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Abstract

Abstract

The characterization of reaction mechanisms is an essential asset
in Chemistry, enabling a better understanding and thus a much more
rational optimization of the underlying processes. In this context,
in silico studies, providing profound insights at the atomistic and
molecular levels, have become a key part of mechanistic elucidations.
The breakthrough of computational chemistry has been fueled by the
constant increase in computational power taking place along the last
decades, as it has vastly increased its overall applicability. In this sense,
we may consider not only increases in the size of the systems that can
be studied or the accuracy of the available methods, but also in the
level of detail of the resulting mechanistic description, characterizing
larger numbers of possible intermediates and transformations. This is
often attained through the use of automation techniques that simplify
the exploration of the vast chemical space. However, enhancing the
description of reaction mechanisms comes at the cost of increasing
their complexity, and thus hindering their interpretation: it then
becomes necessary to develop strategies that automate not only the
collection of results, but also its further processing in order to really
leverage these larger volumes of data. Throughout this Thesis and
following this main principle, we have proposed, developed and tested
a set of tools for the processing of this kind of complex mechanisms,
represented as Chemical Reaction Networks (CRNs), to obtain better
insights on reactive and catalytic processes. As a general note, all
the tools introduced in the Thesis model the target CRNs as graphs,
applying some of the methods of Graph Theory (e.g. path searches,
isomorphisms...) under a chemical context.

First of all, amk-tools (Chapter III ) provides a solution to filter
and visualize the complex CRNs generated by automated reaction
mechanism discovery programs, such as AutoMeKin. The combination
of network trimming, isolating only the most chemically relevant
sections of the CRN, and interactive visualization provides a clearer
perspective on the highly complex networks arising from this kind
of highly automated approaches, exemplifying the aforementioned
relationship between detail and complexity. Then, moving to the topic
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Abstract

of catalysis, gTOFfee (Chapter IV ) aims to obtain a direct picture of
the overall activity of complex catalytic cycles by applying the energy
span model to CRNs, computing their turnover frequency (TOF)
and effective energy span (δEeff ). These two magnitudes take the
complete cycle into account at once, in order to capture the influence
of all intermediates and transition states participating in the system.
Finally, OntoRXN (Chapter V ) is proposed as a data organization
scheme to manage all the information related to the computational
characterization of CRNs, putting together the interconnectivity of
the different states of the system and the properties calculated by
electronic structure methods for every structure participating in the
network. In this way, OntoRXN allows to apply the principles of
Semantic Data to this kind of systems, producing scalable, expandible
and versatile knowledge graphs as a standardized format to share and
utilize reaction networks.
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Chapter I

Introduction: chemical reactivity, catalysis and
computational chemistry
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Chapter I. Introduction

1.1 Chemical reactivity

Reactivity has been at the heart of Chemistry since the earliest
beginnings of this discipline. Indeed, we may somehow trace it back even
before chemical science itself, as the notion of “transmutation” coined by
alchemists has undeniable resemblances to the current notion of a chemical
reaction: the transformation of a given substance to a totally different
one. Either thinking under the old framework of alchemy or the modern
framework of chemistry, large parts of human history have been undoubtedly
marked by the development of new transformations between substances to
create novel products. To be more precise and following the definition from
the International Union for Pure and Applied Chemistry (IUPAC) [1], a
chemical reaction is simply “a process resulting in the interconversion of
chemical species”, a broad term that engulfs the whole spectrum of processes
from the simplest elementary proton shifts happening between an acidic and
a basic substrate, to the highly complex cascade transformations mediated
by enzymes that enable biochemistry, metabolism and life. Thus, studying
how chemical reactions take place is a centerpiece for any advancement
happening in not only pure chemistry, but also in pharmacy or biology,
among several other examples.

The main difference between chemistry, as a science, and its pre-
scientific background is the rationalization of the observations that are
made. Apart from the mere discovery of new substances, transformations
or phenomena, major efforts are devoted to hypothetize the reasons behind
the new findings and to contextualize those in the framework of previous
theories. Albeit setting an exact date of separation between the labels of
alchemy and chemistry is not feasible, as the development of the latter
from the roots of the former was gradual, we may consider the 17th
century and the enunciation of the scientific method by Francis Bacon
as a stepping stone. From there on, a bunch of essential discoveries and
noteworthy scientists proceed, such as the explanation of the behavior of
gases (Boyle), the isolation and discovery of hydrogen (Cavendish) or oxygen
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Chapter I. Introduction 1.1. Reactivity

(Scheele, Priestley) and, especially, the thorough development of chemical
nomenclature and compilation of the current knowledge made by Antoine
de Lavoisier. The work that Lavoisier carried out at the end of the 18th
century provided a solid foundation that enabled the further development of
chemistry to the science we know nowadays. Then, in the early 19th century
Dalton eventually proposed the first atomic theory, proposing matter to
be formed by microscopic, undivisible entities (atoms) of different nature
(chemical elements). This, followed by the introduction of modern chemical
symbols and the extensive study of atomic weights by Berzelius, conformed
another crucial part of the scaffold in which current chemistry builds on.

Speaking about the rationalization of chemistry in the framework of
atomic theory, perhaps the clearest example is the development of the
Periodic Table by Mendeleev on the second half of the 19th century. This
profound systematization of the different chemical elements and its properties
was able not to only classify known information, but also to accurately predict
the properties of undiscovered elements in a pristine example of a successful
scientific model, which is still on use as of today. Along the same period of
time, the studies from Boltzmann and Gibbs coined terms as important in
physical chemistry as entropy, enthalpy or free energy, creating and driving
forward the concept of statistical mechanics as another bridge between the
microscopic and macroscopic descriptions of matter. Later on, in the first
half of the 20th century, the whole physical science was revolutionized by the
introduction of quantum mechanics (de Broglie, Heisenberg, Schrödinger,
Pauli), deeply impacting chemistry with a solid theoretical and mathematical
framework. Once this theoretical basis was stated, allowing to properly
enounce fundamental chemistry in mathematical terms, the major point
left to address was to actually solve the intricate equations arising from
quantum mechanics: the main challenge for computational chemistry, which
will be introduced in Section 1.3.

Whilst this brief historical overview refers to chemistry in general, it is
also directly linked with the understanding of reactive processes. Lavoisier’s
quantitative studies introduced the central notion of reaction stoichiometry,
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Chapter I. Introduction 1.2. Catalysis

which in combination with Dalton’s atomic theory and Berzelius’ chemical
symbols allowed, for the first time, to define something close to our current
idea of a balanced chemical reaction. Then, passing to a more physico-
chemical lens, the thermodynamic potentials from Boltzmann or Gibbs allow
to justify the feasibility or spontaneity of reactions. This, in connection
with the quantum-based approach of theoretical chemistry, provides the
framework for the computational-based description of reaction mechanisms
that is central to this Thesis.

1.2 Catalysis and its role on society

Within the realm of chemical reactivity, a field of particular interest and
importance is that of catalysis. According to the IUPAC [1], catalysis is
defined as “the action of a catalyst”, which is “a substance that increases the
rate of a reaction without modifying the overall standard Gibbs free energy
change”. A catalyst is then, at the same time, a reactant and a product of
the reaction, with no net catalyst consumption happening along the process.
Catalysts do not only accelerate slow reactions (by lowering the activation
barrier of the process, as depicted in Figure 1.1), but also enable reactions
that would not take place at all in other conditions or modify the kind of
products generated from a given substrate, thus providing a powerful degree
of control over how a chemical process occurs.

The extent of control and optimization provided by catalytic processes
has made them a completely essential asset for the chemical industry.
Currently, between a 80 and a 90 % of all chemicals are produced through
catalytic processes [2, 3], making their importance clear. A paradigmatic
example of how influential catalysis can be to humankind is the development
of the Haber-Bosch process in the 1930s, which enabled the fixation of
nitrogen from air in the presence of iron catalysts (Equation 1.1) to produce
trivalent nitrogen in the form of ammonia, which can be used to produce
fertilizers. The availability of these fertilizers permitted a massive growth in
the production of crops that was key in the increase of the global population
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Chapter I. Introduction 1.2. Catalysis

Figure 1.1: Example of the free energy profile for a chemical reaction
A+B → C, with (orange) and without (blue) a catalyst.

along the 20th century.

N2 + 3 H2
Fe−−−−→

500oC
2 NH3 (1.1)

The most common subdivision of catalysts refers to the phase in which
they reside in the reactive mixture, distinguishing between homogeneous and
heterogeneous catalysis. Regarding industrial applications, heterogeneous
catalysts are the most widely used (around an 80% of the total) due to
their easier recovery and increased stability, as consequences of the phase
separation. However, homogeneous catalysis shall not be neglected, as
it provides a finer degree of control over the products that are obtained
and permits a more complete mechanistic understanding of the underlying
processes, eventually facilitating the optimization of the catalytic species to
improve the overall yields or selectivities. Hitherto, both catalytic paradigms
still coexist to date and bring their own advantages (and limitations) to the
table. Regardless of the phase of operation, most of the catalysts that are
currently in use, particularly for industrial applications, involve metal atoms
(either as part of surfaces or forming organometallic complexes), although
metal-free approaches such as organocatalysis are becoming increasingly
relevant.

9
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Chapter I. Introduction 1.2. Catalysis

The aforementioned Haber-Bosch process and its consequences also
exemplify one of the major challenges that science, chemistry and catalysis
face nowadays: the need to develop greener, environment-friendly processes
in times of an undeniable anthropogenic climate change [4–6]. Producing
ammonia through the Haber-Bosch method, even after almost a hundred
years of development and improvement, is a quite energy-intensive process
which supposes the consumption of large quantities of fossil fuels (gas, oil,
coal), corresponding on its own to an 1-2% of the total emissions of carbon
dioxide to the atmosphere [7–9]. This carbon footprint could be reduced
by using renewable energy sources instead of fossil fuels or by optimizing
the ammonia-producing system (Eq. 1.1), but also by having cleaner and
more efficient routes to generate hydrogen. This species is usually generated
from methane in another energetically costly and wasteful process, which
adds to the overall footprint of the Haber-Bosch approach. Precisely, the
development of efficient catalysts for hydrogen production (usually via water
splitting H2O → H2 + 1/2 O2) is an area of the uttermost interest in current
catalysis, not only as a reagent for industrial and fine chemicals, but as a
sustainable, clean energy source [10, 11] to replace traditional fuels.

Along with the production of “green” hydrogen, we may highlight several
other major challenges for catalysis that are also framed in the context of
environmentally conscious chemistry: for instance, the search for cleaner
and more efficient processes to produce fine chemicals or the reutilization of
reaction subproducts to reduce the amount of released waste. Regarding the
first aspect, we encounter a clear example on the Nobel Prize of Chemistry
awarded in 2021 [12] to List and McMillan for the development of asymmetric
organocatalysts, which enable the enantioselective synthesis of complex,
chiral molecules without having metal atoms in the catalytic species. In
this way, it becomes possible to avoid the scarcity or toxicity issues that
can be related with metal-based catalysts while also obtaining enantiopure
products, of sheer importance in pharmacy and medicine. As for the latter
challenge, a paradigmatic example is the fixation of carbon dioxide, an
ubiquitous subproduct for any process involving the combustion of organic
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Chapter I. Introduction 1.3. Computational chemistry

molecules which is one of the major contributors to greenhouse effect and
global warming. The development of catalytic strategies to employ CO2 as
a synthetic building block [13–15] allows not only to reduce overall carbon
emissions but also to have access to a versatile C1 synthon that can open
the door to powerful and controlled synthetic routes to industrially relevant
products.

All in all, catalysis arises as one of the most powerful tools that chemistry
provides to tackle the growing issue of climate change and bring industry and
society forward to a cleaner and livable environment. To be able to do this,
and in line with Section 1.1, it is essential to have a better understanding
on how catalytic processes work, to find the aspects that can be tweaked
and become able to rationally design novel functioning, well-performing
catalysts to attain all of these ambitious goals. Nowadays, a proper rational
design implies an interplay between carefully designed experiments, precise
characterization and the assistance of computational chemistry to unveil
the underlying catalytic mechanisms at the molecular level.

1.3 Computational chemistry to understand
reactivity and catalysis

The label “computational chemistry”, in the most general sense, refers
to any chemical problem that is tackled and solved through the use of
computers. This includes very distinct tasks, such as chemical database
design, computer-aided synthetic route generation, quantitative structure-
activity relationships (QSAR) to predict molecular properties, or simulations
of molecules and materials aiming to model their behavior at the microscopic
level. Nowadays, the more data-related approaches (those that deal with
chemical information, such as the three first elements in the previous
enumeration) are often designated under the term “cheminformatics” [16],
with “computational chemistry” being more used to refer to the more
simulation-based approaches. Nonetheless, the actual distinction is fuzzy,
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Chapter I. Introduction 1.3. Computational chemistry

especially considering how data-based Machine Learning methods are gaining
importance in the field not only to predict specific properties (similar to
the aforementioned QSAR methods) but also as a driver for atomistic
simulations [17–19].

Among the very diverse methods of computational chemistry, we will
focus on electronic structure methods, approximating the solution of the
Schrodinger equation Ĥψ = Eψ for the multi-electron set of a given chemical
system. Through these approximations, it becomes possible to predict not
only the raw electronic energy arising from the equation itself, but also the
optimal geometry (or a set of them), vibrational frequencies, thermochemical
properties, etc. For high-accuracy results, there are two main paradigms
to tackle the electronic structure problem: ab initio methods, centered on
the wavefunction ψ of the system, and Density Functional Theory (DFT)
methods, which relate the energy to the electron density ρ.

No matter the specific kind of electronic structure elucidation that
is chosen, there is an essential approximation at the core to deal with
multielectronic systems: the Born - Oppenheimer approximation, which
decouples electronic motion from nuclear motion. In this way, the electronic
wavefunction ψe is assumed to be independent of the momenta of the
nuclei, just depending on their fixed positions. Reversing the point of
view, this implies assuming that nuclei move through a potential energy
surface (PES), introducing an essential concept to discuss chemical reactivity
from the quantum-mechanical perspective (Figure 1.2). Slow or unfeasible
transformations correspond to nuclear displacements through high-energy
regions of the PES that are difficult to access, while faster reactions are
associated with paths that are easier to traverse and allow the nuclei to
reorganize. The minima of the PES correspond to the most stable atomic
arrangements and therefore to actual chemical entities, transforming the
problem of finding stable entities (e.g. molecules) from quantum calculations
to an optimization problem over the PES. However, this apparent simplicity
is hindered by the large dimensionality of the surface in question, which
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Figure 1.2: Examples of 2D (above) and 3D (below) potential energy surfaces.
Above left, typical curve for the dissociation of a diatomic molecule. Above
right, model for an unimolecular reaction step going through a transition
state (saddle point). Below, 3D surface view (left) and contour map (right),
with darker colors corresponding to lower energies, for a system with three
minima and two transition states.

depends on a total of 3N - 6 coordinates1: three positional coordinates
per each of the N atoms in the system, minus three degrees of freedom for
the overall translation of the molecule as a whole across the space, minus
three more for rotation. Representing and interpreting PES directly is,
generally, not a feasible approach, as in all cases but the diatomic one
(N = 2; d = 3 · 2 − 5 = 1, upper left corner of Fig. 1.2) the resulting
surfaces will always be hypersurfaces. For instance, triatomic molecules
N = 3; d = 3, 4 (for non-linear or linear molecules) already produce 4D

1In the case of linear molecules, there are only two rotational degrees of freedom, and
the PES involves only 3N - 5 coordinates
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and 5D entities that cannot be depicted. Thus, it is more common to
work with projections of reduced dimensionality across a set of one or
two reaction coordinates to get the kind of 2D and 3D plots and maps
shown in Figure 1.2. In fact, characterizing complete surfaces would be
an incredibly time-consuming task, except for very small systems. Thus,
computational chemistry focuses instead in solving the aforementioned
optimization problem to locate critical points on the PES. Among these
critical points, apart from the minima (stable structures), the first-order
saddle points, which are minima in d - 1 directions and maxima in the
remaining one, are also deeply important. These saddle points, characterized
by having a single negative second derivative (and thus, a single imaginary
vibrational frequency) correspond to the transition state (TS) that governs
the transformation happening between two minima, marking the lowest-
energy pathway from one to the other. The concept of TSs is the core of
Transition State Theory (TST), introduced by Eyring [20], where statistical
thermodynamics are applied to the activated complex (TS) just like for
intermediates, only that treating the imaginary vibrational normal mode
of imaginary frequency as a translational degree of freedom. This allows
to define the Eyring equation (Equation 1.2), where the rate constant of a
given elementary step depends on the difference in free energy between the
TS and the previous (or following, for the reverse rate) intermediate ΔG‡.

kreac = κkBT

h
eΔG‡/RT (1.2)

Here, apart from the aforementioned activation free energy ΔG‡, the
temperature and the constants h, kB and R, there is the coefficient κ that
accounts for the transmission across the TS. The transmission coefficient is
usually assumed as unity, meaning that no recrossing occurs at the barrier,
while lower values would introduce some degree of deviation from the ideal
theoretical limit of TST. As a consequence of this framework, characterizing
these first-order saddle points in the PES gives access to the kinetics of the
system, complementing the thermodynamic information arising from the
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study of the minima.

1.3.1 Overview of methods

As stated before, there are two main families of quantitative methods
in computational chemistry: ab initio and DFT. We will only introduce
a very basic overview of their foundations, referring to specific textbooks
for more detailed, mathematically-ridden descriptions [21, 22]. First, ab
initio methods employ only first principles to solve the Schrödinger equation
under the Born-Oppenheimer approximation, not introducing any kind of
empirical information. The “parent” method of this collection is the Hartree-
Fock approach, which is based on a set of self-consistent equations (SCF
or self-consistent field) that can be solved iteratively to obtain a suitable
set of molecular orbitals (MOs), starting from a set of guess functions χi.
The final set of MOs, once consistency between two consecutive iterations is
reached, can be used to build an electronic wavefunction for the ground state,
applying the eigenvalue equation Helψel = Eelψel to obtain the electronic
energy.

The set of guess functions χi employed to approximate the molecular
orbitals is named a basis set, and its choice comes to be an important part
of the setup of a given computation scheme. Most of the basis sets employed
in electronic structure codes contain Gaussian Type Orbitals (GTOs), which
are mathematically convenient for the calculation of interaction integrals
along the computational procedure. Other proposals such as Slater Type
Orbitals (STOs) do also exist (and are implemented in codes like ADF)
providing a better description of atom-level behavior with a smaller number
of functions, at the cost of a more contrived integration. In terms of basis
set size, it is common to include additional functions on the set on top
of the minimum number that would be required to define the electrons
in the system. This allows to improve the description of the electron
distribution across the molecule, given that it might be very different from
the distribution in the isolated atomic orbitals.
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From this base approach, plenty of post-HF methods have been proposed
along the years to improve the accuracy of ab initio methods, aiming to
overcome the main drawback of HF, which is the mean-field treatment of
electron-electron interactions. For each electron in the system, only an
average repulsion with the other n - 1 electrons is taken into account, not
including explicit correlation effects which might have important effects on
the predicted energies. Among these post-HF methods, we may mention
configuration interaction (CI), which explicitly includes electron excitations
when building the wavefunction, the n-order perturbative treatments by
Moller and Pleset (MPn) or the coupled cluster (CC) methods that introduce
excitations through an exponential operator. Currently, the CCSD(T)
method (coupled cluster including simple and double excitations and
approximating the more expensive triple excitations) is currently regarded
as the “gold standard” for accuracy in computational chemistry. It should be
recalled that increased accuracy comes with the deeply important downside
of an increased computational cost that scales rapidly with the size of the
system, going from around N4 in HF to N7 for CCSD(T).

On the other hand, DFT methods are founded in the Hohenberg-Kohn
theorem [23], enounced in 1964, which states that the energy of the ground
state of any electronic system is related to its electron density ρ(r) through
an exact, but unknown, functional F: E = F [ρ(r)]. One year later, Kohn
and Sham [24] developed a set of self-consistent equations to apply the DFT
formalism to multielectronic systems in analogy with the Hartree-Fock self-
consistent field (SCF). Conceptually, DFT supposes a major reduction in
the number of variables to be treated, going from the 3N + N (spatial
and spin) coordinates required to explicitly describe electrons to the system-
independent three variables of the electron density. However, working under
the Kohn-Sham paradigm, orbitals are introduced back in the formalism to
improve the accuracy of the method, and thus the scaling comes back to be
size-dependent, reaching N3.

The main caveat of DFT applications is that the exact, universal
functional introduced in the theoretical definition of the method is not
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known, so in practice it becomes necessary to work with approximate
functionals to get the energy from the electron density. A wide variety of
such functionals have been proposed since the first descriptions of DFT,
incorporating different aspects and modifications (Table 1.1) in order to
improve their accuracy throughout the quest for the definitive universal
functional which properly considers electron exchange and correlation.

Category Add. variables Functionals
LDA ρ(r) LDA
GGA ∇ρ(r) PBE, BP86, PW91

mGGA ∇2ρ(r), τ(r) TPSS, M06L
Hybrid HF exchange B3LYP, PBE0, M06-2X, ωB97XD

Double hybrid MP exchange B2PLYP, DSD-PBEP86

Table 1.1: Main DFT functional categories: entries lower in the table are
higher in the “Jacob’s Ladder” depiction proposed by Perdew [25] to set
a hierarchy for functionals, and thus shall be closer to chemical accuracy
(universal functional). For each category, the principal included feature and
some examples of common functionals are provided.

Even taking into account this classification, the choice of a specific
functional for a specific task is not obvious, and either GGA, mGGA,
hybrids or double hybrids might be adequate depending on the situation. In
general, when there is good-quality reference data (experimental or highly
accurate ab initio results) a common practice in computational chemistry
is benchmarking a given system with different functionals to ensure that
the chosen treatment can properly model the target system by, for example,
reproducing known experimental properties.

1.3.2 Modern computational chemistry: automation, Big
Data, Machine Learning

Computing, in general, has been a discipline marked by a very rapid
development, as acknowledged by Gordon Moore in 1965 [26] by stating how
the number of transistors integrated on a single chip shall, approximately,
double every year (Moore’s Law). This claim was later revised in 1975 [27]
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to extend the doubling period to two years, but has since then remained true
until very recently [28]. The exponential increase in the number of transistors
translates directly to an exponential increase in the overall computing power,
enabling computers to carry out calculations and simulations of larger and
larger scales.

Whilst this situation is immediately applicable to computational
chemistry, there are several ways in which increased computer power can be
employed. Following from the previous discussion, it becomes possible to
employ more accurate methods that would be deemed as too expensive under
less performing hardware. Due to the direct connection of computational
cost and system size, the treatment of larger-sized entities does also become
feasible, allowing computational chemists to use more realistic models and
therefore capture effects that might have been overlooked in absence of these
resources. Another avenue which is related to this kind of fine-grained effects
is the possibility of performing massive sets of computations characterizing,
for example, substituent variations over a given reaction scheme or catalytic
cycle to determine how they affect the overall process.

The use of the word “massive” in the previous paragraph already hints
at one of the main issues that we can encounter in this context: the human-
driven setup becomes the bottleneck of the whole pipeline, limiting the
extent that a given study can reach. Consequently, a key concept for modern
computational chemistry (and many other fields of computational science) is
automation: instructing the machine to perform routinary, repetitive tasks
that can be performed without human intervention. This does not only
strongly speed up the target process, but also diminishes the possible sources
of error that people may introduce when performing a given task. Of course,
this is a very general concept, and common electronic structure codes do
already automate very complex tasks such as the application of the Hartree-
Fock or Kohn-Sham methods described before and their integration with
algorithms for exploring the PES, calculating thermodynamic potentials,
etc (Figure 1.3, above). These procedures can then be included in workflows
that automate modifications over molecules or other chemical entities, the
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Figure 1.3: Schematic depiction of automation workflows in computational
chemistry. Above, simplified procedure for a single geometry optimization
task as carried out by a DFT electronic structure code. Below, example of
substituent modification process generating a batch of structures starting
from a template.

generation of the corresponding input files, and even the inspection of the
correctness of the obtained results (Figure 1.3, below). While it is common
to implement this kind of automation processes through tailor-made scripts,
there are also workflow managers such as FireWorks [29] that simplify the
setup and integration of complex procedures.

Nevertheless, it must be recalled that the main labor of a scientist
(computational or not) is not to produce data, but to interpret and analyze
that data to eventually extract some piece of novel knowledge from it.
When the amount of raw information that is available increases, the analysis
methods that would be used for smaller datasets may not be adequate
anymore, making it necessary to add some kind of automation to the
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interpretation process too. For instance, we may consider a traditional
use case for computational chemistry, such as the characterization of the
free energy profile associated to a given chemical transformation. When
the target of the study is a single energy profile, it can be tackled in
a state-per-state basis, inspecting the individual geometric parameters,
energies and other properties of interest along the transformation manually.
However, if additional variations over that profile are considered to expand
the scope of the study (modifying the computational method, the structure of
reactants and products, catalytic species... and so on), a fully human-driven
inspection becomes increasingly cumbersome, supposing a new bottleneck
on the pipeline and eventually becoming unfeasible. Thus, as the degree of
automation in data collection grows, it becomes necessary to also automate
how the data is handled, building actual data manipulation pipelines. This
situation is by no means exclusive to computational chemistry, as practically
all areas of physical and social sciences are currently dealing with the need
of managing exponentially volumes of information: the so-called Big Data
[30, 31]. This term does most often come together with the idea of Machine
Learning (ML), involving the development of methods to automatically
detect patterns across large datasets through statistical analysis and infer
knowledge from these patterns. Along the last few years, ML has quickly
become a cornerstone in modern science [32], having impact in fields as
diverse as economy, biology or medicine. Coming back to chemistry, we also
encounter plenty of ML application examples for drug discovery [33], catalysis
[34, 35], materials science [36] and many others. Nevertheless, despite the
undeniable interest and growing impact of fully data-driven science, it still
coexists with “traditional” theory-based modeling paradigms (e.g. ab initio
or DFT methods in the case of computational chemistry), which, especially
when fueled by modern automation protocols and computational power,
provide irreplaceable insights on the behavior of physical and chemical
systems.
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1.4 Aims and objectives

The main goal of this Doctoral Thesis is to improve the interpretation,
analysis and organization of the data gathered through computational
chemistry methods, transforming the large amounts of information produced
by increasingly automated pipelines into actual chemical knowledge. More
specifically, we will be focusing on the study of reactivity and catalysis,
defining complex chemical reaction networks to be processed by a set of new
software tools in order to simplify the understanding of the likely complex
underlying physicochemical processes. From this general goal, some more
concrete objectives can be proposed.

• Identification and detailed characterization of chemical mechanisms of
interest.

• Definition of a standard hierarchy and structure for the generation of
chemical reaction networks from computational results.

• Integration of structural and energetic information for reaction network
visualization.

• Calculation of descriptors related to the overall catalytic activity of
complex networks.

• Propose a suitable organization scheme to integrate computational
chemistry results and the structure of reaction networks in a machine-
readable format.

• Development of automated workflows based on the previous goals.

First of all, in Chapter II we will do an overview of the theoretical
background of this work, focusing on the definition of chemical reaction
networks (CRNs) and its contextualization as part of a more general
discussion on the representation of chemical reactivity. Later on, we will
introduce some concepts of Graph Theory, one of the main tools employed
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along the Thesis to model and handle CRNs, as well as a brief description of
Python, the language of choice for all the codes we developed. Finally, we
will also comment on aspects more related to data organization, introducing
the notion of Semantic Data and the ioChem-BD platform.

In Chapter III we will present amk-tools, a code for the interactive
visualization of automatically discovered reaction networks integrated with
the AutoMeKin package from Martínez-Núñez [37] for the generation of
such mechanisms. Along the chapter, we will comment on the interest of
this kind of visual approaches to make automated methods more accessible
and appealing, detail the organization of the code and apply it to a specific
target system: the unimolecular decomposition of indole.

Chapter IV introduces gTOFfee, a code for the application of the
energy span model from Kozuch and Shaik [38] to any kind of catalytic
cycle, leveraging the recent reformulation of the model in terms of graphs.
Herein, we will discuss model implementation and the application of the
Graph Theory concepts introduced in Chapter II to design a working code.
To demonstrate the interest of our approach, we will apply gTOFfee to
the cobalt-catalyzed hydroformylation of propene as a well-studied model
system for homogeneous catalysis. As a final note, we will comment on
the perspectives of employing this graph-based approach to improve the
applicability of the energy span model to heterogeneous catalysis.

Through Chapter V we will delve on the application of Semantic Data
to CRNs, reviewing the major developments on chemical ontologies before
presenting our own take on the field: the OntoRXN ontology. We will
then showcase the core structure of the ontology and how it may be
used to describe the different entities and concepts required to properly
define a reaction network from computational information. At the same
time, we also present the set of tools (ontorxn-tools) that were built
to simplify the direct application of OntoRXN to real datasets as stored
in the ioChem-BD database. From there, we applied this approach to
three reaction mechanisms, presenting a collection of example workflows
utilizing OntoRXN-based knowledge graphs to carry out processes like
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the construction of complex reaction energy profiles or the automated
preparation of microkinetic simulations.
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Chapter II

Methodology & theoretical background: reaction
networks, graph theory and data management

25

UNIVERSITAT ROVIRA I VIRGILI 
Unweaving complex reactivity: graph-based tools to handle chemical reaction networks 
Diego Garay Ruiz 



Chapter II. Methodology

2.1 Concepts on reactivity

The treatment of chemical reactivity, whose importance has already
been discussed along Chapter I, has given rise to multiple alternative
representations through the years. This variety comes from the several
facets of the study of reactive phenomena, ranging from general synthetic
transformations (reagents, products and reaction conditions) to highly
detailed reaction mechanisms interlinking plenty of elementary steps.
Because of this multifaceted behavior, and also taking into account the widely
different perspectives acquired from different subfields (e.g. syntheses, kinetic
studies, computational studies...), these alternative representations end up
as coexisting paradigms, having their own advantages and disadvantages
and showing different degrees of transferrability across target subfields.

