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Abstract 

Intrinsically disordered proteins (IDPs) landed on the molecular biology 

framework at the turn of the 20th century to challenge the established protein function-

structure paradigm. Due to their inherent flexibility and disorder-to-order transitions, 

IDPs play an important role in the adaptive regulation and mediation of biological 

responses within cells. However, the intrinsic disorder makes IDPs difficult to 

characterise by experimental techniques, hindering the elucidation of their mechanisms 

of action in biological functions. Molecular dynamics simulations can capture the 

conformational ensembles of macromolecules, but several issues need to be when 

simulating IDPs, such as proper parameterisation to reproduce the intrinsic disorder, 

improvement of the conformational sampling, or factors related to the cellular 

environment such as ionic strength, pH, molecular crowding, etc.  

With the recent introduction of these proteins in the scientific landscape, this 

thesis is presented as a contribution to provide further insight into simulations of IDPs, 

especially on the effect of pH. Due to the high abundance of ionisable amino acids in 

IDPs, the incorporation of charge-conformation coupling into in-silico modelling is 

critical. Therefore, the effect of the dynamic change of protonation states depending on 

the solvent pH to generate conformational ensembles of IDPs is investigated using the 

constant pH Molecular Dynamics method. During the study, some shortcomings of this 

method were identified, which led to a detailed assessment of this approach implemented 

in AMBER. On the other hand, new force fields and water models designed for IDP 

simulation, as well as coarse-grained models or sampling techniques, are evaluated on the 

model IDP peptide, histatin-5, with one of the most extensive simulations of this peptide. 

Finally, we focus on the IDP α-synuclein (αS), which is implicated in Parkinson's 

disease through its fibrillation and oligomerisation leading to deposition in Lewis bodies. 

Using the IDP-specific force field ff14IDPSFF, β-sheet-rich intermediates are detected in 

a fragment of αS. In addition, we provide a first insight into the effect of pH on αS and β-

synuclein, and plan to continue this study in the future, using the knowledge gained in 

this thesis to unravel the mechanism of fibrillogenesis of these proteins. 

  



  



Resumen 

Las proteínas intrínsecamente desordenadas (IDPs) se popularizaron en el marco 

de la biología molecular a principios del siglo XX para cuestionar el paradigma de la 

función-estructura de las proteínas. Debido a su flexibilidad intrínseca y sus transiciones 

de desorden-a-orden, las IDPs desempeñan un papel clave en la regulación adaptativa y 

la mediación de respuestas biológicas en las células. No obstante, el desorden intrínseco 

provoca que las IDPs sean difíciles de caracterizar mediante técnicas experimentales, lo 

que dificulta la elucidación de sus mecanismos de acción en las funciones biológicas. Las 

simulaciones de Dinámica Molecular pueden captar los conjuntos conformacionales de 

las macromoléculas, sin embargo, en las simulaciones de IDPs es necesario abordar 

previamente varias cuestiones, como una parametrización adecuada para reproducir el 

desorden intrínseco, mejorar el muestreo conformacional o algunos factores del entorno 

celular tal como la fuerza iónica, el pH, el molecular crowding, etc.  

Con la reciente introducción de estas proteínas en el panorama científico, esta tesis 

se presenta como una contribución para proporcionar una mayor comprensión de las 

simulaciones de IDPs, especialmente sobre el efecto del pH. Debido a la gran abundancia 

de aminoácidos ionizables en las IDPs, la incorporación del acoplamiento carga-

conformación en las simulaciones es fundamental. Por lo tanto, se investiga el efecto del 

cambio dinámico de los estados de protonación en función del pH sobre la generación de 

conjuntos conformacionales de IDPs utilizando el método de Dinámica Molecular a pH 

constante. Durante el estudio, se identificaron algunas deficiencias del método, lo que nos 

impulsó a realizar una evaluación en profundidad del mismo. Por otro lado, también 

ponemos a prueba nuevos campos de fuerza o modelos de agua diseñados para la 

simulación de IDP, así como modelos de grano grueso o técnicas de muestreo, en el 

péptido modelo IDP, histatin-5, con una de las simulaciones más exhaustivas del péptido. 

Por último, nos centramos en la IDP α-sinucleína (αS), implicada en la 

enfermedad de Parkinson a través de su fibrilación y oligomerización hasta depositarse 

en los cuerpos de Lewis. Utilizando el campo de fuerza específico para IDP ff14IDPSFF, 

se detectan intermedios ricos en láminas β en un fragmento de αS. Adicionalmente, 

proporcionamos unas pinceladas del efecto del pH sobre αS y β-sinucleína, con la 

intención de continuar este estudio en el futuro, utilizando los conocimientos adquiridos 

en esta tesis para entender el mecanismo de fibrilogénesis de estas proteínas. 



  



Resum 

Les proteïnes intrínsecament desordenades (IDPs) es van popularitzar en el marc 

de la biologia molecular a principis del segle XX per a qüestionar el paradigma de funció-

estructura de les proteïnes. A causa de la seva flexibilitat intrínseca i les transicions de 

desordre-a-ordre, les IDPs exerceixen un paper clau en la regulació adaptativa i la 

mediació de respostes biològiques en les cèl·lules. El desordre intrínsec provoca que les 

IDPs siguin difícils de caracteritzar mitjançant tècniques experimentals, la qual cosa 

dificulta l'elucidació dels seus mecanismes d'acció en les funcions biològiques. Les 

simulacions de Dinàmica Molecular poden captar els conjunts de conformacions de les 

macromolècules, però en les simulacions de IDPs és necessari abordar prèviament 

diverses qüestions, com una parametrització adequada per a reproduir el desordre 

intrínsec, millorar el mostreig conformacional o factors relacionats amb l'entorn cel·lular 

com la força iònica, el pH, el molecular crowding, etc. 

Amb la recent introducció d'aquestes proteïnes en el panorama científic, aquesta 

tesi es presenta com una contribució per a proporcionar una major comprensió de les 

simulacions de IDPs, especialment sobre l'efecte del pH. A causa de la gran abundància 

d'aminoàcids ionitzables en les IDPs, la incorporació de l'acoblament carrega-

conformació en les simulacions és fonamental. Per tant, investiguem l'efecte del canvi 

dinàmic dels estats de protonació en funció del pH sobre la generació de conjunts de 

conformacions de les IDPs utilitzant el mètode de Dinàmica Molecular a pH constant. 

Durant l'estudi, es van identificar algunes deficiències en el mètode, la qual cosa ens va 

impulsar a realitzar una avaluació en profunditat d'aquest. D'altra banda, també posem a 

prova nous camps de força o models d'aigua dissenyats per a la simulació de IDP, així 

com models de gra gruixut o tècniques de mostreig, en la IDP model, histatin-5, amb una 

de les simulacions més exhaustives del pèptid. 

Finalment, ens centrem en la IDP α-sinucleïna (αS), implicada en la malaltia de 

Parkinson a través de la fibril·lació i oligomerització que condueixen al seu dipòsit en els 

cossos de Lewis. Utilitzant el camp de força específic per IDPs, ff14IDPSFF, es detecten 

intermedis rics en fulles β en un fragment de αS. A més a més, proporcionem una primera 

pinzellada de l'efecte del pH sobre αS i β-sinucleïna, i planegem continuar aquest estudi 

en el futur, utilitzant els coneixements adquirits en aquesta tesi per a desentranyar el 

mecanisme de fibril·logènesi d'aquestes proteïnes. 
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Chapter 1 

Introduction 

 

1.1. Motivation and Outline of the Thesis 

This thesis was born from the motivation to understand the behaviour of molecular 

structures that are essential for the evolution of life itself: peptides and proteins. However, 

we must go back to my childhood when, in a completely naive and ignorant way, I was 

already curious about one of the simplest forms of life: the cell. Fortunately, today, after 

many years and efforts in my academic training, I have managed to give this interest a 

satisfactory place in my daily life by means of computational methods. I remember that 

at the beginning of the Chemistry degree, around 2016, I was fascinated by the 

applications of molecular modelling in the early stages of drug design, and thanks to this 

first contact with computational biochemistry, I jumped into the adventure of the 

academic research. After my master thesis on the selective inhibition of the Bcl-2 family 

proteins, my intention was to continue this research as a PhD student. However, life 

changes and you must adapt, and sometimes it changes for the better, because I was 

offered the opportunity to learn about an extremely interesting group of proteins recently 

discovered in the scientific landscape: the intrinsically disordered proteins (IDPs). Due to 

the high flexibility and disorder-to-order transitions between several conformational 

ensembles, IDPs pose a challenge for molecular modelling. Many novel approaches are 

now being developed to capture the properties of these proteins from an in-silico 

perspective. Among them, the dynamic regulation of the protonation states of the 

ionisable amino acids depending on the solvent pH, which is tightly coupled to the 

conformations of IDPs, is increasingly being introduced into the computational 

simulations. Unfortunately, there is still a lack of work in the literature on the approaches 

and solutions that have been developed for the successful modelling of these biochemical 

systems. Therefore, this thesis is presented as a modest contribution in the framework of 

pH-responsive  IDPs simulations with the main motivation to enrich the understanding of 

IDP modelling and the strong charge-conformational coupling shown in these proteins. 
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This doctoral thesis is divided into two main topics: the assessment of the Constant 

pH Molecular Dynamics (CpHMD) method implemented in AMBER to model the charge 

regulation of ionisable amino acids, and the evaluation of the simulation methods, force 

fields and water models on the histatin-5 peptide. Based on the conclusions drawn from 

these studies, we initiate an investigation into the fibrillogenesis of the synuclein protein 

family, in particular the α-synuclein protein, which is involved in neurodegenerative 

diseases.  

For the first topic of the thesis, Chapter 3 introduces the first contact with the CpHMD 

method using a test system: the polyaspartic acid decapeptide. This chapter, which 

initially aims to provide insight into the charge-conformation coupling over a range of 

pH values and the potential applicability of complexation isotherms for pKa prediction, 

also evaluates the performance of CpHMD in implicit and explicit solvation models. The 

conclusions drawn from the evaluation of the method raise some concerns about the 

conformational sampling of the polyaspartic acid, compelling us to continue with the 

testing of the CpHMD method implemented in AMBER. Thus, in Chapter 4, a series of 

tripeptides are studied in detail with simulations at constant pH in implicit solvent 

conditions in order to analyse the impact of the method in the conformational space by 

means of the Ramachandran maps. The shortcomings of the CpHMD implemented in 

AMBER are revealed, and the major reason for the failure to reproduce the 

conformational space is due to a poor definition of the partial charges of the backbone 

atoms, which remain fixed during the simulation. Motivated by the importance of the 

charge regulation in simulations at constant pH, Chapter 5 provides an overview of the 

CpHMD capabilities with the tripeptides in explicit water molecules, and, more 

importantly, assesses the extent of the limitations identified in the previous chapter for 

oligopeptides with a small number of ionisable amino acids. The results show that 

oligopeptide simulations with a few ionisable amino acids at a considerable distance show 

a good performance when compared to the conventional simulations. 

On the other hand, the second topic of this thesis consists of two chapters on the 

relevance of using IDP-specific force fields to model these proteins. In Chapter 6 we use 

the IDP model histatin-5 to perform an exhaustive conformational sampling through a 

battery of simulations using various simulation methods, force fields, water models or 

sampling strategies. In addition, Chapter 7 evaluates the ability of the ff14SB and 

ff14IDPSFF force fields on the α-synuclein protein to capture intermediate conformations 
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prone to fibrillation, a potential cause of the onset of Parkinson's disease. At the end of 

the thesis, Chapter 8 brings together the knowledge gained in previous chapters on IDP 

modelling at constant pH to provide some insights into charge-structure coupling of the 

α- and β-synuclein proteins. This future study will involve an ambitious examination of 

the conformational ensembles of these two proteins under different pH conditions, but 

unfortunately it will not be completed within the time frame of the thesis. 

At the beginning of the thesis, Chapter 2 contains a description of the theoretical 

background on which all the molecular modelling, simulation methods and analysis tools 

used in the chapters are based. The final conclusions on the two topics covered in this 

thesis are presented in Chapter 9. 

1.2. A Brief Introduction to the Intrinsically Disordered Proteins 

For more than a hundred years the protein function-structure paradigm had been 

rooted in the scientific community. For proteins to fulfil their biological function, it was 

thought that a well-defined 3D protein structure was imperative to enable the interaction 

between the molecular partners involved. The "lock-and-key" model, in which the 

receptor and the substrate require a specific configuration to fit together, or the "induced 

fit" model, in which a flexible receptor has an initial conformation in the active site that 

eventually switches and changes conformation upon the interaction with the substrate, 

were very popular for understanding protein functionality. However, a number of papers 

in the mid-20th century began to contradict and challenge the protein structure-function 

paradigm by pointing out the existence of disordered and flexible proteins that were 

capable of being biologically active1. In particular, with the advance of genomics in the 

protein identification, many protein sequences that were not expected to be folded were 

discovered, thus introducing the intrinsically disordered proteins at the turn of the century. 

These particular proteins have been assigned many names, such as foldable, floppy, 

mobile, chameleon, dancing proteins, partially folded, protein clouds, natively 

disordered, etc., to denote their unusual behaviour, and over time they have become more 

and more prevalent within the study of the proteome2. Fortunately, there is now a 

consensus on the definition of IDPs, which can be summarised as flexible proteins that 

exist as dynamic ensembles of interconverting conformations, similar to clouds of 

proteins, and that do not show any long-term stability for secondary or tertiary structures. 
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The amino acid composition is fundamental to understand the properties of IDPs. 

Several papers have compiled the frequency of occurrence of the amino acids in the 

composition of IDPs, finally classifying them into "order-promoting" amino acids, such 

as Ile, Leu, Val, Trp, Tyr, Phe, Cys and Asn, and "disorder-promoting" amino acids, such 

as Ala, Arg, Gly, Gln, Ser, Glu, Lys, and Pro3,4. The latter group is abundant in the 

sequences of IDPs. In addition, these amino acids are associated with low hydrophobicity 

and high net charge on proteins, which are critical for (i) preventing proteins from 

compacting in polar solvents and (ii) generating extended conformations due to the 

repulsion by means of electrostatic interactions. For this reason, IDPs are termed 

“intrinsically" disordered because the amino acid sequence and properties inherently 

confers this protein disorder. 

 

Figure 1. Number of results in the Google Scholar search tool for intrinsically disordered 

proteins or similar terms (including any combination of intrinsically/natively/inherently 

+ disordered/unfolded/unstructured/flexible + protein/proteins) in the green boxes of the 

histogram. Each box covers the period of the indicated year and the following year, e.g., 

1980-1981. The lines indicate the number of search results for the terms in the legend. 

This intrinsic disorder allows IDPs to carry out their biological functions, which 

escape the traditional mechanisms of the globular proteins. In general, IDPs participate 

in protein-protein interaction (PPI) networks through the following mechanisms: (i) the 

one-to-many mechanism in which one IDP can bind to many partners, and (ii) the many-

to-one mechanism in which many IDPs can bind to the same, usually ordered, partner5,6. 

Chameleon behaviour is important in these mechanisms because it dictates that an amino 
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acid sequence can be conformationally modulated to have a different secondary structure 

and side chain contribution in order to interact in different ways with the same or a 

different partner7,8, thus highlighting the role of the protein disorder in this ability. 

Furthermore, IDPs typically undergo disorder-to-order transitions towards preferred 

conformations when they bind to partners according to the principles of the induced fit 

model. Indeed, some studies suggest that IDPs can adopt a preformed conformational 

state prior to the binding, which acts as a driving force9,10. These bindings processes have 

high specificity and low affinity, thereby ensuring the reversibility of IDP interactions 

and enabling them to bind to different partners11–16. However, IDPs do not only fulfil their 

biological functions through these disorder-to-order transitions and folding, but also 

through their flexibility, pliability, and plasticity in dynamic complexes17. 

Therefore, IDPs are promiscuous binders that play an important part in the adaptive 

regulation and mediation of the biological responses of the cells due to their high 

flexibility. Nowadays, they are recognised in a broad spectrum of functions and are 

classified as chaperones, effectors, entropic chains, scavengers, display sites and 

assemblers12,17,18. Depending on their function, they can participate in many processes 

including transcriptional and translational regulation, cellular signalling, small molecule 

storage, protein phosphorylation, self-assembly regulation, and molecular 

recognition13,18. These biological processes are essential for the proper cell cycle as they 

are responsible for cell differentiation, cell-cell communication, cell cycle progression, 

apoptosis, and so on.19–22. Furthermore, in recent years, bioinformatic studies of the 

genome sequences have reported that IDPs are very abundant in eukaryotes, exhibiting 

long intrinsically disordered regions (IDRs) in more than half of the functional proteins, 

especially for the proteins involved in signalling processes (~70%)23–25. In the human 

proteome, 32% of the proteins are identified as IDPs (those ones with more than 30% of 

disordered residues) and, in fact, a 34% of biological functions reported in the 

Uniprot/Swissprot database are related to IDPs26–28.  In addition, they have also been 

identified in several human diseases29–31, such as cancer (AFP, p53, and BRCA-1)25,32, 

neurodegenerative diseases33 (Alzheimer's and Parkinson's diseases, involving amyloid-

β and α-synuclein, respectively), cardiovascular diseases34 (hirudin, thrombin), diabetes35 

(amylin) or in pathogenic viruses and microbes36,37. 

More and more of studies on IDPs are being published due to their fundamental 

activity in several biological processes or their therapeutic role in the treatment of human 
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diseases. In this thesis, two IDPs have been examined. In particular, the human salivary 

peptide histatin-5, which is generally used as a model IDP for the assessment of force 

fields and simulation methods38,39, and the α-synuclein protein, which is implicated in 

neurodegenerative diseases and other synucleinopathies40. 

1.2.1. Synuclein Protein Family 

Synucleins are small, highly conserved, intrinsically disordered proteins found 

primarily in the neurons of vertebrate animals. The number of proteins belonging to this 

family varies between species, but the α-, β-, and γ-synuclein (αS, βS, and γS, 

respectively) are present in birds and mammals41–43. αS has been the most investigated in 

recent years because of its involvement in Parkinson's disease (PD), but the three 

synuclein proteins have been implicated in neurodegenerative diseases, synucleopathies 

and/or cancer44.  Unfortunately, there is a great deal of uncertainty about the mechanism 

by which these proteins exert either the biological functions or the pathological activity, 

so further studies on this family of proteins are needed. 

αS (140 aa), βS (132 aa) and γS (127 aa) have a similar amino acid sequence, in 

particular αS and βS which share 60% sequence similarity. The structure of synucleins is 

divided into three domains: (i) the N-terminal domain, an amphipathic region that 

interacts with lipid bilayers and is therefore involved in membrane association, (ii) the 

non-amyloid-beta component (NAC) domain, characterised by abundant hydrophobic 

amino acids, and (iii) the C-terminal domain, a region rich in negatively charged acidic 

and proline amino acids. The N-terminal domain is highly conserved among the three 

synucleins and is consists of seven imperfect sequences of 11 amino acid repeats that 

adopt a helix structure upon binding to vesicles or micelles51,52. The NAC domain plays 

a pivotal role in the formation of αS fibril aggregates through a hydrophobic effect and 

hydrogen bonding within a β-sheet-rich structure53. In fact, Giasson et al.54 reported that 

amino acids 71-82 are critical for the formation of αS fibrils. In contrast, there is a deletion 

of 11 amino acids in the NAC domain of βS, whereas this region is not highly conserved 

in γS compared to αS. Given the importance of this domain for aggregation and the 

modifications present in βS and γS, the variation in the fibrillation behaviour present in 

αS with respect to the βS and γS homologs is reasonable55. Finally, the C-terminal domain 

is distinguished by an acidic tail that regulates the solubility of the proteins according to 

the charge and length56. In γS, the amino acid sequence does not have the two repeats 
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found in αS and βS due to the shorter number of amino acids in the C-domain. All these 

synucleins are disordered under physiological conditions. 

 

Figure 2. (a) Alignment of the amino acid sequences of human αS, βS and γS using the 

ClustalO tool45 with the program Jalview46. (b) Structure of human αS (middle, PDB-

code: 1XQ847), βS (left) and γS (right) monomers. The structures of βS (UniProt-code: 

Q16143) and γS (UniProt-code: Q6FHG5) are predicted by the AlphaFold Monomer v2.0 

pipeline48. (c) Structures of αS fibrils in a multiple system atrophy type II-2 (left, PDB-

code: 6XYQ49) and decameric form (right, PDB-code: 2N0A50). 

The biological roles of the synucleins are not fully understood, but some functions 

in which αS is involved have been discovered to date, such as promoting SNARE 

complex assembly, synaptic vesicle regulation, and membrane remodelling57,58. On the 

other hand, βS and γS play a modulating role in the αS-synaptic vesicle binding through 

the formation of oligomers of these two proteins with αS (since βS and γS have a lower 

binding affinity to synaptic vesicles in comparison to αS)59. In fact, some studies have 

demonstrated the neuroprotective nature of βS in synucleinopathies caused by αS 

aggregation60,61. It has also been found that βS is an important biomarker for early 
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Alzheimer's disease62. In addition, high levels of γS and low levels of αS in plasma have 

recently been associated with autism spectrum disorder in children63. Abnormal 

expression of γ-synuclein in stage I and II has also been observed in several human 

cancers and may therefore be useful as a biomarker in the detection of tumourigenesis64. 

Other biological functions involving αS, βS and γS can be found in the literature65. 

Some neurodegenerative diseases are caused by the aggregation of proteins into 

amyloid-like fibrils. This category includes αS, whose aggregation in Lewy bodies and 

neuritis is associated with the onset of PD66,67. Under physiological conditions, αS is 

present in the monomeric or oligomeric form, the latter facilitated by prior binding to 

lipid membranes68,69. Some mutations (A53T70, A30P71, E46K72, H50Q73, among others) 

and gene multiplication74,75 or triplication76 have been recognised as potential triggers of 

αS aggregation and toxicity. Above a certain concentration of αS deposition, there is an 

intrinsic toxic gain-of-function in the nature of the protein, ultimately causing in the origin 

of the synucleopathies. However, there is also the hypothesis that these diseases are driven 

by the loss of αS function when it is sequestered in the aggregations. Interestingly, 

fibrillogenesis is not observed in βS and γS under physiological conditions. Instead, γS 

forms fibrils only under aggregation-promoting conditions with a larger lag phase 

compared to αS, whereas βS normally acts as an inhibitor or retardant of the αS aggregate 

formation77. However, βS is not exempt from being implicated in neurodegenerative 

diseases, and certain mutations (P123H and V70M) have been reported to be related to 

dementia through Lewy bodies78. In addition, γS inclusions in motor neurons are 

associated with the amyotrophic lateral sclerosis disease79. Therefore, all these diseases 

caused by the aggregation of any of the three proteins of the synuclein family can be 

classified as synucleinopathies40,80. 

1.3. The Role of Solvent pH in the Charge Regulation and the Charge-Conformation 

Coupling 

Among the various environmental factors that can potentially influence IDPs, some 

studies have reported that αS and βS fibril formation is pH dependent. At mildly acidic 

pH, αS fibrillates more rapidly while βS gains the capacity to form fibrils, in contrast to 

to physiological pH conditions81. Given the high presence of ionisable acidic amino acids 

of the C-terminal domain, it is reasonable to expect that pH may modulate the 

conformation and hence the fibrillation propensity of the synucleins.  Indeed, Santos J. et 

al.82 suggest that aggregation in amyloid-like fibrils is pH-dependent through modulation 
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of the hydrophobic effect, electrostatic interactions, and the degree of protonation of 

ionisable amino acids. On the other hand, Pálmadóttir et al.83 show that charge regulation 

during the αS fibrillation leads to a significant increase in pH, shifts in the pKa of acidic 

amino acids in the C-terminal domain and in the proton binding capacitance. Thus, pH-

dependent charge regulation plays an important part in the mechanism of the fibril 

formation. 

Charge regulation is defined as the ability of a macromolecule to modulate its 

ionisation state when subjected to external physicochemical perturbations in order to 

adapt to a new environment. In proteins or peptides, charge regulation generally occurs 

through the migration of protons from or to ionisable amino acids, thereby affecting the 

acid-base equilibrium, or ion binding. The mechanism of charge regulation was originally 

described by Linderstrom-Lang in 192084, and later Kirkwood and Shumaker85 

demonstrated the correlation between the charge distribution in the intermolecular 

interactions of two proteins using the perturbation theory of statistical mechanics, which 

was confirmed by light scattering86. Since then, many papers have been published 

demonstrating the effect of charge regulation on protein-protein87–89, protein-

polyelectrolyte90–93 or protein-surface interactions94–96, ligand-receptor binding89,97, 

protein folding98,99, and many other processes100–103. 

By means of a statistical mechanics description of the charge, 𝑧, the effect of charge 

regulation can be quantified by the binding capacitance, C. The capacitance is then merely 

the measure of the variation of the charge in response to an external electric potential, 𝜑, 

as defined in Eq. 1, where 𝛽 =  1/𝑘𝐵𝑇 is the inverse thermal energy and 𝑒 is the electron 

unit charge.  

𝐶 = 〈𝑧2〉 − 〈𝑧〉2 = −
𝜕〈𝑧〉

𝛽𝑒𝜕𝜑
 Eq. 1.1 

Interestingly, the capacitance is strongly dependent on the solvent pH and shows a 

charge response function to small perturbations of the solvent pH in Eq. 2. for a 

macromolecule with N ionisable amino acids and a total charge number, 𝑍 =  ∑ 𝑧𝑖
𝑁
𝑖=1 . 

For a protein, the capacitance can be obtained from the slope of the experimental titration 

curves, if possible. Otherwise, atomistic simulations at constant pH are a suitable option 

for determining the binding capacitance, from which the 〈𝑍2〉 and 〈𝑍〉2 can be calculated 

directly. 
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𝐶 = 〈𝑍2〉 − 〈𝑍〉2 = −
1

𝑙𝑛10

𝜕〈𝑍〉

𝜕𝑝𝐻
 Eq. 1.2 

Charge regulation is essential for some protein mechanisms and interactions, as we 

have already mentioned, but it is likely to be even more important in IDPs due to the 

inherent flexibility of ionisable amino acids. In fact, the electrostatic interactions between 

ionisable amino acids cause the macromolecules to modulate their conformation in order 

to minimise the electrostatic repulsion or increase the electrostatic attraction, and 

simultaneously the change in the structure of the macromolecule also affects the 

interactions between the ionisable amino acids, thus causing potential changes in the 

ionisation states. It is therefore clear that charge and the conformation of a protein are 

tightly coupled. Furthermore, charge fluctuations also come into play in this charge-

conformation coupling since the ionisable states do not remain fixed over time, but rather 

vary within a probability distribution. Several simulation and experimental studies have 

shown that charge fluctuations are a fundamental phenomenon for some protein-protein, 

protein-ligand or protein-membrane interactions104. 

Consequently, the inclusion of the solvent pH as well as the charge regulation and the 

fluctuation in molecular modelling is crucial for a correct description of the pH-

responsive proteins, especially for flexible or small macromolecules such as 

polyelectrolytes, peptides and IDPs. 
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Chapter 2 

Theoretical Background 

 

This chapter presents the theoretical background on which the research for this thesis 

was based. For this purpose, the content is divided into four topics: (i) the fundamentals 

of molecular mechanics and dynamics, (ii) the introduction of the pH effect using the 

constant pH molecular dynamics method, (iii) some considerations on IDPs in molecular 

dynamics simulations and (iv) techniques for the analysis of the generated conformational 

ensembles. In each of these topics, we explain the theory, approaches, and applications 

of the various methods in a general but comprehensive manner, so that the reader can 

understand the performance, capabilities and limitations of the simulations. If the reader 

is interested in a particular topic, we recommend that they refer to the bibliography 

provided throughout the chapter. 

2.1. Fundamentals of Molecular Mechanics and Molecular Dynamics 

Molecular mechanics (MM) focuses on modelling three-dimensional molecular 

structures using potential functions based on the principles of classical mechanics (such 

as the harmonic oscillator, Lennard Jones, or Coulombic potential). These molecules are 

formed by atoms, defined by the position of their nucleus according to the Born-

Oppenheimer approximation (i.e., the wave function of the electron and the nucleus can 

be separated), which are treated as spheres of a given radius connected by bonds typically 

described as harmonic springs. From this model of spheres and bonds, other terms such 

as bond angles, dihedral or improper dihedrals, all of which are included in the bonded 

interactions, and the non-bonded interactions, such as electrostatic or van der Waals 

forces, are derived to define the potential energy surface of the molecular system. All the 

mathematical functions and their associated constant parameters are collected within the 

force fields, a concept that was born in the first half of the 20th century from vibrational 

spectroscopy and later extended by D. H. Andrews in molecular mechanics1, and 

constitute the so-called interatomic potential of the system.  

Initially, MM was also named as empirical force field method, and even some of its 

predecessors were popular at the time, such as the Westheimer method, which analysed 
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the hidden conformations of biphenyls by modelling of shifts of each atom relative to the 

equilibrium positions including attractive and repulsive non-bonded terms. Other notable 

work in the development of the force fields was the Hill force field, which included the 

Lennard-Jones potential 6-122
, or the work of Dostrovsky, Hughes and Ingold on non-

bonded interaction terms for substitution and elimination reactions3. In fact, the Hill force 

field is very similar to modern formulations of force fields, which are based on an 

expression of simple additive functions to describe intra- and intermolecular interactions: 

𝑈(𝑟1, … , 𝑟𝑁) = 𝑈𝑏𝑜𝑛𝑑𝑠 + 𝑈𝑎𝑛𝑔𝑙𝑒𝑠 + 𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 + 𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟  

+ 𝑈𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝑈𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 
Eq. 2.1 

The potential energy function includes the bond stretching, angle bending, 

dihedral or torsional or improper dihedral terms within the bonded interactions. To 

reproduce the simple vibrations of bond distance and angle, the 𝑈𝑏𝑜𝑛𝑑𝑠 and 𝑈𝑎𝑛𝑔𝑙𝑒𝑠 terms 

are approximated by harmonic oscillators, for which  a force constant (𝑘𝑏, 𝑘𝜃) and an 

equilibrium or reference value (𝑟0 and 𝜃0) is defined. This model defines the local 

covalent structure of the molecule since huge energy is required to significantly deform 

the bond or angle relative to the equilibrium values. Next, the torsion or dihedral angle, 

that is, the angle of rotation around the longitudinal axis of a chemical bond, is expressed 

by the 𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 term and consists of a sum of cosine functions with multiplicity 𝑛, phase 

𝛿 (typically restricted to 0 or 180º), and a torsional energy barrier 𝑘𝜑. Finally, for complex 

molecular geometries, improper dihedrals are defined to preserve planar structures from 

out-of-plane distortions or to avoid mirror images and thus retaining the chirality of a 

molecule. This 𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 term is also defined as a harmonic potential that depends on a 

force constant 𝑘𝜔 and an equilibrium or reference dihedral 𝜔0. 

𝑈(𝒓𝟏, … , 𝒓𝑵) = ∑ 𝑘𝑏(𝒓𝒊𝒋 − 𝑟0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜽𝒊𝒋𝒌 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

 

+ ∑ 𝑘𝜑[1 + cos(𝑛𝝋𝒊𝒋𝒌𝒍 − 𝛿)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

  

+ ∑ 𝑘𝜔(𝝎𝒊𝒋𝒌𝒍 − 𝜔0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

 

Eq. 2.2 

Non-bonded interactions are commonly defined by the Coulomb potential for 

electrostatic interactions and the Lennard-Jones potential for non-polar interactions. The 

Coulomb potential states that the electrostatic force is directly proportional to the product 

of the partial charges between pairs of atoms, 𝑞𝑖 and 𝑞𝑗, and inversely proportional to the 
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quadratic distance between them, 𝑟𝑖𝑗, and the relative permittivity of the medium, 휀𝑟. The 

Lennard-Jones potential, on the other hand, is a 12-6 potential composed of a repulsive 

term 1 𝑟𝑖𝑗
12⁄  arising from the overlapping of electronic orbitals according to the Pauli 

repulsion, and an attractive term 1 𝑟𝑖𝑗
6⁄  derived from the dispersion forces or van der 

Waals interactions. The sum of the attractive and repulsive forces between pairs of atoms 

gives a potential model with an energy well defined by a depth 𝜖𝑚𝑖𝑛,𝑖𝑗 at a distance 

𝑅𝑚𝑖𝑛,𝑖𝑗. 

𝑈(𝒓𝟏, … , 𝒓𝑵) = ∑
𝑞𝑖𝑞𝑗

휀𝑟𝒓𝒊𝒋
𝐶𝑜𝑢𝑙𝑜𝑚𝑏

+∑𝜖𝑚𝑖𝑛,𝑖𝑗 [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝒓𝒊𝒋
)

12

− 2(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝒓𝒊𝒋
)

6

]

𝐿𝐽

 Eq. 2.3 

The applications of 3D models based on molecular mechanics are many and varied, 

highlighting Molecular Dynamics (MD) or Monte Carlo (MC) simulations, but also 

including other notable applications such as energy minimisation, molecular structure 

refinement or ligand-protein docking for drug design. 

2.2. Molecular Dynamics  

Molecular Dynamics (MD) simulations have become a powerful and popular tool in 

recent decades to gain insight into biomolecular structure, recognition and function of 

biological processes. MD simulations can explore the potential energy surface described 

by molecular mechanics, provide a microscopic interpretation of the phenomena, and 

even predict thermodynamic, kinetic, and structural properties of the molecular systems 

by modelling the motions and interactions of the atoms of a macromolecule over time. 

Combined with experimental structural biology techniques such as X-ray crystallography, 

nuclear magnetic resonance (NMR), small angle X-ray scattering (SAXS), Förster 

resonance energy transfer (FRET), etc., atomistic MD simulations are widely used to 

study enzymatic reaction mechanisms, optimise drug design projects, reveal pathologies 

related to protein misfolding, and many other applications in biophysics, materials 

science, molecular biology, pharmaceutical chemistry, and so on.  

These methods emerged in the 1950s from the theoretical physics community. The 

first MD simulation was performed on a simple gas system at the end of the 1950s, using 

a model of rigid spheres with perfect collisions4, but it was not until 1976 that the first 

simulation of a protein was completed, with a simulation time of 9.2 ps of the BPTI 

protein5. In fact, the first µs-length simulation of MD was not reported until 19986, 

whereas simulations of hundreds of nanoseconds with much larger number of atoms, 
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around 1000-10,000, are now standard. Fortunately, advances in computational power 

and the development and optimisation of methods and algorithms have contributed 

significantly to the performance of the simulations. In particular, the introduction of 

graphical processing units (GPUs) has meant a significant improvement in computational 

power, and software usability has also been refined over the years to become more user-

friendly. 

The MD approach is based on the iterative solution of the Newton’s second law of 

motion within the framework of classical mechanics. From the interactions and the 

potential energy function defined by the MM models, it is possible to calculate the force 

acting on each atom and to propagate the motion of these particles in time through 

iterative algorithms, ultimately generating a trajectory of the molecules within the 

simulation system. By applying analysis techniques to these trajectories, the 

conformational ensembles and the intermolecular interactions of the molecular systems 

can be captured in MD simulations.  

In more detail, if we consider a molecular system of 𝑁 atoms with Cartesian 

coordinates 𝒓𝑖 interacting with a potential 𝑈(𝑟1, … , 𝑟𝑁) and apply Newton's second law 

of motion to the system, we can deduce that the force acting on an atom 𝑖 is directly 

proportional to the mass, 𝑚𝑖, and acceleration, 𝒂𝑖, of that particle.  

𝑭𝒊 = 𝑚𝑖 · 𝒂𝒊 = 𝑚𝑖
𝜕2𝒓𝒊
𝜕𝑡2

 Eq. 2.4 

From the Lagrange function, ℒ, a formulation of classical mechanics that is 

defined as the difference between the kinetic and potential energy to obtain the time 

evolution of a dynamic system, ℒ =  𝐾 −  𝑈, and the gradient of the position of each 

atom, ∇𝑟, we can determine the force acting on each atom, 𝑭𝒊, so that we can establish a 

connection between Newton's second law of motion and the potential energy function 

constructed by the MM model. By directly relating the derivative of the potential energy, 

the position of the particles and time is now defined as: 

𝑭𝒊 = ∇𝑟= −
𝜕𝑈

𝜕𝒓𝒊
→−

𝜕𝑈

𝜕𝒓𝒊
= 𝑚𝑖

𝜕2𝒓𝒊
𝜕𝑡2

  Eq. 2.5 

To solve this equation, which couples the particle motion and potential energy 

functions, it is necessary to apply iterative numerical methods. In MD simulations, finite 

difference methods are typically used, which discretise time into small time intervals, ∆𝑡, 
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in order to integrate the equations of motion. For this purpose, it is assumed that the 

motion can be approximated by standard Taylor series expansions by generally using the 

position 𝒓𝒊(𝑡), the velocity 𝜕𝒓𝒊(𝑡) 𝜕𝑡⁄  and the acceleration 𝜕2𝒓𝒊(𝑡) 𝜕𝑡
2⁄  for the 

propagation of the position of each atom in the molecular system: 

𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) +
𝜕𝒓𝒊(𝑡)

𝜕𝑡
∆𝑡 +

𝜕2𝒓𝒊(𝑡)

𝑑𝑡2
∆𝑡2

2
+⋯ Eq. 2.6 

Normally this approximation is truncated at the second derivative and ignores the 

upper terms of the Taylor expansion. In fact, this truncation is quite crude and can lead to 

fluctuations and drifts in the total energy of the molecular system at long simulation times. 

Fortunately, numerical algorithms and other improvements implemented in MD 

simulations mitigate the errors associated with the integration of the equations of motion. 

Among the most popular integrators are the simple Verlet7, the leapfrog8 and the velocity 

Verlet9. The simple Verlet algorithm calculates the positions 𝒓𝒊(𝑡 + ∆𝑡) from the 

positions of the previous time step 𝒓𝒊(𝑡 − ∆𝑡) and the accelerations at time 𝑡, 𝒂𝒊(𝑡). 

𝒓𝒊(𝑡 + ∆𝑡) = 2𝒓𝒊(𝑡) − 𝒓𝒊(𝑡 − ∆𝑡) +
𝜕2𝒓𝒊(𝑡)

𝑑𝑡2
∆𝑡2 Eq. 2.7 

On the other hand, the leapfrog algorithm is a variation of the simple Verlet 

integrator commonly used in MD, which provides both positions and velocities during 

the simulation. In comparison with its predecessor, this algorithm is more efficient and 

minimises the numerical error. The leapfrog integrator is therefore based on calculating 

the velocities at time 𝑡 + 1 2⁄ ∆𝑡, Eq. 8, and then updating the positions at time 𝑡 + ∆𝑡, 

Eq. 9. If the velocities at time 𝑡 are required, a simple calculation is performed using the 

velocities at time 𝑡 + 1 2⁄ ∆𝑡 and 𝑡 − 1 2⁄ ∆𝑡, as detailed in Eq. 10. 

𝒗𝒊 (𝑡 +
1

2
∆𝑡) = 𝒗𝒊 (𝑡 −

1

2
∆𝑡) +

𝜕2𝒓𝒊(𝑡)

𝑑𝑡2
∆𝑡 Eq. 2.8 

𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) + 𝒗𝒊 (𝑡 +
1

2
∆𝑡) ∆𝑡 Eq. 2.9 

𝒗𝒊(𝑡) =
1

2
[𝒗𝒊 (𝑡 +

1

2
∆𝑡) + 𝒗𝒊 (𝑡 −

1

2
∆𝑡)] Eq. 2.10 

The time evolution of positions and velocities can be calculated for each atom of 

the molecular system by iteratively following these steps and solving the potential energy 

function for the acceleration calculation. Other alternative integrators are also available, 

such as the velocity Verlet integrator, a descendant of the Verlet algorithm with 
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similarities to the leapfrog algorithm, or the Beeman integrator10, which uses a more 

precise expression for the velocity calculation. All these integration algorithms are time 

reversible, i.e., we can return to the initial starting point if we start from another point of 

the simulation. The time reversibility is due to the symmetry in the evaluation of the 

derivatives in these integrators, which also guarantees the conservation of energy and 

momentum in many cases. 

 

Figure 1. A schematic outline of the steps involved in the traditional Molecular Dynamics 

method. 

2.2.1. Bond and Angle Constraint Algorithms 

A notable limitation of the integrators in atomistic simulations is the length of the 

time step, ∆𝑡. When the molecular system is defined at all-atom resolution, the time step 

is limited to the fastest motion between pairs of atoms, which is the bond vibration of any 

hydrogen-involving bond. Thus, the efficiency of sampling the potential energy surface 

of a molecular system through time integration is slowed down by this time step 

limitation. Nevertheless, certain protocols have been implemented to increase ∆𝑡, such as 

the constraint algorithms or an increase in the mass of the hydrogen atom (and thus 

freezing the vibration of the H-involving bonds) by repartitioning the atomic masses 

within a molecule. As a result of these methods, the time step of all-atom MD simulations 

typically ranges from the standard values of 0.5-1 fs to 2-4 fs, depending on the 

approximations used. In fact, by sacrificing the accuracy of the atomic structure, either 
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by neglecting the hydrogens in the structure or by simplifying the molecular models with 

coarse-grained resolution, simulations can be performed with time steps of 10-40 fs, thus 

facilitating modelling on the micro- or millisecond time scale, which would normally not 

be feasible in conventional all-atom simulations. 

 Constraint algorithms fix distances and angles of covalent bonds in order to freeze 

the atomic vibrations. By imposing a constraint, such as an equilibrium distance between 

two pairs of atoms, the molecular system is forced to satisfy this condition during each 

integration step of the simulation. For the reasons given above, in simulations of 

biochemical systems these constraints are typically applied to H-involving bonds, leaving 

the rest of the molecular system free. Consequently, the constraint algorithms allow to 

increase the time step of the simulations by reducing the vibrations of the H-involving 

bonds, and thus increasing the simulation performance without compromising the 

trajectory (most important motions in such studies transcend the frozen bond vibrations). 

Among the most popular bond length-fixing algorithms are SHAKE11, which modifies 

the Verlet integrator, RATTLE12, which operates on the velocities of the velocity Verlet 

integrator, and LINCS13, which resets the bond angles to the correct distance. 

Here we detail the SHAKE algorithm, which has been used in the simulations 

performed of this thesis. This algorithm consists in imposing fixed interatomic distances 

with a constraint 𝜎𝑘 on the internal coordinates between two atoms forming a covalent 

bond. Then the constraint 𝜎𝑘 on the distance between atoms 𝑖 and 𝑗 is defined as: 

𝜎𝑘 = 𝒓𝒌
2 − 𝑑𝑘

2 = 0 Eq. 2.11 

where 𝒓𝒌 = (𝒓𝒋 − 𝒓𝒊)
2
 is the bond length vector and 𝑑𝑘 is the desired equilibrium bond 

length between atoms 𝑖 and 𝑗. Thus, for a system with 𝐾 constraints that must satisfy 

𝜎𝑘(𝑟1, … , 𝑟𝑁) = 0, the 𝑁 atoms of a molecular system are subject to the equations of 

motion redefined as in Eq. 12, where 𝜆𝑘 are Lagrange multipliers that must be solved to 

satisfy the constraints. 

𝜕2𝒓𝒊(𝑡)

𝜕𝑡2
𝑚𝑖 = −

𝜕

𝜕𝒓𝒊
[𝑈(𝒓𝒊(𝑡) −∑𝜆𝑘𝜎𝑘(𝑡)

𝐾

𝑘=1

] Eq. 2.12 

The resolution of the Lagrange multipliers is performed iteratively through coupled 

quadratic equations until the constraint satisfies a threshold, usually defined as 𝜖 𝑑𝑘
2⁄  

where 𝜖 is a constant to ensure an accuracy from 10-4 up to 10-8 Å. Thus, the algorithm 



Chapter 2. Theoretical Background 

 

24 

  

procedure consists of (i) the motion of the atoms through the integration algorithm 

without applying any constraint, (ii) the calculation of the deviation of the bond length 

and application of the constraint forces to correct it, and (iii) checking the deviations again 

to determine if they are below the desired threshold, if not, the second and third steps are 

repeated until the constraint is satisfied.  

SHAKE is a numerically stable, simple and time-reversible algorithm. In addition, it 

allows the time step to be tripled in comparison with the original integrator algorithm. 

The combination of these constraints with RESPA14 allows the time step to be further 

increased at the cost of not being able to find solutions for large bond length shifts. The 

LINCS algorithm, on the other hand, resets the constrained bond lengths after integrating 

the motion. It has some advantages over the SHAKE algorithm, such as greater stability 

and speed, but can only be applied to bond constraints and isolated angle constraints.  

2.2.2. Periodic Boundary Conditions and Truncation of Interactions 

To realistically represent a biochemical system, e.g., a protein in solution, using MD 

simulations one would need to model a simulation box containing a large number of 

proteins, water molecules and ions. This would ensure that the proteins in the simulation 

box were adequately solvated, and would also include the short- and long-range 

interactions between all the molecules that can play a part in the sampling of the potential 

energy surface would be taken into account. However, besides the prohibitive 

computational cost of integrating the equations of motion of all these molecules and 

calculating their interactions, we would have a second problem: the edge effect of the 

atoms close to the boundaries of the simulation box. Fortunately, an optimal solution to 

these drawbacks has been devised, the so-called periodic boundary conditions (PBCs). 

The periodic boundary conditions define a periodic unit box (in the context of MD 

simulations, the simulation box) that is periodically repeated in all directions in the space 

to surround the central simulation box, formally representing an infinite bulk system. The 

atoms in the periodic images behave identically to the simulation box, and when an atom 

leaves the boundaries of the unit box and enters an image, the identical atom in the 

opposite image enters the unit box. In this way, the number of atoms in the unit box is 

always preserved. By using PBCs, the number of atoms needed to reproduce a bulk 

system is drastically reduced and, in addition, the introduction of periodic images into the 

molecular system eliminates edge effects. In fact, a minimum solvation distance of ~10-
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15 Å around the protein has been found to satisfy bulk conditions. Depending on the 

molecular system, PBCs can be applied in simulation boxes with different geometries. 

The cubic box is commonly used in MD simulations, although rhombic dodecahedrons 

or truncated octahedrons have also gained popularity, especially for globular proteins 

since they reduce the number of water molecules needed in the system compared to a 

cubic box. 

Figure 2. Periodic boundary conditions in a system of four coloured particles. The 

simulation box is in the middle, defined by solid lines. The periodic boxes or images, also 

virtual particles, are defined by dashed lines. 

On the other hand, PBCs require some considerations regarding pairwise interactions, 

since the images around the simulation box would cause an infinite sum of interactions 

between atoms. Therefore, the so-called minimum image convention is applied, which 

states that an atom 𝑖 can only interact with the nearest atom 𝑗, regardless of whether atom 

𝑗 is in the simulation (or unit) box or is an image of a periodic box. In other words, each 

atom can only interact with the atom 𝑗 only once. To achieve this convention, it is 

necessary to define a spherical cut-off of radius 𝑟𝑐 around each particle, which cannot be 

larger than half the shortest side of the simulation box. Otherwise, the interactions would 

be duplicated, and the convention could not be applied. Thus, interactions within the cut-

off are considered, i.e., the short-range interactions, and any interaction above 𝑟𝑐 is 

neglected, thus truncating the potential energy, and allowing the calculation of 

interactions in a computationally feasible manner. 
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The spherical truncation15 causes a discontinuity in the energy calculated around an 

atom, and an abrupt increase in the potential can destabilise the simulation. In some 

situations, a smoothing function is applied to avoid crashes or other pitfalls during the 

simulations. Non-polar vdW interactions, usually modelled by the Lennard-Jones 12-6 

potential, can be properly reproduced within the radius 𝑟𝑐 (~10-12 Å) because the LJ 

potential decays significantly with the increase of the distance between two interacting 

atoms increases. However, this does not occur with long-range electrostatic interactions, 

which often play a paramount role in the first steps of protein-protein association or 

ligand-receptor binding, and other approaches must be considered. Several modifications 

of the spherical truncation have been reported to improve the estimation of these 

interactions, although they are limited by the computational cost of N2. Of note is the 

generalised reaction field method16, which proposes an explicit calculation of the 

electrostatic interactions inside the spherical cut-off, while outside the truncation sphere 

establishes a uniform dielectric continuum dependent on the ionic strength is established. 

