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ABSTRACT 

This thesis aims at achieving reliable data exchange over a harsh environment by improving its 

trustworthiness through the design of a multi-layered model that takes into account the 

different layers of trustworthiness and through the implementation of the model’s associated 

countermeasures. The thesis focuses on the use case of the SHETLAND-NET project, aiming 

to deploy a hybrid Internet of Things (IoT) architecture with LoRa and Near Vertical Incidence 

Skywave (NVIS) communications to offer a telemetry service for permafrost monitoring in 

Antarctica. 

To accomplish the thesis objectives, first, a review of related work in trustworthiness is carried 

out to propose a definition and scope of the trustworthiness term. From these, a four-layer 

trustworthiness model is designed, with each layer characterized by its scope, metric for 

trustworthiness accountability, countermeasures for trustworthiness improvement, and the 

interdependencies with the other layers. This model enables trustworthiness accountability and 

assessment of the Antarctic use case. 

Given the harsh conditions and the limitations of the technology used in this use case, the 

model is validated and the telemetry service is evaluated through simulations in Riverbed 

Modeler. To obtain anticipated values of the expected trustworthiness, the proposal has been 

modeled and simulated to evaluate the performance with different configurations prior to its 

deployment in the field. The proposed architecture goes through three major iterations of 

trustworthiness improvement. In the first iteration, using social trust management and 

consensus mechanisms is explored to take advantage of sensor redundancy. In the second 

iteration, the use of modern transport protocols is evaluated for the Antarctic use case. The 

final iteration of this thesis assesses using a Delay Tolerant Network (DTN) architecture using 

the Bundle Protocol (BP) to improve the system’s trustworthiness. 

Finally, a Proof of Concept (PoC) with real hardware that was validated in the 2021-2022 

Antarctic campaign is presented, describing the functional tests performed in Antarctica and 

Catalonia. 

Keywords. IoT, WSN, trustworthiness, Antarctica, NVIS, LoRa, DTN, modeling, simulation. 
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RESUM 

Aquesta tesi té com a objectiu aconseguir un intercanvi de dades fiable en un entorn hostil 

millorant-ne la confiabilitat mitjançant el disseny d'un model multi-capa que tingui en compte 

les diferents capes de confiabilitat i mitjançant la implementació de les contramesures 

associades al model. La tesi se centra en el cas d'ús del projecte SHETLAND-NET, amb 

l'objectiu de desplegar una arquitectura d'Internet de les coses (IoT) híbrida amb 

comunicacions LoRa i d'ona ionosfèrica d'incidència gairebé vertical (NVIS) per oferir un 

servei de telemetria per al monitoratge del “permafrost” a l'Antàrtida. 

Per complir els objectius de la tesi, en primer lloc, es fa una revisió de l'estat de l'art en 

confiabilitat per proposar una definició i l'abast del terme de confiança. Partint d'aquí, es 

dissenya un model de confiabilitat de quatre capes, on cada capa es caracteritza pel seu abast, 

mètrica per a la quantificació de la confiabilitat, contramesures per a la millora de la confiabilitat 

i les interdependències amb les altres capes. Aquest model permet el mesurament i l'avaluació 

de la confiabilitat del cas d'ús a l'Antàrtida. 

Donades les condicions hostils i les limitacions de la tecnologia utilitzada en aquest cas d’ús, es 

valida el model i s’avalua el servei de telemetria a través de simulacions en Riverbed Modeler. 

Per obtenir valors anticipats de la confiabilitat esperada, l'arquitectura proposada es modela i 

es simula per avaluar els resultats amb diferents configuracions previ al seu desplegament en 

proves de camp. L'arquitectura proposada passa per tres principals iteracions de millora de la 

confiabilitat. A la primera iteració, s'explora l'ús de mecanismes de consens i gestió de la 

confiança social per aprofitar la redundància de sensors. En la segona iteració, s’avalua l’ús de 

protocols de transport moderns per al cas d’ús antàrtic. L’última iteració d’aquesta tesi avalua 

l’ús d’una arquitectura de xarxa tolerant al retard (DTN) utilitzant el Bundle Protocol (BP) per 

millorar la confiabilitat del sistema. 

Finalment, es presenta una prova de concepte (PoC) amb maquinari real que es va validar a la 

campanya antàrtica 2021-2022, descrivint les proves de camp funcionals realitzades a 

l'Antàrtida i Catalunya. 

Paraules clau. IoT, WSN, confiabilitat, Antàrtida, NVIS, LoRa, DTN, modelatge, simulació. 
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RESUMEN 

Esta tesis tiene como objetivo lograr un intercambio de datos confiable en un entorno hostil 

mejorando su confiabilidad mediante el diseño de un modelo multicapa que tenga en cuenta 

las diferentes capas de confiabilidad y mediante la implementación de las contramedidas 

asociadas al modelo. La tesis se centra en el caso de uso del proyecto SHETLAND-NET, con 

el objetivo de desplegar una arquitectura de Internet de las cosas (IoT) híbrida con 

comunicaciones LoRa y de onda ionosférica de incidencia casi vertical (NVIS) para ofrecer un 

servicio de telemetría para el monitoreo del “permafrost” en la Antártida. 

Para cumplir con los objetivos de la tesis, en primer lugar, se realiza una revisión del estado del 

arte en confiabilidad para proponer una definición y alcance del término confiabilidad. 

Partiendo de aquí, se diseña un modelo de confiabilidad de cuatro capas, donde cada capa se 

caracteriza por su alcance, métrica para la cuantificación de la confiabilidad, contramedidas 

para la mejora de la confiabilidad y las interdependencias con las otras capas. Este modelo 

permite la medición y evaluación de la confiabilidad del caso de uso en la Antártida. 

Dadas las condiciones hostiles y las limitaciones de la tecnología utilizada en este caso de uso, 

se valida el modelo y se evalúa el servicio de telemetría a través de simulaciones en Riverbed 

Modeler. Para obtener valores anticipados de la confiabilidad esperada, la propuesta es 

modelada y simulada para evaluar los resultados con diferentes configuraciones previo a su 

despliegue en pruebas de campo. La arquitectura propuesta pasa por tres iteraciones principales 

de mejora de la confiabilidad. En la primera iteración, se explora el uso de mecanismos de 

consenso y gestión de la confianza social para aprovechar la redundancia de sensores. En la 

segunda iteración, se evalúa el uso de protocolos de transporte modernos para el caso de uso 

antártico. La última iteración de esta tesis evalúa el uso de una arquitectura de red tolerante al 

retardo (DTN) utilizando el Bundle Protocol (BP) para mejorar la confiabilidad del sistema. 

Finalmente, se presenta una prueba de concepto (PoC) con hardware real que se validó en la 

campaña antártica 2021-2022, describiendo las pruebas de campo funcionales realizadas en la 

Antártida y Cataluña. 

Palabras clave. IoT, WSN, confiabilidad, Antártida, NVIS, LoRa, DTN, modelado, simulación. 
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C h a p t e r  1  

INTRODUCTION 

1.1. Motivation and background 

The Internet of Things (IoT) paradigm has been one of the major research and industrial 

subjects in the Information and Communications Technology (ICT) area since its conception 

[1]. IoT-based solutions have leveraged service and process automation in several fields such 

as Smart Cities [2], Smart Grids [3], Vehicular Networks [4], Industry 4.0 [5], eHealth [6], or 

Smart Agriculture [7], among others. IoT, alongside other ICT-related fields such as Big Data, 

has been a key enabler for modern scientific research and business digitalization [8]. However, 

not all scientific research could be modernized yet. One of the trends in current research is the 

study of Antarctica’s ecosystem from multiple disciplines. To put some perspective, 1.18% of 

all indexed articles in Google Scholar from January to October 2022 are focused on 

Antarctica’s research. 

Scientists state that Antarctica, and by extension, Antarctica’s research, play a key role in better 

understanding the Earth’s past, present, and future [9]. However, given the particularities of 

the Antarctic continent, some challenges appear to enable modern research in this location 

[10]. One of these challenges is the lack of telecommunication systems, which could play a 

crucial role in data gathering, exchange, and processing automation for research studies. 

