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“The question is not whether intelligent machines can have any
emotions, but whether machines can be intelligent without emotions”

—Marvin Minsky
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port. Thanks to Àdria España and to Xavi de la Torre, for too many things.

Thanks to my parents and my sister for always supporting me and
having enabled all of my education leading me up to this point. Thanks to
Clothilde for giving me so much support and understanding over this last
year. And thanks to so many other people in my life, currently present or
not.

Thanks to Lydia Garcia for guiding me throughout this process from
the academic and administrative side. Thanks to Boris Bellalta for your
support in this last period.

Thanks to so many artists for having provided the music that has fue-
led so much of this work.

I would also like to thank IBEC and the Spanish government for ha-
ving economically supported this work through my fellowship.

I could not have done this without so many people, mentioned here or
not, so I can only feel immense gratitude toward everyone that is or has
been part of my life. I thank you all.

v





Abstract
Emotions are a fundamental part of human life. They play a critical role
in how we think, behave, and implicitly understand each other. How-
ever, although computing devices are increasingly consequential in our
world, they still lack meaningful emotional capabilities, so we can only
interact with them explicitly. This thesis explores and develops how syn-
thetic systems could implicitly understand and modulate human cognitive
and affective states to enhance our interaction with them. First, we intro-
duce a technological architecture to sense user information, interpret it,
and dynamically adapt immersive environments. Then, we present sev-
eral studies exploring methods to infer different internal states from mul-
tiple sources, including physiological signals, keystroke dynamics, and
affective ratings. Finally, we show two examples of interactive and adap-
tive experiences exploiting implicit understanding to assist users when
needed. Overall, our results offer insights into human emotion and con-
tribute toward developing empathic systems, better prepared to support us
and to act autonomously.
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Resum
Les emocions són una part fonamental de la vida humana. Tenen un pa-
per crı́tic en com pensem, ens comportem i ens entenem implı́citament.
Tanmateix, tot i que els dispositius informàtics són cada cop més impor-
tants al nostre món, encara no tenen capacitats emocionals significatives,
de manera que només podem interactuar amb ells de manera explı́cita.
Aquesta tesi explora i desenvolupa com els sistemes sintètics podrien
comprendre i modular implı́citament els estats cognitius i afectius humans
per millorar la nostra interacció amb ells. En primer lloc, introduı̈m una
arquitectura tecnològica per detectar informació de l’usuari, interpretar-
la i adaptar dinàmicament entorns immersius. A continuació, presentem
diversos estudis que exploren mètodes per inferir diferents estats interns
a partir de múltiples fonts, incloent senyals fisiològics, dinàmiques de
pulsació de tecles i valoracions afectives. Finalment, mostrem dos exem-
ples d’experiències interactives i adaptatives que utilitzen la comprensió
implı́cita per ajudar els usuaris quan sigui necessari. Els nostres resul-
tats ofereixen nous coneixements sobre l’emoció humana i contribueixen
a desenvolupar sistemes empàtics, més preparats per donar-nos suport i
actuar de manera autònoma.
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Chapter 1

INTRODUCTION

We live in a world in constant change due to technological advances.
Computing devices are increasingly ubiquitous in our lives and we rely
on them for a wide variety of tasks, from working to connecting with
other people. Furthermore, our healthcare is also increasingly dependent
on the latest technological advancements paired with novel scientific re-
search. Because of this, the need for interacting with these devices as
naturally as possible is also increasing. Traditionally, human-computer
interaction has relied on the explicit input of the user via devices such as
keyboards, mice, or touchscreens. However, more recent advancements in
fields such as not only computing, but also neuroscience and psychology,
have started to allow the possibility of also taking into account implicit
input: the internal states of the users, including their cognitive or affec-
tive states (Andre, 2013; Wagner et al., 2013; Serim and Jacucci, 2019;
Flavell et al., 2022).

Computers are commonly seen as logical devices that do not have
emotional capabilities, and for good reason. However, researchers are
working to change this by developing computers that might be able to
perceive and express emotions. While most consumer computers cur-
rently do not have these capabilities, it is an area of active research. Over
the last few decades, the field of affective computing has formally estab-
lished itself, researching how computers could sense the feelings that their

1



users are experiencing, and even how these devices could simulate affec-
tive states of their own, as well as the consequences that such possibilities
would bring over our lives (Picard, 1997).

The motivation behind this endeavor comes from the fact that emo-
tions play a fundamental role in human experience, from cognition to
perception, as demonstrated by a multitude of scientific research (Dolan,
2002; Barrett et al., 2016). This suggests that bringing affective capabil-
ities to computers would make them more suitable in assisting humans
by optimizing the interaction process, as well as making them more au-
tonomous devices capable of taking decisions that might more closely
resemble those that a human would take, by including more implicit and
explicit factors (Picard, 1995).

The possibilities of optimizing human-computer interaction by pro-
viding affective capabilities to computers are particularly relevant not
only for our personal devices in everyday life but also for high-demanding,
professional computing tasks. A relevant example of this would be the in-
teraction with large amounts of complex data, such as massive neurologi-
cal datasets. Optimizing the interaction process with this data would thus
help in solving the so-called data deluge phenomenon, in which finding
meaning in large and complex datasets is becoming increasingly chal-
lenging (Wagner et al., 2013).

Other modern computing possibilities to improve human-computer
interaction for certain tasks are the usage of mixed or virtual reality.
These interaction paradigms, although envisioned and established sev-
eral decades ago, have begun to be more broadly available only in recent
years, thanks to the advancement in technological capabilities. Mixed and
virtual reality systems allow for a deeper coupling between the user and
the digital content, which can aid in the visualization and exploration of
multidimensional and relational datasets (Lessiter et al., 2011), for exam-
ple.

In recent years, with the technological advancements in areas such as
wearable devices and machine learning, coupled with scientific progress
in neuroscience and psychology, the possibility of monitoring an array
of signals from individuals during their daily activities has materialized
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(Johnson and Picard, 2020; Cosoli et al., 2021). This increases the need
for methods to meaningfully extract insights from this data to have an
impact on people’s lives. This would be the aim of empathic systems:
achieving a deeper understanding of users by leveraging different sources
of information provided implicitly that reflect what the user feels. This
could have implications not only in enhancing the human-computer inter-
action process to make it more natural but also in key areas such as digital
health, for example, by being able to monitor the mental well-being of
people who might be at risk of developing an emotional disorder.

This thesis presents a series of advancements to extend the capabili-
ties of interactive systems to implicitly understand and modulate human
cognitive and affective states. In order to develop this project, multidis-
ciplinary integration of knowledge from different areas was necessary.
Because of this, a brief survey of the state of the art is provided in the
next chapter. We will start by discussing emotions: what they are, how
they are generated considering both the body, the brain, and the mind;
how they affect us, how we can model them, and how we can measure
them. Then, we will pivot towards human-computer interaction, seeing
how the field has evolved since its inception, its current trends, and its
future direction. Combining what we have seen in the previous two sec-
tions, we will discuss the field of affective computing, describing not only
its goal, methods, and applications, but also its limitations.

1.1 Emotions

Emotions are a fundamental part of the human experience. Because of
this, it is a topic that has been thoroughly discussed throughout human
history with gradually evolving interpretations. However, although there
has been significant progress in research on emotion in fields such as psy-
chology and neuroscience, there is still no clear consensus on the exact
nature and functional role of emotions, as we will see in this section.

Nowadays, when dealing with the wide topic of emotions in science,
different terms are used, including “emotion”, “mood”, and “affect”. Al-
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though occasionally these terms were used interchangeably, important
distinctions have been established. “Affect” is used as a broad term that
encompasses both “emotion” and “mood”, as the experiential state of
feeling. As such, affective states vary in multiple aspects, such as inten-
sity, specificity, or duration. An “emotion” is a short-duration affective
state, generally in response to a specific external stimulus. Meanwhile, a
“mood” is an affective state that is maintained for longer than an emotion,
is less intense, and is not necessarily caused by a specific external source
(Niven, 2013; Ekkekakis, 2013).

Another key term for this thesis is “empathy”. We can define empathy
as the capacity for an individual to understand or feel what another indi-
vidual is experiencing (Stocks and Lishner, 2012; Davis, 2022). Although
popularly this might be focused on emotions, it also covers cognitive as-
pects (Elliott et al., 2011; Riess, 2017). This distinction between emo-
tional or affective empathy and cognitive empathy exists at both the clin-
ical and the neural level (Cox et al., 2012; Shamay-Tsoory et al., 2009).
Despite this separation, recent multidimensional approaches have empha-
sized the necessity of including both (Davis, 2022). As empathy plays
a key role in interpersonal interaction, it has also been shown to have
significant importance in prosocial behaviors (Stocks and Lishner, 2012;
Davis, 2022; Riess, 2017). A deficit of empathy is linked to several psy-
chological disorders (Davis, 2022), including autism spectrum disorder,
borderline personality disorder, narcissistic personality disorder, and psy-
chopathy (Rinaldi et al., 2021).

Despite the lack of consensus and diversity of theories on many as-
pects surrounding emotions, it is now generally accepted that they play
a relevant role in many cognitive processes, including memory, percep-
tion, and decision-making (Barrett et al., 2016). Furthermore, it is gen-
erally agreed that emotions involve subjective perception, physiological
responses, and expressive behavior (Gross and Barrett, 2011), although
the latter has been more debated due to individual and cultural differences
(Barrett, 2018).

In the next subsections, we will give an overview of the theories of
emotion, analyzing how the concept of emotion has evolved throughout
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history, the most influential theories, and the current outlook. Then, we
will see two of the most important models of emotions that are widely
used nowadays. Next, we will focus on how emotions are processed and
generated in the brain, looking at the known pathways and key areas.
Finally, we will offer a broad survey on the diversity of methods that
exist to measure emotions and their correlates, in terms of physiology,
behavior, and self-assessments.

1.1.1 Theories of Emotion

Classical views of emotions place them as antagonists of rationality, as
exemplified by Greek philosophers. In the works of Aristotle, he charac-
terized emotions (using the term pathos) as responses to our environment
that are linked to pleasure or pain and are similar to desire or appetite,
playing an intrinsic part in our lives (Schmitter, 2016). On the other hand,
stoic philosophers considered these passions as something to avoid in the
pursuit of reason and a virtuous life (Schmitter, 2016).

This general view prevailed until the study of emotions started to be-
come more scientific towards the end of the 19th century, starting with
the 1872 book by Charles Darwin The Expression of the Emotions in Man
and Animals (Darwin, 1872). In his work, Darwin studied emotions from
an evolutionary perspective and their origin in animal behavior, studying
expressions of emotions, with emphasis on human facial expressions, and
their social value as a communicative medium.

A few years later, in 1884, William James published his book What
is an Emotion? (James, 1884), in which he linked bodily responses to
stimuli and the subjective experience of emotion. Around the same time,
a physiologist named Carl Lange independently proposed a related idea
(Barrett, 2017b). For this reason, we now know this early theory of emo-
tion as the James-Lange theory, a name assigned by philosopher John
Dewey. It is worth noting that, according to recent investigations, James
did not claim that each emotion has a distinct bodily reaction, only each
instance of emotion (Barrett, 2017b). Nevertheless, the so-called James-
Lange theory is based on the idea that an external stimulus leads to a phys-
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iological reaction, which is then interpreted by the brain as an emotion.
Subsequently, Walter Cannon and Philip Bard disagreed with this theory,
arguing that the conscious feeling of an emotion happens at the same time
as the physiological reaction (Cannon, 1927). This is now known as the
Cannon-Bard theory.

After the James-Lange and the Cannon-Bard theories were proposed,
the study of emotions gained significance, leading to the development of
many different theories. In general, these can be broadly categorized de-
pending on where the emphasis is placed: are emotions mostly a physical
or cognitive event? Do emotions start in the body or in the brain?

Richard Lazarus argued that, in an emotional instance, the first thing
that happens is a cognitive appraisal, which then triggers a series of phys-
iological changes, leading to a behavioral response (Lazarus et al., 1970).
Since then, other researchers have proposed influential theories based
on this underlying idea (Frijda et al., 1986; Scherer, 1999; Moors et al.,
2013).

On the other hand, Antonio Damasio proposed the “somatic marker
hypothesis” in his popular book Descartes’ Error (Damasio, 1994). Ac-
cording to this hypothesis, each emotion is grounded on a unique physi-
ological fingerprint that is interpreted by the brain to guide our actions in
response to the stimulus that caused them (Damasio, 1996). In his book,
he also argued that emotion is necessary for rational decision-making and
that emotions should be studied considering both the body and the mind
(arguing against René Descartes’ dualism). In more recent years, Dama-
sio reviewed his theory, decreasing the importance of body sensing areas
of the cortex in favor of subcortical circuits that receive primary sensory
signals from the body (Damasio and Carvalho, 2013; LeDoux and Brown,
2017).

As of today, the scientific debate on whether emotions are initiated
as a physiological response or as a subjective mental feeling continues.
A popular theory proposed by psychologist Lisa Feldman Barrett in re-
cent years claims that emotions are constructed predictively in the brain,
integrating internal signals from the body (interoception) and using past
experiences (which are also mediated by culture) (Barrett, 2017a,b). This
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theory, claims that the properties of affect (arousal and valence, based on
the circumplex model of emotion defined by psychologist James Russell
(Russell, 1980)) are basic features of consciousness Barrett (2017b). In
accordance with other theories and authors, it establishes that the brain
regulates the organism through allostasis: a process of regulation to dy-
namically maintain all internal variables within optimal ranges based on
the motivation, goals, and drives of an individual (Barrett, 2017b; Vouloutsi
and Verschure, 2018). Therefore, affect plays a role in regulating behav-
ior, as a direct consequence of allostasis (Barrett, 2017b; Vouloutsi and
Verschure, 2018).

1.1.2 Models of Emotion

Models of emotion can be broadly grouped into being categorical or di-
mensional (Sreeja and Mahalakshmi, 2017). Categorical models are based
on discrete categories labeled emotions, as defined culturally. Meanwhile,
dimensional models rely on the definition of a series of continuous di-
mensions, with each specific emotion felt being a particular combination
of them. Here, we will focus on the two main models used nowadays and
discussed throughout this thesis.

The most classical categorical model was established by psychologist
Paul Ekman, defining six basic emotions: anger, disgust, fear, happiness,
sadness, and surprise (Ekman, 1992) (Figure 1.1). He defined these as
separate and discrete emotional states, which differ from each other in
meaningful ways to make them distinguishable. Importantly, all basic
emotions also have common characteristics, such as rapid onset, short du-
ration, and automatic appraisal. According to this theory, these emotions
are universally expressed and recognized, without the need for cultural
learning, as they are “preprogrammed” and involuntary (although also af-
fected by individual life experiences). Other emotions would be specific
cases or combinations of these basic emotions, although more basic emo-
tions could also exist, as Ekman discussed later, with “contempt” being
added as a seventh basic emotion (Ekman and Cordaro, 2011).

Among the dimensional models, one of the most popular ones is the
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Figure 1.1: Ekman’s six basic emotions
Photos of actors representing the six basic emotions proposed by Paul
Ekman. From the top left: anger, fear, disgust, surprise, happiness, and

sadness. Original images from Ekman and Friesen (1976).

circumplex model of emotions, initially proposed by psychologist James
Russell in 1980 (Russell, 1980). This model uses two dimensions com-
monly defined as arousal (from deactivation to activation) and valence
(from unpleasant to pleasant, also called “pleasure”). Other variations in-
clude additional dimensions, such as “tension” in Wundt’s original model
from 1897 (Wundt, 1897), or “dominance” in Mehrabian’s model (Mehra-
bian, 1980). However, arousal and valence tend to be considered enough
for the so-called “core affect” (Russell, 2003).
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In the circumplex model of arousal and valence, it is the combina-
tion of these two continuous dimensions that defines affective states (Fig-
ure 1.2). Therefore, pleasurable affective states correspond with high val-
ues of valence and low or high arousal, such as calm or excited, respec-
tively. On the opposite end, unpleasant affective states correspond with
low values of valence and low or high arousal, such as tired or tense, re-
spectively. However, it is worth noting that the presumed orthogonality
of these two dimensions has been called into question, as collections of
ratings on these two dimensions show a relationship between both (Lang
et al., 2008; Kurdi et al., 2017), as also confirmed experimentally, re-
vealing a V-shaped relationship in which arousal is higher towards the
extremes of valence, and lower towards neutral valence (Kuppens et al.,
2013). Indeed, a study on brain activity using functional magnetic reso-
nance imaging (fMRI) found that arousal is not separable from valence
(at least, to predict arousal-related neural activity), suggesting arousal as
either intensity of bipolar valence or as a linear combination of unipo-
lar pleasant and unpleasant (Haj-Ali et al., 2020). Additional evidence
from multiple neurological studies supports the circumplex model of af-
fect (Posner et al., 2005).
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Figure 1.2: Circumplex model of affect
Graphical representation of the model proposed by Russell, as defined by

two dimensions: arousal and valence. Adapted from Liu et al. (2018).

1.1.3 Neurophysiology of Emotion

The autonomic nervous system (ANS) is regulated by the brain to, in turn,
unconsciously regulate bodily functions. The ANS is broadly considered
crucial for emotions, including their generation, expression, experience,
and recognition (Levenson, 2014). The ANS is typically divided into the
sympathetic nervous system (SNS) and parasympathetic nervous system
(PSNS) (McCorry, 2007). These two systems act as antagonists of each
other, with the SNS promoting a “fight-or-flight” response corresponding
to increased activation, and the PSNS promoting a “rest-and-digest” cor-
responding to calming (Porges et al., 1997; Levenson, 2014). As such, for
example, the SNS increases heart rate while the PSNS decreases it, and
the SNS dilates pupils while the PSNS constricts them (Kreibig, 2010;
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Levenson, 2014).
Focusing on the brain, advances in neuroscience have identified a

group of brain structures known as the limbic system that are particularly
relevant for emotions. The limbic system is a network of structures in the
brain that plays a key role in emotional processing and regulation (Raj-
mohan and Mohandas, 2007). Some of the more relevant structures iden-
tified as part of the limbic system include the prefrontal cortex, cingulate
cortex, amygdala, hippocampus, nucleus accumbens, and hypothalamus
(Morgane et al., 2005). Furthermore, the so-called emotional pathways
have been identified, detailing the neural connections between different
brain structures, both cortical and subcortical (Tamietto and de Gelder,
2010) (see Figure 1.3).

The ‘emotion system’ spans cortical and subcortical areas. Key sub-
cortical areas include the amygdala (AMG) in the temporal lobe, the sub-
stantia innominata (SI) in the basal forebrain, and the nucleus accumbens
(NA) in the basal ganglia, as well as nuclei in the brainstem including
the periaqueductal gray (PAG) and the locus coeruleus (LC). Meanwhile,
cortical areas include the orbitofrontal (OFC) and the anterior cingulate
cortex (ACC). This system also has interconnections with visual path-
ways, such as the superior colliculus (SC) connecting to the amygdala via
the pulvinar (Pulv) (Tamietto and de Gelder, 2010).

The amygdala is generally considered one of the most important brain
areas involved in emotion processing. It has been identified as the key area
for threat detection. In particular, the amygdala has historically been high-
lighted as a center for ‘fear’ processing. Many studies have established
the key role of the amygdala in fear conditioning, creating memories of
emotional, fearful events (LeDoux and Hofmann, 2018; Moscarello and
LeDoux, 2013; Fanselow and Wassum, 2016). However, more recent re-
search shows the amygdala’s involvement also in positive emotions (Xiu
et al., 2014), establishing it as a more general structure of emotional pro-
cessing. Therefore, current literature proposes two opposing groups of
circuits in the amygdala: one for positive valence and another for nega-
tive valence (Beyeler et al., 2016; Namburi et al., 2015; Berridge, 2019).

Regarding emotional learning in the amygdala, its basolateral (BLA)

11



Figure 1.3: Emotional pathways in the human brain
Brain structures involved in emotions along with their neural

connections. ACC: anterior cingulate cortex; AMG: amygdala; LC:
locus coeruleus; NA: nucleus accumbens; OFC: orbitofrontal cortex;

PAG: periaqueductal gray; Pulv: pulvinar; SC: superior colliculus; SI:
substantia innominata. Adapted from Tamietto and de Gelder (2010).

and central (CeA) nuclei are established as the responsible units. In fear
conditioning, signaling from the lateral thalamus (LT) to the lateral amyg-
dala (LT) controls fear behavior by conveying the association between a
conditioned stimulus (e.g., a tone) and an unconditioned stimulus (e.g., a
foot shock) (Barsy et al., 2020). A fast subcortical pathway specific for
fear, and not positive emotions, has been shown to exist from the pulv-
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inar nucleus of the thalamus to the amygdala via magnocellullar axons,
as threat detection requires short latency responses for survival (Méndez-
Bértolo et al., 2016). Although fear is crucial for survival, it must be regu-
lated within a homeostatic range, to avoid excess, as in anxiety disorders,
or deficit, as in exaggerated risk-taking. To maintain fear balance, the
insular cortex (InsCtx) of mice integrates bodily feedback (such as heart
rate), in the form of predictive sensory and interoceptive signals (Klein
et al., 2021).

The connectivity of the hippocampus (HPC) to the BLA plays a role
in observational fear, a process to empathically experience another’s fear
(Terranova et al., 2022). Regarding empathy, studies with humans have
identified two systems in the prefrontal cortex: one for emotional empa-
thy, dependent on the inferior frontal gyrus, and one for cognitive em-
pathy, dependent on the ventromedial prefrontal (Shamay-Tsoory et al.,
2009).

Whereas the BLA and the CeA play a crucial in emotional learning
regardless of valence (positive or negative), a pathway from the BLA to
the NA has been shown to play a key role in behaviors related to posi-
tive valence, particularly reward-seeking (Stuber et al., 2011). Within the
amygdala, the circuit from the BLA to the CeA mediates appetitive behav-
iors (e.g., seeking food or water) (Kim et al., 2017). The CeA on its own
has also been shown to modulate food consumption through a positive-
valence mechanism (Douglass et al., 2017). In the CeA, the release of
oxytocin, a hormone that plays a role in social bonding and other behav-
iors, modulates inhibitory circuits to suppress fear responses and decrease
anxiety levels (mediated by astrocytes, non-neuronal brain cells that per-
forms a variety of functions) (Wahis et al., 2021). As for social reward,
an amygdala-to-hypothalamus circuit has also been identified, showing a
role of the medial amygdala (MeA) in promoting the positive reinforce-
ment of social interaction and the release of dopamine, a neurotransmitter
involved in reward, in the NA (Hu et al., 2021).

Overall, as mentioned earlier, these findings tend to support the cir-
cumplex model of affect (Posner et al., 2005). Here, we have seen that a
large body of evidence from studies in affective neuroscience and other re-
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lated areas shows the existence of circuitry for valence, arousal, and their
interactions at the neural level. As recently stated, different pathways
exist to process the valence component of a stimulus, with the amyg-
dala and the nucleus accumbens as some of the key brain areas, but with
potentially distinct neuronal populations for positive or negative valence
(Posner et al., 2005; Beyeler et al., 2016; Namburi et al., 2015; Berridge,
2019). Similarly, for arousal, the amygdala is also thought to be a crucial
brain component, but through connectivity with different brain areas such
as, importantly, the thalamus (Posner et al., 2005; Haj-Ali et al., 2020).
However, as previously mentioned, different studies demonstrate that a
clear relationship exists between both dimensions (Kuppens et al., 2013),
including in the neural domain, at least in subjective self-reports (Haj-
Ali et al., 2020). Taken together, these results highlight the complexity
of emotions in the brain, with a large number of brain areas and circuits
involved. Furthermore, they show that Russell’s circumplex model of
emotions, or a variant of it, is a good framework to study emotions, as it
relates to measurable brain mechanisms.

1.1.4 Measuring Emotion

Due to the nature of emotions, which are complex and multidimensional,
measuring them as they happen in an individual tends to be a difficult
task. Over the last decades, researchers have used a wide variety of meth-
ods to scientifically measure emotions. Generally, these can be classi-
fied into physiological measures, behavioral measures, and self-reports
(Mauss and Robinson, 2009).

Physiological Measures

Physiological measures rely on collecting data from bodily responses. In
general, emotions are associated with a number of different physiological
responses. Overall, these are based on measuring states from the auto-
nomic nervous system, as it balances responses of activation and relax-
ation through the sympathetic and parasympathetic systems, respectively.
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This, in turn, can serve as an estimation of affective states (Shu et al.,
2018; Szwoch, 2015).

In recent years, researchers have used a number of different phys-
iological measures to assess different physiological responses. Popu-
lar techniques involve measuring activity from the brain, the heart, the
skin, and the eyes, through electrical or optical sensors (Dzedzickis et al.,
2020).

Electroencephalography (EEG) is a technique to measure the elec-
trical activity of the brain at the scalp level, non-invasively. To achieve
this, a special cap equipped with multiple electrodes located on stan-
dard positions is used. Then, activity at each electrode is measured in
the form of voltage, changing over time. Computational methods to esti-
mate emotional states from EEG data are very diverse and no standards
exist (Torres et al., 2020). Nevertheless, many approaches rely on the ex-
traction of features at different frequency bands and brain locations, and
the usage of different analysis methods, often advanced machine learning
techniques, to classify discrete emotions or estimate arousal and valence
(Torres et al., 2020; Shu et al., 2018; Dzedzickis et al., 2020; Mauss and
Robinson, 2009). The asymmetry in activation between the two corti-
cal hemispheres, especially in the frontal area, has been proposed as an
indicator of valence, with greater left-sided activation for positive affec-
tive states (Coan and Allen, 2004; Zheng et al., 2015), although other
authors argue that this is in fact related to approach versus avoidance mo-
tivation (Harmon-Jones, 2003; Mauss and Robinson, 2009; Bos, 2006).
Meanwhile, alpha and beta are two frequency bands that are often used as
indicators of arousal (Dzedzickis et al., 2020; Bos, 2006). Alpha activity
generally corresponds to lower frequency brain waves and is associated
with relaxation, while beta activity corresponds to higher frequency brain
waves and is associated with activation or alertness. A reliable indicator
of arousal often relies on the ratio of alpha and beta activity in the brain
(Dzedzickis et al., 2020; Bos, 2006).

Neuroimaging techniques, such as fMRI, allow for much higher speci-
ficity of the activation of brain regions than EEG and therefore are better
suited for scientific studies linking brain activity to emotions, although
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at the cost of portability and temporal resolution (Mauss and Robinson,
2009; Brooke and Harrison, 2016). An overview of the insights on emo-
tion allowed by neuroimaging was offered previously in section 1.1.3,
identifying different brain structures and connections involved.

Heart activity is another popular physiological indicator of emotional
states. It is often measured using electrocardiography (ECG), a technique
to measure the electrical activity of the heart through the usage of multiple
electrodes. For emotion estimation, a common approach relies on com-
puting the heart rate variability (HRV), which is the time interval variation
between heartbeats (Zhu et al., 2019; Acharya et al., 2006). Multiple fea-
tures of interest can be extracted from HRV, including in the time domain,
with the average interval between peaks or their standard deviation, or in
the frequency domain, decomposing the signal between high- and low-
frequency components (Guo et al., 2016). ECG and HRV analysis has
been extensively used for emotion classification or estimation, once again
using discrete or continuous emotion models (Mauss and Robinson, 2009;
Dzedzickis et al., 2020; Shu et al., 2018; Agrafioti et al., 2012; Selvaraj
et al., 2013), as well as to infer higher-level user states, such as cognitive
workload and fatigue (Thayer and Lane, 2009; Mohanavelu et al., 2017;
Segerstrom and Nes, 2007; Greene et al., 2016a). Generally, a higher
heart rate, typically measured in beats per minute (BPM), is indicative of
a higher arousal state (Shu et al., 2018), whereas a high HRV is indica-
tive of good mental health and emotion regulation (Kemp and Quintana,
2013).

An alternative method to measure heart activity is by measuring the
blood volume pulse (BVP), which corresponds to changes in blood vol-
ume produced by heartbeats. This can be measured using photoplethys-
mography (PPG), a technique to measure BVP by emitting light and mea-
suring its reflection (Allen, 2007). Since it is a more indirect way of
measuring heart activity than ECG, it may not be as reliable or compre-
hensive in some cases, but it can be measured more easily, with the us-
age of portable devices (Allen, 2007). Similarly to ECG and HRV, this
technique is often used to assess emotional states (Cosoli et al., 2021;
Menghini et al., 2019).
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Another of the most commonly used physiological measures to esti-
mate emotion is electrodermal activity (EDA) or galvanic skin response
(GSR). This corresponds to the variation of the electrical properties of
the skin in response to changes in the activity of sweat glands (Critchley,
2002). It is generally agreed that EDA is more related to arousal than
to valence, with a positive correlation between EDA and arousal (Cosoli
et al., 2021; Szwoch, 2015; Mauss and Robinson, 2009; Dzedzickis et al.,
2020; Critchley, 2002).

Pupil dilation is a reliable indicator of emotion that can be measured
using visual analysis. It is also influenced by light, so that is a factor that
must be controlled when using pupil dilation as an indicator of emotion.
Furthermore, some medications can also modulate pupil dilation. Is is di-
rectly controlled by the autonomic nervous system, with the parasympa-
thetic system handling constriction and the sympathetic system handling
the dilation. As such, it has been used as an indicator of arousal (Bradley
et al., 2008; Stanners et al., 1979).

Other physiological signals often used in emotion assessment are elec-
tromyography (EMG), respiration, and temperature (Mauss and Robin-
son, 2009; Dzedzickis et al., 2020; Shu et al., 2018; Szwoch, 2015).

Behavioral Measures

A classical approach for emotion recognition is the analysis of facial ex-
pressions (Fasel and Luettin, 2003; Ko, 2018). As humans, facial expres-
sions are one of the main ways in which we communicate emotions to
one another. Certain facial configurations are usually called “emotional
expressions” (Krumhuber et al., 2013) and are classically considered to be
associated with specific emotional states (Ekman and Oster, 1979; Barrett
et al., 2019), generally following the model of basic emotions explained
earlier (Ekman, 1992). Therefore, over the last decades, there has been
a great interest in the development of computational techniques for au-
tomatic facial expression analysis Fasel and Luettin (2003); Ko (2018).
Conventional approaches involve computer vision techniques to detect
faces and their predefined landmarks (e.g., eyes, eyebrows, nose, mouth)
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in images (either static or frames from a video), extract relevant features
(e.g., movement of landmarks or distance between them), and perform
a classification of the corresponding emotional expression (Ko, 2018).
More recent approaches involve the usage of more advanced machine
learning techniques: deep learning, with convolutional neural networks as
the most popular method (Ko, 2018). However, these methods might be
limited by the underlying emotional theory regarding facial expressions
of emotions, which, as mentioned previously, has come under scrutiny for
their reliability to convey stereotypical emotions (Barrett et al., 2019).

Going beyond the face, whole body gesturing, in what we call “body
language”, can also convey emotional qualities, as an important form of
non-verbal communication (Noroozi et al., 2021; Inderbitzin et al., 2011).

Speech is another of the main ways in which humans communicate
with each other, including not only information but also emotions. Our
voices convey emotion through subtle variations in their tone, and we rely
on that to understand the full meaning of what has been said (Akçay and
Oğuz, 2020; Koolagudi and Rao, 2012). Nowadays, computing systems
that listen to our voices are mainstream, with so-called virtual assistants
like Siri (Apple, Inc.) and Alexa (Amazon, Inc.). However, so far, they
only recognize our words (i.e., what we say) and not our emotions (i.e.,
how we say it) (Ali, 2020; Schuller and Schuller, 2021). Still, the field of
automatic speech emotion recognition has developed a variety of analysis
methods over the last two decades, especially in recent years with the
advances in deep learning (Schuller and Schuller, 2021). These methods
are nowadays able to detect affect in voices to either classify it in basic
emotions or estimate their valence and arousal (Akçay and Oğuz, 2020;
Ali, 2020; Schuller and Schuller, 2021; Koolagudi and Rao, 2012).

On its own, language also encodes affect: humans express emotions
in the choice of words when speaking or writing. Focused on text, so-
called sentiment analysis aims at automatic emotion detection, by analyz-
ing the words employed using natural language processing (NLP) tech-
niques (Nandwani and Verma, 2021; Mäntylä et al., 2018). Like for other
measures that we have seen, there are two general groups of methods for
text sentiment analysis: those based on a dictionary or corpus, with ag-
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gregated affective ratings, and those based on machine learning (Serrano-
Guerrero et al., 2015). While some basic methods give a wide classifica-
tion between positive, neutral, or negative emotions, more sophisticated
algorithms offer an estimation of arousal and valence. These methods are
being used in e-commerce to analyze the opinions of consumers, as well
as in research on social media platforms (Nandwani and Verma, 2021;
Mäntylä et al., 2018; Serrano-Guerrero et al., 2015). However, the reli-
ability of this method is affected by the natural complexity of language,
in which context and subtle cues might affect the meaning of the same
words.

An alternative to these measures relies on analyzing subtle features re-
sulting from the interaction of users with their computing devices. It is an
inexpensive alternative or complement to other methods, as this does not
rely on specific devices, allowing users to interact as they normally would,
using a standard mouse, keyboard, or touchscreen. Examples of this are
the analysis of keystroke dynamics (Epp et al., 2011), mouse movement
patterns (Lali et al., 2014; Schaaff et al., 2012), or touchscreens (Yang
and Qin, 2021).

Self-Reports

Finally, self-report measures involve the use of questionnaires to assess
how individuals are feeling at a given point in time. Self-report measures
are generally used for their ease of administration and low cost. How-
ever, they also have limitations, including the need to rationalize answers,
which participants might have difficulties with, and hesitance to give an-
swers that could be considered socially undesirable (Ciuk et al., 2015).

A well-established tool for emotion self-report is the Positive and
Negative Affect Schedule (PANAS) (Watson et al., 1988). It consists of
two 10-item scales, with each item rated on a 5-point scale. Each item
is an emotional term (e.g., “excited”, “upset”), that people are asked to
rate according to how they are currently feeling. It measures positive and
negative affect as two separate dimensions, and therefore it is not based
on Russell’s circumplex model of emotions (Watson et al., 1988; Russell,
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1980).
A popular tool for the self-report of affect is the Self-Assessment

Manikin (SAM), proposed in 1994 as a method to report pleasure, arousal,
and dominance (Bradley and Lang, 1994). The SAM is a non-verbal, pic-
torial tool that uses 5 drawings per dimension to represent different values
on a discrete scale. Pleasure is represented with a character ranging from
a frowning face to a smiling one, while arousal has a character with an
increasingly large explosion at its center, and dominance ranges from a
small to a large character.

Another popular tool, proposed as a potential replacement for the
SAM, is the Affective Slider (AS), which was introduced in 2016 as a
digital tool to report arousal and pleasure on a continuous scale (Betella
and Verschure, 2016). It consists of two separate sliders with emoticons
on each side of both: unhappy/happy faces for pleasure, and sleepy/wide-
awake faces for arousal. It was developed as an alternative to SAM, sim-
plifying the assessment by relying on digital-first methods, while still pro-
viding highly reliable results (Betella and Verschure, 2016).

1.2 Human-Computer Interaction

Human-Computer Interaction (HCI) is focused on the way users and com-
puting systems exchange information with each other within a defined
context. This field researches ways of interaction through different means
and has greatly evolved together with computers themselves due to the
enormous technological advances that they have experienced since the
first digital machines were developed mid-20th century.

The area of multidisciplinary research called Human-Computer In-
teraction was born between the late 1970s and the early 1980s with the
creation and popularization of the personal computer (Jacko, 2012). How-
ever, human-computer interaction as an activity has existed since the first
moments a person interacted with a computer back in the late 1940s with
the first generation of computers, which were based on vacuum tubes.

The tendency in HCI has been towards more natural ways of inter-
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action, from managing the individual connections of cables in the first
computers to simply talking to them with some contemporary devices.

The interaction with the first general-purpose computer, the ENIAC
(1945), was based on reprogramming it for each desired task by means
of managing the individual connections of the different cables, as well
as activating or deactivating different dials and switches. It was a time-
consuming task that took days for the group of operators in charge. Over
the next years, as the field of computing established itself, computer key-
boards started to become increasingly common during the 1950s and 60s
to more easily and quickly input information into the computer. It was
during the 1970s and 80s that the first personal computers started ap-
pearing, marking the beginning of the ubiquity of computing devices in
workplaces, homes, and other contexts. These computers started to in-
troduce graphical user interfaces (GUI), allowing for richer interactions
thanks also to the apparition of the computer mouse (Grudin, 2017). As
computers were more widely available and used not only by professional
and technical users, the way users interacted with them became more rel-
evant. Thus, the research area of Human-Computer Interaction started to
establish itself.

Over the last decades, computers continued getting smaller, more pow-
erful, and easier to use. This brought them to a quickly increasing mar-
ket of consumers. While familiar computers were being refined and im-
proved, new interaction paradigms such as augmented reality (AR) and
virtual reality (VR) were also being developed. These took longer to reach
the mass market but are now becoming more widely available (Muñoz-
Saavedra et al., 2020).

Nowadays, computing devices are ubiquitous and, in developed coun-
tries, people tend to have several. The development of the smartphone
is of particular relevance, as it has brought a very capable computer to
most people’s pockets. In recent years, AR and VR have also reached an
increasing number of consumers (Muñoz-Saavedra et al., 2020).

Focusing on these technologies, a reality-virtuality continuum can be
established, ranging from a pure real environment to a fully virtual en-
vironment (Milgram et al., 1994). Augmented reality is close to the real
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environment but it augments it by adding virtual elements, while virtual
reality replaces the real environment as much as possible in our senses
(see Figure 1.4).

Figure 1.4: Reality-Virtuality Continuum
Representation of the reality-virtuality continuum as defined by Paul

Milgram. It ranges from the real environment to the virtual one. Adapted
from Milgram et al. (1994).

Mixed reality covers the middle range of the reality-virtuality contin-
uum, seamlessly merging the real and the virtual environment in a way
that allows for full interactivity. As with AR and VR, mixed reality can
be achieved by using a specific head-mounted display (HMD). However,
it can also be achieved by creating an immersive environment with the
necessary sensors and effectors (Bernardet et al., 2010).

In the last decades, the field of HCI has continued to expand, not
only with the expansion of augmented, mixed, and virtual reality, but
also with new form factors of interactive devices (e.g., smart speakers,
smartwatches), more natural ways of explicitly interacting (e.g., gestures,
voice), more contexts with advances computing devices (e.g., cars, sports),
and many other aspects (Hasan and Yu, 2017). One of the overarching
trends that has been developing, under different variations such as “sym-
biotic interaction” (Jacucci et al., 2014) or “human-engaged computing”
(Ren et al., 2019) targets a closer integration between humans and com-
puting devices, exploiting the capacities and capabilities of both.

To achieve this tight human-machine coupling, it is necessary to go
beyond explicit interaction to also include implicit factors (Ju and Leifer,
2008). Explicit interaction refers to the conventional interaction process,
in which the user performs an action on the device intentionally, con-
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sciously, and purposefully, using an input device such as a mouse, a key-
board, or a touchscreen. Meanwhile, implicit interaction occurs without
the explicit awareness of the user and includes aspects such as the context
and internal states of the user (Serim and Jacucci, 2019; Ju and Leifer,
2008). Internal user states that could be of interest to consider include
attention, intention, interest, and, importantly, emotions.