This method has proved to be efficient and simple, enabling the electrostatic interactions 

to be approximated at a reasonable computational cost. However, it does not conserve 

energy well and requires prior knowledge of the external dielectric potential, although it 

has been shown to be consistent with other methods in some particular systems. 

The most popular method currently used in MD simulations to calculate electrostatic 

interactions is the particle mesh Ewald17 (PME). This method separates the electrostatic 

potential between atoms 𝑖 and 𝑗 into a short-range contribution, 𝐸𝑠𝑟, which is calculated 

in real space by a direct sum, and the long-range interactions, 𝐸𝑙𝑟, which are summed in 

reciprocal space by Fourier transforms.  

𝐸 =∑𝜑(𝒓𝒋 − 𝒓𝒊) = 𝐸𝑠𝑟 + 𝐸𝑙𝑟 =∑𝜑𝑠𝑟(𝒓𝒋 − 𝒓𝒊) +∑Φ̃𝑙𝑟(𝒌)|�̃�(𝒌)|

𝑘𝑖,𝑗𝑖,𝑗

 Eq. 2.13 

In contrast to the Ewald summation method18, which was originally developed to 

estimate the electrostatic energy in ionic crystals, the PME method uses fast Fourier 

transforms, Φ̃𝑙𝑟, for the summation in reciprocal space, which evaluates the charge 

density field, �̃�(𝒌) after discretising it into a mesh in space to reduce the computational 

cost to 𝑁 · 𝑙𝑜𝑔(𝑁). As a result, the algorithm scales faster and shows efficient 

performance in the calculation of the electrostatic potential. However, to apply the PME 

method, it is necessary to take into account the periodicity assumption implicit in the 

Ewald summation and requires PBCs in a molecular system with a neutral net charge. 
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2.2.3. Statistical Ensembles and Experimental Conditions 

A statistical ensemble is a collection of all those microstates (i.e., the microscopic 

configuration of a system) that reflect the same macroscopic state of a system and are 

therefore described by a set of macroscopic observable variables. This means that if we 

perform several experiments under the same conditions and repeatedly observe the 

thermodynamic properties, this does not imply that the microscopic or molecular states 

in the different measurements are identical. Thermodynamic variables typically observed 

in biochemical systems include pressure 𝑝, temperature 𝑇, volume 𝑉, number of particles 

𝑁 and chemical potential 𝜇. In early MD simulations, molecular systems were integrated 

in the microscopic collective, i.e., the number of atoms 𝑁, volume 𝑉 and energy 𝐸 were 

fixed during the simulation in order to reproduce a macrostate described by these three 

thermodynamic properties (𝑁, 𝑉, 𝐸). In fact, in the case of the microcanonical ensemble, 

conserving the energy of the molecular system is only possible in an ideal simulation in 

which the equations of motion are integrated without errors (i.e., by expanding the Taylor 

series to infinity) and the potential terms fully considered. However, to make the 

simulations computationally feasible, a number of approximations are required, as 

explained in the previous sections, but prevent the microscopic ensemble from being 

correctly simulated by MD. In addition, biochemical experiments in the laboratory are 

usually carried out under conditions of constant temperature or pressure, if not both, so 

reproducing these conditions at the microscopic level is more likely to yield results that 

are consistent with the experiment. For these reasons, most biochemical simulations are 

performed in the canonical (𝑁, 𝑉, 𝑇) or isobaric-isothermal (𝑁, 𝑝, 𝑇) ensembles, in which 

the total energy of the system can fluctuate. There are other interesting collectives, such 

as the grand-canonical collective (𝜇, 𝑉, 𝑇), in which the chemical potential 𝜇 remains 

fixed, but the particles can be exchanged with an external bath such that the number of 

particles 𝑁 varies with time.  

To perform the simulations in these statistical ensembles, it is necessary to apply a 

thermostat or a barostat to keep the temperature or pressure constant. In this thesis the 

simulations are mostly carried out in the canonical ensemble, therefore more emphasis is 

given in this section, while the isobaric-isothermal ensemble is mainly used to equilibrate 

the simulation box. As for the thermostats, the simplest algorithm is the Berendsen 

thermostat19 which scales the velocities at each integration step based on a λ-scaling 

factor. This method couples an external thermal bath at the desired temperature to the 
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molecular system, thus adding or removing heat from the simulation box at an exchange 

rate that depends on the temperature difference between the external bath and the 

molecular system. Although the Berendsen thermostat is widely used in MD simulations, 

the lack of kinetic energy fluctuations within the molecular system prevents this 

thermostat from correctly representing the statistical ensemble. As a solution, a 

generalisation of the Berendsen thermostat has been proposed, introduced as the velocity-

rescaling thermostat20, which includes a stochastic term that allows for a correct 

distribution of the kinetic energy. This algorithm eventually replaced the Berendsen 

thermostat. Among the velocity-rescaling methods, there is also the Nosé-Hoover 

thermostat21–23, which uses an extended system to relax the temperature of the molecular 

system by adding artificial terms (velocity and coordinates) to the Lagrangian function. 

Due to the cyclic fluctuations of this thermostat, a series of thermostats are chained to 

correct this problem and ensure the ergodicity of the system, which is essential for 

obtaining meaningful information from the simulation. 

In contrast to the previous thermostats, we introduce the velocity randomising (or 

stochastic) Langevin thermostat24. This thermostat integrates directly on the Langevin 

equation of motion, in which dissipative forces are included in Newton’s equation of 

motion through a friction term 𝜆𝑖 and a random force term 𝑅𝑖 to reproduce random 

collisions between the atoms of the simulation box and random particles of an external 

thermal bath at the desired temperature 𝑇. The frequency of the collisions between the 

particles is determined by 𝜆𝑖 and the random force is related to this frequency parameter 

by 〈𝑹(0)𝑹(𝑡)〉 = 2𝑚𝑖𝑘𝑏𝑇𝛾𝑖𝛿(𝑡), where 𝑘𝑏 is the Boltzmann’s constant and 𝛿(𝑡) is the 

Dirac function. Therefore, the equation of motion when using Langevin thermostat is 

defined as follows: 

𝑚𝑖
𝜕2𝒓𝒊
𝜕𝑡2

= 𝑭𝒊 −𝑚𝑖𝛾𝑖
𝜕𝒓𝒊
𝜕𝑡
+ 𝑹𝒊 Eq. 2.14 

This thermostat has demonstrated good performance and the equation of motion is 

physically meaningful with a real friction parameter that can simulate solvent molecules 

despite the complexity of the stochastic fluctuation. 

On the other hand, some barostats rely on the architecture of thermostat algorithms 

(or vice versa) to perform their task. Thus, they generally modify the dimensions of the 

simulation box and consequently the coordinates of the atoms inside the system to adjust 

the volume and thus maintain the pressure of the system. Among the various methods, it 
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is worth mentioning the Berendsen barostat25, which presents the problem presented 

above, the Parrinello-Rahman pressure coupling barostat26,27, which applies a system 

extension to the Lagrangian, the Langevin pistol method28 or hybrid methods29. 

2.2.4. Solvation Models 

Biomolecules, such as proteins, DNA, membranes, etc., are usually found in very 

crowded and complex environments, composed mostly of water with the presence of 

other macromolecules or ions. From a computational point of view, including all the 

components of a physiological environment in the simulation box is very expensive. In 

fact, the typical dimensions of the simulation boxes do not permit the inclusion of other 

macromolecules. Therefore, most simulations assume only an aqueous solvation medium, 

either pure or ionic, to fill the molecular system. The presence of water is very important 

because of its effect on the conformation of macromolecules, which makes them a critical 

factor in biological processes such as solvation and self-assembly phenomena. Therefore, 

an accurate representation of the water properties, solvent-solute and solvent-solvent 

interactions is essential for the simulation and study of biomolecules. 

There are two major approaches to incorporate the properties of water into the 

environment of the simulations. One is the implicit (or continuous) solvation model, 

which assumes a continuous medium with electrostatic and non-polar contributions 

to mimic the properties of water. Most implicit solvation models treat the electrostatic 

or polar interactions and the non-polar interactions separately, as shown in Eq. 15. 

∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑒𝑙 + ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 Eq. 2.15 

For the polar contribution, the electrostatic interactions are traditionally estimated 

by the Poisson-Boltzmann (PB) equation30,31, in which the description of the 

electrochemical potential has proven to be robust but computationally expensive. 

According to this model, the solute is treated as a dielectric body with a shape determined 

by the atomic cavity radius, in which the point charges are distributed in the atomic 

centres. An electric force field is then generated corresponding to this dielectric body and 

the solute, and the PB equations are used to estimate the electrostatic interactions. 

𝛁 · [𝜖(𝒓𝒊)𝛁𝜙(𝒓𝒊)] = −4𝜋𝜌(𝒓𝒊) − 4𝜋𝜆(𝒓𝒊)∑𝑧𝑖𝑐𝑖𝑒
−𝑧𝑖𝜙(𝒓𝒊)
𝑘𝑇

𝑖

  Eq. 2.16 
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where 𝜖(𝒓𝒊) is the dielectric constant, 𝜙(𝒓𝒊) is the electrostatic potential, 𝜌(𝒓𝒊) is the 

solute charge density, 𝜌(𝒓𝒊) is the masking layer function of the Stern model, 𝑧𝑖 is the ion 

charge and 𝑐𝑖 is the ion charge concentration in the bulk. 

Alternatively, the PB equation has been simplified by an analytical solution in 

which the solute is modelled as a set of spheres with radius 𝑅𝑖, charge 𝑞𝑖 and filled with 

a dielectric constant of 1. Subsequently, the solute is surrounded by a continuum solvent 

with a specific 휀, so that the electrostatic interactions can be solved with the following 

analytical equation: 

ΔG𝑒𝑙 = −
1

2
∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵(𝑟𝑖𝑗, 𝑅𝑖 , 𝑅𝑗)
(1 −

𝑒−𝒦𝑓𝐺𝐵

휀
)

𝑁

𝑖𝑗

 Eq. 2.17 

where 𝑓𝐺𝐵(𝑟𝑖𝑗, 𝑅𝑖, 𝑅𝑗) is a smooth function that depends on the distance between the atoms 

𝑖 and 𝑗 and the associated radius assigned to each atom, also referred to as the effective 

Born radii, and 𝒦 is the Debye-Huckel screening length. This approach, called 

generalized Born (GB) model32–34, is an efficient and simple method to simulate implicit 

solvation in MD simulations. It also has the advantage of being parallelizable on 

computers, which is very convenient for computationally demanding studies such as 

protein folding, solvation free energy calculations, simulations at constant pH, etc.  

In contrast, the non-polar contribution is usually addressed by the solvent 

accessible surface area (SASA)35,36, a method that numerically estimates the molecular 

surface area exposed to the solvent using spherically distributed dots and a pair of 

parameters related to the surface tension, 𝛾, and the free energy in vacuum, 𝑐.  

∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 = 𝛾𝑆𝐴𝑆𝐴 + 𝑐 Eq. 2.18 

Despite the advantages of implicit solvation models in terms of computational 

efficiency, as they significantly reduce the number of molecules and interactions within 

the simulation box (water molecules can account for up to 90% of the system), these 

models have important shortcomings in microscopic properties and solvent-solute 

interactions. The implicit solvation approach assumes the absence of explicit solute-

solvent interactions, such as hydrogen bonds, and of entropic effects arising from the 

distribution of the solvent around the solute, in addition to the overstabilisation of 

intramolecular salt bridges or hydrogen bonds, resulting in improper conformational 

sampling of the molecular system. 
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On the other hand, in order to have a realistic description of the molecular system, 

explicit water models can be introduced into the simulation box. These explicit models 

consist of a specific geometric structure and a set of force field parameters (i.e., bond 

lengths, angles, partial charges, or Lennard Jones-related constants, among others) that 

reproduce the water molecule. Common water models of interest for this thesis are 

summarised in Table 1. 

 TIP3P SPC OPC3 TIP4P TIP4P-D OPC 

O-H bond (Å) 0.9572 1.0 0.9789 0.9572 0.9572 0.8724 

H-O-H angle (º) 104.52 109.4667 109.47 104.52 104.52 103.6 

O-M bond (Å) - - - 0.15 0.1546 0.1594 

𝐪𝐎 (e) -0.834 -0.82 -0.8952 0.0 0.0 0.0 

𝐪𝐇 (e) 0.417 0.41 0.4476 0.52 0.58 0.6791 

𝐪𝐌 (e) - - - -1.04 -1.16 -1.358 

𝛔𝐎 (Å) 3.1506 3.166 3.17427 3.15365 3.165 3.1666 

𝛆𝐎 (kcal/mol) 0.1521 0.1554 0.1634 0.155 0.2238 0.2128 

Table 1. Force field parameters (distances, angles, partial charges and van der Waals 

parameters) of the most relevant 3- and 4-point water models in this thesis. 

In the 1980s, the most popular water models, the Transferable Interaction 

Potential37 (TIP3P) and the Simple Point Charge38 (SPC) water molecules, were 

developed based on the description of water by 3-point models. These models are still 

used today in combination with certain well-established force fields, although some 

limitations in the ability to reproduce certain properties of water have already been 

demonstrated. Fortunately, a collection of other versions has emerged over the years, 

based on modifications or the addition of new points to the original models. For example, 

4- and 5-point water models (TIP4P37, TIP5P39), with improved description of the 

intermolecular potential energy (SPC/E40), better compatibility with the Ewald 

summation method (TIP3P-Ew41, TIP4P-Ew42), flexible versions of the rigid model 

(SPC/Fw43, TIP3P/Fw44), 4-point polarisable models (SWM4-NDP45), with improved 

London dispersion force interactions (TIP4P-D46), updates from previous models (TIP5P-

201847, TIP4P/200548) and even high-accuracy models (OPC49, OPC350). Given the wide 

variety of models available, users are encouraged to read the specifications of each model 

carefully and choose according to the purpose of the simulation and the affordability of 

the computational performance. 
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Figure 3. Water molecule models included in the review by Kadaoluwa Pathirannahalage 

et al.51. Partial charge points of 4- and 5-point models are coloured in pink and cyan, 

respectively.  

2.2.5. Considerations for Simulation and Software 

 As well as the explicit water models, the parameters and terms used in the force 

fields for the description of biomolecules have also been developed over the years. An 

accurate parameterisation is crucial for a successful modelling of the potential energy 

surface and hence the molecular systems. However, the simulation setup should also be 

handled with care to ensure a correct description of the modelled system. Several 

procedures are usually required before running the simulation, such as the selection and 

preparation of 3D structures with missing atoms or regions, the prediction of the 

protonation state of the titratable amino acids, the addition of disulphide bridges, the 

solvation of the simulation box (water molecules, ions, ...), the parameterisation of 

organic molecules, the heating of the simulation box (i.e., by gradually increasing the 

temperature in the external bath of the thermostat), adjusting the density of the simulation 

box (with a barostat), equilibrating the system, and so on. As can be seen, all these 

processes can be difficult for non-experts in the field of molecular modelling, but 

fortunately there are several software packages available that can deal with them in a 

systematic, user-friendly, and easy-to-use manner. Some of the most prominent and 

popular for simulating biochemical systems are AMBER52, CHARMM53, GROMACS54, 

DESMOND55 or NAMD56, and some of them even have their own force fields, such as 

AMBER or CHARMM. Other prominent force fields are OPLS57 or GROMOS58, and all 

have several versions to improve the accuracy either in general or in specific molecular 

systems. Most force fields have a similar functional form (i.e., the potential energy terms 

that describe the potential energy surface of the system), and the key feature between 

them relies on the parameterisation of the molecules.  
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The user can choose the software based on the efficiency of algorithm 

implementation, availability of advanced sampling or analysis techniques, parallelization 

on CPUs, GPUs or supercomputers, flexibility to integrate new force fields, graphical 

user interface and many other considerations. The most common software packages 

already include many analysis techniques for extracting information about the dynamics 

and structural properties of molecular systems. However, the use of libraries specialised 

in molecular modelling, such as MDTraj59, MDAnalysis60 or PyTRAJ61, is a good 

resource in cases where specific analyses are not found, modifications to them are 

required or several programs need to be linked. There are also molecular visualisation 

programs, such as VMD62 or PyMOL63, which provide the user with eye-catching 

qualitative information about the dynamics and the structure of the molecule. Therefore, 

it is recommended that users explore the various tools and software packages that are 

available prior to running a simulation, as this can facilitate the study of a desired 

molecular system in a more efficient and easier manner. 

2.3. Coarse-Grained Modelling 

Up to this point, we have assumed that molecular modelling is performed at an 

atomistic resolution, i.e., all atoms of the molecular system (or the solute) are explicitly 

defined in the simulation box. This high-resolution description of a biochemical system 

for a medium or large protein generally requires a substantial computational effort to 

reach long time scales. Regardless of the increase in computational power with GPUs or 

supercomputers or the approaches within atomistic resolution to enlarge the time step, the 

cost of capturing biological processes at micro- or millisecond time scales, such as protein 

aggregation, protein folding, cryptic binding sites, etc, can be prohibitive. For these 

reasons, a reduction in the atomistic representation of molecular systems is sometimes 

used in molecular modelling to reduce the complexity and degrees of freedom of the 

system and thus to increase the simulation efficiency. These medium-to-low resolution 

molecular descriptions are often referred to as coarse-grained (CG) models, and are based 

on the assembly of neighbouring atoms within a molecule into average particles. 

The foundations for the development of multiscale models of complex chemical 

systems were laid in the 1970s by Michael Levitt, Ariel Warshel and Martin Karplus. 

They introduced the simplification of the biomolecular complexes in order to perform 

simulations on long time scales. In fact, they were awarded the 2013 Nobel Prize in 

Chemistry for this contribution to multiscale simulations and the study of biomolecular 
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complexes64. Since then, many multiscale and coarse-grained models have been 

developed, progressing from simple to more sophisticated and detailed models, and have 

become increasingly popular over the years for soft matter research in physics, chemistry 

and biochemistry. Within protein simulation, CG simulations have proven to be effective 

in the prediction of structural properties and protein folding mechanisms, and have also 

shown potential for gaining insight into the protein-protein interactions or the behaviour 

of molecular membranes. 

Figure 4. Illustration of the structure and potential energy of aspartic acid with all-atom 

(left), 4-bead (middle) and 2-bead (right) coarse-grained models. 

In the context of biomolecules, CG models reduce the level of representation of 

the amino acid chain to one, two or more united atoms (i.e., the representation that 

includes several atoms in the same particle) or pseudo-atoms. Sometimes these united 

atoms are also referred to as beads belonging to a necklace or chain. Depending on the 

CG model, the level of representation varies, e.g., we can find models with a single united 

atom per amino acid or several beads to represent the functional groups of an amino acid. 

Nevertheless, for an adequate modelling we must not forget that these simplified 

representations must reflect the particularities of the proteins, such as the peptide bond 

binding in the trans position, the orientations of the side chains, the L-handed 

conformation of the amino acids, etc. Typically, intermediate models estimate the 

molecular systems with CG models that assign one or two pseudo-atoms in the backbone 

and side chain of the amino acids, such as the UNRES65 and CABS66 models. There are 
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CG models with high resolution in the molecular structure, i.e., more pseudo-atoms, with 

the advantage of providing a better description of the molecular system at the expense of 

a larger computational time, such as PRIMO67 or Rosetta68. There are also other less 

common lattice-based models with certain restrictions on geometry and conformations. 

Apart from the level of resolution, the design of the force fields in CG models is 

crucial for the accurate simulation of molecular systems. Three categories can be 

distinguished according to the approach adopted for their construction: (i) physics-based 

force fields, which are constructed from all-atom simulations, (ii) knowledge-based force 

fields, which are derived from the statistics of the structural properties, and (iii) structure-

based force fields, which use well-defined protein structures to reproduce the native 

contacts. The former is usually based on the construction of a potential energy function 

similar to that described in classical all-atom force fields. However, the terms integrating 

the potential of the molecular system should be modified due to the pseudo-atom building 

and require a treatment based on multibody terms representing pseudo-bonds between the 

united atoms and the non-bonding interactions between the pairs of interacting atoms. 

There are several strategies for fitting and evaluating the parameters chosen for the CG 

force fields, generally based on minimising the correlation between the properties of the 

conformational ensembles generated between the CG and the all-atom molecular systems, 

such as the radial distribution function, the applied forces or the relative entropy, among 

others. On the other hand, knowledge-based force fields build the potential energy 

function through statistical analysis of the conformational properties of the system, such 

as the relative frequency of atomic contacts, the probability of a correct conformation 

based on the amino acid sequence and structural features, or the maximisation or 

minimisation of different criteria (score function, free energy of native states, ...). These 

methods have demonstrated good efficiency for molecular systems with structural 

properties similar to those considered in their design, but the transferability of these CG 

force fields is poor. Finally, the structure-based models are not really popular, since the 

construction of these force fields through a well-defined initial structure assumes that the 

relevant interactions of the molecular system are governed by those present in the native 

structure. In addition to the force fields and models mentioned in the classification, others 

stand out, such as MARTINI69,70 (physics-based force field using one to four beads per 

amino acid), Bereau and Deserno71 (knowledge-based force field implemented in the 
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ESPResSO software), OPEP72 (mixed potential using one to six beads per amino acid), 

etc73. 

In Chapter 6, CG models are used to assess the ability to sample the 

conformational space of the histatin-5 peptide using various methods, models, and force 

fields. Available and most familiar models in our research group include the CG SIRAH 

model74,75 implemented in AMBER and GROMACS, and the flexible CG software 

package ESPResSO76. The SIRAH force field is designed according to the knowledge-

based approach using structural information available in the Protein Data Bank and 

canonical structures of DNA and proteins with α-helices and β-sheets to fit the parameters 

of a classical potential energy function from MD simulations (including familiar concepts 

of electrostatic interactions, van der Waals, equilibrium angles and distances, force 

constants, etc.). In addition, SIRAH has developed its own explicit water model, WAT 

FOUR77 (WT4), which represents a cluster of 11 water molecules in a tetrahedral transient 

structure embodied by four beads. SIRAH has proved to reproduce the secondary 

structures of short peptides, such as chignolin, (AAQAA)3 and the YSEEEERRRR 

peptide, even from the unfolded state. On the other hand, the ESPResSO software 

package offers great flexibility in the design of CG models since particles and interactions 

can be customised with relative ease. Here, the CG resolution was simplified to 2-bead 

models connected by spring-like bonds and an explicit solvation environment using the 

"Sugar" library developed by Blanco, P.M. (https://gitlab.com/blancoapa/sugar_library). 

A major advantage of this software for the present thesis is the implementation of the pH-

inclusive methods, such as the constant pH or reaction ensemble method. 

2.4. Intrinsically Disordered Proteins in Molecular Dynamics 

As mentioned in the introduction, the intrinsic disorder of IDPs confers upon them 

properties that are translated into high flexibility and rapid interconversion between 

conformations. Not surprisingly, the first molecular modelling efforts were influenced by 

the perceived need to reproduce the well-defined three-dimensional structures typical of 

globular proteins, as the function-structure paradigm was well established in the scientific 

community. In fact, many of the force fields focused on proteins and peptides were 

designed based on this assumption and are still in use today. However, such force fields 

fail when simulating IDPs or intrinsically disordered regions (IDRs), usually due to the 

overstabilisation of secondary structures, e.g., the α-helix or β-sheet, so that new 

parameterisations including the features of IDPs are necessary. Fortunately, in recent 

https://gitlab.com/blancoapa/sugar_library
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decades, IDP-oriented force fields have been published addressing these issues and 

reproducing experimentally observed properties, such as the radius of gyration (Rg) from 

SAXS, atomic distances from FRET or the chemical shifts prediction from NMR. 

However, there are still limitations in the development of these force fields and, more 

ambitiously, no universal force field exists for both folded and disordered proteins78,79. 

 Several strategies have been pursued to develop novel IDP-inclusive force fields. 

Most of them are based on training (or retraining) the parameters of the (previous) force 

fields to improve the accuracy in predicting the conformational behaviour and secondary 

structure propensities. The training data sets are obtained from experiments or quantum 

mechanics simulations and are intended to capture the properties of IDPs. On the other 

hand, the importance of protein-water interactions in the simulation of IDPs has been 

highlighted, so that modifications to water models have also been proposed. Other 

approaches have also been implemented, such as the use of polarisable force fields, CG 

models or even force fields designed using machine learning. In this section we review 

the most important approaches that tackle the IDP-orientated force fields. 

 The more common option in IDP-specific force fields is to optimise the dihedral 

angles, in particular the dihedrals φ and ψ of the protein backbone, in order to minimise 

the overstabilisation of certain secondary structures typically observed in earlier force 

fields. Therefore, data sets incorporating the structural information of random coils are 

added to the training processes to recalibrate the force field parameters. Thus, the 

parameters defining the dihedral angle potential given in Eq. 2 are refitted. Some 

examples are FF99SB*80, CHARMM22*81, OPLS-AA/M82 or OPLS383, all of which 

have shown improvements in reproducing of the characteristics of certain IDPs.  In 

addition to updating the training sets, the RSFF184 and RSSF285 force fields have been 

designed with amino acid-specific parameters to improve the conformational sampling of 

IDPs, particularly in the secondary structure propensities. 

 Another strategy adopted in the dihedral angle fashion is the introduction of a 

corrective term in the potential energy function of the molecular system, the so-called 

CMAP method86. This was first incorporated into the CHARMM22/CMAP86,87 (or 

CHARMM27) force field, adding a corrective energy surface that depends on the φ and 

ψ dihedral distribution of the protein backbone. In general, the two-dimensional 

distribution generated by the φ and ψ dihedrals of each residue is divided into several 
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bins, such that the dihedral free energy of a bin 𝑖 is based on its population during the 

simulation, ∆𝐺𝑖
𝑆𝐼𝑀. 

∆𝐺𝑖
𝑆𝐼𝑀 = 𝑅𝑇𝑙𝑛 (

𝑁𝑖
𝑁𝑇
) Eq. 2.19 

where 𝑁𝑖 is the number of times that φ and ψ dihedrals are counted within bin 𝑖, and 𝑁𝑇 

is the total number of dihedral combinations during the simulation. The population energy 

of the residue is compared with a reference energy value derived from experimental 

databases, ∆𝐺𝑖
𝐷𝐵. If the dihedral free energy of the simulation deviates from the 

experimental data, an energy correction is applied in the potential energy function, 

𝑈𝑖
𝐶𝑀𝐴𝑃, which depends on the difference between experimental and simulation free 

energies. 

𝑈𝑖
𝐶𝑀𝐴𝑃 = ∆𝐺𝑖

𝐷𝐵 − ∆𝐺𝑖
𝑆𝐼𝑀 Eq. 2.20 

As the number of bins is discretised to a low-dimensional matrix, bicubic 

interpolation or nearest neighbour methods are typically used to generate a continuous 

correction energy potential in the system. The CMAP method has finally been 

implemented in the most popular force fields, such as the AMBER ff14IDPSFF88, 

CHARMM36IDPSFF89 or OPLSIDPSFF90 force fields, in which Chen and co-workers 

incorporated the CMAP correction on the 20 standard amino acids, the RSFF2C force 

field91, in which the dihedrals of the side chains are also included, and the ESFF1 force 

field92, in which the energy correction depends on the sequence environment of the amino 

acids. 

Another line of improvement for simulation of IDPs is the refinement of the protein-

water interactions. In addition to the electrostatic interactions that are normally dominant 

in proteins, it has been found that short-range non-polar interactions are also essential for 

the compaction and conformation of IDPs. This is usually quantified by the radius of 

gyration or the end-to-end distance, which can be measured experimentally using SAXS 

or FRET techniques. Therefore, developing water models that are consistent with 

experimental observations has become a challenge in IDP simulations. Water models 

designed based on this consideration typically modify the Lennard-Jones potential 

parameters of the hydrogen or oxygen atoms of the water molecule. For example, the 

TIP4P-D model (or the modified version a99SB-disp) increases the dispersion 

interactions of the water model, resulting in an improved Rg of some IDPs at the cost of 
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occasionally breaking α-helices and overestimating the Rg, and the CHARMM36m water 

model adjusts the Lennard-Jonnes well depth parameter of the hydrogen atom,휀𝐻. The 

balance of protein-water van der Waals interactions needs to be handled carefully. If 

overestimated, it will lead to loss of secondary structure and increased solvent exposure, 

and on the contrary, if underestimated, protein collapse and compaction will occur. 

 

Figure 5. Schematic representation of the dihedral, CMAP and protein-water interaction 

approaches for improving the simulation of IDPs and the respective force fields and water 

models designed according to each strategy from Mu et al.79. 

Other approaches to improve the parameterisation of simulations include the use of 

machine learning techniques to calibrate force fields with experimental data, such as 

SAXS and SANS intensities in the ForceBalance-SAS force field93. However, similar to 

the parameterisation of dihedrals, the selected training set must be carefully considered 

as it will determine the strengths and weaknesses of the force field. On the other hand, 

CG IDP-specific force fields have also shown merits in performing IDP simulations, such 

as the AWSEM-IDP force field94 in the aggregation process or the OPEP force field in 

amyloid-β fibril formation. Indeed, they are an interesting choice, particularly in terms of 

computational efficiency, to observe biological events on long time scales. Finally, 

dynamic partial charges are increasingly emerging as a promising approach beyond the 

reparameterisation strategies presented to date. As mentioned in the introduction, IDPs 

usually contain a high fraction of ionisable or polarisable amino acids, which means that 

electrostatic interactions and an accurate description of the partial charges according to 
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the electrochemical environment are critical for the study of IDPs. Therefore, modern 

polarisable force fields have attempted to address this issue through fluctuating charge 

models (in OPLS-AA and CHARMM), Drude oscillator models (in CHARMM), induced 

dipole and Gaussian models for electrostatic interactions (in AMBER), or detailed 

multipole expansion and complex potentials (in AMOEBA95). Although promising, these 

force fields present computational challenges, and finding suitable solutions to this 

problem would make them into attractive models for the simulation of IDPs. 

2.5. Constant pH Molecular Dynamics 

A correct definition of the partial charges of the atoms of a macromolecule is 

determinant for a realistic simulation of the systems. In biomolecules, the protonation 

states of ionisable amino acids are critical for the charge distribution of proteins, which 

in turn can have a profound impact on conformations and consequently on the biological 

functions. A clear example is proton-coupled conformational dynamics, where the 

protonation (or deprotonation) of one or two amino acids causes major structural changes 

in the configuration of a biomolecule. These amino acid protonation states play a central 

role in other phenomena such as ligand-protein or protein-protein binding processes, 

mechanisms of membrane channels or ion tunnels, and so on. At present, most 

simulations usually fix protonation states during MD simulations. Even if some 

considerations are taken into account during the preparation of the molecular system, e.g., 

considering the pKa (usually the reference pKa from the individual amino acid) with 

respect to the simulated pH or using protonation state prediction tools such as PROPKA96 

or H++97, these are insufficient. On the one hand, the reference pKa of the individual 

amino acids is not reliable for residues within proteins because the pKa can vary 

significantly depending on the electrochemical environment. On the other hand, pKa 

estimation tools are poor because they typically use a single structure or a small set of 

conformations, which is not adequate to accurately predict pKa. Above all, simulations 

with fixed protonation states do not contemplate the possibility of changing the 

protonation state during the trajectory, thus neglecting the interplay and interactions 

between amino acids with dynamic protonation states. 

Over the last few decades, several techniques that include the effect of pH and 

dynamic protonation states of amino acids have been developed, collectively known as 

constant pH Molecular Dynamics (CpHMD) method98–103. The CpHMD techniques 

explore both the conformational and protonation state space of molecular systems within 



Chapter 2. Theoretical Background 

 

41 

  

the semi-grand canonical ensemble, (𝑁∆𝜇𝑖𝑉𝑇). In contrast to the canonical ensemble, the 

number of protons can fluctuate during the MD simulation, enabling the protonation and 

deprotonation of amino acids by exchanging these particles with a bath of non-interacting 

protons in solution, which keeps the chemical potential constant.  

In essence, there are two major approaches differing in the treatment of protonation 

states during the simulation. On the one hand, there is the continuous CpHMD method, 

first introduced by Brooks and co-workers101, which relies on λ-dynamics104 to include 

the protonation coordinate, λ, of a fictitious mass in the potential energy function and to 

propagate it during the integration of the molecular system. The protonation coordinate 

fluctuates between 0 and 1 during the simulation, defining the protonated and 

deprotonated states at the endpoints, respectively, which in turn modulates the non-

bonding potential energy by linear interpolation of the partial charges and van der Waals 

interactions between the protonated and deprotonated states. Some techniques include a 

cut-off at 0.2 and 0.8 to accept the protonation state change, although intermediate values 

of λ lead to physically meaningless transient states that should be discarded in the 

analysis. Among the most prominent published techniques of continuous CpHMD, there 

are the implicit103,105, hybrid106 and explicit107,108 solvent methods implemented in 

CHARMM and AMBER, or the multi-site λ dynamics approach107,109, CpHMDMSλD, 

implemented in CHARMM and GROMACS. An outstanding advantage of this method 

is the rapid convergence of the protonation states and pKa, which is even faster when 

used in conjunction with the enhanced-sampling replica exchange MD (REMD) 

techniques. 

On the other hand, the second approach provides an explicit, physically meaningful 

description of the protonation states of the titratable residues in the so-called CpHMD 

method with discrete protonation states (or discrete CpHMD for short)98–100,102,110,111. This 

method is based on propagating the trajectory of the molecular system during the course 

of a MD simulation, occasionally stopping the conformational sampling to propose new 

protonation states according to the electrochemical environment of each titratable amino 

acid. The protonation state change attempt is controlled by the stochastic Monte Carlo 

criterion, for which a transition free energy between the current protonation state and the 

proposed protonation state is calculated in Eq. 21 to determine whether the criterion is 

accepted or not. 
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∆𝐺 = 𝑘𝑏𝑇(𝑝𝐻 − 𝑝𝑘𝑎,𝑟𝑒𝑓)𝑙𝑛10 + ∆𝐺𝑒𝑙𝑒𝑐 − ∆𝐺𝑒𝑙𝑒𝑐,𝑟𝑒𝑓 Eq. 2.21 

where 𝑘𝑏 is the Boltzmann constant, 𝑇 is the temperature, 𝑝𝐻 is the pH of the solvent, 

𝑝𝑘𝑎,𝑟𝑒𝑓 is the pKa of the reference compound, ∆𝐺𝑒𝑙𝑒𝑐 is the transition free energy 

associated with the electrostatic interactions between the proposed and the current 

protonation states, and ∆𝐺𝑒𝑙𝑒𝑐,𝑟𝑒𝑓 is the electrostatic transition free energy between the 

two states, current and proposed, of the reference compound.  

Normally the reference compound is the ionisable amino acid within a dipeptide (i.e., 

the amino acid with capping groups). The electrostatic transition free energy is obtained 

as the difference between the electrostatic potentials of the respective partial charge 

distributions in the titratable amino acid according to the proposed and the current 

protonation states. Thus, if the protonation state change attempt is accepted, the titratable 

amino acid is updated with the proposed protonation state. Then, whether the protonation 

state change is accepted or rejected, the trajectory continues to propagate until it is 

stopped again, and a new protonation state is proposed. This protocol is repeated until 

both the conformational and the protonation state space of the molecular system have 

been sampled. 

This method was first proposed by Baptista and co-workers98,99 using the Poisson-

Boltzmann continuum electrostatics as implicit solvent for both conformational and 

protonation state sampling. Later versions of the stochastic method focused on improving 

the description or efficiency of the solvent model, such that the generalized-Born method 

was introduced as a faster alternative for the treatment of the implicit solvent102,110, or by 

including explicit water molecules only in the conformational sampling111,112, which were 

implemented in AMBER or GROMACS. However, a purely explicit solvent description 

in the CpHMD method is too costly. It would require proposing the new protonation state 

and relaxing the water molecules around it for each titratable amino acid before accepting 

or rejecting the proposal. Otherwise, if the orientation of the water molecules with respect 

to the current protonation states is maintained, the new protonated states will have very 

high energy barriers, around ~100 kcal/mol, and therefore the stochastic criterion will 

almost never accept them. For this reason, implicit solvation is used to sample the 

protonation states, as it avoids the explicit water problem at the cost of sacrificing 

accuracy in the modelling water and ions, which can be important in some protonation 
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state changes. In the next section we will describe in more detail the implementation of 

CpHMD with implicit and hybrid solvation in the AMBER package. 

Both constant pH methods, with either continuous or discrete protonation states, face 

several challenges. First, the lack of force fields or program architectures tailored for 

constant pH simulations is probably responsible for inaccuracies in protein 

conformational sampling113–116. Second, the treatment of the net charge fluctuations 

during the simulation is not trivial. Some techniques have offered ingenious solutions, 

such as charge compensation through the introduction of co-ions or titratable waters117–

119 or the addition of a background plasma to neutralise the net charge of the system. 

Third, the computational cost of pKa and protonation state convergence coupled with 

conformational sampling. This challenge is particularly relevant for hybrid solvent 

discrete CpHMD simulations, as they require solvent relaxation after accepting a 

protonation state change. In response, GPU implementations offer an increase in the 

computational efficiency, and conformational and protonation state sampling has been 

improved by enhanced-sampling techniques such as pH-based REMD106,110,111,120 or the 

reduction of the atomistic resolution with CG models121,122. For further information, the 

reader is referred to the recent review on the current state of constant pH methods by 

Martins De Oliveira et al.123. 

2.5.1. Constant pH Molecular Dynamics with Discrete Protonation States implemented in 

AMBER 

Most of the constant pH simulations in this thesis are performed by the constant 

pH Molecular Dynamics method with discrete protonation states implemented in 

AMBER using the implicit GB solvent102 or the hybrid explicit/GB version111. Therefore, 

we will dedicate this section to describe the requirements, steps and protocol followed by 

this implementation for a proper comprehension. 

First, the molecular system requires specific residues and the definition of the 

protonation states and the corresponding partial charge distributions for an accurate 

representation of the titratable amino acids during the simulation. In addition, the 

reference pKa described by Bashford et al. and Kyte in Table 2 and the reference 

electrostatic energies calculated through the dipeptide of the titratable amino acids are 

required to estimate the transition free energies during the application of the Metropolis 

Monte Carlo criterion. These parameters are provided by AMBER for several GB models  
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Residue 𝒑𝒌𝒂,𝒓𝒆𝒇 

Asp 4.0 

Glu 4.4 

His (δ-state) 6.5 

His (ε-state) 7.1 

Tyr 9.6 

Lys 10.4 

Table 2. Titratable residues and pKa values described by Bashford et al.124 and Kyte125 

used in the CpHMD implementation in the AMBER software. 

at ionic strengths of 0.1M and, if other conditions are required, can be calculated by an 

internal tool. After preparation of the titratable residues and the selection of the GB 

model, the CpHMD simulation runs the trajectory until a user-defined number of MD 

steps, 𝜏𝑀𝐷, is reached. The simulation is then paused, and the protocol for protonation 

state change attempt is executed. There are some subtleties in this step depending on the 

solvation method used: 

i) If the entire simulation is performed with implicit solvation, a single titratable 

amino acid is randomly selected for the protonation state change attempt. The 

Monte Carlo criterion is applied and, whether it is accepted or rejected, then MD 

propagation follows.  

ii) If the hybrid solvation method is used, the protonation state change attempt is 

performed on all titratable amino acids in a random order. If at least one 

protonation change attempt is accepted, the solvent relaxation is carried out and, 

subsequently, the MD propagation is continued. 

We recall that the protonation state change attempt is based on the Metropolis 

Monte Carlo criterion using to the transition free energy, Eq. 21, which depends on the 

electrostatic transition energy estimated by the GB model in this AMBER 

implementation. Thus, the CpHMD simulation proceeds in an iterative protocol of: (1) 

propagation of the MD trajectory, (2) proposal and calculation of the transition free 

energy between the proposed and current protonation states, (3) application of the Monte 

Carlo criterion and (4) updating the protonation states if necessary. If the hybrid solvation 

model is used, two additional steps are performed: (i) solvent stripping before step 2, and 
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(4) solvent relaxation after step 4. This protocol is shown the schematic diagram in Figure 

6. 

A few considerations should be taken into account in the solvation models. First, 

the effective global period of the protonation state change attempts must be considered in 

order to correctly sample the protonation state space of each titratable amino acid. While 

in explicit solvation it is directly defined by the user with 𝜏𝑀𝐷, in implicit solvation this 

period depends on the number of titratable amino acids and the 𝜏𝑀𝐷. On the other hand, 

while the implicit model adjusts the solvent instantaneously after accepting a change in 

protonation state, explicit solvation requires the relaxation of the water molecules around 

the solute. For this purpose, the solute is frozen in the simulation box and the water 

molecules perform a user-defined number of MD steps, 𝜏𝑟𝑙𝑥. This 𝜏𝑟𝑙𝑥 must be large 

enough to produce a new distribution of water molecules around the new protonation 

states that is uncorrelated with the distribution prior to the change. The implementation 

of the hybrid solvent method shows that 4 fs of water relaxation is suitable, but due to the 

high computational cost, a minimum relaxation of 200 ps is suggested since it does not 

show changes in pKa predictions and has minimal impact on the solvent distributions. 

Finally, it is worth noting that when two titratable amino acids are close enough, i.e., the 

titrating hydrogens of the neighbouring residues are within 2 Å of each other, there is a 

25% chance that multisite titration will occur. This means that when the protonation state 

change of one of the amino acids is accepted, the neighbouring amino acid is also 

changed, so that proton transfer from close titratable sites involved in hydrogen bonding 

can be captured. 

In view of the literature about the constant pH method, the hybrid solvent CpHMD 

method is generally recommended. Indeed, an implicit solvation model can lead to 

inaccurate modelling of the molecular system, as pointed out by Machuqueiro and 

Baptista126. In addition, the implementation of the enhanced-sampling REMD technique 

in discrete CpHMD enables improved conformational and protonation state sampling of 

molecular systems, thus facilitating a faster and more efficient convergence in the 

simulations. 
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Figure 6. Workflow of the CpHMD method with implicit solvation model (dashed black 

lines) and explicit water molecules (solid blue lines) implemented in AMBER. 

2.5.2. pH-based Replica Exchange Molecular Dynamics 

The pH-based replica exchange Molecular Dynamics (pH-REMD) method106,110,120 is 

an expanded ensemble technique that allows sampling of the conformational and 

protonation state space as well as the thermodynamic state space –in this case, the 

chemical potential of the protons, i.e., the solvent pH– of a molecular system during the 

simulation. In brief, N replicas of the molecular system are ordered according to the 

solvent pH and, after a certain number of CpHMD steps, an exchange of replicas is 

attempted. If accepted, the replicas are swapped between the thermodynamic states, i.e., 

solvent pH, and the CpHMD simulation is then continued. For the replica exchange 

attempt, the Metropolis Monte Carlo criterion is applied, in this case, using a transition 

probability, 𝑃𝑖→𝑗, defined as: 

𝑃𝑖→𝑗 = 𝑚𝑖𝑛{1, 𝑒𝑥𝑝[𝑙𝑛10(𝑁𝑖 − 𝑁𝑗)(𝑝𝐻𝑖 − 𝑝𝐻𝑗)} Eq. 2.22 

where 𝑁𝑖 and 𝑝𝐻𝑖 are the number of titrating protons and the solvent pH of replica 𝑖, 

respectively.  
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Following the protocol shown in Figure 7, the conformational space is sampled 

continuously, and the thermodynamic state space and protonation states are sampled 

discretely. The implementation of pH-REMD in AMBER111 includes some minor 

refinements to improve performance, such as recommending an even number of replicas 

and executing the exchange attempts periodically after a user-defined number of MD 

steps. In addition, the replica exchange is performed between nearest neighbours 

according to solvent pH, which are alternated during the simulation, so that a replica 

cannot be exchanged with the same neighbour in succession. 

 

Figure 7. Schematic representation of the pH-REMD protocol. The vertical black lines 

are the protonation state change attempts and the crossed lines are the accepted (green) 

and rejected (red) replica exchange attempts. The background reflects the solvent pH 

conditions from the colour scale of the pH indicator paper. 

2.6. Simulation Analysis Techniques 

The following section summarises the techniques used to analyse the structural 

properties and conformational sampling of the trajectories. On the one hand, 

Ramachandran maps and NMR chemical shift prediction allow a local inspection of the 

amino acid conformations within macromolecules. On the other hand, the calculation of 

Rg and SAXS intensities provides a global picture of protein compaction, and the 

Principal Component Analysis (PCA) facilitates the identification of the conformational 

space sampled during the simulation. The combination of local and global analysis, 

combined with the estimation of the secondary structure propensities and comparison 

with experimental SAXS and NMR observables, has served both to evaluate the ability 
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of the methods and force fields to capture the conformational space and to provide insight 

into the preferred conformations of the molecular systems addressed in this thesis. 

2.6.1. Ramachandran Maps 

Ramachandran maps are the representation of the combination of φ and ψ dihedral 

angles of the backbone amino acids of a protein in a 2-dimensional map. These φ and ψ 

angles are defined by specific backbone amino acid atoms, such that φ is the torsion angle 

between the N(i−1), C(i), Cα(i) and N(i) atoms and ψ is the torsion angle between the C(i), 

Cα(i), N(i) and C(i+1) atoms as shown in Figure 8a. From the combination of both angles, 

it is possible to define the geometry of adjacent amino acids and thus provide 

conformational and structural information about the amino acids within proteins. This 2D 

dihedral angle map was originally developed by G. N. Ramachandran et al. in 1963127, 

and the regions of the map shown in Figure 8b were identified from hard-sphere 

calculations in 1968128. 

 

Figure 8. (a) Representation of the backbone dihedral angles φ and ψ of a capped 

tripeptide. (b) Original Ramachandran map with the relevant conformational regions 

according to the sphere models (hard-sphere in solid lines, reduced-sphere in dashed lines 

or relaxed-tau in dotted lines)128. 

As a result of the expansion of high-resolution three-dimensional structure 

characterisation and its storage in databases, it has been possible to identify the most 

common regions in the majority of amino acids. These regions are α for α-helix, Lα for 

left-handed helix, β for β-sheet and ppII for polyproline. Glycine and proline have 

different patterns on the Ramachandran map. The former is more extended due to the 

absence of the Cβ atom and therefore the dihedral space is less restricted. The latter is 
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much more compact because the amino acid forms a 5-membered-ring involving the Cα 

and N atoms of the backbone, which causes a restriction of the space. In addition, the 

amino acids preceding the proline in the peptide chain are also restricted. There are other 

schemes for identifying the regions of the Ramachandran map, such as the ABEGO 

system129. Furthermore, as seen in the map, much of the dihedral distribution space is 

empty due to the intramolecular steric hindrances. 

The secondary structure propensities, which are merely the result of the repetition 

of specific conformations determined by the pattern of φ and ψ dihedral angles in the 

backbone, can be distinguished in the Ramachandran maps, making them extremely 

useful for the study of the accessible regions and the energetically favoured 

conformations based on the identification of dihedral angles, both in in silico studies and 

in structure validation processes. 

Figure 9. Ramachandra map of (left) most amino acids, (middle) glycine and (right) 

proline from the work of Lovell et al.130. 