In our case, we are tackling the computational characterization of
reaction mechanisms and catalytic cycles, prompting for a balance between
thoroughly exposing the data that has been computed (mainly, energies) and
linking these results with reference experimental studies to contextualize and
validate the resulting models. In this context, we might think of three main
representations, involving i) sequences of chemical equations for elementary
steps, ii) reaction energy profiles, directly representing computed energies
against some reaction coordinate, and iii) reaction networks (specifically,
Chemical Reaction Networks or CRNs) highlighting the connectivity between
the different species participating in the mechanism (Figure 2.1). Along
this section, we will examine the strengths and weaknesses of the three
approaches: nevertheless, we shall recall that all these representations focus
on the same core principles (e.g. element balance, electroneutrality...) and
can be used and switched depending on the specific system which is the
object of study.

Starting from the sequences of chemical equations, their major advantage
is their clarity and understandability: balanced chemical reactions are one
of the most deeply ingrained principles of Chemistry, thus making this kind
of representation really accessible for almost every chemist. Moreover, it is
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Figure 2.1: Comparison of the reaction sequence (left), energy profile (center)
and reaction network (right) representations for a simple reaction mechanism
including the overall transformations A → D and A → E.

easy to convey additional information beginning from the basic “reactants /
arrow / products” structure which is fundamental to chemical equations,
including, for example, the energies of the involved states, additives or
additional reagents, and so on. Nevertheless, this kind of description
can easily get messy for complex multi-step processes that involve many
elementary reactions, and even more when the corresponding states are
interlinked and participate in several of the reactions of the set. Overall, these
“plain” chemical reactions are unbeatable for bigger-picture schemes such as
synthetic transformations (e.g., we may summarize the transformations in
Figure 2.1 with the reaction A

[Cat],T−−−−→ D + E), but are much less adequate
in mechanistic studies.

On the other hand, reaction energy profiles are particularly suited
to computational chemistry, as they provide an immediate idea on the
energy differences along multi-step reaction schemes. This allows to
assess, at a glance, the more energetically demanding steps and the overall
thermodynamic feasibility of the represented process. Profiles are often
accompanied by labels or molecular structures tagging each of the steps,
integrating composition information, just as reaction sequences (or reaction
networks) might be accompanied by the corresponding energy values.
Nevertheless, just like reaction sequences, energy profiles encounter issues
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when describing intertwined reaction mechanisms involving numerous side
reactions or cross-transformations between species, as they assume a linear
sequence of intermediates and transition states that does not provide a
proper description in many situations.

Figure 2.2: Representation of a non-trivial catalytic cycle from elementary
reactions (left) and as a graph (right).

To properly describe this kind of intricate mechanisms, it is necessary
to resort to reaction networks, where the main representational focus is the
interconnectivity between the states happening throughout the mechanism.
A classic example of a reaction network could be a catalytic cycle, where the
elementary reactions from the initial state of the catalyst to its regeneration
are depicted in a cyclic fashion (left part of Figure 2.2). Once the sequence
of reactions has been reorganized in this way, the analogy with graphs is
immediate: the intermediates (labeled with letters) correspond to the nodes
of the graph, and the transformations that interlink them (reaction arrows),
to the edges. Moreover, from the viewpoint of computational chemistry, the
edges can be mapped to the transition states governing the transformations
encoded in each elementary step, thus assigning chemical structures to the
two types of entities in the graph. Through this representation, it is trivial
to understand and manage caveats such as the off-cycle branch E → I → J

or the alternate path C → G → H → D that could be overlooked through
reaction sequences and would be hard to depict through energy profiles.
Although we have considered a catalytic cycle to exemplify this introduction
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of graphs to handle reaction networks, this representation can also be used
for non-cyclic networks, as shown on the right of Figure 2.1.

Another important point that shall be noted is that in Figures 2.1 and
2.2 we have proposed graphs without any kind of direction arrow. We
will delve deeper on types of graphs (and other aspects of Graph Theory)
along Section 2.2, and on further considerations of directionality on graph
CRNs for computational chemistry on Chapters IV and V. As of now, we
will just state that both directed and non-directed graphs can be used to
describe CRNs, with the choice of one or the other approach depending on
the specific case and subfield. In the context of computational chemistry,
undirected graphs provide a simpler solution where the chemical flow of the
system can be determined a posteriori through the thermodynamics and
kinetics encoded in the energies of the different states on the network.

2.2 Graph theory and reaction networks

Graphs, which were briefly mentioned while introducing the notion of
a reaction network, are mathematical objects composed by a set V (G) of
nodes or vertices and a set E(G) of edges that connect two nodes in the
set [39–41]. These objects are often represented by drawings where nodes
are placed at some point of the plane with lines depicting the edges (Figure
2.3). The aim of this section is to provide only a brief introduction to some
core aspects of Graph Theory that are important to properly discuss the
work compiled on this Thesis. Plenty of specific and more detailed literature
on the matter is available, owing to the large variety of fields in which
graph-based modeling is useful (physical and social sciences, engineering,
computing...).

In the most general case, an edge may connect a vertex to itself (self-
loop) and there might be several edges connecting a single pair of nodes
(multi-edge). However, the subclass of graphs where neither loops nor
multiple edges are allowed, denominated simple graphs, is of particular
importance for many modeling situations. Another important distinction
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Figure 2.3: Representation of a general graph containing two self-loops (left),
a simple graph (middle) and a digraph (right), all of them with a common set
of nodes V (G) = A,B,C,D,E. Below each graph, the corresponding node
sets E(G) are shown, with nodes being in alphabetic order for undirected
graphs (unordered pairs) and directed for the digraph (ordered pairs).

depending on the definition of the edge set is the directedness of the graph,
that will be a directed graph or digraph if these pairs are ordered (with a
directed edge being named an arc), and undirected otherwise. Figure 2.3
includes graphical examples of general, simple and directed graphs with
their underlying edge sets, for clarification.

Along this Thesis, we will refer to undirected, simple graphs unless
otherwise stated, as they provide a simple but accurate representation for
chemical reaction networks (as mentioned on Section 2.1), particularly in
terms of computational chemistry. In this way, no a priori assignment of
how a given network will be traversed is necessary to define it, allowing
further applications (such as these developed in Chapters III - V) to decide
it from the chemical information it encodes.

A graph can be not only defined as a set of lines and points, but also
as a matrix, which results a convenient representation in terms of efficient
manipulation and storage. The adjacency matrix A(G) of a simple graph
with n nodes and m edges is a n x n matrix where each element ai,j takes
the value 1 if there is an edge between the nodes (i,j), which are considered
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adjacent, and zero elsewhere.

A(G) =

A B C D E


0 1 0 1 0 A
1 0 0 1 1 B
0 0 0 1 0 C
1 1 1 0 0 D
0 1 0 0 0 E

Figure 2.4: Example graph, with labeled nodes (left) and its adjacency
matrix (right),

For non-simple graphs, ai,j would be the unrestricted number of edges
between the pair (i,j), and the diagonal elements may be distinct from zero
in the case of self-loops. For reference, the adjacency matrix for the simple
graph in Figure 2.3 is represented in Figure 2.4. It is important to recall
that every adjacency matrix depends on a given node ordering that shall be
also specified to properly define the graph.

Apart from the node-centric adjacency matrix, it is also possible to
define the incidence matrix M(G), a n x m matrix where an element mi,j

is 1 when the edge j is linked (or incident) to the node i, and 0 elsewhere
(Figure 2.5).

M(G) =

ab ad bd be cd


1 1 0 0 0 A
1 0 1 1 0 B
0 0 0 0 1 C
0 1 1 0 1 D
0 0 0 1 0 E

Figure 2.5: Example graph, with labeled nodes and edges (left) and its
incidence matrix (right).

Adjacency and incidence determine the degree of a given node in the
graph, which is the number of edges that are incident to it. The degree of a
node allows to easily characterize isolated nodes (deg(i) = 0, not adjacent

31

UNIVERSITAT ROVIRA I VIRGILI 
Unweaving complex reactivity: graph-based tools to handle chemical reaction networks 
Diego Garay Ruiz 



Chapter II. Methodology 2.2. Graph theory

to any other vertex in the network) and end nodes (deg(i) = 1, adjacent
to a single other node). From here, and related to these notions, another
important general concept is that of isomorphism: two graphs G1 and G2

are isomorphic when there is a bijective relationship between their node sets
that maps one to the other, as shown on Figure 2.6, preserving the edges.

Figure 2.6: Graph isomorphism example, with the two isomorphic graphs
at the sides and the node-to-node bijective relationship in the middle.

The corresponding adjacency and incidence matrices for two isomorphic
graphs, provided that the node and edge orderings used to construct them
are equivalent, will be equal: Equation 2.1 illustrates this for the two
isomorphic graphs in Figure 2.6.

A B C D E


A 0 1 0 1 0
B 1 0 0 1 1
C 0 0 0 1 0
D 1 1 1 0 0
E 0 1 0 0 0

=

W X Z V Y


0 1 0 1 0 W

1 0 0 1 1 X

0 0 0 1 0 Z

1 1 1 0 0 V

0 1 0 0 0 Y

(2.1)

We have already mentioned the notion of going through, or traversing, a
graph. The idea of encountering pathways to travel across a network directly
connects with the idea of switching between reaction- or profile-based views
of reactivity and graph-based reaction networks that was introduced in
Section 2.1. Following graph terminology (Figure 2.7), a given sequence
of adjacent nodes n0 → na → nb → nc → · · · → n−1 is called a walk,
which becomes a trail when all traversed edges are distinct, and a path if
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all intermediate nodes are also distinct. Finally, a closed path where the
initial and final vertices match (n0 → n−1) is a cycle, a kind of path that is
particularly common and relevant when discussing CRNs, and even more so
for treating catalytic processes (see Chapter IV).

Figure 2.7: Examples of vertex sequences on a given graph including a walk
(pink, repeating nodes and edges), a trail (yellow, unique edges but repeating
nodes), a path (purple, unique nodes and edges) and a cycle (green, unique
nodes and edges, closed path)

For a certain node pair (i,j), the shortest possible walk between the two
nodes marks the distance d(i, j) between them. For instance, for the graph
in Figure 2.7, the distance between D and E is d(D,E) = 2 by considering
the walk D → B → E instead of the larger detour D → A → B → E. In
general finding such a walk is not a straightforward task, particularly with
graphs of increasing size and complexity, and multiple algorithms have been
developed to tackle this task (i.e., Dijkstra’s algorithm [42]).

From there, we should also introduce the idea of connectedness: a graph
is connected when there is a walk for every possible pair of nodes (i,j) in
the network and thus every node is reachable from every other node. In
any other case, there would be a disconnected graph that can be expressed
as the sum of multiple individual connected graphs, named components
(Figure 2.8)

The components of the disconnected graph on the right of Figure 2.8
illustrate two more graph types: an isolated node (in yellow) and a tree (in
pink). Trees are connected graphs not containing any cycle: because of this,
several problems that can be complex for graphs in general become trivial
for trees, such as shortest path searches (as for a tree there is only a single
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Figure 2.8: Examples of connected (left) and disconnected (right) graphs,
with the three individual components of the disconnected graphs shown in
different colors.

path connecting a pair of nodes). Consequently, trees are an important part
of many algorithms and applications of Graph Theory.

From any given graph, it is possible to derive subgraphs whose node
Vsub(G) and edge Esub(G) sets are contained in the parent sets V (G) and
E(G). The easiest manner to explain subgraph construction is by considering
the deletion of nodes and/or edges from the parent graph (which would be
the difference between the parent sets and the node and edge sets containing
the vertices and edges to remove). Subgraph generation (Figure 2.9) will be
a key part of Chapter III and especially Chapter IV, founded on this kind
of network manipulation.

Figure 2.9: Examples of subgraph generation from a parent graph, removing
nodes and edges (middle graph, blue) or edges only (right, orange).

The structure at the right part of Figure 2.9, in orange, corresponds to a
spanning tree, which is defined as a fully connected, acyclic graph (fulfilling
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the definition of a tree) which spans all the nodes of the parent graph (and
thus Vsub(G) = V (G)). The generation of spanning trees from a graph (tree
growing) is a key part of numerous graph processing algorithms, and does
also play an important role in the mathematical framework of the tool that
we will present in Chapter IV to treat catalytic cycles, named gTOFfee.

In the context of algorithms related to the tree-growing strategy, and
returning to the concept of path searches introduced along the section, it
is worth discussing two core examples: the depth-first (DFS) and breadth-
first (BFS) algorithms. Both of them take a graph and generate a spanning
tree containing a set of paths across the network, following two opposite
strategies regarding which incident edge and node will be added to the
tree at every step (Figure 2.10). In DFS, the last added node is chosen
as a source, thus beginning by going deeper into the graph. In contrast,
BFS favors the nodes that were included first, therefore exploring first the
complete neighborhood of the starting point.

Figure 2.10: Spanning trees obtained by depth-first search (middle, blue)
and breadth-first search (right, orange) for a given parent graph, adapted
from Chapter 4 of Ref [41]. When two possible target nodes are tied for
preference, lexicographical ordering on node names is considered as selection
criterion.

Figure 2.10 illustrates how, although both DFS and BFS explore all
nodes in the graph, the resulting spanning trees are indeed different. Starting
from d, the first reached node is b, where the two strategies depart and
reach c through two different edges, with DFS continuing from node b
through the edge bc and BFS returning to d, which was added first to the
queue, and going through cd. From there, a is reached via the sequence
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b → e → a, generating another divergence: DFS goes on from this node and
adds the edges af and ag and BFS comes back to e adding ef and eg. This
approach serves as an example of both path search, with the branches of
the spanning trees being different paths across the network, and subgraph
generation, obtaining different trees with different traversal algorithms.

2.2.1 Graphs in Chemistry

The connection between Chemistry and Graph Theory is remarkably
deep [43, 44], even if in principle most chemists do not explicitly employ the
mathematical terminology behind Graph Theory to manage the graph-like
entities appearing in the field. On the one hand, and as discussed in Section
2.1, graphs may be used to describe the reactivity of a chemical system
(reaction network) [45], providing a very convenient representation for the
setup of automation frameworks and processing techniques, as in the current
work. A facet of graphs that we have not yet discussed, which is key for the
management of CRNs, is the possibility of assigning additional attributes to
nodes and edges, tracking not only labels and connectivity but also any kind
of information about the system that is being modeled. Hence, recalling
that CRNs match nodes with intermediates and edges with reactions (and
transition states), we may assign to these graph elements any property that
has been computed for the underlying chemical entities: geometry, energy,
free energy, etc, so the CRN can be used to organize and access the part
of the dataset generated by the calculations. This notion will be explored
along all three following chapters, but especially in Chapter V, where we
handle the transformation of reaction network graphs to knowledge graphs
conforming proper databases.

Furthermore, graphs are also an ideal tool for molecular representations:
at a conceptual level, molecules can be thought as collections of atoms
that are interconnected through bonds, or, in other words, as collections of
nodes and edges. Therefore, traditional schematic depictions of molecules
would indeed be representations of molecular graphs, characterized by atom
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identities and their connectivity (Figure 2.11).

Figure 2.11: Caffeine molecule, in traditional 2D depiction (left), as a
simplified graph without explicit hydrogens (middle) and as a complete
graph including hydrogen atoms (right). Multiple bonds are depicted as
multi-edges.

From this representation and as stated by A. Balaban [43], several
traditional problems in Chemistry are, indeed, Graph Theory problems.
For example, the determination of all constitutional isomers arising from a
given molecular formula is nothing more than obtaining the unique ways
in which a collection of atoms (nodes) can be connected, with the valence-
related constraints limiting the connectivity of a given atom being related
to the degree of the corresponding atom. From there, it is also possible to
apply the graph framework to other related, although more complicated,
aspects, such as valence isomerism, aromaticity... highlighting the depth of
the linkage between graphs and fundamental Chemistry.

To take a look into how the constitutional isomerism question could
be tackled through graphs, we will consider the example of determining
the possible chemical structures following the molecular formula CH5NO2.
From the “traditional” point of view, we should determine the number of
unsaturations and cycles (also known as “hydrogen deficiencies”) from the
molecular formula [46], which in this case is NC − NH/2 + NN/2 + 1 =
0, and determine, by hand, all the possible structures. Through Graph
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Theory, the definition of the problem becomes a bit different: we need to
obtain connected, non-isomorphic graphs from the set of 9 atomic nodes,
fulfilling the degree constraints marked by the valence of each atom. To
do this, a possible (although not exhaustive) solution would be to generate
arbitrary graphs following the degree sequence determined by the valences of
carbon, nitrogen, oxygen and hydrogen, and then filter them out to remove
isomorphic graphs and non-connected entities (Figure 2.12).

Figure 2.12: Molecular graph representations for the eight CH5NO2 isomers
characterized through the exploration of N = 10000 possible graphs with
the set of degree constraints corresponding to standard atomic valences.

While this approach does not ensure that every possible isomer is
generated, the rapid convergence of the number of unique molecules Nm = 8
at Ntest ≈ 100, together with the inspection of the obtained chemical
structures, seems to indicate a reasonable sampling. The collection includes
all the unsaturated, neutral, usual-valence molecules that would have been
proposed through chemical intuition, thus conveniently illustrating the
relationship between graphs and basic chemistry.

Beyond this more fundamental chemistry, treating molecules as graphs
has been a key part of numerous recent computational studies of chemical
systems and materials, such as the development and application of chemical
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graph neural networks (GNNs) to drug discovery [47–49], the automated
generation of reaction mechanisms and profiles [50], the prediction of
adsorption energies over metal surfaces [51] or the detection of the elementary
reactions involved in the speciation of complex metal oxides [52], among
many other examples. Therefore, although this Thesis focuses on the use
of graphs to model reaction networks and not individual molecules, the
importance of molecular graphs is undeniable and essential to contextualize
the profound relationship between Chemistry and Graph Theory.

Regarding computational chemistry, which processes and produces
tridimensional geometries, it is important to decide a consistent criterion
to assume whether two atoms are bonded, so the 3D structure and the
molecular graph can be properly mapped. The direction in which the
mapping is applied (either from the molecular geometry to the graph or
viceversa) will depend, of course, on the specific problem that is being
tackled. In general, obtaining the graph from the 3D structure is a more
simple problem, allowing the immediate definition of the graph once a set
of bonding rules has been chosen (distance thresholds, presence of Bond
Critical Points according to the Atoms in Molecules (AIM) theory [53],
etc). In contrast, embedding proper 3D structures from the connectivity
of a graph requires additional information on the distances, angles and
dihedrals expected from given atom combinations and, most often, also a
preoptimization to refine the crude geometries obtained in the initial stage,
as done in cheminformatics toolkits like RDKit [54] or OpenBabel [55].

Furthermore, there is a deep interest in transforming molecular graphs
into molecular string representations: computer-friendly notations for
molecules encoding the complete molecular structure graph as plain text.
For instance, SMILES (Simplified Molecular Input Entry System) [56, 57],
which is probably the most popular string representation, was originally
defined as a language for encoding molecular graphs through a well-defined
grammar and a set of symbols for atoms (nodes) and bonds (edges). Unlike
molecular drawings, string-based descriptors can be directly processed by
computers, and have much smaller memory requirements than mathematical
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representations such as adjacency or incidence matrices. Therefore, they
have become an essential asset in cheminformatics, with their applications
ranging from the normalization of chemical structures in databases [58,
59] to Deep Learning [60]. Alternative representations have been proposed
along the years to improve the expressivity or performance on different
tasks against SMILES, such as InChIs [61, 62], DeepSMILES [63], SELFIES
[64] or TUCAN [65]. However, the field is still under active development,
as several important limitations still exist to, for example, properly define
organometallic complexes where valences are much fuzzier than in standard
Organic Chemistry.

2.3 Coding in computational chemistry

Every computational science has its roots on providing the computing
machine with adequate instructions to do its intended job: in other words,
on programming the machine to solve the scientist’s questions. The whole
discipline of computational chemistry is founded on the development of
the necessary approximations and simplifications required to solve the
foundational equations from theoretical quantum chemistry within the
limits of the available hardware: for instance, the plethora of methods and
approximations that have been developed in order to approximate solutions
to the Schrödinger equation for multi-electron systems. Throughout the
continuous evolution of hardware in the last decades, exemplified by Moore’s
Law (Section 1.3), there has been a simultaneous development of the
accompanying software, allowing the treatment of increasingly complex
systems, not only in chemistry but also in any other areas related with
intensive computation or, in general, the use of computers. In this context,
countless programming languages have been proposed, developed and
expanded, each one bringing their own advantages, disadvantages and
idiosyncrasies to the table.

While there are many ways to classify this sheer variety of programming
languages, a coarse but useful distinction is the one between the ones
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that are compiled and the ones that are interpreted. Roughly, compiled
languages such as C or Fortran are much faster and more efficient, thus
being adequate for computationally intensive tasks: e.g., almost every ab
initio or DFT calculation software, requiring strong “number crushing”
capabilities, will be compiled. To reach this efficiency, the instructions
on the source language are translated to low-level machine instructions
during the process of compilation. However, this intermediate process
provokes a loss of flexibility: the addition of any modification to the source
code implies a recompilation of the complete program, hampering testing
and adaptation of the code to specific needs and forcing a strict input
pipeline to be defined. On the other hand, interpreted languages like
Java, R or Python do not end up directly in machine language, but are
instead executed line by line by an interpreter. In this way, interpreted
languages are much more flexible, allowing to modify the source code on-
the-fly without an intermediate compilation stage, therefore providing a
more dynamic and adaptable paradigm. Nevertheless, this comes at the cost
of a slower performance and a less precise control of how machine resources
are employed. In terms of computational chemistry, this trade-off between
versatility and efficiency makes interpreted languages ideal for information
post-processing, task automation or visualization, with the computationally
intensive tasks being taken care by high-performing compiled codes.

Among interpreted languages, Python is becoming a kind of “de facto”
standard for scientific applications, due to its clear, understandable syntax
and its huge package ecosystem. Furthermore, the main disadvantage of
Python, which is its quite lackluster performance for intensive computation,
can be overcame by delegating this kind of tasks to packages based on
compiled languages like C (e.g., NumPy), providing large speed boosts and
permitting costlier calculations to be done in an efficient manner.

While for each of the projects developed along this Thesis we have
employed different sets of specific packages that will be discussed in the
corresponding sections, there is also a set of core libraries vertebrating
scientific computing and data analysis in Python that are worth mentioning.
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First of all, NumPy [66] provides multidimensional array structures that
enable to carry out fast, efficient mathematical operations that deeply
improve the performance of calculations compared to Python’s own data
structures. NumPy is indeed at the roots of most number-oriented
applications of Python, being the basis for the rest of the so-called
“scientific ecosystem”. Then, SciPy [67] collects a large set of more specific
mathematical algorithms (integration, linear algebra, and so on), physical
constants and statistical analysis techniques, being another major stepping
stone for further scientific computation. In terms of data visualization,
MatPlotLib [68] permits the creation and customization of multiple kinds
of bidimensional plots, permitting not only the production of static images
but also the direct interaction with plots for on-the-fly exploratory analyses.
Given the focus of this Thesis on graphs and reaction networks, it is
also important to mention NetworkX [69], a library for graph creation
and management which permits a simple, versatile access to all elements
composing a graph that has been widely used across this work.

2.4 The semantic approach to data

The management and analysis of data is a complex problem and open
question which nowadays is as active as ever, as we introduced in Chapter
I. Indeed, previous sections in this methodology chapter were already
focused, in one or other way, on the different ways in which we can organize
information about chemical systems. For example, the comparison between
linear reactions and reaction networks sums up as nothing more than the
comparison of two paradigms on how to present the relationships between
the entities of a single collection of data.

In data-driven approaches, the key point is not actually about how to
store the information, but about developing sensible, shareable and scalable
models for the target data. This kind of well-structured data provides novel
manners to retrieve, explore and utilize the underlying knowledge for widely
different purposes.
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Among these more sophisticated (“smarter”) approaches to data
management, we may highlight one that was introduced more than twenty
years ago, quite before the “age of data” that we are living in nowadays:
the Semantic Web proposed by Tim Berners-Lee [70]. This Semantic Web
is an extension over the World Wide Web (WWW) aiming to add logic and
structure to the underlying data, permitting the application of reasoning
schemes and making complex inferences over the dataset. This approach to
information relies on several different protocols, as exemplified by Figure
2.13.

Figure 2.13: Semantic Web Stack illustration.

At the lowest level of the stack, we find the concept of Uniform Resource
Identifiers [71] (URIs), allowing to provide global identifiers for the different
entities in a dataset, providing a consistent notation scheme that may then
be reused to connect different datasets containing common concepts. Indeed,
the ubiquitous URLs (Uniform Resource Locator) employed to retrieve
anything which is on the Web are a specific subtype of URI which can be
retrieved in a web browser. URIs and information are then formatted as tags
through the XML [72] (eXtended Markup Language) format, which gives
syntax to the semantic documents by providing extensible and versatile
tags that allow to express both data and metadata. Then, structure
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and meaning are added through the RDF [73] (Resource Description
Framework) data model. In RDF, information (described through URIs
and XML tags) is encoded as triples of the form subject - predicate - object:
that is, we assert how a given resource (the subject) has a given property
(the predicate), linking it to either another resource or a raw data value (the
object). This model is very much in line with natural language, which is also
roughly based in analogous subject - predicate - object constructions. A set
of triples produces a non-relational database, where data is not organized in
tables as in relational databases (e.g. SQL) but instead produces a graph
through the connections between all resources in the dataset. Therefore,
subjects and objects can be seen as the nodes of the underlying graph, while
the predicates connecting them produce the edges, as shown in Figure 2.14.

Figure 2.14: Example of the RDF data model, including graph
representations for a generic triple (above) and a toy example of a RDF
graph with three assertions about benzene.

This approach, compared to SQL-like databases, greatly simplifies the
process of merging data from different sources, as the graph can be seamlessly
grown by direct addition of new triples. Moreover, the universality of
URIs does also contribute to this, identifying the matches between the
nodes taken from different sources. In this way, it becomes possible to
connect vastly different pieces of information with only a few common
elements without the need to refactor anything on the data model, just by
stating the existing relationships through a couple of new triples. However,
this wide flexibility might collide with the initial idea of reasoning over
the semantically-expressed datasets: if anything can be stated about any
resource, how can we know what a given statement truly signifies? This
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issue is tackled by defining representational vocabularies for the elements
that exist in a certain domain of knowledge: ontologies [74]. In few
words, ontologies state classes characterizing the entities in the field and
properties that express the relationships between them. Thus, there is an
effective standardization of the area of knowledge, as common terms and
structures are explicitly defined, allowing different communities to share
and reutilize them, following the paradigms of Linked Data [75]. Writing
an ontology, therefore, supposes a foundational effort on the organization
of a given area of knowledge (either a specific one or a wider one), as it is
necessary to capture the most important aspects of the field to define the
appropriate classes and properties. Nevertheless, the flexibility of the data
model allows to easily extend the ontologies, facilitating the switch from an
individual to a collaborative effort, also in line with the principles of the
Semantic Web.

It cannot be denied that the initial idea of a wide Semantic Web
taking over the World Wide Web and providing complete coverage over the
information in the Internet has not truly crystallized. Nevertheless, it has
not disappeared either, supporting efforts like Wikidata [76], an ontology-
organized collection of information which stores semantic data that then
can be fed to other projects such as Wikipedia. Moreover, semantic-based
data organization is also being used in more specialized domains, as shown
by projects as the J-Park Simulator [77] for industry and engineering. In
general, datasets that have gone through the whole semantic stack to be
expressed in terms of an ontology are denoted as knowledge graphs (KG)
or knowledge bases, where the specific entities categorized under a given
class are referred to as individuals of the KG. The language of choice for
ontologies and knowledge graphs is OWL [78] (Web Ontology Language),
which is an ontology-oriented extension of plain RDF, although alternative
formats have also been proposed (e.g. Open Biomedical Ontologies or OBO
[79]).

Scientific data is an ideal target for semantic approaches, providing,
in general, complex datasets and strong theoretical frameworks behind
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the dataset which can be readily translated to ontologies. While every
specific field or subfield would require a specific ontology, both ontologies
and their corresponding knowledge graphs may be bridged by stating
equivalences between common elements, as mentioned before. Therefore,
semantic approaches to scientific data would allow for a larger degree of
interoperability, helping multidisciplinary projects to come to shape. As
of now, ontologies have been widely adopted in biology and biomedicine
[79–81], while for other fields such as Chemistry the adoption of semantic
approaches is much less extended. An overview on some of the existing
chemical ontologies will be provided on Chapter V, as a preface to the
discussion on our efforts on treating reaction networks in a semantic manner
through a novel ontology proposal.

2.5 The ioChem-BD database

Given that most of this methodology chapter has been devoted to
strategies and approaches to the processing of data, it seems relevant to
also consider how this data is stored, as the effective starting point for
any kind of manipulation pipeline. In general, electronic structure codes
produce heterogeneous and non-standard output files, where the way in
which common properties are expressed can show wide differences across
different software packages. Moreover, the non-standard nature of these
outputs implies that changes may arise even between different versions of
the same program, difficulting manual inspection by the user and breaking
parsing workflows.

