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Introduction and Motivation

In this thesis are presented two powerful methods to calibrate the redshift
distributions of galaxy samples down the accuracy required by 3x2pt cosmo-
logical analyses. In particular, we are going to focus on the redshift calibration
pipeline developed and implemented in DES Y3: it is the combination of a
method called Self-Organizing Maps Photometric Redshifts (SOMPZ) and the
more established clustering redshifts cross-correlations (WZ). The first method
relies on galaxy samples for which redshifts are known with high accuracy, and
uses machine learning techniques to classify both the high quality photometry
of the redshift samples and the wide photometry of the target galaxy sample,
in order to transfer the redshift information from one class of galaxy to the
other. The second method it exploits spatial overlap of another high quality
redshift sample, of which this time the photometry is irrelevant. The redshift
information is retrieved my measuring an angular two-point cross-correlation
between the two samples. Given the complementarity of the methods, the
combination of the information on the estimated redshift distribution is par-
ticularly powerful for the analysis we are interested in. Systematic uncertainties
related to photometric measurements do not affect the WZ method, and vicev-
ersa, clustering-related systematic uncertainties as the unknown relation of the
galaxy-matter bias, are irrelevant for the SOMPZ method. The combination is
performed by sampling redshift distributions out of a joint likelihood, in which
the data in different form is compared to a prediction model.

We present the estimated redshift distributions and inherent uncertainties
of the WZ method and its combination with SOMPZ for the DES Y3 weak
lensing source galaxy sample, while for the fiducial lens sample MagLim we
present the whole methodology, which has proven to be more accurate than
the original DES Y3 redshift calibration. We study the impact of using the
newly calibrated redshift distribution of the MagLim lens sample on cosmolog-
ical constraints from galaxy clustering and galaxy-galaxy lensing. Assuming
a CDM cosmology, we obtain a 0.4 shift in the matter density and cluster-
ing amplitude plane compared to the fiducial DES Y3 results, highlighting
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the importance of the redshift calibration of the lens sample in multi-probe
cosmological analyses.
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Chapter 1

Cosmological Background

Cosmology is the branch of astrophysics studying the origin, composition and
evolution of the Universe. Humanity has wondered about these fundamen-
tal topics for millennia, observing the sky, forming queries and speculating on
what the correct interpretation would be. Among these, an apparently sim-
ple question unveils one of the most important answers: “why is the cosmos
dark?”. The apparently trivial answer unveils a complex layering of interesting
elements. In 1880s the Universe was believed to be static, but there was an
ongoing debate on whether it was infinite. The first who gave an answer to
the darkness question (called the Olbers’ paradox) from the correct point of
view was an intellectual most known for his novels: the writer Edgar Allan
Poe suggested that if the Universe had been indeed infinite and had not had
an origin, in any point of the sky we would see as much light as at the surface
of the Sun. The light from any distant galaxy would have had the time to
travel across an infinite distance and reach us. Even assuming that light would
be partially absorbed by gas clouds across the line of sight, it was clear that
we were not living the scenario described by the paradox. The conclusions
from this rudimentary experimental observation are two: stars emit light for a
limited amount of time, and the Universe must be evolving. Fast forward to
the present time, today we know the Universe is expanding with accelerated
rate. In order to justify today’s observations, the expansion is required to be
powered by an enormous amount of energy creating a negative pressure, which
would have to be the most abundant among the components of the Universe.
This so called “dark energy” remains one of the biggest mysteries on modern
cosmology.
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1.1 The expanding Universe

Modern cosmology begins in 1916 with the formulation of Einstein’s general
relativity, which links the content of the Universe with its geometry, describing
gravity as a geometrical property of spacetime. One of its pillars is the so
called cosmological principle: the Universe is homogeneous and isotropic, i.e.
there is no preferred position or orientation. Despite this being of course an
approximation, it is fairly robust at the large scales ( 100 Mpc) as supported
by observations.

During the first 20 years of the XIX century, the Universe was believed to be
static, assumption backed up by many measurements of stars’ motions in our
galaxy. The original description of the Universe using Einstein’s theory implied
a dynamic spacetime; this led Einstein to introduce the famous cosmological
constant Λ, which appeared as a term in his equations to allow a static solution.
We will then see that other solutions to the Einstein equations with Λ exist and
also allow for an expanding universe, which constitutes the benchmark model
in current modern cosmology.

In cosmology, we are not able to directly measure the distance to the ob-
served objects. This would change if we knew in advance the size of a certain
category of objects, since we would be able to determine their distance from
their apparent size in the sky. These objects are called “standard rulers”. On
the other hand, if we knew their intrinsic brightness, we could in-
directly derive the distance by measuring the incoming flux, as the
intensity of light received is inversely proportional to the square of
the distance. These objects, called “standard candles”, are precisely
what Edwin Hubble used for his observations in 1929, thanks to which the
static vision of the Universe crumbled definitively. By using Cepheid variable
stars he observed that the nearby stars’ host galaxies were receding from us
(Fig. 1.1) with no preferred direction.

Galaxies appearing moving away from us is not in contradiction with the
cosmological principle, and does not turn Earth into a special location in the
Universe; any other observer in any other location would see galaxies receding
from them, with no preferred direction. This follows from the invariance of
physical laws across reference systems: homogeneity translates into invariance
under spatial translation, while isotropy translates as invariance under rota-
tions of our reference system. The relation between velocity and position can
then be written as the famous Hubble law:

v = H0r, (1.1)

where the Hubble constant H0 linearly relates the radial velocity of a galaxy

6



1.1. THE EXPANDING
UNIVERSE

CHAPTER 1. COSMO-
LOGICAL BACKGROUND

Figure 1.1: Original plot from the 1929 Hubble paper (Hubble, 1929), described as "Radial
velocities, corrected for solar motion, are plotted against distances estimated from involved
stars and mean luminosities of nebulae in a cluster. The black discs and full line represent
the solution for solar motion using the nebulae individually; the circles and broken line
represent the solution combining the nebulae into groups; the cross represents the mean
velocity corresponding to the mean distance of 22 nebulae whose distances could not be
estimated individually”. Note that the y-axis is erroneously labeled as “km”, instead
of “km/s”.

v and its distance r. Hubble evaluated the relation for the first time in 1929
using nearby galaxies; therefore, he only estimated the value of the Hubble
constant at present time t0: H(t = t0) ≡ H0. The first estimates of H0 gave a
value of H0 = 500km/s/Mpc. This value is much higher than the one from the
most recent measurements, because of unaccounted errors in its calibration.
Today, current estimates of H0 do not converge on a single value, but show
large tension (4σ). Local measurements of the current expansion rate, e.g.
based on supernovae as standard candles, result in values that gather around
73 km/s/Mpc. Instead, indirect measurements from the early Universe via the
cosmic microwave background (CMB) predict the value of H0 to be around 67
km/s/Mpc. This discrepancy is not understood yet, and it is one of the most
intriguing problems in cosmology, the solution of which could possibly lead to
the discovery of new physics.

1.1.1 The scale factor

The equivalence principle implies that any possible expansion must be equiv-
alent in any region of the Universe. It is not required, though, to be constant
with time. We can then introduce the scale factor a, which describes how
distances evolve with cosmic time, i.e. how physical distances are related to

7
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comoving distances:
r = a(t)χ, (1.2)

where r is the physical distance, whereas χ is called the comoving distance.
It is customary to fix a(t = 0) ≡ a0 = 1. Comoving coordinates do not
evolve as the Universe expands, while physical distances do. So if we had
measured a distance in the past, today it would be larger by a factor a(t).
The relation between the receding velocity and physical distance,
empirically measured by Hubble, can be derived theoretically from Eq. 1.2, by
taking the time derivative of the radial part:

dr

dt
=
da(t)

dt
dχ =

ȧ

a
dr ≡ Hdr, (1.3)

where we have defined H ≡ ȧ/a, and the symbol “ ˙ ” refers to the differentiation
with respect to physical time t. The Hubble law is obtained by evaluating Eq.
1.3 at t = t0 (i.e., today).

1.2 The FLRW metric

The metric is used in general relativity to measure distances between vectors: it
describes the actual physical distance between two infinitesimally close points
in spacetime defined in some arbitrary coordinate system. It is defined as

ds2 = gµνdx
µdxν , (1.4)

where gµν is the metric tensor, while ds2 is the square of the spacetime interval,
which is invariant under coordinate transformations (which means that differ-
ent observers will always measure the same quantity). In the above definition
we used the Einstein notation, which states that repeated indices in a single
term imply the summation of that term over all the values of the index.

The metric tensor is usually derived by solving the Einstein’s equations,
but can also be obtained through purely geometrical considerations. We can
start from the Minkowski metric which describes a flat spacetime, defined as

ds2 = −c2dt2 + r2. (1.5)

We can generalise this metric for an expanding Universe by rewriting the radius
in Eq. 1.5 in spherical coordinates:

ds2 = −c2dt2 + a2(t)[dχ2 + χ2dΩ2], (1.6)

8
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where Ω is the solid angle. If we generalise it once more to consider the space-
time curvature, we obtain:

ds2 = −c2dt2 + a2(t)[dχ2 + S2
k(χ)dΩ

2]. (1.7)

This is known as Friedmann-Lemaitre-Robertson-Walker or FLWR metric. The
term Sk depends on the curvature k of the Universe:

Sk =


sinχ k > 0 (k = 1)

χ k = 0

sinhχ k < 0 (k = −1)

(1.8)

The radial part of the metric is independent of curvature, which affects only
the measurements of angles.

1.3 Standard Model of Cosmology

1.3.1 Friedmann Equations

The main laws describing the evolution of the content of the Universe in cos-
mology follow from the application of the theory of general relativity, and in
particular, from Einstein’s equations:

Gµν + Λgµν =
8πG

c4
Tµν . (1.9)

This beautiful equation relates the geometry of the Universe with its energy
content: on the left hand side we have the Einstein tensorGµν , the cosmological
constant Λ and the metric gµν describing the spacetime geometry; on the right
hand side we have the stress-energy tensor Tµν , which depends on the energy
content of the Universe and describes the source of the gravitational field. The
Einstein tensor can be expressed as:

Gµν = Rµν −
1

2
gµνR, (1.10)

where Rµν is the Ricci curvature tensor, while R is the Ricci scalar, defined
as the contracted form of the Ricci tensor Rµν , which is also obtained as a
contraction of the Riemann tensor Rαµβν , i.e. R ≡ gµνRµν = gµνgαβRαµβν .

The Ricci tensor is linear in the second derivatives of the metric gµν and non
linear in the first derivatives, and vanishes in a flat spacetime. It is generally
expressed using the Christoffel symbols Γµ

αβ = 1
2g

µν [gαν,β + gβν,α − gαβ,ν ]
1.

1The notation “ ,λ” indicates differentiation with respect to the variable xλ.
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These are useful when describing an expanding spacetime, as they are essential
in describing the geodesic, the shortest path across two points, which in an
euclidian Universe is a straight line, but it becomes more complex in a curved
spacetime. In an expanding Universe it is not possible to find a coordinate
system in which the Cristoffel symbols vanish. The Riemann tensor is also
referred to as the curvature tensor, as it vanishes in a flat spacetime. Its
dependence on the derivatives of the metric can be understood looking at its
definition:

Rαβµν ≡ Γα
βν,µ − Γα

βµ,ν − Γα
κνΓ

κ
βµ + Γα

κµΓ
κ
βν . (1.11)

Assuming a FLRW metric, and using the Einstein equation, we obtain that
all the components of Rµν are proportional to either ä or ȧ2. It is useful to
spell out the non-vanishing different components of the Ricci tensor; the ones
with µ = ν = 0 and µ = ν = i. A series of paper filling but straight-forward
calculations lead to the two components:

R00 = −3
c−2ä(t)

a(t)
, (1.12)

Rij =
c−2ä(t)a(t) + 2c−2ȧ(t)2 + 2k

a(t)2
gij . (1.13)

As for the stress-energy tensor, for a smooth isotropic universe it can be defined
as T ν

µ = diag(−ρc2, p, p, p) where ρ and p stand for the energy density and the
pressure. We now have all the ingredients to plug into the Einstein equations,
and we can now derive the first Friedmann equation:(

ȧ(t)

a(t)

)2

=
8πG

3
ρ(t) +

Λc2

3
− kc2

a(t)2
, (1.14)

where ȧ/a is the Hubble rate H(t) ≡ ȧ/a we have already defined in Eq. 1.3.
Equation 1.14 emphasizes that the rate of expansion depends on the Universe
geometry and energy density.

The second Friedmann equation follows from the spatial components in-
stead:

ä(t)

a(t)
=

−4πG

3

(
ρ(t) +

3p(t)

c2

)
+

Λc2

3
, (1.15)

Next, we perform a transformation that allows us to incorporate the cos-
mological constant in the energy content of the Universe, by considering it to
be a fluid with density and pressure. This can be interpreted as “moving” the

10
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Λ term from the left (geometrical) side of the Einstein equation to the right
side:

ρ(t) → ρ(t) +
Λ

8πG
(1.16)

p(t) → p(t)− Λ

8πG
(1.17)

We can then rewrite the Friedmann equations as

H(t)2 =
8πG

3
ρ(t)− Kc2

a(t)2
, (1.18)

ä(t)

a(t)
= −4πG

3

(
ρ(t) +

3p(t)

c2

)
. (1.19)

The second equation highlights that the acceleration depends on the energy
density as well as the pressure of the components of the Universe; Equation 1.19
is sometimes referred to as Friedmann acceleration equation. The Friedmann
equations relates two quantities that can be measured: the expansion rate H
and the density of energy/matter. The Hubble rate depends on the Universe
geometry and total energy density, whereas the acceleration depends on the
density and on the pressure.

1.3.2 Energy Content of the Universe

We now move on to examine the content of the Universe. From the cosmological
principle, we can expect to be able to describe the properties of its components
only using the mean density and pressure. In the previous section we have
defined the energy-momentum tensor T , and in order to understand how the
Universe evolves we have to understand how each component of the tensor
evolves with time. Let us start from the law of conservation of the energy-
momentum tensor:

Tµ
ν;µ ≡ Tµ

ν,µ + Γµ
αµT

α
µ − Γµ

αµT
α
µ = 0. (1.20)

In the above equation, T i
0 components vanish. The ν = 0 component of the

above system of equations is equivalent to the continuity equation, while the
spatial part is equivalent to the Euler equation. Let us focus on the ν = 0
component. By substituting the non-vanishing Christoffel’s symbols, we derive
the continuity equation for a perfect fluid in an expanding Universe:

∂ρ

∂t
+ 3

ȧ

a

(
ρ+

p

c2

)
= 0. (1.21)
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In cosmology, we can approximate all the components of the Universe as diluted
fluids, which obey a simple equation of state:

p(t) = wρ(t)c2, (1.22)

with w a dimensionless constant. Using Equation 1.22, we can now rewrite the
continuity equation as:

dρ

ρ
= −3(1 + w)

da

a
. (1.23)

Assuming that the Universe is constituted by one fluid, from the equation of
continuity we can rewrite the equation of state as function of the scale factor
a:

ρ(a) = ρ0a
−3(1+w). (1.24)

Using Equation 1.24 we can predict how density and scale factor for the dif-
ferent components in the Universe evolve with time. We are considering the
following constituents:

• Non-relativistic matter: we can assume it to have zero pressure, as the
random motion of the particles is much slower than the speed of light.
Therefore this implies that w = 0. Non relativistic matter includes both
baryonic and dark matter;

• Relativistic particles: photons and other massless particles have pressure
p = ρ/3, leading to w = 1/3. We refer to this as radiation;

• Dark energy: the substance required to explain the accelerated expansion
of the Universe, is characterised by an equation of state with w < 1/3,
which would cause the right-hand side of the second Friedmann equation
1.19, to become positive. The particular case of w = −1 is what is called
cosmological constant Λ.

Having considered the main components of the Universe and their equations
of state, we can now compute the evolution in time of each of the components,
which we summarise as follows:

p = wρc2


Matter wm = 0 ρm = ρm,0a

−3

Radiation wr =
1
3 ρr = ρr,0a

−4

Dark Energy wde = w(a) < −1
3 ρde = ρde,0a

−3[1+w(a)]

Λ wΛ = −1 ρΛ = ρΛ,0
(1.25)
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Figure 1.2: Evolution of density of matter, radiation, and cosmological constant Λ. Radiation
was dominant in the first portion of the Universe’s life, while the period from recombination
onwards is referred to as Matter era. Only very recently, dark energy has become the
dominant component, an issue referred to as the “coincidence problem”. Credits: Swagat
Saurav Mishra.
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The standard cosmological model considers a Universe consisting of Dark
Energy (the cosmological constant Λ with w = −1), non-relativistic matter
(mostly cold dark matter) and radiation. This is referred to as ΛCDM, and it
is considered the benchmark in cosmology.

In the wCDM model, a more generalised form of dark energy evolves with
time, with equation of state:

w(a) = w0 + (1− a)wa = O(1− a)2. (1.26)

We define the cosmological parameters as

Ωs ≡
ρs(t0)

ρcr
, (1.27)

where ρcr is the critical density, the value of density obtained when assuming
flat curvature (k = 0) in the first Friedmann equation at current time:

ρcr =
3H2

0

8πG
. (1.28)

The sub-index s can represent any of the Universe constituents. It’s general
use to refer to all the matter in the universe with Ωm = Ωb +Ωc (respectively
baryonic matter and cold dark matter).

We can finally rewrite the first Friedmann equation in terms of the cosmo-
logical parameters.

H2(a) = H2
0 [Ωra

−4 +Ωma
−3 + (1− Ω0) a

−2 +ΩΛ], (1.29)

where Omega0 = Ωr + Ωm + ΩΛ is the current total density of the Universe.
The current relative densities as measured to the percent level and below by
the Planck Collaboration are reported in Table 1.1.

1.4 Distances

As already introduced in the previous section, in an expanding Universe there
are two main possible ways to describe distances: a physical distance that
increases simultaneously with the expansion, and a comoving distance that
doesn’t.

If we consider a far away light source, the total comoving distance travelled
by its light is

χ = c

∫ to

te

dt′

a(t′)
, (1.30)
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Table 1.1: Cosmological parameters from Planck (Planck Collaboration, 2018). The param-
eter h is the Hubble constant H0 in units of 100 km/s/Mpc. The total matter Ωm,0 is further
divided into a dark-matter-only component and a baryonic Ωb,0 component. The curvature
parameter value has been obtained combining Planck data with the data from Baryonic
Acoustic Oscillations (BAO).

parameter Planck TT,TE,EE+lowE+lensing
h 0.674 ± 0.005

Ωm,0 0.315 ± 0.007
Ωb,0h

2 0.0224 ± 0.0001
ΩΛ,0 0.685 ± 0.007
Ωr,0 4.18343 ·10−5

ΩK 0.0007 ± 0.0019 (+BAO)

where te is the emitted time and to is the observed time. If we integrate the
factor in Eq. 1.30 between t = 0 and an arbitrary time, we obtain what is
called the conformal time. When multiplied by c is referred to as comoving
horizon. This distance defines the limit at which information could have prop-
agated from the Big Bang, also implying that regions separated by distances
greater than this are not casually connected together. The comoving horizon
is continuously extending at the speed of light, including new portions of the
Universe that become in causal contact. For the special case in which we are
integrating over the whole age of the Universe, the

Let us consider the angle ∆θ subtended in the sky by an object of known
size ℓ. We can use the metric to express its size as the distance between the
two extremities of the object:

ℓ =
√
ds2 = a(t)χ∆θ. (1.31)

We can therefore define the angular diameter distance dA as:

dA ≡ ℓ

∆θ
= aχ (1.32)

This definition holds only in an flat Universe. If we consider curvature, we
have to rewrite Equation 1.32 as:

dA =
a

H0

√
|Ωk|

{
sinh(χH0

√
Ωk) Ωk > 0

sin(χH0

√
−Ωk) Ωk < 0.

(1.33)

Another way to measure distances to an object is to measure the flux emit-
ted by an object of known luminosity (such as Chepheids stars, or Type Ia
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Supernovae). The flux emitted by a point-like source with luminosity L is
spread over spherical shells of area 4πd2. In an expanding Universe, the dis-
tance between the emitter and the observer increases over time, therefore it is
necessary to write the flux in terms of the comoving distance and scale factor:

F =
L(χ)

4πχ2(a)
, (1.34)

where L(χ) is the luminosity for a spherical shell with comoving radius χ(a).
If we assume that all the photons are emitted all at fixed energy, then L is
directly proportional to the number of photons going through the spherical
shell located at comoving radius χ. Due to expansion, the number of photons
that crosses the shell within a specific time interval will decrease with time as
function of a. The energy per unit time will then be proportional to a2. Our
equation for the observed flux will then become:

F =
Le(χ)a

2

4πχ2(a)
, (1.35)

where Le is the emitted luminosity. If we define the luminosity distance as

dL ≡ χ

a
, (1.36)

we can write the observed flux as function of dL:

F =
Le(χ)a

2

4πd2L(a)
. (1.37)

1.4.1 Redshift

The radiation emitted by bodies in movement with respect to the restframe
system is subjected to the Doppler Effect: the measured wavelength increases
or decreases because of the relative speed between the observer and the source,
causing the light to be shifted towards one end of the spectrum (redshifted
or blueshifted). In astronomy, because of the Universe expansion causing all
galaxies to recede from us, it is convenient to define the relative change in
wavelength of light as follows:

z ≡ λ2 − λ1
λ1

, (1.38)

where z is called redshift.
We can consider the distance λ1 = ct1 between two wave peaks at the

emission time and the reception time. Given the relative velocity of the emitter
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with respect to the receiver, in the time interval δt = 1/ν1 the distance between
two peaks changes by a factor vt1. Therefore

λ2 = λ1 +
vλ1
c

= λ1(1 +
v

c
), (1.39)

which using Eq. 1.38 leads to z = v/c. Note that for the relativistic case the
equation would be

z =

√
1 + v/c

1− v/c
− 1. (1.40)

Cosmological Redshift

We can now generalise this to our expanding Universe. The interesting outcome
is that the wavelength of light from distant sources in an expanding Universe
will be stretched proportionally to the scale factor:

λo
λe

≡ 1 + z =
ao
ae

=
1

ae
. (1.41)

Every cosmological object is receding from us (except for the ones in our neigh-
bourhood where the peculiar velocity dominates over the cosmological red-
shift). For all the objects that are not standard rulers or candles, the redshift
is usually the only information about their distance that can be measured. We
can now rewrite the comoving distance in terms of redshifts

χ(t) = c

∫
dt′

a(t′)
= c

∫
dz′

H(z′)
(1.42)

At small redshifts we can write the comoving distance in terms of χ ∼ z/H0.

Gravitational Redshift

A consequence of general relativity is that when light is travelling through a
divergence of the gravitational potential, e.g., the emitter has a greater gravi-
tational potential ϕ1 than the receiver ϕ2, a gravitational redshift occurs due
to the loss of energy that the photon invests to “escape” from the gravitational
attraction. The gravitational redshift is defined as

zG ≡ λ2 − λ1
λ2

=
ϕ2 − ϕ1
c2

. (1.43)

The gravitational redshift is generally small compared to cosmological or Doppler
redshifts. It is easy to show that the combined redshift is:

1 + z = (1 + zC)(1 + zD)(1 + zG). (1.44)

17



1.5. COSMIC MICROWAVE
BACKGROUND

CHAPTER 1. COSMO-
LOGICAL BACKGROUND

Figure 1.3: Spectrum of the CMB radiation as measured by the COBE FIRAS experiments,
compared to the black-body spectrum for a 2.725K source. The errorbars are magnified by
400 times.

1.5 Cosmic Microwave Background

Some of the most outstanding discoveries happen by chance. In 1964 Prof.
Penzias and Prof. Wilson were ready to test their new radiometer at the Bell
Laboratories, intended for research in radio astronomy. While calibrating their
radiometer they detected a steady, constant noise, much larger than they had
anticipated. In order to measure any of their planned objects, they had to find
the source of the noise and get rid of it. The signal was 100 times stronger
than the radio waves they wanted to measure and it was present day and night,
independently from the direction. For weeks, they tried to eliminate the noise,
with no success. Left with few options, they even considered it could be caused
by birds nesting on the antenna. Despite their efforts, which at least left them
with a sparkly clean antenna, the noise was still there. They eventually realised
they had just measured for the first time the Cosmic Microwave Background,
which had been predicted by theory, beating prof. Dicke that had long planned
a targeted experiment which he was about to implement.
Why is there such a remnant radiation, and what kind of radiation is it? As

we know the Universe is expanding, in earlier times it must have been smaller,
and as direct consequence, denser and hotter. In the first 380,000 years of its
life, the Universe was a hot plasma of particles, opaque to light, as photons
were constantly interacting with electrons via Compton or Coulomb scattering,
and ionising hydrogen and helium atoms immediately after they were formed.
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Figure 1.4: Anisotropies in the CMB temperature map as observed by COBE (Smoot, 1992),
WMAP (Bennett, 2015) and Planck (Planck Collaboration, 2019). The fluctuations are
highlighted with increasing resolution, always using a color scale of the order 105.

19



1.5. COSMIC MICROWAVE
BACKGROUND

CHAPTER 1. COSMO-
LOGICAL BACKGROUND

In these extreme conditions, photons were in thermodynamic equilibrium, such
that radiation in these extreme conditions could be completely characterised
by a black-body spectrum. Radiation in fact thermalised during the numerous
interactions happening in the primitive Universe.

Radiation in thermal equilibrium at a given temperature T is described by
a Bose-Einstein distribution; therefore photons permeating the Universe are
described by the following relation between their energy density and tempera-
ture:

ρr ∝ T 4
γ . (1.45)

The temperature of the radiation decreases as the Universe expands with a
factor of a with respect to the current size, due to the increase in a factor of a
to the wavelength associated to this radiation:

Tγ(a) =
Tγ,0
a

(1.46)

As the Universe expanded, the temperature of the radiation gradually dropped,
and at about 380,000 years after the Big Bang, the temperature was about
T ≃ 3300K, equivalent to ∼ 1eV . At this point the number of neutral atoms
reached and surpassed the number of ionised atoms, as the radiation was cool-
ing. This epoch is called recombination. The density of free-electrons dropped,
which greatly increased the photons’ mean free path, turning the Universe trans-
parent. The era of decoupling between radiation and matter occurred abruptly
when photons ceased to interact with electrons, and their free path became com-
parable with the size of the Universe back then. This is equivalent to the
rate of Compton scattering of photons being approximately equal to the rate
of expansion of the universe H0. From this moment on, the thermalised ra-
diation has been too cold to interact with matter and kept cooling to this
day, reaching a temperature of To = 2.72548 ± 0.00057K (Fixsen, 2009),
equivalent to an energy of kBT0 = 2.3 × 10−4eV , or to a radiation density:
ργ ∼ 4.65× 10−34(T0/2.726K)4gr/cm3.

The COsmic Background Explorer (COBE) satellite in 1992 confirmed that
the CMB had a black body spectrum. Since then, the CMB has been observed
with greater accuracy by WMAP and more recently by Planck. The measured
blackbody spectrum agrees with the one of radiation in thermal equilibrium
with an astonishing precision, making the CMB the most accurate black-body
spectrum in nature. Despite being homogeneous and isotropic at the percent
level, all three experiments measured small anisotropies. Beyond simpler dis-
crepancies caused by the motion of Earth with respect to the CMB rest frame,
differences of the order of 1 part in 105 are present. These fluctuations are
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believed to be the remnant of the quantum fluctuations present at the time
of recombination, which eventually led to the structures (galaxies, clusters of
galaxies, filaments, etc.) we see today.
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1.6 The Large Scale Structure of the Universe

So far we have treated the Universe as smooth and uniform, assumptions based
on the cosmological principle. While this is valid at large scales, when con-
sidering scales smaller than 100 Mpc it become obvious that it does not hold
anymore. We know in fact that the density across the Universe is far from
uniform: we have stars and galaxies, and then immense empty spaces where
only few atoms can be found. What caused these structures to form?

1.6.1 The theory of inflation

In a time t after the Big Bang, light travelled a distance dH given by the
comoving horizon (defined in section 1.4). In a Universe dominated by radiation
the expansion goes as a ∼ t1/2, while if it is dominated by matter a ∼ t2/3,
leading to dH ∼ a2 or dH ∼ a3/2 respectively. This implies that the comoving
horizon grows faster than any other physical distance λ, which grows with the
scale factor: λ ∼ a. Therefore, if we looked in the past, we would reach a time
when λ > dH , meaning that all physical scales would be causally disconnected.
Figure 1.5 helps us to identify the moment in which the scale λ entered the
causal horizon, λ = dH , by plotting the physical distance λ as a function of
the scale factor a. The existence of the causal horizon implies two problems
for the standard cosmological model:

1. CMB regions separated by more than 1 degree are supposed to never have
been in causal contact. The physical distance corresponding to larger
angles is larger than the causal horizon at z = 1100. Therefore there is
apparently no physical process which could explain why the temperature
of the CMB map is identical for portions of the sky that are separated
by more than 1 degree;

2. Physical scales smaller that 100 Mpc came in causal contact when the
Universe was dominated by radiation. The coupling between matter and
radiation at that time would have erased any inhomogeneities that could
have been present in the initial conditions. This creates a problem in
understanding how structure formed.

The most simple inflation model proposes the existence of a scalar field
called inflaton ϕ, which has energy density ρ = 1/2ϕ̇2 + V (ϕ), where V (ϕ) is
the potential. As this is a homogeneous scalar field, it behaves similarly to a
single particle moving in a potential. The scalar field is expected to “slowly
roll” toward its ground state, meaning it has little kinetic energy T (ϕ) = 1/2ϕ̇2.
The potential energy is nonzero, however, so the pressure ρ = T (ϕ)− V (ϕ) is
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Figure 1.5: Time evolution of the physical scales for three fluctuations of increasing size,
during the inflationary phase and the subsequent eras. Without inflation, the fluctuations
would initially be outside the horizon, which would have not made possible the existence of
those fluctuations in the first place, as they enter the horizon in the radiation and matter
dominated eras.

negative, inducing an exponential expansion and greatly diluting the particles
in the Universe. After reaching its minimum, inflation ends, as the field will
oscillate and decay into lighter particles. If the density is dominated by a
constant value, therefore also H will be constant (Figure 1.5). The quantum
fluctuations in the inflaton field make the inflation time slightly different for
different locations in space, resulting in a non uniform density. These fluctu-
ations are believed to be the initial seeds that then lead to the formation of
the small anisotropies imprinted in the CMB measurements, as we have seen
in section 1.5, which then lead to the much larger structures we can observe
today.

Finally, in order to fully solve the second problem, the existence of cold
dark matter is required, as this type of matter does not interact with radiation
and its inhomogeneities would have survived the coupling with radiation at the
end of the radiation era.

1.6.2 Structure Formation

As introduced in section 1.6.1, the currently accepted explanation on how the
massive structures we see today formed is provided by the inflationary theory.

Immediately after inflation, most of the Universe was not in causal con-
tact, as the physical distances increased exponentially, much faster than the
Hubble horizon. After inflation stopped, larger and larger scales continued
to be included within the horizon, because the latter continued to grow with
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cosmic time. Fluctuations whose size is larger than the Hubble horizon are
frozen, because those scales are not in causal contact yet; smaller ones can
instead interact gravitationally and can therefore grow. Figure 1.5 shows how
the physical scale of fluctuations evolves with time, or with the scale factor,
with respect to the Hubble horizon.