Currently, none of the 75 Antarctic base stations is provided with Internet connectivity via 

cable connection (e.g., fiber optic, DSL, or coaxial) or cellular technology. Satellite 

communications are the only current alternative [11], which implies high costs and low 

bandwidth compared to the aforementioned technologies. Moreover, satellite coverage is 

limited to the research base facilities. However, most of the sample and data gathering is 

performed outside the facilities without connectivity (even in remote locations kilometers away 

from the nearest base), which implies that Wireless Sensor Networks (WSNs) or IoT-based 

solutions are exceptionally complex to implement in terms of time, human effort, and cost. 
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Thus, most of the data collected by sensors are stored in end devices manually (e.g., data 

logging through external USB drives), needing human intervention. This handicap limits the 

coverage area of experiments in Antarctica, given that data loggers are more challenging to 

physically reach as they are further away from base stations. Moreover, Antarctic campaigns 

are usually only held during summer due to climatic conditions. When summer ends, scientific 

bases close, and satellite links are disabled due to their high costs. This fact forces researchers 

to stop gathering data until the next campaign the following year or leave the data loggers 

working, but being unable to download these data until the next campaign and assuming the 

risk of suffering unexpected problems (e.g., sensor malfunction or battery drains) without 

detecting them.  

For these reasons, scientists are increasingly demanding to improve and automate the data 

collection for research experiments in Antarctica [10], enabling a larger coverage area and a 

longer sample gathering period (ideally continuous monitoring). So far, experimental initiatives 

with ZigBee [12] and LoRa [13] communication technologies have been deployed in Antarctica 

to enable IoT solutions for research studies. Nonetheless, these technologies present two main 

drawbacks: 

1. Their coverage range is limited to tens of kilometers (< 30 km) in best-case conditions. 

Thus, these solutions are unsuitable when devices are placed in remote locations (e.g., 

different islands).  

2. They need Line-of-Sight (LoS) to offer reliable connectivity, which is difficult to 

achieve in Antarctica due to its terrain orography (e.g., two locations separated by a 

hill). 

Aiming to modernize Antarctic research, the SHETLAND-NET project [14] from La Salle – 

Universitat Ramon Llull proposes to build an IoT network based on Near-Vertical Incidence 

Skywave (NVIS) communications in Antarctica. This communication technique operates in 

the High Frequency (HF) band. It consists of sending a radio wave near-vertically upwards to 

the ionosphere that, due to its properties, can reflect this signal back down within a circular 

range with a radius of 250 km [11], providing long-distance links not affected by LoS (see 
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Figure 1). Moreover, the NVIS nodes of the SHETLAND-NET project are designed for low 

power consumption, which enables its placement in remote areas with high autonomy by using 

batteries. Although previous research achieved promising results with NVIS transmissions, the 

results also showed that this type of communication struggles with adversarial conditions that 

causes reliability issues, including intermittent connectivity, long delays, and channel 

unavailability in NVIS links [11], [15]–[19]. These conditions, added to Antarctica's inherent 

environmental and geographic constraints, produce a harsh environment for IoT sensor 

networks that demands further development to accomplish the researchers’ requirements.  

 

Figure 1. NVIS communication technique. 

For this reason, this thesis aims to achieve reliable data exchange in harsh environments by 

assessing and improving their trustworthiness. Concretely, this thesis focuses on the practical 

use case of permafrost monitoring in Antarctica [20], in which Ground Terrestrial Network-

Permafrost (GTN-P) stations collect data samples to study the ice surface of the Antarctic 

continent, aiming to offer a trustworthy IoT telemetry service for permafrost monitoring. 

These data are exchanged through the NVIS-based IoT sensor network designed in the 

SHETLAND-NET project. 

The analysis of multi-annual permafrost thermal regimes allows determining the energy balance 

between the soil and the atmospheric boundary layer, which depends on climatic variability, 

the buffer interfacing between the soil and atmosphere, soil thermophysical properties, and the 

geothermal gradient. In polar regions, where vegetation cover is scarce or absent, seasonal 
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snow is the main factor generating ground thermal insulation, a key factor for the thermal 

regime of permafrost [21]. 

The thermal regime of permafrost in Maritime Antarctica has received increasing research 

attention since the Fourth International Polar Year (2007–2008), following the installation of 

several boreholes in the Antarctic Peninsula and nearby islands [21]. Those actions are based 

on the protocol of the Circumpolar Active Layer Monitoring (CALM) and Thermal State of 

Permafrost (TSP) programs of the International Permafrost Association (IPA). These 

programs aimed to install a network of boreholes with adequate depths to perform direct 

measurements of ground temperature and thus determine inter-annual changes in the 

permafrost thermal regime, reaching, in many cases, the depth of Zero Annual temperature 

Amplitude (ZAA). The measurements of the temperature gradients from these boreholes feed 

into a global dataset of permafrost temperature time series (the GTN-P) to evaluate 

temperature variability across permafrost regions and to analyze the behavior of the Active 

Layer Thickness (ALT). Records of the ground temperature gradient at near-surface and deep 

levels of a borehole can be used to extract information about the ALT and ZAA, respectively, 

which allow estimating the annual heat exchange between the ground and the lower limit of 

the atmospheric boundary layer [21]. 

The study area of this use case is the Antarctic South Shetland Islands. This region has 

witnessed a marked rise in Mean Annual Air Temperature (MAAT) over the past 70 years and 

is one of the global hot spots of climate warming. MAAT increased by ~+0.56 °C/decade 

from 1951 to 2000, followed by a statistically significant cooling in the first decade of the 21st 

century [21], with the series showing a new warming trend after 2015. With MAAT in the 

South Shetlands at around −2 °C, the region is close to the freezing point of water, and climate 

change may have a profound effect on the permafrost thermal regime. 
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TABLE I 

GTN-P STATION PARAMETERS 

 
Environmental Thermal Properties 

Timestamp Device temperature (ºC) Ice content pack (%) 
Water content 30 cm 
(%) 

Air temperature (ºC) Surface temperature (ºC) 
Water content pack 
(%) 

Density 30 cm (kg/m3) 

Air humidity (%) 
Ground surface temperature 
(ºC) 

Density pack (kg/m3) SWE 30 cm (mm) 

Pyranometer 
up (W/m2) 

Temperature 10 cm (ºC) SWE pack (mm) Ice content 50 cm (%) 

Pyranometer down 
(W/m2) 

Temperature 20 cm (ºC) Ice content 10 cm (%) 
Water content 50 cm 
(%) 

Pyrgeometer 
up (W/m2) 

Temperature 40 cm (ºC) 
Water content 10 cm 
(%) 

Density 50 cm (kg/m3) 

Pyrgeometer down 
(W/m2) 

Temperature 80 cm (ºC) Density 10 cm (kg/m3) SWE 50 cm (mm) 

 Temperature 100 cm (ºC) SWE 10 cm (mm) Snow weight (kg/m2) 

  Ice content 30 cm (%) Snow depth (cm) 

 

 

Figure 2. Manual data download from a GTN-P station in Antarctica [22]. 
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As mentioned before, GTN-P stations are responsible for collecting temperature and other 

data from the permafrost surface. Each GTN-P station collects 32 different parameters and a 

timestamp periodically (see Table I), and each parameter is 4 bytes long. However, these data 

must be downloaded from each GTN-P station to a computer manually, as seen in Figure 2. 

The monitoring stations are operative all over the year, taking measurements and logging these 

data locally until the research team can retrieve them during the annual Antarctic campaign in 

the austral summer period. Since Antarctic campaigns are short and very conditioned by 

meteorology, time is gold in Antarctica. Considering the number of sensors and stations placed 

in the study area (currently 84), the researcher dedicates most of the time in Antarctica to 

collecting data and performing maintenance activities [22].  