2.6.2. Radius of Gyration 

The radius of gyration is a measure of the distribution of atoms with respect to the 

centre of mass of a molecule. In structural biophysics, it is an important parameter related 

to the size or overall compactness of a protein, providing useful information about the 

possible conformation of the systems. In particular, the radius of gyration is the root-

mean-square of the distance of 𝑁 atoms of a macromolecule from its centre of mass, and 

is calculated as follows: 

𝑅𝑔 = √(
∑ ‖𝒓𝒊‖2𝑚𝑖𝑖

∑ 𝑚𝑖𝑖
) Eq. 2.23 

where 𝒓𝒊 is the distance of atom 𝑖 from the centre of mass and 𝑚𝑖 is the mass of atom 𝑖. 
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The dispersion of values and variance is a good resource for estimating the rigidity or 

flexibility of a protein, which is of great advantage for the inherent flexibility of IDPs. In 

addition, Rg can be measured experimentally using the Guinier plot from intensities 

observed in SAXS. Therefore, conformational ensembles generated during trajectories 

can be compared with experimental data, giving confidence to simulations performed 

with a given force field, water model or sampling method. Furthermore, Rg is also 

indicative of conformational changes in proteins, either due to folding/unfolding events, 

protein-ligand binding, protein-protein interactions, or others. 

2.6.3. Dictionary of Protein Secondary Structure 

The Dictionary of Protein Secondary Structure method131, or DSSP, whose 

abbreviation originates from the implementation of the "Define Secondary Structure of 

Proteins" algorithm in the Pascal program, is based on the identification of intramolecular 

hydrogen bond patterns to assign secondary structure propensities to the amino acids of 

a protein. To identify these hydrogen bonds of a protein structure with atomic resolution, 

the partial charges of the carbon and oxygen atoms of the carbonyl group (C=O) and the 

nitrogen and hydrogen atoms of the amide group (N-H) are first assigned. Next, using a 

strictly electrostatic model, the electrostatic energy of the atoms involved in the H-bond, 

∆𝐺𝑒𝑙𝑒𝑐
𝐻𝑏𝑜𝑛𝑑, is computed. 

∆𝐺𝑒𝑙𝑒𝑐
𝐻𝑏𝑜𝑛𝑑 = 𝑞1𝑞2 · (

1

𝒓𝑶𝑵
+
1

𝒓𝑪𝑯
−
1

𝒓𝑶𝑯
−
1

𝒓𝑪𝑵
) · 𝑓 Eq. 2.24 

where 𝑞1 and 𝑞2 are -0.42𝑒 and +0.20𝑒, respectively, 𝑒 is the unit electron charge, 𝒓𝑨𝑩 is 

the interatomic distance between the atoms A and B in angstroms, and 𝑓 is a dimensional 

factor of 332 kcal/mol. 

For this model, an electrostatic energy cut-off of ∆𝐺𝑒𝑙𝑒𝑐
𝐻𝑏𝑜𝑛𝑑 < -0.5 kcal/mol is set 

to define a hydrogen bond, although a good binding energy is around 3kcal/mol. Once 

the hydrogen bond patterns within a molecular structure have been defined, the secondary 

structure is assigned to each amino acid using the DSSP classification labels. 

- The symbols G, H and I encode the 310-helix, α-helix, and π-helix secondary 

structures, forming helices with a repeating sequence of hydrogen bonds every 

three, four, and five residues, respectively. 

- The symbols E and B code for two types of β-sheets. The letter E is assigned 

to β-bulges or extended conformations of anti- or parallel β-sheets. The letter 



Chapter 2. Theoretical Background 

 

51 

  

B corresponds to isolated β-bridges when a single-pair β-sheet bond 

conformation is formed. If a β-sheet is not long enough, the amino acids are 

labelled with the letter B. 

- The symbol T indicates a hydrogen bond turn. If a 310-helix, α-helix, or π-helix 

is not long enough, it is given the letter T. 

- The symbol S corresponds to the bends calculated from the angle between the 

vectors 𝒓𝑪𝜶,𝒊𝑪𝜶,𝒊+𝟐 and 𝒓𝑪𝜶,𝒊−𝟐𝑪𝜶,𝒊, with 𝐶𝛼,𝑖 as the 𝐶𝛼 atom at position 𝑖 of the 

amino acid chain, so that if an angle is greater than 70º, the amino acids are 

labelled S. This is the only class that is not based on the electrostatic model, 

Eq. 24. 

- The symbol C (or blank) is used for the amino acids that cannot be classified 

in the previous labels. 

 

2.6.4. Principal Component Analysis 

Principal Component Analysis (PCA) is a dimensionality reduction method 

widely applied in data-intensive problems in order to capture as much information as 

possible in the smallest number of independent variables, also called Principal 

Components (PCs). The use of this technique implies a loss of precision, at the discretion 

of the user, in exchange for the simplification, visualisation and analysis of the data. The 

method usually consists of the following steps: 

1. In order to ensure an equal contribution of the initial variables in the PCA, it is 

crucial to perform a standardisation of these variables to avoid bias due to the 

sensitivity of the method. 

2. Normally, a covariance matrix of N dimensions is constructed, where N is the 

number of variables in our data set. The covariance between the variables is 

introduced to reduce the correlation and to eliminate redundant information 

contained in them. The resultant matrix is symmetric. 

((
𝑐𝑜𝑣𝑎𝑟(1,1) ⋯ 𝑐𝑜𝑣𝑎𝑟(1, 𝑁)

⋮ ⋱ ⋮
𝑐𝑜𝑣𝑎𝑟(𝑁, 1) ⋯ 𝑐𝑜𝑣𝑎𝑟(𝑁,𝑁)

)) Eq. 2.25 

3. By diagonalising the symmetric matrix, we generate the eigenvectors (or PCs) and 

eigenvalues of the covariance of the data set. This involves calculating new 

orthogonal vectors, i.e., a set of variables constructed from the linear combination 
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of the original variables. The advantage of these new variables is that they contain, 

in descending order, the largest (remaining) variance of the original data. This 

variance is captured in the eigenvalues and therefore the eigenvalue of the first 

PC is the largest one, while the eigenvalue of the second PC is the second largest 

one, and so on up to the N principal components generated. 

4. Once the N principal components have been computed, the user must choose 

which PCs to use for dimensionality reduction. Typically, the first 2-3 PCs are 

selected as they can graphically represent the greatest amount of information 

through two- or three-dimensional plots. A transformation matrix is then created 

from the selected eigenvectors. 

5. Finally, the original data is projected using the transformation matrix into the new 

space created by the PCs. The points in the PCA map capture more information 

than the data in the original variables. In fact, the percentage of covariance data 

included in each PC can be calculated by 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑖 ∑ 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑖𝑖⁄ . 

This dimensionality reduction is very useful in protein simulations because there are 

3𝑁 −  6 coordinates, where 𝑁 is the number of atoms, and a large amount of data is 

generated in each trajectory frame. When PCA is applied to the covariance of the atomic 

positions of molecular systems, the method is also referred to as essential dynamics132,133. 

Despite the advantages of PCA, some effort is usually required to further reduce the 

amount of data, such as selecting the position of the 𝐶𝛼 atoms or superimposing the 

conformations to a reference structure to remove translations and rotations of the 

macromolecule. In this way, the variance within the first PCs can be more easily captured 

and, consequently, the protein dynamics and motions can be better represented in the PCA 

plot. In addition, several papers use PCA to generate a population-based energy surface 

within the selected PCs, so that the conformational preferences, i.e., energy minima, 

sampled during the simulation can be identified. PCA thus facilitates the interpretation of 

the simulations to identify the relevant biological events of the proteins. 

2.6.5. Small-Angle X-ray Scattering 

Small-angle X-ray scattering (SAXS) is an experimental technique based on the 

measurement of elastic scattering at small angles to determine density differences at the 

nanoscale. It can provide insight into the dimensionality, size and shape of materials 

(characterisation of nanopores or distances of ordered systems) and biomolecules 
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(folded/unfolded state, oligomer formation, state transitions, etc.), depending on the angle 

range. There are SAXS techniques that can be performed in aqueous conditions, thus 

offering structural data of proteins in solution, which is extremely valuable to capture the 

conformational transitions of proteins and, in particular, in the IDPs. In addition, given 

the limited range of experimental techniques available to characterise IDPs due to the 

challenges of X-ray diffraction and NMR spectroscopy, SAXS becomes a powerful 

technique for validating the simulation models and conformational ensembles against 

experimental observables. 

SAXS experiments provide the scattering intensity, 𝐼(𝒒), with respect to the 

scattering vector, 𝒒, which is the gradual variation of the scattering angle 2𝜃. The 

scattering intensity is composed of the shape factor, 𝐹(𝒒), and the structure factor, 𝑆(𝒒),  

which give details of the shape and the interaction between the particles of the sample, 

respectively, such that 𝐼(𝒒) =  𝐹(𝒒)𝑆(𝒒).  From the plot of 𝐼(𝒒) and 𝒒, the radius of 

gyration of the macromolecule can be calculated. In addition, the pairwise distance 

distribution function, 𝑝(𝒓), can also be extracted from the scattering curve, thereby 

obtaining a measure of the interatomic distances, the shape and the degree of compactness 

of a macromolecule. Furthermore, the plot of (𝒒𝑅𝑔)𝐼(𝒒) vs 𝒒𝑅𝑔, called the Kratky plot, 

allows the identification of globular conformations of a protein, such that a maximum is 

found in 𝒒𝑅𝑔 = √3 regardless of the size of the protein. Therefore, these representations 

show that this scattering technique is very useful for the global characterisation of 

macromolecules in solution. 

Since this technique is highly applicable to proteins, especially for IDPs, several 

SAXS intensity profile prediction software have been developed to interpret and validate 

the conformational ensembles generated from atomistic simulations in contrast to the 

experimental data. The main feature among the software is the description of the solvation 

model, distinguishing between implicit solvation (CRYSOL134, PLUMED135, FoXS136) 

and explicit water models (WAXSiS137, Capriqorn138, 3D-RISM139). Other improvements 

have been implemented, including the fitting of experimental and theoretical intensity 

profiles, the addition of flexibility to the macromolecule, the correct representation of the 

conformational state ensembles, etc. For more information, we recommend to the reader 

this paper which evaluates a variety of SAXS intensity prediction software140. 
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2.6.6. Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy in proteins is based on the 

measurement of the absorption of radio frequency signals generated by a magnetic field 

in the atomic nuclei of a sample to determine the chemical shifts (CS). In other words, 

the CS are the resonance frequencies of the atomic nuclei experienced when subjected to 

a magnetic field, which depend on the local chemical environment of each nucleus within 

the protein. When NMR is applied at nanometre scale for atom detection, from which a 

map of atomic bonds, distances between atomic nuclei, and even the dynamics of the 

proteins can be obtained. Solution NMR spectroscopy can determine CS during protein 

conformational transitions. It is of particular interest for IDPs which are highly mobile 

and therefore many conformational transitions are expected within the vast 

conformational space of these biomolecules. This, together with the difficulty of 

characterising IDPs by of X-ray crystallography due to their flexibility, makes NMR 

spectroscopy even more valuable in providing local structural data on IDPs. Indeed, 

several IDPs have been determined by NMR spectroscopy, but there are some drawbacks 

related to the concentrations required for characterisation that still need to be addressed. 

On the other hand, solid-state NMR spectroscopy allows the characterisation of these 

IDPs when they are in non-soluble states, such as membranes or protein aggregates, which 

can provide important insights into these complex structures. 

Therefore, CS can be extremely useful for the characterisation of protein 

structures and, as far as in silico simulations are concerned, they can also be used as 

reference values to assess the accuracy of sampling methods, force fields or water models. 

In fact, many studies have relied solely on the protein backbone CS to validate the 

conformational ensembles obtained from simulations. For this purpose, several methods 

have been developed to predict CS from atomic coordinates, which have been improved 

in recent years. Currently, the methods developed for the CS prediction are based on: (i) 

sequence homology, (ii) empirical equations derived from classical physics and 

experimental data, (iii) quantum chemistry, (iv) structure-chemical shifts relation tables, 

or (v) a combination of the above methods, called hybrid methods. In this thesis, we will 

use the SPARTA+ program141, a hybrid method built from an artificial neural network 

algorithm based on semi-classical equations (e.g., dihedral angles, interactions and 

backbone flexibility, etc.) and triplet sequence homology assignment from a large 

database of 580 proteins.   
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Chapter 3 

Exploring the Polyaspartic Acid Conformations 

with Constant pH Simulations and Prediction of 

pKa through Complexation Isotherms 

 

 The protonation state of ionisable amino acids can play a paramount role in some 

biochemical systems, especially when protein binding molecules and/or enzymatic 

mechanisms are involved. Studying the behaviour of these amino acids, from their charge 

to the conformations they can adopt, can be crucial to understand these processes. 

Although experimental techniques can provide valuable insights into these biological 

functions, these methods are beyond the scope of an atomistic description. Molecular 

Dynamics (MD) simulation methods help to unravel this puzzle through molecular 

modelling, which has proven to shed light on hidden mechanisms as a fundamental first 

step in drug development, protein design, or learn about the structure-function 

relationship of proteins1. While the MD method has demonstrated several successes in 

the field of computational biochemistry, there are still major challenges to overcome 

related to the simulation time scale and capturing biological events, the development of 

accurate general force fields, and so on. These include the dynamic change in the 

protonation state of the ionisable amino acids and the effect of the solvent pH on them. 

Fortunately, MD simulations at constant pH have become a popular practice in recent 

years to overcome this important lack of description in the modelling of molecular 

systems2–4. However, the main application so far has been to estimate the effective pKa 

of those ionisable amino acids buried within protein structures, although first successful 

papers elucidating the interaction mechanisms of some proteins have also been 

published5–8.  

The application of these constant pH methods goes beyond the prediction of the 

pKa values. There is a strong coupling between environmental pH and structure, which 

consequently modulates the function of the pH-responsive proteins. To discuss and  
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highlight this issue, this chapter makes a first contact with simulations at constant pH to 

study its ability to modulate the conformational space of biomolecules. Specifically, it is 

performed by means of the Constant pH Molecular Dynamics (CpHMD) method9–11. 

Within this approach, there are two branches that are distinguished by the criterion of 

dynamically changing the protonation state. On the one hand, the continuous CpHMD 

method12–14 describes the protonation state of each titratable group by including a λ-

protonation coordinate in the Hamiltonian. This λ coordinate in turn allows the 

description of the protonated or deprotonated states when the λ is above or below a certain 

value (e.g., when λ < 0.2, the titratable group is protonated and when λ > 0.8, it loses the 

proton). Moreover, this approach allows to describe intermediate states between the fully 

protonated or fully deprotonated states, which are treated as a proportional contribution 

of the electrostatic interactions of each of the protonation states. On the other hand, the 

CpHMD method with discrete protonation states15–17 performs an exploration of the 

conformational space according to the principles of MD, while the protonation states are 

explored with a Monte Carlo (MC) and Continuum Electrics algorithm. Every number of 

steps along the trajectory, the MD simulation stops and attempts a protonation state 

change using an MC criterion which is subject to the electrostatic interactions of the 

titratable amino acid environment.  

In this case, we have chosen the discrete CpHMD method to evaluate the capacity 

of exploring the conformational space of polyaspartic acid as a test model. The main 

motivation of this selection is because of the explicit and meaningful description of the 

protonation states during the entire trajectory, which allows a more accurate study of the 

conformational space at the expense of longer simulation times for a representative 

sampling of the protonation states. Therefore, we first performed an assessment of the 

CpHMD method implemented in AMBER by simulating the fully protonated and 

deprotonated polyaspartic acid under implicit and explicit solvation conditions and 

comparing them with conventional MD (CMD) simulations under identical conditions. 

After 2 µs length of simulation for each method, protonation state and solvent model (i.e., 

16 µs of polyaspartic acid simulation), the analysis of the conformational space shows 

serious inconsistencies in the implicit solvent simulations. On the other hand, the explicit 

solvent simulation partially overcomes the reported limitation of the CpHMD method and 

succeeds in reproducing structural properties such as the radius of gyration (Rg) and the 

secondary structure propensity fractions (fpSS) observed in CMD simulations. 
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After reporting the shortcomings during the validation of the method, we 

discarded the implicit solvation model and proceeded with pH Replica Exchange 

Molecular Dynamics (pH-REMD) simulations of polyaspartic acid using only the explicit 

solvation model18–20. The REMD method belongs to the wide range of enhanced sampling 

techniques (e.g., metadynamics, temperature annealing, accelerated MD, etc.) that 

accelerate the sampling, in this case of the protonation state space, to reduce the 

computational cost. In fact, the REMD approach can be applied to several properties of 

the system, such as temperature, Hamiltonian, pH, redox potential or even perform 

multidimensional REMD combining these properties, thus enabling simulation over 

extensive ranges of the property(s) of interest. In brief, the pH-REMD approach consists 

of running a series of parallel constant pH simulations at several pH values within a pH 

range. As the simulation progresses, the replicas are swapped with the neighbouring pH 

values by an exchange probability, which is defined in Eq. 2.22. This method has proven 

to estimate accurate 𝑝𝑘𝑎 values of several amino acids with experimentally determined 

𝑝𝑘𝑎
21. However, the potential of this method the conformational sampling of pH-

responsive biomolecules has not been thoroughly investigated. Therefore, in this chapter 

we also perform a deep conformational exploration of the polyaspartic acid peptide by 

applying pH-REMD to 16 replicas in the pH range = [1.0, 8.5]. This provides a first 

insight into the effect of solvent pH in modulating the conformation. In parallel, we 

exploit the ability of the constant pH in predicting 𝑝𝑘𝑎 to discuss the use of 

Hill/Langmuir-Freundlich (Hill/LF) and Frumkin isotherms in estimating the 𝑝𝑘𝑎 of the 

ionisable amino acids and the peptide. 

3.1. Materials and Methods 

3.1.1. Polyaspartic Acid Oligopeptide 

A linear chain of 10 aspartic acid (Asp or D) amino acids capped by the acetyl 

(ACE) and methylamine (NME) groups at the N-terminal and C-terminal positions (ACE-

Asp10-NME) was constructed using the Leap module of AMBER1822. The peptide was 

parameterised using the ff14SB force field23. For the evaluation of the CpHMD method, 

three peptides were built for comparison: (i) the fully deprotonated peptide (defined by 

the ASP residue), (ii) the fully protonated peptide (ASH residue) and (iii) the pH-

responsive protonation state peptide (defined by the AS4 residue, specifically designed 

for the CpHMD simulations). For convenience, hereinafter, each system will be referred 

to as (i) ASP10, (ii) ASH10 and (iii) AS410
pH=X, where X is the solvent pH value in the 
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CpHMD simulation. To compare the fully deprotonated and protonated peptides with the 

pH-responsive peptide, solvent pH values of 10.0 and 1.0 were chosen for the CpHMD 

simulations, respectively. Each of the three systems was prepared under implicit and 

explicit solvation. Implicit solvation was introduced with the generalized-Born model of 

Onufriev et al.24 (gb = 2). For those systems with explicit solvation, the simulation box 

was defined with dimensions of 77.5x77.5x77.5 Å3 and then filled with TIP3P25 water 

molecules and neutralised with Na+ and Cl- counterions. Finally, the reference energies 

of the protonation states were defined using the cpinutil module of AMBER18. The radii 

of the carboxyl group atoms in the side chain of the AS4 residues were modified in the 

CpHMD simulations with explicit water molecules as recommended26.  

3.1.2. Simulation Setup 

Each simulation box was minimised using the Steepest Descent (SD) method27 

with three levels of restraints: (i) in all atoms of the peptide, (ii) only the backbone atoms 

and (iii) no restraints. Atom positions were restrained with a force constant of 5 kcal·mol-

1Å-1. Up to 5,000 steps of SD were performed for each restraint stage, allowing a stepwise 

relaxation of the peptide with the surrounding solvent.  

Before the production runs, the simulation box of each peptide was heated with a 

linear temperature increase of 1K·ps-1 for 300 ps and equilibrated in the isobaric-

isothermal ensemble (NPT) for 200 ps to adjust the density. A restraint of 5 kcal·mol-1Å 

-1 was applied in the Cα atoms of the peptide. Finally, four 500 ns-length production runs 

of each peptide system were carried out in the canonical ensemble (NVT). To extend the 

conformational sampling during the simulations, each of the production runs was started 

with random velocities satisfying the Maxwell-Boltzmann distribution. The temperature 

was controlled using a Langevin thermostat28 (ntt = 3) with a collision frequency of 3 ps-

1. The long-range electrostatic interactions were calculated using the Particle Ewald 

summation method29. The SHAKE algorithm was applied to constrain the hydrogen-

involving bonds30. A cut-off of 10.0 Å was defined for the intermolecular interactions in 

the explicit solvent simulations.  

To include the effect of pH in the simulations, the AS410 peptide was subjected to 

the discrete CpHMD method using the protocols according to the solvation models: the 

implicit solvation based on the Generalized Born model (icnstph = 1) and the explicit 

solvation (icnstph = 2). In the first model, the protonation state change attempt was 
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performed on a random titratable residue every 10 fs, resulting in an effective global 

protonation state change attempt of 100 fs (i.e., on average, each amino acid is subjected 

to one protonation state change attempt every 100 fs). In the second model, the 

protonation state change attempt was performed every 200 fs on all titratable amino acids, 

followed by 200 fs of solvent relaxation. The protonation state change attempt in the 

implicit solvation was performed using the Onufriev et al. model (gb = 2) with a salt 

concentration of 0.1 M. 

 Implicit Solvation Explicit Solvation Method 

ASH10 4 x 500 ns 4 x 500 ns cMD 

ASP10 4 x 500 ns 4 x 500 ns cMD 

AS410
pH=1 4 x 500 ns 4 x 500 ns CpHMD 

AS410
pH=10 4 x 500 ns 4 x 500 ns CpHMD 

AS410
pH=1-8.5, ΔpH=0.5  16 x 200 ns pH-REMD 

Table 1. Details of the simulations performed according to the solvation model, the MD 

method, and the pH values. 

In parallel, we have also performed pH-REMD simulations with explicit water 

molecules. A total of 16 replicas of 200 ns length were carried out with a pH range from 

1 to 8.5 and a pH interval of 0.5 between each replica. The exchange attempt between 

pHs occurred every 200 fs. All other details specified above for the CMD and CpHMD 

simulations were maintained. 

3.1.3. Energetic and Conformational Analysis  

The structural analysis of the simulations was performed using the CPPTRAJ 

module of AmberTools1831. The root-mean-square deviation (RMSD) was calculated 

using the backbone atoms (C, Cα, N, O) of the amino acids. The radius of gyration (Rg) 

was calculated using the Cα atoms of the peptide. Rg histograms were calculated using a 

Gaussian kernel density estimator. Secondary structure propensity fractions (fpSS) were 

estimated using the DSSP method32. Energy contributions were extracted directly from 

the simulation. The conformations of the trajectories were clustered into 15 groups using 

the bottom-up hierarchical agglomerative algorithm. The RMSD values of the Cα atoms 

of the aspartic acids were used as a metric for the clustering. The centroid conformations 

were represented graphically using the Visual Molecular Dynamics (VMD) program33. 

All plots were generated using the Gnuplot utility34. Principal Component Analysis 
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(PCA) technique was performed on the Cα atoms to reduce the dimensionality of the 

conformational sampling. The pH properties were calculated using the CPHSTATS 

module of AmberTools18. Data processing was performed by in-house programs in 

Python 3.6. The deprotonated fractions were fitted to the Hill/LF and Frumkin isotherms 

using the equations described in Section 3.2. 

3.2. Results and Discussion 

3.2.1. Assessment of the Constant pH Molecular Dynamics Simulations 

To validate the CpHMD method, we forced the pH-sensitive peptides of the 

CpHMD method to be fully protonated or deprotonated by applying strong acidic and 

basic conditions. Therefore, we performed the CpHMD simulations at pH 1 and 10, 

AS410
pH=1 and AS410

pH=10, and compared each with the analogues of the CMD method, 

ASH10 and ASP10, respectively. To understand the implications of each method, we have 

analysed the conformational sampling by PCA and 2D-RMSD of the representative 

conformations of the clusters, their structural properties such as Rg and fpSS, and finally 

the time evolution of the potential, electrostatic and van der Waals (vdW) energies. 

First, we focused on the set of conformations obtained from the trajectory of each 

simulation using PCA. After reducing the dimensionality of the peptide coordinates to 

the Principal Components (PCs), we constructed an energy map from the populations of 

the first two PCs for each system in Figure 1. For implicit solvation, the conformational 

sampling of the CMD simulations, ASH10 and ASP10, are below PC1 = 0, although the 

latter is shifted towards negative values and the sampled space shows minor differences. 

ASH10 is predominantly in the region of PC1 = [-10, -3] and PC2 = [-10, 5], which is 

broader with respect to ASP10 which samples the region of PC1 = [ -12, -5] and PC2 = [-

5, 7]. On the other hand, the CpHMD simulations, AS410
pH=1 and AS410

pH=10, are both in 

the range of PC1 = [0, 10] and PC2 = [-10, 5]. In fact, both simulations share a minimum 

at approximately [8, 2]. In addition, the peptide reaches low energy conformations 

distributed in the sampled space when the system is under acidic conditions. However, 

the CpHMD simulations show smaller preferred regions compared to the CMD 

simulations, indicating that the pH-responsive simulations in the implicit solvent 

apparently restricted the accessible conformational space.  
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Figure 1. Energy maps based on Principal Component Analysis (PCA) of the fully 

protonated (ASH10 and AS410
pH=1) and fully deprotonated (ASP10 and AS410

pH=10) 

polyaspartic acid peptides for explicit (top) and implicit (bottom) solvation models. 

The explicit solvent simulations show a similar behaviour respect to the implicit 

solvent analysis. On the one hand, AS410
pH=1 and AS410

pH=10 sample a similar 

conformational region in the energy map, approximately at PC1 = [-2, 15] and PC2 = [-

8, 12]. When the peptide is under acidic conditions, AS410
pH=1, we observe a 

homogeneous sampling within the region. However, the peptide at basic conditions, 

AS410
pH=10, shows a reduced set of low energy conformations with two minima located 

at (4, 6) and (10, -4). On the other hand, the CMD simulations, ASH10 and ASP10, present 

regions that are close within the energy map and differ from the regions sampled by the 

CpHMD method. ASH10 samples low energy conformations scattered within a wider 

region at PC1 = [-10, 6], PC2 = [-15, 5]. In contrast, ASP10 exhibits a more compact 

region at PC1 = [-12, -4], PC2 = [-11, 6] with a low energy conformation set at PC2 ≥ -

5. Interestingly, in the protonated state, the preferred conformations lie just below PC1 ≈ 

0, meaning that the conformations between the two protonation states should be expected 

to be distinct for a significant fraction of the conformational population. 

The results of the PCA analysis would suggest that the conformational sampling 

is, surprisingly, method-dependent rather than protonation state dependent. Polyaspartic 

acid simulations in the CpHMD method show a clear tendency to sample similar regions, 

but with a restraining effect on the accessibility of some conformational regions when is 

under basic conditions. This restraining effect is also observed in the CMD simulations  
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Figure 2. 2D-RMSD of the fifth most populated clusters of the fully protonated (ASH10 

and AS410
pH=1) and fully deprotonated (ASP10 and AS410

pH=10) polyaspartic acid peptides. 

The representative conformation of the most populated cluster is plotted for each 

simulation system. 

in which each peptide samples its own conformational space. However, we must stress 

that the covariance of the coordinate space collected in these PCs may not be sufficient 

to accurately interpret the conformational sampling of the trajectories. In fact, the amount 

of covariance data collected in the first two PCs is around ~50%. Therefore, we need to 

address the comparison between simulation methods with additional analyses on the 

conformational sampling, such as clustering or the estimation of structural properties.  

Thus, the conformations of the simulations of each system were grouped into 

fifteen clusters by applying the hierarchical agglomerative clustering method. The 

centroid conformation (i.e., the conformation with the lowest RMSD with respect to the 

other conformations within a cluster) of the five most populated clusters was extracted 

and the RMSD between them was calculated, yielding the 2D-RMSD maps in Figure 2. 

This map is a useful indicator of the structural similarity between the clusters, whose 

populations are given in Table S1. In addition, the centroid conformation of the most 

populated cluster was also plotted. 

The 2D-RMSD map of the implicit solvation simulations shows a greater 

similarity between the centroids with values in the range of 3-2 Å (red or purple boxes) 

and even some values close to ~0 Å (dark purple or black boxes). On the other hand, the 
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2D-RMSD map of the explicit solvent simulations shows a greater structural 

heterogeneity between the centroids of the clusters. Most of the values are in the range of 

3-6 Å (orange boxes), with some exceptions such as the values at ~2 Å (purple boxes), 

which are infrequently. The simulations with explicit water molecules can capture 

structurally more distant conformations in conformational space, while the simulations 

with implicit solvent retain similar conformations in time. Indeed, the centroids of cluster 

0 in ASH10 and AS410
pH=10 at explicit solvation present an α-helix-forming conformation, 

while AS410
pH=1 and ASP10 show a disordered structure. Interestingly, the peptides with 

opposite protonation state have similar structures in the main cluster centroids, although 

the populations are different (Table S1). The population distributions of the clusters in 

the protonated state agree with small deviations. In addition, the ASP10 centroids show 

large RMSD values (~6 Å) with respect to the other simulation conditions, indicating that 

structurally more distinct conformations are expected. On the other hand, when using the 

implicit solvation model, the peptide reaches helical conformations in the ASH10, 

AS410
pH=1 and AS410

pH=10. In contrast, ASP10 shows a more spatially extended structure. 

It should be emphasised that the 2D-RMSD map indicates that the centroid conformations 

of AS410
pH=1 and AS410

pH=10 in the main cluster are very similar in structure. These 

clusters represent more than 80% of the conformational sampling of these peptides, which 

means that most of the trajectories of the CpHMD simulations have a high structural 

similarity. On the contrary, the population of clusters does not agree between the 

analogous systems, and, in addition, they are close between the simulations performed 

with the same method. 

Except for AS410
pH=1 and AS410

pH=10 in the implicit solvation, the 2D-RMSD map 

does not allow to distinguish whether the peptides are conformationally similar to each 

other when they are in the same protonation state. Low RMSD values are observed in the 

2D-RMSD map for systems with different protonation (e.g., in explicit solvation, 

AS410
pH=1 and AS410

pH=10 show two centroids with ~2 Å values) and with similar 

protonation (e.g., AS410
pH=1 and ASH10 also show two centroids with ~2 Å values). 

Therefore, we decided to further explore the implications of using each simulation method 

in the polyaspartic acid decapeptide and analysed some structural properties in Figure 3, 

such as Rg and fpSS. 
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Figure 3. (a) Radius of gyration, (b) fraction of α-helix conformation and (c) fraction of 

absence of secondary structure of the fully protonated (ASH10 and AS410
pH=1) and fully 

deprotonated (ASP10 and AS410
pH=10) polyaspartic acid peptides in implicit (dashed lines) 

and explicit (solid lines) solvation model. 

 Starting from Rg, the implicit solvent simulations show a clear behaviour: ASH10 

and ASP10 have different Rg distributions with respect to the other peptides, including 

those in the explicit solvent. These distributions have broad Rg values ranging from 4.5 

to 9.5 Å. In contrast, the CpHMD simulations, AS410
pH=1 and AS410

pH=10, show narrow 

and large peaks around ~5 Å. In the explicit solvent simulations, the protonated peptides, 

ASH10 and AS410
pH=1, exhibit similar Rg distributions with a single peak at ~4.7 Å. On 

the other hand, the deprotonated peptides, ASP10 and AS410
pH=10, show separated 

distributions with their maximum peaks at ~6 and ~4.7 Å, respectively, suggesting that 

they do not have similar structural compactness. In fact, an increase in Rg of deprotonated 

peptides is expected because the negative charges of side chain carboxyl groups repel the 

neighbouring like-charged groups, thus elongating the peptide chain in order to reduce 

the energy penalty of having negatively charged groups in close proximity35. 

Surprisingly, AS410
pH=10 does not show this behaviour and instead the two peaks are 

observed at Rg values close to the protonated state. 

 Next, we focused on the α-helix formation and the absence of secondary structure 

(non-SS), which are the main fractions observed in the centroids in Figure 2. In the α-

helix plot, Figure 3b, the α-helix fractions per residue already show a method-dependent 

behaviour decoupled from the protonation state in the implicit simulation methods. 

AS410
pH=1 and AS410

pH=10 have a high α-helix content (~70%), whereas ASH10 and ASP10, 

barely reach a 20% of the content. On the other hand, the protonated peptides in explicit 

solvent, ASH10 and AS410
pH=1, correspond correctly in the α-helix fraction with values 
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below the ~20%. For the deprotonated ones, ASP10 and AS410
pH=10, the α-helix fractions 

exhibit opposite behaviour. The former barely contains any α-helix fraction, while the 

latter shows larger fractions (>40%), even showing an α-helix content close to the implicit 

solvation observation (~70%) for the second half of the peptide chain. As an indicator of 

the degree of disorder in the conformations, we have calculated the fraction of 

conformations whose structure is not classified by the DSSP method, hence termed non-

SS in Figure 3c. The non-SS propensity shows a similar behaviour with respect to the 

other structural properties (Rg and α-helix fraction). The CpHMD simulations using the 

implicit solvation model have a low content, implying the expectation of highly structured 

conformations for these peptides. In the CMD simulations, ASH10 and ASP10 show non-

SS fractions of around ~33% and ~55% respectively. ASP10 has the highest content of 

disordered conformations of all the simulations presented in this section. In contrast, the 

explicit solvent simulations agree between the protonated peptides, ASH10 and AS410
pH=1, 

which present a conformational sampling with a low percentage of disorder in the 

structure (~25%). The deprotonated peptides, ASP10 and AS410
pH=10, disagree in the non-

SS fractions with values around ~40% and below ~20% respectively. 

The other SS propensities are shown in Appendix A, Figure A1. For 310-helix and 

turn formation, the method-dependent behaviour is not observed for the implicit solvation 

model. However, the 310-helix fraction is not consistent between the analogous systems, 

while the turn structure has a similar content for all systems. The bend formation again 

underlines the inconsistency observed in the previous SS propensities: a clear deviation 

is found depending on the method. On the other hand, the explicit solvent simulations 

show that the protonated state cannot reproduce the 310-helix content, and, for the first 

time, the deprotonated peptides have similar fractions. ASH10 stands out with a ~20% 

formation in residues 3-6 of the peptide chain, while AS410
pH=1 barely contains a ≥10% 

fraction. In the turn structure, significant fractions below ~40% are observed in the 

protonated state with a good agreement between the analogue simulations. The 

deprotonated peptides show a lower turn content for both ASP10 and AS410
pH=10, which 

exhibit a different distribution of the content within the peptide chain. This turn-content-

dependent behaviour between the protonated and deprotonated states is explained by 

Milorey B. et al. paper36, in which work was reported that the protonated aspartic acid in 

the GDG trimer has a high propensity to form turn-like conformations, whereas the 

deprotonated state loses the ability to form turn structures due to the side chain charges37. 
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We assume this explanation can be extended in the case of the decapeptide. Finally, the 

bend formation is consistent with the observations highlighted in this section: the ASP10 

content shows a significant deviation with respect to AS410
pH=10, with a difference of up 

to ~40% for some residues, while the peptide in the protonated state exhibits similar 

contents of around ~20%.  

Several observations can be made from the analysis of the conformational space 

and structural properties. First, there is a deviation of the conformational sampling 

according to the simulation method when the implicit solvation model is used, thus 

demonstrating a limitation of the fully protonated or fully deprotonated peptides to 

reproduce the properties of the analogous simulations in CMD. The results reported in 

this chapter justify this statement, especially in the 2D-RMSD map, in which we can 

observe a great structural similarity (RMSD ≈ 0 Å) between the main centroids of the 

CpHMD simulations with a population ≥ 80%.  Inevitably, these highly populated clusters 

lead to structural properties with similar tendencies and therefore do not agree with the 

analogous simulations of the CMD method. Fortunately, the explicit solvation model 

escapes from this deficiency, but leads to a second observation.  On the one hand, the 

simulations of the peptide in the protonated state agree on the structural properties (Rg 

and SS fractions), whereas the energy map does not. As we have already mentioned, it is 

likely that the PCs do not sufficiently capture the covariance of the coordinates in the first 

two PCs to accurately represent the conformational space, so focusing on the reproduction 

of the conformational properties allows us to guarantee a certain reliability of the CpHMD 

method. On the other hand, it is worth noting that the simulations in the deprotonated 

state again show inconsistencies with the results reported so far, especially in the 

structural properties. In the latter case, we have focused on the role of the solvent, 

specifically the sodium counterions (Na+). For this purpose, we have analysed the radial 

distribution function (RDF) of the oxygen atoms of the carboxyl group of the side chain 

in Figure A2. Indeed, there is a significant deviation in the distribution of the counterions 

around the oxygens of each system. In the peptide simulation of the CMD method, an 

intense peak at ~2.5 Å and a second one of lower intensity at ~4.5 Å are observed. 

Conversely, the CpHMD simulation shows only a very low intensity peak at 2.5 Å, 

indicating that the Na+ counterions do not interact with the carboxyl groups at short 

distances. Such evidence could explain the discrepancies between the CMD and CpHMD 

simulations in the deprotonated state. 
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Figure 4. Potential, electrostatic and van der Waals energy contributions of the fully 

protonated (ASH10 and AS410
pH=1) and fully deprotonated (ASP10 and AS410

pH=10) 

polyaspartic acid peptides. 

Given the difficulty in understanding the reported weaknesses of the CpHMD 

method, we have investigated the energy contributions of the peptide simulations. The 

potential, electrostatic and vdW energy contributions for the explicit (top) and implicit 

(bottom) solvent simulations are plotted in Figure 4. In the implicit solvent, the potential 

energy has a gap of ~100 kcal/mol between the deprotonated systems, ASP10 and 

AS410
pH=10. In the protonated systems, ASH10 and AS410

pH=1, this gap is reduced to ~40 

kcal/mol, but is still remarkable. This potential energy can be divided into internal (bond, 

angular, dihedral, etc), electrostatic and vdW contributions. Focusing on the electrostatic 

interactions, it is noted that the electrostatic energies of the peptides with the same 

protonation state also display energy gaps. ASH10 and AS410
pH=1 have an energy gap 

around ~100 kcal/mol, while ASP10 and AS410
pH=10 present a small but fluctuating energy 

gap between the two simulations. Curiously, this energy gap is more pronounced in the 

protonated state. On the other hand, the vdW contributions show minimal differences 

with respect to the electrostatic term, so it does not seem to cause this energy divergence. 

In the explicit solvent simulations, the potential energy also shows these energy gaps 

between analogous systems. On this occasion, the protonated peptides, ASH10 and 
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AS410
pH=1, exhibit a difference of ~1250 kcal/mol, while the deprotonated ones, ASP10 

and AS410
pH=10, reduce it by half, ~500 kcal/mol. The increase in the energy gaps could 

be due to the interaction of the polyaspartic acid decapeptide with the counterions and 

water molecules. In fact, the electrostatic energy contribution shows a similar behaviour 

between ASH10 and AS410
pH=1, but it does not entirely explain the energy gaps observed 

in the total potential energy. The vdW contributions are consistent between the two 

protonation states. 

The energetic contributions show that the structural divergence according to the 

simulation method is mainly due to the electrostatic energy contribution. On the one hand, 

the simulations with implicit solvation present smaller energy gaps, although they show 

larger structural differences in the conformational sampling of the analogous systems in 

the protonated state. Interestingly, the peptides in the protonated state minimise the 

energy gap in the potential contribution, although the electrostatics shows similar energy 

gaps for both protonation states. Therefore, other energetic contributions such as internal 

energy come into play in the energetic divergence, which needs to be studied in more 

detail in the future. On the other hand, simulations with explicit solvent increase the 

energy gaps between the analogous peptides, especially in the protonated state. It should 

be stressed that this increase is probably due to the interaction of the peptide with the 

surrounding solvent molecules. Similar to the implicit solvation, the divergence in the 

potential energy is not fully explained by the electrostatic contribution in the explicit 

solvent simulations. Despite the failure to reproduce the potential energy, the protonated 

peptides, ASH10 and AS410
pH=1, show a surprisingly good reproduction of the structural 

properties (Rg and fpSS), consistent with the experimental evidence mentioned above. On 

the other hand, and contrary to AS410
pH=10, we believe that ASP10 follows the properties 

of an ionised polyanion, since larger Rg distributions and low turn-content for the 

polyaspartic acid in CMD simulations as described in the literature are observed. A deeper 

examination focusing on the structural properties and energy contributions in the CpHMD 

method is therefore necessary and will be discussed in Chapters 3 and 4 of this thesis. 

  



Chapter 3. Polyaspartic Acid with CpHMD Simulations and pKa Prediction via Complexation Isotherms 

 

77 

 

3.2.2. pH-Responsive Conformations at pH Conditions around the Intrinsic pKa 

3.2.2.1. Progressive Shift of Conformational Properties with Solvent pH 

Next, we will study the effect of solvent pH at values around the intrinsic 𝑝𝑘𝑎 of 

the aspartic acid amino acids. To this end, we have used the pH-REMD method, which 

involves running a series of parallel replicas within a range of pH values separated by a 

ΔpH. These parallel trajectories are swapped during the simulation by applying an 

exchange probability criterion. Therefore, 16 replicas of the polyaspartic acid decapeptide 

were simulated in explicit solvation conditions within a pH range = [1, 8.5] and ΔpH = 

0.5 during 200 ns per replica. We then performed a conformational analysis and estimated 

the apparent 𝑝𝑘𝐷 and intrinsic 𝑝𝑘𝑎 by fitting the deprotonation fractions to the Langmuir-

Freundlich and the Frumkin isotherms. 

We followed the PCA protocol to construct the energy maps for each solvent pH 

condition, as shown in Figure 5. All of them are approximately in the range of PC1 = [-

10, 10] and PC2 = [-10, 10], thus suggesting that the conformational space of the peptide 

is not broad or, more certainly, that the conformational sampling of each replica is in the 

same region. The energy map of AS410
pH=1 and AS410

pH=2 sampled homogeneously 

through this region (broad dark region, ΔG ≈ 0 kcal/mol). Interestingly, a progressive 

convergence towards specific minima within the conformational space is observed as we 

increase the solvent pH. It finally culminates in two minima at mildly basic conditions, 

pH 8, located approximately at (0, -5) and (-1, 0). Therefore, increasing the solvent pH 

promotes these conformational regions and makes them more populated in the PCA maps. 

Indeed, the 2D-RMSD map in Figure A3 also shows this restraining effect on the 

representative conformations of the three most populated clusters per replica. At pH > 3, 

the RMSD values decrease significantly, indicating that the representative conformations 

have structural similarity with RMSD < 1 Å, whereas these low-RMSD values are not 

prevalent at pH ≤ 3. However, it cannot be ignored that the RMSD values increase again 

at pH 8, indicating that there are structural differences between the conformations at mild 

basic pH compared to the simulations at mild acidic pH. 

 To interpret the promotion of specific conformations with increasing pH, we have 

focused on the structural properties such as radius of gyration, α-helix fraction and 

number of hydrogen bonds shown in Figure 6. The Rg distributions in Figure 6a show the 

progressive increase of the peak ~5.2 Å at pH = 1 with a maximum at pH = 6, reaching a  
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Figure 5. Energy maps based on Principal Component Analysis (PCA) of pH-REMD 

trajectories from pH 1.0 to 8.5 with ΔpH = 0.5. The representative conformation of the 

most populated cluster of the trajectory at each pH condition is also shown in the figure.  

population of 20% in this simulation. It then decreases and shifts to a second peak with 

Rg ~4.8 Å at mildly basic conditions, pH 8. In fact, the number of conformations with Rg 

> 6 Å gradually increases when 3 > pH > 6. Therefore, the peptide can reach extended 

structures under strongly acidic conditions and is compacted when the pH becomes 

neutral or mildly basic. This behaviour could be explained by the shift in the H-bond 

distributions observed in Figure 6b. Interestingly, the peptide forms more H-bonds in 

mildly acidic conditions, as can be seen in the distributions with peak ~5 at pH = 5-6. The 

distribution of Rg and H-bonds suggests that at these pH conditions there is an interplay 

of polar interactions that would compact the peptide structure. On the other hand, there is 
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an interruption in H-bond formation at pH 7-8, reaching a distribution with a peak at ~2 

and a significant reduction in the number of H-bonds.  

Figure 6. (a) Radius of gyration, (b) number of H-bonds and (c) α-helix fraction of the 

polyaspartic acid peptide in the explicit solvation pH-REMD simulation. 

All this discussion is supported by the evolution of the α-helix fraction in Figure 

6b. AS410
pH=1 has a low α-helix content, which gradually increases as the pH is changed 

to mildly basic conditions. Indeed, the formation of the α-helix causes the peptide to gain 

structure and thus become more compact reaching populations of ~40%, in particular 

from residues 6 to 11. AS410
pH=8 has the highest α-helix content despite having a low 

amount of H-bonds. This radical change in the conformational properties between 

simulations at acidic pH conditions, from 3.0 to 6.0, and neutral or slightly basic 

simulations, pH 7 or pH 8, suggests that the predominant conformations formed at these 

solvent pH conditions are significantly different. In fact, the population of the main 

clusters collected in Table S2 in conjunction with the 2D-RMSD plot (Figure A3) makes 

these conformational changes evident. Interestingly, the main conformation at mild basic 

pH, with ~55% population, is structurally similar to the main cluster at acidic conditions 

(pH = 2), which could explain the similar Rg distributions despite the different α-helix 

fractions. 

3.2.2.2. Determination of pKa by Complexation Isotherms 

One of the most remarkable points demonstrated by the CpHMD method is the 

ability to predict the intrinsic acid dissociation constant 𝑝𝑘𝑎 of the titratable amino acids. 

Several papers reported so far have proven that experimental 𝑝𝑘𝑎 can be obtained with 

CpHMD within an acceptable error6,20,21,38. In these works, the so-called effective or 

apparent 𝑝𝑘𝑎 is usually obtained by collecting the deprotonation fraction, 𝑓𝑑, at several 

pH values and fitting it to the titration curve defined by the Hill equation39, which is 
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widely used in enzymatic catalysis. Fortunately, 𝑓𝑑 can be easily obtained over a wide 

range of pHs using the pH-REMD method. However, there has been little discussion of 

the use of the Hill equation to predict 𝑝𝑘𝑎 in simulations at constant pH. Here, we would 

like to explore this topic in more depth and make a number of clarifications about the Hill 

equation, which is basically the well-known Langmuir-Freundlich (LF) isotherm in 

heterogeneous catalysis for negative cooperativity (𝑛 < 1), and the Frumkin isotherm in 

the context of 𝑝𝑘𝑎 predictions. 

First, the proton must be identified as a ligand of the polyaspartic acid peptide, 

which is a macromolecule or receptor with 𝑖 binding sites provided by each aspartic acid 

amino acids. When the proton (𝐻+) and the binding site i in the deprotonated state (−𝑆𝑖
−) 

complex, the functional group in the protonated state (−𝑆𝑖𝐻) is formed. Therefore, this 

reaction is defined with an equilibrium binding constant, 𝐾𝑐,𝑖, which depends on the 

concentration (or activity) of each component of the reaction as described in Eq. 1. 

−𝑆𝑖
− +𝐻+ ⇄ −𝑆𝑖𝐻                      𝐾𝑐,𝑖 =

[−𝑆𝑖𝐻]

[−𝑆𝑖
−] · 𝑎𝐻+

 Eq. 3.1 

In terms of a binding process study, the deprotonation fraction of each aspartic 

acid, 𝑓𝑑,𝑖, becomes the degree of dissociation, 𝛼𝑖, or conversely the coverage, 𝜃𝑖, defined 

as 𝜃𝑖  =  1 − 𝛼𝑖 or 𝜃𝑖 = [𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑖 − 𝑠𝑖𝑡𝑒𝑠] [𝑡𝑜𝑡𝑎𝑙 𝑖 − 𝑠𝑖𝑡𝑒𝑠]⁄ . From 𝜃𝑖 and 𝐾𝑐,𝑖, we 

can estimate the apparent 𝑝𝑘𝑎, 𝑝𝑘𝑎𝑝𝑝, generalising the Handerson-Hasselbalch (HH) 

equation, Eq. 2. In an ideal case, where the amino acids do not interact with the 

neighbouring residues, the Henderson-Hasselbalch (HH) behaviour is fulfilled and the 

𝑝𝑘𝑎𝑝𝑝,𝑖 becomes a pH-independent constant. On the contrary, for a non-ideal case, the 

𝑝𝑘𝑎𝑝𝑝,𝑖 depends on the solvent pH and then becomes a distribution of 𝑝𝑘𝑎
40–42.  

