aimed to tackle

the challenging problem of inter- and intra-subject variability [155, 408].

Likewise, a virtual population of 50 individuals has been generated to

test in silico drug cardiotoxicity and account for inter-subject variability in

clinical studies with toxicological endpoints [315]. Such approaches were

warranted considering the high variability of the evaluated pharmacokinetic

parameters in a short time. However, they were limited in the number of

virtual patients that could be generated accurately. Therefore, considering

that ADHD is not as varying in brief periods and that such pharmacokinetic

detail was unnecessary, a higher number of patients could be generated

in our study. On the other hand, a multi-compartment model with a

large virtual population size has been published on trauma-induced critical

illness that showed how the molecular and cellular events taken as a whole

could manifest heterogeneously on individuals [54]. These results were in

agreement with ours, which showed different clusters of patients that could

correspond to different response profiles to a certain point, independent from

drug treatment.

Virtual populations combined with PBPK modeling have been used

successfully to predict the pharmacokinetic profile of a drug and evaluate

potential drug-drug interactions for a specific ethnicity [218]. In addition, a

PBPK model combined with systems-biology techniques has been reported

and validated as an efficient tool for assessing risk exposure to certain

volatile organic compounds [345]. Furthermore, multi-compartment QSP

has been used to model immunotherapies in breast cancer [415]. When

associated with pharmacokinetics and pharmacodynamics data, it has been
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reported in an in silico virtual clinical trial to analyze predictive biomarkers

in certain breast cancers [416]. Hence, PBPK and QSP models have been

established as powerful computational tools for in silico simulations.

Finally, only a few in silico head-to-head trials have been published. A

recent study compared two insulin therapies for type 1 diabetes treatment by

using the abovementioned FDA-approved simulator and pharmacokinetics

models to compare two designs, crossover and parallel [352]. The parallel

design was justified because it would likely be preferred in a real setting

for practical reasons, which is not necessarily true in the case of our

study on ADHD. Another head-to-head mechanistic study comparing two

lung cancer treatments has been reported by our group, whereby a similar

approach to the one here described was undertaken [64]. However, our

previous study did not require generating virtual populations nor used PBPK

or QSP models to reach its conclusions.

These examples of application of in silico modeling approaches in

different therapeutic areas bear witness to an increasing tendency to use

newly available high performance computing technologies in the field of

biomedicine. The use of these technologies will help advancing toward

the implementation of precision medicine pipelines and personalizing the

healthcare provided to patients.

Strengths and Limitations

TPMS models are constructed considering the whole human protein

network and a wide range of drug-pathology relationships, not only limited

to ADHD or psychiatric ailments, which, in part, attenuates the potential

bias on information regarding drugs or disease of interest. As defined by

Jorba et al. [198], only MoA models with accuracies above 85% against
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the training set were used to ensure good quality and general extrapolation

of results. This systems biology-based methodology has been reported

to be successful, with results validated by in vitro and/or in vivo models

[339, 182, 257].

Only limited by computational power, ISCT allows enrolling a large number

of patients with several neurophysiological ADHD subtypes, which can

be difficult, costly, and even not feasible in a conventional clinical trial

setting. Virtual patients generated in our study were defined by the drugs’

molecular mechanisms, allowing the exploration of the complete clinical

and molecular landscape of each patient. Furthermore, our ISCT design

had a large enough sample size and considered pools of mathematical

solutions for each patient—instead of a single mathematical model per

patient—which ensured that the simulations were robust and appropriate

for data analysis.

However, our study presented some limitations. Firstly, our models

depended on the current knowledge of human physiology, particularly on

the drugs and disease under investigation, as well as protein interactions

and pathways described and involved in the MoA. Therefore, our models

could have been susceptible to missing data, errors, and bias, and some

aspects could have been overlooked. For instance, unknown targets or yet

undescribed pathophysiological ADHD processes might play a role in the

MoA of the evaluated drugs. ADHD and its associated comorbid psychiatric

disorders present a high genetic and signaling overlap [111, 110], which

could act as confounding factors at the clinical and molecular levels.

Accordingly, the molecular characterizations used for modeling could be

biased; prospective data could expand the knowledge on these diseases and,

therefore, improve our model-derived conclusions.
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Secondly, our approach considered only the impact of demographic

characteristics on the PBPK modeling (i.e., drugs’ absorption, distribution,

metabolism, and excretion). However, other consequences of these

characteristics at the ADHD pathophysiology level were not considered,

because of the absence of (i) clear molecular information to include in

the ADHD definitions for each patient profile, and (ii) reliable sources of

information to properly model these characteristics at the molecular level.

This limitation could prevent the modeling and detection of relevant results

regarding these characteristics, such as age-related neurodevelopment [370,

94], differences between children, adolescent and adults [441, 128] or

the potential role of sex-dependent differences [322, 256, 126]. Future

data on large sets of patients, or specific research on the impact of those

characteristics on ADHD, might allow to improve our models and derived

conclusions.