The main goal of the SHETLAND-NET project is to provide a reliable data communication 

solution that allows scientists to remotely access the data so that valuable time in Antarctica 

can be dedicated to exploring new areas and performing new research activities. The proposed 

NVIS-based IoT network can help researchers in several aspects. Before traveling to 

Antarctica, the status of the measurement sites could be known. This helps in the campaign 

planning, procuring in advance only those items known to be damaged that require 

maintenance tasks. This also contributes to decreasing the cost of the campaign and the 

amount of material to be transported to Antarctica. If, for any reason, the campaign is canceled 

or the researcher cannot travel to Antarctica, data are still available (the science of the year is 

not lost). Additionally, this can help to expand the study area by placing more stations, given 

that it would not be necessary to travel to all the stations periodically. Moreover, the sampling 

frequency can be increased since sensor memory is no longer a concern (data are not stored 

locally for a long time, they are sent through the network). Finally, once in Antarctica, the 

proposed solution prevents the researcher from walking long distances or going into protected 

areas for those measurement devices that are working correctly. 

On the one hand, regarding the reliability issues that affect NVIS links, it was theorized that 

these could match the properties of challenging networks. Currently, challenging networks 

problems are coped with Delay Tolerant Network (DTN) architectures and protocols [23], 

such as the Bundle Protocol (BP) [24], and lightweight implementations have been proposed 
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to leverage DTN architectures in low-resource environments, such as the IoT [25]. For this 

reason, this thesis explores using a DTN approach as a tool to improve the trustworthiness of 

the NVIS-based IoT network in Antarctica. 

On the other hand, my first steps in research were mainly focused on the design, simulation, 

and implementation of transport layer mechanisms to optimize bandwidth utilization on data 

exchange over long-distance networks. In this type of network, standard TCP and other 

variants grow their congestion window size by one per round trip time (RTT). This made the 

data transport speed of TCP used in all major operating systems rather sluggish, extremely 

under-utilizing the network’s bandwidth, especially if the length of flows is much shorter than 

the time TCP grows its windows to the maximum capacity of a path [26]. Aiming to solve this 

problem, modern TCP variants were defined that tried to occupy the entire bandwidth in a 

fast, stable, and fair way. From these variants, TCP CUBIC was defined as the default TCP 

algorithm for the Linux operating system from kernel version 2.6.18 [26], and it is still used in 

the current version, 5.19.9. Our research evolved towards the proposal of a novel transport 

protocol, the Adaptive and Aggressive Transport Protocol (AATP) [27], and its evolved 

version conceived for long-distance heterogeneous networks, the Enhanced AATP (EAATP) 

[28]. For this reason, this thesis also assesses the use of the EAATP as the transport protocol 

of the NVIS network, aiming to improve the trustworthiness of the permafrost telemetry 

service in Antarctica. 

The final goal was to validate a Proof-of-Concept (PoC) of the proposed IoT architecture in 

the field, which was carried out during the Antarctic campaign held from December 2021 until 

March 2022. This PoC aimed to exchange sensor data between the Spanish Juan Carlos I Base 

on Livingston Island (Figure 3) and the Uruguayan Artigas Base on King George Island.  



Chapter 1: Introduction 

 8 

 

Figure 3. View of the Juan Carlos I Base in Livingston Island (South Shetland Islands, Antarctica). 

These research bases are separated by approximately 93 km without LoS (see Figure 4). King 

George Island is expected to be provided with fiber optics in the future, interconnecting the 

island with the Magallanes region (Chile) through a thousand-kilometer submarine cable [29]. 

For this reason, the SHETLAND-NET project aims to connect Livingston Island with King 

George Island through NVIS, achieving permanent Internet connectivity without needing a 

satellite link, thanks to the fiber optic connection in King George. 
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Figure 4. Juan Carlos I and Artigas bases locations in the South Shetland Islands (Antarctica). 

During the Antarctic campaign, we traveled to both research bases and deployed NVIS 

gateways and sensors to evaluate if the PoC worked as expected in that harsh environment. In 

total, we stayed ten weeks at the Juan Carlos I base and six weeks at the Artigas base, living 

together with other researchers from multiple disciplines (see Figure 5). 

 

Figure 5. Spanish expedition of the 2021-2022 Antarctic campaign. 
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1.2. Hypothesis and research questions 

Considering the background described in the previous section, the hypothesis of the thesis is 

the following: 

“Achieving reliable data exchange over a harsh environment is possible by improving its trustworthiness through 

the design of a multi-layered model that takes into account different facets of trustworthiness and through the 

implementation of the model’s associated countermeasures.” 

That is to say, if we need to improve the trustworthiness of the data exchange over a harsh 

environment such as the Antarctic permafrost monitoring use case, a multi-layered 

trustworthiness model must be defined. This model must consider the different facets of 

trustworthiness (e.g., it must be able to distinguish between the trustworthiness of data and the 

network transmitting them) to quantify, assess, and detect the reason for unsatisfactory 

trustworthiness levels. This model also has to propose countermeasures to improve the 

trustworthiness levels at all layers. For this reason, this thesis does not focus on improving the 

current specification of NVIS communications by modifying the PHY or MAC layers of 

NVIS, nor tries to improve standard DTN protocols and architectures. This thesis focuses on 

using all these tools as mechanisms or countermeasures that can improve the trustworthiness 

of the overall data exchange service (in this case, the permafrost monitoring in Antarctica 

through an NVIS-based IoT network) based on the designed trustworthiness model. 

To reach this goal and confirm the hypothesis, the following research questions are posed: 

RQ1. What is the definition and scope of the trustworthiness term in the field of Cyber 

Physical Systems (CPS)? 

A CPS is defined as a system with integrated computational and physical capabilities [30]. IoT 

and WSNs are common examples of CPS. In the literature, we can find many interpretations 

and points of view regarding the trustworthiness term in this field. To improve the 

trustworthiness of the SHETLAND-NET’s service, first, it is necessary to delimit it with an 

agreed definition and scope. 
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RQ2. How can trustworthiness be measured? 

After setting the scope of the trustworthiness term, it is necessary to establish how to quantify 

the achieved level of trustworthiness. Without accountability on trustworthiness, it would be 

harder to compare different solutions to determine which one offers better trustworthiness.  

RQ3. How can a model be used to foresee, assess, and improve the achieved 

trustworthiness in harsh environments? 

Once accountability on trustworthiness is achieved, it is necessary to define how the 

trustworthiness model can be used to identify the weaknesses of the assessed system and how 

they can be improved by applying the appropriate countermeasures. Aiming to this, a model 

must be defined, and its goodness must be validated. 

RQ4. How does using modern transport protocols affect the achieved trustworthiness 

in adversarial networks? 

In prior research, it was evidenced that modern transport protocols, such as TCP CUBIC or 

EAATP, could improve the performance of data transmission over long-distance networks in 

which classical TCP struggles to perform well. For this reason, this thesis also aims to assess 

how transport protocols affect the trustworthiness of adversarial data networks, evaluating if 

modern transport protocols improve the achieved trustworthiness and how it can be taken 

advantage of. 

RQ5. How does a DTN architecture affect the trustworthiness of adversarial 
networks? 
Given that the literature shows that reliability problems regarding long delays, lack of end-to-

end connectivity, and intermittent disconnections can be coped with DTN-based solutions, 

this thesis also aims to study the effect of modeling and deploying a DTN architecture into 

harsh environments with adversarial networks to achieve how the DTN affects to the overall 

achieved trustworthiness. 

RQ6. Are the reached levels of trustworthiness in real implementations match the ones 

derived from the assessment through the trustworthiness model? 

Once a use case and its architecture have been evaluated through the trustworthiness model 

and an expected level of trustworthiness is derived from it, it is necessary to validate if the 
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physical implementation of the assessed use case in the real world matches the expected levels 

of trustworthiness in order to confirm the goodness of the model. 

1.3. Thesis objectives 

This section describes the objectives of the thesis. Since this thesis is strongly related to the 

SHETLAND-NET project, the thesis’ objectives are focused on the project’s permafrost 

telemetry use case. Five objectives are set to answer the six research questions exposed in the 

previous section. O1, O2, and O3 are directly related to RQ1, RQ2, and RQ3, respectively. O4 

is set to answer RQ4 and RQ5. Finally, O5 is set to answer RQ6. The description of each 

objective is detailed below: 

O1. Establish a scope for the trustworthiness term. 

