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Abstract
Although di�erent tissues showcase di�erences in codon usage and
anticodon tRNA repertoires, the codon-anticodon co-adaptation of
multicellular eukaryotes is not completely understood. On the one
hand, coding sequences are determined by manifold overlapping factors
(codons, mRNA stability, splicing, etc.) and, on the other hand, tRNAs
are intricately regulated at multiple levels (expression, modi�cation,
aminoacylation, fragmentation). In this thesis, we uncover the
importance of tRNA and codon usage on mRNA translation and its
tissue-speci�city applying a systems biology approach to human
high-throughput datasets. First, analyzing the tRNA abundance in over
8,000 tumor and healthy samples unveil that the variability of the tRNA
pool is largely related to the proliferative state across tissues. We
investigate the correspondence between tRNAs and human diseases,
including cancer and viral infections. By leveraging proteomics and
transcriptomics datasets, we next identify how transcripts in di�erent
tissues have distinct codon preferences. Finally, we discover a regulatory
mechanism of tissue-speci�c translation through the coordination of
tRNA modi�cation patterns and tRNA aminoacylation. Altogether,
this work not only provides evidence of tissue-speci�c tRNA expression
and protein synthesis, but also makes this knowledge applicable to the
development of tissue-targeted therapeutics.

Keywords: functional genomics, translation, codon usage, tRNA,
machine learning.
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Resum
Malgrat teixits diferents presenten diferències en l'ús de codons i en els
repertoris d'anticodons dels ARNt, el coneixement sobre la
co-adaptació entre codó-anticodó en eucariotes multicel·lulars és
incomplet. D'una banda, les seqüències codi�cants depenen de diversos
factors superposats (codons, estabilitat dels ARNm, empalmament,
etc.) i, de l'altra, els ARNt són regulats de forma complexa a múltiples
nivells (expressió, modi�cació, aminoacilació, fragmentació). En aquesta
tesi, descobrim la importància dels ARNt i l'ús de codons en la
traducció d'ARNm i la seva especi�citat de teixit emprant mètodes de
biologia de sistemes en conjunts massius de dades. Primer, l'anàlisi de
l'abundància dels ARNt en més de 8.000 mostres sanes i tumorals revela
que la variabilitat del conjunt d'ARNt està lligada a l'estat proliferatiu
dels teixits. Investiguem la correspondència entre els ARNt i malalties
humanes, com ara el càncer i les infeccions víriques. Utilitzant dades de
proteòmica i transcriptòmica, a continuació identi�quem com els
transcrits de teixits diferents tenen preferències de codons diferents.
Finalment, descobrim un mecanisme de regulació de la traducció
especí�ca de teixit a través de la coordinació dels patrons de modi�cació
i d'aminoacilació dels ARNt. En conclusió, aquest treball no només
aporta evidència sobre l'especi�citat de teixit en l'expressió d'ARNt i en
la síntesi de proteïnes, sinó que també contribueix al desenvolupament
de teràpies dirigides a teixits.

Conceptes clau: genòmica funcional, traducció, ús de codó, ARNt,
aprenentatge automàtic.
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Preface
In February 2001, Nature and Science published the �rst draft of the
human genome. It constituted the beginning of a new era where
sequencing would become routine in research and clinical practice.
However, how far are we from the initial prospects of the Human
Genome Project? In the announcement press release, the White House
advocated:

Scientists will be able to use the working draft of the human
genome to: (1) Alert patients that they are at risk for certain
diseases; (2) Reliably predict the course of disease; (3) Precisely
diagnose disease and ensure that the most effective treatment is
used; and (4) Develop new, more effective treatments at the
molecular level.

President Bill Clinton (June 26th, 2000)

More than twenty years later, we are still far from achieving 100% of
these expectations, but why? Stemming from the classic experiments by
Beadle and Tatum in Neurospora crassa (1941), biological research has
followed for decades the “one gene - one protein - one function”
paradigm (i.e. molecular biology paradigm), which is based on two
assumptions: (1) genotype and phenotype are directly linked, and (2)
proteins are organized in linear pathways, in which downstream
functions are determined by upstream elements. From this perspective,
one would expect that knowing the entire human genome with over
20,000 genes, we should now be able to know all the subsequent
proteins and their function. In fact, technological advances allow us to
identify, quantify and perturb genomes, transcriptomes, proteomes,
metabolomes; but the links between genotype and phenotype have
scarcely been established. At the start of this thesis, it was thus apparent
that life was more than the sum of its parts, and therefore we needed a
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holistic approach to the genotype-phenotype challenge: the systems
biology paradigm.

In systems biology, we take systems as a network of nodes and edges, and
thus place importance not only to the parts but also to their
connections. With this in mind, we can then think of phenotypes as the
outcome of a certain network state, and predict its response to speci�c
internal (e.g. a gene knock-out) or external (e.g. a nutrient deprivation)
perturbations. This has been the framework that has guided my thesis.

In this coming of age of the classic central dogma of biology, the �ow of
information along DNA-RNA-protein is no longer linear and
unidirectional. DNA is accurately structured and epigenetically
modi�ed, then RNAs produced in transcription are also �nely
processed, spliced, structured, modi�ed and degraded and have
manifold upstream and downstream roles both as coding and
non-coding sequences, and �nally proteins are synthesized during
translation, modi�ed, translocated, folded individually or forming
complexes, among many other interconnected processes. Within this
broad picture, my thesis focuses on the regulation of translational
elongation during protein synthesis, and more speci�cally on the role of
tRNAs in decoding di�erent three-letter combinations of nucleotides
along coding sequences.

In the �rst chapter of the thesis, I introduce the necessary concepts and
background of this work, as well as describe the state of the art. In the
second chapter, I de�ne the main objectives of the thesis. In chapters
3-6, all the performed studies with their corresponding methods and
results are exposed and discussed. Finally, in the last chapter, I provide a
general overview and discussion of the research in the light of the
starting objectives.
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Chapter 1
Introduction

1.1. The Central Dogma of molecular biology

The typical human body is composed of dozens of di�erent tissues and
hundreds of cell types. While they all share a common genotype, their
gene expression needs to be �nely regulated at many levels to showcase
distinct phenotypes and functions. As �rst postulated by Crick in 1958,
the central dogma of molecular biology de�nes that genetic information
at the DNA is �rst copied into a messenger RNA (mRNA) molecule
during transcription, which is �nally used as a template for protein
synthesis during translation (1). While many variations of the central
dogma exist (mRNA splicing, non-coding RNAs, retrotranscription in
RNA viruses, etc.), the overall �ow of genetic information from DNA
to proteins is universal among eukaryotes, archaea and prokaryotes (2).

Among coding sequences, the term gene expression encompasses the full
process from reading the genetic instructions of DNA until producing a
functional protein (3). It constitutes a highly complex process with
many intricate regulatory mechanisms throughout multiple
information layers: chromatin architecture, mRNA processing and
export, RNA and protein interactions, metabolic allosterism, etc. In this
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Chapter 1

section, I will summarize the general interplay between DNA, RNA
and proteins (Fig. 1.1).

1.1.1. From DNA to mRNA: Transcription

The �rst step of gene expression is the copy of a DNA gene into a
single-stranded RNA nucleotide sequence—the transcript—during the
process of transcription (Fig. 1.1). Among all transcripts of a typical
human cell, the most abundant species are noncoding RNAs (ncRNA),
whose functions are the RNAs themselves and hence are not translated
into proteins (2). These include ribosomal RNAs (rRNA), which form
the structure of ribosomes to synthesize proteins; transfer RNAs
(tRNA), which are couplers between nucleotides and amino acids (see
section 1.3); small nuclear RNAs (snRNA), which participate in RNA
splicing and other nuclear processes; small nucleolar RNAs (snoRNA),
which process and modify rRNAs; or microRNAs (miRNA), which
inhibit expression of speci�c mRNAs and induce their degradation.
Globally, over 90% of the transcriptome is composed of rRNAs and
tRNAs, while mRNAs comprise only about 3-5% of total RNAs (2).

Figure 1.1. A schematic version of the gene expression pathway.
The expression of protein-coding genes starts with the transcription by RNA Pol II in
the nucleus. The resulting pre-mRNA is then spliced, 5’ capped, polyadenylated, and
exported to the cytosol, where ribosomes catalyze the mRNA translation. The
synthesized protein can finally adopt their functional three-dimensional structure.
During all this process, quality control and turnover mechanisms exist which
determine mRNA and protein half-lives.
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The enzymes that catalyze the phosphodiester bond between
ribonucleotides during transcription are called RNA polymerases.
Eukaryotes have three RNA polymerases: RNA polymerase I is in
charge of transcribing 5.8S, 18S and 28S rRNA genes; RNA polymerase
II transcribes most human genes, including all protein-coding ones; and
RNA polymerase III is responsible for transcribing tRNAs and some
other ncRNAs (2). To initiate the synthesis of mRNAs, RNA
polymerase II requires the binding of transcription factors to correctly
position at the promoter, unwind the double-stranded DNA, and start
the transcript elongation. Furthermore, this process occurs in the
context of histone-associated DNA in the form of chromatin, which is
regulated by chromatin remodeling complexes and epigenetic marks.

After transcription, eukaryotic mRNAs—so-called precursor mRNAs
or pre-mRNAs—undergo several processing steps: capping of the 5'
ends with 7-methylguanosine, removal of introns and junction of exon
sequences by RNA splicing, and polyadenylation of 3' ends (Fig. 1.1)
(2). Fully processed transcripts can then be exported from the nucleus to
the cytosol and translated into protein.

1.1.1.1. mRNA structure and degradation

The structure of single-stranded mRNA molecules is dependent on the
interactions between nucleotide base pairs, which can form extremely
complex and functional secondary and tertiary structures. Highly
structured transcripts are generally associated with longer half-lives (4),
with the exception of strong structures near the start codon, since
ribosomes require more energy to initiate translation and thus leave the
molecule unprotected from degradation (5,6).

The half-life of transcripts can be extremely variable, ranging between
the many hours of highly abundant genes, and the few minutes of
short-lived genes that need to be expressed in bursts (3,7). Mechanisms
responsible for degradation can be classi�ed into two categories: mRNA
surveillance mechanisms that degrade improperly processed transcripts,
and general mRNA turnover mechanisms. The �rst group includes the

3
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nonsense-mediated decay (NMD)—degrades mRNA containing
premature stop codons, generally because of incorrect splicing (8)—,
no-go decay (NGD)—degrades transcripts containing stalled ribosomes
due to damaged bases or blocking secondary structures (9)—, and the
non-stop decay (NSD)—degrades mRNAs not containing a stop codon
(10).

mRNA turnover is mainly determined by the gradual poly-A tail
shortening of transcripts (2). When the poly-A length is reduced below
~25 bases, the transcript is decapped and degraded by 5’-exonucleases.
In some cases, the decapping and degradation of mRNAs can also
happen through deadenylation-independent pathways (7). Some
transcripts can be degraded by an endonucleolytic cleavage, which is the
case of RNA interference pathways (11).

Figure 1.2. The universal genetic code and their cognate tRNA gene copy numbers
in the human genome.
The genetic code establishes the correspondence between the 20 amino acids (in
white) and the 64 codons (in light gray), which include three stop and 61 amino-acid
encoding codons. Amino-acid encoding codons are recognized during translation by
the anticodon of cognate tRNAs, which are variably abundant along the human
genome (12) (see colors). The base pairing between the third base of codons and the
first base of anticodons often follows non-Watson-Crick rules (see section 1.3.6).
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1.1.2. From mRNA to protein: Translation

Once the mRNA is exported from the nucleus to the cytosol, the
ribosomes are responsible for translating the nucleotide sequence into
another sequence of chemically distinct residues: amino acids (Fig. 1.1)
(2). In consequence, the code composed of 4 nucleotides (A, C, G, T/U)
needs to be translated into 20 amino acids, which precludes a 1-to-1
correspondence. In this combinatorial problem, nucleotides are
grouped in 43=64 possible triplets—so-called codons—that are
unambiguously assigned to the 20 amino acids. These rules constitute
the genetic code (Fig. 1.2), which is universal in all life forms with very
few exceptions for some particular codons, such as mitochondrial genes
(13).

Among all 64 codons, 61 of them encode for amino acids and the other
three are stop codons (a.k.a. non-sense or termination codons), which
signal the termination of translation. Out of 20 amino acids, 18 of them
can therefore be encoded by two or more codons, which are called
synonymous. During the process of translation, the adaptor molecules
responsible for recognizing the mRNA codons and binding the
corresponding amino acids are transfer RNAs (tRNA, see section 1.3)
(2). Brie�y, among the full tRNA structure, three bases in one of their
loops constitute the anticodon, which is in charge of pairing with the
complementary codon. However, in the human genome, there are only
46 di�erent anticodons that need to recognize 61 distinct codons (Fig.
1.2) (12). In consequence, some codons require non-Watson-Crick
base-pairing rules—so-called wobble base-pairing—which tolerate a
mismatch at the third codon position (14). Nucleotide modi�cations of
tRNAs play an important role in determining these base-pairing rules.

Eukaryotic ribosomes consist of a 60S large subunit—formed by the 5S,
28S and 5.8S rRNAs and ~49 proteins—and a 40S small
subunit—formed by the 18S rRNA and ~33 proteins (Fig. 1.3) (2).
The two subunits are separately assembled in the nucleolus and then
exported to the cytoplasm. Ribosomes contain four RNA binding sites;
one for the mRNA and three for tRNAs (aminoacyl or A site, peptidyl
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or P site, and exit or E site). During mRNA translation, the small
subunit contains the recognition interface between mRNA codons and
tRNA anticodons, while the large subunit catalyzes the formation of
peptide bonds, at a rate of ~5 amino acids per second (15,16). As a
result, the translation efficiency is de�ned as the rate of protein
production per mRNA transcript.

1.1.2.1. Translation initiation

The AUG codon for methionine constitutes the start codon of coding
sequences. Therefore, mRNA translation starts with the assembly on
the start codon of the 80S initiation complex containing the two
ribosomal subunits, the tRNAi

Met, and the mRNA (Fig. 1.3) (7).
Speci�cally, the small ribosomal subunit �rst binds to the tRNAi

Met at
the P site—tRNAi

Met di�ers from elongating tRNAMet, which can only
bind to the A site. Next, this complex recognizes the 5’ end of mRNAs
and starts scanning the sequence until �nding the �rst downstream
AUG, generally within the �rst 100 nucleotides. At this point, the large
ribosomal subunit joins the complex. The formation of the initiation
complex is coordinated by the eukaryotic translation initiation factors
(eIFs). While translation initiation is generally the rate-limiting step in
protein synthesis, it can be a�ected by ribosome stalling and collisions
during elongation (17,18).

1.1.2.2. Translation elongation

Once the initiation complex is formed, the peptide chain starts to
elongate, which is mediated by specialized proteins called elongation
factors (EFs) (7). In particular, the initiation complex contains an
occupied P site with the tRNAi

Met, while the adjacent A site is empty
and available for binding to another tRNA. Therefore, aminoacylated
tRNAs enter the A site in association with EF1ɑ·GTP as a ternary
complex (Fig. 1.3). When the incoming tRNA correctly base-pairs with
the corresponding mRNA codon, GTP is hydrolyzed allowing a tight
codon-anticodon binding. The peptidyl-transferase reaction then takes
place between the P-site peptide and the A-site amino acid. Upon
hydrolysis of EF2·GTP, the ribosome translocates a distance of one
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codon along the transcript; the E site contains the non-aminoacylated
tRNAi

Met, the P site contains the peptidyl-tRNA, and the A site is
available again to repeat the process. In the following round, the E-site
tRNA will be ejected upon the EF1ɑ·GTP hydrolysis. During the
elongation process, the nascent polypeptide slides through a channel in
the large ribosomal subunit (7).

Figure 1.3. mRNA translation in eukaryotes.
Elements required for translation include ribosomes, aminoacylated tRNAs and the
mRNA. In initiation, by orchestration of several eIFs, the complex formed by the small
subunit and tRNAi

Met starts scanning the mRNA until the initiator AUG codon is
recognized, and then the large unit is incorporated. In elongation, three sequential
steps are successively repeated: the ternary complex with the cognate tRNA base
pairs with the A-site codon, the peptide bond is formed, and the ribosome
translocates to the next codon. When the stop codon is reached, the tRNA-like eRF1
binds at the A site and the eRF3 cleaves the peptidyl-tRNA bond of the last
incorporated tRNA.
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1.1.2.3. Translation termination

There stop codons (UAG, UAA, UGA) exist in the genetic code, which
need to be recognized by the elongating ribosome to terminate
translation. Two protein eukaryotic release factors (eRFs) have been
identi�ed: eRF1 resembles the structure of a tRNA and recognizes the
stop codons, eRF3 then promotes cleavage of the peptidyl-tRNA bond
(Fig. 1.3) (7).

To increase the rate of mRNA translation, multiple ribosomes are
actively translating one single mRNA molecule simultaneously,
generating polyribosomes or polysomes (7). Moreover, the mRNA folds
in translation forming a circular 3D structure that positions 5’ and 3’
ends closeby, and hence the ribosomal subunits and translation factors
can be e�ciently recycled.

1.1.2.4. Protein degradation

The lifespan of proteins can be extremely variable, since some proteins
are required in short bursts while others remain for the entire human
life, such as the crystallin proteins of the eye (7). There exist two main
degradation mechanisms in the cell: lysosomes and proteasomes (19,20).
The �rst consist of vesicles with an acidic lumen containing hydrolytic
enzymes, which can degrade damaged organelles and extracellular
proteins. On the other hand, most damaged, misfolded or regulated
intracellular proteins are enzymatically polyubiquitinated, which targets
them to the proteasome, an abundant ATP-dependent protease
complex.

1.1.3. The regulatory landscape of gene expression

As described in this �rst section of the introduction, the gene expression
pathway involves an intricate interplay of mechanisms that expand from
the gene to the functional protein. Therefore, each step in this process
can be regulated to determine the cell phenotype. With the advent of
simultaneous and system-wide measurements of transcriptomes and
proteomes, modeling e�orts indicate that ~50% of protein variability
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across human tissues is determined at the post-transcriptional level, and
hence cannot be explained by mRNAs alone (21).

The gene expression pathway is hierarchical, and the expressed products
are successively ampli�ed from DNA-mRNA-protein. Therefore, while
transcripts do not generally exceed the few thousands per cell, the
dynamic range of proteins can reach ~108 molecules/cell, which can
hence be more widely regulated (3). In fact, recent studies suggest that
post-transcriptional regulation has an important bu�ering role,
denoising the intrinsic variability of transcriptional bursts and thus
allowing a more robust control of gene expression (3,22). Furthermore,
given that translation is at the last steps of gene expression, its regulation
can generate much faster cellular responses than transcriptional control
(23).

1.2. The determinants of coding sequences

While synonymous codons lead to identical amino acid sequences, they
are not uniformly distributed in the genome or between di�erent
organisms—i.e. codon usage bias (CUB) (17,24,25). The CUB can have
a huge impact on gene expression at multiple levels, as observed both in
endogenous and heterologous proteins (26–28). In particular, coding
sequences are determined by multiple overlapping codes, including
determinants of transcription, epigenetics, splicing, folding, interactome
or translation (29). In this section, I will focus on the translation-related
e�ects of CUB in the human genome.

1.2.1. Codon composition along the human genome

The human genome has an average GC content of 40.5% (genome
assembly hg38), but this percentage increases to 51.1% for
protein-coding sequences and 55.3% considering only the GC content
at the third or wobble position of codons (GC3), which is the variable
position between synonymous codons (Fig. 1.2) (30). Humans, as most
mammal species, are therefore biased towards G/C-ending codons (Fig.
1.4A). Commonly used codons—mostly G/C-ending—are called
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preferred or optimal codons; the others are referred to as rare or
nonoptimal codons.

The GC content varies widely between chromosomal regions or
isochores, which is mostly caused by GC-biased gene conversion (31).
During meiotic recombination, biases in double strand break sites and
mismatch repair mechanisms favor the transmission of G/C over A/T
alleles. In consequence, isochores with higher recombination rates,
which correspond with higher expression levels in meiosis (32),
showcase higher G/C-ending CUB due to GC-biased gene conversion.

On the other hand, variation of CUB across genes is closely related to
mRNA translation at multiple levels (25). Optimal codons are
associated with higher translation elongation and initiation rates
(33,34), higher translation e�ciency (28), and lower premature
termination (35). In fact, changes in CUB of reporter genes in HeLa
cells show up to 46-fold di�erences in protein levels (27), which has
been widely exploited in biotechnology. For instance, in heterologous
gene expression, codon optimization is commonly applied to design
sequences that resemble the codon usage of highly expressed genes of
the host (36). Mispairing between tRNAs and codons can also hamper
translation fidelity, and a trade-o� exists between translation speed and
error rates (37). How these e�ects of CUB in translation are mediated
by human tRNAomes will be further discussed in section 1.3.6.

Recent evidence shows that CUB not only has an e�ect on protein
synthesis, but also on mRNA stability (38–40). Stable mRNA
transcripts are enriched in optimal codons, decoded by highly abundant
and aminoacylated tRNAs, while rare codons lead to mRNA decay. In
yeast, the DEAD-box helicase Dhh1 was identi�ed to bind to
slow-moving ribosomes and trigger the mRNA degradation (41).
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Figure 1.4. Codon composition of the human genome.
(A) Frequencies of all 61 amino-acid encoding codons in the human genome from
the CoCoPUTs database (30), ordered by the amino acid they encode. (B)
Overlapping factors that shape the codon usage along genes. (C) Principal
Component Analysis of the Relative Synonymous Codon Usage (RSCU) of human
genes. On this projection, the average RSCU of all GO Biological Process classes with
>40 genes are depicted, similar to Gingold et al. (42). Top and bottom classes are
colored and labeled. The contribution of each codon to the PC1 component is shown
at the bottom, where bars are colored based on the A/T vs G/C wobble base of
codons.
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1.2.2. Codon composition within genes

In addition to CUB di�erences across genes, there are several factors
that determine the choice of synonymous codons within genes (Fig.
1.4B) (24,43). First, coding sequences select for or against certain
regulatory motifs, such as microRNA binding sites, splicing control
elements, or nucleosome positioning (44). Interestingly, single-exon
genes and 5'-exons of multi-exon genes are generally more G/C-rich
(27).

On the other hand, a gradient from nonoptimal to optimal codons exist
at 5'-proximal ends of coding sequences by two main mechanisms: (a)
strong mRNA secondary structures can hamper translation initiation (5),
and (b) a codon ramp of rare codons slows translation elongation at the
beginning of genes to avoid ribosomal tra�c jams (45).

Folding of most proteins occurs cotranslationally in vivo, and hence
mRNA translation kinetics can alter protein folding and structure (25).
In general, weakly structured or disordered domains require longer time
to fold and are hence more sensitive to translation kinetics, while
well-structured domains fold more rapidly and robustly. For instance,
low-complexity proteins in humans, mostly related to cell adhesion
functions, are sensitive to altered tRNA modi�cations such as inosine
(46). Moreover, the conservation of clusters of optimal and nonoptimal
codons is associated with the protein secondary structure (47,48). In
consequence, the codon from which an amino acid is translated can
determine its dihedral angle within the protein backbone (49).

1.2.3. Codon composition across conditions

Given that CUB a�ects mRNA translation and there exists CUB
variability across genes, multiple studies have proposed that CUB can
functionally regulate translation of speci�c genes in certain conditions
(14,17). For instance, in yeast, the codon usage of the transcriptome
changes under di�erent environmental stresses (50), optimal codons are
particularly enriched in important pathways such as glycolysis (38), and
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this codon adaptation across metabolic pathways di�ers between aerobic
versus anaerobic species (51).

In human cells, subsets of genes sharing a common GO function
showcase di�erential CUB, with the two extremes corresponding to
genes involved in cell proliferation and di�erentiation (Fig. 1.4C) (42).
In particular, proliferation genes are A/T-rich, while G/C-ending
codons are abundant in di�erentiation counterparts. Di�erential
ribosomal pausing on speci�c codons is actually detected along the
mitotic cell cycle in human cells (52). Several studies have proposed the
dynamic regulation of tRNAomes to coordinate these changes in
proliferation codon usage (42,53).

Similarly, di�erences in CUB across human tissues have been reported
(54,55). Genes with similar synonymous codon usages tend to share
common functions, similar expression patterns across tissues, and
coordinated interacting partners (56,57).

1.2.4. CUB: neutral or selected?

The existence of CUB across genes and organisms has long been
recognized and studied from an evolutionary perspective (58). While
there is no doubt that di�erences in synonymous codon usage have an
impact on gene expression, the evolutionary origin of CUB is debated
between two hypotheses (24). On the one hand, the mutational pressure
shapes genomes as a result of biases in nucleotide mutation rates or
repair mechanisms, which cause neutral synonymous changes without
any impact on �tness. For instance, in mammals, the GC-biased gene
conversion is believed to explain much of the existing variability in GC
content along the genome (32). On the other hand, natural selection
states that synonymous changes can be advantageous or detrimental to
organisms and are therefore positively or negatively selected in
evolution. This is a major contributor in short-lived species with large
e�ective population sizes (59). In fact, the two hypotheses are not
mutually exclusive, and hence the actual human CUB is likely a
combination of both mutational and selective forces (58).
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1.3. Transfer RNA

Transfer RNAs constitute the second most abundant RNA species of
the human cell after rRNA, accounting for around 15% of total RNA
(7). Despite their transcriptomic abundance, tRNA genes occupy
<0.002% of the human genome, with a total of 429 loci (12). These
genes encode for 46 di�erent isoacceptors, i.e. tRNA species with a
distinct anticodon (Fig. 1.2). Therefore, for each tRNA isoacceptor
family, there is an average of nine gene copies or isodecoders, which can
di�er slightly in their sequence. Furthermore, tRNA genes are not
uniformly distributed along the human genome, but they are clustered
both linearly and three-dimensionally in the nucleolus (2).

In evolutionary terms, huge di�erences in the tRNA gene copy number
exist among organisms, with higher numbers generally related to larger
genomes (14). Moreover, the variability in tRNA composition between
kingdoms is associated with their tRNA modi�cation pattern and their
genomic codon usage (60,61).

The mitochondrial genome also encodes for their own set of tRNAs,
which consist of 22 single-copy distinct isoacceptors (14). Compared to
the cytosolic counterparts, this reduced set of tRNAs showcase
di�erences in structure, modi�cation patterns, and codon-anticodon
base pairing rules; their aminoacylation is also catalyzed by
nuclearly-encoded mitochondria-speci�c aminoacyl-tRNA synthetases.
Given the low redundancy of the mitochondrial genome, alterations in
their tRNA sequences and machinery have been more frequently
related to mistranslation and human diseases (62).

1.3.1. tRNA transcription

RNA Pol III is the enzyme responsible for transcribing tRNA genes in
eukaryotes, which is formed of 17 subunits (see section 1.1.1). The
promoter of tRNA genes is internally located within their sequence and
consists of two motifs known as the A box and the B box (Fig. 1.5) (63).
In fact, tRNA isodecoders whose B box deviates from the consensus
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sequence showcase lower expression levels (64). These sequences are
recognized by TFIIIC, which then recruits TFIIIB and RNA Pol III and
initiates transcription. After termination, which requires a stretch of T
residues, RNA Pol III can be recycled and transcription reinitiated,
hence allowing enhanced transcription. The elevated transcription rate
of tRNAs leads to high transcription-associated mutagenesis, while at
the same time experiencing a strong purifying selection (65).

In basal growth conditions, HEK293T cells express only around half of
all their tRNA genes, while the rest remain silent; they are suggested to
be tRNA pseudogenes or play other extra-transcriptional roles (66). On
the other hand, more than half of the detectable tRNAs are
di�erentially expressed at the isodecoder level among human cell lines
(67). However, at the isoacceptor level, tRNA pools appear more stable
(67,68).

Figure 1.5. tRNA biosynthesis and turnover.
Transcription of tRNA genes is mediated by RNA Pol III in the nucleolus, which is
regulated by transcription factors, epigenetic marks and chromatin organization.
After transcription, pre-tRNAs require trimming of 5' leader and 3' trailer sequences,
splicing of introns (if present), addition of a CCA tail, and export to the cytosol. tRNAs
are post-transcriptionally modified during the biosynthesis process, either at the
nucleus or the cytosol. Once tRNA species have been correctly aminoacylated by
their cognate amino acids, they can be used in mRNA translation. The regulated
fragmentation of tRNAs can generate specific tRFs with diverse functions beyond
protein synthesis.
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Transcription by RNA Pol III can be regulated by factors such as
MAF1, which is regulated by mTORC1 phosphorylation and represses
tRNA transcription under nutrient stress (69,70). Other transcription
factors that regulate RNA Pol III include SOX4, Myc, p53, or Rb
(71–74). RNA Pol II has also recently been reported to regulate tRNA
transcription by Pol III (75). Similar to protein-coding genes, the
chromatin status of tRNA genes can also regulate their transcription.
For instance, activatory and inhibitory histone modi�cations and DNA
methylation are associated with changes in tRNA expression and can
change in development, aging, and cancer (42,76–78). Furthemore, the
topological organization of tRNA genes within linear clusters and 3D
domains coordinates transcription during cellular di�erentiation (78).