Thirdly, all mathematical models are subjected to the limitation of not

being able to fit 100% the training data information. In our approach,

while we obtained a pediatric virtual population with demographic values

non-significantly different from the reference clinical trial population,

the obtained p-values for age and weight were close to the significance

threshold. These parameters proved to be more difficult to fit in pediatric

than in adult virtual populations. While clinical trials only report average

weight and age, general pediatric population weight distributions obtained

from growth information [258] are age-dependent. Accordingly, setting

a higher threshold of significance (p > 0.1 or even p > 0.2) during

the randomization procedure might ensure obtaining a fitter population,

especially regarding the pediatric case. In this specific scenario, as the

case-study objective for the generation of the ISCT was a head-to-head
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between LDX and MPH using the exact same population, this bias was

not expected to significantly affect the results. TPMS-based models are

not an exception either [198]. Each virtual patient was constructed with

at least 50 solutions, and a population sample size larger than the minimum

calculated was used to dampen this effect. TPMS models present an inherent

variability, rendering them useful to explore molecular variability within

human physiology [198]; through an adequate management of the model’s

variability and considering an appropriate sample size, the best solutions

could be obtained.

Finally, our study’s primary outcome was generated with information from

literature on the drugs used for ADHD treatment and their measured clinical

effect. The values used for the training process were the average values

reported in those publications (Table 11). However, a great dispersion was

observed. For instance, while the mean ADHD-RS IV value associated with

amphetamine was -18.1, the authors report a range of response between

-4.68 and -31.52, representing a 74% deviation from the mean, clearly

higher than the dispersion values generated with our models (Figure 24).

The dispersion identified in clinical trials was probably due to demographic

and metabolic differences between patient cohorts and how the principal

variable was measured. This effect appeared in all analyzed drugs, and we

estimated an average dispersion of 57% for all of them. The dispersion in the

efficacy measured from the clinical trials cannot be mathematically treated

without accessing patient data, which is not available; at this point, we

had to resort to a naïve pooled approach, risking its associated limitations.

In such cases, the best approach to obtain a drug efficacy value is to

compute the mean of the values reported by different authors. Selection

bias can also induce errors when using external data. To attenuate its
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effect, clinical trials assessing a wide range of drugs were used in our study.

On the other hand, another limitation associated to the outcome measure

used would be of clinical nature; ADHD symptom scales are based on

questionnaires to the patient or the physician, that comprise several aspects

of a complex psychiatric disease. These clinical measures might not be as

directly associated to molecular or biologically measurable factors (such as

blood pressure when studying hypertension). To minimize both technical

and clinical limitations of the outcome measure used, we selected the

ADHD-RS IV scale as this was the scale with the largest amount of clinical

trial information for different mechanisms of action, so the model efficacy

measures could be properly optimized to fit clinical data. Our approach

tried to compile the largest amount of available information around patients,

disease, and treatments at the molecular and clinical level and provided

benchmarks to validate the different steps of the study. Nonetheless, a

corroboration of the herein described procedure to infer new actual clinical

results with independent (existent or new) experiments is called for.

In our ISCT, most of these sources of error could translate into an error in

the estimation of the principal variable, evaluated by the Pearson correlation

coefficient (Figures 24 and 25). Interestingly, the Pearson correlation

coefficients obtained after lineal regression adjustment for the adult and

pediatric-adolescent populations were high given the large dispersion shown

in values from clinical practice for the same drugs (Supplementary Table E

in Supplementary Material 2).

5.5.6 Conclusions

The methods here illustrated described the step-by-step process for

creating a virtual population of patients treated with two drugs for
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ADHD management, LDX and MPH, with the aim of designing an

ISCT for their comparison head-to-head. Our study provided adult and

pediatric-adolescent vPOPs and generated QSP models to infer, after

analysis, the MoA of these two drugs. This theoretical model, and its use

for a head-to-head analysis, would allow obtaining conclusions classified as

MEDIUM impact according to MID3 guidelines. Although experimental

and clinical assays are warranted to validate or refute these potential results

before translation into clinical practice, the mechanistic-driven modeling

techniques used here should be accepted as hypothesis-generation solid

tools with a remarkable ability to provide molecular detail. Besides, from

a scientific evidence point of view, complementing meta-analyses with

theoretical models, such as the ones here presented, can palliate the lack

of costly, though necessary, head-to-head clinical trials. Altogether, in

silico techniques can contribute to advancing the understanding of diseases’

pathophysiology and the molecular MoA of available therapies, with the

ultimate goal of reaching personalized medicine.
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5.5.14 Supplementary Methods

Bibliography-based characterization and searches

Bibliography-based drug characterization

Aside from a review of official regulatory documentation and drug-target

dedicated databases, a review of the currently available bibliography

regarding known targets of the drugs was performed in PubMed on April

27, 2020. The specific searches performed were the following:

• ("Elvanse" [Title/abstract] OR "Vyvanse" [Title/abstract]

OR "Lisdexamfetamine" [Title/Abstract]) AND ("molecular"