In this context, the ioChem-BD [82–84] platform provides a robust
approach to overcome these issues, transforming these heterogeneous outputs
into the structured and richly-tagged Chemical Markup Language [85–88]
(CML) format and including them in a distributed database which greatly
facilitates the retrieval and sharing of the corresponding information.
Moreover, a web interface allows to access the most relevant aspects of
the stored calculations, such as 3D molecular visualizations generated from
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geometries, energies, vibrational spectra..., both from users’ own calculations
or from results published by other researchers. This protocol, in the end,
allows to make computational chemistry results open and in tune with the
FAIR principles: Findable, Accessible, Interoperable and Recyclable [89].

Regarding the key transformation step, a set of templates (based on
the JUMBOconverters library [90]) is selected depending on the input
format, with the currently supported codes being Gaussian, ADF, VASP,
GronOR, MOLCAS, MOPAC, ORCA, QuantumEspresso, Turbomole,
Amber, GROMACS and LAMMPS. Depending on the format, either a
single file or a collection of files is processed to generate the corresponding
CML files, in compliance with the CompChem standard. The upload process
can be triggered either through the web interface or in a programatic manner
through a Linux shell client.

Figure 2.15: Schematic depiction of the core module structure of ioChem-BD
and some of the main processes of interest for handling reaction mechanisms
and networks.

Overall, the ioChem-BD service is comprised of three main modules:
Find, Browse and Create (Figure 2.15). The first one, Find, provides a
search engine over all data that has been made public across the different
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instances of the database. The last one, Create, handles the aforementioned
transformation from individual outputs to CML files, allowing the user
who generated the data to store the information in the database and work
with it individually. Finally, the Browse module allows to publish the data
collections defined in Create, making them accessible to other researchers
by assigning a DOI to the dataset.

Another relevant functionality of the Create module is the possibility to
build reports with additional information built on top of the individual
calculations stored as collections. For instance, one type of report is
the Reaction Energy Profile, in which the user inputs the sequences of
steps happening in a given chemical reaction or set of reactions, in terms
of the calculations stored in the database. From this information, it is
possible to build the corresponding profiles automatically for different energy
types (potential energy, enthalpy, Gibbs free energy...) and energy units
(kcal·mol−1, hartree, eV...). Moreover, recalling the discussion on Section
2.1, energy profiles may be reorganized as reaction networks: therefore,
this kind of reports eventually allow to express network topologies inside
ioChem-BD. The functionality to build actual reaction network graphs
from energy profiles was recently added to the platform, including the
automated detection of transition state structures through the presence of
negative frequencies to properly map nodes and edges in the resulting graph.
The generated networks can be visualized directly in the web interface or
downloaded in the standard DOT format for further processing.

As it will be discussed on the following chapters, the different projects
undertaken along this Thesis have all been connected in some or other way
to the ioChem-BD platform, encompassing new tools to add additional
information to the raw calculations in the database (Chapter III), employing
the graphs generated by ioChem-BD as input (Chapter IV) or constructing
new data structures directly fed by ioChem-BD (Chapter V).
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Taming automatically discovered networks:
amk-tools
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Chapter III. amk-tools

3.1 Automated mechanism discovery overview

Through the two previous chapters, we have already hinted at the sheer
importance of automation in modern computational chemistry: not only
to alleviate the daily workload of scientists, but to allow the exploration
and understanding of systems that are too large or too complex to be
treated in any other way. Thus, plenty of automation frameworks have
been built for computational chemistry, tackling aspects that range from
more specific issues such as conformational space exploration [91, 92] to
customizable, general-purpose workflows that allow users to handle massive
sets of calculations with minimal direct input [29].

The characterization of reaction mechanisms is a subfield where
automated searches would be particularly useful, enabling a very profound
investigation of all possible reactive pathways occurring for a given chemical
system. In this manner, human-introduced mistakes such as the neglection
of unexpected low-energy routes or the lack of consideration of competing
side reactions can be avoided, attaining a more complete description. A
perfect mechanism search engine would ensure to always find the best
possible mechanism for a given computational setup (method, basis set...),
obtaining a complete description of the reactive behavior of the system.
However, and as it might be expected, this ideal concept is mostly a chimera,
hindered by the enormous quantity of calculations it would require and
by the non-triviality of the chemical space exploration problem: there is
no obvious or unique algorithm to inspect how a molecule or collection of
molecules may evolve. In this context, several concepts have been proposed
along the years to develop suitable protocols for this kind of explorations,
involving widely different philosophies with the common ground of ultimately
“growing” a CRN [93]. For instance, the Artificial Force-Induced Reaction
(AFIR) method from Maeda and Morokuma [94–97] allows to push two
molecular fragments together (or to pull them apart) through the use of
an artificial force, reshaping the PES of the system to cancel out energy
barriers and obtain the so-called AFIR paths by minimizing the modified
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function. Moreover, the maximum-energy point of these paths provides
a reasonable guess for transition state optimization, thus permitting an
easy exploration of the major points of interest of the PES. An alternative
proposal by Maeda and Ohno is the Anharmonic Downward Distortion
Following (ADDF) method [98–100] (formerly named Scaled Hypersphere
Search or SHS), which follows the distortion between the potential energy
surface and the curve for a harmonic potential centered at the position of
the minimum. The corresponding ADD curve built from the minimum,
again, provides reasonable TS guesses that can be refined to readily locate
true saddle points on the original PES. These two methods are implemented
in the Global Reaction Route Mapping (GRRM) software [97, 101], which
allows the automated application of these algorithms to find sequences of
minima and transition states to characterize large sections of the overall
PES.

Another approach to the automated mechanism search problem involves
the use of molecular dynamics simulations to sample the PES of the
target system. Given that the objective is to detect reactive events,
these MD simulations shall not employ traditional force fields (molecular
mechanics), which cannot modify atom connectivity, but instead methods
that can describe the electronic structure of the system (ab initio, DFT,
semiempirical), balancing accuracy and computational cost depending on
the application. However, the main drawback of employing MD for reactivity
studies is that chemical reactions are infrequent events that would require
very long simulation times to be observed. As this limits the applicability
of MD to sample single reactive events, plain direct dynamics are rendered
completely unfeasible for the characterization of mechanisms that are
composed by plenty of possible events. Therefore, the application of MD
simulations to reactive processes requires to resort to accelerated molecular
dynamics, in which different strategies are employed to bias the dynamics
and explore the chemical space effectively. Among these enhanced sampling
techniques, in a very general sense, we may highlight two widely used
approaches: metadynamics [102, 103] and umbrella sampling [104, 105].
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Both techniques allow the MD simulation to explore the energy landscape
of the system according to a set of coordinates or collective variables that
describe the key atomic displacements for a given reaction. In terms of
mechanism generation, however, the predefinition of collective variables
could be problematic, and other accelerated dynamics techniques have been
employed such as temperature-accelerated dynamics [106, 107], boxed MD
[108, 109] or trajectory parallelization [110]. From there, Martínez-Núñez
and coworkers developed AutoMeKin [111–113] (Automated Mechanism
and Kinetics, formerly known as tsscds, Transition State Search Using
Chemical Dynamics Simulations), which combines the use of accelerated
MD with a structure guess/TS optimization protocol similar to that of
GRRM. In this way, transition states appearing along the MD simulation
are sampled, optimized and connected with their corresponding minima,
eventually building a set of reaction paths which conforms a chemical
reaction network. Other protocol also involving MD simulations is the ab
initio nanoreactor by Martinez and coworkers [114], where direct ab initio
molecular dynamics (AIMD) are accelerated by applying a virtual piston to
compress the system and bring the reactive molecules together. Through
this technique, it becomes possible to model situations where many reactants
are involved, such as simulations of the Urey-Miller [115] experiment for the
formation of organic moleculers from the atmospheric components of the
early Earth.

Along this chapter, we will be focusing, specifically, on processing and
treating the reaction networks generated by AutoMeKin. However, as we
outlined before, the production of CRNs is the common goal of reaction
mechanism discovery tools. Thus, in spite of the different formats in which
the network itself and the accompanying electronic structure calculations
are generated, the general strategy that we propose here could be adapted to
other codes in a relatively easy manner. As a final note and for consistency
with the nomenclature employed in the program and its related literature,
throughout the chapter we will employ the abbreviation RXNet to refer to
reaction networks, instead of CRN as in previous chapters.
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3.1.1 Workflow of AutoMeKin

In very few words, AutoMeKin’s main feature is the generation of reaction
networks from a single molecular structure, exploring the different reaction
paths that this initial substrate may undergo and eventually characterizing
a set of feasible transition states connecting the structure with contiguous
minima in the PES. Then, the new minima are used to start additional
iterations of the protocol, growing the network as outlined in Figure 3.1
until a satisfactory chemical space coverage has been attained.

Figure 3.1: Schematic depiction of AutoMeKin workflow.

Giving some more detail, a key point of the workflow is the integration of
two different levels of theory, with a lower one (LL) used to carry out initial
preoptimizations and the molecular dynamics themselves, which should be
a very affordable method (e.g. a semiempirical), and a higher one (HL)
used to refine the obtained structures, (e.g. DFT or ab initio).

First of all, the proposed initial structure is optimized with the LL
method, obtaining the corresponding frequencies. An ensemble of M
vibrationally excited structures is then generated, so M MD simulations
with the LL method will be run. A large degree of vibrational excitation is
employed there to ensure the exploration of high-energy regions of the PES
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with short simulation times on the hundreds of picoseconds. Depending on
the simulation conditions, either excitation energies (microcanonical NVE
ensemble) or temperatures (canonical NVT ensemble) will be used.

Then, the corresponding trajectories are analyzed in order to extract
the corresponding reaction paths, through the Bond Breakage Formation
Search (BBFS) algorithm, which allows to detect changes in the distances
between atoms and their neighbors inside a certain time window. Several
reactive processes can be characterized with the BBFS algorithm, from
simple dissociations to 3-center o 4-center elimination or isomerization
processes where concerted atom displacements take place. The use of time
windows instead of instantaneous time frames is precisely done to avoid
problems with the identification of these concerted displacements, properly
characterizing the reaction path.

From there, the point at which the distance change is first detected
is stored as the transition step of the path, and is used for the following
structure selection stage of the protocol. Here, not only the transition step
is selected, but also its neighboring points (after and before), producing an
ensemble of n TS candidates for LL optimization. This ensemble generation
increases the chance of obtaining a valid saddle point after optimization,
as the transition step itself might not be the ideal guess in all situations.
Finally, TSs whose optimization is successful will be added to a list of TS
structures at the LL level, which later on will be checked to avoid having
repeated transition states. This is achieved by defining the molecular graphs
of the computed structures, and checking their isomorphism by means of
Social Permutation Invariant (SPRINT) coordinates, which have the main
advantage of being robust to the permutation of equivalent atoms (e.g.,
hydrogens in a methyl group). From the obtained TSs, the corresponding
minima that a given TS connects are characterized by Intrinsic Reaction
Coordinate (IRC) calculations, to then be optimized at the LL level and
passed to a list of minima, which is also the subject of a graph-based
uniqueness check analogous to that of transition states. At this point, the
process can be iterated, using all the minima collected in the first round for
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subsequent excitation - MD - TS optimization - IRC - minimum optimization
passes. Of course, while more iterations imply a more detailed mechanistic
description, they also increase the cost: the final choice of how many rounds
of iteration shall be done depends mostly on the system being characterized
and the available resources.

In any case, once the iterative process is finished, the final ensembles
of minima and transition states will be recomputed with the HL method,
obtaining more reliable geometries and energies for the involved structures.
From there, the final reaction network encoding the mechanism that has
been discovered can be built, storing the connectivity information generated
through the algorithm.

Apart from the reaction network generation workflow discussed in the
previous paragraphs, several new features and tools have been added to
the program since its first development. For example, the mechanistic
exploration has been improved by adding new accelerated MD approaches
like the Boxed MD (BXDE) from Glowacki and coworkers [108, 109],
the capability to treat Van der Waals association complexes [116] or
even an alternative, non-MD-based chemical space search method, named
ChemKnow and based on heuristic reactivity rules and graph transformations
[113]. Moreover, the treatment of the produced RXNets has also been
improved, analyzing graph properties or carrying out Kinetic Monte Carlo
(KMC) simulations [117, 118] to solve the kinetics of the system and obtain
the population of the different states of the network.

3.1.2 Understanding automatically generated networks

One main drawback of this kind of automated mechanism discovery
platforms, shared with many other automation and high-throughput
calculation strategies is the complexity of their output. Even with the
parsing of the large quantity of the generated output files being handled
by the automation program itself, the interpretation of complex networks
containing many intermediates and transition states is not trivial. This
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follows what we stated in Chapter II when discussing the different depictions
of reactivity, with CRNs (a.k.a. RXNets) being ideal to represent intricate
mechanisms, but far from obvious to grasp.

Consequently, although the very detailed RXNets generated by
automated mechanism discovery tools imply, in general, a leap forward
in the description of chemical systems compared with manual, intuition-
guided searches, the advance in the actual comprehension of the mechanism
can actually be hindered by this complexity. This mismatch supposes one
of the central points of this Thesis, being the main reason behind both this
chapter and the upcoming Chapter IV, targetting, respectively, mechanism
discovery and catalytic activity.

Here, we propose interactive visualization as a solution to alleviate
this complexity, kind of “reconnecting” the more abstract network entity
containing nodes and edges with the chemical entities that stand behind it.
Thus, we developed the amk-tools library [119, 120] to first filter the large
networks generated by AutoMeKin through criteria such as energy thresholds,
the presence of certain species or fragments, or maximum lengths for target
reaction pathways, and then generate interactive dashboards to visualize
these networks. The dashboards provide an unified interface to explore the
network, freely panning and zooming on its nodes and edges, looking up
the energies, geometries and even vibrational normal modes of the species
associated to each of them, and visualizing and filtering the corresponding
free energy profiles. We believe this approach to provide a much clearer
view of the chemistry that is encoded in a given RXNet, facilitating its
interpretation and making this kind of methods more accessible to a wider
community. Beyond the generation of these dashboards, the library also
streamlines the automatic upload of the obtained RXNets to ioChem-BD,
thus putting together the individual calculations generated and driven by
the program and the underlying network structure, in consistency with the
principles outlined in Chapters I and II that we will also revisit in Chapter
V.
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3.2 Program details

Figure 3.2: Schematic depiction of amk-tools workflow, comprised by
the three main modules amk-RXReader (output parsing), amk-ioChem
(automated upload of RXNets to ioChem-BD) and amk-RXVisualizer
(generation of interactive visualizations).

As shown in Figure 3.2, our code is composed by three distinct modules,
with amk-RXReader being in charge of i) parsing AutoMeKin output,
including connectivity and calculation information, and ii) filtering it in
order to generate the desired RXNet, amk-RXVisualizer for iii) generating
of interactive visualization dashboards and amk-ioChem for iv) uploading
the network and its calculations to ioChem-BD. We will provide details on
how each of these four tasks is carried out, to give a clearer idea on how the
library is designed and which are its capabilities.

3.2.1 Processing pipeline

Although the raw input and output files of the electronic structure
program that is interfaced are also available, and will be targetted when
dealing with the ioChem-BD upload process, the information of the reaction
network is not directly extracted from there, but instead from pre-parsed files
built along the mechanism discovery protocol (Figure 3.2). It is important
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to note that all the files we will discuss are available for both the LL and
the HL calculations, allowing to create networks and visualizations at any
of these levels.

Figure 3.3: Schematic depiction of the parsing protocol of amk-RXReader.

The RXNet files provide graph connectivity, containing numbered
transition states, their relative energies in kcal · mol−1 (against the lowest-
lying minimum) and the reaction step they correspond to, indicating the
connected minima and the reversibility or irreversibility of the process. This
reversibility information is not employed at all: following the principles
outlined in Section 2.1, networks are here treated as undirected graphs,
not including any preassumption on the direction along which a given
transformation shall occur. Several different RXNet files are produced,
containing different degrees of detail on the target mechanism: from the
complete network including all the discovered minima and saddle points, to
a strongly simplified subgraph where only the paths deemed relevant by the
KMC simulations are included.

The most relevant information about the individual intermediates and
transition states (energies, vibrations, geometry...) is collected in databases,
simplifying the access to the properties of each calculation and consequently
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the population of the final reaction network graph. Both RXNets and
databases set a distinction between two types of minima: fragmented
entities, which are labeled as products (PR) and non-fragmented species
that are just named minima (MIN). Finally, the vibrational normal modes
of minima and transition states that are required to embed normal mode
animations in the visualization dashboards are not directly included in the
DBs, but instead stored as independent files.

The parsing process (Figure 3.3) begins by processing the RXNet file
of choice, storing a mapping between the indices of the transition states
and the minima that they connect to obtain the core network connectivity.
Then, the databases are queried to retrieve the energy, ZPE, geometry and
frequencies for every TS and minimum. For products (fragmented minima),
the stoichiometry (or “formula”) of the fragmentation that has taken place
is also extracted at this poing. When TS energy is absent, as it happens
when employing the barrierless RXNet (which does not have proper TSs)
the energy of the highest-lying intermediate it connects is employed instead,
with all other fields being left blank. Then, relative energies are computed
using the most stable minimum as reference state. In general, the energies
reported by the current version of the code (which are all computed in this
part of the workflow) are electronic energies with zero-point vibrational
energy corrections. Through this iterative process over the connectivity
table, there is a check for repeated steps where the same minima are joined
by more than one transition state, storing only the lowest-energy TS. This
situation might happen, for instance, when using the coarse-grained RXNet
which collapses conformers resulting from different IRCs, allowing multiple
transition states to arrive at the same minimum. Once all the connectivity
table has been processed, a NetworkX Graph object is generated with data
from the calculations stored as node and edge attributes. Optionally, it
is also possible to go through the MOLDEN files containing normal mode
displacements and assign them as additional element properties on the
pregenerated graph.
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3.2.2 Filtering pipeline

Although the RXNet selection on its own already provides some degree
of filtering, especially if the relevant network containing only the kinetically
important pathways is used, the amk-RXReader module provides additional
tools to filter out unwanted sections of the reaction network graph and
simplify the target visualization. This capability is deeply ingrained with
the detection of reaction paths across the network, as one of the filtering
constraints that is available is precisely the selection of a subgraph containing
only paths with a given origin and/or end and of a certain maximum length.
Thus, we will start the discussion of filtering by commenting on the path
search process: recalling the representation interchangeability mentioned in
Section 2.1, it is possible to go back and forth between exhaustive lists of
linear paths and interconnected reaction networks. Therefore, it is possible
to filter a network in terms of profiles and recover the corresponding subgraph
later on.

In general, graph traversal is a non-trivial question in graph theory, as
stated in Section 2.3. Two types of path search are available, depending
on the specification of source and target nodes. First, it is possible to do a
brute-force search of all pathways encoded in the network, specifying only
the starting point. Currently, the available implementation of this search
starts by determining cyclic pathways in the network, decomposing the
graph to its cycle basis and transforming each cycle of this basis to a path.
Then, any edges that are yet untraversed are added as two-node, one-edge
branches to the profile set. In its current state, the brute-force search is not
too useful as an exploratory tool, as it will likely generate many very short
profiles that do not provide too much information on their own. However,
the protocol is included to allow the exhaustive transformation of a RXNet
to a complete profile set, which is required for further applications such as
the ioChem-BD connection.

In contrast, if both source and target are specified, a NetworkX built-in
path search is carried out, using a modified depth-first search algorithm
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which takes the maximum length of the path between the two nodes as
an additional argument. When using this approach, it is possible to state
several source and target nodes, with the possibility of only specifying a
given fragment stoichiometry instead of a specific node name. In this way,
the network can be effectively filtered to only include the paths of a certain
length between a starting point of interest (likely, the energy minimum) and
a set of products.

3.2.3 Visualization pipeline

The visualization module is based on the Bokeh library [121] which
allows for an easy generation of data analysis dashboards bridging Python
code with webpage-like services relying on HTML and JavaScript that can
be accessed through a web browser. In this way, dashboards are generated
as independent and cross-platform HTML files not requiring a live Python
server running behind, allowing for easier sharing and collaboration.

Figure 3.4: Schematic outline of the dashboards produced by amk-
RXVisualizer, including view types and the major functionalities available
for each one. Left, main network visualization, middle, 3D molecular model,
right, energy profile mode.

The resulting dashboards contain the panels outlined in Figure 3.4,
with the network view always present on the left side and the right side
switching between the molecule and profile views. In the network panel,
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the RXNet parsed and filtered by amk-RXReader is presented, allowing
to click on nodes and edges to select intermediates and transition states,
freely zooming and moving around the reaction network to focus on specific
sections for exploration or taking snapshots. The 3D models corresponding
to the entities selected in this view will be shown in the molecule view. It
is also possible to choose and load the different vibrational normal modes
of a given molecule, showing the corresponding frequency values in cm−1.
Due to the philosophy of our code, all required information needs to be
included explicitly in the HTML file, making it larger in size when a lot of
data is introduced. To limit this size, it is possible to limit the number of
vibrational modes that are processed when generating the visualization.

The molecular model view is powered by JSMol, an open-source
JavaScript tool for the visualization of molecular structures which is widely
used in browser-based chemistry tools such as ioChem-BD. While the own
interface of the dashboard permits to carry out all the basic interactions
with the molecule view, plenty of additional options are available through
JSMol’s own interface, enabling a deeper customization of the overall view.

Finally, it is also possible to visualize the reaction paths encoded in the
network through the interactive profile view. While by default the complete
set of available profiles is shown, is it possible to filter them according to
either a maximum energy value (removing all profiles that have species
exceeding the specified threshold) or the presence of the entities selected
in the network graph. This post-filtering, combined with the previous
network reduction, permits to easily explore and highlight different reaction
routes encoded in a complex network, e.g. isolating the pathways leading to
different product fragments, in a very simple and user-friendly manner.

3.2.4 ioChem-BD pipeline

While visualization dashboards can be directly shared to facilitate the
direct exploration of a given reaction network, the data encoded inside them
is not really prepared to be read or parsed, but instead to just feed the
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visualization. Moreover, only a subset of the information generated from the
actual calculations is available on the dashboard. In contrast, ioChem-BD,
introduced in Section 2.5, is a much more robust solution for data storage
and sharing which can parse and host all the calculations generated through
the automated mechanism characterization.

However, a direct mass upload of all calculation outputs will not be an
adequate solution, as the chemically relevant information does not come from
the isolated calculations but from the combination of these with the RXNet
structure discovered along the mechanistic search. Therefore, an adequate
protocol for connecting AutoMeKin and ioChem-BD will necessarily require
to include this reaction network structure in the platform together with
the calculations. This is achieved with the amk-ioChem module of amk-
tools, which allows to go through the reaction network (as parsed by amk-
RXReader) to generate a report in the platform containing connectivity
information, linking it with the uploaded calculations to actually transfer
the complete RXNet to the database.

Figure 3.5: Scheme depicting amk-ioChem workflow.

While the workflow outlined in Figure 3.5 is quite simple, it is important
to follow a certain order of steps to properly interlink the collection and the
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corresponding report.
First of all, the reaction network must be parsed to have a graph

object, just like in the previous modules. Then, given that the definition of
connectivity in ioChem-BD needs to be done by specifying energy profiles,
it is necessary to transform the graph to a complete set of profiles including
all connections in the RXNet. As explained when discussing filtering, this
can be done either through a simple path search specifying sources and
targets, or in a more automated fashion including each and every edge in
the network. The choice of one or the other approach would depend on
the specific target situation, making it possible to include only the paths of
interest or to ensure to include everything that has been generated. Then,
the next step is to map the stages in the profiles with the corresponding
output files, eventually extracting two pìeces of information for the next step
of the chain: a list of all found profiles and a mapping between calculation
names and their corresponding input and output files.

The distinction between profile stages and individual molecules and its
associated calculations is an important topic for properly handling reaction
networks, which we will thoroughly comment on Chapter V as part of
the formalization of CRNs tackled in that chapter. Stages, in general, do
not correspond to individual molecular entities, but to sets of molecules
that need to be considered altogether to achieve mass balance along the
profile, so relative energies can be calculated. In the current context, most
stages depend on an unique molecule and circumvent this issue, except for
fragmented products, where each node does depend on multiple independent
calculations (one per fragment).

To further clarify this aspect, Figure 3.6 shows the complete mapping
sequence from a given node in the reaction network to the final identifiers
generated after uploading the corresponding output files, highlighting how
fragmented products involve multiple output files and therefore multiple
items in the database. These items would eventually be linked to the
corresponding fragmented stages through the stoichiometry information
that is included with the profile definition.
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Figure 3.6: Example of the data pipeline in amk-ioChem, for either a
fragmented product (above) or an intermediate (below).

Next, all calculations associated to the reaction network are automatically
uploaded to ioChem-BD, pushing the input and output files. A key point
of this part of the workflow is that the identifier of the calculation in the
database is registered for every upload (as shown in Figures 3.5 and 3.6),
so the items in the collection can be properly referenced. Finally, profile
information is employed to define a set of reaction sequences that can be
pushed to the database as reaction energy profiles inside a report (Section
2.5), to define network topology in the platform.

As of now, we have only described the different elements that comprise
the amk-tools library and how they are connected to orchestrate the
workflow in Figure 3.2. To give further clarification of the capabilities
of our approach we will now present an example reaction network discovered
by AutoMeKin, showcasing how our code streamlines its analysis, exploration
and interpretation.

3.3 Application: the unimolecular decomposition
of indole

Indole (C8H7N) is a 16-atom heterocyclic aromatic compound (Figure
3.7) including fused pyrrole and benzene rings which is present in widely
different sources and has been shown to be relevant in multiple fields [122].
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Figure 3.7: Indole molecule and indole-a radical resulting from hydrogen
abstraction.

For example, indole is known to act as an intermediate on the biosynthetic
route of the essential aminoacid tryptophan [123] and as a microbial
intercellular signal [124]. It is also known to be an important nitrogen-
containing component of coal tar [125, 126], from which it can be extracted
and purified. Consequently, the decomposition routes of N-heterocyclic
coal components such as indole are important in the more general study of
coal combustion and pyrolysis, given that they may lead to the production
of contaminant volatile nitrogen oxides. Because of this, computational
studies unraveling the mechanisms for the pyrolytic decomposition of indole
can be valuable for environmental chemistry. Recently, Liu and coworkers
reported a DFT-based study on the decomposition channels leading to
HCN and ammonia [127], whose previous exploration involved, mostly,
experimental studies [128, 129]. However, the harsh conditions that coal
pyrolysis implies make indole decomposition very likely to occur across
a large number of possible pathways, providing an ideal case study for
automating the mechanistic search instead on focusing on intuition-driven
routes only.

Astrochemistry is another field in which indole is expected to play an
important role, although the molecule itself has not yet been unambiguously
detected in the interstellar medium (ISM). Due to its small size and
chemical interest (simple, aromatic, N-bearing system), indole could take
part in multiple important reaction routes in the ISM. This environment
is characterized by very low molecule densities and temperatures, whose
reactivity is governed by barrierless or quasi-barrierless processes. Because
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of this, and also taking into account the difficulties in confirming the
presence of specific molecules in the ISM (employing techniques such as
high-precision microwave spectroscopy), computational studies are essential
for astrochemistry, proposing feasible reaction routes and aiding the spectral
characterization. With all of this in mind, the automated exploration of
the decomposition network of indole could also provide novel insights on
possible formation channels, elucidating feasible chemical roles for this
molecule inside the ISM. Assuming indole to be present in the ISM, its
photolysis is already known to be a source of HCN via internal conversion
from the excited to the ground state [130, 131]. Thus, a thorough mechanistic
study could ascertain whether it can also lead to the isomeric HNC radical
and therefore shed light into the yet unexplained branching ratio between
HCN and HNC that has been found in the ISM [132–134].

Prompted by this interesting reactivity in pyrolytic and astrochemical
processes, we explored the decomposition networks of both indole and
the radical resulting from abstracting the hydrogen atom bonded to N
(Figure 3.7) through AutoMeKin, using the resulting RXNets to test the
visualization capabilities of amk-tools. In contrast with the general scheme
that was outlined before (Figure 3.1), here we employed three different
levels of theory for the overall study. The automated part of the protocol
involved the semiempirical PM7 as the LL (or Level1) method and HF/3-
21G as the HL (Level2) used for refinement and reoptimization of the LL
network. From there, the pathways which we deemed relevant for our
purposes, involving the formation of HCN, HNC, CN and NH2 radicals for
pyrolysis and a barrierless channel involving methylene radical for indole
production in the ISM were recomputed at a higher (Level3) level of theory:
CCSD(T)/aug-cc-pVTZ//M06-2X/MG3S.

Regarding simulation parameters, the complete LL workflow from Figure
3.1 was carried out for a total of 30 iterations, using m = 500 MD
trajectories of 0.5 ps per set. Saddle point guesses with imaginary frequencies
below a 200i cm−1 threshold were discarded from the protocol. Furthermore,
kinetic simulations were done using the RRKM theory to compute reaction
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rates and a KMC excitation energy of 250 kcal · mol−1.
Before proceeding with the application of our library to analyze these

results chemically, a couple of considerations on the six (Level1, Level2 and
Level3 for indole and indole-a) reaction networks can be of interest (Table
3.1).