We can find diverse approaches to trustworthiness from different points of view in the field 

of CPS. This objective aims to perform research on the related work in trustworthiness in CPS, 

classifying the reviewed works based on their approach to trustworthiness. After this review, a 

general definition of trustworthiness and its scope for this thesis needs to be set. 

O2. Define a model that enables trustworthiness accountability to detect weaknesses 

and propose appropriate countermeasures for trustworthiness improvement. 

After limiting the scope and defining the meaning of trustworthiness, this objective aims to 

propose a model that enables quantifying the trustworthiness level for a given service 

architecture. Moreover, the model must also help to identify the weak points of a given 

architecture to propose accurate and appropriate countermeasures to improve its 

trustworthiness. 

O3. Assess the trustworthiness of the Antarctic use case. 

As mentioned in section 1.1, Antarctic campaigns are short in time, usually only last a few 

months, and typically research projects only have one or two campaigns to perform their 

experiments. For this reason, before deploying the physical system in the field during the 

Antarctic campaign, the project needs to foresee the expected trustworthiness to assess if the 

current proposal performs good enough and, therefore, be able to propose and analyze new 

solutions if needed, to guarantee the desired trustworthiness level during the campaign. This 
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objective aims to use the trustworthiness model from O2 and simulation tools to assess the 

expected trustworthiness level of the Antarctic use case before its deployment in the field 

during the campaign and, thus, determine the best architecture to be deployed during the time-

constrained campaign. The Riverbed Modeler Simulator [31] was chosen to perform the tests 

to assess the trustworthiness of the Antarctic permafrost telemetry use case, given its modeling 

and simulating powerful capabilities and the personal knowledge and experience with this 

simulation tool from previous research [27], [28]. 

O4. Propose new mechanisms to improve the trustworthiness of the Antarctic use case. 

This objective aims to improve the trustworthiness of the initial service architecture proposed 

by the SHETLAND-NET project to achieve a reliable service architecture for the Antarctic 

telemetry use case. To improve it, the use of modern transport protocols and DTNs is 

evaluated (derived from RQ4 and RQ5), as well as consensus and social trust management 

mechanisms that can take advantage of sensor redundancy. All these proposals are evaluated 

through the assessment tests of O3. From these assessments, a reliable service architecture 

should be proposed for the validation tests in the field. 

O5. Deploy a PoC of the proposed service architecture in the field during the 2021-2022 

Antarctic campaign. 

The final proposal for the SHETLAND-NET’s IoT network to provide the permafrost 

telemetry service should be validated as a PoC in the field during the Antarctic campaign 2021-

2022. The results from the tests with real devices should match and confirm the expected 

trustworthiness level extracted from the simulation tests to validate their goodness. From this 

deployment, conclusions and future development lines should be extracted to deploy a 

permanent IoT network in a future campaign. 

1.4. Related work 

This section summarizes the related work that has been reviewed throughout the thesis. Three 

main categories were researched for this work: trustworthiness in CPS, transport protocols, 

and DTNs. The following subsections synthesize the related work in these categories. Further 

details can be found in the related work sections in Chapter 2, Chapter 3, and Chapter 4. 
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1.4.1. Trustworthiness in Cyber Physical Systems 

A CPS is defined as a system with integrated computational and physical capabilities, such as 

smart vehicles, WSNs, Industry 4.0 devices, smart grids, and the IoT [30]. In general terms, it 

is generally agreed to define the trustworthiness of CPS as the property of behaving as expected 

under adversarial conditions [32]. Nonetheless, many kinds of adversarial conditions can affect 

a system’s trustworthiness, such as faulty nodes, byzantine errors, malicious behaviors, and 

network malfunction, among others [33]. For this reason, many different approaches are 

proposed in the literature to measure or provide trustworthiness that refer to disparate facets 

of a CPS. In this thesis, it is proposed to classify them into the following four categories: 

1. Data Trustworthiness: it is defined as the possibility to ascertain the correctness of the 

data provided by the source [34]. Data trustworthiness studies mainly focus on faulty-

node detection and false data detection and correction [33]. For instance, authors in 

[35] present a distributed Bayesian algorithm to detect faulty nodes, while authors in 

[36] use a fog computing architecture to detect, filter, and correct abnormal sensed 

data. Also, the authors in [37] present a Data Intrusion Detection System to trigger 

false data from malicious attacks. 

2. Network trustworthiness: it can be defined as the probability for a packet to reach its 

destination unaltered despite the adversities (e.g., link failure, link saturation, or 

malicious attacks, among others) [38]. Network trustworthiness and performance have 

been studied from different approaches, such as load balancing and redundancy 

protocols [39], transport protocols [40], dynamic routing and topology control 

protocols [37,38], cybersecurity mechanisms [43], and Delay Tolerant Network (DTN) 

architectures and protocols [25]. Studies using modern transport protocols, such as 

TCP CUBIC [26] and EAATP [28], evidenced an improvement in bandwidth 

utilization and packet loss prevention over long-distance networks. Moreover, DTN 

protocols, such as the Bundle Protocol [25], also proved to mitigate the adversarial 

conditions from challenging networks. These technologies seemed to cope with similar 

challenges to the Antarctic use case, so transport and DTN protocols were further 

studied in this thesis. 
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3. Social Trustworthiness: this facet of trustworthiness became a trend with the 

emergence of the Social Internet of Things (SIoT) [44]. This area studies the capability 

of objects to establish autonomous social relationships to define better trust and 

reputation models that introduce several input parameters not considered before. 

Subjective models (each sensor builds its own vision of trust in the system) [45] are 

proposed to improve data gathering and service delivery. These models consider 

factors such as the computational capabilities of the nodes, the type of relationship 

between them, the total number of transactions, the credibility of a node, and the 

feedback provided by other nodes, among others. Similarly, objective models have also 

been proposed [46], where all nodes share the same vision of the system’s trust, which 

has the advantage of achieving faster convergence times but is less prone to detect 

nodes that behave maliciously only to selected targets. Other models [47] propose to 

base trust computation on input parameters such as the expected gain on success, the 

expected damage on a failure, the expected cost, the expected result, and the goal. Also, 

a decentralized self-enforcing trust management system [48] is proposed for multiparty 

systems based on a feedback system and reputational secure multiparty calculations to 

ensure the privacy of each party's provided data. 

4. Consensus: trustworthiness through consensus aims to reach a state where all 

participants of the same distributed system agree on the same data values [49]. In 

general, two main blocks of consensus algorithms and protocols have been studied: 

Proof-based consensus and byzantine consensus. The first group is mainly used as the 

consensus algorithms for blockchain technologies, where all participants compete 

against each other to mine a block. The most well-known protocols in this category 

are Proof-of-Work, Proof-of-Stake, and its variants [50]. The main drawback of these 

algorithms for low-resource devices is that their simpler hardware specifications and 

low processing power cause poor performance of the mining tasks [51]. The second 

group (byzantine fault consensus) is based on collaborative algorithms. These kinds of 

algorithms implement voting-based mechanisms to reach an agreement, which 

generally imply less resource consumption. The drawback of these mechanisms is the 

number of messages that need to be delivered through the network to reach an 
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agreement. The most well-known protocols in this category are Practical Byzantine 

Fault Tolerance, RAFT, PaXoS, and Ripple [50]. 

1.4.2. Transport protocols 

Transport protocols have been under continuous development to improve data transmission 

performance since the early stages of the Internet [27]. The first extensions of the original TCP 

were the fast retransmit, fast recovery, packet pair link estimation, duplicated acknowledgment 

(DUACK), and selective acknowledgment (SACK) mechanisms. These mechanisms were 

introduced in new TCP flavors [52]: TCP Tahoe, TCP Reno, TCP New-Reno, TCP SACK, 

and TCP-Vegas.  

Nonetheless, these flavors, currently considered legacy [26], could not perform well over long-

distance networks, especially in the so-called Long Fat Networks (LFNs). The LFN concept 

and its effects on TCP performance are currently described in the Request For Comments 

(RFC) 7323. Some TCP variants and other transport protocols developed during the last 

decade were focused on improving their performance over LFNs [27]. Some of these are 

Scalable TCP (S-TCP) [53], FAST TCP [54], High-Speed TCP (H-TCP) [55], Binary Increase 

Control TCP (BIC-TCP) [56], and its evolution: TCP CUBIC [26]. TCP CUBIC (RFC 8312) 

is currently the most used TCP flavor, given that it is the TCP version used by default on most 

operating systems. 