After transcription, precursor tRNAs (pre-tRNA) contain a 5’ leader
sequence, a 3’ trailer sequence and, in 5% of human tRNA genes, an
intron at residue 37 (14). Therefore, before leaving the nucleus,
pre-tRNA undergo cleavage of the leader and trailer sequences by
RNase P and RNase Z endoribonucleases, respectively; splicing of
introns; and addition of a CCA tail by the template-independent
CCA-adding enzyme (Fig. 1.5) (63). Interestingly, the 3’ trailer
sequence is the binding site of the La protein, which facilitates the
proper folding and prevents exonuclease digestion. While not much is
known on the dynamic regulation of tRNA processing mechanisms,
mutations in this machinery can cause neurodevelopmental diseases
(79).

1.3.2. tRNA structure

In 1965, Holley et al. determined the �rst structure of a tRNA, a yeast
tRNAAla (80); the secondary and 3D structure of tRNAs is generally
conserved across the three kingdoms of life. In humans, the length of
cytoplasmic tRNAs range between 73 and 97 nucleotides (12), which
fold forming a cloverleaf-like secondary structure (Fig. 1.6A). Based on
this canonical structure, tRNA sequences are numbered starting from
base 1, which is the 5' base that pairs with base 72, until the CCA tail,
which corresponds to positions 74, 75, 76 (63). The tRNA secondary
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structure consists of four arms: the acceptor stem (a.k.a. A stem), the D
stem-loop (a.k.a. dihydrouridine stem-loop), the anticodon stem-loop
(a.k.a. C stem-loop, which contains the anticodon at positions 34, 35,
36), and the T stem-loop (a.k.a. TѰC stem-loop, where Ѱ refers to
pseudouridine). In some tRNAs, mainly tRNASer and tRNALeu, an
additional arm (variable stem-loop) extends between base 45 and 46,
whose nucleotides are numbered with an "e".

In three dimensions, tRNAs fold into an L-shaped tertiary structure
composed of two domains joined at right angles, which is maintained
through non-canonical pairing between T and D arms (Fig. 1.6B) (81).
The acceptor domain is formed by the A and T arms folding into a
minihelix, while the C and D arms form the anticodon dumbbell.
Interestingly, the anticodon and the amino-acid attachment site, two
critical loci of tRNAs, are located at the two furthest extremes of the
L-shaped structure.

Figure 1.6. Canonical tRNA structure.
(A) Secondary cloverleaf-like structure of tRNAs and its corresponding base
numbering. Colors correspond to the acceptor or A stem (green), the dihydrouridine
or D stem-loop (pink), the anticodon or C stem-loop (blue), the variable or V
stem-loop (orange), and the TѰC or T stem-loop (purple). (B) Three-dimensional
L-shaped structure of tRNAs, which consists of the acceptor minihelix and the
anticodon dumbbell. Colors of nucleotides are matched between (A) and (B). Figure
adapted from Berg et al. (63).
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1.3.3. tRNA modification

All tRNAs are chemically modi�ed throughout their biosynthesis, with
an average of 13 modi�cations per molecule (82). However, while some
modi�cations are common in most tRNAs (e.g. dihydrouridine in the
D loop and pseudouridine in the T loop), many others are unevenly
distributed among speci�c tRNAs. This tRNA epitranscriptome is
orchestrated by tRNA modi�cation enzymes, including both writers
and erasers (Fig. 1.7A-B) (83).

To date, over 40 types of modi�cations have been identi�ed in human
cytosolic and mitochondrial tRNAs, which include methylations,
hydroxylations, acetylations, or deaminations (Fig. 1.7C) (84). Of
those, more than 20 are located at the �rst position of the anticodon or
wobble position (base 34), which highlights the importance of tRNA
modi�cations to expand or restrict the codon-anticodon recognition
during mRNA translation. For instance, while adenine can only pair
with uracil, A-to-I editing at position 34 by tRNA-dependent adenosine
deaminases (ADATs) expands the pairing capacity to U, C and A at the
wobble position of codons (Table 1.1) (60,85). On the other hand,
modi�cations outside the anticodon loop can also regulate the
structural stability and sti�ness of tRNAs, their degradation, or their
aminoacylation speci�city. Furthermore, aberrant tRNA modi�cations
can lead to mitochondrial diseases, neurological disorders or cancer
(82,84).

1.3.4. tRNA aminoacylation

Chapeville et al. established in 1962 that ribosomes are blind to the
amino acid that is being incorporated during mRNA translation, and
hence it is critical that the correct amino acid is coupled to the cognate
tRNAs (86). tRNA aminoacylation (a.k.a. tRNA charging) is catalyzed
by 20 aminoacyl-tRNA synthetases (aaRSs), one enzyme for each amino
acid (Fig. 1.5) (2). The resulting aminoacylated tRNAs can be then
delivered to the ribosomes by elongation factors.
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Figure 1.7. tRNA modifications and enzymes.
(A, B) Enzymes writing or erasing m1A and I modifications on human cytosolic tRNAs.
(C) tRNA modifications of human cytosolic tRNAs. Nucleotides are numbered based
on the canonical tRNA secondary structure (Fig. 1.6A). Abbreviations correspond to
the MODOMICS database (87): ac4C, N4-acetylcytidine; acp3U,
3-(3-amino-3-carboxypropyl)uridine; Cm, 2′-O-methylcytidine; D, dihydrouridine; f5Cm,
5-formyl-2′-O-methylcytidine; galQ, galactosyl-queuosine; Gm, 2′-O-methylguanosine;
hm5C, 5-hydroxymethylcytidine; hm5Cm, 2′-O-methyl-5-hydroxymethylcytidine; I,
inosine; i6A, N6-isopentenyladenosine; m1A, 1-methyladenosine; manQ,
mannosyl-queuosine; m3C, 3-methylcytidine; m5C, 5-methylcytidine; mchm5U,
5-(carboxyhydroxymethyl)uridine methyl ester; mcm5s2U,
5-methoxycarbonylmethyl-2-thiouridine; mcm5U, 5-methoxycarbonylmethyluridine;
m1G, 1-methylguanosine; m2G, N2-methylguanosine; m2,2G, N2,N2-dimethylguanosine;
m7G, 7-methylguanosine; m1I, 1-methylinosine; mpG, 5′-methylphosphoguanosine;
ms2t6A, 2-methylthio-N6-threonylcarbamoyladenosine; m6t6A,
N6-methyl-N6-threonylcarbamoyladenosine; m5U, 5-methyluridine; m5Um,
2′-O-methyl-5-methyluridine; ncm5U, 5-carbamoylmethyluridine; OHyW,
hydroxywybutosine; o2yW, peroxywybutosine; Q, queuosine; t6A,
N6-threonylcarbamoyladenosine; Um, 2′-O-methyluridine; Ψ, pseudouridine; Ψm,
2′-O-methylpseudouridine. Figure adapted from Suzuki et al. (84).
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AaRSs catalyze the esteri�cation between an amino acid and the CCA
tail of a tRNA, which requires one ATP molecule (88). The reaction
involves two di�erent active sites, a catalytic site and an editing site,
which de�ne the "double sieve" model to explain the proofreading
activity of aaRSs (89). First, the amino acid is activated by covalently
binding AMP, in which amino acids that are large enough are excluded
from the active site (90). AaRSs then select the cognate tRNAs by
reading both their nucleotide composition (e.g. anticodon, acceptor
stem sequence, modi�ed bases) and structural features, and catalyze the
reaction between the 3' adenine and the activated amino acid. However,
smaller amino acids than the correct one can slip through this �rst sieve.
Therefore, most aaRSs contain an editing site, which reverses the
misactivation of amino acids or the misacylation of tRNAs by
hydrolysis (88).

In eukaryotes, some aaRSs are commonly assembled into the
multisynthetase complex, formed in mammals by nine aaRS (GlnRS,
ProRS, GluRS, IleRS, LeuRS, MetRS, LysRS, ArgRS, and AspRS) and
three noncatalytic auxiliary proteins (88). The complex has been
proposed to help channel the substrates and deliver the product to
ribosomes. Furthermore, aaRSs, including their alternatively spliced
variants, have been involved in a plethora of other functions outside of
mRNA translation, such as signaling, biosynthetic activities, or splicing
(81).

1.3.5. tRNA degradation

Mature tRNAs are highly stable with a half-life of 100h due to their
abundant modi�cations and rigid three-dimensional structure (91).
However, damaged molecules that are unable to bind to tRNA binding
proteins (elongation factors, aaRSs) become unprotected and undergo
rapid tRNA decay (14). Apart from the general turnover of tRNAs,
cells also dynamically regulate the ready-to-translate tRNA pool under
oxidative stress by the angiogenin-induced endonucleolytic cleavage of
CCA tails (92). Upon stress relief, CCA termini are rapidly restored by
the CCA-adding enzyme.
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On the other hand, tRNA-derived fragments (tRFs) have been detected
among cellular small RNAs (93). Far from being randomly generated
debris, tRFs are abundant, have discrete lengths, and originate from
speci�c termini. In particular, six main types of fragments have been
described (Fig. 1.5): 5′ and 3′ tRNA halves, which originate from
cleavage at the anticodon loop; tRF-5 and tRF-3, which are smaller and
begin at 5' or 3' ends; tRF-1, which comes from the 3′ trailer; and
internal tRFs arising from the anticodon loop. While several
endonucleases have been involved in tRF generation (93), most studies
have focused on the angiogenin-induced cleavage under di�erent types
of stress. Given that stress-induced cleavage is <2% of total tRNA (94),
the function of tRFs is not likely mediated by depletion of tRNA pools.
For instance, tRFs can bind and control translation-related proteins,
base-pair with mRNAs and regulate their expression through
microRNA-like pathways, or sequester RNA-binding proteins (RBPs).
tRFs have been implicated in many processes such as protein synthesis,
mRNA degradation, apoptosis, stress granule formation, and epigenetic
inheritance (62,63).

1.3.6. Couplers between genes and proteins

The main function of tRNAs is mRNA translation, in which 46
isoacceptors recognize 61 codons to incorporate the correct amino acid
into the protein sequence (Fig. 1.8A, see section 1.1.2). In
consequence, considering the A-to-I editing at the wobble position of
ANN anticodons (Table 1.1), a high correlation exists between the
tRNA gene copy numbers and the genomic codon usage (60). Given
these base-pairing rules, all ANN isoacceptors of split codon boxes
(Phe/Leu, Tyr/Stop, His/Gln, Asn/Lys, Asp/Glu, Cys/Stop/Trp,
Ser/Arg) are absent in the human genome (Fig. 1.2), since their A-to-I
editing would otherwise lead to mistranslation. In terms of abundance,
there exists a correlation between codon usage and tRNA levels, where
common codons correspond with enriched tRNA isoacceptors (17).
Ribosome pro�ling data actually indicate that slowly translated codons
are generally decoded by low-abundance tRNAs, and vice versa (95).
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While tRNAomes and codon usage were long perceived as static, recent
reports suggest that a balance exists between the tRNA supply and their
demand—i.e. the consumption of tRNAs in actively translated
mRNAs (14). Simultaneously translating ribosomes need to compete
for a limited tRNA pool; scarce isoacceptors recognizing rare codons are
hence more sensitive to changes in abundance, with higher regulatory
potential (Fig. 1.8B) (53). In fact, changing the tRNA demand by
recoding highly expressed genes alters the translation e�ciency of the
rest of the proteome, which can then be alleviated by increasing the
corresponding supply (96). Furthermore, the supply not only accounts
for tRNA abundance, but involves any required process in the
formation of the ready-to-translate tRNAome (Fig. 1.8C).

In support of this supply-demand model, tRNA abundances, charging
and modi�cations are regulated under di�erent stresses in unicellular
organisms, which favor the translation of stress-response transcripts,
enriched in rare codons (17,97,98). In multicellular eukaryotes,
coordination between tRNAomes and codon usage has been also
reported in amino acid deprivation (99,100), cell proliferation (53,101),
speci�c tissues (102–104), and several cancer types (105,106); tRNA
isoacceptors appear stable in other cell states (33,68). However, given
the interplay with other selection forces over coding sequences (see
section 1.2), the existence of an optimization between tRNAomes and
codon usage in humans remains under debate (32,107).

Table 1.1. Wobble base pairing rules in eukaryotes.
The recognition rules between codons and anticodons were originally established by
Crick (85), and are shaped by the existence of tRNA-dependent adenosine
deaminases (ADATs) in eukaryotes (60).

CODON ANTICODONS

NNU ANN, GNN, INN

NNC GNN, INN

NNA UNN, INN

NNG CNN, UNN
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1.3.6.1. Other functions of tRNAs

Apart from tRF-related mechanisms introduced above, the function of
mature tRNAs can also extend beyond protein synthesis (93).
Aminoacylated tRNAs can act as amino acid donors, transferring their
amino acid to the N-terminus of peptides or to lipids. Uncharged
tRNAs can activate stress-response signaling pathways by binding to
GCN2. tRNAs are required to prime retrotranscription in
retrotransposons and retroviruses such as HIV. Foreign tRNAs can
activate the host immune response through recognition of their distinct
modi�cation patterns. Clusterted tRNA genes can act as chromatin
insulators; they also have higher mutation rates than other parts of the
genome which generates variability among individuals.

Figure 1.8. Couplers between genes and proteins.
(A) Nucleotides at the anticodon loop of tRNAs base-pair with their cognate codons.
(B) Model of constant demand and changing ready-to-translate tRNA levels, adapted
from Guimaraes et al. (53). At low concentration ranges, small changes in a limiting
tRNA pool can lead to big differences of translation efficiency. High tRNA
concentrations over ribosome saturation levels have a small impact on translation.
(C) The ready-to-translate tRNA pool is determined by multimodal processes.

23



Chapter 1

24



Chapter 2
Objectives

The main objective of this PhD thesis is to elucidate the role of
tRNAomes in determining changes of mRNA translation across
human tissues. As introduced in Chapter 1, coding sequences are under
a multitude of selection pressures (codons, mRNA stability, splicing,
etc.) and at the same time tRNAs are intricately regulated at multiple
levels (expression, modi�cation, aminoacylation). In this thesis, I
investigated this complex interface from a systems biology perspective,
with the aim of uncovering common and distinct mechanisms of
protein synthesis regulation in di�erent human tissues. In the following
chapters, I am going to present the results of this work, which I have
performed in collaboration with lab colleagues.

In Chapter 3, we analyze small RNA-seq datasets of >8,000 tumor and
healthy samples from The Cancer Genome Atlas to determine their
tRNA abundance. We �nd that the variability of the tRNA pool is
largely related to the proliferative state across tissues, and the translation
e�ciency of speci�c codons appears associated with poor cancer patient
survival. To understand how these tRNAs are dysregulated in cancer,
we detect that tRNA expression is correlated with tRNA gene copy
numbers and anticorrelated with tRNA gene methylation.
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Given this dynamic landscape of tRNA pools among tissues and the
reliance of viruses on the host translation machinery for productive
infection, in Chapter 4 we investigate the translational adaptation of
human viruses to the tissues they infect. We observe that viruses
infecting di�erent tissues showcase di�erences in codon usage, which are
more pronounced for viral proteins expressed at early infection time
points.

Although codon optimization methods are commonly applied in the
development of recombinant protein and mRNA-based therapies and
vaccines, they currently do not account for tissue-speci�c aspects of
decoding. In Chapter 5, using tissue-wide mRNA-seq and proteomics
data, we identify which codons are over or under-represented in speci�c
human tissues. Based on this analysis, we develop CUSTOM, an
algorithm that designs optimal coding sequences for protein production
in a tissue-speci�c manner. This data provides the �rst proof-of-concept
evidence that tissue-targeted codon optimization exists.

Finally, in Chapter 6, we uncover an additional layer of tissue-speci�c
tRNA regulation, which was performed during a research stay at Prof.
Tao Pan's group (University of Chicago). State-of-the-art tRNA-seq
protocols can simultaneously assess the tRNA abundance, some
modi�cations, and aminoacylation. We develop SLAC (SingLe-read
Analysis of Crosstalks), which correlates modi�cation and
aminoacylation signatures in tRNA at the single-read level to elucidate
their crosstalks and their roles in the regulation of mRNA translation.
We discover that human tRNAs are dynamically modi�ed under stress,
and these modi�cation patterns and tRNA aminoacylation are
coordinated to regulate mRNA translation in distinct cellular
environments.
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Chapter 3
Translational efficiency across healthy and
tumor tissues is proliferation-related

3.1. Abstract

Di�erent tissues express genes with particular codon usage and
anticodon tRNA repertoires. However, the codon-anticodon
co-adaptation in humans is not completely understood, nor is its e�ect
on tissue-speci�c protein levels. Here, we �rst validated the accuracy of
small RNA-seq for tRNA quanti�cation across �ve human cell lines.
We then analyzed the tRNA abundance of more than 8000 tumor
samples from TCGA, together with their paired mRNA-seq and
proteomics data, to determine the Supply-to-Demand Adaptation. We
thereby elucidate that the dynamic adaptation of the tRNA pool is
largely related to the proliferative state across tissues. The distribution of
such tRNA pools over the whole cellular translatome a�ects the
subsequent translational e�ciency, which functionally determines a
condition-speci�c expression program both in healthy and tumor states.
Furthermore, the aberrant translational e�ciency of some codons in
cancer, exempli�ed by ArgAGA, is associated with poor patient survival.
The regulation of these tRNA pro�les is partly explained by the tRNA
gene copy numbers and their promoter DNA methylation.
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3.1.1. Synopsis

Quanti�cation of the tRNA expression over thousands of small
RNA-seq samples from The Cancer Genome Atlas unveils the existence
of tissue-speci�c translational e�ciencies related to proliferation.

❖ tRNA abundance is tissue- and cancer-type-speci�c.
❖ Translational e�ciency is globally controlled and the cellular

translatome needs to compete for a limiting tRNA pool.
❖ Proliferation is the major determinant of translational e�ciency

di�erences among tissues, and the codon ArgAGA appears
particularly favored in cancer.

❖ Di�erences at the tRNA pool a�ect protein translation and
subsequently determines speci�c functional phenotypes.

3.1.2. Additional data access

All supplementary �gures and data can be
accessed from the original publication through
this QR code and link.
Expanded View �gures and tables will be
referred to as "Figure EV" and "Table EV".

3.2. Introduction

In the light of the genetic code, multiple 3-letter combinations of
nucleotides in the mRNA can give rise to the same amino acid, which
are known as synonymous codons. However, despite the homology at
the protein level, these di�erent codons are recognized distinctly by the
transcriptional and translational machineries (17,43), and ultimately
cause changes at multiple levels of gene expression. Therefore, the
non-uniform abundance of synonymous codons across di�erent tissues
and among distinct functional gene sets has been proposed as an
adaptive mechanism of gene expression regulation (56), particularly
linked to the proliferative state (42). Nevertheless, in human, it is still
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under debate whether the e�ciency of gene expression is the main
selective pressure driving the evolution of genomic codon usage (32).

The 61 amino-acid-coding codons need to be recognized by 46 di�erent
tRNA isoacceptors distributed across 428 Pol-III-transcribed tRNA
genes (12), thus requiring wobble interactions (non-Watson-Crick base
pairing). This complexity of the tRNA repertoire is further enhanced by
an average of 11-13 base modi�cations per tRNA and all possible
combinations thereof (81). The underlying mechanisms regulating
tRNA gene expression and modi�cation are far from resolved (14,82).
However, it has been established that di�erent conditions and tissues
showcase distinct tRNA abundances (42,103) and codon usages
(56,108).

In order to understand such changes in codon-anticodon co-adaptation,
orthogonal datasets of gene expression including tRNA quanti�cation
are required, which needs to overcome the challenges of strong
secondary structures and abundant chemical modi�cations. Recent
technological developments have paved the way for sensitive
high-throughput tRNA sequencing across tissues and conditions
(109,110). Aside from these methods and despite the lower coverage,
tRNA reads can also be detected from generic small RNA-seq datasets
(111–115). In this context, The Cancer Genome Atlas (TCGA) has
been recently used to investigate the alteration of tRNA gene expression
and translational machinery in cancer, which may play a role in driving
aberrant translation (116,117).

To validate the use of small RNA-seq for tRNA quanti�cation, we �rst
compare tRNA levels determined in HEK293 by well-established
tRNA sequencing methods (Hydro-tRNAseq and
demethylase-tRNA-seq) (109,110,118), with those obtained by small
RNA-seq. Then we quantify the tRNA repertoire of �ve cell lines using
Hydro-tRNAseq and perform small RNA-seq in parallel. Comparison
of the tRNA measures obtained by both approaches shows that it is
possible to accurately estimate relative tRNA abundance of cells and
tissues using small RNA-seq. Furthermore, we show that both types of
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quanti�cation are informative enough to distinguish between the �ve
analyzed human cell lines covering multiple tissue types. In
consequence, we apply a tRNA-speci�c computational pipeline to
re-analyze 8,534 small RNA-seq datasets from TCGA (119). We �nd
that the tissue-speci�city of tRNA pro�les is largely
proliferation-related, even within healthy tissues. The tRNA
quanti�cation of TCGA samples enables their comparison with paired
and publicly available mRNA-seq, proteomic, DNA methylation and
copy number data, which underscores the role of tRNAs in globally
controlling a condition-speci�c translational program. We discover
multiple codons, including ArgAGA, whose translational e�ciency is
compromised and leads to poor prognosis in cancer. Finally, promoter
DNA methylation and tRNA gene copy number arise as two regulatory
mechanisms controlling tRNA abundances in cancer.

3.3. Results

3.3.1. tRNA quantification and modifications from small
RNA-seq data

In order to test how accurately we can extract tRNA abundance
information contained in small RNA sequencing data, we re-analyze
four publicly-available datasets of the cell line HEK293 (115,120,121).
In contrast to previous studies analyzing tRNA expression from small
RNA-seq data (116,117), we use a computational pipeline speci�cally
developed for the accurate mapping of tRNA reads (113) in order to
quantify all di�erent isoacceptor species (Fig. 3.1A, see Methods). To
validate the accuracy of these small RNA-seq quanti�cations, we
retrieve four datasets of well-established tRNA sequencing methods
(Hydro-tRNAseq and demethylase-tRNA-seq) applied to the same cell
type (109,110,118,122), which autocorrelate in the range of 0.75-0.85
among themselves (Table EV1, Fig. EV1A). In comparison, our four
HEK293 small RNA-seq quanti�cations show an average Spearman
correlation against these four conventional datasets of 0.73. Compared
to the Zhang et al. (116) quanti�cation, which correlate in the range of
0.60-0.77 (Table EV1, Fig. EV1A), our tRNA-speci�c mapping pipeline
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performs slightly better than the previously published protocol. It has
been reported that there are tRNA-derived fragments naturally
produced and having other functions di�erent from translation (81),
which could confound the tRNA quanti�cation. Although we cannot
exclude the presence of tRNA-derived fragments in small RNA-seq
datasets (123), we found that no di�erences between reads with or
without mismatches are found when compared to tRNA-seq protocols
in which tRFs are speci�cally removed before sequencing.

Further than correlating small RNA-seq data with conventional
tRNA-seq datasets, we analyze whether small RNA-seq quanti�cations
are informative enough to distinguish between di�erent human cell
lines covering multiple tissue types. We therefore apply both small
RNA-seq and Hydro-tRNAseq to HEK293 (kidney), HCT116
(colon), HeLa (cervix), MDA-MB-231 (breast), and BJ �broblasts.
However, given the high variability between replicates of MDA-MB-231
Hydro-tRNAseq quanti�cations, this cell line was excluded from
further analyses (Table EV2). First, the correlations between the two
methods of identical samples and computational mapping pipeline
range between 0.93 and 0.96 for all cell lines. tRNA quanti�cations
from both protocols are compared and signi�cantly higher Spearman
correlations are obtained within matching samples versus mismatching
cell lines (Fig. 3.1B). In order to assess the amount of tRNA variability
coming from either the sequencing method or the cell lines, a Principal
Component Analysis of these tRNA quanti�cations indicates that both
factors in�uence variability to a similar extent (Fig. EV1B, >30%
variance each). Furthermore, to validate that small RNA-seq is similarly
informative of cell type di�erences as Hydro-tRNAseq, we show that a
Linear Discriminant Analysis of the data is able to discriminate between
cell lines regardless of the sequencing protocol (Fig. EV1B).
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Figure 3.1. tRNA quantification and modifications from small RNA-seq data.
(A) Schematic pipeline for accurate mapping of tRNA reads. (B) Correlations between
tRNA quantifications by small RNA-seq and Hydro-tRNAseq of matching (correlations
within the same cell line) versus non-matching (different cell lines) samples. Center
values represent the median. The p-value corresponds to a one-tailed Wilcoxon
rank-sum test, with nmatching= 9 and nnon-matching= 63. (C) Overlap of the detected tRNA
modifications upon variant calling by both methods. (D) The TCGA network contains
small RNA-seq data alongside mRNA-seq, DNA methylation arrays, non-targeted
proteomics, and copy number alteration quantification comprising 17 tissues.
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We also detect tRNA base modi�cations in both protocols by
nucleotide variant calling, as described in Ho�mann et al. (113). In all
cases, considering the modi�cations that are detected in all three
replicates, Hydro-tRNAseq datasets identify a larger number of
modi�cations than small RNA-seq, as expected by the more uniform
and deeper coverage of this method (Fig. EV2, Table EV2).
Furthermore, we detect a signi�cant enrichment of the
Hydro-tRNAseq modi�cations in the small RNA-seq data (p < 1e-16,
Fisher test), indicating that the latter contains also information on
tRNA modi�cations (Fig. 3.1C). Although the exact nature of
modi�cations cannot be determined by sequencing, most frequent
nucleotide mismatches in both sequencing methods include A-to-G
changes at position 34 and 37 (Fig. EV3, Table EV3), which correspond
to known modi�cations such as adenosine-to-inosine editing and
1-methylinosine, respectively (82). Overall, most of the known
modi�cation-speci�c mismatches can be retrieved with both small
RNA-seq and Hydro-tRNAseq (Table EV3), while the deeper coverage
of the latter improves its sensitivity.

Taken together, these observations demonstrate the applicability of
small RNA-seq data for the quanti�cation of tRNAs and their
modi�cations. We therefore apply the same computational pipeline to
all healthy and primary tumor small RNA-seq samples from 23 cancer
types of The Cancer Genome Atlas (TCGA), which consists of 8,605
samples distributed among 17 di�erent human tissues (Fig. 3.1D,
number of samples and their abbreviations in Table EV4).
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Figure 3.2. Proliferation is the major driver of tissue-specificity in tRNAs.
(A) Medians of square-root-normalized tRNA abundances across all TCGA tissues.
The color of the tissue labels correspond to the average Ki67 expression. Refer to
Table EV4 for full cancer type names and number of samples. (B) Principal
Component Analysis (PCA) of the Relative Anticodon Abundances (RAA, see
Methods) of all healthy samples of TCGA, where the color scale corresponds to the
mean tissue expression of Ki67. The Spearman correlations of Ki67 with the
components are shown, as well as the samples of most extreme tissues. (C) Top
positive and negative GO terms upon Gene Set Enrichment Analysis (GSEA) of the
correlations of the first PCA component against all genes.
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3.3.2. Proliferation is the major driver of tissue-specificity in
tRNAs

To determine the tissue-speci�city of tRNAs in physiological
conditions, the tRNA levels of all 675 healthy samples in TCGA tissues
are analyzed from small RNA-seq data. For all 46 annotated anticodons,
tRNA abundances have signi�cant di�erences between tissues, as
detected by Kruskal-Wallis test (q<0.05, FDR-corrected). Such
di�erences between tissues are also observed by hierarchical clustering of
the median abundance between all groups (Fig. 3.2A). Furthermore,
healthy samples from cancer types originating from the same tissue tend
to cluster together: READ and COAD from the gut; KIRC, KIRP and
KICH from the kidney; LUAD and LUSC from the lung; UCEC and
CESC from the uterus; LIHC and CHOL from the liver (refer to Table
EV4 for full cancer names). On the other hand, in terms of anticodon
abundances, three main subgroups of tRNAs with low, medium and
high levels can be distinguished across all cancer types (Fig. 3.2A).