Indole Indole-a
Level1 Level2 Level3 Level1 Level2 Level3

Nodes 1973 1581 31 1360 566 13
Edges 2228 1878 34 1533 642 14

Table 3.1: Network sizes for the Level1, Level2 and Level3 networks
computed for indole and indole-a decomposition.

For the two first levels, we will consider the coarse-grained networks
including the barrierless channels, while the Level3, as commented before,
contains a subset of fragmentation pathways leading to the small molecules
and radicals of interest in pyrolysis and astrochemistry. We can see how the
neutral indole network at the lowest level has almost 2000 nodes, which get
reduced to around only 1600 when going from PM7 to the HF calculations.
The huge leap between Level2 and Level3, keeping only 2% of the nodes at
the CCSD(T)//M06-2X compound method, comes from two main factors:
limiting the overall computational cost (regarding the costs of the Level3
method) and isolating the fragmentations of interest from the dataset from
the numerous alternative reaction pathways that arise from indole.

Orig. L=8 L=7 L=6 L=5 L=4 L=8* L=4*
Nodes 1581 410 392 348 251 129 119 45
Edges 1878 592 562 500 355 170 173 57
%red 100 26 25 22 16 8.1 7.5 2.8

Table 3.2: Network sizes for Level2 calculations for indole, including only
pathways to selected fragments, with varying maximum accepted path
lengths (from 8 to 4). Entries marked with an asterisk consider a threshold
energy of 150.0 kcal · mol−1, discarding paths involving structures with
higher energies. %red refers to the percentual proportion of nodes in the
reduced graph against the parent Level2 network.
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Starting from the Level2 network, we tested the path-related filtering
capabilities of our code, considering different values for the maximum
path length between the source node (the minimum-energy structure)
and the desired fragments (CN, HNC/HCN, NH2 and CH2). To do this,
we determined the number of nodes and edges remaining in the network
depending on this cutoff path length (Table 3.2).

From there, we can see the clear effect that both path length and
threshold energy filters have on the number of nodes and edges of the
network. Even with a relatively large cutoff path length L=8, the number
of intermediates in the RXNet is reduced to only a 26% of the original
number if only this criterion is used, and to a 7.5% if the energy threshold
is used too. Using shorter path lengths, the number of nodes keeps lowering,
with the L=4 network having 129 (8.1%) or 45 (2.8%) nodes, without and
with energy filtering. It is this manageable 45-node network which was
eventually used for Level3 calculations, as the combination of the short path
cutoff and energy threshold enforcement is expected to isolate only the most
contributing reaction pathways.

Apart from the general numeric analysis outlined in Tables 3.1 and 3.2,
we should also provide a visual idea on how the corresponding networks
look at different degrees of filtering, as shown in Figure 3.8. While the
complete network (top left) looks, as expected, completely untractable, the
filtered graphs are much more manageable and thus chemically interpretable,
especially under the interactive visualization framework we propose.

We may then consider an analogous analysis and representation for the
RXNets of indole-a decomposition, considering different extents of filtering.
As expected from the smaller initial number of nodes, the filtered indole-a
RXNets (Table 3.3, Figure 3.9) are remarkably smaller than those for neutral
indole: the L=4* network used as a reference for the Level3 calculations
has only 16 nodes, achieving a 2.5% of the initial size which is very much in
line with the reduction of the neutral indole RXNet.

From there on, we will focus on the Level3 networks for both indole and
indole-a, analyzing the multiple fragmentation pathways that they encode
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Figure 3.8: Level2 reaction networks for indole decomposition, including
the full network (top left) and the filtered graphs with path length cutoffs
L=8 (above, right), L=6 (below, left) and L=4 including a 150 kcal · mol−1

energy threshold (below, right)

and the interest of these in the contexts of pyrolysis and astrochemistry.
Some of the intermediates and transition states appearing on the Level2
filtered networks used as reference (L=4 path cutoff, energy threshold of
150.0 kcal·mol−1) were not found to be proper minima or saddle points under
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Orig. L=8 L=6 L=4 L=8* L=4*
Nodes 566 146 85 51 57 16
Edges 642 180 96 56 69 17
%red 100 23 13 7.9 8.9 2.5

Table 3.3: Network sizes for Level2 calculations for indole-a, including
only pathways to selected fragments, with varying maximum accepted path
lengths (from 8 to 4). Entries marked with an asterisk consider a threshold
energy of 150.0 kcal · mol−1, discarding paths involving structures with
higher energies. %red refers to the percentual proportion of nodes in the
reduced graph against the parent Level2 network.

Figure 3.9: Level2 reaction networks for indole-a decomposition, including
the full network (left) and the filtered graph with path length cutoff L=4
including a 150 kcal · mol−1 energy threshold (right).

the Level3 method, thus obtaining slightly different RXNets. Moreover,
some channels which were below the threshold for Level2 calculations were
higher in energy for Level3 results: despite being available, these will not be
considered in the following reactivity discussion, which only regards these
pathways below 150.0 kcal ·mol−1. At this point, and before proceeding with
the chemical analysis of the RXNets, we will present the actual interface
of the dashboards produced for this system, illustrating the panels that
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were outlined in the previous section (Figure 3.4) to give a better idea on
how this approach may assist with the navigation across the RXNet for
indole (always within the limitations of the written format, only allowing
static images to be presented). Nevertheless, interested readers may find
the corresponding HTML dashboards for both indole and indole-a in the
ioChem-BD repository [135].

Figure 3.10: Network visualization panel for the Level3 RXNet for indole
decomposition.

The network view (Figure 3.10), apart from the RXNet itself and the
main controls summarized in Figure 3.4 presents a set of tools for navigating
across the network, including the selection of nodes and edges or the depiction
of their energies by hovering, as illustrated in the image for the species
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MIN2.

Figure 3.11: Molecule visualization panel, depicting the intermediate MIN2
for the Level3 RXNet for indole decomposition.

This view is always presented side-to-side with either the molecule
(Figure 3.11) or the profile (Figure 3.12) visualizations, which can be switched
through the “Show profile” checkbox appearing at the bottom right of the
corresponding panels.

After presenting the toolkit, we will switch the focus to the analysis
of the chemistry of indole decomposition. As stated at the beginning of
the section, the pyrolysis of indole is known to be a source of nitrogen
oxides (NOx) upon burning coal tar, mainly through the oxidation of HCN
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Figure 3.12: Profile visualization panel, showing profiles involving the
transition state TS86, for the RXNet of indole decomposition.

and NH3. To properly explore the formation of these two species, we shall
consider not only the direct production routes, but also these leading to
immediate radical precursors (CN and NH2) and to the isomeric HNC
molecule. To contextualize our results and justify the interest of applying
automated discovery methods to this system, we will compare the obtained
decomposition channels with these reported by Liu and coworkers [127]
through a B3LYP/6-31G(d,p) traditional mechanistic search.

Starting with hydrogen cyanide formation and grouping together the
channels from indole and from the indole-a radical, we determined a total
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Figure 3.13: Energy profiles for indole (first and second row) and indole-a
(bottom row) decomposition channels leading to HCN or HNC production.
Reported energies are potential energies in kcal · mol−1, including zero-point
energy.
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of five paths leading to HCN, four to HNC and nine to CN. In contrast,
the previous DFT study did not include any route for the direct production
of either HCN or HNC, only characterizing CN-forming channels. From
these previously reported CN channels, two of them (labeled path-b and
path-c in Ref. [127]) start from radicals that we are not considering in
this study, abstracting hydrogen from the α and β positions of the pyrrolic
ring, and thus are out of our current scope. On the other side, the other
three reported pathways are effectively reproduced and identified by the
automated protocol.

We will start the discussion with the nine paths leading to HCN and
HNC radicals (Figure 3.13), grouping together all pathways sharing the
same hydrocarbon fragment to obtain a total of six reaction channels. From
this set of profiles, we see how HCN-I is the lowest-energy channel of the
bunch and also one of the shortest, forming HCN in only three steps, thus
involving one less stage than all other channels except for HNC-I. Although
this simplicity should somehow favor this pathway against longer ones, the
larger barriers of all these transformations together with the harsh conditions
implied by pyrolysis will likely imply all these pathways to be intertwined
and take place simultaneously, producing mixtures of the corresponding
C7H6 (or C7H5 in the case of indole-a) side fragments. This situation is,
indeed, a clear example of the duality that comes with representing complex
reactive processes through either energy profiles or reaction networks. While
the profiles in Figure 3.13 give an immediate idea of the accessibility of the
proposed reactive channels, they do not make the high interconnectivity of
the network clear enough. A more careful look on the profiles shows that
many intermediates and transition states are shared between the different
profiles, such as TS7 and MIN22 appearing in all four routes that start from
indole, or the high similarity between the (ii) and (ii’) pathways in HCN-II
and HNC-II. If we isolate the part of the reaction network corresponding
to these channels, effectively switching the representation from profiles to
networks, we obtain the graphs in Figure 3.14.

This depiction makes the entwinment of the pathways that arise
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Figure 3.14: Reaction network representation for HCN- and HNC-producing
pathways in indole (left) and indole-a (right) decomposition. Pathways
are shaded with the same colors as in Figure 3.13, with the part in indole
network that is shared by multiple channels being in grey.

from indole much more evident, highlighting, for instance, how every
fragmentation route starting from MIN2 must necessarily go through either
MIN22 or MIN23. Another aspect that becomes much more evident under
this depiction is how the already formed fragments can isomerize by entering
back in the reactive loop, which might be missed from the linear energy
profiles. In the context of this chapter, the amk-tools framework simplifies
the integration of the two approaches, leveraging the advantageous points
that each kind of representation brings.

We may then do an analogous analysis for the pathways leading to CN
radical (Figure 3.15), comparing them with the mechanism reported by Liu
et al. Here, while all the pathways starting from indole-a end up at the same
product (labeled PR193), they are depicted as distinct reaction channels
due to their distinct path lengths.

The CN-I channel includes two of the pathways reported in the preceding
DFT study [127], with CN-i corresponding to Path-1 and CN-i’ to Path-3.
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Figure 3.15: Energy profiles for indole (first row, middle row left) and
indole-a (middle row right, bottom row) decomposition channels leading
to CN production. Reported energies are potential energies in kcal · mol−1,
including zero-point energy.
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The corresponding product (PR342) is in fact the most stable CN + C7Hn

(n = 7,6 depending on the starting species) fragmentation of the set, thus
enthalpically favoring the process. CN-II and CN-III include, respectively,
one and three alternate pathways that were not found in the previous study,
involving one more step than CN-I. As for indole-a decomposition, CN-a-II
mimics Path-a from the previous study, with CN-a-I providing an unreported
alternate and quite direct two-step pathway where hydrogen transfer and
carbon - carbon bond breakage are concerted, which we expect to have
an important degree of contribution to the network despite being higher
in energy than CN-a-II. Finally, CN-a-III is another novel route, although
due to being both longer and higher in energy than the other channels
its contribution to the overall reactivity is expected to be quite low. If
we compare now these channels with the routes for HCN/HNC formation
(Figure 3.13) we see several shared transition states and intermediates,
further stating the importance of intertwined routes to explain the reactivity
of the system.

Figure 3.16: Energy profiles for amino radical formation from indole (middle
row right, bottom row) decomposition channels leading to NH2 production.
Reported energies are potential energies in kcal · mol−1, including zero-point
energy.

Other important fragment that must be discussed to understand the
pyrolytic decomposition of indole is the amino radical (NH2), the major
precursor for ammonia formation, given that no direct pathways to form
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NH3 were found neither in our study nor in the previous one. In comparison
with CN and HCN/HNC formation, there are far fewer paths leading to
amino radical formation, with only three viable routes from indole and zero
from indole-a (Figure 3.16).

From these channels, NH2-I approximately matches Path-2 from the
previous study but including an additional step, with a ring disassembly
process occuring through TS25 right before the formation of the NH2 group
in the intermediate MIN12 (2-ethynylaniline). In this way, the automated
mechanism elucidation shows not only to be able to reproduce known
pathways, but also to refine them when some aspects are undercharacterized.
Moreover, Liu et al. proposed a second pathway (Path-4) that we found
not to be a proper channel for amino radical production, but instead a self-
loop connecting the intermediate MIN12 with itself. This aspect shows, yet
again, the interest of applying automated strategies to revise and refine
previous knowledge. Then, we identified a second reaction channel (NH2-II)
containing two unreported alternative pathways, higher in energy than NH2-I
but also one step shorter, which could also become relevant contributors
to the general reactivity of the system. In general terms, the automated
strategy is able to offer a richer description of indole pyrolysis in comparison
with intuition-driven studies, reproducing and expanding the previously
reported routes.

Regarding the possible roles of indole in astrochemical processes, the
network exploration we are proposing could be an ideal tool to locate feasible
barrierless gas-phase reactions leading to the production of indole in the ISM,
in the more general context of the formation of interstellar complex organic
molecules (iCOMs). Although formation mechanisms of iCOMs involve
a variety of processes (photoactivated reactions, radical recombinations
over grain surfaces...), gas-phase reactions have been proposed to play an
important part in this chemistry. Nonetheless and as stated before, the
harshly low temperatures of the ISM imply that these processes shall be
barrierless, with the highest-energy TS happening along the reaction being
always below the reactants.
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Although our interest here is on the formation of indole from small
neutral fragments, we may as well target the decomposition routes and
fragments present in the RXNet and just look at them backwards, following
the core notion of assigning the directionality of computed reaction networks
a posteriori. A promising candidate reaction would be the combination of
methylene radical (CH2), which has already been detected in the ISM [136],
and phenyl isocyanide (C6H5NC). While the latter has not been directly
identified yet, the recent detection of its isomer benzonitrile C6H5CN [137]
has prompted the interest on studying the isocyanide [138], whose formation
from benzene and cyano radical has also been suggested to be feasible
[139]. Our current RXNet for indole decomposition presents a barrierless
reaction channel for the formation of indole from CH2 and C6H5NC, which
is presented in Figure 3.17.

Figure 3.17: Energy profile for a barrierless indole formation mechanism from
methylene radical and phenyl isocyanide. Reported energies are potential
energies in kcal · mol−1, including zero-point energy. The dashed black
line indicates how the whole profile is below the initial fragments (PR155),
corresponding to a formally barrierless mechanism.

The barrierless nature of the key fragment association step (PR155 to
MIN95) was confirmed through a relaxed scan of the coordinate in the PES
of the system, confirming the absence of a transition state. From there, the
rest of the mechanism shall proceed smoothly, with the bicyclic intermediate
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MIN95 leading to the production of MIN3 (2-methyl-benzonitrile), a species
that was also involved in the HCN-forming network (Figure 3.14).

Figure 3.18: Level3 RXNet for indole decomposition, including only species
below 150.0 kcal · mol−1. Fragmentation products (PRXXX) are shown as
2D chemical structures. The interconnected “core” of the RXNet, shared
between all pathways, is highlighted in orange.

Thus, from this point on, the rest of the mechanism in Figure 3.17 is
common with the previously discussed decomposition channels. To highlight
this interconnectivity and conclude the overall chemical analysis of the
indole decomposition RXNet, the complete Level3 graph including 2D
chemical structures for the fragmentation products is depicted in Figure
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3.18. This last representation of the reaction network gives two main aspects
to discuss. First, it remarks the deep intertwinment of most of the different
pathways discussed along the section, except for the more isolated routes
producing amino radical in the upper part of the network. For instance,
MIN3, a benzonitrile derivative, can give rise to either to cyano radical,
hydrogen cyanide or methylene in only one or two steps, as shown in the
lower part of the graph. Second, it showcases the chemical nature of the
larger fragments formed alongside the small species of interest, which we
have mostly neglected until now. These structures correspond to either
radicals (for CN and NH2) or carbenes (for HCN, HNC and NH2) which
are expected to be very reactive, readily undergoing further fragmentation
or recombination processes. Whilst this additional cascade of reactions
was not part of the current study, as it would have overcomplicated both
computations and their analysis treatment, it shall still be acknowledged to
properly contextualize our current study. Furthermore, this caveat helps
demonstrating how the reaction network graph depiction leads naturally to
the expression of systems of ever-growing complexity.

3.4 Conclusions

We have developed a filtering and visualization framework to facilitate
the exploration of the complex reaction mechanisms generated by automated
reaction space discovery tools, with the aim of making this kind of tools more
accessible to the community. While as of now the toolkit is interfaced directly
to the AutoMeKin program, its modularity should allow to easily adapt the
visualization generation to any other protocol generating reaction networks,
as long as the properties included in the dashboards are available. Moreover,
we have also taken a step forward on the integration of chemical information
on the ioChem-BD database, automating the definition of reaction networks
on the platform from also automated mechanistic characterizations.

Besides these visualization capabilities, amk-tools does also allow to
simplify reaction networks, segregating the pathways of interest for a given
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domain from the likely hard-to-treat complete reaction landscape that is
usually obtained with fully automated protocols. In this manner, the
interpretation of the overall mechanism is streamlined, either through
a more traditional point of view based on the extraction of the most
relevant energy profiles or through more graph-oriented approaches,
depending on the situation. This application of the interchangeability
of reactivity representations (Section 2.1) to leverage automated workflows
in computational chemistry by making their results more understandable
follows, indeed, one of the main objectives of this Thesis.

Finally, the workflow combining automated mechanism discovery with
our current strategy for filtering and visualization has been applied to
the reaction of decomposition of indole, being able both to reproduce the
reaction channels reported in previous DFT studies on the system and to
unravel several novel routes, such as the pathways leading to the direct
production of hydrogen cyanide and hydrogen isocyanide. All this knowledge
on the reactivity of indole shall be relevant in the elucidation of the role
of this species in the formation of polluting nitrogen oxides upon coal tar
combustion and in the consideration of the presence and possible formation
of indole in the interstellar medium.
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Applying the energy span model to complex
systems: gTOFfee
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4.1 The energy span model

As introduced in Chapter I, the determination of energies is, in a general
sense, one of the main goals of electronic structure calculations based on
Quantum Mechanics. When characterizing a reaction mechanism with
computational methods, we propose a set of intermediates and transition
states that may arise for our target chemical system and determine how
energetically accessible they are. Then, the thermodynamics and kinetics of
the process can be understood from the corresponding Gibbs free energies,
by locating the lowest-lying products and transition states.

Nevertheless, energies are not straightforward to compare with
experimental results to validate the mechanistic proposals obtained
from calculations. Experimental reaction performances are not usually
characterized through energies, but instead through other magnitudes
such as concentrations, conversions, selectivities or rate constants. It is
possible to relate these properties to energies through different theoretical
frameworks such as Transition State Theory (Section 1.3), getting rate
constants from activation energies or considering selectivity differences
as differences between the energies of the pathways leading to different
products. In other occassions, the other way around can be more useful:
transforming the energies obtained by computation to more experiment-
friendly parameters. One example of this kind of approach are microkinetic
simulations, in which the kinetic behavior of the system is expressed through
systems of differential equations characterized by rate constants. The
numeric resolution of these systems of equations [140–142] provides the time
evolution of the concentrations of the interrelated chemical species, which
can then be compared to experimental measurements. This approach has
been widely used in the modeling of heterogeneous catalysts [143–147], and
it is recently gaining importance for homogeneous systems [148–153].

In the context of catalytic systems, one key observable is the turnover
frequency (TOF), defined by the IUPAC as the measurement of the efficiency
of a given catalyst in terms of the inverse number of molecules reacting
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per active site at unit time. The TOF (or its inverse, the turnover number
or TON) is a very common quantitative assessment of catalytic activity,
employed across enzymatic, homogeneous and heterogeneous catalysis [154,
155] to provide general insights on the main question of catalytic design:
how good is a given catalyst. In the spirit of bridging experimental and
computational approaches, Kozuch and Shaik [38, 156–162] developed the
energy span model (ESM), which allows to predict the TOF of a given
catalytic cycle from its free energy profile in a compact and simple manner
(Equation 4.1).

TOF = kBT

h

(1 − eΔGr/RT )∑
ij e

(Ti−Ij+δij)/RT
(4.1)

In this equation, the ΔGr term corresponds to the reaction free energy,
with the numerator being then related to the thermodynamic driving force
of the reaction. This driving force marks the sign of the TOF: for it to be
positive, the process must be exergonic (ΔGr < 0).

Figure 4.1: Examples of simple reaction energy profiles corresponding to
exergonic (left, in blue), isoergonic (center, pink) and endergonic (right,
green) processes, indicating the signs of the reaction free energy and of the
TOF that will result from Equation 4.1

On the other hand, and as shown in Figure 4.1, endergonic energy
profiles would produce a negative TOF, indicating that the catalytic process
modeled by the cycle shall go on the opposite direction, which is indeed
exergonic. Indeed, “physical” values of the turnover frequency, from the
experimental viewpoint, must always be positive, as neither the number
of reactive molecules, the number of active sites nor the time can ever
be negative. For the limit case where ΔGr = 0 (isoergonic reaction), the
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numerator cancels out, with TOF = 0 indicating that no turnover occurs
for the catalytic system: the catalyst does not work.

The denominator in Equation 4.1 corresponds to the kinetic resistance
of the process, considering all possible combinations of the energies of
intermediates Ij and transition states Ti. The accompanying term δij

takes into account the relative position of these pairs (between the j-th
intermediate and the i-th transition state), taking the value 0 when Ij is
before Ti (i < j) and ΔGreac when Ij is after Ti (i > j). This approach allows
to properly take into account the cyclic nature of catalytic systems, as an
intermediate located after a transition state in the linear representation will
indeed need to give rise to that same transition state in subsequent passes
along the cycle, as depicted in Figure 4.2. This kind of intermediate/TS
pairs involving a TS appearing before the minimum are often neglected
when just representing the cycle as a single free energy profile, but can
indeed become important to control the reaction.

Figure 4.2: Free energy profile for a catalytic cycle, explicitly showing the
two first iterations of the process. The highlighted pair (T0 and I2) shows
the energy difference between the two states that will be introduced in
Equation 4.1, incorporating ΔG0 to account for I2 being after T0.

The main advantage of the ESM is that it considers the complete catalytic
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profile, instead of being limited to a single rate-determining step (RDS) like
in more traditional approaches to computational catalysis. Moreover, it does
also allow to determine the degree of TOF control (xT OF ) of every state in
the mechanism, formalizing the “fuzzier” concept of a rate-determining step
to the alternative turnover-determining intermediate (TDI) and turnover-
determining transition state (TDTS). In this way, it is possible to formally
characterize whether a catalytic system is well-defined by a single TDI/TDTS
pair that mostly drives the TOF, or whether several relevant states influence
the reactivity. In the former case, indeed, Equation 4.1 can be reasonably
approximated by the much simpler Equation 4.2, which takes an Eyring-like
form and will correspond to modeling the catalytic activity through a single
RDS.

TOF ≈ kBT

h
e−δE/RT (4.2)

The δE term on the exponent would be the energy span naming the
model, which is simply the energy difference between the TDI and the TDTS
of the cycle, as shown in Figure 4.3.

Figure 4.3: Simplified free energy profile with intermediates and transition
states labeled according to ESM notation, with Ij intermediates and Ti

transition states. Turnover-determining states (TDI and TDTS), the energy
span δE and the reaction energy ΔGr are identified in the profile.

Nonetheless, the utility of Equation 4.2 should not be overestimated: as
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a proper determination of δE requires knowing the degree of TOF control
for the whole profile, it does not actually provide a way to estimate the TOF
a priori, as the rest of the profile shall still be taken into account to get the
TOF control. Moreover, the simplification happening between Equations
4.1 and 4.2 implies a significant loss of detail and predictive power, reducing
the utility of the ESM. Therefore, the energy span, as it is, would be mostly
useful only for systems that can be summarized in a single TDI/TDTS pair,
such as the one in Figure 4.3, to connect the TOF with a simple energetic
property. For more complicated systems the complete TOF from Equation
4.1 should be used instead, as TDI and TDTS definitions might not be so
clear. For example, coming back to the profile in Figure 4.3, if we had a
situation where I3 ≈ I2 (recalling that Ij refers to the energy of the j-th
intermediate), it will not be possible to assign any of them as an unique
TDI, and the simplified interpretation from Equation 4.2 will fail.

Figure 4.4: Comparison of a reaction mechanism depicted as a free energy
profile (left) and as a reaction network (right), as shown in Section 2.1.

Moreover and most importantly, this whole original formulation for the
ESM considers only linear free energy profiles: while all the states along
this profile are taken into account, there is no clear way to handle more
complex catalytic systems containing, for example, off-cycle intermediates
or side reactions. This follows what we already stated in Chapter II:
energy profiles encounter issues to represent entangled reactions, which are
better described by reaction networks (Figure 4.4). This supposes a major
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limitation for the application of the ESM to realistic catalytic systems, whose
detailed characterization often produces strongly intertwined mechanisms.
Indeed, this issue was acknowledged by the authors of the model and was
addressed in its latest developments [163, 164] proposing a much more
general formulation based on reaction networks. Nevertheless, since the
initial proposal of the graph-based model in 2015, this novel approach had
not been yet exploited. In this sense, we developed gTOFfee [165, 166],
the very first fully-fledged application of the network-based energy span
model allowing to compute the turnover frequency for catalytic systems
of arbitrary complexity. Throughout this approach, it is possible to avoid
ad-hoc simplifications of the input network, keeping all the information of
the underlying system.

Before proceeding with the details on the graph-based model and its
implementation, we should introduce a couple of additional theoretical
considerations about the ESM. First, a relevant feature of the model is the
possibility of taking into account the effects of the concentrations of entering
reactants and leaving products.

ΔG∅(Ij) = I∅j = Ij +RT ln

 N∏
h=j

[R]h
j−1∏
h=1

[P ]h


ΔG∅(Ti) = T∅

i = Ti +RT ln

 N∏
h=i+1

[R]h
i−1∏
h=1

[P ]h

 (4.3)

Although concentration effects can be critical in the feasibility of a chemical
reaction or the overall performance of a catalytic cycle, they are often
disregarded in computational studies that directly analyze the free energy
profile. As previously mentioned, microkinetic simulations can account for
these effects, with their core equations precisely regarding concentration
evolutions. However, the setup of this kind of simulations can be quite tricky,
especially for more complex systems. The ESM, in contrast, provides a
much simpler framework, involving compact algebraic expressions (Equation
4.1) instead of coupled systems of differential equations: this simplicity
allows an easier integration in routine workflows. Originally, these effects
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were introduced in the ESM by a modified form of Equation 4.1 [38], which
later on was shown to be equivalent to the assignment of a semi-standard
state to Gibbs free energies [164].

This semi-standard state correction considers all catalyst-bearing species
to be in a standard state (1.0 M concentration in solution), but corrects
reactants and products involved in the catalytic cycle to their actual
concentrations.

Figure 4.5: Free energy profile labeled according to ESM notation (Ij

intermediates and Ti transition states), including entering reactants (in
green) and released products (in orange).

This approach might seem unphysical, regarding that the catalyst-
containing species would be in very low concentrations and farther from
the assumed standard state than these reactants or products. While this
concern is relevant and this kind of energies may not be appropriate for
general use, the semi-standard approach still provides a convenient and
consistent way to introduce these corrections under the framework of the
ESM. Therefore, once the energies of intermediates and transition states
have been adjusted through Equation 4.3, the resulting TOF values will
directly include concentration effects without any further computational
overhead.

From Equation 4.3, for a given state Ij or Ti, only the reactants appearing
after and the products appearing before the state are taken into account.
Taking the profile in Figure 4.5 as reference, Table 4.1 collects the species’
concentrations involved for every state along the sole mechanism in the
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Ij Species Ti Species
I1 R1, R2 T1 R2
I2 R2 T2 ∅
I3 P1 T3 P1
I∗

1 P1, P2

Table 4.1: Entering reactants and leaving products involved in Equation 4.3
for intermediates and transition states from Figure 4.5.

network.
The other relevant theoretical consideration to make is more of a

conceptual one: coming back to the initial discussions on how to represent
chemical reactivity (Chapter II), the ESM framework highlights yet again the
relevance of energy as the main descriptor for kinetics and thermodynamics
from the computational point of view.

Figure 4.6: Comparison of the directed, rate-constant-based k-representation
(left) and the undirected, energy-based E-representation (right) for
expressing chemical kinetics in reaction networks.

As stated by Solel, Tarannam and Kozuch [164], we can consider a kind
of switch from the k-representation, based on rate constants, traditionally
used to represent chemical kinetics, and this E-representation focused on
energies (Figure 4.6). This switch does also suppose a change of paradigm
between tackling chemical networks as directed graphs, considering direct
and reverse constants for each and every step, or as fully undirected graphs,
with traversal information being already encoded in the energies.
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4.2 Implementation

A key aspect of the network-based formulation of the energy span model
is that it provides a formal definition of a catalytic reaction mechanism in
terms of Graph Theory. In this context, a mechanism would be a subgraph of
the complete reaction network including all its nodes (or, in chemical terms,
the intermediates of the cycle), but having only a single closed cycle leading
to any of the possible products of the reaction. While the full network may
have any number of intertwined cycles, valid mechanisms will disregard all
but one of these coexisting cyclic pathways.

Figure 4.7: Example graph structures for a simple 4-node, 5-edge model
network (left) and two kinds of subgraphs: a mechanism (middle) and a
spanning tree (right).