Currently, a new transport protocol called Quick UDP Internet Connections (QUIC) [57] is in 

the final stages of its completion and is starting to be used alongside the new Hypertext 

Transfer Protocol (HTTP) version, HTTP/3. However, various parties still implement QUIC 

with their own source code, competing to be established as the standard implementation of 

QUIC in the operating systems, which causes a large heterogeneity that provokes uncovered 

bugs and compatibility problems [57]. In addition, other modern transport protocols, such as 

TCP BBR [58], Copa [59], Indigo [60], and Verus [61], can achieve high performance, as 

validated in several tests performed in Stanford University’s testbed called Pantheon [60]. TCP 

BBR is one of the top-performance protocols, managing the maximum bandwidth with the 

minimum RTT.  



Trustworthiness Mechanisms for Long-Distance Networks in Internet of Things 

 17 

Nevertheless, most of these protocols consider that packet loss always occurs due to network 

congestion, reducing the congestion window. This assumption is false for wireless links, where 

random packet losses can also occur due to other reasons, such as fading or channel 

interference [28]. Under these circumstances, reducing the congestion windows might also 

degrade the transmission performance, achieving lower throughput [28]. For this reason, other 

transport protocols focus on implementing mechanisms to differentiate between network 

congestion losses and random losses, such as Performance-oriented Congestion Control 

(PCC) [62], TCP Veno [63], TCP Westwood+ [64], Dynamic TCP [65], Jitter TCP [66], and 

Jitter Stream Control Transmission Protocol (JSCTP) [67]. These protocols reduce their 

congestion window only in the event of packet drops due to congestion, improving their 

performance over wireless and heterogeneous links [28].  

Moreover, given that the protocols mentioned before did not meet the performance 

requirements of our cloud data-sharing use case from previous work [28], in previous work we 

presented the Adaptive and Aggressive Transport Protocol (AATP) [27] and its evolution, the 

Enhanced AATP (EAATP) [28], which incorporates mechanisms to differentiate the packet 

losses’ cause, fairly adapting its sending rate accordingly to the network circumstances. 

1.4.3. Delay Tolerant Networks 

A “challenging network” was defined as a network characterized by high latency, bandwidth 

limitations, error probability, node longevity, or path instability [23]. In this type of network, 

typical TCP/IP applications cannot perform reliably because they assume that end-to-end 

connectivity is persistent and stable. To cope with these problems, an architecture called DTN 

was proposed [23], [68]. This architecture is mainly based on a store-carry-and-forward 

philosophy, in which end-to-end connectivity is not needed, and intermediate nodes can keep 

custody of exchanged data for long periods [69].  

The proposed DTN architecture in [23], [68] evolved into a DTN protocol defined in the RFC 

5050, the BP [24], which aims to build an overlay network composed of the nodes capable of 

keeping the custody of data, called bundles (see Figure 6). Interplanetary networks were the 

first application for DTNs and BP [70]. Nonetheless, the use of DTNs rapidly grew in other 
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fields, such as underwater networks, wildlife tracking networks, sparse WSNs, vehicular 

networks, and military networks, among others [69].  

 

Figure 6. DTN architecture with Bundle Protocol. 

Underwater networks use the DTN paradigm to cope with the problems caused by intermittent 

connectivity, mobility, sparse deployment, high propagation delay, high transmission cost, low 

asymmetric data rate, and poor transmission reliability (due to positioning inaccuracy and high 

attenuation). DTNs enable applications for oceanographic data collection, pollution 

monitoring, offshore exploration, disaster prevention, assisted navigation, and tactical 

surveillance applications [71], [72]. 

Wildlife tracking networks, designed for biology research, may consider a DTN approach to 

face the problems resulting from intermittent connectivity, mobility, sparsity, energy 

constraints, large end-to-end delay, and asymmetric data rate. These networks allow monitoring 

of the long-term behaviors of wild animals sparsely distributed over a large area [73], [74]. 

Sparse WSNs (e.g., space, terrestrial, and airborne) can also apply DTN technology to deal with 

the problems caused by intermittent connectivity, sparse deployment, limited power (and also 

limited memory and CPU capability), and low and asymmetric data rate. These networks are 
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usually employed to monitor science and hazard events, like earthquakes, volcanoes, flooding, 

forest fire, sea ice formation and breakup, lake freezing and thawing, and environmental 

monitoring [75], [76]. 

For vehicular networks, store-carry-and-forward DTN concepts have been proposed for 

maintaining communications in sparsely connected environments, enabling the development 

of emerging vehicular applications such as, but not limited to, road safety, traffic monitoring, 

driving assistance, and infotainment. Transmissions over these networks are subject to 

frequent and unpredictable disconnection caused by a dynamic topology, high-speed mobility, 

variable node density, short contact durations, limited transmission ranges, radio obstacles, and 

interferences [77], [78]. 

In the military field, integrating DTN concepts into military tactical networks can ease 

communications in hostile environments (battlefields) where network infrastructure is 

unavailable. These networks suffer from problems of high intermittent connectivity, mobility, 

destruction, noise, attack, interference, low transmission reliability (due to position inaccuracy 

and limited visibility), and low data rate [79], [80]. 

Although the RFC 5050 defines BP operation and architecture, there is no standard 

implementation. However, popular BP implementations are in use nowadays [25]. For 

instance, the Interplanetary Overlay Network (ION) is NASA’s implementation for outer 

space communications. DTN2 is also a widespread open-source implementation. BP version 

7 also has its implementation, DTN7. Moreover, aiming to enable DTN solutions for IoT 

applications, many lightweight implementations of BP have emerged during the last few years 

[25], such as IBR-DTN, µDTN, µD3TN, and NanoDTN, among others. 

1.5. Roadmap, methodology, and contributions 

Once enrolled in the doctorate program, I continued my research in transport protocol 

mechanisms to optimize bandwidth usage in bulk data transfers over long-distance networks, 

linked to the project VSNoIPv6. This research led to publications [27], [28] (see Figure 7 and 

Table II), in which I was involved in the protocol design and results analysis stages, and was in 

charge of the modeling, simulation, test definition, and data curation. In [27], we presented 
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AATP, a transport protocol conceived for long-distance wired networks. The protocol’s 

performance was validated in simulation tests with Riverbed Modeler and in a physical testbed 

with a Wide Area Network (WAN) emulator called WANem [81]. Results showed that AATP 

could outperform TCP and UDP in terms of bandwidth usage due to its precise bandwidth 

estimation and congestion control mechanisms. However, results also evidenced fairness 

conflicts when various AATP flows competed for the same bandwidth, compromising the 

trustworthiness of this transport protocol. In [28], we introduced a fairness mechanism to fix 

this problem, and we also modified the other protocol’s mechanisms to adapt them to wired 

and wireless networks. The new version of the protocol was called EAATP, and its 

performance was compared with other modern transport protocols and the newest TCP 

variants with the same tests as the Pantheon platform [60]. Results showed that EAATP could 

achieve better throughput and Packet Delivery Ratio (PDR) than its competitors while fixing 

the fairness issues from its predecessor, improving its reliability.  

This research track made me realize that even though we were improving the performance and 

trustworthiness of the bulk data exchange use case of the VSNoIPv6 project, we were 

approaching the trustworthiness improvement task from a network perspective only. To 

improve the bandwidth usage (the use case requirement), it was proposed to use a new 

congestion control mechanism (countermeasure), and the performance of the proposed 

solutions was assessed with quantitative metrics to choose the most appropriate 

(accountability). However, we did not approach this use case from other points of view, such 

as the data trustworthiness, and maybe we could have improved the overall data exchange 

service trustworthiness even more if we had done it. This was the initial spark of this thesis, 

thinking that it could be possible to improve the trustworthiness of other cases from different 

perspectives, approaching all of them together if an appropriate trustworthiness model was 

used.
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Figure 7. Thesis roadmap 



Chapter 1: Introduction 

 22 

TABLE II 

THESIS CONTRIBUTIONS 

 

Authors Title Journal Quartile Reference Contributions 
Used for 
compendium 

J. Sánchez, A. 
Mallorquí, A. Briones, 
A. Zaballos, G. Corral 

An Integral Pedagogical 
Strategy for Teaching and 
Learning IoT 
Cybersecurity 

Sensors (MDPI) Q1 [82] 
Methodology description, data curation and results analysis of the 
Networking Laboratory subject. 