𝑝𝑘𝑎𝑝𝑝,𝑖 ≡ 𝑙𝑜𝑔𝐾𝑐,𝑖 = 𝑝𝐻 + 

{
 

 log (
𝜃𝑖

1 − 𝜃𝑖
)

𝑙𝑜𝑔 (
1 − 𝛼𝑖
𝛼𝑖

)

 Eq. 3.2 

 

Under non-interaction ideal conditions, it is possible to estimate the intrinsic acid 

dissociation constant of the amino acid 𝑖 within a protein, the intrinsic 𝑝𝑘𝑎,𝑖. The intrinsic 

𝑝𝑘𝑎,𝑖 is defined as the 𝑝𝑘 associated with the free energy when the ionisation state 

changes from neutral to charged and no other (coulombic) electrostatic interactions of the 
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chemical environment are involved in the process. In addition, the intrinsic 𝑝𝑘𝑎,𝑖 

estimation must be averaged over the entire conformational ensemble of the 

macromolecule. Then, the 𝑝𝑘𝑎,𝑖 shift of an amino acid within a protein with respect to the 

𝑝𝑘𝑎,𝑖 of a free amino acid is attributed to the desolvation penalty (or Born effect) and the 

background interaction energy, which is due to the interactions with the permanent 

dipoles of the protein. These contributions are critical when calculating the intrinsic 𝑝𝑘𝑎,𝑖 

of an amino acid by free energy calculations43,44.  

The constant pH simulations enable the prediction of 𝑝𝑘𝑎𝑝𝑝,𝑖 without free energy 

calculations, allowing us to construct the 𝑝𝑘𝑎𝑝𝑝,𝑖 distribution by fitting 𝑓𝑑,𝑖 or 𝛼𝑖 to a 

complexation isotherm. Each isotherm has its own particularities and therefore some 

notes are necessary. Under ideal conditions, the Langmuir isotherm, derived from the 

adsorption model of the same name, equivalent to the Monod equation, commonly used 

for the growth of microorganisms and non-cooperativity binding of enzymes, can model 

the binding process of a ligand-receptor complex. Therefore, the Langmuir and Monod 

are the same particular solution of the Hill/Langmuir-Freundlich isotherm, called the 

Hill/LF isotherm from now, for the ideal case. The Langmuir isotherm, expressed in Eq. 

3, gives the ideal behaviour of each of the amino acids in our peptide, which should be 

identical between the several binding sites, regardless of their position in the peptide 

chain. The binding constant 𝐾𝑐,𝑖 then satisfies the condition that it does not depend on pH 

or proton activity, so that 𝐾𝑐,𝑖 = 𝑘𝑖 ≠ 𝑓(𝑝𝐻) and hence 𝑝𝑘𝑎,𝑖 = 𝑙𝑜𝑔𝑘𝑖. 

𝜃𝑖 =
𝑘𝑖𝑎𝐻+

1 + 𝑘𝑖𝑎𝐻+
 Eq. 3.3 

The Hill/LF isotherm allows the interpretation of the binding process of the 

ligand-receptor complex in a non-ideal scenario. In biochemistry, the Hill equation 

identifies positive (n > 1) or negative (n < 1) cooperativity in enzymatic reactions 

according to the Hill coefficient, n. However, this negative cooperativity can also be 

explained by the heterogeneity of the binding sites according to the LF isotherm, which 

is probably the best interpretation in this study. The Hill/LF isotherm is expressed in Eq. 

4a in terms of the average binding constant 𝑘𝑚,𝑖, but it can also be defined in terms of the 

average acid dissociation constant, 𝑘𝑎𝑚,𝑖, with 𝑘𝑎𝑚,𝑖 = (𝑘𝐷,𝑖)
𝑛𝑖

. 𝑘𝐷,𝑖 is the dissociation 

constant at the half occupation which is satisfied when 𝛼𝑖 = 𝜃𝑖 = 0.5 and 𝑛𝑖 is an empiric 

parameter to fit the isotherm to the 𝑓𝑑,𝑖 values. From the coverage in Eq. 4a, we can obtain 
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the Hill/LF equation in Eq. 4b to estimate the 𝑝𝑘𝑎𝑝𝑝,𝑖 distribution and 𝑛𝑖 for each amino 

acid. Next, we rearranged the Hill equation in Eq. 4c so that it depends on 𝑓𝑑,𝑖 or 𝛼𝑖 as 

considered in the constant pH-framework to estimate the 𝑝𝑘𝐷,𝑖, and 𝑝𝑘𝑎𝑝𝑝 of the amino 

acids by fitting the simulated 𝑓𝑑,𝑖’s. However, it must be emphasised that this 𝑝𝑘𝐷,𝑖 only 

corresponds to the 𝑝𝑘𝑎𝑝𝑝 at pH conditions where 𝛼𝑖 = 𝜃𝑖 = 0.5 is satisfied. At other pH 

conditions it is necessary to calculate the 𝑝𝑘𝑎𝑝𝑝,𝑖 and for this reason the 𝑝𝑘𝑎𝑝𝑝 distribution 

plays a key role in determining the real protonation state fractions when the polyaspartic 

acid is far from the 𝑝𝑘𝐷,𝑖 conditions. 

𝜃𝑖 =
(𝑘𝑚,𝑖𝑎𝐻+)

𝑛𝑖

1 + (𝑘𝑚,𝑖𝑎𝐻+)
𝑛𝑖
=

𝑎
𝐻+
𝑛𝑖

𝑘𝑎𝑚,𝑖 + 𝑎𝐻+
𝑛𝑖
=

𝑎
𝐻+
𝑛𝑖

(𝑘𝐷,𝑖)
𝑛𝑖
+ 𝑎

𝐻+
𝑛𝑖
= 

1

(
𝑘𝐷,𝑖
𝑎
𝐻+
𝑛𝑖 )

𝑛𝑖

+ 1

 
Eq. 3.4a 

𝑝𝑘𝑎𝑝𝑝,𝑖 = 𝑝𝐻 +
1

𝑛𝑖
log
1 − 𝛼𝑖
𝛼𝑖

         
𝛼𝑖=𝜃𝑖=0.5
→                𝑝𝑘𝑎𝑝𝑝,𝑖 = 𝑝𝑘𝐷,𝑖 = 𝑝𝐻 Eq. 3.4b 

𝑓𝑑,𝑖 = 𝛼𝑖 =
1

1 + 10𝑛𝑖(𝑝𝑘𝐷,𝑖−𝑝𝐻)
 Eq. 3.4c 

 One of the most convenient features of fitting these isotherms is their ability to 

estimate the intrinsic 𝑝𝑘𝑎,𝑖 of the amino acids. By definition, we must calculate the 𝑝𝑘𝑎,𝑖 

when the aspartic acids are in the neutral state, which in this case is the limit when 𝛼 → 0 

(fully protonated peptide). Unfortunately, the Hill/LF isotherm is not able to reproduce 

the binding properties at low dissociation levels40. In fact, the conversion of 

𝑘𝑎𝑚,𝑖 = (𝑘𝐷,𝑖)
𝑛𝑖

 leads to lower values due to the deviation of the isotherm at these 

conditions. The source of this deviation is that the Hill/LF isotherm does not distinguish 

between interactions and heterogeneity since 𝑘𝑎𝑚,𝑖 represents the average acid 

dissociation constant, assuming a heterogeneity-dispersion of the 𝑘𝑎,𝑖 values provided by 

𝑛𝑖. Thus, everything is captured within this empirical constant, which ultimately 

translates into a poor ability to model the binding processes at low coverage conditions, 

close to the neutral net charge, i.e., when the intrinsic 𝑝𝑘𝑎,𝑖 can be determined. 

In view of the limitations of the empirical Hill/LF isotherm, we propose the 

Frumkin isotherm as an alternative isotherm capable of predicting the intrinsic 𝑝𝑘𝑎,𝑖 of 

amino acids, defined in Eq. 5. In this isotherm, 𝑘𝑖 is the binding dissociation constant and 

𝛿𝑖 is a physically meaningful parameter derived solely from a mean-field model of 
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interactions between the binding sites. The complexation isotherm can be used to the 

binding constant directly, from which we can estimate the p𝑘𝑎𝑝𝑝,𝑖 when 𝛼𝑖 → 0 and 

decoupled from the effects of the interactions.  

𝜃𝑖 =
𝑘𝑖𝑐𝐻+𝑒

2𝛽𝛿𝑖(1−𝜃𝑖)

1 + 𝑘𝑖𝑐𝐻+𝑒𝑖
2𝛽𝛿𝑖(1−𝜃𝑖)

 Eq. 3.5 

Both complexation isotherms enable the prediction of the 𝑙𝑜𝑔𝑘𝑐,𝑖 or 𝑝𝑘𝑎𝑝𝑝,𝑖 

distribution from the 𝑓𝑑,𝑖 values. To quantitatively compare the isotherms, we can 

compute the average 𝑝𝑘𝑖, the 𝑝𝑘𝑚,𝑖
𝑑𝑖𝑠𝑡, and the standard deviation, 𝜎𝑖

𝑑𝑖𝑠𝑡 , from the 

distributions and thus assess whether the predicted distributions are comparable. The 

definitions of 𝑝𝑘𝑚,𝑖
𝑑𝑖𝑠𝑡 and the 𝜎𝑖

𝑑𝑖𝑠𝑡 are given in Eq. 6 and Eq. 7 for the Hill/LF and 

Frumkin isotherms40, respectively. 

𝑝𝑘𝑚,𝑖
𝑑𝑖𝑠𝑡 = 𝑝𝑘𝐷,𝑖;  𝜎𝑖

𝑑𝑖𝑠𝑡 =
𝜋

(𝑙𝑛10)
√
1 − 𝑛𝑖

2

3𝑛𝑖
2

 Eq. 3.6 

𝑝𝑘𝑚,𝑖
𝑑𝑖𝑠𝑡 = 𝑝𝑘𝑎,𝑖 +

𝛽𝛿𝑖
(𝑙𝑛10)

 ; 𝜎𝑖
𝑑𝑖𝑠𝑡 =

1

(𝑙𝑛10)
√
(𝛽𝛿𝑖)

2

3
+ 2𝛽𝛿𝑖 

Eq. 3.7 

The constant pH approach in AMBER sets a reference 𝑝𝑘𝑎,𝑖 of 4.0 for the aspartic 

acid by default. After the previous explanation, we proceeded to build the titration curves 

using the 𝑓𝑑 values from the pH-REMD simulation and the Hill/LF and Frumkin 

isotherms in Figure 7. All constants and parameters extracted from the fitting of 𝑓𝑑 to the 

isotherms are summarised in Table 2. For clarity, depending on whether the Hill/LF or 

Frumkin isotherms are used, 𝑝𝑘𝐷,𝑖 or the intrinsic 𝑝𝑘𝑎,𝑖 are obtained directly from the 

fitting, respectively. The reported Hill/LF isotherms show that all the amino acids of the 

peptide tend to shift their effective 𝑝𝑘𝐷,𝑖 to higher pH values, even reaching an effective 

𝑝𝑘𝐷,𝑖 value of the reference 𝑝𝑘𝐷 + 1.4 at residue 11. More importantly, the Hill 

coefficients are far from the ideal case (𝑛 = 1), confirming that the titration of these amino 

acids follows a non-ideal behaviour. On the other hand, the intrinsic 𝑝𝑘𝑎,𝑖 of the amino  
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Figure 7. Titration curves estimated from the deprotonated state fractions obtained from 

the pH-REMD simulation (blue circles). The red lines are the Langmuir isotherm for an 

ideal case estimated using the reference 𝑝𝑘𝑎,𝑖 defined by AMBER. Orange and green lines 

are the Hill/LF and Frumkin isotherms, respectively. 

acids obtained from the Frumkin isotherms are significantly lower than the reference 

value.  We attribute this to the fact that the intrinsic 𝑝𝑘𝑎,𝑖 is obtained in the limit of non-

interaction between amino acids, which cannot be fully achieved in the pH-REMD 

simulations due to the electrostatic interactions of the partial charges present in the all-

atom model. Therefore, from both isotherms, we can confirm that (i) the amino acids are 

easily protonated (𝑝𝑘𝐷,𝑖 > reference 𝑝𝑘𝑎,𝑖) to reduce the electrostatic repulsion exerted by 

the negative charges and (ii) the free energy to reach the neutral or fully protonated state 

decreases with respect to the free amino acid (intrinsic 𝑝𝑘𝑎,𝑖 < reference 𝑝𝑘𝑎,𝑖). Another 

interesting observation is the values of 𝑝𝑘𝐷,𝑖 and intrinsic 𝑝𝑘𝑎,𝑖 according to the position 

of the amino acid in the chain (not to be confused with the 𝑝𝑘𝑎𝑝𝑝,𝑖 distributions). While 

the distribution of 𝑝𝑘𝐷,𝑖 follows a rather unclear trend, the intrinsic 𝑝𝑘𝑎,𝑖 is conditioned 

by the position of the amino acid in the peptide. The intrinsic 𝑝𝑘𝑎,𝑖 decreases when the 

amino acid is placed in a more central position within the chain, which is also confirmed 

by the 𝛿𝑖-interaction parameter. This parameter increases for the central amino acids, 
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suggesting that there are stronger interactions, and we therefore assume that the aspartic 

acids favour earlier neutralisation. 

In fact, these strong interactions imply that the 𝑝𝑘𝑎𝑝𝑝,𝑖 is not constant and depends 

on the solvent pH, as we can observe in Figure 8. In these plots, the 𝑝𝑘𝑎𝑝𝑝,𝑖 varies 

significantly with pH, with variations of 𝜎𝑖,𝐿𝐹= 1.5-2.5 and 𝜎𝑖,𝐹 = 1.3-2.1 with respect to 

the 𝑝𝑘𝑚,𝑖 of the distribution (i.e., 𝑝𝑘𝑎𝑝𝑝,𝑖 when 𝛼𝑖 = 𝜃𝑖 = 0.5 if the protonation state 

sampling is extensive). When the simulated 𝑓𝑑’s are compared with the isotherms, the 

Frumkin isotherm is more accurate and thus gives a 𝜎𝑖,𝐹 that is more reliable for the 

simulated values. Therefore, we would like to highlight the importance of understanding 

that the 𝑝𝑘𝑎𝑝𝑝,𝑖 in a non-ideal scenario can range widely between ±𝜎𝑖, especially for these 

approaches that use 𝑝𝑘𝐷,𝑖 to determine an initial and fixed protonation state in MD 

simulations, as this can be tricky. 

 

Figure 8. 𝑝𝑘𝑎𝑝𝑝,𝑖 distributions estimated from the deprotonated state fractions obtained 

from pH-REMD simulations (blue circles). The red lines are the Langmuir isotherm for 

an ideal case estimated using the reference 𝑝𝑘𝑎,𝑖 defined by AMBER. The orange and 

green lines are the Hill/LF and Frumkin isotherms, respectively. 
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 pkD,LF ± σLF nLF ± σLF pka,F ± σF δF ± σF pkm,LF
dist σLF

dist pkm,F
dist σF

dist 

PEPTIDE 4.87 ± 0.03 0.38 ± 0.01 3.21 ± 0.02 3.79 ± 0.04 4.87 1.93 4.86 1.53 

ASP 2 5.17 ± 0.02 0.43 ± 0.01 3.70 ± 0.04 3.39 ± 0.08 5.17 1.64 5.17 1.42 

ASP 3 4.72 ± 0.03 0.41 ± 0.01 3.10 ± 0.05 3.76 ± 0.11 4.72 1.77 4.73 1.52 

ASP 4 4.89 ± 0.05 0.37 ± 0.01 2.99 ± 0.07 4.41 ± 0.07 4.89 1.99 4.91 1.70 

ASP 5 4.98 ± 0.05 0.36 ± 0.01 2.98 ± 0.04 4.61 ± 0.09 4.98 2.07 4.98 1.75 

ASP 6 4.99 ± 0.09 0.30 ± 0.02 2.49 ± 0.11 5.79 ± 0.24 4.99 2.53 5.00 2.07 

ASP 7 4.37 ± 0.06 0.35 ± 0.01 2.33 ± 0.10 4.77 ± 0.20 4.37 2.14 4.40 1.80 

ASP 8 4.64 ± 0.03 0.44 ± 0.01 3.24 ± 0.03 3.24 ± 0.06 4.64 1.59 4.64 1.37 

ASP 9 4.66 ± 0.02 0.45 ± 0.01 3.29 ± 0.02 3.16 ± 0.04 4.66 1.56 4.66 1.35 

ASP 10 4.82 ± 0.02 0.46 ± 0.01 3.50 ± 0.03 3.05 ± 0.06 4.82 1.52 4.82 1.32 

ASP 11 5.30 ± 0.04 0.45 ± 0.02 3.95 ± 0.07 3.09 ± 0.14 5.30 1.54 5.29 1.33 

 

Table 2. 𝑝𝑘 and parameters of the Langmuir-Freundlich (LF) and Frumkin (F) isotherms. 𝑝𝑘𝐷 is 𝑝𝑘𝑎𝑝𝑝 at 𝛼 = 𝜃 = 0.5 and n is the Hill coefficient 

in the LF isotherm. The intrinsic 𝑝𝑘𝑎 and 𝛿 parameter are given for the Frumkin isotherm. The 𝑝𝑘𝑚
𝑑𝑖𝑠𝑡 and 𝜎𝑑𝑖𝑠𝑡 are the average and standard 

deviation of the 𝑝𝑘𝑎𝑝𝑝 distribution of the LF or F isotherms of the fitting.  
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Up to this point we have studied the proton-amino acid binding process of an 

amino acid 𝑖 in the peptide, but the above approaches can also be applied to the proton 

equilibrium of the whole peptide in Eq. 8. The binding and dissociation constants, log𝐾𝑐 

and 𝑝𝐾𝑎𝑝𝑝, can also be estimated from the complexation isotherms. For this, we use the 

same formalism described above, but this time our receptor becomes the polyaspartic acid 

peptide and the deprotonated fraction is calculated from the average of the degree of 

dissociation of the amino acids at each solvent pH, where 𝛼 =
∑ 𝛼𝑖𝑖

𝑁
 and 𝑁 is the number 

of titratable side chains. Therefore, the dependence of 𝛼 and 𝑝𝐾𝑎𝑝𝑝 of the peptide on the 

solvent pH can be estimated using Eq. 9 and the Hill/LF and Frumkin isotherms.  

−𝑆− +𝐻+ ⇄ −𝑆𝐻      𝐾𝑐 =
[−𝑆𝐻]

[−𝑆−] · 𝑎𝐻+
 Eq. 3.8 

𝑝𝐾𝑎𝑝𝑝 ≡ 𝑙𝑜𝑔𝐾𝑐 = 𝑝𝐻 + {
log (

𝜃

1 − 𝜃
)

𝑙𝑜𝑔 (
1 − 𝛼

𝛼
)

 Eq. 3.9 

In this case, 𝐾𝑐 is the average binding affinity of the proton (or ligand) at a given 

pH. That is, the average of the microstates of binding of the proton to the different binding 

sites of the polyaspartic acid. Thus, the electrostatic interactions and the availability of 

the binding sites depend on the pH of the solvent, regardless of the binding site to which 

the proton binds within the chain. The ideal conditions for the peptide are therefore only 

satisfied when the binding sites are identical, i.e., there is no heterogeneity in the chain, 

and there are no interactions with neighbouring amino acids. Under these conditions, it is 

satisfied that the 𝑙𝑜𝑔𝐾𝑐 = 𝑝𝐾𝑎𝑝𝑝 ≠ 𝑓(𝑝𝐻), resulting in 𝑝𝐾𝑎𝑝𝑝 = 𝑙𝑜𝑔𝐾𝑐 = 𝑙𝑜𝑔𝐾 where 

𝐾 is the intrinsic binding constant of all binding sites (𝐾 = 𝑘𝑖). However, the polyaspartic 

acid cannot be treated under ideal conditions because the strong electrostatic interactions 

of the amino acids depend on their position in the chain and cause the deviation from the 

ideal case. Therefore, the titration curves of the amino acids of the polyaspartic acid 

peptide are described by heterogeneous isotherms and the interpretation of the peptide 

protonation must be explained by the average of the individual isotherms of each aspartic 

acid within the chain.  

After fitting 𝛼 in Figure 9, the Hill/LF isotherm predicts a 𝑝𝐾𝐷 = 4.87 ± 0.03 and 

𝑛 = 0.38 ± 0.01, while the Frumkin isotherm gives us an intrinsic 𝑝𝐾𝑎 = 3.21 ± 0.02 and 

the interaction parameter 𝛿 = 3.79 ± 0.04. Again, the Frumkin isotherm fits better than 
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the Hill/LF model at the ends of the simulated 𝑓𝑑’s. In this case, the LF/Hill isotherm 

shows negative cooperativity (n < 1) for the peptide and the δ parameter of the Frumkin 

isotherm suggests strong electrostatic interactions, thus confirming that the solvent pH 

plays a key role in the 𝑝𝐾𝑎𝑝𝑝 distribution of the peptide. Indeed, the intrinsic 𝑝𝐾𝑎 is far 

from the reference 𝑝𝑘𝑎 of the individual amino acids (𝑝𝑘𝑎,𝑖 = 4.0) and, even under the 

conditions of the fully protonated peptide (pH < 2), the intramolecular interactions and 

chain heterogeneity still determine the affinity of the proton to bind to the peptide. 

Therefore, the presence of other negatively charged amino acids makes the polyaspartic 

acid become a stronger acid because it tends to donate the initial protons more easily 

(intrinsic 𝑝𝐾𝑎 < reference 𝑝𝑘𝑎) compared to the free amino acid due to the intramolecular 

electrostatic interactions. 

 

Figure 9. Titration curves (left) and 𝑝𝐾𝑎𝑝𝑝 distribution (right) of the polyaspartic acid. 

The red lines are the Langmuir isotherm for an ideal case estimated by reference 𝑝𝑘𝑎,𝑖 

defined by AMBER. The orange and green lines are the Hill/LF and Frumkin isotherms, 

respectively, after fitting the data extracted from the simulation shown in blue circles. 

Through the case of the polyaspartic acid, we have highlighted the advantages of 

using the Hill/LF and Frumkin isotherms to fit the deprotonation fractions of the pH-

REMD simulation for both individual amino acids and the peptide. For the individual 

amino acids, the Hill/LF isotherm allows us to correctly predict the 𝑝𝑘𝑎𝑝𝑝,𝑖 curves except 

at the limits of 𝛼𝑖, and it directly provides us with the 𝑝𝑘𝐷,𝑖, i.e., the 𝑝𝑘𝑎𝑝𝑝,𝑖 when the 

amino acid is half occupied, which is a common value used to estimate the protonation 

state of amino acids in CMD simulations. The behaviour of 𝑝𝑘𝐷,𝑖 as a function of the 

position of the residues in the chain appears to be more complex and is difficult to 
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correlate with other properties of the peptide. On the other hand, the Frumkin isotherm is 

outstanding in its ability to predict the titration curve and the apparent 𝑝𝑘𝑎,𝑖 distribution 

even at low 𝛼𝑖. The intrinsic 𝑝𝑘𝑎,𝑖 values indicate that the residues located in the middle 

of the peptide sequence are lower compared to the residues at the ends of the chain. 

Furthermore, the titration curve of the peptide is also estimated from the isotherms, using 

the protonation fractions of each amino acid as average values that the protons experience 

when bound to the peptide. The observations made for each isotherm are also repeated in 

the case of the peptide, and the 𝑝𝐾𝑎𝑝𝑝, 𝑝𝐾𝐷 and intrinsic 𝑝𝐾𝑎 are predicted.  Furthermore, 

the average, 𝑝𝑘𝑚,𝑖
𝑑𝑖𝑠𝑡,  and standard deviations, 𝜎𝑖

𝑑𝑖𝑠𝑡 , of the distributions of 𝑝𝑘𝑎𝑝𝑝,𝑖 and 

𝑝𝐾𝑎𝑝𝑝 are in agreement between the Hill/LF and Frumkin isotherms, providing 

confidence in the estimations made in this work. 

3.3. Conclusions 

 pH-REMD simulations can be a powerful technique to extend the conformational 

and protonation state sampling over a wide range of solvent pHs. In this work, we 

observed in the PCA energy maps that polyaspartic acid decapeptide shifts from 

homogeneous conformational sampling at strong acidic pH conditions to the promotion 

of a set of conformations as the solvent pH becomes mildly basic. The structural 

properties suggest that this behaviour is given by an increase in α-helix formation, which 

we also identify in the CpHMD simulation of AS410 at pH = 10 with explicit solvent 

(Section 3.1). AS410
pH=10 has a large α-helix content above 60%, whereas AS410 at mildly 

basic conditions exhibits an α-helix content below 45%. Therefore, the conformational 

space has apparently not converged even at pH conditions higher than the 𝑝𝑘𝐷,𝑖 + 2, 

highlighting the importance of considering the effect of the solvent pH in the pH-

responsive biomolecules even when the pH conditions are apparently far from the 

effective 𝑝𝑘𝐷,𝑖. In addition to the structural analysis, this chapter also emphasises the 

benefits of using pH-REMD to predict the effective 𝑝𝑘𝐷,𝑖 and the intrinsic 𝑝𝑘𝑎,𝑖 of the 

titratable amino acids using the Hill/LF and Frumkin isotherms. The isotherms also 

predicted the pH-dependent 𝑝𝑘𝑎𝑝𝑝,𝑖 distribution for each amino acid, which provides 

more information for accurate protonation state prediction than the effective 𝑝𝑘𝐷,𝑖, i.e., 

the solvent pH at which the titratable amino acid is in the 50/50% ionised and neutral 

states, respectively. The intrinsic 𝑝𝑘𝑎,𝑖 values suggest that the carboxyl group of the 

aspartic acids releases the proton more readily as the amino acids are closer to the centre 
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of the peptide chain. Furthermore, the overall 𝑝𝐾𝐷 and 𝑝𝐾𝑎 of the peptide has also been 

estimated from the isotherms and average values of the individual amino acids. 

On the other hand, we found some concerns in the evaluation of the CpHMD 

method. First, the implicit solvent simulations are not able to reproduce the 

conformational space of the CMD simulations. A clear conformational bias is observed 

depending on the simulation method, indicating a strong limitation of the CpHMD 

method in this solvent condition. The explicit solvation simulations are spared from this 

shortcoming since the peptide in the protonated state agrees in the structural properties 

when both CMD and CpHMD methods are compared. In the deprotonated state, the 

conformational and energetic observations are again in disagreement, apparently 

motivated by a different spatial distribution of the Na+ counterions during the simulation. 

The results reported so far raise serious concerns about the accuracy of the CpHMD 

method implemented in AMBER18 with respect to the conformational description of the 

ionisable amino acids. This conflicts with the demonstrated ability of the CpHMD to 

predict the effective 𝑝𝑘𝐷,𝑖 or the intrinsic 𝑝𝑘𝑎,𝑖 of buried amino acids in proteins, since 

protonation states are tightly coupled to the conformational sampling (and vice versa). If 

the method shows inaccuracies in the conformations obtained from the simulations, large 

errors in the predictions of the effective 𝑝𝑘𝐷,𝑖 and intrinsic 𝑝𝑘𝑎,𝑖 should be expected. 

Moreover, this shortcoming becomes critical if pH-dependent conformational ensembles 

or ligand-protein mechanisms (and so many other biological events) are intended to be 

captured by the discrete constant pH method implemented in AMBER. Therefore, there 

is an urgent need to address this issue in the context of the CpHMD simulations in order 

to improve the ability to accurately sample both conformational and protonation fractions 

and, ultimately, to better predict 𝑝𝑘𝑎. 
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Chapter 4 

On the Use of the Discrete 

Constant pH Molecular Dynamics to Describe 

the Conformational Space of Peptides 

 

Highlighting the importance of solvent pH in charge-structure coupling for protein 

conformational space sampling during MD simulations is one of the main objectives of 

this thesis. Indeed, due to the wide range of pH values that oscillate in the human body, 

from 4.5 in lysosomes to 8.0 in mitochondria1, the ability of pH to modulate some 

biomolecules is central for an in-depth study of the biological functions of pH-responsive 

proteins. Under this premise, the available approaches that include the effect of pH in 

conventional MD (CMD) simulations, such as the use of pKa prediction tools (PROPKA2 

or H++3), have been insufficient until recently. In response to the need for more accurate 

modelling of the ionisable biomolecules depending on the environmental pH, a collection 

of MD methods at constant pH has emerged over the last decades under the name of 

Constant pH Molecular Dynamics (CpHMD) techniques4–7. These methods introduce the 

dynamic change of the protonation states of the titratable amino acids (and other 

biomolecules if necessary) during the course of simulations by setting the semi-grand 

canonical ensemble (𝑁∆𝜇𝑉𝑇). The most successful approaches are mainly (i) the methods 

with discrete protonation states sampled by a stochastic criterion, the so-called discrete 

CpHMD5,6,8–11, and (ii) the methods that describe the protonation states by introducing 

protonation coordinates into the potential energy function, also known as continuous 

CpHMD methods7,12–15. Further details of each technique and the various methods 

developed can be found in theoretical background (Section 2.5).  

Both continuous and discrete CpHMD methods have shown promising results in 

the prediction of amino acid pKa and conformational sampling of proteins, as well as the 

role of pH in ligand-protein mechanistic studies16–21. However, some shortcomings have 
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also been pointed out, such as the lack of accuracy in the description of some physical 

properties or the trapping of the molecular systems in local minima. Some papers have 

reported the strengths and weaknesses of these methods22–27, while some reviews have 

summarised their development in the past28,29 and present30 in order to better comprehend 

the current limitations of constant pH simulations. Fortunately, the CpHMD methods 

have been refined over the years through modified force fields, water models or algorithm 

improvements, but also by adopting enhanced-sampling approaches to overcome the 

drawbacks of lack of convergence and sampling10,11,14,31–35. Several methods of CpHMD 

have been implemented in popular simulation packages, such as CHARMM36, 

GROMACS37 or AMBER38, and the application of these techniques is gaining more and 

more followers nowadays. In particular, both continuous35,39–42 and discrete8,11 CpHMD 

methods and the enhanced-sampling pH-based replica exchange Molecular Dynamics 

(pH-REMD) method18 have been implemented in the AMBER package, which is a well-

known simulation package for the simulation of biomolecules.  

 

Figure 1. Capped Asp2 tripeptide in the syn-O2 protonated state. The amino acids, 

capping groups and dihedral angles φ and ψ are indicated. The θ angle is formed by the 

CG1, CA1, CA2, and CG2 atoms. Non-polar hydrogens of the amino acids are hidden. 

Subscripts refer to monomers 1 and 2. 

In line with the simulations performed in Chapter 3, the discrete constant pH 

method is used in this work because the advantages of the explicit description of the 

protonated states during the conformational sampling of the molecular systems. However, 

due to the shortcomings concerning the poor reproducibility of the conformational 

sampling and the structural properties in CpHMD simulations compared with CMD 

method presented in the previous chapter, we now present a fundamental revision of this 

method from the basics in order to clarify the reported limitations. As the inclusion of 
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CpHMD methods in protein studies is becoming increasingly common, this chapter 

examines the accuracy of the CpHMD method with discrete protonation states 

implemented in AMBER on simple biomolecules from a conformational perspective. For 

this purpose, and after finding that implicit solvation models show larger deviations in 

the CpHMD simulations, capped di(amino acid) tripeptides with six titratable amino acids 

were constructed to perform simulations on the microsecond scale using a Generalised 

Born model for implicit solvation in both CMD and CpHMD methods.  The titratable 

tripeptides were simulated under strong acidic or basic pH conditions to ensure a fully 

protonated or deprotonated state, whereas the CMD simulations were carried out with a 

fixed protonation state. In this manner, the tripeptide simulations can be compared at 

solvent pH conditions that result in a similar protonation state, regardless of the method. 

Ramachandran maps and energy contributions from the tripeptide trajectories were 

therefore analysed to find the source of the deficiencies observed in the previous chapter. 

Thus, in this chapter we discuss some of the successes and weaknesses of the CpHMD 

with discrete protonation states in an implicit solvation model implemented in the 

AMBER18 version. 

4.1. Materials and Methods 

4.1.1. Capped Tripeptides 

Tripeptides (ACE-X-X-NME, hereinafter X2) capped at the extremes by the acetyl 

(ACE) and N-methyl (NME) groups were constructed for the protonated, deprotonated 

and titratable residues of X, where X = {lysine, tyrosine, cysteine, histidine, glutamic 

acid, aspartic acid} amino acids (Figure 1). The residues LYN, CYM, HID, HIE, GLU, 

and ASP were used for the deprotonated forms and the residues LYS, TYR, CYS, HIP, 

GLH and ASH for the protonated forms in the CMD simulations. The titratable peptides 

in the CpHMD method were built using the residues LYS, TYR, CYS, HIP, GL4 and 

AS4 (using the AMBER convention). ff14SB force field43 and constph.lib (only in 

CpHMD) were loaded into the LEaP module of AMBER18. The CPIN file was then 

generated for the titratable systems, specifying the initial protonation state according to 

the solvent pH and the Generalised Born (GB) model of Onufriev et al.44 (igb = 2). The 

lysine, tyrosine and cysteine amino acids have two possible protonation states: the 

deprotonated and protonated forms. Histidine has up to three protonation states, which  

 



Chapter 4. Discrete Constant pH Molecular Dynamics on the Conformational Space of Peptides 

 

98 

 

Residue CMD 
CpHMD 

Prot. State. Intrinsic pKa 
pH 1 pH 12 pH 14 

ASP ✓    D 

4.0 ASH ✓    P 

AS4  ✓ ✓  T 

GLU ✓    D 

4.4 GLH ✓    P 

GL4  ✓ ✓  T 

HIE ✓    D 
7.1 (ε) 

6.5 (δ) 
HID ✓    D 

HIP ✓ ✓ ✓  P/T 

CYM ✓    D 
8.5 

CYS ✓ ✓ ✓  P/T 

TYR ✓ ✓   P/T 9.6 

LYN ✓    D 
10.4 

LYS ✓ ✓  ✓ P/T 

Table 1. Simulations performed for each residue type and method. Protonation state is 

defined as deprotonated (D), protonated (P) or titratable (T) form. Some residues can be 

used to generate both protonated CMD simulations and titratable peptides in the CpHMD 

method. The intrinsic pKa values of the side chains are used according to Mongan et al.8 

in the AMBER implementation. 

are classified into the deprotonated and protonated forms: the doubly protonated HIP state 

for the protonated form, and the ε (HIE) and δ (HID) states for the deprotonated (or 

neutral) histidine. HIE and HID are defined by the position of the hydrogen on the N-

epsilon and N-delta nitrogen, respectively, in the neutral form. The δ-state was chosen as 

the initial protonation state for the CpHMD simulations of histidine. Finally, the glutamic 

acid and aspartic acid can be found in the deprotonated form or up to four states in the 

protonated form. These protonated states depend on the position and orientation of the 

hydrogen (syn or anti) when one of the oxygen atoms of the carboxyl group (O1 or O2) 

is protonated. The four protonatable sites of the side chain of the residue AS4 in Appendix 

B, Figure B1. State 1 (syn-O2 protonation) was chosen as the initial protonation state in 

the CpHMD simulations at acidic solvent pH conditions, which is the default protonated 
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state in the CMD method. Counterions were implicitly considered in the solvation model 

with an ionic strength of 0.1 M. 

4.2.2. Simulation Setup 

Each system was minimised according to a three-stage protocol with different 

restraints: (i) on all atoms, (ii) on the backbone atoms, and (iii) on the free system. 5000 

steps (maximum) of the steepest descent method45 were performed per stage. Restraints 

were introduced with force constants of 5.0 kcal·mol-1·A−2. In the titratable systems, the 

implicit CpHMD method8 (icnstph = 1) was turned on to define the protonation state of 

the amino acids, but without changing the protonation states (ntcnstph > 5.000). 

After the minimisation step, a heating simulation was performed by linearly 

increasing the temperature (1 K·ps⁻1) of the capped tripeptide up to 300 K. The system 

was then equilibrated by keeping the tripeptide at 300 K for 200 ps in the isobaric-

isothermal ensemble (NPT). To increase the conformational exploration46, four replicas 

were generated for each system using the final coordinates of the equilibration step but 

resetting the initial velocities. 1 µs per replica were performed with the implicit solvent 

method, using the Generalised Born model of Onufriev et al. (igb = 2) and an ionic 

strength of 0.1 M. The SHAKE algorithm47 constrained the bond lengths. A Langevin 

thermostat48 with a collision frequency of 3 ps⁻1 was chosen for the thermal bath and no 

periodic boundary conditions (PBCs) were required. For the titratable simulations, an 

implicit CpHMD method was used with a frequency of protonation state change attempt 

of 0.01 ps⁻1 (ntcnstph = 5). Strong pH conditions were set to ensure a dominant 

protonation state during CpHMD simulations, with pH values of 12.0 and 1.0 chosen for 

the deprotonated and protonated forms, respectively. The only exception was the capped 

Lys2 tripeptide, which required a higher basicity in the solvent (pH 14.0). Table 1 

summarises the residue type, simulation method and solvent pH of the production runs.  

4.1.2. Energy and Conformational Analysis 

The energies, coordinates and output files were updated every 2, 10 and 20 ps, 

respectively. The energy terms and normalised histograms of each term were calculated 

using the CPPTRAJ module49. The dihedral angles (φ, ψ and an angle related to the 

orientation of the side chains with respect to the Cα atoms, hereinafter referred to as θ 

angle) were also obtained with CPPTRAJ. An in-house tool transformed the dihedral 
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angles generated during the simulation into Gibbs free energies using Eq. 1, thus 

facilitating the construction of the potential energy surface in the Ramachandran maps50. 

∆𝐺 = −𝑘𝐵𝑇𝑙𝑛(𝑁𝑖 𝑁𝑚𝑎𝑥⁄ ) Eq. 4.1 

where 𝑘𝐵 is the Boltzmann constant, T is the temperature, and 𝑁𝑚𝑎𝑥 and 𝑁𝑖 are the 

maximum population and the population of a cell 𝑖 after applying a grid to the distribution 

of the dihedral angles φ and ψ with a spacing of 1°. The Ramachandran map was divided 

into nine conformational regions (C5, PII, αD, β2, C
7

axial, αL, α’, αR and C7
eq) according to 

the Rubio-Martinez et al.51 in Figure B2 and the global populations in each 

conformational region were calculated. Each amino acid of the tripeptides was analysed 

separately, resulting in two sets of conformational data corresponding to the N-terminal 

amino acid (set 1) and the C-terminal amino acid (set 2). The minima of the 

Ramachandran maps were located using a larger grid spacing (2°) to reduce the apparition 

of false minima. All plots were generated using GNUPLOT (version 4.6)52. 

4.2. Results and Discussion 

4.2.1. Gibbs Free Energies in Ramachandran Space 

The conformational sampling of each system was analysed by means of the 

Ramachandran map. Since the capped tripeptides have two amino acids with their 

backbone dihedral angles φ and ψ (Figure 1), the pair φ/ψ dihedrals dihedral pair of each 

monomer (the N-terminal and C-terminal amino acid) was represented. The reported 

results of the simulations start with the basic pKa amino acids, continue with the specific 

case of the histidine and end with those with a carboxyl group in the side chain. 

4.2.1.1. Basic pKa Amino Acids 

In this group we include those titratable amino acids with an intrinsic pKa greater 

than 7.0. The conformational sampling of this set of capped tripeptides is represented in 

the Ramachandran maps for each simulation condition (CMD at the top and CpHMD at 

the bottom). The LYS systems are shown in Figure 2, and TYR and CYS are found in 

Figure B3 and Figure B4. The deprotonated form of tyrosine is not available in the 

AMBER libraries for the CMD method, so only the simulations of the TYR system in the 

protonated form were performed. However, the partial charges of the deprotonated 

tyrosine can be calculated as it has been proven to play an important role in the 

conformation of some proteins53. 
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Figure 2. Gibbs free energies in Ramachandran space of the capped Lys2 tripeptide. Each 

subtitle indicates the residue, the simulation method (in the superscript) and the solvent 

pH (for the CpHMD simulations only). Both sets of dihedrals (φ1/ψ1 from the N-terminal 

amino acid; φ2/ψ2 from the C-terminal amino acid) are illustrated. The protonated forms 

are on the left (CMD; top—CpHMD; bottom) and the deprotonated forms are on the right 

(CMD; top—CpHMD; bottom). The solid lines indicate an increase of 0.6 kcal/mol in 

the energy values. 

Comparison of the two simulation methods in the Ramachandran plots shows that 

the LYS protonated forms (LYSCMD and LYSCpHMD at pH 1) are in agreement. Instead, 

the deprotonated simulations (LYNCMD and LYSCpHMD at pH 14) exhibit smooth 

differences in the depth of the minima. For further clarification, the conformational 

profile of the capped tripeptides was studied by dividing the Ramachandran map into nine 

regions according to Rubio-Martinez et al., which are associated with a specific 

conformation (C5, PII, αD, β2, C7
axial, αL, α’, αR, and C7

eq). By calculating the population 

of each region, the conformational propensities of each amino acid were estimated. The 

population ratios allow a quantitative analysis of the conformational sampling of the 

simulation methods by identifying the most stable regions. The populations of these 

regions for each monomer are shown in Figure 3. In general, the PII and αR conformations 

predominate over all others. The protonated form of the LYS systems shows close 

population ratios between the counterparts (LYSCMD and LYSCpHMD at pH 1). The 

deprotonated CMD simulation (LYNCMD) has a different population profile with respect 
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to the other systems, showing a behaviour far from the CpHMD analogue (LYSCpHMD at 

pH 14). In contrast, LYSCpHMD at pH 14 has similar conformational populations with 

respect to LYSCMD and LYSCpHMD at pH 1. 

 

Figure 3. Ratio of the four most populated conformational regions (PII, αR, C7
eq, and C5 

in green, blue, orange, and red, respectively) in the Ramachandran map of the amino acids 

LYS, TYR, and CYS. The labels indicate the residue, the simulation method (in the 

superscript), and the solvent pH (in the subscript, only for the CpHMD simulations). The 

subtitles indicate the set of dihedrals corresponding to monomer 1 (N-terminal) or 

monomer 2 (C-terminal amino acid). The net charge of the amino acids is indicated below 

the systems (q = −1, 0 or +1). The box style (striped or solid) indicates those peptides in 

the same protonation state, regardless of the method used. The classification ‘others’ 

(grey) includes the conformational regions β2, α’, αD, αL, and C7
axial. 

A good accordance for the protonated systems of the TYR amino acid (TYRCMD 

and TYRCpHMD at pH 1) is observed in Figure B3. Except for barely noticeable differences 

in the populations of minor conformational regions (C7
axial and αL), the Ramachandran 

maps and the population ratios shown in Figure 3 are in good agreement. For the CYS 

systems shown in Figure B4, the conformational profiles show a similar trend to the TYR 

systems. Therefore, a high consistency between CMD and CpHMD counterparts is also 

observed in the Ramachandran maps and population ratios for the protonated (CYSCMD 

and CYSCpHMD at pH 1) and deprotonated forms (CYMCMD and CYSCpHMD at pH 12). 
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These observations proved that the CpHMD method was generally consistent in 

the conformational sampling of these amino acids, except for the deprotonated LYS form. 

A first weakness is thus identified since the Ramachandran maps of the deprotonated 

LYSCpHMD system were unable to reproduce the conformational profile of the well-

established CMD method. 

4.2.1.2. Histidine 

This amino acid has pKa values of 6.5 and 7.1 for the δ and ε states, respectively. 

Depending on the position of the hydrogen in the neutral form, histidine can be found in 

the δ (N-delta atom) or the ε (N-epsilon atom) state. Thus, two protonation states coexist 

when the imidazole ring of the side chain becomes neutral, modulating the conformational 

sampling of the peptide depending on the position of the hydrogen during the simulation.  

 

Figure 4. Ratio of the fourth most populated conformational regions (PII, αR, C7
eq, and C5 

in green, blue, orange, and red, respectively) in the Ramachandran map of the HIS amino 

acid. The labels indicate the residue, the simulation method (in the superscript) and the 

solvent pH (in the subscript, only for the CpHMD simulations). The subtitles indicate the 

set of dihedrals corresponding to monomer 1 (N-terminal amino acid) or monomer 2 (C-

terminal amino acid). The net charge of the amino acids is indicated below the systems 

(q = −1, 0 or +1). The box style (striped or solid) indicates those peptides in the same 

protonation state, regardless of the method used. The classification ‘others’ (grey) 

includes the conformational regions β2, α’, αD, αL, and C7
axial. 

The Ramachandran maps of the histidine simulations in Figure B5 illustrate the 

dihedral distribution obtained from the conformational sampling. The protonated peptides 

(HIPCMD and HIPCpHMD at pH 1) show similar conformational profiles in the 

Ramachandran maps. The population ratios confirm this observation: the HIPCMD and 

HIPCpHMD at pH 1 simulations show close population ratios in Figure 4. In contrast, the 
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deprotonated simulations (HIECMD, HIDCMD and HIPCpHMD at pH 12) exhibit deviations 

in the depth of the minima of the Ramachandran plots. In addition, the population ratios 

of the CMD simulations (HIECMD and HIDCMD) are not in agreement with the HIPCpHMD 

at pH 12 system. In this case, the HIPCpHMD simulation at basic pH conditions has 

population ratios closer to the protonated form rather than to its CMD analogue. The 

population ratios of HIECMD and HIDCMD are far from being similar, suggesting that the 

position of the hydrogen in the N-epsilon and N-delta atom plays an important role in the 

conformational sampling of the deprotonated forms. 

While the protonated forms are in good conformational agreement, the 

deprotonated forms of histidine indicate that the CpHMD method at basic pH conditions 

is unable to reproduce the conformational sampling of the CMD counterparts. As 

HIPCpHMD coexists between the δ and ε protonation state in the neutral form at pH 12, one 

might expect a population profile resulting from the combination of the profiles of both 

states. Instead, the PII conformation of the CpHMD systems at basic pH conditions 

behaves similarly to the protonated simulations, which is a fact that is also observed for 

the LYS systems. 

4.2.1.3. Acidic Amino Acids 

Glutamic acid and aspartic acid are two amino acids characterised by the four 

protonatable sites in the carboxyl group. Although both residues are similar, except for 

additional methyl group in the glutamic acid side chain which results in a shift in the pKa, 

the Ramachandran maps and population ratios do not behave similarly.  

On the one hand, the conformational sampling of the GLU systems illustrated in 

the Ramachandran maps (Figure B6) follows the trend of the results observed for the LYS 

and HIS systems. The Ramachandran plots and population ratios of the protonated 

simulations (GLHCMD and GL4CpHMD at pH 1) are in a good agreement in Figure B6 and 

Figure 5. However, this is not the case for the deprotonated systems (GLUCMD and 

GL4CpHMD at pH 12), whose population ratios deviate significantly from each other. In 

fact, it is shown that GL4CpHMD at pH 12 has a similar population profile with respect to 

the GLHCMD and GL4CpHMD at pH 1. This fact is no longer surprising, since it also occurs 

in previous systems (LYS and HIP). 

On the other hand, the ASP peptides stand out since the protonated simulations 

(ASHCMD and AS4CpHMD at pH 1) show a slight disagreement in the minima of the 
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Ramachandran maps, but not as pronounced as those observed in the deprotonated ones 

(Figure 6). Nevertheless, the population ratios in Figure 5 confirm that this disagreement 

is due to smooth differences in the population of each conformation (including C7
eq and 

C5). The deprotonated systems of the ASP amino acid (ASPCMD and AS4CpHMD at pH 12) 

show a greater dissimilarity in the Ramachandran maps and population ratios.  