Abbreviations: BLCA (Bladder Urothelial Carcinoma), BRCA (Breast invasive
carcinoma), CESC (Cervical squamous cell carcinoma and endocervical
adenocarcinoma), CHOL (Cholangiocarcinoma), COAD (Colon adenocarcinoma),
ESCA (Esophageal carcinoma), GBM (Glioblastoma multiforme), HNSC (Head and
Neck squamous cell carcinoma), KICH (Kidney Chromophobe), KIRC (Kidney renal
clear cell carcinoma), KIRP (Kidney renal papillary cell carcinoma), LIHC (Liver
hepatocellular carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell
carcinoma), PAAD (Pancreatic adenocarcinoma), PCPG (Pheochromocytoma and
Paraganglioma), PRAD (Prostate adenocarcinoma), READ (Rectum adenocarcinoma),
SKCM (Skin Cutaneous Melanoma), STAD (Stomach adenocarcinoma), THCA
(Thyroid carcinoma), THYM (Thymoma), UCEC (Uterine Corpus Endometrial
Carcinoma).
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Regarding codon usage, a measure of tRNA abundance taking into
account the relative contribution of each tRNA anticodon among the
set of synonymous codons of a certain amino acid is the Relative
Anticodon Abundance (see Methods). Using this measure, a principal
component analysis (PCA) of all healthy control samples in TCGA also
shows clear di�erences between tissues (Fig. 3.2B). To interrogate the
biological functions related to the variability of anticodon abundances
between samples, we compute the correlation of the whole mRNA-seq
transcriptome against the �rst PCA component, which explains 18.5%
of the variance, and analyze it by Gene Set Enrichment Analysis
(GSEA). As a result, the top correlating genes are enriched in
proliferation and immune cell activation, while the lowest correlations
belong to genes related with oxidative metabolism and respiration (Fig.
3.2C, Table EV5). Moreover, our �rst component correlates positively
with the proliferation marker Ki67 (Rspearman= 0.45) (124). This
con�rms, as has been previously suggested (42), that there is a
proliferative tRNA expression program.

Overall, we observe patterns of tissue-speci�c tRNA pro�les in TCGA
healthy samples. Furthermore, based on both the gene set enrichment
and the association to a proliferation marker, our analyses identify the
proliferative state of tissues as the major biological function driving the
variability on tRNA abundances.

3.3.3. tRNA repertoires determine tissue-specific
translational efficiency

Given that di�erent tissues express distinct tRNA repertoires, we
wondered whether they could have an e�ect in protein translation
elongation. The so-called translational e�ciency is de�ned as the rate of
protein production from mRNA, and multiple indices and models can
be described to estimate it (125). In this article, and based on previous
studies underscoring the global control role of codon usage as a
competition for a limited tRNA pool (47,50,96), we de�ne the
Supply-to-Demand Adaptation (SDA) as the balance between the
supply (i.e. the anticodon tRNA abundances) and demand (i.e. the
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weighted codon usage based on the mRNA levels) for each of the 60
codons (excluding methionine and Stop codons). Furthermore, we
normalize both the codon and anticodon abundances within each
amino acid family (i.e. relative to the most abundant synonymous
codon/anticodon), in order to remove the e�ect of amino acid biases
and get a cleaner measure of codon optimality (28).

To validate the suitability of SDA in determining the translational
e�ciency, we correlate the SDA value of all proteins against the available
proteomics data of paired TCGA samples (126,127), which includes
breast and colorectal tissues (tumor only, as no healthy samples are
available). Although correlations are modest, both the protein
abundances and the protein-to-mRNA ratios correlate signi�cantly
better with SDA than with the classical tRNA Adaptation Index [tAI]
(61,128) or with a relative tAI with normalized weights within each
amino acid family [RtAI] (Fig. 3.3A, Fig. EV4A-B). In consequence,
including the mRNA codon demand into the SDA metric outperforms
other tRNA-only metrics of translational e�ciency. Furthermore, the
correlation of SDA with protein-to-mRNA ratio is slightly but
signi�cantly higher than with protein levels alone, which indicates that
the �rst is a better proxy for the process of translation (Fig. 3.3A).

Next, we calculate the SDA for the 620 healthy samples for which both
tRNA abundances and mRNA levels are available. When analyzing the
tissue medians of SDA weights per each codon (SDAw), we observe that
most codons are optimally balanced (SDAw =1), while 13.7% and 16.3%
of codons are favored (SDAw >2) and disfavored (SDAw <0.5)
respectively. The tissue clustering again shows that healthy samples of
cancer types from the same tissue have similar SDAw pro�les, which
separates two major clusters of mostly high-Ki67 and low-Ki67 tissues
(Fig. EV4C).
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Figure 3.3. tRNA repertoires determine tissue-specific translational efficiency.
(A) Three metrics of translational efficiency (the classical tAI, a relative tAI with
normalized weights within each amino acid family, and the Supply-to-Demand
Adaptation described in this article) are Spearman correlated against two proxies of
translation (protein abundance and protein-to-mRNA ratio) for all samples for which
proteomics data is available (BRCA, COAD and READ). Center values represent the
median. Statistical differences are determined by sample-paired two-tailed Wilcoxon
rank-sum test (n=219). (B) Principal Component Analysis (PCA) of the SDAw of
TCGA, where the color scale corresponds to the mean tissue expression of Ki67. The
Spearman correlations of Ki67 with the components are shown, as well as the
samples of most extreme tissues. On the right, the top and bottom proliferation- and
differentiation-related codons, as defined by Gingold et al. (2014), ordered by their
contribution to the first PCA component. Refer to Table EV4 for full cancer type
names and number of samples. (C) GSEA of the differential SDA between extreme
tissues (ΔSDA = SDAColorectal - SDABrain), showing five among the top ten GO terms with
high (right) and low (left) SDA in colorectal versus glial tissues.
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In order to identify the codons contributing most to the di�erences
between tissues, we compute a bidimensional PCA across all samples
and SDAw (Fig. 3.3B). Both the �rst and second components
signi�cantly correlate with the proliferation marker Ki67 (0.4 and -0.24;
see Fig. 3.3B). In agreement with the proliferation- and
di�erentiation-related codons of Gingold et al. (42), such proliferative
pattern is similarly reproduced by the codons contributing to the �rst
(Fig. 3.3B) and second (Table EV6) PCA components. Further,
similarly to the tRNA abundances (Fig. 3.2B), a GSEA of correlating
genes with the �rst component highlights the link with
proliferation-related terms (Table EV6). On the other hand, the �rst
component also clearly separates codons based on the GC content of
the third codon base, which has recently been associated with
di�erentiation (high in nnC/G codons) versus self-renewal functions
(high in nnA/T) (129), as well as with proliferative transcriptomes
(130).

The previous analyses support the idea of proliferation-related tRNAs
driving changes in translational e�ciencies. In that case, we expect that
the two most extreme tissues in terms of proliferation (brain and gut,
excluding thymus for its low number of samples) di�er in the
optimization of proliferation-related proteins. As such, we compute the
average SDAw for these two tissues, analyze the subsequent SDA score
for each protein, and perform a GSEA of the di�erential SDA per
protein. Consistent with our hypothesis, the results indicate that
gut-optimized proteins are enriched in DNA replication, chromatin
organization and chemokine signaling, whereas brain-optimized
proteins are related to tRNA metabolism and cilium morphogenesis
(Fig. 3.3C, Table EV7). Taken together, this result con�rms that the
tRNA-dependent translational e�ciency is optimized for the
translation of tissue-speci�c genes, particularly in function of the
proliferation state.
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3.3.4. Aberrant translational efficiencies drive tumor
progression

Given that proliferation is a major determinant of translational
e�ciency in healthy tissues, its importance could be extrapolated to
pathological conditions such as cancer. In fact, aberrant expression of
tRNAs and codon usage have been broadly related with tumorigenesis
and cancer progression (106,116,117,122). We therefore investigate 22
cancer types from TCGA in order to determine which codons are
translationally compromised in disease.

Similar to the analysis performed on the healthy tissues, we quantify all
tRNA abundances of TCGA primary tumor samples (Fig. EV5) and
determine their corresponding translational e�ciencies using the SDA
metric. By analyzing the di�erential SDAw between normal and tumor
samples, we observe many signi�cant di�erences in all 60 codons across
the 22 cancer types (Fig. 3.4A). Among the most consistent changes,
the ArgAGA codon is signi�cantly more favored in tumors for 15 out of
15 cancer types, while the ArgCGG is disfavored in 7 out of 11 cancers
(Fig. 3.4B). In the case of threonine, ThrACT and ThrACC are better
adapted in healthy samples (13/14), whereas tumor mostly favors
ThrACG (12/16).

In terms of patient survival, we divide the TCGA patients in two groups
based on their low or high tumor SDAw and analyze their survival
probability (Fig. 3.4C, Table EV8). Among others, and consistent with
the previous analysis, high supply-to-demand weights of ArgAGA are
associated with poor prognosis in kidney renal clear cell carcinoma and
colon adenocarcinoma. Arginine limitation in the kidney cell line
HEK293T has been shown to compromise tRNAArg aminoacylation,
leading to codon pausing and reduced cell viability (99). In addition,
low SDAw of ArgAGG and SerAGT lead to longer survival in kidney
renal clear cell carcinoma.
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Figure 3.4. Aberrant translational efficiencies drive tumor progression.
(A) Differential SDAw between healthy and tumor samples across 22 cancer types, as
measured by log2(SDAwTumor/SDAwHealthy). Only significant differences are colored,
which are determined using a two-tailed Wilcoxon rank-sum test and corrected for
multiple testing by FDR. Refer to Table EV4 for full cancer type names and number of
samples. (B) Boxplot of the SDAw of ArgAGA and ThrACT codons across TCGA
cancer types. Center values represent the median. Statistical significance: ns (p >
0.05), * (p <= 0.05), ** (p <= 0.01), *** (p <= 0.001), **** (p <= 0.0001). (C) Survival
curves for the previous codons in KIRC and COAD patients. The survival analysis was
performed for all codons whose SDAw was significantly different in more than 5
cancer types in the one direction with respect to the other [Abs(UP-DOWN)>5], and
correspondingly corrected for multiple comparisons using FDR.
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To determine the impact of aberrant translational e�ciencies in
regulating an oncogenic translation program, we calculate the
di�erential SDA for the whole genome based on the average SDAw of
healthy and tumor samples in kidney renal clear cell carcinoma, since it
is the cancer type with the most prognostic di�erences (Fig. 3.4A). The
GSEA of the resulting ΔSDA score indicates that cancer SDAw should
favor the translation of proteins related to DNA replication and gene
expression, whereas the healthy kidney samples favor signals
transduction and di�erentiation processes (Table EV9). As the SDAw of
the ArgAGA is speci�cally disturbed in cancer, we also interrogate how
this codon is distributed along the genome. We therefore perform a
GSEA on the relative codon usage of ArgAGA, which shows that
proliferation and immune activation functions lie among the most
AGA-enriched genes, while development and di�erentiation terms are
AGA-depleted (Table EV10). Together with the low-proliferative state
of kidney (Fig. 3.2B), the over-e�ciency of a proliferation-related
codon in this tissue can thus perturb its cellular SDA.

Overall, we detect di�erences at the level of SDAw between tumor and
healthy tissues, which show a functional relevance to the disease state.
Therefore, while the di�erential expression of tRNAs in TCGA had
been already discussed elsewhere (116,117), we could here elucidate
their oncogenic e�ect in translational e�ciency. In particular, ArgAGA
appears as an interesting codon candidate in favoring tumor
progression, which we had also detected in healthy tissues to be
associated with proliferation (PCA2 in Table EV6).

3.3.5. Promoter methylation and gene copy number regulate
the tRNA abundance

Aberrant translational e�ciencies in cancer are partially caused by the
di�erential abundance of tRNA genes (Fig. EV5). To determine the
underlying mechanisms driving changes in expression, we retrieve the
DNA methylation (typically occurring at CpG dinucleotides) and copy
number alteration (CNA) data from TCGA samples, as a possible
means for tRNA gene regulation. While CNA information cover 84%
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of tRNA genes, the 450K-BeadChip methylation arrays used in TCGA
are mostly centered on the coding genome (131) and yield a coverage of
only 37%.

In order to make the gene-based data comparable with the measured
isoacceptor-based tRNA abundances, we average methylation and CNA
levels over all genes within the same isoacceptor family, at the cost of
losing resolution. For each isoacceptor and each cancer type, we �nally
�t a Multiple Linear Regression to determine how are promoter
methylation and CNA a�ecting tRNA expression (Fig. 3.5A, Table
EV11). Among all models, the signi�cant coe�cients for methylation
and CNA are signi�cantly negative and positive, respectively. Despite
the limited explained variance of the models (average R2=0.023), such
results suggest that promoter methylation could contribute to
inhibition of tRNA gene expression, whereas an increase in the gene
copy number would enhance tRNA expression.

Figure 3.5. Promoter methylation and gene copy number regulate tRNA abundance.
(A) A Multiple Linear Regression (MLR) between square-root-normalized tRNA
abundance and the average promoter methylation (450K BeadChip array) and gene
copy number at the isoacceptor level. Among all MLRs for each isoacceptor and
each cancer type separately, the dots show the FDR-normalized significant
coefficients based on their corresponding t-statistic p-value, and red/blue show
whether they are negative/positive respectively. The p-value corresponds to a
two-tailed binomial test between npos and nneg. (B) Differential promoter methylation
(bisulfite sequencing) between healthy and tumor samples of genes expressing
arginine tRNAs, as measured by Δ%Me=(%MeTumor-%MeHealthy). Refer to Table EV4 for
full cancer type names and number of samples.
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Given the association of the codon ArgAGA with cancer prognosis
(Fig. 3.4C), we explore the abundance pattern of tRNAArg in TCGA.
In agreement, the complementary tRNAArgTCT appears overexpressed
in 13 out of 15 cancer types (Fig. EV5A), making it a candidate driver of
the translational di�erences. To get a more accurate picture of the
tRNA gene methylation levels, we also analyze recently published
bisul�te sequencing data (132), which, for 47 samples among nine
cancer types, improved the coverage of tRNA genes up to an average of
81%. In total, tRNAArgTCT genes stand among the least methylated
arginine isoacceptors in cancer (Fig. EV6A-B), in particular at the
chr9.tRNA5 and chr1.tRNA84 genes (Fig. 3.5B). Furthermore,
tRNAArgTCT gene duplications occur frequently in kidney cancers (Fig.
EV6C).

In short, promoter methylation and CNA appear as two possible
regulatory mechanisms of tRNA expression in cancer, which suggests
that similar mechanisms that control the Pol-II-mediated RNAs might
also regulate the expression of Pol-III non-coding transcriptome, such as
tRNA genes. However, more accurate and high-throughput data on the
methylation and CNA of the non-coding genome together with
gene-based tRNA quanti�cations are needed to make stronger
associations.

3.4. Discussion

In this study, we use a systems biology approach to interrogate the
multi-omics TCGA dataset under the perspective of translational
e�ciencies. We therefore �rst validate the suitability of small RNA-seq
data in reproducing conventional tRNA-seq quanti�cations based on a
gold standard set of �ve tissue-wide human cell lines. In fact, knowing
that small RNA-seq datasets have a limited tRNA coverage and tend to
be biased towards tRNA fragments and unmodi�ed tRNAs (115,123),
we extend and apply a computational pipeline for accurate mapping of
tRNA reads (113). As a result, we obtain reproducible and informative
quanti�cations of all isoacceptors in our gold standard cell lines as well
as in thousands of samples across 23 cancer types of TCGA, exceeding

46



Chapter 3

the quality of similarly published data (116,117). However, we cannot
exclude that tRNA-derived fragments (tRFs) could be interfering with
our small RNA-seq quanti�cations. At the level of nucleotide
modi�cations (82), our tRNA mapping pipeline is also able to detect
most of the known mismatch-producing modi�cations of mature
tRNAs. All in all, even though our quanti�cations from small RNA-seq
just give an estimate of the tRNA abundances, the results indicate that
they can be rather precise proxies.

From these quanti�cations, we then elucidate their e�ect on the
translational e�ciency by de�ning the SDA, for Supply-to-Demand
Adaptation, which is a balance between the tRNA supply and the
codon demand. Although a more accurate SDA would have determined
the supply and demand based on the aminoacylated portion of tRNAs
(133) and the ribosome-bound mRNAs (134) respectively, we
approximate such measures by our tRNA quanti�cations and the
publicly-available mRNA-seq data of TCGA. In agreement with
current studies showing that a dynamic codon usage need to compete
for a limited tRNA pool (28,96), we demonstrate that SDA is better
measure of codon optimality than previously published metrics such as
the tAI (61,128). However, far from explaining the translation process,
the still low but signi�cant correlations of protein-SDA in human, in
contrast to unicellular organisms, suggest that protein expression is also
dependent on other layers of regulation, such as transcriptional and
post-transcriptional machineries, translation initiation, epigenetic
modi�cations of DNA and RNAs, or protein degradation mechanisms
(107).

On the level of translational e�ciency, in agreement with previous
studies (42,122), we detect that the proliferative state is the major
determinant of SDA di�erences both across healthy tissues and in
cancer. Moreover, in contrast to recent work challenging the
tissue-speci�city of codon-anticodon co-adaptation in human (28,107),
our data here support the idea that tissue-speci�c SDAw have functional
implications on the tissue phenotype (e.g. in favoring neural
di�erentiation in brain, or abnormal proliferation in cancer).
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Furthermore, we observe a pattern of proliferative nnA/T versus
di�erentiative nnC/G codons. Based on ribosome pro�ling experiments
of pluripotency changes in embryonic stem cells (129), this could be
attributed to the slower translation in di�erentiated cells of codons
decoded by tRNAs that require adenosine-to-inosine modi�cation at
the wobble-base pairing position. In particular, we detect the ArgAGA
codon to be signi�cantly more favored in proliferative cells and leading
to poor cancer prognosis in kidney carcinoma, speci�cally driven by an
overexpression of tRNAArgTCT in cancer. Arginine limitation in the
kidney cell line HEK293T has indeed been shown to compromise
tRNAArg aminoacylation, leading to arginine codon pausing and
reduced cell viability (99). Furthermore, in support of our approach for
isoacceptor quanti�cation and translational e�ciency, similar studies of
tRNA levels in TCGA have concordantly claimed a prognostic value for
the ArgAGA codon in clear renal cell carcinoma (116,117).

In an e�ort to elucidate the mechanisms regulating the expression of
tRNAs, we observe that the tRNA gene copy number and their DNA
methylation state have a positive and inhibitory association with tRNA
abundances, respectively. In this context, DNA methylation has
previously been linked to the silencing of type II genes (such as tRNAs)
of the Pol-III transcriptome (135,136). Here we speci�cally propose a
role for DNA methylation in regulating the overexpression of
tRNAArgTCT in cancer, although no direct causal link can yet be
established. In terms of the copy number alterations, it is not surprising
to detect tRNA gene duplications in tumors, but the functional role in
disease of di�erent isodecoder genes that share the same anticodon is
still a matter of debate (137). With the advent of more accurate and
high-throughput multi-omics datasets, our knowledge on the
underlying mechanisms controlling tRNA expression, degradation, and
the e�ect of their modi�cations will be further expanded (14,82).
Recent studies in TCGA have actually observed an upregulation of
tRNA-modifying enzymes, as well as proposed a link of tRNA-derived
fragments (tRF) to proliferation (116,138).
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Overall, this is the �rst high-throughput study of codon-anticodon
translational e�ciency over thousands of samples comprising multiple
tissues and disease. We therefore demonstrate a functional role for the
proliferation-driven tRNA abundance di�erences in determining a
tissue-speci�c phenotype, both in physiological and pathological
conditions. In the future, we expect to validate the e�ect of such
di�erential translational e�ciency by integrating perturbation‐based
data and including additional gene expression regulatory layers such as
tRNA modi�cations.

3.5. Material and Methods

3.5.1. Reagents and Tools table

Reagent/Resource Reference or Source Identi�er or Catalog Number

Chemicals, Enzymes and other reagents

Antarctic phosphatase New England BioLabs Cat#M0289

T4 Polynucleotide
Kinase

New England BioLabs Cat#M0201

ProtoScript II Reverse
Transcriptase

New England BioLabs Cat#M0368

miRNeasy Mini kit Qiagen Cat#217004

15% TBE-Urea Gels NOBEX, Invitrogen Cat#EC6885BOX

RNeasy MinElute
Cleanup Kit

Qiagen Cat#74204

QIAquick PCR
Puri�cation Kit

Qiagen Cat#28106

Experimental Models

BJ/hTERT Gift from Anders H.
Lund laboratory (Disa
Tehler).

N/A

HeLa ATCC CCL-2

HEK293 ATCC CRL-1573

HCT116 ATCC CCL-247
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MDA-MB-231 ATCC HTB-26

Software

BBMap [v38.22] Bushnell B. https://sourceforge.net/projects/b
bmap

FastQC [v0.11.4] Andrews S. https://www.bioinformatics.babra
ham.ac.uk/projects/fastqc

SAMtools [v1.3.1] (139) http://samtools.sourceforge.net

tRNAscan-SE [v2.0] (140) http://lowelab.ucsc.edu/tRNAsca
n-SE

BEDtools [v2.27.1] (141) https://bedtools.readthedocs.io/en
/latest

Segemehl [v0.3.1] (142) https://www.bioinf.uni-leipzig.de/
Software/segemehl

Picard [v2.18.17] Broad Institute https://github.com/broadinstitute
/picard

GATK [v3.8] (143) https://software.broadinstitute.org
/gatk

GSEA [v3.0] (144) https://http://software.broadinstit
ute.org/gsea

BLAST [v2.9.0] (145) https://blast.ncbi.nlm.nih.gov

3.5.2. Cell lines

The cell lines included in this study are HeLa, HEK293, HCT116,
MDA-MB-231 and �broblast BJ/hTERT. The sex of each cell line is as
follows: HeLa, Female; HEK293, Female; MDA-MB-231, Female;
HCT116, Male; BJ �broblasts, Male. Cells were maintained at 37 °C in
a humidi�ed atmosphere at 5% CO2 in DMEM 4.5g/L Glucose with
UltraGlutamine media supplemented with 10% of FBS and 1%
penicillin/streptomycin.

3.5.3. RNA extraction

Cells were grown in 60mm dishes for 48h. Total RNA from HeLa,
HEK293, HCT116, MDA-MB-231 and �broblast BJ/hTERT was
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extracted using the miRNeasy Mini kit. Independent replicates were
grown and RNA was extracted on di�erent days. 20 µg of total RNA
was treated following either the protocol of Hydro-tRNAseq (109) or
generic small RNA-seq.

3.5.4. Hydro-tRNA sequencing

Total RNA was resolved on 15% Novex TBE urea gels and size-selected
for 60-100 nt fragments. The recovered material was then alkaline
hydrolyzed (10mM sodium carbonate and 10mM sodium bicarbonate)
for 10 minutes at 60°C. The resulting RNA was de-phosphorylated
with Antarctic Phosphatase (New England Biolabs) at 37ºC for 1 hour.
De-phosphorylated RNA was puri�ed with an RNeasy MinElute spin
column and re-phosphorylated with Polynucleotide Kinase (NEB).
PNK-treated tRNAs were puri�ed with an RNeasy MinElute spin
column and, similar to small RNA-seq library preparation,
adaptor-ligated, reverse-transcribed and PCR-ampli�ed for 14 cycles.
The resulting cDNA was puri�ed using a QIAQuick PCR Puri�cation
Kit and sequenced on Illumina HiSeq 2500 platform in 50bp
paired-end format. Hydro-tRNAseq data of HCT116, MDA-MB-231
and �broblast BJ/hTERT has been generated in this study, while
sequencing data from HEK293 and HeLa had been previously
published (122).

From all �ve cell lines, the isoacceptor abundances of MDA-MB-231
yielded a median of 3-5 times higher standard deviation than the other
Hydro-tRNAseq quanti�cations (Table EV2), thus suggesting some
technical problem with this cell line. In consequence, this cell line was
excluded from any further analysis.

3.5.5. Small RNA sequencing

Total RNA was directly adaptor-ligated, reverse-transcribed and
PCR-ampli�ed for 12 cycles. The resulting cDNA was then size-selected
by gel electrophoresis, and fragments of 145-160 bp were eluted and
sequenced on Illumina HiSeq 2500 platform in 50bp single-end format.
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3.5.6. The Cancer Genome Atlas multi-omics data

Raw small RNA-sequencing data in BAM format were retrieved from
the GDC legacy archive after obtaining the necessary permissions from
dbGaP, comprising all healthy samples (NT, solid tissue normal) and
their primary tumor (PT) counterparts, which consists of 23 cancer
types (BRCA, PRAD, KICH, KIRP, KIRC, LUAD, LUSC, HNSC,
UCEC, CESC, LIHC, CHOL, THCA, COAD, READ, ESCA,
STAD, BLCA, PAAD, THYM, SKCM, PCPG, GBM). For samples for
which more than one BAM was available, all �les were downloaded.
BAM �les were converted to FASTQ using SAMtools [v1.3.1] (139). We
retrieved publicly available and pre-processed mRNA-seq gene
expression, 450k DNA methylation, bisul�te DNA methylation, and
SNP6 segmented copy number alteration (CNA) from �rebrowse. As
for proteomics, preprocessed protein assembly data and protein relative
abundance were obtained from CPTAC for TCGA samples including
BRCA, COAD and READ.

3.5.7. tRNA quantification and modification calling

In both Hydro-tRNAseq and small RNA-seq FASTQ �les, sequencing
adapters were trimmed using BBDuk from the BBMap toolkit [v38.22]
(https://sourceforge.net/projects/bbmap): k-mer=10 (allowing 8 at the
end of the read), Hamming distance=1, length=10-50bp, Phred>25.
Using the human reference genome GRCh38 (Genome Reference
Consortium Human Reference 38, GCA_000001405.15), a total of
856 nuclear tRNAs and 21 mitochondrial tRNAs were annotated with
tRNAscan-SE [v2.0] (140).

Trimmed FASTQ �les were then mapped using a speci�c pipeline for
tRNAs (Fig. 3.1A) (113). Summarizing, an arti�cial genome is �rst
generated by masking all annotated tRNA genes and adding pre-tRNAs
(i.e. tRNA genes with 3' and 5' genomic �anking regions) as extra
chromosomes. Upon mapping to this arti�cial genome with Segemehl
[v0.3.1] (142), reads that map to the tRNA-masked chromosomes or to
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the tRNA �anking regions are �ltered out in order to remove
non-tRNA reads and unmature-tRNA reads respectively.

After this �rst mapping step, a second library is generated by adding 3'
CCA tails and removing introns from tRNA genes. All 100% identical
sequences of these so-called mature tRNAs are clustered to avoid
redundancy. Next, the subset of �ltered reads from the �rst mapping is
aligned against the clustered mature tRNAs using Segemehl [v0.3.1]
(142). Mapped reads are then realigned with GATK IndelRealigner
[v3.8] (143) to reduce the number of mismatching bases across all reads.

For quanti�cation, isoacceptors were quanti�ed as reads per million
(RPM). In order to increase the coverage for anticodon-level
quanti�cation, we consider all reads that map unambiguously to a
certain isoacceptor, even though they ambiguously map to di�erent
isodecoders (i.e. tRNA genes that di�er in their sequence but share the
same anticodon). Ambiguous reads mapping to genes of di�erent
isoacceptors were discarded.

Regarding modi�cation site calling, we only considered gene-level
uniquely mapped reads, as described to be optimal in Ho�mann et al.
(113). As in their pipeline, in order to distinguish mapping or
sequencing errors from true misincorporation sites, we use GATK
Uni�edGenotyper [v3.8] (143). Furthermore, given that tRNAs have
variable D-loop and V-region, we map the detected modi�cations to the
standard tRNA model to make them comparable. We align our tRNA
library to the structurally-annotated human tRNAs from tRNAdb
(146) using BLAST [v2.9.0] (145), and �t the secondary structure
annotation of the top BLAST hits.

3.5.8. Translational efficiency analysis

3.5.8.1. Relative Codon Usage (RCU) and Relative Anticodon
Abundance (RAA)

The RCU/RAA is de�ned as the contribution of a certain
codon/anticodon to the amino acid it belongs to. The RCU of all
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synonymous codons and the RAA of all anticodons recognizing
synonymous codons therefore sum up to 1.

𝑅𝐶𝑈 =
𝑥

𝐶

𝑖∈𝐶
𝑎𝑎

∑ 𝑥
𝑖

𝑅𝐴𝐴 =
𝑥

𝐴

𝑖∈𝐴
𝑎𝑎

∑ 𝑥
𝑖

where / refers to the abundance of the codon/anticodon / , and𝑥
𝐶

𝑥
𝐴

𝐶 𝐴

is the set of all synonymous codons, as well as is the set of all𝐶
𝑎𝑎

𝐴
𝑎𝑎

anticodons that decode synonymous codons.