1.3 Affective Computing

Although some studies combining human emotions with computing de-
vices existed before, the field of affective computing was formally estab-
lished by scientist Rosalind Picard with the publication of her seminal
1995 report at the MIT Media Lab (Picard, 1995) (later expanded fur-
ther in a book (Picard, 1997)). There, she defined affective computing as
“computing that relates to, arises from, or influences emotion”.

The main idea behind the affective computing research area is that
computers with affective capabilities would allow for a more natural human-
computer interaction, a trend that, as seen in the previous section, has ex-
isted since the very first computers. Thus, we would communicate with a
computing device in a way that more closely resembles how humans com-
municate with each other, moving even beyond what we consider natural
user interfaces nowadays.

Affective computing is a multidisciplinary field, combining knowl-
edge from diverse fields, such as psychology, computer science, physi-
ology, cognitive science, and neuroscience (Arya et al., 2021). As such,
advancements in those fields have the potential to have a significant con-
tribution to affective computing. In turn, advancements in the field of
affective computing also have the potential to provide insight into those
domains.

Depending on the specific affective capabilities of a computer, differ-
ent categories of affective computing can be identified (Picard, 1995), as
seen in Table 1.1. Category I corresponds to most computers, which do
not possess any affective capabilities, while category IV corresponds to
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computers that could both perceive and express emotions. This fourth
category would have the most complete emotion-oriented computers, be-
ing the goal of affective computing for many purposes. However, most
recent advances in the field correspond to categories II (can express affect
but not perceive it) and III (can perceive affect but not express it). Com-
puters with the capability of perceiving the affective states of users would
allow them to better interact with them, by adapting to the specific human
needs and states.

Table 1.1: Categories of affective computing

Adapted from Picard (1995).

Computer Cannot express affect Can express affect

Cannot perceive affect I II

Can perceive affect III IV

For computers to recognize affect, a subset of the techniques for mea-
suring emotions outlined previously in section 1.1.4 can be employed.
Specifically, methods relying on physiological and behavioral measures
tend to be used as automated emotion recognition techniques (Dzedzickis
et al., 2020).

By now, the field of affective computing is well established, with
more than two decades of history and constant advancements. Algo-
rithms for emotion estimation using a wide variety of sources, keep im-
proving, becoming more accurate and sophisticated (Wang et al., 2022).
This progress has been applied in a plethora of fields (Calvo et al., 2015;
Aranha et al., 2019), including education (Yadegaridehkordi et al., 2019),
driving (Zepf et al., 2020), gaming (Robinson et al., 2020; Argasiński and
Wȩgrzyn, 2019; Kotsia et al., 2013), art (Kostoulas et al., 2017; Wang
and Chen, 2020), marketing (Caruelle et al., 2022), human-robot interac-
tion (Gervasi et al., 2022), and healthcare (Yannakakis, 2018; Woodward
et al., 2020; Greene et al., 2016b).

However, despite these remarkable advancements, a number of chal-
lenges and future possibilities still lay ahead. Beyond continuing the re-
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finement of the algorithms employed with more sophisticated models or
larger datasets (Wang et al., 2022), the underlying theory and consider-
ations are crucial. For example, the pervasive use of the basic emotions
model, still widely used in affective computing despite its known limita-
tions, has been questioned, suggesting that more complex features that are
not usually (but occasionally) considered also need to be computed, such
as engagement, boredom, confusion, and frustration (D’Mello and Calvo,
2013). Furthermore, cognitive states, such as the ones just mentioned
or cognitive workload, should also be considered in addition to affect in
order to create even more advanced systems, capable of full implicit un-
derstanding.

To overcome some of these intrinsic limitations of the field of affec-
tive computing, other paradigms have been proposed in more recent years,
such as “symbiotic interaction” (Jacucci et al., 2014) or “human-engaged
computing” (Ren et al., 2019) as mentioned before, which integrate affec-
tive computing with other aspects (Jacucci et al., 2015).

1.4 Thesis Outline

Throughout this introduction, we have seen an overview of some of the
topics of greater relevance for this thesis. First, we have seen the funda-
mental role that emotions play in human experience and action. We have
examined how the concept of “emotion” has changed throughout history
and how it is understood today by science. A key aspect is the need for
a holistic vision of emotions that considers both the body and the mind
together. The circumplex model of emotions, which decomposes affect
into arousal and valence as bipolar dimensions, is supported by a large
body of neuroscientific studies, which have researched the brain circuitry
that modulates them. Then, we have seen an overview of the multitude of
methods that can be used to measure emotion, grouped into physiological
measures, behavioral measures, and self-reports.

Secondly, we have reviewed a general outlook of the field of human-
computer interaction, from the beginning of digital computing to the latest

25



paradigms that are starting to be employed nowadays. We have seen the
emergence of new paradigms that aim to make human-computer interac-
tions more natural and intuitive, which has been the aim of this field since
its inception. One of the challenges to achieve this is a better understand-
ing of the users, not only when designing a system, but also when using it.
Currently, most interactive systems are passive, reacting only to explicit
input from users (e.g., clicking a button to perform a particular action).
Unlike most humans, these systems lack emphatic capabilities to dynam-
ically and implicitly infer how the user is feeling to be able to react to it.
In order to overcome this challenge, different research fields have been
established in the last two decades. Among these, we highlight affective
computing.

Finally, we have explored the field of affective computing, which
brings the two previous topics together to bring emotions into human-
computer interaction. As we have seen, despite the great diversity and
advancements achieved in this domain throughout the last two decades,
a lot of challenges and potential remain. Although some of these chal-
lenges could be tackled with more sophisticated machine learning models
and richer datasets to improve recognition accuracy against benchmarks
(Wang et al., 2022), other fundamental issues require a revision of the
underlying theories and assumptions. These include considering more in-
ternal states of the users: cognitive states, which are not emotions but still
play a fundamental role in interaction (e.g., attention, cognitive load). Ad-
ditionally, some of the research in affective computing still relies on theo-
ries of emotion that no longer are aligned with the latest psychological and
neuroscientific views. An example of this is facial emotion recognition,
one of the most popular methods in affective computing, which relies on
a simplified vision of basic emotions that generally fails to consider the
broad variation that exists (Barrett et al., 2019).

Considering all of this, this thesis proposes going beyond the con-
straints that exist in fields such as affective computing, thinking in terms
of empathic systems. Such a system would not only rely on explicit inter-
action but also on implicitly understanding its users, estimating different
affective and cognitive states. This would bring a series of benefits over
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conventional, more passive systems, including an improved user experi-
ence, in which a system is able to understand how users are feeling (by
inferring their internal states) and react accordingly. For example, if it de-
tects that a user is frustrated, it could provide help; if it detects that a user
is overwhelmed, it could automatically reduce the amount or complexity
of the information being presented. This would enable a new generation
of interactive devices, more effective in providing a personalized expe-
rience and helping users, thus enhancing their efficacy, efficiency, and
subjective experience (e.g., enjoyment). Overall, this would mean a more
natural and intelligent interaction. To achieve this overarching goal, this
thesis has not only developed the necessary technological architecture and
a variety of methods but also offered a series of insights into these states,
including the concept of affect as a whole. Throughout the next chapters,
we will present the work that we have completed toward this goal.

In Part I, over three chapters, we will present a sensing architecture ca-
pable of collecting a series of measures that are necessary for the implicit
understanding of human cognitive and affective states. This will serve as
the basis for an empathic system, which would need to collect this user
data. Chapter 2 presents the general architecture as it was integrated into
an immersive mixed-reality environment. This architecture follows a dis-
tributed, layered, and modular design, allowing for flexibility in its usage.
Considering this, Chapter 3 presents a version of this architecture adapted
to a virtual reality experience for the simulation of neurodiversity, aimed
at creating awareness about sensory overstimulation. Then, Chapter 4
presents another version of this general architecture, expanded for its us-
age for stroke neurorehabilitation by also integrating an exoskeleton and
a functional electrical stimulation (FES) system, as well as an expanded
user model: a digital user twin.

In Part II, we will see a series of methods that we empirically tested
to obtain meaningful indications of human internal states. Chapter 5
presents two studies aimed at inducing unconscious processing of emo-
tional stimuli in an immersive environment, with the aim of gaining in-
sights into the mental processes behind this. Additionally, this serves as
an application of the sensing architecture presented in Chapter 2. Next, in
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Chapter 6 we will present a method to infer affect from keystroke dynam-
ics, in which we show that different features correlate independently with
arousal and valence. Next, Chapter 7 presents a methodology that was
employed at the height of the COVID-19 pandemic to assess the impact of
the quarantine lockdown on the mental well-being of the population based
on affective ratings. Here, we showed that a shift towards more negative
ratings might be indicative of a deteriorated emotional state. Chapter 8
follows this with an extended study taking a look at additional implicit
measures. Here, not only we confirmed our previous findings but we
also extended them to identify the lockdown impacts on different demo-
graphic groups. Furthermore, we showed the potential of the different
implicit features collected (mouse movements, keystroke dynamics, text
sentiment analysis) to be indicative of these altered internal states. Af-
ter this, Chapter 9 presents a novel methodology for collecting affective
ratings through binary swiping on smartphones. We show its potential
to collect rich affective information while also being faster and easier to
use than previous tools. Here, we also capitalize on implicit interaction
features by not only considering which way the users swipe but also how
they do it: swipe dynamics (e.g., swipe velocity). Additionally, our results
also offer insights into the circumplex model of emotions used through-
out this thesis, joining existing research that challenges the orthogonality
between arousal and valence.

Part III showcases two examples of interactive and adaptive systems
that highlight the potential to enhance different kinds of systems through
the implicit understanding of the user states. Chapter 10 is focused on
an assistive system that was developed in the context of a law enforce-
ment use case. It serves as an example of a simple system, capable of
learning from successful interactions with users to autonomously provide
suggestions to users when needed. Although this system is based only on
online interaction data, we propose an extension with additional sensing
devices to expand its capabilities. Chapter 11 presents a more advanced
interactive and adaptive system, providing an experimental evaluation of
its three core features: immersion, explicit interaction, and implicit in-
teraction. Throughout three evaluation studies, our results demonstrate
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that having an immersive environment and allowing users to directly in-
teract is beneficial. Moreover, we show that having implicit interaction,
inferring internal states based on physiological signals, to provide timely
assistance enhanced the user experience quantitatively and qualitatively.

Finally, in Part IV, we will provide a general discussion of the insights
obtained throughout this thesis (Chapter 12) and we will provide conclud-
ing remarks, including future work and the potential impact that this work
can have on different fields, including the next generation of immersive
interactive systems, affective science, and digital health (Chapter 13).
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Part I

Architecture for Implicit
Understanding of Internal States
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Chapter 2

A DISTRIBUTED SENSING
ARCHITECTURE FOR
PSYCHOPHYSIOLOGICAL
EXPERIMENTATION IN
VIRTUAL AND MIXED
REALITY

This chapter is based on:
López-Carral, H., Omedas, P., Zucca, R., and Verschure, P. F. (2023d).

A distributed sensing architecture for psychophysiological experimenta-
tion in virtual reality. Manuscript in preparation

Virtual reality allows for the setup of ecologically valid environments
in which subjects can act as they would normally while maintaining con-
trol over key variables such as the presented stimuli. Experimentation
in such an environment provides the opportunity for recording multiple
physiological signals, coming from different sensors, in order to infer
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implicit user states such as emotional state or cognitive workload. To
do this, we have integrated and validated a sensing architecture that al-
lows for synchronization and online analysis of multiple signals coming
from different devices, which might be distributed over a local network,
depending on the experimental needs. The modular nature of this archi-
tecture allows for custom usage of the needed layers. We implemented
this sensing architecture in the eXperience Induction Machine (XIM), an
immersive space developed to conduct experiments in virtual and mixed
reality. We have successfully employed this sensing architecture in dif-
ferent behavioral and psychophysiological experiments, with satisfactory
accuracy, latency, and minimal data loss.

2.1 Introduction

In the last two decades, the advances in virtual reality (VR) techniques
have led to their application in a wide range of scientific fields, including
psychophysiological experimentation with humans (Diemer et al., 2015;
Meyerbröker and Emmelkamp, 2010). One of the main benefits of this
approach is that it allows for the setup of ecologically valid environments
where users can act and behave in life-like conditions (Parsons, 2015).
VR supports naturalistic and contextually rich scenarios along with a high
degree of control over the key variables, such as the stimuli presented.

An important aspect is not only the use of more naturalistic stimuli
but also the fact that the brain controls a body acting in a rich environ-
ment (Verschure, 2016). This idea first motivated the creation of the eX-
perience Induction Machine (XIM), a mixed reality interactive space for
behavioral and psychophysiological experimentation under ecologically-
valid conditions (Bernardet et al., 2011; Betella et al., 2012).

Recent improvements in hardware and software allow to record psy-
chophysiological signals in ambulatory conditions and make use of these
signals to infer both implicit and explicit user states and actions in almost
real time. However, a challenge is how to integrate signals from differ-
ent sources, and being able not only to record them for offline analysis
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but also analyze them online for real-time interaction. Here, we have en-
hanced the XIM as a general purpose infrastructure to support the analysis
of physiological signals in a broad range of behavioral studies under nat-
uralistic conditions by integrating a new Distributed Sensing Architecture
(DSA).

We have validated the DSA by conducting different experiments, in
which we used multiple physiological sensors, with software components
distributed between different computers, and sending event markers with
millisecond precision.

Our results show that the DSA that we have implemented in the XIM
provides the necessary capabilities and performance. During our testing,
it successfully combined signals coming from different sensors that we
integrated, maintaining satisfactory accuracy, latency, and minimal data
loss.

2.1.1 State of the Art

Various solutions have been developed for the online analysis of physi-
ological signals. However, most of them are focused solely on the pro-
cessing of EEG signals specifically for Brain-Computer Interface (BCI)
research (Cowley et al., 2016), and generally do not take care of syn-
chronizing signals coming from different sources, such as electrocardio-
gram (ECG) or electrodermal activity (EDA). Examples of such platforms
are BCI2000 (Schalk et al., 2004), OpenViBE (Renard et al., 2010), and
BCILAB (Kothe and Makeig, 2013). Another framework, SSI (Social
Signal Interpretation) (Wagner et al., 2011), provides the tools for record-
ing signals from different sensors (not limited to neurophysiology), pro-
cessing them and detecting high-level features, such as gestures or emo-
tional states. However, SSI does not support a distributed design and it is
limited in extensibility for hardware and software compatibility. Finally,
the MIDAS (Modular Integrated Distributed Analysis System) framework
(Henelius and Torniainen, 2018) offers the building blocks for implement-
ing a modular system for the analysis of arbitrary signals. It is based on
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lab streaming layer (LSL 1), a protocol for synchronized acquisition of
different signals (time series) over a network.

For the new sensing architecture developed here, we needed support
for different physiological signals such as ECG, EDA, EEG, body move-
ments, and more, following a distributed design. For these reasons, we
decided to base our new sensing architecture on the previously mentioned
LSL protocol, as it offers networking capabilities that allow for a dis-
tributed design, while also providing signal synchronization and the pos-
sibility of online processing and centralized recording. This led us to in-
tegrate the MIDAS framework for the online processing of signals since
it is based on LSL and also supports an extensible and distributed design.

2.2 Architecture

The implemented sensing architecture, DSA, is illustrated in Figure 2.1
and is composed of several layers: a number of sensors capturing users
physiological data; synchronization and routing of the signals acquired
by the sensors; online analysis, and storage of data for offline analysis. It
integrates with applications such as the ones that run the visualization and
interaction of the main experiment (e.g., Unity), with the purpose of send-
ing markers for specific events and exchanging data (e.g., the application
receives certain data for real-time interaction).

The DSA is modular, so some layers might be ignored if they are not
needed for a specific use case, allowing for different configurations de-
pending on the specificity of the experimental protocol. For example, one
might choose to exclude the online analysis layer if no real-time process-
ing is needed. On the contrary, one might choose not to use the recording
layer if only real-time processing for interaction is needed.

1https://github.com/sccn/labstreaminglayer
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Figure 2.1: Implemented Distributed Sensing Architecture (DSA) as used
in an experiment. It is composed of several modular layers: the signals
from different sensors are acquired, synchronized, and streamed for on-
line analysis and offline storage. External applications can receive these
signals and send markers for events and actions.

2.2.1 Data Transmission and Synchronization

Data transmission and synchronization is based on the lab streaming layer
(LSL) protocol 2, originally developed at the Swartz Center for Computa-

2https://github.com/sccn/labstreaminglayer
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tional Neuroscience (SCCN). LSL provides the necessary framework for
streaming signals (times series) acquired from different sources within a
local network, while also including specific metadata such as timestamps
for synchronization. This process of data transmission and synchroniza-
tion does not affect the quality of the signals and does not introduce ar-
tifacts. LSL is cross-platform and OS-independent and provides the nec-
essary tools to develop plugins to use it with most sensors if those do not
already exist.

LSL is based on an outlet and inlet transmission model. Outlets make
streams of data available in the local network, while inlets connect to spe-
cific streams to retrieve their data. LSL streams are defined by parameters
such as the name, the type, the sampling rate or the data type, which are
set when creating the stream. These parameters are then used by the inlets
to resolve the stream of interest.

Given this approach, based on UDP, LSL streams can be simultane-
ously received by multiple inlets in the local network, without needing to
specify information such as the IP address of either the inlet or the outlet.

2.2.2 Sensing Devices

LSL can directly integrate the most common hardware via the plugins
provided by most of the hardware’s developers or through custom code.

Neurophysiology Sensor

For electroencephalography (EEG) data we used the Enobio headset (Neu-
roelectrics, Spain 3; 20 and 32 electrodes models). This device acquires
24-bit data at 500 Hz and is compatible with gel, dry and solid-gel elec-
trodes. It has wireless connectivity using Bluetooth or Wi-Fi (depending
on model). This offered out-of-the-box integration with LSL (in addition
to TCP/IP). Along with the EEG data, it also provided 3-axis accelerom-
eter data.

3https://neuroelectrics.com
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In addition to observing brain activity for traditional EEG analysis, we
can use this data to infer emotional states (Girardi et al., 2017; Soleymani
et al., 2016; Bos, 2006).

Eye Tracker

We used the wearable Pupil eye tracker (Pupil Labs, Germany 4) to obtain
gaze data and pupil dilation. This device offers binocular eye tracking
using two adjustable cameras (a monocular model is also offered) with a
sampling rate of 200 Hz, plus a world camera for egocentric vision and a
sampling rate between 30 and 120 Hz depending on the image resolution.
It connects to a computer via USB. It offers LSL integration using a plugin
provided by Pupil Labs.

We can use the gaze data to accurately know whether the subject was
looking at a specific location during the experimental procedure (e.g.,
the displayed stimulus), as well as detecting saccades. The pupil di-
lation measures can be used to infer internal states such as cognitive
load (Beatty and Lucero-Wagoner, 2000; Pomplun and Sunkara, 2003)
or arousal (Bradley et al., 2008).

Electrophisiology Board

For some physiological signals, we used the BITalino board (Plux, Por-
tugal 5). This device has support for several kinds of signals, of which
we used electrodermal activity (EDA) and electrocardiography (ECG). It
connects wirelessly using Bluetooth. It requires custom LSL integration
with the provided API. For this, we developed a small Python tool that
connects to the device and streams the desired data.

We also tested the system with an e-Health Sensor Shield (Libelium,
Spain 6). It supports multiple sensors, including EDA and ECG. It con-
nects to a computer using USB. Like the previous device, it requires cus-

4https://pupil-labs.com
5https://plux.info
6http://libelium.com
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tom LSL integration and we have developed a Python tool that connects
to the device and streams the desired data.

Like other physiological responses, EDA has been repeatedly shown
to be modulated by sympathetic nervous system activity, reflecting changes
in emotional and cognitive states (Critchley, 2002; Lang et al., 1993).
Similarly, ECG can also be used to classify emotional states (Agrafioti
et al., 2012; Selvaraj et al., 2013). A combination of both EDA and ECG
has also been used for inferring internal states (Betella et al., 2014c).

Sensing Shirt

We implemented custom LSL integration for the Smartex sensing shirt
(Smartex, Italy 7) by developing a small sender program in the C# pro-
gramming language, integrating the sensor library with the LSL library.
It connects wirelessly using Bluetooth. It can provide data like electro-
cardiography (ECG), acceleration and respiration.

As described, ECG can be used to infer internal states. Respiration has
also been linked to emotional feelings and it has been used to differentiate
between different states (Philippot et al., 2002).

2.2.3 Online Analysis
In order to perform the online analysis of signals, the MIDAS (Modular
Integrated Distributed Analysis System) framework (Henelius and Tor-
niainen, 2018) was integrated, as an additional and optional layer of the
DSA. MIDAS allows for a distributed structure based on nodes that use
streaming signals transmitted using LSL.

The architecture of MIDAS follows a client-server model centralized
in a dispatcher, which takes care of receiving requests from clients using
a RESTful JSON API over HTTP.

A node needs to be created for every signal to be used, with secondary
nodes taking care of fusing data from different primary nodes, for exam-
ple. Thus, we might have one node for EDA and another for ECG, with

7http://smartex.it

40



a secondary node that receives signals from both to compute a measure
such as arousal.

The implementation of the different nodes for the analysis of the phys-
iological signals is user-dependent, as MIDAS does not provide signal-
analysis algorithms. This kind of functionality must be implemented
in Python either with custom algorithms or with existing third-party li-
braries, for both artifact correction and computation of higher-level fea-
tures from the signals.

Overall, this layer gives the system the capability of having a real-time
interaction loop using implicit signals (or internal states) inferred from the
analysis of physiological measures in this layer.

2.2.4 Recording and Offline Analysis

The program LabRecorder is provided with LSL to facilitate the aggre-
gated recording of the different streams of interest. It displays all of the
streams found in the local network and records the ones selected by the
user. LabRecorder uses the Extensible Data Format (XDF 8) to store the
recorded data in a single file per recording. The resulting file is stored lo-
cally, organized in folders according to the path specified in LabRecorder.

XDF, also developed at the Swartz Center for Computational Neu-
roscience (SCCN), is an open source format designed for physiological
signals. Currently, the tool for importing XDF is available for Matlab and
Python.

Once the data has been extracted from an XDF file, it can be analyzed
in the usual ways with different analysis tools, without being limited in
any way by the methods employed in the DSA. Since the DSA does not
apply filtering or artifact removal to the signals (although it can be imple-
mented in the online analysis layer), this preprocessing will be needed in
most cases for the offline analysis.

8https://github.com/sccn/xdf
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Figure 2.2: Schematic illustration of the eXperience Induction Machine
(XIM), top view.

2.2.5 Immersive Environment

The eXperience Induction Machine (XIM) is a room for virtual and mixed
reality interaction used for behavioral and psychophysiological experi-
mentation (Bernardet et al., 2010). It is where the whole DSA was im-
plemented. It is a space of 5.5 by 5.5 m equipped with a number of sen-
sors and effectors, including a luminous interactive floor equipped with
pressure sensors, cameras, microphones, a sonification system, and four
projection screens that surround the space (see Figure 2.2). The combi-
nation of the pressure-sensitive floor and the cameras allow for tracking
of the users in the space (Mathews et al., 2007). The projection screens
and the loudspeakers are used to present the experimental application to
the participants.

The experimental application runs on one of the XIM’s computers
and exchanges data with the rest of the DSA. For example, an applica-
tion developed with the 3D game engine Unity (Unity Technologies, CA,
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USA 9) would integrate the LSL library to be able to send markers for
specific events, and could also receive data from the online analysis layer
by performing requests.

The XIM acts as the foundation for the implemented DSA, provid-
ing the necessary experimental environment. It provides the space for the
real-time interactive applications in which this sensing architecture can
be used to its full potential. However, even though the DSA is tuned for
this space with the goal of conducting ecologically valid experimentation,
it is flexible and modular enough to be used in different physical environ-
ments.

2.3 Application

The DSA has been tested and validated in a series of experimental studies.
In these, the architecture has provided an appropriate performance and has
shown the advantages of its modular and distributed structure.

Two of these studies, reported in more detail in Chapter 5, focused
on the usage of subliminal stimulation in a navigation task while simul-
taneously recording several physiological signals (electrodermal activity,
pupil dilation, EEG). The goal of this project was to study the behavioral
and physiological effects of exposure to emotionally negative subliminal
stimuli, as well as to validate the DSA. In these studies, carried out in
the XIM, the participants navigated a virtual maze while being exposed
to subliminal stimuli (either neutral or negative, the latter being a spi-
der image) at the bifurcation points. The participants received feedback
in the virtual experience depending on the subliminal stimuli that were
presented and their navigational decision. The DSA was used in the fol-
lowing way:

9https://unity3d.com
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2.3.1 Sensing Devices and Signals
Three sensing devices were used, producing streams for five different
types of data, connected to different computers, plus an additional stream
for event markers:

• The neurophysiology sensor (Neuroelectrics Enobio32) produced a
stream for EEG and another stream for triaxial accelerometer data.
This device was connected wirelessly to the recording computer
(via Bluetooth in the first study and via Wi-Fi in the second one).

• The electrophysiology board (BITalino on the first study; e-Health
Sensor Shield on the second one) produced a stream for EDA. This
device was connected to the recording computer (via Bluetooth in
the first study and via USB in the second one).

• The eye tracker (Pupil Labs Pupil) produced a stream for gaze and
another stream for pupil dilation. This device was connected via
USB to an additional computer which connected to the local net-
work via Wi-Fi.

• The experimental application produced a stream of markers for events,
which were sent at irregular intervals ranging from seconds to min-
utes apart, depending on the phase of the experiment.

The streams had different sampling rates, ranging from 100 Hz, in the
case of the accelerometer, to 1000 Hz, in the case of the EDA stream. The
markers stream had an irregular sampling rate. This was not a problem
for synchronization, given that the transmission framework that we used,
LSL, was designed to handle these cases. The features of the sensors are
reported in Table 2.1.

2.3.2 Experimental Environment
The experimental application was executed on a separate computer of the
XIM that was connected to the local network using a wired connection.
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Table 2.1: Signals captured and transmitted during an experiment using
the DSA

Source Signal Sampling rate (Hz)

Neurophysiology sensor
EEG 500

Accelerometer 100

Eye tracker
Gaze 200

Pupillary response 200

Electrophysiology board EDA 1000

Experiment application Markers Irregular, arbitrary

This computer presented the experiment to the user while sending mark-
ers for events to be recorded. In the first study, it used accelerometer data
from the EEG headset to control the interaction. This interaction was
achieved using the raw accelerometer data, processed directly by the ex-
perimental application in Unity, to detect head movements forward and
backward (pitch rotation, establishing ad-hoc thresholds of acceleration
for that axis). In the second study, two wireless controllers (Pyrus PY-
1, China) were connected to the same computer via Bluetooth, sending
key-press events directly to the operating system.

2.3.3 Online Analysis
MIDAS was used in a version of the first study with the purpose of com-
puting the arousal responses of the participants to different stimuli. These
arousal responses were computed using both EDA and EEG, on command
from the experimental application, and the results were reported back to
it. For this, arousal with EDA was computed by comparing the amplitude
of the signal over two overlapping time windows of 5 and 10 seconds
after the stimulus was displayed for 5 seconds; arousal with EEG was
computed at the same time with the same overlapping time windows, but
comparing the ratio of beta and alpha power (Bos, 2006). The MIDAS
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architecture used for this consisted on a node for EDA, another node for
EEG, and the dispatcher, with the client being the experimental applica-
tion developed with Unity. The computer that executed the online analysis
was connected to the local network using a wired connection.

2.3.4 Offline Storage and Analysis

All of the streams were recorded and stored offline for posterior analy-
sis using LabRecorder. The result was a single XDF file per participant,
which aggregated the data from all of the streams synchronized. The com-
puter that executed the recording application was connected to the local
network using a wired connection.

The offline analysis of the different physiological signals started with
a preprocessing of the data to filter noise and other artifacts since this
is a step that was not done before the signal recording. Using the event
markers as references, we computed several measures, such as increases
in phasic electrodermal activity, changes in pupil dilation, and brain ac-
tivity in different areas and frequency bands, in response to the stimuli
that were presented to the participants.

2.4 Performance

LSL has been validated to offer adequate measures of synchronization
accuracy and latency. In these tests, LSL has been shown to achieve a
synchronization accuracy of 1 ms or lower (Grivich, 2013; Ojeda et al.,
2014) and a mean latency of 7.9 ms, considering the delays between hard-
ware and software events (Grivich, 2013).

In our testing, the DSA has been fully validated after its successful
performance in the experiments described in the previous section. Dur-
ing these experiments, all of the different layers performed as expected.
Using LSL, the different signals coming from a variety of sensors were
streamed over the distributed local network making them accessible to
different computers in it. These signals were stored offline without data
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Figure 2.3: Plot of synchronized signals during an experiment. Three
streams are shown: EDA, pupil dilation and EEG (for electrode Cz).
Markers, corresponding to when subliminal stimuli (neutral or negative)
were presented, are shown as vertical lines. The horizontal axis corre-
sponds to the time since the beginning of the first trial for an example
participant.

loss, accurately synchronized, into XDF files using LabRecorder for their
posterior analysis. Furthermore, the MIDAS online processing layer per-
formed analysis of high-level features from physiological signals, which
it sent to the experimental application for its usage.

With an experimental setup like the one described in the previous sec-
tion, running for around 30 minutes, a total of 1534 samples were sent at
irregular rates, acting as markers. All of them were received, marking a
data loss of 0%. These results were repeated for a total of 16 times without
loss of information. This stream was synchronized with the simultaneous
physiological recordings (see Figure 2.3). Moreover, the latency provided
by the streaming system allowed for the signals to be used for real-time
interaction. More examples of the successful performance of the DSA are
provided throughout the following chapters.
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2.5 Potential Applications

As shown, the DSA can be used as explained in psychophysiological ex-
periments that require the recording and online analysis of multiple phys-
iological signals in an environment that is more ecologically valid than
traditional laboratory settings.

The online analysis layer of the DSA allows for a closed-loop human-
computer interaction in which the physiological state of the users (as well
as more complex inferred states such as arousal) directly affect their vir-
tual environment.

An example of this would be brain-computer interaction (BCI). The
online analysis layer (based on MIDAS) could be programmed to com-
pute different features directly from a real-time EEG signal. These fea-
tures could then be sent to a different computer on the local network to
have an explicit effect on the user interaction, as research on BCI shows.
One additional benefit of the DSA is the ease of including other types of
signals in addition to just brain data, such as electrodermal activity, thus
augmenting the information available for the interaction.

2.6 Conclusion

In this chapter, we have described a flexible Distributed Sensing Architec-
ture (DSA) for psychophysiological experimentation in ecologically valid
and immersive environments based on modern technologies. It allows for
simultaneous online analysis and recording, with an organization based
on different layers, some of which are optional to use. Since it is based
on the lab streaming layer (LSL) system, the DSA can integrate signals
coming from many different sources on a local network, which can also
be received by a number of different machines for usage or recording.
The online analysis framework implemented, MIDAS, also provides the
possibility of distributing the different processing nodes within the local
network. This online analysis offers the possibility of a closed-loop feed-
back using implicit signals inferred from the physiological measures.

48



We have shown that we implemented the DSA in the eXperience In-
duction Machine (XIM), an immersive space for mixed-reality, devel-
oped for its usage in behavioral and psychophysiological experimenta-
tion. Then, we used the DSA in the XIM to conduct some experiments,
including one navigation task using subliminal stimulation while record-
ing several physiological signals.

The results show that the DSA can successfully be used for real exper-
imentation, thanks to high-accuracy synchronization, minimal data loss,
and low latency. Furthermore, its implementation in a mixed and virtual
reality space allows for experimentation in naturalistic settings not possi-
ble otherwise, thus increasing the ecological validity of the experiments.
This will allow for new insights on brain mechanisms in more naturalistic
settings than traditional laboratory experiments.

This has several implications both for psychophysiological experi-
mentation and for virtual reality experiences. The successful implemen-
tation and usage of the DSA in this immersive environment highlights the
potential of equipping users with diverse physiological sensors and other
tracking devices. Such an augmented setup offers the possibility of track-
ing how users react during the VR experience in ways not possible other-
wise. Beyond its usefulness in psychophysiological experimentation, the
DSA offers the possibility of deeper human-computer interaction through
the use of implicit features like user states inferred online with detailed
contextual information (such as what the user was viewing or hearing,
exact position in virtual space, etc.).

In the future, we expect to continue improving the system by integrat-
ing more physiological sensing devices and signals, as well as internal
state estimation from explicit interaction, such as keystroke dynamics.
Furthermore, we will continue with the deployment of the DSA in addi-
tional experiments. In Chapter 3, we present a version of this architecture
employing different sensors in a virtual reality experience. Morover, in
Chapter 4 we present an extension of the DSA with additional devices and
software components for its usage in stroke neurorehabilitation. Through-
out Part II, we discuss different methods to estimate internal states based
on different sources.
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Chapter 3

A VIRTUAL REALITY
SYSTEM FOR THE
SIMULATION OF
NEURODIVERSITY

This chapter is based on:
López-Carral, H., Blancas-Muñoz, M., Mura, A., Omedas, P., España-

Cumellas, À., Martı́nez-Bueno, E., Milliken, N., Moore, P., Haque, L.,
Gilroy, S., and Verschure, P. F. M. J. (2022). A virtual reality system
for the simulation of neurodiversity. In Yang, X.-S., Sherratt, S., Dey,
N., and Joshi, A., editors, Proceedings of Sixth International Congress on
Information and Communication Technology, pages 523–531, Singapore.
Springer Singapore

Autism is a neurodevelopmental disorder characterized by deficits in
social communication and repetitive patterns of behavior. Individuals
affected by Autism Spectrum Disorder (ASD) may face overwhelming
sensory hypersensitivities that hamper their everyday life. In order to
promote awareness about neurodiversity among the neurotypical popula-
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tion, we have developed an interactive virtual reality simulation to experi-
ence the sensory overstimulation that an individual with autism spectrum
disorder may experience in a natural environment. In this experience,
we project the user in a first-person perspective in a classroom where a
teacher is presenting a lecture. As the user explores the classroom and at-
tends the lecture, he/she is confronted with sensory distortions which are
commonly experienced by persons with ASD. We provide the users with
a virtual reality headset with motion tracking, two wireless controllers for
interaction, and a wristband for physiological data acquisition to create a
closed feedback loop. This wearable device measures blood volume pulse
(BVP) and electrodermal activity (EDA), which we use to perform online
estimations of the arousal levels of users as they respond to virtual stimuli.
We use this information to modulate the intensity of auditory and visual
stimuli simulating a vicious cycle in which increased arousal translates
into increased sensory overstimulation. Here, we present the architecture
and technical implementation of this system.

3.1 Introduction

3.1.1 Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that
affects social communication and is characterized by repetitive patterns
of behavior. Individuals diagnosed with ASD may experience hypersen-
sitivity, enhanced perception, and sensory overload (Mitchell and Ropar,
2004; Gomes et al., 2008). Some view this hypersensitivity as the result
of hyperacute sensation; others, as a lack of prediction, leading to im-
pairments in habituation. Regardless of the cause, these differences in
sensory prediction, together with impairments in contextualizing sensory
evidence, can handicap the understanding of others’ actions and, conse-
quentially, social interactions (Chambon et al., 2017).
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3.1.2 Virtual Reality for Neurodiversity Simulation
With the goal of raising awareness among the neurotypical population
about neurodiverse phenomenology, we developed an interactive virtual
reality simulation to experience “neurodiversity”. In particular, we wanted
to simulate the sensory overstimulation that people with ASD may expe-
rience during an ordinary situation. For the simulation environment, we
have chosen a classroom given that it is a social context in which many
possible stimuli may be present. In order to offer a realistic first-person
experience, we chose to use virtual reality (VR) to place users in the per-
spective of a student affected by ASD (see Figure 3.1). Furthermore, we
used a wearable device for acquiring physiological signals that we use
to estimate arousal levels, which we use in real-time to create a closed
feedback loop.

Figure 3.1: Screenshot of the classroom environment. The user is placed
sitting at a desk, surrounded by other peers, and in front of a teacher, who
gives a lecture on astronomy.

ASD encompasses a wide range of traits. As the use case of our
project, we have simulated the experience of a teenager, focusing on Level
1 of the 5th Version of the Diagnostic and Statistical Manual of Men-
tal Disorders (DSM-5) (Association et al., 2013) (“Requiring Support”);
that is, although diagnosed with ASD, this person would not suffer se-
vere deficits. The reasons to choose this level are because more advanced
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levels would deal with more complex motor symptoms (Goldman et al.,
2009), making it more difficult to simulate the experience; and because
individuals with more severe symptoms (such as impaired intelligence or
impaired communication) could even seek sensory stimuli.

Previous Examples The experience we are proposing is informed both
by scientific literature and existing multimedia projects for ASD aware-
ness. The available examples can be classified considering their format
and level of interactivity.

• Videos (regular): In this type of experience, users can watch in
a first-person view what a person with ASD would be experienc-
ing. Examples (all but the first one are homemade): Carly’s Café 1,
Walking Down the Street 2, Sensory Overload Stimulation 3, Autism:
Sensory Overload Stimulation 4.

• 360° videos: In these ones, the viewer can also experience a 360° rep-
resentation of their surroundings. Examples: Project Cape 5, The
Party 6, Autism TMI Virtual Reality Experience 7.

• Interactive: This kind of experiences also allows users to inter-
act with the environment. Examples: Auti-Sim (game) 8, Autism
Reality Experience 9.

As mentioned, a variety of works have been created through different
technological means to raise awareness about the sensory overstimulation

1https://youtu.be/KmDGvquzn2k
2https://youtu.be/plPNhooUUuc
3https://youtu.be/BPDTEuotHe0
4https://youtu.be/IcS2VUoe12M
5https://youtu.be/ZLyGuVTH8sA
6https://youtu.be/OtwOz1GVkDg
7https://youtu.be/DgDR_gYk_a8
8http://gamejolt.com/games/auti-sim/12761
9https://www.training2care.co.uk/autism-reality-experience.

htm
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that someone with ASD could suffer. However, to the best of the authors’
knowledge, none of the existing systems includes biofeedback to more
realistically and dynamically recreate that experience. By using multiple
physiological signals in real-time, we aim at overcoming this limitation
and thus deliver a more complete simulation.

Affective State Estimation from Physiological Signals The autonomic
nervous system modulates physiological responses, such as heart rate, res-
piration, and pupil dilation. This is directly reflective of certain internal
human states, such as emotions and cognitive load. Thus, it is possible to
use a variety of sensors to measure different physiological signals, such
as the electrical activity of the heart using an electrocardiogram (ECG) or
the skin’s electrodermal activity (EDA), to learn about the users’ states. In
particular, these signals are known to correlate with affective states such
as arousal (Szwoch, 2015), including in VR experiences (Betella et al.,
2014b).