 

Figure 5. Ratio of the four most populated conformational regions (PII, αR, C7
eq, and C5 

in green, blue, orange, and red, respectively) in the Ramachandran map of the ASP and 

GLU amino acids. The labels indicate the residue, the simulation method (in the 

superscript) and the solvent pH (in the subscript, only for the CpHMD simulations). The 

subtitles indicate the set of dihedrals corresponding to monomer 1 (N-terminal) or 

monomer 2 (C-terminal amino acid). The net charge of the amino acids is indicated below 

the systems (q = −1, 0 or +1). The box style (striped or solid) indicates those peptides in 

the same protonation state, regardless of the method used. The classification ‘others’ 

(gray) includes the conformational regions β2, α’, αD, αL, and C7
axial. 

Apart from the differences in the deprotonated forms, which are also observed in 

the previous amino acid sets, another factor apparently interferes by causing small 

changes in the conformational sampling of the protonated forms. These deviations could 

arise from the multiple protonatable position of the hydrogen when the side chains are 

protonated. In addition, the conformational sampling of ASP is probably more sensitive 

to the position of this proton given that the carboxyl groups of the successive aspartic 
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acids are closer compared to the GLU systems, which have an additional methyl group in 

the side chain.  

The Ramachandran plots demonstrated the consistency of the CpHMD method in 

reproducing the conformational sampling of the protonated forms of the basic pKa, 

histidine and acidic amino acids. However, some shortcomings were noted for the 

deprotonated forms of all systems (except for CYS). 

 

Figure 6. Gibbs free energies in the Ramachandran space of the capped Asp2 tripeptide. 

Each subtitle indicates the residue, the simulation method (in the superscript) and the 

solvent pH (only for the CpHMD simulations). Both sets of dihedrals (φ1/ψ1 from the N-

terminal amino acid; φ2/ψ2 from the C-terminal amino acid) are illustrated. The 

protonated forms are on the left (CMD; top—CpHMD; bottom) and the deprotonated 

forms are on the right (CMD; top—CpHMD; bottom). The solid lines indicate an increase 

of 0.6 kcal/mol in the energy values. 

The main reason of this inconsistency in the deprotonated forms is the mismatch in the 

partial charges when comparing the CMD and CpHMD counterparts. Table B1 lists the 

partial charges of the individual acid atoms. Indeed, AMBER manifested that CpHMD 

residues always use the partial charges of the protonated form, called reference residue, 

in the backbone atoms and only change the partial charges of the side chain atoms when 

the residue reaches another protonation state8. It is therefore not surprising that the 
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electrostatic interactions are not fully reproducible when using the CpHMD method. We 

hope that this limitation can be overcome in future updates of the method. 

On the other hand, the anchoring of the hydrogens in the CMD simulations with 

respect to the dynamic protons in the CpHMD method is another reason for the observed 

deviations. The CpHMD method has a hydrogen atom in all the protonatable sites during 

the simulation and activates them (by changing the partial charges of the side chain) 

according to the protonation state. Under this consideration, there are two scenarios: (i) 

the histidine and (ii) the acidic amino acids. For the histidine, the protonated form of the 

CpHMD method has the two hydrogen atoms activated as the reference residue (HIP) of 

the CMD method, so there is no difference between them. Therefore, the conformational 

sampling of the protonated simulations should be, and is, very similar. However, the 

deprotonated forms of histidine have different protonation state sampling. The HIPCpHMD 

simulation at pH 12 coexist in the δ and ε states over time, whereas the CMD method 

fixes one protonation state state (HIE or HID) during the simulation. Apart from the 

failure to reproduce the electrostatics due to the partial charges, the deprotonated forms 

of the histidine are not entirely comparable due to the change in position of the activated 

hydrogen during the CpHMD simulations. The change in position of the hydrogen atom 

in the CpHMD simulations then leads to different conformational sampling compared to 

the CMD simulations, in which the hydrogen is fixed at the N-delta or N-epsilon atom 

positions. 

The acidic amino acids present a similar problem, but this time in the protonated 

forms. These residues have four protonatable sites (the anti or syn position in each oxygen 

of the carboxyl group), which implies a greater allocation of the hydrogen atom when the 

side chain is protonated in comparison with the CMD method, in which the hydrogen is 

bound in the syn-O2 position. In fact, the populations of the protonation states during the 

CpHMD simulation were 96% and 4% (on average) for the syn and anti positions, 

respectively, with these percentages equally distributed between the two oxygen atoms. 

In the CMD simulations, the hydrogen is bonded to the O2 oxygen atom. Therefore, the 

change in position of the hydrogen is only achieved by rotating the bonds of the carboxyl 

group, which is more expensive compared to the CpHMD method. The CMD and 

CpHMD at pH 1 simulations are then not fully comparable due to the different sampling 

of the protonation states. However, the multiple protonatable positions of the CpHMD 

simulations are far from causing significant deviations in the conformational sampling of  
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Figure 7. Energy distributions of the capped Lys2 tripeptide. Global, inner, van der 

Waals, and electrostatic terms are shown. Dotted and dashed lines are CpHMD and CMD 

simulation methods, respectively. 

the acidic amino acids as observed in the Ramachandran maps and population ratios 

reported above.  

4.2.2. Energy Contributions 

The energy terms of the AMBER’s force field provide further information for the 

interpretation of the conformational sampling divergence. Therefore, normalised 

distributions of the contribution energies (total, kinetic, and potential, and each term of 
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the potential energy) were computed using the energy values from the simulation and 

plotted using GNUPLOT. The partition of the electrostatic energy into backbone and side 

chain contributions was also performed using CPPTRAJ to clarify the effects of the 

mismatch between the partial charges. This section focuses primarily on the electrostatic 

contribution, but other energy terms are also illustrated and some internal energies are 

highlighted during the analysis.  

 

Figure 8. Energy distribution of the 1–4 and long-range electrostatics of the backbone 

and side chain atoms of the capped Lys2 tripeptide. The dotted and dashed lines are the 

CpHMD and CMD simulation methods, respectively. 

The energy distributions of the basic pKa amino acids are shown in Figure 7, 

Figure B7 and Figure B8 for the LYS, TYR, and CYS systems, respectively. In the LYS 

system, the overlapping of the protonated simulations (LYSCMD and LYSCpHMD at pH 1) 

is observed in all energy terms of Figure 7. On the contrary, the deprotonated LYS 

systems (LYNCMD and LYSCpHMD at pH 14) show a significant shift in the 1–4 

electrostatic interactions, as well as in the long-range electrostatics, which has a distinct 

shape in the distribution. To understand the effect of the partial charges restriction in the 

implementation of the CpHMD method in AMBER, the electrostatic terms of all 

simulations were decomposed into backbone and side chain atoms. The separation of the 

electrostatics in the LYS systems reveals that the contribution of the protonated systems 

(LYSCMD and LYSCpHMD at pH 1) perfectly overlaps in both backbone and side chain 

atoms of the amino acid (Figure 8). However, a deviation is observed in both backbone 

electrostatic terms and the 1–4 electrostatics of the side chain distributions of the 
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deprotonated simulations (LYNCMD and LYSCpHMD at pH 14). This deviation in side chain 

electrostatics may be related to the partial charge of the Cβ atom (Table B2). 

In the TYR system, only the energy distributions of the protonated simulations 

(TYRCMD and TYRCpHMD at pH 1) are available in Figure B7. Both distributions overlap 

perfectly, as does the decomposition of the electrostatics in the Figure B9. These results 

are consistent with those observed in the Ramachandran maps. On the other hand, the 

energy distributions of the CYS systems also show a good overlap in the protonated 

simulations (CYSCMD and CYSCpHMD at pH 1) in Figure B8. However, the deprotonated 

systems (CYMCMD and CYSCpHMD at pH 12) display mild shifts in the total, potential, 

dihedral and 1–4 electrostatic energies, and different shapes in the 1–4 and long-range 

electrostatics. The decomposition of the electrostatics in the deprotonated simulations 

evidences a modest shift in the distributions of the electrostatics in both side chain and 

backbone atoms (Figure B10). The backbone electrostatics of CYSCpHMD at pH 12 suggest 

that the deprotonated form modulates the conformational sampling in such a manner that 

the distribution shape ultimately becomes similar to that of CYMCMD. Furthermore, the 

conformational sampling of the deprotonated CYS systems (CYMCMD and CYSCpHMD at 

pH 12) in Figure B4 and Figure 3 are in surprising agreement although some energy terms 

differ. 

The protonated simulations of the HIS amino acid (HIPCMD and HIPCpHMD at pH 

1) show a large overlap of the energy distributions in Figure B11. However, the 

deprotonated forms (HIECMD, HIDCMD and HIPCpHMD at pH 12) exhibit dissimilarities in 

several energy terms (i.e., total energy, potential energy, electrostatics and internal 

energies). The distribution of the CpHMD simulations does not reproduce the δ or ε state 

of the neutral HIS as observed in the plots. This fact was expected given the coexistence 

of the two protonation states in the CpHMD simulations. Instead, the electrostatic energy 

of HIPCpHMD at pH 12 shows two peaks representing these states, but far from the energy 

range shown in the deprotonated CMD forms. To unravel this behaviour, the 

decomposition of the electrostatics is illustrated in Figure B12. The distributions of the 

protonated simulations (HIPCMD and HIPCpHMD at pH 1) follow the trend of the global 

electrostatics. On the contrary, the deprotonated simulations (HIECMD, HIDCMD and 

HIPCpHMD at pH 12) show distinct distributions in all contributions. The backbone 

electrostatic energies show that the distributions of HIPCMD and HIPCpHMD at pH 1 and 12 

overlap, while the HIECMD and HIDCMD systems have their singular distributions. The 
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side chain contributions are more coherent as the distribution of HIPCpHMD at pH 12 is 

closer to the deprotonated simulations (HIECMD and HIDCMD) rather than to the protonated 

ones (HIPCMD and HIPCpHMD at pH 1). Focusing on the deprotonated CpHMD system, 

this behaviour in the backbone atoms is explained by the incorrect assignment of partial 

charges. The deviation of the electrostatic energy in the side chain atoms is due to the 

sum of two factors: (i) the partial charges of the side chain atoms vary with time due to 

the alternation between the δ and ε neutral states during the CpHMD simulation, which 

then modulates the conformational sampling, and (ii) the distributions of the electrostatic 

decompositions for the HIPCpHMD at pH 12 are calculated using fixed partial charges of 

the HID or the HIE residues, ignoring the actual protonation state of the residues during 

the CpHMD simulation. Then, these distributions of HIPCpHMD at pH 12 systems should 

be considered as rough approximations. 

The ASP and GLU amino acids introduce the multiple protonatable sites into the 

CpHMD simulations. The energy distributions are illustrated in Figure 9 and Figure B13, 

respectively. For the ASP amino acid, in contrast to the previous amino acid sets, the 

energy distributions of the protonated systems (ASHCMD and AS4CpHMD at pH 1) do not 

overlap due to the electrostatics (1–4EE, long-range EE, and, for the first time, 

Generalised Born contributions) as well as the angular and dihedral energies. Some 

deviations with respect to the CMD counterpart are expected because of the multiple 

protonation states over time. The deprotonated systems (ASPCMD and AS4CpHMD at pH 

12) show similar total and potential energies, but the same behaviour is observed in the 

electrostatic, angular, and dihedral contributions. In fact, the distribution shift is more 

pronounced for the electrostatic interactions. The angular and dihedral terms of the 

AS4CpHMD systems at acidic and basic pH conditions overlap strongly between them, 

except for their analogues (ASHCMD and ASPCMD). The electrostatic decomposition into 

backbone and side chain atoms in Figure 10 proves that the latter contribution causes the 

divergence in the electrostatics for the protonated simulations. This fact is probably 

related to the change in protonation states (and partial charges) during the simulation. The 

two peaks shown in the side chain electrostatics in the AS4CpHMD at pH 1 correspond to 

the syn-O1 and syn-O2 protonation states in their most stable conformation. For the 

deprotonated simulations, a mismatch in the distributions in both the side chain and 

backbone contributions is observed. This can be readily explained by the different partial  
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Figure 9. Energy distributions of the capped Asp2 tripeptide. Global, inner, van der 

Waals, and electrostatic terms are illustrated. The dotted and dashed lines are the CpHMD 

and CMD simulation methods, respectively.  

charges of the backbone atoms, while the shift in the side chain is probably caused by the 

partial charge of the Cβ atom. 

The energy distributions of the GLU systems show similar results to those 

observed for the ASP amino acid. The protonated simulations (GLHCMD and GL4CpHMD 

at pH 1) show variations in the kinetic and potential energies, specifically in the angular, 

dihedral, and electrostatic terms (Figure B13). However, the deviations in the electrostatic 

energy are smaller than those in the ASP systems since the distributions agree in the 
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energy range, but the contours do not fit. On the contrary, the distributions of the 

deprotonated systems (GLUCMD and GL4CpHMD at pH 12) have a larger shift for the total, 

potential, and 1–4 electrostatic terms, and a similar energy range for the long-range 

electrostatics. The decomposition of the electrostatic terms (Figure B14) shows that the 

backbone atoms reproduce the electrostatic interactions in the protonated systems 

(GLHCMD and GL4CpHMD at pH 1). The electrostatic potential of the side chain atoms is 

inconsistent, which we assume is the result of the multiple protonation state. The 

distributions of the deprotonated systems (GLUCMD and GL4CpHMD at pH 12) evidence 

deviations in the backbone and side chain contributions for both electrostatic terms. The 

contours in the side chain electrostatics suggest different protonation state sampling in 

the CpHMD simulations compared to the CMD counterparts. 

 

Figure 10. Energy distribution of the 1–4 and long-range electrostatics of the backbone 

and side chain atoms of the capped Asp2 tripeptide. The dotted and dashed lines are the 

CpHMD and CMD simulation methods, respectively. 

In the analysis of the energy contributions some energy-related deficiencies are 

identified. An accurate description of the electrostatics is crucial to ensure the 

reproducibility of the simulation and thus obtain a satisfactory conformational sampling. 

The energy decomposition helped to clarify several points. On the one hand, the backbone 

electrostatic energy shows that the protonated simulations are in agreement while the 

deprotonated ones do not match. As discussed in the previous section, the CpHMD 

method fixes the partial charges of the backbone atoms to the reference residue, i.e., the 

protonated state, regardless of the protonation state of the amino acid. This approach gives 

an inaccurate description of the electrostatic interactions when the residue is deprotonated 
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and therefore the deprotonated CpHMD simulations cannot reproduce the electrostatic 

distributions of the CMD counterpart. In fact, the backbone electrostatics of the 

deprotonated CpHMD simulations usually overlaps with the distributions of the 

protonated systems, although smooth shifts can be observed as a result of the different 

conformational sampling. In particular, the CYS systems might be controversial as they 

have a correct global electrostatic distribution, but when the backbone and side chain 

contributions are considered separately, the CMD and CpHMD counterparts clearly do 

not have similar distributions. On the other hand, the side chain electrostatic energies 

generally show deviations in the deprotonated simulations of all amino acids and the 

protonated simulations of HIS and acidic amino acids. These deviations are caused by 

two factors: (i) the modified partial charge of the Cβ atom to ensure a net charge change 

of ±1.0, which affected the distributions of the deprotonated forms, and (ii) those amino 

acids with multiple protonatable sites in the CpHMD method that are not comparable to 

the CMD counterparts since the partial charges of the side chain atoms of the CpHMD 

residues vary during the simulation accordingly to the different protonation states. This 

is observed for the deprotonated form of HIS and the protonated form of the acidic amino 

acids, including in the Generalised Born electrostatics of the latter.  

The energy distributions also suggest that the angular and dihedral energies are 

not properly described in these multiple protonatable amino acids. It seems plausible that 

the divergence in these two terms is not due to the partial charges and could instead be 

caused by (i) the activation and deactivation of the hydrogen during the protonation 

change and/or (ii) how the CpHMD-specific residues and these ghost hydrogen atoms are 

introduced into the residues. 

4.2.3. Side Chain Orientation and Atom Distances 

Finally, the dihedral angles φ and ψ and the characteristic dihedral, which is 

constructed by the backbone Cα atoms and a selected side chain atom of each amino acid, 

were used to define a new representation of the conformational space. This dihedral, 

called angle θ, is more suitable for providing insight on the orientation of the side chains 

with respect to the backbone chain. This side chain-orientation space is then divided into 

four sets: the 𝜑𝑖/𝜃 and 𝜃/𝜓𝑖, where 𝑖 is the N-terminal (monomer 1) or C-terminal 

(monomer 2) amino acid. Figure 11 illustrates the θ dihedral angle and Table B3 gives 

the selected atoms for the θ angle for each amino acid. The map of the capped His2 
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tripeptide is illustrated in Figure 12 and Figure 13, and the other maps are shown in 

Appendix B (Figures B15–B19). The distribution of interatomic distance between the 

selected atoms is shown in Figure B21. 

 

Figure 11. Dihedral angle (θ) constructed using the Cα atoms (CA) and the selected atoms 

in the side chain. In this case the carboxylic carbon atoms (CG) are selected. Table B3 

gives the atom selection for each amino acid. 

In general, the deprotonated and protonated simulations are consistent with the 

results of the Ramachandran maps. The protonated systems of all amino acids, except 

GLU and ASP, show a good agreement of the conformational sampling as well as the 

distances of the specific atoms. In contrast, the GLU and ASP systems exhibit mild 

deviations in both conformational sampling and atomic distances. For all the amino acids, 

the conformational sampling of the deprotonated forms diverges between the CMD and 

CpHMD counterparts, being of minor relevance for CYS and LYS and more significant 

for HIS, GLU and ASP.  

This subsection is consistent with the reported results of the Ramachandran maps 

and energy distributions. However, the definition of this new angle and the construction 

of these maps (in the φ/θ and θ/ψ space) provide new information about HIPCpHMD at pH 

12. The atomic distances and the plots are more similar to the HIDCMD system rather than 

to HIECMD, which seems plausible since the side chain electrostatics of HIPCpHMD at pH 

12 are closer to the HIDCMD. Indeed, this conclusion is in line with the population of the 

δ state during the CpHMD simulation (77% and 81% for monomers 1 and 2, respectively)  
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Figure 12. Gibbs free energies in the side chain-orientation space of the capped His2 

tripeptide. Each subtitle indicates the residue, the simulation method (in the superscript) 

and the solvent pH (for the CpHMD simulations only). The dihedral angles ψ and θ are 

used in this plot for each monomer (ψ1 from the N-terminal amino acid; ψ2 from the C-

terminal amino acid). The protonated forms are on the left and the deprotonated forms 

are on the right. The solid lines indicate an increase of 0.6 kcal/mol in the energy values. 

in contrast to the ε state (23% and 19%). On the other hand, residues GLU and ASP show 

different behaviour. In these systems, the dihedral plots show that the CMD and CpHMD 

counterparts (e.g., in the case of GLU, the GLHCMD and GL4CpHMD at pH 1 systems for 

the protonated form, and the GLUCMD and GL4CPHMD at pH 12 systems for the 

deprotonated one) have a similar conformational sampling, although closer atomic 

distances are shown when using the same simulation method. Even though the deviation 

in atomic distance is small, it may be due to a failure to correctly describe the angle and 

dihedral energies.  
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Figure 13. Gibbs free energies in the side chain-orientation space of the capped His2 

tripeptide. Each subtitle indicates the residue, the simulation method (in the superscript) 

and the solvent pH (for the CpHMD simulations only). The dihedral angles φ and θ are 

used in this plot for each monomer (φ1 from the N-terminal amino acid; φ2 from the C-

terminal amino acid). The protonated forms are on the left and the deprotonated forms 

are on the right. The solid lines indicate an increase of 0.6 kcal/mol in the energy values. 

4.3. Conclusions 

Ramachandran maps and energy distributions have shown that the CpHMD 

method can reproduce the conformational sampling of the protonated forms of the 

tripeptides simulated with the CMD method. For the deprotonated forms, the different 

assignment of partial charges of the backbone atoms in the AMBER implementation leads 

to inaccuracies in the conformational profiles and energy distributions with respect to the 

CMD simulations. The electrostatic distributions show good agreement for the protonated 

forms, while the deprotonated ones exhibit significant deviations. The decomposition of 

the energy into backbone and side chain contributions reveals that the backbone 

electrostatics of the protonated form, that is, the reference state, in the protonated CMD 

simulations and both protonated and deprotonated CpHMD simulations have similar 

distributions. Instead, the deprotonated CMD systems have their own distribution 
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according to the assigned partial charges. The mismatch in energy between the 

deprotonated forms and the overlap of the energy distribution of the deprotonated 

CpHMD systems with the distributions of the protonated forms is due to the fixed partial 

charges of the backbone atoms in the CpHMD simulations. In addition, minor deviations 

in the side chain electrostatic energies are observed in the deprotonated forms due to the 

modified partial charge of the Cβ atom. The acidic amino acids also do not overlap 

perfectly in the side chain electrostatics due to the multiple protonatable sites in the 

CpHMD simulations, thus showing an energy distribution with two peaks corresponding 

to the protonation states in the syn position of each oxygen atom. Furthermore, these 

multi-site protonatable amino acids, which also include the deprotonated HISCpHMD, show 

deviations in the angular and dihedral energies. Due to the different sampling of 

protonation states in the CMD and CpHMD methods, the Ramachandran maps and the 

energy distributions of these residues are not strictly comparable. Thus, the change in 

protonation states might be considered an advantage for sampling the conformational 

space rather than an inaccurate description of the amino acids. 

The CpHMD method represents an improvement in the simulation of the 

biomolecules. The dynamic protonation states provided by the CpHMD methods allow 

the protonation state sampling according to the chemical environment (and therefore a 

greater conformational sampling) during the course of the simulations. For amino acids 

that have more than one protonation state in the protonated form, the fast mobility of the 

hydrogen atoms may provide a better description rather than CMD simulations. However, 

the Ramachandran maps reveal a shortcoming in the conformational sampling of the 

deprotonated CpHMD simulations due to the fixed partial charges of the backbone atoms. 

Therefore, we recommend using the CpHMD method in the AMBER implementation 

with caution, since the effects of incorporating inaccurate partial charges in the backbone 

atoms are unknown, and comparing structural protein descriptors (Rg, chemical shifts, 

FRET measurements…) with experimental data whenever possible. 
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Chapter 5 

Unravelling Constant pH Molecular Dynamics 

in Oligopeptides with Explicit Solvation Model 

 

The advantages of including the dynamic change of the protonation state 

depending on the chemical environment, and thus the charge-structure coupling, in the 

simulations are more than obvious for the study of proteins. To achieve this consideration 

in Molecular Dynamics (MD) simulations, this thesis has already introduced several times 

the Constant pH Molecular Dynamics (CpHMD) technique1–5 developed over the last two 

decades, and more specifically we have focused on the approach with discrete protonation 

states4,6–8. By explicitly describing the protonation states, the discrete CpHMD method 

allows us to obtain a realistic atomistic representation of the conformational and 

protonation space of molecular models. The emergence of the simulations at constant pH 

and their recent popularisation through the implementation in software packages such as 

AMBER9, CHARMM10 or GROMACS11 has not yet permitted an in-depth study of the 

potential of these approaches in the conformational space of proteins. While they have 

demonstrated a great ability to predict pKa or even reproduce mechanisms and 

conformational configurations of some proteins12–21, our study on polyaspartic acid in 

Chapter 3 reveals some shortcomings in terms of conformational sampling. To explore 

these observations further, a detailed evaluation of the discrete CpHMD method with 

implicit solvation based on Generalised Born was performed. After carrying out CpHMD 

simulations of capped tripeptides and comparing them with conventional MD (CMD) 

simulations22, some drawbacks regarding the conformational sampling of the titratable 

residues were observed. We concluded that the rough approximation made to the fixed 

partial charges of the backbone atoms in the titratable residues led to significant 

deviations in the conformational sampling of the deprotonated forms of the titratable 

amino acids. However, given the extensive literature demonstrating the potential of this 

method in certain applications and the advantages of protonation sampling over  
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conformations, we believe that these limitations can eventually be overcome in order to 

improve the accuracy of the constant pH simulations. 

In this chapter, therefore, we proceed with the evaluation of the discrete CpHMD 

implemented in AMBER to shed light on the extent of the limitations mentioned above. 

Here, the hybrid solvation method8, i.e., implicit solvation for the protonation state 

change attempt and explicit solvation for the conformational sampling, was used on the 

capped tripeptides in simulation boxes with TIP3P water molecules23. Unfortunately, the 

analysis of the conformational space and energy distributions indicates that the 

inconsistencies persist in the deprotonated state during the CpHMD simulations, 

regardless of the solvation method. To pursue our goal, we examined whether the position 

of the aspartic acids within a non-polar oligopeptide are also influenced by these 

shortcomings. We therefore performed extensive 8-microsecond simulations with two 

oligopeptides containing two aspartic acids in different positions: (i) separated and 

terminal and (ii) adjacent and central. Using both structural properties and energy maps, 

we prove that it is possible to minimise the deviations when the titratable amino acids are 

sufficiently distant, thus providing a better understanding of the limitations of the 

CpHMD method implemented in AMBER for large biomolecule studies. 

5.1. Materials and Methods 

In light of the objectives of this work, we prepared two sets of peptides to provide 

more insight into the performance of the CpHMD method. The first set of simulations 

includes the capped tripeptide to investigate the limitations reported in the previous 

chapter22, but this time including explicit water molecules in the simulations. The second 

set includes oligopeptides with two aspartic acids placed at different positions in the 

sequence to study the effect of the distance between titratable amino acids when using the 

CpHMD method. 

5.1.1. Capped Tripeptides 

Six tripeptides consisting of two consecutive amino acids with acetyl (ACE) and 

N-methyl (NME) capping groups at the extremes of the sequence (ACE-X-X-NME) were 

constructed using the LEaP module of the AMBER suitcase. The titratable amino acids 

available in the CpHMD method of AMBER18 version24 were Asp (D), Glu (E), His (H), 

Cys (C), Tyr (Y), and Lys (K). The residues and pH conditions used in the tripeptide 

simulations are listed in Table 1. Asp and Glu have specific titratable residues (AS4 or 
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GL4) due to the multiple positions of the proton in the protonated form, as shown in 

Figure 1. The other amino acids use the residue in the protonated form (HIP, CYS, TYR, 

and LYS) as the titratable residue in the CpHMD method. Since histidine has two 

protonation states in the neutral form, the delta (δ) and epsilon (ε) protonation states, the 

corresponding tripeptides in these states were prepared using the HID and HIE residues 

in the CMD simulations, respectively. Tyrosine was not simulated in the deprotonated 

form, as it is not parameterised in this protonation state in the CMD method. Finally, a 

simulation box with a minimum distance of 14.0 Å from any atom of the tripeptides was 

constructed and filled with TIP3P water molecules. If necessary, counterions were added 

until the net charge of the simulation box was neutralised. Any solvent molecule within 

1.0 Å of the solute was removed to avoid overlapping between molecules.  

 

Figure 1. Protonation states of the carboxyl group in the side chains of the residues AS4 

or GL4. There are four protonated states depending on the position (syn or anti) of the 

hydrogen atom with respect to the charged oxygen. 

5.1.2. Oligopeptides  

The second set of simulations was two oligopeptides consisting of a linear chain 

of eight alanine interrupted by two aspartic acids in different positions: (1) adjacent and 

central (ACE-A-A-A-A-D-D-A-A-A-A-NME or A4D2A4) or (2) separated and terminal 

(ACE-D-A-A-A-A-A-A-A-A-D-NME or DA8D). The ACE and NME capping groups 
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were added at the extremes of the peptides as we indicated in the sequences. These 

oligopeptide systems were defined as cubic boxes of 77.5 Å per axis and filled with TIP3P 

water molecules. If necessary, counterions were added until the net charge of the 

simulation box was neutralised. Any solvent molecule within 1.0 Å of the solute was 

discarded to avoid overlapping between solute and solvent molecules. 

5.1.3. Preparation of the Input Peptide Structures 

The ff14SB force field25 and the constph.lib library (for CpHMD simulations 

only) were loaded into the LEaP module to parameterise the capped tripeptides and the 

oligopeptides. The cpinutil.py script then prepared the protonation states of the titratable 

residues using the Generalised Born model of Onufriev et al.26 (igb = 2) for an ionic 

strength of 0.1 M. The residues AS4 and GL4 were defined in the syn-O2 protonated state 

at acidic pH conditions, and the residue HIP started as the neutral δ-state protonation state 

at basic pH conditions. The script also modified the intrinsic radii of the carboxylate 

oxygens in the topology file of those peptides containing residues AS4 and GL427. 

5.1.4. All-Atom Conventional and Constant pH Molecular Dynamics Simulations 

All the peptide systems were minimised using the steepest descent method28 in 

three levels of restriction. Restrictions with a force constant of 5 kcal·mol-1·Å2 were 

applied in (1) all peptide atoms, (2) backbone atoms only and (3) no restrictions, during 

5000 steps at each restriction level. In the CpHMD simulations, we did not turn on the 

protonation state change attempt during minimisation. Next, the systems were heated 

from 0 to 300 K with a linear increase of 1 K·ps−1 in the canonical ensemble (𝑁𝑉𝑇) and 

then equilibrated for 200 ps in the isobaric-isothermal ensemble (𝑁𝑃𝑇). Using the last 

coordinates after equilibration, four replicas with random initial velocities following a 

Maxwell–Boltzmann distribution were generated, and production runs of 500 ns (4 

replicas × 500 ns = 2 µs per simulation) were performed in the canonical ensemble in 

order to increase the conformational sampling29. A Langevin thermostat30 was set up with 

a collision frequency of 3 ps−1. Periodic boundary conditions and the SHAKE algorithm 

were employed in the simulations. In the hybrid solvent CpHMD method of the AMBER 

implementation, the frequency of the protonation state change attempt was set to 0.2 ps⁻1 

and water molecules were relaxed 0.2 ps after a successful attempt. Fully protonated or 

deprotonated states of the titratable amino acids were ensured by applying strong acidic 

(pH = 1) and basic (pH = 12) pH conditions in the CpHMD simulations. The titratable 
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LYS residue required an increase in the pH value at basic conditions (pH = 14.0). In the 

oligopeptide simulations, we set the solvent pH to 10.0 for a fully deprotonated state since 

aspartic acid has a low intrinsic pKa value. The simulations performed in this study are 

summarised in Table 1. All the MD calculations were carried out using the GPU version 

of the PMEMD software. 

5.1.5. Energetic and Conformational Analysis 

In all simulations the conformational configurations of the trajectory were 

collected every 10 ps. The energy contributions were later recalculated with a cut-off of 

10.0 Å and using the trajectories after stripping the solvent molecules. The electrostatic 

energies were computed using Particle Mesh Ewald with a long-range correction for 

periodicity. In addition, the electrostatic potential was calculated dividing the capped 

tripeptides into the backbone atoms, including the capping groups, and the side chain 

atoms. In the CpHMD simulations, we also obtained the protonation fractions and the 

populations of each protonation state of the titratable amino acids using the cphstats 

program available in AMBER to confirm that the CpHMD simulations were performed 

in fully protonated or deprotonated states. 

The radial distribution functions (RDFs) and the dihedral angles φ and ψ of the 

tripeptides were calculated using the CPPTRAJ module31. RDFs were computed using 

the distance of the water molecules around specific atoms of the side chains of each amino 

acid. An in-house script calculated the Ramachandran energy maps by transforming the 

dihedral data into Gibbs free energy as given in Eq. 1. 

∆𝐺 = −𝑘𝑏𝑇𝑙𝑛(𝑛𝑖 𝑛𝑚𝑎𝑥⁄ ) Eq. 5.1 

where 𝑘𝑏 is the Boltzmann constant, T is the temperature, and 𝑛𝑚𝑎𝑥 and 𝑛𝑖 are the 

maximum population and the population of a cell 𝑖 in a grid of dihedral angles with a 

spacing of 1°. We classified the regions of the Ramachandran maps according to scheme 

of Rubio-Martinez et al. 32 as shown in Appendix C, Figure C1. 

The conformational properties of the oligopeptides were analysed by the radius of 

gyration (Rg) and secondary structure fractions (fpSS) using the CPPTRAJ module. Rg 

was calculated using the Cα atoms of the peptides. fpSS was estimated by the DSSP 

method using all backbone atoms. All trajectories were superimposed onto the linear  
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Table 1. Summary of the simulations indicating the peptide, the residue type, the 

simulation method, the protonation state (PS), and the intrinsic pKa of the amino acids. 

The PS labels indicate protonated (P), deprotonated (D) or titratable (T) residues, while 

the superscripts refer to the positive (+), neutral (n) or negative (-) charge of the side 

chains. The PS of the titratable residues depends on the solvent pH conditions (1, 12, or 

14). 

CAPPED TRIPEPTIDES 

Residue CMD 
CpHMD 

PS Intrinsic pKa 
pH 1 pH 12 pH 14 

ASP ✓    D- 

4.0 ASH ✓    Pn 

AS4  ✓ ✓  T 

GLU ✓    D- 

4.4 GLH ✓    Pn 

GL4  ✓ ✓  T 

HIE ✓    Dn 

6.6 HID ✓    Dn 

HIP ✓ ✓ ✓  P+/T 

CYM ✓    D- 
8.5 

CYS ✓ ✓ ✓  Pn/T 

TYR ✓ ✓   Pn/T 9.6 

LYN ✓    Dn 
10.4 

LYS ✓ ✓  ✓ P+/T 

DA8D 

  pH 1 pH 10    

ASP ✓    D- 

4.0 ASH ✓    Pn 

AS4  ✓ ✓  T 

A4D2A4 

  pH 1 pH 10    

ASP ✓    D- 

4.0 ASH ✓    Pn 

AS4  ✓ ✓  T 
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conformation before applying the Principal Component Analysis (PCA). PCA was 

applied by using the covariance of the Cα atom positions to build the transformation 

matrix. Subsequently, the conformational configurations were projected in a space 

defined by the first two Principal Components (PCs) to calculate the Gibbs free energy, 

as indicated in Eq. 1., with a grid spacing of 0.2°. Finally, the trajectories were clustered 

with the hierarchical agglomerative (bottom-up) approach using the root-mean-square 

displacement (RMSD) of the Cα atom positions as the distance metric. The 

conformational configurations were divided into 15 clusters with a sieve of 20 frames. 

The RMSD values between all the representative conformations of each cluster (2D-

RMSD) were then calculated. All plots were generated with GNUPLOT33. 

5.2. Results and Discussion 

5.2.1. Capped Tripeptides in Explicit Water Molecules 

First, the capped tripeptides were simulated in explicit water molecules using 

CMD and CpHMD methods. The Ramachandran maps of the capped tripeptides were 

constructed by representing the backbone dihedral angles φ and ψ of each of the two 

monomers (the N- or C-terminal amino acid) of the tripeptide. We divided these maps 

into nine regions defined in Figure C1 according to the predominant conformation. The 

populations of each conformational region were calculated to provide a conformational 

profile of each peptide. In addition, the distributions of energy contributions were plotted, 

and the electrostatics was recalculated by removing the water molecules. In this study, 

we have focused on the latter contributions, which are fundamental in the change of the 

protonation states of the titratable amino acids. Finally, the effect of the electrostatic 

interactions on the solvent molecules was analysed by means of the RDFs of the water 

molecules around the tripeptides.  

The capped Asp tripeptide is mainly discussed in this section to assess the 

strengths and weaknesses of the acidic amino acids in the CpHMD method when the 

explicit solvation model was introduced in the simulations. In the previous chapter, we 

carried out a similar study of the capped tripeptides, but using the implicit solvent model, 

and finally reported inconsistencies in the approach due to the assignment of the partial 

charges of the backbone atoms, among other possible artifacts. In this chapter we intend 

to clarify whether the reported CpHMD limitations persist with explicit solvent. We will 

also discuss the results observed for the other tripeptides reported in the Appendix C. 
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5.2.1.1. Conformational Sampling Inconsistencies in Deprotonated Forms of Amino Acids with 

Multiple Protonation States 

The combinations of the dihedral angles ψ and φ of each amino acid were 

represented in the Ramachandran maps to obtain a profile of the secondary structure of 

each amino acid within the capped tripeptides. We then defined a grid on these maps to 

obtain the population fraction of each bin and thus calculate the Gibbs free energies. In 

addition, we measured the population ratios of the nine conformational regions as 

described in Materials and Methods. 

 

Figure 2. Ramachandran maps of the capped Asp2 tripeptide. The titles indicate the 

residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. Each simulation condition has two energy maps corresponding to the set of 

backbone dihedral angles of the N-terminal (φ1/ψ1) or the C-terminal amino acid (φ2/ψ2). 

The solid lines indicate an increase of 0.6 kcal/mol in the energy map. 

The Ramachandran maps of the capped Asp2 tripeptide are illustrated in Figure 2. 

In the protonated form of the Asp2 tripeptide, the conformational distributions of the 

CMD (ASHCMD) and CpHMD (AS4CpHMD
pH1) simulations do not fully satisfy the minima 

of the main populated regions (PII, αR, C7
eq, and C5), nor do the contours of the αR region. 

We also observed this behaviour in the energy maps of the deprotonated form (ASPCMD 

and AS4CPHMD
pH12), in which again the minima and the contours of the αR region do not 

agree between the methods. To quantitatively compare the simulation methods, we have 
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plotted the population of the main conformational regions in Figure 3. Here, the 

protonated simulations (ASHCMD and AS4CpHMD
pH 1) show small deviations (about ~10% 

maximum) in the populations of the regions, which can be accepted within a tolerance 

due to differences in the protonation state sampling between the methods. Thus, despite 

the deviation at the minima, the conformational populations of the protonated aspartic 

acid tripeptides are generally in agreement. However, when the Asp2 tripeptide is 

deprotonated (ASPCMD and AS4CpHMD
pH12), the systems exhibit strong deviations in the 

conformational regions. A low population ratio of the αL conformation confirms that this 

region is not sampled in the deprotonated CpHMD system. 

 

Figure 3. Populations of the conformational regions (PII, αR, C7
eq, C5, and αL) in the 

Ramachandran maps of each amino acid of the capped Asp2 tripeptide. The titles indicate 

the residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. The net charge of the tripeptide is shown below (q). The striped and solid 

box represent the protonated and deprotonated states, respectively. 

In this chapter we also performed the simulations for each of the titratable amino 

acids available in AMBER. On the one hand, there are the hydrophilic amino acids Glu 

(acidic) and His (basic). The former is structurally similar to the Asp amino acid, but with 

an additional methyl group in the side chain and a slight shift in the intrinsic pKa. Indeed, 

the Ramachandran maps of the protonated (GLHCMD and GL4CpHMD
pH1) and deprotonated 

forms (GLUCMD and GL4CpHMD
pH12) show a similar behaviour as the Asp2 tripeptide in 

Figure C2. The conformational populations confirm this behaviour in Figure C3, in which 

the populations of the conformational regions in the Ramachandran maps are clearly 

different in the deprotonated form. The case of histidine is more complex because the 

neutral form of the imidazole ring in the side chain can be defined as N-delta nitrogen (δ) 

or N-epsilon nitrogen (ε) depending on the position of the hydrogen. When found in the 
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protonated form, histidine is doubly protonated (and positively charged) in the imidazole 

ring. The Ramachandran maps of the capped His2 tripeptide show a good agreement in 

the protonated form (HIPCMD and HIPCpHMD
pH 1) as observed in Figure C4. The population 

ratios of the regions show this tendency in Figure C5. However, the neutral δ and ε states 

of the His2 tripeptide are remarkably different in CpHMD (HIPCpHMD
pH 12) when 

compared to CMD (HIDCMD and HIECMD). HIPCpHMD
pH12 shows a singular conformational 

distribution in the Ramachandran maps and population ratios, more similar to the 

protonated form rather than to the neutral HIDCMD or HIECMD tripeptides. 

On the other hand, the hydrophilic basic Lys, the hydrophobic aromatic Tyr and 

the hydrophilic polar Cys amino acids constitute a set of titratable residues with intrinsic 

pKa values > 7.0 (i.e., 10.4, 9.6, and 8.5, respectively). The protonated form of lysine 

(LYSCMD and LYSCpHMD
pH1), tyrosine (TYRCMD and TYRCpHMD

pH1) or cysteine (CYSCMD 

and CYSCpHMD
pH1) in the capped tripeptides show closer conformational sampling in the 

Ramachandran maps (Figures C6–C8) and the populations of the conformational regions 

(Figures C9–C11) when the simulation methods are compared. The conformational 

sampling of the cysteine in the deprotonated form (CYMCMD and CYSCpHMD
pH12) is also 

consistent between the two methods. However, the deprotonated form of lysine (LYNCMD 

and LYSCpHMD
pH14) shows mild but not significant deviations in the conformational 

profile in the Ramachandran map and population ratios. We remind that tyrosine in the 

deprotonated form was not evaluated in this work due to the lack of parameterisation in 

the ff14SB force field, although the partial charges of the side chain atoms in the 

deprotonated state are available in the CpHMD libraries. 

The conformational distributions of the capped tripeptides show that the 

conformational samplings of the deprotonated forms generally do not agree when the 

simulation methods are compared, except for those amino acids with pKa > 7, for which 

the deviations are small or acceptable within a tolerance. The protonated forms of the 

amino acids in the tripeptides agree in the conformational samplings, although those with 

multiple protonation states (Asp, Glu, and His) have mild shifts in the populations of the 

conformational regions. Furthermore, the inclusion of TIP3P water molecules generally 

leads to an increase in the PII population, except in a few specific cases, but still shows 

the deviations between simulation methods that were reported in the previous chapter. In 

that report, we attributed the observed inconsistencies in the conformational sampling 

mainly to the crude approach of the partial charges in the backbone and Cβ atoms, among 



Chapter 5. Unravelling Constant pH Molecular Dynamics in Oligopeptides with Explicit Solvation Model 

 

133 

 

other minor reasons. Thus, despite the inclusion of explicit water molecules, the 

deviations of the deprotonated forms are not corrected when comparing the simulation 

methods. 

5.2.1.2. Energy Contributions Reveal Deficiencies in Reproducing Electrostatic Interactions 

Each energy term involved in the simulations was calculated using the CPPTRAJ 

module and then we compared the normalised distributions of each simulation method. 

For the electrostatic interactions we calculated the 1–4 and long-range interactions (i) 

with TIP3P water molecules and (ii) ignoring the solvent. Although this chapter only 

illustrates the electrostatic energies after stripping off the solvent molecules, both cases 

are considered in the discussion of the following section. This decision was made because 

the large proportion of solvent-solvent interactions caused a masking effect and thus 

hindered the consequences of fixing the backbone partial charges of the titratable amino 

acids. To examine the effect of the electrostatic interactions of the solute on the solvent, 

the RDFs of the water molecules around each amino acid were calculated. 

As can be seen in Figure C12, the energy distributions of the Asp tripeptide show 

deviations in the electrostatic, dihedral and angular contributions in both the protonated 

(ASHCMD and AS4CpHMD
pH1) and deprotonated forms (ASPCMD and AS4CpHMD

pH12). The 

protonated form has electrostatic distributions in a close energy range but with distinct 

contours. In contrast, the deprotonated form exhibits distributions in distant energy ranges 

between the simulation methods. The CpHMD simulations share the same angular and 

dihedral distributions regardless of the solvent pH conditions and, in addition, are not 

consistent with the CMD analogues. To unravel the consequences of the incorrect partial 

charges in the CpHMD simulations, the electrostatic distributions of the backbone and 

side chain atoms were computed separately in Figure C13. In the protonated form 

(ASHCMD and AS4CpHMD
pH1), the backbone electrostatic energies agree in both the 1–4 

and long-range terms. However, the electrostatic energy of the side chain atoms does not 

match the distributions. The deprotonated form (ASPCMD and AS4CpHMD
pH12) shows mild 

shifts but similar contours in both the backbone and side chain electrostatic energy 

distributions. Nevertheless, the backbone electrostatic distribution of the tripeptide at 

basic pH conditions (AS4CpHMD
pH12) is closer to the protonated ones (ASHCMD and 

AS4CpHMD
pH1) rather than to the ASPCMD system.  
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Therefore, the energetic contributions of the simulations with explicit solvent 

molecules behave in a similar fashion to those with an implicit solvation model. Apart 

from some deviations in the electrostatic energies, which can be expected since the 

explicit water molecules are a more accurate solvent model, the reported inconsistencies 

were also demonstrated in the previous chapter. There, we explained that the failure to 

reproduce the electrostatics in the deprotonated form are primarily due to the partial 

charges approach in the CpHMD method, where the partial charges of the backbone 

atoms of the AS4 residue are fixed at the values of the protonated (or reference) residue 

during the simulation. In addition, the partial charge of the Cβ atom is also adjusted to 

ensure a change in net charge of ±1.0 when the protonation state of a titratable amino acid 

is changed. For this reason, the electrostatic interactions of the deprotonated form do not 

match in the backbone, which instead shows closeness to the distributions of the 

protonated form. Other factors are probably involved in these inconsistencies, such as the 

definition of dummy hydrogen atoms as ghost atoms or the different protonation state 

sampling. Note that the protonated form in the CpHMD method starts in the syn-O2 

protonation state, but rapidly changes to other protonated states over time after accepting 

a protonation state change attempt. At the end of the simulations, we calculated the 

populations on each protonation state and found that AS4CpHMD
pH1 is mainly populated a 

47.2% and 45.8% in the syn-O1 and syn-O2 protonated states, respectively. The 

protonation state sampling in the CMD simulations is slower because the protonation state 

change is achieved by rotating the bonds and angles of the carboxyl groups. In our 

previous work, we suggested that this faster protonation state sampling is probably the 

reason for the deviations observed in the conformational profiles. It should then be 

investigated whether the protonation state sampling represents a consistent improvement 

in the conformational sampling of these peptides. 

The radial distribution functions of the TIP3P water molecules around the capped 

tripeptides were calculated to understand the effect of the partial charges in the solute-

solvent electrostatic interactions. The RDFs of the Asp2 tripeptide in both protonated and 

deprotonated forms are in good agreement in Figure 4. The former (ASHCMD and 

AS4CpHMD
pH1) shows smooth changes in the contours of the distributions. On the other 

hand, the deprotonated form (ASPCMD and AS4CpHMD
pH12) shows only a slight shift in the 

distributions. In any case, these deviations are not significant and can be accepted within 
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a tolerance. Furthermore, the N-terminal or C-terminal position of the Asp amino acid in 

the tripeptide sequence does not affect the RDFs. 

For the other titratable amino acids, the Glu tripeptide shows a similar behaviour 

to the Asp tripeptide in the energy distributions as observed in Figures C14 and C15. The 

electrostatic interactions and the dihedral and angular energies do not agree between the 

methods for both the protonated (GLHCMD and GL4CpHMD
pH1) and deprotonated (GLUCMD 

and GL4CpHMD
pH12) forms. The case of the His tripeptide is more challenging since the δ 

and ε neutral states were fixed in the CMD simulations, whereas the CpHMD method 

allowed the exchange between both protonation states. Therefore, HIDCMD and HIECMD 

are not strictly comparable with the HIPCpHMD
pH12 simulation. All energy contributions of 

the protonated form (HIPCMD and HIPCpHMD
pH1) are in agreement in Figure C16. The 

deprotonated form (HIDCMD, HIECMD, and HIPCpHMD
pH12), on the other hand, does not 

agree when the simulation methods are compared, but they show total energy 

distributions in a close range. Only the electrostatic interactions exhibit notable shifts 

between the CpHMD and CMD simulations. Note that the energy distributions of 

HIPCpHMD
pH12 were calculated by fixing the partial charges of the side chain atoms in one 

of the two protonation states, which is a very rough approximation. Thus, the energy 

distributions of HIDCMD and HIECMD could be considered as the energy boundaries within 

which the distribution of HIPCpHMD
pH12 should fall. The electrostatic energies were also 

split into the backbone and side chain atoms in Figure C17. The backbone electrostatic 

contribution of HIPCpHMD
pH12 overlaps with the protonated form as observed for other 

peptides. The side chain electrostatic distribution shows mild shifts with respect to the 

HIDCMD and HIECMD simulations, suggesting that the source of the deviation is mainly 

due to the failure to reproduce the backbone electrostatics.  