Linear evolution

In order to describe the evolution of the various components of the Universe,
and during the different eras in which radiation, matter or dark energy domi-
nated, we must obtain the three equations describing our cosmological perfect
fluids: the continuity equation to ensure the conservation of mass, the Eu-
ler equation which represents the conservation of momentum, and the Poisson
equation. The linear evolution of the fluctuations can be obtained by introduc-
ing perturbations to the density ρ and the pressure p: The perturbed FLRW
metric and the perturbed stress energy tensor read:

gµν =


−(1 + 2Φ

c2
) 0 0 0

0 a2(1− 2Φ
c2
) 0 0

0 0 a2fK(χ)2(1− 2Φ
c2
)

0 0 0 a2K(χ)2(1− 2Φ
c2
)

 ,

(1.47)
T00 = δρc2, Tii = δp, T i

0 = (ρc2 + p)vi, (1.48)

where Φ is the gravitational potential related to the perturbations δρ and δp,
and vi the peculiar velocity with respect to the expansion of the Universe.

We can obtain the continuity equation and the Euler equation respectively
from the 00-th and the ii-th components of the stress energy tensor derivative.
By keeping the first order only, the two equations become:

δρ,0 = −
(
ρ+

p

c2

)(vi,i
a

)
, (1.49)

δp,i
a

= −
(
ρ+

p

c2

)(
Hvi + vi,0 +

Φ,i

a

)
. (1.50)

The Poisson equation instead derives from the 00-th component of the
perturbed Einstein equation:

Φ,i,i = 4πGa2
(
δρ+ 3

δp

c2

)
. (1.51)
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The combination of the time derivative of Equation 1.49 with 1.50 and 1.51,
for a dark matter dominated Universe, gives us:

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0. (1.52)

There are two solutions to this differential equation, one growing with time
and one decaying. For the growing mode, the solution can be written as:

δ(x, t) =
D(t)

D(t0)
δ(x, t0), (1.53)

with D(t) the “growth factor”, which depends on the cosmological parameters.
The above solution holds only when the Universe is dominated by dark matter.

Non-linear evolution

If we consider small scales, overdensities become δ ≳ 1, therefore the first-order
approximation (linear theory) is not sufficient to describe their evolution and
the above derivation of the power spectrum becomes inadequate. Gravity in
fact becomes stronger, and the increasingly faster downfall of matter is gen-
erally described by the “spherical collapse” model. The growth is hierarchical,
with fluctuations larger than a critical value δc bind forming virialised struc-
tures of dark matter called halos, which with time grow through accretion of
mass or by merging with neighboring structures. As predictions of the non-
linear evolution are extremely complex to compute from theory, it is customary
to use N-body simulations to inform analytical models.

1.6.3 Statistics of the Matter Density field

In order to describe and quantify how clumpy and clustered matter is, we need
to introduce a few statistical tools. It is impossible to predict where a specific
galaxy will form. We can only study structure formation as a statistical quan-
tity, comparing the theoretical predictions to the measurements considering a
collection of galaxies. The simple average of the density field has no meaning,
as we know that at large scales the density is constant. A more useful statistics
is the so called two-point correlation function, which informs on how clustered
matter is and on what is the separation at which matter is typically clustered.
Because of the cosmological principle, it depends only on the absolute value of
the separation and not on the objects’ orientation, and it is defined as

ξ(x,y) ≡ ⟨δ(x), δ(y)⟩ = ξ(|x− y|). (1.54)
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The Fourier transform of the two-point correlation function is what is called
the power spectrum.

We start by defining the density field fluctuations in Fourier space. Since
the density field is defined in three dimensions, we expand as

δ(x) =
1

(2π)3

∫
d3kδ̃(k)eik·x. (1.55)

By inverting this we obtain the transform of the density contrast:

δ̃(k) =

∫
d3xδ(x)e−ik·x. (1.56)

If we perform a variable change to α = ||x−y| therefore can write the Fourier
transform of the two-point correlation function as〈

δ̃(k)δ̃∗(k)
〉
=

∫
d3xe−i(k−k′)·x

∫
d3αe−ik′·αξ(α) =

= (2π)3δ3D(k− k′)

∫
d3αe−ik′·αξ(α) =

= (2π)3δ3D(k− k′)P (k),

(1.57)

where δ3D is the Dirac delta, and P (k) is the matter power spectrum.
The inflationary theory predicts also the primordial power spectrum, which

refers to the initial density fluctuations:

P (k) = Ask
ns , (1.58)

where As is the amplitude and ns is the spectral index, measured by the Planck
collaboration to be ns = 0.965 ± 0.004. The evolution of the density field of
the primordial into the linear matter power spectrum today is parameterised
by the transfer function as in

P (k, z) = T 2(k, z)P0(k). (1.59)

The transfer function takes into account the impact of all physical phenom-
ena that happened throughout the different eras which modified the growth of
structure, and it depends on the cosmological model assumed. Therefore the
matter power spectrum today also depends on the cosmology.

The amplitude of the power spectrum has to be constrained by observations,
and it is measured by considering the density fluctuations inside a
sphere, the radius of which has been conventionally set to 8 Mpc/h,
which is why this quantity is called σ8. Such radius has been chosen
because at around that scale the amplitude is close to unity. The
latest Planck results have measured σ8 = 0.811± 0.006.
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1.6.4 Galaxy-matter bias

According to ΛCDM, most of the matter is in form of dark matter, which is
driving the structure formation process. Dark matter, however, is not directly
accessible; for instance, we do not measure the two-point correlation function
of dark matter clumps, but only the two-point correlation function of galaxies.
Despite the fact that luminous matter undergoes the same gravitational pull
as dark matter, baryons are also subjected to other interactions, which change
how the two kinds of matter behave at small scales. This statistical difference
is called galaxy-matter bias:

δg = bδ. (1.60)

We can extend this relation to the two-point correlation functions and the
power spectrum:

ξgg = b2ξδδ (1.61)

Pgg = b2Pδδ (1.62)

The bias relates the amplitude of the matter and galaxy fluctuations, as they
tend to be different. The latter are generally larger, as galaxies form at the
peak of a matter overdensity. Any further difference between the galaxy and
matter distribution is parametrised by the cross-correlation coefficient r:

r =
ξδg√
ξδδξgg

, (1.63)

where ξδg is the matter-galaxy cross-correlation function, related to the matter
correlation function as

ξδg = b · r ξδδ. (1.64)

This relation is assumed linear at large scales, but it is known to break
down at small scales due to stochastic components, very complex to take into
account. On large enough scales though, ξδδ and ξδg are expected to correctly
trace the matter structures, and the r coefficient is expected to be close to
unity. It follows that by simultaneously measuring both ξδδ and ξδg it would be
possible to obtain constraints on the bias parameter. The two-point correlation
function between galaxies can only be measured from the positions of a galaxy
sample. For the matter-galaxy correlation function it is necessary to have an
external measurement able to probe the matter distribution directly, which is
not possible by measuring positions. Such information can be obtained with
the use of weak gravitational lensing, introduced in the following section.
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1.7 Weak Gravitational Lensing

One of the Universe’s most fascinating phenomenon is gravitational lensing,
which refers to the deflection of light trajectories due to the effect of grav-
itational fields. According to general relativity, the metric of the spacetime
is shaped by the energy mass distribution of the Universe. Any massive ob-
ject, therefore, bends the spacetime. Photons propagate following the shortest
path in spacetime, which is defined by ds2 = 0 (also known as geodesic); if
the spacetime is bent by the presence of a massive object, the shortest path
will not appear as a straight line to the observer anymore. As a consequence,
the shape of distant objects can appear magnified, distorted, or even multiple
times, due to the gravitational effects of the large scale structure of the Uni-
verse. In Figure 1.6, recently captured by the James Webb Space Telescope,
the several arches oriented in the same direction are examples of how galaxy
images get distorted through gravitational lensing.

Let us start considering the time the photons take to travel from the source
to the observer. This can be obtained integrating ds2 = 0 along the line of
sight:

t =
1

c

∫ (
1− 2Φ

c2

)
dr. (1.65)

This equation is similar to the case of geometrical optics, with the light moving
through a medium with a refractive index n given by the lensing potential:
n =

(
1− 2Φ

c2

)
.

We are now interested in obtaining the expression for the deflection angle α̂,
which is the angle between the emitted and received lights paths, as illustrated
in Figure 1.7. This can be obtained by solving δt = 0, whose solutions minimise
the light path. This is a variational problem, whose solution is:

α̂ =
2

c2

∫
∇pΦdr. (1.66)

Eq. 1.66 is meant to be integrated along the photons trajectory, while the
gradient of the lensing potential ∇pΦ is evaluated along the perpen-
dicular direction. Unfortunately, we are not able to integrate over the actual
path of the photons, which is very complex and unknown to us. But since the
gravitational potential is small (Φ/c2 ≪ 1), the deflection and therefore the
angles in play are expected to be small. This allows us to use the Born approx-
imation and integrate over the unperturbed light path connecting the image
(not the source) and the observer.

Let us start from a simple case: a point-like body with mass M and gravi-
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Figure 1.6: First deep field image from the James Webb Space Telescope. The Einstein rings
are very visible. Credits: JWST

tational potential Φ = −GM/r. In this case, the deflection angle becomes

α̂ = 4
GM

bc2
(1.67)

where we have introduced the impact parameter b, which is the distance of
closest approach of the photons to the body.

A more complex case is when a layer of mass is considered. This is also
referred to as “thin lens” approximation. The matter distribution of the lens is
described by its surface density:

Σ(ξ) =

∫
ρ(ξ, z)dz. (1.68)

where ξ is a two-dimensional vector on the lens plane, and z is the radial
direction; since we are in the thin lens approximation, we assume most of the
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Figure 1.7: idealised version of a gravitational thin lens system. DS is the distance between
the observer and the source; DL is the distance between the observer and the lens, DLS is
the distance between the lens and the source. Having defined the optical axis as the line
connecting the observer and the center of the lens, β is the angle between the source and the
optical axis; the light coming towards the observer is deflected by α; the angle between the
deflected “apparent” image and the optical axis is θ.

density to be localized at z ≈ z0. In this case, the deflection angle is

α̂(ξ) =
4G

c2

∫
(ξ − ξ′)Σ(ξ′)

|ξ − ξ′|2
d2ξ. (1.69)

The thin lens approximation, despite being a simplification, is realistic
enough that can be applied successfully to describe a number of cases. For
instance, in the case of galaxy clusters, the physical size of the clusters is much
smaller than the distances between the observer and the cluster, or the cluster
and the source of photons. Therefore, assuming a two-dimensional cluster is a
fair assumption.

Figure 1.7 represents a thin-lens system; although the figure is lacking one
dimension, angles have both an amplitude and a direction. The amplitude of
the angles describes the tilt with respect to the z-axis (the horizontal dotted
line connecting the observer to the center of the lens), whereas the direction
specifies the location in the plane perpendicular to the z-axis.

The key quantities in thin-lens systems are three distances and three angles.
In particular: DS, which is the distance between the observer and the source,
DL, which is the distance between the observer and the lens, and DLS, which
is the distance between the lens and the source. Having defined the optical
axis as the line connecting the observer and the center of the lens, the three
key angles are β, that is the angle between the source and the optical axis; α̂,
which describes the deflection angle of the light coming towards the observer;
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θ, which is the angle between the deflected “apparent” image and the optical
axis. Having given these definitions, we can write the lens equation:

θDS = βDS + α̂DLS . (1.70)

If we introduce the reduce deflection angle as

α(θ) =
DLS

DS
α̂(θ), (1.71)

then the lens equation takes the form

β = θ − α(θ). (1.72)

This apparently simple equation hides a certain level of complexity: in the
strong-lensing regime, the relation between θ and β is non linear and has
multiple solutions.

The deflection angle α can be determined knowing the lensing potential
associated to the lens. Always assuming the thin lens approximation, we can
write the lensing potential as:

ψ =
2

c2
DLS

DLDS

∫
Φ(DLθ, z)dz (1.73)

Note that here z still refers to the coordinate axis, not to redshift. From this
equation we can see that the effect will be larger when the angular diameter
distance to the lens is comparable to the angular diameter distance between
source and lens.

Lensing occurs only when there are spatial deviations ∇θψ from the average
gravitational potential. These variations can be related to deflection angle; in
particular:

α(θ) = ∇θψ. (1.74)

From Equation 1.74 we can define a very crucial quantity called convergence
κ, which relates to the laplacian of the potential as follows

∇2
θψ = 2

Σ(DLθ)

Σcrit
≡ 2κ(θ), (1.75)

where we have used the critical surface mass density, which is usefully defined
to have inverse dimensions with respect to the surface density, such that the
pre-factor of Equation 1.73 cancels out:

Σcrit =
c2

4πG

DS

DLDLS
. (1.76)

The convergence κ is a dimensionless quantity which has an important physical
meaning: it is the integrated matter density along the line of sight, weighted
by a lensing efficiency.

31



1.7. WEAK GRAVITA-
TIONAL LENSING

CHAPTER 1. COSMO-
LOGICAL BACKGROUND

1.7.1 Shear and Magnification

Let’s now consider only the weak lensing regime (κ ≪ 1). If the size of the
source is much smaller than the scale of variation related to the deflection
angle, we can “linearise” the lens equation as follows:

δβ ∼ Aδθ, (1.77)

with A being the Jacobian matrix mapping the lensed coordinates θ to the
unlensed ones β:

Aij =
∂βi
∂θj

= δij −
∂αi

∂θj
= δij − ∂i∂jψ. (1.78)

In the case of a uniform gravitational potential, the matrix becomes the
identity matrix. In the presence of a lensing potential, instead, the mapping
between coordinates is determined by the second derivatives of ψ.

It is more convenient to express the matrix A using the convergence field
κ and the spin-2 shear field γ, whose definition will follow in a moment. It is
standard practice to write γ in terms of its two-components:

γ ≡ γ1 + iγ2 = |γ|e2iφ, (1.79)

where the amplitude of the shear field describes the degree of the distortion
an image goes through, whereas φ is the angle of distortion. We can write the
matrix A as follows:

A =

(
1− k − γ1 −γ2

−γ2 1− κ+ γ1

)
. (1.80)

With this definition of the matrix A, the convergence and the two components
of the shear are related to the second derivatives of the lensing potential:

κ =
1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2ψ (1.81)

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ (1.82)

γ2 = ∂1∂2ψ. (1.83)

It is instructive to write A separating the contribution from the convergence
and shear components:

A = (1− κ)

(
1 0
0 1

)
− |γ|

(
cos(2φ) sin(2φ)
sin(2φ) −cos(2φ)

)
. (1.84)
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Figure 1.8: Illustration of the effect of the convergence κ and shear field components γ1,2
on a spherical source. For positive values of convergence, the image is magnified, vice versa
for negative values. The shear components produce an anisotropic stretching of the image
in different directions.

From this equation we can notice that the shear components are describing
the change in shape of the image (e.g., a circle that undergoes a coordinate
transformation described by A becomes an ellipse), while the convergence is
responsible of the change in size of the image, due to the term 1 − κ. Figure
1.8 illustrates the effect of these distortions.

The amplification matrix A maps the unlensed coordinates β to the lensed
coordinates given by θ. What we are actually interested in is the reverse, that
is how to obtain the original coordinates giving our observation of the lensed
coordinates. We can therefore invert it as

dθ = A−1dβ. (1.85)

The matrix A is guaranteed to be invertible in the weak lensing regime where
κ and γ are small, as the determinant is detA = (1− κ)2 − |γ|2 ∼ 1− 2κ. We
can therefore write

A−1 =
1

detA

(
1− κ+ γ1 γ2

γ2 1− κ− γ1

)
(1.86)

The multiplicative factor 1/ detA represents how much the solid angle spanned
by the image has changed with respect to the initial unlensed source:

µ ≡ 1

detA
=

1

(1− κ)2 − |γ|2
∼ 1 + 2κ (1.87)
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This is called the magnification factor. For the weak lensing regime we can
consider at first order the convergence field κ solely responsible for the change
in solid angle.

To describe the shape distortions produced by the gravitational field, we
can consider a circular source whose image is deformed in such a way to become
an ellipse with semi-major axis a and semi-minor axis b. The ellipticity of the
distorted image is defined as

ϵ ≡ a− b

a+ b
=

γ

1− κ
≡ g, (1.88)

where we introduced a new quantity g called reduced shear, which is the quan-
tity that can actually be measured with observations. As we are not able to
observe the ellipticity of the source prior to lensing, the relevant quantity be-
comes the reduced shear itself. A reasonable approximation for weak lensing
is g ∼ γ, since κ≪ 1.

In the real Universe, galaxies do not tend to have a circular shape, but
they are characterised by an intrinsic ellipticity ϵs. We now have to consider a
distortion over an already elliptical shape. We therefore re-define the ellipticity
as function of the intrinsic ellipticity and the reduced shear:

ϵ =
ϵs + g

1 + g∗ϵs
, (1.89)

which in the weak lensing regime can be simplified to

ϵ ∼ ϵs + γ. (1.90)

As already pointed out, it is not possible to measure γ for an individual galaxy,
as the true ellipticity of the galaxy is not known and completely dominates the
shear signal. Even assuming that all the galaxies were perfect disks, their
random orientation in the sky would make their ellipticities appear equally
randomly oriented. Although the average of the intrinsic ellipticity over a
large number of galaxies tends to zero, being a random field, the ellipticity
distribution has a finite width. The typical value of shear is around γ ∼ 0.01,
which is much smaller than the dispersion of the intrinsic ellipticity σϵ ∼ 0.2.
This is called shape noise.

If the mean of the intrinsic ellipticities vanishes, meaning that the galaxies
are randomly aligned, then we could approximate ⟨ϵ⟩ ∼ ⟨γ⟩, but this approx-
imation has a flaw: galaxies do not follow a perfect random orientation, they
tend to have correlated orientations caused by true gravitational attraction.
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Figure 1.9: Illustration of how the value of the tangential component of the shear of a source
galaxy with respect to a lens changes, projected on the sky plane. If γt > 0, it is induced by
an overdensity.

This systematic uncertainty called intrinsic alignment can pollute the shear
measurement signal causing an excess of correlation, and it needs to be esti-
mated and subtracted from the true lensing signal.

Tangential and cross component of the shear field

The two components of the shear γ1,2 are expressed with respect to a Cartesian
frame of reference. However, the sheared image of an object by a spherical dis-
tribution of matter is oriented tangentially to the direction towards the center
of the sphere. It is therefore more convenient to define another set of shear
components, more adequate to describe the distorted images.

For a pair of source-lens galaxies we can then define the tangential and
cross components of the shear field:

γt = −Re
[
γe−2iϕ

]
, (1.91)

γ× = −Im
[
γe−2iϕ

]
, (1.92)

where ϕ is the position angle of the source galaxy with respect to the x axis
of the Cartesian field, as illustrated in Figure 1.9. By expressing γt and γ× as
function of γ1 and γ2, it follows:

γt = −γ1 cos(2ϕ)− γ2 sin(2ϕ), (1.93)

35



1.7. WEAK GRAVITA-
TIONAL LENSING

CHAPTER 1. COSMO-
LOGICAL BACKGROUND

Figure 1.10: The pattern of tangential and cross shear components around a point mass. In
the left panel, the images are perpendicular to the line connecting the image itself and the
point mass, they are therefore tangential. The lensing signal is all carried by this component,
also called E-mode. In the right panel, the cross shear component follows a curl pattern, for
which it is called B-mode. For a spherical lens it is expected to be zero, therefore does not
contain any cosmological information.

γ× = γ1 sin(2ϕ)− γ2 cos(2ϕ). (1.94)

The tangential component is the one carrying all the cosmological signal
from lensing if the mass distribution is spherical, while the cross component
should vanish. In Figure 1.10 it is showed how the cross component behaves
similarly to a curl of the shear field, sometimes referred to as B-mode, as
opposed to the E-mode behaviour of the tangential component. At first order,
the B-modes are not created by a gravitational lensing signal, therefore they
are used as a null test in weak lensing analyses. Once again, it is important to
remember that these components have to be observed statistically, averaging
over a large amount of galaxies. It would be impossible to measure the shear
for single galaxies as the true shape is unknown.

1.7.2 Lensing convergence

As we introduced in the previous section, the lensing convergence field repre-
sents the projection of all matter along the line of sight. By using the Poisson
equation (Eq. 1.51) and the definition of convergence in Equation 1.81 we can
express the relation of the convergence κ with the density contrast δ:

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′χ

′(χ− χ′)

χ

δ(χ′θ, χ′)

a(χ′)
, (1.95)

where the 2D integral is weighted by a lensing kernel. Assuming a redshift
distribution for the sources niκ(z(χ)) for each redshift bin i leads to Eq. 1.95
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becoming:

κ(θ) =

∫ χlim

0
dχniκ(z(χ))κ(θ, χ), (1.96)

with χlim is the limiting comoving distance of the galaxy source sample.

1.8 Angular two-point correlation functions

The power spectrum defined in Equation 1.57 is only useful if an accurate set
of redshifts is available for each galaxy sample. For photometric surveys as the
Dark Energy Survey, galaxy redshifts are not known with the required accuracy
to measure the 3D correlation function. The 2D projected angular correlation
function is usually used, since it does not require knowledge of galaxy red-
shifts to be computed, but only angular positions. The 2D angular correlation
function is equivalent to the 3D correlation function integrated over a certain
redshift range. It depends only on the absolute value of the separation angle
θ between two galaxies in the sky plane, and not on their orientation, because
of isotropy. The Fourier transform of the angular correlation function is the
angular power spectrum.

Either the angular power spectrum or the two-point angular correlation
functions are used in the comparison between data and theoretical predictions,
which is the core of any cosmological analysis. In Section 1.6.3 we have de-
scribed the two-point correlation function for the density field. This is generally
referred to as galaxy clustering, which as the name suggests is a quantity mea-
suring the amount of clustering of luminous matter. Correlating the positions
of lens galaxies provides information on the cosmic expansion history. We have
then introduced gravitational lensing, and the shear that can be imprinted on
galaxy images by the gravitational field of foreground matter. Galaxy-galaxy
lensing can be measured from the tangential shear of source galaxies produced
by foreground galaxies as function of the projected distance between the two.
Its two-point correlation function can therefore be computed from the correla-
tion between the shear of the source galaxies and the position of lens galaxies.
It is a powerful way to probe the relation between baryonic and dark matter.
Finally, the two-point correlation function between the shear of source galax-
ies is called cosmic shear, which provides us with a measure of the growth
of large-scale structure from the pattern of source galaxy shapes, and conse-
quently allows us to infer the properties of dark energy.

The angular power spectrum is usually computed using the Limber approx-
imation. For two fields A and B defined on a sphere as projections of the 3D
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fields a and b, the angular power spectrum can be written using the window
functions q(χ) as follows:

Cij
AB(ℓ) =

∫
dχ
qiA(χ)q

j
B(χ)

χ2
Pab

(
ℓ+ 1/2

χ
, z(χ)

)
, (1.97)

where Pab is the three dimensional power spectrum relative to the two fields a
and b, computed for the wave number k = ℓ/χ, where ℓ indicates the multipole.
This approximation holds as long as the variations in the fields are much smaller
than the typical scale of the window functions.

We can now write the angular power spectra for cosmic shear, galaxy-galaxy
lensing and galaxy clustering:

Cij
κκ(ℓ) =

∫
dχ
qiκ(χ)q

j
κ(χ)

χ2
P

(
ℓ+ 1/2

χ
, z(χ)

)
, (1.98)

Cij
gκ(ℓ) =

∫
dχ
qig

(
ℓ+0.5
χ , χ

)
qjκ(χ)

χ2
P

(
ℓ+ 1/2

χ
, z(χ)

)
, (1.99)

Cij
gg(ℓ) =

∫
dχ
qig

(
ℓ+1/2

χ , χ
)
qjg
(
ℓ+1/2

χ , χ
)

χ2
P

(
ℓ+ 1/2

χ
, z(χ)

)
, (1.100)

where P is the 3D matter power spectrum. The window function for galaxy
clustering is denoted by qg, while the one for shear (often referred to as lensing
kernel) is denoted by qκ; their definitions are:

qig(k, χ) = bi(k, z(χ))
nig(z(χ))

n̄ig

dz

dχ
, (1.101)

qiκ =
3H2

0Ωm

2c2
χ

a(χ)

∫
dχ′n

i
κ(z(χ

′))dz/dχ′

n̄iκ

χ′ − χ

χ′ , (1.102)

with nig/κ is the redshift distribution of the galaxy sample i, n̄ig/κ the density
of galaxies and bi the linear galaxy-matter bias.

The expected angular correlation functions for galaxy clustering w(θ), galaxy-
galaxy lensing γt and cosmic shear ξ± can be computed from the angular power
spectra as follows:

w(θ) =
∑
ℓ

2ℓ+ 1

4π
Pℓ(cos θ))C

ij
gg(ℓ), (1.103)

γijt =
∑
ℓ

2ℓ+ 1

4πℓ(ℓ+ 1)
P 2
ℓ (cos θ))C

ij
gκ(ℓ), (1.104)
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ξij± =
∑
ℓ

2ℓ+ 1

4πℓ2(ℓ+ 1)2
[G+

ℓ,2(cos θ)±G−
ℓ,2(cos θ)]× [Cij

κκ(ℓ)], (1.105)

with Pℓ(x) the Legendre polynomial of order ℓ, and G+/− the associated Leg-
endre polynomials, given by Equation (4.19) of Stebbins (1996). We note that
in the Dark Energy Survey Year 3 analysis, for the galaxy clustering angular
correlation function the Limber approximation was not assumed, and we refer
to Fang et al. (2020) for a detailed derivation.

The use of several probes is an extremely powerful tool in cosmology, as
each measurement is stronger at constraining a particular set of cosmological
parameters, and the combination improves the final accuracy of the analysis.
The analysis combining galaxy-clustering and galaxy-galaxy lensing is called
2x2pt analysis, because of the information obtained from two two-point cor-
relation functions. The 3x2pt analysis also includes cosmic shear, benefiting
from the measurement of all three two-point correlation functions, and it has
now become the benchmark in cosmological analyses with photometric imaging
surveys.
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Chapter 2

The Dark Energy Survey

2.1 Project overview

The Dark Energy Survey (DES, Flaugher et al. 2015) is an international col-
laboration aimed at studying and testing the nature and the properties of dark
energy. It aggregates the effort of scientists from 25 institutions in the United
States, Spain, the United Kingdom, Brazil, Germany, Switzerland and Aus-
tralia (see Fig. 2.1). The core of the experiment is the analysis of the images of
galaxies taken with the 570-Megapixel digital camera DECam (Flaugher et al.
2015). The camera was mounted at the prime focus of the 4-meter Blanco Tele-
scope, at the Cerro Tololo Inter-American Observatory in Chile and observed
for 6 years until the beginning of 2019.

The DES scientific goal is to investigate the cause of the accelerating uni-
verse by measuring the histories of cosmic expansion and of structure forma-
tion with high precision. According to the Dark Energy Task Force (DETF,
Albrecht & Bernstein et al. (2006)), which devised a classification of cosmologi-
cal experiments, DES is a Stage III survey, as these were defined as near-future,
intermediate-scale projects. Stage III ground-based surveys with wide-aperture
telescopes have dominated the field up to now, as they are of moderate cost
and have managed to hit the marks required by the “precision” cosmology era.
DES is the most prominent among these, and it is fulfilling its duty by bal-
ancing the intermediate imaging quality (limited by the presence of Earth’s
atmosphere) with a large area coverage and impressive improvements on the
analysis techniques and systematics treatment. These lead to crucial advances
in our experience in this kind of analyses and in our knowledge of cosmology,
upon which long-term Stage IV experiments will stand.

In order to measure the effects of dark energy on the cosmic expansion and
on the growth of structure, DES focuses on four complementary probes:
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Figure 2.1: Map of the institutions involved in the Dark Energy Survey. Credit: Judit Prat.

• Supernovae of type Ia are a crucial tool in order to observe the expan-
sion rate. As already mentioned in Chapter 1, these are used as standard
candles as they explode always in similar conditions, therefore releasing
similar amounts of energy. More than 3000 supernovae have been ob-
served in the 27 deg2 chosen fields, more than any other single survey
in history. DECam has observed the same patches of the sky every 4-7
nights, therefore allowing a correct monitoring of the supernovae light
curves.

• Baryon Acoustic Oscillations (BAO) provide a tool to measure the
distribution of galaxies across the cosmos. In its early stage, the Universe
was a hot plasma of ionised particles. The competition between gravity
and pressure filled the fluid with sound waves. During the recombination
era, the Universe became transparent to radiation, and the waves were
not able to travel anymore as the fluid ceased to exist (pressure dropped
to 0). The “frozen” wave fronts remained imprinted in the distribution
of matter, and we can now measure their angular separation.

• Galaxy clusters provides us with a tool to examine the amount of mat-
ter in the Universe. By counting the number of galaxy clusters of a given
mass within a given volume of the Universe as a function of redshift we
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Figure 2.2: Left: the 570-Megapixel digital camera DECam mounted at the prime focus
of the Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. Right:
the DECam focal plane, with twelve 2k x 2k pixels CCDs used for guiding and focus, and
sixty-two 2k x 4k pixels used for imaging. Credit: Reidar/Hahn/Fermilab.

are able to determine how this quantity has changed over time. Cosmic
“clumpiness” is sensitive to dark energy because dark energy influences
both the expansion of the universe and the growth of large scale structure.

• Weak Gravitational Lensing (WL), as already described in the pre-
vious chapter, is a direct result of general relativity. As radiation travels
trough spacetime, its path is perturbed by the gravitational potential of
the Large Scale Structure of the Universe. By measuring the distribution
of galaxy shapes we are able to indirectly probe the statistical properties
of the density field.

The combination of four probes greatly improves the constraints on cosmolog-
ical parameters. The work presented in this thesis relies on the use of WL
observables.

2.2 Instrument

The design of DECam was driven by the need to map a vast portion of the sky
while maintaining excellent image quality, high sensitivity in the near infrared
and low readout noise. The consensus was reached over a camera with three
square degree field of view, a five lens optical corrector and a large focal plane
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with 74 fully-depleted, 250-micron thick charged-coupled devices (CCDs). DE-
Cam is conceptually similar to a single-lens reflex camera, but of course much
larger and heavier, with its 570-Megapixel (see Figure 2.2. The five optical
lenses and the five optical filters at the time of construction were the largest
and heavier ever built for an astronomical experiment. The camera was aligned
and positioned using six pneumatically driven pistols.

The instrumentation was built between 2008 and 2011, assembled at Fer-
milab using a full scale reproduction of the part of the telescope used to sustain
the camera. The front-end electronics was developed as a joint effort of several
Spanish and US insitutions: CIEMAT in Madrid, our IFAE and IEEC/CSIC
in Barcelona, and Fermilab. The various components were then shipped to the
Cerro Tololo Inter-American Observatory over the course of 2011 and 2012,
and finally the DECam installation was completed during the fall of 2012.