Nevertheless, alternative channels are still taken into consideration, as all
intermediates are present in every mechanism. In this sense, these channels
appear as off-cycle branches that affect the overall reaction, modifying the
feasibility of the core cycle of the mechanism. Therefore, from a given
reaction network, it is possible to define a set of n mechanisms under
this paradigm, defining all combinations of possible cycles and branching
patterns. Apart from mechanisms, another important type of subgraphs are
the spanning trees, substructures that still keep all vertices (intermediates)
connected, but that do not have any closed cycle. These two kinds of
subgraphs and their relationship to the parent reaction network are depicted
in Figure 4.7: their specific roles for TOF calculation through the ESM will
be detailed in the following paragraphs.
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The complete expression for the turnover frequency (equivalent to
Equation 4.1) under the graph-based model is shown on Equation 4.4.

TOF = kBT

h

∑
n

µn(1 − eΔGr/RT )
(∑k τk)∑j(e(−Ij+δGkj)/RT )

=
∑

n

(TOF )n (4.4)

In this equation, the TOF for the whole network is expressed as a sum
along each of the n possible mechanisms arising from the original graph.
This system-wide TOF can in fact be regarded as a sum of individual
TOFn terms for each of the n individual mechanisms. From the subgraph
types introduced in Figure 4.7, Equation 4.4 involves summations across
n mechanisms µn and k spanning trees τk: thus, these two complete sets
of subgraphs must be derived from the input reaction network in order to
apply Equation 4.4. Both µn and τk terms are simple exponentials of the
form e(

∑
−Ti)/RT ), extending the sums to all the edge energies Ti appearing

along the corresponding mechanism or spanning tree. As the present edges
are directly defined upon subgraph definition, the calculation of µn and
τk values from a known subgraph is just a trivial determination of series
of exponential terms. Just like in the original formulation, Ij values are
just the energies of graph nodes (reaction intermediates), and ΔGr is the
reaction free energy. However, in this case the underlying reaction may be
different across different mechanisms, and shall be taken into account as
such.

Putting Equations 4.1 and 4.4 side to side, we have that the graph-based
variant also has the thermodynamic driving force in the numerator and the
kinetic resistance in the denominator, showing a very similar core structure
despite the larger complexity of Equation 4.4. To clarify the diverse indices
appearing along these expressions, we have that in all cases i and j identify
edges and nodes, respectively, while the more general Equation 4.4 introduces
additional indices for subgraphs: mechanisms (n) and trees (k). It can be
demonstrated that Equation 4.4 reduces to Equation 4.1 for simple cycles
that can be properly expressed as a linear free energy profile, demonstrating
the consistency of the two approaches.
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The only term that remains to be discussed is δGkj , which as δij in
Equation 4.1 is related to the relative positions of the intermediates in the
catalytic system. While in the original formulation we referred the j-th
intermediate to the i-th transition state, in our implementation of the graph
framework the reference is done instead to the k-th spanning tree [163].

The assignment of this term is not as straightforward as it was for linear
profiles, where the sequential relationship between a given (Ti, Ij) is trivial:
when working with graphs, we must deal with the possibility of branching
and with the undirected nature of the networks in the E-representation.

δGkj =

ΔGr if int. after selected edge

0 if int. before selected edge
(4.5)

The sequentiality rule for a given node in a specific tree implies seeking
whether the j-th node is before or after the first edge that would close
the k-th tree to one of the previously accepted mechanisms µn. Recalling
the definitions of both mechanisms and trees, this tree closure implies the
addition of a sole edge to the tree to form a single cycle in the resulting
graph, as depicted in Figure 4.8, to apply Equation 4.5 and obtain δGkj .

However, neither Equation 4.5 nor Figure 4.8 seem to fully answer the
fundamental question: how is this mechanism-defining edge selected at all?

Figure 4.8: Assignment of δGkj for the intermediates in one of the spanning
trees derived from the 4-node, 5-edge model network in Figure 4.7. Blue
nodes lie before the selected edge, while green ones are after.
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The corresponding rule involves looking for the first possible edge that
transforms the tree to one of our n mechanisms, which requires to somehow
traverse the core undirected graph, transforming it to an auxiliary directed
graph (or digraph) which allows to fetch this information. Without any
direction, it will not be possible to know which edges are before others, so
no first edge could be fetched at all.

This transformation is achieved by specifying what we have named as
closing edges of the mechanisms (as previously shown in Figure 4.7), that
chemically are identified with the reaction steps leading to final catalyst
regeneration. The specification of closing edges requires them to end in what
would be regarded as the “starting” point of the catalytic cycles, to express
the closure relationship. Also, following the specifications of the ESM that
were stated before, these edges should always correspond to spontaneous
processes, with negative reaction free energy. A reaction network may have
several possible closing edges, either leading to different products or just
specifying alternate pathways producing the same species. Although the
need to define closing edges implies additional information beyond the pure
network specification, it is also true that a proper characterization of a
catalytic cycle does already involve the definition of a reference state for
the catalyst and the step(s) leading to its final regeneration.

Thus, we believe that including this kind of “compass” for guiding
traversals across the graph does not really affect the generality of the
approach or the advantages of the undirected E-representation. As a final
practical note on the topic, in the current implementation of gTOFfee all
closing edges are required to begin in non-branched nodes (vertices of degree
2) to properly apply the algorithm. Moreover, the energy of this closing
edge should be the reaction energy of the corresponding process, and is used
as such to determine the thermodynamics of the process.

All the aforementioned graph “directionalization” is done at the
mechanism level: indeed, valid mechanisms are required to contain at
least one of the closing edges of the network, as depicted in Figure 4.9. It is
also possible to find mechanisms having up to two closing edges (Fig. 4.9,
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Figure 4.9: Examples of possible directed mechanisms in a toy network
containing two possible closing edges, with reaction energies ΔG1, ΔG2 and
ΔG1 − ΔG2, from left to right.

bottom right). When this situation occurs, only one of them will be the true
closure, while the other will be traversed in the opposite direction as another
standard edge in the network. Thus, two possible traversal directions arise,
from which the one with the most exergonic closing edge will be the one
chosen inside gTOFfee. The composite reaction free energy of such processes
is just the difference ΔGreac = ΔG1 − ΔG2, with ΔG1 < ΔG2. Once the
traversal direction has been set, all simple paths from the start node to
either itself (along the cyclic path) or to any of the possible branch ends are
determined. From these simple paths, the lists of edges appearing before and
after any given node are characterized, allowing to store traversal information
in the undirected graph skeleton. To handle branches consistently, the point
at which they depart from the cycle is used as a reference to assign their
location. For example, for the leftmost mechanism in Figure 4.9, node 5 (in
blue) will have the nodes A and B in the green branch on its before list, as
they depart from node 4.

We should recall that this whole discussion on the concept of closing
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Figure 4.10: Complete set of the three mechanisms (as digraphs) and eight
spanning trees arising from a toy 4-node, 5-edge reaction network, as shown
in Fig. 4.7. For spanning trees, the selected mechanism-closing edges are
shown as dotted lines. Non-used mechanism-closing edges are depicted with
crossed dotted lines.

edges and the directionality of mechanisms was motivated by the need to
systematically select the first edge transforming a given tree to a valid
mechanism, as shown in Figure 4.10. To achieve this, every tree is compared
to the full set of mechanisms arising from the network, locating the subset
of mechanisms that effectively differ from the tree in a single edge (so the
mechanism can be reconstructed by adding this edge to the tree). As every
valid subgraph under our paradigm contains all nodes in the network, this
can be efficiently done by comparing adjacency matrices. Finally, the edges
that convert the tree to each of the mechanisms in this close-able subset
are explored, eventually selecting the edge whose end node has more edges
after it, which can then be thought as being the first transforming edge. If
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several candidates are acceptable (having the same number of edges through
this comparison), any of them can be selected. Once this tree-to-mechanism
match up is obtained, δGij terms can be assigned through Equation 4.5
to apply Equation 4.4 and get the TOF values. It is worth noting that as
the mechanism-closing edge that we use as reference varies for every tree,
the −Ij + δij terms will also vary across trees, and shall then be computed
accordingly for each tree. Moreover, all this information is also used to
rescale energies according to Equation 4.3, which does also require the
relative position of nodes and edges to assign the reactants and products
that enter the equation, as shown for linear profiles in Figure 4.5.

Given the name of energy span model, the definition of the “energy span”
in terms of the graph-based model shows as another important question. In
the linear variant the energy span δE was defined as the energy difference
between the TDI and the TDTS of the underlying energy profile, which
were the states controlling the overall reactivity of the system. The formal
definition of these states required to compute the degree of TOF control
xT OF of every state along the network, considering intermediates and
transition states. The extension of this concept to reaction networks is not a
straightforward task, as the expressions used to compute the degree of TOF
control [162] are not easy to reformulate in terms of graphs. Furthermore,
the concept of reducing the system back to a single TDI/TDTS pair seems
quite against our own approach, which aims to handle all the information
encoded in the network at once. The most interesting feature of the energy
span, in this context, would be to have a descriptor in energy units that
we can relate to the overall catalytic activity of the system, having a more
natural comparison with other computed magnitudes. Therefore, following
this line of thought, we introduced a new magnitude, labelled effective energy
span δEeff , using Equation 4.2 as a template but considering the exact
TOF value resulting from Equation 4.4 at its left side, and then isolating
δEeff (Equation 4.6).
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δEeff = −RT log
[
h

kBT
· TOFexact

]
(4.6)

In general terms, what this equation does is a kind of “change of units”
in the TOF, transforming its natural frequency units to energies, through
an Eyring-like expression. As the TOFexact value employed in Equation 4.6
takes into account the complete reaction network, δEeff gives information
about the overall performance of the catalytic system in the same way as
the TOF does. In this sense, we may regard δEeff as a way to measure the
effective activation energy for a catalytic system. Recalling that Equation
4.4 implies the possibility of decomposing the general TOF for the cycle to
the sum of (TOF )n terms for the individual mechanisms, it is also possible
to compute per-mechanism effective activation energies, giving another way
to consider the feasibility (and degree of contribution) of every individual
mechanism arising for a network. Thus, instead of relying on the location
of the most determining intermediate and transition state, we consider all
possible branches and steps for both the network-wide and mechanism-wide
effective energy spans.

The logarithmic functional form of Equation 4.6 implies that δEeff can
only be computed when turnover frequencies are positive and larger than zero
or, in other words, when the corresponding catalytic cycle is exergonic. As
mentioned in the previous section, only exergonic processes lead to physical
TOF values for working catalysts, and therefore it is fully consistent for the
effective energy span to only be defined in this case. Another consequence of
this logarithmic relationship is that it makes the effective energy span more
robust than the turnover frequency, with possible sources of error in the
computation of the TOF being translated to much smaller errors in terms of
energy. For example, if we had a misestimation of an order of magnitude in
a TOF value, the corresponding error for δEeff at room temperature will be
around only 1.4 kcal · mol−1. In general, we may frame this effective energy
span under the more general context of “apparent activation energies”,
following several previous proposals on the matter. For example, a related
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descriptor based on the degree of rate control (DRC) of intermediates and
transition states was recently introduced by Mao and Campbell [167]. There,
the authors acknowledge the similarities between this DRC and the degree
of TOF control from the ESM, but also the important limitations of the
linear-based ESM on the matter, encountering the expected problems in
the description of complex systems. This is particularly problematic when
putting the energy span defined in Equation 4.2 in the picture, due to
the sheer simplification of the catalytic cycle as a TDI/TDTS pair that it
implies. Nevertheless, both of these issues have already been tackled by
our current proposal: the graph-based model allows a proper treatment of
entangled reaction networks and the effective energy span skips the loss of
information happening with the “default” energy span.

4.2.1 Computational implementation

After thoroughly discussing the theoretical framework of the graph-based
energy span model, some additional details will be given on how the model
is coded in our current implementation, gTOFfee [166]. This tool is an
open-source code written in Python which is capable of processing any
user-defined reaction network to later apply Equation 4.4 and get the
corresponding turnover frequency values.

The major points along the workflow of gTOFfee are:

1. Graph representation of reaction networks, using the NetworkX library
[69].

2. Generation of all possible unique mechanisms (single-cycle subgraphs).

3. Generation of all possible unique spanning trees (acyclic subgraphs).

4. Assignment of directionality over mechanisms to determine δGkj terms
and reactant and product dependencies on edges.

5. Application of Equation 4.4 across all subgraphs, obtaining per-
mechanism TOFs.
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6. Combination of mechanism-wide TOFs into a system-wide TOF and
determination of effective activation energies.

Graph representation

The definition of the input reaction network comprises the very first step
of the gTOFfee pipeline. The default format takes two different input files,
with one for reaction intermediates (nodes), defining names, energy and
connectivity, and other for transition states (edges) specifying the connected
nodes, the energy values and the possible species that enter or leave at
every given edge. The specification of these reactants and products is
employed to include their concentrations, rescaling node and edge energies
through Equation 4.3. As the identification of entering (reactants) or
leaving (products) entities depends on the direction in which the edges are
traversed, the input file assigns them in the direction in which the edge is
written, although the true traversal direction will be determined later in
the process, and thus the role of a given species as a reactant or product
may be reassigned.

This input is then transformed to a NetworkX Graph object, which
allows for a very flexible attribute management for both nodes and
edges, facilitating the generation of the required subgraphs and their post-
processing (e.g., assignment of directionality, energy recalculation...). Apart
from the node and edge files and as discussed before, it is necessary to
specify all of the closing edges leading to catalyst regeneration to indicate
the direction of the process.

Beyond the default input, it is also possible to pass graphs in DOT
format, as generated in the ioChem-BD platform [82]. While this connection
between gTOFfee and ioChem-BD is still under development and does not
yet support all intended functionalities (e.g. specification or automatic
detection of reactants and products), it provides a simple way to employ the
information stored in the database, going through the intended integration
strategy hinted in Section 2.5.
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Mechanism generation

The formalization of chemical mechanisms as single-cycle, connected
subgraphs of the original network is the core concept of the whole extension
of the energy span model, as mentioned in the previous sections. From
a given reaction network introduced into gTOFfee, the detection of all
possible mechanisms by manipulation of the input graph is probably the
most important task of the program. Given the single-cycle condition, a
feasible approach to obtain mechanism candidates from a base catalytic
reaction network (which, by definition, must have at least one cycle along
its structure) is to remove edges until only an unique cycle remains. To do
this, it is necessary to characterize the minimum cycle basis of the input
network: the set of cycles of minimum length that allow to define the cyclic
part (or cycle space) of the graph. Qualitatively, this can be thought as
the process of finding the smallest unique cycles which end up forming the
target network, as shown in Figure 4.11.

Once the minimum cycle basis Nc is known, the number of edges that
need to be removed to form a feasible mechanism is Nr = Nc − 1: thus,
an exhaustive search of every possible mechanism shall consider all the
possible combinations of Nr edges in the base network, raising to a total of(Nedges

Nr

)
sets of edges whose removal generates a mechanism candidate. For

each of these combinations, the resulting subgraph is tested for the three
main conditions of a valid mechanism: i) all nodes being still connected,
ii) presence of one and only one cycle, and iii) presence of any of the
closing edges of the catalytic cycle. At this point, the closing edge of
the mechanism marks the reaction happening along its catalytic cycle and
the corresponding reaction energy, which controls the numerator term in
Equation 4.4. However, given that energies may be transformed to the
semi-standard state to include concentration effects, no numeric energy
values are stored at this point, but only the target edge or edges that will
be used to calculate the reaction energy.

As discussed in the theoretical framework, mechanisms that contain
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Figure 4.11: Depiction of the mechanism search process on a multi-cycle
example network (with Nc = 4 cycles), determining the minimum cycle
basis and showing one of the possible edge removal proposals leading to an
accepted mechanism.

two possible closing edges may appear along the search protocol. In this
situation, the energies of the two opposite processes (G1 −G2 and G2 −G1)
are compared, selecting as closing edge the one leading to a more exergonic
reaction to fix the reaction type. Thus, the stored formula for reaction
energy will involve the difference between the two edges. Through this
strategy, it is possible to handle situations with several intertwined reactions
that lead to different products depending on the mechanism.

Tree generation

As from Equation 4.4, it is also necessary to obtain all the spanning
trees τk coming from a given reaction network. In principle, we may follow
a completely analogous procedure to that of mechanisms, considering that
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in order to get acyclic subgraphs instead of single-cycle ones we should
now remove an additional edge: N trees

r = Ncycles = Nr + 1. Nevertheless,
this means that the number of possible tree candidates

(Nedges

Ncycles

)
will be

remarkably higher than the number of mechanism candidates, increasing
the time required to analyze the resulting subgraphs.

Figure 4.12: Depiction of the tree generation process starting from the final
mechanism in Fig. 4.11, leading to five valid spanning trees.

Given that the mechanisms µn are found first, it is possible to do the
tree search from mechanisms and not from the main network, iteratively
removing the edges in their cyclic part as shown in Figure 4.12. This does
not only reduce the number of analyzed subgraphs, but also ensures that
the final subgraphs will already fulfill the conditions of being connected (as
the mechanisms were) and acyclic. The only check that needs to be done
through this approach is to confirm the uniqueness of the obtained trees, as
it is possible to arrive at the same tree from different mechanisms. This is
done by testing whether a newly obtained tree is isomorphic with any of
the already stored trees, discarding it if this is the case. This isomorphism
test, given the properties of the graphs that we are working with, can be
done by direct element-wise comparison of adjacency matrices.

To give a sense of the number of subgraph candidates through this
protocol, for the network in Figures 4.11 and 4.12 (12 nodes, 15 edges and
4 cycles for the minimum basis), there are Nr =

(15
3
)

= 455 mechanism
candidates, accepting 151 of them (33.2 %). If we started from the network,
there would be N tree

r =
(15

4
)

= 1365 candidates, which are reduced to 905
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by starting from the mechanisms instead. From these, 375 are found to be
unique and therefore accepted (41.4%).

Direction assignment

Once all mechanisms and spanning trees have been characterized, it is
necessary to find the traversal direction for each mechanism µn, based on
the closing edges and following the guidelines from the previous section.
This graph directionalization serves several purposes: organizing entering
and leaving species according to true graph walking sequences, and ordering
nodes and edges so as to compute δGkj terms in a per-tree basis through
Equation 4.5.

For a given mechanism, the steering process begins by obtaining the tree
resulting from the removal of its preassigned closing edge. From this tree,
all singly-connected nodes (that is, nodes with degree 1) will correspond to
end nodes along the walk, which might be either branch ends or the final
point of the cycle. Then, the simple paths from the starting node to these
end nodes can be computed. At this point, it is possible to get a digraph
assigning the directions encoded in the simple paths to every edge in the
mechanism (Figure 4.13).

Figure 4.13: Path search and digraph generation from the final mechanism
in Fig. 4.11.

Incoming reactants and released products are then assigned for every
edge in the digraph, comparing the final traversal direction with the direction
in the input file and inverting them if necessary. Finally, iteration along
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all nodes allows to retrieve information about the edges that are present
before and after the target node, and thus the corresponding reactants and
products. As mentioned in the theoretical framework, all this traversal
information is stored back in the undirected graph core. Then, spanning
trees are processed and connected with their corresponding mechanisms by
finding the transforming edge which has more other edges after itself, as a
way to measure the first possible mechanism closure.

TOF calculation

After all relevant subgraphs have been generated and processed, the
application of Equation 4.4 to compute the corresponding mechanism-
wide and system-wide turnover frequencies is indeed quite straightforward.
If concentration effects are requested, Equation 4.3 is applied for every
mechanism, taking into account the lists of reactants and products appearing
before and after each node and edge. Reaction energies are determined at
this point, to be able to include this concentration-based rescaling, fetching
the formula assigned to each mechanism upon generation and substituting
the energies of the involved edges.

From the denominator of Equation 4.4, labelled Dk, we should note
that its second term, which is the one depending on Ij and δGkj , varies
across spanning trees (as δGkj does). Relabelling this term as Wk =∑

j e
(−Ij+δGkj)/RT to highlight the dependency on the spanning tree k, we

may rewrite the denominator as:

Dk =
(∑

k

τk

)∑
j

e(−Ij+δGkj)/RT

 =
(∑

k

τk ·Wk

)
(4.7)

Through this minimal algebraic manipulation, it is clearer to see how
this term is computed inside gTOFfee, requiring the calculation of two
exponential terms, τk and Wk, for every k spanning tree. The exponent
of the first is the RT-weighted sum of all the edge energies appearing
along the subgraph, while the second combines all node energies with the
current, tree-dependent set of δGkj values. This Dk term is common to all
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mechanisms: the specific kinetic resistance of each of the n mechanisms is
indeed Dk/µn, with µn being extended to all edges involved in the subgraph.
Thus, the per-mechanism TOFs are computed by getting this Dk/µn term
and the thermodynamic driving force (as in the numerator of Equation 4.4).

TOF post-processing

Although the summation of mechanism-wide TOFs highlighted in
Equation 4.4 might seem trivial at first, it actually leaves some room
for discussion. Given that a catalytic network may give rise to mechanisms
that lead to different products, as we will show in the following sections, the
mechanism-wide TOFs should not be naively added up. Instead, it is more
valuable to group the mechanisms according to the different products that
can occur along the network, only adding up the TOF values inside each of
these groups. In this manner, it becomes possible to compare the feasibility
of each of the competing routes in the catalytic system, either in terms of
the turnover frequency or in terms of its effective energy span. Moreover,
these TOFs may be used to provide additional information: for example, in
catalytic cycles with two possible products, the quotient of the two TOF
values (TOFa/TOFb) was proposed as a selectivity measurement [168].

4.3 Applications in homogeneous catalysis:
hydroformylation

The initial development of the ESM and most of its applications [156,
159, 169–174] have been devoted to the field of computational homogeneous
catalysis, as shown by features like the introduction of concentration effects.
Therefore, in order to validate our novel implementation and showcase
its capabilities, we selected a well-studied case of study in homogeneous
catalysis: olefin hydroformylation.

The production of aldehydes from alkenes and syngas (mixture of CO
and H2) through hydroformylation processes catalyzed by organometallic
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complexes with metals such as cobalt or rhodium is among the most
prevalent applications of homogeneous catalysis in the chemical industry
[175–177]. Therefore, there has been a lot of interest on understanding
the mechanism of the reaction to consequently tune the catalytic system
and streamline its performance, both from the experimental and from the
computational points of view. Because of this abundance of information,
hydroformylation has become a common benchmark for novel method
developments in computational catalysis, which was the reason way we
chose it as our main target system.

Provided the existence of very detailed previous computational
characterizations of hydroformylation mechanisms, we decided to employ
one of these existing studies as our reference: specifically, the mechanism
proposed by Rush, Pringle and Harvey [178] reporting Gibbs free energies
for propene hydroformylation in presence of the HCo(CO)4 tetracarbonyl
complex (Figure 4.14).

Figure 4.14: Hydroformylation and hydrogenation reactions.

Apart from the mechanistic study, carried out with the B3LYP-D3/6-
311G(d,p) functional and basis set, with further refinement of potential
energies at the CCSD(T) level, the study by Rush et al. provided a kinetic
analysis of the obtained results, showing good agreement with experimental
results, which was an excellent point of reference to compare the information
collected by gTOFfee.

To be able to introduce concentration effects in our framework, the
input Gibbs free energies of the reaction network must be referred to a
standard state in solution, with a 1.0 M concentration. However, default
values from electronic structure codes are referred to the standard gas
phase reference state of 1 atm, requiring to apply a state correction over
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the energies to modify it. Fortunately, as we are considering the same
temperature in both reference states (423 K), this correction does only
require a straightforward shifting of free energies, which at our working
temperature is 2.98 kcal · mol−1.

G = G0 +RT log P2
P1

= G0 +RT log cRT

1 atm (4.8)

The kinetic simulations carried out in the original study considered an
analogous correction, but assuming carbon monoxide and hydrogen to be
still in the gas phase: given the framework of our approach, we instead
handled these species in the liquid phase too.

Label G/kJ mol−1 Nbodies G*/kcal · mol−1

1+3+H2+CO 1 0.0 4 -23.2
2+3+H2+2CO 2 84.7 5 0.0

4+H2+2CO 3 33.2 4 -15.3
TS5+H2+2CO 3-4 59.3 4 -9.1

6+H2+2CO 4 35.8 4 -14.7
7+H2+CO 5 8.0 3 -24.3

TS8+H2+CO 5-6 65.8 3 -10.5
9+H2+CO 6 48.3 3 -14.7
TS10+H2 6-6B 103.1 2 -4.6

11+H2 6B 21.1 2 -24.1
TS12+CO 6-7 108.6 2 -3.2

13+CO 7 89.9 2 -7.7
TS14+CO 7-8 102.6 2 -4.7

15+CO 8 110.1 2 -2.9
TS16+CO 8-9 123.0 2 0.2

17+CO 9 73.2 2 -11.7
2+18+CO 9X 88.9 3 -5.0
TS19+2CO 4-4B 103.6 3 -1.4

20+2CO 4B 80.0 3 -7.1
TS21+2CO 4B-5X 123.8 3 3.4

2 + 22 + 2CO 5X x 4 -19.7

Table 4.2: Energies of the hydroformylation reaction from Rush et al. From
left to right, species labeled according to the original study, graph tag
following our network construction, original free energy at 423 K in kJ
mol−1 , number of molecular entities in the current step, and corrected 1.0
M-state energy in kcal · mol−1 (referred to the state 2)
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Applying the standard state correction does also account for a certain
entropic correction over the energies, as the relative energies of the system
will be more or less shifted depending on the number of involved molecular
entities. This implies that highly associated states (containing few entities)
will be less destabilized than more disassociated states, compensating the
overestimation of entropy loss upon association happening when employing
usual relative Gibbs free energies. Other alternative corrections have been
designed to tackle this specific issue, such as the ones by Martin [179] or
Wertz-Ziegler [180–182]: nevertheless, the standard state modification does
already handle this effect at some degree. The importance of entropic
corrections to match experimental and computed turnover frequencies
through the ESM was already highlighted in previous studies by our group
[174]. These considerations become even more important when comparing
routes with different degrees of association: in the hydroformylation example,
the formation of butyraldehyde from propene would be endergonic under the
original reference state and exergonic after corrections, with hydrogenation
being exergonic in all cases. Thus, standard state correction shows as an
essential asset for a proper comparison of both routes: values extracted from
the literature and those employed in this Thesis are shown in Table 4.2.

The focal point of our approach is the leap from the “traditional”
representation of a catalytic cycle, in terms of molecular depictions and
reaction arrows, to a reaction network in the form of a graph, which can
be passed to gTOFfee to apply the ESM and compute the corresponding
turnover frequencies. The two representations are shown in Figure 4.15.
The network at the right part of the figure contains 13 nodes and 14 edges,
defining two distinct cycles. Among the reactants and products participating
in the cycle, as it can be shown in the scheme at the left part of the figure,
we have hydrogen, carbon monoxide, propene, butyraldehyde and propane,
whose concentrations will be taken into account via the semi-standard
approach. On this network, gTOFfee finds a total of 12 unique mechanisms
and 41 spanning trees. These mechanisms correspond to three unique
chemical reactions: alkene hydroformylation (with closing edge 9X - 2),
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Figure 4.15: Reaction scheme for Co-catalyzed hydroformylation catalytic
cycle (adapted from Rush [178]) (left) and full reaction network mapping
chemical structures to nodes and edges (right).

alkene hydrogenation (via 5X - 2) and butyraldehyde decarbonylation
(containing both closing edges, with 5X - 2 being the actual closer, to have
an exergonic process). These three mechanistic typologies are depicted in
Figure 4.16, highlighting the productive catalytic cycle in color.

Looking at the energies in Table 4.2, it shows that the alkane should
be the thermodynamic product, with relative barriers for the different
pathways not being too different at all. Thus, the insights in reaction
selectivity provided by turnover frequencies are valuable to properly analyze
the computational data. As mentioned before, in multi-product systems we
should group the mechanisms by the product that they lead to and add up
the mechanism-wide TOFs accordingly. From there, it is possible to get the
effective energy span (Equation 4.6) or to assess the selectivity ratio by the
ratio of the turnover frequencies for one or the other product.

As an initial analysis, we will get TOF values for three different situations:
i) standard state, without concentration insights, ii) at high reactant
concentrations chigh: [CO] = 1.5 M, [H2] = 1.0 M, [Alkene] = 2.0 M,
[Aldehyde] = [Alkane] = 0.01 M and iii) at low reactant concentrations clow:
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Figure 4.16: Mechanism typologies for Co-catalyzed hydroformylation
over the core reaction network. From left to right: butyraldehyde
decarbonylation (blue trace), propene hydroformylation (green trace) and
propene hydrogenation (yellow trace).

[CO] = 0.2 M, [H2] = 0.1 M, [Alkene] = 0.5 M, [Aldehyde] = [Alkane] =
0.01 M. The corresponding mechanism-wide effective energy spans, together
with the reaction type associated to each mechanism, are collected in Table
4.3. For completeness, the full set of 12 mechanisms is shown in Figure 4.17.
In absence of concentration effects (with energies in the standard state),

hydroformylation is shown to be kinetically preferred to hydrogenation, with
estimated activation energies of 25.2 and 27.9 kcal ·mol−1, respectively. If we
inspect the individual mechanisms, we find that the only true contributor to
aldehyde formation is mechanism M5, while alkane production has relevant
contributions from both the decarbonylation route M1 and the hydrogenation
route M12, which show quite close TOFs and impact the general reactivity.

When concentrations are introduced, a completely different picture
emerges, highlighting the interest of these effects when analyzing complex
catalytic systems. At low syngas concentrations (clow), hydroformylation is
completely shut down, with a very large effective energy span of almost 40
kcal ·mol−1, while alkane production is enhanced, lowering its barrier to 23.4
kcal · mol−1. In contrast, larger quantities of syngas allow hydroformylation
to take place, with δEeff values that are very close to the ones in the
standard state. This result agrees with known experimental trends and with
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Table 4.3: Derived valid mechanisms for the Co-catalyzed alkene
hydroformylation. Mechanism index, edge removed from the main graph,
Greac and δEeff values, in kcal · mol−1, for the three cases: standard
state (c0), high (chigh), and low (clow) concentrations, respectively. Below,
conjoined δEeff for aldehyde and alkane-producing routes.