Despite the deficiencies in the electrostatics, the RDFs of each protonation form 

of the capped Glu and His tripeptides show good overlapping in Figure 4. The Glu 

tripeptide has mild shifts in the protonated (GLHCMD and GL4CpHMD
pH1) and deprotonated 

(GLUCMD and GL4CpHMD
pH12) forms. For the His tripeptides, the RDFs of the simulations 

in the protonated form (HIPCMD and HIPCpHMD
pH1) overlap perfectly, and the deprotonated 

HIPCpHMD
pH12 also overlaps with HIECMD and HIDCMD.  

Finally, the energy contributions of the protonated form of Lys (LYSCMD and 

LYSCpHMD
pH1), Tyr (TYRCMD and TYRCpHMD

pH1) and Cys (CYSCMD and CYSCpHMD
pH1) 

tripeptides are in agreement, as can be observed in Figures C18–C20. However, the 
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deprotonated form of Lys (LYNCMD and LYSCpHMD
pH14) shows shifts in the distributions 

of the electrostatic energy and therefore in the total energy. The deprotonated Cys 

tripeptide (CYMCMD and CYSCpHMD
pH12) also fails in the overlapping of the electrostatic 

and dihedral energies. For the protonated forms of the tripeptides with pKa > 7.0, the 

division of the electrostatic energy into backbone and side chain atoms overlaps perfectly 

in all electrostatic contributions (Figures C21-C23). Nevertheless, the deprotonated forms 

show mild shifts in the side chain electrostatics, and the backbone electrostatic energy of 

the CpHMD simulations overlaps with the energy distributions of the protonated forms. 

The RDFs show good agreement in both protonated and deprotonated forms (Figure 4), 

suggesting that the approach in the partial charges of the backbone atoms does not have 

a significant effect on the distribution of water molecules around the tripeptides. 

 

Figure 4. Radial distribution functions (RDFs) of the water molecules around each amino 

acid of the capped tripeptides. Only the N-terminal amino acid of each tripeptide structure 

is shown in this plot. The simulations in the protonated form are represented with dotted 

lines and the deprotonated ones with dashed lines. 
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Because of the explicit description of the solvent molecules in the simulations, 

smooth changes in the contours or the energy range of the distributions are observed when 

these distributions are compared with those distributions of the simulations with the 

implicit solvent. Nevertheless, all the simulations show similar behaviour regardless of 

the solvation model. It should be noted that the His amino acid could not be fully 

compared because the rough approximation to calculate the electrostatic energy and 

therefore the distributions in the CpHMD simulation at pH 12 should be averaged over 

the population of each state (δ or ε). In this case, the ε-state is more populated in the 

explicit solvation model (30% and 22% for N- and C-terminal amino acids, respectively) 

than in the simulations with the implicit solvent (23% and 19%). However, the δ-state 

still predominates at strong basic pH conditions (70% and 78%), which is consistent with 

the evidence observed in the Ramachandran maps and conformational populations. 

5.2.2. Titratable Aspartic Acids in Adjacent and Terminal Positions in Oligopeptides 

After evaluating the CpHMD method, we constructed two oligopeptides with 

eight Ala and two Asp amino acids in (1) separated and terminal (DA8D peptide) and (2) 

adjacent and central (A4D2A4 peptide) positions as test models. These simulations were 

designed to assess whether the failure of electrostatic interactions or other reported 

shortcomings of the CpHMD method persist in these oligopeptides and whether the 

distance between titratable amino acids can minimise the shortcomings. 

Therefore, 8 µs length simulations were performed for each of these oligopeptides, 

A4D2A4 and DA8D, in the protonated and deprotonated forms of the Asp amino acid using 

the CMD and CpHMD methods. We then analysed the conformational sampling of these 

peptides by clustering the trajectories and building energy maps in the PCA space. Other 

properties related to the conformational sampling were calculated, such as Rg and 

secondary structure propensities. Finally, the distributions of the energy contributions 

were also calculated to finish the study of the extent of the implications of using the 

CpHMD method in these peptides. 

5.2.2.1. The Position of the Titratable Amino Acids Modulates the Conformational Sampling 

First, the conformations of the trajectories were used to construct the covariance 

matrix within the PCA approach in order to project the conformational sampling in the 

PC1 and PC2 space. The Gibbs free energies were then calculated by generating a grid in 

this new space and calculating the populations of each bin. From the eigenvalues of the 
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PCs, it was estimated that ~50% of the conformational sampling data was collected in 

these energy maps. 

 

Figure 5. Gibbs free energies in the PC1 and PC2 space of the oligopeptides. The four 

plots at the top correspond to the DA8D peptide and the four at the bottom correspond to 

the A4D2A4 peptide. The subtitles indicate the peptide system, the simulation method (in 

superscript) and the residue label or the solvent pH (in subscript). 

The energy maps in PCA space of the DA8D and A4D2A4 peptides are illustrated 

in Figure 5. The oligopeptide with terminal titratable amino acids (DA8D) shows a similar 

conformational sampling regardless of the protonation state or even the simulation 

method. The location of the minima or populated regions is apparently more difficult to 

reproduce in the energy maps. Some subtleties are appreciated in the maps, e.g., the 

DA8D
CpHMD

pH1 system is more distributed in the space since a wide dark area is observed 

or a new minimum appears in DA8D
CMD

ASH. To quantitatively compare the 

conformational sampling of each system, the trajectories were clustered and the 

populations of the main clusters are shown in Figure 6. The clusters were ordered by 

population ratio, which does not necessarily mean that the cluster labels represent 

identical or close regions in the conformational sampling. Both protonated and 

deprotonated forms show good agreement in the populations of each cluster when the 

simulation methods are compared. In fact, the populations are similar between protonated 
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and deprotonated oligopeptides. The 2D-RMSD map of the representative conformation 

of the most populated clusters was calculated in Figures C24 and C25 to measure the 

structural similarity. In the protonated form, the superimposition of the representative 

conformations of the clusters C0 and C1 has a low RMSD value, indicating that 

DA8D
CMD

ASH and DA8D
CpHMD

pH1 exhibit a close conformational sampling for, at least, 

~40% of the trajectory. Other RMSD values show a good fitting between low populated 

clusters. However, the 2D-RMSD map of the deprotonated form indicates lower but still 

good fitting values. The two most populated clusters, C0 and C1, are present in both 

simulation methods but the order of their population changes. Other exchanges between 

low populated clusters are observed in the 2D-RMSD of the protonated and deprotonated 

forms, or even some representative conformations that apparently do not fit any other 

cluster.  

To analyse the convergence of the simulations, the distribution of the first three 

PCs at 2, 4, and 8 µs were computed for the protonated and deprotonated forms of DA8D 

in Figure C26. In general, the distributions do not change significantly over the reported 

times, but the observed peaks do, suggesting that more simulation time may be required 

for the stabilisation of the PC distributions. Given that the peaks at 4 and 8 µs showed 

small but still significant shifts in some systems, we extended the DA8D simulations to 

10 µs to ensure convergence. From 8 to 10 µs there were no notable variations in the 

distributions. We therefore concluded that simulation lengths of 8 µs were sufficient to 

sample the conformational space of the oligopeptides extensively. 

On the other hand, the A4D2A4 peptide shows remarkable differences in the energy 

maps in Figure 5. The protonated form (A4D2A4
CMD

ASH and A4D2A4
CpHMD

pH1) is widely 

distributed in the conformational space. The conformational populations of the clusters 

confirm this observation as the ratios of the most populated clusters are very high. The 

2D-RMSD values are not encouraging since the representative conformation of the most 

populated cluster, C0, of A4D2A4
CpHMD

pH1 does not match any of the most populated 

clusters of A4D2A4
CMD

ASH or the cluster C1 of A4D2A4
CpHMD

pH1. Since all clusters have 

closer populations and good RMSD values are observed in the 2D-RMSD plot and in 

other clusters, we assume that the conformational sampling is not very different between 

the methods. The simulations of the oligopeptide in the deprotonated form 

(A4D2A4
CMD

ASP and A4D2A4
CpHMD

pH10) show a more restricted conformational sampling 

in Figure 5, especially for the A4D2A4
CpHMD

pH10, which clearly exhibits three minima in 
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the map. Indeed, this system shows ~63% of the population contained within the three 

most populated clusters, which stands out with a difference of ~15% population when 

compared to the three most populated clusters of the peptide in the CMD method, 

A4D2A4
CMD

ASP. However, the RMSD values indicate a good fit between the representative 

conformations of the clusters of both CMD and CpHMD methods in Figures C27 and 

C28, suggesting that there were small structural changes. 

 

Figure 6. Representation of the clusters with a population ratio >5% (DA8D and A4D2A4 

at the top and the bottom, respectively) in all simulation methods. The labels on the x-

axis indicate the system, the simulation method (in superscript) and the solvent pH (in 

subscript, CpHMD simulations only). The total charge of the tripeptide is given below 

the systems (q = −2, 0). The box style (striped or solid) represents these systems in the 

same protonation state, regardless of the simulation method. 

Thus, similar population ratios between clusters and tolerable agreement in the 

RMSD of representative conformations (but in exchange order) are found in the 

protonated form, while the deprotonated form shows better RMSD values between the 

simulation methods but more shifts in the population fractions. In order to explain the 
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behaviour observed in the energy maps and the clusters, we calculated some 

conformational properties to check if these tendencies are also present in these structural 

indicators. 

 

Figure 7. Comparison of the normalised distributions of Rg of the DA8D (left) and 

A4D2A4 (right) peptides. The simulation methods are represented in dashed (CMD) and 

dotted (CpHMD) lines. Cyan and blue colours indicate the deprotonated form and 

magenta and red colours indicate the protonated from. 

5.2.2.2. Terminal Titratable Residues Accurately Describe Conformational Properties 

The radius of gyration of the peptides was calculated in Figure 7 to measure the 

dispersion of atoms around the centre of mass as an indicator of structural compactness. 

The Rg distributions of the DA8D peptide are in good agreement for both protonated and 

deprotonated forms, except for the two peaks located at ~5 Å. Nevertheless, the 

protonated form (DA8D
CMD

ASH and DA8D
CpHMD

pH1) is fairly similar on the first peak, 

while the deprotonated form (DA8D
CMD

ASP and DA8D
CpHMD

pH10) only overlaps on the 

second peak. Thus, the DA8D peptide is consistent between the simulation methods, but 

smooth deviations in the peaks are observed. On the other hand, the A4D2A4 peptide 

disagrees remarkably on the deprotonated form (A4D2A4
CMD

ASP and A4D2A4
CpHMD

pH10). 

The tail of the Rg distribution of A4D2A4
CpHMD

pH10 decays faster and the first peak is larger 

than in the CMD simulation, suggesting more compacted conformations compared to 

A4D2A4
CMD

ASP. The protonated form (A4D2A4
CMD

ASH and A4D2A4
CpHMD

pH1) has similar 

distributions but with a mild shift in the first peak. The deviation in the deprotonated form 

is consistent with the conformational sampling analysed in the energy maps and clusters. 
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Figure 8. Secondary structure propensity fractions (fpSS) of each amino acid in the DA8D 

oligopeptide using the DSSP algorithm. β-sheets and π-helices are omitted due to lack of 

content. The dashed and dotted lines indicate the CMD and CpHMD simulation methods. 

The secondary structure propensity fractions (fpSS) of the peptides were 

calculated by using the DSSP method. In Figure 8, the DA8D peptide shows good 

agreement between the two protonation forms within a tolerance of ~5%. The bend and 

310 helix structures overlap strongly when the simulation methods are compared, and the 

other SS propensity fractions (α-helix, bend, or turn) show mild but not significant 

deviations. The propensity to form a random coil is higher (~35%) than helices (~25%) 

or other secondary structures. On the other hand, the A4D2A4 peptide is more diverse with 

respect to the fpSS in Figure 9. Neither the protonated nor the deprotonated forms overlap 

in the CMD and CpHMD simulations, even for those SS (turn and 310 helix) with low 

fractions. In general, deviations of up to 20% are observed in the fpSS plots, except for 

the deprotonated form (A4D2A4
CMD

ASP and A4D2A4
CpHMD

pH10) which stands out in the α-

helix conformation. The high propensity for α-helix formation in the A4D2A4
CpHMD

pH10 is 

consistent with the high compactness found in the Rg distribution. Thus, the 

conformational properties of the peptides with adjacent titratable Asp amino acids show 

greater deviations in the fpSS and Rg, apparently depending on the simulation method. 
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Figure 9. Secondary structure propensity fractions (fpSS) of each amino acid in the 

A4D2A4 oligopeptide using the DSSP algorithm. β-sheets and π-helices are omitted due 

to lack of content. The dashed and dotted lines indicate the CMD and CpHMD simulation 

methods. 

5.2.2.3. Electrostatic and Dihedral Energy Description Causes Deviations in Conformational 

Sampling and Structural Properties 

To identify the source of the deviations in conformational sampling and structural 

properties, we now focus on the energy contributions of the simulations. We recalculated 

the intra- and intermolecular energies after removing the solvent molecules. The energy 

distributions of the peptides with the solvent molecules were also considered in the 

discussion of this section. 

The total energy of the DA8D peptide shows mild shifts in the distributions of the 

CMD and CpHMD simulations due to the mismatch of the angular, dihedral and 

electrostatic (1–4 and long-range) contributions in Figure 10 and Figure 11. On the one 

hand, the electrostatic energy distributions of the protonated (DA8D
CMD

ASH and 

DA8D
CpHMD

pH1) and deprotonated (DA8D
CMD

ASP and DA8D
CpHMD

pH10) forms are in a close 

energy range but have different contours in Figure 10. The CpHMD simulations have a  
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Figure 10. Normalised distributions of total, intra- and intermolecular energies of the 

DA8D peptide. The CMD and CpHMD simulation methods are shown as dashed and 

dotted lines, respectively. The water molecules were not included in the calculations. 

large peak on electrostatics, whereas the CMD simulations show broad distributions. On 

the other hand, the distributions of the angular and dihedral energies overlap in the 

CpHMD simulations, regardless of the solvent pH, which is an observation repeated in 

previous systems, i.e., the tripeptides in the explicit and implicit solvation model. Finally, 

the simulation methods show smooth deviations in the energy distributions of the DA8D 

peptide, especially in the deprotonated form, consistent with the behaviour observed in 

the structural properties (Rg and fpSS). However, the deviations caused by the CpHMD 

residues are not sufficient to significantly modify the conformational sampling of the 

DA8D peptide. In other words, when the CpHMD residues are sufficiently separated in 

the peptide chain, the reported shortcomings of the CpHMD are minimised.  
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Figure 11. Normalised distributions of total, intra- and intermolecular energies of the 

A4D2A4 peptide. The CMD and CpHMD simulation methods are shown as dashed or 

dotted lines, respectively. The water molecules were not included in the calculations. 

The A4D2A4 peptide, on the other hand, shows a good overlapping of the total 

energy distributions for the protonated form (A4D2A4
CMD

ASH and A4D2A4
CpHMD

pH1) in 

Figure 11. In this case, the electrostatic interactions are poorly reproduced between the 

methods, with energy distributions in far ranges. The titratable amino acids of the A4D2A4 

peptide are closer, and therefore the interactions involving partial charges not correctly 

assigned in the backbone atoms play a more relevant role in the electrostatic interactions. 

This can be observed in the deviations of the electrostatic energy distributions of both the 

protonated and deprotonated (A4D2A4
CMD

ASP and A4D2A4
CpHMD

pH10) simulations. 

Furthermore, the deprotonated form shows mild deviations on the total energy, including 

the angular, dihedral and even van der Waals energies. The dihedral and angular energies 

are not accurately reproduced and the distribution of the van der Waals interactions of 

A4D2A4
CpHMD

pH10 is significantly different from the other simulations.  
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5.3. Conclusions 

We have extended the previous work on the titratable residues of the CpHMD 

method in Chapter 3 and 4 by introducing explicit solvent molecules in the simulations 

of the capped tripeptides. The Ramachandran maps and energy distributions show similar 

behaviour to the results reported in the simulations with the implicit solvation model. 

Thus, the inconsistencies in the conformational and energy analyses of the deprotonated 

form of the CpHMD simulations are still related to the rough approximation adopted in 

the assignment of the partial charges of the backbone atoms, especially in those amino 

acids with multiple protonation states. In these multisite protonatable amino acids, minor 

shifts in the electrostatics and the conformational populations of the protonated form are 

observed. We assume that these small deviations are the result of the distinct protonation 

state sampling between the methods. In fact, the protonation state sampling of the 

CpHMD could be considered an advantage for the simulations with Asp, Glu, or His 

amino acids. In parallel, other minor artefacts could be involved in the above 

inconsistencies, such as the adjustment of the partial charge of the Cβ atom or the ghost 

atoms during the simulation. It should be noted that the dielectric constant of water was 

underestimated by the TIP3P water model, and simulations with other explicit water 

models may yield different electrostatic profiles. However, since the discrepancy between 

the simulations is primarily due to the assignment of partial charges of the backbone 

atoms, it is expected that the shortcomings remain independent of the water model. 

After examining the strengths and weaknesses of the CpHMD method when using 

explicit solvent in the simulations, we investigated the effect of the position of the 

titratable amino acids in a non-polar chain. On the one hand, the DA8D oligopeptide 

shows no remarkable deviations in the energy maps, clustering and conformational 

properties of both protonated and deprotonated forms, suggesting that biomolecules with 

spatially separated titratable amino acids can reproduce the conformational sampling of 

the CMD simulations. On the other hand, the simulations of A4D2A4 in the protonated 

form show good agreement in the conformational and energy analyses when comparing 

the CMD and CpHMD methods. In contrast, the deprotonated form exhibits important 

deviations in the measured properties (Rg, fpSS), the energy maps, and the clustering, 

indicating that the incorrect partial charges of the deprotonated state significantly affect 

the electrostatic interactions and thus modulate the conformational sampling. In order to 

make further progress in the identification of the CpHMD deficiencies, it would be 
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desirable to study other properties related to the electrostatic environment of the titratable 

amino acids, such as the presence of polar or charged amino acids, the addition of the 

ionic strength, etc. However, this third chapter concludes with the evaluation of the 

simulations at constant pH with discrete protonation states to pursue the objective of 

exploring the effects of the solvent pH on intrinsically disordered proteins, but leaves the 

door open to look for strategies to minimise the reported limitations in the deprotonated 

form of titratable amino acids in the CpHMD method. Hopefully, a more accurate 

description of the electrostatic interactions can be achieved in the simulations at constant 

pH in the near future. 
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Chapter 6 

Extensive Conformational Sampling of the 

Intrinsically Disordered Protein Histatin-5 Using 

All-Atom and Coarse-Grained Force Fields and 

Constant pH Molecular Dynamics Simulations 

 

 Intrinsically disordered regions (IDRs) or proteins (IDPs) challenge the structure-

function paradigm established for more than 100 years until the end of the 20th century. 

The scientific community supported that the proteins exert their biological function 

through a well-defined three-dimensional structure, but IDPs broke the established 

structure-function scheme1,2 by possessing a high degree of flexibility that allows them to 

adopt diverse conformational ensembles over time through disorder-to-order transitions. 

This dynamic conformational nature, in turn, makes them promiscuous and versatile 

proteins that can play their biological role with high specificity in binding processes, thus 

becoming key actors in various cellular processes (transcription and translation 

regulation, protein phosphorylation, self-assembly regulation, cellular signalling...) of 

eukaryotes3. Capturing the structures of IDPs as a first step in the study of the mechanisms 

of action of biological functions may then be promising for therapeutic applications, but 

unfortunately the characterisation of IDPs by experimental techniques is extremely 

difficult because they only determine the average observable of the several 

conformational ensembles that IDPs coexist over time. Fortunately, approaches such as 

Molecular Dynamics (MD) or Monte Carlo (MC) methods become very relevant in this 

context since they can model IDPs to generate conformational ensembles4,5. However, to 

map the entire conformational space of IDPs, a high computational effort is required, 

especially for MD. 

Among the shortcomings of the MD method, an accurate parameterisation in the 

modelling of IDPs must be considered in order to accurately describe the conformational 
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space. In recent decades, novel force fields and water models have been proposed to 

overcome this challenge, since most of the available force fields were originally designed 

to mimic the properties of well-defined globular proteins. The force fields ff14IDPSFF6, 

A99SB-disp7, ff19SB8, CHARMM36*9, etc., have been successful in the simulating 

IDPs10–12. On the other hand, the role of the solvent in simulations of IDPs is increasingly 

recognised since protein-water interactions are essential for the ordering and disordering 

of proteins. The water models TIP4P-D13, OPC14 and the A99SB-disp7 in combination 

with specific force fields have also shown potential among the many models available8,15. 

It is therefore expected that the use of IDP-specific force fields and water models will 

become more common in simulation studies of IDPs in the coming years. 

 In this chapter, in addition to evaluating the performance of some force fields and 

water models in IDPs, we also include the effect of solvent pH in the simulations. This 

property is essential in the simulation of pH-responsive proteins since the charge of the 

amino acids is often a determining factor in the structure of these proteins. IDPs generally 

have a high percentage of polar or ionisable amino acids in the sequence, so the pH of the 

environment plays a critical role in conformational sampling. Therefore, we employed 

the constant pH Molecular Dynamics (CpHMD) method16 discussed in the previous 

chapters17,18 to evaluate the effect of charge regulation over time on the conformational 

sampling of the simulations and vice versa. To this end, a reference IDP model, the human 

salivary peptide histatin-519, was selected as the target biomolecule for this study. This 

24-amino acid disordered peptide is an antifungal agent found in the saliva. The sequence 

of histatin-5 is rich in histidine (~30%) and other ionisable amino acids such as aspartic 

acid, lysine, tyrosine or arginine. Many all-atom and coarse-grained (CG) MD or MC 

simulations of this peptide with various force fields and water models are collected in the 

literature, usually compared with SAXS, CD and NMR experiments10,20–28. In this case, 

we have evaluated resolution models (all-atom and CG), force fields (ff14SB29, 

ff14IDPSFF, SIRAH30 and Sugar), water models (TIP3P31, TIP4P-D and WT432), and 

simulation method (conventional or constant pH) by performing one of the most extensive 

conformational sampling reported in the literature (~8 million conformations and ~110 

µs in total). The trajectory of each simulation was grouped into conformational clusters 

and analysed using SAXS intensity profiles or NMR chemical shifts. Among the 

simulations performed, the coarse-grained SIRAH/WT4 simulation with multiple seeds 

and the all-atom ff14IDPSFF/TIP4P-D simulation stand out in terms of reproducibility of 
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the experimental data. Furthermore, it is clear that the ability to modulate the charge 

during the simulations reduces the structure fraction in the all-atom simulations, while 

those simulations that favour extended conformations cause the deprotonation of the 

histidine amino acids. Thus, this chapter highlights the importance of using appropriate 

molecular models and methods to simulate IDPs to obtain an accurate conformational and 

protonation state sampling. 

 

Figure 1. Histatin-5 models with different particle resolutions: all-atom (left), coarse-

grained with SIRAH force field (middle) and coarse-grained with ESPResSO/Sugar 

library (right). 

6.1. Materials and Methods 

6.1.1. All-Atom Molecular Dynamics 

The human salivary peptide histatin-5 was modelled as a linear chain consisting 

of the amino acids DSHAKRHHGYKRKFHEKHHSHRGY using the Leap module of 

AMBER1833. The peptide was parameterised with force fields ff14SB29 or ff14IDPSFF6. 

For the conventional MD (CMD) simulations, the protonation states of the seven histidine 

amino acids at pH 7.0 were predicted using the PropKa tool34, finally assigning the ε-state 

(HIE residue) to all of them. On the other hand, the CpHMD simulations required the 

assignment of the doubly protonated amino acid (HIP residue) to allow the protonation 

state change during the simulation. The CPHSTATS library was used to correctly define 

the protonation states. Each peptide was oriented according to its moments of inertia 

inside a box of dimensions 100x100x100 Å. The simulation box was filled with the 

TIP3P31 or TIP4P-D13 water molecules, and the net charge of the system was neutralised 

with Cl- counterions. The energies and partial charges of the protonation states of the HIP 

residues were assigned with the CPINUTIL module.  
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The preparation of the peptide consisted of a three-step minimisation protocol to 

reduce internal stresses and relax the system. Using the steepest descent (SD) method35, 

a first minimisation step was performed by restraining all peptide atoms to allow the 

solvent to adapt around the solute. In a second step, only the backbone atoms were 

restrained during the minimisation. In the final step, the simulation box was minimised 

with no restraints on the system. A maximum of 5000 SD steps were performed in each 

stage and a force constant of 5 kcal·mol-1 was applied to the restrained atoms. After 

relaxation, the simulation boxes were gradually heated with a linear increase of 1 K·ps-1 

for 300 ps to a final temperature of 300K in the canonical ensemble (NVT). The volume 

of the simulation box was then adjusted by applying a pressure of 1.0 atm on the isobaric-

isothermal ensemble (NPT) until a density close to 1.0 mol·A-3 was reached. 

Simulation Resolution Method FF/Water Model Production runs 

SBW3 All-atom CMD ff14SB/TIP3P 4 x 5 µs 

SBW3pH All-atom CpHMD ff14SB/TIP3P 4 x 5 µs 

IDPW3pH All-atom CpHMD ff14IDPSFF/TIP3P 4 x 5 µs 

IDPW3pHR All-atom CpHMD ff14IDPSFF/TIP3P 32 x 100 ns 

IDPW4DpH All-atom CpHMD ff14IDPSFF/TIP4P-D 4 x 2 µs 

SRH CG CMD SIRAH 4 x 10 µs 

SRHR CG CMD SIRAH 32 x 100 ns 

SGR CG CMD Sugar 4 x 5·106 steps 

SGRpH CG CpHMD Sugar 4 x 5·106 steps 

Table 1. Details of the histatin-5 simulations. The resolution level, the simulation 

method, the force field and water model and the simulation time are given in the table. 

Once the preparation of the simulation boxes was complete, 4 replicas of each 

simulation box were generated to allow further sampling of the conformational space as 

suggested by J. Rubio et al36. Each replica was assigned different initial velocities 

according to Maxwell-Boltzmann distribution and production runs of 5 µs length were 

performed. The temperature of the simulations was controlled using the Langevin 

thermostat37 with a collision frequency of 3 ps-1. The long-range electrostatic interactions 

were calculated with the Particle mesh Ewald method38. The hydrogen-involving bonds 

were constrained with the SHAKE algorithm39. The intermolecular interactions were 

considered within a cut-off of 10.0 Å. In the CpHMD simulations, a solvent pH of 7.0 

was fixed for all the simulations16. The protonation state change attempts were performed 

every 200 fs, and after accepting a protonation state change, the water molecules were 
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relaxed for another 200 fs. During the protonation state change attempt, an ionic strength 

of 0.1 M was assigned for the electrostatic energy calculation. 

To further sample the conformational space, 32 conformations were chosen from 

the ESPResSO CG simulations (SGR) after clustering as initial structures to perform 100 

ns length simulations with the all-atom ff14IDPSFF force field for a multi-seed simulation 

(IDPW3pHR). Full details of the simulations in terms of simulation method, the level of 

representation, the force field and water model and the initial configurations are given in 

Table 1. 

6.1.2. Coarse-Grained Molecular Dynamics 

The histatin-5 simulations with a CG representation were performed using the 

SIRAH30 and ESPResSO40 software packages. For the former, the linear chain constructed 

in the all-atom model was transformed into a CG model using the cgconv tool41. The CG 

beads were then parameterised with the SIRAH force field and WT4 water molecules32 

were added up to 20 Å to solvate the system. Cl- counterions were added to the CG 

representation (ClW) to neutralise the net charge of the system. In this case, only a two-

step minimization was performed. First, the simulation box was relaxed by applying 

restraints only to the GN and GO beads with a force constant of 2.4 kcal·mol-1 and then 

a second minimisation was carried out without restraints. For both minimisations 5000 

SD steps were performed. Next, the simulation box was heated to 300K for 500 ps in the 

canonical ensemble, and then equilibrated to a pressure of 1.0 atm for 25 ns in the 

isobaric-isothermal ensemble. Finally, 4 replicas of the simulation box with different 

initial velocities were generated to perform 10-µs production runs in the isobaric-

isothermal ensemble (NPT), with a total simulation time of 40 µs. The Langevin 

thermostat controlled the temperature of the simulations with a collision frequency of 50 

ps-1, and long-range electrostatic interactions were computed using the Particle Ewald 

mesh method. As the constant pH method is not available in SIRAH, the effect of pH was 

not included in the simulations using this software package. In addition, the sampling 

capacity of SIRAH was also tested with a multiple seed simulation of 32 production runs 

of 100 ns, using different initial structures obtained from the ESPResSO simulations 

(SGR), to examine whether the conformational sampling could be improved. 
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On the other hand, the Sugar library developed by Blanco P.M. 

(https://gitlab.com/blancoapa/sugar_library) was employed to prepare the simulation box 

in the ESPResSO software. A 2-bead linear model based on the histatin-5 sequence was 

built inside a 66.8x66.8x66.8 nm3 box. The simulation box was then filled with ions until 

the charge of the system was neutralised and an ionic strength of 0.1M was achieved. The 

Lennard-Jones interactions were defined with the WCA potential and the electrostatic 

interactions with the P3M potential. After setting up the simulation box, it was freely 

minimised for 10.000 steps using the SD method. A temperature of 300 K was set in the 

Langevin dynamics, which was chosen to perform the simulation with the Velocity Verlet 

integrator and the Langevin thermostat. Four production runs of 5,000,000 steps were 

carried out and the configurations and properties of the histatin-5 peptide were extracted 

every 500 steps. In addition, a further 4 replicas were simulated using the constant pH 

method available in ESPResSO. A reference pKa of 6.8 for the histidine amino acids were 

defined according to Hass M. and Mulder F.A.A.42. CpHMD simulations were performed 

at neutral pH conditions (pH = 7). 

6.1.3. Conformational Space and Structural Properties 

The dimensionality of the conformational space sampled from each of the 

simulations was reduced by the Principal Component Analysis (PCA) method using the 

CPPTRAJ module43. The transformation matrix was obtained by diagonalising the 

covariance matrix of the Cα atoms of all the simulations. The simulations were then 

projected into the PCA space, and the Gibbs free energies of the populations contained in 

the PC1 and PC2, i.e., the PCs containing more structural information, were calculated 

with a grid of δ(PC) = 1.0. On the other hand, the conformations of the trajectories were 

grouped into 15 clusters using the hierarchical agglomerative clustering method and the 

covariance of the position of the Cα atoms as a metric. The goodness of clustering was 

also calculated using the average distance from the centroid, the Davis-Bouldin Index 

(DBI), the pseudo-F statistics (psF) and the SSR/SST. From the representative 

conformations (or centroids) of the clusters with a population > 10%, the SAXS intensity 

profiles were estimated using the Fast X-ray Scattering (FoXS) server of Sali Lab44. The 

theoretical SAXS profiles were compared with experimental scattering data of histatin-5 

at 1.26mg/l in 20mM Tris, 150 mM NaCl, pH 7.0 and at 298 K (SASDHH8)45. Separately, 

the chemical shifts (CS) of all conformations were calculated with the SPARTA+ 

software46 integrated in the library MDTraj47. A linear regression was then performed 

https://gitlab.com/blancoapa/sugar_library
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between the predicted (or simulated) HA atom CS and the experimental CS from Raj P.A. 

et al.48. The slope, intercept and r-value of the linear regression were extracted to assess 

the fit between the experimental and predicted CS of the HA atoms. 

The radius of gyration (Rg) of the conformations was calculated excluding 

hydrogen atoms in the CPPTRAJ module. The Rg distributions were generated and 

normalised for comparison between the simulations. The secondary structure propensity 

fractions were estimated with the DSSP method49. The α-helix, 310 helix and π-helix 

structures were grouped into the "helix" class. The parallel and anti-parallel β-sheet, β-

bulge and isolated β-bridge structures were grouped into the "β-sheet" class. Protonation 

states were calculated by the cphstats module in the all-atom simulations and manually 

in the CG simulations. All plots were generated using GNUPLOT v4.650. 

6.2. Results and Discussion 

 In this chapter we have focused on the implications of using various simulation 

setups, either at the level of structural resolution, force fields or water models, simulation 

method or sampling strategy, on one of the most widely used IDP models: the histatin-5 

peptide. In terms of the molecular representation, we can distinguish between the 

simulations performed at all-atom resolution and those where the atoms or amino acids 

are simplified into beads in the CG model. The all-atom simulations were performed 

using two force fields, the popular ff14SB and the IDP-specific ff14IDPSFF, and two 

water models, the common 3-point water model TIP3P and the 4-point model with 

corrections for protein-water dispersion interactions TIP4P-D. In addition, given the 

relevance of the solvent pH to the definition of the protonation states and hence 

conformations, most simulations were carried out using the CpHMD method. To extend 

the sampling of ff14IDPSFF, we also performed a multi-seed simulation using 32 initial 

configurations extracted from the ESPResSO CG simulation. This CG simulation initially 

showed a good Rg distribution with respect to the experimental Rg determined by SAXS 

but was eventually surpassed by other simulations.  

 On the other hand, simulations with CG resolution are mainly divided according 

to the bead model and parametrisation. By means of the ESPResSO software and the 

Sugar library, histatin-5 was modelled based on a 2-bead model and simulated with the 

CMD and CpHMD methods. In contrast, the SIRAH software does not have the constant 
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pH method, and therefore a CMD simulation was launched from an N-bead model of 

histatin-5, in which each amino acid has a different number of beads according to the 

atomic structure. Visual inspection of the SIRAH simulation revealed that the flexibility 

of the peptide from the initial linear structure was low, resulting in structures with poor 

conformational diversity. To address this issue, and similar to the IDPW3pHR simulation, 

we performed a second simulation using 32 initial configurations extracted from the 

clustering of the ESPResSO GC simulation to expand the conformational sampling. 

6.2.1. TIP4P-D Water Model and Multi-Seed SIRAH Simulations Agree with SAXS and 

NMR Experimental Data 

 One of the most widely used experimental properties to study the model protein 

histatin-5 is the intensity profile obtained by SAXS. From this profile and various 

approximations, the Rg of the histatin-5 structure can be predicted. In this work, we used 

the experimental intensity profile of the histatin-5 at pH 7, 150 ml NaCl and temperature 

298K, which conditions are reproduced in the simulations. From the conformational 

sampling of histatin-5, the global Rg of each simulation and the Rg
cluster of the four most 

populated clusters of each simulation were calculated. The clustering of conformational 

states is necessary to capture the structure-related conformations of histatin-5 and their 

abundance during the simulation. The population percentage of the clusters and the 

average distance of all configurations with respect to the centroid of each cluster are given 

in Appendix D, Table D1. Although we will focus on to the clusters in the conformational 

sampling analysis in Section 3.2, the representative conformations of the four most 

populated clusters were used to predict the SAXS intensity profiles. The Rg and the 

intensity profile of the centroids were then estimated. The correlation between the 

experiment and theoretic intensity profiles was evaluated using the χ2 fitting function, for 

which a good fit can be assumed if χ2 < 3.0. The theoretical SAXS intensity profiles with 

the SASDHH8 experimental scattering are illustrated in Figure 1. The theoretical Rg 

values, the χ2 for all simulations and the experimental Rg from the SASDHH8 data are 

given in Table 2. 
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MODEL Rg Rg
cluster 

SAXS 
Rg

exp 
NMR 

Rg χ n y0 r 

SBW3 9.0 ± 1.2 

8.5 ± 0.4 8.5 9.2 

13.7 ± 0.1 

1.2 ± 0.1 -0.4 0.95 
9.0 ± 0.7 8.4 10.1 

8.6 ± 0.5 8.4 8.1 

10.6 ± 0.8 11.0 2.0 

SBW3pH 9.7 ± 1.5 

8.7 ± 0.6 8.3 11.0 

1.3 ± 0.1 -0.8 0.95 
8.9 ± 0.5 8.7 8.8 

9.9 ± 0.7 9.6 4.2 

9.6 ± 0.7 9.9 5.5 

IDPW3pH 10.8 ± 2.0 

10.6 ± 1.1 10.8 3.8 

1.0 ± 0.2 0.2 0.83 
9.3 ± 0.5 9.1 7.9 

10.4 ± 0.7 10.5 2.6 

10.4 ± 1.0 9.8 5.0 

IDPW3pHR 11.5 ± 2.3 

10.3 ± 0.8 10.3 3.1 

1.3 ± 0.1 -1.2 0.93 
9.4 ± 0.8 8.8 10.0 

9.7 ± 0.8 9.3 5.7 

14.0 ± 1.1 14.2 1.5 

IDPW4DpH 14.7 ± 2.7 

17.8 ± 1.2 18.9 4.8 

0.9 ± 0.2 0.4 0.79 
15.7 ± 1.1 16.1 2.6 

11.9 ± 1.0 11.8 2.9 

10.5 ± 0.8 10.4 3.4 

SRH 11.1 ± 0.5 

10.9 ± 0.3 10.8 3.0 

0.6 ± 0.2 1.8 0.61 
10.6 ± 0.3 10.7 3.3 

11.5 ± 0.3 11.5 2.5 

10.8 ± 0.3 10.8 2.6 

SRHR 12.1 ± 1.6 

13.2 ± 0.7 13.5 1.3 

1.1 ± 0.2 -0.6 0.75 
11.9 ± 0.7 12.1 1.1 

13.3 ± 0.5 13.0 1.1 

10.2 ± 0.3 10.1 3.8 

SGR 

13.2 ± 1.6 

14.2 ± 7.0 

14.9 ± 5.1 11.7 2.2 

0.4 ± 0.1 2.9 0.70 
11.8 ± 4.6 8.1 11.8 

8.1 ± 3.8 7.1 12.2 

20.4 ± 5.5 15.0 3.8 

SGRpH 

12.9 ± 1.6 

14.2 ± 7.0 

9.5 ± 4.4 8.1 9.6 

0.4 ± 0.1 2.9 0.69 
15.7 ± 5.1 11.6 2.6 

13.7 ± 4.8 10.1 2.4 

21.8 ± 5.2 16.5 2.8 

Table 2. Radius of gyration, SAXS and NMR properties of the simulations. Rg was 

calculated for the entire simulation and for each of the most populated clusters. Rg and χ2 

of the centroid conformation of the clusters in SAXS column were predicted with the 

FoXS server using the SASDHH8 data45. The slope, intercept and r-value of the linear 

regression of the simulated and experimental48 HA CS are given in the table. 

The reported Rg values range from 9.0 to 14.8 Å depending on the simulation 

setup, with some values quite distant from the experimentally determined Rg of 13.7 ± 
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0.07 Å. Among the simulations that fail to reproduce the experimental Rg are SBW3, 

SBW3pH, IDPW3pH, IDPW3pHR and SRH. Except for the latter, these systems are all-

atom simulations whose force fields have already been shown to be unsuccessful in 

reproducing the experimental Rg in shorter time lengths45. Although such an extensive 

exploration of the conformational space has not yet been carried out, the results suggest 

that increasing the time length is not sufficient to capture extended conformations of the 

peptide. Adding the effect of the solvent pH using the constant pH method and thus 

enabling the charge regulation of histidine is also insufficient. Indeed, CpHMD 

simulations with the ff14SB and ff14IDPSFF force fields have not been reported in the 

literature. Despite not overcoming the force field related limitations to reproduce the 

experimental Rg, we do observe a shift towards larger Rg values when the protonation 

state sampling is included in the simulations. Actually, Rg increases from 9.0 ± 1.2 Å in 

SBW3 to 9.7 ± 1.5 Å in SBW3pH. In parallel, Sullivan et al.25  reported histatin-5 

simulations using the ff14IDPSFF/TIP3P with an Rg of 7.48 and 9.87 Å for the two most 

populated clusters after a 1 µs-length simulation, whereas in this work we observe average 

Rg values of 10.6 ± 1.1 Å and 9.3 ± 0.5 Å, and a global Rg of 10.8 ± 2.0 Å. Therefore, the 

constant pH method apparently leads to conformations with larger Rg closer to the 

experimentally determined one, thus confirming that the dynamic protonation states 

influence in the conformational sampling as expected due to the charge-structure 

coupling. The Rg distributions for these simulations can be observed in Figure 2, showing 

that SBW3, SBW3pH and IDPW3pH have a maximum population peak found in an Rg 

range far from the experiment.  

For none of these simulations are the theoretical SAXS intensity profiles in 

agreement with the experimental scattering. In fact, the χ2 values are greater than 3.0, 

indicating a poor fit. Only cluster C4 of SBW3 (6% of the population) and cluster C3 of 

IDPW3pH (12%) show a χ2 < 3.0, suggesting that extended conformations with intensity 

profiles similar to the SAXS experiment can be sampled but not representatively. 

Similarly, the IDPW3pHR and SRH simulations show a few clusters with good χ2 values, 

despite not reproducing the experimental Rg. The IDPW3pHR simulation has an average 

Rg of 11.5 ± 2.3 Å and the distribution is much more populated at Rg > 14.0 Å compared 

to the previous simulations. Apparently, the multi-seed conformational sampling yields 

more extended conformations in agreement with the SAXS experiment, since the third 

cluster (11% population) has a χ-value < 2.0 and an Rg value very close to the 
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experimental one (14.0 ± 1.1 Å). Therefore, the ff14IPDSFF can capture extended 

conformations more frequently, but only by applying an enhanced-sampling strategy. On 

the other hand, the SRH simulation has an average Rg of 11.1 Å with a low standard 

deviation of 0.5 Å, indicating a poor structural diversity. Qualitative analysis of the 

trajectory revealed that histatin-5 in the SIRAH model is not very flexible when starting 

from a linear structure. Nevertheless, it is remarkable for its ability to obtain 

conformations with a theoretical intensity profile close to the experimental one given the 

χ2-values < 3 observed in the clusters C3 and C4. 

 

Figure 2. Rg distributions of the simulations performed with histatin-5. The dashed line 

represents the experimentally determined Rg by SAXS. 

On the other hand, the IDPW4DpH, SRHR and SGRpH simulations show a global 

Rg and theoretical SAXS intensity profiles in agreement with the experimental data. For 

atomistic simulations, the TIP4P-D water model, characterised by the correction of the 

protein-water dispersion forces, has already demonstrated its potential to reproduce 

experimentally the histatin-5 radius of gyration with the ff14IDPSFF25 and A99SB-

ILDN10 force fields. In these works, the Rg has values of 13.5 and 13.2 Å, respectively, 

whereas here an Rg above the experimental value is observed with a large deviation, 14.8 

± 2.7 Å, is observed. In fact, the Rg distribution is very broad in a range of values between 

8 and 21 Å, demonstrating the wide conformation spectrum that can be sampled by 

introducing the TIP4P-D water model. Due to the constant pH and extensive 
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conformational sampling in this work, it is unclear whether the water model together with 

the protonation state sampling results in an overly extended conformational sampling, 

whether these conformations are simply the product of the extension of the 

conformational sampling from the previous work, or a combination of both factors. These 

overly extended conformations are also reflected in the SAXS intensity profiles, where 

the main cluster (25%) with an Rg of 18.1 Å has a poor χ2 value, while the other two 

clusters (21% and 11%) have Rg values not so far from the experiment and χ2 values < 

3.0. The simulation that really stands out in reproducing the SAXS intensity profiles is 

the SRHR simulation. The three most populated clusters (~40% of the trajectory) show 

χ2-values very close to 1.0, demonstrating an excellent fit. Furthermore, both the C1 and 

C3 clusters have an average Rg and standard deviation within the experiment range. 

Conversely, the global Rg of the SRHR simulation does not agree with the experiment, 

although the distribution is close to the experimentally determined Rg. 

Finally, we examine the SGR and SGRpH simulations. Both simulations show an 

average Rg of 13.2 and 12.9 Å with a standard deviation of 1.6 Å when analysing the 2-

bead model. The results are extremely good with respect to the experimental Rg and, in 

fact, the distributions for both simulations are the most uniform and close to the 

experiment. However, the conformations adopted by the 2-bead model are not 

reproducible at all-atom resolution because many peptide bonds adopt a cis-orientation. 

In the pursuit of reconstructing realistic conformations, we imposed trans peptide bonds 

in the back-mapping. We then calculated the average Rg of these conformations and 

obtained 14.2 ± 7.0 Å for both simulations. The reported Rg from back-mapping indicates 

that all-atom conformations are indeed different from the 2-bead model. Despite this 

rough approximation, some clusters can produce theoretical intensity profiles with good 

agreement with the experiment. SGR has a χ2-value of 2.2 for its first cluster (21%), while 

SGRpH has three clusters (~40%) with χ2-values < 3.0. Clearly, the conformational 

ensembles generated by ESPResSO simulations would be greatly improved with a tool 

capable of successfully back-mapping the 2-bead model to the all-atom resolution 

integrated in the Sugar library. 
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Figure 3. Deviations between the average predicted CS from simulations (in red) with 

respect to the experiment (in black) determined by Raj P.A. et al.48.  The red and grey 

shades represent the associated error of the calculated chemical shifts in the simulations 

and experiment, respectively. 

To further compare the simulations with respect to the available histatin-5 

experiments, we have taken the HA atoms CS determined by NMR at pH 3.8, H2O/D2O 

solvent and 30ºC conditions from the work of Raj et al.48. In this case, the solvent pH in 

the simulations does not match the experiment, so deviations would be expected. 

Nevertheless, the IDPW3pH, IDPW4DpH and SRHR simulations stand out in the linear 

regression between predicted and experimental CS, showing the best slope and r-values 

in Table 2. The slope and r-value provide information about the fit and correlation of the 

predicted and experimental data, respectively. In all three simulations we find a slope of 
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~1.0 within the standard deviation, while the two all-atom simulations show better r-

values. In addition, the deviation between the simulated and experimental average CS and 

the associated errors for each HA atom of the amino acids are illustrated in Figure 3. It 

can be observed that the deviation of ΔCS(HA) is less than 0.5, which indicates a good 

result, and furthermore the error is lower than most simulations. In fact, SRHR stands out 

with a very low ΔCS(HA) compared to the other simulations. On the other hand, the 

SBW3, SBW3pH and IDPW3pHR simulations also exhibit a good fit, and the r-values 

indicate that the experimental and predicted CS have a good correlation. In this case, the 

ΔCS(HA) values of SBW3 and SBW3pH are observed further apart, while, surprisingly, 

IDPW3pHR has a low ΔCS(HA) but a higher deviation compared to other simulations so 

far. In contrast, the SRH, SGR and SGRpH simulations dramatically fail in the linear 

regression of the CS(HA). Although the deviation of ΔCS(HA) in SRH is small, and the 

error even smaller, the linear fit shows that it is unable to reproduce the experimental CS. 

On the other hand, the conformations generated from the 2-bead model show a large 

deviation in ΔCS(HA) and an incredibly large error. These observations can be 

understood if we consider (i) the rigidity of the SRH simulation and (ii) the inaccurate 

back-mapping of the GC to all-atom resolution in the SGR and SGRpH simulations. 

Therefore, the comparison with the available experimental data strongly indicates 

that the IDPW4DpH and SRHR simulations are superior in reproducing the Rg, SAXS 

intensity profiles and NMR chemical shifts. Similarly, it suggests that the force field 

ff14IDPSFF holds potential to obtain conformations detected by SAXS but requires 

ingenuity in sampling strategies to representatively capture the conformational space. 

Finally, it points to the importance of a tool to accurately perform the back-mapping of 

the ESPResSO simulations given that the Rg distributions with the 2-beads model are 

promising but unable to convert these CG conformations into all-atom configurations that 

can reproduce the experimental data. 

6.2.2. Disordered Structures Are Essential to Reproduce Experimental Observables 

After validating the IDPW4DpH and SRHR simulations against the SAXS and 

NMR observables, we next studied the conformational sampling of the simulations 

through the energy maps based on the PCA space. For this type of analysis, there is always 

the dimensionality problem of the 3𝑁 variables, which are the three Cartesian coordinates 

multiplied by 𝑁 number of atoms of the peptide model. To handle the large number of 
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data, the PCA method has become a popular solution to reduce the complexity of this 

problem, which consists in efficiently transforming the coordinate data into the PCs by 

diagonalisation of the coordinate covariance matrix. From the eigenvectors and this 

transformation matrix, we can project the conformations into the PCA space and then 

calculate the Gibbs free energies within a set of PCs through a grid-based population 

analysis. 