DECam saw its first light on September 12th 2012. After a period of
commissioning, the first scientific observations took place for the Science Ver-
ification analysis, covering ∼ 200deg2 at the nominal depth. The full survey
began in August 2013 and ended in January 2019, and over the course of 524
nights observed more than 300 million galaxies, 3000 supernovae and 25000
clusters distributed across 1/8 of the sky.

The wide-field survey adopted 10 passes with a 90s exposure time for the
griz bands and a 45s exposure time for the Y band. A ∼27 deg2 deep supernova
survey observed in the griz bands.

DES has already performed three out of the four analysis batches planned,
analysing half of the total amount of data: the science verification, the analysis
of the first year of observation (Year 1) of only 1300 deg2, published in 2018,
and finally the analysis of the first three years of data (Year 3) observed on the
full footprint, released to the public in May 2021, ahead of several follow up
papers. We are now headed towards the Year 6 analysis, which will represent
the legacy of DES to cosmology. This thesis focuses on the results of the Year
3 analysis.

In the following Sections we are going to cover two of the main elements
required for the cosmological analysis: the redshift and shear estimations.

2.3 Redshift Estimation

In every weak lensing analysis one of the critical ingredients is the distance to
the galaxies in the samples under study. As defined in Section 1.4.1, redshift
is the quantity used in astronomy to evaluate the distance to celestial objects,
as the two are directly related due to cosmic expansion. As our images can-
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Figure 2.3: Illustration of how redshifts can be estimated from broad band images. Here
templates for the same elliptical galaxy plotted at redshifts z = 0, z = 0.4, and z = 0.8, show
clearly different colors. Credits: Buchs et al. (2019).

not be anything else than two-dimensional, redshift is crucial to enhance our
measurements to three dimensions.

Three main techniques to estimate galaxy redshift will be considered here:
spectroscopic, photometric, and clustering redshifts.

2.3.1 Spectroscopic Redshifts

The most accurate way to measure redshifts is to obtain the spectrum of the
object, and then compare the wavelengths of its features (absorption lines, line
breaks, etc.) with spectra measured in the rest frame. In this way it is possible
to identify by how much the spectrum has been shifted in terms of wavelength.
Galaxies have numerous clear features in their spectra, due to their gas and
stars, thus by observing a galaxy for a sufficient amount of time it is fairly easy
to obtain the correct redshift estimate.

The benefits of spectroscopic redshifts are balanced by the large amount
of time required to obtain the spectra. It is incredibly expensive to observe a
wide portion of the sky with the goal of obtaining spectroscopic measurement
of all the galaxies up to a certain depth. In fact, until very recently, all of the
so called spec-z samples were either confined to a small area, or shallow. Only
recently, the DESI instrument has started the largest spectroscopic campaign
to date, observing thousands of spectra per day. The first data will be made
publicly available during 2023 and will revolutionise the field.

For decades up to the current day though, cosmologist faced the problem
of measuring the redshifts of millions of galaxies spanned across the sky, dealt
with the use of photometry.
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2.3.2 Photometric Redshifts

Wide optical surveys require the redshift information for millions of galaxies
across thousands of square degrees of area. It is not feasible yet (too time
consuming, too expensive) to obtain a per-galaxy spectrum, therefore the flux
measurement is performed using a set of a few broadband filters, which block
all radiation apart from a specific wavelength range. For the wide imaging,
DES uses the g, r, i, z, and Y filters, corresponding to the range of 400-1065
nm.

The flux going through a given filter i is the integral of all the input light,
as follows:

Fi ∝
∫
dλTi(λ)Fλ, (2.1)

where Fλ is the true flux of a specific object and T (z) is the transmission func-
tion, which indicates how much light penetrates the filter. If Ti(z) = 0 the
filter is opaque while if Ti(z) = 1 is transparent.

From the measured fluxes historically there are two broad classes of tech-
niques to retrieve the redshift information: template fitting and training-based
methods.

For the template fitting procedure, the flux measured in the broad filters is
converted into a low resolution spectrum, and it is compared against a set of
well known spectra for which the redshift has been already estimated. Because
of the low signal-to-noise, it is much more complex to detect spectral features,
so using broad-band filters it is only possible to detect “breaks” (4000 Å break,
Balmer break, Lyman decrement), as they are not generally sensitive to the
presence of emission lines. The comparison against the template is performed
using a standard chi-square minimization procedure:

χ2(z) =

Nfilters∑
i

[
F obs
i − cF tem

i (z)

σi

]2
, (2.2)

where F obs
i and F tem

i are the observed and the template fluxes respectively, σi
is the uncertainty in the i-th filter and c is a normalisation constant. One of
the main shortcomings of this method is the lack of good quality templates at
high redshift.

In the second class of methods an empirical relation between magnitudes
and redshifts is derived using a training set of objects with measured spectro-
scopic redshifts. The advantage is that it is not necessary to study the features
of the noisy spectra or to make any assumption a priori. The downside is that it
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is not a flexible method, it has to be recomputed for each different set of filters
and for each survey, as it is necessary that the spectroscopic training sample is
suited to each survey. Furthermore, to reach the desired accuracy the training
set is generally constituted by bright galaxy, which could potentially introduce
a bias when the relation is applied to fainter sources. This set of techniques
is increasingly becoming more robust due to the fast advancing of machine
learning. We will present one of its most recent application in Chapter 5.

2.3.3 Clustering Redshifts

While for the two previously described techniques the measurement of flux is re-
quired, it is not necessary for clustering redshifts (also called WZ). The method
exploits the spatial overlap of the galaxy sample with unknown redshifts (called
“unknown” sample) with a sample with high quality spectroscopic or photomet-
ric redshifts used as reference. The reference sample galaxies can be grouped in
redshift bins with small widths because of the high redshift accuracy. A two-
point angular correlation function is then measured between the thin redshift
bins and the unknown sample, using angular scales that are smaller than the
ones used for cosmological measurements. Since galaxies which are closer in
the projected sky plane are more likely to also have a similar redshift, measur-
ing this correlation allows us to estimate the redshift distribution. Despite the
fact that the requirement of spatial overlap limits the set of adequate samples,
this technique has the advantage of not requiring the reference fluxes to be
representative of the ones of the unknown sample. The main downside is that
it requires knowledge of the redshift evolution of the galaxy-matter bias of the
unknown sample, which is the largest systematic uncertainty of the method
that needs to be taken care of. This method will be described in detail in
Chapter 5.

2.4 Shear estimation

The core of any weak lensing analysis is a correct estimate of the shear field.
Correctly measuring the shear of a given sample of galaxies is a very complex
task, as the true shape of the galaxies is not accessible. This background con-
tribution is referred to as shape noise. Figure 2.4 illustrates how the image of a
galaxy is sheared, blurred, pixelised and made noisy. There are several meth-
ods that can be used to retrieve the shape measurement, involving algorithms
aimed at detecting sources and removing noise due to atmospheric effects, or
image simulations aimed at calibrating the measurements. Here we are going
to present the pipeline for the DES Y3 analysis:
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Figure 2.4: Top: different effects applied to a galaxy that needs to be disentangled for the
shear measurement. This is a forward process, but experiments only obtain the image on
the right, and have to eliminate all sources of noise and pollution of the signal to obtain an
unbiased estimate of the shear value. Bottom: similar forward process for a point star, for
which there is no gravitational shear. Credits: Bridle et al. (2009)

1. Object detection. DECam observed multiple times the same patch in
the sky at different epochs, to average out the effect of varying observing
conditions. The co-added images improve in terms of signal-to-noise.
Objects are usually identified if the co-added flux in that region passes
a certain threshold. An algorithm to differentiate galaxies from stars is
required, to avoid polluting the sample. Furthermore, there is the issue
of “blending”: in the case of two or more very close galaxies, or in the
case of a faint galaxy nearby a very bright one, the detection could be
altered, as the properties could not be identified correctly or even objects
could not be detected at all.

2. PSF estimation. The Point Spread Function (PSF) describes how a
point-like object is measured by an imaging system. Any observed image
is the convolution of the incoming light with the PSF. There are two main
components to the PSF for a ground-based experiment like DES: the
dominant one is caused by air, with the atmospheric turbulence (seeing)
distorting the image; the detector also introduces an effect, which can be
caused by the telescope’s optics, by saturated pixels or by electric fields
that slightly deviate charged particles’ trajectories in the CCDs. The
PSF calibration is performed using moderately bright stars.
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3. Shear measurement. The galaxy shapes are measured by fitting each
galaxy to a set of measured galaxy shapes used as models. A maximum
likelihood approach is used to find the best fitting parameters. As already
explained in Section 1.7 though, it is impossible to separate the shear from
the intrinsic shape of single galaxies. This is the main obstacle in weak
lensing. DES developed an algorithm to estimate the response of our
shear estimation pipeline called METACALIBRATION (Huff & Mandelbaum
(2017a); Sheldon & Huff (2017a)). For small shears (assumption valid in
the weak lensing regime) we can expand the noisy measurement of the
shear field ϵ with respect to the true shear field γ:

ϵ = ϵ|γ=0 +
∂ϵ

∂γ

∣∣∣∣
γ=0

γ + . . .

≡ ϵ|γ=0 +Rγγ + . . .

(2.3)

where Rγ is the shear response matrix, defining how the ellipticities ϵ vary
with respect to the true shear γ in absence of lensing γ = 0. If lensing
is absent, then the average over all ellipticities must be equal to zero.
We can now create an estimator for an ensemble of shear measurements
using the response matrix:

⟨γ⟩ ∼ ⟨Rγ⟩−1 ⟨ϵ⟩ . (2.4)

In METACALIBRATION the response matrix is measured using finite differ-
ence derivatives. These are effectively computed by applying a small,
artificial amount of shear γ± = 0.01 to each image. The measurement
of shapes is repeated on the sheared images, and the response for each
galaxy is estimated as

Rγij =
ϵ+i − ϵ−i
∆γj

, (2.5)

where ϵ±i are the i-th component of the ellipticities measured
on images sheared by an artificial shear with j-th component
equal to ±γ.

4. Remaining biases in the shear estimator. Despite the METACALIBRATION
procedure, small multiplicative and additive biases can still persist, and
the two shear components i, j estimated by the algorithm can be parametrised
as follows:

γesti = miγ
true
i + ci (2.6)

where mi and ci are the multiplicative and additive biases respectively.
Misestimations of quantities in the previous steps can lead to larger values
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of both biases. Additive biases can be detected by performing null tests
on data, measuring quantities that are expected to average to zero; multi-
plicative biases are generally identified using image simulation, where the
true shear is known and there is control over the detection systematics.
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Chapter 3

Introduction

The Dark Energy Survey (DES, Flaugher et al. 2015, described in Chapter 2) is
currently the largest photometric galaxy survey to date, having detected hun-
dreds millions of galaxies over 5000 deg2 of the southern hemisphere. Together
with other ongoing and future galaxy surveys (e.g., Kilo-Degree Survey KIDS,
Kuijken et al. 2015; Hyper Suprime-Cam HSC, Aihara et al. 2018; Vera Rubin
Observatory Large Survey of Space and Time (LSST), LSST Science Collabo-
ration et al. 2009; Euclid, Laureijs et al. 2011), DES can achieve competitive
constraints on cosmological parameters, by studying both the spatial distri-
bution of the detected galaxies and by measuring the tiny distortions in their
observed shapes due to gravitational lensing effects induced by the large scale
structure of the Universe. The analysis of the first three years (Y3) of DES
data (Abbott et al., 2022) placed tight constraints on cosmological parame-
ters, by combining three different measurements of the three two-point (3x2pt)
correlation functions that measured galaxy positions and galaxy shapes. The
three functions are namely:

1. Cosmic shear, i.e. the 2-point correlation function of galaxy shapes; the
DES Y3 measurements (Amon & Gruen et al., 2022; Secco & Samuroff
et al., 2022) involve the angular correlation of 100,000,000 galaxy shapes
from the weak lensing sample (Gatti & Sheldon et al., 2020b), divided
into four tomographic bins. We refer to this as the “source” sample.

2. Galaxy clustering: the 2-point correlation function of the positions of
bright galaxies (which we refer to as the “lens” sample) (Rodríguez-
Monroy et al., 2022);

3. Galaxy-galaxy lensing: the cross-correlation function of galaxy shapes
and the position of the galaxies of the lens sample (Prat et al., 2022).
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The modelling of each of these correlation functions requires knowledge of
the redshift distributions (from hereafter n(z)) of the two samples (lens and
source galaxies), which have to be estimated with great accuracy in order to
avoid biased cosmological results (Huterer et al., 2006; Cunha et al., 2012;
Benjamin et al., 2013; Huterer et al., 2013; Bonnett et al., 2016a; Hildebrandt
et al., 2017; Hoyle et al., 2018a; Joudaki et al., 2019; Hildebrandt et al., 2020;
Tessore & Harrison, 2020). The optimal solution would be to avail ourselves of
spectroscopic observations, providing an accurate redshift measurement of each
targeted galaxy. Unfortunately, it is not feasible to obtain said spectra other
than for a small fraction of the science sample, due to the required time and
cost of the observing campaign. Cosmological surveys like DES therefore have
to use for their redshift estimation measurements only a few, noisy, broad-band
fluxes, causing cosmologists to apply a great deal of effort and inventiveness to
create robust and unbiased redshift calibration pipelines.

Photometric surveys have been relying on different methodologies to derive
redshift distributions (Hildebrandt et al., 2010; Sánchez et al., 2014), mostly
based on galaxies’ multi-band photometry (photo-z methods, or PZ). How-
ever, these methods are ultimately limited by the redshift ambiguities in a
few band colors, and the limited and incomplete spectroscopic samples avail-
able to calibrate the color-redshift relations. This issue can be circumvented
by reweighting the redshift distributions of a sample according to the relative
abundance of galaxies whose redshifts are known with accuracy (e.g. Lima
et al. 2008, Speagle & Eisenstein 2017a, Speagle & Eisenstein 2017b, Hoyle &
Gruen et al. 2018a, Tanaka et al. 2018, Wright et al. 2019, Euclid Collabora-
tion et al. 2020, Schmidt et al. 2020). Residual uncertainty coming from the
color-redshift degeneracy in this case translates as uncertainty on the measured
redshift distribution, often quantified in terms of uncertainties on the moments
of the measured n(z).

A substantial improvement on the accuracy of redshift calibration comes
from the use of broad-band photometry that covers the full range of optical
and near-infrared wavelengths (Masters et al. 2017, Hildebrandt et al. 2017).
Unfortunately a complete multi-band photometry is not available over the large
areas observed by optical surveys. Nevertheless, optical surveys can choose to
observe regions of the sky that overlap with existing spectroscopic and/or near-
infrared fields, complementing the optical photometry. Typically, these regions
are observed more often to reach a much higher signal-to-noise; these are called
“deep fields”.

For DES Y3, a new method leveraging the richness of information in the
deep fields was developed, using the additional filters and the accurate photom-
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etry to break the color/redshift degeneracy, thus overcoming the key limitations
of few-bands redshift calibration. The redshift information in the deep fields
is validated with the use of spectroscopic or high-quality photometric informa-
tion (also called photo-z) made available by other surveys. The photometry of
all the galaxies “living” in the deep fields is sufficiently good in order to group
them in an exhaustive set of phenotypes (Sánchez & Bernstein, 2019a). By also
classifying the wide galaxies with noisy photometry, we can build a mapping
between the accurate and noisy phenotypes, which allows to transfer the red-
shift information to the wide field galaxies. This method is named SOMPZ, as
the classification is performed by means of Self-Organising Maps (Buchs et al.,
2019).

Clustering redshifts methods (Newman 2008; Ménard et al.; Choi et al.
2016; Davis et al. 2017; Morrison et al. 2017; Johnson et al. 2017; Gatti &
Vielzeuf et al. 2018; van den Busch et al. 2020) offer an alternative to standard
photo-z methods to infer redshift distributions. In short, clustering-z meth-
ods exploit the two-point correlation signal between a photometric “unknown”
sample and a “reference” sample of high-fidelity redshift galaxies divided into
thin bins, to infer the redshift distributions of the photometric sample. One
of the biggest advantages of clustering-z methods is that the reference sample
does not have to be representative of the photometric sample. Clustering-z
methods (or WZ) have been in the past years successfully applied to both data
(Rahman et al., 2015, 2016a,b; Scottez et al., 2016; Hildebrandt et al., 2017;
Johnson et al., 2017; Davis et al., 2017, 2018; Cawthon et al., 2018; Bates
et al., 2019; van den Busch et al., 2020; Hildebrandt et al., 2020) and simu-
lations (Schmidt et al. 2013; McQuinn & White 2013; Scottez et al.; Gatti &
Vielzeuf et al. 2018), and they represent one credible supplement to standard
photo-z methods for the new, upcoming generation of data sets.

Clustering-z methods have been used both to provide an independent red-
shift distribution estimate and to calibrate distributions inferred from photo-z
methods. In the DES Y1 cosmological analysis we opted for the latter approach
(Davis et al. 2017; Hoyle & Gruen et al. 2018b).

Another technique used to calibrate redshift distributions is based on “shear
ratios” (Jain & Taylor, 2003; Heymans et al., 2012; Hildebrandt et al., 2020;
Prat et al., 2019; Sánchez et al., 2022a), which are ratios of galaxy-galaxy lens-
ing measurements. In particular, the ratio is computed between galaxy-galaxy
lensing signals using the same lens galaxy redshift bin but different source
bins; this probes the lensing efficiencies of the source galaxies, which are di-
rectly related to their redshift distributions. Shear ratios mostly constrain the
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redshifts of the sources, but also partially improve the calibration of the lens
redshift distributions. Shear ratios constraints are independent from the pre-
vious photo-z and WZ methods. The methodology adopted in the DES Y3
analysis is described fully in Sánchez & Prat et al. (2022a).

The redshift calibration strategy for DES Y3 analysis improves in multiple
respects on the Y1 strategy. Firs of all, all the three aforementioned methods
are used, whereas in DES Y1 we did not incorporate shear ratios in our analysis,
as it was used only as an independent validation. Concerning the photo-z
estimates, the implementation of the SOMPZ method allowed us to minimise
the systematic uncertainties related to the type/redshift degeneracy at given
broad-band flux, exploiting small samples of galaxies in the deep fields for
which was possible to obtain spectroscopic redshifts. From the clustering-
redshift side, we improved over Y1 in the modelling of the clustering signal,
accounting for the redshift evolution of the galaxy-matter bias of the reference
sample and the clustering of the underlying dark matter density field, which
were neglected in the DES Y1 analysis. Moreover, we also marginalised over
magnification effects, and we implemented a new method to combine clustering
information with redshift distributions from photometry.

The SOMPZ method, the improved instance of the WZ method, and shear
ratios have been developed for the calibration of the DES Y3 weak lensing
source sample redshift distributions (Gatti & Giannini et al. 2020a, Myles &
Alarcon et al. 2020). The same approach has later been applied as an additional
calibration to the fiducial DES Y3 lens sample MagLim cite my paper 7,
with some tweaks due to the different nature of the two samples. We note that
the fiducial DES Y3 MagLim n(z) calibration has been performed combining
a training-based photometric code (DNF, De Vicente et al. 2016a) and an “Y1-
like” instance of the WZ method; the methodology presented here, however, is
more robust in terms of systematic uncertainty estimation and control of their
propagation throughout the whole pipeline. A thorough comparison between
the two calibrations for the lens sample is presented in Chapter 7.

In this part we will focus only on the application of the newly developed
clustering redshift method to the DES Y3 weak lensing galaxies, while for the
MagLim lens sample we will present the calibration for both methods. In the
two cases the combination which results in the final n(z) will be shown.
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In this work we use data from the first three years (out of six) of observations
(Y3) of DES, which were taken from August 2013 to February 2016. The DES
Data Management (DESDM) team was in charge of processing the raw images
(Sevilla et al., 2011; Morganson et al., 2018; Abbott et al., 2018); full details
are provided in Sevilla-Noarbe et al. (2020) and Gatti & Sheldon et al. (2020b).
The main catalog upon all the DES samples are built is the DES gold catalog,
obtained using observations in the griz bands. Objects belonging to the gold
catalog have passed a number of selections aimed at removing objects in prob-
lematic regions of the sky or anomalous detections (e.g., objects with pixels
affected by saturation or truncation issues). The gold catalog consists of 388
millions objects (Sevilla-Noarbe et al., 2020). Each object comes with morpho-
logical and photometric measurements based on two different pipelines, the
Multi-Object Fitting pipeline (MOF) and the Single-Object Fitting pipeline
(SOF). The former performs a simultaneous multi-object, multi-epoch, multi-
band fit to estimate morphology and photometric information; the latter does
not perform the multi-object fit when it comes to crowded objects. The DES
Y3 SOF implementation is faster and less prone to fit failures compared to
the MOF pipeline, and it does not suffer from any significant loss in terms of
accuracy (Sevilla-Noarbe et al., 2020).

We describe in this section the data and simulated products used in this
work. We are going to focus on the data used in the clustering-z measurement
for the weak lensing sample, and on the data used in both the clustering-z and
SOMPZ measurements for the MagLim galaxies. All of the samples in data
have also been reproduced in simulation for testing purposes. The samples
used are:

• the DES Y3 weak lensing sample (Gatti & Sheldon et al., 2020b), used
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as source galaxies in the DES Y3 3x2pt cosmological analysis and which
redshift distributions need to be characterised;

• the DES Y3 MagLim sample, used as lens galaxies in the DES Y3 3x2pt
cosmological analysis and which redshift distributions need to be charac-
terised;

• the RedMaGiC galaxy catalogue (Porredon et al., 2021a), consisting of
luminous red galaxies with excellent photometric redshifts and spanning
in the whole DES footprint; it is used as a reference sample for the WZ
measurements for the weak lensing source sample;

• BOSS/eBOSS spectroscopic galaxy catalogues, used as reference sample
for the WZ measurements for both the lensing source sample and the
MagLim sample; these are galaxies with spectroscopic redshift partially
overlapping with the DES wide field footprint.

• the DES deep field samples, which are observed in small fields by DES
with deeper observations than wide field ones and where information from
additional photometric bands are available. Deep fields are a key element
of the SOMPZ methodology;

• the DES Balrog sample; this sample consists of software-injected deep
field galaxies into DES wide field images and is a key element of the
SOMPZ methodology;

• the “redshift” samples, which are a collection of either spectroscopic or
multi-band photometric samples collected by other surveys in the DES
deep field region. The redshift samples are a key element in the SOMPZ
methodology;

4.1 Weak Lensing sample

The DES Y3 weak lensing (WL) sample is created using the metacalibration
pipeline (described and tested in Huff & Mandelbaum 2017b and Sheldon &
Huff 2017b and applied to the Y3 data in Gatti et al. 2020b) and it is a subset
of the gold catalog. The metacalibration pipeline provides a per-galaxy self-
calibrated shape measurement, which is free from shear and selection biases.
An additional, small calibration based on image simulations (MacCrann et al.,
2020) accounts for blending and detection biases. The final catalog consists of
∼ 100 million galaxies, spanning the full DES Y3 wide field footprint and with
an effective number density of neff = 5.59 gal/arcmin−2. The WL sample is
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divided into four tomographic bin through the following procedure, which uses
Self-Organising Maps (Section 5.1):

• A first set of edge values are arbitrarily selected.

• Each galaxy of the redshift sample is then assigned to the tomographic
bin in which its redshift estimate falls.

• A number of galaxies at this point share the same photometry cell of the
wide-field SOM and same tomographic bin, so the cell in its entirety is
assigned to the bin to which the majority of its galaxies live.

• The initial bin edges are adjusted to yield approximately the same num-
ber of galaxies.

• Finally the whole procedure is repeated with the new bin edges.

After completing this procedure, the final bin edges are [0.0, 0.358, 0.631, 0.872,
2.0] for the Y3 weak lensing source catalogue.

4.2 MagLim sample

The lens galaxy sample considered in this work is the MagLim sample. The
MagLim sample is a subset of the DES gold catalog and consists of bright
galaxies selected with an ad-hoc selection that optimises the number density
and the redshift accuracy of the sample (Porredon et al., 2021b). The MagLim
sample spans the full DES Y3 wide field footprint, for a total of ∼ 4143 deg2.
SOF magnitudes in the riz bands1 are used for the selection and photometry.
The selection is meant to be linear in redshift and magnitude, and reads

mi < 4 ∗ zmean + 18

mi > 17.5,
(4.1)

where mi the i-band SOF magnitude and zmean is a per-object redshift es-
timate from the photo-z code Directional Neighborhood fitting (DNF) De
Vicente et al. 2016a; see also next subsection). The sample is then further
limited to the redshift range 0.2 < zmean < 1.05. This leads to a sample
that ranges from 18.8 < imag < 22.2 The MagLim sample is divided into 6
tomographic bins using DNF zmean and considering the following bin edges:

1We exclude the g-band as its photometry is known to be affected by PSF estimation
issues (Jarvis et al., 2020).
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Bin z range N galaxies n density Cflux

1 0.20 < zph < 0.40 2 236 473 0.150 0.43
2 0.40 < zph < 0.55 1 599 500 0.107 0.30
3 0.55 < zph < 0.70 1 627 413 0.109 1.75
4 0.70 < zph < 0.85 2 175 184 0.146 1.94
5 0.85 < zph < 0.95 1 583 686 0.106 1.56
6 0.95 < zph < 1.05 1 494 250 0.100 2.96

Table 4.1: Summary of the MagLim sample. We have outlined for each tomographic bin
the redshift range (selected using DNF zmean), the number of galaxies, the number density,
and the magnification coefficient as measured in Elvin-Poole et al. (2021)

[0.2, 0.4, 0.55, 0.7, 0.85, 0.95, 1.05], with a total of a 10,716,506 galaxies, dis-
tributed across bins as summarised in Table 4.1. The MagLim sample is used
as lens sample in the galaxy-galaxy lensing and galaxy clustering measurements
of the DES Y3 2x2 cosmological analysis (Porredon et al., 2021a).

4.2.1 DNF

The photo-z code DNF (Directional Neighborhood fitting is used to define the
MagLim selection and to define the MagLim tomographic bins. The DNF al-
gorithm computes a point estimate zmean of redshift of the galaxies by perform-
ing a fit to a hyper-plane in color and magnitude space using up to 80 nearest
neighbors taken from a reference sample made of spectroscopic galaxies with
secure redshift information. For this purpose, a large number of spectroscopic
catalogs collected by Gschwend et al. (2018) has been used, including spec-
tra from SDSS DR4 (Abolfathi et al., 2018), OzDES (Lidman et al., 2020),
VIPERS (Garilli et al., 2014), and from the PAU spectro-photometric cata-
log (Eriksen et al., 2019). The total number of spectra used for training is
∼ 105. DNF also provides a redshift estimate zDNF drawn from the redshift
PDF for each individual galaxy, although only the quantity zmean is used for
the MagLim selection and binning.

4.3 WZ reference sample: RedMaGiC galaxies

One of the reference samples used in the clustering redshifts analysis of the
weak lensing sample in DES Y3 consists of RedMaGiC galaxies. The same
sample is also used in the DES analysis as lens sample for the galaxy clustering
and galaxy-galaxy lensing measurements (Prat et al., 2022; Rodríguez-Monroy
et al., 2022). The RedMaGiC algorithm selects red luminous galaxies for which
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high-quality photometric estimates exist, through a template fitting scheme.
Two samples are defined in order to present different properties: the “high
density” sample is selected to have a luminosity larger than L/L∗ > 0.5, which
allows to yield a larger number of galaxies, while the “high luminosity” is built
to select only the brightest galaxies, with L/L∗ > 1. The combined sample is
obtained by simply merging the two samples, using the high density sample
for redshift z < 0.65, and the high luminosity one otherwise. The sample is
binned in 40 bins of ∆z = 0.02, over a 0.014 < z < 0.94 interval. The choice of
the bin width is not expected to impact our measurement, as long as bins are
small enough compared to the typical variation scales of the the weak lensing
n(z) and the galaxy-matter biases of the two samples. The total number of
RedMaGiC galaxies is 3,041,935 in the data.

In order to remove correlations with observational systematics, weights are
applied to the RedMaGiC galaxies. In particular, the weights correct any
spurious dependence of the number density with respect to any systematic
accounted for, to the level needed for two-point correlation functions. Note
that due to low-statistics issues, the weights do not resolve fluctuations on
scales relevant for this work, but only capture large-scale spurious correlations.
The procedure used to compute the weights is described in Rodríguez-Monroy
et al. (2022).

4.4 WZ reference sample: BOSS/eBOSS Galaxies

The BOSS/eBOSS galaxy catalog is our main reference for the clustering-z
measurement for the case of the lens sample; in the case of the weak lensing
source sample, it joins RedMaGiC as second reference sample. It consists of
a number of spectroscopic samples from the Sloan Digital Sky Survey (SDSS,
Gunn et al. 2006; Eisenstein et al. 2011; Blanton et al. 2017), and combines
SDSS galaxies from BOSS (Baryonic Oscillation Spectroscopic Survey, Smee
et al. 2013; Dawson et al. 2013) and from eBOSS (extended-Baryon Oscilla-
tion Spectroscopic Survey Dawson et al. 2016; Ahumada et al. 2019; Alam
et al. 2020). In particular, the BOSS sample includes the LOWZ and CMASS
catalogs from the SDSS DR 12 (Reid et al., 2016), while we included the
large-scale structure catalogs from emission line galaxies (ELGs Raichoor et al.
2017), luminous red galaxies (LRGs, Prakash et al. 2016) and quasi stellar ob-
jects (QSOs) (eBOSS in prep.) from eBOSS. Following Gatti et al. (2020a);
Cawthon et al. (2020), we stack together the different samples and use them as
a single reference sample. We also create a single random catalog by stacking
all the random catalogs of each individual samples. The BOSS/eBOSS sample
is divided into 50 bins spanning the 0.1 < z < 1.1 range of the catalog (width
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Spectroscopic Samples
Name Redshifts Ngal Area

LOWZ (BOSS) z ∼ [0.0, 0.5] 45671 ∼ 860 deg2

CMASS (BOSS) z ∼ [0.35, 0.8] 74186 ∼ 860 deg2

LRG (eBOSS) z ∈ [0.6, 1.0] 24404 ∼ 700 deg2

ELG (eBOSS) z ∈ [0.6, 1.1] 89967 ∼ 620 deg2

QSO (eBOSS) z ∈ [0.8, 1.1] 7759 ∼ 700 deg2

Table 4.2: List of the spectroscopic samples from BOSS/eBOSS overlapping with the DES
Y3 footprint used as reference galaxies for clustering redshifts in this work.

∆z ∼ 0.02). The number of galaxies for each sample are listed in Table 4.2,
with the final sample consisting of 241,987 objects and covering an area ranging
from 14 to 17% of the total DES footprint.

We note that estimates of the magnification coefficients are not available
for BOSS/eBOSS galaxies. For our fiducial analysis we assumed magnification
values for the BOSS/eBOSS sample to be set to zero. We are confident about
this choice for the narrow shape of the MagLim tomographic bins, since the
magnification is usually significant in the tails of the distribution when the
clustering kernel due to selection effects is larger. We nonetheless verify in
this work that our analysis is not very sensitive to the particular choice of the
values of the magnification parameters. The area coverage is smaller compared
to RedMaGiC galaxies, as shown in Fig. 4.1. Note that some of the galaxies
in the BOSS/eBOSS sample are also in the RedMaGiC catalog: ∼1 % of
the RedMaGiC galaxies are matched to ∼10 % of the BOSS/eBOSS galaxies,
within 1 arcsec. We did not remove these galaxies from the RedMaGiC sample,
as they have a negligible impact both on our constraints and on the covariance
between the two samples (as it will be clear in the following sections, the
constraints from both samples are systematic-dominated).