[Title/Abstract] OR "mechanism" [Title/Abstract] OR

"pathophysiology" [Title/Abstract] OR "pathogenesis"

[Title/Abstract] OR "mode" [Title/Abstract] OR "action"
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[Title/Abstract] OR "signaling" [Title/Abstract] OR "signalling

"[Title/Abstract] OR "expression" [Title/Abstract] OR "activation"

[Title/Abstract] OR "inhibition" [Title/Abstract] OR "activity"

[Title/Abstract])

• ("Methylphenidate" [Title] OR "Medikinet" [title/abstract] OR

"Concerta" [title/abstract] OR “Medikinet”[title/abstract]) AND

("molecular" [Title] OR "mechanism" [Title] OR "pathophysiology"

[Title] OR "pathogenesis" [Title] OR "action" [Title] OR "signaling"

[Title] OR "signalling " [Title])

All articles were analyzed at the title and abstract level. The presence

of molecular information was reviewed in depth to identify protein/gene

candidates to be considered drug target candidates.

Bibliography-based conditions characterization

For disease characterization, we initiated an extensive and careful

full-length review of relevant articles in the PubMed database (up to January

21, 2020) that included the following search strings:

• ADHD: ("Attention deficit hyperactivity disorder" [Title] OR

"ADHD" [Title] OR "Attention-Deficit/Hyperactivity Disorder"

[Title]) AND (“pathogenesis” [Title/Abstract] OR “pathophysiology”

[Title/Abstract] OR “molecular” [Title/Abstract]) AND Review

[ptyp].

• Depression: ("Depression" [Title] OR "Major Depressive Disorder"

[Title]) AND ("Molecular" [Title/Abstract] AND ("Pathophysiology"

[Title/Abstract]) OR ("Pathogenesis" [Title/Abstract]) AND

(Review[ptyp] AND "2015/01/28" [PDat] : "2020/01/28" [PDat])
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• Anxiety: (“Anxiety disorders” [Title] OR "Anxiety" [Title])

AND ("Pathogenesis" [Title] OR "Pathophysiology" [Title] OR

"Molecular"[Title])

• Bipolar Disorder: ("Manic-Depressive" [Title] OR "Bipolar"

[Title] OR "Manic Depressive" [Title] OR "Manic Disorder"

[Title] OR "Manic Depression" [Title]) AND (“Pathogenesis”

[Title/Abstract] OR “Pathophysiology” [Title/Abstract] OR

“Molecular” [Title/Abstract]) AND Review[ptyp]

• Tics Disorder: (“TICS” [Title] OR "Tic Disorder" [Title] OR

"Tic Disorders" [Title]) AND ("Pathogenesis" [Title/Abstract] OR

"Pathophysiology" [Title/Abstract] OR "Molecular" [Title/Abstract])

• Binge eating: ("Binge Eating Disorder" [Title] OR "Binge Eating"

[Title]) AND ("Pathogenesis" [Title/Abstract] OR "Pathophysiology"

[Title/Abstract] OR "Molecular" [Title/Abstract])

The list of publications identified in the specific searches was retrieved and

assessed at the title and abstract level. If molecular information describing

pathophysiology conditions was found, the full texts were thoroughly

reviewed to identify the main pathophysiological processes known to be

involved in the diseases (Table A in the S2 File). Subsequently, each

pathophysiological process was further characterized at the protein level

by using the retrieved publications. Accordingly, proteins whose activity

(or lack thereof) are functionally associated with the development of the

condition were identified (Table B in the S2 File).

Clinical trial information compilation

To accurately obtain a model-derived efficacy value to fit clinical efficacy

values, clinical trials that assess the efficacy of drugs currently approved and
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commonly used in clinical practice were retrieved from clinicaltrials.gov

and PubMed. Only phase III clinical trials that were interventional (i.e.

included at least an arm treated with the drug of interest), completed,

and had published results were considered. Once listed, these clinical

trials were evaluated to select the efficacy scale most frequently used

and the best representative of drug variability (i.e. that included data

from a vast number of drugs). Accordingly, the ADHD Rating Scale

IV (ADHDRS IV) and the following list of drugs were considered:

Amphetamine, Atomoxetine, Bupropion, Clonidine, Dexmethylphenidate,

Guanfacine, Lisdexamfetamine, and Methylphenidate. The selected drugs

were characterized at the molecular target and pharmacokinetic levels (Table

D in the S2 File).

Modelling methodology and algorithms

Virtual population modelling

Adult virtual populations (vPOPs) are created by assigning demographic

variables (age, weight, height, and body mass index [BMI]) to virtually

generated patients by using a modification of the algorithm proposed by

Allen et al. [11]. Accordingly, we define as original population the one

whose characteristics we would like to mimic and as standard population

the reference use to complete missing demographic characteristics. Firstly,

a multivariate normal distribution (MVND) with the given means and

standard deviations for each variable from the original population is created.