- 

A. Briones, A. 
Mallorquí, A. 
Zaballos, R. Martin de 
Pozuelo 

Adaptive and Aggressive 
Transport Protocol to 
Provide QoS in Cloud 
Data Exchange over Long 
Fat Networks 

Future Generation 
Computer 
Systems (Elsevier) 

Q1 [27] 
Participated in protocol design and results analysis. In charge of 
modeling, simulation, test definition, and data curation. 

- 

A. Briones, A. 
Mallorquí, A. 
Zaballos, R. Martin de 
Pozuelo 

Wireless Loss Detection 
Over Fairly Shared 
Heterogeneous Long Fat 
Networks 

Electronics 
(MDPI) 

Q3 [28] 
Participated in protocol design and results analysis. In charge of 
modeling, simulation, test definition, and data curation. 

- 

A. Mallorquí, A. 
Zaballos 

A Heterogeneous Layer-
Based Trustworthiness 
Model for Long Backhaul 
NVIS Challenging 
Networks and an IoT 
Telemetry Service for 
Antarctica 

Sensors (MDPI) Q2 [83] 
In charge of article writing, related work review, trustworthiness 
model definition, architecture proposal, use case modeling, 
simulations, tests definition, data curation, results analysis. 

 

A. Mallorquí, A. 
Zaballos, A. Briones, 
G. Corral 

Confiabilidad en la Capa 
de Transporte para la Red 
de Sensores Antártica 

JITEL 21 
(National 
Conference) 

N/A [84] 
In charge of article writing, related work, architecture proposal, use 
case modeling, simulation, tests definition, data curation, results 
analysis. 

- 

A. Mallorquí, A. 
Zaballos, A. Briones 

DTN Trustworthiness for 
Permafrost Telemetry IoT 
Network 

Remote Sensing 
(MDPI) 

Q1 [85] 
In charge of article writing, related work review, architecture 
proposal, use case modeling, simulation, tests definition, data 
curation, results analysis. 

 

A. Mallorquí, A. 
Zaballos, D. Serra 

The Antarctic Delay 
Tolerant Network 

ISCC 2022 
(International 
Conference) 

N/A [86] 
In charge of article writing, related work review, architecture 
proposal, use case modeling, simulation, tests definition, data 
curation, results analysis. Supervision of the BP implementation. 

- 

A. Mallorquí, A. 
Zaballos, D. Serra 

A Delay Tolerant 
Network for Antarctica 

IEEE 
Communications 
Magazine (IEEE) 

Q1 [87] 

In charge of article writing, related work review, architecture 
proposal, use case modeling, simulation, tests definition, data 
curation, results analysis. Supervision of the BP implementation. 
Participated in the testbed deployment. 

 
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In parallel, I also participated in analyzing and divulgating the pedagogical strategy followed in 

La Salle Universitat Ramon Llull to teach IoT cybersecurity [82]. In this work, I contributed by 

describing the methodology we follow in the subjects taught in the bachelor’s degrees in IT 

engineering and by curating and analyzing the grades and their evolution over several academic 

courses. The knowledge in the cybersecurity field and the experience with other Erasmus+ 

projects ([88], [89]) led to the start of a new Erasmus+ project, REWIRE [90], which is 

currently ongoing. REWIRE aims to build a blueprint for the cybersecurity industry and a 

concrete European Cybersecurity Skills Strategy. Its work focuses on delivering concrete 

recommendations and sustainable solutions that will lead to the reduction of skill gaps between 

industry requirements and sectoral training provision and contribute to the growth, innovation, 

and competitiveness of the cybersecurity sector.  

From this research track, it was extracted that cybersecurity could be seen as one of the 

perspectives (i.e., layers) of the trustworthiness model. Cybersecurity measures (e.g., 

authentication, encryption) can leverage data confidentiality, integrity, availability, authenticity, 

or non-repudiation and thus improve the trustworthiness of a system or service. However, this 

thesis considers that the cybersecurity layer of trustworthiness should only be analyzed when 

the use case entails a concern about cybersecurity. Given that the Antarctic permafrost 

monitoring service is to be deployed in isolated and remote locations, with a highly improbable 

interference of malicious users or third parties, the cybersecurity track was left out of the scope 

of this thesis. 

In 2020, I was granted a predoctoral contract called FI by the European Social Fund and the 

Generalitat de Catalunya. With this contract, I started participating in the SHETLAND-NET 

project, the cornerstone of this thesis. As mentioned before, the project proposed an NVIS-

based IoT network to automatize data collection and exchange for Antarctic research. 

However, given the performance issues of NVIS communications, improvements had to be 

made to offer a reliable service for other research projects. While other colleagues focused on 

improving NVIS PHY and MAC layers’ robustness, my contribution was to propose an 

integrated architecture that could improve the service's trustworthiness with the current NVIS 
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specification, focusing on the use case of a permafrost monitoring service [20], [21], which led 

to the setting of the objectives described in the previous section.  

To accomplish O1, firstly, the related work in trustworthiness was reviewed to build a picture 

of how the trustworthiness term is interpreted and managed from different points of view. 

This review of the related work let build an own vision of what trustworthiness is, trying to 

bind the different perspectives studied in the literature. Starting from this point, a 

trustworthiness model composed of four layers was proposed (O2), each centered on a 

different field of the trustworthiness perspective, with its own metric to enable trustworthiness 

quantification, its countermeasures to improve it, and the interdependencies between the 

layers. 

After defining the model, the first version of a hybrid IoT network architecture that used NVIS 

and LoRa as communication technologies to give service to the permafrost monitoring process 

was proposed. To assess the trustworthiness of this proposed architecture before deploying it 

in the Antarctic campaign (O3), the use case was modeled into the Riverbed Modeler simulator 

to perform several tests. This simulator was chosen due to the personal experience working 

with it from previous research [27], [28]. 

Aiming to improve the trustworthiness of the permafrost monitoring service (O4) until it 

reached the requirements to perform reliably, the processes of proposing an architecture with 

possible improvements, modeling it into the simulator, performing the tests, and evaluating 

the results went through three major iterations. In the first iteration, it was introduced to add 

consensus and social trust management mechanisms to take advantage of sensor redundancy 

when it is available and deployable, given that these mechanisms proved to improve the 

reliability of acquired data in other use cases [46], [50]. Moreover, it was also proposed to use 

an opportunistic network scheme to send all lost data from nighttime (when NVIS links are 

unavailable) as a bulk data transfer when the network becomes available again in the daytime. 

The results and conclusions from this first iteration, along with the related work review on 

trustworthiness, the trustworthiness model definition, and the use case modeling, were 

presented in a journal publication [83]. This paper is the first of this compendium thesis, and I 

was in charge of the article writing, the state-of-the-art review, the trustworthiness model 
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definition, the architecture proposal, the use case modeling, the simulations, the tests 

definition, the data curation, and the analysis of the results. 

In the second iteration of O4, EAATP was proposed to be introduced into the architecture as 

the transport protocol of the NVIS long-distance links, aiming to improve bandwidth usage 

and minimize packet loss in congestion situations (e.g., the bulk data transfer moment). 

EAATP’s performance was compared with other modern transport protocols. A preliminary 

paper was published at a national conference [84], which evolved into an extended journal 

article [85]. It reviews the trustworthiness model, the use case modeling into the simulator, and 

the proposed architecture. It also presents the results and conclusions from this second round 

of tests. This paper is the second of the compendium thesis. In both papers, I was in charge 

of the article writing, the state-of-the-art review, the new architecture proposal, the use case 

modeling, the simulations, the tests definition, the data curation, and the analysis of the results. 