Electrodermal activity is the fluctuation of the electrical properties of
the skin as modulated by sweat gland activity. This is controlled by the
sympathetic nervous system in correlation with arousal (Critchley, 2002).
Heart rate variability (HRV) is a measure of the variation of time intervals
between heartbeats (Acharya et al., 2006), which can be derived from
ECG data or photoplethysmography (PPG) data (Allen, 2007) and also
correlates with arousal levels (Agrafioti et al., 2012). We use EDA and
PPG together for increased robustness.

In this article, we present a novel virtual reality experience to simulate
the sensory o dfstimulation that neurodiverse people might face in their
daily lives in order to promote awareness of this among the neurotypical
population. This experience is enhanced by biofeedback using physiolog-
ical signals to dynamically adapt the experience. Here, we describe the
outcome, focusing on the stimuli used and the implementation in terms
of its architecture and the estimation of users’ internal states, before dis-
cussing the resulting work.
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Table 3.1: Examples of stimuli used in the experience, divided between
auditory and visual

Type Stimulus Examples
Audio Background noise Peers talking
Audio Sudden noise Car horn
Visual Color Shiny colors
Visual Distortions Moving patterns
Visual Light Excess of light

3.2 The Neurodiversity Experience

3.2.1 Stimuli

While immersed in the virtual reality experience, users are exposed to a
series of stimuli whose properties (such as intensity and duration) are ma-
nipulated to induce a state of sensory overstimulation. The chosen stimuli
are informed by a body of research on sensory overload in ASD and self-
reports from individuals in the ASD spectrum. Considering the types of
sensory overstimulation, the stimuli can be divided between visual and
auditory (see Table 3.1).

Apart from being triggered, these stimuli can be modulated in inten-
sity within a continuous range of values. Thus, they can be regulated de-
pending on a number of factors, including the arousal levels of the users
as inferred using their physiological responses.

3.2.2 Implementation

We have developed the “Neurodiversity Experience” as an interactive vir-
tual reality experience augmented by biofeedback using a wearable device
and implemented via a combination of different hardware and software
technologies.
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Architecture As a platform for the VR experience, we chose the Oculus
Rift S headset (Oculus from Facebook Technologies, U.S.A.), a head-
mounted display that provides the audiovisual experience to the users, as
well as handling body movements (particularly head) and integrating two
wireless controllers for interaction.

We engineered the virtual environment and the foundation of the expe-
rience using the Unity real-time development platform (Unity Technolo-
gies, U.S.A.). Using Unity, we developed the 3D environment in which
users are situated during the experience to perceive a series of stimuli.
This environment is populated by human-like characters, including other
students and the teacher. They are animated realistically, in terms of both
body movements and facial expressions. In the case of the teacher, the
avatar moves around the classroom while gesturing, simulating the deliv-
ery of a lecture on astronomy. Mouth movements of this character are
synchronized with a recording of the speech, performed by a human ac-
tress.

This 3D application is also the basis for the interaction process, taking
care of integrating both explicit interaction, such as body movements and
actions with the controllers, and implicit interaction, deriving mental and
affective states from physiological signals.

The sensor used to acquire physiological signals is the Empatica E4
wristband (Empatica Inc., U.S.A.), a wearable device equipped with mul-
tiple sensors, including a photoplethysmography (PPG) sensor and an
electrodermal activity (EDA) sensor. It offers the possibility of real-time
data acquisition and streaming using wireless connectivity via Bluetooth
to a computer (see Figure 3.2).

In order to process the physiological signals online and estimate the
internal states of the users for interaction purposes, we developed an ar-
chitecture integrating several software technologies (see Figure 3.3). We
use the existing E4 streaming server 10 to forward real-time data using
TCP socket connections. We developed a Python script that connects to
that server, obtaining all data acquired by the wristband and relaying it

10https://developer.empatica.com/windows-streaming-server.
html
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Figure 3.2: Setup of the experience. The user is wearing an Oculus Rift
S headset and an Empatica E4 wristband. The computer screen allows
observers to see what the user sees.

using the lab streaming layer (LSL) system 11, a protocol for streaming
data which handles the networking and time-synchronization of signals
for both online usage and recording. Then, we use the MIDAS (Modular
Integrated Distributed Analysis System) (Henelius and Torniainen, 2018)
to perform the online analysis of the signals streamed using LSL. To do
this, we developed a node for each of the signals of interest (PPG and
EDA), integrating the necessary analysis functions to estimate arousal
levels. The virtual reality application then performs requests using a
REST JSON API at regular intervals to obtain the processed arousal lev-
els, which are used to modulate the intensity of the stimuli presented to
the users.

Online Physiological Signal Analysis In order to estimate the arousal
level of the users, we use a combination of two physiological signals:
photoplethysmography (PPG) and electrodermal activity (EDA). From
the blood volume pulse (BVP) measured by the PPG sensor, we derive
heart rate variability (HRV). EDA and HRV are used in conjunction to
estimate arousal levels.

11https://github.com/sccn/labstreaminglayer
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Figure 3.3: Architecture to process the physiological signals to estimate
arousal levels online for interaction with the virtual reality experience.
The physiological signals from the Empatica E4 wristband are transmit-
ted to be streamed using LSL, to be analyzed online by MIDAS to infer
arousal levels for a closed-loop interaction.

To compute the changes in the physiological signals, we use a moving
average algorithm based on two overlapping time windows. The shorter
time window, corresponding to the last 10 seconds, is compared to a
longer time window of 30 seconds which includes the shorter window.
By dividing the mean value during the short window over that of the long
window, a measure of change is computed, centered around a value of 1.
Values over 1 indicate an increase in arousal, while lower values denote a
decrease.

This moving average is computed for each signal type individually, on
the analysis node corresponding to each. Then, an additional node com-
bines the result from the physiological processing nodes by computing
an average that will act as the estimation of arousal levels (Betella et al.,
2014a).
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3.3 Discussion and Conclusions

We developed an innovative setup for a VR experience that places users
in a classroom where they can assume the role of a student during a les-
son. Throughout the experience, users are exposed to a series of stimuli
to simulate their experience in ways that people with ASD may perceive
them. To do this, we use a series of visual and auditory stimuli that are
triggered depending on the timing and the actions of the users. The inten-
sity of many of these effects is regulated using estimations of the arousal
levels of the users, computed in real-time from physiological signals ac-
quired by a wristband they are wearing, to further reinforce the experience
using biofeedback for achieving increased effectiveness and realism. To
accomplish this, we developed a software architecture that transmits the
raw signals obtained by the wristband’s sensors, processes them online,
and makes them available for real-time usage by the VR environment to
dynamically adapt it to the user.

The main implication of this experience is to raise awareness about
the daily life of a student with ASD. To do so, this system will be de-
ployed in several neurodiversity-related events, where users will be able
to experience it. Moreover, it will allow us to understand the relationship
between physiological signals, sensory overload, as well as attention and
memory retrieval in classroom environments. This would be useful not
only for gaining scientific knowledge and contributing to understanding
the neurodiverse phenomenology but also for possibly helping teachers
design more inclusive classrooms.

3.3.1 Further Steps

This article presents the technical implementation of our study focused on
building an interactive VR experience targeting neurodiverse phenomenol-
ogy. A further step in the validation of this experience will be to perform
a user evaluation.

As a longer-term possibility, this experience could also support ASD
individuals themselves. Previous studies have discussed the need for tech-
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niques to improve predictive skills, rather than just treating ASD symp-
tomatology. This could be done by adapting the type, intensity, and timing
of the sensory overload stimuli to the degree of overload suffered by the
individual.
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Chapter 4

A SOCIALLY COOPERATIVE
COGNITIVE
ARCHITECTURE FOR
REHABILITATION

This chapter is based on:
López-Carral, H., de la Torre Costa, J., Freire, I. T., Mura, A., and

Verschure, P. F. (2023a). A socially cooperative cognitive architecture for
rehabilitation. Manuscript in preparation

The economic burden of stroke, together with the COVID-19 crisis,
is having a strong negative impact on healthcare delivery for those stroke
survivors in need of continuous care and rehabilitation after hospital dis-
charge. This situation poses a significant challenge for healthcare de-
livery and calls for rehabilitation interventions that can be deployed re-
motely. These interventions should be individualized to each patient’s
needs, following principles that promote motor and cognitive recovery.
To achieve this, we have developed a socially cooperative cognitive ar-
chitecture (SoCCA) capable of helping non-healthy users during Serious

63



Gaming rehabilitation routines by dynamically adapting aspects such as
their intensity or duration based on the patient’s state and performance.
This cognitive architecture is based on a modular, distributed, and lay-
ered design and integrates signals from multiple sources, including differ-
ent electrophysiological sensors, to infer the patients’ internal states, such
as arousal and fatigue. These variables, which form the dynamic user
model (Digital Twin), are computed online based on the patients’ health
condition and physiological state. This approach could signify a signifi-
cant improvement over traditional rehabilitation interventions, leading to
better patient outcomes. Here, we describe the conceptual and technical
design and implementation of this socially cooperative architecture.

4.1 Introduction

Stroke is currently the third cause of death and the main cause of adult dis-
ability worldwide (Kim et al., 2020). This implies massive health costs,
especially under the current global health and financial crisis, which has
resulted in the pressing need for remote neurorehabilitation interventions
that can scale up to face this challenge (Wafa et al., 2020). Following a
stroke, the dramatic loss of neural tissue leaves up to 70 % of patients ex-
periencing persistent motor and cognitive impairments (Lai et al., 2002;
Stevens et al., 2017). For instance, hemiparesis, or weakness in one en-
tire side of the body, is one of the most common and disabling sequelae
post-stroke.

Conventional rehabilitation approaches, such as occupational therapy,
have focused on promoting the independence of patients when perform-
ing activities of daily living (Steultjens et al., 2003). However, these ap-
proaches often lead to compensatory strategies with a negative effect on
neural remodeling and functional outcome (Jones, 2017). In addition,
due to limited resources, these interventions may stop even when patients
still have the potential to improve (Van De Port et al., 2006; Ballester
et al., 2019). Indeed, it has been proposed that suboptimal recovery out-
comes might lead to a phenomenon of deterioration of motor function
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once discharged from hospital care. In this case, unsuccessful attempts to
move the affected limb during recovery result in frustration and biased at-
tention toward the unaffected, contralateral extremity. This phenomenon
is widely known as learned non-use (Hidaka et al., 2012; Fuzaro et al.,
2012; Taub et al., 1994). To prevent or reverse this behavior, Virtual Real-
ity (VR) and other technologies that allow for remote interventions have
emerged as recent treatment approaches in stroke rehabilitation, being
rapidly adopted in clinical settings (Charles et al., 2020).

The use of Serious Gaming in the rehabilitation of motor impair-
ments following cerebral damage has been intensely reviewed during the
last years (Koutsiana et al., 2020; da Silva Cameirão et al., 2011; Maier
et al., 2019). Importantly, recent studies that use specific VR interventions
grounded on neuroscientific principles have shown that motor recovery
is still possible in chronic stages (i.e., more than six months post-stroke
onset) (Ballester et al., 2019), contrary to previous beliefs of improve-
ment plateaus (Demain et al., 2006). This knowledge opens the doors
for technology-based interventions that can be deployed in the homes of
stroke chronic patients.

However, studies evaluating these interventions generally evaluate a
one-size-fits-all strategy and usually do not distinguish between subgroups,
treatment doses, or delivery modes. To overcome this, more recent ther-
apy individualization approaches have focused on the so-called Adaptive
Difficulty algorithms, which take user performance as the sole input. This
strategy presents positive effects on the recovery and motivation level of
participants (Pinto et al., 2018; Nirme et al., 2011; da Silva Cameirão
et al., 2011) and is strongly grounded on the Yerkes-Dodson law, which
poses an empirical relationship between stress and performance. Specifi-
cally, it says that performance increases with mental arousal up to a point,
which might be considered the optimal level of challenge in learning tasks
(Dodson, 1915; Ahmed, 2017).

However, by focusing only on the adaptation of the environment based
on the patients’ performance, we might be neglecting a whole set of po-
tentially beneficial adaptations driven by recent research to deliver more
effective rehabilitation interventions. For instance, the embodiment of the
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virtual avatar might be promoted through its resemblance to the patients’
anatomical features (Waltemate et al., 2018). Additionally, studies on the
time-to-time variability of post-stroke fatigue suggest that the inference
of patients’ internal states may be crucial when designing personalized
interventions (Lenaert et al., 2020).

Most of the novel approaches for personalized treatment rely heavily
on Big Data management. An emerging technique that is being imple-
mented in these growing data-driven healthcare practices is the so-called
Digital Twin (Bruynseels et al., 2018). The notion of Digital Twin, with
roots in engineering, describes the generation or collection of digital data
representing a physical entity. It emphasizes the connection between this
physical entity and the corresponding virtual counterpart, which is main-
tained by a real-time flow of information. In the context of healthcare,
Digital Twin technologies have been applied to model the medical state
of the patient, with the objective of facilitating diagnostics and helping in
the design of more effective interventions (Croatti et al., 2020).

Here, we propose a socially cooperative cognitive architecture (SoCCA)
to provide a principle-grounded and personalized rehabilitation interven-
tion for stroke patients that can be deployed remotely. The SoCCA fol-
lows a modular and layered design to merge behavioral information from
the patients’ performance during a rehabilitation routine together with
their physiological state and clinical profile. In particular, this system
uses an existing cognitive architecture as its conceptual framework, hi-
erarchically processing patients’ information to construct a virtualization
of them in the form of a Digital Twin. In turn, this information is used
to optimize the rehabilitation sessions performed by the participants, dy-
namically adapting a series of Serious Gaming Scenarios, optionally com-
pleted with the help of an exoskeleton supported by functional electrical
stimulation (FES).

4.1.1 Conceptual Framework

As its conceptual framework, this architecture follows the Distributed
Adaptive Control (DAC) model (Verschure et al., 2003, 2014). DAC is
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a cognitive architecture that provides a real-time model for perception,
behavior, and cognition. It conceptualizes the brain as a control system
that maintains a metastable equilibrium between the internal world of the
body and the brain and the external world through action.

DAC proposes that goal-oriented actions emerge from the interplay
of different processes that are organized in a four-layered control archi-
tecture with tight connectivity between and within layers, distinguishing:
the Soma, Reactive, Adaptive, and Contextual layers. Across these layers,
the architecture deals with the processing of states of the world, grounded
in exteroception; the self, derived from interoception; and action, sensed
through proprioception. The latter mediates between the first two via the
environment.

The first level in the architecture is the Somatic Layer, which repre-
sents the body itself and defines the information acquired from sensation
(from both internal and external stimuli), needs, and actuation (the control
of the body’s movement).

Subsequently, the Reactive Layer produces behaviors that support the
basic functionality of the Somatic Layer in terms of reflexive behavior.
The Reactive Layer constitutes the primary behavioral system based on
the organism’s physical needs and includes fast predefined sensorimotor
loops (reflexes) that are triggered by low-complexity signals. In short,
specific stimuli are hardwired with specific predefined actions.

Next, the Adaptive Layer extends the sensorimotor loops of the Reac-
tive Layer with acquired sensor and action states associated with valence.
The Adaptive Layer provides for the grounding of the representation of
the world and the self through perceptual and behavioral learning systems.
It acquires a state space of the agent-environment interaction combining
perceptual and behavioral learning constrained by value functions to min-
imize perceptual and behavioral prediction error. Thus, adequate actions
can be chosen to adapt to more complex inputs.

Finally, the Contextual Layer receives as its input the state-space ac-
quired by the Adaptive Layer and generates goal-oriented behavioral plans
and policies that can be expressed through actions. This layer includes
mechanisms for short-term, long-term, and working memory, formatting
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sequential representations of states of the environment and actions gener-
ated by the agent or its acquired sensorimotor contingencies in relation to
the goals of the agent and its value functions.

The resulting architecture proposed here, following the DAC model,
emerges from the interplay of the different layers, using multiple real-time
signals to provide meaningful actions to assist patients during interactive
rehabilitation activities (see Figure 4.1).

Figure 4.1: Diagram representing the general cognitive architecture based
on the Distributed Adaptive Control (DAC) framework. This architecture
is hierarchically organized into four layers: Soma, Reactive, Adaptive,
and Contextual. A series of inputs are received, resulting in the perception
of the World. This information is used to regulate the Self, which results
in an Action. Applied here, the information from the patients is used to
construct this architecture and result in assistive actions to aid in their
rehabilitation.
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4.2 Architecture
The socially cooperative cognitive architecture (SoCCA) proposed here
uses a modular design to collect a wide range of signals, make them avail-
able for online processing to extract higher-order features, and then use
these to update the Digital Twin and adapt the Serious Gaming Scenarios.
In order to achieve this, the SoCCA is distributed in four distinct layers,
following the pipeline of signal processing required for closed-loop inter-
action and the DAC model (see Figure 4.2).

Figure 4.2: Schematic view of the socially cooperative cognitive archi-
tecture. It follows a modular design based on layers. The signals and
other relevant information captured by the sensing layer are synchronized
and transmitted to the online processing layer. This information is used
to build the Digital Twin and dynamically adapt the Serious Gaming Sce-
narios.
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4.2.1 Layered Structure

The first level is the sensing layer, which takes care of collecting infor-
mation about the patient from various sources, thus acting as the Somatic
Layer in the DAC framework. Some of the data may correspond to state
variables, such as demographic or medical information, while some can
be online variables, corresponding to real-time signals such as physiolog-
ical measurements or body positions. Example signals include:

• Kinematics: information about the body movements of the pa-
tients, particularly the limbs used for interaction with the Serious
Gaming Scenarios. This information is captured using a camera
device with motion-sensing capabilities, such as the Azure Kinect
(Microsoft, USA), and can be also collected from the exoskeleton
used in this project. It is used to obtain information about the move-
ment capabilities of the patient and to directly interact with the vir-
tual environments through body movements.

• Gaze: information relative to where the patient is looking based
on the position of their eyes, as measured by wearable eye-tracking
cameras, such as the ones integrated into the mixed-reality headset
HoloLens 2 (Microsoft, USA). This data can provide an indication
of the patient’s level of attention to certain aspects of the Serious
Gaming Scenarios.

• Heart rate: physiological measure corresponding to the heart dy-
namics of the patient. This can be measured through different meth-
ods, such as measuring the electrical activity of the heart with elec-
trocardiography (ECG) or changes in blood volume using light with
photoplethysmography (PPG). These signals can be used to mea-
sure heart rate variability (HRV), which can be employed to infer
the emotional states of the patients (Agrafioti et al., 2012; Dzedz-
ickis et al., 2020). A possible device to measure this, which has
been integrated into the SoCCA, is the Empatica E4 wristband (Em-
patica, USA).
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• Electrodermal activity (EDA): physiological measure about the
changes in electrical conductance of the skin, which is indicative of
psychophysiological processes regulated by the autonomic sympa-
thetic system (Critchley, 2002). This signal can provide information
related to emotional and cognitive states, including arousal (Wang
et al., 2018) and cognitive load (Setz et al., 2009). This can also be
measured using the Empatica E4 wristband.

• Electromyography (EMG): technique to measure muscle move-
ment based on electrical activity. Beyond providing information
for gesture recognition (Zhang et al., 2011), EMG can also be used
to estimate levels of fatigue (Cifrek et al., 2009). One potential de-
vice to obtain this information, also integrated into the SoCCA, is
the Myo armband (Thalmic Labs, USA).

The second layer of the SoCCA corresponds to the synchronization
and communication of the different signals obtained by the sensing layer
to make them available for the rest of the components of the architec-
ture. To achieve this, signals are transmitted using the lab streaming layer
(LSL 1) system. LSL allows for the streaming of signals, handling the net-
working and their unified collection with time-synchronization, as well as
online processing. Furthermore, LSL streams can be transmitted across a
network and accessed from different applications simultaneously. There-
fore, multiple computing devices might be used, allowing for a distributed
architecture. This layer, allowing some simple responses to raw inputs, is
analogous to DAC’s Reactive Layer.

The third layer corresponds to the online processing of the signals
transmitted by the previous layer. This online processing is performed
with the aim of extracting higher-order features from the raw signals ini-
tially captured, including sensor fusion. An example of this is inferring
the levels of arousal of a patient by combining the HRV and EDA sig-
nals. This online analysis is performed using the MIDAS (Modular In-
tegrated Distributed Analysis System) framework (Henelius and Torni-

1https://github.com/sccn/labstreaminglayer
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ainen, 2018). MIDAS captures the desired LSL streams in specific pro-
cessing nodes for each type of signal. Additionally, secondary nodes can
be used for signal fusion and machine learning. Access to the nodes is
handled by a centralized dispatcher, which manages the routing of the re-
quests performed (using a REST JSON API) by client applications. This
information is used by the final components of the SoCCA: the Digital
Twin and the Serious Gaming Scenarios. This layer is equivalent to the
Adaptive Layer defined by the DAC model.

4.2.2 Digital Twin
The goal of the SoCCA’s Digital Twin is to generate, filter, and collect
all the relevant information regarding each user of the system and inte-
grate it into one single data structure. This information is used to flexibly
modulate the human-robot interaction when an adaptable exoskeleton is
used to assist the patients’ movements, as well as the rehabilitation tasks
to each patient’s capacities and preferences over time. In other words,
the Digital Twin creates a virtualization of the patient, which uses this
information with the goal of optimizing a set of parameters both from the
virtual rehabilitation scenarios and the exoskeleton interface.

The Digital Twin also follows DAC’s hierarchical layered design, as
it is composed of its own Reactive and Adaptive layers (see Figure 4.3).
The Reactive Layer serves as an integration layer, gathering information
from several input sources, whereas the Adaptive Layer processes these
raw data in order to produce personalized suggestions to other modules
of the SoCCA architecture.

More concretely, the input information gathered by the Digital Twin’s
Reactive Layer can be divided into state variables and online variables:

• State variables: define the profile of each user based on demo-
graphic and medical information. This information will be acquired
from the end-users (patients) and clinicians via questionnaires and
medical reports. This type of data is mostly static, as it will not
vary throughout the therapy session (e.g., age, gender, preferences,
baseline level of impairment).
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Figure 4.3: Digital Twin architecture. It comprises two levels of process-
ing, divided into a Reactive Layer, handling online and state variables,
and an Adaptive Layer, which provides actions that are relevant for in-
teraction with the Serious Gaming Scenarios and for the tasks that the
patient is carrying out, including adapting the usage of the exoskeleton
through Functional Electrical Stimulation (FES).

• Online variables: comprise all the relevant user data that is dynam-
ically updated in real-time over the course of the therapy session.
They integrate information about the behavior (e.g., performance)
and the internal states, and it is inferred through a multimodal prob-
abilistic estimation from the sensors’ data (e.g., arousal, fatigue,
cognitive load).
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The information gathered by the Digital Twin’s Reactive Layer is used
by its Adaptive Layer to generate interface- and task-relevant informa-
tion. On the one hand, the interaction-relevant information provides the
first layer of adaptation between the patient and the gaming system. It is
generated from the state variables of the patient and allows the SoCCA
to personalize general aspects of the gaming interface and the scenarios,
from the aspect of the avatar to the type of feedback the patient will get
(e.g., visual or auditory feedback, language). Based on the clinical profile
of the patient, the Digital Twin will also adapt the available rehabilitation
routines in order to promote those games that are more suitable to pro-
mote recovery. On the other hand, the task-relevant information produced
by the Digital Twin provides a more coarse-grained level of adaptation to
the patient that focuses on specific aspects of each task. The task-relevant
information is computed from the online variables that the patient gener-
ates through real-time interaction with the system. Aspects such as the
patient’s performance evolution and internal variables like arousal and fa-
tigue are computed in this layer. This information is used to dynamically
modulate parameters of the game like the adaptive difficulty and the train-
ing duration. This layer also comprises the extraction of the motor kine-
matics and the generation of movement intention parameters that will be
used by the SoCCA to modulate the behavior of the robotic exoskeleton.

The implementation of the Digital Twin is based on two main compo-
nents: the Digital Twin API and the Digital Twin database. The database
is the memory component of the Digital Twin architecture. Its function
is to store all the information related to each patient and to keep it up
to date. It is implemented as a document-oriented database using Mon-
goDB 2, where each Digital Twin profile is stored as a unique document.
Each digital twin entry is initialized with the state variables acquired from
the patient profile and questionnaires. Additionally, it also stores the main
statistics of each interaction between the patient and the SoCCA.

Both the update of the database and the interaction with it are centrally
controlled by the Digital Twin’s API. The API’s function is twofold: it
performs the basic CRUD (create, read, update, and delete) operations

2https://www.mongodb.com
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that keep the database up to date, and it is in charge of filtering the online
and state variables to produce the task- and interface-relevant outputs of
the Digital Twin. The API is written in the Python programming language
and communicates with the database using BSON as the data interchange
format.

4.2.3 Serious Gaming Scenarios

The SoCCA interacts with a set of VR Serious Games tailored for the
motor and cognitive recovery of stroke patients, based on the Rehabil-
itation Gaming System (RGS). These Serious Games are grounded on
a set of neurorehabilitation principles that target experience-dependent
cortical plasticity mechanisms, shown to promote learning and recovery
after brain injury (Maier et al., 2019). The adaptations driven by the ar-
chitecture are specific to the protocol at hand. However, some common
guidelines can be followed and generalized to each intervention.

The architecture takes state variables information from the User Pro-
file to adapt, for instance, the anatomical features of the virtual avatar
accordingly (i.e., color, size of the arms, gender). This does not only ful-
fill the embodiment priors of anatomical congruence (Ehrsson, 2012) but
also helps the mapping between the real and computer-generated effec-
tor to be congruent, promoting agency and body ownership (Limanowski
and Blankenburg, 2016). This information might also be used to adapt the
feedback provided to patients with aphasia, characterized by impairments
in the comprehension and/or expression of language (Vallila-Rohter and
Kiran, 2013).

Online Variables are used to modify properties of the virtual environ-
ment dynamically. For instance, information from the performance can
be used to modify the different variables that describe the difficulty of
the Serious Gaming Scenario, following a similar approach as in (Nirme
et al., 2011). In the case of the game presented in Figure 4.3, a set of col-
ored spheres approach the patient, who must grab them and place them
in the matching colored baskets. The difficulty of this game is modified
through parameters such as size, velocity, and dispersion of the spheres,
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or number of colors and movement of the baskets.
Internal states of the patients, such as cognitive or emotional condi-

tions, are inferred by using different inputs based on existing knowledge
in fields such as neuroscience, cognitive science, and psychophysiology.
In order to estimate these states at a higher level of abstraction, the sig-
nals captured and transmitted by the initial layers of the SoCCA (such as
heart rate, electrodermal activity, or muscle movements) are analyzed, ei-
ther separately or combined. The result of this is a series of variables that
form the Digital Twin by providing a representation of the patient’s inter-
nal state, including arousal, fatigue, and cognitive load. This information
is dynamically used to modify aspects such as the duration and intensity
of the intervention. For instance, if the system detects an excessive level
of fatigue, the Serious Game could be adapted to reduce the intensity of
the ongoing task or even to finish the training session. Thus, the Serious
Gaming Scenarios are capable of providing a high level of adaptability
to each patient, both throughout the rehabilitation process and during an
individual session.

4.3 Discussion

In this chapter, we have presented a novel Socially Cooperative Cogni-
tive Architecture (SoCCA) capable of dynamically providing adaptations
to Serious Gaming Scenarios for neurorehabilitation after a stroke. Cur-
rently, stroke is one of the leading causes of death and disability. It has
been widely established that motor recovery reaches a plateau three to six
months post-stroke (Demain et al., 2006), which has commonly justified
the discharge of patients from hospital care at chronic stages. However,
recent evidence using VR-based therapy shows that recovery is still pos-
sible beyond one year after the stroke onset (Ballester et al., 2019). It is
believed that, after a stroke, shock leads to a learning process in which
the brain progressively suppresses the use of the affected extremity (i.e.,
learned non-use) (Wolf et al., 1989). Moreover, stroke patients are prone
to declines in mobility during chronic stages, likely due to inactivity and
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comorbidities such as fatigue or depression (Van De Port et al., 2006).
The Stress and Coping model (Folkman and Lazarus, 1988) suggests that
suboptimal outcomes could, in turn, worsen due to self-limiting cognitive
beliefs, leading to a cycle where stress, coping strategies, and function
degrade recursively (Ballester et al., 2016). Thus, personalized remote
interventions not only could promote activity during chronic stages but
also an adaptive level of challenge and tailored manipulations in the in-
teraction with the environment could result in reduced levels of stress
and increased self-efficacy (Jones, 2006; Timmermans et al., 2009). Im-
portantly, stroke patients exhibit a pronounced sensitivity to success and
failure, which biases arm use (Ballester et al., 2016) and reemphasizes the
need to adapt the rehabilitation protocols in an optimal way.

A recent report proposed a set of Universal Design recommendations
specific to stroke survivors that include: “Make it fun, do not make people
fail, empower and encourage. The technology needs to be highly adapt-
able to different sets of abilities [...]. Importance of seeing your progress,
allow one-sided use (hemiplegia), avoid sensory and activity overload (fa-
tigue), complement speech with images (aphasia), limit demand on mem-
ory, support learning and avoid errors (memory problems), and include
multiple modalities in the design (reduced vision or hearing).” (Magnus-
son et al., 2018). We believe that the proposed architecture will be helpful
in the design of future computer-generated stroke therapies that take these
concepts into consideration. Additionally, thanks to the SoCCA’s modu-
lar and distributed design, it is possible to adapt its integration to each
specific use case by, for instance, only using the desired components or
extending it to use additional sensors or infer additional internal states.

The SoCCA is grounded on the Distributed Adaptive Control (DAC)
theory as its conceptual framework, establishing a hierarchical layered
structure. The first layer of the SoCCA captures patient data, making it
available for its synchronized transmission, followed by its online anal-
ysis to infer higher-order internal states (e.g., arousal, fatigue, cognitive
load). This information is then used to update the Digital Twin, corre-
sponding to a virtualization of the patient that is then used to adapt the
Serious Gaming Scenarios.
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The integration of this architecture in neurorehabilitation routines al-
lows for a more personalized treatment not possible otherwise. This could
have a significant impact on the recovery outcomes of patients, going be-
yond what conventional, more static approaches allow. Furthermore, the
use of the system proposed here, which can function autonomously with-
out the constant supervision of specialized clinical personnel, could allow
rehabilitation interventions to be deployed at home, thus increasing the
number of patients reached and rehabilitation sessions performed. This
is of special interest considering the impact of the COVID-19 outbreak,
which negatively affected stroke care, resulting in a significant drop in
admissions, thrombolysis, and thrombectomy. Patients not going to the
hospital was one of the main limiting factors of this (Zhao et al., 2020).

Future work with the SoCCA includes its deployment in rehabilita-
tion settings to perform user validations with stroke patients in clinical
studies. This will involve the collection of data from each aspect of the
architecture for online and offline analysis within the Horizon 2020 Re-
Hyb project 3. The results of using the system proposed here, in terms of
rehabilitation outcomes, will be compared with those from classical reha-
bilitation routines, expecting a significant improvement in both functional
outcomes and user satisfaction that highlights the benefits of the approach
proposed here.

3https://rehyb.eu
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Part II

Methods for Implicit
Understanding of Internal States
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Chapter 5

INDUCTION OF
UNCONSCIOUS PROCESSING
OF EMOTIONAL STIMULI IN
AN IMMERSIVE SYSTEM

This chapter is based on:
López-Carral, H., Zucca, R., Omedas, P., and Verschure, P. F. (2023e).

Induction of unconscious processing of emotional stimuli in an immersive
system. Manuscript in preparation

While traditional human-computer interaction has usually relied on
users’ explicit input, novel approaches are exploiting their unconscious
processes through psychophysiological measurements. Furthermore, stan-
dard decision-making protocols based on subliminal stimuli have been
carried out under well-controlled laboratory condition. It is unclear how
these results generalize under real-world conditions. Here, we investi-
gate the effects of the presentation of subliminal emotional stimuli in an
immersive virtual-reality environment both at the behavioral and physi-
ological level. This approach allows us to overcome the limitations of
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traditional laboratory settings by providing more ecologically-valid con-
ditions. Participants were asked to navigate a virtual maze, where they
encountered subliminal cues at bifurcation points. Using a novel frame-
work for psychophysiological signal integration and real-time control of
VR content, we recorded signals from a range of sensors worn by the par-
ticipants including electroencephalography (EEG) for assessing the neu-
ral effects of these stimuli, while electrodermal activity (EDA) was used
to derive arousal responses. Although the behavioral performance of the
users in the navigation task was not consistently affected by the subliminal
stimuli above chance, significant electrophysiological responses were de-
tected. EDA increased significantly more when a negative affective stim-
ulus was presented, as compared to a neutral stimulus. Similarly, we ob-
served that an increased beta/alpha power ratio in the frontal electrodes is
a good predictor of the level of the arousal induced by subliminal primes.
Furthermore, the presentation of the negative subliminal stimulus pro-
duced a significant increase in spectral power within the high delta band
in the fronto-parietal EEG electrodes. These results highlight the pos-
sibilities of tracking neurophysiological responses produced by adapting
subliminal stimulation paradigms into ecologically-valid, virtual-reality
contexts. We demonstrate that it is possible to analyze human brain dy-
namics during active navigation in enriched environments while, at the
same time, gaining insights about the processes underlying conscious and
unconscious perception, action and cognition.

5.1 Introduction

5.1.1 Implicit User States in Human-Computer Interac-
tion

Traditional Human-Computer Interaction (HCI) relies on the users’ ex-
plicit input via keyboards, pointing devices, and many other tools. How-
ever, in recent years, novel approaches taking into account the users’ un-
conscious states have been presented (Andre, 2013; Wagner et al., 2013).
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The goal of developing a system that uses a variety of implicit user’s
inputs would be a symbiotic system: a system in which human cognitive
capabilities are augmented by complementing them with those of the ma-
chine. Ideally, this would result in a system that improves the interaction
in ways not possible otherwise.

To be able to develop such class of empathetic systems it is necessary
to understand the ways in which a computing device can communicate
with the users using these unconscious processes. In particular, it is nec-
essary to understand how to appropriately interpret and affect the user’s
internal states.

To address this issue, different sensors can be used to record phys-
iological signals and infer implicit user states. Electrodermal activity
(EDA) has been used to measure arousal levels (Betella et al., 2014c;
Carbonaro et al., 2012; Courtney et al., 2010; Picard et al., 2001). Elec-
troencephalography (EEG) has also been used to detect emotions (Bos,
2006; Kim et al., 2013), including during the presentation of subliminal
visual stimulation (Bernat et al., 2001).

5.1.2 Unconscious Stimuli Processing

Decades of experimental research have shown that the human brain is
capable of processing stimuli that are presented below a threshold of
conscious perception, an thus influence behavior (Bornstein and Pittman,
1992). The response priming paradigm has been frequently used together
with subliminal stimuli to unconsciously bias responses of participants
(Schmidt et al., 2011; Eimer and Schlaghecken, 2003). Thus, when a par-
ticipant is exposed to a stimulus for a few milliseconds, without conscious
awareness, followed shortly by a target supraliminal stimulus, a stimulus-
response association is developed (Damian, 2001), further reinforced by
providing feedback (Hommel, 2000).

Another habitual component in visual subliminal priming is masking,
used to disrupt the retinal afterimage right after the presentation of the
subliminal stimulus (Vorberg et al., 2003; Kouider and Dehaene, 2007).
This is usually some visual noise to control strictly the time that the sub-
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liminal prime is perceptually available (Scharlau et al., 2006).
Besides behavioral biases or subjective reports, which can diverge

from actual perceptual thresholds (Cheesman and Merikle, 1984), the ef-
fects of subliminal stimulation could be observed on physiological re-
sponses such as electrodermal activity (Lazarus and McCleary, 1951).
Furthermore, subliminal processing could be observed using EEG (Kiss
and Eimer, 2008; Kongthong et al., 2013).

Unconscious processing of stimuli could be facilitated through the use
of highly arousing stimuli, and more specifically, fearful stimuli, given
the evolutionary advantage of such mechanism and the existence of a fast
pathway for fear in the humamn amygdala (Méndez-Bértolo et al., 2016).
Examples of such stimuli would be snakes or spiders, commonly used to
achieve fearful responses (Mayer and Merckelbach, 1999; Courtney et al.,
2010; Lipka et al., 2011).

However, most of the research done in the field of subliminal stim-
ulation has been done under laboratory settings, with few experiments
having been carried out under more ecologically valid conditions (Boag,
2009).

5.1.3 Subliminal Stimulation in an Ecologically Valid Nav-
igation Task

A study that addressed the use of unconscious processes for improving
the human-computer interaction did so by using subliminal stimuli in a
navigation task (Cetnarski et al., 2014). One of the main goals was to gen-
eralize the outcome of previous studies on subliminal perception, which
have traditionally been conducted under controlled laboratory conditions,
in a more ecologically valid environment. In order to achieve this, the
eXperience Induction Machine (XIM) was used (Figure 5.1A). The XIM
is an immersive environment that allows for psychophysiological experi-
mentation under ecologically valid conditions in mixed and virtual reality
(Bernardet et al., 2010; Betella et al., 2014b).

The results of that study confirmed that, indeed, subliminal stimuli can
bias decision-making unconsciously, and effectively improve user perfor-
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Figure 5.1: (A) Schematic illustration of the eXperience Induction Ma-
chine (XIM), an immersive space for mixed and virtual reality applica-
tions used to conduct experiments. It covers a space of 5.5 by 5.5 m
equipped with multiple sensors (cameras, pressure-sensitive floor, etc.)
and effectors (surrounding projectors, speakers, etc.). (B) EEG montage
used in Experiment 1, with 20 electrodes, following the 10-20 interna-
tional system. (C) EEG montage used in Experiment 2, with 32 elec-
trodes, following the 10-20 international system.

mance on the navigation task (Cetnarski et al., 2014).
In order to obtain a mechanistic understanding of the underlying pro-

cesses, we extended the previous study by simultaneously recording elec-
trophysiological data during the navigational task. EEG data from the
scalp have been used to observe the processing depth of the subliminal
stimuli by pinpointing the brain structures that are activated. The second
improvement was to try selecting the most effective stimulus for each user
in order to optimize the effect of the subliminal aversive stimuli. Finally,
to further improve the ecological validity of the study, the interaction was
not restricted to the use of a keyboard but it was mapped to a full body
interaction paradigm.

5.2 Materials and Methods
We carried out two different experiments, the second one being a modified
version of the first in order to correct issues by modifying the navigation
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and to further explore the neural activity by using a higher resolution EEG
system and a condition for higher cognitive load.

In order to capture the different psychophysiological signals, we em-
ployed a novel framework that we developed, based on lab streaming
layer (LSL 1), a system for integrating and synchronizing signals from
different sources. We needed such a framework, designed as a distributed
architecture, in order to synchronize signals from multiple sensing de-
vices (such as EDA sensors, EEG, and eye tracker), connected to different
computers of the XIM, the immersive space where our study was carried
out, while also recording event markers. Our architecture allows for a
time-precise synchronized recording of all of these signals, integrated in
a mixed and virtual reality space. Additionally, we deployed the MIDAS
(Modular Integrated Distributed Analysis System) framework (Henelius
and Torniainen, 2018), which allows us to compute online analysis of the
acquired signals for near-real-time usage in the virtual experience for aug-
mented interaction. In the present study, we did not use this component
of the architecture except for in a pilot experiment.