 

Figure 4. Energy maps in the PCA space of the conformational sampling of the histatin-

5 simulations. The population Gibbs free energy is shown in black for the highest 

population regions and in blue for the regions not sampled. The conformational sampling 

of clusters C1, C2, C3 and C4 are indicated with green, yellow, cyan, and purple circles. 

In this case, to represent and study the conformational space of the histatin-5, we 

used the first two PCs, which contain 45% of the covariance of the positions of the 
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configurations generated during the trajectory, to build the energy maps. The PCA energy 

maps of the simulations and the region sampled by each cluster within this space are 

illustrated in Figure 4. A quick look reveals significant dissimilarities between the 

simulations depending on the resolution of the model, all-atom or CG, and even between 

the bead models within the CG resolution. The all-atom simulations sample the 

conformational space more widely and locate the conformational minima more 

accurately. In contrast, the CG simulations perform an apparently homogeneous 

exploration within a narrower conformational space. Several observations are confirmed 

within the CG simulations. First, the SRH simulation is rigid and hardly adopts different 

conformations during the trajectory, which is reflected in the reduced space sampled in 

the energy map. On the other hand, the SGR and SGRpH simulations show a similar 

conformational space without any noticeable change when the pH-dependent protonation 

state sampling is introduced in the simulation. Nevertheless, there is a distinct clustering 

of the conformations, which makes the CpHMD simulation able to locate centroids with 

a better fit to the SAXS intensity profiles. Finally, the SRHR simulation, the most 

promising simulation according to the SAXS and NMR experiments, also shows a 

restricted conformational space. There is more heterogeneity within the conformational 

sampling, highlighting in particular the location of clusters in the region of PC1 = [-25, 

0] and PC2 = [-40, -15], which ones have good results in the SAXS intensity profiles. 

Therefore, in order to correctly reproduce the experimental observations, this region 

sampled by these clusters seems to be essential.  

Among the all-atom simulations, we can distinguish between (i) the simulations 

that fail to reproduce any of the experimental observables, such as SBW3 and SBW3pH, 

(ii) the simulations that reproduce some SAXS or NMR observables moderately, such as 

IDPW3pH and IDPW3pHR, and (iii) finally the simulation that agrees with the 

experimental observables, IDPW4DpH. Based on this categorisation, the SBW3 and 

SBW3pH simulations exhibit the narrowest conformational sampling with respect to the 

other all-atom simulations. Furthermore, the SBW3 simulation is extremely restricted in 

the central region, around the point (0, 10). Fortunately, SBW3pH can explore a 

conformational space and locate more widespread minima within the sampled region. 

However, most of the clusters in both simulations are located around the (0, 10) point, 

which could probably mean that this set of conformations is not able to reproduce the 

experimental data. On the other hand, the IDPW3pHR simulation stands out for the large 
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conformational sampling due to the multi-seed simulation strategy. The low energy 

regions are distributed throughout the space, although the clusters are mainly located 

around the (0,0) point. This suggests that, despite the extended conformational sampling, 

the simulation prefers conformations located in the regions that we have previously 

detected in SBW3 and SBW3pH. Finally, the energy maps of IDPW3pH and IDPW4DpH 

show a similar conformational space, but the distribution of the minima within it is 

completely different. The first simulation samples small and discrete regions close to the 

point (0, 0), thus indicating a set of preferred conformations that do not fit the 

experimental measurements, as we have discussed in the previous section. In contrast, the 

IDPW4DpH simulation breaks with these conformational preferences and samples the 

conformational space more broadly and homogeneously within the defined space. The 

clusters are scattered throughout the energy map, particularly cluster C1, which includes 

more separated regions within the map. This is probably the reason behind the inability 

of the cluster C1 to capture the SAXS intensity profile. Given the complexity of the 

cluster distributions within the energy maps, more effort would be needed to understand 

the relationship between the conformational sampling and the experimental data. On the 

other hand, the long simulation times apparently allow for the exploration of regions 

significantly distant from the conformational sampling found in the other simulations, 

although both IDPW3pH and IDPW4DpH have different water models. 

To understand the impact of the simulation setups on the conformational sampling, the 

secondary structures of the trajectories were also analysed using the DSSP method. Figure 

5 illustrates the fractions of the secondary structure propensities (fpSS) of the histatin-5 

conformations adopting β-sheets (anti- and parallel), helices (α, 310 and π), turns and 

bends. The non-represented fraction in the plot corresponds to the absence of structure in 

the peptide, i.e., random coil structures. The SBW3 and SBW3pH simulations show 

higher structure compared to the other all-atom simulations. In particular, SBW3 achieves 

conformations with a higher helix fraction, a phenomenon already reported in the 

literature for the ff14SB force field8,51. In contrast, the SBW3pH simulation combines 

helix and β-sheet fractions depending on the fragment of the peptide and a reduced turn 

fraction in comparison with SBW3. This would indicate that the influence of the charge 

regulation affects the fpSS. In addition, the fpSS of the IDPW3pHR simulation also 

indicates a homogeneous appearance of β-sheet, as occurs in SWB3pH, although with a 

reduced formation of loops (turns and bends) and therefore an 
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Figure 5. Secondary structure propensity fractions from the histatin-5 simulations. Anti- 

and parallel β-sheet, β-bulges and isolated β-strands are grouped in the "sheet" class, and 

α-, 310- and π-helices in the "helix" class. 

increased appearance of random coil conformations. When examining the fpSS of the 

IDPW3pH simulation, it can be seen that prolonging of the simulation reduces the β-sheet 

formation and mainly promotes bends. Therefore, the extension of the simulation time of 

the histatin-5 peptide with the ff14IDPSFF force field favours the exploration of 

disordered conformations. Furthermore, when including the TIP4P-D water model in the 

simulation, which promotes the formation of more extended structures as we have 

observed in the Rg distributions, we can observe in the IDPW4DpH simulation that all 

fpSS are reduced, remaining only a small fraction of bends. These secondary structure 

propensities are also observed in the CHARMM36IDPSFF and CHARMM36m force 
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fields with the TIP3P modified water model, in which histatin-5 is practically a random 

coil according to the DSSP analysis28. In fact, both A99SB-disp with TIP4P-D-type and 

A99SB-ILDN with TIP4P-D water model show some helix or β-sheet content, pointing 

out that the choice of both force field and water model is essential for an accurate 

conformational sampling of IDPs such as the results reported in this work. 

On the other hand, the SGR and SGRpH simulations show practically identical 

fractions with high β-sheet, turn and bend content, which must be the main reason behind 

the failure when comparing the experimental observables with the predictions extracted 

from the conformations after back-mapping. Furthermore, this reinforces that the 

conformational sampling is very similar and independent of the solvent pH when using 

ESPResSO. With respect to the SRH simulation, the fpSS indicate the highest disorder in 

the conformations with a punctual β-sheet formation in some specific amino acids. This 

could be explained by the low flexibility of SIRAH in the histatin-5 simulation. Finally, 

the SRHR simulation shows a predominance of high loop formation (turns and bends, 

especially the latter). This turn/bend fraction is superior when compared to the 

IDPW4DpH simulation, which also has excellent predictions of the SAXS and NMR 

observables. Considering that the three SRHR clusters shows a better Rg and SAXS 

intensity profile compared to IDPW4DpH, we could certainly attribute this inability of 

clusters C1 and C4 of IDPW4DpH to the formation of too extended and disordered 

structures. Therefore, the ff14IDPSFF/TIP4P-D combination would reproduce the SAXS 

intensity profile and the conformational space of histatin-5 more accurately with all-atom 

simulations if it did not promote the formation of disordered structures so much. 

6.2.3. Conformational Sampling Determines the Protonation Fraction of Histidines 

A particular interest of this thesis is the coupling of conformational sampling and 

the peptide protonation states. Studying the effects of conformation on protonation 

fractions, or vice versa, is difficult because both properties are interdependent. In this 

chapter we will only discuss the seven histidines of the histatin-5, ignoring the other 

titratable amino acids since the protonation state sampling was performed on the histidine 

amino acids. The protonation states of other ionisable amino acids were fixed given that 

the intrinsic pKa values are expected to be far from the solvent pH and therefore fully 

deprotonated states for the aspartic and glutamic acids and fully protonated states for 
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lysine or tyrosine can be assumed. Figure 6 shows the average protonation fraction of the 

histidines and the standard deviation from the four replicates of each simulation. 

 

Figure 6. Protonation fractions of the histidine amino acids from the histatin-5 

trajectories simulated with the CpHMD method. The standard deviation is calculated 

from the four replicas performed for each simulation. 

The pKa of the imidazole ring of the histidine is 6.0, therefore the deprotonated 

state is expected at pH conditions above the intrinsic pKa. All simulations show a 

protonation fraction less than 50%, indicating that indeed the histidines are in a 

deprotonated state, despite the electrochemical environment provided by the histatin-5 

peptide. In contrast, depending on the simulation setup, different protonation fractions 

can be observed in the imidazole ring. The CG simulation of SGRpH shows a higher 

protonation compared to the other simulations and has a protonation fraction of ~30%. 

The other simulations show a much lower protonation fraction of 20-5%. Starting with 

SBW3pH and IDPW3pHR, both simulations have similar protonation fractions for the 

histidine amino acids except for His-18. Furthermore, SBW3pH and IDPW3pHR exhibit 

the largest deviation in the protonation fraction among the replicas, especially at the end 

of the peptide chain.  On the other hand, IDPW4DpH stands out for a high deprotonation, 

with all histidines having a protonation fraction below 10% and a low standard deviation. 

IDPW4DpH shows the largest disorder in the structure and now the highest deprotonation 

in the histidines, suggesting that the disordered structure and the low protonation fractions 
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may be related. In fact, the protonation fractions of the IDPW3pH simulation lie between 

the SBW3pH/IDPW3pHR and IDPW3pH protonation fractions. For most of the 

histidines the protonation fractions are more similar to the SBW3pH/IDPW3pHR 

although HIS-7, HIS-8 or HIS-18 are closer to the IDPW4DpH protonation fractions. We 

remind that the conformational sampling of IDPW3pH is also similar to IDPW4DpH, 

although the secondary structure propensity fractions are higher structure in the former. 

Therefore, there is a clear relationship between the structure and the charge of the 

histatin-5. The structured conformations present in SBW3pH, IDPW3pHR or SGRpH 

tend to protonate the histidines, probably due to a higher (or stronger) number of 

intramolecular interactions between the amino acids of the peptide as the conformations 

are more compact and have a lower Rg. On the contrary, extended conformations with 

higher Rg make the histidines more solvent-exposed and with fewer intramolecular 

interactions, apparently favouring the deprotonation. This highlights the relevance of 

using an accurate force field not only for conformational sampling, but also for protonate 

state sampling when running simulations at constant pH. As we observed, the protonation 

fraction varies significantly with the force field, even when histatin-5 is simulated at pH 

conditions of minimum capacitance, i.e., with a low charge regulation response, either by 

donating or accepting protons according to the electrostatic interactions of the 

environment. Therefore, at pH conditions of maximum capacitance, as reported by 

Blanco P.M. et al.26 or Skepö et al.21, the coupling of conformations and charge regulation 

will be stronger. Not to mention the effect of the ionic charge in the solvent, which may 

play a key role in the conformation-charge dependence of histatin-5 and would be of 

particular interest to study in conjunction with the IDP-specific force fields developed in 

recent years.  

6.3. Conclusions 

 In this chapter we have carried out an extensive conformational sampling of the 

model IDP histatin-5 using several all-atom and CG simulations to evaluate the force 

fields (ff14SB, ff14IPDSFF, SIRAH, Sugar), the water models (TIP3P, TIP4P-D), the 

simulation method (CMD, CpHMD) and the sampling strategy. The all-atom simulations 

have outperformed previous work in the literature in terms of simulation time length, thus 

providing a reliable conformational study of the histatin-5. To assess the conformational 

ensembles, we have relied on the experimental Rg, SAXS intensity profiles and NMR 
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chemical shifts. Among the all-atom simulations, the combination of the ff14IDPSFF 

force field and the TIP4P-D water model stands out with extended conformations, a broad 

Rg distribution and good reproducibility of the experimental observables. This 

conformational sampling behaviour of histatin-5 derives from the TIP4P-D water model, 

which enhances protein-solvent dispersion interactions as previously demonstrated in the 

literature13,23. In addition, we must stress that ff14IDPSFF also contributes to the random 

coil formation during the trajectory at long simulation times. On the other hand, the SRHR 

simulation with CG resolution succeeds in reproducing the experimental NMR and SAXS 

observables with high accuracy, but a multi-seed sampling strategy was required to 

improve the conformational sampling. The other simulations have not been as successful 

as those mentioned in the analysis. However, the 2-bead model CG in the 

ESPResSO/Sugar simulation may be considered as good Rg distributions were reported. 

An adequate back-mapping of the CG model to all-atom resolution would be promising 

for this software package. Finally, the pH-dependent protonation state sampling with the 

CpHMD method yields an increase of disordered conformations in histatin-5.  

Therefore, simulations at constant pH are recommended because the charge 

regulation according to the electrochemical environment confers more flexibility to 

histatin-5 in all-atom simulations, which would be critical for an accurate conformational 

sampling. However, this structure-charge coupling works in both directions, and to 

properly define the protonation state fractions, an accurate parameterisation of the force 

fields is also required. As discussed above, compact structures favour further protonation 

of the peptide, whereas, on the contrary, histidines are more deprotonated when extended 

conformations are reached. Therefore, it is necessary to carefully choose the force fields, 

water models and sampling strategies in order to obtain an accurate conformational 

sampling and reproduce the experimental observables, but also to sample the protonation 

fractions of the ionisable amino acids. 
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Chapter 7 

Molecular Dynamics Simulations of 

α-Synuclein NAC Domain Fragment with 

ff14IDPSFF IDP-specific Force Field Suggest β-

Sheet Intermediate States for Fibrillation 

 

Parkinson's disease (PD) is the second most common neurodegenerative disorder 

in the world’s population, particularly in the people over 60 years of age.1,2 The 

development of PD is mainly attributed to the aggregation of misfolded α-synuclein (αS) 

protein in Lewis bodies, which ultimately leads to the loss of dopaminergic neurons.3–5 

To date, no definitive cure for this disease has been found. The initial stages of the 

mechanism of formation of these fibrils from the αS monomers are still unknown, which 

in turn hinders the design of drugs to treat PD. The micelle-bound αS monomers6,7 and 

the fibril oligomers8 have been characterised, but the structure of the protein in free 

solution or the intermediate conformations of the fibrillation process have not been 

reported. The difficulty in identifying the intermediates of fibrillation is due to the 

transient nature of αS as an intrinsically disordered protein (IDP). IDPs are distinguished 

for their structural disorder and their ability to rapidly interconvert between 

conformational states over time. Some experimental techniques, such as nuclear magnetic 

resonance (NMR), small-angle X-ray scattering (SAXS) or far-UV dichroism8–13, can 

capture structural properties of IDPs, but only average observations of the conformational 

ensemble of the protein are obtained. At this point, computational studies come into play 

as a resource capable of providing insights into IDPs through atomistic simulation 

methods. However, αS fibrillation occurs on a time scale that is computationally 

inaccessible to traditional simulation methods. Some studies have attempted to overcome 

this limitation by ingenious approaches ranging from enhanced-sampling techniques14–17, 

coarse-grained models18,19, simulations of specific fragments of αS18,20 or guiding the 

simulations an experimental data bias.21,22 Although these efforts have led to very  
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promising results in understanding the αS fibril mechanism, further research is still 

needed.  

αS is a 140-aa presynaptic protein found mainly in nervous tissue, and its function 

is still poorly understood23. It has been associated with several biological processes, such 

as synaptic vesicle recycling, regulation of DNA repair or involvement in neuronal 

apoptosis24. The primary structure of αS is divided into (i) the N-terminal domain (1-60 

aa), (ii) the non-amyloid-β component (NAC) domain (61-95 aa) and (iii) the C-terminal 

domain (96-140 aa). The first domain consists of 7 imperfect repeats of 11 amino acids 

which confer an amphipathic character and an overall positive charge. These repeats 

contain abundant KTKEGV segments, which have a propensity to adopt α-helix 

conformations and allow αS to bind to membranes6,25. The NAC domain acts as a 

hydrophobic core for fibrillation26. The C-terminal domain is highly charged and mobile 

due to the abundance of acidic amino acids in its chain. Some studies suggest that the C-

terminal tail is responsible for inhibiting fibril formation by burying the NAC domain, 

thus preventing interactions between the monomers prior to oligomerisation17,18. 

Interestingly, while the membrane-bound monomeric αS structures have a high α-helix 

content in the N-terminal and NAC domains, the fibril conformation is precisely 

characterised by the agglomeration with β-sheets. Apparently, the β-sheet structure may 

be critical in the early stages of the fibrillation process, although a study suggests that an 

intermediate α-strand/sheet intermediate may be necessary for the fibrillation 

mechanism27. 

Most atomistic simulation studies to date use classical force fields that generally 

ignore the transient nature of IDPs and lead to conformational biases. Historically, these 

classical force fields have been parameterised to accurately reproduce well-defined, 

experimentally determined three-dimensional structures. Fortunately, in recent years, 

some force fields have been developed to include disorder structure in their 

parameterisation. In fact, previous assessments of standard and modern force fields have 

demonstrated a high sensitivity in obtaining IDP conformational ensembles28,29. 

Approaches to incorporate the intrinsic disorder of IDPs can range from adjusting the 

dihedral parameters (CHARMM22*30, RSFF231 or OPLS-AA/M32 force fields), adding a 

grid-based energy correction term to the φ/ψ dihedral energy surface called CMAP 

method (CHARMM3633, ff14IDPSFF34, ESFF135) or refining the protein-water 

interactions (a99SB-disp36, ff03ws37, CHARMM36m38). Among these new force fields, 
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ff14IDPSFF has been developed as a promising force field capable of correcting the 

dihedral distributions of all 20 amino acids from the popular ff14SB39 force field by 

adding the CMAP energy term. To provide further confidence, this IDP-specific force 

field has been shown to improve the description of chemical shifts in the α-synuclein 

protein.34  

In this chapter, we performed simulations of a fragment of the αS protein using 

the ff14SB and ff14IDPSFF force fields, which we refer to as E-αSNACSB and E-

αSNACIDP respectively, to examine the generated conformational ensembles and gain 

insight into the intermediate states of fibrillation. This αS fragment is defined by the 35-

97 amino acids that constitute the fibril core of the Greek-key topology adopted by the 

αS fibril according to Tuttle et al.8, and includes the NAC domain and a segment of the 

N-terminal domain. In addition, the conformational space of this fragment was previously 

explored by 18 µs T-REMD simulation with the CHARMM27* force field20. The work 

of Jain et al. concluded that there is an α-helix content at room temperature, while β-

sheets are formed at high temperatures. Here, we have carried out 6 µs-length simulations 

for each force field and observed a significant bias in the secondary structure propensities 

after analysing the conformational ensembles and contact maps. The ff14SB simulations 

preserve the α-helices of the micelle-bound αS structure, while the conformational 

sampling of ff14IDPSFF stands out with random coil and β-sheet structures, the latter 

present in the αS fibrils. Furthermore, we have verified that ff14IDPSFF shows a closer 

agreement with four sets of chemical shifts obtained from NMR in solution by 

determining the linear equations and the Pearson correlation coefficients. The IDP-

specific force field is able to adopt intermediate states with β-sheet conformations that 

are not normally found in conventional force fields with 6 µs-length simulations, which 

demonstrates the potential of this force field to study the conformational space of the αS 

and its role in the fibrillation mechanism. 

7.1. Materials and Methods 

7.1.1. Human α-Synuclein Protein Structure 

The Protein Data Bank database (https://www.rcsb.org/) contains many αS 

structures available to the scientific community. For our study we selected the structure 

characterised by solution NMR with PDB-code 1XQ8 (human-micelle bound αS).6 The 

1XQ8 structure was cleaved, retaining the core amino acids of the protein (35-97) that 
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comprise the NAC domain and a segment of the N-terminal domain. We have renamed 

this selection of amino acids as the extended α-synuclein NAC domain (E-αSNAC) 

fragment. 

Figure 1. NMR structure of the human micelle-bound α-synuclein (PDB-code: 1XQ8) 

on the left and structure and amino acid sequence of the E-αSNAC fragment on the right. 

The NAC domain amino acids (residues 61-95) are coloured in orange.   

7.1.2. Structure Preparation and Simulation Setup 

E-αSNAC was oriented according to its principal moments of inertia (Ix, Iy, Iz) 

using an internal script of the research group. Next, the LEaP module of AMBER1840 

was used to parameterise the model with the ff14SB39 force field and to define a box of 

dimensions 140x140x140 Å3 as the simulation system. The simulation box was filled with 

TIP3P water molecules41, with a space of 1.0 Å between any amino acid of the protein 

and the water molecules. The net charge of the system was neutralised by adding Na+ or 

Cl- counterions. The hydrogen mass was distributed among the amino acid atoms using 

the ParmEd module to increase the time step from 2 fs to 4 fs42. We then built a second 

model system with a new topology that included the parameterisation of the IDPs-specific 

force field ff14IDPSFF34. 

A three-phase protocol was then applied to minimise the molecular models. This 

protocol consisted of using the steepest descent (SD) method43 with three levels of 

restraints on the protein to relax the internal tensions of the system after the addition of 
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the solvent molecules. In the first minimisation stage, 5000 SD steps were performed 

restricting the entire protein to relax only the surrounding water molecules. In the second, 

the side chains of the amino acids and the solvent molecules were slowly relaxed during 

5000 SD steps, applying restraints only to the backbone atoms of the protein. Finally, the 

entire system was freely minimised for a further 5000 SD steps. All the above restraints 

were defined by a force constant of 5 kcal·mol-1·Å -2.  

The simulation box was heated with a linear increase of 1 K·ps-1 in the canonical 

ensemble (NVT) for 300 ps until a final temperature of 300K was reached. A second 

equilibration step was then performed for 300 ps in the isobaric-isothermal ensemble 

(NPT) to adjust the volume of the system box to a pressure of 1.0 atm. During the heating 

and equilibration steps, the protein backbone atoms were restrained with a force constant 

of 5 kcal·mol-1·Å-2. To increase the conformational sampling, three replicas of the system 

were generated44 and random initial velocities were assigned following a Maxwell-

Boltzmann distribution.  Each replica was integrated for a time length of 2 µs. Trajectory 

coordinates were recorded every 20 fs and the output data every 40 fs. The SHAKE 

algorithm45 constrained the hydrogen-involving bonds during the simulation and the 

temperature was maintained at 300K with the Langevin thermostat46 and a collision 

frequency of 3.0 ps-1. A 9.0 Å cut-off and periodic boundary conditions (PBCs) were 

applied.  

7.1.3. Conformational Analysis 

The simulations were analysed by calculating the structural properties and 

comparing the NMR experiments with the conformational ensembles after estimating the 

chemical shifts. The visualisation of the trajectories and the illustration of the 

conformations were performed with VMD software47. Plots were generated using 

Gnuplot (version 4.6)48.  

Conformational properties were calculated with the CPPTRAJ module49 of 

AMBER18. The root-mean-square deviation (RMSD) of the protein backbone (Cα, C, N, 

O atoms) was calculated with respect to the reference structure, which corresponds to the 

1XQ8 structure determined by NMR in solution. We also calculated the root-mean-

squared fluctuation (RMSF) and the radius of gyration (Rg) of the Cα atoms to provide 

insight into the flexibility and compactness of the conformations obtained from the 

simulation. The secondary structure propensity fractions (fpSS) of the protein were 
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estimated using the DSSP method.50 They were categorised into five classes: β-strand 

(isolated β-bridges, β-bulges, and extended strands), helices (310 helix, α-helix, and π-

helix), coil (no secondary structure assignment), turn (isolated hydrogen-bonded turn) 

and bend. To provide further insight into the secondary structures, intramolecular contacts 

were calculated using CPPTRAJ, for which we accepted as a contact any atom (except 

hydrogen) with a distance of less than 8.0 Å to another amino acid atom. The contacts 

that are defined in the initial structure are referred to as native contacts, while the new 

contacts that appear during the simulation are referred to as non-native contacts. 

For clustering, the RMSD of the Cα atoms was first calculated as a distance metric 

using a 5-frame sieve. Then, starting with each conformation as an individual cluster, the 

clusters were merged according to the average distance between the members of the 

clusters until all conformations were grouped into 15 clusters. The RMSD of the centroid 

conformations of the five most populated clusters was calculated and plotted on the 2D-

RMSD plot. The conformational space was represented by Principal Component Analysis 

(PCA) technique. The covariance of the distance between Cα atoms was used as metric. 

The conformations of the trajectories were projected onto the first two PCs (PC1 and 

PC2), which represent 33% of the covariance. Next, an in-house script estimated the 

Gibbs free energy of the populations in PC1 and PC2 according to Eq. 1, where 𝑛𝑖 and 

𝑛𝑚𝑎𝑥 are the population in bin 𝑖 and the bin of maximum occupation, respectively to build 

the energy maps in the PCA space. 

∆𝐺 =  −𝑘𝑏𝑇𝑙𝑛(𝑛𝑖 𝑛𝑚𝑎𝑥⁄ ) Eq. 1 

 

The chemical shifts of the 15N, 13C, 13Cα and 13Cβ atoms of one-fifth of the 

conformations were estimated using SPARTA+51. The averages of the chemical shifts of 

each atom were calculated and the linear regression and Pearson correlation coefficients 

between the simulated and experimental chemical shifts were then obtained using 

Gnuplot and SciPy52, respectively. The NMR measured chemical shifts were obtained 

from the Biological Magnetic Resonance Data Bank (BMRB) database (https://bmrb.io/) 

with the following IDs: 1885753, 1933754, 2552755 and 696856. 
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7.2. Results  

6 µs simulations of the extended αS NAC (E-αSNAC) domain fragment for the 

ff14SB (E-αSNACSB) and ff14IDPSFF (E-αSNACIDP) force fields were performed with 

three replicas of 2 µs-length and random initial velocities. A total simulation time of 12 

µs was run in this study, regardless of the parametrisation. 

7.2.1. Mobility and Compactness of Trajectories 

First, the conformational properties (RMSD, RMSF and radius of gyration) of the 

ff14SB and ff14IDPSFF simulations were calculated. After superimposing the 

conformations from the trajectories on the NMR-characterised 1XQ8 structure, the 

RMSD of the protein backbone (Cα, C, N, O atoms) was calculated for each simulation 

and illustrated in Figure 2A. The fluctuations of the amino acids during the simulation 

are illustrated in Figure 2B. 

Distinct RMSD and RMSF are observed depending on the replica, highlighting 

the advantage of performing multiple production runs of the system to explore the 

conformational space extensively. The time-dependent RMSD in Figure 2A shows that 

the ff14SB simulation has values below 21 Å. Interestingly, replica 1 yields 

conformations with RMSD values around 15 Å and the distribution shows conformations 

predominantly in two RMSD ranges (~17 and ~21 Å). Furthermore, replica 2 shows a 

large peak in the distribution and a stable time-dependent RMSD, suggesting that the 

protein conformation does not change significantly during the trajectory. On the other 

hand, the time-dependent RMSD of ff14IDPSFF apparently fluctuates more compared to 

the ff14SB simulation. In fact, replica 2 stands out with values above 21 Å, even reaching 

conformations with RMSD around 25 Å. The peaks of the distributions of ff14IDPSFF 

are around 20 and 24 Å. Furthermore, the fluctuations of the residues according to each 

force field simulation are illustrated in Figure 2B, in which it is observed that the RMSF 

of ff14SB exhibits different behaviour between replicas at residues 35-47 and 65-75, 

while the rest of the protein is similar. In contrast, ff14IDPSFF shows a distinct RMSF in 

almost the entire E-αSNAC fragment, even exhibiting Δ(RMSF) of ~10 Å at residues 65-

72. The RMSD of ff14IDPSFF shows larger distances with respect to the ff14SB 

counterpart, indicating a conformational sampling more distant from the α-helix-rich 

initial structure, while the RMSF shows less pronounced divergence between the ff14SB 
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Figure 2. Conformational properties of the ff14SB (left) and ff14IDPSFF (right) 

simulations of E-αSNAC. (A) RMSD, (B) RMSF and (C) Rg of each replica are shown in 

red, blue and black lines, respectively. The distributions of RMSD (p(RMSD)) and radius 

of gyration (p(Rg)) are also illustrated within each plot. (D) Energy maps of the RMSD 

and radius of gyration expressed in kcal·mol-1.  
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replicas. This may indicate that the IDP-specific force field samples regions in 

conformational space where amino acid mobility varies significantly. 

To examine the compactness of the E-αSNAC fragment, the time-dependent 

radius of gyration and the distributions are illustrated in Figure 2C, and the energy maps 

constructed in the RMSD/Rg space are shown in Figure 2D.  The average Rg values are 

(11.4 ± 1.5) Å for E-αSNACSB and (13.2 ± 2.1) Å for E-αSNACIDP. The ff14SB 

simulation shows a stable Rg, consistent with the narrow distributions at ~11 Å. In 

contrast, the Rg of ff14IDPSFF exhibits more significant fluctuations than the ff14SB 

force field along with broad distributions located at ~13Å. Although the Rg averages of 

the force fields are close, the conformations of ff14SB appear modestly more compact 

compared to ff14IDPSFF. 

On the other hand, the energy maps in Figure 2D show that ff14SB has a thin, highly 

populated region depicted in black in the plot. The ff14IDPSFF simulation enlarges this 

black region and samples conformations with higher RMSD and Rg values, which is 

consistent with the reported observations and suggests that the IDP-specific force field 

can capture distant conformations from the initial α-helix-rich structure. 

7.2.2. Secondary Structure Propensities and Contact Maps 

The DSSP method of Kabsch and Sander50 was applied to all conformations to 

calculate the secondary structure propensity factors (fpSS) in Figure 3A. For 

convenience, the α-helix, π-helix, and 310-helix were grouped into the helix class and the 

parallel and antiparallel β-sheets, β-bulges, and isolated β-strands into β-strand. The other 

SS propensities mantained their conventional names (turn, bend, and coil). The fpSS in 

E-αSNACSB indicate a predominant helix content (39%) that coexists with coil (25%), 

turn (20%) and bend (14%) conformations. In the case of ff14IDPSFF, the fpSS of E-

αSNACIDP show a large random coil content (44%) together with β-strand (26%), bend 

(16%) and turn (12%) conformations.  

The DSSP analysis reveals that the parameterisation of the E-αSNAC fragment 

leads to significant changes in the adopted conformations and therefore in the fpSS. 

ff14SB preserves the helices found in the NAC and N-terminal domains of the 1XQR 

structure for a considerable simulation time, especially at residues 40-50, 50-70 and 85-

90. Nevertheless, bends, turns and random coil conformations are formed during the  
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Figure 3. (A) fpSS of E-αSNAC. The helix class (red) includes α-helix, π-helix and 310-

helix, and the β-strand class (orange) includes β-sheets, β-bulges and isolated β-strands. 

Turns, bends and random coils are coloured in purple, cyan and green, respectively. (B) 

Native (middle) and non-native (bottom) contact maps of E-αSNAC. The N-terminal and 

NAC domains are separated in the plot by black lines.  
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simulation and break with the high helicity of the native structure. Surprisingly, 

ff14IDPSFF shows an almost complete absence of helical conformations, which are 

instead replaced by random coils and other conformations in lower abundance such as β-

strands, bends and turns. The large random coil content together with the breaking of the 

native helices could explain the greater flexibility indicated by RMSD and Rg. 

In addition, the residue contacts were tracked using an 8 Å distance cut-off. For 

each force field, two contact maps are illustrated in Figure 3B. Native contacts are those 

distances between atoms below the cut-off identified in the 1XQ8 structure and conserved 

during the conformational sampling. Non-native contacts are those contacts produced in 

the simulation that do not appear in the reference NMR structure. The contacts of each 

individual atom pair in a residue are normalised between 0 and 1.0 by the total number of 

conformations and summed to the respective residue. Values greater than 1.0 are expected 

because the normalisation is only performed between pairs of contacts, meaning that each 

residue has, on average, the indicated number of contacts with all possible atom pairs that 

can form in the protein within the cut-off. 

The ff14SB simulation shows strong contacts on the diagonal of the native contact 

map in Figure 3B, which are associated with the formation of α-helices. Residues with a 

high population of contacts on the map diagonal also have a large helix content in the 

DSSP map. In the non-native contact maps of ff14SB, the fragment exhibits spurious 

antidiagonal contacts identified as antiparallel β-sheets. Furthermore, the region 35-50 is 

rich in contacts, apparently promoting random coil conformations as suggested by the 

DSSP map. On the other hand, the native contacts of ff14IDPSFF are less abundant in the 

contact map, a fact consistent with the lack of helix content in the DSSP analysis. The 

diagonal and antidiagonal contacts of the non-native contact map are remarkable for the 

E-αSNACIDP fragment. Several amino acids show antidiagonal contacts with each other 

(residues 43-58, 58-75, 78-95). In addition, the contact map also shows parallel contacts 

between the amino acids 37-43 and 75-81 and, less frequently, between the amino acids 

53-59 and 69-75. In both force fields, Tyr39, the unique tyrosine in the N-terminal 

domain, makes strong contacts with few residues. In the ff14SB simulation, Tyr39 

interacts particularly with the amino acids S42, T44, V48, V52, V55, A65, and V66. This 

number of contacts is reduced in the ff14IDPSFF simulation, where Tyr39 interacts with 

S42, V66, V77, and L80 but allows Leu38 to make contacts with residues V74-V77. 

Many regions show overlapped contacts between several amino acids, which suggest 
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dynamic interconversion of distinct β-strand conformations. Thus, β-sheet formation is 

apparently not restricted to specific amino acids, but instead occurs in distinct and even 

shared regions of the E-αSNAC fragment. 

7.2.3. Conformational Sampling in Principal Component Analysis 

Principal Component Analysis (PCA) was performed on all conformations 

obtained from the simulations with the ff14SB and ff14IDPSFF force fields. Each 

trajectory was projected into first two eigenvalues (PC1 and PC2) and then transformed 

into Gibbs free energies as described in Methods. The PCA energy maps and the 

distributions of PC1 and PC2 are illustrated in Figure 4A. The conformations of the 

ff14SB and ff14IDPSFF simulations were clustered into 15 clusters using the hierarchical 

agglomerative clustering method. The centroids of the three most-populated clusters are 

shown in Figure 4B. The 2D-RMSD of the centroids of the five most-populated clusters 

is represented in Appendix E, Figure E1. 

The PCA energy map of ff14SB distinguishes five low energy regions in the 

conformational sampling. The distributions of the PC1 and PC2 show several peaks, 

suggesting that certain conformations are preferred and, conversely, the access to some 

regions within the conformational space is apparently restricted. After clustering, the 

centroid conformations of the two most populated clusters have a high helix content in 

the structure, while the centroid of the third most populated cluster has a disordered 

structure. In contrast, E-αSNACIDP shows a broad conformational sampling as well as a 

more dispersed population within it, which is consistent with the wide PC1 and PC2 

distributions. ff14IDPSFF samples a region defined by PC1 = [-100, -50], PC2 = [-50, 

100] that does not appear in the ff14SB simulation. In fact, the centroid of the most 

populated cluster in the E-αSNACIDP is located in this region and exhibits a high β-strand 

content. On the contrary, the region delimited by PC1 = [25,50], PC2 = [0,50] is not 

sampled in ff14IDPSFF, where the centroids of the most populated clusters of ff14SB are 

located. The exploration of certain regions in the PCA space is then favoured or restricted 

depending on the force field used. 

The centroid conformations of the three most populated clusters, representing 

>75% of the population, are illustrated in Figure 4B. The population of each cluster is 

given below. 84% of the conformations in the ff14SB simulations are found within the 

first three clusters. In contrast, the three most-populated clusters account for 76% of the 
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conformations in ff14IDPSFF, suggesting that the conformational sampling is more 

dispersed in the IDP-specific force field. Furthermore, the centroid conformations also 

show distinct secondary structure propensities in the simulations. E-αSNACSB preserves 

the helices of the native structure, with the exception of the cluster 3 centroid. Given the 

importance of the NAC domain for the fibril formation, this region (residues 61-95) is 

 

Figure 4. (A) Gibbs free energy maps in PCA space of the extended αS NAC 

domain fragment using the ff14SB (left) and ff14IDPSFF (right) force fields. The 

centroid conformations of clusters 1, 2 and 3 are marked with yellow, pink, and green 

triangles, respectively. The probability distributions of the PC1 and PC2 are also 

represented. (B) Centroid conformations of the three most populated clusters of the 

ff14SB (top) and ff14IDPSFF (bottom) simulations. The NAC domain (residues 61-95) 

is coloured in orange. 
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coloured in orange. Centroids 1 and 2 exhibit α-helix conformations, especially at amino 

acids 70-80 and 86-90. The 60-70 amino acids become loops or turns to allow the change 

of direction of the protein structure and in turn enable the interaction of the α-helix of the 

cleaved N-terminal and the NAC domain in order to form α-hairpins. Indeed, the cluster 

2 centroid captures part of the helix formation (~30%) in the N-terminal domain that 

interacts with the rest of the E-αSNAC fragment. 

The centroids of the ff14IDPSFF simulation do not show any helix formation in 

the structure and instead adopt β-strands, and even β-hairpins, formed within the NAC 

domain itself or together with amino acids of the N-terminal domain. The centroid of 

cluster 1 has β-strands (residues 1-4, 14-20, 40-42, 58-61) formed between the NAC and 

the N-terminal domain, and a short β-hairpin (residues 29-35) in the NAC domain itself. 

The centroids of clusters 2 and 3 contain larger β-hairpins involving several amino acids 

of the NAC domain. These β-strands, whether forming β-hairpins or not, appear in 

different amino acid regions as indicated by the DSSP method and the contact maps. 

We also examined the goodness of clustering using the distance-to-centroid, 

Davies-Bouldin index (DBI), pseudo-F statistic (psF) and SSR/SST magnitudes listed in 

Table E1. The distance-to-centroid calculates the mean distance of the conformations 

captured within a cluster with respect to the centroid, the DBI measures whether the 

separation of the clusters and the classification of the conformations is correct, the 

pseudo-F statistics aims to capture the tightness of the clusters and the SSR/SST indicates 

the percentage of variance captured in the clustering. The magnitudes shown in the table 

indicate that the DBI and SSR/SST values are similar between the clustering of the 

ff14SB and ff14IDPSFF simulations, which means that the conformations obtained from 

the simulation are captured and classified with the same degree of goodness. On the other 

hand, the distance-to-centroid and the psF magnitudes show lower and higher values 

respectively in the ff14SB simulations, indicating a higher similarity between 

conformations within the narrower clusters. Conversely, although the clustering of the 

ff14IDPSFF is ranked with the same degree of goodness, the conformations within a 

cluster show greater heterogeneity and the clusters are broader in conformational space. 

7.2.4. Simulated and Experimental NMR Chemical Shifts 

Finally, the chemical shifts (δ15N, δ13C, δ13Cα, δ
13Cβ) of the protein backbone were 

predicted using the SPARTA+ program51. The results of the ff14SB and ff14IDPSFF 
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simulations were compared with measured NMR data of full-length αS obtained from 

four data sets available in the Biological Magnetic Resonance Data Bank (BRMB). The 

linear regression of each set of measured and predicted chemical shifts for each atom and 

force field are illustrated in Figures E2-E9. The relationships between the predicted and 

experimental chemical shifts were analysed with the Pearson correlation coefficient, r-

value, in Figure 5.  

 

Figure 5. Pearson correlation coefficients between experimental and simulated chemical 

shifts using four BRMB data sets indicated on the x-axis (BRMB ID: 18857, 19337, 

25227 and 6968) of the ff14SB (solid) and ff14IDPSFF (pattern) simulations. Orange, 

blue, green, and red boxes are Cα, N, C and Cβ atoms, respectively. The Cβ chemical shifts 

were not available in the BRMB 18857 data set. 

 The linear regression of the Cα and Cβ atoms shows a high reproducibility of the 

chemical shifts in both force fields. Only the slope of the linear equation for the Cα atom 

shows a small deviation in contrast to the other data sets, which fit accurately. On the 

other hand, the linear regression of the chemical shifts of the N atom exhibits a larger 

slope and intercept for the ff14IDPSFF force field with values around 0.95 and 4.5-7.0, 

respectively. In contrast, the predicted chemical shifts of the N atom in ff14SB deviate 

significantly from the experimental ones, thus fitting its linear equation with slopes 

around 0.78. Finally, the chemical shifts of the C atoms show less reproducibility 

compared to other chemical shifts, independent of the force field. However, they are not 

negligible, with slopes of ~0.88 and ~0.85 for ff14SB and ff14IDPSFF, respectively. The 
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Pearson correlation coefficient is often used to assess whether two variables, in this case 

the simulated and measured NMR, are correlated. The r-values obtained from the 

simulations are generally well predicted, being >0.88, but show differences between the 

N and C atoms depending on the force field. Of note are the Cα and Cβ atoms, which have 

r-values very close to 1.00 for all simulations regardless of the force field. The r-values 

of the chemical shifts of the N and C atoms are also remarkable with values around 0.97 

in the ff14IDPSFF simulation. On the other hand, the r-values of these atoms in ff14SB 

are around 0.91 and 0.88, respectively, being lower with respect to the ff14IDPSFF force 

field. Then, the comparison between the measured NMR and the predicted chemical shifts 

reveals a better correlation for the IDP-specific force field, suggesting that the 

conformational ensembles obtained from the ff14IDPSFF simulations are more suitable 

for exploring the conformational properties of αS.  

7.3. Discussion 

In this chapter, the ff14SB and ff14IDPSFF simulations of the extended NAC 

domain fragment of αS show different conformational sampling, highlighting the 

preservation of the α-helix in the former while the IDP-specific force field simulations 

coexist between random coils and β-strands. The exploration of the PCA space reveals 

specific regions depending on the parameterisation of the protein. Apparently, the most 

populated clusters of the simulations are located in regions exclusive of each force field. 

Although RMSD and Rg have close average values, the ff14IDPSFF simulation shows a 

broader distribution and vaguely larger values. The analysis of the conformational 

properties indicates that the ff14SB force field achieves more restricted and compacted 

conformations, while the ff14IDPSFF force field explores more flexible conformations 

distant from the reference structure. Furthermore, the clustering indicators point out that 

the conformations obtained from ff14IDPSFF are clustered more widely and with greater 

structural difference, such an observation expected due to the structural diversity provided 

by the IDP-specific force field features. 

According to the work of Yu et al.18, which collected experimental data of full-

length αS under different measurements conditions, the α-helix, β-sheet and turn contents 

are within 10%-48%, 0%-20% and 17%-41%, respectively. These results are in 

agreement with the ff14SB simulations, which have a ~40% of α-helix content and a 

negligible β-strand propensity (<1%). On the other hand, Chen et al.17 reported the 

secondary structure content from the far UV CD spectrum of monomeric αS in solution: 
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6% α-helix, 34% β-strand, 18% turns, and 42% other conformations (including random 

coil, bends and other helices). These propensities are in good agreement with E-

αSNACIDP. Despite the reproducibility of experimental data with simulations of E-

αSNAC, it should be noted that the distribution of secondary structure in αS is 

heterogeneous. The E-αSNAC fragment removes the disordered C-terminal domain 

(residues 95-140) and part of the N-terminal domain (residues 1-37), where an extensive 

α-helix conformation is found in the structure of the membrane-bound αS. Neglecting 

these regions may lead to variations in the secondary structure content when compared to 

the full-length protein experiments. Furthermore, it must be considered that the secondary 

structure ratios determined by the experimental techniques are conditioned by the 

interactions that several monomers of the protein can establish in solution. In our 

simulations we use a single αS fragment, in which intermolecular interactions are absent 

and may lead to deviations from the experimental data. 

Fortunately, computational studies focusing on fragments of αS have been 

performed 18,20,57 motivated by the prohibitive cost of performing long-time simulations 

of the full protein. Jain et al.20 performed 18µs T-REMD simulations of the E-αSNAC 

fragment with CHARMM27* force field in which a higher content of α-helix (~62%) was 

determined at the expense of a lower content of random coil, turn and bend (~16%, ~11%, 

~8%, respectively). These results are consistent with the ff14SB simulations despite the 

more distributed secondary structure content. Nevertheless, the contact map reported in 

the work of Jain et al. indicates that residues 70-85 have a 20-40% probability of forming 

antidiagonal contacts, which are related to β-strand conformations. The DSSP map of the 

ff14IDPSFF simulation shows this type of contacts and the β-sheet content is within the 

probability. On the other hand, Yu et al.18 used a hybrid-resolution model to perform long-

time simulations of αS and a short fragment (36-55 amino acids) parameterised with the 

CHARMM27 force field and CMAP correction. They found β-hairpin formation in the 

36-55 amino acid fragment. They suggest that strong interactions between the C-terminal 

and this β-hairpin region reduce the access to β-strand formation and increase the required 

folding time. The E-αSNAC structure includes this β-hairpin region, which are N-

terminal residues close to the NAC domain. The ff14IDPSFF simulation is in agreement 

with the results of Yu and co-workers as β-hairpin conformations are found in the 

centroids of clusters 2 and 3. 
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Furthermore, Chen et al. found β-strands in the NAC domain of some cluster 

centroids after performing trFRET-guided DMD simulations of full-length αS17. More 

importantly, this observation is supported by previous studies pointing out that the 

hydrophobic central amino acids of αS form β-strands as the first step of the 

oligomerisation and fibril formation.18,58–60 On the other hand, a recent study by Balupuri 

et al.27 suggested that the aggregation of αS could be achieved by an intermediate with an 

α-strand/sheet conformation found in the critical NAC region of amino acids 72-74. 

Indeed, we analysed the conformations of these three amino acids, but did not detect any 

α-strand content, irrespective of the force field. Interestingly, this critical NAC region in 

the ff14IDPSFF simulation shows a high turn content between the adjacent β-sheets, as 

well as a higher density of contacts in the 63-65 region compared to ff14SB. Similarly, 

other regions apparently crucial for αS fibrillation also show specific contacts that are 

only observed in ff14IDPSFF. Residues 74-81, which are part of the critical segment of 

the NAC domain for fibril formation26, show significant contacts with amino acids 37-

39. For these 74-81 amino acids, ff14SB shows only a weak, sparse, and heterogeneous 

contact density with residues 48-67. On the other hand, ff14IDPSFF shows another region 

of high contacts between residues 43-49 and 54-57, in which β-sheet propensity is 

observed in the DSSP map. In this case, amino acids 43-49 are part of one of the seven 

imperfect KTKEGV repeats reported in the NAC-domain, probably involved in the 

association of the protein with membrane lipids although it has also been hypothesised 

that they may play a role in the tetramerisation of αS25,61. However, this fragment is part 

of the compact hydrophobic β-sheet-rich structure in the fibrils. The map also shows a 

region of small antidiagonal contacts between amino acids 74-83 and 86-97, which 

probably adopt the β-hairpin observed in the cluster 2 representative. To ensure the 

convergence of these β-sheet structures observed in the clusters, we have illustrated the 

β-sheet propensity of E-αSNACIDP in Figure E10. The convergence plot shows that the 

β-sheet content is stable after 6 µs of simulation in the ff14IDPSFF force field. Finally, 

the review by Meade et al.62 listed the most important mutations (A30P, E46K, H50Q, 

G51D, A53T/E) that affect the rate of αS fibrillation. We have examined whether these 

amino acids form relevant interactions, but unfortunately none of the force field show 

remarkable contacts. 