The third and last iteration of proposed improvements consisted in replacing the opportunistic 

networking scheme that could provoke network congestion and packet losses. Instead, a DTN 

architecture would be implemented using BP as the DTN protocol. This solution would help 

us mitigate predicted losses (nighttime unavailability of NVIS) and unpredicted losses (long 

delays and disruptions during daytime due to the ionosphere’s variating properties). The results 

from these tests were published in an international conference paper [86]. In this paper, I was 

in charge of the article writing, the state-of-the-art review, the new architecture proposal, the 

use case modeling, the simulations, the tests definition, the data curation, and the analysis of 

the results, and I supervised the BP implementation in the hardware to be used in Antarctica. 

The architecture resulting from these iterations achieved the reliability requirements for the 

permafrost telemetry service. Thus, the last stage would be the deployment and testing of it in 

a physical testbed with real devices (O5). This testbed or PoC was deployed in Catalonia, 

between two rural areas in Hostalric and Cambrils, distanced by 150 km, and in Antarctica, 

between Uruguay’s Artigas Base in King George Island and Spain’s Juan Carlos I Base in 

Livingston Island, distanced by 93 km. An extended version of [86] was published as a journal 

article [87], showing the results from both the physical testbeds and DTN simulations. This 

paper is the third and last one from this compendium thesis. I was in charge of the article 



Chapter 1: Introduction 

 26 

writing, the state-of-the-art review, the new architecture proposal, the use case modeling, the 

simulations, the tests definition, the data curation, and the analysis of the results. I also 

supervised the BP implementation in the hardware of the Antarctic campaign, and I also 

participated in the deployment of the physical testbed.  

1.6. Outline 

This work is presented in a compendium thesis form1. A compendium thesis presents a 

minimum of three articles already published or accepted in indexed journals, and all articles 

follow a coherent and cohesive research track. This compendium thesis is structured as follows. 

After the introduction (Chapter 1), the three published articles [83], [85], [87] follow and 

correspond to Chapter 2, Chapter 3, and Chapter 4, respectively. Chapter 2 ([83]) describes the 

proposed trustworthiness model in detail and validates it by simulating and evaluating the 

Antarctic use case. Chapter 3 ([85]) assesses the use of different transport protocols for the 

same use case, analyzing their achieved trustworthiness through the model described in 

Chapter 2. Chapter 4 ([87]) continues the trustworthiness analysis by evaluating the use of BP 

and proposes and tests a DTN architecture that joins the Antarctic permafrost telemetry use 

case with this protocol. This chapter also describes the practical tests in the field performed 

during the past Antarctic campaign. Chapter 5 summarizes the results obtained in each article 

and discusses them. Finally, Chapter 6 concludes this document and presents future work. A 

copy of the articles as published is available in the Appendix. 

  

 
1 According to the general rules for the organization of the doctorate studies at the Universitat Ramon Llull (URL), approved 

by the Governing Board of the URL on July 19th, 2018, and modified at the Governing Board meeting of June 17th, 2021, 

and at the meeting of November 17th, 2022. (https://www.url.edu/sites/default/files/content/file/2022/11/22/68/vri-

normes-generals-organitzacio-doctorat-url-2022.pdf) 

https://www.url.edu/sites/default/files/content/file/2022/11/22/68/vri-normes-generals-organitzacio-doctorat-url-2022.pdf
https://www.url.edu/sites/default/files/content/file/2022/11/22/68/vri-normes-generals-organitzacio-doctorat-url-2022.pdf
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C h a p t e r  2  

A HETEROGENEOUS LAYER-BASED TRUSTWORTHINESS MODEL FOR 
LONG BACKHAUL NVIS CHALLENGE NETWORKS AND AN IOT 

TELEMETRY SERVICE FOR ANTARCTICA 

Antarctica is a key location for many research fields. The lack of telecommunication systems 

that interconnect remote base camps hardens the possibility of building synergies among 

different polar research studies. This paper defines a network architecture to deploy a group 

of interconnected remote Antarctic wireless sensor networks providing an IoT telemetry 

service. Long backhaul NVIS links were used to interconnect remote networks. This 

architecture presents some properties from challenging networks that require evaluating the 

viability of the solution. A heterogeneous layer- based model to measure and improve the 

trustworthiness of the service was defined and presented. The model was validated and the 

trustworthiness of the system was measured using the Riverbed Model simulator.2 

Keywords: Trustworthiness; Model; Telemetry; IoT; NVIS; Challenge Network; Antarctica. 

2.1. Introduction 

During the last half-century, Antarctica has been a key location for many research studies in 

several fields, such as oceanography, bioscience, geoscience, physical sciences, and other 

environmental studies [9]. Although many bases have been settled down in the peripheral areas 

of the Antarctic continent [91], the environmental and terrain difficulties provoke numerous 

challenges when it comes to implementing new operational services for modern studies. One 

of these challenges is the lack of telecommunication systems in Antarctica [10], especially 

wireless sensor networks (WSNs). Without WSNs, new research studies tend to use non-

automatized ways of gathering data, which are more complex logistically, less scalable, and 

more error-prone. Moreover, most Antarctic bases are not interconnected between them. This 

 
2 The work reported in this chapter was published as the paper entitled “A Heterogeneous Layer-based Trustworthiness Model 

for Long Backhaul NVIS Challenge Networks and an IoT Telemetry Service for Antarctica” in the Sensors journal, 2021, 

21(10), 3446, https://doi.org/10.3390/s21103446 Authors: Adrià Mallorquí, Agustín Zaballos. 

https://doi.org/10.3390/s21103446
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fact lowers the possibilities for different research groups to collaborate in similar studies, and 

the advantages of providing synoptic region-wide observations and building synergies are lost 

[10]. 

The lack of conventional telecommunication services in Antarctica leverages the use of Satellite 

communications or other systems such as High Frequency (HF) links to build a network of 

interconnected remote WSNs. The first option is commonly discarded because of budget 

reasons, given the high costs of subscribing to this service type. Furthermore, the degree of 

coverage offered by satellite constellations in Antarctic latitudes is not the desirable [15]. To 

overcome these difficulties, the SHETLAND-NET [14] project aims to expand the use of 

communications in HF (3-30 MHz) by ionospheric reflection to the establishment of a low 

consumption communications system that allows the collection of sensor data distributed 

throughout the archipelago of the South Shetland Islands. This system, called Near Vertical 

Incidence Skywave (NVIS), does not require direct vision and is totally independent of the 

satellite since the signal is transmitted upwards and allows to overcome any geographical 

feature [11], [15], [16]. The long backhaul NVIS link has a coverage range of up to 250 km, 

and its reliability is very dependant on the ionospheric conditions and solar activity. Researchers 

from our University have previously participated in research campaigns in Livingston Island, 

studying and verifying the NVIS communication system's viability. A new campaign is planned 

to be carried out between December 2021 and March 2022, with the goal to test the new 

improvements of the NVIS link [18] and deploy an IoT network for three different use cases: 

a telemetry service for light data (e.g., penguin tracking [92]), a telemetry service for fat data 

(e.g., lichen observation [93]), and a distributed computing service to map the ionosphere along 

Antarctica. 

However, a network deployed with long backhaul NVIS links may present some situations 

typical from challenge networks [94], such as intermittent connectivity, end-to-end 

disconnection, and variable error rates, difficulting the implementation of the aforementioned 

services. For this reason, it is necessary to study the viability and the expected trustworthiness 

of implementing this kind of network before its deployment in the field. 
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This paper focuses on the use case of the telemetry service for light data. Many Antarctic 

studies could be helped by automating the data gathering of their research (e.g., geomagnetic 

studies [95], blowing snow monitoring [96], climate change [97], biological monitoring [92], or 

permafrost analysis [20], among others). Most of the data for these studies are currently 

gathered manually, and some zones might be challenging to reach, even with special vehicles 

such as snow motorbikes. For these reasons, the studies are focused on small areas of the 

Antarctic region. Thus, a WSN that provided a broader coverage area and the interconnection 

of remote areas could increase the results' relevance. Moreover, the long backhaul links in 

charge of communicating remote WSNs could also be used to interconnect different Antarctic 

bases [15]. 