5.2.1 Experiment 1

Participants

12 voluntary subjects (5 females and 7 males, mean age = 25.7 yrs,
SD = ±2.9) recruited from the university campus participated in the
study. EEG data of 3 subjects were discarded for analysis of the cali-
bration phase due to technical issues. All participants reported normal or
corrected-to-normal vision. All the subjects read and signed an informed
consent form declaring that they clearly understood all the experimental
procedures and the aim of the study. The study was approved by the local
Ethical Committee (CIREP-UPF).

1https://github.com/sccn/labstreaminglayer
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Acquisition Sensors

EEG data were recorded with an Enobio20 wireless system (Neuroelectrics,
Spain) at 500 Hz using 20 Ag/Ag-Cl electrodes placed accordingly to
the international 10-20 system (Figure 5.1B), whereas subject’s move-
ments were recorded through a 3 axial accelerometer embedded in the
EEG controller. For the electrodermal data, a BITalino device (Plux Wire-
less Biosignals S.A., Portugal) was used using two pre-gelled electrodes
placed on the palm of the left hand. A Pupil eye tracker (Pupil Labs
UG, Germany) was used to track the size of the pupil and eye-gaze. Sig-
nals from the different sensors were synchronized using the LSL protocol
with LabRecorder (SCCN, University of San Diego, CA, USA). Due to
synchronization issues, eye’s data have been excluded from the analysis.
Finally, the virtual maze environment was developed using the Unity 3D
engine (Unity Technologies, San Francisco, CA, USA).

Experimental Procedure

The main experiment consisted of a navigation task in a 3D virtual maze.
In this virtual maze, the user’s point of view advances forward automat-
ically through a straight, dimly-lit corridor until arrival at a vertical bi-
furcation. This Y-junction is established with a door on the ground. At
this point, the stimulus sequence is displayed, showing the fixation point
(500 ms), a subliminal prime (16 ms), a mask (500 ms) and a supraliminal
target (4000 ms). The subject is then asked to take a decision: to either
follow the current path (i.e., by leaning the head forward) or leave it by
going through the door on the ground (i.e., by leaning the head backward).
Finally, a feedback animation is provided, which can be positive (i.e., a
gold ring acting as a reward) or negative (i.e., a 3D spider attacking the
subject, which acts as a punishment). This sequence represents one full
trial. After each trial, a new one begins until this main experimental block
ends (150 trials).

An experimental block consists of two types of trials according to
the supraliminal target displayed (see Figure 5.2): “fixed-choice” trials in
which the supraliminal stimulus is a negative (a spider, different from the
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one used as the subliminal prime) or a neutral image (an unrecognisable
shape) informing the subject about the correct path to choose (i.e., avoid
the current path in case of a spider) and “free-choice” trials in which the
stimulus is represented by a question mark and the subject has to freely
choose which path to follow. In fixed-choice trials, the accuracy of the re-
sponse to the target (i.e., target compatibility of the response) determined
the feedback type, whereas in free-choice trials the prime compatibility
of the response determined the type of feedback.

Fixed-choice trials served the purpose of establishing the stimulus-
response associations, whereas the “free-choice trials” serve as catch tri-
als to study the behavioral impact of the subliminally perceived stimuli
on a decision.

Before starting the main experiment a calibration phase took place
aimed at selecting the most arousing stimuli for each participant. 20 stim-
uli (half neutral and half spiders images) obtained from the Geneva af-
fective picture database (GAPED) (Dan-Glauser and Scherer, 2011) were
randomly presented and each subject was asked to rate them through the
Affective Slider (Betella and Verschure, 2016) while at the same time
recording psychophysiological activity. Neutral images were selected
among the ones with the lowest arousal score while the spider images
where chosen among those with the highest arousal score to guarantee
the largest difference between stimuli. All images were converted to
grayscale, and the backgrounds of the spider images removed.

The protocol consisted of five main steps. Each participant was seated
in the center of the XIM (about 2 meters away from the screen). It started
with the reading and signature of the consent form, as well as the instruc-
tions for the experiment and the first anxiety questionnaire. After this, the
participant was equipped with the sensors and the experimental session
began with the calibration phase, followed by the navigation task. Once
terminated, a visibility test was performed to ensure that the subliminally
presented stimuli were indeed not consciously perceived. This visibility
test placed the participants in the same scenario as in the main phase, but
without movement. Participants were shown the fixation point, followed
by the same subliminal images as in the main phase, and the masking.
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Figure 5.2: Stimulus sequence timeline showing the two types of possible
trials in Experiment 1. In both fixed-choice trials and free-choice trials,
a subliminal prime is shown. The difference is in the supraliminal target
that is displayed, that either dictates the correct response (fixed-choice
trial) or lets the subject decide (free-choice trial).
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They were asked to indicate with a key press whether they saw a spider
image or not, 40 times. Finally, the sensors were removed, the second
anxiety questionnaire was administered, and the subject was debriefed.

Data Analysis

In order to compute the response accuracy rate during the main phase
of the experiment, we computed the percentage of times that the prime-
compatible response was made, i.e., the trial ended with a virtual gold
ring, which means that when the negative prime was shown, the partici-
pant switched paths, and when the neutral prime was shown, the partici-
pant continued on the same path. This was computed by dividing the sum
of all responses. The statistically significant deviation from chance level
(50 %) represents the bias response. This was checked with a one-sample
t-test. We also compared the accuracy depending on the stimulus type
(negative or neutral) and compared it using a paired-samples t-test.

For the visibility test, the accuracy was computed in a similar fashion,
by computing the percentage of times that the participants reported cor-
rectly to have seen a spider image. We checked the deviation from chance
level (50 %) with a one-sample t-test. We computed the correlation be-
tween accuracy during the visibility test and during the main phase using
a Pearson correlation test.

In order to analyze the EEG data, the EEGLAB (Delorme and Makeig,
2004) and MNE (Gramfort et al., 2013, 2014) software libraries were
used. Ledalab (Benedek and Kaernbach, 2010) was used for EDA data
analysis, following a continuous decomposition analysis (CDA). Particu-
larly, we computed the sum of SCR-amplitudes of significant SCRs within
the response window (reconvolved from corresponding phasic driver-peaks)
and the average phasic driver within the response window. We separated
these results depending on the participants movement choice (to avoid or
not the virtual spider attack based on the subliminal cue) and compared
them using a Mann-Whitney U test.
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5.2.2 Experiment 2

Participants

16 voluntary subjects (9 females and 7 males, mean age = 24.5 yrs,
SD = ±3.2) recruited from the university campus participated in the
study. One subject was excluded due to a technical issue with the inter-
action device. Another subject was excluded because he reported being
able to see the subliminal stimuli. All participants reported normal or
corrected-to-normal vision. All the subjects read and signed an informed
consent form declaring that they clearly understood all the experimental
procedures and the aim of the study. The study was approved by the local
Ethical Committee (CIREP-UPF).

Acquisition Sensors

EEG data were recorded with an Enobio32 wireless system (Neuroelectrics,
Spain) at 500 Hz using 32 Ag/Ag-Cl electrodes placed accordingly to the
international 10-20 system (Figure 5.1C). For the electrodermal data, an
e-Health Sensor Shield (Libelium, Spain) was used. A Pupil eye tracker
(Pupil Labs UG, Germany) was used to track the size of the pupil and eye-
gaze. Signals from the different sensors were synchronized using the LSL
protocol with LabRecorder (SCCN, University of San Diego, CA, USA).
Finally, the virtual maze environment was developed using the Unity 3D
engine (Unity Technologies, San Francisco, CA, USA).

Experimental Procedure

In Experiment 2, the virtual maze was modified to have a horizontal bi-
furcation (left/right decision) instead of a vertical one in order to avoid
having a default movement direction (continue forward in Experiment 1).
Due to this new virtual space configuration, a new stimuli exposure setup
was needed. In Experiment 2, two stimuli were presented side by side
simultaneously. The negative stimulus was presented randomly on either
the left or the right side, with the neutral stimulus on the other side.
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The interaction method was changed from head movements to remote
controllers in order to avoid the movement biases found during Experi-
ment 1. In Experiment 2, participants had identical wireless controllers
(Pyrus PY-1) in both hands. They were instructed to press the trigger of
the left controller to choose to move left and the trigger of the right one
to move right.

Trial duration and distribution was modified to increase the number
of trials, particularly of free-choice trials. In Experiment 2, there were 30
fixed-choice trials and 160 free-choice trials, each trial lasting from ap-
proximately 6 seconds (Figure 5.3). Fixed-choice trials were distributed
non-randomly: 15 at the beginning of the experiment in order to establish
the stimulus-response association and 1 every 10 free-choice trials.

A high cognitive load condition was introduced. While in the control
group the score was shown at all moments, in the high cognitive load
group participants had to keep mental track of the score and report it every
10 trials. Trials that ended with a gold ring awarded 3 points, while the
ones that ended in a spider attack subtracted 5 points.

The calibration phase of Experiment 1 was removed. In Experiment
2, the negative stimulus (spider image) was the same for all subjects. This
image was selected as the one that induced the higher arousal response in
Experiment 1 according to the reported ratings.

Data Analysis

The procedure to compute and test the response accuracy during the main
phase and the visibility test were the same as in Experiment 1, aggregated
for both conditions (higher cognitive workload and lower cognitive work-
load). Additionally, we compared the response accuracy rate between
both conditions by separating both groups and using an independent-
samples t-test.

As in Experiment 1, EEGLAB and MNE were used to analyze EEG
data. Ledalab was again used for EDA data analysis, computing and com-
paring the same two main measures.
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Figure 5.3: Stimulus sequence timeline showing the two types of possible
trials in Experiment 2. In every trial, a negative subliminal stimulus and
a neutral subliminal stimulus are shown, one of them on the right and the
other on the left. As in Experiment 1, the difference between trial types is
in the supraliminal target that is displayed, that either dictates the correct
response (fixed-choice trial) or lets the subject decide (free-choice trial).
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5.3 Results

5.3.1 Experiment 1

Behavioral Data

We started the statistical analysis with the visibility test data to confirm
that the subliminal stimuli were indeed subliminal, and not consciously
perceived, by most participants. 2 participants were removed from all
analysis due to having an accuracy in this test above one standard devia-
tion. Another participant was discarded as an outlier in response patterns.
For the remaining participants, testing the visibility test scores (see Fig-
ure 5.4A) against chance level, there was no statistical significance, as
expected, t(9) = 0.751, p = 0.47. Furthermore, there was no correlation
between the scores in the visibility test and the accuracy in the main ex-
periment, r(9) = 0.440, p = 0.24.

Accuracy scores were calculated as the proportion of prime congru-
ent and incongruent responses of each subject in the free-choice trials,
dividing the number of congruent choices by the sum of all responses.
The mean accuracy score was 49.81 % (± 4.26 SD) (see Figure 5.4B)
which was not significantly different from a random choice (t(9) = -0.123,
p = 0.91). This result indicates that decisions were not biased by the prime
presented.

Due to this mean accuracy, further analysis was performed on the data.
First, by separating between trials with the negative prime and trials with
the neutral prime, we observe a difference. The mean accuracy in tri-
als with the negative prime is 37.91 %, while in trials with the neutral
prime, it is 62.36 % (see Figure 5.4C). The difference in response accu-
racy between both types of trials was found to be significant, t(9) = -3.6,
p < 0.001. This is a difference that was not expected.

Analyzing the frequency of forward/backward movements indepen-
dently of stimulus kind (i.e., the decision to whether continue, by moving
the head forward, or leave the path, by moving the head backward), a
response pattern similar to the last one emerged. The subjects decided
to move forward (continuing their path) 62.22 % of the time, and only
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Figure 5.4: Behavioral results from Experiment 1. (A) Mean accuracy in
the visibility test. This plot represents the mean accuracy percentage of
the subjects during the visibility test. As expected, all values are around
50 %. (B) Average response accuracy in free-choice trials. A 50% value
represents the chance level for a binary task. (C) Mean accuracy in free-
choice trials, separated by stimulus type. This plot represents the mean
accuracy for the subjects, taking into account the free-choice trials of the
main experiment, separated between trials in which the negative prime
was shown, and those in which the neutral prime was shown. The error
bars represent the 95% confidence interval. (D) Percentage of movement
that was performed in free-choice trials. This plot represents the per-
centage of movements that were performed during the main experiment,
considering only the free-choice trials. A preference for moving forward
can be observed. The error bars represent the 95% confidence interval.
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37.78 % backward (leave their path; see Figure 5.4D). This difference
was statistically significant, t(9) = 3.593, p < 0.001. Again, this is an
effect that was not expected, as movements forward and backward should
have been distributed 50/50 approximately. This is true both if we only
consider chance level (no priming) and if we consider the priming effect,
given that there was the same number of both types of stimuli.

It is important to remember that, when the neutral prime is presented,
the correct response (the one that leads to the reward) is to move for-
ward, and when the negative prime is presented, the correct response is
to move backward. Thus, this preference for moving forward can explain
the higher accuracy with the neutral prime and lower accuracy with the
negative prime.

The analysis of the response times did not reveal a significant priming
effect. Difference regarding the subliminal stimulus that was presented
did not reach statistical significance, t(9) = -1.816, p = 0.11). There
was no correlation between response time and accuracy, r(9) = -0.344,
p = 0.365.

Physiological Data

The analysis of the EEG data revealed a significant effect of the images
that were shown to the subjects. By taking into account the amplitude
of the raw signal, it is possible to differentiate the brain responses be-
tween neutral and spider images, both when presented supraliminally (in
the calibration phase), t(180) = 5202.0, p < 0.01, and when presented
subliminally (in the main phase), t(180) = 6234.0, p < 0.01.

Focusing on the brain areas that were activated during the presen-
tation of the stimuli, we can indeed observe that the frontal lobe pre-
sented differences in activation depending on the type of subliminal stim-
uli, t(180) = 87.0, p < 0.05. However, this difference was not detected in
the occipital lobe (more specifically, in the visual cortex), t(180) = 48.0,
p = 0.10.

Regarding the arousal, it was also possible to differentiate between
neutral and spider images. When presented supraliminally (in the calibra-
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tion phase), the best indicator was the alpha power (or beta power, which
produced very similar results), especially in the frontal area, t(90) = 1244.0,
p < 0.01. When presented subliminally (in the main experiment), the best
indicator was the beta/alpha ratio, in the whole brain, t(177) = 16099.5,
p < 0.05.

These arousal results were validated with those computed with the
EDA signal. For computing the arousal with EDA data, the signal was
filtered with a median filter to get the phasic data. The result is a signif-
icant correlation between both, r(80) = 0.322, p < 0.01. However, there
was no significant correlation between both and the slider, r(180) = 0.075,
p = 0.315, which might be due to insufficient quality of the EDA signal
that was acquired.

During the main phase, we found differences in electrodermal re-
sponse on the moment the subliminal stimulus was presented depending
on the eventual movement choice of the participants, which happens later.
Considering the sum of SCR-amplitudes of significant SCRs within the
response window (reconvolved from corresponding phasic driver-peaks),
there was a difference in electrodermal response according to the trial out-
come (U(1200) = 122400.5, p < 0.05). There was also a difference in this
when considering the average phasic driver within the response window
(U(1200) = 122480.0, p < 0.05).

5.3.2 Experiment 2
Behavioral Data

Like in Experiment 1, we started the statistical analysis with the visibility
test data to confirm that the subliminal stimuli were indeed subliminal,
and not consciously perceived, by most participants. 2 participants were
removed from all analysis due to having an accuracy in this test above one
standard deviation. For the remaining participants, testing the visibility
test scores (see Figure 5.5A) against chance level, there was no statistical
significance, as expected, t(12) = 0.491, p = 0.63. Furthermore, there was
no correlation between the scores in the visibility test and the accuracy in
the main experiment, r(12) = 0.205, p = 0.523.
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Figure 5.5: Behavioral results from Experiment 2. (A) Mean accuracy in
the visibility test. This plot represents the mean accuracy percentage of
the subjects during the visibility test. As expected, all values are around
50 %. (B) Average response accuracy in free-choice trials. A 50% value
represents the chance level for a binary task. (C) Mean accuracy in free-
choice trials, separated by stimulus side. This plot represents the mean
accuracy for the subjects, taking into account the free-choice trials of the
main experiment, separated between trials in which the negative prime
was shown on the left or on the right. There is no significant difference
between both sides. The error bars represent the 95% confidence inter-
val. (D) Percentage of movement that was performed in free-choice trials.
This plot represents the percentage of movements that were performed
during the main experiment, considering only the free-choice trials. No
significant preference for moving left or right can be observed. There is
no significant bias towards any direction. The error bars represent the
95% confidence interval.
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Accuracy scores were calculated as the proportion of prime congruent
and incongruent responses of each subject in the free-choice trials, divid-
ing the number of congruent choices by the sum of all responses. The
mean accuracy score for all subjects aggregated was 48.38 %(± 4.06 SD)
(see Figure 5.5B) which was not significantly different from a random
choice (t(12) = -1.318, p = 0.214). This result indicates that decisions
were not biased by the prime presented in a consistent way.

Although the response accuracy was several percentage points below
50 % for half of the subjects, it was above this threshold for the other half,
suggesting that the effect of the subliminal priming could be different
between subjects.

The accuracy for the cognitive workload group was 48.75% (± 4.75 SD)
and 47.88 % (± 2.76 SD) for the non-cognitive workload group. No sig-
nificant differences in accuracy scores were found between both groups
(t(12) = 0.338, p = 0.743).

Regarding the side on which the negative stimulus was presented, the
accuracy was 51.20 % when it was presented on the left side, and 45.83 %
when it was presented on the right side (see Figure 5.5C). Although no
statistical difference was found between both cases (t(12) = 1.522, p = 0.156),
the response accuracy when the negative stimulus was shown on the right
was significantly different from chance level (t(12) = -2.67, p = 0.022).
This was not the case when the negative stimulus was presented on the left
(t(12) = 0.308, p = 0.764). No significant navigation bias for either left or
right movements was found (see Figure 5.5D) (t(12) = -1.733, p = 0.111).
100 % of the subjects were right-handed.

There was no significant statistical difference in response time de-
pending on whether the response was correct (the spider was avoided) or
not (t(1920) = 450494.0, p = 0.210), with a mean response time of 0.560
seconds (± 0.181 SD) when the trial was correct versus 0.567 seconds
(± 0.210 SD) when it was incorrect. Additionally, there was no corre-
lation between average response time and accuracy proportion (r(12) = -
0.957, p = 0.957).

99



Physiological Data

As in Experiment 1, there was a difference in electrodermal response
on stimulus presentation depending on the choice that participants made
later. Considering the sum of SCR-amplitudes of significant SCRs within
the response window (reconvolved from corresponding phasic driver-peaks),
there was a difference in electrodermal response according to the trial out-
come (U(2850) = 921182.5, p < 0.001). There was also a difference in
this when considering the average phasic driver within the response win-
dow (U(2850) = 909068.0, p < 0.001). There was no significant differ-
ence in electrodermal response between the first and last 25 % of trials
(U(1200) = 173614.5, p = 0.142).

There was a significant difference in electrodermal response between
the cognitive workload group and the non-cognitive workload group. Con-
sidering the the average phasic driver within the response window of all
trials, there was a difference both when taking all responses together
(U(1900) = 324205.5, p < 0.001), and when considering separately re-
sponses that ended in a spider attack (U(890) = 68413.0, p < 0.001) and
in a gold ring (U(1010) = 88603.0, p < 0.001).

A significant increase in spectral power was observed within the high
delta band for the negative primes in the fronto-parietal-occipital elec-
trodes when compared to the neutral primes. A decrease in high theta/low
alpha was instead observed in the right occipital regions. Beta/alpha
power ratio in the frontal electrodes appears to be a good predictor of
arousal level induced by subliminal primes.

5.4 Discussion and Conclusion
In this study, we have investigated the behavioral and physiological ef-
fects of the presentation of subliminal emotionally charged stimuli pre-
sented on an ecologically valid navigation task in an immersive virtual-
reality environment. To do this, we carried out two sequential experi-
ments, based on a previous study (Cetnarski et al., 2014), in which par-
ticipants had to navigate through a virtual maze while being exposed to
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subliminal stimuli (a spider image and a neutral shape) on bifurcation
points (forward or downward on Experiment 1 and left or right on Exper-
iment 2). We expected to bias the navigation decisions of the participants
by priming them to avoid certain paths using the subliminal stimuli as
cues, as in the previous study. Although the subliminal priming did not
consistently affect the navigation decisions of the participants in our ex-
periments, we found significant and relevant results in the physiological
responses.

Regarding the behavioral responses of the participants, we observed a
significant bias to move forward in Experiment 1, most likely due to the
navigation paradigm that was used, through head movements, as revealed
from the data. We solved this in Experiment 2 by changing the design of
the virtual environment to a left/right navigation decision selected using
remote controllers. Still, we observed an inconsistent response accuracy
across participants, with the mean not significantly different from chance
level. These results, along with the distribution of response accuracy, lead
us to speculate that the short subliminal stimulus presentation (16 ms)
did not allow for the emotional charge of the images to be consistently
processed.

Even if this is the case, we confirmed that the subliminally presented
stimuli were indeed having an effect, as demonstrated by both EEG and
electrodermal activity results. In both experiments, we observed a sig-
nificantly different response in EDA locked to the subliminal stimulus
presentation regarding the navigational choice that would be performed
by participants moments later.

In conclusion, this project highlights the potential for using electro-
physiological measurements such as EEG in tasks that present naturalis-
tic experimental environments thanks to virtual reality. We have observed
how the subconscious reactions of the participants can be tracked using
EEG, even with extremely short exposure times to the stimuli. An ex-
tended version of the framework for psychophysiological sensing that we
used could be employed in future experiments in order to perform online
analysis of the acquired EEG signal for implicit real-time interaction with
the virtual reality environment.
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Chapter 6

KEYSTROKE DYNAMICS
CORRELATE WITH
AFFECTIVE CONTENT

This chapter is based on:
López-Carral, H., Santos-Pata, D., Zucca, R., and Verschure, P. F.

(2019). How you type is what you type: Keystroke dynamics correlate
with affective content. 2019 8th International Conference on Affective
Computing and Intelligent Interaction, ACII 2019, pages 359–363

Estimating the affective state of a user during a computer task tradi-
tionally relies on either subjective reports or analysis of physiological sig-
nals, facial expressions, and other measures. These methods have known
limitations, can be intrusive and may require specialized equipment. An
alternative would be employing a ubiquitous device of everyday use such
as a standard keyboard. Here we investigate if we can infer the emotional
state of a user by analyzing their typing patterns. To test this hypoth-
esis, we asked 400 participants to caption a set of emotionally charged
images taken from a standard database with known ratings of arousal and
valence. We computed different keystroke pattern dynamics, including
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keystroke duration (dwell time) and latency (flight time). By computing
the mean value of all of these features for each image, we found a statis-
tically significant negative correlation between dwell times and valence,
and between flight times and arousal. These results highlight the potential
of using keystroke dynamics to estimate the affective state of a user in a
non-obtrusive way and without the need for specialized devices.

6.1 Introduction

Estimating the affective state of users while interacting with computers
attracted much interest in recent years due to its potential for enhancing
Human-Computer Interaction (HCI). This has been the focus of the af-
fective computing field for the last few decades, with the expectation of
having an impact in many fields that depend —increasingly so— in HCI,
such as education, robotics, or human health, among others. Furthermore,
progress in affective computing could also help to advance our knowledge
of emotions and human cognition (Picard, 1995).

Typical experimental approaches for inferring affective states include
subjective reports, in which users are repeatedly asked to describe or rate
how they are feeling, or estimates from measures such as physiological
responses, facial expressions or body gestures. Subjective reports are a
traditional tool in a large portion of affective sciences. Multi-item scales
(Watson et al., 1988) or pictorial tools (Bradley and Lang, 1994) can be
easily administered both in paper or digital formats. Meanwhile, estima-
tions from bodily responses or expressions require devices that have to
be either worn by the users or placed close to them. Examples of this
include inferring emotional states by detecting changes in electrodermal
activity (EDA) (Critchley, 2002; Lang et al., 1993) and heart rate variabil-
ity (HRV) (Agrafioti et al., 2012; Selvaraj et al., 2013). Facial expression
analysis typically requires a classification between a set of discrete basic
emotions (Fasel and Luettin, 2003).

These methods, although valid in assessing affective states, present
several issues. Subjective reports interrupt the regular user’s workflow
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and present known limitations in terms of validity and reliability (Stone
et al., 1999; Keefer, 2015). In the case of bodily responses, different de-
vices are required to be working alongside the computer, in many cases in
direct physical contact with the user (e.g., electrodes placed on the skin),
which can be intrusive to the user and expensive due to the economic cost
of these devices.

A way to overcome these problems would be using components that
are already available when interacting with a computer. Devices that do
not require any unusual or particular action from the user, while still able
to provide relevant correlates of internal states. Several studies have pre-
viously attempted to infer specific user’s traits by analyzing the way a
person types on a keyboard. The initial observation of unique typing
rhythms across individuals (Joyce and Gupta, 1990) promoted in the last
three decades great interest in the study of keystroke dynamics, particu-
larly in the field of user authentication (Teh et al., 2013). Several studies
have succeeded in authenticating users with high accuracy based on a va-
riety of classification algorithms (Monrose and Rubin, 1997; Bergadano
et al., 2003), suggesting that the relevant component in typing is not only
the content typed but also how it is typed (Monrose and Rubin, 2000).

More recently, some studies have also provided evidence of the pos-
sibility of using keystroke dynamics to estimate emotional states (Ko-
lakowska, 2013). In a recent field study, typing rhythms were coupled
with periodic self-reports to classify between a series of discrete emo-
tional states (Epp et al., 2011) with high accuracy. In a different study,
keystroke patterns were successfully used to estimate the level of individ-
ual stress (induced by a mental arithmetic test), as self-reported in a pre-
and post-questionnaire, as well as heart rate variability (Gunawardhane
et al., 2013).

To the best of the authors’ knowledge, no previous study has inves-
tigated the possibility of adopting keystroke dynamics to discriminate
the affective features of presented stimuli that participants are describing.
This would imply that the emotional content of these stimuli is actively
affecting the participant’s way of typing in subtle ways that could be de-
tected through the analysis of their typing patterns. In this study, we show
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that this is indeed a possibility. To do this, we asked 400 participants
to caption a set of images rated in terms of continuous values of arousal
and valence, instead of discrete emotions. The arousal and valence di-
mensions of affect follow the circumplex model of affect (Russell, 1980),
which is generally used in experiments related to affect induction and de-
tection (Gunes et al., 2011).

6.2 Methods
We performed an online study where participants (N = 400) were asked
to observe a series of 46 images and to type a description for each one of
them.

6.2.1 Participants
Participants were recruited using the Amazon Mechanical Turk (MTurk)
service. To guarantee high-quality responses, we restricted participation
to volunteers with at least 50 tasks previously completed and an approval
rate of over 90 % and with a proficient level of English. No personal
information from the participants (such as names or IP addresses) was
recorded. As expected from this pool of participants, there was consid-
erable variability in demographic backgrounds, with a mean age of 37.51
(SD = 12.17). 60.4 % of participants were male. 47.11 % reported
spending over 5 hours per day typing on a keyboard, 38.35 % between 3
and 5 hours, and 14.54 % fewer hours.

6.2.2 Experimental Protocol
Before starting the task, a page informed the participants about the exper-
imental protocol and their right to recess at any moment. Subsequently,
they were required to answer a set of questions including demographics
(age, gender, education level, and primary language), keyboard experi-
ence (number of hours per day spent typing) and keyboard layout used.
After this, the main task started.
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The main task consisted of visualizing a sequence of 46 images and
providing a description of each one. In each trial, an image was presented
for 2 seconds, and it was followed by a text field in which the partici-
pants were instructed to type a free description of the image seen using a
minimum of 4 words.

The images were selected from the Open Affective Standardized Im-
age Set (OASIS) (Kurdi et al., 2017), a set of 900 open-access images
available for online use with normative ratings of arousal and valence fol-
lowing Russell’s circumplex model of affect (Russell, 1980). From the
whole set, 46 images were extracted to cover the entire range of arousal
and valence ratings. To select the images, we first binned the dataset into
a 6 by 6 matrix along the two dimensions of valence and arousal (OA-
SIS ratings are expressed using a 7-point Likert scale), and we selected
two images at random from the 23 bins which contained at least 2 im-
ages. Thus, 46 images were finally selected (see Figure 6.1 which were
randomly presented to every participant.

6.2.3 Data Collection and Processing

During the task session, all keyboard events performed on the provided
text field have been logged. Specifically, this includes both key-down (or
key-press) and key-up (or key-release) events (see Figure 6.2). For each
event, three pieces of information were stored: the type of event (key up
or down), the key that was pressed, and the timestamp (in milliseconds).
We also recorded the time in which each image and the text field were
presented to the participants, as well as when they clicked to proceed to
the next image. All these data were collected in a file for each participant
in JSON format. The mean duration of the experiment was 14.52 minutes,
and the mean length of the image descriptions was 5.93 words.

After collection, data were inspected to ensure that there were no in-
stances of image descriptions that were copied and pasted, missing data
due to connectivity issues or other problems that might affect the in-
tegrity of the acquired data. To do this, we reconstructed each final image
descriptions provided by the participants from the individual keystroke
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Figure 6.1: The selection process of the 46 images included in the experi-
mental dataset. Two images were extracted at random from each of the 23
non-empty bins in which the 900 OASIS image set was previously divided
(Kurdi et al., 2017). This selection covers the entire range of arousal and
valence. Dark circles represent the selected images, while semitranspar-
ent ones represent the rest of the images in the original set.

events.
For each image description provided by the participants, we derived

a series of features. Two standard features in keystroke dynamics are the
duration and the latency (Monrose and Rubin, 2000; Bergadano et al.,
2003; Epp et al., 2011). Keystroke duration (also known as dwell time)
represents the time that a single key was pressed in an instance (time since
key-down until key-up). Keystroke latency (or flight time) represents the
elapsed time between two sequential key presses (time since key-up until
next key-down). Additionally, we computed the number of error correc-
tions (presses of the backspace key), the total time to write each descrip-
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Figure 6.2: Visualization of keystrokes during an example image descrip-
tion. An example of the graphical representation of one instance of flight
time and dwell time is provided in the annotations.

tion, the time since the presentation of the text field until the participants
started typing, and the time since the participants finished typing until
they pressed the button to continue. See Table 6.1 for a summary.

For each of the derived features, we computed the Spearman’s rank
correlation coefficient between each feature and the reported arousal and
valence ratings.

6.3 Results

In order to assess how affective properties of perceived content modulate
typing behavior, we tested the interplay between the previously described
features (see Table 6.1) and the affective ratings of the stimuli as provided
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Table 6.1: Features extracted from participant’s behavior while typing

Feature Description
Dwell time Keystroke duration, time a key was pressed
Flight time Keystroke latency, time between two key presses
Backspace count Number of error corrections
Time total Time since text field was available until submission
Time start Time to start typing since text field appears
Time end Time since finishing typing until submission

in the image set.
We first asked how valence affects the typical typing behavior of in-

dividuals. To do so, we extracted each participant average flight times
and grouped participant’s scores per valence binned category. Statisti-
cal testing revealed a significant negative correlation between valence
and typing flight times, with shorter flight times consistently associated
to high valence ratings (Figure 6.3, top-left, Spearman-test r = −1.0,
p < 0.001). A similar analysis was then performed for each partici-
pant average of dwell times and again grouped the individuals’ scores
per valence binned category. Statistical testing revealed a significant in-
terplay between valence and typing dwell times (Figure 6.3, top-middle,
Spearman-test r = −1.0, p < 0.001).

Next, we examined whether the content arousal score would reveal
similar effects in the typing behavior of individuals.

As for arousal analysis, we extracted each participant average flight
times and grouped the individuals’ scores per arousal binned category.
Statistical testing revealed a significant interplay between arousal and
typing flight times (Figure 6.3, bottom-left, Spearman-test r = −1.0,
p < 0.001). Similarly, we analyzed each participant average of dwell
times and the individuals’ scores per arousal binned category. Statistical
testing revealed a significant interplay between arousal and typing dwell
times (Figure 6.3, bottom-middle, Spearman-test r = −1.0, p < 0.001).
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Figure 6.3: Correlation analysis of each of the extracted features with va-
lence and arousal considering bins of these affective ratings. The three
features of interest are shown. We can observe highly significant corre-
lations between both flight times and dwell times with both arousal and
valence. Additionally, there is an highly significant correlation between
the time to start typing since the text field was presented (Times start) and
valence. There is no significant correlation between the start time and
arousal (r = −0.7, p = 0.188). Times are expressed in milliseconds.

So far we have reported how affective features modulate the typing
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behavior of individuals. However, in a natural environment, the valence
rate of a stimulus does affect how quickly humans, and other animals,
react to that same stimulus. To test whether, in a goal-oriented typing
task, the onset of typing could be predicted by the affective content upon
which participants were reporting, we grouped the individuals time to
start typing scores accordingly to the stimuli affective rate. We observed
a significant negative correlation between the onset of typing (initiation
of behavior) and valence rate (Figure 6.3, top-right, Spearman-test r =
−1.0, p < 0.001).

These metrics capture how much individuals modulate their typing
profile based on the perceived and reported content. Next, we asked
whether the content alone could generalize the participants typing behav-
ior. To do so, we extracted the values of each feature individually for each
image calculating the participant’s population mean of the different fea-
tures per image. We found a significant correlation between dwell times
and valence (r = −0.293, p < 0.001479), as well as a highly significant
correlation between flight times and arousal (r = −0.377, p < 0.00109)
(see Figure 6.4). Therefore, suggesting an overall modulating effect be-
tween content and typing behavior.

6.4 Discussion and Conclusion

Being able to reliably estimate the affective state of a user while interact-
ing with a computing device would significantly improve the interaction
process, with machines that can be more reactive and adaptive. Such ca-
pability could be beneficial for diverse fields such as education, human-
robot interaction, digital health, and others (Picard, 1995).

However, typical approaches for inferring these emotional traits rely
on either subjective reports (e.g., (Bradley and Lang, 1994)) or on the
usage of specialized equipment (e.g., (Critchley, 2002)), which can be
intrusive and expensive. Therefore, a way to overcome these issues would
be to use an automatic approach that would take advantage of a device that
users would typically use, without interfering with their behavior.
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Figure 6.4: Correlation analysis of the mean value of the extracted fea-
tures for each image with valence and arousal. Only the two features
of interest are shown. We can observe a significant correlation between
dwell times and valence, and between flight times and arousal. Times are
expressed in milliseconds.

A possibility for this is to use keystroke dynamics computed from the
typing patterns of users on regular keyboards. Such an approach has been
explored mainly in the field of digital authentication (Monrose and Rubin,
2000), and only recently it has been extended to the field of affective
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computing with promising results. However, current research within this
field has relied still on subjective reports to validate the estimations or
classifies emotional states within discrete states (Epp et al., 2011).

In this study, we analyzed the typing patterns of a large sample of
participants that were asked to describe a set of images selected from the
OASIS normative database for affective research (Kurdi et al., 2017).

We processed the recorded data in order to extract a series of keystroke
features, including keystroke latency and duration, and timings, for each
participant and each image. Analyzing the keystroke dynamics of the par-
ticipants, we found highly significant negative correlations of both flight
times and dwell times with both arousal and valence, as well as between
time to start and valence. We then checked for generalization on the con-
tent itself, finding significant negative correlations between dwell times
and valence, and between flight times and arousal.

These results show that keystroke dynamics do indeed correlate with
both arousal and valence. Therefore, it could be possible to infer affective
states from keyboard activity.

Furthermore, we achieved these results by merely exposing partic-
ipants to emotionally charged images (for 2 seconds each) and asking
them to describe them, without using any subjective report, thanks to the
fact that the images were already rated. Each participant rated only 46
images, which shows that not a lot of typing information is required from
an individual user.

Although we have found significant results using a limited amount of
keystroke features, it is possible that we could have obtained relevant re-
sults by using more sophisticated features such as digraphs (combinations
of two letters) or trigraphs (combinations of three letters) (Dowland and
Furnell, 2005; Epp et al., 2011), or by using a simultaneous combination
of multiple features.

Our results highlight the potential for a more in-depth analysis. This
could include sentiment analysis on the descriptions written by the par-
ticipants, in order to test the correlation between those results and both
the affective ratings provided in the image set and the keystroke features
we computed. Furthermore, machine learning techniques could be em-
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ployed to train a model capable of determining the affective state during
the typing of a sentence by using the described keystroke features.

In conclusion, this study reveals the correlation between keystroke
dynamics and affective content by using descriptions of images from a
rated set. This showcases the potential of using keyboard activity in order
to infer affective states, either in addition to other techniques (such as
physiological signals) or as a replacement when they are not possible,
with the benefit of being an unobtrusive and inexpensive method.
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Chapter 7

SUBJECTIVE RATINGS OF
EMOTIVE STIMULI
PREDICT THE IMPACT OF
THE COVID-19 QUARANTINE
ON AFFECTIVE STATES

This chapter is based on:
López-Carral, H., Grechuta, K., and Verschure, P. F. (2020). Subjec-

tive ratings of emotive stimuli predict the impact of the COVID-19 quar-
antine on affective states. PLoS ONE, 15(8 August):1–15

The COVID-19 crisis resulted in a large proportion of the world’s pop-
ulation having to employ social distancing measures and self-quarantine.
Given that limiting social interaction impacts mental health, we assessed
the effects of quarantine on emotive perception as a proxy of affective
states. To this end, we conducted an online experiment whereby 112
participants provided affective ratings for a set of normative images and
reported on their well-being during COVID-19 self-isolation. We found
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that current valence ratings were significantly lower than the original ones
from 2015. This negative shift correlated with key aspects of the personal
situation during the confinement, including working and living status, and
subjective well-being. These findings indicate that quarantine impacts
mood negatively, resulting in a negatively biased perception of emotive
stimuli. Moreover, our online assessment method shows its validity for
large-scale population studies on the impact of COVID-19 related mitiga-
tion methods and well-being.

7.1 Introduction

In December 2019, Chinese health authorities reported a cluster of pneu-
monia cases in the city of Wuhan, in the Hubei province, caused by the
novel coronavirus SARS-CoV-2 (COVID-19) (World Health Organiza-
tion, 2020). By mid-March 2020, a total of 200,000 confirmed cases
(The Center for Systems Science and Engineering, Johns Hopkins, 2020)
had been reported worldwide, showing an exponential increase with the
current number of identified cases exceeding 14 million, whereby Spain,
Italy, and the United Kingdom are the most-affected European nations.

To prevent the spread of COVID-19, public health authorities have
employed mitigation strategies and, in particular, quarantine (Centers for
Disease Control and Prevention, 2017) and isolation, which are currently
practiced across the globe. Mandatory mass quarantine restrictions, which
include social distancing, stay-at-home rules, and limiting work-related
travel outside the home (Rothstein et al., 2003) might impact both physi-
cal and mental health of the affected individuals (Nobles et al., 2020). In-
deed, prolonged widespread lock-down and limiting social contact has re-
sulted in post-traumatic stress disorder, depression, anxiety, mood dysreg-
ulations, and anxiety-induced insomnia during previous periods of quar-
antine (Miles, 2015; Brooks et al., 2020; Hossain et al., 2020). These, in
turn, led to cognitive distortions and maladaptive behaviors, including sui-
cide (Rubin and Wessely, 2020; Barbisch et al., 2015). A growing body of
evidence from COVID-19 demonstrates that the current mass quarantine
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has been producing similar adverse psychological effects, which might
have long-lasting consequences on both individual subjects and society
(Nobles et al., 2020; Holmes et al., 2020; Rajkumar, 2020; Torales et al.,
2020). Moreover, it is unclear for how long and how frequent confine-
ment measures will be put in place in the medium and long-term. Hence,
understanding the specific impact of COVID-19 on mental health and the
development of monitoring and diagnostic tools to identify individuals at
risk are of critical importance.