4.5 Deep Fields sample

The Deep fields catalog is a key element of the SOMPZ methodology. We
provide here a few key details, but we refer the reader to Hartley et al. (2020)
for extensive details and the characterisation of the sample.

This work uses four different deep fields, i.e., E2, X3, C3 and COSMOS
(COS) covering 3.32, 3.29, 1.94, and 1.38 deg2, respectively. These are illus-
trated in Figure 4.1. Each deep field has undergone a scrupulous masking
procedure aimed at removing artefacts (e.g., cosmic rays, meteors, saturated
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Figure 4.1: Mollweide visualisation of the Dark Energy Survey footprint (in red) and the
four deep fields used in the Year 3 analysis: E2, X3, C3 and COSMOS. In green the overlap
with the BOSS/eBOSS sample.

pixels, etc.). Considering the final unmasked area overlapping with the UltraV-
ISTA and VIDEO near-infrared (NIR) surveys (McCracken et al., 2012; Jarvis
et al., 2013), which is needed to provide photometric information in additional
bands, we are left with 5.2 deg2 of area for a total of 267,229 galaxies with
measured u, g, r, i, z, J , H, Ks photometry with limiting magnitudes 24.64,
25.57, 25.28, 24.66, 24.06, 24.02, 23.69, and 23.58. Note that deep field galax-
ies have deeper photometry and photometry available in more bands compared
to the wide field galaxies; this is key for a good performance of the SOMPZ
method as it reduces the color-redshift degeneracy.

4.6 Balrog sample

The Balrog sample is another key element of the SOMPZ methodology. It is
used to relate galaxies with given deep photometry to observed galaxies with
wide field photometry, which are noisier. To this aim we rely on Balrog
(Suchyta et al., 2016), a software which injects “fake” galaxies into real im-
ages. For this analysis, Balrog was used to inject deep field galaxies into the
broader wide field footprint (Everett et al., 2020b). After injecting galaxies
into images, the output Balrog images are passed into the DES Y3 photo-
metric pipeline and injected galaxies are detected equivalently to real galaxies,
yielding multiple realisations of each injected galaxy. The Balrog sample
spans ∼20% of the DES Y3 footprint. We further select injected galaxies using

63



4.7. REDSHIFT SAMPLES CHAPTER 4. DATA

Figure 4.2: Scheme illustrating the operation of Balrog: the practically noiseless deep fields
galaxies are injected many times in DES real wide field images; those dichotomous images are
then processed through the fiducial DES detection pipeline, to construct a sample containing
several noisy representations of the same deep galaxies.

the sample selection. We then construct a matched catalog matching Balrog
injected wide field galaxies with their deep field counterparts. The resulting
catalog is called the Balrog sample. For MagLim, it consists of a total of
351,165 galaxies with both deep and wide photometric information.

4.7 Redshift Samples

The redshift samples used for the SOMPZ section of the analysis consist of
galaxies with secure redshift information (either spectroscopic or high quality
multi-band photometric) observed in the deep fields. These samples are key to
characterise the redshifts of the deep field sample and, in turn, to transfer the
redshift information to the wide field sample.

We consider three separate redshift selections, similarly to what has been
used in source sample redshift characterisation (Myles & Alarcon et al., 2020):

• a collection of spectra from a number of different public and private
spectroscopic samples, from the spectroscopic compilation by Gschwend
et al. (2018). We have not restricted ourselves to a few, selected surveys
as in the case of the DES Y3 weak lensing sample (Myles & Alarcon et al.,
2020), where only zCOSMOS (Lilly et al., 2009a), C3R2 (Masters et al.,
2017, 2019), VVDS (Le Fèvre et al., 2013a), and VIPERS (Scodeggio
et al., 2018a) were considered. This is because due to the bright nature of
the MagLim sample we would mostly select high signal-to-noise galaxies,
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and using more spectroscopic samples allow us to largely improve the
statistic, minimising the impact of possible outliers;

• multi-band photo-z galaxies from the COSMOS field; in particular, we
used the COSMOS2015 30-band photometric redshift catalog (Laigle et al.,
2016), which is equipped with narrow, intermediate and broad bands
covering the IR, optical, and UV regions of the electromagnetic spectrum;

• redshifts from the PAUS+COSMOS 66-band photometric redshift catalog
(Alarcon et al., 2020), which adds 40 narrow band filters from the PAU
Survey.

We match these redshift catalogs to our deep field galaxies and keep only
those that are selected at least once into our sample selection according to
their Balrog injections. Due to the bright nature of the MagLim sample,
the number of galaxies in our final redshift samples is greatly reduced: for
the SPC sample, for example, the unique total number of galaxies passes from
118745 to 17718, a reduction of around 85%.

In some cases, the same galaxy might have redshift information from multi-
ple surveys. Following Myles & Alarcon et al. (2020), we created three slightly
different redshift samples, where in case of multiple information from different
surveys we use as fiducial the redshift from a specific survey. The samples are:

• 1) SPC, where in case of multiple information available we first use the
spectroscopic catalog (S), then PAUS+COSMOS (P), and finally COSMOS2015
(C);

• 2) PC, where we rank first the PAUS+COSMOS catalog before COSMOS2015,
and we do not include spectroscopic redshifts;

• 3) SC : where we first use the spectroscopic catalog before COSMOS2015,
but we do not include the PAUS+COSMOS catalog.

Table 4.3 summarises the number of unique galaxies appearing in each
of the three redshift samples, before and after performing the MagLim sam-
ple selection. The fiducial ensemble of redshift distributions is generated by
marginalizing over all three of these redshift samples (SPC, PC, SC) with equal
prior, which in practice is achieved by simply concatenating the n(z) samples
produced from these three redshift samples. In such a way we marginalise over
potential uncertainties and biases in the different redshift catalogs (S, P and
C).
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Raw After MagLim selection
SPC SC PC SPC SC PC

COSMOS 64139 82856 69686 3299 7231 3721
PAU 18780 - 28780 3950 - 7015
Spec-z 35826 35826 - 10429 10429 -
Total 118745 118682 98466 17678 17660 10736

Table 4.3: Number of unique galaxies belonging to each of the three redshift catalogs (COS-
MOS, PAU and the spectroscopic collection) for each of the samples SPC (composed by
galaxies from Spec-z, PAU, COSMOS in this order), SC (Spec-z, COSMOS), PC (PAU,
COSMOS). The sample selection for the MagLim sample applied to the corresponding Bal-
rog injections reduces greatly the size of all samples. For more information, see Section 4.7.

4.8 Simulated Galaxy catalogs

Our methodology is thoroughly validated using simulated catalogs. In partic-
ular, we use one realisation of the sets of the Buzzard N-body simulations
(DeRose et al., 2022). All the catalogs we used in data have their simu-
lated counterparts, although we adopted some reasonable simplifications, when
needed. We give here a brief summary of the Buzzard simulation and the sim-
ulated catalog we had to create for this project, i.e., the simulated MagLim
sample. The simulated BOSS/eBOSS catalog description is provided in Gatti
& Giannini et al. (2020a), whereas the simulated WL sample is described in
DeRose et al. (2022).

Buzzard is a synthetic galaxy catalog built starting from N-body lightcones
produced by L-GADGET2 (Springel, 2005). Galaxies are incorporated in the
dark matter lightcones using the ADDGALS algorithm (DeRose et al., 2019).
Buzzard spans 10313 square degrees. The cosmological parameters chosen are
Ωm = 0.286, σ8 = 0.82, Ωb = 0.047, ns = 0.96, h = 0.7. The simulations are
created starting from three lightcones with different resolutions and size (10503,
26003 and 40003 Mpc3h−3 boxes and 14003, 20483 and 20483 particles), to ac-
commodate the need of a larger box at high redshift. Halos are identified using
the public code ROCKSTAR (Behroozi et al., 2013) and they are populated
with galaxies using ADDGALS (DeRose et al., 2019), which provides positions,
velocities, magnitudes, SEDs and ellipticities. Galaxies are assigned their prop-
erties based on the relation between redshift, r-band absolute magnitude, and
large-scale density from a subhalo abundance matching model (Conroy et al.,
2006; Lehmann et al., 2017) in higher resolution N-body simulations. SEDs
are assigned to galaxies by imposing the matching with the SED-luminosity-
density relationship measured in the SDSS data. SEDs are K-corrected and
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Figure 4.3: Comparison of i-band magnitudes of the six bins of the MagLim sample in data
and in simulations. The performed re-weighting is successful at providing us with magnitude
distributions very similar to the ones in data.

integrated over the DES filter bands to generate DES grizY magnitudes. Ray-
tracing is performed through the CALCLENS algorithm (Becker, 2013), to
introduce lensing effects, in order to provide weak-lensing shear, magnification
and lensed galaxy positions for the lightcone outputs. CALCLENS is run onto
the sphere, masked with the DES Y3 footprint, using the HEALPix algorithm
(Górski & Hivon, 2011) and is accurate to ∼ 6.4 arcseconds.

4.8.1 Simulated MagLim sample

In order to define a simulated MagLim sample, the photo-z code DNF has been
run on a subset of the Buzzard simulations, restricted to i-band magnitudes
i < 23, so as to reduce the running time without affecting the final result (note
that the MagLim selection presents a cut at i < 22.2). The goal is to attain
similar number density and color distributions as in data. Due to the small but
existing differences in magnitude/color space between the Buzzard simulation
and the DES data (DeRose et al., 2019), we expect the simulated sample to
not be a perfect copy of the data sample, although we do not expect this to
have a sensible impact on any of the conclusions drawn in this work.

The direct application of the fiducial MagLim selection (Eq. 4.1) to the
Buzzard catalog leads to slightly different number densities and color distribu-
tions with respect to data. We therefore re-define a more adequate MagLim
selection for Buzzard, with the goal of achieving the same number density as
the data sample. The new Buzzard MagLim selection is a piece-wise linear
selection in redshift and magnitude, similar to Eq. 4.1 but with coefficients re-
defined by minimising the quadratic sum of the difference in number density
with the values in data, for each tomographic bin, in order to avoid disconti-
nuities in the selection. Such a re-defined selection guarantees similar number
densities as the data sample. We then ensure similar color distributions by an
additional re-weighting procedure of the mock catalog, so as to resemble the
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Figure 4.4: Redshift distributions of the RedMaGiC samples, binned using the RedMaGiC
photo-z estimates, in data and in simulations.

color distributions of the data sample. In particular, we iteratively re-weight
based on i, r magnitudes and i-r colors, with the final distribution matching
closely the data one, as shown in Figure 4.3.

4.8.2 Simulated RedMaGiC catalogue

The simulated RedMaGiC sample is selected applying the same algorithm as in
data to the Buzzard simulations. We computed the cross-correlations using the
same bins as in data: 40 bins of width ∆z = 0.02 spanning the 0.14 < z < 0.94
range of the RedMaGiC catalog. In Fig. 4.4 are compared the two versions of
RedMaGiC , in data and in simulations. Overall the agreement is good, and
any discrepancies are caused by the small differences in the evolution of the
red-sequence in Buzzard. The number of galaxies in simulations are 2,594,036.
The different number density with respect to the data is also caused by the
aforementioned discrepancy in the evolution of the red-sequence between data
and simulations. This implies that the statistical uncertainties obtained with
the simulated sample are slightly larger. In any case, this does not constitute
an issue, as the error budget is dominated by systematic uncertainties. The
clustering weights are also applied in simulations using a similar recipe, with the
only difference that Buzzard only models depth variations across the footprint,
while data are of course subject to a larger number of systematics. which are
not fully reproduced in simulations.
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4.8.3 Simulated BOSS/eBOSS catalogues

To replicate the spectroscopic BOSS/eBOSS sample in simulations, we selected
bright galaxies with similar sky coverage and redshift distribution as the ones
in data. We did not try to further match other properties of the sample, e.g.
the galaxy-matter bias likely differs from that of the real data. We note that
the clustering-z methodology corrects for the reference bias, so at no point in
the analysis of the real data are we assuming that the simulations have the
same bias.

4.8.4 Simulated Deep catalog

The simulated true fluxes from Buzzard are used as the deep measurements,
but we further assign a realistic error by using the limiting flux for each mock
deep band. We use the same uncertainties as in data, but as the Buzzard
simulation has a different zero point, those values have to be converted in
magnitude using zero point of 30, and then is converted to a flux uncertainty
for a zero point of 22.5, which is the zero point of the Buzzard fluxes. We do
not differentiate between fields, as it has been proven in Myles & Alarcon et al.
(2020) that this had no impact on the simulated redshift distribution. The
size of the sample is 968759 galaxies. We use the true redshift for the redshift
sample and to compare our inferred redshift distributions to the true ones.

4.8.5 Simulated Balrog catalog

We mimic the Balrog algorithm by randomly selecting positions over the
full Y3 footprint and run the corresponding error model on the galaxies of
the simulated deep catalog to obtain noisy versions, according to the exposure
times of each location. The deep galaxies can be injected an arbitrary number
of times and we set this at 10. Only the wide counterparts of the deep galaxies
that respect the MagLim selection defined in the Buzzard simulation are then
included in the sample, yielding the final number of 250193 galaxies.
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Chapter 5

DES Y3 Photo-z estimation
methodology

In this section we are first going to present the Self-Organizing Maps Photo-z
(SOMPZ) and the clustering-z (WZ) methods in detail, and then we are going
to describe how the are combined. Such a combination is powerful because it
exploits the complementarity of the two methods, which are affected by two
very different sets of biases and uncertainties. The application to data will
follow in the subsequent Chapter. Shear ratios are combined at the level of the
cosmological inference, as an additional likelihood. As they are not the main
focus of this thesis, we are not going to discuss them further. Nevertheless, our
cosmological results in Chapter 8 include the constraints from shear ratios.

5.1 SOMPZ

The SOMPZ methodology estimates wide field redshift distributions by ex-
ploiting a mapping between wide field galaxies and deep field galaxies with
deeper and more precise photometry. Extracting the redshift information from
deep, several band photometry in order to estimate the redshift of an observed
wide field galaxy amounts to marginalizing over deep photometric informa-
tion (Buchs et al., 2019). The classification of galaxies by their properties is
essential, and the chosen tool for this analysis is the Self-Organizing Map.

Self-Organizing Maps

A Self-Organizing Map (Kohonen, 1982, SOM) is a machine learning based
algorithm, specifically an artificial neural network. It produces a mapping of
a higher dimensional input space to a lower dimensional one. It is in fact
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Figure 5.1: Flowchart illustrating the MagLim redshift distributions calibration scheme. The
two methodologies included in the analysis are SOMPZ and clustering redshifts. Inspired by
the flowchart in Myles & Alarcon et al. (2020).

particularly useful to reduce the dimensionality of a system, while preserving
the distances between objects. The algorithm works in two steps. During
the training phase, for each item of the training sample the most resembling
node of the network (which here we will refer to as cell) is chosen through
competitive learning. During the assignation phase, the trained SOM is able
to classify different datasets following the recipe obtained with the training. It
is an unsupervised method, meaning that the output variable, in our case the
redshift, is not used for the training phase.

In a competitive learning neural network, the nodes compete to find the one
that most closely resemble each item training example, until the Best Matching
Unit (BMU) is found. The winner is then updated to make it more specialized.
There are two ways in which this can happen: through a hard or soft compe-
tition. The hard competition has a winner-takes-all approach, in which only
one output unit (the winner) gets updated; with the soft competition instead,
both winner and its neighborhood are adapted. In our SOM algorithm, the
soft approach has been chosen.

The characteristics of the SOM (e.g., the resolution and the topology) must
be chosen beforehand. Despite being able to represent any complex topology,
it is common use to define 2D SOMs because of their easy interpretation. Let
us consider an input vector x (the galaxy properties, e.g. fluxes) and a weight
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vector wk assigned to each one of the SOM cells, with the cells being denoted
by the index k. The basic steps of the algorithm are the following:

• At the first iteration, the normalized weights are generated randomly or
from data samples;

• For each item in the training (galaxies in our case), the algorithm cal-
culates which weight vector wk is the nearest neighbour of the input
vector x. The winning cell is the BMU. The metric used to determine
the quality of the matching is the χ2 distance:

d2(x,wk) = (x−wk)
TΣ−1(x−wk) (5.1)

where Σ is the covariance matrix of the input vector x.

• Since we are using the soft competition method, neighbouring cells to the
BMU are also updated. The function that determines which cells and
how they are updated is the following:

wk(nt + 1) = wk(nt) + a(nt)Hb,k(nt)[x(nt)−wk(nt)]. (5.2)

In the above equation, nt indicates the current step of the procedure,
and nt+1 the “updated” step; Hb,k(nt) is a Gaussian kernel that encodes
the distance from the BMU, and it assumes the value of unity in case
the index k refers to the BMU cell and decreases to 0 for distant cells.
An Euclidian distance on the 2D map is used as a metric to compute
Hb,k(nt). The function a(nt) is called learning rate function, and encodes
the responsiveness of the map to the input vector as a function of the
training time step. The function is a monotonically decreasing function,
built to make the SOM less responsive as the training progresses.

After the training, new sets of data can be assigned to the trained SOM using
the same χ2 distance. The Bayesian probability of a galaxy of belonging to a
specific cell k is given by:

− 2 log(k|x,Σ) = (x−wk)
TΣ−1(x−wk) + const. (5.3)

To simplify handling and reduce the computational load of the methodology,
we are going to keep a single integer for each galaxy, representing only the cell
maximising this probability.
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SOMPZ photo-z inference

Let us consider the probability distribution function for the redshift of a galaxy
p(z); let us assume such a probability to be conditioned on the observed wide
field color-magnitude x̂, covariance matrix Σ̂, and selection ŝ. The probability
can be written by marginalizing over deep photometric color x as follows:

p(z|x̂, Σ̂, ŝ) =
∫
dx p(z|x, x̂, Σ̂, ŝ)p(x|x̂, Σ̂, ŝ). (5.4)

The large dimensionality of this form prevents us from applying it to realistic
data. This problem can be circumvented by discretising the color space x and
(x̂, Σ̂) in cells c and ĉ, each spanning a portion of the whole sample and rep-
resenting a specific galaxy phenotype, respectively of the deep and wide field.
The galaxy samples are arranged in cells/phenotypes using SOMs. The choice
of the topology of the cells follows Buchs et al. (2019), where a two-dimensional
representation of the color space was chosen as it ensures an immediate visual-
isation of the data not possible otherwise. Once we compressed our data into
SOMs, we can write the p(z) for the group of galaxies living in a particular
wide cell ĉ, by marginalizing over deep field phenotypes c:

p(z|ĉ, ŝ) =
∑
c

p(z|c, ĉ, ŝ)p(c|ĉ, ŝ). (5.5)

Source case. For the source galaxies, the selection function ŝ is represented
by the weak lensing selection, which requires that the galaxies are weighted by
the shear response R (introduced in Section 2.4). The tomographic bins are
selected such that they have equal number density; the procedure is explained
in Section 4.1. At this point we can marginalise over all wide cells ĉ belonging
to each tomographic bin b̂:

p(z|b̂, ŝ) =
∑
ĉ∈b̂

p(z|ĉ, ŝ)p(ĉ|ŝ, b̂) (5.6)

=
∑
ĉ∈b̂

∑
c

p(z|c, ĉ, ŝ)p(c|ĉ, ŝ)p(ĉ|ŝ, b̂). (5.7)

Unfortunately there are very few galaxies for each (c, ĉ) pair, and in many cases
there are none. This makes the term p(z|c, ĉ, ŝ) quite difficult to estimate.
However, we can reasonably assume that the p(z) for galaxies assigned to a
given deep cell c should not depend on the noisy wide photometry of that
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galaxy. Therefore we can relax the selection:

p(z|b̂, ŝ) ≈
∑
ĉ∈b̂

∑
c

p(z|c, b̂, ŝ)p(c|ĉ, ŝ)p(ĉ|ŝ) (5.8)

≈
∑
ĉ∈b̂

∑
c

p(z|c, ŝ)p(c|ĉ, ŝ)p(ĉ|ŝ). (5.9)

Equation 5.8 is used whenever possible, while in case there is no galaxy satis-
fying both c and b̂, Equation 5.9 is used.

Lens case. Since the MagLim tomographic bins b̂ are defined based on DNF,
we are going to construct one set of SOMs (one deep and one wide) for each
bin b̂. Assigning all galaxies belonging to a tomographic bin to a wide SOM is
straightforward. Since for the MagLim sample in data there are no weights to
be taken into consideration, we will drop the selection function as ŝMagLim = 1.

At this point we can marginalise over deep field phenotypes c and over all
wide cells ĉ in b̂. Here, we are computing p(z|b̂) for each bin separately from
different sets of SOMs, so Equation 5.6 becomes:

p(z|b̂) ≈
∑
ĉ

∑
c

p(z|c, ĉ, b̂)p(c|ĉ, b̂)p(ĉ, b̂). (5.10)

For the simulations case, galaxies need to be weighted in order to match the
color distribution in data, so Equation 5.6 is used instead. The same issue
regarding the lack of galaxies that are in one (c, ĉ) pair is also present. Given
that each tomographic bin occupies each SOM entirely. Equation 5.8 can be
written as:

p(z|b̂) ≈
∑
ĉ

∑
c

p(z|c, b̂)p(c|ĉ, b̂)p(ĉ, b̂). (5.11)

In both instances, we obtain each of the terms appearing in Eq. 5.9 and
Eq. 5.11, by assigning galaxy samples to the SOM cells, as follows:

• p(ĉ) is computed collecting wide field galaxies from either the weak lens-
ing sample or the MagLim sample into a wide field SOM (for the lens
case, one per tomographic bin);

• p(c). In order to construct the deep SOM we have to use our Balrog
sample, consisting of all detected and selected Balrog realisations of the
galaxies in the wide field, each associated to its own “noiseless” replica
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in the deep sample. For the MagLim case, we assign to the deep SOM
associated to a tomographic bin, galaxies whose Balrog wide replica is
selected in that specific wide bin.

• p(c|ĉ) is computed from the deep/Balrog sample. It consists of all de-
tected and selected Balrog replicas of the deep galaxies injected in the
wide field. We therefore can arrange the deep/Balrog sample simul-
taneously into a wide and deep SOMs. We call this term the transfer
function. We weight the deep field galaxies according to their detection
rate measured from Balrog. An alternative to Balrog would be using
a sub-section of the wide field and deep fields overlap, giving us both
deep and wide photometry for a limited number of galaxies. However,
the area of overlap is small and the particular observing conditions found
in this area will not be representative of the overall observing conditions
found in the Y3 footprint as highlighted in Myles & Alarcon et al. (2020).

• p(z|c) is computed from the redshift sample, which is a subset of the
deep sample, for which we have both credible redshifts, 8-band deep
photometry, and thanks to Balrog also wide-field realisations.

SOM properties

As in Buchs et al. (2019) and Myles & Alarcon et al. (2020), we use 2D squared
SOMs with periodic boundaries, which makes the visualisation easier without
compromising the efficiency. We parametrize the SOMs using luptitudes and
lupticolors, following Buchs et al. (2019). Luptitudes are defined in Lupton
et al. (1999) as inverse hyperbolic sine transformation of fluxes:

µ = µ0 − a sinh−1 f

2b
µ0 = m0 − 2.5 log b, (5.12)

where m are magnitudes, f are fluxes, a = 2.5 log b and b is a softening param-
eter that defines at which scale luptitudes transition between logarithmic and
linear behaviour. For the deep SOM we compute 7 lupticolors with respect to
the i-band

µ = (µ1 − µi, ..., µ7 − µi), (5.13)

where the index from 1-7 runs over the deep bands urgzJHK. We avoid us-
ing the g-band for the wide wield galaxies, as any observational systematics
and chromatic effects are more evident in the g band. With only two lupti-
colors available in the wide SOM, we decided to add the i-band luptitude, as
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Buchs et al. (2019) find empirically that addition of the luptitude improves the
training performance:

µ = (µi, µr − µi, µz − µi). (5.14)

The resolution of the SOMs must be chosen balancing three elements: first, the
resolution should be sufficiently high to characterise the sample as accurately
as possible; on the other hand, a resolution too high may cause computational
problems, and cause a fraction of the SOM cells to not have any galaxy assigned
to them. To ensure that we get a correctly estimated n(z) is crucial, in fact,
that the number of wide field galaxies assigned by the transfer function to a
deep cell with no redshift information is kept under 1 %.

The resolution of the wide SOM has been chosen to be 32x32 cells, for both
sources and lenses. Regarding the deep SOM, the weak lensing sample uses a
resolution of 64x64 cells, while the MagLim sample 12x12. The reason behind
the fewer cells in the deep SOM lies in the MagLim selection: the bright
magnitude-redshift cuts must be applied also to the wide-component of the
deep and redshift samples, and only the deep galaxies whose wide component
is selected are included in the sample. This results in smaller deep and redshift
samples covering a very small portion of the color space, compared to the weak
lensing sample Myles & Alarcon et al. (2020). Besides, reducing the number of
deep cells means yielding more galaxies in each one, ensuring that the number
of cells with no redshift galaxies is below 1 %. Likewise, shot noise caused by a
small number of redshifts in a deep cell can also play a significant role in biasing
the estimate. We therefore performed a test to identify the optimal SOM size
which would minimise these issues. We first computed several estimates in the
Buzzard simulations using different resolutions for the deep SOM. We then
evaluated which setting was producing the smallest shift on the mean redshift
with respect to the true value.

As mentioned at the beginning of this section, SOMs are neural networks,
thus they require to be trained before being able to classify galaxies. For the
weak lensing sample, the deep galaxies were used to train the deep SOM. For
the lenses, after ensuring that the redshift samples and the MagLim sample
span the same luptitude-lupticolor space (achieved using Balrog to obtain
the redshift samples wide photometry), we decided to use the redshift sample
for the deep SOM training. We instead use the wide samples to train the all
wide SOMs.
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5.2 Clustering redshifts (WZ)

Clustering redshift (WZ) is a widely used method (Newman 2008; Ménard
et al.; Davis et al. 2017; Morrison et al. 2017; Scottez et al.; Johnson et al.
2017; Gatti & Vielzeuf et al. 2018; van den Busch et al. 2020; Hildebrandt
et al. 2020; Cawthon et al. 2020) to infer or calibrate redshift distributions of
galaxy samples. It relies on the assumption that the cross-correlation between
two samples of objects is non-zero only in the case of overlap of the distribution
of objects in physical space, due to their mutual gravitational influence.

Various implementations of the clustering redshift methodology differ in
their details, but they all agree on one key aspect: the “target” sample (here-
after dubbed “unknown” sample), which has to be calibrated, has to be cross-
correlated with a “reference” sample divided into thin redshift bins. The ref-
erence sample consists of either high-quality photometric or spectroscopic red-
shift galaxies, and has to spatially overlap with the unknown sample. In what
follows, we will try describe the general methodology implemented in DES Y3,
clarifying when needed the differences in the implementation when calibrating
either the source or the lens sample.

Assuming linear galaxy-matter bias, we can express the clustering wur be-
tween the unknown sample and each of the reference sample thin bins as func-
tion of the separation angle θ between the unknown and reference sample:

wur(θ) =

∫
dz′nr(z

′)nu(z
′)br(z

′)bu(z
′)wDM(θ, z′) +M(θ), (5.15)

where nr and nu are the redshift distributions of the reference and unknown
sample, br and bu are the galaxy-matter biases of both samples, wDM is the
clustering of dark matter andM(θ) denotes contributions due to magnification.
Note that we are assuming Limber approximation (Limber, 1953), but this has
been shown to have no impact on the results (McQuinn & White, 2013).

In our methodology, we use a single estimated value from the cross-correlation
signal for each thin redshift bin. In practice, we do this by measuring the cor-
relation function as a function of angular separation and then averaging it with
a weight function to produce the single estimate:

w̄ur =

∫ θmax

θmin

dθ W (θ)wur(θ), (5.16)

where W (θ) ∝ θ−1 is a weighting function. The integration limits in the
integral in Eq. 5.16 are set to fixed physical scales (1.5 to 5 Mpc).

We use the Davis & Peebles (1983) estimator for the cross-correlation signal,

wur(θ) =
NRr

NDr

DuDr(θ)

DuRr(θ)
− 1, (5.17)
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where DuDr(θ) and DuRr(θ) represent data-data and data-random pairs. The
pairs are normalized through NDr and NRr, which is the total number of galax-
ies in the reference sample and in the reference random catalog. The choice of
the Davis & Peebles estimator over the Landy & Szalay (1993) estimator was
driven by the advantage of having to produce a catalogue of random points for
only one sample; this avoids creating high-fidelity random catalogues applying
the very complex selection function for the DES Y3 source galaxy catalogue.
For our analysis, we only rely on random points for the reference sample, whose
selection function and mask are well understood. The correlation estimates
were computed using treecorr1.

The angular scales considered have been chosen to span the physical interval
between 1.5 and 5.0 Mpc. These bounds, applied to data as well as simulations,
are selected so that the upper bound is below the range used for the galaxy
clustering cosmological analyses, therefore granting the WZ likelihoods to be
essentially independent of the assumed cosmology, and allowing us to produce
n(z) samples in an MCMC chain that runs independently of the cosmological
ones. We perform the cross-correlations of either the source or the lens samples
with the reference sample divided into 50 bins of width ∆z = 0.02, spanning
the 0.1 < z < 1.1 interval. In the case of the lens sample, we also weigh
each galaxy of the MagLim sample by the clustering weights computed in
Rodríguez-Monroy et al. (2022).

Since the nr are binned in narrow bins we can approximate the number
density of the sample of reference as a Dirac delta, and the revised expression
becomes:

w̄ur ≈ nubrbuw̄DM + M̄. (5.18)

The above equation relates the redshift distribution of the unknown sample
to the measured clustering signal w̄ur. The barred quantities indicate they
have been “averaged” over angular scales; in what follows, for simplicity, we
will drop the barred notation. The galaxy-matter biases of the reference can
be estimated from the auto-correlation of the reference sample. Usually the
galaxy-matter bias of the unknown sample cannot be inferred and is treated
as a nuisance parameter. Later in this section, we introduce a flexible model
that captures any reasonable redshift evolution of the galaxy-matter bias of
the unknown sample. In the case of the source sample, we marginalise over
the parameters of such a model using reasonably wide priors. In the case
of the lenses, however, due to the relatively good per-galaxy redshift estimate
provided by DNF, we use the autocorrelation of the sample to inform the priors
of such a model (see section 7.2.2). We assumed the galaxy-matter bias to be

1https://github.com/rmjarvis/TreeCorr
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described by a single number at all scales; this is true at large scales in the linear
regime, but we do not expect this to necessary hold at the small scales used
in this work (1.5 to 5.0 Mpc). In the non-linear regime, even the fact that the
terms inside the integral factorizes into br(zi)bu(zi)wDM(zi) is not guaranteed
(Bernardeau et al., 2002; Desjacques et al., 2018). The linear-bias assumption
introduces a systematic uncertainty that depends on the scales adopted and
the samples under study and that will be quantified in the following sections.