3.5.8.2. tRNA Adaptation Index (tAI)

As described by dos Reis et al. (61,128), the tAI weights every codon
based on the wobble-base codon-anticodon interaction rules. Let be a𝑐
codon, then the decoding weight is a weighted sum of the
square-root-normalized tRNA abundances for all tRNA𝑡𝑅𝑁𝐴

𝑐𝑗
isoacceptors that bind with a�nity given the wobble-base𝑗 (1 − 𝑠

𝑐𝑗
)

pairing rules . However, while dos Reis et al. (61) assumes that highly𝑛
𝑐

expressed genes are codon-optimized, here we use the non-optimized
s-values to avoid a circularity in our reasoning:

𝑠 =  [0,  0,  0,  0,  0. 5,  0. 5,  0. 75,  0. 5,  0. 5]

𝑤
𝑐

=
𝑗=1

𝑛
𝑐

∑ (1 − 𝑠
𝑐𝑗

)𝑡𝑅𝑁𝐴
𝑐𝑗

And therefore the tAI of a certain protein is the product of weights of
each codon at the triplet position throughout the full gene length𝑖

𝑘
𝑘 𝑙

𝑔
, and normalized by the length.

𝑡𝐴𝐼 =
𝑘=1

𝑙
𝑔

∏ 𝑤
𝑖

𝑘( )1/𝑙
𝑔
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For this and all further analyses, the coding sequences of Homo sapiens
from RefSeq were downloaded from the Codon/Codon Pair Usage
Tables (CoCoPUTs) project release as of February 6, 2019 (30,147).

3.5.8.3. Relative tRNA Adaptation Index (RtAI)

For comparison with the SDA (Fig. 3.3A), an amino-acid-normalized
tAI measure is de�ned by dividing each tAI weight by the maximum
weight among all codons within each amino acid family.

𝑅𝑤
𝑐

=
𝑤

𝑐

𝑚𝑎𝑥
𝑖∈𝑐

𝑎𝑎

(𝑤
𝑖
)

And therefore the RtAI of a certain protein is the product of weights
of each codon at the triplet position throughout the full gene𝑅𝑤 𝑖

𝑘
𝑘

length , and normalized by the length.𝑙
𝑔

𝑅𝑡𝐴𝐼 =
𝑘=1

𝑙
𝑔

∏ 𝑅𝑤
𝑖

𝑘( )1/𝑙
𝑔

3.5.8.4. Supply-to-Demand Adaptation (SDA)

The SDA aims to consider not only tRNA abundances, but also the
codon usage demand. In doing so, it constitutes a global measure of
translation control, since the e�ciency of a certain codon depends both
on its complementary anticodon abundance as well as the demand for
such anticodon by other transcripts. This global control has been indeed
established to play an important role in de�ning optimal translation
programs (96).

The de�nition of the SDA is based on similar previously published
metrics (47,50), which consists of a ratio between the anticodon supply
and demand. On the one hand, the anticodon supply is de�ned as the
relative tAI weights (see previous section). On the other, the𝑅𝑤

anticodon demand is estimated from the codon usage at the
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transcriptome level. It is computed as the frequency of each codon in a
transcript weighted by the corresponding transcript expression, and
�nally summing up over all transcripts. Let be a codon, then the𝑐
codon usage is a weighted sum of the counts of codon in gene𝑐

𝑖
𝑗

weighted by the mRNA-seq abundance for all genes in the𝑚𝑅𝑁𝐴
𝑗

genome :𝑔

𝐶𝑈
𝑐

=
𝑗=1

𝑔

∑ 𝑐
𝑖𝑗

𝑚𝑅𝑁𝐴
𝑗

Similarly to the supply, the anticodon demand is then normalized
within each amino acid family:

𝐷
𝑐

=
𝐶𝑈

𝑐

𝑚𝑎𝑥
𝑖∈𝑐

𝑎𝑎

(𝐶𝑈
𝑖
)

Finally, the SDA weights (SDAw) are de�ned as the ratio between the
codon supply and demand :𝑆

𝑐
𝐷

𝑐

𝑆𝐷𝐴𝑤
𝑐

=
𝑆

𝑐

𝐷
𝑐

And therefore the SDA of a certain protein is the product of weights
of each codon at the triplet position throughout the full𝑆𝐷𝐴𝑤 𝑖

𝑘
𝑘

gene length , and normalized by the length.𝑙
𝑔
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𝑘=1

𝑙
𝑔

∏ 𝑆𝐷𝐴𝑤
𝑖

𝑘( )1/𝑙
𝑔

3.5.9. Gene Set Enrichment Analysis (GSEA)

Gene sets derived from the GO Biological Process Ontology were
downloaded from the Molecular Signatures Database [v6.2] (MSigDB)
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as a GMT �le (144,148). We analyzed the enrichment of gene sets using
the GSEA algorithm (144). The score used to generate the ranked list
input is speci�ed in the text for each analysis.

3.5.10. Survival Analysis

To analyze how the supply-to-demand ratio of a certain codon (SDAw)
can a�ect the survival probability in cancer, patients of a certain cancer
type are divided in two groups of low/high SDAw, which correspond to
the patients having the top and bottom 40% SDAw. The Kaplan-Meier
curves are then computed to estimate the survival probability of each
group along time.

3.5.11. tRNA methylation and copy number

For consistency with the current version of publicly available and
pre-processed 450k DNA methylation and SNP6 segmented copy
number alteration (CNA) data from �rebrowse, we used the human
reference genome GRCh37/hg19 (Genome Reference Consortium
Human Reference 37, GCA_000001405.1) in this analysis. The
coordinates of all nuclear tRNA genes were obtained using
tRNAscan-SE [v2.0] (140).

Regarding DNA methylation, we computed the average beta value of
each tRNA gene from 1.5kb upstream of the transcription start site
(1500TSS) until the end of the gene. For CNA, we retrieved the
segmented data of precomputed from �rebrowse and𝑙𝑜𝑔

2
(𝐶𝑁) −  1

extracted the corresponding value for the genomic coordinates
containing the tRNA genes. Whenever the tRNA genes was located
between two segments, the weighted average in function of the gene
overlap with each segment was computed.

3.5.12. Bisulfite sequencing methylation

As 1500TSS methylation of tRNA genes lead to an average coverage of
only 37% genes, we also analyzed the recently published bisul�te
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sequencing data of 47 samples across nine cancer types (Table EV4)
(132). After retrieving the datasets from the GDC legacy archive, given
the higher resolution of bisul�te sequencing data, we restricted the
computation of the average promoter methylation of tRNA genes to
the GRCh37/hg19 genomic coordinates containing the tRNA genes,
since the promoter region of Pol-III-genes is intragenic.

3.5.13. Multiple Linear Regression (MLR)

We �tted a Multiple Linear Regression (MLR) between the
square-root-normalized tRNA abundance (dependent variable) and the
promoter methylation and gene copy number (independent variables).
To make all three layers of information comparable, we considered only
samples for which all data was available and performed the regression at
the isoacceptor level, thus averaging the methylation and CNA data over
all tRNA genes that shared the same anticodon.

𝐸𝑋𝑃 = β
0

+ β
𝑀𝑒

𝑀𝑒 + β
𝐶𝑁𝐴

𝐶𝑁𝐴

We �tted the model parameters for all 64 isoacceptors and 22 cancer
types, leading to 22x64=1408 MLRs, among which only signi�cant
coe�cients (FDR-corrected t-statistic p-value < 0.05) were considered in
downstream analyses.

3.5.14. Statistical Analysis

For hypothesis testing, an unpaired two-tailed Wilcoxon rank-sum test
was performed, unless stated otherwise. All details of the statistical
analyses can be found in the Results section. We used a signi�cance
value of 0.05. In di�erential expression analyses, a False Discovery Rate
correction was used to account for multiple testing.

3.6. Data and Software Availability

The datasets and computer code produced in this study are available in
the following databases:
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❖ Scripts for analyzing tRNA data of TCGA: GitHub
(github.com/hexavier/tRNA_TCGA).

❖ Scripts for tRNA mapping: GitHub
(github.com/hexavier/tRNA_mapping).

❖ Generated TCGA data (tRNA abundances, SDA, CNA, and
DNA methylation): Synapse syn20640275
(www.synapse.org/tRNA_TCGA).

❖ Hydro-tRNA and small RNA sequencing data of all �ve cell
lines: Gene Expression Omnibus GSE137834
(www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137834).
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Chapter 4
Translational adaptation of human viruses to
the tissues they infect

4.1. Summary

Viruses need to hijack the translational machinery of the host cell for a
productive infection to happen. However, given the dynamic landscape
of tRNA pools among tissues, it is unclear whether di�erent viruses
infecting di�erent tissues have adapted their codon usage toward their
tropism. Here, we collect the coding sequences of 502 human-infecting
viruses and determine that tropism explains changes in codon usage.
Using the tRNA abundances across 23 human tissues from TCGA, we
build an in silico model of translational e�ciency that validates the
correspondence of the viral codon usage with the translational
machinery of their tropism. For instance, we detect that the coronavirus
SARS-CoV-2 is speci�cally adapted to the upper respiratory tract and
alveoli. Furthermore, this correspondence is speci�cally de�ned in early
viral proteins. The observed tissue-speci�c translational e�ciency could
be useful for the development of antiviral therapies and vaccines.
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4.1.1. Highlights

❖ Viruses with distinct tissue tropisms show di�erences in codon
usage.

❖ Viral tropism de�nes a unique pattern of translational adaptation
to human tissues.

❖ SARS-CoV-2 is especially favored to the upper respiratory tract
and the alveoli.

❖ Early viral proteins are generally better adapted than late
counterparts.

4.1.2. Additional data access

All supplementary �gures and data can be
accessed from the original publication through
this QR code and link.
Supplementary �gures and tables will be
referred to as "Figure S" and "Table S".

4.2. Introduction

Given the degeneracy of the genetic code, multiple 3-letter
combinations of nucleotides can code for the same amino acid. Such
synonymous codons are nevertheless not uniformly distributed along
the genomes and can signi�cantly deviate between organisms (149).
Evolutionary forces that explain the existence of the so-called codon bias
include (1) a mutation pressure for a certain GC base composition
depending on the species and chromosomal location, and (2) the
translational selection for codons corresponding to highly expressed
tRNA isoacceptors (24,150,151).

Viruses strongly depend on the translational machinery of the host for
the expression of their own proteins and, ultimately, their replication.
For instance, given the small size of most viral genomes, no or very few
tRNA genes are generally autonomously encoded (152). In terms of
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codon usage, it has indeed been shown that bacteriophages are
speci�cally adapted to their microbial hosts (153,154). This information
has been applied in the prediction of viral hosts from metagenomics
data (155,156). The codon usage of human-infecting viruses is similarly
adapted to the host (157,158), and actually the concept of codon
deoptimization has been applied in the design of attenuated vaccines
(159).

Although translational selection has long been under debate in human
(32), recent studies indicate that di�erent tissues and conditions
showcase distinct tRNA expression pro�les, leading to changes in their
respective translational e�ciency (42,150). In agreement with this
observation, the codon usage of papillomavirus capsid proteins is
adapted to the tRNAs of di�erentiated keratinocytes, where their
translation becomes speci�cally e�cient (160,161). In addition, upon
HIV-1 infection, the host tRNA pool is reprogrammed to favor
translation of late viral genes (162), a phenomenon that is indeed
exploited by host antiviral mechanisms (163). Furthermore, some
viruses with a speci�c tissue tropism resemble the codon bias of highly
expressed proteins of their respective infecting tissues (164).
Nevertheless, despite the few aforementioned studies, a
high-throughput analysis of the translational selection of viral genomes
to their tissue tropism has been heretofore hindered by the absence of
tissue-wide tRNA expression data.

Here, we systematically analyze the relative codon usage landscape of
502 human-infecting viruses together with the recently published
tRNA expression pro�les of human tissues (150). Among other viral
annotated features, including phylogeny and Baltimore classi�cation,
their tissue tropism explains more variance in codon usage than the
other tested features. In consequence, tropism corresponds with codon
optimization patterns that can be associated with tissue-speci�c pro�les
of tRNA-based translation e�ciencies. Further, by studying the
tissue-adaptation among the viral proteome, we also determine that
early replication-related proteins are more translationally-adapted than
the late structural counterparts. Overall, we observe a tropism-speci�c
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adaptation of the viral proteome to the tRNA pro�les of their target
tissues, which opens the door to the development of tissue-speci�c
codon-deoptimized vaccines and targeted antiviral therapies.

4.3. Results

4.3.1. Tropism corresponds with differences in Relative
Codon Usage of human-infecting viruses

Publicly available genomic data comprised a total of 502
human-infecting viruses, distributed among 35 families and covering all
seven Baltimore categories (Table S1). Across this diversity, six main viral
tropisms were de�ned for 228 viruses based on the ViralZone curated
database (165): neurons, immune cells, respiratory tract, hepatocytes,
intestine, and epithelial cells (Fig. 4.1A), while the rest of viruses
remained unassigned. Their corresponding coding sequences
constituted a total of 6087 viral proteins (Table S1), for which we
determined the Relative Codon Usage (RCU, i.e. the contribution of
each synonymous codon to the amino acid it encodes, see Methods).

In order to understand the main factors driving di�erences between
viral RCU, we used three internal clustering indexes that assess how
similar each virus is to a certain group compared to other groups. Taking
the average RCU over each of the 502 viral proteomes, we applied this
framework to assess the grouping performance of �ve di�erent viral
features: tropism, type of genetic material (aka Baltimore category),
family, genus, and a sequence-based classi�cation by Aiewsakun and
Simmonds (2018). In such analysis, the tropism leads the best
classi�cation of viral RCUs, followed by the viral genetic type (Fig.
4.1B). On the other hand, classical and sequence-based phylogenetic
classi�cations show poor clustering performances.
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Figure 4.1. Tropism corresponds with differences in relative codon usage of
human-infecting viruses.
(A) A total of 502 viruses was distributed among 35 families and covered all seven
Baltimore groups. From there, 228 viruses were classified in six general tropisms
based on ViralZone annotations (165). (B) Three internal clustering indexes were
computed to assess the validity of each viral classification in terms of their RCU.
Good cluster performances lead to low WB indexes, but to high Silhouette and Dunn
values (as shown in the color code). (C) Linear Discriminant Analysis of the RCU of
the 228 tropism-defined viruses. In brackets, the percentage of variance explained by
each of the components. See also Fig. S1.

Given the impact of viral tropism on the RCU, we sought to determine
the main codon di�erences between the six de�ned target tissues. By
using a linear discriminant analysis (LDA, see Methods), the 228
tropism-de�ned viruses were classi�ed in six clear clusters, regardless of
other factors such as the phylogenetic lineage (Fig. 4.1C). For further
validation, by randomizing the set of tropisms, the LDA loses all its
discriminating power (Fig. S1A). Supporting the robustness of the
clustering, we obtain the same performance using another reduced list
of human viruses from ViralZone (165) (Fig. S1B, Table S1).

With the previous results indicating a clear codon usage pattern among
tropisms, we then wondered to what extent other factors could in

67



Chapter 4

parallel shape the nucleotide composition of viruses (29). As shown in
Fig. S1, we observed that RNA folding, as determined by the minimum
free energy, is also non-randomly distributed among tropisms. Other
factors such as ribosomal frameshift are not signi�cantly di�erent.

Overall, we observe that speci�c codon usage pro�les are associated with
the tissue tropism of human-infecting viruses, together with other
determinants such as RNA stability.

4.3.2. Viruses are adapted to the tRNA-based translational
efficiencies of their target tissues

Based on the RCU di�erences between viruses with distinct tropism, we
hypothesize that distinct tissues impose selection towards a certain set of
translationally-e�cient codons. However, a validation for this
hypothesis requires the accurate quanti�cation of tissue-speci�c tRNA
pro�les, which has been hitherto missing. With the advent of such
high-throughput expression data (109,116), here we retrieved the
previously-published Supply-to-Demand Adaptation (SDA) estimate
for translational e�ciency (47,150), which computes the balance
between the supply (i.e., the anticodon tRNA abundances) and demand
(i.e., the codons expressed in mRNAs) of each codon (see Methods).

Using a total of 620 healthy samples from The Cancer Genome Atlas
(TCGA) dataset (150), we �rst computed the SDA of all
viral-protein-coding sequences based on the SDA weights of their
constituent codons. Therefore, taking the average of all healthy samples
across each of the 23 TCGA cancer types, we determined the estimated
translational e�ciencies of viral proteins in di�erent human tissues
(Table S2).

Next, from the perspective of the translational selection hypothesis, we
would expect that viral proteins are translationally adapted to their
target tissues. In consequence, we tried to test our hypothesis using a
completely blind and unbiased random forest classi�er, which applies
machine learning in order to predict the tropism of each viral protein
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based on the SDA to di�erent tissues (see Methods). The resulting
performance of the models, based on the Area Under the Curve (AUC)
of their Receiver Operating Characteristic (ROC) curves, ranges
between 0.79-0.92 (Fig. 4.2A), clearly higher than the no-skill model of
0.5 (p < 0.01, permutation test in Table S2). Similar results are also
obtained from complementary prediction performance metrics such as
Precision-Recall curves (Fig. 4.2A). This analysis was replicated with
the other list of viruses from ViralZone, leading to comparable
predictive outcomes (Fig. S2, p < 0.01, permutation test in Table S2).
These results indicate that our machine learning model is able to predict
the tropism of a viral protein based on its SDA to tissues with high
accuracy. In concordance, a linear discriminant analysis of the average
SDA of each virus across tissues can similarly separate di�erent clusters
of viral tropism based on their translational e�ciencies (Fig. S2).

In an attempt to understand which tissues are the most predictive in
identifying the viral tropism of proteins, we analyzed the relative feature
importance within each random forest classi�er, which measures the
contribution of each tissue SDA in the decision trees (Fig. 4.2B). The
main observation is that no single tissue alone is able to discriminate
against the speci�c tropism, since all feature importances lie below 0.09.
However, it is also clear that translational adaptation to stomach
(STAD, for healthy samples of stomach adenocarcinoma) is a recurrent
discriminant feature, while other tissues are speci�cally important for
just one or few tropisms, such as liver (LIHC, for healthy samples of
liver hepatocellular carcinoma) in predicting hepatocyte viruses. In any
case, the directionality of these features cannot be established.

All these analyses using the TCGA dataset are based on tRNA
quanti�cations derived from generic small RNA sequencing, which we
have previously reported to provide consistent measurements compared
to other tRNA sequencing techniques such as Hydro-tRNAseq (150).
However, to exclude any possible technical bias related to the low tRNA
coverage of the technique, we have reproduced the same Random Forest
model of viral tropism using an alternative dataset of Hydro-tRNAseq
across seven tissue-wide cell lines (HEK293, HCT116, HeLa,
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MDA-MB-231, BJ/hTERT, HACAT, and HepG2, see Methods). The
results show similar predictive performances compared to TCGA (Fig.
S3).

Figure 4.2. Viruses are adapted to the tRNA-based translational efficiencies of their
target tissues.
(A) Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves of a
Random Forest Classifier, in which the average Supply-to-Demand Adaptation of viral
proteins to each of the 23 TCGA tissues is used to predict their corresponding viral
tropism of NCBI viruses (see Methods). The area under the curves (AUC) ± SD
summarizes the performance of the model. (B) Relative feature weights of each of
the 23 TCGA tissues for each of the six tropisms, which measure the contribution of
each tissue in the decision trees. The dendrograms show a hierarchical clustering
among tissues (left) and among tropisms (top). The cyan lines show the trace of
weights along each tropism. Refer to Table S2 for full TCGA cancer type names. See
also Fig. S2-5.
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In addition, as our systematic analysis suggests that the codon usage of
viruses tend to be adapted to the tRNAs of the tissue they infect, we
speci�cally interrogated the translational e�ciency of the coronavirus
SARS-CoV-2, which is causing the most deadly pandemic of the recent
decades (167). As a result, we observe that the coronavirus proteome is
especially adapted to the upper respiratory airways and alveoli, but also
to other tissues such as the gastrointestinal tract and brain (Fig. S4 and
S5, Table S3, see Methods).

Overall, as tropism of viruses can be predicted from their translational
adaptation to tissues, these results indicate that viral proteomes are
speci�cally adapted to certain tRNA-based translational e�ciencies. In
consequence, and complementary to the observations of mutational
pressure driving viral codon bias (158,168,169), we describe the basis for
a potential tissue-speci�c translational selection of the viral codon usage.

4.3.3. Early viral proteins are better adapted than late
counterparts

Given the tropism-speci�c adaptation of viral RCU towards the
translational machinery of tissues, we wondered whether certain
genomic subsets were speci�cally adapted to the tissue of infection. In
particular, we speculated that early replication-related proteins would
further bene�t from such adaptation than late structural proteins, since
once the virus takes control of the cell it could change its tRNA
expression program (162,170).

To estimate the adaptation of each protein to the tRNA-based codon
e�ciencies of each tissue, we computed their SDA (150) (Table S4). For
that purpose, we matched each virus to the tRNAs of their tissues of
infection (Table S4). In concordance with our hypothesis, based on
current viral annotations (VOGdb, vogdb.org), we observed a small but
highly signi�cant shift in SDA between structural and replication
proteins across most viral tropisms, with the exception of hepatocyte
and intestine viruses (Fig. 4.3A, paired two-tailed Wilcoxon rank-sum
test). Similarly, we performed a Gene Set Enrichment Analysis to
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identify which Virus Orthologous Groups (VOGs) were enriched in
high-SDA or low-SDA proteins (Fig. 4.3B). As determined by current
annotations (171), top-VOGs mostly contained replication-related early
proteins, whereas bottom-VOGs had structural late functions, with few
exceptions to the general trend.

Figure 4.3. Early viral proteins are better adapted than late counterparts.
(A) Average Supply-to-Demand Adaptation of replication (Xr) and structural (Xs)
proteins of a total of 104 annotated tropism-specific viruses, respectively matched to
461 samples of their tissues of infection (Table S4). Boxes expand from the first to
the third quartile, with the center values indicating the median. The whiskers define a
confidence interval of median ± 1.58*IQR/sqrt(n). Statistical significance is
determined by paired (structural against replication proteins of each virus) and
two-tailed Wilcoxon rank-sum test. (B) Top 10 positive and negative Virus
Orthologous Groups upon Gene Set Enrichment Analysis of the SDA of all proteins of
tropism-specific viruses (Table S4). Based on their annotations, proteins groups are
colored based on their early/replication or late/structural function (171).
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Previous studies on the translational adaptation of the human
immunode�ciency virus 1 suggested that the host tRNA pool is
reprogramed upon viral infection in order to favor the expression of late
genes (162). In this direction, we wanted to test whether this tRNA
reprogramming is a general adaptive mechanism among viral species.
Using three previously published small RNA-sequencing datasets of
human cell lines upon viral infection (172–174), we quanti�ed the
tRNA abundances at di�erent time points (Table S5). Therefore, in
terms of time-course di�erences, we detected a general decrease in
translational e�ciency (measured as RtAI, see Methods) upon viral
infection, which is relatively more pronounced for late proteins rather
than early (Fig. 4.4A). At the same time, to compare the absolute
translational e�ciency of late and early genes, we also compiled
previously published proteomic measurements upon infection of these
three viruses (175–177). While there are no consistent di�erences of
early versus late protein levels across viruses (Fig. 4.4B), we nonetheless
observed that most abundant expression classes tend to have higher
translation e�ciencies (Fig. 4.4).

Overall, we determine that the tropism-speci�c adaptation of viruses is
speci�cally pronounced among early proteins. However, the lower
adaption of late viral genes and �ndings on translation changes upon
infection suggest that host cells might be reprogrammed to favor the
expression of late viral genes.
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Figure 4.4. Translational adaptation of viral proteins upon infection.
(A) Relative tRNA Adaptation Index (see Methods, Table S5) of viral proteins upon
effective viral infections in different cell lines. Proteins are allocated to different time
expression classes based on current viral knowledge (171) (Table S5). Center values
within the violin plot represent the median. Only significant differences are shown: *
(p <= 0.05), ** (p <= 0.01), *** (p <= 0.001), **** (p <= 0.0001). Statistical differences
are based on a FDR-corrected two-tailed Wilcoxon rank-sum test, with paired
comparisons between time points (written in color) and unpaired comparisons
between expression classes. (B) Abundances of viral proteins upon effective viral
infections at different time points in different cell lines. Solid lines represent the
median of the expression class, surrounded by an uncertainty interval between the
0.4 and 0.6 percentiles.

74



Chapter 4

4.4. Discussion

Tropism is determined by an ensemble of di�erent factors, including the
mechanism of viral entry to the host, the immune responses to the
infection, or the viral hijacking of the cellular machinery in the interest
of replication and propagation. In this article, we study the latter by
focusing on the translational adaptation of viral genomes to the host.

There could be a certain controversy to what extent some viruses out of
the 502 included in the NCBI database used here are truly adapted to
humans, or whether some of them are annotated just because of
anecdotal infections. Also, for some viruses, multiple genotypes and
variants are represented in the NCBI database, although they actually
do showcase di�erences in codon usage (Table S1, Fig. 4.1). To exclude
any statistical bias due to the used database, we have duplicated our
analysis with the reduced highly curated ViralZone database, obtaining
similar results and thus indicating our observations are robust.

While previous studies on the base composition and codon usage of
both DNA and RNA viruses (158,169) have attributed most of the
codon usage variability to the mutational pressure of viral genomes, our
analysis proposes tropism as another potential driving force. By
systematically interrogating all human-infecting viruses, we uncover that
tissue tropism explains changes in their codon usage more than other
viral properties such as type or family. Therefore, as mutational pressure
would act more similarly within phylogenetically closer species, such
tropism-related di�erences in codon usage suggests that tissue-speci�c
tRNA expression could be driving a translational selection on viral
genomes. However, as suggested by Fig. S1, many other and overlapping
forces such as mRNA stability, frameshift motifs, transcriptional
regulation, or codon-dependent immune responses are also known to
shape the composition of coding sequences (29,163).

Although high-throughput sequencing of tRNAs has been only
recently developed, cases of natural selection of codon usage towards the
host have been previously proposed. For instance, codon usage of
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Parvovirus has been progressively adapted from dogs to cats after the
host jump (178). Influenzaviruses show a similar adaptation over time
of viral isolation, deviating from the codon usage of avian hosts
(179,180). However, whether these progressive changes in codon usage
over time are directly driven by translational selection has remained
elusive. With the advent of tissue-wide datasets of tRNAs and their
translational e�ciencies (150), we can now compute the
Supply-to-Demand Adaptation (SDA) of all viral proteomes in di�erent
tissues. From there, we then created a random forest model that predicts
with high accuracy the viral tropism of proteins based on their pro�le of
adaptation to human tissues. In consequence, the tRNA-based
adaptation pro�le of a protein is descriptive of their viral tropism,
indicating that translational selection could indeed drive tropism
di�erences of codon usage. It is important to remark that viruses could
still have a good SDA to non-target tissues with similar tRNA
expression patterns that are not infected because they are not exposed to
the virus.

In particular, we �nd that the coronavirus SARS-CoV-2 is highly
adapted to the upper respiratory tract and the alveoli (Fig. S4C), which
is in agreement with recent single-cell transcriptomic studies reporting
the expression of ACE2 in the nasal goblet and ciliated cells as well as
the type-2 alveolar epithelial cells (181,182). Apart from the respiratory
tract, the gastrointestinal tract emerges as the most translationally
adapted tissue, followed by the other epithelial-like tissues and the brain,
which concurs with some frequently observed COVID-19 symptoms
(183–188). In terms of the evolution of the new coronavirus, given the
similarity of SARS-CoV-2 SDA with the phylogenetically closest bat
coronavirus (Fig. S5B), it seems that a translational selection to increase
SDA would have acted before the putative zoonosis from bats or other
intermediate hosts. Furthermore, in agreement with the highest
translational potential of SARS-CoV-2 in their target tissues, a recent
model of viral tropism suggested that a tradeo� exists between the
e�ciency of viral translation and the translational load on the host,
indicating that an improved codon usage can make the di�erence
between symptomatic and natural hosts (189).

76



Chapter 4

On the other hand, in analyzing di�erences in codon usage between
early and late viral genes, previous studies do not completely agree.
While it would be intuitive and some authors claim that late proteins,
which often need to be expressed in higher amounts, are better
translationally adapted than early counterparts (157), others state
otherwise (170,190). Using the tRNA abundances from the TCGA
dataset and based on the Supply-to-Demand Adaptation, we therefore
validate that early replication-related proteins are generally better
adapted to the tissue of infection, despite few exceptions (Fig. 4.3B). In
agreement with this observation, it is known that host tRNA pools
either undergo reprogramming upon HIV-1 infection (162), or get
locally channeled to ribosomes in vaccinia and in�uenza A viruses (191).
Upon infection, we propose that translational adaptation could switch
in some cases towards the expression of late structural proteins, which
has previously been observed in HIV-1 (162).

Overall, this systematic analysis establishes a link between the codon
usage of human viruses and the translational e�ciency of their tissue of
infection. This correspondence is particularly observed in early viral
proteins. We therefore envision the development of ad hoc gene
therapies speci�cally targeting the tissue of interest.