Mech. Edge Gr δE0
eff δEhigh

eff δElow
eff Process

M1 2-3 -14.7 28.6 29.5 23.4 Decarbonylation
M2 2-5X -5.0 48.3 24.9 39.4 Hydroformylation
M3 2-9X -19.7 33.6 29.6 44.0 Hydrogenation
M4 3-4 -14.7 37.7 38.2 35.7 Decarbonylation
M5 4B-5X -5.0 25.2 28.9 43.4 Hydroformylation
M6 9X-9 -19.7 33.6 37.3 51.8 Hydrogenation
M7 4-4B -5.0 30.0 29.8 48.2 Hydroformylation
M8 4-5 -19.7 43.3 42.8 55.1 Hydrogenation
M9 5-6 -19.7 39.1 39.3 48.2 Hydrogenation
M10 6-7 -19.7 31.8 31.6 53.8 Hydrogenation
M11 7-8 -19.7 33.3 33.1 47.6 Hydrogenation
M12 8-9 -19.7 28.4 28.2 42.7 Hydrogenation

Aldehyde 25.2 24.9 39.4
Alkane 27.9 27.9 23.4

the kinetic observations by Rush et al., which point at the requirement of
large pressures of CO and H2 to drive the reaction to the desired aldehyde
product.

Intrigued by this strong dependence on reactant concentrations and
aiming to test the capabilities of our approach we extended our analysis,
going from testing individual concentration values, as in Table 4.3, to
actually mapping a large set of different initial concentrations. To do this, we
considered the quotient TOFaldehyde/TOFalkane as a selectivity measurement
and built a bidimensional map with CO and H2 concentrations ranging
from 0.5 to 5.0 M. The rest of concentrations were fixed, assuming a large
concentration of alkene (3.0 M) and some production of both aldehyde
and alkane, at 0.25 M. At this point, it shall be noted that under our
paradigm we are considering “effective” concentrations for hydrogen and
carbon monoxide, despite them being gaseous reactants whose solubility
is limited: such large molarities for these species are indeed unphysical.
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Figure 4.17: Graph representation of the 12 unique valid hydroformylation
mechanisms.

However, recalling the foundations of the semi-standard state approach,
setting the millimolar concentration values expected for CO and H2 in
solution will imply to have them in concentrations much lower than the
catalyst-bearing species, that are set to a standard 1.0 M state. Under
this hypothetical catalyst excess, nearly all the dissolved gas will be indeed
bonded to the catalyst, resulting in more gas molecules being pulled from the
gas phase. In this sense, despite their simplicity, our effective concentrations
take this reactant reservoir somehow into account. While a more thorough
analysis of the gas phase/liquid phase equilibrium would indeed require
more detailed simulations quite beyond the scope of the energy span model,
we believe that the current approach still provides relevant insights on
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Figure 4.18: Selectivity of the reaction regarding [CO] and [H2], considering
effective concentrations in mol·L−1

reactivity trends, as we will showcase in the following paragraphs.
As expected by the preliminary analysis, quite large effective

concentrations of both CO and hydrogen are required to properly drive the
reaction to the production of butyraldehyde. The selectivity for this product
in the upper left corner of the plot, where both concentrations are small,
is shown to be really poor, in agreement with the observed experimental
performance requiring large pressures of the two gases. Looking inside the
hydroformylation-enhancing region (pale yellow zone in Fig. 4.18), we see
how the excess of one or the other reactant has dramatically different effects.
Increasing the quantity of carbon monoxide (going down in the plot) does
not affect the aldehyde selectivity, which remains at its maximum up to 5.0
M. Nevertheless, an excess of H2 has the opposite effect, losing selectivity
across the x-axis as the hydrogenation becomes more favored. This can be
easily rationalized through chemical intuition: if our goal is to insert carbon
monoxide into our scaffold, larger quantities of this species should aid this
process. In contrast, larger quantities of H2 will favor its own insertion
(hydrogenation), inverting the selectivity trend. Comparing these results
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with experimental data, we find a very good agreement, as the reaction
is indeed carried out with excess of carbon monoxide against hydrogen
to maximize selectivity. Experimental and microkinetic-based values for
selectivity show values in the range 92 - 98 %, which are in good agreement
with the 10:1 ratio predicted in our selectivity map.

We may consider analogous maps for the concentrations of other species
(Figure 4.19): nevertheless, the observed effects are much less relevant for
the overall reactivity.

Figure 4.19: Selectivity of the reaction regarding a) [H2] and [Alkene] (ALK)
concentrations, b) [Aldehyde] (PR1) and [Propane] (PR2) concentrations.
All concentrations in mol·L−1.

Propene concentration (Fig. 4.19, left) has no effect in the selectivity
whatsoever, with selectivities being constant across the horizontal axis:
this can be rationalized taking into account that the alkene undergoes
both hydrogenation and hydroformylation processes, thus having no effect
in the relative rate between the two competitive reactions. As for the
products (Fig. 4.19, right), it is shown that the reaction is very insensitive
to the concentration of butyraldehyde, with decarbonylation routes not
contributing much even if a lot of aldehyde has already been generated.
In contrast, the excess of propane has a dramatic effect, shutting down
hydrogenation and decarbonylation routes. When there is too much alkane
in the medium, the selectivity for the aldehyde rises dramatically, showing
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ratios of up to 80:1 for [Alkane] = 2.0 M. This supposes an additional
contribution to the robustness of the catalytic system, as once appropriate
quantities of CO and H2 have been selected, the reaction proceeds effectively
and selectively towards the desired aldehyde product. All of these factors
contribute to the general adequacy of this homogeneous reaction to be
employed at the industrial scale, despite the general preference of the
chemical industry for heterogeneous catalysts. Then, the capability of our
implementation of the energy span model to extract and highlight these
non-obvious features from the reaction mechanism in a simple manner
showcases its interest as a tool in computational catalysis.

4.4 Applications in heterogeneous catalysis

Although the energy span model was originally oriented to homogeneous
catalysis, its core concept (estimating the turnover frequency of a system
from its free energy profile) its general enough for it to be appliable to
other areas of catalysis. Several examples of application of the ESM to
heterogeneous catalysts can be found in the literature, tackling metal surfaces
(such as doped Ni [183], doped Fe [184], or Cu [185, 186]), zeolites [187,
188], metal-organic frameworks [189–191] or supported metal catalysts
(like Au over ceria [192], Ga over alumina [193], Ga over silica [194]
or dispersed Rh [195]). The idea of extending the ESM away from its
initial development area (homogeneous catalysis) goes in line with the more
general concept of bridging the gap between homogeneous and heterogeneous
computational catalysis. While of course both areas will necessarily have
their own idiosyncrasies, due to the widely different natures of the catalysts
that are modeled, there are common aspects where tools and methods
developed for one of these areas can be of interest for the other. A
recent example of this kind of efforts is the application of linear scaling
relationships (LSRs or volcano plots) to homogeneous systems pionereed by
the group of C. Corminboeuf [196–199]. LSRs have been a cornerstone in
computational heterogeneous catalysis [200–202] for many years, providing
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a systematic framework for rational catalyst design and tuning from the
descriptors generated by DFT calculations, which has not been exploited for
homogeneous catalysis until very recently. Indeed, apart from an example of
inter-field connection, these molecular volcano plots are directly tied to the
ESM, which has been applied [198] to obtain TOFs for catalytic systems and
employ them as a descriptor to generate volcanoes. From all this, the ESM
arises as a relevant part for this kind of shared toolkit between homogeneous
and heterogeneous catalysis that is currently under development.

Previous applications of the ESM in heterogeneous catalysis were limited
by the requirement of linearity on the input free energy profiles, whilst
situations such as the competition for adsorption sites over surfaces are
likely to produce intertwined networks that are not well described by a
single energy profile, limiting the accuracy of the resulting TOF just like we
discussed in the previous sections. Moreover, and also in agreement to what
was discussed for homogeneous systems, further simplifications are made
to use the energy span δE as a descriptor, losing an important part of the
information collected from calculations. Therefore, the graph-based variant
of the energy span model implemented in gTOFfee should provide a more
adequate treatment of complex heterogeneous catalytic networks, widening
the overall applicability of this approach. Moreover, as discussed at the end
of Section 4.1, the effective energy span derived from our implementation
provides a more informative measurement of apparent activation energy
which circumvents the limitations of Kozuch’s energy span.

Nevertheless, we should not overestimate the degree in which the ESM
(and gTOFfee) can be directly utilized for heterogenous systems, as despite
the improvements over the original model there are still limitations that
need to be acknowledged. One of the most evident discrepancies comes from
the focus that the ESM puts on concentration effects, assuming species to
be in solution in order to apply the semi-standard approximation to handle
the influence of the quantities of reactants and products. This approach
cannot be translated to heterogeneous systems, where the focal aspect is
the interaction of the different species with the surface. Because of this,
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our current implementation is limited to the “bare” turnover frequencies,
disregarding the effects of reactants and products. Recent work by Cohen and
Vlachos [203, 204] proposes a Modified Energy Span Analysis (MESA) which
precisely deals with this limitation, introducing a formal rescaling of free
energy profiles based on adsorption rates, in analogy with the concentration-
based rescaling through the semi-standard state approximation. While the
MESA approach has not yet been introduced into gTOFfee, it shows a
promising avenue for the further development of the ESM and its role on
connecting homogeneous and heterogeneous catalysis.

Other practical considerations that are required for properly employing
gTOFfee on heterogeneous systems involve the way in which the reaction
network is defined. Networks in homogeneous catalysis are focused on
the different states that the catalyst adopts, following its transformations
alongside the chemical processes of interest until the final regeneration of
the active species. This kind of state-to-state evolution centered on the
catalyst is not as widespread in heterogeneous catalysis, where the specific
state of the surface at a given moment might not be well defined. In this
situation, reported results include the adsorption energies of the species that
occur along the network and the energies of the transition states between
adsorbed molecules, but do not define such a clear A → B → [...] → A

cycle as there would be in homogeneous catalysis. Therefore, in order to
apply the ESM, it can be necessary to “translate” the network, referring
the energies of all intermediates and transition states to the all-free-site
catalyst plus the reactants, ending up back in the all-free-site catalyst with
the corresponding products.

In general, what we aim to cover in this section is mostly a qualitative
first approach to employing the graph-based ESM to heterogeneous
systems, without aiming to obtain precise TOFs suitable for comparison
with experiments or more sophisticated protocols such as microkinetic
or Monte Carlo simulations. As hinted before, a better treatment of
this kind of systems is one of the possible points of development of
gTOFfee, implementing, for example, the MESA approach to provide
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a true quantitative assessment of turnover frequencies in heterogeneous
networks. Nonetheless, we believe that even in this preliminary stage of
development, the network analysis provided by gTOFfee makes it valuable
as an exploratory tool to have better insights on the chemistry of complex
systems in a simple manner.

We will start this part of the discussion with a simple but very
paradigmatic example for heterogeneous catalysis: the Langmuir -
Hinshelwood (LH) mechanism for a simple A + B → C reaction, as
discussed by Mao and Campbell [167] in their proposal of a rate-control-based
apparent activation energy measurement. The LH mechanism (Equation
4.9) comprises four elementary processes: two adsorption reactions for the
two reagents, the combination of the two adsorbed reactants, and the final
desorption of the product. In this set of reactions, * represents a free site,
while X* corresponds to an adsorbed species and X to a free one (e.g. in
the gas phase).

1. A+ ∗ ⇄ A∗

2. B + ∗ ⇄ B∗

3. A ∗ +B∗ ⇄ C∗

4. C∗ ⇄ C + ∗

(4.9)

To build a suitable reaction network for the mechanism in Equation 4.9,
we must consider that any catalytic model for such a system must involve
at least two active sites, so both A and B can be adsorbed at the same time
for the third reaction to occur.

In the context of the “classical” linear ESM, we would need to employ
the reaction network depicted in the left part of Figure 4.20, representing a
sequential process in which the species B can only be adsorbed after the
species A. The flaws of such a simplified approach are obvious, as there is
no physical reason for the catalyst to adsorb the reactants in this specific
order. Moreover, this naive sequential model does also miss the possibility
of the two sites being occupied by the same molecule, generating states
such as (A*,A*) or (B*,B*). The network on the right side of Figure 4.20
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Figure 4.20: Reaction networks for the Langmuir-Hinshelwood mechanism,
involving a sequential adsorption scheme (A, then B, left side) and a more
realistic proposal (right side) where any molecule can adsorb first and both
sites can be occupied by the same species.

does correct these two behaviors, providing a more realistic picture of the
Langmuir - Hinshelwood mechanism which cannot be attained with a purely
linear free energy profile. This situation clearly exemplifies the importance
of switching to the graph-based representation to treat non-trivial reaction
mechanisms in the context of the energy span model. In fact, the article
by Mao and Campbell presents this specific mechanism as an example
of failure of the ESM, where the energy span misses a factor of 2 in the
apparent activation energy of the process. In this case study, the transition
state TS3 (leading to C* formation) is assumed to be the TDTS of the
process and the surface is assumed to be almost covered by A, which implies
that A adsorbs more strongly than B (else, the surface will be saturated
with B instead). Due to this difference in adsorption energies, the state
(A*,*) will be more stable than (B*,*), and consequently (A*,A*) will be
lower in energy than (A*,B*) and (B*,B*). Therefore, (A*,A*) should be
the TDI of the process: if we recover the original definition of the energy
span, we find δE ≈ GT DT S − GT DI = G(TS3) − G(A∗, A∗). For non-
interacting sites, the adsorption of both molecules of A will be independent,
so G(A∗, A∗) = 2 ∗Gads(A), leading to δE = G(TS3) − 2 ·Gads(A), which
is consistent with the expression that Mao and Campbell propose in their
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article in terms of enthalpies (Eapp
a = H0(TS3) − 2Hads(A)). The factor

of 2 accompanying Gads in our expression comes from taking into account
the off-cycle intermediate (A*,A*) which is the TDI under the current
constraints.

If some of these constraints were to be lifted (i.e., there being other
transition states comparable to TS3 or adsorption energies of A and B being
comparable), δE will not be a proper descriptor of the activation energy.
In contrast, the effective energy span computed from the network-wide
TOF will be able to capture these effects, despite not having a compact
analytical expression, in a similar way to other related descriptors such
as Mao and Campbell’s apparent activation energy. Overall, this whole
discussion on the LH mechanism aims to illustrate conceptually how the
reaction-network-based treatment allows the ESM to overcome some of its
main issues, while tackling one of the prime examples in the the modeling
of heterogeneous catalysts.

To get some additional insights on how gTOFfee can shed light into more
complex mechanisms in the context of heterogeneous catalysis, we considered
the reaction network for the hydrogenation of CO2 over a Cu(111) surface, as
proposed by Zhao et al. [205]. The corresponding network, shown in Figure
4.21, comprises 28 nodes and 31 edges, with three cycles on its minimal
cycle basis. The catalytic system modeled by this network remains relatively
simple, but still proposes a different challenge than our previous examples on
homogeneous hydroformylation or the Langmuir - Hinshelwood mechanism.
Chemically, the underlying reaction is the production of methanol from
carbon dioxide (CO2 + 3H2 → CH3OH + H2O), with formaldehyde being a
possible byproduct (CO2 + 2H2 → H2CO + H2O).

Following our previous comments, we needed to adapt the network
reported by Zhao et al. to be consistent with the guidelines required by the
ESM and gTOFfee. Mainly, every node in the network shall be assigned
to a different catalyst state, as done for the LH mechanism, taking into
account the occupied and free sites involved in each step. In this case, we
did not consider the multi-site occupation of a given species like for the
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LH mechanism, keeping the model simple: it should be recalled that our
goal on the application of gTOFfee to heterogeneous systems is mostly
qualitative. As the reaction energies and barriers in the article are reported
in terms of the individual elemental reactions taking place on the surface, we
needed to add them along the proposed network in order to get the energies
of these catalyst state. To do this, we work under the assumption that
already adsorbed species do not affect the co-adsorption of other molecules,
so the energy of an A*B* state is just the energy of the bulk plus the
adsorption energies of A and B. Finally, it is important to consider that for
transition states only zero-point-corrected potential energies (and not Gibbs
free energies) are reported, and consequently we will be employing these
ZPE-corrected energies for the complete network. Although an accurate
TOF determination requires free energies (as it is founded on Transition
State Theory), not only our focus is on the qualitative analysis of the
resulting graph and not as much on the computation of the TOF, but also
the possibility of employing internal energies under certain circumstances
was proposed upon the first introduction of the method [206].

After processing the graph in Figure 4.21, we obtain a total of 240
mechanisms and 1117 spanning trees, a vastly larger number than in the
hydroformylation example. Recalling Section 4.2.1, the number of subgraphs
that can be generated from a certain network depends on its minimum
cycle basis Nc: the more individual cycles in this basis, the more sets of
edges whose removal must be tested. Although the exact number of valid
mechanisms or spanning trees cannot be easily predicted, as it depends on
the specific topology of the network, a larger pool of candidates produces
a larger number of subgraphs. Here, there were

( 31
3−1
)

= 465 mechanisms
and

(31
3
)

= 4495 tree candidates, accepting 51.6 % and 24.8 % of them,
respectively. From the tree candidates, only 2909 were actually tested, due
to being generated from preaccepted mechanisms and not from the core
network.

A mechanism-per-mechanism analysis, like we did for the
hydroformylation case, would be unfeasible here due to the quantity
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Figure 4.21: Reaction network for the Cu(111) catalyzed reaction between
CO2 and H2.

of accepted mechanisms. However, these 240 mechanisms correspond to
only six mechanism typologies (Figure 4.22), involving the production of
either formaldehyde or methanol across different intermediates.

Starting from the top left corner of Figure 4.22, we have two routes
for producing formaldehyde: R1, starting from CO2 (blue trace), and R2
(pink) corresponding to a net dehydrogenation of methanol. The other four
pathways lead to methanol production: both R3 (green) and R4 (yellow) are
formaldehyde hydrogenation routes, while R5 (purple) and R6 (orange) are
direct reductions of carbon dioxide. From there, we computed the turnover
frequency and effective energy span corresponding to the set of mechanisms
leading to each of these six mechanism types, as showcased in Table 4.4.

Looking at the effective energy spans in Table 4.4, we see two clearly
preferred routes, which are R1, producing formaldehyde from carbon dioxide,
and R3, producing methanol from pre-existing formaldehyde. While the
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Figure 4.22: Graph depiction of the six unique closed-cycle typologies arising
from Cu(111)-catalyzed CO2 hydrogenation network.

best-performing mechanism for the two routes has the same δE∗ value
(1.51 eV) for these two pathways, R3 is slightly more favorable when all
mechanisms are added, leading to a δEeff of 1.48 eV.

The reason behind this variation is that in the case of R3 several
individual mechanisms contribute to the overall TOF (and thus to
the effective activation energy), while for R1 only the best-performing
mechanism has an impact in the TOF. Taking these results into account,
the system is, as expected, confirmed to be adequate for methanol production,
as the formaldehyde which is produced through the pathway R1 will be
readily transformed onto methanol through R3, with this two-step route
being more favorable than the direct pathways R4-6.

To have some more insights on the contribution of the individual
mechanisms to the mechanism type they pertain to, we computed histograms
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Type Prod. N Er δE∗
eff δEeff

R1 H2CO 75 -0.57 1.51 1.51
R2 H2CO 20 -0.57 1.99 1.99
R3 CH3OH 73 -1.04 1.51 1.48
R4 CH3OH 6 -1.04 2.61 2.58
R5 CH3OH 27 -1.61 1.73 1.73
R6 CH3OH 39 -1.61 2.21 2.21

Table 4.4: Summary of mechanism typologies for Cu(111)-catalyzed CO2
hydrogenation network. All energies in eV. From left to right, typology
tag, formed product, number of associated mechanisms, reaction energy,
effective energy span of the best mechanism, and effective energy span for
the sum of all TOFs.

and smoothed density plots (Figure 4.23) for the per-mechanism effective
energy spans in the six groups of mechanisms presented in Figure 4.22 and
Table 4.4

Figure 4.23: Histogram-based analysis of the per-mechanism effective
activation energies for the Cu(111)-catalyzed CO2 hydrogenation network,
grouped by the corresponding mechanism typology R1 - R6, with energies
in eV. Left, density plots for the six typologies, right, density plots and
histograms for the two most favored pathways R1 and R3.

Through the histogram visualization in Figure 4.23 we can get a grasp
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on how many accessible mechanisms are encoded in every reaction typology.
The left plot makes clear how R1 and R3 contain many more subgraphs
than the other typologies, whose density plots have lower counts (indeed,
R4, with just six mechanisms, is hardly visible in this depiction). We can
also see how R2 has the most right-shifted density plot, implying that most
of the mechanisms it contains are very disfavored, in contrast with Table 4.4
where its best-performing mechanism had a moderate effective energy span.
Comparing the most favored pathways R1 and R3 (right plot), we see how
the average R3 mechanism is more accessible (having a lower δEeff value)
than the average R1 mechanism, whose curve is remarkably shifted to larger
energy spans. From all this, we obtain a more robust confirmation of the
advantage of R3-type mechanisms (formaldehyde to methanol) against the
other reactive pathways in the network, as most of these mechanisms are
reasonably accessible. In general, the idea behind this analysis is to have a
more general picture of the reactivity of the system: in the spirit of the rest of
the chapter, our main goal is to have a reasonable balance between richness
and complexity when analyzing non-trivial reaction networks. Consequently,
despite the aforementioned limitations on the treatment of heterogeneous
catalysts through gTOFfee, we believe that the qualitative analysis of the
CO2 hydrogenation network shows the strengths of our approach.

4.5 Conclusions

We have developed a computational implementation for the graph-based
TOF calculation scheme proposed by Kozuch to extend the ESM to non-
linear, complex catalytic cycles. Through this approach, we open the door
for a simple, versatile and computationally affordable analysis of realistic
chemical systems allowing to go beyond the direct inspection of free energy
profiles with minimal effort, including effects that are often neglected in
routine DFT studies such as the impact of temperature or concentrations.

While the original concept behind the ESM was mainly the prediction
of turnover frequencies, our approach has intended to go beyond these raw
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values, focusing on the analysis of the subgraphs arising from the reaction
network (reaction mechanisms) and on the interest of the effective energy
span as a measurement of the apparent activation energy for complex systems.
Additionally, our application examples have considered more profound
analyses such as mapping selectivities to initial reactant concentrations or
an statistical overview (through histograms) of the numerous mechanisms
appearing in highly interconnected networks.

Overall, we have shown our approach to be able to reproduce
experimental trends in homogeneous catalysis, using hydroformylation as
an example, and to have a promising potential for heterogeneous catalysis
overcoming several of the limitations associated with the ESM. In general,
we believe gTOFfee to be an interesting tool for computational chemists,
allowing to obtain chemically relevant information with a minimal setup and
under the simple mathematical framework of the energy span model. Going
along the major objective of this Thesis, the main strength of gTOFfee
comes from the possibility of taking actual advantage from highly detailed
reaction networks for catalytic processes instead of trying to reduce them
to a single pair of rate- (or turnover-) determining states, as from usual
conventions in DFT studies.
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Structuring reaction networks as knowledge
graphs: OntoRXN
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5.1 Semantic organization of chemical knowledge

Semantic approaches permit a very versatile, but still highly ordered,
organization of different domains of knowledge, as we introduced in Section
2.3. To express data pertaining to a certain field under this paradigm,
it is necessary to define an ontology stating the different types of entities
appearing in the field of choice and the relationships between them to be able
to represent the domain. Nevertheless, ontological approaches to chemistry
are still in a quite preliminary phase compared to areas where ontologies
are more widely used, like medicine or biology. One of the largest chemical
ontologies, ChEBI [207, 208], does fall somewhere in between these two
fields, targetting the definition of chemical entities of biological interest.
Indeed, the development of ChEBI was prompted by the lack of previous
semantic descriptions for chemical data in the contexts of bioinformatics and
biomedicine, in contrast with the richness of the ontological description of
other aspects of interest for these communities. As of September 2022, this
ontology contains almost 60000 annotated entities [209] on small molecules
involved in biochemical and metabolic pathways.

Nonetheless, despite the success of ChEBI, the degree of development
of other ontologies in Chemistry is moderate: although there is a growing
interest on the matter, as showcased in recent reviews [210, 211], no
chemical ontology has yet achieved a widespread use nor become a true data
organization standard. Because of this, many of the current proposals
are still underdeveloped and often quite isolated from the rest of the
semantic data ecosystem. However, in spite of these drawbacks, there
is a wide variety of relevant efforts tackling plenty of important aspects of
Chemistry, which are worth discussing. Sankar and collaborators [212–214]
have brought forward a very low-level approach aiming to describe organic
reactivity from its most fundamental levels, going from the molecule until its
electrons. In sheer contrast, the Named Reactions Ontology (RXNO) [215]
comfronts reactivity from a synthesis-oriented approach collecting named
transformations to handle general organic reaction schemes. With a somehow
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similar spirit, the Chemical Methods Ontology (CHMO) [216] considers the
description of methods in experimental chemistry, reorganizing laboratory
protocols in a semantic manner. Continuing with this heterogeneous and
strongly multiscale picture, the concept of Digital Twins [217], aiming to
mirror industrial pipelines through detailed computer models, has also been
recently applied to laboratory automations [218].

Although cheminformatics and computational chemistry, where the
management of data occupies a particularly central position, seem an obvious
target for semantic approaches, the impact of ontologies in these has been
quite limited. We may highlight CHEMINF, for data-driven cheminformatics
[219, 220], or Gainesville Core [221], which collects several basic definitions
with the goal of obtaining “a complete description of a typical Computational
Chemistry experiment” as reasonably mature developments on the field,
but which are still lacking a more general user base. Given that successful
ontologies imply a consensus along the community to standardize a certain
field, limitations on the adoption of existing ontology proposals eventually
end up as limitations on their ultimate development, which requires a
collaborative effort. In this line, while a large community wrap-up to
define a full ontology including all aspects of e.g. computational chemistry
will result on a daunting (and not actually realistic) goal, a more feasible
approach involves the development of narrower ontologies tackling specific
subdomains and the further connection of the resulting pieces.

Following this idea, we thought that a semantic-based organization
would be ideal for the study of reaction mechanisms and reaction networks,
formalizing and wrapping up the concepts outlined along the Thesis.
Previous ontologies have already considered reaction mechanisms, starting
from the point of view of experimental chemical kinetics as in OntoKin
[222]. Later on, this description was connected with OntoCompChem
[223], a development over Gainesville Core [224], to combine computational
studies, kinetics and reactivity. Given that the core of OntoKin is based on
experimental kinetics, the kind of mechanisms described by this ontology
would be built under the “classical” kinetic framework centered on rate
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constants. However, we already discussed the convenience of the energy-
based E-representation to define reaction networks when introducing the
energy span model in Chapter IV. Under this paradigm, we can work with
simpler undirected graphs that can be directly paired with the energies
resulting from computational chemistry protocols, which already encode
graph traversal information. Therefore, instead of reutilizing OntoKin, we
started building a new ontology for reaction mechanisms founded on the
philosophy of the E-representation: OntoRXN. The ultimate goal of this
project is to produce a standard format combining all the information that is
associated to a given reaction network, going from the individual properties
extracted from every individual calculation pertaining to the system to the
graph structure that embeds the chemical knowledge about the system. To
build such an ontology, we considered three main guidelines:

• Application of the E-representation, handling reaction networks as
fully undirected graphs.

• Conceptual mapping between calculations, species and states along
the reaction network.

• Usage of ioChem-BD as the main source of calculation information
(stored as CML files) and of the classes and relationships already
defined in the OntoCompChem ontology.

The second principle of design is directly related to the way in which we
define reaction networks and catalytic cycles, which was already hinted in
Chapter III. The states defining nodes or edges along a given network do
not usually involve a single molecule or structure, but instead group several
species altogether, keeping a balance in the number of atoms across the
network. This consistency is essential in order to work with relative energies
in chemical systems, so a proper reference state including all involved species
can be defined. This reference must be consistent with all the other states
in the network, requiring to take into account the points of the network
where one (or some) species enter or leave the mechanism.
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Finally, the third guideline has a double goal: the integration of
OntoRXN in i) the current chemical ontology ecosystem, reutilizing previous
definitions for the elements related to individual calculations, and in ii) the
ioChem-BD-based data management workflow, converting the non-standard
outputs produced by the computational chemistry codes supported by the
platform (i.e. Gaussian, ADF, VASP, MOLCAS, ORCA...) to a standardized
CML (Chemical Markup Language) format [85–88]. Alternative projects
on the semantic organization and publication of computational chemistry
results proposed new formats such as CSX [225] to overcome some limitations
inherent to CML. However, we believe that the convenience of directly
employing the ioChem-BD platform to handle the parsing and storage of
information already justifies the direct usage of CML files. Moreover, and
as commented on Section 2.5, the possibility of defining reaction networks
inside ioChem-BD allows to wrap the complete protocol up, putting the
data and its chemical meaning together and facilitating its further ontology-
based processing.