Disturbances in mental health, including disorders of mood, are com-
monly assessed using explicit questionnaires and interview measures (Clark
and Watson, 1991). Both clinician-rated and self-reported instruments
have been used for decades (Smarr and Keefer, 2011). Some studies,
however, have outlined noteworthy limitations of standard assessments
of depression, such as conceptual and psychometric flaws (Bagby et al.,
2004; Zimmerman et al., 2005; Gibbons et al., 1993; Bech et al., 1984;
Maier et al., 1985). For instance, the Hamilton Depression Rating Scale
(HDRS, (Hamilton, 1960)), which has been considered a gold standard
in clinical practice as well as clinical trials, was widely criticized for its
subjectivity as well as the multidimensional structure, which varies across
studies hence preventing replication across samples as well as poor fac-
torial and content validity (Bagby et al., 2004; Zimmerman et al., 2005;
Gibbons et al., 1993; Bech et al., 1984; Maier et al., 1985; Fried and
Nesse, 2015). Moreover, it is well-established that self-reports in psycho-
logical research can suffer from response bias such as socially desirable
responding or a tendency to provide positive self-descriptions (Paulhus,
2002; Braun et al., 2001; Paulhus, 2017). To counteract possible response
bias and suggestion effects, in the current study, we employed affective
ratings of calibrated emotional stimuli as an implicit measure of men-
tal state building on earlier validation studies of online emotional rating
methods of calibrated emotional stimuli (Betella and Verschure, 2016).

Mood-state-dependent changes in emotional reactivity are reflected in
emotion experience evaluations (Rottenberg et al., 2005). Indeed, there
is converging evidence that ratings of affective stimuli might serve as a
robust, indirect measure of mood. For example, empirical studies show
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reduced subjective and expressive emotional responses to neutral and pos-
itive stimuli in depression, including in major depressive disorder (MDD)
(Sloan et al., 1997, 2002; Dunn et al., 2004; Berenbaum and Oltmanns,
1992). Specifically, the results show significant negative shifts in emo-
tional ratings of valence compared to the healthy controls such that pa-
tients judge the stimuli as substantially less pleasant. Alternatively, Bor-
derline Personality Disorder (BPD) patients show hypersensitivity to emo-
tional stimuli as compared to healthy controls (Bortolla et al., 2019).
These findings support the notion that response to emotive stimuli is be
altered in disorders of mood.

Given the mental health risk of medium to long-term isolation (Brooks
et al., 2020; Hossain et al., 2020; Haney, 2003), it is relevant to develop
methods that can effectively and unobtrusively assess and monitor the im-
pact of the restriction of movement and social distancing on well-being
and mental health. Hence, the goal of this study is to evaluate the effects
of quarantine-induced changes in mood, as measured implicitly through
the subjective ratings of emotional stimuli. We predicted that individuals
in quarantine due to COVID-19 might present changes in their affective
ratings that reflect their subjective experience of isolation. To test this
hypothesis, we conducted an online experiment in which volunteers were
asked to rate the affective content of a subset of standardized visual stim-
uli and report their current personal situation and experience related to the
pandemic. We compared the affective ratings of valence (i.e., indicative
of disturbances in mood) between groups of subjects in the pre-quarantine
“normal” condition and under quarantine.

7.2 Materials and methods

7.2.1 Participants
After providing their consent, one hundred twelve subjects participated
in the study (64.29 % females) with a mean age of 32.38 (SD = 9.04).
The sample size of N= 110 was determined a priori using G*Power soft-
ware version 3.1 (Kiel, Germany) based on α = 0.05, power of 80%
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and medium effect size (0.5). Volunteers accessed the online experiment
using a URL (uniform resource locator) that was shared through social
media and instant messaging platforms by the experimenters. 51.79 %
of the subjects held postgraduate degrees or higher. Subjects originated
from 19 different countries (30.36 % Spanish and 21.43 % Italian), and
they lived in 17 countries (53.57 % in Spain and 16.07 % in Italy). This
sampling approach was chosen to cover a range of countries that were
similarly impacted by self-isolation measures. In particular, for the anal-
yses, we included only those participants who were actively undergoing
quarantine. Thus, all participants were uniform in their cultural traits
(Gupta et al., 2002) and quarantine measures, including social isolation
and distancing, the banning of social events and gatherings, the closure of
schools, offices, and other facilities, and travel restrictions (Conti, 2020;
Shah et al., 2020).

The reported data were collected between the 9th and the 20th of April
2020. The personal data of the subjects were anonymized and kept con-
fidential. All participants were blind to the purpose of the study. Specif-
ically, until the end of the session, subjects did not know the study’s ob-
jective, which could bias their responses. However, they were informed
about it at the end of the trial.

7.2.2 Materials
Affective Slider

We employed the Affective Slider tool (Betella and Verschure, 2016) for
digital assessments of the arousal and pleasure dimensions of the emotive
stimuli. Its design principles follow the circumplex model of emotion
proposed by James Russell (Russell, 1979, 1980). In this bipolar model,
arousal corresponds to the intensity of an affective response (i.e., evoked
level of excitement), while valence represents the positivity or negativity
of the response (i.e., happiness). Consequently, the Affective Slider con-
sists of a pair of slider controls flanked by emoticons that correspond to
the ratings of arousal and valence, respectively. Both sliders are oriented
horizontally and located above each other (Fig 7.1). In this study, Af-
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fective Slider served to allow for continuous subjective assessment of the
presented images, thus counteracting methodological limitations of clas-
sical scales such as the Self-Assessment Manikin (SAM) (Bradley and
Lang, 1994) especially when applied in online assessments (Betella and
Verschure, 2016). During the experiment, the position of the two slid-
ers on the screen (e.g., arousal on top of valence or vice versa) randomly
changed at every trial to prevent the order-effects and automaticity in the
responses.

Figure 7.1: Example of digital assessments of the arousal and pleasure
using the Affective Slider (Betella and Verschure, 2016). On the left,
there is an example image from the OASIS data set (Kurdi et al., 2017).
On the right, there are the ratings. The top slider corresponds to arousal
and the bottom one to valence. This visual order was randomized over
trials.

Experimental stimuli: Open Affective Standardized Image Set (OA-
SIS)

OASIS is a validated open-access data set, which consists of nine hun-
dred images acquired online (Kurdi et al., 2017). Each stimulus includes
normative ratings of both arousal and valence reported on a scale between
1 and 7 by 822 participants. The stimuli depict a variety of themes within
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four categories that include people, animals, scenes, and objects. In con-
trast with the well-known International Affective Picture Set (IAPS) (Lang
et al., 2008), OASIS allows for online use of the data set and provides
more recent ratings. For the purpose of this study, we chose a subset
of 30 images from the categories people and scenes, corresponding to
61.78 % of the entire set. The choice was determined by the content of
the stimuli, which was related to social and outdoor activities. The subset
was selected randomly from the whole set of images to achieve a repre-
sentative sample (see Fig 7.2). The same set of 30 images was presented
to all participants in a randomized order.

Figure 7.2: Distribution of the valence and arousal rating for the 30 im-
ages selected for this study (solid circles) and the OASIS data set of 900
images (semitransparent circles).

COVID-19 questionnaire

To evaluate the current personal and social situation of each participant
and their subjective experience during the COVID-19 global health crisis,
we created a custom questionnaire. The scale was composed of 14 items,
including an optional field to provide personal comments related to the
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quarantine period. The answers to the remaining questions were to be
delivered using either a multiple-choice scale or standard sliders derived
from the Affective Slider. In the case of the latter, subjects rated their
level of agreement on a scale ranging from “not at all” to “very much”.
The questionnaire was administered at the end of the experiment. For the
analysis, we included only the data of those subjects who completed the
questionnaire.

7.2.3 Procedure

The online experiment consisted of four main sections: (a) instructions,
the consent form, disclaimer, as well as the collection of demographic
data (gender, age, education level, country of origin, and country of res-
idence), (b) experimental task, (c) COVID-19 questionnaire, and (d) ex-
planation of the rationale of the study.

During the experimental task, each participant was presented with
a sequence of thirty affective stimuli from the OASIS image set (Kurdi
et al., 2017). Participants provided their ratings using the Affective Slider
located on the right side of the image (Figure 7.1). Each stimulus re-
mained visible until the submission of both ratings, which had no time
limit, as in the experimental tasks of both the tool (Betella and Verschure,
2016) and the data set (Kurdi et al., 2017). Only when both ratings were
provided, subjects could advance to the next image by clicking a separate
button. After that, the next stimulus was immediately displayed together
with the corresponding Affective Slider.

Once participants completed the experimental task, they were required
to complete the COVID-19 questionnaire. Finally, after having submit-
ted the questionnaire, participants were presented with a final page that
included the experimental rationale and the researchers’ contact informa-
tion.
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7.2.4 Data analysis
Tests of normality were performed on the data, and subsequently, T-tests
were used to identify differences between the affective ratings. All com-
parative analyses used two-tailed tests and a standard level of significance
(p < .05). For each comparison, the effect sizes were computed using Co-
hen’s d (Cohen, 1988). A Pearson product-moment correlation coefficient
was computed for the subsequent linear correlation analyses. Fourteen
participants who reported not being in quarantine were excluded from the
analysis.

Finally, we applied machine learning techniques to evaluate the plau-
sibility of predicting participants’ personal situation and reported subjec-
tive state during the quarantine based on their valence ratings provided
during the experiment. To achieve this, we trained a C-Support Vector
Classification (SVC) model. Parameter tuning was performed using a
grid search algorithm. The model was cross-validated to evaluate its per-
formance based on the F-score. The classification was performed using
the Scikit-learn machine learning library (Pedregosa et al., 2011).

7.3 Results
First, we assessed the linear relationship between the affective ratings
of arousal and valence collected in the present experiment and those ac-
quired in the original study (Kurdi et al., 2017). To this end, we computed
the mean rating from all the subjects for each of the experimental stimuli
and extracted the corresponding mean values from the OASIS data set.
The analysis yielded high and significant positive correlation between the
mean scores for both arousal (r(30) = .77, p < .001, see Fig 7.3A) and
valence (r(30) = .88, p < .001, see Fig 7.3B).

Second, to test our hypothesis, we evaluated the existence of possible
shifts in the affective ratings between the present study and the OASIS
for the subsets of neutral and positive stimuli. In the neutral subset, we
included all the images whose mean ratings for valence ranged between
3 and 5 (N = 15), while in the positive one, those whose mean valence
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(a) (b)

Figure 7.3: Linear correlations between the ratings obtained in our study
and those from OASIS. A: Linear correlation between arousal ratings
from OASIS (y-axis) and those acquired in the present study (x-axis).
B: Linear correlation between valence ratings from OASIS (y-axis) and
those acquired in the present study (x-axis). In both graphs, dashed lines
represent the identity lines; ∗ ∗ ∗p < .001

ratings ranged between 5 and 7 (N = 11). For these analyses, we com-
puted the mean rating of both arousal and valence from all subjects for
each chosen subset. For the neutral stimuli, statistical analyses yielded
that, while the mean ratings of arousal for the chosen images did not dif-
fer (t(15) = .61, p = .546), there was a statistically significant negative
shift in the ratings of valence (t(15) = −2.28, p = .030, d = .859, see
Fig 7.4).

Similarly, for the positive stimuli, we found no differences in the mean
ratings of arousal (t(11) = 1.313, p = .203). In line with literature,
however, we found a statistically significant negative shift in the ratings
of valence (t(11) = −2.148, p = .044, d = .974).

Third, we conducted post hoc analyses to assess relationships between
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Figure 7.4: Shift in the affective ratings for neutral and positive images.
The graphs present the comparison between the ratings of arousal (left)
and valence for neutral images (middle) and valence for positive ones
(right) obtained in our study with those from the OASIS. In all graphs,
the blue lines correspond to the mean, while the individual lines show
differences for individual images (N = 15); ∗p < .05

the affective ratings of valence and participants’ situation during the quar-
antine period evaluated through the COVID-19 questionnaire. Specifi-
cally, we investigated if the mean ratings of valence are related to whether
the subjects (a) enjoy working from home, (b) miss the “normal” pre-
quarantine life, and (c) live alone. For these analyses, we computed the
differences in mean ratings from the present study and the OASIS data
set for each participant. The first correlation analysis yielded a signifi-
cant positive linear relationship between the strength of the enjoyment of
working from home and the mean difference in valence ratings (r(98) =
.24, p = .043). In particular, we found that participants who reported
enjoying working from home rated the images more positively than those
who did not (Fig 7.5A). Second, our results revealed a significant negative
correlation between the degree of missing the “normal” pre-quarantine
life and the differences in valence ratings (r(98) = −.22, p = .032).
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Hence, participants who missed more to return to the normal life rated
images more negatively than those who missed it less (Fig 7.5B).

(a) (b)

Figure 7.5: Correlations between the differences in valence ratings per
participant and self-reported situation during the quarantine period. A:
Linear regression between differences in valence ratings and the degree of
enjoyment to work from home. B: Linear regression between differences
in valence ratings and the degree of missing the “normal” pre-quarantine
life. In both graphs, blue lines represent a linear regression fit; ∗p < .05

We also report a difference in the ratings of valence between those
subjects who lived alone and those who lived with their families, part-
ners, or friends (t(98) = −2.42, p = .017, d = .611). Specifically, we
found that participants living alone rated the images significantly more
negatively (Fig 7.6).

Fourth, we analyzed the time that participants took to rate each image.
To do this, we computed the median rating time for each participant. The
D’Agostino-Pearson normality test revealed that the rating times were
not normally distributed (p < 0.001). Hence, similar to other studies
(Whelan, 2008), we applied nonparametric statistics for the subsequent
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Figure 7.6: Differences in valence ratings relative to those of OASIS be-
tween participants who, during the quarantine, lived alone and those who
did not. ∗p < .05

analyses of rating times. We found a significant positive correlation be-
tween ratings times and both arousal (r(98) = .32, p = .001) and valence
(r(98) = 0.25, p = .012).

Finally, we applied machine learning techniques to showcase the po-
tential of automatically detecting users who might be at risk of developing
mood disorders based on their ratings. To achieve this, we trained an SVC
classifier with the valence rating information and the questionnaire’s key
answers. The proposed method was able to classify between those par-
ticipants who lived alone and those who lived with other people with a
mean accuracy of 84 % (SD = 4). Additionally, another SVC classifier
could determine whether participants missed the pre-quarantine life with
an accuracy of 65 % (SD = 4.5).
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7.4 Discussion

In this study, we aimed at assessing the effects of the COVID-19 quar-
antine on the emotional state of the affected individuals. We predicted
that the quarantine restrictions and, in particular, the lock-down might
negatively impact mental health. It has been shown that mood deviations
are reflected in the perception of affective stimuli. Hence, to test our hy-
pothesis, we devised an online study whereby volunteers evaluated the
arousal and valence of a set of standardized stimuli and compared the ac-
quired scores with those from the original data set. We predicted that the
current ratings of valence might be lower than those of OASIS, possibly
due to the recruited participants’ personal and social situation during the
confinement.

Our results revealed that individuals who, during the experiment, were
undergoing the quarantine due to COVID-19 rated neutral stimuli as sig-
nificantly less pleasant when compared to the subjects who evaluated the
same images during a non-quarantine period. We propose that the re-
ported shifts in the valence ratings might be further indicative of a more
general negative affective state caused by the quarantine. Indeed, we find
evidence about negative changes in perception, as measured through self-
reported valence ratings of visual stimuli in people with depression com-
pared to healthy controls (Dunn et al., 2004).

Based on the acquired data, we further observed a significant effect of
some of the critical aspects of our sample’s personal and working situa-
tion during the self-isolation period on the reported ratings. Our results
revealed a positive relationship between how much the subjects enjoyed
working from home during confinement and the affective ratings. On the
one hand, this finding is consistent with the literature, which demonstrates
that unemployed people tend to report higher episodic sadness levels than
employed people (Krueger and Mueller, 2012). On the other hand, this
result might indirectly represent the effect of a decreased in-person social
interaction that many jobs entail, provided that social interaction posi-
tively impacts psychological well-being (Umberson and Karas Montez,
2010).
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The experience of missing regular life before the quarantine also yielded
a significant effect on the negativity of the emotive ratings. We found that
those participants who missed it more also experienced more substantial
negative shifts in the affective assessments of the stimuli than those who
missed it less. As previously demonstrated (Miles, 2015; Brooks et al.,
2020; Hossain et al., 2020), we speculate that this relationship might be
directly indicative of the lowered mood stemming from the negative per-
ception of the current situation and the desire for the social distancing
measures and self-quarantine to terminate. This, in turn, may be related
to an increased need for both social interaction and freedom.

Furthermore, our results revealed that the ratings of valence differed
depending on the participants’ social living situation. Specifically, those
individuals who lived alone provided more negative ratings than those liv-
ing with other people. This might suggest that increased social isolation
and reduced social interaction in individuals who undergo the quarantine
while living alone more negatively impact their perception and, possibly,
mood. Indeed, ample scientific evidence demonstrates that social isola-
tion can result in lowered mood and depression and induce many other ad-
verse effects on health (Hawkley and Capitanio, 2015). These effects can
range from mental disorders such as depression or anxiety (Santini et al.,
2020; Cacioppo et al., 2010, 2006) to cardiovascular diseases (Caspi et al.,
2006; Valtorta et al., 2016). Moreover, loneliness can have detrimental
effects on health through several mechanisms, including health behav-
iors, cardiovascular activation, cortisol levels, and sleep (Cacioppo et al.,
2002). Although social isolation and loneliness are prevalent in a large
proportion of the general population, affecting both younger (Matthews
et al., 2016) and older (Cornwell and Waite, 2009; Shankar et al., 2011)
adults, these conditions can be exacerbated or become even more strict
under exceptional circumstances that force a decrease in social contact.
In the case of the COVID-19 pandemic, several studies also point out a
significant psychological impact, including symptoms that correspond to
those found in social isolation (Wang et al., 2020b,a; Liu et al., 2020).

The above-discussed findings converge to suggest that the mitigation
strategies employed to prevent the spread of the COVID-19 pandemic
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are negatively impacting the emotional state of the affected individuals,
which is reflected by negative shifts in the ratings of the affective stimuli.
Furthermore, this pernicious effect is exacerbated by personal circum-
stances related to working conditions and social isolation, which, in the
long term, might result in an increased prevalence of mental health condi-
tions such as depression or post-traumatic stress disorder (Holt-Lunstad,
2017). Importantly, in the present paradigm, we focused primarily on the
evaluation of neutral and positive stimuli. According to literature (Dunn
et al., 2004), however, one could expect that quarantine-induced disorders
of mood might also result in shifts in the negative stimuli—the hypothesis
we are currently addressing in a follow-up study.

It is worth noting that our data presented variability in the relation-
ships between the mean difference in valence ratings and both the enjoy-
ment of working from home and the feeling of missing life from before
the quarantine. This may be explained by the interaction of additional
factors that were not captured by the present experiment but might have
impacted the participants’ emotional state. For example, personality traits
might play an essential role in the ways individual participants are af-
fected by social isolation and how they cope with it (Taylor et al., 1969;
Kong et al., 2014; Zelenski et al., 2013). Furthermore, the intensity of
the enforced quarantine measures was not the same for all participants,
resulting variation in self-isolation. Future studies should address these
limitations by controlling for additional, possibly confounding factors.
Moreover, the participant sample used in this study comes from a variety
of European countries. This sampling approach was intentionally chosen
to cover a set of regions with comparable cultures as well as quarantine
and self-isolation measures. It is possible, however, that the underlying
diversity of the sample could have introduced heterogeneity in the data,
which could impact the generalizability of our findings. This limitation
shall be addressed in future studies by focusing the collection of data
from a smaller subset of countries to further ensure the commonality of
demographic aspects that could better represent the mental health of the
sampled population.

On the one hand, the outcome of this study highlights the impact of
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the COVID-19-induced quarantine on the affective states, thus emphasiz-
ing the need for continuous monitoring of the psychological health and
well-being of the general population. Since the psychological effects of
isolation might have long-term consequences, the identification of indi-
viduals at risk and carrying out interventions to mitigate the reported neg-
ative impact might be necessary not only during but also post-quarantine.
On the other hand, the hereby proposed method for diagnosing the affec-
tive changes through subjective ratings of emotive stimuli may already
be of use to the healthcare system. Specifically, the current findings, as
well as the reported machine learning techniques, could be translated into
clinical practice by using techniques such as in-person visits and digital
technology in the form of smartphone apps. The former could provide a
unique opportunity of combining multidimensional scales including, for
instance, brain scanning (e.g., functional Magnetic Resonance Imaging)
genomic measurements, observer-rated neurocognitive evaluations (e.g.,
HDRS), patient self-reports (e.g., BDI), medical record reviews, as well
as implicit measures such as the affective evaluations used in our study.
From the academic and medical perspectives, such a compound diagnosis
could contribute to fundamental advances in understanding neuropsycho-
logical conditions. However, there is a need for easy to apply and low-cost
solutions for diagnostics, monitoring, and treatment. Hence, the implicit
assessment validated in our study can allow continuous monitoring of the
effective ratings as the proxy of the affective states allowing for a predic-
tion of the personal situation based on the obtained ratings. Such software
could promote at-home remote diagnostics and monitoring of at-risk pa-
tients continuously, at a low cost, and with a further benefit of prevent-
ing possible response biases (Paulhus, 2002; Braun et al., 2001; Paulhus,
2017). We have successfully deployed such an approach in the domain of
stroke rehabilitation. We have successfully deployed such an approach in
the domain of stroke rehabilitation (Ballester et al., 2015; Grechuta et al.,
2020). To this end, in future studies, we shall more systematically in-
vestigate the specific factors that may influence the participants’ affective
ratings, including personality type, as well as other symptoms that might
indicate abnormal psychological states, such as insomnia. Moreover, we
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will further validate the statistical relationship between the proposed im-
plicit measure of the affective states and standard tools used to evaluate
the mood, such as BDI (Beck et al., 1996) or PHQ-9 (Kroenke et al.,
2001).

The efficient diagnosis, monitoring, and treatment of a neuropsychi-
atric illness are becoming increasingly important because its burden ex-
ceeds that of cardiovascular disease and cancer (Vigo et al., 2016) and it is
estimated that about 25% of individuals will suffer neurological or men-
tal disorders at some point in their lives. However, due to several factors,
including the lack of trained healthcare professionals, pervasive under-
diagnosis, and stigma, only 0.2% will be able to receive the necessary
treatment (Sayers, 2001). Hence, key current challenges include the im-
provement of the efficacy of the diagnosis of psychological disturbances
and overcoming known limitations of current clinical scales (Bagby et al.,
2004; Zimmerman et al., 2005; Gibbons et al., 1993; Bech et al., 1984;
Maier et al., 1985; Fried and Nesse, 2015) together with accurately captur-
ing symptoms and patient specific concerns (Demyttenaere et al., 2020).
To this end, we propose that an optimal evaluation strategy may comprise
explicit, observer-rated and self-reported evaluation tools combined with
implicit physiological and behavioral monitoring using biometric sens-
ing, such as the proposed affective rating methods and associated tools
(Reinertsen and Clifford, 2018).

Importantly, at the current stage, the proposed classification algo-
rithms serve rather as proof of the potential to automatically classify well-
being (Lipton et al., 2014). Future work will address this limitation by
further improving the model. Those improvements will imply additional
training of the classifier and the inclusion of supplementary variables that
might affect participants’ mental state, such as personality traits and bio-
metrics.

Additionally, the present findings support the notion that the results
from online studies carried out during the quarantine period that rely on
the assessment of affective ratings or similar, might be significantly af-
fected. Hence, this impact should be considered in the analyses and the
interpretation of the acquired results.
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Taken together, the present report presents a significant and timely
finding which sheds light on the current quarantine’s impact beyond the
experience of the individuals who undergo it. In line with other stud-
ies (Nobles et al., 2020; Holmes et al., 2020; Rajkumar, 2020; Torales
et al., 2020) our results confirm that individuals undergoing current mass
quarantine can experience adverse psychological effects and be at risk of
anxiety, mood dysregulations, and depression, which, in the long term,
may lead to post-traumatic stress disorder and affect overall well-being
(Miles, 2015; Brooks et al., 2020; Hossain et al., 2020). Indeed, accord-
ing to previous studies, the measures that are commonly undertaken to
mitigate pandemics, including stay-at-home rules and social distancing
may have drastic consequences. For instance, people can experience in-
tense fear and anger leading to severe consequences at cognitive and be-
havioral levels, culminating in civil conflict and legal procedures (Miles,
2015) as well as suicide (Barbisch et al., 2015; Rubin and Wessely, 2020).
In addition, the long-term impact of this change in well-being is currently
not understood and deserves further study. The results presented in this
report highlight the need to explore possible impacts of the COVID-19
pandemic and its effects on psychological well-being and mental health.
To this aim, more studies need to be conducted to systematically investi-
gate the interventions that may be deployed by both the healthcare system
and individuals undergoing quarantine to mitigate the adverse psycholog-
ical effects.
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Chapter 8

IMPLICIT MEASURES
IDENTIFY DIFFERENTIAL
EFFECTS OF THE COVID-19
QUARANTINE ON THE
PSYCHOLOGICAL HEALTH
OF DIVERSE POPULATIONS

This chapter is based on:
López-Carral, H., Grechuta, K., and Verschure, P. F. (2023b). Implicit

measures identify differential effects of COVID-19 on the psychological
health of diverse populations. Manuscript in preparation

The COVID-19 pandemic has had significant adverse impacts on the
psychological well-being of affected populations, including depression,
stress, and post-traumatic stress disorder. This situation highlighted the
need for novel remote assessment tools capitalizing on digital technolo-
gies. Our study aimed to design and validate evidence-based strategies
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to predict psychological states using affective ratings and other implicitly
acquired signals in a remote setting. Our results show the potential for
different implicit interaction features (mouse movements, keystroke dy-
namics, and text sentiment analysis) to be used as indicators of mental
well-being. Additionally, our results reveal the differential effects that the
COVID-19 quarantine in Spring 2020 had on the psychological health of
the general population based on demographic factors such as gender and
age. Our findings suggest that implicit interaction features can be used
to monitor mental health in a scalable and cost-effective manner, with
potential applications in remote mental healthcare.

8.1 Introduction

Since December 2019, the Coronavirus Disease 2019 (COVID-19) caused
by SARS-CoV-2 provoked critical social, economic, and healthcare chal-
lenges (Zhu et al., 2020). With the objective of protecting the general
public’s health, mitigating the transmission and evolution of the virus, and
reducing contagion rates, most countries worldwide enforced strict quar-
antine measures. Critically, growing evidence establishes that pandemic-
induced containment strategies, including the lockdown and social dis-
tancing, as well as stressors such as uncertainty, financial loss, and fear
of infection, have an adverse impact on the psychological well-being of
the affected populations (López-Carral et al., 2020; Miles, 2015; Brooks
et al., 2020; Hossain et al., 2020). Among others, the commonly reported
consequences include eating disturbances, depression, post-traumatic stress
disorder (PTSD), and even suicide affecting adults and children both in
the acute stage and in the long term (Bai et al., 2004; Sprang and Sil-
man, 2013; Barbisch et al., 2015; Rubin and Wessely, 2020; Bo et al.,
2020; Fernández-Aranda et al., 2020). Hence, it is of critical importance
to effectively diagnose the physical and psychological conditions of the
general population with a focus on those at risk, on the one hand, and
monitor already diagnosed patients, on the other. However, the design of
robust and scalable methods for accurate diagnosis and monitoring as well
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as their implementation within different healthcare systems constitutes a
major challenge.

The need to develop alternative remote assessment tools becomes even
more prominent in the light of evidence demonstrating a significant de-
crease in the number of visits to hospitals or other healthcare settings dur-
ing the COVID-19 pandemic (Roca et al., 2013) and the ubiquitous finan-
cial insecurity, including unemployment, that impedes access to health-
care services. Reduced access to different services, in turn, may have
detrimental effects on both physical and mental health, significantly im-
pacting the quality of life of individuals and their families (Kawohl and
Nordt, 2020; Zhao et al., 2020).

In recent years, the usage of digital health applications has shown
promise as a useful tool for addressing some of the existing mental health-
care challenges. For example, smartphone applications are being used
to improve mental well-being by tracking different metrics and enabling
fast interventions by professionals (Woodward et al., 2020; Luxton et al.,
2011). Among these features, we would like to highlight the potential
of affective ratings (López-Carral et al., 2020), keystroke dynamics (Epp
et al., 2011; López-Carral et al., 2019), mouse movements (Lali et al.,
2014; Schaaff et al., 2012), and text sentiment analysis (Nandwani and
Verma, 2021; Mäntylä et al., 2018; Serrano-Guerrero et al., 2015).

To address the ongoing mental health challenge, in this study, we
aimed to design and validate evidence-based strategies to predict psycho-
logical and physical states using implicitly acquired signals in a remote
setting. Our results support our previous findings (López-Carral et al.,
2020) and further show the potential for different implicit interaction fea-
tures (mouse movements, keystroke dynamics, text sentiment analysis)
to be used as an indicator of mental well-being. Moreover, our results
identify the differential effects that the COVID-19 quarantine in Spring
of 2020 had on the psychological health of the general population, based
on demographics factors including gender and age.
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8.2 Methods

8.2.1 Participants

Our study included 300 valid participants who completed the experiment.
The mean age of the participants was 31.39 (SD = 9.33), with 73.67 %
reporting being male. Participants were recruited online using the plat-
form Amazon Mechanical Turk (MTurk), which allowed us to reach a
diverse and representative sample of participants. The demographics of
our sample were similar to those of previous studies using MTurk, which
helps ensure the generalizability of our findings, including our previous
study (López-Carral et al., 2020) and the set of affective images that we
showed to the participants (Kurdi et al., 2017).

8.2.2 Materials

In order to collect affective ratings for the images we presented to the
participants, we used the Affective Slider (AS) (Betella and Verschure,
2016). The Affective Slider is a tool that allows participants to provide
continuous ratings of their emotional responses to stimuli. It is com-
posed of two sliders: one for arousal and one for valence. Both sliders
are flanked by emoticons on either side to represent their extreme values.
For arousal, it goes from sleepy to wide-awake, while for valence it goes
from sad to happy. One slider appears over the other, with the order being
randomized. Both sliders start with the handle in the middle. An example
of its usage in our study is presented in Figure 8.1.

As the experimental stimuli, we used images from the Open Affec-
tive Standardized Image Set (OASIS) (Kurdi et al., 2017). OASIS is a
set of 900 images with normative affective ratings of arousal and valence,
similar to the well-known International Affective Picture System (IAPS)
(Lang et al., 2008) but offering more updated ratings and making the im-
ages available for their usage in online experiments free of copyright. Out
of the total, we selected 46 images covering the whole range of both di-
mensions, by setting 6 bins across each dimension and selecting 2 images
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Figure 8.1: Example of usage of the Affective Slider in our study. The
image pictured is being rated as having low arousal and neutral valence.

from each (see Figure 8.2). The same 46 images were presented to all
participants, in randomized order.

(a)

(b)

Figure 8.2: Images selected from the Open Affective Standardized
Image Set (OASIS). A: Selected images (solid circles) in contrast with
the total set (translucent circles), divided in bins over the total range. B:
Histogram showing the amount of images selected for each bin, separated
by valence and arousal.

141



To assess the potential depression severity of the participants, we used
the Patient Health Questionnaire (PHQ-9) (Kroenke et al., 2001). This
tool is commonly used to evaluate the symptoms of depression in clinical
populations and assess their severity. The PHQ-9 consists of nine ques-
tions that are designed to measure the nine diagnostic criteria for major
depressive disorder according to the DSM-5. By completing the PHQ-9,
participants provided information about their potential depression sever-
ity, which we used to understand how this severity may be related to other
variables, such as a bias in the affective ratings.

To assess the personality traits of the participants, we used a brief
version of the Big Five Personality Inventory (BFI-10) (Rammstedt and
John, 2007). The BFI-10 is a well-validated and widely-used tool for
assessing the five broad dimensions of personality, known as the “Big
Five” factors: openness, conscientiousness, extraversion, agreeableness,
and neuroticism. The BFI-10 consists of 10 items that are designed to
measure each of these five dimensions. It is a shortened version of the
BFI-44, a longer inventory with 44 items (John et al., 1991). We used the
personality information to understand how these traits may be related to
the other metrics collected.

Finally, we used a questionnaire to assess different aspects of the par-
ticipants’ experience during the COVID-19 pandemic. This questionnaire
included a range of questions designed to measure different aspects of par-
ticipants’ experiences, such as the impact of the pandemic on their daily
lives, their mental health, and their experiences with remote work or edu-
cation. Additionally, we asked participants to describe what was the best
and the worst thing that had happened to them during the quarantine pe-
riod. We used this questionnaire as a way to understand how the pandemic
may have influenced participants’ emotional responses to the images used
in the study, and to provide context for our findings. The questionnaire
was completed after the other measures in the study, and participants were
asked to provide their responses based on their experiences during the
pandemic. Overall, the questionnaire provided valuable insights into par-
ticipants’ experiences during this unprecedented time. Importantly, par-
ticipants also reported whether they were undergoing quarantine. As we
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wanted to focus on the impact of lockdown, we excluded from the main
analyses 65 participants who reported not doing quarantine.

8.2.3 Procedure

Each participant began the study by opening the experimental website,
which greeted them with a short explanation of the purpose of the study
(blinding them to the actual purpose and relationship with the pandemic),
instructions on how to proceed, and a brief questionnaire to collect demo-
graphic information. Then, participants were directed to the main task,
which consisted of providing affective ratings using the Affective Slider
for each of the 46 images selected. After completing the main task, the
BFI-10 and the PHQ-9 were presented in a randomized order. Finally,
the COVID-19 questionnaire was presented. Upon completion of the
questionnaire, participants received an extended explanation of the ex-
periment’s rationale and were thanked for their participation.

8.2.4 Implicit Interaction Measures

While participants carried out the main task, providing the affective rat-
ings using the Affective Slider, we tracked the position of their mouse
over time. This allows us to compute the average mouse speed during this
task, which has been suggested to be indicative of affective states (Lali
et al., 2014; Schaaff et al., 2012). Furthermore, when participants were
describing the best and the worst thing that had happened to them during
the quarantine period, we tracked the keystroke dynamics of the text they
typed, logging the timing of each key press and release. This allowed
us to compute two relevant features from the keystroke dynamics: dwell
times, defined as the time between pressing and releasing a key; and flight
times, defined as the time between two successive key presses (Monrose
and Rubin, 2000; Bergadano et al., 2003; Epp et al., 2011). Previous re-
sults show a negative correlation between dwell times and valence, as well
as between flight times and arousal (López-Carral et al., 2019).

143



8.3 Results
We started the analysis by verifying that the affective ratings provided
by the participants were aligned with those provided in the OASIS’ nor-
mative ratings. To do this, we computed correlation analyses between
the mean scores in both OASIS and our study and found significant re-
sults for both arousal (r(46) = 0.93, p < 0.001, Figure 8.3a) and valence
(r(46) = 0.94, p < 0.001, Figure 8.3b).

(a) (b)

Figure 8.3: Linear correlations between the ratings obtained in our
study and those from OASIS. A: Linear correlation between arousal
ratings from OASIS (y-axis) and those acquired in the present study (x-
axis). B: Linear correlation between valence ratings from OASIS (y-axis)
and those acquired in the present study (x-axis). In both graphs, dashed
lines represent the identity lines; ∗ ∗ ∗p < .001

Next, we analyzed the shift in mean ratings, comparing the affective
ratings obtained in our study versus those in OASIS, for images with neu-
tral valence (between 3 and 5, on a 1 to 7 scale). Although we found a
trend towards higher arousal in our experiment, it was not statistically sig-
nificant (U(17) = 185.0, p = 0.168, Figure 8.4a and 8.4b). However, we
found a significant shift towards lower valence ratings in our experiment
(U(17) = 85.0, p = 0.042, Figure 8.4c and 8.4d).
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(a) (b) (c) (d)

Figure 8.4: Shift in the affective ratings for neutral images. The graphs
present the comparison between the ratings of arousal (A, B) and valence
(C, D) for neutral images obtained in our study with those from the OA-
SIS. In A and C, the thicker blue lines correspond to the mean, while
the individual lines show differences for individual images (N = 17);
∗p < .05

Next, we analyzed the speed of mouse movements when providing the
affective ratings using the Affective Slider, per image. We found a signifi-
cant correlation between the mouse speed (measured in pixels per second)
and the mean valence rating provided (r(46) = −0.69, p < 0.001, Figure
8.5). We did not find such a correlation with the mean arousal ratings
(r(46) = −0.14, p = 0.352).

We then looked at the text typed by the participants describing the
best and the worst things that happened to them during the then-ongoing
COVID-19 quarantine period. Conducting a text sentiment analysis, we
found a significantly lower mean valence when describing the worst thing
in comparison to the best thing (U(235) = 15013.0, p < 0.001, Figure
8.6b), as expected. Additionally, we also found a significantly higher
mean arousal when describing the worst thing in comparison to the best
thing (U(235) = 17224.5, p < 0.001, Figure 8.6a). Additionally, fo-
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Figure 8.5: Correlation between mouse speed and mean valence rat-
ing for each image. ∗ ∗ ∗p < .001

cusing on participants with a PHQ-9 above 15 points (moderately severe
depression), we found a negative correlation between the maximum text
arousal and the PHQ-9 score when describing the best thing that happened
to them (r(32) = −0.44, p = 0.018). Similarly, we found a negative cor-
relation between the minimum text valence and the PHQ-9 score when
describing the worst thing that happened to them (r(32) = −0.35, p =
0.030). Next, analyzing the keystroke dynamics, we found a signifi-
cant difference in the dwell times between both text pieces (U(228) =
11090.5, p = 0.049, Figure 8.6c).

Looking at the differential features between demographic factors, we
found significant effects regarding gender. Female participants had more
severe depression scores than males (U(232) = 4439.5, p = 0.020).
Moreover, female participants also provided affective ratings with lower
valence (U(232) = 4056.0, p = 0.001), although not lower arousal (U(232) =
5469.0, p = 0.840). Regarding text sentiment analysis, a lower median
arousal was found for female participants when describing the best thing
that had happened to them during that period (U(204) = 3335.5, p =
0.032), although this was not the case for median valence (U(204) =
3578.0, p = 0.133).