4.5. STAR Methods

4.5.1. Key Resources Table

Reagent or Resource Source Identi�er

Chemicals, Peptides, and Recombinant Proteins

Antarctic phosphatase New England BioLabs Cat#M0289

T4 Polynucleotide
Kinase

New England BioLabs Cat#M0201

ProtoScript II Reverse
Transcriptase

New England BioLabs Cat#M0368

Critical Commercial Assays

miRNeasy Mini kit Qiagen Cat#217004
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15% TBE–urea gels NOVEX, Invitrogen Cat#EC6885BOX

RNeasy MinElute
Cleanup Kit

Qiagen Cat#74204

QIAquick PCR
Puri�cation Kit

Qiagen Cat#28106

Deposited Data

Supply-to-Demand
Adaptation weights
(SDAw) from TCGA
samples

(150) Synapse: syn20640275

SARS-CoV-2
reference genome

(192) NCBI Reference Sequence:
NC_045512.2

Bat coronavirus
RaTG13 genome

(193) GenBank: MN996532.1

Small RNA-seq of
HFF infected by
HCMV

(174) GEO: GSE33584

Small RNA-seq of
KMB-17 infected by
HSV1

(173) GEO: GSE102470

Small RNA-seq of
SUP-T1 infected by
HIV1

(172) GEO: GSE57763

Hydro-tRNAseq of
HEK293, HCT116,
HeLa, MDA-MB-231,
and BJ/hTERT

(150) GEO: GSE137834

Hydro-tRNAseq of
HACAT and HepG2

This study ArrayExpress: E-MTAB-9905

Experimental Models: Cell Lines

HACAT CRG Collection
(Center for Genomic
Regulation)

RRID: CVCL_0038

HepG2 IMIM Collection
(Institut Hospital del

RRID: CVCL_0027
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Mar d'Investigacions
Mèdiques)

Software and Algorithms

GSEA [v4.0.3] (144) http://software.broadinstitute.org/
gsea

SciKit Learn [v0.20.1] (194) https://scikit-learn.org

Codon Usage tool (195) https://www.bioinformatics.org/s
ms2/codon_usage

ViennaRNA toolkit
[v2.4.14]

(162) https://www.tbi.univie.ac.at/RNA

KnotInFrame (196) https://bibiserv.cebitec.uni-bielefel
d.de/knotinframe

BBMap [v38.22] Bushnell B. https://sourceforge.net/projects/b
bmap

FastQC [v0.11.4] Andrews S. https://www.bioinformatics.babra
ham.ac.uk/projects/fastqc

SAMtools [v1.3.1] (139) http://samtools.sourceforge.net

tRNAscan-SE [v2.0] (140) http://lowelab.ucsc.edu/tRNAsca
n-SE

BEDtools [v2.27.1] (141) https://bedtools.readthedocs.io/en
/latest

Segemehl [v0.3.1] (142) https://www.bioinf.uni-leipzig.de/
Software/segemehl

Picard [v2.18.17] Broad Institute https://github.com/broadinstitute
/picard

GATK [v3.8] (143) https://software.broadinstitute.org
/gatk

Other

Code for tRNA
mapping and
quanti�cation of
Hydro-tRNAseq data

This paper https://github.com/hexavier/tRN
A_mapping
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Code for all
computational
analyses of this report

This paper https://github.com/hexavier/tRN
A_viruses

4.5.2. Resource availability

This study did not generate new unique reagents. The code used in this
study is available at GitHub (github.com/hexavier/tRNA_viruses,
github.com/hexavier/tRNA_mapping). All generated raw sequencing
data can be accessed at ArrayExpress E-MTAB-9905.

4.5.3. Experimental model and subject details

4.5.3.1. Cell lines

The cell lines included in this study are HACAT and HepG2. The sex
of each cell line is as follows: HACAT, male; HepG2, male. Cells were
maintained at 37°C in a humidi�ed atmosphere at 5% CO2 in DMEM
4.5 g/l Glucose with UltraGlutamine media supplemented with 10% of
FBS and 1% penicillin/streptomycin. Cells have been tested negative for
mycoplasma.

4.5.4. Method details

4.5.4.1. Biological Assays

RNA extraction

Cells were grown in 60 mm dishes for 48h in triplicates. Total RNA
from HACAT and HepG2 was extracted using the miRNeasy Mini kit.
20 μg of total RNA was treated following the protocol of
Hydro‐tRNAseq (109).

Hydro‐tRNA sequencing

Total RNA was resolved on 15% Novex TBE–urea gels and size‐selected
for 60‐100 nt fragments. The recovered material was then alkaline
hydrolyzed (10 mM sodium carbonate and 10 mM sodium bicarbonate)
for 10 min at 60°C. The resulting RNA was de‐phosphorylated with
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Antarctic Phosphatase (New England Biolabs) at 37°C for 1 h.
De‐phosphorylated RNA was puri�ed with an RNeasy MinElute spin
column and re‐phosphorylated with polynucleotide kinase (NEB).
PNK‐treated tRNAs were puri�ed with an RNeasy MinElute spin
column, adaptor‐ligated, reverse‐transcribed, and PCR‐ampli�ed for 14
cycles. The resulting cDNA was puri�ed using a QIAQuick PCR
Puri�cation Kit and sequenced on Illumina HiSeq 2500 platform in 50
bp paired‐end format.

4.5.4.2. Data Sources

Viruses and annotations

We included in the analysis all human-infecting viruses from the NCBI
Viral Genome Browser, downloaded as of June 9, 2020. Additionally,
for its interest, we added a posteriori the new SARS-CoV-2 virus. Viral
metadata including family, genus, genetic material type and Baltimore
category were retrieved either from the ICTV 2018b Master Species List
(197) or the ICTV Virus Metadata Resource
(talk.ictvonline.org/taxonomy/vmr/). The sequence-based phylogenetic
information was obtained from Aiewsakun and Simmonds (166).
Tissue and cell type tropism was determined based on the curated
database ViralZone (165), and allocated to each of the six main classes
based on the main annotation. To exclude any bias due to the source of
the list, we also used the list of human-infecting viruses of ViralZone
(165). Table S1 contains all human-infecting viruses and their associated
metadata.

Coding sequences

The coding sequences of human-infecting viruses from RefSeq were
downloaded from the Codon/Codon Pair Usage Tables (CoCoPUTs)
project release as of June 9, 2020 (30,147) (Table S1). The SARS-CoV-2
and RaTG13 sequences were directly downloaded from GenBank
(Table S3).
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Virus Orthologous Groups

Virus Orthologous Groups and their functional annotations (virus
structure and replication) were downloaded from VOGdb (vogdb.org,
release number vog94). The protein sets of each VOG were formatted to
a Gene Matrix Transposed (GMT) �le for custom GSEA analyses.

TCGA translational e�ciency

The Supply-to-Demand Adaptation (SDA) is the balance between the
supply (i.e. the anticodon tRNA abundances) and demand (i.e. the
weighted codon usage based on the mRNA levels) for each of the 60
codons (excluding methionine and Stop codons) (150). The SDA
weights of all TCGA samples were downloaded from Synapse
(www.synapse.org/tRNA_TCGA, syn20640275).

Hydro-tRNAseq of HeLa, HEK293, HCT116, MDA‐MB‐231, and
�broblast BJ/hTERT

Using the exact same protocol as described above, we have previously
generated and published the Hydro-tRNAseq data of �ve tissue-wide
human cell lines: HeLa, HEK293, HCT116, MDA‐MB‐231, and
�broblast BJ/hTERT (150). The raw data is publicly accessible at the
Gene Expression Omnibus (GSE137834).

Small RNA-sequencing datasets upon viral infection

Three small RNA-sequencing datasets were downloaded to analyze the
tRNA content of human cell lines upon viral infection. In Stark et al.
(2012), samples of Human Foreskin Fibroblasts (HFF) infected with
human cytomegalovirus (HCMV) strain Towne at a multiplicity of
infection (MOI) of 3, analyzed at 24 and 72 hours post-infection
(GSE33584). In Shi et al. (2018), samples of cellosaurus KMB-17
infected with Human Simplex Virus type 1 (HSV1) strain 17 at a MOI
of 1, analyzed at 48 hpi (GSE102470). In Chang et al. (2013), samples
of lymphoblastoid SUP-T1 cells infected with Human
immunode�ciency virus 1 (HIV1) strain LAI at a MOI of 5, at 5, 12
and 24 hpi (GSE57763). The raw FASTQ �les were analyzed using the
tRNA quanti�cation pipeline below.
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Proteomics datasets upon viral infection

Three proteomics datasets were downloaded to analyze the abundances
of viral proteins in human cell lines upon infection. In Golumbeanu et
al. (175), iBAQ mass spectrometry quanti�cation was used with
lymphoblastoid SUP-T1 cells infected with a HIVeGFP-based viral
vector, analyzed at 6, 12, 18 and 24 hpi. In Ouwendijk et al. (177),
TOP3 MS quanti�cation was used in human retinal pigment epithelial
ARPE-19 cells infected with HSV-1 F-strain at a MOI of 1, analyzed at
0, 2, 4, 6, 8, 10 and 12 hpi (label-free absolute measurements of peptides
were accessed upon request to the authors). For HCMV, we used two
datasets of HFF infected with HCMV strain Merlin at a MOI of 10
with TMT mass spectrometry: (a) WCL3 from Weekes et al. (198), and
(b) proteomic series three from Fielding et al. (199). The iBAQ absolute
quanti�cations of these two datasets have been previously published in
Nobre et al. (176). Therefore, quanti�cations at 24, 48 and 72 hpi were
determined by distributing the absolute iBAQ quanti�cation among the
relative TMT abundances. All proteomic data is accessible in Table S5.

4.5.4.3. Computational Analysis

Relative Codon Usage (RCU)

The RCU is de�ned as the contribution of a certain codon to the amino
acid it belongs to. The RCU of all synonymous codons therefore sum
up to 1.

𝑅𝐶𝑈 =
𝑥

𝐶

𝑖∈𝐶
𝑎𝑎

∑ 𝑥
𝑖

where refers to the abundance of the codon , and is the set of all𝑥
𝐶

𝐶 𝐶
𝑎𝑎

synonymous codons.

tRNA quanti�cation

In both Hydro‐tRNAseq and small RNA‐seq FASTQ �les, sequencing
adapters were trimmed using BBDuk from the BBMap toolkit [v38.22]
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(https://sourceforge.net/projects/bbmap): k-mer=10 (allowing 8 at the
end of the read), Hamming distance=1, length=10-75bp, Phred>25.
Using the human reference genome GRCh38, the high con�dence set
of tRNAs from GtRNAdb (12) was annotated with tRNAscan-SE
[v2.0] (140), which includes a total of 432 nuclear tRNAs and 20
mitochondrial tRNAs.

Trimmed FASTQ �les were then mapped using a speci�c pipeline for
tRNAs (113). Summarizing, an arti�cial genome is �rst generated by
masking all annotated tRNA genes and adding pre-tRNAs (i.e. tRNA
genes with 3' and 5' genomic �anking regions) as extra chromosomes.
Upon mapping to this arti�cial genome with Segemehl [v0.3.1] (142),
reads that map to the tRNA-masked chromosomes or to the tRNA
�anking regions are �ltered out in order to remove non-tRNA reads and
unmature-tRNA reads respectively.

After this �rst mapping step, a second library is generated by adding 3'
CCA tails and removing introns from tRNA genes. All 100% identical
sequences of these so-called mature tRNAs are clustered to avoid
redundancy. Next, the subset of �ltered reads from the �rst mapping is
aligned against the clustered mature tRNAs using Segemehl [v0.3.1]
(142). Mapped reads are then realigned with GATK IndelRealigner
[v3.8] (143) to reduce the number of mismatching bases across all reads.

For quanti�cation, isoacceptors were quanti�ed as reads per million
(RPM). In order to increase the coverage for anticodon-level
quanti�cation, we consider all reads that map unambiguously to a
certain isoacceptor, even though they ambiguously map to di�erent
isodecoders (i.e. tRNA genes that di�er in their sequence but share the
same anticodon). Ambiguous reads mapping to genes of di�erent
isoacceptors were discarded.

Relative tRNA Adaptation Index (RtAI)

As described by dos Reis et al. (61,128), the tAI weights every codon
based on the wobble-base codon-anticodon interaction rules. Let be a𝑐
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codon, then the decoding weight is a weighted sum of the
square-root-normalized tRNA abundances for all tRNA𝑡𝑅𝑁𝐴

𝑐𝑗
isoacceptors that bind with a�nity given the wobble-base𝑗 (1 − 𝑠

𝑐𝑗
)

pairing rules . However, while dos Reis et al. (61) assumes that highly𝑛
𝑐

expressed genes are codon-optimized, here we use the non-optimized
s-values to avoid a circularity in our reasoning:

𝑠 =  [0,  0,  0,  0,  0. 5,  0. 5,  0. 75,  0. 5,  0. 5]

𝑤
𝑐

=
𝑗=1

𝑛
𝑐

∑ (1 − 𝑠
𝑐𝑗

)𝑡𝑅𝑁𝐴
𝑐𝑗

For better comparison with the SDA, an amino-acid-normalized tAI
measure is de�ned by dividing each tAI weight by the maximum weight
among all codons within each amino acid family.

𝑅𝑤
𝑐

=
𝑤

𝑐

𝑚𝑎𝑥
𝑖∈𝑐

𝑎𝑎

(𝑤
𝑖
)

And therefore the RtAI of a certain protein is the product of weights
of each codon at the triplet position throughout the full gene𝑅𝑤 𝑖

𝑘
𝑘

length , and normalized by the length.𝑙
𝑔

𝑅𝑡𝐴𝐼 =
𝑘=1

𝑙
𝑔

∏ 𝑅𝑤
𝑖

𝑘( )1/𝑙
𝑔

Supply-to-Demand Adaptation (SDA)

The SDA aims to consider not only tRNA abundances, but also the
codon usage demand. In doing so, it constitutes a global measure of
translation control, since the e�ciency of a certain codon depends both
on its complementary anticodon abundance as well as the demand for
such anticodon by other transcripts. This global control has been indeed
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established to play an important role in de�ning optimal translation
programs (96).

The de�nition of the SDA is based on similar previously published
metrics (47,50,150), which consists of a ratio between the anticodon
supply and demand. On the one hand, the anticodon supply is de�ned
as the relative tAI weights (see previous section). On the other, the𝑅𝑤

anticodon demand is estimated from the codon usage at the
transcriptome level. It is computed as the frequency of each codon in a
transcript weighted by the corresponding transcript expression, and
�nally summing up over all transcripts. Let be a codon, then the𝑐
codon usage is a weighted sum of the counts of codon in gene𝑐

𝑖
𝑗

weighted by the mRNA-seq abundance for all genes in the𝑚𝑅𝑁𝐴
𝑗

genome :𝑔

𝐶𝑈
𝑐

=
𝑗=1

𝑔

∑ 𝑐
𝑖𝑗

𝑚𝑅𝑁𝐴
𝑗

Similarly to the supply, the anticodon demand is then normalized
within each amino acid family:

𝐷
𝑐

=
𝐶𝑈

𝑐

𝑚𝑎𝑥
𝑖∈𝑐

𝑎𝑎

(𝐶𝑈
𝑖
)

Finally, the SDA weights (SDAw) are de�ned as the ratio between the
codon supply and demand :𝑆

𝑐
𝐷

𝑐

𝑆𝐷𝐴𝑤
𝑐

=
𝑆

𝑐

𝐷
𝑐

And therefore the SDA of a certain protein is the product of weights
of each codon at the triplet position throughout the full𝑆𝐷𝐴𝑤 𝑖

𝑘
𝑘

gene length , and normalized by the length.𝑙
𝑔
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𝑆𝐷𝐴 =
𝑘=1

𝑙
𝑔

∏ 𝑆𝐷𝐴𝑤
𝑖

𝑘( )1/𝑙
𝑔

Internal clustering validity

Three indexes were used to determine the clustering performance of the
RCUs based on di�erent viral features. These are "internal" metrics,
since they evaluate the quality of a certain grouping using measures of
the dataset itself (homogeneity of clusters, distances within and between
clusters, etc.).

❖ WB index is a ratio of the sum-of-squares (SS) within clusters and
the SS between clusters, normalized by the number of clusters
(200). Therefore, low values of the WB index are indicative of
good clustering.

❖ Dunn index considers the inter-cluster distance and diameter of
the cluster hypersphere (201). A higher Dunn index indicates
better clustering.

❖ Silhouette Coe�cient ranges from -1 to +1, and measures how
similar an object is to its own cluster (intra-cluster distance)
compared to other clusters (nearest-cluster distance) (202). A high
value indicates a correct clustering.

Linear Discriminant Analysis of viral RCU

We applied a Linear Discriminant Analysis (LDA) to the viral RCUs,
taking for each virus the average RCU of its proteins. We assigned each
virus to its corresponding tropism (Table S1) in order to �nd the linear
combination of codon features that maximized di�erences between viral
target tissues. Given the collinear nature of RCUs by de�nition, the
estimated coe�cients are impossible to interpret, although it does not
hamper the classi�cation performance.
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Other determinants of codon usage

To analyze the extent of multiple coding determinants on viral
sequences, we computed two metrics associated with the folding of
RNAs and the presence of ribosomal frameshift motifs. In both cases,
we compared these results to a set of randomized sequences, which code
for the exact same protein and have the same codon usage, but their
codon composition is shu�ed.

❖ Minimum Free Energy (MFE). RNAs are not simple linear
sequences, but rather need to be appropriately folded. As such, we
applied the ViennaRNA toolkit (203) to predict the folding of all
viral RNA sequences and therefore determine their
corresponding Minimum Free Energy (MFE).

❖ Ribosomal Frameshift prediction. Viruses are known to
incorporate ribosomal frameshift events in their genomes in order
to induce the expression of downstream coding regions or
regulate the expression of protein products (204). As such, we
applied the KnotInFrame tool (196) to identify sequences that
could induce ribosome frameshift and would therefore be biasing
our analysis. The algorithm computes the MFE of the
pseudoknot RNA structure, which is known to produce
frameshifts, and compares it with the base RNA folding.

Random Forest Classi�er

To evaluate the adaptation of the viral proteins to the SDAw of human
tissues, we computed their average SDA to each of the 23 TCGA tissues
(Table S2). Using the set of 228 tropism-de�ned viruses, we had a total
of 2891 viral proteins. Taking the 23 tissue-speci�c SDAs as features, we
applied a Random Forest (RF) Classi�er, populated with 100 decision
trees, using the scikit‐learn package (194). Therefore, for each of the six
viral tropisms, we developed a model for predicting the tropism-positive
versus tropism-negative proteins based on the translational adaptation
across tissues. Given that the size of the tropism-positive and
tropism-negative groups were often unbalanced, we iteratively sampled
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equal-sized groups, for n=100 iterations. Furthermore, we validated the
results with a strati�ed 5-fold cross-validation.

In order to evaluate the performance of the RF models, we computed
the Area Under the Curve (AUC) of Receiver Operating Characteristic
(ROC) and Precision-Recall (PR) plots (Fig. 4.2A). We took the
average and standard deviation across all iterations. Similarly, we
computed the relative feature weights corresponding to each of the 23
TCGA tissues (Fig. 4.2B). In addition, we also validate the predictive
potential of the model by performing a permutation test over 100
randomizations of the tropism labels of the dataset (Table S2).

For the dataset of Hydro-tRNAseq of human cells, we computed the
average viral RtAI to each of the seven cell lines (Table S2). The RtAI is
the supply-only version of SDA (see description above), since no codon
demand information is available for this dataset. Using the same set of
2891 viral proteins across these seven RtAI features, we performed an
identical RF classi�er as above.

Linear Discriminant Analysis of tissue-speci�c SDAs

Similar to the RF classi�er, we also computed the average proteome
SDA per virus in each of the 23 tissues. We then applied a Linear
Discriminant Analysis (LDA) to these averaged SDAs. We assigned each
virus to its corresponding tropism (Table S1) in order to �nd the linear
combination of tissue adaptation features that maximized di�erences
between viral target tissues (Fig. S2, Table S2).

Translational adaptation of human coronaviruses

The SARS-CoV-2 coronavirus constitutes the etiologic agent of the
biggest pandemic of the 21st century, causing the COVID-19
pneumonia-like disease. As our systematic analysis suggests that the
codon usage of viruses tend to be adapted to the tissue they infect, we
selected the novel coronavirus SARS-CoV-2 and other related
respiratory viruses to further explore their translational adaptation
pro�le over tissues. We initially reconstructed tRNA expression pro�les
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along the respiratory tract making use of the spatial information
associated with healthy TCGA samples from head and neck squamous
cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC) and
lung adenocarcinoma (LUAD) (Table S3). We then computed the SDA
of viral proteins from the three pandemic coronaviruses of the last two
decades SARS-CoV (205), MERS-CoV (206), and SARS-CoV-2 (193),
as well as the common �u-causing in�uenza A virus (H1N1) along the
respiratory tract (Fig. S4A). Apart from the clear viral tropism of
SARS-CoV-2 to the respiratory tract, recent studies propose that their
tropism can expand to other tissues such as the digestive system or the
brain (183,187). For this reason, we also extended our translational
analysis to all the 23 tissues of the TCGA dataset (Fig. S5A).

Moreover, given that the tropisms not only depend on the translational
adaptation to the host, but also on the expression of the required entry
receptors, we measured the respective receptors of each virus (Fig. S4B,
Table S3). In�uenza A viruses bind to α(2,6)-linked and α(2,3)-linked
sialic acids, which are synthesized by the enzymes ST6GAL1 and
ST3GAL4, respectively (207). The MERS-CoV uses the
parenchyma-speci�c receptor DPP4 (208). On the other hand, both the
SARS-CoV and SARS-CoV-2 strains bind to the ACE2 protein and
require the proteolytic priming of the viral spike protein by TMPRSS2
(209), although the receptor BSG/CD147 has also been proposed (210).

In an attempt to elucidate the translational selection that could have
bene�tted the evolution of the new coronavirus, we also compared the
SDA adaptation of SARS-CoV-2 to those of close phylogenetic strains
(Fig. S5B): the human-infecting SARS-CoV and the bat coronavirus
RatG13, with 79.6% and 96.2% of sequence identity, respectively (193).

Gene Set Enrichment Analysis (GSEA)

We analyzed the enrichment of gene sets of the Virus Orthologous
Groups using the GSEA algorithm (144). The score used to generate the
ranked list input is speci�ed in the text. For the analysis, all gene sets
with at least 10 members appearing in the ranked list were included.
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4.5.5. Quantification and statistical analysis

All details of the statistical analyses can be found in the �gure legends.
For hypothesis testing, a Wilcoxon rank-sum test was performed. We
used a signi�cance value of 0.05.
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Using protein-per-mRNA differences among
human tissues in codon optimization

5.1. Abstract

Codon usage and nucleotide composition of coding sequences have
profound e�ects on protein expression. However, while it is recognized
that di�erent tissues have distinct tRNA pro�les and codon usages in
their transcriptomes, the e�ect of tissue-speci�c codon optimality on
protein synthesis remains elusive. Here, we leverage existing
state-of-the-art transcriptomics and proteomics datasets from the GTEx
project and the Human Protein Atlas to compute the
protein-to-mRNA ratios of 36 human tissues. Using this as a proxy of
translational e�ciency, we build a machine learning model that
identi�es codons enriched or depleted in speci�c tissues. In particular,
we detect two clusters of tissues with an opposite pattern of codon
preferences. We then use the identi�ed patterns for the development of
CUSTOM, a codon optimizer algorithm which suggests a synonymous
codon design in order to optimize protein production in a
tissue-speci�c manner. In a human cell model, we provide evidence that
codon optimization should indeed take into account particularities of
the translational machinery of the tissues in which the target proteins
are expressed and that our approach can design genes with
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tissue-optimized expression pro�les. Altogether, CUSTOM could
bene�t biological and biotechnological research, such as the design of
tissue-targeted therapies and vaccines.

5.1.1. Additional data access

All supplementary �gures and data can be
accessed from the original publication through
this QR code and link.
Supplementary �gures and tables will be
referred to as "ED Figure" and "Sup. Table".

5.2. Introduction

From the advent of synthetic biology, it is widely recognized that gene
design needs to be adapted to the expression requirements of the host
(211). Within coding sequences, there are manifold overlapping factors
that determine translation, mRNA stability, transcription, splicing,
methylation, or ribosomal frameshifting, among others (29). Therefore,
while the amino acid sequence of proteins is maintained, the usage of
synonymous codons can be optimized for heterologous expression.

During the last decades, an extensive number of computational tools
have been developed for gene design (36,212). Most commonly, these
tools optimize the codon usage in order to resemble that of the host
based on the Codon Adaptation Index (CAI) of the genes to be
optimized or similar metrics. Other more innovative developments also
include neural networks that control translation speed (213) or other
machine learning algorithms that optimize mRNA stability (214).
Although there is no absolute “best” approach, codon optimization is
commonly and successfully applied in gene design. In fact, current
knowledge on the e�ect of synonymous variants on the heterologous
expression of the protein GFP shows up to 46-fold expression
di�erences in HeLa cells (27). Similarly, mRNA and protein levels
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across thousands of GFP variants strongly correlated with their CAI in
S. cerevisiae (101).

Nevertheless, codon optimization in multicellular eukaryotes is more
intricately determined, since di�erent tissues can showcase di�erences in
codon usage and tRNA expression (54,103,150). The translational
e�ciency, which constitutes the rate of protein production from
mRNA, is therefore dependent on the balance between the codon usage
of genes being translated and the abundance of a limited tRNA pool
(96,150). In this context, codons translated by highly abundant tRNAs
generally correspond to optimal codons in the translatome, as has been
reported by ribosome pro�ling (95). However, detecting di�erences of
translational e�ciency between tissues can be challenging, since the
larger gene-to-gene variability of protein levels can obscure the actual
tissue-to-tissue di�erences (3).

The advent of high-throughput sequencing has enabled an extensive
transcriptome pro�ling of human tissues (215,216). Based on the
mRNA-seq data from the GTEx project, Kames et al. (2020) developed
the public resource TissueCoCoPUTs, containing codon and codon
pair usage tables of tissue transcriptomes (54). However, current
knowledge indicates that tissue-speci�c variability of gene expression is
mostly regulated at the post-transcriptional level and mRNA-seq alone
is therefore not able to capture it (21,28). Developments in mass
spectrometry have very recently led to the release of deep and
quantitative proteome maps of human tissues (217,218).

Using this transcriptomic and proteomic data from the Human Protein
Atlas and the GTEx project, we here compute the protein-to-mRNA
(PTR) ratios of 36 human tissues as a proxy for translational e�ciency.
To distinguish high-PTR from low-PTR proteins, we build random
forest models that identify which codons are optimal or non-optimal for
each tissue. Then we apply these codon preferences to develop a tool,
CUSTOM, that optimizes coding sequences for a speci�c tissue.
CUSTOM is publicly available as a Python package
(github.com/hexavier/CUSTOM) and as a web interface
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(custom.crg.eu). By optimizing eGFP and mCherry proteins to a
human cell model of kidney and lung, we provide experimental evidence
of how tissue codon optimization could be important e.g. in vaccines or
gene therapy.

5.3. Results

5.3.1. Protein-to-mRNA ratios detect differences in
translational efficiency among tissues

Translational e�ciency (TE) is de�ned as the rate of protein synthesis
from mRNAs, which can be estimated as the protein-to-mRNA (PTR)
ratio. To systematically analyze the PTR ratios across a total of 36
human tissues, we retrieved the mRNA-seq and proteomics data from
two recent datasets: 29 tissues from the Human Protein Atlas (28,218)
(HPA) and 24 tissues from the GTEx project (217) (Fig. 5.1A-B, Sup.
Table 1). The �rst study includes one sample per tissue, which are
concurrently analyzed by mRNA-seq and label-free iBAQ proteomics.
On the latter, a total of 182 matched samples are measured both by
mRNA-seq and tandem mass tag 10plex/MS3 mass spectrometry. By
correlating the mRNA expression, protein abundance and PTR ratios
along the 17 tissues in common, we could ascertain a high
correspondence between the two datasets (ED Fig. 1A).

Although to date this data is still relatively rare, a more direct readout of
TE is the ratio between ribosome pro�ling and mRNA abundance. To
con�rm the validity of using PTR ratios as an estimate of TE, we
therefore compared the PTR values to a ribosome pro�ling dataset of
brain, liver, and testis. In all of them we observe a signi�cantly positive
correlation across the human genome (22) (Fig. 5.1C, Sup. Table 1).
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Figure 5.1. Protein-to-mRNA ratios detect differences in translational efficiency
among tissues.
(A) Proteomics and mRNA-seq data included in this study contains samples from the
GTEx project (217) and Human Protein Atlas (218). (B) Using these datasets, we
compute the protein-to-mRNA ratios (PTR) and define tissue-enriched and
tissue-depleted sets of proteins for each tissue. By comparing the codon usage of
these two sets, we identify the codon optimality pattern of tissues. Using this
information, we develop a gene design tool called CUSTOM and validate the method
using an in vitro cellular model. (C) Spearman correlation between the median
translational efficiency (22) (ratio between ribo-seq and mRNA-seq FPKMs) and PTR
(218) across genes in brain, liver, and testis. The color code depicts the density of
points in the scatter plot.
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We next set out to investigate the tissue-to-tissue di�erences of PTR
ratios in the aforementioned datasets. For each tissue, we de�ned a set of
high-PTR and a set of low-PTR genes, described as having a PTR fold
change compared to the average of all other tissues larger than 2, and
vice versa (Sup. Table 1). We �nd a signi�cant concordance between the
gene sets derived from the HPA and GTEx datasets in most tissues (p <
0.05, one-tailed binomial test, Sup. Table 1).