One of the key points in understanding the results presented in this chapter is the 

conformational bias that exists in the force fields according to the studies reported so far. 
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Duong et al.63 suggested that there are secondary structure preferences in the ff14SB and 

ff14IDPSFF force fields. In addition, several studies have pointed out that the ff14SB 

force field overestimates helix formation due to the use of globular protein structures in 

the parameterisation.39,63,64 On the other hand, ff14IDPSFF is a relatively new force field 

that has incorporated the flexibility of IDPs by adding and optimising the CMAP 

correction terms in the potential energy function of ff14SB. After studying short peptides 

and the RNA-binding protein HIV-1 Rev, Duong et al.63 concluded that the ff14IDPSFF 

force field promotes random coil conformations and disordered secondary structures 

consistent with experiments. An example of the potential of this force field are the works 

of Song et al.34 and Dan et al.65, in which the simulation of the all-atom microtubule-

associated Tau protein with ff14IDPSFF was able to capture β-sheet conformations that 

were also observed in experiments. In a comparative study between force fields, β-hairpin 

was found in conformational ensembles of β-amyloid proteins using IDP-specific force 

fields.66 A similar trend in β-strand content is observed in E-αSNACIDP after performing 

conventional 6 µs-length simulations with ff14IDPSFF. In addition to the conformational 

bias in the force field, Yu et al.18 demonstrated with the extensive hybrid-model PACE 

simulations that C-terminal interactions affect in the β-hairpin formation of the 38-53 

region. Therefore, E-αSNACIDP has two factors that facilitate random coil or β-strand 

conformations, i.e. (i) the promotion of random coil conformations by the ff14IDPSFF 

force field and (ii) the absence of the C-terminal domain and its interactions with the NAC 

domain.  

Finally, the correlations between predicted and measured NMR chemical shifts 

indicate that ff14IDPSFF reproduces more accurately the experiments of αS in solution, 

especially for 13C and 15N atoms. Indeed, it is consistent with previous works reporting 

that a promising feature of the ff14IDPSFF force field is the improved prediction of 

chemical shifts compared to ff14SB.34,63,65,66 Our results with the IDP-specific force field 

from the conformational analysis of this and previous studies and the contrast of the NMR 

chemical shifts point to a very successful exploration of the αS conformational space 

within affordable MD simulation times lengths.  

7.4. Conclusions 

The αS protein adopts a wide range of conformations during time evolution due 

to its intrinsic disorder typical of IDPs. Because of the difficulty in experimentally 

characterising the conformations of these highly flexible proteins, atomistic simulations 
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come into play, especially those that have attempted to incorporate the features of IDPs 

in recent years. In this study, we selected an αS fragment (residues 35-97) to reproduce 

the conformational space through 6 µs simulations using the classical ff14SB AMBER 

force field and the IDP-specific ff14IDPSFF force field developed by Song et al. 34. The 

results indicate that the classical force field preserves the conformations typically found 

in the micelle-bound α-synuclein structure, notable for the high presence of α-helices. On 

the other hand, the ff14IDPSFF force field provides conformational ensembles dominated 

by structural disorder and low formation of β-strands, which are apparently not easily 

accessible in conventional force fields. To validate these simulations, we performed the 

linear regression and reported the Pearson's correlation coefficients between the predicted 

and the experimentally measured chemical shifts, demonstrating that ff14IDPSFF 

reproduces NMR data more accurately. Therefore, the results presented in this chapter 

suggest that ff14IDPSFF is reliable for exploring αS conformations not normally found 

in well-established force fields, and provide additional evidence to the body of work 

pointing to β-sheet formation as an intermediate state to fibril formation in the αS protein. 

An in-depth study of αS with IDP-specific force fields could certainly shed some light on 

the mechanism of protein fibril formation, and subsequently contribute to a more 

complete picture of the pathogenesis of neurodegenerative disorders derived from 

synucleinopathies. 
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Chapter 8 

Outlook: The Synuclein Protein Family 

 

The environmental factors within a cell that can affect proteins are many and varied. 

In fact, in addition to the presence of other proteins or peptides that may interact with our 

target protein, there are also a number of physicochemical properties provided by the 

cellular environment that can alter the biological functions of a protein1. This is 

particularly true in the case of IDPs since the intrinsic disorder and disorder-to-order 

transitions confer them the ability to respond rapidly to the external stimuli, which is of 

paramount relevance to their regulatory functions. Therefore, the cell composition, such 

as the presence of inorganic ions, pH, metabolites or even the electrochemical 

environment resulting from the presence of other molecules or ions, can greatly alter the 

functionality of the proteins. For example, regarding the synuclein protein family, several 

studies have shown that the presence of metal ions promotes the onset of 

neurodegenerative diseases through the protein-metal interactions of many 

amyloidogenic IDPs such as α-synuclein, β-amyloid or Tau2. On the other hand, pH is 

also crucial in the modulation of the protein conformations through the charge-structure 

coupling, since the environmental pH affects the protonation state of the ionisable amino 

acid side chains, as we have already mentioned in this thesis. This property is of great 

interest in IDPs due to the abundance of ionisable amino acids in their sequence and the 

wide pH range within the cellular compartments3. On the other hand, more complex 

factors may be also involved within the cell, such as viscosity and molecular crowding, 

which define the steric hindrance and the excluded volume effect (which is closely related 

to the effective concentration) in the cytosol and therefore have an influence on the 

compaction and folding of globular proteins and IDPs. 

The synuclein protein family is not exempt from the influence of these environmental 

factors on cells. Indeed, the metal ion binding capacity of αS has already been mentioned. 

In addition, other factors, such as salt concentration or pH, have also been investigated. 

In particular, solvent pH at mildly acidic conditions has been shown to accelerate αS 

aggregation and to alter the fibril structure with different fibril typologies governed by 

the kinetic control of the reaction4–6. Interestingly, β-synuclein has also been found to 
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fibrillate at mildly acidic conditions, although in principle it exists as a soluble monomer 

under physiological conditions. Therefore, the work of Moriarty et al.7 presents the pH as 

an on/off-switch for βS fibrillation via the interaction of certain glutamic acids. 

Furthermore, the study of αS/βS chimeras shows that intramolecular interactions between 

domains are decisive for stabilising or inhibiting the fibril formation. Therefore, 

motivated by this work and other in-silico simulations on the ability of pH or protonation 

states to modify the conformational space of αS, the future research of this thesis will 

focus on an in-depth study of the conformational space of αS and βS by all-atom CpHMD 

simulations8 including novel IDP-specific force fields and water models. 

Here we present the first results of the 2 µs-length exploration of αS and βS using the 

CpHMD method and the ff14IDPSFF force field9 with TIP3P water molecules at 

physiological (7.3) and mildly acidic (5.8) pH conditions. 

 

Figure 1. Protonated state fractions shifts of αS (left) and βS (right) proteins from solvent 

pH 7.4 to 5.8.  

The shifts of the protonated state fractions of αS and βS between solvent pH 5.8 and 

7.4 are illustrated in Figure 1. In general, βS shows a larger change in the net protein 

charge (|Δq| ~9.0e) compared to αS (|Δq| ~5.5e). Furthermore, the charge variation is 

mainly in the C-terminal domain, which is known for its inhibitory effect in preventing 

fibril formation. Regarding the different amino acids, on the one hand, the histidine in 

both proteins shows a high sensitivity to the change of the solvent pH, because the 

intrinsic pKa of the side chain of the imidazole ring is 6.8 in ideal conditions. However, 

the shift of the protonated state fraction in αS is more pronounced in comparison to βS. 

On the other hand, as pointed out in the study by Moriarty and co-workers, glutamic acids 

are predominant among the amino acids that undergo the changes in protonation state 

fraction, suggesting that they play a key role in understanding the fibrillation capacity of 
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βS and the observed topologies and aggregation rate of αS. Furthermore, aspartic acids 

are not prominent in βS, whereas αS shows some mild shifts in the C-terminal tail. Other 

amino acids do not appear to be relevant in these simulations at constant pH. 

 

Figure 2. Secondary structure propensity fractions of αS and βS at pH 5.8 and 7.4. α-, 

310- and π-helix are grouped in red, β-sheets, β-bulges and isolated β-strands are grouped 

in orange, and turns, bends and random coil conformations are coloured in purple, blue 

and green, respectively.  

The secondary structure propensity fractions (fpSS) of the four simulations, αS and βS at 

pH 5.8 and 7.4, are illustrated in Figure 2. In αS, the α-helix structure found in the initial 

membrane-bound structure is completely broken. This was observed earlier in Chapter 7 

with the extended NAC-domain αS fragment which significantly lost the helix content 

with the ff14IDPSFF force field. While remnants of the helix content remain at pH 7.4 

conditions, this low helix content disappears at pH 5.8 conditions. On the other hand, the 

random coil and bend conformations are mainly promoted, and β-strand structures appear 

sporadically with a content generally below 20%. For βS, the formation of helices and 

turns is more significant, especially in the NAC and N-terminal domains at pH 7.4. In 

contrast, βS reduces the content of helices and turns at pH 5.8 and, in turn, these structures 

are more distributed along the protein. It is therefore possible that the helix formation in 
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these two domains is important for the prevention of fibrillation. On the other hand, β-

strand formation also occurs in βS with a low content as in αS. Compared to αS, βS 

contains a lower content of bends and random coil conformations although they are still 

predominate in the conformational sampling. 

 

Figure 3. Intramolecular contact maps of αS and βS at pH 5.8 and 7.4. The N-terminal, 

NAC and C-terminal domains are separated by white dashed lines. The colour indicates 

the frequency of contacts during the trajectory. 

Finally, we present the map of the intramolecular contacts during the trajectories 

in Figure 3. On the one hand, αS at pH 7.4 shows a higher number of intramolecular 

contacts within the N-terminal domain, and some minor ones between the C-terminal tail 

and the N-terminal domain as well as between the last amino acids of the NAC domain 

and the first residues of the C-terminal domain. In contrast, the intramolecular contacts 
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disappear significantly at pH 5.8 conditions, with only some antidiagonal contacts typical 

of β-strand in some sets of amino acids at the end of the N-terminal and NAC domains, 

as well as in the middle of the C-terminal domain. The disappearance of these contacts 

could explain the absence of structure and the increased presence of random coil in the 

fpSS plot, since at pH 5.8 conditions the frequency of the contacts is reduced. On the 

other hand, at pH 7.4, βS establishes significant contacts within the NAC domain and a 

higher number of contacts on the diagonal of the N-terminal and NAC domains. Other 

minor contacts are present between these two domains. In contrast, at pH 5.8 the diagonal 

contacts are drastically reduced and some antidiagonal contacts appear in the C-terminal 

domain. There are also sporadic contacts between the NAC and N-terminal domains, 

which may indicate an interaction between these domains to promote fibrillation after 

helical breaking present at mildly acidic conditions. 

Therefore, the results of this preliminary study suggest changes in the 

intramolecular interactions and the secondary structure propensities that are dependent on 

the pH and the protonation state of the glutamic acids present in the αS and βS chains, 

although aspartic acids and histidine may also be important, especially for the former. On 

this basis, our perspectives for further research on the synuclein protein family are 

summarised below: 

(i) A study of the titration curves of ionisable amino acids within the αS and 

βS structures from pH-REMD simulations and the estimation of the pKa 

by means of complexation isotherms. In this way, we can determine which 

amino acids are most sensitive to the pH change and reduce the number of 

amino acids included in the CpHMD simulation. 

(ii) Explore the conformational space of the αS and βS proteins using IDP-

specific force fields (ff14IDPSFF, a99SB-disp or ff19SB), water models 

(TIP4P-D, OPC or others depending on the force fields) and the CpHMD 

method at different pH conditions. In addition, include CG simulations to 

facilitate further sampling of the conformational space to develop multi-

seed sampling strategies. 

(iii) Extend the study for γ-synuclein and oligomers of αS and βS, and, if 

possible, contrast all the simulations with NMR or SAXS experimental 

techniques to provide reliability in the combination of force field, water 

models and constant pH method carried out in the simulations.  
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Overall, we hope to gain a deeper understanding of the mechanism of fibrillation 

of the synuclein protein family and the solvent pH dependence through these simulations 

at constant pH. Ultimately, based on the success of these studies, we would like to 

contribute to the treatment of synucleopathies and, in the future, support this ongoing 

research with drug design projects to advance the therapies for neurodegenerative 

diseases. 
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Chapter 9 

Conclusions 

 

The research conducted in this thesis is presented as a modest contribution to a 

deeper understanding of the pH-dependent charge-structure coupling of proteins, in 

particular for the so-called intrinsically disordered proteins (IDPs). Through the 

investigations of Chapter 3 to Chapter 8, which range from the study of the effect of pH 

on short peptides to the sampling of the conformational space and the protonation states 

of IDPs, this final chapter summarises and outlines the concluding remarks of this 

doctoral thesis. 

Several issues of paramount importance for incorporating the effect of pH and the 

intrinsic disorder of IDPs into MD simulations have been addressed in this investigation. 

First, we have considered the available techniques within the Constant pH Molecular 

Dynamics (CpHMD) approach, selecting the CpHMD method with discrete protonation 

states for a physically meaningful representation of the peptides and proteins along the 

entire trajectory. Through the conformational analysis of the polyaspartic acid peptide in 

Chapter 3, we identified a few inconsistencies in the CpHMD method, which then led us 

to investigate in more detail the limitations and capabilities of this approach implemented 

in AMBER using titratable amino acid tripeptides described in Chapters 4 and 5. 

▪ The implementation of the CpHMD method with discrete protonation states in the 

AMBER software package induces deviations in the reproduction of the 

conformational space and structural properties in the deprotonated state of the 

tripeptides compared to the conventional MD (CMD) simulations. These observations 

can be explained by the fact that the set of partial charges of the reference residue 

(i.e., the protonated amino acid) remains fixed throughout the simulation, leading to 

a misassignment of the partial charges on the backbone atoms of the amino acids in 

the deprotonated state. Other contributions may also be involved in the observed 

deviations such as the description of the dihedral angles. 

▪ The CpHMD simulations of the tripeptides with ionisable amino acids with a single 

protonation site successfully reproduce the conformational profiles of the CMD 
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simulations in the protonated form. On the other hand, the tripeptides with titratable 

amino acids possessing multiple protonation states show mild deviations in the 

conformational space, suggesting that the sampling of the protonation states promotes 

distinct conformational preferences within the Ramachandran map. Therefore, the 

inclusion of pH has a potential benefit on the conformational sampling of larger 

biomolecules derived from proper protonation state sampling. 

▪ By means of the pH-REMD method, we have shown the coupling charge-structure in 

a wide range of pHs around the 𝑝𝐾𝐷 of the polyaspartic acid peptide, proving that the 

conformations and titratable amino acids are sensitive to the solvent pH, even at 

conditions apparently far from the effective 𝑝𝐾𝐷. At this point, we have highlighted 

the importance of estimating the titration curve and the 𝑝𝑘𝑎𝑝𝑝 distribution of the 

individual amino acids, as well as those for the entire peptide, in the pH range of the 

pH-REMD simulations using the Hill/Langmuir-Freundlich (Hill/LF) and Frumkin 

complexation isotherms. On the one hand, the Hill/LF isotherm gives the effective 

𝑝𝑘𝐷,𝑖 and 𝑝𝐾𝐷 of the titratable amino acids and the peptide, respectively, when the 

protonation/deprotonation fraction is 50%, but the isotherm does not fit to the 

simulated values at the limits of the titration curves. On the other hand, the Frumkin 

isotherm directly provides the intrinsic 𝑝𝑘𝑎,𝑖 and 𝑝𝐾𝑎 for the titratable amino acids 

and peptide, respectively, and a physically meaningful δ-parameter of the electrostatic 

interactions of the molecular system. Interestingly, the 𝑝𝑘𝑎,𝑖 values obtained from the 

isotherms differ from the 𝑝𝑘𝑎,𝑖 = 4.0 set by the default in the AMBER program, and 

a relationship is observed between the position of the individual titratable amino acids 

within the chain and the 𝑝𝑘𝑎,𝑖 values. Therefore, it is recommended to study the 

𝑝𝑘𝑎𝑝𝑝,𝑖 distribution of the amino acids before running simulations at constant pH.  

▪ We have tested the limitations of the CpHMD method implemented in AMBER on 

alanine decapeptides with two aspartic acids in different positions and conclude that, 

if the ionisable amino acids are sufficiently distant, the deviations in the 

conformational space are negligible. This raises the possibility of strategies that 

minimise the effect of the deprotonated residues in simulations at constant pH. 

However, the extent of such deviations in more complex systems (i.e., including 

diverse electrochemical environments with other ionisable amino acids, solvents with 

different dielectric constants, inorganic ions, ionic strengths, etc.) also requires further 

study. 
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On the other hand, we have focused on current force fields in order to incorporate 

the inherent flexibility of IDPs into MD simulations since both conformational and 

protonation state sampling need to be properly addressed. Therefore, through an extensive 

study of the histatin-5 model IDP with different force fields, water models, simulation 

methods and sampling techniques, in Chapter 6 we have emphasised the importance of a 

good parameterisation to reproduce the NMR and SAXS experimental observables, and 

we have included the dynamic change of protonation states in these simulations. 

▪ The all-atom simulation with the ff14IDPSFF force field and the TIP4P-D water 

model has demonstrated successful performance in reproducing the SAXS radius of 

gyration and NMR chemical shifts. Both the force field and the water model are 

known to improve the description of IDPs by incorporating the CMAP correction 

energy and enhancing the water-protein dispersion forces, respectively. 

▪ Furthermore, when using a coarse-grained resolution in the histatin-5 simulations, a 

multi-seed sampling strategy is required to obtain good results with the SIRAH force 

fields and the WAT4 water model. Based on this study, we are currently planning to 

investigate protocols for novel sampling strategies based on transitions from a CG 

resolution with a reduced number of beads to all-atom resolutions in a stepwise 

manner, i.e., using intermediate CG models with a higher level of description. 

▪ The strong charge-structure coupling is demonstrated in the histatin-5 simulations, 

as the protonation fractions vary significantly depending on the force field, the water 

model or the resolution of the molecular model used. 

Finally, in light of the conclusions of the previous chapters, in Chapter 7 and 

Chapter 8 we have begun a study of the synuclein protein family, which are involved in 

several biological functions that are currently still being elucidated. However, the 

fibrillogenesis of these proteins is associated with certain physiological pathologies such 

as α-synuclein aggregation in Lewis bodies in Parkinson's disease. Therefore, the ultimate 

goal of this research is to gain a deeper understanding of the mechanism of fibril 

formation and the pH dependence, as reported in in vivo studies. 

▪ Extensive sampling of the extended NAC domain fragment of α-synuclein reveals 

significant differences between the ff14SB and ff14IDPSFF force fields. The ff14SB 

force field, which is well established in biomolecular simulations, maintains the 

formation of helices in the trajectory. In contrast, the IDP-specific force field differs 

from its predecessor by a high formation of random coil conformations and a 
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remarkable β-strand content, which are found in β-sheet structures within the Greek-

key topology of α-synuclein fibrils. Thus, the ff14IDPSFF force field suggests that 

these disordered structures with sporadic transitions to β-strand formation could be 

the intermediate states of the fibrillation process. 

▪ On the other hand, the first results of simulations at constant pH with the ff14IDPSFF 

force field on α-synuclein and β-synuclein show certain differences between the two 

proteins, such as an almost complete helix unfolding in α-synuclein or a greater 

sensitivity to solvent pH in β-synuclein due to the protonation of the amino acids of 

the C-terminal domain. Given the pH-dependent fibrillation response of these 

proteins, an in-depth study including all the factors discussed in the present thesis 

would be very enriching and hopefully will be performed in the near future. 



 

211 

 

List of Publications 

 

Articles 

• Privat, C., Madurga, S., Mas, M. & Rubio-Martínez, J. On the Use of the 

Discrete Constant pH Molecular Dynamics to Describe the Conformational 

Space of Peptides. Polymers 13, 99 (2021). 

• Privat, C., Madurga, S., Mas, M. & Rubio-Martínez, J. Unravelling Constant 

pH Molecular Dynamics in Oligopeptides with Explicit Solvation Model. 

Polymers 13, 3311 (2021). 

• Privat, C., Madurga, S., Mas, M. & Rubio-Martínez, J. Molecular Dynamics 

Simulations of an α-Synuclein NAC Domain Fragment with a ff14IDPSFF 

IDP-Specific Force Field Suggest β-Sheet Intermediate States of Fibrillation. 

Physical Chemistry Chemical Physics 24, 18841–18853 (2022). 

  



 

 



 

213 

 

Appendix A 

Supporting Information to “Exploring the 

Polyaspartic Acid Conformations with Constant 

pH Simulations and Prediction of pKa through 

Complexation Isotherms” 

 
  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

E
x
p
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t 

S
o
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ASP10 33% 17% 14% 8% 6% 

ASH10 20% 12% 10% 9% 8% 

AS410
pH=1 16% 13% 12% 12% 11% 

AS410
pH=10 44% 18% 15% 4% 4% 

Im
p

li
ci

t 

S
o
lv

en
t 

ASP10 32% 14% 13% 6% 5% 

ASH10 26% 17% 8% 8% 8% 

AS410
pH=1 80% 4% 3% 3% 2% 

AS410
pH=10 88% 3% 2% 2% 1% 

Table A1. Population fractions of the five most populated clusters of ASP10, ASH10, 

AS410
pH=1 and AS410

pH=10 in implicit and explicit solvation models.  

 

 

Figure A1. Fractions of (a) 3-10 helix, (b) β-turn and (c) bend of the fully protonated 

(ASH10 and AS410
pH=1) and fully deprotonated (ASP10 and AS410

pH=10) polyaspartic acid 

peptides in implicit (dashed lines) and explicit (solid lines) solvation models. 
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Figure A2. Radial distribution function (RDF) of Na+ counterions around the oxygen 

atoms of the carboxyl group of the aspartic acid side chains in the deprotonated state of 

the CMD (left) and CpHMD (right) simulations with explicit solvation model. 

 

Figure A3. 2D-RMSD of the three most populated clusters of the pH-REMD trajectories 

from pH = 1.0-8.0 with ΔpH = 0.5. The colour labels indicate the RMSD value (in Å) 

between the centroid conformations of each cluster. 
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% Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

AS410
pH=1 14 10 10 9 7 

AS410
pH=1.5 17 13 12 10 9 

AS410
pH=2 17 12 11 8 7 

AS410
pH=2.5 22 20 9 9 8 

AS410
pH=3 27 15 15 8 8 

AS410
pH=3.5 23 16 15 9 7 

AS410
pH=4 20 17 14 12 8 

AS410
pH=4.5 18 18 14 13 11 

AS410
pH=5 21 20 14 10 8 

AS410
pH=5.5 21 16 14 9 9 

AS410
pH=6 29 20 16 11 8 

AS410
pH=6.5 23 18 18 11 9 

AS410
pH=7 28 15 12 12 11 

AS410
pH=7.5 36 18 15 12 5 

AS410
pH=8 55 8 7 7 6 

AS410
pH=8.5 55 7 7 6 5 

Table A2. Population fractions of the five most populated clusters of AS410
pH=2.5-6.0, 

ΔpH=0.5 in the pH-REMD simulation. 
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Appendix B 

Supporting Information to “On the Use of 

Constant pH Molecular Dynamics to Describe 

the Conformational Space of Peptides” 

 

 

Figure B1. Protonatable sites in the aspartic acid side chain. There are four protonatable 

sites corresponding to the anti or syn position with respect to each oxygen of the carboxyl 

group (OD1 and OD2). The CpHMD method builds a residue with the four hydrogens, 

and only make one or none are active, depending on the protonation state.
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Figure B2. Classification of the nine secondary structure regions (C5, PII, αD, β2, C7
eq, αL, 

α’, αR and C7
axial) in the Ramachandran map by J. Rubio-Martinez et al.1.  

 

Figure B3. Gibbs free energies in the Ramachandran space of the capped Tyr2 tripeptide. 

Each subtitle indicates the residue, the simulation method (in the superscript) and the 

solvent pH (for the CpHMD simulations only). Both sets of dihedrals (φ1/ψ1 from the N-

terminal amino acid; φ2/ψ2 from the C-terminal amino acid) are illustrated. Only the 

protonated forms are shown for TYR residue (CMD; top—CpHMD; bottom). The solid 

lines indicate an increase of 0.6 kcal/mol in the energy values. 
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Figure B4. Gibbs free energies in the Ramachandran space of the capped Cys2 tripeptide. 

Each subtitle indicates the residue, the simulation method (in the superscript) and the 

solvent pH (for the CpHMD simulations only). Both sets of dihedrals (φ1/ψ1 from the N-

terminal amino acid; φ2/ψ2 from the C-terminal amino acid) are illustrated. The 

protonated forms are on the left (CMD; top—CpHMD; bottom) and the deprotonated 

forms are on the right (CMD; top—CpHMD; bottom). The solid lines indicate an increase 

of 0.6 kcal/mol in the energy values. 
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Figure B5. Gibbs free energies in the Ramachandran space of the capped His2 tripeptide. 

Each subtitle indicates the residue, the simulation method (in the superscript) and the 

solvent pH (for the CpHMD simulations only). Both sets of dihedrals (φ1/ψ1 from the N-

terminal amino acid; φ2/ψ2 from the C-terminal amino acid) are illustrated. The 

protonated forms are on the left (CMD; top—CpHMD; bottom) and the deprotonated 

forms are on the right (CMD; top—CpHMD; bottom). The solid lines indicate an increase 

of 0.6 kcal/mol in the energy values. 
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Figure B6. Gibbs free energies in the Ramachandran space of the capped Glu2 tripeptide. 

Each subtitle indicates the residue, the simulation method (in the superscript) and the 

solvent pH (for the CpHMD simulations only). Both sets of dihedrals (φ1/ψ1 from the N-

terminal amino acid; φ2/ψ2 from the C-terminal amino acid) are illustrated. The 

protonated forms are on the left (CMD; top—CpHMD; bottom) and the deprotonated 

forms are on the right (CMD; top—CpHMD; bottom). The solid lines indicate an increase 

of 0.6 kcal/mol in the energy values. 
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Figure B7. Energy distributions of the capped Tyr2 tripeptide. Global, inner, van der 

Waals and electrostatic terms are show. The dotted and dashed lines are the CpHMD and 

CMD simulation methods, respectively. 
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Figure B8. Energy distributions of the capped Cys2 tripeptide. Global, inner, van der 

Waals and electrostatic terms are shown. The dotted and dashed lines are the CpHMD 

and CMD simulation methods, respectively. 
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Figure B9. Energy distribution of the 1-4 and long-range electrostatics of the backbone 

and side chain atoms of the capped Tyr2 tripeptide. The dotted and dashed lines are the 

CpHMD and CMD simulation methods, respectively. 

 

Figure B10. Energy distribution of the 1-4 and long-range electrostatics of the backbone 

and side chain atoms of the capped Tyr2 tripeptide. The dotted and dashed lines are the 

CpHMD and CMD simulation methods, respectively. 
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Figure B11. Energy distributions of the capped His2 tripeptide. Global, inner, van der 

Waals and electrostatic terms are illustrated. The dotted and dashed lines are the CpHMD 

and CMD simulation methods, respectively. 
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Figure B12. Energy distribution of the 1-4 and long-range electrostatics of the backbone 

and side chain atoms of the capped His2 tripeptide. The dotted and dashed lines are the 

CpHMD and CMD simulation methods, respectively. The labels δ-STATE and ε-STATE 

refer to the partial charges used to calculate electrostatic energies of the side chain.  
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Figure B13. Energy distributions of the capped Glu2 tripeptide. Global, inner, van der 

Waals and electrostatic terms are illustrated. The dotted and dashed lines are the CpHMD 

and CMD simulation methods, respectively. 

 



Appendix B. Discrete Constant pH Molecular Dynamics on the Conformational Space of Peptides 

 

228 

 

 

Figure B14. Energy distribution of the 1-4 and long-range electrostatics of the backbone 

and side chain atoms of the capped Glu2 tripeptide. The dotted and dashed lines are the 

CpHMD and CMD simulation methods, respectively. 
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Figure B15. Gibbs free energies in the sidechain-orientation space of the capped Lys2 

tripeptide. The labels indicate the residue, the simulation method (in the superscript) and 

the pH (for the CpHMD simulations only). Four sets of dihedral angles are represented 

in this plot, using the θ dihedral together with the φ or ψ dihedral of each monomer (φ1/ψ1 

from the N-terminal amino acid; φ2/ψ2 from the C-terminal amino acid). The protonated 

forms are on the left and deprotonated forms on the right. The solid lines indicate an 

increase of 0.6 kcal/mol in the energy values. 
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Figure B16. Gibbs free energies in the sidechain-orientation space of the capped Tyr2 

tripeptide. The labels indicate the residue, the simulation method (in the superscript) and 

the pH (for the CpHMD simulations only). Four sets of dihedral angles are represented 

in this plot, using the θ dihedral together with the φ or ψ dihedral of each monomer (φ1/ψ1 

from the N-terminal amino acid; φ2/ψ2 from the C-terminal amino acid). Only the 

protonated forms are illustrated for TYR residue. The solid lines indicate an increase of 

0.6 kcal/mol in the energy values. 
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Figure B17. Gibbs free energies in the sidechain-orientation space of the capped Cys2 

tripeptide. The labels indicate the residue, the simulation method (in the superscript) and 

the pH (for the CpHMD simulations only). Four sets of dihedral angles are represented 

in this plot, using the θ dihedral together with the φ or ψ dihedral of each monomer (φ1/ψ1 

from the N-terminal amino acid; φ2/ψ2 from the C-terminal amino acid). The protonated 

forms are on the left and deprotonated forms on the right. The solid lines indicate an 

increase of 0.6 kcal/mol in the energy values. 
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Figure B18 Gibbs free energies in the sidechain-orientation space of the capped Glu2 

tripeptide. The labels indicate the residue, the simulation method (in the superscript) and 

the pH (for the CpHMD simulations only). Four sets of dihedral angles are represented 

in this plot, using the θ dihedral together with the φ or ψ dihedral of each monomer (φ1/ψ1 

from the N-terminal amino acid; φ2/ψ2 from the C-terminal amino acid). The protonated 

forms are on the left and deprotonated ones on the right. The solid lines indicate an 

increase of 0.6 kcal/mol in the energy values. 
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Figure B19. Gibbs free energies in the sidechain-orientation space of the capped Asp2 

tripeptide. The labels indicate the residue, the simulation method (in the superscript) and 

the pH (only for the CpHMD simulations). Four sets of dihedral angles are represented 

in this plot, using the θ dihedral together with the φ or ψ dihedral of each monomer (φ1/ψ1 

from the N-terminal amino acid; φ2/ψ2 from the C-terminal amino acid). The protonated 

forms are on the left and deprotonated forms on the right. The solid lines indicate an 

increase of 0.6 kcal/mol in the energy values. 
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Figure B20. Distribution of the interatomic distance between the atoms of the side chain 

selected for the construction of the dihedral angle θ (Table B3).  
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Table B1. Partial charges of the protonated and deprotonated forms of the Glu and Asp 

amino acids in the CMD and CpHMD simulations. pH(X) and p-(X) refer to the partial 

charges used in the CpHMD method and other labels correspond to the CMD residues. 

Both Glu and Asp amino acids have four protonated states: the syn (P-sOx) and anti (P-

aOX) positions on the oxygen atoms (O1 or O2) of the carboxyl group. 
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Table B2. Partial charges of the protonated and deprotonated forms of the Lys, Tyr, Cys 

and His amino acids in the CMD and CpHMD simulations. pH(X) and p-(X) refer to the 

partial charges used in the CpHMD method and other labels correspond to the CMD 

residues. The histidine has two states in the neutral form: the ε- (pH12-ε) and δ- (pH12-

δ) states.  
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System Atomic distance Dihedral angle θ 

LYS 

LYSCMD 11.89 ± 1.90 

NZ-NZ NZ-CA-CA-NZ 
LYSCpHMD

1 11.87 ± 1.90 

LYNCMD 11.30 ± 2.34 

LYSCpHMD
14 11.39 ± 2.22 

TYR 
TYRCMD 10.13 ± 3.02 

OH-OH OH-CA-CA-OH 
TYRCpHMD

1 10.07 ± 2.96 

CYS 

CYSCMD 6.71 ± 1.24 

SG-SG SG-CA-CA-SG 
CYSCpHMD

1 6.68 ± 1.23 

CYMCMD 7.04 ± 0.71 

CYSCpHMD
12 7.08 ± 0.91 

HIP 

HIPCMD 9.10 ± 1.60 

CE1-CE1 CE1-CA-CA-CE1 

HIPCpHMD
1 9.12 ± 1.58 

HIECMD 7.63 ± 2.02 

HIDCMD 8.49 ± 2.04 

HIPCpHMD
12 8.42 ± 2.07 

GLU 

GLHCMD 8.34 ± 1.31 

CD-CD CD-CA-CA-CD 
GL4CpHMD

1 8.75 ± 1.15 

GLUCMD 8.23 ± 1.17 

GL4CpHMD
12 8.79 ± 1.10 

ASP 

ASHCMD 6.95 ± 0.89 

CG-CG CG-CA-CACG 
AS4CpHMD

1 7.05 ± 0.74 

ASPCMD 7.02 ± 0.81 

AS4CpHMD
12 7.06 ± 0.57 

Table B3. Average and standard deviation of the interatomic distances calculated from 

the selected atoms at the end of the side chains. The set of atoms used to define the 

dihedral angle θ in each tripeptide is also given. 
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Appendix C 

Supporting Information to “Unravelling Constant 

pH Molecular Dynamics in  

Oligopeptides with Explicit Solvation Model” 

 

 

Figure C1. Classification of the nine secondary structure regions (C5, PII, αD, β2, C7
eq, αL, 

α’, αR and C7
axial) in the Ramachandran map according to J. Rubio-Martinez et al. [1].
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Figure C2. Ramachandran maps of the capped Glu2 tripeptide. The titles indicate the 

residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. Each simulation condition has two energy maps corresponding to the set of 

backbone dihedral angles of the N-terminal (φ1/ψ1) or the C-terminal amino acid (φ2/ψ2). 

The solid lines indicate an increase of 0.6 kcal/mol in the energy map. 

 

Figure C3. Populations of the conformational regions (PII, αR, C7
eq, C5, and αL) in the 

Ramachandran maps of each amino acid of the capped Glu2 tripeptide. The titles indicate 

the residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. The net charge of the tripeptide is shown below (q). The striped and solid 

box represent the protonated and deprotonated states, respectively. 
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Figure C4. Ramachandran maps of the capped His2 tripeptide. The titles indicate the 

residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. Each simulation condition has two energy maps corresponding to the set of 

backbone dihedral angles of the N-terminal (φ1/ψ1) or the C-terminal amino acid (φ2/ψ2). 

The solid lines indicate an increase of 0.6 kcal/mol in the energy map. 
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Figure C5. Populations of the conformational regions (PII, αR, C7
eq, C5, and αL) in the 

Ramachandran maps of each amino acid of the capped His2 tripeptide. The titles indicate 

the residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. The net charge of the tripeptide is shown below (q). The striped and solid 

box represent the protonated and deprotonated states, respectively. 

 

Figure C6. Ramachandran maps of the capped Lys2 tripeptide. The titles indicate the 

residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. Each simulation condition has two energy maps corresponding to the set of 

backbone dihedral angles of the N-terminal (φ1/ψ1) or the C-terminal amino acid (φ2/ψ2). 

The solid lines indicate an increase of 0.6 kcal/mol in the energy map. 
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Figure C7. Ramachandran maps of the capped Tyr2 tripeptide. The titles indicate the 

residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. Each simulation condition has two energy maps corresponding to the set of 

backbone dihedral angles of the N-terminal (φ1/ψ1) or the C-terminal amino acid (φ2/ψ2). 

The solid lines indicate an increase of 0.6 kcal/mol in the energy map. 

  



Appendix C. Unravelling Constant pH Molecular Dynamics in Oligopeptides with Explicit Solvation Model 

 

244 

 

 

Figure C8. Ramachandran maps of the capped Cys2 tripeptide. The titles indicate the 

residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. Each simulation conditions have two energy maps corresponding to the set 

of backbone dihedral angles of the N-terminal (φ1/ψ1) or the C-terminal amino acid 

(φ2/ψ2). The solid lines indicate an increase of 0.6 kcal/mol in the energy map. 

 

Figure C9. Populations of the conformational regions (PII, αR, C7
eq, C5, and αL) in the 

Ramachandran maps of each amino acid of the capped Lys2 tripeptide. The titles indicate 

the residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. The net charge of the tripeptide is shown below (q). The striped and solid 

box represent the protonated and deprotonated states, respectively. 
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Figure C10. Populations of the conformational regions (PII, αR, C7
eq, C5, and αL) in the 

Ramachandran maps of each amino acid of the capped Tyr2 tripeptide. The titles indicate 

the residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. The net charge of the tripeptide is shown below (q).  

 

Figure C11. Populations of the conformational regions (PII, αR, C7
eq, C5, and αL) in the 

Ramachandran maps of each amino acid of the capped Cys2 tripeptide. The titles indicate 

the residues with the simulation method and the solvent pH in superscript and subscript, 

respectively. The net charge of the tripeptide is shown below (q). The striped and solid 

style represent the protonated and deprotonated states, respectively. 
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Figure C12. Energy distributions of the capped Asp2 tripeptide without solvent 

molecules. The dotted and dashed lines are the CpHMD and CMD simulation methods, 

respectively. 
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Figure C13. Energy distribution of the 1-4 and long-range electrostatics capped Asp2 

tripeptide divided into backbone and side chain atoms. The dotted and dashed lines are 

the CpHMD and CMD simulation methods, respectively. 

 



Appendix C. Unravelling Constant pH Molecular Dynamics in Oligopeptides with Explicit Solvation Model 

 

248 

 

 

Figure C14. Energy distributions of the capped Glu2 tripeptide without solvent 

molecules. The dotted and dashed lines are the CpHMD and CMD simulations, 

respectively. 
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Figure C15. Energy distribution of the 1-4 and long-range electrostatics capped Glu2 

tripeptide divided into backbone and side chain atoms. The dotted and dashed lines are 

the CpHMD and CMD simulations, respectively. 
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Figure C16. Energy distributions of the capped His2 tripeptide without solvent 

molecules. The dotted and dashed lines are the CpHMD and CMD simulations, 

respectively. HIPCpHMD
pH12 δ and HIPCpHMD

pH12 ε are the energy distributions calculated 

using partial charges fixed on the δ and ε protonation state. 
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Figure C17. Energy distribution of the 1-4 and long-range electrostatics capped His2 

tripeptide divided into backbone and side chain atoms. The dotted and dashed lines are 

the CpHMD and CMD simulations, respectively. HIPCpHMD
pH12 δ and HIPcpHMD

pH12 ε are 

the energy distributions calculated using partial charges fixed on the δ and ε protonation 

state. 
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Figure C18. Energy distributions of the capped Lys2 tripeptide without solvent 

molecules. The dotted and dashed lines are the CpHMD and CMD simulations, 

respectively.  
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Figure C19. Energy distributions of the capped Tyr2 tripeptide without solvent 

molecules. The dotted and dashed lines are the CpHMD and CMD simulations, 

respectively. 
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Figure C20. Energy distributions of the capped Cys2 tripeptide without solvent 

molecules. The dotted and dashed lines are the CpHMD and CMD simulations, 

respectively. 
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Figure C21. Energy distribution of the 1-4 and long-range electrostatics capped Lys2 

tripeptide divided into backbone and side chain atoms. The dotted and dashed lines are 

the CpHMD and CMD simulations, respectively. 

 

Figure C22. Energy distribution of the 1-4 and long-range electrostatics capped Tyr2 

tripeptide divided into backbone and side chain atoms. The dotted and dashed lines are 

the CpHMD and CMD simulations, respectively. 
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Figure C23. Energy distribution of the 1-4 and long-range electrostatics capped Cys2 

tripeptide divided into backbone and side chain atoms. The dotted and dashed lines are 

the CpHMD and CMD simulations, respectively. 
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Figure C24. 2D-RMSD map of the first six representative conformations of the DA8D 

peptide in the protonated form (DA8D
CMD

ASH and DA8D
CpHMD

pH1). The RMSD is 

calculated using the Cα atoms of the peptides. 
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Figure C25. 2D-RMSD map of the first six representative conformations of the DA8D 

peptide in the deprotonated form (DA8D
CMD

ASP and DA8D
CpHMD

pH10). The RMSD is 

calculated using the Cα atoms of the peptides. 
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Figure C26. Distribution of the first three PCs at different simulation times (2, 4, 8 and 

10 µs) of the DA8D peptide. The deprotonated and protonated form are on the left and 

right, respectively. The dotted and dashed lines are the CpHMD and CMD simulation 

methods, respectively. 
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Figure C27. 2D-RMSD map of the first six representative conformations of the A4D2A4 

peptide in the protonated form (A4D2A4
CMD

ASH and A4D2A4
CpHMD

pH1). The RMSD is 

calculated using the Cα atoms of the peptides. 
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Figure C28. 2D-RMSD map of the first six representative conformations of the A4D2A4 

peptide in the deprotonated form (A4D2A4
CMD

ASP and A4D2A4
CpHMD

pH10). The RMSD is 

calculated using the Cα atoms of the peptides. 
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Appendix D 

Supporting Information to “Extensive 

Conformational Sampling of the Intrinsically 

Disordered Protein Histatin-5 Using Coarse-

Grained and All-Atom Force Fields and Constant 

pH Molecular Dynamics” 

 

MODEL C1 C2 C3 C4 DBI psF SSR/SST 

% distC % distC % distC % distC 

SBW3 47 3.8 20 4.1 15 3.7 6 4.3 2.0 100717 0.41 

SBW3pH 20 3.4 15 4.0 14 4.2 13 4.5 1.9 144434 0.50 

IDPW3pH 34 4.7 24 4.4 12 3.7 5 4.4 1.9 167350 0.54 

IDPW3pHR 14 4.5 14 4.4 11 4.5 10 4.6 1.9 52643 0.56 

IDPW4DpH 25 4.7 21 4.5 11 4.3 8 4.0 1.7 66039 0.61 

SRH 34 1.4 15 1.5 11 1.4 10 1.4 1.7 42779 0.60 

SRHR 17 3.5 12 3.4 10 3.2 9 3.0 1.2 9503 0.70 

SGR 21 6.1 20 6.0 19 6.0 17 6.1 2.2 1835 0.39 

SGRpH 38 6.4 18 6.1 13 5.8 9 5.7 2.1 1717 0.38 

Table D1. Populations and distances-to-centroid of the four most populated clusters (C0, 

C1, C2, and C3). The David-B, pseudo-F and SSR/SST indices of each clustering are also 

shown in the table.
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Figure D1. Theoretical SAXS intensity profiles for the three most populated clusters (red, 

green, and blue lines for clusters C0, C1, and C2, respectively) fitted to the experimental 

SASDHH8 scattering (black dots). 

  



 

265 

 

Appendix E 

Supporting Information to “Molecular Dynamics 

Simulation of α-Synuclein NAC Domain 

Fragment with ff14IDPSFF IDP-specific Force 

Field Suggest β-Sheets Intermediate State for 

Fibrillation” 

 

 

Figure E1. 2D-RMSD map of the representative conformations of the five most 

populated clusters of EαSNAC using the ff14SB and ff14IDPSFF force fields. The 

RMSD is calculated with the Cα atoms of the peptides.
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 ff14SB ff14IDPSFF 

𝚫𝐝𝐜𝟎
𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝 (Å) 4.2 6.1 

𝚫𝐝𝐜𝟏
𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝 (Å) 4.4 5.7 

𝚫𝐝𝐜𝟐
𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝 (Å) 4.7 6.9 

𝚫𝐝𝐜𝟑
𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝 (Å) 5.2 5.5 

𝚫𝐝𝐜𝟒
𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝 (Å) 4.1 5.6 

DBI 1.33 1.37 

psF 40985 33522 

SSR/SST 0.657 0.610 

Table E1. Clustering indicators of the ff14SB and ff14IDPSFF simulations. 𝛥𝑑𝑐𝑋
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 

DBI, psF and SSR/SST magntiudes are the average distance-to-centroid of cluster X, the 

Davis-Bouldin index, the pseudo-statistic F and the sum of squares regression/sum of 

squares total, respectively. 
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Figure E2. Correlation between the measured (δexp) and predicted (δsim) chemical shifts 

of the Cα atom for the four BRMB data sets (18857, 19337, 25227 and 6968) in the ff14SB 

simulation. The deviation of the measured and predicted chemical shifts is represented 

with vertical and horizontal error bars, respectively. The linear equations obtained by 

fitting the chemical shift data and the Pearson correlation coefficient (r) are also shown 

in the plot. 
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Figure E3. Correlation between the measured (δexp) and predicted (δsim) chemical shifts 

of the N atom for the four BRMB data sets (18857, 19337, 25227 and 6968) in the ff14SB 

simulation. The deviation of the measured and predicted chemical shifts is represented 

with vertical and horizontal error bars, respectively. The linear equations obtained by 

fitting the chemical shift data and the Pearson correlation coefficient (r) are also shown 

in the plot. 
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Figure E4. Correlation between the measured (δexp) and predicted (δsim) chemical shifts 

of the C atom for the four BRMB data sets (18857, 19337, 25227 and 6968) in the ff14SB 

simulation. The deviation of the measured and predicted chemical shifts is represented 

with vertical and horizontal error bars, respectively. The linear equations obtained by 

fitting the chemical shift data and the Pearson correlation coefficient (r) are also shown 

in the plot. 
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Figure E5. Correlation between the measured (δexp) and predicted (δsim) chemical shifts 

of the Cβ atom for the four BRMB data sets (18857, 19337, 25227 and 6968) in the ff14SB 

simulation. The deviation of the measured and predicted chemical shifts is represented 

with vertical and horizontal error bars, respectively. The linear equations obtained by 

fitting the chemical shift data and the Pearson correlation coefficient (r) are also shown 

in the plot. 
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Figure E6. Correlation between the measured (δexp) and predicted (δsim) chemical shifts 

of the Cα atom for the four BRMB data sets (18857, 19337, 25227 and 6968) in the 

ff14IDPSFF simulation. The deviation of the measured and predicted chemical shifts is 

represented with vertical and horizontal error bars, respectively. The linear equations 

obtained by fitting the chemical shift data and the Pearson correlation coefficient (r) are 

also shown in the plot. 



Appendix E. αS NAC Fragment with ff14IDPSFF Suggest β-Sheet Intermediate States for Fibrillation 

 

272 

 

 

Figure E7. Correlation between the measured (δexp) and predicted (δsim) chemical shifts 

of the N atom for the four BRMB data sets (18857, 19337, 25227 and 6968) in the 

ff14IDPSFF simulation. The deviation of the measured and predicted chemical shifts are 

represented with vertical and horizontal error bars, respectively. The linear equations 

obtained by fitting the chemical shift data and the Pearson correlation coefficient (r) are 

also shown in the plot. 
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Figure E8. Correlation between the measured (δexp) and predicted (δsim) chemical shifts 

of the C atom for the four BRMB data sets (18857, 19337, 25227 and 6968) in the 

ff14IDPSFF simulation. The deviation of the measured and predicted chemical shifts are 

represented with vertical and horizontal error bars, respectively. The linear equations 

obtained by fitting the chemical shift data and the Pearson correlation coefficient (r) are 

also shown in the plot. 
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Figure E9. Correlation between the measured (δexp) and predicted (δsim) chemical shifts 

of the Cβ atom for the four BRMB data sets (18857, 19337, 25227 and 6968) in the 

ff14IDPSFF simulation. The deviation of the measured and predicted chemical shifts is 

represented with vertical and horizontal error bars, respectively. The linear equations 

obtained by fitting the chemical shift data and the Pearson correlation coefficient (r) are 

also shown in the plot. 
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Figure E10. Fraction of β-sheet content at four simulation times (0.5, 1, 1.5 and 2 µs) of 

EαSNAC in the ff14IDPSFF simulation. The β-sheet content is defined as the sum of 

anti-parallel and parallel β-sheets, β-bulges and isolated β-strands propensities 

determined by the DSSP method. 
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