The other terms in the above equation are the clustering of dark matter
w̄DM, which can be estimated from theory and we found to be not very sensitive
to the cosmological parameters, and the magnification term, which is expected
to have a little impact and can be estimated if magnification coefficients for
the samples are provided.

The evolution of the quantities br(zi), bu(zi), wDM(zi), M(zi) need to
be correctly characterized to recover the redshift distribution of the unknown
sample. We turn now to how to model or estimate these terms in more details.

• The galaxy-matter bias evolution of the reference sample br(z).
We can estimate br(z) by measuring and the auto-correlation function
of the reference sample, split into thin redshift bins (δz = 0.02). This
can be done if the redshifts of the reference sample are accurate enough
and under the assumption of linear biasing. The angle-averaged auto-
correlation function is:

wrr(zi) =

∫
dz′
[
br(z

′)nr,i(z
′)
]2
wDM(z′). (5.19)

If the bins are sufficiently narrow, both the biases and wDM can be as-
sumed as constant; they can therefore be removed from the integrals.

wrr(zi) = b2r (zi)wDM(zi)

∫
dz′n2r,i(z

′), (5.20)

The redshift distributions of the narrow bins and wDM(z) are required to
estimate br(zi) from Eq. 5.20.

• The galaxy-matter bias evolution of the unknown sample bu(z).
This can theoretically be estimated in the same way as br(z). However in
some cases, the redshift quality of the unknown sample is not sufficient to
create thin bins; in this case bu likely varies substantially across the sam-
ple, so the information on bu from the auto-correlation is weak. The lim-
iting factor of clustering-z methods is precisely this degeneracy between
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bu and nu. Mitigation schemes exist, based on the use of additional infor-
mation to constrain the evolution of bu: e.g., Matthews & Newman 2010
use the additional constraints coming from the auto-correlation function
of the tomographic bins (without dividing the samples into thin bins);
or the method implemented in van den Busch et al. 2020, who use the
additional constraint coming from the normalisation of the redshift dis-
tribution of the full unknown catalog not divided into tomographic bins.
However, these methods are not free from shortcomings. In DES Y3
we parametrize bu in a flexible way, effectively treating it as a free func-
tion. Depending on the sample, we impose priors on its parameters either
based on simulations (source sample) or the autocorrelation of the sample
divided into thin bins (lens sample).

• The dark matter 2-point correlation function wDM(z). This can be
modeled assuming a given cosmology and a non-linear power spectrum:

wDM(zi) =

∫
dθW (θ)

∑ 2ℓ+ 1

4π
Pℓ(cosθ)

1

χ(zi)2H(zi)
PNL

(
l + 1/2

χ(zi)
, zi

)
, (5.21)

where Pℓ(x) is a Legendre polynomial of order ℓ, χ is the comoving dis-
tance, and H(zi) is the Hubble rate at redshift zi. PNL(k, χ) is the 3D
non-linear matter power spectrum. Under the Limber approximation,
the wavenumber k is set equal to (l+ 1/2)/χ(zi). The redshift evolution
of wDM(zi) depends little on the particular value of cosmological param-
eters, whereas the dependence of the overall amplitude of wDM(zi) with
respect to cosmology is absorbed by our systematic functions. Based on
this, we hold cosmology fixed when computing wDM(zi), assuming the
values in Planck Collaboration 2018). We then verify a posteriori that
this approximation is valid by repeating our analysis using very different
values for the cosmological parameters (Ωm = 0.4, σ8 = 0.7), finding that
the impact on our conclusions is negligible. Note that some of the mit-
igation schemes adopted in literature to correct the galaxy-matter bias
evolution of the unknown sample also automatically estimate wDM(zi)
from the data (Matthews & Newman, 2010; van den Busch et al., 2020),
but they are not adopted in this work.

• Magnification signal M(zi). Weak lensing magnification (Narayan,
1989; Villumsen et al., 1997; Moessner & Jain, 1998) changes the ob-
served spatial density of galaxies: the enhancement in the flux of mag-
nified galaxies can locally increase the number density, as more galaxies
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pass the selection cuts/detection threshold of the sample; at the same
time, the same volume of space appears to cover a different solid angle
on the sky, generally causing the observed number density to decrease.
For a flux limited sample, the net effect is driven by the slope of the lu-
minosity function of the sample, here conveniently parametrized through
the parameter α, and it has an impact on the measured clustering sig-
nal. Formally, the magnification term depends on the galaxy-matter bias
and parameter α of the two samples, as well as on the redshift distribu-
tion of the unknown sample: M(zi;αr, αu, br, bu, nu). More details about
our modelling of the magnification effects are given in Appendix A.1,
although we anticipate magnification effects have a negligible impact on
our analysis, due to our analysis choices. To keep our notation light,
when possible, we will simply indicate magnification effects as M(zi),
dropping the dependence on other factors.

As long as the approximation of thin reference bins and linear galaxy-
matter bias hold, and using the model for the magnification term described
in Appendix A.1, Eq. 5.18 simplifies to a linear system of equations, which
can be solved providing an estimate of nu(zi). Several implementations of
the WZ method have followed this approach (Newman, 2008; Ménard et al.;
Schmidt et al., 2013; McQuinn & White, 2013), including the DES Y1 analysis
(Gatti et al., 2018). A different approach, however, can be taken. In a forward
modelling fashion, given an estimate of the nu(zi) (provided, for instance, by
a photo-z method), Eq. 5.18 can be used to evaluate the expected correlation
signal wur(zi) and compare it to the one measured in data (see, e.g., Choi et al.
2016). This is the approach followed in this thesis.

Last, we note that many of the terms described above that are modeled
in this work were not modeled in the DES Y1 analysis. In fact, br(zi), bu(zi),
wDM(zi) were assumed to be constant within each photo-z bin, and simula-
tions were used to estimate the systematic error induced by this assumption.
In DES Y1 magnification effects had not been modeled either: the redshift
range where magnification effects were expected to have a non-negligible im-
pact (i.e., the tails of the redshift distributions) had been simply excluded from
the constraints. On the contrary in this work all these terms are modeled.

5.3 Combination of SOMPZ and WZ - how to sample
from the joint likelihood

The redshift information from the SOMPZ and the clustering redshifts methods
has to be then combined. Standard methods that combine photo-z estimates

82



5.3. COMBINATION OF
SOMPZ AND WZ

CHAPTER 5. RED-
SHIFT CALIBRA-

TION METHODOLOGY

with WZ constraints usually imply shifting around their mean the redshift
distributions estimated using some photo-z code until a good match with the
n(z) estimated by the WZ constraints. This method can introduce biases
(Gatti et al., 2018; van den Busch et al., 2020) if the two redshift distribu-
tions estimated from the two methods differ significantly in their shapes. This
basically happens if the matching scheme is not flexible enough and does not
properly tae into account all the uncertainties of the two methods. Our combi-
nation approach is different: we use a joint likelihood framework, by assigning
a likelihood of measuring the data, obtained through either SOMPZ or WZ,
given some model, which is going to contain different parameters describing
the measured quantities. All the uncertainties of the two methods are auto-
matically taken into account in this framework. The combined, final redshift
distributions will therefore be sampled from the joint likelihood function of
SOMPZ+WZ, and will not suffer from the aforementioned problems.

The SOMPZ likelihood describes the likelihood of obtaining the SOMPZ
n(z) measurement given the occupancy of the SOM deep cells, taking into ac-
count the fact that the occupancy of the cells is affected by sample variance
(which is the largest form of uncertainty in the SOMPZ method). The likeli-
hood is fully analytical and it is described in more detail in section 7.2.1, where
we explain how systematic uncertainties are dealt with.

Concerning the WZ likelihood, it basically describes the probability of hav-
ing a certain clustering amplitude w̄ur given a n(z) (and all the parameters
of the model). The clustering amplitude is computed following Eq. 5.18;
the likelihood is assumed to be Gaussian, and the covariance is taken from
the clustering measurement uncertainties. The detailed description of the WZ
likelihood can be found in section 7.2.2, with its application for the DES Y3
source sample, and in section 7.2.2 for its use for the DES Y3 MagLim sample.

In order to combine the SOMPZ likelihood with the WZ likelihood, one
could in principle draw n(z) samples from the SOMPZ likelihood and importance-
sample them by the value of their WZ likelihood with each n(z) draw. In the
case of high dimensional spaces, this can become inefficient. In many dimen-
sions, the regions of phase space where the likelihood is high is a very small
fraction. If guesses are isotropic while the “good” probabilities are confined
in a specific part and have a direction, the process is bound to be inefficient.
The issue is also that if one were to use the samples of one to calculate the
likelihood of the other, most of the samples that are considered having high
probability for one of the distributions, are likely not to pass the threshold
for the other one. This happens because the WZ likelihood naturally accepts
“smooth” n(z)s, since the WZ measurement is performed over a large area
and it is not affected by sample variance; the opposite is true for the SOMPZ
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likelihood, where the dominant source of uncertainty is sample variance.
In order to sample from the joint distribution and marginalise over the

parameters relative to either one, Metropolis Hastings algorithms can be used.
These algorithms start with a guess for the parameters of the two likelihoods,
based on the parameter space allowed by the parameters prior. A proposal for
a new point is then provided given a proposal distribution; if the probability
for the set of parameters is larger than the previous one, then it is accepted,
otherwise it is kept only a random fraction of the times. However, because
of the reasons mentioned earlier (high dimensionality and different portions of
the parameter space probed by the two likelihoods), the Metropolis Hasting
algorithms are bound to have extremely low acceptance rates.

One solution would be to modify the proposal distribution to allow the next
sampling to happen in a small neighborhood in parameter space, resulting in
a higher acceptance probability; however this considerably slows down the
process, as it becomes harder to sample the totality of the high likelihood
portion of parameter space in a timely manner.

The Hamiltonian Monte-Carlo algorithm (HMC) provides a clever way to
deal with this problem. The HMC is a Markov chain method which uses
the mathematical properties of Hamiltonian systems to obtain a sequence of
random samples which are distributed according to a target probability distri-
bution for which direct sampling is difficult.

The HMC algorithm starts by considering each point of the parameter space
to be a point-mass, with potential and kinetic energies U and K. The potential
energy is determined by the multidimensional probability distribution P (q), of
which the logarithm is taken to avoid dealing with negative values. If we have
a probability function P (q = x1, x2, . . .) we can write the potential energy of
the system as

U = − logP (q). (5.22)

In our case, P (q) is the joint SOMPZ and WZ likelihood, multiplied by the
parameters priors (i.e., the posterior), with q being the parameters of the like-
lihood. The kinetic energy is defined as:

K =
1

2
pTM−1p (5.23)

were p are “momenta” assigned to the point-like particles, andM a mass matrix,
which is a free parameter of the HMC method that is chosen to optimize the
convergence of the algorithm. The total energy is of course H = U +K, and
correspond to the joint probability function of P(p,q):

P (p, q) = e−H = P (q)ep
TM−1p. (5.24)
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The idea then is to solve the Hamiltonian equation of motion, obtaining the
time evolution of the system given an initial point in the phase space (q0, p0);
every new point q′, indeed, can be considered as a “valid” sample of P (q), which
is the joint SOMPZ and WZ posterior. The system of equations is solved nu-
merically; the time-step is chosen to be sufficient to allow the “particle” to both
remain in the area and at the same time explore the phase space. For each step
the time of integration will be randomly chosen within an interval. To perform
the numerical integration of these equations, the derivatives of the Hamiltonian
with respect to p and q need to be computed. The considerable advantage of
the HMC is that almost every sample drawn can be accepted despite being in
very high dimensions, while keeping two next samples uncorrelated from each
other, due to the larger step. This is really hard to obtain with other sampling
as standard Metropolis Hastings. We will see more details on its punctual
application in Sections 7.2.1 and 7.2.2.
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Chapter 6

Clustering redshifts: calibration
of the DES Y3 Weak Lensing
Source Redshift Distributions

6.1 Introduction

The DES Y3 3x2pt analysis features the largest shape catalogue ever built,
counting more than 100 million galaxy shapes (Gatti et al., 2020c). In or-
der to achieve an accurate cosmological analysis it is crucial that the redshift
distributions are unbiased. In particular, it has been shown that biases on
the mean redshift of samples used for weak lensing analysis lead to wrong es-
timates on the cosmological parameters (Bonnett et al., 2016b; Hoyle et al.,
2018b; Tanaka et al., 2018; Troxel et al., 2018; Hildebrandt et al., 2020). Here
we discuss the fiducial DES Y3 calibration of the weak lensing sample, apply-
ing the methodology described in Chapter 5. In particular, we focus on the
part of the calibration concerning the clustering redshift measurement and the
combination with the SOMPZ estimates obtained by Myles & Alarcon et al.
(2020).

As already seen, the methodology consists of a photometric method and a
clustering-based one. The photo-z estimates for the DES Y3 weak lensing sam-
ple are provided by a Self-Organizing-Map-based scheme (hereafter SOMPZ,
Buchs et al. 2019; Myles & Alarcon et al. 2020). The SOMPZ method pro-
vides an ensemble of redshift n(z) for a given galaxy sample, which captures
the uncertainties in the redshift distributions at all orders (i.e., not only in the
mean or width of the distributions). The clustering constraints (WZ) are then
incorporated through a rigorous joint likelihood framework where the cluster-
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ing data is forward modelled as a function of the input n(z), and the specific
WZ systematics are marginalized over. This scheme allows to draw n(z) sam-
ples conditioned on both clustering and photometric measurements, improving
the n(z) estimates by correctly taking into account the significance of the in-
formation provided by each source of information. This combined approach
has proven to be more robust than SOMPZ or WZ applied individually (Gatti
& Giannini et al., 2020a), as the combination exploits the complementarity
of both methods and reduces the overall n(z) uncertainty. In either route,
the DES Y3 cosmological analysis is done by sampling over the finite set of
realizations generated by SOMPZ+clustering-z.

For the clustering measurement, we use two different reference samples:
luminous red galaxies from the RedMaGiC catalog with accurate photomet-
ric redshifts; and a spectroscopic sample from the combined BOSS (Baryonic
Oscillation Spectroscopic Survey, Dawson et al. 2013) and eBOSS (extended-
Baryon Oscillation Spectroscopic Survey, Dawson et al. 2016; Ahumada et al.
2019; Alam et al. 2020) catalogs. The two samples have properties that com-
plement each other: using photometric redshifts (even though high quality)
rather than spectroscopic redshifts is counterbalanced by the higher statistical
power of the RedMaGiC sample, which is defined over the full DES footprint
and is characterised by a higher number density than BOSS/eBOSS galaxies.
The latter also cover only ≈ 17% of the DES Y3 footprint. On the other hand,
the BOSS/eBOSS sample spans a wider redshift range and has spectroscopic
redshift estimates.

This Chapter is organised as follows: a brief summary of the results from
the SOMPZ analysis is given in 6.2; the detailed description of the treatment
of systematic uncertainties and how the WZ likelihood is built, is presented in
7.2.2. Finally, the combined results are shown in Section ??.

6.2 Results from SOMPZ

The WZ measurement is to be combined with the n(z) obtained with the
SOMPZ method. The details of the SOMPZ implementation for this method
are described in Myles & Alarcon et al. (2020). Here we are only reporting a
summary, focusing on the delivered product.

The samples from which the redshift information is acquired are the same
as the ones outlines in Section 4.7, with the only difference that only four
spectroscopic surveys were used. These are zCOSMOS (Lilly et al., 2009b),
C3R2 (Masters et al., 2017), VVDS (Le Fèvre et al., 2013b), and VIPERS
(Scodeggio et al., 2018b). The source galaxies are much deeper than MagLim
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therefore it is important to rely on surveys that present the least amount of
bias possible up to faint magnitudes.

The product of the SOMPZ calibration is a set of redshift distributions
that encompass the systematic uncertainties of the method. The relevant sys-
tematics are the following:

• Sample Variance: fluctuations in the underlying matter density field de-
termine the abundance of observed deep field galaxies of a given 8-band
colour and at a given redshift. This uncertainty is a main contributor to
the uncertainty budget in all of our tomographic bins;

• Shot Noise: shot noise in the counts of deep field galaxies of a given
8-band colour and at a given redshift;

• Redshift Sample Uncertainty: biases in the redshifts of the redshift galaxy
samples used. This uncertainty is estimated by performing our infer-
ence with multiple different underlying redshift samples, and it is non-
negligible in the third and fourth tomographic bins and dominant in the
third tomographic bin;

• Photometric Calibration Uncertainty: uncertainty in the 8-band colour
of deep field galaxies. This uncertainty is non-negligible in the first to-
mographic bin.

The total amount of uncertainty in the mean redshift of each tomographic
bin is (0.015, 0.010, 0.007, 0.012). The dominant uncertainty is sample vari-
ance, caused by the small area of the deep fields, from which we are inferring
the type/redshift relation. It may be possible that the deep fields are located
in special regions of the Universe, thus the properties measured would not cor-
respond to the rest of the weak lensing sample. An analytical model called
3sDir has been developed to quantify the uncertainty introduced by sample
variance, and by the limited number of galaxies with excellent redshifts in the
deep fields, which causes shot noise. The 3sDir computes the likelihood of
galaxies having a specific redshift and colour phenotype, given that a number
of galaxies have been observed to have the same redshift and colour phenotype.
The 3sDir likelihood is used in the joint sampling of the final n(z), together
with the WZ likelihood.

6.3 Characterization of sources of uncertainty

Following the description of the clustering signal presented in §5.3, we are able
to produce a model for the w(z) signal across the full redshift range covered
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Figure 6.1: Systematic uncertainties of the WZ method as measured in simulations following
Eq. 6.1, for the 4 tomographic bins and for the two reference samples considered (RedMaGiC
upper panels, BOSS/eBOSS, lower panels). The measured systematic uncertainties are rep-
resented by the light blue lines; the purple dashed lines represent the best fitting model. The
grey lines represent 10 random realisations of the systematic uncertainty model assumed for
the WZ method and described by Eq. 7.2. Note that the rapid upturn of the systematic
function in bin 2 in the case of the RedMaGiC sample is due to a rapid evolution of the
galaxy-matter bias of the unknown sample, related to a strong evolution of the properties
of the galaxy population. Such an evolution is also present in other bins, but it is milder.
When the BOSS/eBOSS sample is used, the lower sensitivity does not allow to appreciate
this rapid change in the slope of the systematic function.
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by the reference samples given an input redshit distribution and produce a
likelihood for the observed w(z) data. In practice, this allows us to constrain
the full shape of the redshift distributions. Here we use the Buzzard simulations
to set the priors for the systematic-error parameters within this model.

Systematic uncertainty determination

Recall that in §5.2, specifically Eq. 7.5, the cross-correlation signal is mod-
elled starting from a proposed value for nu(z) (e.g. provided by SOMPZ), the
(measurable) reference-population properties br(z) and αr(z), and nuisance pa-
rameters for the (poorly known) bias and magnification properties of the source
population bu(z) and αu(z). We will set these last two as constant over red-
shift and marginalize over broad priors on these constants, to flexibly model the
magnification signal. The underlying function wDM(z) is estimated assuming
a cosmological model.

The final component of the ŵur model is a function Sys(z, s) that multiplies
the true clustering signal and will absorb the systematic errors described in
Section 5.2: failures of the linear-bias model itself; the unknown and redshift-
dependent bu(z); and possible errors in the nr(z) functions for RedMaGiC bins.
The parameters s of this systematic function will be marginalized as well, as
per Eq. 7.6.

Our strategy will be to determine what the Sys(z, s) function is in the
Buzzard simulation, and then produce a prior on the s parameters which allows
marginalization over a broad family of functions with similar form of deviation
from unity. The Sys(z, s) function is given substantial freedom for low-order,
smooth variation with z, as we expect from all of the systematic errors, leaving
the finer-scale information in wur(z) to constrain fine-scale behavior in nu(z),
i.e. the shape of nu(z).

The blue data points in Fig. 6.1 plot the Sys(z, s) functions observed in the
Buzzard simulations, for both reference samples. Namely they plot:

Syssim(zi) =
wur(zi)

ŵur(zi))
, (6.1)

where the model uses the true nu(z), br(z), and nr(z) values. We evaluate and
plot this ratio only in the z interval where the wur signal is large enough to
have good signal-to-noise and subdominant magnification contribution. The
RedMaGiC wur(z) uses RedMaGiC photo-z’s for binning, just as the real
data do.

The Sys(z, s)sim ratio deviates from unity due to systematic effects, as ex-
pected. We quantify this by the RMS of log[Sys(z, s)sim], which are measured

91



6.3. CHARACTERIZA-
TION OF SOURCES OF
UNCERTAINTY

CHAPTER 6. CLUS-
TERING REDSHIFTS

OF WL GALAXIES

to be (0.11, 0.07, 0.07, 0.11) for the RedMaGiC tomographic bins and (0.18,
0.15, 0.10, 0.15) for BOSS/eBOSS. From this we conservatively decide that the
Sys(z, s) function needs to have the freedom to have RMS (log) fluctuations of
≈ 0.15 as 1σ deviations under its p(s) function.

We seek a parametric function Sys(z, s) and a prior p(s) which have these
desired properties:

• The function and prior yield a good fit to the Sys(z, s)sim measured in
Buzzard.

• The prior can be tuned to yield typical RMS variations in log[Sys(z, s)]
at similar level to that seen in Buzzard.

• The parametric form allows a similar smoothness of variation as seen in
Buzzard, i.e. similar number of “wiggles” across the 0 < z < 1.2 range
where the WL source galaxies lie.

• The RMS of log[Sys(z, s)] as we vary s under the prior p(s) is a flat
function of z.

• The prior on s is simple to construct and to use in a Hamiltonian Monte
Carlo chain.

We chose the Sys (z, s) function to be given by:

=

M∑
k=0

√
2k + 1

0.85
skPk(u), (6.2)

u ≡ 0.85
z − 0.5(zmax + zmin)

(zmax − zmin)/2
. (6.3)

with Pk(zi) being the k-th Legendre polynomial, M is the maximum order, and
the second line linearly remaps the z interval [zmin, zmax] to [−0.85, 0.85]. The
fraction under the summation makes the basis functions close to orthonormal
so that the RMS of log[Sys(z, s)] is |s|2. The prior p(s) is chosen to be a
simple diagonal normal distribution with standard deviations {σs0, . . . , σsM}
and means of zero. Mathematical details of this choice for the systematic
function and its prior are given in Appendix A.2.

A distinct set of nuisance parameters q = {p, s} (with p = {b′u, α
′
u}) are as-

signed to each combination of tomographic bin and reference sample, and each
of these 8 sets of wur measurements are fit independently. We set [zmin, zmax]
to span the full range of the reference catalog, [0.14, 0.90] for RedMaGiC and
[0.10, 1.06] for BOSS/eBOSS. We set M = 5 and we set the σsi to yield an
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expectation value of 0.15 for the RMS of log[Sys(z, s)]. The order M was cho-
sen by finding the value beyond which the RMS residual stopped decreasing
for a fit of Eq. 7.2 to the Sys(z, s) function found in the simulated RedMaGiC
wur(z) data. The σsi prior is set to make the simulated Sys(z, s) functions be
≈ 1σ fluctuations from a constant. Since es0 is approximately the mean bias
of the unknown sample, and we expect the mean bias br to be more uncertain
than the variation with redshift, we treat the prior on s0 somewhat differently,
giving it a wide prior σs0 = 0.6. The RMS of 0.15 is then allocated among
the remaining elements k ≥ 1 of s which model redshift-dependent systematic
errors.

The nuisance parameter b′u used in magnification estimation is given a Gaus-
sian prior with (µ, σ) = (1., 1.5) (which encompasses the bias of the weak lens-
ing sample as measured in simulation). The other magnification nuisance α′

u is
given a mean estimated from image-injection simulations (Appendix A.1) and
a conservatively large uncertainty of σ = 1.

The dashed curves in Fig. 6.1 plot the Sys(z, s) functions obtained from
the maximum-posterior fits to the simulations’ wur(z) data, combining the
priors on the nuisance parameters with the likelihood of Eq. 7.6. In all cases,
the best fit models succeed in capturing the slowly varying component of the
systematic. In some bins, some of the rapid variations in redshift are not well
captured - this is expected, as we truncate the polynomial of the Sys(z, s)
function to order M = 5. While this could be improved by increasing the
maximum order M , we find in practice that these small discrepancies cause
no significant bias in the recovered redshift distributions when the method is
applied in simulations (see below). The fitted functions remain well-behaved
over the full wur redshift range even though the fit is done only for redshifts
with strong signals. We conclude that this formulation of the systematic errors
is sufficient to model the systematic errors in our clustering-z measurement in
the Buzzard simulation, and we assume that marginalization over q will allow
us to capture the uncertainties present in the real data as well.

The grey curves in Fig. 6.1 show a few examples of Sys(z, s) functions
obtained by random sampling of the prior p(s). This illustrates the flexibility
of our model for the systematic uncertainty, which is able to model a large
variety of curves.

Application of the method in simulations

Once our family of systematic functions is determined, we may proceed to
validating the performance of the combination of SOMPZ and WZ on the
Buzzard simulations. This combination is implemented (both in simulations
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Figure 6.2: For each tomographic bin, three panels are shown. Upper panels: SOMPZ
redshift distributions, as estimated in simulations, with and without clustering information.
The bands encompass 68% confidence interval of the SOMPZ n(z) realisations. Central
panels: difference between the recovered n(z) and the true n(z) in simulations. Lower
panels: S/N, defined as the ratio between the SOMPZ nu(z) and its 68% confidence interval
of the SOMPZ realisations, with and without clustering information. The dashed (dotted)
line has been obtained only using clustering-z constraints from RedMaGiC (BOSS/eBOSS)
galaxies.
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and in data) by sampling the nu(z) functions for all 4 tomographic bins from
a posterior defined by the product of:

• the SOMPZ probability defined by Myles & Alarcon et al. (2020);

• the clustering-z probability defined by Eq. 7.6 for the wur(zi) measured
against the RedMaGiC sample, marginalized over q as described in
Appendix A.2;

• and likewise, the marginalized clustering-z probability derived for the
BOSS/eBOSS sample, marginalized over q as described in Appendix A.2;

The clustering-z probabilities use wur(z) over the full redshift range of their
respective reference samples. The reference-sample magnification coefficients
αr and the cosmology used to derive wDM(z) are held fixed to nominal val-
ues. We verify below that the choices of αr and cosmology have insignificant
impact on the outcome of the WZ method. We consider the RedMaGiC and
BOSS/eBOSS likelihoods independent, i.e. they do not share the WL galaxy
bias uncertainty. We did this because we did not split our systematic function
into different source of errors, owing to an increasing complexity in the mod-
elling. Given the flexibility of Sys(z, s) and the conservative choice on the RMS
of log[Sys(z, s)], considering the RedMaGiC and BOSS/eBOSS likelihoods in-
dependent should not be an issue for the methodology.

Fig. 6.2 compares the Buzzard true redshift distribution to the distributions
drawn from only the SOMPZ likelihood and the distributions drawn from the
joint SOMPZ+WZ posterior. The distributions of the mean redshifts per bin in
the lower panels are not shown, but it is reported in Table 6.1. It shows that the
WZ likelihood adds little information on these mean z’s. The plots in Fig. 6.2,
however, shows that the addition of the clustering-z likelihood produces a
remarkable improvement in the fidelity of the shape of nu(z) to the truth.
To better quantify the improvement, we also show the signal-to-noise (S/N)
of the nu(z) estimates, defined as the ratio between the SOMPZ nu(z) and
the 68% confidence interval of the SOMPZ realisations. The S/N is generally
increased by the inclusion of the clustering-z information; in particular, the
S/N is increased up to a factor of 3 in the relevant redshift range where n(z)
is substantially different from 0. In the same S/N panels of Fig. 6.2, we also
show the contribution to the S/N increment due to RedMaGiC galaxies or
BOSS/eBOSS galaxies alone. The latter sample mostly contributes in the
redshift range 0.8 < z < 1.0, whereas most of the clustering-z information at
lower redshift comes from RedMaGiC galaxies.

The SOMPZ method has strong fine-scale fluctuations in nu(z) due to sam-
ple variance on the small regions of sky used for its deep imaging and spec-
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troscopy. The clustering-z correlation functions, on the other hand, are mea-
sured over the full DES Y3 footprint and have high S/N level. Although the
clustering signal has a strong systematic uncertainty from the unknown WL
bias, this systematic is slowly varying as a function of redshift and has less fine-
scale fluctuations. The clustering-z likelihood is thus able to drive the nu(z)
outputs to a smooth distribution, at least over redshifts where clustering-z
reference samples are available.

We remind the reader that the clustering information alone cannot be used
to infer the full nu(z), as the reference samples used in this work do not span
the whole redshift range relevant for the DES Y3 nu(z). Nonetheless, we can
try to understand in simulations if the WZ constraints would be unbiased in-
dependently of the SOMPZ information. We did this by importance-sampling
realisations of the true nu(z)s shifted around their mean redshift, and by as-
signing to each sample a weight through the likelihood given by Eq. 7.6. This
test allowed us to recover the true nu(z) within uncertainties, hence proving
the method to be unbiased; for more details, see Appendix A.2.

Finally, we verify that the choices of the the parameters αr or the cosmology
assumed to compute wDM do not impact the methodology. We find that as-
suming different values for the cosmological parameters ( Ωm = 0.4, σ8 = 0.7)
results in a shift in ∆⟨z⟩ < 10−3 on the calibrated SOMPZ redshift distribu-
tions. Concerning magnification, in order to roughly asses the impact of the
exact values of the magnification coefficients αr, we verified that assuming val-
ues for αr that are −1× the fiducial ones resulted in shifts ∆⟨z⟩ < 10−3 (see
Appendix A.1 for more details). We conclude that the full-shape likelihoods
can be calculated in advance of and independent from the cosmology chains.

6.4 Results in data

We apply the clustering-z methods to DES Y3 data by first measuring the
angle-averaged wur(zi) (Eq. 5.16) of each WL source tomographic bin sample
against the RedMaGiC and BOSS/eBOSS samples described in §4. These
cross-correlation data are plotted in Fig. 6.3. Note the exceptionally high S/N
level of the RedMaGiC data in particular, even at the rather fine binning of
∆z = 0.02 that we use throughout. Bin-by-bin estimates of the reference bias
br(zi) are obtained using Eq. 5.20, with a dark-matter wDM(zi) predicted from
theory for nominal cosmological parameters (Planck Collaboration, 2018).

Note that for the RedMaGiC galaxies we calculated br(zi) applying the
correction to the galaxy-matter bias of the reference sample described by Eq.
5.19, using the fraction of the RedMaGiC galaxies which have a spectroscopic
redshift. As RedMaGiC galaxies with spec-z counterparts tend to have
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Figure 6.3: The measured wur(z) for the DES Y3 data are plotted for each of the four
tomographic bins, using reference samples from BOSS/eBOSS (blue) and RedMaGiC (red).

brighter magnitudes compared to the full RedMaGiC sample, we have applied
a magnitude re-weighting to those galaxies before computing the correction,
so as to up-weigh (down-weigh) RedMaGiC galaxies under (over) represented
in the spec-z subsample. After the re-weighting, the spec-z sample had the
same magnitude distribution of the full RedMaGiC sample. Imperfections in
this process should be small based on the tests in previous sections and are
included in the systematic uncertainties of the two methods.