When data about a specific parameter is not available, the information is

taken from the standard population distribution (in this study, for the adult

population, a standard European distribution [106] was used). Since BMI,

weight, and height are related through equation 1, only age and one pair of

the morphometric parameters (weight and BMI, weight and height, or BMI



5.5. Methods to develop an in silico clinical trial 169

and height) are generated.

BMI(kg/m2) = weight(kg)/height(m)2

Secondly, a cost function based on the original population demographic

parameters is used with the objective of being minimized until the generated

population resembles the available information on the original population.

A simulated annealing strategy is used to minimize the cost function by

using as starting points the patients generated according to MVND values.

Let n be the number of patients to generate; µi, σi, mi, Mi the mean,

standard deviations, minimums, and maximums of the original population’s

age, height, weight, and BMI (i); Xi the n dimensional vector containing

the variable i’s values of the generated population; and Xi,j the nx2 matrix

containing the generated population’s values of the variables i and j so

that it represents the concatenation of Xi with Xj . For any data vector X

generated with the multivariate distribution, let mean(X), std(X), min(X)

and max(X) be the mean, standard deviation, minimum, and maximum of

X . Two different cost functions are defined: the first one contains only age

as a single item, and the second equation is based on equation 1, relating

two of the morphometric parameters (BMI, weight, and height).

For age (a):

fa(Xa) = (mean(Xa)− µa)6 + (std(Xa)− σa)4 +∑
xa∈Xa

max
((
xa − ma+Ma

2

)2 − (ma+Ma
2

)2
, 0
)

For a pair of the morphometric parameters (BMI, weight, and height) (i,j):

f1i,j(Xi,j) = (mean(Xi)− µi)6+(std(Xi)− σi)4+(min(Xi)−mi)
2+

(max(Xi)−Mi)
2 + (mean(Xj)− µj)6 + (std(Xj)− σj)4 +

(min(Xj)−mj)
2 + (max(Xj)−Mj)

2
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Since i and j are generated independently from the remaining demographic

variable (either BMI, weight, or height), and to ensure the latter stays in a

plausible range, the cost function was extended by using equation 3, which

also depends on k:

i = weight; j = BMI; k = height

f2.1i,j,k(Xi,j) =
(
mean(

√
Xi
Xj

)− µk
)6

+
(
std(

√
Xi
Xj )− σk

)4
+∑

(xi,xj)∈Xi,j

(
max

((√
xi
xj
− mk+Mk

2

)
2−

(
Mk+mk

2

)2
, 0

))
i = height; j = BMI; k = weight

f2.2i,j,k(Xi,j) =
(
mean(X2

i ·Xj)− µk
)6

+
(
std(X2

i ·Xj)− σk
)4

+∑
(xi,xj)∈Xi,j

(
max

((
x2i · xj −

mk+Mk
2

)
2−

(
Mk+mk

2

)2
, 0

))
i = height; j = weight; k = BMI

f2.1i,j,k(Xi,j) =

(
mean(Xi

X2
j
)− µk

)6

+

(
std(Xi

X2
j
)− σk

)4

+∑
(xi,xj)∈Xi,j

(
max

((
fracxix

2
j −

mk+Mk
2

)
2−

(
Mk+mk

2

)2
, 0

))
Where Xi

Xj
corresponds to the pointwise division, i.e. a vector where the lth

element is the lth element ofXi divided by the lth element ofXj . Similarly,

Xi ·Xj and X2 = Xi ·Xi are the pointwise multiplications. The final cost

function equation for BMI/weight/height results as follows:

fi,j,k(Xi,j) = f1i,j(Xi,j) + f2i,j,k(Xi,j)

A one-sample z-test (alpha= 0.05) is also used to ensure the new population

preserves the original data distributions; otherwise, the population is

recalculated.

In pediatric-adolescent virtual populations, and because morphometric

measures drastically depend on age, a slightly different approach was

undertaken. The first step was generating a sample population using

the percentiles information reported by the World Health Organization
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in pediatric-adolescent populations [258] and by randomly generating

plausible values setting the percentiles as probability density function

points [156]. Subsequently, a resampling strategy based on the

Metropolis-Hastings method [71] was used to select a sub-population

fulfilling the means and standard deviations of the original population. An

initial sub-population set was chosen randomly. Then, an iterative process

was carried out by continuously replacing patients from the sub-sample

with the ones in the generated sample population. If the newly replaced

patient resulted in a sub-population closer to the original target population,

that population was chosen. Otherwise, the old patient remained in the

population. This process continued until a p-value > 0.05 was obtained,

according to a one sample z-test between distribution values of the

subpopulation and the original population.