To physiologically interpret the di�erences between gene sets, we
performed an enrichment map among high-PTR and low-PTR sets
linking tissues with high overlap of the respective gene sets (ED Fig. 1B).
In agreement with their highly tissue-speci�c function, we detect that
tissues group according to their role in the body: eg. nervous tissue
(brain and tibial nerve), muscular tissue (skeletal muscle and heart).
Moreover, GO analyses of high-PTR genes show signi�cant
enrichments for highly tissue-speci�c biological processes according to
the physiological and anatomical function of the tissue (p <0.05,
Fisher’s exact test, ED Fig. 1C).

We next asked if there could be any confounding factors associated with
these gene sets, such as protein secretion and degradation, that could
bias our analyses. On the one hand, it has been recently reported that
constitutively secreted proteins are often detected at the mRNA but not
at the protein level (217), which could bias PTR ratios as a measure of
TE. While we also observe these di�erences in our dataset (ED Fig. 2A),
the exclusion of secreted proteins from our gene sets does not a�ect the
downstream results (see following section). On the other hand, we
analyzed the protein half-life of gene sets based on two recent datasets in
�ve human cell lines (219,220) (Sup. Table 1). The protein half-life is
not signi�cantly di�erent between high-PTR and low-PTR gene sets in
most of the tissues (p < 0.05, two-tailed Wilcoxon rank-sum test), nor is
there any trend that one of the groups would be consistently associated
with higher or lower half-life (ED Fig. 2B).

Taken together, these observations indicate that PTR ratios can
e�ciently detect tissue-speci�c di�erences in translation. As such, it
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constitutes an appropriate dataset to systematically study TE di�erences
across the set of 36 human tissues.

5.3.2. Random Forest models identify two clusters of human
tissues with distinct codon signatures

Recent studies show that di�erent tissues can have di�erent tRNA
repertoires and codon usage (54,150), which could have an in�uence on
translational e�ciency. Therefore, we wondered whether high-PTR and
low-PTR sets of genes were speci�cally enriched or depleted of certain
codons. If there is a tissue-speci�c codon signature, we would expect to
be able to predict these di�erences in PTR.

To that aim, we built a random forest classi�er for each tissue that
predicts the high-PTR vs low-PTR state of genes based on their codon
usage. All 36 resulting models perform with an area under the curve
(AUC) of their receiver operating characteristic (ROC) curves higher
than the no-skill model of 0.5 (Fig. 5.2A, Sup. Table 2). In particular,
kidney, breast, lung, rectum and tonsil showcase the highest
tissue-speci�c pro�les (Fig. 5.2A; all AUC > 0.70). Furthermore, to
validate whether these di�erences in PTR are speci�cally dependent on
codon usage and not from nucleotide composition alone, we compared
them with the performance of three control models: +1 and +2
misframed codon usage as well as dinucleotide composition of genes
(Sup. Table 2). While these control models also show predictive power,
the AUC of the correctly framed codon usage models signi�cantly
outperform the controls (p < 0.05, one-tailed binomial test).

To examine the tissue-speci�city of codons, we next analyzed which
particular codons are predictive for high vs low PTR states in each
tissue. The relative feature importances of each random forest classi�er
measure the contribution of codons in the decision trees (ED Fig. 3A).
In general, only a few codons (5 to 10) are relevant for each model, but
they di�er across tissues. A recursive feature elimination of each model
similarly substantiates that fewer than 10 codons are su�cient to
achieve the maximum AUC performance (ED Fig. 3B).

101



Chapter 5

Figure 5.2. Random Forest models identify two clusters of human tissues with
distinct codon signatures.
(A) Receiver operating characteristic (ROC) curves of lung and kidney random forest
classifiers, in which the codon usage of genes is used to predict whether they are
high-PTR or low-PTR in the respective tissue (see Methods). (B) Ratios of the codon
usage between high-PTR and low-PTR genes in each tissue. Codons and tissues are
hierarchically clustered using euclidean distances and the complete-linkage method.
The barplot on the left shows the mean AUC of the ROC curve of the RF model of
each tissue.
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In addition, by computing the ratio between the codon usage of
high-PTR vs low-PTR genes, we observe the enrichment or depletion
of codons in speci�c tissues (Fig. 5.2B). There are two main clusters of
tissues with opposite codon optimality pro�les: the �rst generally
preferring A/T-ending codons while the second favoring C/G-ending
ones. Also, as expected, tissues with higher AUC performances
showcase more de�nite codon pro�le patterns both in terms of their
enrichment/depletion (Fig. 5.2B) as well as their importance (ED Fig.
3A). As mentioned in the previous section, we also repeated the same
analyses with the secretome-excluded sets of genes, which have a highly
similar codon optimality pro�le with all correlations of codon ratios
over 0.95 (Sup. Table 2).

Given that some reports highlight the role of codon pair bias in
translation (54,221), we similarly analyzed the codon pair usage ratios
between high-PTR vs low-PTR genes (Sup. Table 3). A principal
component analysis (PCA) of these ratios perfectly separates the exact
same two clusters observed above with single codons alone (ED Fig.
4A). To further analyze how much codon pair variance is explained by
single codons alone, we compared observed codon pair ratios with their
expected values based on their constituent single codons. They relate
highly linearly as shown by linear regression models (ED Fig. 4B, Sup.
Table 3), which indicates that di�erences in codon pair ratios can be
explained by single codons alone. In fact, codon pairs that deviate the
most from linearity just correspond to outliers with very low counts
within gene sets (ED Fig. 4C).

Overall, our random forest classi�ers can predict the PTR of genes in a
certain tissue based on their codon usage. As such, the observed
di�erences in codon preference or avoidance across tissues can be
exploited to optimize tissue-speci�c gene design.
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5.3.3. CUSTOM generates fluorescent variants with desired
tissue-specific expression

To translate di�erences in tissue-speci�c PTR into a codon optimizer
tool, we developed CUSTOM as a probabilistic approach (see Methods,
custom.crg.eu). Given a certain amino acid sequence and a target tissue,
codons are selected with a probability proportional to their tissue
importance in the model (ED Fig. 3A). Then, based on the ratio of the
selected codon (Fig. 5.2B), it is either added or avoided in the generated
sequence. This process is performed along the whole sequence, and
repeated iteratively to generate a pool of hundreds of optimized
sequences. Among this pool of sequences, given that tissue-speci�c
codon usage is not the only factor in�uencing coding sequences (29),
the top scoring ones can be selected based on other commonly used
parameters of codon bias or mRNA stability (36) (Codon Adaptation
Index, Codon Pair Bias, Minimum Free Energy, E�ective Number of
Codons, see Methods).

To validate the predictor, we chose the proteins eGFP and mCherry,
and optimized them with CUSTOM to either kidney or lung (Sup.
Table 4). Taking eight among the top optimized sequences (Fig. 5.3A,
2x eGFPKidney, 2x eGFPLung, 2x mCherryKidney, 2x mCherryLung), we then
designed four constructs, placing in each of them one eGFP and one
mCherry optimized each one for a di�erent tissue and under an
inducible bidirectional promoter (Fig. 5.3B). These constructs were
then simultaneously expressed in the lung and kidney cell lines A549
and HEK293T, respectively. Based on available proteomics data of these
cell lines (222), the proteome of A549 clearly resembles that of lung,
while HEK293 is a closer model to kidney (ED Fig. 5A).

We then analyzed the eGFP and mCherry �uorescence of each construct
in each cell line. For all cases, we observe that the eGFP/mCherry ratio is
signi�cantly higher in the tissue for which eGFP is optimized (Fig.
5.3C, p < 0.05, two-tailed Wilcoxon rank-sum test, ED Fig. 5B), which
validates our tissue-speci�city hypothesis. We further observe that (1)
the two constructs with eGFPLung have generally lower eGFP/mCherry
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ratios compared to the ones with eGFPKidney, and (2) the di�erences in
eGFP/mCherry ratios between constructs are more variable in HEK293
than A549 cells. Altogether, these observations suggest that A/T-ending
codons are generally lower expressed than C/G-ending counterparts,
but tissues like lung tolerate them better.

Figure 5.3. CUSTOM generates fluorescent variants with desired tissue-specific
expression.
(A) Selected eGFP and mCherry sequences optimized to lung and kidney using
CUSTOM. The color code corresponds to the optimality ratios of Fig. 5.2B. (B) Using
these sequences, we designed four of constructs by placing a mCherry and an eGFP
with opposite tissue-specificity under an inducible bidirectional promoter. (C) Ratios
of eGFP and mCherry for each of the four constructs detected by flow cytometry. The
number of cells within each group is specified. Center values represent the median.
Statistical differences were determined by two-tailed Wilcoxon rank-sum test, and are
denoted as follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Two
additional replicates are shown in ED Fig. 5A.
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5.4. Discussion

Current analyses of the mRNA and protein levels among human tissues
distinguish between across-gene and within-gene (i.e. across-tissue)
variability (3). In fact, the coe�cient of variation of mRNA and protein
levels across genes highly exceeds that of across tissues. In consequence,
studies of codon usage on human transcriptomes and PTR ratios so far
were dominated by the across-gene variability, and thus overlooked the
smaller across-tissue di�erences (28,54). The approach taken here puts
the focus on the across-tissue variability of PTR ratios rather than the
overall genome, which is actually the major source of
post-transcriptional regulation (21,28). In fact, we provide evidence that
high-PTR gene sets of tissues are particularly enriched for tissue-speci�c
functions.

Given the high GC content of the human genome as a whole,
G/C-ending codons are generally more abundant (i.e. higher CAI), and
relate to higher mRNA and protein expression levels (27,223,224). But
again, moving away from this across-gene perspective of human codon
usage to look at the across-tissue variation, we here report that distinct
tissues showcase di�erent codon preferences. All in all, as also
determined experimentally, we observe that the expression of a certain
protein is dependent on two axes: (1) the across-gene axis with
G/C-ending codons favoring higher absolute expression, and (2) the
tissue-speci�c axis with the codon preferences observed in Fig. 5.2B.
Moreover, we also report that some tissues have a more de�nite codon
pro�le than others, where this second axis is less evident. In agreement
with our observed tissue-speci�c axis, Allen et al. (2022) recently
reported that testis and brain (in contrast to other tissues such as ovary)
better tolerate the translation of rare A/T-ending codons in Drosophila
melanogaster (225).

The codon optimization tool CUSTOM is able to exploit these codon
preferences for the design of tissue-targeted genes. In fact, all four
designed constructs expressed in a kidney and lung cell line showed the
predicted tissue-speci�city. To make CUSTOM readily available to the
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community, we developed it completely open source and made it
accessible through a web server.

Human tissues are ensembles of heterogeneous cell types, and therefore
observed di�erences in codon optimality are actually a composition of
the constituent cell types. However, single-cell technologies of mRNA
and protein measurements fall still far from complete cellular atlases
(226). Instead, we used the most up-to-date and complete tissue-wide
maps of the human transcriptome and proteome, which have been
generated by cutting-edge mass spectrometry and mRNA sequencing
techniques (215,217,218).

Finally, the results presented here constitute a proof-of-concept that
tissue-speci�c codon usage exists and can be applied to gene design. In
particular, this tool could be used in the development of optimized gene
therapies or mRNA vaccines with more targeted tissue targets and
therefore potentially less side e�ects. Nevertheless, factors other than
codon usage also play a role in gene expression (29), and therefore
changes in synonymous codons can as well interfere with other
processes such as mRNA folding and stability, mRNA modi�cations,
protein folding, or translational kinetics (227,228). As such,
tissue-speci�c codon usage will constitute one additional instrument in
the gene design tool set.

5.5. Methods

5.5.1. Codon optimizer for tissue-specific expression

CUSTOM is implemented in Python (version >= 3.7) and available on
GitHub (github.com/hexavier/CUSTOM) and as a web interface
(custom.crg.eu). The landscape of possible synonymous sequences is
vast and manifold factors overlap in de�ning the code. Therefore, we
follow a simple probabilistic approach with two steps: (1) translate
tissue-speci�c codon preferences into a pool of optimal sequences, and
(2) select the desired sequence based on other parameters of relevance.
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5.5.1.1. Create a pool of tissue-optimized sequences

The algorithm requires two main input data: the amino acid sequence
to be optimized (or DNA sequence) and the target tissue. For each
iteration of the optimization, the sequence is optimized taking two
factors into account: how important the codon is in de�ning
tissue-speci�city (relative feature weights in ED Fig. 3A) and whether it
is enriched or depleted in the tissue (codon ratios in Fig. 5.2B).
Therefore, for each amino acid, a certain codon is selected with a
probability proportional to the �rst. If the selected codon is enriched in
the tissue, it is incorporated into the sequence. If it is depleted, the
codon is excluded and another codon is selected based on the same
probabilities as before. This process is repeated along the full sequence,
and for as many iterations as desired. Furthermore, given that 5-10 top
codons are often su�cient to achieve the full AUC prediction (ED Fig.
3B), users can also control whether optimizing all codons or only the
top ones.

5.5.1.2. Selecting the top scoring candidates

Once a pool of optimized sequences has been generated, the best-ranked
ones can be selected as the user desires. Given that no ground truth is
known, the default select_best method of the package measures a list of
standard metrics frequently used in gene design and computes an
average to select the top scoring sequences. The following factors can be
included:
● Minimum Free Energy (MFE): a measure of mRNA stability from

the ViennaRNA package (203). CUSTOM distinguishes between
the �rst 40 nucleotides (whose weak secondary structure leads to
increased translation initiation) and the rest of the sequence (whose
strong secondary structure relates to longer mRNA half-lives) (36).

● Codon Adaptation Index (CAI): a measure of similarity between
the codon usage of the sequence and that of the human genome
(229).

● Codon Pair Bias (CPB): a measure of similarity between the codon
pair usage of the sequence and that of the human genome (221).
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● E�ective Number of Codons (ENC): a measure of codon evenness.
A value of 20 means that all 100% codons are biased towards the
most common codon, while 61 corresponds to no bias at all (230).

● GC content: a measure of similarity between the sequence GC
content and a desired target value of GC.

● Homopolymers: �lters out sequences with homopolymers of a
certain length, which can lead to worse expression.

● Motifs: �lters out sequences containing certain motifs.

5.5.2. Experimental model and protocol

5.5.2.1. Human cell models

The cell lines included in this study are HEK293T and A549. The sex of
each cell line is as follows: HEK293T, female; A549, male. Cells were
maintained at 37°C in a humidi�ed atmosphere at 5% CO2 in DMEM
4.5 g/l Glucose with UltraGlutamine media supplemented with 10% of
FBS and 1% penicillin/streptomycin.

5.5.2.2. Expression vectors design

We applied CUSTOM to the protein sequences of eGFP and mCherry
(Uniprot ID: C5MKY7, X5DSL3). Sequences were optimized to either
lung or kidney, generating a total of n_pool = 1000. Sequences with
homopolymers equal or larger than 7 were �ltered out and scored with:

opt.select_best(by={"MFE":"min", "MFEini":"max", "CAI":"max",
"CPB":"max", "ENC":"min"}, homopolymers=7, top=10)

Among the top 10 scoring candidates of each optimization, we selected
2x eGFPKidney, 2x eGFPLung, 2x mCherryKidney, and 2x mCherryLung (Sup.
Table 4).

  For gene overexpression experiments, the two selected eGFP and and
mCherry were cloned into a modi�ed version of the XLone-GFP vector
(Addgene#96930). The modi�cation consisted of replacing the
promoter of XLone-GFP with a bidirectional TRE3G promoter
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(Clontech), which allows the simultaneous expression of both genes.
The four constructs consisted in a combination of eGFPLung +
mCherryKidney and eGFPKidney + mCherryLung.

5.5.2.3. Flow cytometry

HEK293T and A549 cells were seeded in 6-well plates. Gene expression
was induced with 500 ng/mL of doxycycline during 48h. To measure
the expression of the �uorescent proteins, cells were trypsinized and
resuspended with 500 µL of media. Samples were applied on a FACS
Fortessa analyser. Approximately 104 live single-cell events were collected
per sample. BD FACSDiva software was used for gating and analysis.
The �uorescence intensity for each population in the FITC channel and
PE–Texas Red channel was obtained.

5.5.3. Data sources

5.5.3.1. Protein-to-mRNA ratios

The PTR ratios of the HPA were directly retrieved from the Table EV3
of Eraslan et al. (2019). In this dataset, protein levels are determined as
absolute abundances based on their iBAQ quanti�cation. As for the
GTEx data, we retrieved protein and mRNA levels from Table S2 and
Table S3 of Jiang et al. (2020), respectively. In this case, the proteomics
measurements are relative quanti�cations from a tandem mass tag
(TMT) 10plex/MS3 mass spectrometry strategy. To compute their PTR
ratios, we followed the same pipeline as in the HPA: (1) proteins with an
abundance of 0 were considered as missing values (NA); (2) protein
quanti�cations were adjusted to have in each tissue the same median
than the overall median; (3) genes with a TPM lower than 10 were taken
as non-transcribed (NA). With that, comparable PTR values between
HPA and GTEx are obtained (ED Fig. 1A).

5.5.3.2. Codon and codon pair usage tables

The codon usage and codon pair usage tables of Homo sapiens from
RefSeq were downloaded from the Codon/Codon Pair Usage Tables
(CoCoPUTs) project release as of June 9th, 2020 (30). Regarding the

110



Chapter 5

codon usage of misframed coding sequences and their dinucleotide
composition, we computed them from the latest release of the CCDS
database of human sequences (release 22) (231).

5.5.3.3. Translational e�ciencies

The processed data of matched ribosome pro�ling and mRNA-seq
samples from brain, liver and testis was retrieved from ArrayExpress
(E-MTAB-7247) (22). Translational e�ciencies were then computed as
the ratio FPKMRibo-seq/FPKMmRNA-seq.

5.5.3.4. Protein half-life

The log-10-transformed protein half-lives for B cells, NK cells,
hepatocytes, monocytes, and HeLa cells were downloaded from Eraslan
et al. (2019) (219,220). Given the concordance of half-lives among the
�ve cell types (Sup. Table 1), we used their average for the analysis in this
work (ED Fig. 2B).

5.5.3.5. Blood secretome

Using the predictions by the HPA (216), there are 2641 secretome
genes, 729 of which are secreted to blood. Given that we were concerned
on proteins that are not detected at the protein levels because of their
systemic rather than local secretion, we focused our analysis on the latter
(Sup. Table 1).

5.5.4. Computational analysis

5.5.4.1. High-PTR and low-PTR gene sets

As PTR values from GTEx were computed from relative TMT
proteomics in contrast to the absolute iBAQ quanti�cation of HPA,
they were not directly comparable and thus we de�ned the high-PTR
and low-PTR gene sets for each dataset separately. On the one hand,
high-PTR genes ful�lled three conditions: (1) genes having a PTR fold
change compared to the average of all other tissues larger than 2, (2)
genes with the highest PTR among all tissues, (3) genes detected in at
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least 3 tissues in the dataset. On the other hand, low-PTR genes were
de�ned as: (1) genes having a PTR fold change compared to the average
of all other tissues smaller than 0.5, (2) genes with the lowest PTR
among all tissues, (3) genes detected in at least 3 tissues in the dataset. As
a result, we de�ned one high-PTR and one low-PTR gene set for each
tissue in each dataset. For those 17 tissues in common between both
HPA and GTEx datasets, the union between both datasets was taken
except for genes with contradictory labels, which were excluded.

5.5.4.2. Random Forest classi�ers

To identify the most important codons determining high-PTR vs
low-PTR genes, we computed their codon usage normalized by length,
so that all 61 amino-acid-encoding codons sum up to 1. Taking this
table of normalized codon usage as features, we applied a Random
Forest (RF) classi�er, populated with 100 decision trees, using the
scikit-learn package (194). Therefore, for each of the 36 tissues, we
developed a model for predicting the high-PTR vs low-PTR genes based
on their codon usage. To control for size di�erences between high-PTR
and low-PTR groups, we iteratively sampled equal-sized groups, for n =
100 iterations. Furthermore, we validated the results with a strati�ed
5-fold cross-validation. In order to evaluate the performance of the RF
models, we computed the Area Under the Curve (AUC) of Receiver
Operating Characteristic (ROC) plots (Fig. 5.2A). We took the average
and standard deviation across all iterations. Similarly, we computed the
relative feature weights corresponding to each of the 61 codons (Fig.
5.2B).

To validate that the predictive potential of RF classi�ers were
codon-speci�c, we similarly computed the length-normalized codon
usage of +1 and +2 misframed coding sequences as well as dinucleotide
usage. By running the exact same pipeline as above, we determined the
average AUC of these three control RF classi�ers (Sup. Table 2). We
used a one-tailed binomial test to analyze whether the AUCs of controls
were lower than the original model more often than expected by chance
(p = 1/2).
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While the relative feature weights determine the importance of each
codon in distinguishing high-PTR vs low-PTR genes, they do not
provide any directionality. To analyze whether codons are enriched or
depleted in high-PTR vs low-PTR genes, we computed the ratios
between the average length-normalized codon usage of high-PTR and
low-PTR genes. Similarly, codon pair ratios were computed in the same
way.

Among the total of amino-acid-encoding 61 codons, we also analyzed
how many of them were actually informative in the models using a
Recursive Feature Elimination (RFE). Therefore, for each tissue, we
started by building a full model with all 61 codons and then recursively
removed the least important one, as determined by the relative feature
weights, until only one was left. At each step, we computed the AUC of
the ROC curve of the model as explained above (ED Fig. 3B).

5.5.4.3. Enrichment map

For this analysis, in order to allow an overlap between tissue gene sets,
we used a slightly less stringent tissue-speci�city de�nition. High-PTR
sets were de�ned as (1) genes having a PTR fold change compared to the
average of all other tissues larger than 2 and (2) genes detected in at least
3 tissues in the dataset, and vice versa for low-PTR sets.

To analyze the overlap between tissue gene sets, we used the
EnrichmentMap app from Cytoscape (232). We de�ned a generic input
of high-PTR and low-PTR sets of proteins per tissue. Similarity was
computed as the overlap coe�cient ([size of (A intersect B)] / [size of
(minimum(A ,B))]).

5.5.4.4. Gene Ontology enrichment analysis

Gene Ontology (GO) categories of Biological Processes were analyzed
for enrichment as of May 27th, 2021 (233). Enrichment analyses were
performed by PANTHER using the Fisher’s exact test and Bonferroni
correction for multiple testing (234).
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5.5.4.5. Principal Component Analysis of codon pairs

We applied Principal Component Analysis to the codon pair ratios of
each tissue in order to explore the main variability among tissues along
the 4096 codon pair ratios.

5.5.4.6. Linear regression of codon pairs

We �tted a linear regression model between the observed codon ratios
(dependent variable) and the expected ratios based on single codons
alone (independent variable). The expected values were computed as the
product of the ratios of the two codons that constitute the pair. For
each model, we computed the R squared, the Residual Standard Error
(RSE), and the model p-value (Sup. Table 3).

5.5.4.7. Statistical analysis

All details of the statistical analyses can be found in the Results section
and the �gure legends. We used a signi�cance value of 0.05.
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5.8. Data and Code Availability

The code used in this study is available at GitHub
(github.com/hexavier/codon_optimization), and the CUSTOM
software is available as a Python package
(github.com/hexavier/CUSTOM) and a web interface (custom.crg.eu).
The published article includes all datasets generated or analyzed during
this study.
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Single-read tRNA-seq analysis reveals
coordination of tRNA modification and
aminoacylation and fragmentation

6.1. Abstract

Transfer RNA (tRNA) utilizes multiple properties of abundance,
modi�cation, and aminoacylation in translational regulation. These
properties were typically studied one-by-one; however, recent advance in
high throughput tRNA sequencing enables their simultaneous
assessment in the same sequencing data. How these properties are
coordinated at the transcriptome level is an open question. Here, we
develop a single-read tRNA analysis pipeline that takes advantage of the
pseudo single-molecule nature of tRNA sequencing in NGS libraries.
tRNAs are short enough that a single NGS read can represent one
tRNA molecule, and can simultaneously report on the status of
multiple modi�cations, aminoacylation, and fragmentation of each
molecule. We �nd correlations among modi�cation-modi�cation,
modi�cation-aminoacylation, and modi�cation-fragmentation. We
identify interdependencies among one of the most common tRNA
modi�cations, m1A58, as coordinators of tissue-speci�c gene expression.
Our method, SingLe-read Analysis of Crosstalks (SLAC), reveals
tRNAome-wide networks of modi�cations, aminoacylation, and
fragmentation. We observe changes of these networks under di�erent
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stresses, and assign a function for tRNA modi�cation in translational
regulation and fragment biogenesis. SLAC leverages the richness of the
tRNA-seq data and provides new insights on the coordination of tRNA
properties.

6.1.1. Additional data access

All supplementary �gures and data can be
accessed from the original publication through
this QR code and link.
Supplementary �gures and tables will be
referred to as "Figure S" and "Table S".

6.2. Introduction

Transfer RNAs are highly abundant non-coding RNAs of 65-94
nucleotides, which form a rigid secondary structure. Up to 20% of all
residues in an eukaryotic tRNA are modi�ed (84). tRNAs are
aminoacylated (charged) with an amino acid at the 3’ end. Charged
tRNAs are required for protein synthesis by recognizing their cognate
codons in the elongating ribosomes (81). The �ne-tuned regulation of
tRNA abundance, modi�cation and charging determines the structure
and function of tRNA in translation, and their alterations can lead to
human diseases including neurological disorders and cancer
(84,105,106).

All three properties of the cellular tRNAome are highly dynamic and
respond to development and environmental cues (14,82). tRNA
abundance is tissue-speci�c in humans and reprogrammed in cancers
that adapt to the codon usage changes of the tissues and cancer
phenotypes (106,150). tRNA charging levels are sensitive to stress
conditions; its response to amino acid starvation regulates selective
translation of stress-response genes and tunes global translation activity
through phosphorylation of eIF2α by the GCN2 kinase (99,105).
Dynamic response of tRNA modi�cations occurs at many modi�cation
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types and sites which �ne-tune translation of stress response genes in a
codon-dependent manner, as well as the biogenesis of tRNA fragments
that are functional small RNAs in the regulation of mRNA stability
and cell-cell communication (81,84).

The advent of high throughput tRNA sequencing (67,110,133,235)
allows for the examination of tRNA abundance, modi�cation and
charging in the same sequencing library. NGS sequencing requires
cDNA synthesis of the RNA by reverse transcription. Certain tRNA
modi�cations that perturb the Watson-Crick base pairing such as
N1-methyladenosine (m1A) do not always stop reverse transcription,
rather, some reverse transcriptases can readthrough these modi�cations
while leaving behind a “mutation” signature relative to the tRNA
reference sequence in data analysis (67,236,237). All mature tRNAs end
with 3’CCA. The aminoacylated tRNA levels can be measured upon
incorporating a periodate oxidation and beta-elimination step in the
sequencing library preparation; periodate only oxidizes uncharged
tRNAs and the oxidized 3’ A residue is removed upon beta-elimination.
Therefore, uncharged tRNA ends with 3’CC and charged tRNA ends
with 3’CCA, and the aminoacylation levels for each tRNA can be
measured by the ratio of their 3’CCA and 3’CC ending reads (67,133).

A human tRNA contains on average 13 modi�cations per molecule,
how these modi�cations are linked to each other in their installation and
function is currently under intense investigation (238). For example, the
installation of multiple anticodon loop modi�cations in yeast tRNAPhe

exhibits a speci�c order (239). Q and m5C modi�cations in S. pombe
tRNAAsp depend on one another (240). Such studies so far have mostly
focused on the multiple anticodon loop modi�cations that are all
located in the same hairpin loop (241–243). How modi�cations that are
distal in the tRNA secondary structure are dependent on each other
remains an open question. In addition, very little is known about the
potential crosstalks between tRNA modi�cation-modi�cation and
tRNA charging-modi�cation (244).
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Here, we implement SLAC (SingLe-read Analysis of Crosstalks), a
computational pipeline to investigate the crosstalk between tRNA
modi�cations, aminoacylation and fragmentation transcriptome-wide.
SLAC is a single-read analysis pipeline of tRNA-sequencing data that
takes advantage of recent advances in read-length, charging,
modi�cation, and fragment detection in tRNA. We show that
correlating modi�cation-induced mutation signatures with
aminoacylation measurements at the single-read level con�rms known
crosstalks in yeast, and identi�es new crosstalks in human tRNAs. We
identify tissue-speci�c crosstalk signatures in mice. We observe
stress-response changes in modi�cation and charging that are consistent
with these crosstalks. We show that tRNA modi�cation and
fragmentation are associated in a tRNA-type and cleavage-site
dependent manner. Our results support the notion that tRNA
modi�cation and charging crosstalks may play a previously
under-appreciated role in translational regulation.