As a final note, we shall also consider the connection between our
ontology (OntoRXN) and the most similar preexisting proposal combining
OntoKin and OntoCompChem [223]. The main discrepancy between the two
approaches is, obviously, the switch between rate constants (k-representation,
OntoKin) and energies (E-representation, OntoRXN) as the main kinetic and
thermodynamic descriptors of the system. However, both representations
can be linked by the transformation of activation free energies to rate
constants, through the Eyring equation. We may then design agents to
traverse the network encoded in a OntoRXN-based knowledge graph (KG),
assign the corresponding directions and compute the rate constants for each
elementary reaction. Consequently, it would then become possible to link the
two ontologies (and the knowledge graphs generated from them) altogether,
employing them for their main domains of application: experimental for
OntoKin and computational for OntoRXN.
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5.2 Ontology development

As discussed on Section 2.3, a central part of ontologies is the class
structure which is proposed to organize a certain domain of knowledge.
As the relationships that power the semantically structured information
are defined over these classes, they propagate to the individuals defined
for a given dataset. Although the actual class structure of OntoRXN will
eventually comprise many classes, combining these intrinsic to our ontology
to these borrowed from OntoCompChem, Gainesville Core and other related
ontologies, we can instead focus on the core classes required to fulfill the
aforementioned design guidelines (as depicted in Figure 5.1).

Figure 5.1: Core class structure (topology) for OntoRXN, specifying the
four main classes and the properties interlinking them.

These four classes model different levels of the reaction network,
obtaining a comprehensive mapping of the individual pieces of information
that we outlined in the previous section. The lowest-level class is
CompCalculation, which represents the results extracted from an
individual electronic structure calculation to a CML file in the ioChem-BD
platform. The definition of this class borrows directly from the definition
of the GaussianCalculation class in OntoCompChem, in order to reutilize
the properties and relationships that were already defined on this ontology
(while also applying some modifications that will be explained later). Then,
ChemSpecies models the individual chemical entities involved in the
network: while CompCalculation refers to a specific, discrete computation
result (one output, one CML file), ChemSpecies represents the conceptual
molecule for which one or more calculations have been performed. In this
way, it is possible to represent situations in which the same chemical species
has been the target of different calculations, such as geometry optimizations
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at different levels of theory, conformational searches, and so on.
Whilst these two first classes describe individual molecules and

calculations, the other two model how these entities are connected to
build the reaction network. The NetworkStage class refers to the set
of species (as ChemSpecies entities) that must be considered together
to define a proper node or edge (from here on, a stage) in the reaction
network graph. As introduced in Section 2.1 and at the design principles of
the ontology, CRNs for reaction mechanisms should have atom-consistent
stages so relative energies across states can be properly computed. To do
this inside our ontological framework, we collect sets of ChemSpecies in
NetworkStages, which become the basic modeling element for intermediates
(nodes) and transition states (edges). Finally, the ReactionStep class
models elementary reaction steps, which under our graph framework imply
an edge and the two nodes it connects. Inside the ontology, this means that a
ReactionStep puts together the NetworkStage elements of the intermediates
and, possibly, the corresponding transition state associated with the
transformation (which might not be present, allowing the representation of
barrierless processes). Due to the undirected nature of reaction networks
in the E-representation, ReactionStep entities do not contain any kind of
properties related to directionality, which would involve concepts such as
direct and forward reactions, irreversible and reversible steps... Instead, the
assignment of directions becomes a graph traversal problem, just like in
the application of the graph-based energy span model (Chapter IV), which
will be taken care of, if necessary, by the specific agents employing the
OntoRXN-based knowledge graphs for one or other application.

Figure 5.2 presents a simple example on how a single elementary reaction
step could be represented in terms of our ontology proposal, in order to
clarify the aspects that each of the proposed core classes are modeling.
The ReactionStep itself (blue square) comprises three NetworkStages (pink
circles), corresponding to the two intermediates Int1 and Int2 and the
transition state TS1. Both Int2 and TS1 correspond to unique ChemSpecies,
which are respectively C and AB‡, while Int1 includes two different molecules
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Figure 5.2: Schematic depiction of the complete representation of a
elementary reaction step A + B ⇄ C in terms of the class structure of
OntoRXN, mapping the entities in the ontology to the labels in the reaction.
Regarding calculations, every species is assumed to be computed under two
different sets of conditions: x and y.

(A and B). Finally, every molecule is associated with two calculations (x
and y), which might be, for example, analogous geometry optimizations
done at two levels of theory.

Although basing our CompCalculation class on the OntoCompChem
ontology is really convenient from the point of view of ontology reutilization
and interoperability, a couple of modifications on the borrowed class and
its properties were required to properly follow the intended philosophy of
OntoRXN.

Figure 5.3: Connection between the calculation-defining entities in
OntoCompChem and OntoRXN.

The main mismatch is indeed conceptual: the parent class defining
a calculation entity in OntoCompChem is labeled GaussianCalculation,
doing the implicit assumption that only calculations carried out with
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Gaussian can be modeled through the ontology. In contrast, our workflow
involves the connection of OntoRXN with ioChem-BD, where results
are stored in CML format regardless of the package that was employed
to run the calculation. Consequently, this program-agnostic approach
should be also tackled from the ontology side. To do this, we included a
superclass named BaseCalculation wrapping up the GaussianCalculation
from OntoCompChem (Figure 5.3), aiming to end up defining equivalent
classes for all other codes supported by ioChem-BD while still employing
the properties and relationships from pre-existing ontologies. At this
point, from the four-class structure in Figure 5.1 and its integration with
OntoCompChem (Figure 5.3) we should be able to start instantiating
knowledge graphs for example reaction networks, initializing an iterative
process of development and testing from real computational chemistry data.
In this manner, it should be easy to identify the required developmental
points for both the ontology and the codes and protocols for the generation
of KGs.

It is also worth noting the interest of seeking further connections of
OntoRXN with other chemical ontologies, beyond the core integration with
OntoCompChem. On the one hand, the ChemSpecies class referring to
general chemical entities could be easily linked to almost any general ontology
including the notion of molecules. This may lead to, for example, assigning
PubChem IDs to the species in a chemical network in a semantic framework
[226], or, in a more general sense, connecting the molecules participating in
the network with chemical data such as their physical properties or reagent
sale prices in a complex, multidisciplinary knowledge graph integrating data
from several sources. On the other hand, the ReactionStep class, modeling
elementary reaction steps, might be connected with the kinetic descriptions
of OntoKin (Section 5.1) or with the Molecular Process Ontology (MOP)
distributed with the more general Named Reaction Ontology (RXNO)
for chemical reactions [215]. In this way, the named types of elementary
reactions defined in MOP could be linked to the steps present in the
OntoRXN-defined reaction network, providing useful metadata for the
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further processing of the KG. This connection, just like with OntoKin,
has the problem of directionality: while the ReactionStep entities do not
include this kind of information, labeling any kind of reaction type always
assumes a specific direction for the reaction. A solution to this issue
could be the definition of pairs of reaction types for a given step in the
network considering the two possible traversal directions (e.g., oxidation and
reduction, fragmentation and association), thus including naming metadata
without losing the undirected graph skeleton.

5.3 Generation of knowledge graphs from
ioChem-BD

Since recent releases, ioChem-BD includes features for the construction
of reaction network graphs from the reaction energy profiles defined in
the platform [120], as introduced in Section 2.5. These graphs are an
ideal starting point for the generation of knowledge graphs, as they are
directly generated from the calculations stored in the platform and are then
automatically linked to the individual CML files. In this way, both the raw
data and its structure are available in the platform, leaving to the knowledge
graph generation workflow only the reorganization of the information to
follow the OntoRXN ontology, as depicted in Figure 5.4.

As of now, the workflow has been implemented as a Python interface,
named ontorxn-tools and published together with the ontology, handling
all operations in the pipeline from the retrieval of the information from
ioChem-BD to the final instantiation of the knowledge graph.

The very first step of the protocol in Figure 5.4 is, of course, the
characterization of the target reaction mechanism: apart from “traditional”
manual searches for intermediates and transition states, the protocol can be
also applied seamlessly to the automatically discovered networks generated
by AutoMeKin (through amk-tools, as discussed on Chapter III). In any case,
the mechanism predicted from the calculations defines a reaction network

140

UNIVERSITAT ROVIRA I VIRGILI 
Unweaving complex reactivity: graph-based tools to handle chemical reaction networks 
Diego Garay Ruiz 



Chapter V. OntoRXN 5.3. Generating knowledge graphs

Figure 5.4: Workflow scheme for ioChem-BD/OntoRXN-based knowledge
graph generation.

(RXNet, also recalling the nomenclature from Chapter III), which is then
pushed to ioChem-BD. This upload stage involves two parts, storing the
individual calculations in a collection of CML files and the graph structure
as a report (see Section 2.5 for details on the terminology related to ioChem-
BD). By now, report definition requires to transform the RXNet to a set
of individual energy profiles encompassing all species and transformations
happening in the network, although a more direct definition of reaction
network graphs in ioChem-BD is another of our main future goals. Once the
set of reaction energy profiles has been defined, it can be transformed back
to a network-like representation that can be extracted as a graph, which is
used as the actual input for our code. Then, the CML files in the collection,
linked to the reaction network through the definitions in the report, can be
retrieved through ioChem-BD’s REST API.

As shown in Figure 5.5, all retrieved data is, at this point, processed
by the KG generation workflow. Roughly, we may say that the CML
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Figure 5.5: Detailed workflow scheme for ioChem-BD/OntoRXN-based
knowledge graph generation.

files from the collection will end up defining the CompCalculation and
ChemSpecies entities, and the connectivity from the reaction network graph,
the NetworkStages and ReactionSteps.

Starting from the right part of the diagram, each CML file is processed
by a eXtended Stylesheet Language Transformation (XSLT), mimicking
the standard protocol to present and extract information employed across
ioChem-BD. This approach involves the generation of specific stylesheets that
fetch the information of target fields in the CML file and reorganize them in
an alternative format. While in ioChem-BD this format is usually HTML, to
directly display the corresponding contents, our code just generates a string
of plain text containing key/value pairs mapping the extracted information
to a field name. These parsed CML fields are fed to a CompCalculation
entity, with the specific assignment depending on the target property. For
simple properties (e.g. energy, free energy, InChI string...), there is a set
of mapping rules to relate the name of the property in OntoRXN with the
CML field name, the data type (numeric, string or vectorial) and its units.
This rule collection can be easily modified and extended, simplifying the
integration of new properties defined in the ontology. For other properties
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that require a more complex processing, specific definitions are hard-coded
inside the library. For example, in the case of geometry, the Gainesville Core
framework introduces individual atom entities containing atomic symbol and
XYZ spatial coordinates grouped together in a molecular entity. Then, the
block of text containing Cartesian coordinates has to be parsed to properly
define the molecular antity and its atoms to follow the pre-established
standards.

Once the CompCalculation individual is complete, it is necessary to link
it with a ChemSpecies. As these might have a one-to-many mapping with
calculations, it will not make sense to naively just generate a new species
for every calculation. Instead, the name of the calculation in the report
definition is checked and a new ChemSpecies individual is generated and
linked to the calculation only if the name has not been yet encountered. Else,
the previously defined species is retrieved and mapped. The calculation
name was chose as the mapping variable for its simplicity and flexibility, as
it allows users to modify the names in the report according to their needs,
but it might be possible to use other properties such as the InChI, forcing a
more strict mapping.

With all calculations and species being defined, the network graph has
to be processed to introduce connectivity, as illustrated in the left part of
Figure 5.5. First, the nodes of the graph are iterated through, defining the
corresponding reaction intermediates as NetworkStage entities. The same
is done for the edges, with each of them defining a new ReactionStep in
the KG. These steps are immediately mapped to the NetworkStages of the
two nodes it connects, generating and linking a third stage if the edge does
also have a explicit transition state structure. Finally, all NetworkStage
entities generated during this process are mapped to the corresponding
ChemSpecies as from their definitions (or, following from the conventions
in the ioChem-BD interface, the formulas) in the original report, finalizing
the definition of the base knowledge graph. Some relevant relationships in
OntoRXN, however, cannot be properly expressed in terms of the OWL
language, such as the connection between steps sharing common stages. To
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handle these situations in a flexible and scalable manner, the code includes a
set of SPARQL queries (a querying language for RDF databases that we will
introduce in the following section) that infer these additional relationships
and add the explicit facts on the knowledge graph to complete it.

5.3.1 Coding details for ontorxn-tools

Just like in Chapters III and IV, apart from the conceptual outline
of the workflow, we will provide some additional details on the coding
and organization of the overall library. First of all, the package structure
(Figure 5.6) involves indeed two different packages: ontorxn-tools itself
and py-iochem, which wraps several utility functions developed to work
with ioChem-BD reports, calculations and its REST API. Both packages,
together with the ontology, are freely available on GitLab [227, 228].

Figure 5.6: Schematic package structure for ontorxn-tools and py-iochem:
dotted arrows connect modules with external files required for the main
workflow.

Through this structure, it is possible to decouple the ontology-specific
aspects from the more general Python interface for ioChem-BD-based assets,
facilitating its reutilization, with the ReportAPIManager and GraphManager
modules being also employed by amk-tools (Chapter III) or gTOFfee
(Chapter IV).

Going on with the operational details, the expected graph input format is,
as stated, the DOT graph generated from ioChem-BD reports. If the input
network contains disconnected subgraphs, they will be split into individual
components, allowing additional flexibility to define several related CRNs
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(e.g. and as it will be shown in further examples, a network characterized
with multiple solvent model parameters) in a single report. Apart from the
graph structure, it is necessary to add the ID of the report in the database
to properly match the graph itself with the underlying collection.

From there, our code provides the OntoRXNWrapper class to simplify
the input/output, generation and transformation of the knowledge graphs
based on OntoRXN, integrating the ontology management paradigms of two
key libraries: owlready2 [229], for general handling of OWL-based entities,
and RDFLib [230] for a more general treatment of triple-based RDF graphs.
In this way, it is possible to leverage the capabilities of both libraries more
easily, with the former being used for general access to the properties and
classes of OntoRXN and its knowledge graphs, and the latter for querying
the KG as we will detail in the following section.

5.4 Applications: semantic querying of
knowledge graphs

The actual goal of organizing knowledge semantically, from the very first
conceptualizations of the Semantic Web, is to permit the formulation of
complex questions on the dataset. The knowledge required to answer these
questions is inferred from the relationships established not only in the specific
target knowledge graph, but also across KGs based in other ontologies that
the target KG is linked to. Thus, having a fully ontology-organized domain
of knowledge would allow the application of arbitrarily complex queries
bringing widely different aspects of the target field together. In the case of
Chemistry, these aspects might involve, for example, the energies obtained
from a set of computational chemistry calculations, the properties of the
solvents employed experimentally to carry out a certain synthesis, the prices
of the involved reagents, etc, with these entities being defined in different,
but interrelated, chemical ontologies. Thus, it would be possible to ask
questions such as “what would be the most efficient catalyst for a reaction
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X, synthetized in less than Y steps, with source materials not costing more
than Z?” and obtain an answer extracted from all the available data in a
simple manner. Of course, such a large-scale development is still quite far
from reach, given the limited degree of adoption and growth of ontologies
on the field. Nonetheless, the semantic querying of smaller KGs founded on
narrower ontologies such as OntoRXN arises on its own as an interesting
tool for the analysis of complex systems.

Recalling that ontologies and knowledge graphs are founded in the
non-relational RDF data model, the way to query this kind of entities is
the SPARQL (SPARQL Protocol And RDF Query Language) language
[231]. This language is syntactically very similar to the widely known
SQL (Structured Query Language), but targetting non-relational databases
instead of the relational, table-like databases for which SQL is tailored for.
As explained in Section 2.3, the RDF model is based on the assertion of
triples, kind of “sentences” connecting a subject with an object through a
predicate, which eventually organize the data in flexible and scalable graph
structures. SPARQL shares this triple-based organization, but allowing
some (or even all) the elements in the triples to be variable, generating
triple patterns. The RDF graph can then be filtered according to the
SPARQL patterns, providing subgraphs which only contain the triples that
are matched by the query (Figure 5.7)

From Figure 5.7, the proposed example query (below the arrow) considers
four triple patterns searching for nodes that are interconnected, with one
being a square and the other being a circle, restricted to circles that are
also yellow. The application of this query to the RDF source graph in the
left isolates the set of five nodes highlighted at the right side.

These subgraphs can be used in two main ways, either adding new
assertions to the main graph or simply presenting the extracted information.
Queries of the former type are used at the last step of the KG generation
process (Figures 5.4 and 5.5) to assert additional relationships in the KG
once all entities have been defined, expanding the number of triples in the
database. In contrast, the latter permit the enunciation of questions, being
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Figure 5.7: Graphical depiction of SPARQL pattern matching on a toy
RDF graph with nodes having connectivity, color and shape properties.
Triple patterns of the query are shown as a table, with the corresponding
subject (s), predicate (p) and object (o): entries in bold and preceded with
a question mark correspond to variables.

the main tool that the current section is focused on. Several SPARQL
endpoints have been already set up to apply this type of queries over
semantically-organized chemical databases, such as the Annotated Reactions
Database [232] (RHEA) or the Integrated Database of Small Molecules [233]
(IDSM).

Coming back to OntoRXN, apart from merely extracting information
from the knowledge graphs, it is possible to employ SPARQL querying to
design workflows (or, under the naming conventions of the Semantic Web,
agents) where the data extracted from the knowledge graphs may be directly
employed to generate complex plots, prepare structured input for follow-up
calculations or, in general, do post-processing on the retrieved information.
To demonstrate the utility of KGs and its querying, we will showcase
three different examples on computational studies of reaction mechanisms,
transforming the corresponding reaction networks to knowledge graphs
via the pipeline combining ioChem-BD and ontorxn-tools, and designing
specific agents to process the KGs and explore the major points of interest
of each specific mechanism. Through this process, apart from highlighting
the advantages of SPARQL querying, we will also comment on the most
chemically interesting aspects of the involved mechanisms and provide some
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additional clarifications on knowledge graph structure and generation.

5.4.1 Mapping the knowledge graph: the decomposition of
t-butyl peroxyformate

Until now, we have only spoke about knowledge graphs in a theoretical
manner, presenting the OntoRXN ontology and the toolkit employed to
generate them from concrete datasets. At this point, and before discussing
possible SPARQL-based applications, we shall present a specific example of
a knowledge graph for a given reaction mechanism, to clarify aspects that
might have been overlooked through the general discussion.

The mechanism that we will be using as a reference here is the
decomposition of tert-butyl peroxyformate (Figure 5.8), which we recently
studied through DFT calculations [234, 235]. This system provided us with
a relatively simple mechanism, and consequently a small reaction network,
whose corresponding calculations were already available in ioChem-BD.
Moreover, together with this base simplicity, the study also offered several
points of interest where the KG-based approach could be particularly handy.

Figure 5.8: Peroxyformate decomposition reaction, producing carbon dioxide
and tert-butanol in the presence of pyridine as an organocatalyst.

The interest of the organocatalyzed reaction in Figure 5.8 does not come
from its products, which are just a simple alcohol and carbon dioxide, but
from its mechanistic intricacies. As observed by R.E. Pincock [236, 237],
the decomposition can take place in a large variety of solvents, ranging from
very non-polar to highly polar media, with important kinetic differences.
The initial mechanistic proposal for this reaction, however, involved a
charge-separated zwitterionic complex with a protonated pyridine and a
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tert-butoxide anion which should not be an accessible structure at all,
especially in solvents of low polarity.

Figure 5.9: DFT-characterized mechanism for peroxyformate decomposition.
Gibbs free energies, at a reference state of 1.0 M and 363.15 K, at the
ωB97XD/6-311G(d,p) level with SMD parameters for chloroform as a solvent.
Entries labeled as Int or TS correspond to the states employed in the
simplified reaction network.

DFT studies2 (Figure 5.9) allowed us to identify a suitable mechanism
in which no charge-separated intermediates had to be formed due to the

2Computational details from Ref. [234]. Unrestrained geometry optimizations were
carried out using Gaussian09 [238] at the ω-B97XD [239] level of theory, with a 6-311G(d,p)
[240, 241] basis set and employing the SMD [242] model for implicit solvation with the
default parameters for chloroform. Minima and saddle points were identified by harmonic
vibrational frequency analysis, ensuring the presence of 0 or 1 imaginary frequencies,
respectively. Dataset collection available in ioChem-BD [235].
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ability of the pyridine catalyst to “hold” the proton without it being fully
transferred to the base. In this manner, the peroxyformate is isomerized
to a previously unreported carbonic acid intermediate, largely more stable
than the proposed zwitterion, which then can be readily decomposed by
pyridine to release carbon dioxide and tert-butanol.

The rate-determining step is the isomerization of the peroxyformate to
the carbonic acid: the originally proposed zwitterion is only a transient
metastable state happening along the IRC of the decomposition TS, but
not a true minimum on the potential energy surface. Once the carbonic
acid is reached, its further decomposition occurs with a quite small barrier
(12.8 kcal · mol−1). We could also identify a feasible but disfavored route
for catalyst deactivation, in which the hemicarbonate anion obtained after
deprotonating the acid may attack the pyridine, forming a O - C bond and
dearomatizing the pyridinic ring.

Figure 5.10: Simplified reaction network for peroxyformate decomposition,
including the key steps used for characterizing solvent dependence, including
chemical structures for intermediates and transition states.

From this mechanism, we considered a simplified reaction network,
skipping the details on the proton transfer mechanism from the carbonic
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acid derivative to model only the main reaction profile. Thus, only the
structures with labels shaded in grey in Figure 5.9 are included in the
simplified network (Figure 5.10): reference state (separated reactant and
catalyst), rate-determining step and product formation. As the main goal
of the whole study was the characterization of the solvent dependence of
its kinetics, the simplified mechanism was recomputed in a selection of
29 different implicit solvents (see Ref. [234] for details), employing the
corresponding SMD parameters.

Figure 5.11: Schematic depiction of possible mechanism depictions for
peroxyformate decomposition. Above left, reaction energy profile comprising
two routes (catalytic decomposition and catalyst deactivation). Below left,
basic reaction network structure with nodes as intermediates and edges as
transition states. Right, simplified OntoRXN-based knowledge graph, with
hierarchical step > stage > species > calculation structure.

From there, the simplified network, considering the results collected for
each of the 29 solvents in our dataset, was used to build the knowledge graph
depicted in Figure 5.11 together with the corresponding energy profile and
network representations. Comparing the knowledge graph representation in
Figure 5.11 with its corresponding reaction network, it can be easily seen
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how the NetworkStage elements (pink circles) somehow preserve the original
structure with the rest of the elements highlighting the explicit structure
achieved with the semantic approach. For example, it is made clear how
some stages group multiple ChemSpecies (orange circles) together and how
these species include multiple CompCalculation entities (green circles). For
example, we can observe that the Int3 stage effectively groups together three
different species: carbon dioxide, tert-butanol, and pyridine, while Int1 has
only one (the reactive complex). As for the multiplicity of calculation objects,
each ChemSpecies is mapped to 29 different calculations, corresponding to
the different implicit solvents used for geometry optimizations (although, for
simplicity, only two of these 29 CompCalculations are depicted in the figure).
Despite the complexity of such a landscape, the structure of OntoRXN
allows to naturally express all these relationships in the knowledge graph.
Going on with the inspection of the KG, another layer of connectivity can be
observed through the interconnection of ReactionStep entities (dotted lines
connecting blue squares), demonstrating how the structure of OntoRXN
allows to infer additional information from the reaction network. This
depiction of the knowledge graph is missing, of course, the actual chemical
descriptors that are obtained from the calculations themselves, which would
be linked to each of the CompCalculation individuals in the graph. As stated
previously, different properties are mapped in different ways, but in general
most of them are defined as entities that contain both a numeric value and
its units. In the current implementation of OntoRXN, we have focused on a
small core property subset to demonstrate our data organization approach,
but the goal is to keep expanding the ontology and the properties that are
“translated” to the KG from these captured in ioChem-BD.

Once the chemistry of the system has been outlined and the structure
of its knowledge graph has been discussed, the main remaining point is the
utilization of the KG to demonstrate the advantages of the current ontology-
based approach. Using the SPARQL language, it is quite straightforward
to write queries to fetch the individual properties pertaining to every
CompCalculation entity in the network, find the unique ChemSpecies
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to which they refer and group them by the NetworkStage entities they
participate in. In this way, we can readily generate tables that map every
stage along the CRN to any computed property (coordinates, energies,
free energies...) or descriptor (e.g species’ InChIs). From this basic
stage-grouping approach, which is common to most queries of interest for
OntoRXN-based graphs, queries can be refined as desired, adding additional
filters or search targets depending on the specific request.

The main point of interest of the peroxyformate decomposition reaction
was the exploration of the solvent dependence, leading to a KG with a quite
large number of CompCalculation entities (290) which are then connected
to only 10 ChemSpecies and 8 NetworkStages (5 for intermediates and 3
for transition states). Thus, relevant queries on this system need to target
the solvent associated to every calculation as a key property to process the
knowledge graph. The fundamental question that we could ask for this
system could be something such as “What are the electronic and Gibbs free
energies for every stage in the network for every different solvent?”, whose
SPARQL equivalent is presented in Code example 5.1.

PREFIX rxn: <http :// www. semanticweb .com/ OntoRxn #>
PREFIX gc: <http :// purl.org/gc/>
SELECT ?stgX ?solvX

(SUM (?G) as ?Gsum)
(SUM (? Eel) as ?Eelec )
( SAMPLE (? nameX ) AS ?name)
( SAMPLE (? epsX) AS ?eps)

WHERE {
?stgX rxn: hasSpecies ?spcX .
?spcX rxn: hasCalculation ?calcX .
?calcX gc: hasResult / rxn: hasElecEnergy / gc: hasValue ?Eel .
?calcX gc: hasResult / rxn: hasGibbsFreeEnergy / gc: hasValue ?

G .
?calcX rxn: hasSolvent ?solvX .
?calcX gc: hasResult / rxn: hasSolventPolarity / gc: hasValue ?

epsX .
?stgX rxn: hasAnnotation ?nameX

}
GROUP BY ?stgX ?solvX

Code example 5.1: SPARQL query to collect electronic energy, Gibbs free
energy, solvent and solvent dielectric constant for all stages in the KG.
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While a detailed description of the SPARQL language syntax is out
of scope, we will use Code example 5.1 to clarify the basic structure and
some of key language structures to guide the further discussion. First,
the PREFIX statement allows to define namespaces for the URIs in the
ontology, allowing to use abbreviated property names along the query to
make it more readable. Then, the SELECT statement determines the
fields that should be produced by the query, preceded by question marks to
clarify that they are variables. Some of the fields are retrieved directly (in
this case, stgX and solvX), while others are going to be grouped according
to conditions specified at the end of the query. The keywords SUM and
SAMPLE are aggregating functions that specify how the entries to be
grouped are managed: the first sums the queried values across the group,
while the latter samples a single occurrence of the corresponding values.

The next clause in the query is the WHERE, where the relationships
used to generate the desired subgraph are defined. This corresponds with
the table that was depicted in Figure 5.7, specifying the triple patterns that
put conditions on the nodes from the database. In the current example, the
entities defining stages, species and calculations are located according to
their main dependence relationships (as from Figure 5.1), while the values
of calculation properties (electronic energy, Gibbs free energy and solvent
polarity) are defined as results from the CompCalculation entities. Finally,
the GROUP BY keyword defines which variables will be used for data
grouping, which here are the stage (stgX) and the solvent (solvX). Within
this grouping scheme, a total of 232 results are returned, corresponding to
the eight unique stages in the reaction network at each of the 29 solvents in
the dataset. Without grouping, we will obtain a longer table (319 records)
where for a certain stage/solvent combination we will have as many entries
as species participating in the stage, which would need further processing
to obtain stage-wide properties such as energies.

Through the results of the SPARQL query in Code example 5.1, we
may easily obtain the collection of the 29 free energy profiles describing the
peroxyformate decomposition mechanism for the solvent set (Figure 5.12)
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Figure 5.12: DFT-characterized free energy profiles for peroxyformate
decomposition. Gibbs free energies, in kcal · mol−1, at a reference state
of 1.0 M and 363.15 K, at the WB97XD/6-311G(d,p) level with the SMD
solvent model for the set of 29 solvents presented in Ref. [234].

To properly analyze solvent dependence, we should extract the activation
energy from the set of profiles in Figure 5.12, knowing that it corresponds to
the rate-determining step (peroxyformate isomerization, from Int0 to TS1),
and compare it with a solvent parameter such as its dielectric constant. The
results of this analysis, considering both potential and Gibbs free energies,
are collected in Figure 5.13.

We can see the solvent dependence clearly reflected on the computed
barriers, but instead of a smooth decreasing trend, we observe a more
profound relationship with three very distinct groups that match perfectly
with the expected solvent natures: non-polar (with largest barriers), polar
and protic (with remarkably lower activation energies). In fact, the colored
subsets in Figures 5.12 and 5.13 come from data-driven groupings through
a K-Means method over the ΔE/ log ε data, which match perfectly with
the expected qualitative non-polar, polar and protic labels. The KG-based
workflow allows to produce these plots in a very easy and automated
manner which could be seamlessly scaled to larger sets of solvents (or other
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Figure 5.13: Barrier heights (electronic and free energy), in kcal·mol−1,
for peroxyformate decomposition against the logarithm of the dielectric
constant of the solvents in the dataset [234]. Colors correspond to solvent
types (non-polar, polar and protic).

parameters), providing a powerful solution for complex mechanistic studies.
Apart from generating reaction energy profiles, the KG can also be used

to recover the original reaction network that it encodes. Although this might
seem an unnecessary circular detour, producing a knowledge graph from a
reaction network and using the KG to regenerate the same reaction network,
it can be valuable in multiple situations. First of all, recovering the CRN
from the KG allows to effectively employ OntoRXN-based knowledge graphs
as a standard format for reaction networks, so the KG wrapping up all the
information on the system can be shared and then transformed to a more
readable reaction network. Moreover, it provides an immediate interface
of KGs with any workflow or program employing reaction networks as its
input, such as gTOFfee (Chapter IV). Finally, the back-transformation
process also makes possible to generate reaction networks containing any
subset of the information in the knowledge graph, acting as a structured
CRN generator.