Finally, looking at age differences, we also found significant differ-
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(a) (b)
(c)

Figure 8.6: Analysis of the text typed by the participants describing
the best and the worst things that happened to them during the then-
ongoing COVID-19 quarantine period. A: Difference in mean arousal
ratings between the texts describing the best and the worst thing that had
happened to the participants. B: Difference in mean valence ratings be-
tween the texts describing the best and the worst thing that had happened
to the participants. C: Difference in mean dwell times between the texts
describing the best and the worst thing that had happened to the partici-
pants. ∗p < .05, ∗ ∗ ∗p < .001

ences regarding the age of the participants. In particular, we found a
negative correlation between age and both arousal (r(235) = −0.15, p =
0.020) and valence (r(235) = −0.13, p = 0.04).

8.4 Discussion
The COVID-19 pandemic has had significant adverse impacts on the psy-
chological well-being of affected populations, including depression and
post-traumatic stress disorder. Our study aimed to design and validate
evidence-based strategies to predict psychological and physical states us-
ing implicitly acquired signals in a remote setting. The results of our
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study support our previous findings (López-Carral et al., 2020) and fur-
ther demonstrate the potential for different implicit interaction features
(mouse movements, keystroke dynamics, and text sentiment analysis) to
be used as indicators of mental well-being. Additionally, our results show
the differential effects that the COVID-19 quarantine in Spring 2020 had
on the psychological health of the general population based on demo-
graphic factors such as gender and age.

First, we showed a significant shift in affective ratings of images from
the Open Affective Standardized Image Set (OASIS) (Kurdi et al., 2017),
when comparing the data we collected during the quarantine with the nor-
mative ratings from OASIS, collected before under normal conditions. In
particular, there was a shift towards negativity in valence ratings of neutral
images. This supports our previous results (López-Carral et al., 2020), as-
sociating a negative mental state with a negative assessment of emotional
stimuli.

Next, we demonstrated the potential for different implicit features to
reveal valuable insights of affective states. We showed that mouse speeds
were negatively correlated with the mean valence ratings. From this, we
can interpret that participants behaved faster to provide the ratings for
more unpleasant images, possibly to stop visualizing that image and ad-
vance to the next one quickly. These results show promise, although a
specific study focusing on mouse dynamics and controlling other factors
would be needed.

Regarding text provided by the participants, we showed that we can
infer emotional information using two different methods. Not only by
looking at the content typed, i.e., text sentiment analysis, but also at how
is it typed, i.e., keystroke dynamics. We found one feature of keystroke
dynamics, dwell times, that was differentiated depending on whether the
participants were describing something positive or negative. This is aligned
with previous results that correlate dwell times with valence (López-Carral
et al., 2019).

Finally, we inspected how the lockdown situation had affected differ-
ent population groups differently. We found that female participants not
only had higher severity of depression, according to their PHQ-9 score,
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but also that they rated images as less arousing and more negative than
male participants. This goes in line with existing studies that point to-
wards a more significant impact of the pandemic on the mental health of
women (Dal Santo et al., 2022). Regarding age, we also found a differ-
ence regarding how the images were rated. Overall, older participants
also rated images as less arousing and more negative than younger par-
ticipants. This also supports evidence that the pandemic affected older
citizens more strongly, both physically and mentally, with poorer mental
health (Wilson et al., 2021; Banerjee, 2020).

Overall, our results from this study not only offer insights into the
specific psychological impact of the COVID-19 lockdown of the Spring
of 2020, both generally and for specific populations, but it also proposes
an array of new digital-first methods to measure and monitor mental well-
being.

Digital-health solutions have been demonstrated to have the poten-
tial to effectively address current challenges faced by the healthcare sys-
tem and preserve access to essential medical services (Fagherazzi et al.,
2020; Sust et al., 2020). Such tools may be implemented to complement
the standard practice with the advantage of providing continuous moni-
toring tailored to individual users and their needs. Our findings suggest
that implicit interaction features can be used effectively to predict mental
well-being in a remote setting, providing a valuable tool for assessing and
monitoring mental health during the COVID-19 pandemic. However, fur-
ther research is needed to fully understand the implications of our findings
and to develop more robust and scalable methods for accurately diagnos-
ing and monitoring mental health in a remote setting.
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Chapter 9

BINARY AFFECTIVE
RATINGS THROUGH
SWIPING

This chapter is based on:
López-Carral, H. and Verschure, P. F. (2023). Binary affective ratings

through swiping. Manuscript in preparation

The circumplex model of emotion, which decomposes affect into arousal
and valence, is widely employed in different scientific fields studying
emotion. In order to assess these, different tools exist, such as the picto-
rial Self-Assessment Manikin or the digital Affective Slider. While these
methods work well to obtain precise ratings, they are not intuitive to all
participants and require understanding the concepts of arousal and va-
lence to provide separate appraisals of both. In order to overcome these
limitations, here, we are presenting a novel method of obtaining binary
affective ratings through swiping using a mobile app, called the affec-
tive swiping app (ASA). We validated our approach in an online study
with 303 participants in which we asked participants to swipe right or
left to indicate whether they liked or disliked a series of images from
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a standardized set that includes normative affective ratings. Our results
show a robust correlation between the like percentage for each image and
their normative valence rating on a continuous scale. Furthermore, we
found that implicit measures like response times and the swipe velocity
applied diverged correlated with absolute valence polarity, diverging from
the neutral value of valence. Overall, our results demonstrate that ASA
provides for a rapid and intuitive method of rating stimuli could provide
rich and reliable affective ratings, making it suitable for different types of
studies and applications, including mental well-being monitoring.

9.1 Introduction

Emotions have been a topic of study in psychology for decades, with mul-
tiple theories and models having been proposed over the years. One of the
most widely used models of affect is the circumplex model proposed by
James A. Russell in 1980, which establishes affect as comprising two sep-
arate but interrelated two dimensions: arousal and pleasure (also referred
to as valence) (Russell, 1980). In its original form, these two dimensions
are assumed to be orthogonal, with different emotions being defined in
the combination of their relative valence and arousal bipolar weight. For
example, “happy” would correspond to relatively high arousal and plea-
sure, while “relaxed” would correspond to similarly high pleasure but low
arousal. On the opposite end of the pleasure scale, “angry” is placed as
high arousal but low pleasure, and “depressed” with low arousal and low
pleasure.

The bipolar valence and arousal model has been widely employed,
beyond psychology and into neuroscience (Posner et al., 2005). Yet, in
recent years, different studies have investigated the relation between va-
lence and arousal, questioning their independence (Kuppens et al., 2013).
While different types of relations have been proposed, a recent review
concluded there is a weak but consistent V -shaped relation of arousal as
a function of valence with a large variation at the individual level that can
module their relation (Kuppens et al., 2013). Indeed, a recent study mea-
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sured brain activity using functional magnetic resonance imaging (fMRI)
suggested that arousal is not separable from valence and instead might be
representative of the intensity of valence (Haj-Ali et al., 2020). Databases
of images with ratings for affect, such as the International Affective Pic-
ture System (IAPS) (Lang et al., 1993, 2008) or the more recent Open
Affective Standardized Image Set (OASIS) (Kurdi et al., 2017) have also
found this relationship, in which the highest arousal ratings are found
at the positive and negative extremes of the pleasure dimension. Recent
studies working with this model have resorted to asking study partici-
pants to rate only one or the other to avoid contamination between the
two dimensions (Kurdi et al., 2017). Hence, the assumed orthogonality
and independence of the arousal and valence dimensions of the classic
bipolar model of affect is rather an hypothesis that is not fully empirically
established.

A popular tool for the self-report of affect is the Self-Assessment
Manikin (SAM), proposed in 1994 as a method to report pleasure, arousal,
and dominance (Bradley and Lang, 1994). SAM is a non-verbal, pictorial
tool that uses 5 drawings per dimension to represent different values on
a discrete scale. Pleasure is represented with a character ranging from
a frowning face to a smiling one, while arousal has a character with a
pattern resembling an increasingly large explosion at its center, and domi-
nance is depicted by a character that incrementally increases in size. SAM
was designed for pencil-and-paper responses, with a computer version
also created. In order to overcome some of SAM’s limitations (includ-
ing discrete ratings, potentially confusing graphical depictions, and non-
digital-first nature), the Affective Slider (AS) was introduced in 2016 as
a digital tool to report arousal and pleasure on a continuous scale (Betella
and Verschure, 2016). The AS was proposed as a potential replacement
for the SAM, providing equivalent ratings while also simplifying the rat-
ing process and making it easily reproducible on new digital devices. It
consists of two separate sliders with emoticons on each side of both: un-
happy/happy faces for pleasure, and sleepy/wide-awake faces for arousal.
It was shown that AS provides values which are consistent with SAM and
since its introduction it has gained wide following.
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While the AS succeeds in enabling relatively simple and precise af-
fective ratings on digital devices, its usage still requires the conceptual
understanding of both arousal and pleasure by the users. To attempt to
ensure that understanding, experiments using the AS might rely on tex-
tual or oral explanations of both dimensions as part of the experimental
design. This puts an additional burden on participants to understand these
concepts and then, for each stimulus, briefly reflect on them to provide
two separate ratings, introducing a potential for cognitive biases in the
ratings provided. In addition, such an explanatory phase adds further
complexity to experimental protocols. Hence, the question is whether
new approaches can be leveraged to overcome these limitations of the AS
and its underlying circumplex model off affect.

In recent years, with the increasing popularization of digital media,
portable devices, and touchscreens, a rating method has become increas-
ingly widespread for a variety of uses cases: swiping. In the popular on-
line dating app Tinder, users swipe right or left to indicate whether they
like or dislike (respectively) other users that are presented as potential
dating candidates. Other apps also adopted this rating method, including
non-romantic dating, job finding, music discovery, and clothing (Kerck-
hove and Pandelaere, 2018; David and Cambre, 2016). This raises the
question whether this simple method of expressing binary preference can
be leveraged for a more effective assessment of affective stimuli and, with
it, the mental sate of the users.

To provide fast and intuitive affective ratings, we are presenting a
novel method of binary ratings through swiping, designed for mobile
touch-screen devices. Here, we describe an online study using this method-
ology and its associated affective swiping app (ASA) to provide like-
dislike ratings of images from a standardized affective stimuli set. Our
results show that by aggregating the intrinsically binary ratings, we can
obtain affective information in a continuous range approximating the rat-
ings provided using a more elaborate and continuous scale, such as the
AS. Furthermore, implicit measures related to the swiping interaction
(timing and velocity) are also indicative of the normative affective polar-
ity. Given these results, we propose the ASA method as an alternative for
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rapid, mobile-first approaches to obtaining affective ratings in which sim-
plicity, speed, and portability are the priorities. This could be of particu-
lar relevance to studies harnessing the benefits of smartphones for health
(mHealth) and mental well-being (Luxton et al., 2011), facilitating quick
and frequent affective assessments. Indeed, previous results suggest that
affective ratings might be an indicator of disrupted mental health (López-
Carral et al., 2020).

9.2 Methodology

We collected data from a total of 303 participants that successfully com-
pleted the experiment online. We recruited participants on Amazon’s Me-
chanical Turk (Amazon, US) platform. They received 1 USD for their
participation. 57.76 % of participants were male, with a mean age of
36.22 (SD = 10.21). 79.21 % of them were from the United States, with
the rest being from 9 other countries.

After opening the website for the experiment using the address pro-
vided, participants were greeted with a page that described the task and
provided instructions. Here, participants were also asked to report their
gender, age, countries of citizenship and residence, and level of education.
Participants were asked to complete the experiment using only a smart-
phone and a technical assessment was in place to ensure participants did
not use other devices. 70.63 % of participants used an Android phone,
with the remaining 29.37 % using an iPhone.

After providing their consent for participating, the main task started.
The task consisted of providing binary affective ratings by swiping im-
ages right (like) or left (dislike) (see Figure 9.1). A total of 100 images
were consecutively presented, in a randomized order. Participants were
instructed to not think about their decision for long and instead respond
immediately. In addition to the image assessment trials, participants were
also presented with 20 control trials that explicitly asked them to swipe in
a particular direction. The first 10 were preseted immediately before the
image trials, while the remaining were randomly interspersed during the
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rest of the task, rendering a total of 120 trials.

Figure 9.1: Affective swiping app (ASA) and the method applied to rate
the images. Participants were presented with images individually in a
virtual stack of cards and were asked to swipe them right if they liked
them or swipe them left if they disliked them. As the participants swiped
right or left, the image card got a green or red overlay, respectively, and
the next image could be seen behind. The images shown belong to OASIS
(Kurdi et al., 2017).

The images used were from the Open Affective Standardized Image
Set (OASIS) (Kurdi et al., 2017), which provides a collection of images
with normative ratings for arousal and valence on a scale from 1 to 7.
This set is similar to the well-known International Affective Picture Sys-
tem (IAPS) (Lang et al., 2008), but features more recent images and rat-
ings and can be freely used online without copyright restrictions. Out
of the 900 images in OASIS, we chose a subset of 100 images by bin-
ning the set into 6 by 6 equal bins along both dimensions (arousal and
valence, see Figure 9.2a) and randomly selecting images based on the va-
lence dimension, with 60 % being neutral (valence between 3 and 5) and
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the remaining either negative (valence between 1 and 3) or positive (va-
lence between 5 and 7) (see Figure 9.2b). This ensured a balanced subset
between both halves of the valence dimension, with an emphasis on neu-
tral images. The resulting subset of images, like the full OASIS (Kurdi
et al., 2017), shows a V-shape relation between arousal and valence (see
Figure 9.2c, valence lower than 4: r(50) = −0.44, p = 0.001, valence
higher than 4: r(50) = 0.53, p < 0.001). This is representative of the
potential underlying relationship between both dimensions, as mentioned
earlier.

(a) (b) (c)

Figure 9.2: Subset of images selected from OASIS (Kurdi et al., 2017).
(a) The distribution of 100 images used in our study (solid circles) from
the full set of 900 (semitransparent circles) in the valence and arousal
space. (b) Histogram of selected images across the valence and arousal
dimensions. The sampling was performed based on the valence ratings.
(c) Relation between arousal and valence in the subset of selected images,
showing a replication of the overall asymmetric V-shape structure found
in OASIS, i.e., a negative correlation for above-average valence scores
and a positive correlation for below-average scores.

For each swiping interaction, we computed the median response time,
measured as the total time elapsed in each trial (from the image presenta-
tion until the completion of the response, when the finger is released from
the screen), and the median swiping speed during the touch gesture, mea-
sured as the movement speed of the touch gesture in pixels per second.
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After the main task was completed, participants were also asked to
answer a brief depression questionnaire, PHQ-9 (Kroenke et al., 2001),
in order to assess the potential severity of depression across the sample.
After this was completed, participants were thanked for their participation
and debriefed with an explanation of the experimental rationale, conclud-
ing the experiment.

9.3 Results

First, we analyzed the responses that were provided by the participants
by swiping the images. In particular, we computed the percentage of left
versus right responses for each image. We found a very strong correlation
between the valence ratings reported in OASIS and the percentage of like
responses (r(100) = 0.90, p < 0.001) (see Figure 9.3a). This correlation
was high with a random subset of participants, and rapidly increased fur-
ther as more participants were included in the analysis (see Figure 9.3b).
A k-nearest neighbors model could predict the swipe response based on
valence with a 74 % accuracy for the full set of images, 88 % accuracy for
positive images (valence over 5) and 85 % accuracy for negative images
(valence under 3).

We analyzed the implicit metrics against the absolute polarity of va-
lence, i.e., the difference from the central value (4, in the original scale
from 1 to 7). We found a significant negative correlation between the ab-
solute polarity of valence and response time (r(100) = −0.46, p < 0.001,
Figure 9.4b), with a positive correlation for negative valence (r(50) =
0.41, p = 0.003) and a negative correlation for positive valence (r(50) =
−0.51, p < 0.001) (see Figure 9.4a). Therefore, participants took more
time to respond to more neutral images, while they responded quicker
to more extreme values of valence. The average response time over-
all was 0.85 seconds (SD = 0.13). Furthermore, we found a similar
effect on the swipe velocity applied to the image cards, with a signifi-
cant correlation between this metric and the absolute polarity of valence
(r(100) = 0.33, p < 0.001, Figure 9.4d), once again with varying strength
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(a) (b)

Figure 9.3: [Relationship between the percentage of like choices and con-
tinuous valence. (a) Correlation between the like percentage per image
and the valence ratings from OASIS. (b) Increase in correlation between
like percentage and valence as a function of the number of observations.

for the negative side of valence (r(50) = −0.54, p < 0.001) and the posi-
tive one (r(50) = 0.23, p = 0.104).

(a) (b) (c) (d)

Figure 9.4: Implicit measures correlate with absolute valence polarity. (a)
Split correlation between the median response times per image and their
valence rating reported in OASIS. (b) Correlation between the median re-
sponse times per image and their valence difference from neutral (central
value of 4 in the scale). (c) Split correlation between the median swipe
velocity applied per image and their valence rating reported in OASIS.
(d) Correlation between the median swipe velocity applied per image and
their valence difference from neutral (central value of 4 in the scale).
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No significant correlations were found between the previous features
and the arousal ratings provided by OASIS. Additionally, no significance
correlation was found between these features and the PHQ-9 scores of the
participants.

9.4 Discussion

The circumplex model of emotion, which decomposes affect into the or-
thogonal dimensions of arousal and valence, is widely used across differ-
ent scientific domains (Kuppens et al., 2017). Although this model posits
arousal and pleasure as two separate, orthogonal dimensions, more recent
research has identified a clear relationship between them, with arousal
being maximum at the extreme values of pleasure (Kuppens et al., 2013).

The assumption behind the circumplex model of bipolar structure of
emotion has also influenced the tools used to assess affective state. Among
the different tools for the self-report of affect that exist, one of the most
popular is the Self-Assessment Manikin (SAM), dating from 1994 (Bradley
and Lang, 1994). A more digital-focused tool was proposed in 2016,
the Affective Slider (AS), consisting of two continuous and independent
scales for pleasure and arousal (Betella and Verschure, 2016).

As an alternative to existing methods and their potential drawbacks,
we have proposed a new method for intuitive and fast affective ratings
of images through single binary swiping interactions: the affective swipe
app (ASA). In this method, participants swipe right to indicate they like
the stimulus and left to indicate they dislike it. Our results show that
by using implicit interaction data and the proportion of positive versus
negative responses, accurate affective information can be collected. In
particular, we found that the mean like percentage for each image us-
ing this method correlates strongly with the valence ratings provided on
a continuous scale on the standardized set of images that we employed,
derived from OASIS (Kurdi et al., 2017). Furthermore, the median re-
sponse time per image was indicative of the absolute valence polarity of
the stimulus. We also observed that participants rated images with ex-
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treme valence quickly, while they were slower for images with neutral
valence. This seems to suggest that more effort had to be placed on as-
sessing content that did not elicit a strong averse or pleasant response.
In line with this, the median velocity applied to the image cards to pro-
vide the rating was also indicative of the absolute valence polarity, with
stronger responses to content with more extreme values of valence.

Interestingly, we did not find a significant direct correlation between
our explicit and implicit measures and the arousal ratings reported in OA-
SIS. Yet, our results for the implicit measures follow a relationship with
valence, with V -shape and inverted V -shape trends that are analogous to
the OASIS reference dataset. Similarly to arousal scores of the image
set employed, response times and swipe velocities diverge as valence be-
comes more extreme towards either side. This questions the orthogonal-
ity of arousal and valence originally proposed in the circumplex model,
and supports other studies that have questioned this assumption (Kuppens
et al., 2013; Haj-Ali et al., 2020).

Additionally, a potential artifact of more traditional methods for the
self-assessment of affect is that they might rely on metacognitive pro-
cesses, requiring people to reflect on the affective content of the stimuli
based on the concepts of arousal and valence. In contrast, the method
proposed here is more immediate and thus be biased toward immedi-
ate implicit emotional appraisal. Indeed, a recent study using functional
magnetic resonance imaging (fMRI) found that representing the affective
value of a reward on a continuous scale might invoke separate processes
as opposed to those involved in making a binary decision decision about
whether to choose that reward, involving different areas of the prefrontal
cortex (Grabenhorst et al., 2008).

Our results show that our method for binary affective ratings through
swiping has the potential to be a useful tool in a variety of studies that
rely on emotional self-assessment. The rapid and intuitive nature of this
method makes it especially suitable for mobile-based research in which
participants have to assess images repeatedly and without the need to
understand concepts such as arousal and valence. An example of this
would be a mental health monitoring app, in which the state of the par-
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ticipants would be longitudinally monitored by their affective ratings of
images. In particular, their ratings, especially for neutral stimuli, could
be a reliable indicator of depressive states (Sloan et al., 1997, 2002; Dunn
et al., 2004). Previous research suggests that lower valence ratings of
neutral images could be indicative of worsened mental health (López-
Carral et al., 2020). Although we did not find this relationship between
the ratings obtained here and the PHQ-9 score of the participants, it is
possible that a longitudinal study with repeated participation, other ques-
tionnaires (such as one focused on mood), or a clinical group or partic-
ipants, would provide better indicators of emotional alterations. Future
studies might also consider additional factors, such as the handedness of
the participants (Casasanto, 2009), the swiping direction for approach-
avoidance (Cervera-Torres et al., 2021), or additional implicit factors,
such as keystroke dynamics (López-Carral et al., 2019).
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Part III

Interactive and Adaptive
Systems
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Chapter 10

AN ASSISTIVE SYSTEM FOR
TRANSFERRING DOMAIN
KNOWLEDGE TO NOVICE
USERS

This chapter is based on:
López-Carral, H. and Verschure, P. F. (2022). An Assistive System

for Transferring Domain Knowledge to Novice Officers. European Law
Enforcement Research Bulletin, 22(6)

Instructional strategies in many operative fields have reached a high
level of complexity due to dynamically changing task environments and
the introduction of different technologies to help users in their operational
work. In the last decades, a transition has been observed from dedicated
trainers to the adoption of automated technologies to support the trainees.
Based on a review of state-of-the-art literature and direct feedback from
the final users, we have developed an assistive system to aid in the knowl-
edge transfer from expert to novice users and, consequently, improve the
time necessary to train new practitioners. This system is grounded on the
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most relevant instructional principles derived from cognitive and learning
theories. The result is a system that can dynamically deliver suggestions
based on previous successful actions from other users and the current per-
formance and state of the user. To validate our system, we implemented
a knowledge graph exploration task, in the context of a law enforcement
task. The novel knowledge transfer system is introduced here by present-
ing the results from our literature review, explaining the architecture of
the assistive system, and discussing our observations from the validation
task. With this work, we aim to facilitate the transfer of domain knowl-
edge, which could have a significant impact on the training and education
of new users of data exploration systems.

10.1 Introduction

Instructional strategies in many operative fields have reached a high level
of complexity due to dynamically changing task environments and the
introduction of different technologies to help users in their operational
work. In the last decades, a transition has been observed from dedicated
trainers to the adoption of automated technologies to support the trainees.
This paradigm shift makes transferring precise knowledge to novice users
a challenging problem, which becomes especially relevant when the user
is dealing with large and complex datasets from which to extract relevant
information.

Supportive technologies, such as recommendation systems, have at-
tracted a lot of interest in the last decades, both in industry and academia.
The goal of such systems is to help the users to reduce the burden im-
posed by the high information load that is intrinsic to the exploration of
large and complex datasets by providing valuable suggestions in the form
of specific items or possible actions to choose from. Despite clear tech-
nical advances witnessed in the field in improving the accuracy of the
recommendations, several challenges and open issues remain, especially
regarding the specific role of various human factors.

This study was framed within a project aimed at providing Law En-
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forcement Agencies (LEAs) with a set of automated tools and systems to
boost the investigative work in the fight against illicit trafficking activities.
One of the necessary functionalities identified was the capability to pro-
vide adequate solutions facilitating the transfer of the acquired expertise
among experienced users and, consequently, boosting the take-up time
necessary to train new users. In order to accomplish this task, we decided
to build a novel assistive system, which, combining practical knowledge
from classical recommender systems with theoretical knowledge from
cognitive systems, is able to aid in the transfer of domain knowledge to
novice users.

We will discuss, firstly, the recommender systems in general before
outlining the recommender system for assisting knowledge transfer that
reflects the best practices, approaches, and directions in the respective law
enforcement domain. Our recommender system is conceptually grounded
in a cognitive architecture, learning from interactions to later assist novice
users by suggesting key pieces of information that other users have se-
lected. Then, we describe the case used for validating this system in a
knowledge graph exploration task based on a novel interface for LEAs to
present the collected information in a criminal investigation. Finally, we
will put forward our conclusions and outline possible next steps.

10.1.1 Introduction to recommender systems

Recommender systems have been used extensively in research and in-
dustry since the mid-1990s (Goldberg et al., 1992). The most common
domain for their use is electronic commerce (e-commerce), the enter-
tainment and media industry, and services. Many online businesses em-
ploy dedicated algorithms to provide recommendations to their customers
based on inputs such as their history of items visualized and purchased or
their demographic data. Another popular area in which recommender
systems are used is multimedia applications (Ge and Persia, 2017). For
example, many online music platforms use them to recommend songs or
artists based on what each individual listens to (Song et al., 2012). Simi-
larly, recommendation systems are common in online video platforms to
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provide personalized suggestions for TV shows, movies, and other videos
(Asabere, 2012).

Several types of recommender systems have been proposed that, de-
pending on the techniques employed, can be classified into different cat-
egories (Park et al., 2012; Villegas et al., 2018; Ricci et al., 2011; Ado-
mavicius et al., 2011). In content-based recommendation schemes, the
system learns to propose items similar to those that were preferred in
the past by the same user. In contrast, collaborative filtering approaches
recommend items that other users with similar profiles have preferred in
the past. Knowledge-based systems recommend options based on spe-
cific domain knowledge about how certain features meet users’ needs and
preferences. Finally, hybrid systems are based on the combination of the
techniques mentioned above to improve performance (Burke, 2002).

Despite providing varying degrees of support, overall, recommender
systems are not always tailored to specific user needs and situations. It
has been suggested that adaptive recommender systems should be mod-
eled in terms of situations rather than knowledge structures (Adomavicius
and Tuzhilin, 2005; Richthammer and Pernul, 2020; Adomavicius et al.,
2011). Such a system would be capable of delivering better results to the
user by taking into account contextual factors in the delivery of highly
tailored information. Typically, these contextual factors include location,
time, computing context, the activity of the user, or social relations (Ver-
bert et al., 2012).

However, context can also refer to the motivational, cognitive, and
emotional aspects that are inherent to the interaction between the user and
the system. Most of the research on personalized recommender systems
has been focused mainly on technical issues, neglecting the importance
of the underlying psychological and implicit factors when exploring and
analyzing data (Buder and Schwind, 2012).

Thus, it is now considered relevant that for a recommender system to
be effective, it should merge a variety of techniques and features in order
to offer valuable support and reduce the demands imposed by information
load. In this sense, systems have been developed that incorporate adaptive
content presentation and adaptive navigation support (Brusilovsky, 2007).
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Content adaptation adjusts the presentation of the content to the user’s
goal, knowledge, and other information, which is stored in a model of the
user to balance factors such as cognitive load, arousal, or learning style
(Jin et al., 2017).

10.1.2 Recommender System for Domain Knowledge Trans-
fer

This literature review on knowledge transfer systems reveals a multi-
faceted and active field where a plethora of technological approaches have
been proposed and developed. It also becomes apparent that individual
differences (such as motivational and emotional ones) have not received
proper consideration when defining effective recommender technologies.
This is mainly because of a lack of coherent principles derived from learn-
ing and cognitive sciences to guide the development of such systems.

Instead of working from a pure computer science perspective, the
proposed recommender system will be grounded on cognitive theories,
specifically, the Distribute Adaptive Control (DAC) theory of mind and
brain (Verschure, 2012). This theory will serve a dual role in the theo-
retical framing and the implementation of the core functionalities of the
system.

DAC considers humans themselves as adaptive systems that react and
adapt to the changing demands of the environment by applying self-regulation
strategies in response to intrinsic goals and motivations. The same prin-
ciples play a foundational role in the implementation of more effective
cognitive artificial systems.

Conceptually, this recommender system can be realized as an artificial
agent whose reasoning and memory components need to extract relevant
knowledge from sequences of interactions in a coordinated way. The pro-
posed system thus emerges as the interplay of the Reactive, Adaptive, and
Contextual layers as defined in the DAC architecture (see Figure 10.1).

The recommender system emerges as the interplay between the three
layers, which work at different timescales, with the fastest layer at the
bottom and the slowest one at the top. In this architecture, the layer at the
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Figure 10.1: Abstract conceptualization of the cognitive architecture of
the knowledge transfer system based on the DAC framework.

bottom (Reactive layer) provides the basic form of interaction, taking as
input information from the environment and the user to facilitate the basic
interaction.

Secondly, the Adaptive layer oversees adjusting the information given
to the user, such as suggesting a specific piece of information or directing
attention to a specific subset of information. Finally, the Contextual layer
operates on longer timescales to learn from interactions from all the users,
building profiles and detecting interaction strategies in order to create a
knowledge base on which to optimize its behavior to improve its capa-
bilities in assisting the users. All in all, the system works hierarchically
at different time scales, from the immediately reactive, to the medium to
adapt to each user, to the long one across different interactions.

Next, one of the key aspects of a recommender system like this, which
participates dynamically during an interactive task, is to decide when to
provide a suggestion. There are many criteria that could be employed,
depending on factors such as the specific task that the user is carrying out,
how the interface has been implemented, or the number of user feedback
sources available. Although we could include more complex features re-
lated to the user state (e.g., estimating stress, attention), here we present
the interaction features that we have implemented in the current version
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of the system, to be used in an online task running on a web browser.
One of the interaction criteria is based on time. If the user has spent

more than a specific amount of time without interacting with the system
(by clicking somewhere), a suggestion is provided. This is done to stim-
ulate interaction with the system, which is based on exploration to obtain
information. This time threshold was fixed at 10 seconds.

Another criterion to provide a suggestion is based on the number of
clicks that the user has performed without advancing in the given task. If
the user has clicked a certain number of elements without getting closer
to solving the task, a suggestion is provided with the goal of reorienting
the user toward more relevant information.

If these criteria are not met, no suggestions are provided, as this would
indicate that the user is carrying out the task successfully: with fluid-
ity and accessing information that is relevant to solve the task at hand.
This way, expert users, who already have successful strategies to accom-
plish the task, are not encumbered by unneeded recommendations, while
novice users, who have not yet developed successful strategies, get the
necessary guidance.

Another important aspect of the recommendation system is that not all
the suggestions are equally revealing of the next action to take. Instead,
there are different levels of recommendations, which are adapted dynam-
ically based on the performance of the user. First, the system starts by
providing general recommendations based on the content that just some
users interacted with, but not most of them. As the users keep interact-
ing with the system, if they have already received several suggestions at
the current level, the recommendation level gets upgraded, and, conse-
quently, the system recommends content of increasing popularity among
the previous expert users who successfully solved the task.

To bootstrap the recommender system, some initial interaction data
was needed. To achieve this, a custom synthetic data generator was de-
veloped. For a given task, the algorithm that was developed generates a
random solution resembling one that an expert user would perform. This
synthetic interaction data arrives at a solution by following a series of
steps that are close to the optimal ones, by following some natural strate-
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gies that most users would develop after familiarizing themselves enough
with the system (i.e., becoming expert users).

The algorithm creates this synthetic data by working backward from
the solution of the task (i.e., starting at the end of the interaction). Then,
it generates data corresponding to clicks of random pieces of information
at different levels of separation from the solution. The result is a data file
almost indistinguishable from the one obtained from actual interaction
data.

Finally, the last step in the process is generating the recommendations
from the interaction data collected or generated. To achieve this, a custom
algorithm was implemented. It gathers all the existing interaction data for
a given task and lists all the existing pieces of information. Then, it counts
how many times each piece of information was selected by the users. The
result is a data file that will later be processed by the main application to
create a ranking of possible recommendations based on this information.

10.2 Use Case: Investigation Knowledge Graph
Exploration

As the initial use case of this recommender system, we chose the explo-
ration of different knowledge graphs. These knowledge graphs represent,
conceptually, one investigation. Each knowledge graph is composed of a
number of interconnected nodes. The nodes represent a piece of evidence
that is related to others. This is indicated by lines (edges) connecting the
nodes bidirectionally.

Thus, a knowledge graph here is an abstract graphical representation
of all the information collected in an investigation. This modality of infor-
mation presentation and exploration was designed in collaboration with
Law Enforcement Agencies as part of a bigger system of state-of-the-art
tools to assist officers in their investigative work by exploiting the latest
digital technologies.

In this context, to validate the resulting recommender system that we
implemented, we developed a simplified knowledge graph tool that does
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not use real investigation data, but a gamified and goal-oriented version of
crime investigations. The users are asked to put themselves in the position
of an investigator who must solve a series of investigations using a new
visual interface. For this, they are invited to interact with the knowledge
graphs, interacting with the nodes (again, each representing a piece of ev-
idence) in search of a target node. This target node is the solution for each
of the cases, representing the piece of evidence required to solve the in-
vestigation. Nodes around this target provide hints that allow participants
to find out the solution.

Although this task uses the analogy of solving a case, it is important to
emphasize that this is just the conceptual idea. As explained, the task is a
simplified version, being closer to a game than an actual job of an officer
investigating a real case. The way to solve each of the tasks is based on
solving a series of logic puzzles, as explained below.

Figure 10.1 depicts the user interface that we implemented to present
the task. The knowledge graph itself occupies the central part of the
screen. Users can interact with the graph by clicking on the different
nodes to obtain information about them (name and possible relationship
to the target node). The name of the node also appears when hovering the
mouse cursor over it. It is also possible to move the nodes by clicking and
dragging, which might be helpful to get more clarity on the connection to
other nodes, although this is never required. Users can also displace the
graph by clicking and dragging on an empty space, as well as zooming in
and out by using the controls provided in the top-right corner, although
these actions are not required either. Finally, in the top center, the cate-
gory of the target node is displayed.

We decided to use four different categories of nodes to provide enough
diversity without being too distracting or overloading. These four cate-
gories are: person, vehicle, text, and location. Each category is differ-
entiated from the others by using a different iconic figure and color (see
Figure 10.2 and Figure 10.3).

As mentioned before, the nodes surrounding the target provide rele-
vant information that is needed to the solving the case. Depending on
their closeness and relevance, four levels are established and displayed in
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Figure 10.2: The user interface of the knowledge graph exploration task.
Interaction controls for the displacement and zoom of the graph are lo-
cated in the top right corner (from the bottom up: zoom out, zoom in,
restore view). On the top center, the category of the current target is in-
dicated. The panel on the top left provides information about the node
that is currently selected, which appears with a black outline and black
connections in the graph. This panel also has the button to submit the
solution, corresponding to the node currently selected.

the node information:

• “This [category name] is suspicious”: This appears for the target
node and for all nodes of the same category that are within three
degrees of separation from it.

• “This [category name] is directly related to the target”: This ap-
pears for nodes that are directly related to the target (first-degree
connection), of a different category from it.
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• “This [category name] is indirectly related to the target”: This ap-
pears for nodes that are indirectly related to the target (second-
degree connection, which is, connected through exactly one node
in between), of a different category from it.

• “Unclear”: This appears for all other nodes not covered in the previ-
ous three categories, i.e., all nodes that are too distant and unrelated
from the target.

Using this information provided by the different nodes close to the
target, the solution is implied. In each knowledge graph, there is only
one possible solution, and the information, when enough nodes are ex-
plored, points unambiguously to it. Users must integrate this information
in a logical manner. It is a matter of logically inferring the solution by
integrating some simple relationship data.

The complexity of the task is modulated by the size of the knowledge
graph, determined by the number of nodes and connections. The higher
the number of nodes and connections, the higher the difficulty, as the
visual complexity increases and there are more nodes to explore. We
created three difficulty levels according to this: 50, 100, and 200 nodes
and connections. Two graphs of each difficulty level are presented, in
increasing difficulty, for a total of six cases for each participant.

As indicated, one of the key aspects of this system is the presentation
of suggestions to the users. These suggestions are provided in the form
of recommended nodes based on the actions of other users. When a node
is suggested, it gets selected with a thicker light-blue outline. Its connec-
tions to other nodes also appear in the same color (see Figure 10.3). When
a node is suggested, a panel appears on the bottom of the screen, alerting
users of this fact and thus ensuring that they notice the suggestion. This
message stays on the screen for 3 seconds.

10.3 Discussion and Conclusion
Here, we have presented a novel assistive system capable of learning from
interactions with users in order to provide relevant suggestions to other
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Figure 10.3: Example of a suggested node. It appears with a thicker
light blue outline, as well as its direct connections to other nodes. A
temporary panel appears on the bottom, alerting the user that a node has
been suggested.

users, in the context of investigative work performed by law enforcement
officials, with the aim of facilitating the learning of the use of a new sys-
tem for the exploration of investigation information.

As explained, the assistive system developed, based on principles from
recommender systems and cognitive science, is used in the exploration
of a knowledge graph composed of different nodes and connections rep-
resenting pieces of information collected during an investigation. This
knowledge graph implemented here is analogous to one that could be
used in a real investigation but customized to provide a goal-oriented task
to users: exploring the graph to obtain information necessary to find a
target node.

From a technical standpoint, in order to develop such a system, a mul-
titude of components were implemented, as described, including a gener-
ator of knowledge graphs, the recommender system itself, a generator of
synthetic interaction data used to bootstrap the recommender system, and
a generator of recommendations for a given graph based on interaction
data (either collected from actual users or generated synthetically).

For the experimental validation of this assistive system, two groups
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of participants are proposed: an experimental one, which receives sug-
gestions as needed (based on different criteria), and a control one, which
does not receive any assistance from the system. Thus, the expectation
would be that participants who receive automated recommendations from
the system perform better, in terms of objective metrics (such as perfor-
mance), implicit features (such as mouse movements), and self-reports (in
the questionnaire provided after the main tasks). In addition to an initial
validation with civilian participants, a validation should be carried out in
collaboration with LEAs and, especially, with the end users of the system.

As mentioned earlier, the system presented in this article works as a
web application that runs on a web browser for it to be available online.
Due to this, and as an initial implementation of the assistive system, the
recommendations were triggered based on different interaction features
like the time elapsed, the number of clicks, attempts to solve the task, etc.,
which were the most viable and appropriate sources, while still providing
the necessary information for the knowledge transfer system.

However, more sophisticated methods could be implemented to trig-
ger these recommendations based on the internal states of the users, as
inferred in real-time based on various signals. For example, suggestions
could be provided based on the estimated cognitive load of the user using
pupil dilation signals captured by an eye-tracker, or stress levels could be
estimated from physiological signals such as the variation in heart rate
using the appropriate sensor.

In conclusion, here, we have proposed a novel assistive system for
transferring domain knowledge to novice users, exploiting modern tech-
nologies to facilitate the training of users in the use of new digital tools
to be used in the field in the course of their work. With this work, the
authors would like to highlight how state-of-the-art technologies can be
applied by forward-thinking LEAs, with the aim of improving the train-
ing and education of current and future law enforcement officials in and
for the Digital Age. Furthermore, this work shows of a simple assistive
system that learns from previous successful interactions with users could
be employed to improve the users’ efficacy and efficiency. In Chapter 11,
we will explore a more complex system to achieve this, in another data
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exploration task using a neuroscientific dataset, and also exploiting phys-
iological signals from the users to achieve a better implicit understanding
to deliver timely suggestions.