6.3. Materials and Methods

6.3.1. Data sources

6.3.1.1. tRNA-seq datasets

The raw FASTQ �les of mim-tRNA-seq of S. cerevisiae and of
HEK293T cells were retrieved from Gene Expression Omnibus (GEO):
GSE152621 (67). In this dataset, all HEK293T samples, three WT yeast
samples ("WT" in Table S2) and the Trm7Δ mutant are periodate
oxidized, and therefore both aminoacylation and modi�cation levels are
detectable. However, three WT yeast samples ("WTox0" in Table S2),
and Trm1Δ and Trm10Δ mutants are not periodate oxidized and only
modi�cation levels are detectable.

The raw FASTQ �les of QuantM-tRNA-seq of mouse tissues and of
HEK293T cells were retrieved from GEO: GSE141436 (237). The raw
FASTQ �les of Charged DM-tRNA-seq of HEK293T cells were
retrieved from GEO: GSE97259 (133). The raw FASTQ �les of total
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and polysome MSR-seq data of HEK293T in control and stress were
retrieved from GEO: GSE198441 (235).

6.3.1.2. Coding sequences and expression

The mRNA-seq gene expression data of total and polysome HEK293T
in control and stress were directly downloaded from Watkins et al.
(235). The coding sequences of all human transcripts were computed
from the same reference transcriptome.

6.3.2. Computational analysis

6.3.2.1. Read preprocessing

For QuantM-tRNA-seq data, raw FASTQ reads were �rst trimmed
using Seqtk (github.com/lh3/seqtk, v1.3) and then 3’ and 5’ adaptors
removed with BBDuk (sourceforge.net/projects/bbmap, v38.79), as
described in their original protocol (237). For MSR-seq data, raw
FASTQ reads were adaptor-removed using BBMerge (245)
(sourceforge.net/projects/bbmap, v38.79) with: mininsert=20,
mininsert0=20, trimpolya=t, usequality=f, forcemerge=t, entropy=f,
adapter1=GATCGTCGGACTGTAGAA,
adapter2=AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
. Then 3’ and 5’ ends were trimmed to remove the barcode and
library-added nucleotides using Seqtk -b 7 -e 6 (github.com/lh3/seqtk,
v1.3). For DM-tRNA-seq data, raw FASTQ reads were
adaptor-removed using BBMerge (245)
(sourceforge.net/projects/bbmap, v38.79) with: mininsert=20,
mininsert0=20, trimpolya=t, usequality=f, forcemerge=t, entropy=f,
adapters=AGATCGGAAGAGCACACGTCTGAACTCCAGTCA.
Then RT adapters were trimmed from 3’-ends with BBDuk
(sourceforge.net/projects/bbmap, v38.79):
literal=CTTTGAGCCTAATGCCTGAAAGATCGGAAGAGCAC
ACGTCTAGTTCTACAGTCCGACGATC, mink=8, ktrim=r, k=10,
hdist=1, minlength=10.
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6.3.2.2. tRNA quantitation and analysis

Quantitation and analysis of tRNA expression, charging and
modi�cations were performed using the mim-tRNA-seq computational
pipeline (67) (github.com/nedialkova-lab/mim-tRNAseq, v0.3.4.5).
The following parameters were used:

S. cerevisiae: --species Scer --cluster-id 0.90 --min-cov 0.0005
--max-mismatches 0.1 --control-condition WT --max-multi 4 --remap
--remap-mismatches 0.075

M. musculus: --species Mmus --cluster-id 0.95 --min-cov 0.0005
--max-mismatches 0.1 --control-condition Liver --max-multi 4 --remap
--remap-mismatches 0.075

H. sapiens: --species Hsap --cluster-id 0.95 --min-cov 0.0005
--max-mismatches 0.1 --control-condition control_total --max-multi 4
--remap --remap-mismatches 0.075

6.3.2.3. Single-read analysis

After read deconvolution of the mim-tRNA-seq computational
pipeline (67), all mismatches and charging of each read were recorded in
a tab-delimited format. For all positions with at least 5% mismatch rate,
the single-read analysis was performed. For each pair of either two
modi�ed positions or modi�cation and charging, the algorithm
computed the odds ratio (OR).

𝑂𝑅 =  (#𝑟𝑒𝑎𝑑𝑠 𝑤𝑖𝑡ℎ 𝑏𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵)×(#𝑟𝑒𝑎𝑑𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐴 𝑛𝑜𝑟 𝐵)
(#𝑟𝑒𝑎𝑑𝑠 𝑤𝑖𝑡ℎ 𝐴, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝐵)×(#𝑟𝑒𝑎𝑑𝑠 𝑤𝑖𝑡ℎ 𝐵, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝐴)

The signi�cance of the crosstalk was determined by Fisher's exact test.
Finally, p-values were FDR-corrected for multiple comparisons with
Benjamini & Hochberg.
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6.3.2.4. tRNA fragmentation crosstalks

For fragmentation analysis, only 5' tRFs were considered, since 3' tRFs
cannot be distinguished from RT stops. tRNA reads were classi�ed in
four di�erent classes based on their 3' end: tRFs terminating at positions
30-39 (C-loop), tRFs at 40-49 (V-loop), tRFs at 50-59 (T-loop), and
full-length tRNAs longer than position 60. Similar to the single-read
analysis above, we computed the odds ratio between all positions with at
least 5% mismatch rate and each of the three tRF classes versus full
length tRNAs.

𝑂𝑅 =  (#𝑡𝑅𝑋 𝑟𝑒𝑎𝑑𝑠 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)×(#𝐹𝑢𝑙𝑙 𝑡𝑅𝑁𝐴 𝑟𝑒𝑎𝑑𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
(#𝑡𝑅𝑋 𝑟𝑒𝑎𝑑𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)×(#𝐹𝑢𝑙𝑙 𝑡𝑅𝑁𝐴 𝑟𝑒𝑎𝑑𝑠 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

The signi�cance of the crosstalk was determined by Fisher's exact test.
Finally, p-values were FDR-corrected for multiple comparisons with
Benjamini & Hochberg.

6.3.2.5. Simulated data

To validate the method against an arti�cially generated dataset, we
generated samples containing 20,000 full-length yeast tRNAPhe(GAA)-2
reads each. Mismatches were incorporated into positions 26 and 58 of
the sequence with a certain probability (pA, pB). Given a certain OR, the
probability of having both modi�cations in the same read was
determined as:

𝑝
𝐴𝐵

 =
1+(𝑝

𝐴
+𝑝

𝐵
)(𝑂𝑅−1)− 1+(𝑝

𝐴
+𝑝

𝐵
)(𝑂𝑅−1)( )2+4·𝑂𝑅(1−𝑂𝑅)·𝑝

𝐴
·𝑝

𝐵

2(𝑂𝑅−1)  

A total of 700 samples were generated with all combinations of pA,pB =
[0.075, 0.175, 0.275, 0.375, 0.475, 0.575, 0.675, 0.775, 0.875, 0.975]
and log2(OR) = [-1.0, -0.5, -0.25, 0.0, 0.25, 0.5, 1.0]. They were �nally
aligned and analyzed by SLAC.
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6.3.2.6. Di�erential modi�cation and aminoacylation analysis

To test the signi�cance of changes in modi�cation between conditions,
we �rst computed the counts of reads with or without mismatch at
modi�ed positions (>5% absolute mismatch rate). For changes in
aminoacylation in periodate-treated samples, we counted the reads
ending with CCA or CC. Next, a contingency table was built with the
counts of modi�ed/unmodi�ed or charged/uncharged reads in
condition A and condition B, and the odds ratios were calculated as:

𝑂𝑅 =  (#𝑟𝑒𝑎𝑑𝑠 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑖𝑛 𝐴)/(#𝑟𝑒𝑎𝑑𝑠 𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑜𝑟 𝑢𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑖𝑛 𝐴)
(#𝑟𝑒𝑎𝑑𝑠 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑖𝑛 𝐵)/(#𝑟𝑒𝑎𝑑𝑠 𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑜𝑟 𝑢𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑖𝑛 𝐵)

The signi�cance of each OR was determined by chi-square tests. Finally,
p-values were FDR-corrected for multiple comparisons with Benjamini
& Hochberg.

6.3.2.7. Translational e�ciency analysis

Using the human mRNA-seq data of control and stressed HEK293T
cells, we computed the Translational E�ciency (TE) as the ratio
between polysome TPMs versus total RNA TPMs, taking only genes
with at least 10 TPM in both datasets.

6.3.2.8. Relative Synonymous Codon Usage (RSCU)

The RSCU is de�ned as the ratio of the observed frequency of a certain
codon to the expected frequency given that all the synonymous codons
for the same amino acid were used equally. The RSCU is therefore a real
value between 0 and the number of synonymous codons for that amino
acid, with values below 1 indicating a lower observed usage than
expected, and vice versa.

𝑅𝑆𝐶𝑈 =
𝑥

𝐶

𝑖∈𝐶
𝑎𝑎

𝑛
𝑎𝑎

∑ 𝑥
𝑖

× 𝑛
𝑎𝑎
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where refers to the abundance of the codon , is the set of all𝑥
𝐶

𝐶 𝐶
𝑎𝑎

synonymous codons, and is the number of synonymous codons.𝑛
𝑎𝑎

To determine the RSCU of a speci�c condition, we computed the
average of the RSCU of all genes weighted by their standardized
log2(TE).

6.3.2.9. Statistical analysis

All details of the statistical analyses can be found in the text and �gure
legends. We used a signi�cance level of 0.05 for all analyses. Signi�cant
di�erences are abbreviated as follows: ns (p > 0.05), * (p ≤ 0.05), ** (p ≤
0.01), *** (p ≤ 0.001), and **** (p ≤ 0.0001).

6.4. Results

6.4.1. Single-read tRNA-seq analysis reveals known and new
crosstalks in yeast tRNAPhe

Because of its size, tRNA-seq produces reads that can cover the entire
length of the tRNA; tRNA-seq also captures certain tRNA
modi�cations as “mutations” relative to the reference tRNA sequence,
and depending on the library construction protocol the charging status
by the heterogeneous 3’ ends in the sequencing data (67,133,235). On
average, one of every four modi�cations leave a mismatch signature
upon reverse transcription, which makes them detectable by tRNA-seq
(Table S1). However, the analysis of modi�cations and charging is
generally reduced to a simple pileup percentage, which does not take
into account the single-read nature of the data. In fact, previous reports
using Sanger sequencing have provided proof-of-concept evidence that
modi�cation signatures can be quanti�ed and correlated at the
single-read level to detect crosstalks (246). In SLAC, we consider all
pairwise combinations of tRNA modi�ed positions (i.e. positions with
at least 5% reads containing “mutated” reads) and charging, as well as all
pairwise combinations of two modi�ed positions that are detectable
through “mutations” (Fig. 6.1A). For charging and modi�cation
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crosstalks, we determine the number of reads for: (i) tRNA is charged
and modi�ed, (ii) tRNA is charged but not modi�ed, (iii) tRNA is not
charged but modi�ed, and (iv) tRNA is not charged and not modi�ed.
For any two modi�cation crosstalks, we determine the number of reads
for: (i) both sites are modi�ed, (ii) site 1 is, site 2 is not modi�ed, (iii) site
1 is not, site 2 is modi�ed, and (iv) both sites are not modi�ed.

Our analysis produces an odds ratio (OR) that informs whether tRNA
charging and modi�cation or any pair of modi�cations tend to appear
together in the same read (OR>1, stimulatory crosstalk) or tend to be
exclusive of one another (OR<1, inhibitory crosstalk), as well as
calculates the signi�cance of this interdependence using Fisher's exact
test. Given that the tRNA-seq data in general has very high coverage for
each tRNA species, hundreds to thousands of pairs for a speci�c tRNA
can be analyzed simultaneously and the resulting p-values are
FDR-corrected for multiple comparisons. We implemented our method
within the open-source mim-tRNA-seq computational pipeline (67)
(github.com/nedialkova-lab/mim-tRNAseq).

To validate our method, we analyzed yeast mim-tRNA-seq data from
Behrens et al. (67), since most prior knowledge on tRNA crosstalks was
centered on yeast tRNAPhe (238) (Table S2). Among all modi�cations
detectable by tRNA-seq (Fig. 6.1B, Fig. S1A), there were two known
crosstalks against which our method could be tested: the
interdependence between wybutosine (yW) at position 37 (all residue
numbering are according to the standard tRNA nomenclature, 37
corresponds to the 3’ immediate nucleotide after the anticodon) and
charging (244) and the association between N2,2-dimethyl-G (m2

2G) at
position 26 (in between the D and anticodon stems) and m1A at
position 58 (in T loop) (239). Our single-read pipeline identi�ed both
crosstalks in all three biological replicates (Fig. 6.1C-D). Furthermore,
we identi�ed interdependencies (yW37-m1A58, m2

2G26-Charging) that
were previously unknown. Apart from tRNAPhe, we detected crosstalks
expanding to other tRNA species in wild-type yeast cells (Fig. S1B,
Table S2).
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Figure 6.1. Single-read tRNA-seq analysis reveals known and new crosstalks in
yeast tRNAPhe.
(A) Schematic pipeline for the single-read analysis of tRNA reads. OR: odds ratio. (B)
Detected known crosstalks of tRNAPhe of yW37-Charging and m2

2G26-m1A58 that are
highlighted in (C) and (D). (C) Percentage of charged tRNA reads with possible
crosstalks with the m2

2G26, yW37, and m1A58 modifications. (D) Percentage of
m1A58-modified reads with possible crosstalks with the m2

2G26, yW37, and charging.
In (C) and (D) the biological triplicates are plotted separately. Significant crosstalks
are indicated with * (p <0.05), ** (p<0.01), *** (p<10-3), **** (p<10-4). Significance is
determined by Fisher’s exact test, and FDR-corrected for multiple comparisons with
Benjamini & Hochberg.

Although SLAC detects statistical association between two
modi�cations or modi�cation-charging, the method inherently lacks
causality or directionality. Some of the detected crosstalks may be causal,
i.e. they represent coordinated actions of tRNA acting enzymes,
whereas others may be derived from indirect or independent events.
Evidence of causality may be established through tRNA acting gene
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knockout experiments. We analyzed mim-tRNA-seq data of yeast
strains de�cient of modi�cation enzyme Trm7 (lacking yW37 in
tRNAPhe(GAA), Fig. S1C, left panel) (67). tRNAPhe has known
crosstalks between 37 and charging (Fig. 6.1C). Indeed, Trm7Δ led to a
signi�cant decrease in charging, consistent with yW37 modi�cation
enhancing tRNAPhe charging.

We also analyzed data from yeast strains with deletions of Trm1 (lacking
m2

2G26, Fig. S1C, middle panel) and Trm10 (lacking m1G9, Fig. S1C,
right panel) (67). In contrast to Trm7Δ, the Trm1Δ and Trm10Δ
samples were not treated with periodate in library construction and
hence only modi�cation crosstalks could be examined. We established
that the gene knockouts led to large decreases in the mutation fractions
of the corresponding positions in the known tRNA substrates as
expected, 37 for Trm7Δ, 26 for Trm10Δ, and 9 for Trm10Δ (Fig. S1C,
Table S2). Among the previously identi�ed crosstalks (Fig. S1B), Trm1Δ
increased the m1G9 level of tRNALys(CTT) and decreased m1A58 level
of tRNALys(CTT), tRNAPhe(GAA), and tRNAThr(TGT). These results
suggest that m2

2G26 partially inhibits m1G9 modi�cation as well as
enhances m1A58 modi�cation in these tRNAs.

We also found some modi�cation crosstalks present in the wild-type
samples that did not respond or responded di�erently to the
modi�cation enzyme knockouts, or new crosstalks only present in the
enzyme knockout samples. The former includes 26-37, 37-58 in Trm7Δ;
26-32, 26-37, several 26-58 in Trm1Δ; and 9-26, 9-32, and 9-58 in
Trm10Δ. These may represent crosstalks that are either unidirectional,
e.g. m2

2G26-m1G9 crosstalk of tRNALys(CTT) in Trm1Δ but not in
Trm10Δ, or derived from multiple or independent events rather than
coordinated action of two speci�c modi�cation enzymes. The latter,
such as three 9-26 in Trm1Δ and two 9-58 in Trm10Δ, may represent
“synthetic” crosstalks that become only prevalent upon the knockout of
a speci�c modi�cation enzyme, akin to the synthetic phenotypes in
genetics that become observable only upon the deletion of a speci�c
gene. Therefore, while all known crosstalks in the literature are
recovered by SLAC (Fig. 6.1C-D), not all detected crosstalks by SLAC
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change in the same way in every tRNA upon modi�cation enzyme
perturbation.

We further validated the sensitivity of the method by generating
simulated reads with di�erent odds ratios (see Methods) and analyzing
them with SLAC. We found that we can detect with con�dence odds
ratios as low as 1.20 (i.e. log2(OR) = 0.25), especially for mutation
fractions in the sequencing data ranging between 5-95% (Fig. S1D).
These results indicate that tRNA-seq data can be used at single-read
level to retrieve interdependence information between charging and
modi�cation, and between two modi�ed positions.

6.4.2. m1A58-related crosstalks are abundant in the human
tRNAome

We next analyzed the DM-tRNA-seq dataset of human HEK293T cells
which also measured charging (133) (Table S3). Among all detected
interdependencies, we identi�ed m1A58 crosstalks with positions 26
and 37 among the most frequent, present in 22 and 19 di�erent tRNA
isodecoders, respectively (Fig. 6.2A). By analyzing the OR of the 37-58
pair (Fig. 6.2B), we found that the m1A58 modi�cation is generally
positively correlated with m1G37/m1I37 (OR>1), except in tRNAAla

isodecoders where the m1A58 modi�cation has an inhibitory e�ect on
m1I37 (OR<1). On the other hand, m2

2G26 appears always positively
correlated with m1A58. Moreover, most crosstalks do not occur alone,
rather they coordinate with other pairs within the same tRNA
molecule. Therefore, speci�c tRNAs form intricate interdependent
networks of multiple modi�ed positions and charging. For instance, the
isodecoders tRNAAla(AGC)-4/8 exhibit a network among three
modi�cation sites (Fig. 6.2C) involving m2

2G26, m1I37, and m1A58. In
tRNALeu(CAG)-1/2 (Fig. 6.2D), the network is even more complex
with a total of eight signi�cant crosstalks among m2

2G26, m1G37,
m3C-e2 (in the loop of the variable hairpin loop in type II tRNA),
m1A58, and charging. Other isodecoders show simpler networks with
just one or few detected crosstalks (Fig. S2A).
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Figure 6.2. m1A58-related crosstalks are abundant in the human tRNAome.
(A) Histogram of all significant crosstalks in at least two of the 3 biological replicates
of human tRNA in HEK293T cells. Only crosstalks detected in three or more tRNA
isodecoders are shown. Known modifications that generate high levels of mutation
signatures in this sequencing experiment are m1G9, acp3U20, m2

2G26, m3C32, I34,
m1I37/m1G37, and m1A58. (B) Distribution of OR of detected 37-58 and 26-58 pairs,
with each dot corresponding to individual replicates. (C-D) Significant crosstalks
detected in at least two of the 3 biological replicates of tRNAAla(AGC)-4/8 and
tRNALeu(CAG)-1/2. Position e2 is a m3C modification. (E) Upset plot of detected
modification sites (>5% mismatch in read alignment) in all replicates of HEK293T
cells by mim-tRNA-seq, DM-tRNA-seq, QuantM-tRNA-seq, and MSR-seq. (F) Number
of isodecoders with detected m1A/G9, m2

2G26, m1G37, and m1A58 modifications in
all replicates of HEK293T cells by mim-tRNA-seq, DM-tRNA-seq, QuantM-tRNA-seq,
and MSR-seq. (G) Absolute log2-transformed odds ratios of crosstalks detected in
HEK293T cells by 1, 2, 3 or 4 methods. The residue numbers for each tRNA is
according to the tRNA nomenclature, e.g. the wobble anticodon nucleotide is always
34. tRNA transcript label is according to the genomic tRNA database (12).
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For pairwise correlation of modi�cations we benchmarked SLAC
against published QuantM-tRNA-seq, mim-tRNA-seq, DM-tRNA-seq
and MSR-seq methods where datasets of HEK293T cells were available
(67,133,235,237) (Table S3). In the detection of the mutation
signatures, MSR-seq and QuantM-tRNA-seq used the SuperScript IV
(SSIV) reverse transcriptase while mim-tRNA-seq and DM-tRNA-seq
employed TGIRT that have similar tendencies to generate mutation
signature in the tRNA-seq data. We detected a good degree of
concordance, with a total of 248 consensus modi�cations identi�ed by
mutation signatures among all 380 mutated positions identi�ed (>65%,
Fig. 6.2E-F). However, at the quantitative level, modi�cation signatures
of TGIRT-based methods are clearly di�erent from SSIV-based methods
(Fig. S2B-C). As a result of these protocol di�erences and the distinct
depth of reads coverage, we observed many common crosstalks as well as
others that were dependent on the tRNA-seq dataset, which expanded
our initial set of detected crosstalks (Fig. S2E, Table S3). A more detailed
analysis actually showed that the consensus detected crosstalks between
datasets are generally pairs with more extreme OR (Fig. 6.2G).
Altogether, our exploration of the HEK293T human tRNAome shows
a high interconnectivity among modi�cations and between
modi�cations and charging, often involving m1A58.

6.4.3. Tissue-specificity of m1A58 and crosstalks across
mouse tissues

We next characterized the relevance of tRNA modi�cations and their
crosstalks beyond cell cultures using the publicly available
QuantM-tRNA-seq data of seven mouse tissues (237) (Table S4). The
m1A58 modi�cation is among the most widespread tRNA
modi�cations in mammals, is present in the T loop of almost all
cytosolic tRNAs, and can be detected at high sensitivity through
mutation signatures in tRNA-seq (110,247). As previously reported,
the mutation fraction derived from m1A58 has a highly tissue-speci�c
pattern (Fig. S3). A principal component analysis (PCA) of all
modi�cations can clearly discriminate four main clusters of samples
corresponding to brain (containing cortex, spinal cord, medulla
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oblongata, and cerebellum; without clear di�erences among them),
liver, tibialis, and heart tissues (Fig. 6.3A). The �rst component, which
explains almost 70% of the variance, is predominantly determined by the
m1A58 fraction of several isodecoders among tRNAAla, tRNAAsp, and
tRNAGlu (Fig. 6.3A). On the other hand, the second component,
which explains less than 10% of the variance, is more related to the
technical variability of mismatches, which is particularly evident for one
biological replicate of the cortex. We also observe a signi�cant
tissue-speci�city of the interdependence between m1A58 and m1G9 in
tRNAGlu(TTC)-1 (ANOVA, p<0.05) (Fig. 6.3B), with liver and heart
tissues showing a higher concurrence of both modi�cations. Overall, the
mouse tissue data indicates a tissue-speci�c nature of the m1A58
modi�cation and its related crosstalks.

Figure 6.3. Tissue-specificity of m1A58 and crosstalks across mouse tissues.
(A) Principal Component Analysis (PCA) of all tRNA modifications across seven
mouse tissues (top), and the respective top 10 positive and negative contributors of
the first component (bottom). (B) Changes in OR among tissues of tRNAGlu(TTC)-1.
Black dots are individual replicates, red dots and lines indicate the mean ± SD.
Significance is determined with ANOVA and post-hoc Student's t-Test, FDR-corrected
for multiple comparisons with Benjamini & Hochberg.
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6.4.4. Crosstalks recapitulate modification and charging
changes upon stress to potentially regulate translation

To investigate the regulatory potential of tRNA modi�cation and
charging crosstalks in stress response, we analyzed the MSR-seq data of
HEK293T cells upon three di�erent stresses: heat shock, hydrogen
peroxide, and arsenite, which have been shown to alter tRNA properties
that regulate translation (235). The MSR-seq data contains tRNA
abundance, modi�cation and charging measurements and mRNA
measurements for both total RNA and polysome associated RNA, so
that the e�ect on translational response under stress can be readily
examined. For X-Y crosstalks with OR>1, we hypothesize a perturbation
that causes an increase in X would also induce an increase in Y, and vice
versa. In contrast, for X-Z crosstalks with OR<1, an increase in X would
produce a decrease in Z, and vice versa. We �rst identi�ed all changes of
>3% in modi�cation or charging upon each stress as well as their
statistical signi�cance, and asked whether their interdependent positions
were also changing as expected (a.k.a. "TRUE", Table S5). We observed
that the detected crosstalks signi�cantly explain changes in modi�cation
and charging in all three stresses (Fig. 6.4A, Fig. S4A). This analysis was
generally robust to changes in the selected percentage threshold of 3%,
with TRUE cases always exceeding FALSE ones (Table S5). However,
similar to the yeast mutants, a minority of the SLAC crosstalks did not
change as expected, which reinforces the idea that detected crosstalks do
not necessarily imply causality. A more detailed analysis also indicated
that crosstalks with more extreme OR have generally higher percentage
of TRUE cases (Fig. S4B). Moreover, TRUE cases are often dependent
on the type of interconnected pair and on the amino acid family they
belong to (Fig. S4C-D).

Given the near universal presence of m1A58 in all cytosolic tRNAs, we
analyzed di�erences of OR between m1A58-Charging in tRNA
isodecoders and their changes upon stress. For seven out of eight
4-codon-box amino acid families (Gly, Arg, Leu, Pro, Ser, Val, Thr; Ala
is the exception), we detected signi�cantly di�erent ORs between
tRNAs with A/T versus C/G at wobble anticodon position 34 in many
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conditions (Fig. 6.4B, Fig. S5A). However, directionality was
dependent on the amino acid family. Because the wobble nucleotides
read the third nucleotide of codons, these di�erences can lead to
di�erential translational regulation of synonymous codons. As
GC-ending codons appear to be more e�ciently translated than
AT-ending codons (Fig. S5B) and this di�erence is enhanced under
stress (Fig. S5C) (235), these di�erences in m1A58-Charging crosstalks
suggest a distinct regulation of the m1A58 modi�cation and charging
that unexpectedly depend on the identity of their wobble nucleotides.

To further characterize the role of m1A58 in translation, we compared
the level of this modi�cation between total tRNA and the
polysome-associated tRNA. Surprisingly, we found that the m1A58
fraction is overall lower in polysome-associated tRNA than those in the
total tRNA. In-depth analysis revealed, however, that this anti-selection
by polysomes only occurs for tRNAs with OR>1, but not for tRNAs
with OR<1 between m1A58 and charging (Fig. 6.4C). These results are
consistent with polysome selectively enriching m1A58-hypomodi�ed
tRNAs that are also not charged. On the other hand, the relative
charging levels between polysome-associated and total RNA are about
the same for tRNAs with OR>1 and OR<1 (Fig. S5D), which is
consistent with m1A58-hypomodi�ed tRNAs losing their charging (i.e.
synthesizing the peptide bond) more slowly in translation. This selective
enrichment may be useful to temporarily pause the polysome at speci�c
codons (OR>1 codons in Fig. 6.4B), which sensitizes the polysome to
rapid changes in stress.

In short, detected crosstalks provide a snapshot of the changes in
modi�cation and charging upon stress. Speci�cally, m1A58 modi�cation
appears anti-selected in translation, revealing m1A58-Charging crosstalk
as a potential parameter of translational regulation.
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Figure 6.4. Crosstalks recapitulate modification and charging changes upon stress
to potentially regulate translation.
(A) Number of position pairs changing in stress as expected by SLAC crosstalks
(TRUE) or not (FALSE), related to Fig. S4A. All significant crosstalks of >3% changes
in mismatch in read alignment are included. A one-sided binomial test is used to
determine whether the observed frequency of successes is significantly higher than
the null model p=0.5. (B) Differences in OR of m1A58-Charged between isodecoders
having AT vs GC at the wobble position for 4-codon-box readers of tRNAArg, tRNAPro,
and tRNASer. Significance is determined by a two-sided Student's t-test: * (p<0.05), **
(p<0.01), *** (p<10-3), **** (p<10-4). (C) Differences in m1A58 modification between
polysome versus total tRNA among isodecoders with OR>1 and OR<1. Changes
between tRNAs with OR>1 and OR<1 are detected by two-tailed Wilcoxon rank-sum
test (**** p<10-4).