Last, we note that the RedMaGiC estimates show a small, negative tail
at high redshift, for the first WL tomographic bin. We believe this is due to a
systematic effect non corrected by our lens weights, rather than magnification,
which should be positive at those redshifts, according to our estimates. The
Balrog estimates of the magnification coefficients should also include realistic
systematic and observational biases, which might lead to negative magnifica-
tion; the fact that our estimates are nonetheless positive indicates that this ef-
fect is due to some systematic that affects the RedMaGiC number density and
that anti-correlates with the WL density distribution. We know, indeed, that
the RedMaGiC sample is affected by some residual systematics, which does
not affect cosmology (Abbott et al., 2022; Pandey et al., 2021), but manifests
as a scale-, redshift- and sky-area-independent phenomenological decorrelation
parameter. Given the small amplitude of this effect, the fact that we also have
constraints from another independent sample (BOSS/eBOSS), and that our
clustering-z constraints are compatible with SOMPZ and shear-ratio (Sánchez
et al., 2022b) prior to combination, we believe this should have a negligible
impact on our results.

Following the procedure used on the simulations, we define the WZ likeli-
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hood using Eqs. 7.5 and 7.6. We assume fiducial values for the magnification
parameters for the RedMaGiC sample, as estimated using Balrog (Suchyta
et al., 2016; Everett et al., 2020a). We do not have an estimate of the mag-
nification parameters for BOSS/eBOSS galaxies available, so we assumed the
same values used for RedMaGiC galaxies. We confirm, however, that assuming
values for the magnification parameters that are −1× the fiducial ones resulted
in no relevant effect on the mean of the resultant redshift distributions. The
nuisance-parameter priors derived from simulations in §7.2.2 are used, includ-
ing those specifying the allowed variation with z in bu(z) and other elements
of the Sys(z, s) function.

Before applying the method, we checked that the fiducial ŵur model on data
(obtained using SOMPZ nu(z) as baseline) was compatible with the measured
wur marginalised over the systematic function Sys(z). This check has been
performed separately for RedMaGiC and BOSS/eBOSS. We then use the
Hamiltonian Monte Carlo method to draw samples from the joint posterior
distribution of the SOMPZ likelihood and the clustering-z likelihoods for both
RedMaGiC and BOSS/eBOSS data. Fig. 6.4 show the 68% confidence interval
of the nu(z) samples from the SOMPZ+WZ posterior, as well as those from
the pure SOMPZ posterior. At redshifts where clustering-z information is
available, it greatly reduces the point-by-point uncertainties in nu(z), just as
in the simulations. The WZ method is thus very successful at reducing the
impact sample variance on SOMPZ estimators. This combined estimator also
shows no sign of negative tail at high redshift in the first tomographic bin
(as seen, instead, in the clustering measurement, Fig. 6.3). This stresses the
importance of a combined analysis, which is more robust and it is able to
remove some of the potential problems or systematics affecting each of the two
estimators when used individually.

The averages and standard deviations of the mean-z distributions of the
SOMPZ and SOMPZ+WZ posteriors are listed in Table 6.2. As expected
from the simulations, the clustering-z information does not substantially alter
the bin means derived from photo-z methods. The significant improvement in
shape accuracy, as seen in Fig. 6.4, is the principal product of the clustering-z
method for DES Y3 analyses.

6.5 Conclusions

In this Chapter we have presented part of the calibration of the DES Y3 weak
lensing source galaxies redshift distributions. The overall strategy involves
three methods: a photo-z method (SOMPZ), a clustering based method (WZ),
and shear ratios, based on ratios of galaxy-galaxy lensing measurements. Here
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Table 6.1: Simulations. The mean redshift estimates of the SOMPZ distributions with and
without clustering-z information, in simulations.

case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4
True ⟨z⟩: 0.315 0.513 0.743 0.910

SOMPZ ⟨z⟩: 0.312± 0.008 0.505± 0.005 0.746± 0.003 0.907± 0.005
SOMPZ + WZ: 0.312± 0.009 0.507± 0.005 0.747± 0.004 0.907± 0.005

Table 6.2: Data. The mean redshift estimates of the SOMPZ distributions with and without
clustering-z information.

case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4
SOMPZ ⟨z⟩: 0.318± 0.009 0.513± 0.006 0.750± 0.005 0.942± 0.011

SOMPZ + WZ : 0.321± 0.008 0.517± 0.006 0.749± 0.005 0.940± 0.010
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Figure 6.4: SOMPZ redshift distributions, as estimated in data, with and without cluster-
ing information. The bands encompass the statistical and systematic uncertainties of the
distributions.
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we focused on the WZ part of the calibration and on its combination with the
SOMPZ method.

The WZ measurements for the calibration have been obtained cross-correlating
the weak lensing sample with two redshift catalogs with accurate redshifts:
the RedMaGiC galaxies (luminous red galaxies with excellent photometric
redshifts) and the BOSS/eBOSS galaxies (with spectroscopic estimates). The
cross-correlation have been performed dividing the reference samples into thin
redshift bins. We developed a procedure to forward model the clustering signal
given a proposal redshift distribution. We characterised the systematic uncer-
tainty of our forward model using simulations, and found that it is limited by
the lack of prior knowledge of the redshift evolution of the galaxy-matter bias
of the weak lensing sample. We developed a flexible model able to take into
account any realistic redshift evolution of the galaxy-matter bias, and used the
simulations to inform the priors of such a model.

We then developed a framework which allowed us to sample proposal red-
shift distributions from the joint likelihood of WZ and SOMPZ conditioned on
our measurements, and compared the samples with the ones obtained from the
SOMPZ likelihood alone. We found that for the DES Y3 analysis, the cluster-
ing information does not help much reducing the scatter on the mean of the
redshift distributions compared to SOMPZ, as the latter method performance
is superior. Nonetheless, the WZ likelihood does significantly improve the un-
certainty on the shape of the redshift distributions, reducing the scatter in the
shape compared to the SOMPZ only samples. This is due to the fact that the
SOMPZ realisations suffer from cosmic variance, as they are estimated from
relatively small deep fields; as a consequence, SOMPZ realisations show the
characteristic “peaky” features typical of sample variance, which are reduced
by the combination with the clustering measurements. We then presented the
WZ+SOMPZ calibration on data, finding consistent results with our simula-
tion tests.

We remind the reader that the final DES Y3 redshift calibration strategy in-
cludes an additional step, not addressed here: the samples of the WZ+SOMPZ
likelihood, describing the redshift distributions of the WL sample and their
uncertainties, are further constrained by the shear-ratio likelihood during the
cosmological inference process.

Although current WZ methods and implementations are still affected by
systematics and are not simply sample variance limited, they do represent
one of the most credible alternative to standard photo-z methods for the next
generation of data sets. This is because the new data will be deeper, which
will make the calibration of standard photo-z methods significantly harder,
whereas WZ methods will be less affected (they only need a proper redshift
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coverage by the reference sample). The main WZ systematic that requires
additional work is the modelling of the evolution of the galaxy-matter bias of
the unknown sample. For future works, we plan to use the auto-correlation of
the unknown sample in small deep fields with good photometry and redshift
estimates to inform better the parameters of our flexible galaxy-matter bias
model. Moreover, for the future analyses, we also plan to combine the WZ and
photo-z estimates in a more principled way, using the hierarchical Bayesian
methodology developed by Sánchez & Bernstein (2019b) and Alarcon et al.
(2019).
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Chapter 7

Combination of SOMPZ and
WZ: redshift calibration of the
DES Y3 MagLim lens galaxies

7.1 Introduction

For the DES Y3 3x2pt analysis, two different lens samples were used. The first
sample is defined by selecting luminous red galaxies through the RedMaGiC
algorithm (Rozo et al., 2016), which retains galaxies with high quality photo-
metric redshift, by fitting each galaxy to a red-sequence template. The galaxies
passing the RedMaGiC selection have, however, a low number density, and the
final sample comprises roughly 3,000,000 galaxies. The second sample slightly
compromises on the redshift accuracy to the benefit of a larger number density.
The MagLim sample (Porredon et al., 2021c) is a magnitude-limited sample
with a number density more than 3 times greater than RedMaGiC , comprising
roughly 10,000,000 galaxies. In the fiducial DES 3x2pt (Abbott et al., 2022)
and 2x2pt analyses Porredon et al. (2021a) that rely on the MagLim sample,
the redshift distributions of the sample have been characterised using the ma-
chine learning photometric redshift code Directional Neighbourhood Fitting
(DNF) (De Vicente et al., 2016b). In its current implementation, the DNF
code provides per-galaxy redshift estimates using nearest neighbour techniques.
The redshift distributions were then further calibrated using clustering redshift
(WZ), which relies on cross-correlation measurements with spectroscopic sam-
ples (Cawthon et al., 2020). This calibration step also placed uncertainties
on the redshift distribution estimates, which were modelled by “shifting” and
“stretching” the redshift distributions.
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This work presents an additional and more sophisticated calibration of the
redshift distributions of the lens sample, and studies the impact of these new
redshift distribution estimates on the cosmological constraints using DES Y3
galaxy clustering and galaxy-galaxy lensing measurements (2x2pt). In particu-
lar, we adopt an approach similar to the one adopted to characterise the redshift
distributions of the DES Y3 weak lensing (WL) sample, presented in Chapter
6. This methodology also combines photometric and clustering constraints to
produce redshift estimates, and it is more powerful than the fiducial redshift
calibration adopted for the lenses for a number of reasons. The photometric
information is used to produce redshift estimates using a self-organizing-map-
based scheme (SOMPZ), which allows a meticulous control over all the (known)
potential sources of uncertainties affecting the estimates. The SOMPZ method
works by leveraging the DES deep fields, which have deeper observations with
additional photometric bands and overlap with many-band redshift surveys
available. It is possible to reproduce realistic selection functions in the deep
fields from the injection of galaxies into actual DES images using the sophisti-
cated image simulation tool Balrog (Everett et al., 2020b).

The chapter is organised as follows. Section 7.2 is devoted to the char-
acterisation of the method’s uncertainties. Section ?? presents the redshift
distributions MagLim sample produced using the techniques described in this
work. Appendix B.1 complements the results with a validation of the method-
ology in simulations; Appendix B.3 discusses the impact of different redshift
uncertainties marginalisation techniques on the cosmological parameters esti-
mation.

7.2 Characterization of sources of uncertainty

In this section, we present the characterisation of the systematic uncertainties
of our methodology. The dominant sources of uncertainties for the SOMPZ
method are sample variance and shot noise. In the clustering redshift method,
the main uncertainty is caused by the lack of prior knowledge on the redshift
evolution of the galaxy-matter bias of the MagLim sample. This is modelled
by a flexible systematic function, informed by a measurement of the MagLim
auto-correlation function in data. Other, minor sources of uncertainties are
related to magnification effects and the approximation of linear bias (Gatti &
Giannini et al., 2020a). We provide further details on each source of uncertainty
in the following subsections. A full catalog-to-cosmology validation of the
method (in simulations) is then presented in Appendix B.1.
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7.2.1 SOMPZ uncertainties

For the SOMPZ method we consider the following sources of uncertainty:

• sample variance of the deep fields: main uncertainty, caused by the lim-
ited area of the deep fields. We model the effect of sample variance by
means of the 3sDir analytical model described in §7.2.1;

• shot noise in the deep and redshift samples: this is induced by the limited
number of galaxies available in the deep and redshift samples. We model
the effect of shot noise by means of the 3sDir analytical model described
in §7.2.1;

• SOMPZ method uncertainty : this uncertainty stems from discretising the
color space in the SOMPZ mapping. We do estimate its impact on the
SOMPZ estimates by replicating the SOMPZ methods multiple times
in simulations, and incorporate its effects by using Probability Integral
Transforms (PITs) (§ 7.2.1);

• photometric calibration: related to uncertainties in the calibration of the
deep fields zeropoint, it is accounted for in the SOMPZ estimates by
means of PITs (§ 7.2.1).

• redshift sample biases: these biases stem from uncertainties and biases in
the redshift estimates of the redshift samples. Their impact is accounted
for in our methodology by marginalising over three different combinations
of redshift samples (§ 7.2.1);

• transfer function: any bias induced by an erroneous estimation of the
transfer function due to a size-limited Balrog sample; we anticipate
this to be negligible following the results from Myles & Alarcon et al.
(2020) (§ 7.2.1).

In the following sections we will proceed to describe in detail how we ac-
count for each of the items listed above.
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Sample variance and shot noise (3sDir)

Sample variance is the dominant uncertainty affecting our SOMPZ estimates,
and stems from the limited size and area coverage of the redshift and deep
samples, with respect to the whole wide field. The deep fields only cover
∼ 9deg2, which means we could be learning the color/redshift relation from a
non-representative sample of the sky due to fluctuations in the matter density
field; moreover, the finite size of the redshift sample can introduce shot noise
effects, preventing a correct sampling of the quantities required for the redshift
inference.

Generally the impact of sample variance can be evaluated estimating the
redshift distributions in simulations multiple times using different line of sights
for the deep fields (e.g. Hildebrandt et al. 2017, Hildebrandt et al. 2020; Hoyle
et al. 2018b; Buchs et al. 2019; Wright et al. 2020a). Although we also
performed a test where we evaluated the impact of sample variance using the
Buzzard simulation, in our standard procedure we use the three step Dirichlet
(3sDir) approach 3sDir presented in Sánchez et al. (2020) and applied to the
redshift calibration of the DES Year 3 source sample (Myles & Alarcon et al.,
2020).

The 3sDir method consists of an analytical sample variance model predict-
ing what the redshift-color distribution would be from the observed individual
redshift and galaxy phenotypes (colors) of galaxies coming from smaller deep
fields. Using this model we can build an ensemble of redshift distributions (also
called n(z)) realisations whose fluctuations realistically represent the effect of
sample variance. During the cosmological inference, by sampling over these
realisations, one can effectively marginalise over the effect of sample variance.
Here we provide a short description of the 3sDir method, but we direct the
reader to Myles & Alarcon et al. (2020) and Sánchez et al. (2020) for more
details. The 3sDir method assumes the probability p(z, c) that galaxies belong
to a redshift bin z and color phenotype c to be described by a probability
histogram with coefficients fzc (with

∑
fzc = 1 and 0 ≤ fzc ≤ 1). Under this

assumption, the expected number counts of galaxies in a deep SOM cell given
the coefficients fzc are described by multinomial distribution; if we assume a
Dirichlet function for the prior on fzc, the posterior of fzc given the observed
number count will also be described by a Dirichlet function. Such a Dirichlet
posterior can be used to draw samples and naturally accounts for the effect of
shot noise in the data. The effect of sample variance can be introduced by tun-
ing the width of the prior on fzc, which does not change the expected value for
fzc in the Dirichlet distribution, but does change its variance to simultaneously
account for shot noise and sample variance.
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If all the galaxies belonging to the redshift sample were independently
drawn, then a Dirichlet distribution parametrized by the redshift sample counts
in each couple of redshift bin z and phenotype c, Nzc, would fully characterize
fzc. However, one subtlety is that sample variance correlates with redshifts;
to increase the variance with the correct redshift dependence one can use the
fact that two different phenotypes (deep SOM cells) overlapping in redshift
are correlated due to the same underlying large-scale structure fluctuations.
The 3sDir model assumes that phenotypes at the same redshift share the same
sample variance, and therefore groups cells with similar redshifts in superphe-
notypes T. One can then express the fzc as:

fzc =
∑

fzTc fTz fT . (7.1)

The 3sDir method consists of drawing values of these three sets of coefficients
with three Dirichlet functions. In this way, it is possible to include a redshift-
dependent variance while conserving the expected value of fzc.

The validation of the 3sDir method has been carried out in Myles & Alar-
con et al. (2020), applied to the weak lensing source sample. The only differ-
ence with this work stands in the fact we are performing the 3sDir estimation
independently for each tomographic bin, due to their definition.

As reported in Table 7.1, this uncertainty is dominant, both on the mean
and width values of the n(z) distributions, computed from the ensemble of
realisations provided by the 3sDir method.

SOMPZ Method Uncertainty

The SOMPZ method relies on the discretisation on the color space spanned
by our deep field sample, and this is an approximation that can lead to small
biases or additional uncertainties. In order to estimate these, we compute our
SOMPZ n(z) a large number of times in the Buzzard simulations. In order
to factor out sample variance, each time we randomly select patches of the
Buzzard footprint to construct the mock deep fields. In this way, by averaging
over all the final n(z) realisations, we can produce an estimate of the n(z) only
minimally biased by sample variance, and test the agreement with the true
n(z) . Due to the computational cost of the SOMPZ pipeline, we decided to
produce 300 n(z) replicas. To perform this test, we assumed that the redshift
sample would only be limited to one of our four fields, of the size of COSMOS.

We computed the mean redshift offset of the ensemble with respect to the
true value, for each tomographic bin. As reported in Table 7.1, these values
are smaller than the effect of sample variance. These values are incorporated
into our final n(z) ensemble using the PIT method described in the following
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section, by additionally shifting each probability integral transform (used to
correct for the zeropoint uncertainties) by a value drawn from a Gaussian
centered at zero with standard deviation equal to the root-mean-square of the
aforementioned mean offset values.

Deep Fields Photometric Calibration Uncertainty

Although the uncertainty in the photometry of each individual galaxy is im-
plicitly accounted for in the SOM training, the uncertainty on the photometric
calibrations as a whole must be evaluated by testing how the measured n(z)
are affected by changes in the photometric zeropoint in each band. This is
relevant for the deep fields, where the relatively precise fluxes are key to con-
straining reliable p(z) in parts of parameter space that are not subject to
selection biases. Ideally, this would be tested by rerunning the full analysis
for an ensemble of perturbations of the photometric zeropoint according to
the zeropoint uncertainty, but the computational requirements of the Balrog
injection procedure make this infeasible. Instead, we produce an analogous
ensemble of realizations in simulations, where the Balrog mock photometric
survey is reduced to a computationally simpler procedure of adding Gaussian
noise to true magnitudes. For each realization of this ensemble, we perturb
all deep field magnitudes by a draw from a Gaussian whose width is deter-
mined by the photometric zeropoint uncertainty in the Y3 deep fields catalog
in a specified band, as computed in Hartley et al. (2020). We then “inject”
these perturbed deep field fluxes with a mock Balrog procedure to generate
wide field realizations of the galaxies and measure the corresponding n(z). In
this way we generate a full ensemble of n(z) realisations reflecting the uncer-
tainty in our redshift calibration due to the photometric calibration. We apply
Probability Integral Transforms (PITs) as in Myles & Alarcon et al. (2020)
to transfer the variation encoded in the ensemble from simulated n(z) to our
fiducial data result.

Redshift Sample uncertainty

As mentioned in § 4.7, we decided to choose three different catalogs to infer
our redshift distributions from: a collection of spectroscopic surveys galaxies
(Gschwend et al., 2018), PAU+COSMOS redshift as in Alarcon et al. (2020),
and COSMOS30 photometric redshifts (Laigle et al., 2016). The reason for
availing ourselves of more than one catalog lies in the fact neither of these are
exempt from systematic uncertainties: each survey uses different photometry,
different model assumptions, and can be affected systematically by selection
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effects, incorrect templates, photometric outliers, etc. Since there is a consid-
erable overlap in the number of galaxies belonging to more than one of the
redshift catalogs selected for this work, to account for the intrinsic biases we
decided to build three samples which are combinations of the aforementioned
catalogs. We ranked the redshift catalogs differently for each sample: if a
galaxy has information from multiple origins, we assign the redshift from the
highest ranked catalog. The three redshift samples SPC, PC, SC, are described
in Section 4.7.

For each of these, we will perform the complete pipeline, and the final set
of realisation will be constructed by an equal fraction p(R) = 1/3 from each
survey. By placing equal prior probability to each sample, this is equivalent as
saying that we do not believe any of the samples is more likely to be correct.
But note that for galaxies from which we have information from only one
catalog, we are assuming that information to be true, and this is a caveat of
this approach.

Transfer function uncertainty

One of the key points in this redshift calibration is the transfer function p(c|ĉ),
the intermediate step necessary to assign redshifts from deep field galaxies to
the whole wide field. If the transfer function is inaccurate, regardless of how a
precise the color/redshift characterisation is in the deep SOM, it can bias the
final n(z) distributions. p(c|ĉ) depends on the observation conditions in that
location, determining if the galaxy is detected or not. Observing conditions
vary across the wide field, but for our analysis we are interested in redshift
distributions estimated across all the footprint. Balrog injects the same
deep galaxies in random wide tiles, but these cover only around ∼ 20% of
the DES footprint, but in Myles & Alarcon et al. (2020) they verified that
Balrog is adequately sampling the observing conditions in the wide field.
They boostrapped the sample by the injected position and recomputed 1000
different transfer functions. They concluded that the dispersion in the final
n(z) mean redshift from repeating the analysis using each time a different
transfer function was completely negligible. Here we repeated that test, since
our deep field sample has less galaxies and might impact differently the transfer
function.We found that this is also negligible for our case, with variations on
the n(z) mean < 10−3 in each tomographic bin, and therefore decided not to
propagate this in the final n(z) estimate.
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Figure 7.1: Uncertainty on the mean redshift of the three redshift samples: SPC (prioritizes
spectra, than PAU photo-z, then COSMOS30), PC (prioritizes PAU photo-z, then COS-
MOS30) and SC (prioritizes spectra, then COSMOS30). In red the total uncertainty given
by their combination.
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Figure 7.2: Left panel : galaxy-matter bias of the MagLim sample as estimated in simulation,
dividing the sample into thin bins using the true redshifts (orange points) and divided using
the DNF redshift estimates and the methodology outlined in Section 7.2.2. The grey band
encompasses the 68% confidence interval of the Sys(z, s) function. Right panel : galaxy-
matter bias of the MagLim sample as measured from the data (orange points); the blue line
shows the best-fitting Sys(z, s) function, and the grey band encompasses its 68% confidence
interval.
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7.2.2 WZ Uncertainties

The WZ systematic uncertainties have been identified and characterised in
detail for the WL sample in Gatti & Giannini et al. (2020a). Namely, the
systematic budget was found to be dominated by our lack of prior knowledge
of the redshift evolution of the galaxy-matter bias of the unknown sample.
This is also expected to be the case for the MagLim sample, although the
amplitude of the effect might differ from the WL sample (ideally, since the
MagLim redshift distributions are narrower, we might expect a smaller impact
due to systematics slowly varying with redshift like the galaxy-matter bias).

Similarly to Gatti & Giannini et al. (2020a), we model our systematics
by means of a flexible function, Sys(z, s), which mostly captures the redshift
evolution of the galaxy-matter of the unknown sample. The Sys(z, s) function
is parameterized by s = {s1, s2, . . .} that we will marginalize over and is given
by:

log[Sys (z, s)] =
M∑
k=0

√
2k + 1

0.85
skPk(u), (7.2)

u ≡ 0.85
z − 0.5(zmax + zmin)

(zmax − zmin)/2
, (7.3)

with Pk(zi) being the k-th Legendre polynomial and M = 6 is the maximum
order. In this work, we set the prior p(s) to be a simple diagonal normal
distribution, with the standard deviations {σs0, . . . , σsM} and means informed
by the measured auto-correlation of the MagLim sample.

In Gatti & Giannini et al. (2020a), such a systematic function was let to
vary by the typical amplitude of the redshift evolution of the galaxy-matter bias
of the WL sample we measured in simulations. In practice, this was achieved
by imposing a Gaussian prior with zero mean p(s) on the coefficients s of the
systematic function.

In the case of the MagLim sample, we can use a more informative prior p(s)
that uses the information we have from the data about the galaxy-matter bias
evolution of the sample. In particular, we rely on the fact that the MagLim
sample has good per-galaxy redshift estimates, which allows us to divide the
sample in relatively small bins and measure the auto-correlation of such bins.
This was not possible for WL sample, due to the poor per-galaxy redshift
accuracy.

To this aim, we use DNF 1-point estimates zmean to further divide the
MagLim sample in bins of width of ∆z = 0.02, and we measure the auto-
correlation of each bin. We note that the true width of each bin will be much
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larger than ∆z = 0.02, as the DNF photo-z are uncertain. Under the approxi-
mation of negligible redshift evolution of the galaxy-matter bias of the MagLim
sample over each thin bin, the measured autocorrelaton can be related to the
galaxy-matter bias by knowing how broad the true n(z) distribution of each
bin is (Gatti et al., 2018; Cawthon et al., 2020):

wuu(zi) = b2u(zi)wDM(zi)

∫
dz′n2u,i(z

′), (7.4)

where nu,i(z′) is indeed the true distribution of the thin bin MagLim sample.
Such a quantity is estimated using the PDF estimate from DNF zPDF.

From this measurement performed in data we can then retrieve the galaxy
bias bu(z). We fit the Sys(z, s) function presented in Eq. 7.2 to the measured
bu(z) and obtain best-fit s values, which we show in Figure 7.2. These best-fit
coefficients are then used as the mean value of the Gaussian prior p(s). The
best fitting Sys(z, s) function to the data is shown in the right panel of Fig.
7.2.

To estimate the width of the prior p(s) we took a different approach. First,
we estimate the bias evolution in simulations by dividing galaxies into thin
redshift bins using: (i) the true redshifts from the simulation; and (ii) the
photo-z estimated from the DNF code. When dividing the galaxies with the
photo-z from DNF, we further correct the measured auto-correlation using
Equation 7.4. These measurements are shown in the left panel of Figure 7.2.
The discrepancy between the measured bias evolution from photo-z (equiva-
lent to the application with real data) relative to the measured bias evolution
with true redshifts (equivalent to the truth) is a systematic bias. We use the
sum in quadrature of this difference with the statistical uncertainty of the bias
measurement as the prior width of s0. For the higher order parameters we
estimate the standard deviation of the prior by summing in quadrature the
ratio between the two biases and the statistical uncertainty from the bias mea-
surement in data. This allows to best capture the RMS variations of the bias
function itself. As can be seen in Fig. 7.2, the 68% confidence interval spanned
by the Sys(z, s) function both brackets the ideal and real world measurements.
The values for the priors are displayed in Table 7.2. Both the prior on the 0-th
and higher order coefficients are much tighter than in Myles & Alarcon et al.
(2020), were s0 = 0.6 and s1..4 = 0.15. As already explained, the difference lies
in the initial accuracy of the photo-z estimates, that enables the measurement
of the auto-correlation of the galaxy sample in thin redshift bins. For the weak
lensing source sample such information was not available, and therefore a more
conservative prior was deemed appropriate. In the MagLim sample case in-
stead, the greater accuracy on its photo-z allows to extract more information
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Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
s0 0.1072 0.2155 0.1233 0.0724 0.0636 0.1976
s1..5 0.0286 0.0527 0.0407 0.0517 0.0806 0.0436

Table 7.2: Coefficients of the systematic function Sys(z, s)

from the auto-correlation.
Last, we mention that an additional source of uncertainties for the WZ

measurement is related to the impact of magnification. We do model magni-
fication effects, but the accuracy of that model is limited by our knowledge
of the magnification coefficients for the two sample. In particular, we do not
have any prior knowledge of such a coefficients for the BOSS/eBOSS sample.
Those coefficients are set to 0 for our fiducial analysis (on the contrary, esti-
mates for the magnification coefficient of the MagLim sample are available).
We expect magnification to have a small impact, based on tests performed in
Gatti & Giannini et al. (2020a), but we nonetheless test in the following section
the impact of having a non null magnification coefficient for the BOSS/eBOSS
sample.

7.2.3 Combination of SOMPZ and WZ

In order to combine SOMPZ and WZ constraints, we follow Gatti & Gian-
nini et al. (2020a) and write the clustering likelihood by forward modelling
the full clustering signal as function of the SOMPZ redshift distributions es-
timates n(z)pz. Moreover, we include the systematic function Sys(z, s) intro-
duced in the previous section, which describes the uncertainties on the WZ
measurement, mostly driven by the lack of knowledge of bu and its redshift
dependence:

ŵur(zi) = n(z)pz(zi)br(zi)wDM(zi)× Sys(zi, s)+

M(αu, αr, bu, n(z)pz). (7.5)

In the above equation, the quantities αu(zi) and αr(zi) are the magnification
coefficients for the unknown and reference samples. See Gatti & Giannini et al.
2020a for full description of the magnification term M . The clustering of dark
matter wDM(zi) is estimated from theory assuming fixed cosmology. We tested
that varying cosmology has a negligible impact on our methodology.

The likelihood of the WZ data conditioned on the target n(z) and all the
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systematic parameters reads as:

L [WZ|nu(z), br(z), αr(z), wDM(z)] ∝∫
ds dp exp

[
−1

2
(wur − ŵur)

TΣ−1
w (wur − ŵur)

]
p(s)p(p), (7.6)

were Σw is the clustering covariance, estimated through jackknife, and p =
bu, αu. We implemented a Hamiltonian Monte Carlo sampler (HMC) that si-
multaneously samples the SOMPZ and WZ likelihood. The HMC does directly
take as input the SOMs output of the sample variance estimation (described
in 7.2.1), and it perturbs selectively the number counts in the SOMs in such a
way to produce realisations that are already more likely to match the clustering
redshift data.

7.3 Results in Data

In this section, we present the final redshift distributions for the MagLim
sample as obtained in data. We also compare the SOMPZ+WZ redshift dis-
tributions with the fiducial DNF+WZ estimates used for the same sample and
adopted in the cosmological analysis presented in Porredon et al. (2021a). A
complete validation of the method in simulations is presented in Appendix B.1.

We first compare in Figure 7.3 the redshift estimates obtained using the
3sDir method and the estimates obtained including the WZ information as de-
scribed in section 7.2. Due to logistics, the combination of the two methods was
performed before incorporating the SOMPZ and zeropoint errors. As here we
are just displaying the effect of the combination, we are showing only how the
3sDir uncertainty from sample variance and shot noise (from the three redshift
samples) varies once we add the information from WZ. The combination of the
two methods result in stronger constraints on the shape of the n(z), thanks
to the complementarity in the information provided by each SOMPZ and WZ.
Particularly, the WZ signal strongly correlates across adjacent bins, excluding
large portions of possible n(z) shapes allowed by the SOMPZ likelihood alone,
which are affected by sample variance fluctuations from the small calibration
fields, and resulting in a smoother distribution. The improvement on the un-
certainty on the mean is more modest, but not null, as reported in Table 7.1.
Usually, WZ data provides limited information on the mean redshift, espe-
cially compared to SOMPZ, as the systematic uncertainty on the galaxy bias
evolution of the target sample is large and directly degenerate with the mean
redshift, as is the case in Gatti & Giannini et al. (2020a). However, in this
work we have included a tighter prior on the Sys(z, s) function describing the
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Figure 7.3: 3sDir distributions before (lighter shades) and after the combination with
clustering-z (solid shades), and using a broader prior on the galaxy-matter bias function
Sys(z, s) at the combination. In the top row we have bins 1 and 4, in the middle row bins
2 and 5, and in the bottom rows bin 3 and 6. The bands represent the 1σ error from the
central value. Note how the combination with WZ tightens the constraint on the shape of
the n(z).
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galaxy bias evolution uncertainty by measuring it directly from the MagLim
auto-correlation function. The addition of the WZ information has a modest
impact on the values of the the mean and width of the redshift distributions,
at most at the 1σ level; this is somewhat expected, as the WZ and SOMPZ
information are independent, but consistent with each other.