Quantitative Systems Pharmacology models – Physiologically-based

pharmacokinetic data integration in Therapeutic Performance Mapping

System models

The training data used by Therapeutic Performance Mapping System

(TPMS) models (Table C in S2 File) consists of physiologically known

stimulus-response relationships (e.g. drugindication) that must be achieved

[198]. Therefore, to integrate the patient-specific physiologicallybased

pharmacokinetic (PBPK) concentration data with TPMS resulting in the

final Quantitative Systems Pharmacology (QSP) models, the individuals’

drug concentration variation data need to (i) be transformed into a protein

activity-like measure (stimulus); and (ii) be associated to a molecular effect

(response). To that end, drug concentration is translated into drug target

protein’s grade of activation/inhibition and, in parallel, is related to the

pathology-ADHD in this case - inhibition or reduction by using a set
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of equations based on the half-maximal response concentration (EC50)

definition and clinical efficacy data. To calculate the stimulus, the following

procedure and equations are used. PBPK models describe the variation

of drug concentration in the different compartments over time. Given a

specific compartment, the drug concentration (C) variation over time can be

expressed as a vector of drug concentration values for i timepoints (Ci). The

drug concentration is then related to its protein targets (Table 9). According

to the TPMS definition, the activity of a protein P can be treated as a

normalized vector with values in the range [-1,1], where 1 represents the

maximal functional capability of the component to develop its activation

functional role, -1 corresponds to the maximum inhibition capacity, and 0

represents the null capability of developing tasks. For each setting, and

assuming that the maximal absolute value of P will be obtained when drug

concentration is maximal (max(C)), we define Sig as the protein sign (+1

when drug activates P, -1 for inhibition), and a vector of protein target

activity over time i as:

Pi = Ci/max(C) ∗ Sig

Response values are also calculated by using drug concentration over time

(Ci) but refer to the drug effect over the disease. The transformation into

pathology response values can be obtained applying the concept of EC50,

according to equation 9 [414], being Eff the effect of the drug over the

pathology, which will range from 0 to 1:

Eff = C
EC50+C

As real drug’s EC50 were not available, EC50′ was here defined as a

model-derived proxy related to (clinical) efficacy or drug effect. Also, the

resulting models’ tSignals were used as a modelderived measure of the

drug’s impact on the pathology (Eff ′ i.e. the model equivalent to the
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parameter Eff ). Then, to pre-calculate the EC50′ and be able to obtain

the Eff ′, the theoretical mechanism of action model between the drugs

under study and the molecular descriptors of the pathology were built, as

described by Jorba et al. [198], and the resulting tSignals extracted. The

latter was assumed as a drug’s maximal effect and, by applying equation 9,

EC50′ could be defined as a function of the Eff ′ when the maximal drug

concentration was achieved (max(C)):

EC50′ =
(
max(C)
Eff ′ −max(C)

)
To renderEC50′ an estimate of clinical efficacy, it was weighted taking into

account the real clinical efficacies (clEff ) of the whole set of drugs to be

considered in the study; thus, EC50′ was a parameter relative to the set of

drug efficacies included in the analysis. For each drug, let clEff be the

clinical efficacy value; max(clEff ) the maximum clinical efficacy found

from the whole set of drugs considered; and Eff ′ the tSignal extracted

from the TPMS model. Then:

EC50′ =

(
max(C)

Eff ′ −max(C)
)

clEff
max(clEff)

In this study, the set of drugs used for EC50′ calculation was the same set

of drugs that were used for the intervention outcome optimization and are

summarized in Table D in the S2 File. Finally, the response values of each

drug could be computed by using the corresponding EC50′, and rewriting

equation 9 as shown in equation 12.

Eff ′i =
Ci

EC50′+Ci

As a result, a set of stimulus(Pi)-response(Eff ′i) vector pairs could be

computed for each of the drugs, one pair per each drug’s protein target, and

were added to the training set to construct the patient-specific QSP models.

Efficacy outcome – Clinical efficacy measure



174 Chapter 5. An ISCT platform using TPMS models

Figure 24: Regression line between optimized ADHD tSignal in the
pediatric-adolescent population in relation to ADHD-RS IV, change from baseline
values (R = -0.81)

Figure 25: Regression line between optimized ADHD tSignal in adult patients in
relation to ADHD-RS IV, change from baseline values (R = -0.79)

ADHD was characterized and the tSginal of the subsequent protein set was

chosen as modelderived efficacy measure. Then, the TPMS-based MoA
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models of the selected drug’s clinical trials were built (summary in Table E

in the S2 File), and the ADHD-tSignals were computed and used to measure

optimization. In order to link the clinical efficacy measure, ADHD-RS IV,

with the model-derived value, ADHD-tSignal, linear regression analysis

between both variables was performed to parameterize the following

equation:

Clinicalefficacymeasure = A ∗model − derivedefficacy +B

The ADHD-tSignal strongly depends on the disease’s molecular

characterization. However, the initial bibliography-based definition could

lead to the inclusion of proteins not related to the drugs under study or

that might not have a clear role in the clinical manifestations affecting

the clinical scale. Accordingly, the optimization process was centered

by determining the molecular definition (ADHD protein subset) of the

pathological condition whose tSignal would best correlate to clinically

observed efficacies (ADHD-RS IV). This process was designed to maximize

the absolute value of the Pearson correlation coefficient (|ρ|) between

clinical and tSignal values, maintaining molecular information from the

bibliography-based characterization. Thus, to identify the best A and

B parameters in equation 13 that linked clinical efficacy measures with

tSignals, proteins within the ADHD molecular definition were discarded

iteratively until a molecular definition provided a strong correlation between

both variables [7].