137



Chapter 6

6.4.5. Modification crosstalks with tRNA fragmentation
patterns

tRNA fragments (tRF) are small non-coding RNAs originated through
enzymatic cleavage of tRNAs, which are implicated in many cellular
processes such as cell proliferation, RNA silencing, or translational
regulation (81). In the biogenesis of tRF, the modi�cation state of
tRNA molecules has been observed to play an important role
(248–250). However, systematic analyses of existing crosstalks between
tRNA modi�cation and fragmentation have not been performed. We
took advantage of MSR-seq that simultaneously sequences both
full-length and fragmented tRNAs (235) and applied SLAC to uncover
crosstalks. In particular, we binned tRNA fragments depending on their
3' end, classifying them into three groups: 30 to 39 nt (terminating at
anticodon loop or C-loop), 40 to 49 nt (V-loop), and 50 to 59 nt
(T-loop). Using SLAC, we then computed the odds ratios of certain
modi�cations being detected more or less frequently in the fragmented
versus the full-length tRNA reads.

Among the most abundant crosstalks in control HEK293T cells (Table
S5), we found that m2

2G26 is associated with fragmentation at any of
the three fragment size groups (Fig. 6.5A). tRNALeu isodecoders are
frequently detected to establish m2

2G26 crosstalks with multiple loops
fragments (Fig. 6.5B). In particular, for 30-39 fragmentation we
observe a negative odds ratio for tRNALeu(CAA)-4 which corresponds
to reads containing m2

2G26 being less fragmented, whereas
tRNALeu(TAA)-1 and tRNALeu(AAG)-2 show positive odds ratios
which corresponds to m2

2G26 increasing fragmentation in these two
tRNAs. For 40-49 fragmentation we observe a negative odds ratio for
tRNALeu(AAG)-2, but positive ratios for tRNALeu(CAA)-4 and
tRNALeu(CAA)-1. For 50-59 fragmentation the odds ratios are negative
for tRNALeu(TAA)-1 and tRNALeu(AAG)-2, but positive for
tRNALeu(CAA)-1. These results indicate that a single tRNA
modi�cation can have both stimulatory and inhibitory e�ects on tRNA
fragmentation; whether stimulatory or inhibitory depends on the
speci�c tRNA and the location of cleavage.
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Figure 6.5. Modifications establish crosstalks with tRNA fragmentation patterns.
(A) Distribution of OR of all significant crosstalks of m2

2G26 with tRNA fragmentation
at positions 30-39, 40-49, and 50-59. Each dot corresponds to individual biological
replicates of the sequencing data. (B) Coverage of reads with and without mismatch
at position 26, mapping to tRNALeu(CAA)-4, tRNALeu(CAA)-1, tRNALeu(AAG)-2, and
tRNALeu(TAA)-1. The residue numbers for each tRNA is according to the tRNA
nomenclature, e.g. the wobble anticodon nucleotide is always 34. tRNA transcript
label is according to the genomic tRNA database (12). (C) Changes in OR among
conditions of the 26-30to39 crosstalk in tRNALeu(AAG)-2, tRNALeu(CAA)-4, and
tRNALeu(TAA)-1. Black dots are individual replicates, red dots and lines indicate the
mean ± SD. Significance is determined with ANOVA and post-hoc Student's t-Test,
FDR-corrected for multiple comparisons with Benjamini & Hochberg. (D) Differences
in OR of 26-30to39 and 26-40to49 between tRNALeu isodecoders having AT vs GC at
the wobble position, cognate of Leu-TTN codons. Significance is determined by a
two-sided Student's t-test.
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As tRNA fragments are known to play a role in stress response (250),
we next interrogated whether these detected crosstalks were
condition-dependent, focusing our analysis on the m2

2G26-30to39
crosstalks. We observed that, while these crosstalks in some tRNAs are
maintained in the unstressed and three stress conditions, for
tRNALeu(CAA)-4 it becomes stronger under stress (Fig. 6.5C). Finally,
we analyzed the di�erences between tRNALeu isodecoders, and observed
that isodecoders with a GC-wobble nucleotide had negative
m2

2G26-30to39 crosstalks, while the crosstalks were positive in
isodecoders with AT-wobble nucleotide (Fig. 6.5D). In contrast,
m2

2G26-40to49 crosstalks show an opposite trend (Fig. 6.5D),
suggesting that the m2

2G26 modi�cation in tRNALeu(CAA) is
protective against anticodon-loop fragmentation, but induces V-loop
fragmentation. Given these di�erences between isodecoders decoding
AT-ending versus GC-ending leucine codons (Fig. S4C-D), the m2

2G26
modi�cation may also play a role in translational regulation in a way
that depends on tRNA fragmentation.

Altogether, we provide evidence that single-read analysis can be
extended to systematically detect crosstalks between modi�cations and
tRNA fragmentation patterns in tRF biogenesis.

6.5. Discussion

tRNA-seq data is inherently multi-modal. While mRNA-seq is often
used for quantifying transcript abundance only, tRNA-seq quanti�es
abundance, modi�cation, charging and fragmentation
(67,133,235,237). This work adds another aspect of tRNA-seq data
which identi�es networks of crosstalks between tRNA modi�cations,
tRNA charging, and tRNA fragmentation. To make SLAC readily
accessible to the community, we developed it within the open-source
mim-tRNA-seq computational pipeline
(github.com/nedialkova-lab/mim-tRNAseq) (67). The main limitation
of our method requires that modi�cations elicit a misincorporation
during the reverse transcription to generate a mutation signature. This
restricts the types of modi�cations assessable by tRNA-seq (67,235),
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which are to a certain extent dependent on the tRNA-seq method of
choice. However, with continuous improvements in both the
experimental and computational techniques of tRNA-seq, more
modi�cation types will become accessible by including speci�c chemical
treatments that detect otherwise silent modi�cations such as
pseudouridine or 5-methyl-cytosine. In addition, tRNA-seq datasets
intrinsically su�er from a 5' end coverage drop-o� due to RT stops at
some modi�ed sites or rigid secondary structures, which leads to SLAC
having a higher statistical power towards the 3' ends. Incorporation of
modi�cation-speci�c insertions, deletions and RT stops into the
pipeline could further expand our ability to access more modi�cation
types.

So far, the study of crosstalks has been mostly limited to ad hoc
time-course or depletion/overexpression setups followed by sequencing,
mass spectrometry or NMR (46,251,252). For instance, m3C32
depended on i6A37 upon Tit1 deletion (253), NMR and LC-MS of
yeast tRNAPhe following time-course maturation or enzyme deletions
revealed modi�cation dependencies (239), tRNA methylation was
a�ected upon queuine depletion (254), or NSun2-mediated m5C
methylation was protective against 5′ tRNA fragmentation (249). With
the development of SLAC, we can now leverage single-read information
to accurately capture tRNAome-wide associations from unperturbed
and physiologically-relevant tRNA-seq datasets.

SLAC does not establish a causality in the detected crosstalks, as the
existence of invariant pairs in yeast strains with modi�cation defects
suggest. Our results indicate that crosstalks identi�ed by SLAC can be
derived from multiple origins, some causal and others indirect or
independent (255). Our simulation experiment indicates that SLAC can
also su�er from false negatives in modi�cation sites with >95%
mismatch rate, which is sometimes the case of tRNAs. The potential for
causality or indirectness is idiosyncratic among speci�c tRNAs and
modi�cation sites. Even though we could not readily tell which
crosstalks are causal at this time, SLAC is still useful in �rst identifying
modi�cation-modi�cation, modi�cation-charging, and
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modi�cation-fragmentation crosstalks that otherwise elude our current
methods of detecting them.

Our systematic analysis of human tRNA crosstalks reveals that
modi�cations and charging can be interconnected, potentially wiring a
complex regulatory network. By analyzing the observed changes upon
three di�erent stresses, we support the physiological relevance of tRNA
crosstalk networks in recapitulating the changes of modi�cations and
charging. Translation has been widely studied in the context of stress
response, which has been related to defects in protein homeostasis and
human disease (256–258). For instance, the di�erential expression of
tRNAs recognizing A- vs G-ending codons in polysomes, together with
changes of speci�c tRNA modi�cations, leads to the selective
enhancement of stress-dependent transcripts with a biased codon usage
towards G/C-ending-codons (235). Here we provide evidence that
tRNA crosstalks play a role in the stress response, and that
m1A58-Charging crosstalk can be di�erently wired between isodecoders
decoding AT- vs GC-ending codons.

The tRNA m1A58 is among the most interconnected modi�cations
with m1A58-m2

2G26 and m1A58-m1G37 as abundant crosstalks in the
human tRNAome, and also constitutes the most tissue-speci�c
modi�cation in mice. These results indicate that m1A58 showcases a
previously underappreciated regulatory potential. In this context, we
observe that m1A58-modi�cation levels for some tRNAs are lower in
polysomes compared to total tRNA, however, this result is only for
tRNAs with a positive m1A58-Charging crosstalk. This result is
consistent with ribosome subtlely enriching tRNAs lacking m1A58
modi�cation which are also not charged. Presumably, this type of
selection by the polysome may recapitulate an enrichment of uncharged
and m1A58-hypomodi�ed tRNA in the A-site for translational pausing.

Beyond translation, tRNAs can be enzymatically cleaved and give rise to
tRNA fragments which are involved in many processes such as stress
response, cancer, aging, or development (81,259). By extending our
single-read tRNA analysis to tRFs, we identify speci�c tRNA
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modi�cations that either correlate or anti-correlate with fragment
biogenesis, which recapitulates previously observed associations (235).
In particular, we detect m2

2G26 as a crucial parameter for tRNALeu

fragmentation; this modi�cation can be either protective or inductive
for fragmentation depending on the speci�c isodecoder and the location
of the cleavage site. The magnitude of these crosstalks can also be
modulated under stress.

The networks of crosstalks that we identi�ed are diverse at the tRNA
isodecoder level. These networks are dynamic in stress response and
distinct in mouse tissues. As such, the tRNA crosstalk networks are, at
�rst approach, resistant to satisfying and simple rules - a theme in tRNA
biology harkening back to deciphering protein-RNA interactions
between aminoacyl-synthetases and speci�c tRNA substrates (260).
There is likely a complex grammar that we have just started to decipher,
that introduces many new questions. What mechanisms give rise to
crosstalks: tRNA biogenesis, tRNA synthetases, writer and eraser
enzymes, nuclear export and re-import? How do these crosstalks a�ect
translation in each tRNA context? On what timescales are these
networks wired and rewired; does rewiring require tRNA turnover?
Answering these questions will bene�t from the characteristically high
sequencing depth of many tRNA-seq datasets and their potential to
detect for the �rst time tRNA crosstalks in vivo, such as the reported
m1A58-m1G9 crosstalk of tRNAGlu(TTC)-1 detected in liver and heart
but not in other mouse tissues. Our work opens a new avenue to study
crosstalks in physiologically-relevant conditions or diseases such as
cancer that are known to alter tRNAomes and ultimately translation
(84,150,261).

6.6. Data Availability

The code used in this study is available at GitHub
(github.com/hexavier/tRNA_crosstalks), and the single-read analysis
software is available within the within the open-source mim-tRNA-seq
computational pipeline (github.com/hexavier/mim-tRNAseq).
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Discussion

Along the genetic information �ow from the genotype to the
phenotype, proteins rather than transcripts are a more direct readout of
gene expression (3). However, with the higher resolution of sequencing
methods over mass-spectrometry, expression studies have so far mostly
focused on the analysis of transcriptomes. Moreover, away from the
long perceived static nature of mRNA translation, current evidence
indicates that ribosome composition, tRNA pools and their post
transcriptional modi�cations are highly dynamic and important
regulators of mRNA translation (14,262).

In fact, alteration of tRNA repertoires has often been related to human
diseases (263): mRNA translation rate is limited by scarce tRNAPro

aminoacylation in kidney cancer (105), tRNAGlu(TTC) and
tRNAArg(CCG) expression promote breast cancer metastasis (106), a
mutation in tRNAArg(TCT) causes tRNA maturation defects leading to
neurodegeneration (102), tRNALeu aminoacylation by LARS is
repressed in breast cancer (264), tRNAGly sequestration by a mutated
GARS leads to Charcot-Marie-Tooth disease (265), or aberrant
tRNA-modifying enzymes can cause mitochondrial and neurological
disorders and cancer, known as "tRNA modopathies" (266). In
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consequence, the homeostasis of the cellular tRNAome needs to be
globally controlled at multiple levels to maintain physiological levels of
protein synthesis.

Stemming from a systems biology concept of translation regulation, in
this thesis, we leverage and analyze available multi-omic datasets using
statistical and machine learning algorithms. In particular, we analyze
tissue-wide tRNA abundances and their role in cancer (Chapter 3) and
viral infection (Chapter 4); detect and apply tissue-speci�c preferences
of codon usage (Chapter 5); and study tRNA crosstalks as a
coordination mechanism of tRNAomes (Chapter 6).

7.1. Translation regulation in cellular proliferation

tRNAs are among the most abundant RNA species in the cell, together
with rRNAs. Given their strong secondary structure and abundant
modi�cations, the coverage of tRNA reads in standard small RNA-seq
datasets is limited and heterogeneous. Therefore, sequencing of tRNA
molecules generally requires ad hoc protocols—e.g. using highly
processive retrotranscriptases (67,110,235). However, in order to
leverage publicly available standard small RNA-seq datasets, in Chapter
3, we benchmarked tRNA quanti�cations obtained either by standard
small RNA-seq or by Hydro-tRNA-seq protocols (109). As a result, we
provided proof-of-concept evidence that tRNA expression among
several human cell lines can be quanti�ed from small RNA-seq data. In
fact, several computational pipelines have been designed to analyze this
type of data (113,267), and the tRNA abundances of many human
high-throughput datasets are currently available in databases (116,268).

With the analysis of more than 8,000 tumor and healthy small RNA-seq
samples of the TCGA dataset, we identi�ed tissue-speci�c di�erences in
tRNA expression, which had only been previously reported by tRNA
microarrays of limited sample size (103). Consistent with our results, a
recent mouse tRNA-seq dataset similarly highlighted the upregulation
of tRNAArg(TCT) and tRNAAla(TGC) in brain tissues (237).
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Moreover, we observed that cell proliferation is the major factor
explaining the tRNA level variability among human tissues. Previous
studies indicate that A/T-cognate tRNAs, in contrast to G/C-cognate
tRNAs, are overexpressed in cancer samples and models, which relates
to the opposite codon usage patterns observed in proliferation- vs
di�erentiation-related genes, respectively (42). In fact,
CRISPR-targeting of tRNA genes showed that "proliferative" tRNAs
were essential in rapidly dividing cell lines (269). This diverging tRNA
program between proliferation and di�erentiation was also recapitulated
in tumor vs healthy tissues across 23 cancer types. For instance, we
reported the downregulation of tRNALeu(CAG) expression in nine
di�erent cancer types (including BRCA), which is actually the most
repressed tRNALeu upon depletion of the tumor suppressor LARS in
breast cancer (264). Similarly, we found tRNAArg(TCT) upregulated in
13 cancer types, whose increased stability upon m7G46 modi�cation by
METTL1 has been observed to induce malignant transformation (270).

Our work also revealed coordination between tRNA supply and
demand (see Chapter 1), showing that the translation e�ciency estimate
Supply-to-Demand Adaptation (SDA) positively correlated with
protein abundances. This positive correlation is nevertheless modest, as
reported in other similar settings (95), which suggests that translation
elongation in multicellular eukaryotes is also determined by factors
other than tRNAs (18). Using SDAs, we therefore identi�ed two sets of
proliferation and di�erentiation codons, generally corresponding to
A/T-ending and G/C-ending codons, respectively. In agreement,
current models indicate that the decoding of rare A/T-ending codons by
scarce tRNAs is the major translation bottleneck for rapid proliferation
(53). In consequence, synonymous mutations from A/T to G/C-ending
codons that alleviate this constraint are frequently observed in
cancer-related genes (271,272), while upregulation of the limiting
A/T-cognate tRNAs decreases ribosomal pausing and leads to
tumorigenesis (99,270). Altogether, we hypothesize that the regulated
expression of speci�c tRNAs rewires the supply/demand balance of
rate-limiting codons, which enhances the mRNA translation elongation
of A/T-rich oncogenes and represses G/C-rich tumor suppressors (122).
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7.2. Translation interplay between host and virus

Viruses need to hijack the translational machinery of the host, which
involves the interplay between the codon usage of viruses and the tRNA
expression, modi�cation and aminoacylation of hosts (273). For
instance, it has been reported that a positive correlation exists between
the codon usage of viruses and hosts, although relatively higher in
prokaryotes than eukaryotes (157,274). Given the observed di�erences
in tRNA expression among human tissues, in Chapter 4, we provided
the �rst systematic study of the codon-anticodon interface of human
viruses. We observed di�erences in codon usage related to the tissue
tropism of viruses, which could be predicted based on their SDA
adaptation.

In support of this translational adaptation, chikungunya infection for
example induces translation in the host of virus-rich GAA, AAA, CAA,
AGA and GGA codons by increasing the KIAA1456-mediated tRNA
modi�cation mcm534 (275). Therefore, viruses generally evolve to
resemble the host codon usage and thus hijack its translation machinery,
but an excessive adaptation can also be deleterious, since disruption of
host translation impedes further replication (189,276). In fact, more
virulent/symptomatic viruses are generally associated with more similar
virus-host codon usages (189,277). However, the coding sequences of
viruses are actually dependent on many other factors than translational
adaptation alone, such as e�cient transcription, mRNA export, or
immune evasion (278). For instance, codon deoptimization of HIV-1
based on codon usage alone does not always lead to virus attenuation,
and vice versa (279).

In the context of the COVID-19-causing SARS-CoV-2, we reported a
high translational adaptation to the upper respiratory tract and the
alveoli. The similarity between the codon usage of the virus and the
human lung also supports this high adaptation to lung tissues
(280,281). Moreover, given the stable codon usage since the �rst
zoonosis, reports suggest that translational adaptation of SARS-CoV-2
happened prior to the human infection (282). In fact, since the �rst

148



Chapter 7

sequences in December 2019, synonymous mutations appearing in the
viral genome have slightly increased the similarity to human codon
usage (283,284). However, the overall adaptation including both
synonymous and nonsynonymous substitutions has globally decreased,
probably driven by other CUB-unrelated evolutionary forces
(285–287). This global codon dissimilarity to humans has also been
related to the decrease in pathogenicity over time (277,287). On the
other hand, the observed host promiscuity of coronaviruses has been
associated with a generalist codon usage (282,288). As a side project of
this thesis, we actually observed that humans, compared to other species
with lower infectivity, showcased both a higher translational adaptation
and an optimal interaction with the entry receptor ACE2 (289).

7.3. Tissue-specific codon usage in biotechnology

As di�erent tissues exhibit di�erent tRNA abundances, in Chapter 5,
we measured the e�ect of codon usage on tissue-speci�c protein
synthesis. To estimate translation e�ciencies, we leveraged tissue-wide
transcriptomics and proteomics datasets to compute their PTRs, and
controlled for possible translation-independent biases. A more direct
readout of translation e�ciencies will come from ribosome pro�ling
datasets, but such data is still scarce (22,290) and the experimental
protocol is challenging and prone to many biases (213,291).
Interestingly, detected high-PTR and low-PTR proteins of each tissue
were highly dependent on their constituent cell types. For instance,
skeletal and heart muscle shared many low-PTR proteins compared to
other tissues, or nervous system tissues presented similar high-PTR
proteins, which were actually enriched in neural-related functionalities.
However, the cell-type contribution to detected bulk PTRs cannot be
fully established without single-cell measurements of translation
e�ciency, which are still lacking (52). Approximations using
scRNA-seq and scATACseq to measure codon usage and tRNA
expression, respectively, also highlighted particularities of translation
e�ciency of neurons and muscles (104).
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Codon usage studies have hitherto focused on the variability across
genes rather than across tissues (28,54). With the computed PTRs, we
therefore developed a random forest ensemble model that identi�ed
tissue-speci�c codon preferences, showing two clearly distinct sets of
tissues with opposite codon patterns. Consistent with our results, testis
and brain tissues in Drosophila present tissue-speci�c translation
e�ciency of A/T-ending-rich GFP constructs in vivo (292).

A wide variety of codon optimization algorithms exist, which have been
commonly applied to increase the protein yield for biotechnological and
therapeutic purposes (36,293,294). However, codon optimization is
generally directed to resemble the genomic codon usage, which does not
take into account the existing di�erences of gene expression among cell
types (54). To translate the detected codon patterns into a
tissue-targeted codon optimization tool, we then developed the
open-source package and web server CUSTOM. By optimizing reporter
proteins to lung and kidney, we demonstrated their tissue-speci�c
expression in a human cell model. This was therefore the �rst
proof-of-concept evidence and application of codon optimization to
speci�c human tissues. Nevertheless, as introduced in Chapter 1, there
are factors other than codon usage that shape coding sequences, which
can alter their binding partners, transcript stability, translation,
cotranslational folding, etc. (25,29). In consequence, codon
optimization algorithms, alongside increased protein production (27),
can sometimes also have other unpredictable e�ects (293,295).
Altogether, tissue-speci�c codon usage constitutes an additional
optimization factor within the multi-objective landscape of synthetic
gene design.

7.4. Regulatory mechanisms of dynamic tRNAomes

While Chapter 3 reported that tRNAs were variable across tissues and
cancer types, the regulatory mechanisms coordinating these changes in
tRNAomes are still largely unknown (see Chapter 1). By integrating
tRNA abundances with paired DNA methylation and copy number
data, we revealed that tRNA gene expression is generally associated with
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low DNA methylation and high copy numbers across cancer types. In
fact, DNA methylation of the detected cancer-related tRNAArg(TCT)
was recently reported to prevent binding of the transcriptional
machinery and inhibit endometrial cancer cell growth and migration
(77). Copy numbers of tRNA genes can also often vary among the
human population (296). With the availability of this and other small
RNA-seq datasets such as ENCODE or GTEx (297,298), the
integration of tRNAomes with other multi-omic data types will shed
light on the regulatory mechanisms of tRNA expression.

To investigate further the systems-wide coordination of tRNAomes, we
developed SLAC in Chapter 6, which leverages the single-read nature of
tRNA-seq data to identify crosstalks between tRNA modi�cations,
aminoacylation and fragmentation. We validated known crosstalks of
yeast tRNAPhe(GAA), as well as explored tRNAome-wide crosstalks in
yeast, human cells, and mouse tissues. In fact, tRNA biogenesis involves
many tRNA-modifying enzymes or tRNA synthetases that often form
multimeric complexes and requires sequential tRNA processing steps
(88,255,299), which can lead to the widespread detection of
interdependent modi�cation sites and tRNA aminoacylation. While
detected correlations do not imply a direct causal relationship, SLAC
provided the �rst high-throughput exploration of crosstalks across
multiple eukaryotic species. Studies of modi�cation and aminoacylation
crosstalks had hitherto been limited to targeted or time-course assays
(238,239), and mostly focused at the tRNA anticodon loop (300,301).

The modi�cation and charging state of tRNAs is dynamic and can
regulate mRNA translation in stress response, development, or disease
(129,258,265,302). We therefore reported that crosstalks can mediate
the �ne-tuning of tRNAomes across several cellular stresses. In fact, by
leveraging polysome-associated data, tRNA species correlatively lacking
both m1A58 and charging were linked to slower translation.
Furthermore, certain tRNA modi�cations can also protect or induce
tRNA cleavage in response to stress (303); for instance, NSUN2- and
DNMT2-mediated m5C modi�cation is protective against cleavage by
angiogenin (249,250). Using SLAC, we also observed that speci�c
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tRNA modi�cations such as m2
2G26 can either protect or induce

cleavage of human tRNAomes. Altogether, we provided a method to
detect tRNAome-wide crosstalks in physiologically-relevant conditions,
which captures snapshots in the study of complex and dynamic
tRNAomes.

7.5. Further perspectives

7.5.1. Evolutionary forces on codon usage bias

Under the neutral theory of molecular evolution, selection on
synonymous sites has long been considered too weak to exert an e�ect
on �tness (304,305). However, as the results presented in this thesis
indicate, the synonymous codon usage of genes can regulate gene
expression and therefore have a phenotypic impact. As such, the
assumption of neutrality of synonymous substitutions is in clear dispute
(44,59). In contrast, evidence also indicates that the nucleotide
composition of surrounding non-coding regions can explain most of the
variability in codon and amino acid usage of genes (306,307).
Disentangling the relative contribution of mutational pressure versus
natural selection on codon usage bias will bene�t from advances in
experimental technologies such as CRISPR-Cas9-based mutant libraries
(26,308), as well as the development of codon-based models of
evolution (309).

Conservation at synonymous sites has been detected to be associated
with mRNA translation, mRNA structure, and splicing signals (309).
Furthermore, in a side project of this thesis, we have observed that
A/T-ending codons show higher codon conservation in mammals
compared to G/C-ending codons (57). Genes rich in these highly
conserved A/T-ending codons were coordinately expressed together
across human tissues and more likely to form protein complexes. These
observations are in line with "rare" A/T-ending codons being commonly
rate-limiting and hence showing higher regulatory potential (see
Chapter 1) in contexts such as proliferation or speci�c tissues.
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7.5.2. Dynamic regulation of mRNA translation

This thesis has provided evidence that tRNAomes are dynamic across
tissues, between disease states, and upon cellular stresses. However, the
exact mechanisms that regulate these dynamic changes in tRNAomes
remain largely unaddressed. Recent developments in tRNA-seq
technologies now allow the accurate and simultaneous determination of
tRNA abundances, aminoacylation, and some modi�cations (67,235).
Further techniques to capture tRNAome dynamics also include mass
spectrometry for measuring tRNA modi�cations (310) or direct tRNA
sequencing by Oxford Nanopore (311). Altogether, the advent of
multi-omic datasets across diverse cell states and perturbations will
enable the exploration of the regulatory mechanisms involved (64,297).
For instance, in Chapter 3 and Chapter 6, we showed the potential of
multi-omic data integration for elucidating the regulation of
tRNAomes.

To what extent these changes in tRNAomes subsequently control
mRNA translation elongation is also under debate. In Chapter 3, we
observed that tRNA-based translation estimates correlated only
modestly with protein abundances. Similarly modest correlations have
also been reported between codon e�ciency from ribosome pro�ling
data and tRNA abundances (33,95). One possible explanation for this
lack of strong correlations is that mRNA translation elongation is
rate-limiting only for a subset of codons/tRNAs, as the results in
Chapter 5 suggested. As high-resolution ribosome pro�ling and
tRNA-seq datasets become available, the rate-limiting codons/tRNAs
in speci�c cell states will be assessable.

7.5.3. tRNA-based therapeutics

Not only does mRNA translation explain the most variability of gene
expression across tissues (21,28), but it is actually deregulated in many
diseases such as cancer, metabolic disorders, neuropathies, or viral
infections (62,263). Therefore, several approaches of modulation of
tRNAomes have been proposed for therapeutic intervention (263).
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First, tRNA overexpression can restore defective tRNAs, which has
been e�ective to treat Charcot-Marie-Tooth (CMT) peripheral
neuropathy in Drosophila and mouse models, caused by the tRNAGly

sequestration by a mutant glycyl-tRNA synthetase (265). Second, as
reported in Chapter 3, several cancer types are associated with aberrant
upregulation of speci�c tRNAs, such as tRNAArg(TCT) (270), whose
expression can be therapeutically repressed by small molecules or RNA
interference (106,312,313). Finally, nonsense mutations—single
nucleotide mutations that convert an amino-acid-encoding codon into a
premature stop codon—result in loss of protein expression, which
account for 10-15% of genetic diseases (314). Engineering suppressor
tRNAs that can read-through these premature stop codons emerges as a
promising therapeutic intervention (315,316), which has been
successfully applied in a mouse model of nonsense mutation through
AAV-delivered gene therapy (317).

7.6. Concluding remarks

The typical human body is composed of dozens of di�erent tissues and
hundreds of cell types. While they all share a common genotype, their
gene expression needs to be �nely regulated at many levels to showcase
distinct phenotypes and functions. In this thesis, we have applied
systems biology approaches to uncover the contribution of dynamic
codon usage and tRNAomes on tissue-speci�c mRNA translation.

From the tRNA perspective, we repurposed available tissue-wide small
RNA-seq datasets for quanti�cation of tRNA abundances, whose
expression patterns were closely linked to the proliferative state of
tissues. In the aberrant case of cancer, speci�c tRNA isoacceptors
showcased altered expression and prognostic value, which related to
changes in mRNA translation. These tissue-speci�c tRNA repertoires
similarly reported the adaptation between the codon usage of human
viruses to their tissue tropism. On the methods side, we measured and
exploited tissue-speci�c di�erences in codon usage to develop a codon
optimization tool for tissue-targeted gene expression. Furthermore, we
designed a pipeline for the exploration of tRNAome-wide crosstalks
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between modi�cations, aminoacylation and fragmentation, which
highlighted the intricacy of tRNA dynamics.

Therefore, while we have only started to grasp the full complexity of
mRNA translation control, the resources and �ndings of this thesis will
be directly applicable to the development of tRNA-based interventions
or tissue-targeted gene therapies and vaccines.
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