7.3.1 Comparison with DNF

We find it interesting to compare the final SOMPZ+WZ redshift distribu-
tions with the fiducial ones used for DES Y3, obtained using DNF photomet-
ric estimates and clustering constraints (hereafter DNF+WZ). Since the two
sets of distributions have been obtained with two different methods, we also
briefly discuss the major differences between the two pipelines. The DNF code
presented in 4.2.1 produces per-galaxy redshift estimates; these are stacked
to produce the redshift distributions for the lens samples. Then, following
Cawthon et al. (2020), a clustering redshift measurement is performed, using
BOSS/eBOSS galaxies as reference sample, similarly to this work. The DNF
n(z)are matched to the WZ-estimated n(z)through a chi-square fitting; in par-
ticular, the DNF n(z)are allowed to shift and stretch to improve the χ2. The
maximum-a-posteriori values of the shift and stretch and related uncertainties
obtained through this matching procedure are used as a prior for the DNF
n(z)shift and stretch used in the cosmological inference.

Despite the DNF+WZ and SOMPZ+WZ methods using the same photo-
metric and clustering measurements, the methodologies differ in a number of
aspects:

1. SOMPZ vs DNF uncertainties: SOMPZ and DNF are both machine
learning methods, but they are substantially different in spirit and im-
plementation. DNF is a traditional supervised machine learning code
where the likelihood (directional neighborhood) between wide field mag-
nitudes/colors and redshift is learned from training with a subsample of
galaxies with both reliable redshift information and measured wide field
photometry. On the other hand, in SOMPZ machine learning is only used
in an unsupervised fashion (without knowledge of redshift), to group self-
similar parts of wide field magnitude/color space together. Then, these
groups (wide SOM cells) are probabilistically related using Bayes theo-
rem to the color-redshift relation measured empirically in the calibration
deep fields, where much better information is available. The likelihood
between each set of wide and deep field photometry is also measured
empirically by injecting galaxies of the latter into images of the former.
Furthermore, SOMPZ provides a comprehensive list of statistical as well
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as systematic uncertainties affecting the calibration samples which are
rigorously propagated through the n(z). On the other hand, DNF only
describes statistical uncertainties related to the residual differences to the
closest training neighbors to the fitted hyperplane of the target galaxies.

2. Combination: The clustering information is included and combined
with the photometric estimates in a substantially different way. In this
work, SOMPZ and WZ are combined by sampling from the joint posterior
using the HMC method. No approximation is performed when combining
the two likelihoods. On the other hand, matching DNF n(z)to the WZ
measurements it has been implicitly assumed that the DNF n(z)estimates
can only be biased at the level of their mean and width, and that inaccu-
racies in the higher order moments of the n(z)can be neglected (or do not
affect the matching procedure with the WZ measurements). However, if
the DNF and WZ n(z)estimates are substantially different beyond their
first two moments, the matching might cause biases (Gatti et al., 2018)
also in the first and second moments. Furthermore, in the combination
of the fiducial method, the DNF shape is only allowed to be modified by
shifting and stretching it. Therefore the shift and stretch parameters are
centered at the WZ values. This means that the photo-z priors for the
cosmological inference only carry uncertainty from the WZ measurement,
as this method does not propagate any systematic uncertainties related
to uncertainty from the accuracy of DNF or the quality of its training
sample photometry. In comparison, SOMPZ+WZ properly combines the
statistical significance from SOMPZ and WZ yielding a final uncertainty
that truly combines the information from each of them separately. Fi-
nally, the SOMPZ+WZ n(z)samples also capture the uncertainties in
the higher moments of the redshift distributions, whereas the DNF+WZ
uncertainties are only relative to the mean and width.

3. WZ distribution tails: The WZ measurements used to calibrate the
DNF n(z)have clipped tails, since the measurements were performed in a
restricted redshift window to avoid biases related to un-modelled magni-
fication effects in the tails of the redshift distribution. On the other hand,
in this work, when combining the clustering information with SOMPZ
estimates, we use the WZ measurements over all the redshift range, since
we also marginalise over magnification effects.

4. WZ galaxy-matter bias: The WZ measurements used in the DNF+WZ
estimates are corrected for the redshift evolution of the galaxy-matter
bias of the MagLim sample computed from auto-correlations measure-
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BIN 1 BIN 2 BIN 3 BIN 4 BIN 5 BIN 6
<z> SOMPZ 0.315 ± 0.016 0.463 ± 0.010 0.633 ± 0.009 0.781 ± 0.008 0.893 ± 0.009 0.990 ± 0.012

DNF 0.292 ± 0.007 0.422 ± 0.011 0.616 ± 0.006 0.762 ± 0.006 0.887 ± 0.007 0.969 ± 0.008
∆<z> 1.3 2.7 1.7 1.9 0.5 1.5

σz SOMPZ 0.080 ± 0.005 0.081 ± 0.005 0.060 ± 0.002 0.073 ± 0.003 0.074 ± 0.004 0.102 ± 0.007
DNF 0.078 ± 0.005 0.094 ± 0.007 0.055 ± 0.003 0.062 ± 0.003 0.075 ± 0.004 0.080 ± 0.007
∆<z> 0.2 1.6 1.3 2.2 0.3 2.3

Table 7.3: Values of mean and width of the SOMPZ+WZ final ensemble of distributions
and the DNF estimate. The statistical difference ∆<z> is computed by considering the
uncertainties of both methods summed in quadrature, as in ∆<z> = (< z >SOMPZ − <
z >DNF)/

√
σ(< z >SOMPZ)2 + σ(< z >DNF)2. We refer to these as are lower limits. Because

the WZ measurement is very similar in the two cases, and the uncertainties summed in
quadrature are correlated and therefore we are likely underestimating ∆<z>.

ments following Eq. 7.4 (Cawthon et al., 2020). As for this work we use
the forward modelling approach described in Section 7.2.2, we instead do
not correct directly for the bias, but from the MagLim auto-correlations
we determine prior values of the parameters of our Sys(z, s), and then
marginalise over possible bias functions in the sampling from the joint
likelihood. We are therefore assuming an uncertainty on the galaxy-
matter bias and validating the central value using SOMPZ data.

We must highlight that in Cawthon et al. (2020); Porredon et al. (2021a)
several tests were performed to test the robustness of the DNF+WZ method.
In particular, Cawthon et al. (2020) tested the performance of the cluster-
ing measurements in simulations, whereas Porredon et al. (2021a) tested that
matching DNF n(z)to the WZ measurements was not introducing biases in
the cosmological constraints, and that modelling only the uncertainties in the
mean and width of the distributions was sufficient for the DES Y3 cosmologi-
cal analysis. These tests should cover potential worries raised in points ii), iii)
and iv) above for the DNF+WZ method. Having said this, any discrepancy
between the SOMPZ+WZ n(z)and the DNF+WZ n(z)should boil down to the
points listed above.

In Figure 7.4, the shapes and uncertainties of the two methodologies are
compared, before and after the inclusion of WZ information, respectively in
the left and right panel. Visually the DNF+WZ n(z)look very similar to the
SOMPZ+WZ ones, although some discrepancies can be noticed (e.g., in the
second bin). To be more quantitative, we report in Table 7.3 the redshift
means and widths of the two sets of distributions, and their agreement. The
means and widths are also visually compared in Figure 7.5. The agreement is
computed assuming the uncertainties of the two methods to be uncorrelated,
which is likely not true; therefore, the reported agreements are optimistic.
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Figure 7.4: Left panel) Final n(z)realisations obtained from the SOMPZ methodology alone
compared to the fiducial DNF distribution for MagLim (in black). Right panel) Final
n(z)realisations obtained from both SOMPZ and WZ methodology compared to the fiducial
DNF distribution for MagLim (grey bands) after shifting and stretching them to fit WZ
measurement. Since in the inference the shift and stretch values are marginalised over, the
uncertainties of the gray bands are obtained by sampling over the allowed ranges of shift
and stretch defined by the prior, and applied respectively to the DNF estimate. Note that
for a fairer comparison of the methods, the two remaining uncertainties were applied to
the SOMPZ ensemble (zeropoint and SOMPZ intrinsic), to include all the SOMPZ-related
uncertainties. For both plots, in the top row we have bins 1 and 4, in the middle row bins 2
and 5, and in the bottom row bins 3 and 6. .
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Figure 7.5: Visual representation of the uncertainties on mean (above) and width (below)
of the redshift distributions estimated using the SOMPZ (square markers) and DNF (round
markers) methods, before and after including the WZ information, for each tomographic bin.
Below the dashed line is the comparison of the values computed in the redshift range used
for the χ2 fit of the DNF estimate with the smoothed WZ n(z).

Computing the level of correlation between the two redshift estimates is not
trivial. The DNF+WZ estimates and uncertainties are driven only by the WZ
measurements in the range where WZ measurements are available and magnifi-
cation effects are negligible; the tails of the distribution, on the other hand, are
described by the DNF estimates. The SOMPZ+WZ estimates receive contri-
butions from both SOMPZ and WZ; if the SOMPZ method was to completely
drive our estimates, then the SOMPZ+WZ and the DNF+WZ estimates could
be assumed to be independent. This is likely the case for the mean redshift
estimates, as we have seen that WZ is not particularly constraining on the
mean redshift (see Figure 7.5). The width estimates are inferred more by the
WZ measurements, and this might indicate that our tensions are under esti-
mated, because we know that the two calibration methods share part of the
WZ information. With this in mind, large tensions between means/widths of
the two methods might indicate that either that the DNF+WZ uncertainties
are under estimated, or there are some real differences between the two meth-
ods (one or both are biased). The reported values in Table 7.3 never exceed
3σ, with some bins showing differences at the 2σ level, which does not point
to dramatic differences between the two methods.

From Table 7.3 we note that SOMPZ+WZ uncertainties on the mean are
larger than the DNF+WZ ones, while uncertainties on the widths are compa-
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rable. This is due to the fact that the uncertainties in the mean redshifts for
the SOMPZ estimates are very sensitive to contributions from outliers at high
redshift. The DNF+WZ mean redshift estimates (and uncertainties), on the
other hand, are driven by the match with the WZ measurements with clipped
tails, i.e., they do not take into account uncertainties in the tails, and are
therefore smaller. The fact that the modelling of the tails is different between
the two methodologies is also responsible for the slightly higher mean redshifts
of the SOMPZ+WZ estimates compared to the DNF+WZ estimates. If we
restrict the comparison of the aforementioned quantities in redshift intervals
that exclude the tails of the distributions, the match between SOMPZ+WZ
and DNF+WZ improves (Figure 7.5). We further investigate the importance
of the tails on the cosmological constraints in Appendix B.3.1, finding that,
despite them being important, they do not drive the main difference between
the SOMPZ+WZ and DNF+WZ constraints.

Galaxy-matter bias prior from WZ auto-correlation

We tested the impact on the cosmological parameters of using the same broad
prior on the Sys(z, s) function describing the galaxy-matter bias as was done
for the WL sample (Gatti et al., 2020a). In this work we used more infor-
mative values computed from the clustering auto-correlation of the MagLim
sample, the application of which is explained in more detail in Section 7.2.2.
It is particularly interesting to look at the shape of distributions, especially
for bin 2. Figure 7.3 shows in grey the 1-sigma bands for the case without
using the auto-correlation, and leaving a much broader prior. While in most
bins the difference is not appreciable, and the grey bands are very similar to
the solid bands, in bin 2 there is an evident difference. It is therefore sug-
gested that this implementation of the auto-correlation information used as
priors in the SOMPZ+WZ combination is able to help us constraining the
galaxy-matter bias value, in a way that otherwise would not have been possi-
ble with traditional methods. In figure 7.5 is shown the comparison over mean
redshift and width of the distributions between SOMPZ+WZ with the more
informative prior from the auto-correlation, against the broad prior (labelled
as “SOMPZ+WZ (broad prior)”). The means and widths are well compatible
with the standard SOMPZ+WZ results, and for bins 2 and 3 they are slightly
closer to the DNF+WZ results. Even in bin 2, where the shape of the n(z) is
substantially different, the values of mean and width do not differ greatly from
the standard case, reinforcing the notion that mean and width alone are not
sufficient to fully characterise redshift distributions of a lens sample.

122



7.4. CONCLUSIONS CHAPTER 7. CAL-
IBRATION OF THE

MAGLIM REDSHIFTS

7.4 Conclusions

In this Chapter, we presented an alternative calibration of the MagLim lens
sample redshift distributions from the Dark Energy Survey (DES) first three
years of data (Y3). This new method, which has already been applied to the
DES Y3 weak lensing sample (Myles & Alarcon et al., 2020), is based on a
combination of a Self-Organising Maps (SOMPZ) based scheme and clustering
redshifts (WZ) to estimate redshift distributions and inherent uncertainties.
The original redshift calibration of the MagLim has been based on the photo-
z code DNF (De Vicente et al., 2016a) and WZ constraints Cawthon et al.
(2020). The methodology presented in this paper is meant to be more accu-
rate than the original one. First, the SOMPZ method allows a better control
over all the potential sources of uncertainties affecting the estimates compared
to DNF; second, the clustering constraints (WZ) are incorporated through a
rigorous joint likelihood framework which allows to draw n(z) samples condi-
tioned on both clustering and photometric measurements, improving the n(z)
estimates (e.g., the final “SOMPZ+WZ” n(z) have a smaller scatter, or uncer-
tainty, compared to the SOMPZ ones).

We described in detail the methodology followed to produce the alternative
MagLim n(z) based on the SOMPZ+WZ approach, together with a detailed
report on the main systematics dominating our calibration error budget. Our
redshift uncertainties, in particular, are dominated by the impact of sample
variance on the SOMPZ estimate (due to the limited area spanned by the deep
field sample used in the calibration) and by the effect of the redshift evolution of
the galaxy-matter bias of the MagLim sample on the WZ constraints. We then
compared our SOMPZ+WZ n(z) with the fiducial DNF+WZ n(z) estimates;
in no case did the means and widths of the 6 MagLim tomographic bins show
tensions exceeding 3σ, although in some bins we measured differences at the 2σ
level. We also found the uncertainties on mean of the redshift distributions of
the SOMPZ+WZ method to be slightly larger than the ones of the DNF+WZ
method, due to a more conservative calibration of the tails of the redshift
distributions. On the other hand, we found the two methods to have a similar
constraining power on the widths of the distributions.

Overall, the SOMPZ+WZ method has proven to be robust in minimising
residual biases in the n(z) and quite versatile with respect to the systematic
uncertainty treatment. We consider this to be an improvement over the fidu-
cial method used for the MagLim redshift calibration in DES Y3. Despite
this, there are several improvements that should be taken into consideration
for future implementations of the method. Larger deep field area overlapping
with additional redshift surveys would greatly benefit the SOMPZ method by
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reducing the sample variance and shot noise, the main systematic uncertainty
contributors. Also, the photometric uncertainty in the deep field is non neg-
ligible at low redshift, where the error budget is dominated by the u-band.
Therefore additional data in the u-band in the DES deep fields would reduce
the total uncertainty. An ameliorated transfer function could be obtained by in-
creasing the Balrog injection area. Clustering-z could improve its modelling
of the evolution of the galaxy-matter bias of the “unknown” sample by obtain-
ing external information from the deep fields. Finally, the implementation of
a hierarchical Bayesian methodology would significantly reducing sample vari-
ance, by constraining p(c) with the use of the transfer function p(c|ĉ), and
improve the overall efficiency in using clustering to constrain the distribution
obtained with photometry (Sánchez & Bernstein, 2019b; Alarcon et al., 2019).
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Chapter 8

Impact of the MagLim sample
redshift calibration on
cosmology

This Chapter describes the impact on the cosmological parameters of using the
new redshift calibration presented in Chapter 7, and compares it to the “fidu-
cial” constraints obtained using the DNF+WZ redshift calibration (Porredon
et al., 2021a).

As introduced in Chapter 4, the MagLim lens sample has been created
with the goal of improving the constraints from the cosmological analyses of
galaxy clustering and galaxy-galaxy lensing (Porredon et al., 2021b). The
SOMPZ+WZ methodology aims at reduce the systematic uncertainties and,
most importantly, to minimise any residual bias left in the MagLim n(z).

8.1 Cosmological Results

In this section, we show the constraints on cosmological and nuisance param-
eters obtained using the DES Y3 measurements for galaxy-galaxy lensing and
galaxy clustering (Prat et al., 2022; Rodríguez-Monroy et al., 2022) (a.k.a.
2x2pt), and the n(z) from the redshift calibration from 7. As in Porredon
et al. (2021a), we also include in our analysis an additional likelihood con-
structed with the Shear Ratios (SR) measurement, introduced in Section 3
(Sánchez et al., 2022a). In brief, this exploits galaxy-galaxy lensing signal at
small scales (< 6 Mpc/h) to provide further constraint to the redshift dis-
tributions and intrinsic alignment parameters. The ratio of a galaxy-galaxy
lensing signal of each lens sample redshift bin computed with respect to two
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source sample bins results in a primarily geometric measurement, which has
been proven a powerful method for constraining systematics and nuisance pa-
rameters. This adds independent information from SOMPZ and WZ to the
source redshift calibration.
The posterior distribution obtained follows the Bayes theorem:

P (p|D,M) ∝ L(D, p,M)Π(p|M), (8.1)

where Π(p|M) is the prior distribution for all the parameters of the model
M . For the cosmological inference we use the CosmoSIS pipeline (Zuntz et al.,
2015), and we sample the parameter posteriors using the PolyChord sampler
(Handley et al., 2015a,b).

Our data vector D = {w(θ), γt(θ)} is compared to theoretical predictions
T (p) = {w(θ, p), γt(θ, p)} in a Bayesian fashion, and the posterior of the param-
eters conditional on the data is evaluated by assuming a Gaussian likelihood
for the data:

logL ∝ −1

2
(D − T (p))TC−1(D − T (p)), (8.2)

where C is the measurement covariance. In our analysis, we vary 5 (or 6)
cosmological parameters assuming a ΛCDM (or wCDM) cosmology: Ωm, σ8,
ns, Ωb, h100, and w for the wCDM case. Moreover, we also marginalise over
“astrophysical” nuisance parameters (describing intrinsic alignment effects and
the galaxy-matter bias of the lens sample), and calibration parameters (redshift
uncertainties, shear measurement uncertainties). In short, our setup (covari-
ance, parameters varied, prior ranges, etc.) is the same as the one adopted in
Porredon et al. (2021a), except for the redshift n(z) and uncertainties priors
of the lens sample, where the ones obtained in this work have been assumed,
and other minor changes that we describe below.

Our analyses were not "blinded", since this work occurred after the "un-
blinding" of the DES Y3 3x2pt results. We did not perform any cosmological
analysis until the redshift distributions were frozen; no changes to the redshift
distributions (and uncertainties prior) have been performed after looking at
the cosmological constraints. To ensure the robustness of our final estimates,
we adopted a p-value criteria on the best-fitting models to our data vector.
Following Porredon et al. (2021a), we required the goodness-of-fit p−value on
unblinded data vectors was larger than 1 per cent. The goodness-of-fit has
been computed using the Predictive Posterior Distribution (PPD, Doux et al.
2021) and adopted in the main DES Y3 3x2pt analysis. The PPD methodol-
ogy derives a calibrated probability-to-exceed p; in the case of goodness-of-fit
tests, this is achieved by drawing realisations of the data vector for parameters
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drawn from the posterior under study which are then compared to actual ob-
servations. The distance metric (χ2) is computed in data space, which is then
used to compute the p-value.

Concerning the redshift uncertainties, as it is the primary goal of this work,
we proceeded using the fiducial DES Y3 methodology: we parametrize the red-
shift uncertainties with two parameters for each tomographic bin, that mod-
ify a fiducial n(z)distribution with a shift on the mean and a stretch on the
width. The fiducial n(z)is estimated by averaging the SOMPZ+WZ n(z) reali-
sations. The Gaussian priors on the mean and stretch parameters are centered
at the mean and width of the fiducial n(z), while the Gaussian priors width
are measured from the variance in the mean and width of the n(z)ensemble.
This parametrization can be compared directly to the fiducial DES Y3 2x2
analysis Porredon et al. (2021a). In Appendix B.3 we describe an alterna-
tive marginalisation of the redshift uncertainties, by marginalising over the full
sets of n(z)realisations provided by the SOMPZ+WZ method. In principle,
this latter method describes better the redshift uncertainties of our method.
However, we find that the currently available techniques that marginalise over
the full ensemble of realisations during cosmology inference are prohibitively
computationally expensive. Therefore we defer its application for future work.

Besides the different n(z), we also ran a few analyses where we marginalised
over magnification parameters of the lens samples over wide priors (this is dif-
ferent from Porredon & Crocce et al. (2021a), where magnification parameters
have been fixed to some fiducial value). For the fiducial 2x2pt analysis the p-
value from the data-model χ2 using all six bins of MagLim was not sufficient
to pass the 1 per cent criteria. After a series of tests the consensus was that
the two highest redshift tomographic bins were responsible for worsening the
fit. Therefore the analysis in Porredon et al. (2021b) included only the first 4
MagLim bins.

Here, we perform the analyses using all the 6 bins of the MagLim sample,
but also using only the first 4 bins, to verify if the same applies also to this work
using different redshift distributions. In particular, we consider the following
scenarios:

• ΛCDM (wCDM); 4 and 6 lens bins, fixed magnification. This is the fidu-
cial analysis that mirrors the one presented in Porredon et al. (2021a).
Five (six) cosmological parameters are varied, including Ωm, σ8, ns, Ωb,
h100 (and w for the wCDM case). Intrinsic alignment, shear measure-
ment and redshift uncertainties parameters (of both lenses and sources)
galaxy-matter linear biases of the lenses also are marginalised over. The
magnification coefficients of the lens sample, however, are fixed to the
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Figure 8.1: Left panel : Posterior distributions of the cosmological parameters Ωm, and S8

for the ΛCDM analysis involving 4 bins and fixed magnification parameters. The “fidu-
cial” posteriors have been obtained using the DNF+WZ redshift distributions, and they are
compared to the ones obtained using the SOMPZ+WZ redshift distributions. Right panel :
Posterior distributions of the cosmological parameters Ωm, and S8 for the ΛCDM analysis
for three different cases: 1) 4 bins and fixed magnification parameters (the blue contours in
the two plots share the same analysis choices); 2) 4 bins and marginalised over magnification
parameters (in solid green); 3) 6 bins and marginalising over magnification parameters (in
solid red). The 2D marginalised contours in both of these figures show the 68 per cent and
95 per cent confidence levels.

values estimated from Balrog Everett et al. (2020a). Uncertainties in
the redshift distributions of the lens sample are modelled as a shift and
stretch in the distributions.

• ΛCDM (wCDM); 4 and 6 lens bins, free magnification. Same as the
ones above, but magnification parameters are marginalised over using
Gaussian priors.

In what follows, we will also quote results in terms of the S8 parameter,
defined as S8 ≡ σ8(Ωm/0.3)

0.5. In Table 8.1 we summarise the best fit values
of S8, Ωm, σ8, w, and the computed PPD goodness-of-fit p-value for all the
different analyses.
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Table 8.1: Constraints on the cosmological parameters S8, Ωm, and σ8. For each parameter
we report the mean of the posterior and the 68 per cent confidence interval. We also report
the PPD goodness-of-fit p-value.

n(z) Model bins Magnif. S8 Ωm σ8 w p-value
SOMPZ ΛCDM 4 bins Fixed 0.81± 0.04 0.30± 0.04 0.81± 0.07 - 0.029
SOMPZ

(broad prior) ΛCDM 4 bins Fixed 0.76± 0.06 0.31± 0.04 0.76± 0.09 - -
SOMPZ ΛCDM 6 bins Fixed - - - - 0.008
SOMPZ ΛCDM 4 bins Gaussian 0.79± 0.06 0.30± 0.05 0.79± 0.10 - 0.035
SOMPZ ΛCDM 6 bins Gaussian 0.78± 0.08 0.31± 0.04 0.77± 0.09 - 0.065
SOMPZ wCDM 4 bins Fixed 0.79± 0.06 0.29± 0.04 0.81± 0.08 −1.2± 0.3 0.032
SOMPZ wCDM 6 bins Fixed 0.78± 0.04 0.30± 0.04 0.78± 0.06 −0.9± 0.3 0.012
SOMPZ wCDM 4 bins Gaussian 0.76± 0.07 0.30± 0.05 0.77± 0.10 −1.0± 0.3 0.035
SOMPZ wCDM 6 bins Gaussian 0.78± 0.08 0.31± 0.04 0.77± 0.09 −0.7± 0.2 0.059

DNF ΛCDM 4 bins Fixed 0.78± 0.04 0.32± 0.04 0.76± 0.07 - 0.019
DNF wCDM 4 bins Fixed 0.78± 0.05 0.32± 0.05 0.76± 0.07 −1.0± 0.3 0.024

8.1.1 ΛCDM results

Fiducial results: 4 bins, fixed magnification and comparison with
DNF results

The first cosmological constraints we analyse are the ones obtained assuming a
ΛCDM cosmology, using 4 lens bins and fixed magnification parameters. This
is the “fiducial” setup assumed in the Porredon et al. (2021c) analysis, and
we can compare our results directly to the ones obtained using the DNF+WZ
n(z). The posterior on the the cosmological parameters Ωm, and S8 is shown
in the left panel of Fig. 8.1; the marginalised mean values of S8, Ωm, and σ8,
along with the 68% confidence intervals, are:

Ωm = 0.30± 0.04, (8.3)
σ8 = 0.81± 0.07, (8.4)
S8 = 0.81± 0.04. (8.5)

The PPD goodness-of-fit test for this analysis results into p−value=0.029,
well above our threshold (see also Table 8.1). In the left panel of Fig. 8.1
we also compare our results with the constraints obtained using the fiducial
DNF+WZ n(z). The size of the posteriors is similar for the two cases, but the
two posteriors are slightly shifted; the distance between the posteriors’ peaks
in the 2D Ωm − S8 plane is d ∼ 0.4σ. In DES Y3 we impose a strict 0.3σ
threshold for differences in the Ωm − S8 plane induced by different analysis
choices; these results would apparently violate this criteria. We note, however,
that the (arbitrary) 0.3σ threshold adopted by DES refers to differences in the
Ωm−S8 plane when noiseless theory data vectors are assumed. In the presence
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of noisy data vectors these differences can become larger, without invalidating
our criteria. Having said this, a d ∼ 0.4σ difference nonetheless imply the large
impact that a different redshift calibration of the lens sample can have on the
cosmological constraints. This is somewhat different from the results obtained
for the source sample n(z) (Amon et al., 2022), where uncertainties in the
redshift calibration had a negligible impact on the cosmological constraints.

In Section 7.2.2 we explained how for the combination of the two methods
we marginalise over possible functional forms of the unknown galaxy-matter
bias of the MagLim sample, by means of the systematic function Sys(z, s)
in our clustering model. The prior on the parameters s is inferred from the
clustering auto-correlation. We tested the impact on the redshift distributions
of using a broader prior (the same used in Myles & Alarcon et al. 2020) in
Section 7.3. We have tested the impact on using these n(z) for the cosmological
inference, and found that there is no change in constraining power and no shift
for Ωm, but there is a shift on S8 such to overlap with the fiducial results
from DNF+WZ. Therefore it is clear that the information carried by the auto-
correlation is crucial in our cosmological analysis.

Last, we mention that our analysis using 6 lens bins, ΛCDM and fixed
magnification coefficients did not pass our p−value criteria (p−value = 0.008),
as the fiducial one; hence, we do not show those results here.

4 and 6 bins, free magnification

We then proceed relaxing the fixed priors on the magnification parameters for
the lens sample. Instead of fixing them to the values estimated from Elvin-
Poole et al. (2021) (as done in the previous section), we leave them as free
parameters, using Gaussian priors. In short, Elvin-Poole et al. (2021) estimate
the magnification parameters using Balrog, by injecting fake galaxies into
the wide field with and without applying a small magnification; the difference
between the number of galaxies passing the selection in the two cases is then
used to estimate the magnification parameters of the sample. These parameters
come with a small uncertainty, which is however ignored in the fiducial analysis,
as the magnification parameters are assumed to be fixed to the mean Balrog
value. The central values and the uncertainties are reported in table B.1 in
B.2. One of the main reasons the DES Y3 fiducial analysis did not vary the
magnification parameters was merely computational, as 4 (or 6) additional
parameters lengthen the parameter inference process. In principle there is no
reason to doubt these estimates. Differences might be caused by the fact that
the Balrog injections do not completely sample the full DES Y3 footprint, or
in case our injections were not fully representative of the DES sample we are
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analysing.
When varying these parameters in our analyses, we find that the p−value

computed using PPD indicates a good fit of the model to the data not only for
the 4 bins case, but also for 6 bins case (see Table 8.1). Adding the last 2 lens
bins significantly improves the constraining power on Ωm by 30% compared to
the 4 bins case, whereas the constraints on S8 are 20% tighter.

8.1.2 wCDM Results

We then proceed analysing the results obtained with wCDM, for all four cases:
4 and 6 bins, fixed and free magnification, as described in the previous section.
In general, the 2x2pt constraints on w are loose and affected by the prior
(−2 < w < −0.3). Parameters posteriors are shown in Fig. 8.2, whereas p-
values and parameters constraints are reported in Table 8.1. Including 2 more
lens bins increases our constraining power on w by ∼20%, although part of the
improvement (especially in the case of 6 bins and free magnification) is due to
the posterior partially hitting the prior edge.

Freeing the magnification parameters shifts w towards the upper edge of
the prior (w = −0.3), which evidently results in tighter constraints on S8; this
is caused by projection effects due to the w prior, and it is stronger for the 6
bins case. The constraints on Ω are unaltered in all four scenarios.

8.1.3 Statistical distance to Planck

We compute here the statistical distances between our cosmological constraints
and the early Universe ones from the Planck satellite (Aghanim et al., 2020).
The comparison between the results has been performed considering all the
parameters shared by the two analyses; in particular, we followed the approach
presented by Lemos et al. (2021) with improved algorithms from Raveri &
Doux (2021). We find that for the 4 bins case for ΛCDM (both fixed and free
magnification) there is good agreement (1.15σ, 1.11σ), similarly for wCDM
with 4 bins we have 0.46σ for both fixed and free magnification. For the 6 bins
cases the values are slightly larger than 2σ. For LCDM free magnification,
wCDM fixed, and wCDM free magnification we have respectively: 2.4σ, 2.3σ,
and 2.2σ.