178



Chapter 11

EXPERIMENTAL
EVALUATION OF AN
IMMERSIVE, INTERACTIVE
AND CONFLUENT SYSTEM

This chapter is based on:
López-Carral, H., Omedas, P., and Verschure, P. F. (2023c). Experi-

mental evaluation of an immersive, interactive and confluent system. In-
ternational Journal of Human-Computer Studies (submitted)

Generating insights from increasingly large and complex datasets is a
challenging task that can be aided by improving the interactions between
the users and the systems. Merging advances in psychology’s understand-
ing of unconscious processes with the technological advances in virtual
reality and sensors engineering, we developed a new ‘sentient’ system.
This ‘Sentient Agent’ allows for augmented interaction with multiple data
sources within an immersive space. By monitoring the users’ physiolog-
ical reactions, it infers their internal states in terms of arousal and cogni-
tive workload and adapts the data presentation according to the perceived
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state. Immersion, explicit and implicit interactions were identified as the
core features of this experience and were evaluated across three differ-
ent studies. First, We found that the wider field of view afforded by a
large immersive display facilitated recognition and recall of the proposed
information and reduced the negative side-effects induced by exploring
large data in a limited visual space. Next, explicit interaction was found
to be crucial for stimulating a sense of presence and enabled participants
to become more involved in their interaction with the content. Finally, the
implicit interventions based on the users’ unconscious reactions to data
helped participants to complete navigational tasks of medium complexity
with significantly higher efficiency and efficacy. Furthermore, these inter-
ventions provided a more engaging and enjoyable experience. Our work
contributes towards the development of a genuinely symbiotic human-
computer interaction, in which an immersive and interactive system has
the capability of detecting user reactions and using them to enhance the
user’s experience and performance.

11.1 Introduction

Over the past decades, the amount of digitally collected and stored data
has dramatically increased, leading to ever-growing datasets in virtually
every field, from science to medicine to financial and business services. In
parallel, making proper sense of such large datasets has become a striking
challenge. The urge to generate insights and value from these volumes
of structured and unstructured data is forcing experts from a multitude
of disciplines to rethink their approaches to ‘big data’. The conventional
method to tackle the current and future ‘data deluge’ is to analyze and find
patterns in complex information using computational techniques from ap-
plied mathematics, such as clustering, classification, association rules,
and sequential patterns (Tsai et al., 2015). Although these approaches are
capable of rapidly processing large amounts of data, addressing the big
data problem as only an automated process cannot solve all dimensions
of the challenge. Human intervention is still required to obtain meaning-
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ful knowledge from data (Mazzocchi, 2015).
A less conventional approach to aid in big-data exploration could be

based on exploiting the potential of the user’s unconscious processes. The
idea behind this would be to bring the human experience to the center of
the interaction process. Going beyond traditional interaction, which relies
only on the user’s explicit input, it is possible to also take into account the
implicit states of the users. While explicit inputs correspond to direct ac-
tions by the users, such as clicking a button, implicit cues relate to their
cognitive or affective conditions. By considering both of these sources
of complementary information, a deeper level of integration between hu-
mans and computers during the interaction process may be achieved. For
example, detecting that the user is overwhelmed by the volume of in-
formation presented, a computer system could autonomously reduce the
complexity of the proposed content to suit the specific user’s needs.

In order to infer internal states of users, a wide variety of techniques
have been introduced which rely on the analysis of physiological responses,
obtained via different sensors. For example, electrodermal activity and
heart-rate variability are well known to correlate with arousal levels (Critch-
ley, 2002; Acharya et al., 2006). Additionally, pupil dilation has been
shown to correlate with both arousal and cognitive workload (Bradley
et al., 2008; Pomplun and Sunkara, 2003). Recent advances in wear-
able technologies permit the interpretation of psychophysiological states
also in the context of virtual and mixed reality interactions (Betella et al.,
2014b).

Here, we introduce an approach based on the combination of virtual
reality technologies, multimodal interaction, and implicit feedback to aid
in the exploration of large datasets. To validate this approach, we used
neuroscientific data as our specific use case. In particular, we developed
a tool for the interactive visualization of the human brain Connectome, a
large-scale dataset that describes the structural connectivity of an individ-
ual brain in the form of a graph.

The final experience, based on the exploration of these neuroscientific
data, was deployed in the eXperience Induction Machine (XIM), an im-
mersive space for mixed and virtual reality interaction equipped with sen-
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sors and effectors (Bernardet et al., 2010). To assist the user by controlling
the interface and guiding the data exploration, we developed an engine in-
tegrated into the XIM: the so-called ‘sentient agent’ (SA) (Omedas et al.,
2014). The SA is an independent component of the architecture, receiv-
ing inputs from the environment and the user (explicit manipulations and
implicit reactions) to build a model of the user, which it then uses to adapt
the interaction (Wagner et al., 2013).

The resulting system was evaluated to assess the extent to which it
supported an enjoyable and effective (efficient, insight generating) explo-
ration of the neuroscience dataset. We identified three core features of
the experience, aimed at optimizing it: immersion, explicit interaction,
and implicit interaction. Across a series of studies, these independent
variables were systematically manipulated to evaluate our approach. Im-
mersion and interactivity were evaluated separately, given that they are
two separate variables that must be investigated independently to gain a
better understanding of their effect on user experience and performance in
virtual environments (McMahan et al., 2006). We hypothesized that ex-
plicit and implicit interactions in a highly immersive environment allow
for a more engaging, enjoyable, and effective learning experience, than
experiencing the same content in a less immersive, passive environment
that does not adapt to the user’s subconscious reactions.

In the first study, the effects of being situated in a highly immersive
environment (a large projector screen) were compared to those of a less
immersive environment (a desktop monitor). In the second study, the ef-
fects of interacting explicitly (with gestures and body movements) with
a virtual representation of a complex dataset were compared to those of
passively watching a pre-recorded, fly-through video of the same dataset.
In the final (third) study, the impact on dataset exploration and experi-
ence of implicit interaction (i.e., exploration supported and adapted in
real-time by the user’s unconscious reactions) was researched. The Gold-
smiths’ Research Ethics Committee approved all the studies included in
this research.
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11.2 Immersion Evaluation

The first dimension of the system that we evaluated was immersion. We
sought to explore the impact of deploying our experience in a highly im-
mersive environment versus a less immersive one. To do this, we com-
pared the impact of two vastly different sizes of displays across a series
of measures, including recall of the presented information.

11.2.1 Background

Different lines of research suggested that immersive virtual environments
can benefit the users, particularly in terms of presence (i.e., the perceptual
illusion that a mediated experience is unmediated (Lombard and Ditton,
1997)) and understanding of the explored content.

Compared to smaller screens, large visual displays create a highly im-
mersive experience, eliciting higher levels of realism and superior quality
of images, both of which are measures of presence (Baños et al., 2004).
Of the many formal features of media, screen size is one of the most sys-
tematically studied (e.g., (Lin et al., 2006)). Screen’s size influences the
way people experience media content, impacting on, for instance, user
arousal and enjoyment, and affords a positive media experience over-
all (Grabe et al., 1999; Lombard and Ditton, 1997). Large projection
screens let users build cognitive maps of virtual environments similarly
as head-mounted displays (HMDs) (Patrick et al., 2000). High levels of
immersion positively affect the task’s performance in relation to spatial
understanding (Bowman and McMahan, 2007). In their study, that used
a visualization system designed for civil engineers, high immersion con-
ditions produced not only faster responses but also responses that were
three to ten times more accurate than in the low immersion conditions.

Similarly, immersive virtual environments have been found to pro-
vide a higher spatial understanding of complex 3D structures, with ex-
perts on underground cave systems answering questions with significantly
improved accuracy and speed, and demonstrating greater comprehension
compared to a non-immersive environment (Schuchardt and Bowman,
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2007). In a different study examining the impact of large high-res displays
on data visualization and task navigation performance, it was observed
that, with finely detailed data, large high-res displays helped participants
find and compare targets faster (up to twice as fast) (Ball and North,
2005). However, higher levels of immersion may not significantly im-
prove performance for activities of a less complex nature, as observed in
other studies which failed to find a clear positive relationship between im-
mersion and performance (e.g., (Narayan et al., 2006; Polys et al., 2007)).
Additionally, although restricting a viewer’s field of view (FOV, which
varies according to the actual size of the screen and how far away from
the screen the viewer is seated) has been shown to affect memory recall
and degrade task performance in real environments (Hagen et al., 1978;
Alfano and Michel, 1990), these results have not been replicated in virtual
environments (Arthur, 1996).

11.2.2 Objective
The degree of immersion can be objectively assessed as a characteristic of
a technology (Slater et al., 1996), and it is defined as the extent to which
the display is more or less extensive. The first study was thus designed
to test whether the degree of immersion may affect the way people ex-
perience visualizations of large datasets. In particular, we hypothesized
that the wider field of view afforded by a large display would facilitate
recall and recognition of information presented and lead to a higher sense
of presence, engagement, and enjoyment, compared to a smaller, less im-
mersive display.

11.2.3 Method
Participants

Forty participants were recruited and paid £10 on completion of the first
study. Participants were mainly students from Goldsmiths, University of
London. Ages ranged from 19 to 40 years, with a mean age of 24 years
(SD = 4.6), 50 % females. The majority of participants were British
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(62 %), rarely used large screens (such as TVs of 50 or more inches,
home projector or cinema) and have no, or very basic, brain anatomy
knowledge. None had color vision deficiency or a history of epilepsy. The
visuospatial short-term working memory of the participants was tested
using an online computerized version of the Corsi Block-Tapping Task
(Milner, 1971). In this version of the task, 9 squares are presented in
the screen and are illuminated in sequences (of increasing length over the
trials) that participants must immediately reproduce by clicking on them
in the exact same order (Kessels et al., 2000). There was no significant
difference in their Corsi scores between participants allocated to the High
and Low Immersion groups, indicating that they were well matched. All
participants signed an informed consent form.

Design

Participants were randomly assigned to one of the following two experi-
mental conditions:

• Low Immersion: participants experienced a fly-through (pre-recorded
video) of a virtual representation of a complex dataset on a desktop
display.

• High Immersion: participants experienced a fly-through (pre-recorded
video) of a virtual representation of a complex dataset on a projec-
tion screen.

A passive viewing condition was used in this first study, displaying
a pre-recorded interactive exploration of the dataset in order to expose
participants to the same content without placing them in the position of
interacting with the content in a non-intuitive way.

A between-subjects design was used because participants completing
one condition would have been exposed to, and would, therefore, have
learned too much about the visualization to be useful in a second condi-
tion.
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Equipment

For the Low Immersion condition, a 20 inches ProLite E2008HDS IIYAMA
desktop monitor was used, with a resolution of 1366×768 (see Figure 11.1,
left). Conversely, in the High Immersion condition, an Optoma GT1080
projector with a short-throw lens and a light output of 1000 ANSI lu-
mens was used. The video, projected on a 270 cm×220 cm screen (ap-
proximately 137 inches), had a resolution of 1920×1080 and a 25,000:1
contrast ratio (see Figure 11.1, right).

Figure 11.1: Setups used in the Immersion Evaluation study. In the Low
Immersion condition (left), users were seated in front of a regular com-
puter monitor, while in the High Immersion condition a projector was
used for increased screen size.

Procedure

Participants were asked to watch a pre-recorded video of a visual 3D
representation of the Connectome dataset for as long as they wished.
When participants wanted to stop the video, they could just let the exper-
imenter know. Although participants were instructed to watch the video
for as long as they liked (i.e., “until their curiosity was satisfied”), a time
limit (of about 12 minutes) was actually in place so that the overall time
spent with a participant (for completion of the consent form, watching the
video, completing questionnaires, and debriefing) did not exceed 50 min-
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utes. This time limit enabled researchers to allocate one-hour time slots
for all participants.

The 12-minute video produced for this experiment provided partici-
pants with a 360-degree panoramic view of the 3D brain visual represen-
tation of the Connectome dataset, representing the structural connectivity
of an individual brain in the form of a graph, rotating in a loop. The
video showed the brain model slowly rotating in a loop, revealing five ar-
eas (i.e., Frontal, Parietal, Temporal, Occipital, and Cingulate). Each of
these areas contained a large number of Region of Interests (or ROIs, i.e.,
units of neuronal groupings), represented as nodes of different colors, and
interconnections between nodes, represented as edges (see Figure 11.2).

Figure 11.2: 3D visual representation of the Connectome dataset used in
the current study. This large-scale dataset describes the structural connec-
tivity of an individual brain in the form of a graph. Different regions of
interest (brain areas) are represented as colored nodes and their intercon-
nections as lines. Participants were asked to watch a video showcasing
the dataset for up to 12 minutes.

A consistent experimental procedure was used in both conditions. Par-
ticipants were seated at a standard distance appropriate to the screen size
provided. For the Low Immersion condition, the monitor was positioned
at a comfortable distance of 90 cm from the participant, giving a viewing
angle of 27.6 degrees. For the High Immersion condition, the distance to
the screen was 230 cm, giving a viewing angle of 66.8 degrees.
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Measures

After the experimental session, participants filled in a short version of the
ITC-Sense of Presence Inventory (SOPI) (Lessiter et al., 2001), which
produces four scores related to a media experience: sense of physical
space (i.e., presence or “being there”); engagement (i.e., psychologically
involved); ecological validity (i.e., lifelike or real); and negative effects
(i.e., adverse physiological reactions such as dizziness or nausea). The
10 items were rated on a 1-5 scale from “strongly disagree” to “strongly
agree”. Additionally, two sub-scales of the Intrinsic Motivation Inven-
tory (IMI) (Ryan, 1982) were used to measure interest/enjoyment and
value/usefulness (14 items). Response options ranged from 1 “not at all
true” to 7 “very true”.

Finally, memory recall and recognition tasks were performed by par-
ticipants, who were asked to recall different node colors and assign them
to the correct areas; recognize areas with the fewest and greatest number
of nodes, and which among three pictures best matched the environment
previously displayed. Additionally, to categorize whether memory was
intentional and incidental, the following question was also posed: “dur-
ing the exploration, did you focus on any of the information below with
the intention of memorizing it? [colors of nodes, association of these col-
ors of nodes with different areas, number of nodes in relation to different
areas, the shape of the Connectome]”. The memory questionnaire was
scored by assigning one point to each correct answer. As such, the scores
ranged from 0 to 15.

Time spent by participants watching the video was recorded during
the experimental session and used as an objective measure of enjoyment
and engagement (Guo et al., 2014; Park et al., 2016; Wu et al., 2018).

11.2.4 Results

A series of independent samples t-tests were performed to test for differ-
ences between the two groups. Participants in the High Immersion con-
dition performed significantly better in the recall and recognition tasks
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(M = 10.05, SD = 2.98) than participants in the Low Immersion con-
dition (M = 8.20, SD = 2.46); t(38) = 2.14, p = 0.039 (see Fig-
ure 11.3(a)). When explored in more detail, analyses on the recall and
recognition results revealed that participants in the High Immersion con-
dition reported higher scores on all memory items. In particular, the fol-
lowing revealed significant differences between the conditions:

• Recalling colors of nodes: participants in the High Immersion con-
dition (M = 6.10, SD = 2.40) performed significantly better than
participants in the Low Immersion condition (M = 4.45, SD =
2.04); t(38) = 2.34, p = 0.025.

• Matching the color of the nodes to the correct areas: participants in
the High Immersion condition (M = 2.1, SD = 1.83) performed
significantly better than participants in the Low Immersion condi-
tion (M = 1.0, SD = 1.16); t(38) = 2.263, p = 0.031.

• Recognizing the shape of the Connectome: a chi-square test of in-
dependence revealed that participants in the High Immersion con-
dition performed significantly better than participants in the Low
Immersion condition; χ2(df = 1) = 4.402, p = 0.036.

An independent samples t-test was also performed to detect mean dif-
ferences between groups on successfully recalled features by incidental
(i.e., recall of information not specifically attended to) and intentional
(i.e., recall of information which participants focused on) memory. How-
ever, no significant differences between the two groups were found on
scores for intentional or incidental memory. Participants in the Low Im-
mersion condition (M = 1.35, SD = 0.58) also reported a significantly
higher level of negative effects than participants in the High Immersion
condition (M = 2.05, SD = 1.36); t(38) = −2.19, p = 0.028 (see Fig-
ure 11.3(b)). No significant differences between the High and Low Im-
mersion conditions were found for spatial presence, engagement, ecolog-
ical validity, enjoyment/interest, value/usefulness, or time spent watching
the video.
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Figure 11.3: Differences between the High and Low Immersion condi-
tions in the Immersion Evaluation. (a) Participants in the High Immer-
sion condition recalled a significantly higher amount of information than
those in the Low Immersion condition. (b) Participants in the High Im-
mersion condition reported a significantly lower amount in the negative
effects part of the SOPI than those in the Low Immersion condition.

11.2.5 Discussion

In the Immersion Evaluation, we wanted to study the effect of two dif-
ferent degrees of immersion during the visualization of large datasets, in
terms of subjective experience and value obtained from the data. We hy-
pothesized that with higher levels of immersion, afforded by a large dis-
play covering wide field of view, participants would have a more fruitful
experience, as measured by a series of tests and questionnaires. Indeed,
we found that participants who watched the video on a large immersive
screen recalled and recognized more features of the Connectome dataset
than those who viewed the data on a small screen. Although the sense
of presence and engagement reported by participants in the High Immer-
sion condition were not significantly higher than those of participants in
the Low Immersion condition, the difference in screen size and view-
ing angle affected the way participants in the two groups experienced the
visualization of a large dataset. The results support the hypothesis that
immersion affects the amount of information stored in the individual’s
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memory. These results are in line with a previous study that reported that
subjects were most effective at forming spatial knowledge of abstract in-
formation when it was presented on a large display in comparison to a
small one (although this effect was also dependent on the higher resolu-
tion of the display) (Ni et al., 2006). Likewise, another study suggested
that an increase in participants’ ability to memorize relates to the richness
and quality of the spatial cues provided by the virtual environment (Ragan
et al., 2010). The latter was also confirmed in a separate study, showing
that the more detailed the task, the higher the level of immersion needed
in order to learn and recall information effectively (Sowndararajan et al.,
2008). The authors concluded that “in the high-immersion condition, the
objects in the environment were spread out spatially [...] and could be
remembered based on their spatial location, while in the low-immersion
condition, all of the objects were ‘squeezed’ into a much smaller physical
space”. Additionally, immersion was found to be negatively correlated
to negative effects. Watching the video on a large screen was found to
reduce side-effects, such as dizziness, disorientation, or tiredness, most
probably induced by exploring large data in a limited visual space.

11.3 Explicit Interaction Evaluation

The second dimension of the system that we evaluated was explicit in-
teraction. We sought to explore the impact of allowing participants to
actively interact with the dataset that was presented versus passively ob-
serving it. Based on the results of the previous evaluation, this was per-
formed using a large projection screen.

11.3.1 Background

A core feature of the developed system considers the delivery of ‘pres-
ence’, not only in terms of letting users to ‘step inside’ large datasets
but also by enabling them to interact with the content intuitively. It has
been shown that, when users test body movements and actions in an inter-
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active environment (e.g., virtual world) and the system reacts following
the users’ expectations (i.e., affordance), the trust in that environment is
reinforced (Lombard and Ditton, 1997). This suggests that, if interac-
tive controls are intuitive enough, users may forget about the ‘controller’,
supporting a transparent way of interaction with the virtual world. Under
these conditions, it is predicted that people are less likely to perceive the
mediated experience as unmediated, i.e., sense of presence (e.g., (Bayliss,
2007; Crick, 2011)). Input devices that enable interaction through ges-
tures and body movements (such as keyboards, joysticks, 3D mice and
motion sensing input devices), give the user ‘perceived control’ of the
displayed environment which may not only enhance the sense of presence
(Hendrix and Barfield, 1996), but may also provide for a more enjoyable
experience (e.g., (Shim et al., 2003)). Collated evidence also suggests that
students learn more effectively when they are able to interact with learn-
ing materials, as the manipulation of data encourages a more active search
for meaning than with direct instruction (Moreno, 2005). The enjoyment
experienced as a result of an interactive exhibit in the Science Museum of
London was, for example, found to translate a learning experience into a
form of play (Haywood and Cairns, 2006).

11.3.2 Objective

In our second study, we aimed to test whether the gesture and body-based
user interaction can affect the way people experience the visualization
of large datasets. In particular, it was hypothesized that interacting with
the Connectome dataset would facilitate better recall and recognition of
the information presented and lead to a higher sense of presence, engage-
ment, and enjoyment, compared to passively watching a pre-recorded,
fly-through video of the same dataset.
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11.3.3 Method
Participants

As with the first study, forty participants were recruited and paid £10 on
completion of the study. Participants were mainly students from Gold-
smiths, University of London. Ages ranged from 19 to 46 years, with a
mean age of 24 years (SD = 7.1), 50 % females. The majority of par-
ticipants were British (55 %), rarely used large screens and have no, or
very basic, brain anatomy knowledge. None of them had color vision de-
ficiency or a history of epilepsy. The groups did not differ significantly
(demographically and with regards to their working memory), indicating
that they were well matched. All participants signed an informed consent
form.

Design

Participants were randomly assigned to one of the following two experi-
mental conditions:

• Explicit Interaction: participants actively interacted using gestures
and body movements with the Connectome dataset displayed on a
large projection screen;

• No Interaction (or yoked condition): each participant in the no in-
teraction group watched a fly-through video from a matched paired
participant in the Explicit Interaction condition. The fly-through
of the Connectome dataset was presented on the large projection
screen. For example, participant A in the No Interaction condi-
tion watched the recorded video of participant A in the Explicit
Interaction condition; participant B in the No Interaction condition
watched a pre-recorded video of participant B in the Explicit Inter-
action condition; and so on.

As in the Immersion Evaluation, a between-subjects design was used
because participants’ learning outcomes in the second condition of a re-
peated measures design would be contaminated by their experience of the
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content in the first condition. Pairing participants in the No Interaction
condition to those in the Explicit Interaction condition was chosen over a
pre-recorded video used in the first experiment in order to expose partici-
pants to exactly the same content.

Equipment

For the Explicit Interaction condition, a Microsoft Kinect 2.0 was used
to recognize participants’ hand gestures and body movements, which al-
lowed them to zoom in and out of the Connectome 3D model, rotate it up
and down, and find more information about its different areas. A screen
capture tool (Bandicam, recording at 60 fps, resolution 1920×1080, XVID
codec, 2.3 Mbps) was used to record the interactive experience. The
same projector used in the Immersion Evaluation (270 cm×220 cm screen,
1920×1080 resolution, 25,000:1 contrast ratio) was used to visualize the
dataset in both conditions.

Procedure

A consistent procedure was used for both experimental conditions. Partic-
ipants were asked to stand at 230 cm from the screen, as per the High Im-
mersion condition in the Immersion Evaluation study. This is the distance
at which the Kinect does not recognize the user in front of the sensor to
be moving. Participants were then taken through a short and straightfor-
ward practice training session, which helped them become familiar with
the gestural control and reduce the novelty effect on performance. Partic-
ipants were asked to interact with a version of the Connectome environ-
ment in which nodes and edges were presented in a random order (i.e.,
neutral content). The experimenters ensured that all participants were
able to complete each action before proceeding to either the ‘interaction’
or ‘fly-through video’ phase that followed. The training session was per-
formed by both groups to control for the effect of interacting with neutral
content before the experiment. Training time was recorded to control for
the possibility of differences in interaction time affecting the results.
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The Connectome dataset explored in the experimental session was the
same used in the Immersion Evaluation. However, rather than watching a
pre-recorded video of the dataset, participants in the Explicit Interaction
condition were asked to interact with the virtual brain and explore all of
its areas for as much time as they like (but limited to about 20 minutes).
When participants wanted to stop the video, they could just let the ex-
perimenter know. Each participant in the No Interaction condition was
paired to and watched the recorded video of a participant in the Explicit
Interaction condition. As with the Explicit interaction condition, no time
limit was imposed, but the total duration of the video was dependent on
the duration of the interaction of paired participants.

Measures

The same measures used in the Immersion Evaluation were used for this
study: a short version of the ITC-SOPI to rate presence, engagement, eco-
logical validity, and negative effects; two subscales of the IMI to measure
interest/enjoyment and value/usefulness; and a recall test to compare the
memory performance between conditions, together with the time spent.

11.3.4 Results

An independent samples t-test was conducted to test whether there were
any significant differences in mean scores for spatial presence between
the two groups. Results revealed that participants in the Explicit Inter-
action condition reported a significantly higher sense of presence (M =
3.62, SD = 0.67) than participants in the No Interaction condition (M =
3.00, SD = 0.76); t(38) = 0.66, p = 0.010 (see Figure 11.4(a)). A
Spearman’s rank-order correlation further revealed a strong, significant
positive correlation between presence and enjoyment r(80) = 0.513, p =
0.0008. A significant difference in enjoyment/interest scores was also
found, t(38) = 0.25, p = 0.020 with participants in the Explicit Inter-
action condition (M = 5.07, SD = 1.28) reporting higher scores than
participants in the No Interaction condition (M = 3.97, SD = 1.57)
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(see Figure 11.4(b)). This was reflected in the time spent (in minutes) by
the two groups in exploring the dataset, with participants in the Explicit
Interaction engaging for a significantly longer time (M = 5.91, SD =
1.80) than those passively watching the video (M = 3.58, SD = 1.83);
t(23) = 3.06, p = 0.005 (see Figure 11.4(c)). Additionally, participants
in the Explicit Interaction condition reported a significantly lower level of
negative effects (M = 1.60, SD = 0.94) than did participants in the No
Interaction condition (M = 2.40, SD = 1.39); t(38) = −2.13, p = 0.040
(see Figure 11.4(a)). No significant differences between the Explicit and
No Interaction conditions were found for performance (measured by the
number of items recalled and recognized), engagement, ecological valid-
ity, or value/usefulness.

Figure 11.4: Differences between the Explicit Interaction and No Inter-
action conditions in the Explicit Interaction Evaluation. (a) Participants
rated a higher spatial presence and fewer negative effects when they were
able to interact with the content in comparison to when they could not.
(b) Participants reported a significantly higher level of Enjoyment/Interest
in the experience in the Explicit Interaction condition. (c) Participants
spent a significantly higher amount of time exploring the dataset when
they were able to interact with it.
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11.3.5 Discussion
In the Explicit Interaction Evaluation, we wanted to assess the effects of
interacting with large datasets using gestures and body movements. We
hypothesized that directly interacting with the visualization would result
in a better experience that leads to better knowledge extraction, compared
with passively watching a pre-recorded video of the same dataset. Re-
sults from this study indicated that participants who interacted with the
Connectome dataset using a large immersive screen did not recall nor
recognize more features of the dataset than those who just watched a fly-
through video. However, explicit interaction elicited a significantly higher
sense of presence and enjoyment, as well as fewer adverse effects. The
results also suggested that as the sense of presence increased, the level
of enjoyment experienced by users increased. Enjoyment was reflected
in the significantly longer time spent by the Explicit Interaction group
in exploring the dataset. Compared to passive viewing in an immersive
environment, gesture-based environment interactions increased both the
sense of ‘being there’ and positive experiences of that environment. Sim-
ilar results were also observed in a study on virtual museum experiences
(Sylaiou et al., 2010). Further, the negative effects reported by partic-
ipants in the No Interaction condition support other findings in the lit-
erature. While investigating motion sickness in virtual environments, it
was found that a lack of control over their movements induced a higher
level of sickness symptoms in the subjects. These results have been ex-
plained in the context of the sensory conflict theory (Reason and Brand,
1975), where the participant is more likely to experience sickness due to
an unexpected conflict occurring between sensory inputs (passive view-
ing) (Sharples et al., 2008).

11.4 Implicit Interaction Evaluation
The final dimension of the system that we evaluated was implicit inter-
action. We sought to explore the impact of receiving assistance from the
system itself based on the internal states of the users, as inferred dynam-
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ically. Expanding on the results of the two previous evaluations, partic-
ipants navigated the system in an immersive environment and actively
interacting with the information presented.

11.4.1 Background

Implicit interaction, which takes into account the user’s unconscious re-
actions in addition to explicit input, encourages a more symbiotic rela-
tionship between humans and computing devices, a synergy that has re-
cently been labelled with the term Human-Computer Confluence (HCC).
As an emerging field of research, HCC applies to the new classes of user
interfaces that “make use of several sensors and are able to adapt their
physical properties to the current situational context of users” (Ferscha,
2013). Within these confluent systems, implicit interaction has become
the invisible interface through which a user can unconsciously influence
the behaviour of the system and what is being presented.

The importance of integrating user psycho-physiological responses
and emotions into the machine environment was first emphasized by Pi-
card in 1995, who proposed that computers that interact naturally and
intelligently with humans need the ability to recognize and express affec-
tion. The author’s idea was that it should be possible to create machines
that relate to, arise from, or deliberately influence emotion or other af-
fective phenomena (Picard, 1995). The author coined the term “affective
computing” to define her idea, which provides a glimpse of how vast this
domain is. The variety of possible roles and functions that affective con-
siderations introduce into the relationship between humans and machines
is extensive. It can range from “recognizing user affect” and “adapting
to the user’s affective state”, to “generating ‘affective’ behaviour by the
machine, modelling user’s affective states, or generating affective states
within an agent’s cognitive architecture” (Hudlicka, 2003). Although ini-
tial efforts were predominantly focused on emotion detection and recog-
nition, recent studies on affective computing have begun to explore how
to exploit emotional information to enhance the user experience by adapt-
ing software in real-time (Aranha et al., 2019). This approach has been
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applied to many different scenarios: e-learning systems, in which stu-
dents may receive personalized support by detecting the learners’ affec-
tive states (Santos, 2016); video games, in which different game’s fea-
tures may adapt based on the emotions of the player (Bontchev, 2016);
social robots to assist people with special needs in more humane ways
(Magnenat-Thalmann and Zhang, 2014).

Research in HCC has also been focused on brain-computer interfaces
(BCIs) (Gaggioli et al., 2016), to allow people with severe motor dis-
abilities to interact with computers through their brain’s activity without
requiring physical action (e.g., selecting a letter from a virtual keyboard
or moving a robotic device). This kind of brain-computer interfaces, con-
sciously controlled by the user, has been defined as ‘active BCI’ (Zander
et al., 2010), to distinguish them from those that consider brain activity
as an additional source of information used to augment and adapt the in-
terface (Girouard et al., 2013). The author referred to this latter type of
BCI as ‘passive’. Passive BCI targets a broader group of users for whom
current active BCIs are impractical because of the amount of attention
and concentration required to the user to interact with the machine ac-
tively (Zander et al., 2010). Passive BCI has been successfully applied
to recognize dominant emotions and automatically classify, or ‘tag’, vi-
sual multimedia content (Yazdani et al., 2009). More recently, studies
on driving assistance applications have also explored the use of passive
BCIs to predict the driver’s steering intentions and subsequently trigger
driver support systems for increasing traffic safety and avoiding fatali-
ties. Similarly, a system has been proposed that identifies high mental
workload in drivers operating under real traffic conditions (Kohlmorgen
et al., 2007). This information is then used in real-time to mitigate the
high mental workload induced by the influx of information generated by
the car’s electronic systems. A different area of research explored the use
of subliminal cueing in virtual environments revealing that non-invasive
wearable sensors designed to support users in complex ‘real world’ activ-
ities through subliminal visual and audio cues are highly effective, with
subliminal cueing significantly improving performance, and overall user
experience (DeVaul et al., 2003).
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Research on affective computing, BCI technology, and, more recently,
on HCC have contributed to elucidate the emerging symbiotic relationship
between humans and machines and to the development of novel adaptive
systems that can perceive, react to, and even affect our mental state in
a meaningful way. Integrating information on cognitive aspects of user
state into computers may lead to more natural interactions with the real
or virtual world.

11.4.2 Objective

In this last, third study, we investigated the benefits of implicit interac-
tion. Experimental conditions with and without implicit interaction were
evaluated and compared using both objective (e.g., accuracy, speed) and
subjective measures. In particular, it was hypothesized that our Sentient
Agent, which monitors the user’s mental state and optimizes the presen-
tation of data to the user’s state (e.g., by increasing or decreasing the
salience and the number of visual information presented to the users de-
pending on their cognitive workload and arousal), would facilitate the
user’s navigation performance and interaction in the virtual environment.

11.4.3 Method

The experimental methodology followed for this study is also reported in
(Cetnarski et al., 2015).

Participants

Fifty-one participants were recruited and paid 10e on completion of
the study. The study was conducted at the Universitat Pompeu Fabra in
Barcelona (Spain), which hosts the eXperience Induction Machine (XIM),
the mixed reality environment used in this project and equipped with sen-
sors monitoring the user’s body movements and psycho-physiological sig-
nals (Bernardet et al., 2010). Ages ranged from 18 to 39 years, with a
mean age of 22 years (SD = 4.3), 45.54 % females. The majority of
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participants were students from UPF, Spanish (78 %), rarely used large
screens and had no, or basic brain anatomy knowledge. None of them
had color vision deficiency or a history of epilepsy. As in the Immer-
sion Evaluation and the Explicit Interaction Evaluation, the groups did
not differ significantly on their visual short term working memory tested
using the Corsi Block-Tapping Task. All participants signed an informed
consent form. All participant forms (consent form, instructions, ques-
tionnaires, and debriefing form) were translated into Spanish by a certi-
fied translator, so that native Spanish speakers could be recruited for this
study.

Design

Participants were randomly assigned to one of the following three exper-
imental conditions:

• Congruent Implicit Interaction: in this condition, the SA monitored
both explicit and implicit signals acquired from the users and op-
timized the data presentation according to feedback from both of
these types of reactions when most needed by users;

• Incongruent Implicit Interaction: the SA monitored both explicit
and implicit signals received from the users and optimized the data
presentation according to feedback from both of these types of re-
actions when least needed by users;

• No Implicit Interaction: this was the Control condition in which the
SA monitored both explicit and implicit signals received from the
users, but only the explicit signals (i.e., hand gestures, body move-
ments) were used to control interactions with the content presented.

‘SA turned on’ is the term hereby used to describe the situation in
which the SA was actively intervening when some criteria relevant to the
implicit state of the participants were met in the Congruent and Incon-
gruent condition. The Incongruent condition was added to test whether
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the SA settings selected for interventions were correct (see section 11.4.3
for more details). This was different from the Control condition (i.e., No
Implicit Interaction), in which the SA was turned off, meaning that the
SA was not actively intervening, although the user states were still being
monitored.

As in the Immersion Evaluation and the Explicit Interaction Evalua-
tion, a between-subjects design was used. A within-subjects variable was
added to this design, which consisted of three levels (i.e., easy, medium,
and hard) of graph complexity. This variable was added to test how dif-
ferent degrees of complexity of the network of nodes and lines presented
to the user may affect performance.

Equipment

A range of custom-made wearable sensors was used to monitor partici-
pants’ (implicit) physiological responses (Wagner et al., 2013): a sensing
glove that monitored skin conductance (Tognetti et al., 2007; Carbonaro
et al., 2012); a chest band that monitored heart rate and respiration (Par-
adiso et al., 2005); and an eye tracker which was used to monitor changes
in pupil size (Lanatà et al., 2011). Sensors were worn by participants
in all conditions to avoid any possible influence of such components on
the experiment results. Participants’ hand gestures and body movements
were captured by Microsoft Kinect 2.0.

Procedure

Participants in all conditions were initially asked to stand straight and still
on a fixed position in the middle of the room (marked with an ‘X’ on the
floor) whilst the experimenter checked that the sensors were working. For
the remainder of the study, they were free to move closer to and farther
away from the screen to zoom in and out, respectively (see Figure 11.5).
Similarly to the Explicit Interaction Evaluation, participants were taken
through a short and simple practice training session, which helped famil-
iarize them with the gestural control.
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Figure 11.5: Conceptual representation of a user interacting in the XIM.
Participants are free to move around the space to explore the dataset in an
embodied manner.

Free exploration of the dataset was considered inadequate for the needs
and goal of the Implicit Interaction Evaluation. In order to systematically
test whether implicit interaction was beneficial, a specific goal was intro-
duced, so that the potential added value of implicit interaction could be
measured in terms of how adequately the SA supported users in achiev-
ing their goal. Therefore, an ‘artificial’ dataset was chosen over the Con-
nectome dataset used in the first two experiments. The artificial dataset
consisted of a network of nodes interconnected by lines. Two of these
nodes were of different colors to represent the starting (yellow) and end-
ing (blue) points. Participants’ objective was to reach the ending node
(or target) following the shortest path. At every step, participants were
presented with three (white) nodes to choose from and had to select the
one that would bring them closer to the target. They had up to 30 seconds
to make a decision and select a node. A timer appeared in the upper left-
hand corner to remind them how much time they had left. A score was
provided at the end of each trial to gamify the experience and keep the
participants engaged: participants got 10 points for each correct node and
lost 20 points for each wrong node. Figure 11.6 shows an example of a
path followed by a participant during a task.

On arrival at the target node, participants were presented with the
same pattern of nodes again, with the same starting and ending point.
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Figure 11.6: Screenshots of starting (yellow) and ending (blue) points in
the ‘hard’ level of graph complexity at the start (left) and at the end (right)
of the task. The number on the top left of both screens is the timer. The
number on the top right of both screens (on the green background) is the
score meter.

Learning from their experience with the first trial, they had a second op-
portunity to reach the target in the fewest steps possible. After completion
of this second trial, a new network of nodes of different difficulty was pre-
sented. Participants were instructed to look for the target node and reach
it, again in the fewest steps possible and, once they completed this, they
then had a second attempt. Finally, the network was changed for the last
time, and participants had to repeat the task for the last two times. Partic-
ipants in the Congruent and Incongruent conditions were instructed that
the system may intervene to aid them in their decision. When this hap-
pens, they will see a dark blue horizontal stripe on the top of the screen.
This instruction was added to make them aware when possible sudden
changes occurred and thus prevent them from stopping the exploration.

The three different networks were presented (i.e., easy, medium, hard)
in a randomized order, and each was presented twice in succession, giv-
ing a total of 6 trials per participant. Each network was composed of a
fixed number of steps ranging from 12 (i.e., the fewest number of possible
nodes selected) to 36 (i.e., the highest number of possible nodes selected).
For the Congruent and Incongruent condition, the SA was ‘turned on’ in
the first trial of each network, and turned off in the second trial. The
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Table 11.1: Experimental design of the Implicit Interaction Evaluation

Network
difficulty

level: Easy

Network
difficulty

level:
Medium

Network
difficulty

level: Hard

1st

trial
2nd

trial
1st

trial
2nd

trial
1st

trial
2nd

trial
Control Condition
SA turned off

SA
off

SA
off

SA
off

SA
off

SA
off

SA
off

Congruent Condi-
tion SA turned on
when most needed
by users

SA
on

SA
off

SA
on

SA
off

SA
on

SA
off

Incongruent Con-
dition SA turned on
when least needed
by users

SA
on

SA
off

SA
on

SA
off

SA
on

SA
off

second trial was used as a direct measure of how SA interventions in the
first trials helped participants performance in the second trial. Participants
wore sensors in all conditions to avoid any bias in the experiment results.
The experimental design for this study is summarized in Table 11.1.