5.6 Discussion

In this methods publication, the methodology to create populations

of virtual patients, with their QSP models, and the implementation

of the subsequent ISCT is described. The article is centered on
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the case-study of lisdexamfetamine (LDX) and methylphenidate (MPH)

head-to-head comparison in the context of attention-deficit/hyperactivity

disorder (ADHD) treatment. The models and platform herein proposed

could be used as a hypothesis-generation tool with a remarkable ability

to provide molecular detail, although experimental and clinical assays

will be needed to validate the potential results before translation into

clinical practice. Nevertheless, from a scientific evidence point of

view, complementing meta-analyses with theoretical models, such as the

platform here presented, can palliate the lack of costly, though necessary,

head-to-head clinical trials. Moreover, they can provide critical information

on sub-cohort responses or adverse event prediction.

5.6.1 Virtual populations

Virtual populations (VPops) have been already used to assist in solving

complex medical issues, while allowing the analysis of patient variability,

and replacing animal testing in pre-clinical trials [407, 155, 408]. Most

of these approaches took into account the high variability of the evaluated

pharmacokinetic parameters in a short time. However, they were limited in

the number of virtual patients that could be generated accurately.

The algorithm herein proposed uses multivariate normal distributions

(MVND) and, because of the intrinsic different characteristics and

distributions of child and adult populations, two solving approaches are

described based on sub-sampling and simulated annealing respectively.

They both allow the rapid generation of VPops with real-like physiological

characteristic distributions.
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5.6.2 PBPK modelling

Most PBPK models are drug- and/or disease-specific, which limit their

scalability to other areas. However, here a general PBPK model is described

representing a whole-body system and able to simulate the behavior of any

given drug. Although it does not include metabolism or interactions with

other body components, it can model the basic behavior of a drug in all

main body compartments thanks to its data-drive approach. Moreover, as

in the case-study example, late-release compound could be also modeled

resulting in real-like concentration curves.

5.6.3 QSP modeling

Virtual populations combined with PBPK modeling have been used to

successfully predict the pharmacokinetic profile of a drug and evaluate

potential drug-drug interactions for a specific ethnicity [218]. In addition, a

PBPK model combined with systems-biology techniques has been reported

and validated as an efficient tool for assessing risk exposure to certain

volatile organic compounds [345]. Furthermore, multi-compartment QSP

approach has been used to model immunotherapies in breast cancer [415].

When associated with pharmacokinetics and pharmacodynamics data, it

has been reported in an in silico virtual clinical trial to analyze predictive

biomarkers in certain breast cancers [416]. Hence, PBPK and QSP

models have been established as powerful computational tools for in silico

simulations.

In this ISCT platform PBPK models are connected to TPMS, enabling the

generation of QSP models partly dependent on treatment schedules and

body characteristics. In order to link both model types, one focused on

compound concentration and the other on protein interactions, a system
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is proposed were the drug concentrations are linked to target activation

and disease treatment efficacy which, thanks to the protein characterization

of both, can then be translated into protein activations/inhibitions. This

information is later taken by the TPMS-systems biology models as input

data.

5.6.4 Application of the ISCT platform

Only a few in silico head-to-head trials have been published. A recent

study compared two insulin therapies for type 1 diabetes treatment by

using the above mentioned FDA-approved simulator and pharmacokinetics

models to compare two designs, crossover and parallel [352]. In publication

1 (section 3.2), another head-to-head mechanistic study was done using

TPMS models, comparing two lung cancer treatments. Although using

similar models, our previous study did not require the generation of virtual

populations nor used PBPK or QSP models to reach its conclusions.

Here, a more extensive application of TPMS models was performed. As

a result of the study, we found different clusters of patients that could

correspond to different response profiles to a certain point, independent

from drug treatment. These results were in agreement with previous

findings, where a multi-compartment model with a large virtual population

size was published on trauma-induced critical illness, and which showed

that molecular and cellular events taken as a whole could be manifested

heterogeneously on individuals [54].

5.7 Concluding remarks

Recent application of in silico modeling approaches in different therapeutic

areas bear witness to an increasing tendency to use newly available high
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performance computing technologies in the field of biomedicine. The use

of these technologies will help in drug development decision making, while

advancing toward the implementation of precision medicine pipelines and

personalizing the healthcare provided to patients.

The herein generated theoretical models inside a ISCT platform, and its use

for a head-to-head analysis, would allow obtaining conclusions classified as

MEDIUM impact according to MID3 guidelines [263, 409].
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Chapter 6

General Discussion

In this thesis, a novel methodology for the implementation and execution of

ISCTs, based on a powerful systems biology approach, is being described.

ISCT is still a new and expanding field with low implementation consensus,

despite recent efforts [304, 403]. While some models and approaches

have been proposed through the usage of Bayesian models, ML (machine

learning) algorithms or PBPK [304], here I propose the usage of a patient

specific individualized QSP approach by merging systems biology with

PBPK modeling, as earlier mentioned in Avicenna Roadmap [403].