8.2 Conclusions

In this Chapter we investigated the impact on the cosmological constraints
of using an improved methodology for the redshift calibration of the DES Y3
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Figure 8.2: Posterior distributions of the cosmological parameters Ωm, and S8 and w for
four different cases: 1) wCDM, 4 bins and fixed magnification parameters; 2) wCDM, 6 bins
and fixed magnification parameters, 3) wCDM, 4 bins and free magnification parameters; 4)
wCDM, 6 bins and free magnification parameters. The 2D marginalised contours in these
figures show the 68 per cent and 95 per cent confidence levels.
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MagLim galaxies. In particular, we used the galaxy-galaxy lensing and galaxy
clustering measurements (Prat et al., 2022; Rodríguez-Monroy et al., 2022)
(a.k.a. 2x2pt), and the n(z) from the combination of SOMPZ and WZ measure-
ments, as described in Chapter 7. The new cosmological constraints have been
compared to the results originally presented in Porredon et al. (2021a). In the
“fiducial” configuration, which involves using the first 4 lens bins and assuming a
ΛCDM cosmology, we obtained as marginalised mean values Ωm = 0, 30±0.04,
σ8 = 0.81± 0.07 and S8 = 0.81± 0.04. We noted a ∼ 0.4σ shift in the Ω − S8
plane compared to the Porredon et al. (2021a) results, but no change in terms
of constraining power. The shift indicates that the redshift calibration of the
lens sample plays a key role on cosmological constraints from the 2x2pt anal-
ysis, contrary to the redshift calibration of the source sample (Amon et al.,
2022; Secco et al., 2022). Subsequently, we explored different analysis setups;
we tested the case where all the 6 MagLim redshift bins were included, a sce-
nario where the magnification coefficients of the lens sample were marginalised
during the inference, and last, we assumed a wCDM cosmology. We found
that the inclusion of the last two redshift bins of the MagLim sample help
improving the constraints on Ωm by ∼ 25%, and on S8 by ∼ 20%.

We also compared our results to the cosmological constraints from Planck
(Aghanim et al., 2020), finding a no-tension of ∼ 1σ between the results when
4 lens bins where considered. We did find a statistical distance of more than 2σ
in ΛCDM with free magnification coefficients when including in the analysis
the two high redshift bins (z > 0.85), which have not been included in the
fiducial DES Y3 analysis Porredon et al. 2021a.

As a final comment, despite the SOMPZ+WZ method’s ability to pro-
duce n(z) samples capturing the redshift uncertainties of our estimates, we
could not efficiently marginalise over these realisation during the cosmological
inference, due to computational constraints. Our marginalisation strategy fol-
lowed the one adopted in Porredon et al. (2021a): we adopted the mean of the
SOMPZ+WZ samples as our fiducial n(z), and marginalised over a shift in the
mean and a stretch of the width of the distribution, using as priors the vari-
ances in the mean and widths of the SOMPZ+WZ n(z) samples. While this
strategy was deemed sufficient for this current work, we plan to implement the
full marginalisation scheme for subsequent analyses of the lens samples with
DES Y6 data.
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Appendix A

A.1 Magnification effects

We provide in this Appendix more details about the modelling of magnification
effects M(zi) in the cross-correlation signal between the unknown and reference
samples. Considering only the dominant terms (which account for the magni-
fication of the unknown sample by the reference sample and the magnification
of the reference sample by the unknown sample) and assuming linear bias, this
can be written as:

M(zi) =

∫
dθW (θ)

∫
dl l

2π
J0(lθ)

∫
dχ

χ2

×
[
brαuq

r
δq

u
κ + b

′
uαrq

u
δ q

r
κ

]
PNL

(
l + 1/2

χ
, z(χ)

)
, (A.1)

where the terms qδ and qκ read:

qδ(χ) = n[z(χ′)]
dz

dχ′ , (A.2)

qκ(χ) =
3H2

0Ωmχ

c2a(χ)

∫ χ(z=∞)

χ
dχ′n(z(χ′))

dz

dχ′
χ′ − χ

χ′ . (A.3)

In the above equations, n[z(χ)] is either nu(z) or nr,i(z) Under the approxima-
tion of thin redshift bins, we can write Eq. A.1 as a discrete summation over
redshift bins of width ∆χ:

M(zi) = br(zi)αu(zi)
∑
j>i

[Dijnu(zj)] + b
′
u(zi)αr(zi)

∑
j>i

[Dijnu(zi)] , (A.4)

with

Dij =
3H2

0Ωm

c2
wDM(zi)

χ(zi)

a(zi)

χ(zj)− χ(zi)

χ(zj)
∆χj . (A.5)
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The magnification coefficient α, for an ideal flux limited sample, can be
related to the slope s of the cumulative number counts evaluated at flux limit:
α ≡ 2.5s− 1, with the slope formally defined as

s =
d

dm
log10 n(< m), (A.6)

where n(< m) is the cumulative number count as a function of magnitude
m, and s is to be evaluated at the flux limit of the sample. For a sample
which is not flux limited, evaluating the coefficient s is more complicated, and
Eq. A.6 can not be used. We use two different methods to estimate such
coefficients for our samples, depending on whether we estimate them on data
or on simulations (see below for further details). Estimates of α for both the
reference and unknown samples are needed to properly model magnification
effects.

In the Y3 method we model magnification effects according to Eq. A.4.
While we absorb the contribution due to bu to the clustering signal into the
Sys(z, s) function, we leave b′u as a free parameter in the magnification term.
We also leave αu as a free parameter, and marginalise over both parameters an-
alytically when computing the likelihood. By doing so, we absorb uncertainties
not only in these values but also in br, αr and in the linear-bias model adopted
for magnification. Hence, formally, the b′u value appearing in the magnification
is not assumed to equal the bu that might multiply wDM. We do not implement
redshift dependence of p = {bu, αu} (although the formalism would allow it)
because magnification signals are important only over limited ranges of z (i.e.,
in the tails, see, e.g., Gatti & Vielzeuf et al. 2018) for a given tomographic bin
of the WL sources.

A.1.1 Magnification coefficients estimates

In order to estimate the magnification coefficients of our samples, we adopt two
different strategies. For the coefficients in data we use Balrog image simula-
tions (Suchyta et al., 2016; Everett et al., 2020a) in a process briefly described
here. Galaxy profiles are drawn from the DES deep fields (Hartley & Choi
et al., 2020) and injected into real DES images. The full photometry pipeline
(Sevilla-Noarbe et al., 2020), the RedMaGiC , MagLim, and WL sample selec-
tion are applied to the new images to produce simulated samples with the same
selection effects as the real data. To compute the impact of magnification, the
process is repeated, this time applying a constant magnification to each injected
galaxy. The magnification coefficients are then derived from the fractional in-
crease in number density when magnification is applied. This method captures
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the impact of magnification on both the galaxy magnitudes and the galaxy
sizes, including all sample selection effects and potential observational and sys-
tematic effects. See Everett et al. (2020a); Elvin-Poole et al. (2021) for further
details. The coefficients have been estimated for RedMaGiC in 5 wide redshift
bins, centered at z = (0.25, 0.425, 0.575, 0.75, 0.9): yielding the magnification
coefficients αRedMaGiC

r = (0.3± 0.7,−1.5± 0.5,−0.7± 0.4, 1.2± 0.5, 1.0± 0.5).
The coefficients for MagLim are instead computed in 6 bins, centered at
z = (0.3, 0.4075, 0.625, 0.7075, 0.9, 1.0) and are αMagLim

r = 0.2 ± 0.3, 0.1 ±
0.3, 0.9 ± 0.2, 1.0 ± 0.2, 0.8 ± 0.5, 1.5 ± 0.7. The accuracy of these estimates
is limited by the number of Balrog injections, which are scarce for a sam-
ple as bright as the lens samples. Since the full-shape method formally re-
quires values of the magnification coefficients for each of the bins of the Red-
MaGiC and MagLim sample, we interpolate these values in z using the
scipy routine interp1d. Although this procedure might not be too accu-
rate given the large uncertainties of the values of αr, magnification effects
are largely negligible, such that the interpolation details should not impact
our main results. For the WL sample, using the same methodology, we infer
αu = (−0.4± 0.2,−0.21± 0.10, 0.00± 0.10, 0.31± 0.07), for the 4 tomographic
bins, respectively. Note that these values do not have to be interpolated.

For the values estimated for the samples in simulations we adopt a different
strategy. In particular, we use the estimated convergence, κ, computed at the
location of each galaxy, to apply a small magnification to the galaxy magni-
tudes (∆m), and then select our samples with and without this ∆m applied
and compute the fractional change of objects passing the selection ∆N/N in
10 equally spaced κ bins. The gradient of this relation is then related to the
magnification coefficient (Elvin-Poole et al., 2021). This method only captures
the effect of magnification on the galaxy fluxes, as it is the only effect ex-
pected in simulations. We estimate αRedMaGiC

r = (0.2±0.4, 0.05±0.15, 0.00±
0.08, 1.11 ± 0.12, 1.18 ± 0.06) for the RedMaGiC sample, αMagLim

r = (0.64 ±
0.04, 1.04± 0.02, 1.08± 0.02, 1.2± 0.01, 1.42± 0.01, 1.52± 0.03) for MagLim,
and finally αu = (−0.365±0.002,−0.655±0.002,−0.447±0.002, 0.836±0.002)
for the WL sample.

Last, we note that estimates of the magnification coefficients are not avail-
able for BOSS/eBOSS galaxies, as we did not try to reproduce the complex
BOSS/eBOSS selection function within Balrog image simulations. We also
did not estimate these coefficients for the simulated BOSS/eBOSS sample This
is not a problem, as we verify below that BOSS/eBOSS does not have the sen-
sitivity to measure magnification effects. When formally needed (for the full-
shape method), though, we adopted the same coefficients as the RedMaGiC

137



A.2. FULL ŴUR MODEL
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sample.

A.1.2 Magnification impact on the clustering measurements

Magnification effects are modelled over the full range of redshift, using as input
the estimated magnification coefficients. Nevertheless, their impact is strongly
reduced by the combination with the SOMPZ likelihood, which enforces the
tails of the redshift distributions to have a small amplitude. To roughly asses
the impact of the exact values of the magnification coefficients αr and αu, we
performed the following test, both in simulations and on data: we verified
that assuming values for αr or αu that are −1× the fiducial ones resulted
in shifts ∆⟨z⟩ < 10−3. This highlight the importance of combining SOMPZ
and clustering information to achieve a more robust estimator of the redshift
distributions.

A.2 Full ŵur model and analytical marginalisation

We provide here more details about the implementation of the full-shape method.
The method assigns a likelihood (Eq. 7.6) of the observed wur(zi) given a pro-
posal for the redshift distributions {nu(zi)} along with a set of other relevant
parameters. The likelihood uses the model in Eq. 7.5. We will assume that the
values of the dark-matter correlation wDM(zi), the reference-sample properties
br(z) and αr(z), and the magnification coefficients Dij are provided along with
nu(zi). We will consider as nuisance parameters the properties of the unknown
population, namely the αu(z) and bu(z) used in magnification terms; plus any
parameters s of the Sys(z, s) function that allows for systematic errors.

We will assume here that αu and bu are independent of redshift, though
in principle a more general function, linear in some parameters, can be used
without altering any of the methods herein. We note that we did not multiply
the magnification terms by the systematic function: despite the fact that the
magnification terms are not immune to systematic errors, we assumed that it
was not necessary to further modelling those, as the αr, αu and b̄u parameters
provide enough flexibility to the model and the magnification signal is much
smaller than clustering to start with. We also note that the bu parameter is
used only in the magnification term, and hence can be independent of the bias
for clustering that is absorbed into the Sys(z, s) function. This allows for the
systematic errors in the magnification term to differ from those in the clustering
term.

The systematic-error function for clustering is given the exponentiated poly-
nomial form in Eqs. 7.2 and 7.3. Tuning the order M allows us to adjust the
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Figure A.1: Likelihood of the shift of the mean of the redshift distributions obtained using the
full shape method in simulations, and using true redshift distributions (but shifted around
their mean) as proposals distributions.

smoothness of the function, and exponentiation allows us to draw the coeffi-
cients s from 1-d Gaussian priors while maintaining positive Sys(z, s). Adjust-
ing the σs values of these priors tunes the RMS of the systematic variations,
in a way made predictable by the orthogonality of the Legendre polynomials.
We wish for independent, uniform Gaussian priors on the si to propagate into
RMS variation of log[Sys(z, s)] that is approximately independent of z over
[zmin, zmax]. The Legendre polynomials have this property over most of their
nominal domain u ∈ [−1, 1], but not near the edges of this range. For this
reason we map [zmin, zmax] → [−0.85, 0.85], as indicated by Eq. 7.3.

Eq. 7.6 requires us to marginalize over the nuisance-parameter vector q =
{p s} (with p = bu, αu). Doing so as part of a Markov chain would be un-
weildly, introducing 8 free parameters for each of the 4 tomographic bins times
2 reference samples. It is far better to execute the marginalization on the fly
during sampling if possible. The log-likelihood is not quite quadratic in q—the
exponentiation of the polynomial in Sys(z, s) makes the model ŵur non-linear
in s. We opt to linearize the model about its maximum s0 = {sk,0}:

Sys (zi, s) ≈ Sys (zi, s0)× [
1 +

M∑
k=0

√
2k + 1

0.85
Pk(u)sk,0 (sk − sk,0)

]
, (A.7)

The deviation of the data from the model can then be rewritten in linear form,
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with wur being a vector over redshifts, as

wur − ŵur = c(q0)−Aq (A.8)

where c is a vector independent of q and A is a matrix composed of the linear
terms in Eq. A.7 and elements of the magnification terms.

If we assume the nuisance parameters we want to marginalise over to have
a Gaussian prior q ∼ N (µq,Σq) , we can write the full likelihood as follows:

LWZ ≈ |2πΣwz|−1/2|2πΣp|−1/2×∫
dq exp

[
−1

2
(c−Aq)T Σ̂−1

wz (c−Aq)

]
×

exp

[
−1

2
(q− µq)

T Σ̂−1
q (q− µq)

]
, (A.9)

This is a Gaussian integral that can be reduced to linear algebra.
In summary, the algorithm for the marginalization in Eq. 7.6 is:

1. Find the values q0 which maximize the integrand. This is done using
Newton iterations.

2. Evaluate the vector c and matrix A at this value of q0.

3. Substitute these and the known Σwz, µq, and Σq into the analytic result
for the Gaussian integral above.

Although this marginalization is approximate, it does not actually need to
be exact, because the chosen functional form for Sys(z, s) is somewhat ar-
bitrary. All that is necessary is that the algorithm yields a likelihood L of
the clustering-z data given a proposed nu(z) that decreases in a meaningful
way and robust way as the data move away from the naive linear model. We
prove that the full shape method recovers the true n(z) within uncertainties
in §6.3, assuming the SOMPZ realisations as nu(z) proposals. Here we also
show the result of a simpler test, performed in simulations, where the nu(z)
proposals are simply taken to be true redshift distributions shifted around
their mean. This is a useful test because it is shows that the methodology
is unbiased independently of the SOMPZ information. We use Eq. A.9 to
assign each true nu(z)s (shifted around their mean) a weight, using the clus-
tering measurement and the magnification coefficients from the simulations.
The key result is then the likelihood of the shifts ∆z, which has to be statis-
tically compatible with 0. This is shown in Fig. A.1; in particular, we obtain
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∆z = 0.002± 0.008,−0.013± 0.011,−0.016± 0.008, 0.002± 0.008 for the 4 to-
mographic bins, which indicates statistical compatibility with the truth. The
models are a good fit to the data, with χ2 = 1.29, 0.67, 0.72, 0.63 for the Red-
MaGiC sample, and χ2 = 1.19, 1.20, 0.58, 0.88 for the BOSS/eBOSS sample.
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Appendix B

B.1 Validation in simulations

The validity of our methodology and pipeline has been tested in the Buzzard
N-body simulation, introduced in Section 4.8. The measurements of redshift
distributions using both phenotypes and clustering were validated in simula-
tions to ensure unbiased estimates with respect to the true redshift distribu-
tions. The MagLim sample has been recreated in the Buzzard simulations, as
described in Section 4. The sample selection has been altered to reproduce as
faithfully as possible the number density and color distributions of the data.

To replicate the SOMPZ methodology, we selected one of the 300 deep
fields (and the correspondent Balrog and redshift samples) produced for the
SOMPZ method uncertainty characterisation presented in section 7.2.1. We
then proceeded to perform the 3sDir analytical sample variance estimation for
that one specific realisation. The geometry and resolution of the SOM used
in simulations are the same as the ones used in data. The major difference
with the methodology applied in data is that we used as redshifts the true
values from the Buzzard simulations, and we considered as redshift sample
only the galaxies located in deep sample of the size of the COSMOS field (1.38
deg2), therefore not recreating three different samples. The 3sDir evaluation of
the uncertainty in simulation has been modified accordingly, so as to account
for the reduced area of the redshift sample. This means that the shot noise
contribution to the total error budget in simulations is slightly larger than the
one data. The SOMPZ redshift distributions, and their uncertainties estimated
through the 3sDir method, are in agreement with the true distribution, as
shown in Figure B.1.

We also repeated in simulations the same procedure as for data also for
the WZ estimates. We created a mock BOSS/eBOSS catalog to use as a ref-
erence sample. As in data, also in simulations the BOSS/eBOSS sample is
divided into 50 bins spanning the 0.1 < z < 1.1 range of the catalog (width

143



B.2. COSMOLOGICAL AND
NUISANCE PARAMETERS

APPENDIX B. - SOMPZ

∆z ∼ 0.02). Before proceeding with combining the SOMPZ and WZ infor-
mation through the combined likelihood, the compatibility between SOMPZ
and WZ was checked. This was tested by inferring the windowed means and
widths of the WZ and SOMPZ redshift estimates, following (Gatti & Giannini
et al., 2020a). The window has been determined such that magnification ef-
fects related to the WZ measurements can be neglected. As for WZ, we used
a “simple ” estimator for the redshift distribution, inverting Eq. 7.5 and ignor-
ing magnification effects (this is possible as we are considering only windowed
quantities). The means and widths computed in this way for the two methods
were compatible within statistical (and systematic) error, hence the SOMPZ
and WZ could be combined together.

The posterior obtained in simulations from multiplying the two likelihoods
is shown in Figure B.1, in which the effect of the combination immediately
stands out: the additional information from clustering redshifts places a tight
constraint on the shape of the n(z), while still being in agreement with the true
distribution. This larger constraining power derives from the fact in clustering
the number density for each redshift bin correlates across neighbouring bins,
which restrains the joint likelihood to prefer smoother realisations and reject
the ones with more uncorrelated values of clustering.

It is also worth mentioning that a full cosmological analysis was run using
the datavector and SOMPZ+WZ n(z)in the Buzzard simulations, fully recov-
ering the input value.

B.2 Cosmological and nuisance parameters

In Table B.1 are listed all the parameters varied in our fiducial analysis.

B.3 Redshift uncertainties sampling strategy

How redshift uncertainties are propagated in the cosmological analysis can have
an impact on the final result. In this section we discuss different strategies to
marginalise over the redshift uncertainties of our sample during the cosmolog-
ical inference. Because we have can rely on a full ensemble of n(z) shapes
capturing our redshift uncertainties, we can compare three different sampling
methods:

• Shift: we compress the realisations by computing their average, and
marginalise over a shift on the mean;

144



B.3. REDSHIFT UNCER-
TAINTIES SAMPLING
STRATEGY

APPENDIX B. - SOMPZ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

0

2

4

6

8

SIMULATIONS

Truth
SOMPZ
SOMPZ+WZ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

0

1

2

3

4

5

6

7

8

Figure B.1: Estimated n(z) in four tomographic bins using a 12x12 cell deep SOM and 32x32
cell wide SOM trained on Buzzard simulations. In the first row we have bin 1 and 4, in the
second bin 2 and 5, and in the third bin 3 and 6. The Redshift sample used here has 100000
galaxies drawn from 1.38 deg2, the deep sample is drawn from three fields of size 3.32, 3.29,
and 1.94 deg2, respectively from the Buzzard simulated sky catalog. The solid line marks
the true value, the outlined violin are the 3sDIR set of n(z) and the solid violins are the
realisations once combined with clustering redshifts. We can appreciate the effect of the
combined likelihood, resulting in distributions more constrained in terms of shape, and still
consistent with the truth.
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Table B.1: The parameters and their priors used in the fiducial MagLim ΛCDM and wCDM
analyses. The parameter w is fixed to −1 in ΛCDM. Square brackets denote a flat prior,
while parentheses denote a Gaussian prior of the form N (µ, σ).

Parameter Fiducial Prior
Cosmology

Ωm 0.3 [0.1, 0.9]
As10

9 2.19 [0.5, 5.0]
ns 0.97 [0.87, 1.07]
w -1.0 [-2, -0.33]
Ωb 0.048 [0.03, 0.07]
h0 0.69 [0.55, 0.91]

Ωνh
2103 0.83 [0.6, 6.44]

Linear galaxy bias
bi 1.5, 1.8, 1.8, 1.9, 2.3, 2.3 [0.8,3.0]

Lens magnification
C1 0.43 (0.43, 0.51)
C2 0.30 (0.30, 0.48)
C3 1.75 (1.75, 0.39)
C4 1.94 (1.94, 0.35)
C5 1.56 (1.56, 0.71)
C6 2.96 (2.96, 0.95)

Lens photo-z
∆z1l 0.0 (0.0, 0.0164)
∆z2l 0.0 (0.0, 0.0100)
∆z3l 0.0 (0.0, 0.0085)
∆z4l 0.0 (0.0, 0.0084)
∆z5l 0.0 (0.0, 0.0094)
∆z6l 0.0 (0.0, 0.0116)
σz1l 1.0 (1.0, 0.0639)
σz2l 1.0 (1.0, 0.0624)
σz3l 1.0 (1.0, 0.0315)
σz4l 1.0 (1.0, 0.0409)
σz5l 1.0 (1.0, 0.0515)
σz6l 1.0 (1.0, 0.0650)

Intrinsic alignment
ai (i ∈ [1, 2]) 0.7, -1.36 [−5, 5 ]
ηi (i ∈ [1, 2]) -1.7, -2.5 [−5, 5 ]

bTA 1.0 [0, 2]
z0 0.62 Fixed

Source photo-z
∆z1s 0.0 (0.0, 0.018)
∆z2s 0.0 (0.0, 0.013)
∆z3s 0.0 (0.0, 0.006)
∆z4s 0.0 (0.0, 0.013)

Shear calibration
m1 0.0 (−0.006, 0.008)
m2 0.0 (−0.010, 0.013)
m3 0.0 (−0.026, 0.009)
m4 0.0 (−0.032, 0.012)
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• Shift and stretch: we compress the realisations by computing their
average, and marginalise over both a shift on the mean and on a stretch
on the width;

• Full shape: we provide as input all the produced realisations and we
rank them by one of their properties using the Hyperrank method (Cordero
et al., 2020), marginalising over the full shape of the distributions.

Using only shifts is the methodology usually adopted to model redshift
uncertainties in weak lensing sample, as the weak lensing kernel is mostly sen-
sitive to the mean of the redshift distributions. On the other hand, clustering
and galaxy-galaxy lensing measurements are also very sensitive to the width
of the lens redshift distributions; therefore, the shift and stretch approach is
preferred. The full shape marginalisation, in theory, is more accurate, because
it accounts for the uncertainties in the higher order moments of the distribu-
tion; however, depending on the science case, it might not make a huge impact
on the final constraints. The full shape marginalisation is implemented via
hyperrank (Cordero et al., 2022), which is an algorithm that orders realisa-
tions of the ensemble according to a parameter, which facilitates the sampling
and marginalization over the n(z) ensemble within the cosmological likelihood
Markov chains. Hyperrank was also implemented for the WL sources, although
it had a negligible impact on the results. The quantity chosen for the ranking
in that case was the mean. We decided for this case it would be more appro-
priate to perform the optimised ranking of the realisation by the 68% sigma
rather than the mean, and we tested it indeed improved the performance of
the sampling. To test the different sampling strategies, we built a synthetic
noiseless data vector based on theory predictions at fixed cosmology and we
used as n(z) the realisations average of the SOMPZ+WZ estimates in data.
We then marginalised over redshift uncertainties using the three approaches
aforementioned. We performed this test both using 4 or 6 lens bins, although
here we are just going to show the posteriors obtained with 4 bins as they are
not qualitatively different from the ones with 6 bins. The results of this test
are shown in Figure B.2, where we show the posterior of σ8, Ωm and for sake
of simplicity, two out of the four galaxy-matter linear biases.

Focusing on the shift and shift+stretch contours, one can notice that the
width of the contour in the direction perpendicular to the degeneration axis
is larger for the shift+stretch. This is related to impact of the additional
marginalisation over the width of the distributions. One caveat is that in our
marginalisation scheme (as adopted in the main DES Y3 2x2pt analysis), we
are implicitly neglecting correlations between the uncertainties in the mean
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and widths of the distributions, which usually show a certain degree of corre-
lation (from 10% to 30%, depending from the tomographic bin). These are
neglected, which might translate in a slight overestimation of our constraints.
When marginalising over the uncertainties using the hyperrank framework, on
the other hand, such correlations are implicitly accounted for. Indeed, one
can notice that the hyperrank posteriors are slightly tighter than the shift or
shift-stretch posteriors.

Unfortunately, we did not manage to successfully apply hyperrank to the
data. When performing the cosmological analysis on data using hyperrank,
we found significantly less smooth posteriors compared to our tests on simu-
lations. A similar behaviour has also been found when applying hyperrank to
the DES Y3 source sample Amon et al. (2022), and it has been interpreted as
a consequence of a possible larger degree of complexity of the redshift distribu-
tions of our data compared to simulations. We attempted both to artificially
smooth our n(z) and to increase the number of samples from the SOMPZ+WZ
method, without reaching a satisfactory level. Due to the very high computa-
tional cost of running a cosmological chain using hyperrank, we could only test
a few different levels of smoothing before deciding to abandon hyperrank for the
present work, and choose the shift+stretch as photo-z uncertainty marginal-
isation methodology. For DES Y6, we plan to apply several tools that will
speed up our cosmological inference, enabling more tests on hyperrank, which
has great potential and its implementation is a goal for the DES Y6 analysis.

B.3.1 Cosmological constraints with clipped n(z) tails

Here we test whether the difference between DNF+WZ and SOMPZ+WZ con-
straints (Fig. 8.1) were only due to the different treatment of redshift outliers
and of the tails of the redshift distributions. We artificially removed the tails
from the DNF+WZ and SOMPZ+WZ n(z) (i.e., we set the distributions to
zero), and repeated our cosmological analysis. We used as definition of the
tails the same interval used to calibrate the DNF distribution with the WZ
constraints adopted in Porredon et al. (2021a). Results for the ΛCDM case,
4 bins and fixed magnification are shown in Fig. B.3. By removing the tails,
both posteriors are shifted, which means that the calibration of the tails of the
redshift distribution is important for our cosmological analysis. Since the two
posteriors are shifted but they still do not overlap, we can assume that the
differences in the bulk of the redshift distributions inferred by two methods is
also crucially driving the differences at the constraints level seen in Fig. 8.1.
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Figure B.2: Posterior distributions of the cosmological parameters Ωm, S8, and two out
of four of the galaxy-matter biases (b2, b4) for the ΛCDM analysis involving 4 bins and
fixed magnification parameters. These analyses have been obtained assuming a theoretical
datavector and adopting different marginalisation schemes on the redshift distribution of the
lens sample.
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Figure B.3: Same as the left panel of Fig. 8.1, but with two additional posteriors overplotted
representing the constraints obtained using the redshift distributions with “clipped” tails.
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Model bins S8 Ωm σ8 w p-value
ΛCDM 4 bins 0.76± 0.04 0.31± 0.04 0.75± 0.07 - 0.052
ΛCDM 6 bins 0.77± 0.04 0.28± 0.03 0.80± 0.07 - 0.033
wCDM 4 bins 0.77± 0.05 0.32± 0.05 0.76± 0.08 −1.0± 0.3 0.061
wCDM 6 bins 0.80± 0.04 0.33± 0.04 0.77± 0.06 −0.7± 0.2 0.045

Table B.2: Constraints on the cosmological parameters S8, Ωm, and σ8 using flat priors on
the magnification parameters. For each parameter we report the mean of the posterior and
the 68 per cent confidence interval. We also report the PPD goodness-of-fit p-value.

B.4 Flat prior magnification

We tested the impact on the 2x2pt measurement of marginalising over the
magnification parameters using wide flat priors, instead of the Balrog esti-
mated Gaussian priors. Here we report the ΛCDM and wCDM results using
free magnification with flat priors. All the other parameters and priors in the
analysis are left unchanged.

We show the posteriors on the cosmological parameters Ωm, and S8 in Fig.
B.4, and we report the values in Table B.2. For ΛCDM, both the 4 and 6
bins case the posteriors prefer lower S8 values compared to the fixed magni-
fication case. This is a consequence of an interesting degeneracy between S8
and the magnification parameters, and the fact that some of the magnifica-
tion posteriors differ from the Balrog estimates. This is shown in Fig. B.5.
The discrepancy between the two is evident in bin 2 and 3. While the Balrog
estimates are still in the tails of our data posteriors, indicating that these dif-
ference might only be a statistical fluke, the data prefers significantly higher
values, which are atypical for a magnitude-limited sample at these redshifts.
One explanation might be related to the MagLim selection, which is not a
pure magnitude-limited selection, but involves DNF estimates; in case of a
high rate of photo-z outliers, the selection might significantly differ from the
ideal magnitude-limited case, admitting larger values of the magnification co-
efficient. On the other hand, if the high values preferred by the data are simply
a result of a statistical fluctuations, including the cross-correlation measure-
ments between different lens bins in our data vector could help to improve our
constraints, as these measurements are mostly sensitive to redshift outliers and
magnification parameters. We leave this extension of our data vector to future
works (e.g., DES Y6).

Freeing the magnification parameters shifts w towards the upper edge of
the prior (w = −0.3), and contrary to the ΛCDM case, leaves unaltered the
constraints on S8. This indicates that in the wCDM case, the values of the
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Figure B.4: Posterior distributions of the cosmological parameters Ωm, and S8 and w. The
2D marginalised contours in these figures show the 68 per cent and 95 per cent confidence
levels. Left, ΛCDM: 1) 4 bins and fixed magnification parameters; 2) 4 bins and free mag-
nification parameters with flat priors; 3) 6 bins and free magnification parameters with flat
priors. Right, wCDM: 1) 4 bins and fixed magnification parameters; 2) 6 bins and fixed
magnification parameters, 3) 4 bins and free magnification parameters with flat priors; 4) 6
bins and free magnification parameters with flat priors.

magnification parameters are more degenerate with w rather than with S8.
The statistical distance with respect to the Planck measurement has also

been computed. Interestingly, for the flat prior case, when including the last
two bins the tension rises to 2.96σ for ΛCDM with free magnification. We
do not think the increment in the tension for the 6 bins case is related to the
particular values of the magnification parameters of the last two bins, as the
data prefer values close to the Balrog prior (Fig. B.5). For the wCDM case,
the tensions are milder (0.46σ and 2.29σ for 4 and 6 bins, respectively, at fixed
magnification).

152



B.4. FLAT PRIOR
MAGNIFICATION

APPENDIX B. - SOMPZ

2 0 2 4 6

1

2 0 2 4 6

2

2 0 2 4 6

3

2 0 2 4 6

4

2 0 2 4 6

5

2 0 2 4 6

6

SOMPZ+WZ - 6 bins SOMPZ+WZ - 4 bins DNF+WZ - 4 bins

Figure B.5: Posterior distributions of magnification coefficients for 4 and 6 bins. The grey
bands represent 68 per cent and 95 per cent confidence interval of the the prior values
from Balrog; the colored lines represent the posteriors from the ΛCDM analyses, comparing
SOMPZ+WZ and DNF+WZ posteriors.
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