To carry out this transformation, we need a SPARQL query to retrieve
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the connectivity of the NetworkStage entities for nodes, whose structure
conforms the reaction network. Additionally, we should also map these edges
having an associated transition state with the corresponding NetworkStage,
as in the query proposal shown in Code example 5.2.

PREFIX rxn: <http :// www. semanticweb .com/ OntoRxn #>
SELECT ?stepX ( GROUP _CONCAT (? stgX) as ?stgL)

( SAMPLE (? stgY) AS ?stgTS)
WHERE {
?stepX rxn: hasNode ?stgX .
OPTIONAL {? stepX rxn:hasTS ?stgY}
}
GROUP BY ?stepX

Code example 5.2: SPARQL query to extract basic network connectivity
from the knowledge graph, locating the two nodes connected by each step
and, if present, the corresponding transition state.

A couple of additional keywords which did not appear in Code example
5.1 are present here. On the one hand, GROUP_CONCAT is, like SUM
or SAMPLE, an aggregating function that in this case concatenates a set
of strings with a given separator. On the other, the OPTIONAL keyword
allows the specification of statements that can or can not be found in the
RDF database, returning an empty value in the latter case. In the absence
of OPTIONAL, if a requested variable value is missing, the whole record
involving the missing value will be omitted from the search, which in this
case would imply to lose the steps not having a transition state.

As the connectivity query ultimately refers to the stages of the KG, it
can be combined with any kind of property-finding query: for example, the
one in Code example 5.1 to add the energy of each stage. Coming back
to the peroxyformate KG, this approach will allow to obtain individual
reaction network depictions for every solvent in the dataset (Figure 5.14)
complementing the profile-based view. In general, the connectivity query
makes use of the two separate properties that link ReactionSteps and
NetworkStages: hasNode, which will always appear twice for every step,
finding two connected nodes, and hasTS, which may or may not be defined
depending on the existence of a TS for a certain edge. The results of the
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Figure 5.14: Reaction network graphs for peroxyformate decomposition in
a selection of six solvents (acetonitrile, chloroform, heptane, nitromethane,
tetrahydrofuran and water). Energies are Gibbs free energies, in kcal ·mol−1.
The overall free energy reaction barrier for each solvent is given between
parenthesis after each solvent name.

query are collected in Table 5.1.

5.4.2 Complex reaction networks: the decomposition of
indole

The growing relevance of automated approaches to mechanistic searches
and the subsequent complications of the management and interpretation
of the produced reaction networks was thoroughly discussed along Chapter
III, presenting the amk-tools library to process and visualize the networks
generated by AutoMeKin. Moreover, apart from the main interactive
visualization module, the code also provided a direct interface between
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Table 5.1: Query results for Code example 5.2 in the peroxyformate
decomposition KG. Contains stage identifiers of pairwise-connected nodes
and the corresponding TS when applicable, and None elsewhere.

Node Node TS
stg-4 stg-0 stg-5
stg-2 stg-0 stg-6
stg-0 stg-1 stg-7
stg-2 stg-3 None
stg-3 stg-4 None

AutoMeKin results and ioChem-BD, uploading the raw computational
results and the network structure altogether.

This feature matches perfectly our current workflow (Figure 5.4), defining
the collection of data and its accompanying network structure in a single
step. Therefore, the knowledge graph generation protocol can be directly
used for automatically discovered networks (Figure 5.15), opening the door
to the creation of complex knowledge graphs with minimal user intervention
both for the creation and the manipulation of the target data.

Figure 5.15: Scheme of the program pipeline employed to build knowledge
graphs from the RXNets generated by AutoMeKin

No further operational considerations need to be made, with the upper
part of the workflow in Fig. 5.15 being just as explained in Chapter III and
the lower part being already discussed in Section 5.3. Thus, we may directly
proceed to a specific application example, considering the same indole

159

UNIVERSITAT ROVIRA I VIRGILI 
Unweaving complex reactivity: graph-based tools to handle chemical reaction networks 
Diego Garay Ruiz 



Chapter V. OntoRXN 5.4. Applications & querying

decomposition network that we presented on Chapter III, with 72 different
ChemSpecies, 67 NetworkStages and 40 ReactionSteps. From this point of
view, the underlying network is remarkably larger and more interconnected
than in the peroxyformate example, while also presenting a much simpler
1:1 mapping between species and calculations. As computational studies
on reaction networks can showcase widely different kinds of complexity, the
organization approach that we propose with OntoRXN should be able to
accommodate all these situations, as demonstrated here.

As both the chemistry of indole decomposition and the details of KG
generation have been already introduced, it just remains to provide a couple
of examples of how SPARQL querying can be applied to this specific system.
One question of interest that can be very easily answered through this
approach is to determine how many times are molecular fragments repeated
across the network, giving an idea of how many different fragmentation
schemes lead to the same species (Code example 5.3).

PREFIX rxn: <http :// www. semanticweb .com/ OntoRxn #>
SELECT DISTINCT ?spcX ( COUNT (? stgX) AS ? Ncount )

( SAMPLE (? labX) AS ?lab)
( GROUP _CONCAT (? nameX) AS ? stages )

WHERE {
?stgX rxn: hasSpecies ?spcX .
?spcX rxn: hasCalculation ?calcX .
?calcX rxn: hasAnnotation ? labelX .
BIND( STRBEFORE (? labelX ,’;’) AS ?labX)
OPTIONAL {? stgX rxn: hasAnnotation ?nameX }

}
GROUP BY ?spcX
ORDER BY DESC (? Ncount )
LIMIT 5

Code example 5.3: SPARQL query to determine the number of stages in
which each species in the system appears and their corresponding names,
returning only the five top results ordered by occurrence number.

Keeping on with the idea of clarifying SPARQL keywords and functions,
Code example 5.3 introduces a new agreggating function, COUNT, which
just returns the number of occurrences of the target variable in the group,
and the BIND keyword employed to create named variables during the query
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evaluation. In this case, this goes together with the string manipulation
function STRBEFORE which grabs the part of a string variable going
before a specified separator. Finally, ORDER BY simply reorders the
result table according to a given variable, which in this case is the number
of stages in which a specific species participates, and LIMIT selects only
the top five results from the query, shown in Table 5.2.

Table 5.2: Number of occurrences per network stage of the most common
fragments in the indole network and corresponding stage names selecting
the top five results only.

Frag. No. stages Sel. stages

CN 6 PR342 PR313 PR315 PR136
PR320 PR409

HCN 2 PR3 PR101
HNC 2 PR120 PR278

PR155 1 PR155
CH2 1 PR155

From Table 5.2, we have that only three of the fragments in the network
are shared by different stages, with cyanide radical being the most common
participating in six stages and the isomeric HCN and HNC structures
appearing in two. While for this mid-sized reaction network the insights
provided by the query in Code example 5.3 are not particularly relevant,
the advantage of this approach is that the very same query may be directly
applied to any other knowledge graph, streamlining the exploration of
complex systems and eventually providing an additional functionality to
the amk-tools workflow.

Finally, following the graph regeneration stategy from Code example 5.2,
we can easily recover the reaction network and map any property from the
KG. Among the available properties, we can take the InChI associated to the
ChemSpecies contained in every stage, which are parsed in ioChem-BD and
fed to the knowledge graph. InChIs provide an unique molecular identifier
for every molecular entity in the network, which can be used to, for example,
generate their corresponding 2D molecular representations through the
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RDKit library [54] and embed them in the network depiction, allowing for
a simple generation of traditional-mechanism-like schemes for automatically
discovered reaction networks (Figure 5.16).

Figure 5.16: Reaction network graphs for indole decomposition, with
molecular depictions for every node taken from InChI strings.

5.4.3 Utilization of KGs in complex simulation workflows:
stereoselective carbon dioxide fixation

Through the two previous examples (peroxyformate decomposition and
indole decomposition), we employed the corresponding KGs as a tool to
simplify the analysis of the data that was already encoded in the network,
extracting energy profiles, activation energies, connectivity information,
molecular string identifiers, etc. However, another aim of the semantic
approach is to present knowledge graphs as a standard format to pass
reaction networks to other calculation tools. Thus, KGs would effectively
become a piece on the development of automated workflows, retrieving
only the properties of interest through standardized SPARQL queries and
minimizing the need for manual interaction along the processing pipeline.

To demonstrate this feature, we built a workflow to generate and

162

UNIVERSITAT ROVIRA I VIRGILI 
Unweaving complex reactivity: graph-based tools to handle chemical reaction networks 
Diego Garay Ruiz 



Chapter V. OntoRXN 5.4. Applications & querying

Figure 5.17: CO2 fixation reaction over cyclooctene epoxy alcohol derivative,
including main diastereoisomeric cyclic carbonate product 2B and the minor
product 2A.

run a microkinetic model directly from a knowledge graph, automating
the detection of the chemical equations giving rise to the model and the
computation of the corresponding rate constants from the activation free
energies through the Eyring equation. As a target system, we considered
the stereospecific fixation of carbon dioxide on a cyclic epoxyalcohol
derivative, catalyzed by a bromide salt (Figure 5.17), which was observed
to produce a single major diastereoisomeric cyclic carbonate [243, 244]. The
complete reaction scheme including computed Gibbs free energies from DFT
computations3 is depicted in Figure 5.18.

Here, the flexibility of the cyclooctene ring generates a non-trivial
landscape, as not only both the α and β positions of the epoxide substrate
EpOr can be attacked by the nucleophile, but also there can be a proton
transfer between the alkoxide group on position C6 and the hydroxo group
at C4 when the attack occurs in α. This process is deeply facilitated by the
spatial disposition of the cyclooctene core, which allows the two oxygen atoms
and the hydrogen to form a strong hydrogen bond leading to a pseudo-6-
cyclic structure. Through this manifold, the isomerized α-alkoxide (AMAK)
can produce an isomeric epoxide (EpIsom) which is only 1.5 kcal · mol−1

3Computational details from Ref. [243]. Unrestrained geometry optimizations were
carried out using Gaussian09 [238] at the B97D3 [245, 246] level of theory, with a
6-311G(d,p) [240, 241] basis set and employing the SMD [242] model for implicit solvation
with the default parameters for butanone. Minima and saddle points were identified
by harmonic vibrational frequency analysis, ensuring the presence of 0 or 1 imaginary
frequencies, respectively. Dataset collection available in ioChem-BD [244].
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Figure 5.18: DFT-characterized mechanism for cyclic carbonate formation.
Gibbs free energies, in kcal · mol−1, at a reference state of 1.0 M and 353.15
K, at the B97D3/6-311G(d,p) level with SMD parameters for butanone as a
solvent. The counterion (tetramethylammonium or TMA) is not depicted in
the scheme and is not included in the intermediate characterization, but is
considered in the energy reference (TMABr + CO2 + EpOr). Dashed arrows
show expected transformations for which a TS could not be characterized.
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above the original one. Moreover, we were also able to characterize several
processes in which the nucleophilic attack and the fixation of CO2 are
concerted, going directly from the epoxide to the hemicarbonate. All of
these routes are strongly intertwined and quite close in energy, with barriers
ranging from 24 to 30 kcal · mol−1, with 2B being the thermodynamic
product and 2A the kinetic one. Due to all these complications, the direct
analysis of the mechanism in terms of its energies is problematic, prompting
us to plan a microkinetic simulation to try to reproduce the conversion and
selectivity values registered in the experiments.

From this mechanism, we generated the knowledge graph following the
same protocol as in the previous situations, obtaining a graph with 12
steps, 28 stages and 32 species and calculations. To build the microkinetic
model, we need to pay attention to two main aspects: the generation of
the stoichiometry of the corresponding reactions and the recalculation of
the Gibbs free energies to change the reference state from the standard 1
atm, 298.15 K state obtained from the calculations (gas phase, standard
temperature) to the 1.0 M state for processes in solution and the working
temperature of 353.15 K. This reference state switch from the gas phase to
the solution is essential for a proper application of microkinetic modeling
to homogeneous systems [151], while the modification of the reference
temperature also allows to improve the concordance with experimental
conditions. The recalculation of Gibbs free energies just implies the
recalculation of the partition functions for all the calculations in the system,
employing standard formulas from statistical thermodynamics. Here, the
structure of the KG greatly simplifies the task of extracting the necessary
parameters from the network.

On the other hand, the determination of the individual reactions encoded
in the KG (and required to setup the microkinetic model) follows directly
from the ontology structure, as every elementary reaction is already defined
as a ReactionStep entity. Thus, it is only necessary to determine the
ChemSpecies that are being transformed at every ReactionStep, retrieving
them from the two nodes that are associated to the step. Due to the atom
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Figure 5.19: Schematic depiction of the querying workflow to set up a
microkinetic model in COPASI from the knowledge graph.

consistency that is enforced at the NetworkStage level to properly compute
relative energies, the chemical equations determined from ReactionSteps will
be immediately balanced. From all this information, the actual model will
be generated and run through the COPASI [140] program, with all reactions
being assumed as reversible, mass-action governed processes, calculating
rate constants from relative barriers through the Eyring equation. In this
way, no direction of network traversal needs to be assigned, as the own
simulation marks the chemical flow of the system.

Thus, the overall model setup involves a set of three SPARQL queries,
as highlighted in the workflow scheme in Figure 5.19. The protocol starts,
as aforementioned, by fetching all required properties for partition function
recalculation through the query i, which is presented in Code example 5.4.
Through these results, Gibbs free energies for all CompCalculation entities
can be recomputed at the requested values of pressure and temperature,
effectively modifying the reference state of the calculations ot our desired
conditions, From there, query ii (Code example 5.5) allows to match stages
with the calculations that they comprise, as done in the previous examples.

The combination of i) and ii) allows to effectively obtain recomputed
Gibbs free energies for all stages (intermediates and transition states) across
the reaction network, which will be used to compute the relative barriers for
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PREFIX rxn: <http :// www. semanticweb .com/ OntoRxn #>
PREFIX gc: <http :// purl.org/gc/>
SELECT DISTINCT ?calcX ?Eel ? molmass ?moi ? symmnumb ? freqlist
WHERE {

?calcX gc: hasResult / rxn: hasElecEnergy / gc: hasValue ?Eel .
OPTIONAL {? calcX gc: hasResult / rxn: hasMolMass / gc: hasValue

? molmass } .
OPTIONAL {? calcX gc: hasResult / rxn: hasMomentInertia / gc:

hasValue ?moi} .
OPTIONAL {? calcX gc: hasResult / rxn: hasFreqList / gc: hasValue

? freqlist } .
OPTIONAL {? calcX rxn: hasSymmetryNumber ? symmnumb }
}

ORDER BY ?calcX

Code example 5.4: SPARQL query to fetch descriptors for partition function
and thermodynamic magnitude recalculation, including electronic energy,
molecular mass, moment of inertia, symmetry number and vibrational
frequencies, for every CompCalculation object in the KG.

PREFIX rxn: <http :// www. semanticweb .com/ OntoRxn #>
PREFIX gc: <http :// purl.org/gc/>
SELECT DISTINCT ?stgX ( SAMPLE (? nameX) AS ?name)

(GROUP _CONCAT (? calcX ; separator =’;’) AS ? calcList )
WHERE {

?stgX rxn: hasSpecies ?spcX .
?spcX rxn: hasCalculation ?calcX .
OPTIONAL {? stgX rxn: hasAnnotation ?nameX }

}
GROUP BY ?stgX
ORDER BY ?stgX

Code example 5.5: SPARQL query to map NetworkStage entities to their
corresponding calculations, assuming 1:1 mapping between species and
calculations.

every step in the network. Then, the query iii (Code example 5.6) defines
all unique reactions in the network from the corresponding ReactionStep
entities.

Query iii fetches the two intermediates (as NetworkStage entities)
connected by a given ReactionStep, and then determines the set of species
that belong to that stage. Then, the names of these species, defined when
generating the reaction network in ioChem-BD, are combined to define
the two sides of the corresponding elementary reaction. Additionally, the
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PREFIX rxn: <http :// www. semanticweb .com/ OntoRxn #>
PREFIX gc: <http :// purl.org/gc/>
SELECT DISTINCT ?stepX stgX ?stgTS

( GROUP _CONCAT (? spcName ; separator =’+’) as ? spcNode )
WHERE {

?stepX rxn: hasNode ?stgX .
?stgX rxn: hasSpecies ?spcX .
?spcX rxn: hasCalculation ?calcX .
?calcX rxn: hasAnnotation ?noteX .
BIND( STRBEFORE (? noteX ,’;’) AS ? spcName ) .
?stepX rxn:hasTS ?stgTS

}
GROUP BY ?stepX ?stgX ?stgTS
ORDER BY ?stepX

Code example 5.6: SPARQL query to fetch reaction specifications from
the KG, mapping every ReactionStep to the corresponding stages and the
ChemSpecies belonging to them.

identifiers of the stages for the intermediates and for the transition state are
also retrieved, so the results of this query can be used to directly define the
reactions, mapping the identifiers with the previously computed energies.

At this point, all the information required for the model has been already
extracted from the knowledge graph. It just remains to clean up the reaction
stoichiometries, removing species appearing at both sides of the reaction
(which are unaffected by that particular process), and to compute the
relative barriers in the two possible traversal directions of the step. Then,
the complete set of reactions encoded in the KG is finally defined and the
relative barriers for the individual reactions can be transformed to rate
constants, feeding all this data to COPASI to finally run the microkinetic
model. At this point, only conditions such as initial reactant concentrations,
simulation time and temperature remain to be specified to run the simulation.
Thus, to be as close as possible to the experimental conditions, we set the
following parameters:

T [EpOr] P(CO2) [TMABr]
353.15 K 2.5 M 40 bar 10 - 25% mol

To determine the concentration of CO2 in the liquid phase, we considered
the results reported by Sato et al. [247] for the solubility of carbon dioxide
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in 2-butanone at 353 K, our working temperature, and extrapolated the
reported pressure/molar fraction diagrams to the 40 bar employed in the
experimental setup, obtaining x(CO2, 40 bar) = 0.3258. From there, we can
obtain CO2 concentration from the expression for the molar fraction, taking
solvent concentration as its molar volume. At 353 K, the reported density
of butanone is 747 g cm−3 [248], giving [MEK] = n/V = ρ/Mw = 10.4 M.
From there, CO2 concentration is estimated as 4.98 M, thus being in clear
excess compared to the epoxide which is the limiting reagent. In general, this
concentration estimation is not trivial: we may introduce the concentrations
of epoxide and catalyst also in the molar fraction, as they are not negligible,
but this will prompt us to decide whether we assume the molar fraction from
[247] is changed in the more complex solution or not. Thus, for simplicity, we
carried out the simulations with the [CO2] = 4.98 M estimation neglecting
the co-solutes.

Figure 5.20: Results of the microkinetic model for cyclic carbonate
production. Left, concentration vs. time plot for the reactant (EpOr)
and the two possible products 2A and 2B. Right, time evolution of reactant
conversion and product selectivity. Dashed lines at t = 18 h are shown to
mark the time of finalization of the experiments, for comparison.

The microkinetic simulation results for [TMABr] = 25% mol = 0.625
M case are collected in Figure 5.20, which shows how the process is under
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thermodynamic control: although initially the kinetic product 2A is formed
faster, the equilibria are then reversed and almost most of the pre-formed
2A is transformed to 2B at t = 18 h, which was the experimental reaction
time. In the plot on the right, we see a very quick conversion, reaching
80% during the first hour of reaction, while the selectivity for 2B formation
increases more slowly as the 2A → 2B transformation takes place. All in all,
computed results are in very good agreement with the experiments, allowing
us to compare the registered conversions and selectivities for different initial
loadings of the bromide salt catalyst (Table 5.3), showing a good agreement
between the computed results and the experiments.

Model Experiment
[Br−]/M Conv. Sel. Conv. Sel.

0.625 98 96 99 92
0.5 96 94 90 87

0.375 93 89 85 89
0.25 89 80 85 88

Table 5.3: Comparison of predicted and experimental conversions and
selectivities for 2B formation with catalyst loadings ranging from 10% to 25
% mol.

Developing workflows based on knowledge graphs has the major
advantage of their transferrability: in principle, the complete simulation
protocol that we have outlined for this cyclic carbonate formation could be
directly applied to any other reaction network expressed as a KG. Having
this kind of standardized format bringing together all the information on a
given reactive system simplifies task automation by allowing to skip steps
which are often quite time-consuming such as parsing or organizing the
information from the raw computational outputs.

Overall, we have presented several relevant SPARQL queries along the
section, which might serve as a template to build further queries on either the
example datasets we have utilized or any other CRN uploaded to ioChem-BD.
To give a better idea of the functionality of these queries and also make
our knowledge graphs available, we set up a web service [249] providing a
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RDF database and SPARQL endpoint based on the Blazegraph [250] engine.
Through this service, all the specific SPARQL queries discussed along the
chapter (Code examples 5.1 to 5.6) can be read, modified and run against
the peroxyformate, indole and cyclic carbonate knowledge graphs. The
idea behind this demonstration goes along with one of the main principles
followed along this Thesis, which is not only to create new tools and services
to manage reaction networks, but also to make them as accessible and
user-friendly as possible. Thus, we believe that providing this interactive
frontend to our ontology can help with the dissemination of our semantic
approach to reaction networks along the community, facilitating a wider
adoption of the proposed methodology so it can eventually become a true
data management standard.

5.5 Conclusions and future work

We have proposed a semantic organization scheme for chemical
reaction networks characterized from computational studies, developing
the OntoRXN ontology to provide the terms and structure required to
apply this paradigm. Along this first implementation, we have aimed for
a proof-of-concept approach, focusing on the core ontology structure and
its connection with the ioChem-BD database through the knowledge graph
instantiation agents available on the ontorxn-tools library. Moreover, we
have also proposed several post-processing agents to demonstrate the interest
of knowledge graphs as a standard reaction network format that can be
easily integrated into data analysis or simulation pipelines. These agents
have been employed to process the knowledge graphs corresponding to three
distinct reaction mechanisms in different manners, showcasing the versatility
of the semantically-organized reaction networks. The first application
example involved the simple generation of reaction energy profiles and the
characterization of reaction barriers for the decomposition of tert-butyl
peroxyformate, characterized in a wide selection of implicit solvents. Then,
an automatically discovered network for indole decomposition was used to
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depict a graph including molecular 2D representations at every node, which
are built from the InChI descriptors included in the knowledge graph. Finally,
a protocol for an automated setup of microkinetic simulations was illustrated
from a mechanism involving the fixation of CO2 over a cyclooctene oxide
derivative, utilizing the KG to compute Gibbs free energies at requested
values of pressure and temperature and to determine the individual reactions
encoded in the networks with their direct and reverse rate constants, as
required for this kind of simulations. Through these examples, we were
able to demonstrate the interest of the ontology-based approach to handle
chemical data with ease for a range of non-trivial applications.

Building from this initial proposal, several avenues for developing and
utilizing OntoRXN and its knowledge graphs can be thought of. An obvious
first point to tackle is the extension of the ontology, adding properties and
classes to manage the plethora of fields that ioChem-BD captures but are
not yet defined at the ontology end. Of course, apart from OntoRXN itself,
the interface with the CML files in the database via XSL stylesheets also
needs to be grown accordingly. In the long term, it shall be possible to have
a 1:1 mapping between all the properties captured by ioChem-BD and the
OntoRXN ontology. Moreover, the interface itself, currently involving a
external Python library, shall eventually be fully integrated into ioChem-BD,
so KGs could be directly generated from the database itself to simplify the
overall pipeline.

Another important aspect regarding the evolution of the ontology is
the identification and addition of novel connections with other chemical
ontologies, as hinted along Sections 5.1 and 5.2, following the integrative
and collaborative spirit of the Semantic Web. For example, we have already
proposed the interest of linking the reaction steps defined in our framework
with the named elementary processes appearing on the MOP ontology. A
way to actually drive this aspect forward would be to create agents capable
of automatically identifying the reaction types encoded in a given step to
automatically assign them to the classes defined in MOP.

Focusing more on the applicability of the current toolkit, it will also
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be interesting to generate a larger set of knowledge graphs for reaction
mechanisms, building a database for KG-organized reaction networks. This
likely large and diverse, but strongly structured, dataset could be an ideal
target to automated analysis and Machine Learning techniques.
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Throughout this Thesis we have explored different approaches to improve
the understanding and management of complex chemical reaction networks
(CRNs) constructed from the information gathered through computational
mechanistic discovery. In this way, we put the spotlight on networks as an
ideal representation for intricate mechanisms, according to their versatility
on modeling and the immediacy with which they allow the application of
Graph Theory techniques and concepts to chemical problems. Nevertheless,
we cannot disregard alternate representations such as individual reactions or
energy profiles (as described in Chapter II), which also have clear advantages
in terms of chemical interpretation. Thus, another important part in our
framework came to be the interchangeability of all these ways to describe
chemical reactivity, with the main aim of choosing the representation that
best fits a given job in every case. These principles were then applied to
the development of the different software pieces that are introduced along
the Thesis, tackling multiple facets and stages of CRN characterization
and analysis. Moreso, the whole toolkit is connected with the ioChem-BD
repository aiming for a synergystic relationship: the database provides a
central point for data storage and retrieval, with an unified data format,
and the newly developed tools prompt and provide novel functionalities to
the ioChem-BD platform.

To sum up, we will summarize the main conclusions extracted from the
three main results’ chapters of the Thesis (Chapters III, IV and V): while we
will collect the most important aspects here, we remind the reader that more
detailed conclusions and some future perspectives on each of the described
projects are provided at the end of each of these individual chapters.

Chapter III shows the interest of providing filtering and visualization
frameworks to treat the large and intertwined CRNs generated by automated
mechanism discovery tools, presenting the interactive dashboards that amk-
tools produces directly from the results of AutoMeKin. The application
of the toolkit to indole decomposition allows a simple and user-friendly
reproduction and refinement of previous DFT-computed profiles with
minimal effort, together with the discovery of alternative channels that
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were overlooked in those previous studies. The reaction pathways discovered
through the combination of AutoMeKin and amk-tools provided additional
knowledge on the possible roles of indole in two widely different areas.
Regarding coal tar pyrolysis, several new routes leading to hydrogen cyanide
and hydrogen isocyanide could be reported, as well as a refinement of
undercharacterized channels forming amino radical. In the context of
astrochemical reaction networks, we proposed a feasible pathway for the
barrierless production of indole starting from methylene radical and phenyl
isocyanide. Additionally, by directly including AutoMeKin results in the
ioChem-BD database, bridging together the raw computational data with
its chemical contextualization (the reaction network) it becomes possible to
have a more complete representation of these complex chemical system inside
the database, following the principles of Findable, Accessible, Interoperable
and Recyclable (FAIR) data.

Chapter IV shows the strengths of the graph-based energy span model
(ESM) implemented in gTOFfee to treat complex catalytic cycles including
off-cycle species and intertwined mechanisms, effectively extending the
applicability of the model as an out-of-the-box tool to extract chemically
relevant information from DFT or ab initio results. We also introduce the
effective energy span, computed from the TOF, as a powerful descriptor
for the apparent activation energy of such systems. The first application
example, tackling the well-known hydroformylation of ethylene over cobalt
catalysts, shows the promising capabilities of gTOFfee for homogeneous
systems. In this way, we were able to produce selectivity maps exploring
different initial concentrations of reactants and products that were found to
be in good agreement with experimental results and microkinetic simulations.
The final part of the chapter delves on the applicability of the tool to
heterogeneous catalysis, demonstrating how the graph-based approach is
able to overcome several of the key limitations that the linear-based ESM
presents for this kind of systems, although still leaving quite some room for
improvement.

Chapter V illustrates the versatility of semantically organizing chemical
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reaction networks (producing knowledge graphs) by means of the OntoRXN
ontology, presenting multiple real-world examples where the strong data
structure enforced by the ontology enables a simple and robust analysis and
reorganization of the abundant data generated by the underlying calculations.
The resulting chemical reaction network knowledge graphs (CRN-KGs)
permit an easy extraction of the information of interest through simple and
readable SPARQL queries, owing to the enforced structure of the semantic-
based data model. From the chemical viewpoint and along our set of test
reaction mechanisms, we were able to extract the reaction energy profiles and
free energy barriers for a complex dataset involving the characterization of
the mechanism of peroxyformate decomposition in a wide variety of implicit
solvents. Moreover, we could also generate enhanced graph depictions for
the indole decomposition network including the corresponding molecular 2D
representations for every node in the network. Finally, we built a pipeline
for automatically setting up and performing microkinetic simulations over
any CRN-KG, applying it to a CO2 fixation mechanism on a cyclooctene
oxide derivative to extract the corresponding chemical reactions, activation
free energies and rate constants. As a final note, the direct connection of the
generation of CRN-KGs with the ioChem-BD database does not only greatly
simplify the production stage, as all required connectivity information and
results are already present on the database, but does also provide a powerful
new layer of functionality to the ioChem-BD platform itself.
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