As discussed in section 5.5, I have built an ISCT platform consisting

on a series of semi-supervised, sequential methodologies that allow the

generation of many VPops and treatment branches, which can later be

analyzed and compared. After defining the treatment strategy/ies and target

population (protocol), the process starts by the generation of a population,

by means of defining or mirroring a reference population demographic

distributions values, as well as assigning molecular/disease tags. Next, a

QSP (PBPK+SysBio) model is built for each patient, taking into account

183
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their specific physiological and molecular characteristics (age, sex, bmi,

comorbidities, co-treatments) and the system is perturbed with the treatment

schedule. Finally, the population is analyzed as a whole, in cohorts or

individually, in order to extract new insights.

6.1 Systems biology

Systems biology approaches have been previously developed in order to

elucidate the MoA of drugs [1, 302, 309, 380, 314, 181]. Here, the

TPMS methodology has been used, which is based on a HPN that uses

and combines data from several databases, as described in Box2 and

section 3.2 and section 4.2, and previously used elsewhere [181, 182,

164, 269, 309, 339]. Aside from PPI information, the network also

incorporates information regarding protein complexes, metabolism and

gene-coregulation. TPMS goal is to elucidate the MoA or pathways of

drugs from their target proteins until a patho-physiological related protein

set, in order to extract information of their protein based effect and possible

adverse events.

This type of models, which can be perturbed in order to follow its effects

over the HPN, have been proven useful in answering wide range hypotheses,

like: understanding pathologies, predicting adverse events, predicting

drug-drug interactions, finding possible biomarkers [181, 182, 164, 269,

309, 339].

6.2 Physiologically-based pharmacokinetics

Many complex, usually disease-specific, PBPK models have been generated

and some already accepted by regulatory agencies to be part of the DDD

process to avoid animal testing [413, 395, 433]. Here, a rather fundamental
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but generic PBPK model has been built using SimBiology Toolbox

(Release 5.7) from MATLABTM [271] in order to simulate the absorption,

distribution and excretion of drugs and compounds in a whole-body human

system.

As discussed in section 5.5, this PBPK model is data-driven and relies

on previously generated information, either actual PK concentration-time

curves or drug’s PK parameters (eg. Tmax, Thalf), to parametrize and

simulate the drug’s behavior. This comes handy when analyzing known

compounds, although would not serve for newly generated drugs with

unknown PK data. However, the goal of this approach is not to predict

drug properties, which other algorithms can already do, but to simulate their

behavior inside the human body organs and tissues, in order to extract a

distributions and concentration curve patterns that will be used afterwards.

6.3 QSP model

By combining the drug concentration profile from the PBPK model and the

TPMS technology, a novel QSP model has been generated and described

in section 5.5. Although the model largely relies on the systems biology

network properties, the addition of PK information as extra training

data allows the differentiation between distinct dosing profiles, as well

as comparison of different PBPK systems, corresponding to different

individuals.

It is important to notice that a specific strategy has been followed in order

to integrate both models’ data. As explained in the article, previous CT

results are used in order to transform the concentration values into efficacies,

which are then used as signal values. This results in models that that can be

used to extract information on specific patient cohorts, as well as comparing
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different drug profiles. However, as a data-driven approach, it relies on

previous PK and CTs data in order to function optimally, and leaves few

margins for novel drug data prediction.

6.4 Virtual populations

In order to move towards an individualized, personalized medicine, which

is only feasible thanks to recent computer capabilities, the usage of virtual

patients (VPs) and populations (VPops) is increasing [11, 354, 240].

Following this premise, the first and important step in the configuration

of the present ISCT platform is the generation of a user defined reference

VPop, for assigning both demographic and molecular characteristics to

virtually generated patients; as realistic populations will enable better cohort

understanding in posterior analyses.

Two distinct methodologies for generating virtual populations, one for

adults and another for child-adolescents, have been implemented based on

previous works [11, 71]. Both have proven valid for creating Vpops that

mimic reference population demographic distributions, with no statistical

difference. Because of the core of the algorithms used, no extreme

patients are generated, with eg. 150 years old or 250 cm tall. The whole

demographic distribution range and initial patient molecular characteristics

assignation can be simulated, which allow the generation of specific, rare

cohorts not or little represented in actual CTs.

In order to choose an appropriate population sample size, a tool has also

been developed to compute the statistical power of generating different

cohort sizes, as described in subsection 5.5.3.
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6.5 ISCT platform

As depicted in section 5.5, a platform for performing ISCT has been

generated which includes the algorithms from sample size determination

and generation of VPs, until the QSP modeling and posterior analysis.

Although it needs data form previous studies, this tool can be used to

compare a different treatments of a drug and could prove paricularly useful

for drug repurposing studies. So, this tool it is intended to help in decision

making when moving through CT stages in Drug Development processes,

as it has been exemplified in the paper of section 5.5.