Criteria for Sentient Agent Interventions

In order for the SA to intervene in the Congruent and Incongruent con-
ditions, a set of criteria was defined. The first criterion was based on the
user’s accuracy in node selection: the SA intervened only when a partici-
pant selected a wrong node. This criterion was adopted to avoid countless
SA interventions from occurring unnecessarily. This would have created
a rather confusing experience, as sometimes participants were perform-
ing correctly regardless of SA interventions. SA’s goal was instead to
convey a seamless experience in which participants only received help
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when needed. The intervention was set to last until participants made two
correct choices in a row after a wrong selection.

The second criterion concerned the user’s state analyzed by the SA
once a wrong node was selected. This differed for the Congruent and
Incongruent conditions. For the Congruent condition, the SA intervened
when arousal and/or cognitive workload increased relative to baseline.
Conversely, participants in the Incongruent condition received the SA
support when arousal and/or cognitive workload decreased.

The cognitive workload was estimated from the pupil dilation of the
user, obtained from the wearable eye tracker (Betella et al., 2014a). A
baseline of pupil size was first taken within a time window of five seconds.
A shorter stimuli-related window of two seconds was then compared to
this baseline creating a moving average of pupil size based on both the
long and short time windows. In this way, the system identifies the in-
creases in pupil size resulting from sustained task-related cognitive ac-
tivity enabling a calculation of the ‘cognitive load’. The moving average
method was also used to estimate user’s arousal from the electrodermal
activity (EDA) and the heart-rate variability (HRV). A baseline was estab-
lished through a longer 30 second time window while a shorter window
of 10 seconds was used to gather a measure of arousal. The calculated
changes in the signal feedback from EDA and HRV were combined to
create a weighted average representing the user’s state of arousal.

Types of Sentient Agent Interventions

SA’s interventions were based on the user’s physiological signals indi-
cating their underlying internal states related to cognitive workload and
arousal.

Cognitive workload theory proposes attention as a selective process
that determines what information gains access to conscious awareness
(Lavie et al., 2004). However, during this selection process, most of
the information is filtered out from subjective experience and replaced
by internally generated estimates or expectations. Under increased cog-
nitive workload, such filtering and substitution processes become more
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frequent, which can lead to the omission of relevant information (Math-
ews et al., 2014). A possible countermeasure for such stimuli omission is
to increase the salience of relevant information, thus creating a discrep-
ancy between perceived and expected stimuli. For this reason, cognitive
workload was associated with the level of visual information that partici-
pants were able to process and understand. When a participant’s cognitive
workload increased (for Congruent) or decreased (for Incongruent), the
SA intervened by:

1. decreasing the complexity of the network (e.g., the number of nodes
was reduced to make the network clearer and less complex), and

2. reducing the salience of one of the two incorrect nodes (e.g., mak-
ing the node more transparent and not selectable).

Previous studies have demonstrated that visual motion of a stimulus
affects the user’s internal state, and, in particular, arousal (Detenber et al.,
1998; Simons et al., 2000). In order to maintain a balance in the user’s
arousal levels, one of the possible SA interventions consisted of modulat-
ing the interaction speed. Low arousal levels were counterbalanced with
an increase in speed, while in the presence of high arousal, the SA slowed
down the pace of the interaction. Additionally, acoustic features such as
pitch can convey emotions (Burkhardt and Sendlmeier, 2000). Previous
research has indeed demonstrated that pitch can be effectively used in
the sonification of complex data in a wide range of tasks (Walker, 2002;
Flowers, 2005). For this reason, as an additional intervention to modulate
arousal we employed auditory cues corresponding with different levels of
pitch.

Arousal was used by the SA to assist the user interaction with the
dataset. When arousal increased (for Congruent) or decreased (for Incon-
gruent), the SA intervened by:

1. reducing the speed of the interaction (e.g., making the pointer less
sensitive to user gestures and the embodied navigation slower), and
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2. adjusting the sonification parameters to induce changes in the arousal
and offering a guiding panning cue (e.g., the volume was increased
on either the left or right side depending on where the correct node
was located).

These interventions could occur independently of one another: some-
times participants only received interventions triggered by an increase or
decrease in arousal in either the Congruent or Incongruent conditions,
respectively. At other times participants only received interventions trig-
gered by an increase or decrease in cognitive workload in the Congru-
ent or Incongruent conditions, respectively. When arousal and cognitive
workload were both either increasing or decreasing, all interventions oc-
curred simultaneously. See Figure 11.7 for an overview.

Measures

As with the Immersion Evaluation and the Explicit Interaction Evaluation,
a short version of the ITC-Sense of Presence Inventory and two subscales
of the Intrinsic Motivation Inventory measuring interest/enjoyment and
value/usefulness were used.

The effectiveness of implicit interaction was evaluated using a series
of objective measures, namely: a) the number of steps taken to reach the
target node, b) the time taken to reach the target node, and c) the accuracy
in reaching the target node. Accuracy was calculated as the proportion of
times participants in the Control condition made the right choice divided
by the total number of nodes selected by these participants. The number
of times a correct selection occurred during an SA intervention was then
assessed for the Congruent and Incongruent conditions and divided by
the total number of nodes selected by each of these two groups during SA
interventions. The proportion of times participants made the right choice
in the Control condition was thus compared to the proportion of times
the SA helped participants made the right choice in the Congruent and
Incongruent conditions.

Finally, to test whether SA Congruent interventions during the first
trial helped participants to perform better in the second trial, only those
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Figure 11.7: Overview of the types of SA interventions triggered by dif-
ferent user states: interventions such as changes in network complexity
and node salience occurred with an increase or decrease of cognitive
workload, while changes in interaction speed and sonification occurred
with an increase or decrease in arousal.

nodes that were selected in both first and second tasks by participants
were analyzed. This was obtained by dividing the total number of times a
correct selection occurred in the first trial by the total number of SA inter-
ventions that occurred in the first trial. The result was labelled ‘memory
accuracy’, i.e., the proportion of times that SA interventions in the first
trials helped participants perform better without the SA in the second tri-
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als.

11.4.4 Results
Frequency of Sentient Agent Interventions

For one of the participants, the physiological responses were not recorded
due to a software error, and they were therefore excluded from the anal-
ysis. The remaining 50 participants considered in the analysis completed
six trials each (an initial trial and the second trial of each of the three lev-
els of difficulty), giving a total of 300 trials completed overall. Overall,
the number of SA interventions was equally split between the Congru-
ent and Incongruent conditions (Figure 11.8), with a higher number of
interventions for the medium and the hard difficulties. SA interventions
only occurred in the first trial of each level of difficulty. For this reason,
when comparing the number of SA interventions between the Congruent
and Incongruent conditions, only the first trials were considered in the
analysis.

Figure 11.8: Visualization of the number of times the SA was triggered by
an increase (Congruent) or decrease (Incongruent) in arousal and cogni-
tive load (both variables appear together here) by level of difficulty (easy,
medium and hard).

SA interventions occurred at least once on 57 of the 102 total first
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trials (i.e., 56 %). The SA intervened 231 times overall, with an average
of 2.5 interventions per task, and this frequency was distributed among
the three levels of difficulty. The SA intervened 49 times overall in the
easy level of difficulty, 90 times in the medium and 92 times in the hard.

Objective Measures of Performance

In order to investigate the effects of the SA on participants’ performance,
only the first trials in which participants in the Congruent or Incongruent
condition reached the target by selecting at least one incorrect node were
considered (which meant that the SA intervened at least once). For con-
sistency, any first trial completed without mistakes by participants in the
Control condition was also excluded. As a result, of the 150 total first
trials, 55 were excluded from the analysis.

A series of one-way ANOVAs were performed to examine, for each
individual level of difficulty, potential differences across the three con-
ditions on different objective measures of performance. Outliers were
defined as values over 1.5 times the interquartile range away from the
median. Identified outliers were removed from the data before statistical
analysis of the differences between groups.

ANOVAs were performed to determine whether mean scores of the
number of steps taken (ranging from 12 to 16 nodes) to reach the target
node in the first trials of each level of difficulty were significantly dif-
ferent across the three conditions (i.e., Control, Congruent, Incongruent).
Results from these analyses revealed that there were no significant differ-
ences between groups for the easy and hard levels of difficulty. However,
statistically significant differences were found for the medium level of dif-
ficulty; F (2, 28) = 12.78, p = 0.00. A Bonferroni post-hoc test revealed
that participants in the Congruent condition (M = 12.5, SD = 0.70)
performed significantly better than participants in both Control (M =
14.7, SD = 0.71) and Incongruent (M = 13.7, SD = 1.22) condition.
This suggests that Congruent SA interventions account for a 15 % reduc-
tion in the number of steps taken to reach the target node (i.e., a perfor-
mance benefit) in the medium level of difficulty compared to the Control
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condition, and for a 9 % compared to the Incongruent (see Figure 11.9(a)).

A statistically significant difference was also found in the time (in
seconds) taken to reach the target node in the first trials in the medium
level of difficulty [F (2, 33) = 5.69, p = 0.008]. Because participants
could spend as much time as they wanted on the first node, this time
was excluded by the analysis. A Bonferroni post-hoc test revealed that
participants in the Congruent condition (M = 99, SD = 25.72) per-
formed significantly better than participants in the Incongruent condition
(M = 166, SD = 77.96) with a reduction in time taken of approximately
40 %, but not better than the Control condition (M = 112, SD = 29.98)
(see Figure 11.9(b)). Additionally, statistically significant differences
were found between Incongruent (M = 101, SD = 49.97) and Con-
trol (M = 164, SD = 42.67) conditions in the hard level of difficulty
[F (2, 31) = 4.06, p = 0.027], but not between these conditions and the
Congruent condition (M = 192, SD = 108.12).

A series of one-way ANOVAs were also performed to determine whether
total scores of nodes correctly selected in the first trials were significantly
different across the three conditions (i.e., Control, Congruent, Incongru-
ent). Results from these analyses revealed that there were no significant
differences between groups for easy and hard level of difficulty. How-
ever, statistically significant differences were found for the medium level
of difficulty [F (2, 27) = 4.07, p = 0.028]. A Fisher’s Least Significant
Difference (LSD) post-hoc test revealed that participants in the Congru-
ent condition (M = 0.97, SD = 0.83) performed significantly better than
both participants in the Control (M = 0.80, SD = 0.57) and Incongruent
condition (M = 0.84, SD = 0.19) (see Figure 11.9(c)).

Another hypothesis that was tested was whether SA Congruent inter-
ventions in the first trial helped participants to perform better (i.e., select-
ing the correct node) without the SA in the second trial (based on their
experience with the SA in the first trial), compared to the Incongruent
condition. However, the ANOVA tests showed that these results were not
significant.
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Subjective Measures

A one-way ANOVA test revealed that mean scores for level of psycho-
logical engagement with the content explored were significantly differ-
ent between the three conditions. An LSD test revealed that participants
in the Congruent condition (M = 4.26, SD = 0.37) reported a signif-
icantly higher level of engagement than participants in the Incongruent
(M = 3.70, SD = 0.70) and Control (M = 3.73, SD = 0.70) condi-
tions (see Figure 11.9(d)); F (2, 43) = 3.747, p = 0.032. Additionally,
significant differences were also found between the conditions on eco-
logical validity/naturalness (i.e., congruence with real-world experience)
[F (2, 43) = 3.903, p = 0.028], with participants in the Congruent con-
dition (M = 3.40, SD = 0.69) reporting higher mean scores than par-
ticipants in Control condition (M = 2.62, SD = 0.73), but not than the
Incongruent condition (M = 2.90, SD = 0.87) (see Figure 11.9(d)).

No significant differences among the three conditions were found for
spatial presence, negative effects, enjoyment/interest, or value/usefulness.

11.4.5 Discussion
In the Implicit Interaction Evaluation, we wanted to validate the usage of
a Sentient Agent, which inferred the users’ cognitive states (from physi-
ological signals obtained through sensors worn by the users) and conse-
quently adapted the presentation of a large dataset in order to optimize
the user experience. The last experiment revealed some benefits gained
from a real-time implicit interaction with a complex dataset in an immer-
sive virtual environment. Results indicated that, when performing a task
of medium complexity, participants who received SA interventions when
most needed (i.e., Congruent) performed the task with a fewer number of
errors and in less time than participants who received SA interventions
when least needed (i.e., Incongruent), or those who did not receive any
help from the SA (i.e., Control). Most importantly, 86 % of the time, the
SA helped users in selecting the correct node. Further to this, when look-
ing exclusively at the medium level of network difficulty, the SA helped
users in selecting the correct node 97 % of the times of the Congruent
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condition, compared to 84 % of the Incongruent and 80 % of the Control.
These findings suggest that SA interventions are most effective when they
support tasks of medium complexity and that the fewer or additional in-
terventions at lower or higher levels of complexity, might impair rather
than facilitate performance. Analysis of the comparison between first and
second trials revealed that, regardless of their experience with the SA in
the first trial, relative to participants in the Incongruent condition, Con-
gruent SA interventions did not help participants perform better in the
second trial without the SA support. Future research with more extensive
measures is necessary to determine whether these SA interventions have
an influence on memory retrieval. Additionally, in order to test for an
interaction effect between difficulty level and condition on participants’
performance, we recommend future studies use a larger sample size or
adjust the complexity of the network to make the task more difficult (and
participants more prone to errors) and thus increase the number of SA
interventions.

Interestingly, the efficiency of the SA was also reflected in the sub-
jective responses to the questionnaires administered after the experiment.
Participants who received SA interventions when most needed reported
the activity to be more engaging and perceived the content as more natu-
ral and congruent with a real-world experience (i.e., a sense of realism).
Findings from this study are consistent with similar research on sublim-
inal cueing in virtual environments previously conducted (DeVaul et al.,
2003).

11.5 Conclusions

In recent years, the amount of data collected and stored has highlighted
the need for effective systems that allow for their exploration in meaning-
ful ways to generate insight and value. While computational approaches
to process these large amounts of information are commonplace in many
industries, human intervention is still a necessary constituent in the knowl-
edge extraction process. To aid in this, different aspects of the human-
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computer interaction can be optimized, including the characteristics of
the interface itself and the input methods employed.

Intending to aid in the exploration of such large and complex datasets,
we developed a system that allows for multimodal interaction in an im-
mersive environment, exploiting the users’ implicit feedback (inferring
arousal and cognitive workload). Here, we presented an experimental
evaluation of the system to investigate its potential benefits. To do so,
we performed a series of three studies focused on the three key features
that define our approach to improve data exploration: immersion, explicit
interaction, and implicit interaction.

The results show that the system built here indeed enhances the inter-
action process in several meaningful ways. First, immersion was found
to promote better recall and recognition performance and to reduce side-
effects induced by exploring large data in a limited visual space. In par-
ticular, our results show that more immersive display methods, such as
the use of large projection screens, are advantageous in comparison to
more traditional desktop displays. Next, explicit interaction was found
to be a crucial factor for stimulating a sense of presence, which led par-
ticipants to become more involved in their interaction with the content
explored. Specifically, allowing users to freely and actively interact with
the data presented allowed them to have a more rewarding experience, in
comparison to more passive exposures to the same data. Finally, the im-
plicit interaction provided in real-time by the assistive agent provided for
a more engaging and enjoyable experience, and significantly supported
participants in completing tasks of medium difficulty with efficiency and
efficacy. Particularly, we showed that the exploration procedure can be
enhanced by dynamically providing assistance based on user states esti-
mated from physiological signals.

Altogether, our results suggest that it is possible to substantially im-
prove task performance through the use of automatic and adaptive inter-
ventions cued by the user’s actions and mental states in an immersive
environment. In order to be effective, however, an assistive agent must
intervene at the right time (when most needed by users) and for a reason-
able number of times to convey a seamless experience. The result is one
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of a symbiotic relationship between human and computer, whereby if the
user is finding the experience stressful, the agent may simplify the content
to reduce cognitive workload; conversely, if the user is highly aroused, it
may change the navigation speed and produce different sounds on differ-
ent sides of the environment to provide greater volumes of implicit infor-
mation. Synthetic environments, such as the one developed within this
project, not only allow the possibility of studying automated influences in
more realistic contexts which may be used by intelligent computer sys-
tems to prevent users from becoming overloaded with information but
have also proven to be an excellent and effective tool in enhancing the
user experience.
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Figure 11.9: Differences between the Control, Congruent, and Incongru-
ent conditions in the Implicit Interaction Evaluation. Objective measures
correspond to the medium level of difficulty. (a) Participants took a sig-
nificantly lower amount of steps to reach the target node in the first trial in
the Medium difficulty level when the SA provided them assistance when
most needed (Congruent), in comparison to when no assistance was pro-
vided (Control) or when it was provided when least needed (Incongruent).
(b) Participants spent significantly less time to reach the target node in the
first trial in the Congruent condition than in the Incongruent condition.
(c) Participants in the Congruent condition selected a higher proportion
of correct nodes than those in the Control and Incongruent conditions.
(d) Participants reported higher levels of Engagement and Ecological va-
lidity in the Congruent condition.
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Chapter 12

GENERAL DISCUSSION

Throughout this thesis, we have presented a variety of work conducted
with the overall aim of advancing the development of interactive systems
that are able to interact with users not only based on their conventional ex-
plicit input but also by understanding and modulating implicit cognitive
and affective states: empathic systems. To achieve this, first, we asked
what is needed from a technological standpoint to obtain the necessary
user information. In response to this, we built a flexible sensing archi-
tecture. Next, we asked how we can infer implicit internal states. We
developed this over a wide range of studies, with more specific questions
for each of the methods presented. Finally, we asked how an interac-
tive and adaptive system should be implemented and used. We answered
this by working on two different systems developed to successfully assist
users. In this chapter, we will discuss the insights generated through the
work presented in the previous chapters. To conclude this thesis, we will
provide general conclusions in the following chapter.

We started by presenting the technical architecture required to capture
various user signals, process them, and react to them in Part I. Chapter
2 presented the general architecture, implemented in an immersive envi-
ronment: the distributed sensing architecture (DSA). The DSA follows a
layered, modular, and distributed design, allowing it to be flexibly used
with a wide variety of physiological sensors, adapted to the needs of each
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setting. This architecture has the capability to acquire diverse user sig-
nals and transmit them, handling synchronization to make them available
for online processing to extract features from them and infer higher-level
user states, as well as for the recording of the signals. Then, this infor-
mation can be used by different applications to trigger events, such as
adapting the interface or the content that is presented to users. Thus, the
DSA serves as the basis for an empathic system, which needs to be able
to collect this implicit information and react to it.

Over the next two chapters, we presented two different variations of
this architecture. Chapter 3 presents a use case oriented towards the sim-
ulation of sensory overstimulation in neurodiverse individuals, including
Autism Spectrum Disorder. To do this, we developed an experience based
on virtual reality through a head-mounted display, coupled with a physi-
ological sensor to acquire the electrodermal activity and heart rate (using
PPG) of the users. Here, we presented the specific architecture imple-
mented for this, as a variation of the one presented in Chapter 2. This
serves as a showcase of the flexibility of the architecture, being adaptable
for a virtual reality experience targeting neurodiverse phenomenology.

Next, in Chapter 4, we presented an expanded version of the archi-
tecture for usage in neurorehabilitation after stroke in serious gaming
scenarios: the Socially Cooperative Cognitive Architecture for Rehabil-
itation (SoCCA). The SoCCA extends the DSA by integrating a more
comprehensive user model: the Digital Twin. The SoCCA is designed to
dynamically generate and update this Digital Twin, collecting a series of
metrics, including both state and online variables, that are then analyzed
to extract higher-level features, i.e., internal user states, such as stress,
physical (cognitive and physical), cognitive load, and attention. Further-
more, the SoCCA integrates two new categories of devices: a functional
electrical stimulation (FES) system and an exoskeleton. Both of these de-
vices are to be modulated by the SoCCA to adapt to the patients’ needs
over time. Overall, this work highlights the potential of such an archi-
tecture for the implicit understanding of human cognitive and affective
states, and its diversity to be adapted for a variety of use cases, including
digital health, and using a variety of sensing devices.
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In Part II, we introduced a series of novel methods to infer different
cognitive and affective states from participants using diverse sources of
information. We started this with Chapter 5, in which we presented two
sequential studies aimed at inducing the unconscious processing of emo-
tional stimuli in an immersive mixed-reality environment. Here, we used
the sensing architecture previously presented in Chapter 2 (DSA) to col-
lect a variety of user data, including electrodermal activity, pupil dilation,
and EEG signals. Although the induced unconscious stimulation did not
benefit the participants’ performance when navigating a virtual maze, we
found multiple physiological indicators of unconscious processing. This
offered insights into the cognitive processes that guide the processing of
subliminal emotional stimuli. Furthermore, this study served as an exper-
imental evaluation of the DSA.

In Chapter 6, we presented a study in which we show that keystroke
dynamics can be used to infer the affective state of users. In particular, we
showed that two specific features of keystroke dynamics, flight times and
dwell times, correlate separately with arousal and valence, respectively.
This implies that affective information can be decoded from the way in
which people type, without needing to analyze the content of the text.
Therefore, this method can be employed without the need for specific
devices, with a standard keyboard, and while preserving the privacy of
the users, unlike most of the existing text-based methods.

Next, in Chapter 7 we presented a study conducted at the height of the
COVID-19 pandemic in the Spring of 2020. Here, we used affective rat-
ings to study the impact that the quarantine lockdown was having on the
mental health of the general population. In particular, we found that, dur-
ing this period, participants were rating neutral images more negatively
than in the past, based on normative affective ratings. We interpreted this
as the result of a more negative state of mind, biasing the perception of
the stimuli. Furthermore, we identified different aspects of the partici-
pants’ individual experiences that were associated with this negative bias.
With this study, we used the novel techniques at our disposal to provide
timely insights. Moreover, we also demonstrated the potential for affec-
tive ratings to be used as a valuable tool to monitor the mental health and
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well-being of the general population using this implicit method, which
can be delivered with more ease than traditional methods relying on ques-
tionnaires.

We continued analyzing the impact of the COVID-19 lockdown on
mental health in Chapter 8, with another study that expanded on the meth-
ods of Chapter 7. Here, we targeted a larger sample size and we included
additional measures to obtain a more comprehensive model of each partic-
ipant. In particular, in addition to the affective ratings, we collected mouse
movements, as well as text input to analyze the keystroke dynamics and
perform text sentiment analysis. We also employed a questionnaire for
personality and another for depression severity. Our results support our
findings presented in Chapter 7 and further identify the impact of the pan-
demic lockdown on different demographic groups regarding age and gen-
der. Moreover, we show the capabilities of the implicit measures that we
collected in identifying variations in mental well-being, thus reaffirming
their potential usage in a new generation of digital health applications.

After this, based on the insights obtained in the previous two chap-
ters, in Chapter 9 we introduced a new method to provide affective ratings
through swiping. In this method, targeted for mobile devices, stimuli are
swiping either right or left, to indicate like or dislike, respectively. We
showed that this method allows us to infer continuous valence informa-
tion from the binary ratings provided by the participants. Furthermore,
other implicit metrics (response time, swipe velocity) also are indicative
of the absolute valence polarity of the stimuli. Additionally, our results
also support a growing body of evidence questioning the orthogonality
of arousal and valence, hinting at arousal being related to the bipolar in-
tensity of valence. Altogether, this chapter proves the potential of this
method for binary affective ratings through swiping to be used in future
studies and tools. In particular, together with the results presented in the
preceding chapters, we see an opportunity for this method to be used as a
way to monitor fluctuations in mental well-being using a smartphone app.

Finally, in Part III, we showcased two different systems that are able
to dynamically provide assistance to users when needed, as examples of
the potential impact that an empathic system could have. In Chapter 10,
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we presented an assistive system aimed at transferring domain knowl-
edge. To achieve this, the system learns from successful interactions with
users in a goal-oriented task, and then it provides suggestions to other
users when they might benefit from them. This method, albeit simple,
highlights the possibilities for providing enhanced and context-aware as-
sistance to users, especially if augmented by additional measures for a
deeper understanding of the users’ needs.

Lastly, in Chapter 11 we presented the experimental evaluation of an
immersive, interactive, and confluent system. We divided this study into
three successive evaluations of core aspects of a data exploration experi-
ence: immersion, explicit interaction, and implicit interaction. We found
that the increased immersion afforded by larger displays, and allowing
users to explicitly interact with the experience were beneficial aspects.
Then, we showed that interventions based on the users’ unconscious re-
actions to the presented data, based on physiological signals, helped them
in the completion of navigational tasks with improved efficiency and ef-
ficacy. This serves as the final piece of evidence within this collection
of work, highlighting once again the extensive potential of empathic sys-
tems to assist users in ways not possible through conventional interaction
methods.

225





Chapter 13

GENERAL CONCLUSIONS

Emotions are a fundamental part of human life. Historically, they have
been considered by Western philosophy as separate or even opposite from
rationality (Schmitter, 2016). However, thanks to profound advancements
in our understanding of emotions, we now know that they play significant
roles in many cognitive processes, such as perception, learning, decision-
making, creativity, and memory (Tyng et al., 2017; Barrett et al., 2016).
At the same time, our computing devices have been gradually becom-
ing more ubiquitous and powerful. Nowadays, especially in high-income
countries, we are increasingly surrounded by advanced devices (in the
form of not only computers, but also smartphones, smartwatches, smart
speakers, etc.), on which we rely for a wide variety of tasks, including
working, socializing, playing, and managing some parts of our finances
and fitness, for example. However, to this day, these devices lack mean-
ingful emotional capabilities. They cannot understand how we feel or, in
more practical terms, aspects such as our motivations, goals, and inten-
tions. In this thesis, we explored the potential of bringing these advanced
capabilities of understanding to interactive systems, in order to enable a
new generation of empathic systems, capable of allowing for more natural
interaction and an overall better user experience.

We started with the introduction of a new sensing architecture to col-
lect multiple signals from users to enable the inference of cognitive and
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affective states. This architecture is based on modern and open-source
technologies, allowing for more flexibility, interoperability, and extensi-
bility than preceding systems (Wagner et al., 2011). This enables the easy
integration of new sensing devices, as well as new methods of processing
the acquired signals to estimate different internal states from users. Fur-
thermore, this architecture can be tailored to the specific needs of each
application, with the addition or removal of different components, such
as online processing or signal recording. We introduced different con-
texts for its deployment, including immersive systems using mixed reality
and virtual reality, in use cases such as psychophysiological experimen-
tation, simulation of neurodiverse phenomenology, and stroke neuroreha-
bilitation. Overall, we believe that this sensing architecture allows for a
diversity of usages not possible with previous approaches, thus having a
potential impact on the many fields that could benefit from a better under-
standing of human implicit states.

Next, we presented a series of studies addressing specific methods of
inferring user states from diverse sources, including physiological signals,
keystroke dynamics, and affective ratings. With each of these studies, we
advanced the state of the art in its respective field. We started by showing
the usage of the previously introduced sensing architecture in two studies
focused on the psychophysiological processing of emotional subliminal
stimuli, proving its utility and gaining scientific insights. Then, we pro-
posed a new method that allows us to infer affective information from
text input using a standard keyboard by analyzing the way in which peo-
ple type, and not the content of what they type, thus preserving privacy
and obtaining valuable information without the need for special devices
or actions from the users. Additionally, we conducted two timely studies
at the height of the COVID-19 pandemic in the Spring of 2020, obtaining
relevant indicators of the impact that the lockdown quarantine was hav-
ing on the mental health and well-being of the general population, as well
as showing the potential to use affective ratings to obtain such metrics.
Using these insights, we then proposed a new way of providing affective
ratings, advancing beyond existing tools to provide an easier and faster
method through binary swiping. We believe that this method has the po-
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tential to be used in clinical studies interested in long-term monitoring of
mental well-being, capitalizing on fluctuating biases of emotional assess-
ments. Furthermore, our results contribute to empirically demonstrating
the relationship between arousal and valence, questioning their traditional
orthogonality, as indicated by other recent studies (Kuppens et al., 2013;
Haj-Ali et al., 2020). Therefore, this offers new insights into the circum-
plex model of affect that has been used throughout this body of work.

Finally, we presented two examples of interactive systems capable of
providing assistance to their users when needed, by monitoring different
metrics and reacting accordingly. The first of these, based on an online
setting, learns from successful interactions with users to later provide sug-
gestions based on different interaction factors, which could be expanded
with physiological sensing in an in-person setting. The second one was an
advanced navigational experience in an immersive environment, in which
the system reacted to explicit and implicit interaction. These implicit fac-
tors were based on an estimation of the users’ cognitive states based on
physiological signals obtained through wearable devices. We showed that
providing an immersive display and having both explicit and implicit in-
teraction delivered the best results. Taken together, these two systems
showcase the potential impact that can be delivered by the type of inter-
active and adaptive systems proposed throughout this thesis.

Overall, the work presented here offers new insights into emotion,
human-computer interaction, and the intersection between both, going
beyond the established field of affective computing by considering ad-
ditional factors and integrating the latest knowledge in psychology and
neuroscience related to the topics at hand. Moreover, this work highlights
the possibilities afforded by enabling synthetic systems to understand and
modulate human cognitive and affective states. These include enhancing
the user experience to be more natural, with more intelligent systems that
are able to proactively react to how the users are feeling to provide adap-
tations and assistance, thus resulting in improved efficacy and efficiency.

We believe that our results will have a general impact on fields of
research such as affective science and human-computer interaction, and,
particularly, on digital health. We envision a new generation of digital
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health systems that are able to capture a wider range of relevant informa-
tion from users while simultaneously requiring less effort, by capitalizing
on implicit understanding. An example of this would be analyzing the
way that patients at risk of depression type or rate affective stimuli, as
shown in our studies, in order to automatically monitor the fluctuations
in their mental well-being. Then, the system could intervene by offer-
ing some mitigation actions or providing professional attention by thera-
pists. This type of novel systems for digital health could facilitate mental
healthcare for both clinicians and patients alike, with a potential impact in
preventing the development of negative conditions, diagnosing individu-
als who might be at risk of developing or worsening disorders, monitoring
at-risk individuals, and intervening when support is needed.

We believe future work should be focused on two main areas. The
first of these is to continue the development of closed-loop interaction
systems, grounded on the latest psychological and neuroscientific theo-
ries, to further develop the usage of the inferred internal states to have an
impact throughout the interactive process. This would also serve as an
additional validation of some of the methods presented here. The other
area of future work would include the conduction of longitudinal stud-
ies, tracking the implicit metrics presented here over time, together with
additional assessments such as clinically-validated questionnaires. This
would reinforce the potential utility of these features to monitor the men-
tal state of individuals and have a positive impact on their lives, improving
their health and well-being.
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Hillier, D., Ulbert, I., Yizhar, O., and Mátyás, F. (2020). Associative
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Lingenfelser, F., André, E., Rossi, D. D., and Verschure, P. F. (2014b).
Interpreting Psychophysiological States Using Unobtrusive Wearable
Sensors in Virtual Reality. ACHI 2014, The Seventh International Con-
ference on Advances in Computer-Human Interactions, pages 331–336.

Betella, A. and Verschure, P. F. M. J. (2016). The affective slider: A
digital self-assessment scale for the measurement of human emotions.
PLoS ONE, 11(2):1–11.

Betella, A., Zucca, R., Cetnarski, R., Greco, A., Lanatà, A., Mazzei,
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emg based muscle fatigue evaluation in biomechanics. Clinical biome-
chanics, 24(4):327–340.

Ciuk, D., Troy, A., and Jones, M. (2015). Measuring emotion: Self-
reports vs. physiological indicators. Physiological Indicators (April
16, 2015).

Clark, L. A. and Watson, D. (1991). Tripartite model of anxiety and de-
pression: psychometric evidence and taxonomic implications. Journal
of abnormal psychology, 100(3):316.

Coan, J. A. and Allen, J. J. (2004). Frontal EEG asymmetry as a modera-
tor and mediator of emotion. Biological Psychology, 67(1-2):7–50.

240



Cohen, J. (1988). Statistical power analysis for the behavioral sciences.
Lawrence Earlbam Associates, Hillsdale, NJ.

Conti, A. A. (2020). Historical and methodological highlights of quaran-
tine measures: From ancient plague epidemics to current coronavirus
disease (COVID-19) pandemic. Acta Biomedica, 91(2):226–229.

Cornwell, E. Y. and Waite, L. J. (2009). Social disconnectedness, per-
ceived isolation, and health among older adults. Journal of Health and
Social Behavior, 50(1):31–48.

Cosoli, G., Poli, A., Scalise, L., and Spinsante, S. (2021). Measurement
of multimodal physiological signals for stimulation detection by wear-
able devices. Measurement: Journal of the International Measurement
Confederation, 184(April):109966.

Courtney, C. G., Dawson, M. E., Schell, A. M., Iyer, A., and Parsons,
T. D. (2010). Better than the real thing: Eliciting fear with moving
and static computer-generated stimuli. International Journal of Psy-
chophysiology, 78(2):107–114.

Cowley, B., Filetti, M., Lukander, K., Torniainen, J., Henelius, A., Aho-
nen, L., Barral, O., Kosunen, I., Valtonen, T., Huotilainen, M., Ravaja,
N., and Jacucci, G. (2016). The Psychophysiology Primer: A Guide
to Methods and a Broad Review with a Focus on Human-Computer
Interaction. Foundations and Trends in Human-Computer Interaction,
9(3-4):150–307.

Cox, C. L., Uddin, L. Q., Di martino, A., Castellanos, F. X., Milham,
M. P., and Kelly, C. (2012). The balance between feeling and know-
ing: Affective and cognitive empathy are reflected in the brain’s intrin-
sic functional dynamics. Social Cognitive and Affective Neuroscience,
7(6):727–737.

Crick, T. (2011). The game body: Toward a phenomenology of contem-
porary video gaming. Games and Culture, 6(3):259–269.

241



Critchley, H. D. (2002). Review: Electrodermal Responses: What Hap-
pens in the Brain. The Neuroscientist, 8(2):132–142.

Croatti, A., Gabellini, M., Montagna, S., and Ricci, A. (2020). On the
integration of agents and digital twins in healthcare. Journal of Medical
Systems, 44(9):1–8.
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U. (2009). Discriminating stress from cognitive load using a wear-
able eda device. IEEE Transactions on information technology in
biomedicine, 14(2):410–417.

Shah, J. N., Shah, J., and Shah, J. N. (2020). Quarantine, isolation and
lockdown: in context of COVID-19. Journal of Patan Academy of
Health Sciences, 7(1):48–57.

Shamay-Tsoory, S. G., Aharon-Peretz, J., and Perry, D. (2009). Two sys-
tems for empathy: A double dissociation between emotional and cog-
nitive empathy in inferior frontal gyrus versus ventromedial prefrontal
lesions. Brain, 132(3):617–627.

Shankar, A., McMunn, A., Banks, J., and Steptoe, A. (2011). Loneliness,
Social Isolation, and Behavioral and Biological Health Indicators in
Older Adults. Health Psychology, 30(4):377–385.

Sharples, S., Cobb, S., Moody, A., and Wilson, J. R. (2008). Virtual
reality induced symptoms and effects (VRISE): Comparison of head
mounted display (HMD), desktop and projection display systems. Dis-
plays, 29(2):58–69.

Shim, K. C., Park, J. S., Kim, H. S., Kim, J. H., Park, Y. C., and Ryu, H. I.
(2003). Application of virtual reality technology in biology education.
Journal of Biological Education, 37(2):71–74.

Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., Xu, X., and Yang, X.
(2018). A review of emotion recognition using physiological signals.
Sensors, 18(7).

Simons, R. F., Detenber, B. H., Reiss, J. E., and Shults, C. W. (2000). Im-
age motion and context: A between- and within-subjects comparison.
Psychophysiology, 37(5):706–710.

270



Slater, M., Linakis, V., Usoh, M., Kooper, R., and Street, G. (1996). Im-
mersion, Presence, and Performance in Virtual Environments: An Ex-
periment with Tri-Dimensional Chess. In ACM Virtual Reality Software
and Technology (VRST), pages 163–172.

Sloan, D. M., Bradley, M. M., Dimoulas, E., and Lang, P. J. (2002).
Looking at facial expressions: Dysphoria and facial emg. Biological
psychology, 60(2-3):79–90.

Sloan, D. M., Strauss, M. E., Quirk, S. W., and Sajatovic, M. (1997).
Subjective and expressive emotional responses in depression. Journal
of affective disorders, 46(2):135–141.

Smarr, K. L. and Keefer, A. L. (2011). Measures of depression and
depressive symptoms: beck depression inventory-II (BDI-II), Center
for Epidemiologic Studies Depression Scale (CES-D), geriatric depres-
sion scale (GDS), hospital anxiety and depression scale (HADS), and
patient health Questionnaire-9 (PHQ-9). Arthritis care & research,
63(S11):S454–S466.

Soleymani, M., Asghari-Esfeden, S., Fu, Y., and Pantic, M. (2016). Anal-
ysis of EEG Signals and Facial Expressions for Continuous Emotion
Detection. IEEE Transactions on Affective Computing.

Song, Y., Dixon, S., and Pearce, M. T. (2012). A survey of music recom-
mendation systems and future perspectives. In Proceedings of the 9th
International Symposium on Computer Music Modeling and Retrieval
(CMMR), volume 4, pages 395–410.

Sowndararajan, A., Wang, R., and Bowman, D. A. (2008). Quantifying
the benefits of immersion for procedural training. In IPT/EDT 2008
- Immersive Projection Technologies/Emerging Display Technologies
Workshop.

Sprang, G. and Silman, M. (2013). Posttraumatic stress disorder in par-
ents and youth after health-related disasters. Disaster medicine and
public health preparedness, 7(1):105–110.

271



Sreeja, P. and Mahalakshmi, G. (2017). Emotion Models: A Review.
International Journal of Control Theory and Applications, 10(8):651–
657.

Stanners, R. F., Coulter, M., Sweet, A. W., and Murphy, P. (1979). The
pupillary response as an indicator of arousal and cognition. Motivation
and Emotion, 3(4):319–340.

Steultjens, E. M., Dekker, J., Bouter, L. M., Van de Nes, J. C., Cup, E. H.,
and Van den Ende, C. H. (2003). Occupational therapy for stroke pa-
tients: A systematic review. Stroke, 34(3):676–686.

Stevens, E., Emmett, E., Wang, Y., McKevitt, C., and Wolfe, C. (2017).
The burden of stroke in Europe, volume 53. Stroke Alliance for Europe.

Stocks, E. and Lishner, D. (2012). Empathy. In Ramachandran, V., edi-
tor, Encyclopedia of Human Behavior (Second Edition), pages 32–37.
Academic Press, San Diego, second edition edition.

Stone, A. A., Bachrach, C. A., Jobe, J. B., Kurtzman, H. S., and Cain,
V. S. (1999). The science of self-report: Implications for research and
practice. Psychology Press.

Stuber, G. D., Sparta, D. R., Stamatakis, A. M., van Leeuwen, W. A.,
Hardjoprajitno, J. E., Cho, S., Tye, K. M., Kempadoo, K. A., Zhang,
F., Deisseroth, K., et al. (2011). Excitatory transmission from the
amygdala to nucleus accumbens facilitates reward seeking. Nature,
475(7356):377–380.

Sust, P. P., Solans, O., Fajardo, J. C., Peralta, M. M., Rodenas, P., Ga-
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