6.6 Advantages and limitations

The resulting QSP models rely on the TPMS technology, which has been

proven to generate robust models. Those can be used not only for MoA

extraction, but also for AEs prediction, analysis of drug-drug interaction or

biomarker prediction.

As a MEDIUM impact according to MID3 guidelines, this methodology

could be used to justify key decision making points during DDD phases.

As a data-driven approach, it needs previous PBPK experiments and

CTs information in order to build the models and make optimal further

predictions. This would be an inconvenient for newly developed drugs,

but not for repurposing trials, where lot of information has already been

generated.

Although tissue/organ is taken into account at modeling drug concentration

in PBPK models, drug-tissue/organ interactions are not taken into account

and could result in some bias.
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Because the HPN used depends on the current knowledge of human

physiology, as well as protein interactions and pathways described and

involved in the MoA, the resulting models could be susceptible to missing

data, errors, and bias.



Chapter 7

Conclusions

In the present thesis, I have used both systems biology and a novel in silico

clinical trial platform in order to gain insights in the mechanisms of actions

of drugs, as well as extracting relevant information in the several disease

contexts. Along with this thesis, I have come to the following conclusions:

• The Therapeutic Mapping System is a powerful and robust systems

biology modeling approach which enables the computation of the

mechanism of action of drug-pathology relations (chapter 3 and

chapter 4).

• The computational models, using the TPMS, of britgatinib

and alectinib towards ALK+ NSCLC, display similar effectivity.

However, a broader response was identified for brigatinib which

might infer better benefits, especially towards preventing resistance

mechanisms (chapter 3).

• Artificial neural networks can be used to predict drug-drug

interactions and resistances and, jointly with TPMS, revealed that

189
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while alectinib might be more susceptible towards developing

resistances, it would also present less predicted interactions with other

treatments (chapter 3).

• Because TPMS models use a sampling method approach, generating

several possible mechanism of action solutions, those can be

interpreted as different patients and analyzed as such to extract cohort

insights. This permitted the identification of 30 promising biomarkers

related to heart failure diseases and macular degeneration (chapter 4).

• TPMS technology can be coupled to a physiologically-based

modeling approach in order to generate personalized quantitative

systems pharmacology (QSP) models (chapter 5).

• All-together, the developed ISCT platform allow the simulation of a

clinical trial. As so, it can help finding insights in drug effectiveness,

drug comparisons, biomarkers and adverse event identification, and

extraction of patient-cohort differences (chapter 5).
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Annex

Aside from the publications mentioned in the text, and as part of the DRIVE
project, I also participated in the elaboration of the following publication:

Muhammed Kocak, Saba Ezazi Erdi, Guillem Jorba, Inés Maestro, Judith
Farrés, Vladimir Kirkin, Ana Martinez & Ole Pless (2022) Targeting
autophagy in disease: established and new strategies, Autophagy, 18:3,
473-495, DOI: 10.1080/15548627.2021.1936359

Abstract

Macroautophagy/autophagy is an evolutionarily conserved pathway
responsible for clearing cytosolic aggregated proteins, damaged organelles
or invading microorganisms. Dysfunctional autophagy leads to pathological
accumulation of the cargo, which has been linked to a range of human
diseases, including neurodegenerative diseases, infectious and autoimmune
diseases and various forms of cancer. Cumulative work in animal models,
application of genetic tools and pharmacologically active compounds,
has suggested the potential therapeutic value of autophagy modulation
in disease, as diverse as Huntington, Salmonella infection, or pancreatic
cancer. Autophagy activation versus inhibition strategies are being
explored, while the role of autophagy in pathophysiology is being studied
in parallel. However, the progress of preclinical and clinical development
of autophagy modulators has been greatly hampered by the paucity of
selective pharmacological agents and biomarkers to dissect their precise
impact on various forms of autophagy and cellular responses. Here,
we summarize established and new strategies in autophagy-related drug
discovery and indicate a path toward establishing a more efficient discovery
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of autophagy-selective pharmacological agents. With this knowledge
at hand, modern concepts for therapeutic exploitation of autophagy
might become more plausible.Abbreviations: ALS: amyotrophic lateral
sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related
gene; AUTAC: autophagy-targeting chimera; CNS: central nervous
system; CQ: chloroquine; GABARAP: gamma-aminobutyric acid type A
receptor-associated protein; HCQ: hydroxychloroquine; LYTAC: lysosome
targeting chimera; MAP1LC3/LC3: microtubule associated protein 1
light chain 3; MTOR: mechanistic target of rapamycin kinase; NDD:
neurodegenerative disease; PDAC: pancreatic ductal adenocarcinoma;
PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol
3-kinase catalytic subunit type 3; PtdIns3K: class III phosphatidylinositol
3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PROTAC:
proteolysis-targeting chimera; SARS-CoV-2: severe acute respiratory
syndrome coronavirus 2; SQSTM1/p62: sequestosome 1; ULK1: unc-51
like autophagy activating kinase 1.
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