The paper has two main objectives. First, it is necessary to define which architecture, 

technologies, and protocols the telemetry service will use. As mentioned before, the drawbacks 

of challenge networks added to the extreme conditions sensors and other equipment need to 

work within that environment can provoke the service to reach low levels of performance and 

trustworthiness in front of adversities. Thus, the paper's second objective is to propose and 

validate a model for visualizing, understanding, and measuring the trustworthiness of the 

overall service. With this model, the service's weaknesses could be detected, and 

countermeasures could be proposed to improve its trustworthiness. We will use the Riverbed 

Modeler simulator [31] to validate the model and measure the service trustworthiness. To 

concrete the results, the tests will be performed by modeling the permafrost use case of [20], 

where Ground Terrestrial Network-Permafrost (GTN-P) stations are used to measure 32 

different parameters. These tests can be replicated to other concrete telemetry use cases by 

modeling them too.  

The rest of the paper is organized as follows. In sections 2.2 and 2.3, the background and 

related work are described, respectively. Section 2.4 defines the use case’s service architecture. 

Section 2.5 presents the trustworthiness model. In section 2.6, the performed simulations are 

described, and the extracted results are analyzed in section 2.7. Finally, the conclusions of the 

paper and future work are detailed in section 2.8. 
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2.2. Background work 

This section presents mature IoT and WSN technologies that can help to define the network 

architecture of our telemetry use case for remote regions. In terms of network architecture for 

WSNs, it is necessary to differentiate between the access network and the core network. On 

the one hand, the access network provides connectivity to the IoT sensors in a variable 

coverage range, depending on the technology. On the other hand, the backbone is in charge 

of interconnecting the access networks to build a global WSN. The backbone network can use 

long backhaul links to reach remote areas and broader coverage than access network 

technologies. 

2.2.1. IoT access network 

The access network technologies for WSNs are commonly known as the IoT communication 

protocols [98] or IoT MAC layer protocols [99]. These protocols are commonly classified, 

depending on the size of the coverage area, as short-range coverage protocols and long-range 

protocols. Networks built on the latter kind of protocols are commonly known as Low-Power 

Wide Area Networks (LPWANs)[98], [99]. 

For short-range networks, the most common technologies are RFID, NFC, Bluetooth Low 

Energy (BLE), Zigbee, 6LoWPAN, and Z-Wave [98]. For LPWANs, the most used 

communication protoocols are Narrow-Band IoT (NB-IoT), Long Term Evolution enhanced 

Machine-Type Communication (LTE eMTC), Sigfox, and LoRa. In the specific case of 

Antarctica, short-range communications are rarely used to deploy WSN applications. One 

example is the SNOWWEB project [12], where a network of weather stations was build using 

Zigbee transceivers. LPWANs seem to be more suitable options since the coverage area for 

deploying the WSN is more extended. For that reason, authors in [13] studied the applicability 

of Lora in Antarctic regions by characterizing its channel in the field, achieving a coverage area 

of up to 30 km radius. Despite that, it seems feasible that some sensors of the WSN can be 

located out of range of the gateway due to geographic conditions. In this case, there is the need 

to use mobile gateways and deploy Mobile Ad-hoc Networks (MANETs) [15]. To deploy this 

kind of opportunistic mobile network, the concept of Internet of Flying Things (IoFT) [100] 
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with the utilization of devices such as Unmanned Aerial Vehicles (UAVs) has gained attention 

lately [101], building a Flying Ad-hoc Network (FANET) [102]. 

2.2.2. IoT backbone network 

On the other hand, the backbone network is in charge of interconnecting remote WSNs to 

build a single major network. For this purpose, LPWAN communications are not valid because 

the links that need to be established must have a broader range (several tenths of kilometers). 

Moreover, since the Antarctic region has many terrain variations, it is expected that two nodes 

separated by several kilometers do not have Line of Sight (LoS) [11]. Satellite communications 

are a solution to overcome these problems. However, Geostationary Earth Orbit (GEO) 

satellites do not cover Antarctica’s latitudes adequately, and current Low-altitude Earth Orbit 

(LEO) satellites provide partial or no coverage in deep polar regions [103]. Authors in [103] 

studied the possibility to cover the whole Antarctic continent with a three-satellite constellation 

in elliptical orbits, but it has not been implemented. A significantly lower cost solution suitable 

for WSNs in remote areas is the use of High Frequency (HF) communications. Specifically, 

the Near Vertical Incidence Skywave (NVIS) technique has already been tested in Antarctica 

[11], [15], [16]. Results show that this kind of long backhaul link can reach a throughput of up 

to 4.6 Kbps and a coverage radius of up to 250 km without the need for Line of Sight (LoS). 

The applicability of NVIS has also been analyzed for natural disasters and emergency situations 

when common telecommunication infrastructure turns inoperative [17]. The main drawback 

of NVIS is the considerable variation of the transmitting channel’s characteristics, the 

ionosphere, which can lead to some periods of no connectivity, becoming a challenge network 

[94]. Thus, it is necessary to test and measure NVIS networks' trustworthiness when used to 

transport data from actual use cases. 

2.3. Related work 

This section describes the related work from other authors to define and measure the 

trustworthiness of Cyber Physical Systems (CPS). A CPS is defined as a system with integrated 

computational and physical capabilities. Common examples of CPSs include industrial control 

systems, computerized vehicle and aircraft controls, wireless sensor networks, smart grids, and 

almost all devices typically encompassed by the Internet of Things [30], [104]. The 
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trustworthiness of CPS is defined in the literature, in general terms, as the property of behaving 

as expected under adversarial conditions [32]. However, these adversarial conditions can come 

from different reasons, e.g., faulty nodes, byzantine errors, malicious behaviors, and network 

malfunction, among others [33]. For this reason, in the literature, there can be found many 

different approaches to measure or provide trustworthiness that refer to disparate elements. 

We propose to classify them into the following four categories: 

1. Data Trustworthiness: it is defined as the possibility to ascertain the correctness of the 

data provided by the source [34]. Many methods try to detect faulty nodes, false alarms, 

and sensor misreadings using different approaches [33]. For instance, authors in [35] 

present a distributed Bayesian algorithm to detect faulty nodes, while authors in [36] 

use a fog computing architecture to detect, filter, and correct abnormal sensed data. 

Also, authors in [37] present a Data Intrusion Detection System to trigger false data 

from malicious attacks. 

2. Network trustworthiness: it can be defined as the probability for a packet to reach its 

destination unaltered despite the adversities (e.g., link failure, link saturation, or 

malicious attacks, among others) [38], and it is a crucial factor of Low-Power and Lossy 

Networks (LLNs). Improving the network trustworthiness and performance is a 

challenge that has been addressed from different perspectives, such as load balancing 

and redundancy protocols [39], transport protocols [40], dynamic routing and topology 

control protocols [41], [42], cybersecurity mechanisms [43], and Delay Tolerant 

Network (DTN) architectures and protocols [25]. In the case of routing, both proactive 

routing protocols (e.g., IPv6 Routing Protocol for Low Power and Lossy Networks 

(RPL) and Optimized Link State Routing (OLSR)) and reactive routing protocols (e.g., 

Ad-hoc On-Demand Distance Vector (AODV) and Link-Quality Source Routing 

(LQSR)) have been proposed in the literature to solve the drawbacks of LLNs and 

MANETs. For DTN architectures, the Bundle Protocol (BP) specification is used as a 

store-carry-forward overlay mechanism where bundles are stored locally at each node 

and forwarded when the network link is available. Some implementations of the BP 

are DTN2, IBR-DTN, and DTN7 [25]. 
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3. Social Trustworthiness: this trend has gained more attention since the irruption of the 

Social Internet of Things (SIoT) concept [44]. In SIoT trustworthiness, the capability 

of the objects to establish social relationships autonomously between them is leveraged 

to define more complex trust and reputation models that take into account several 

input parameters. Authors in [45] define a subjective model that considers factors as 

the computational capabilities of the nodes, the type of relationship between them, the 

total number of transactions, the credibility of a node, and the feedback provided by 

other nodes, among others. In [46], they evolved their previous model and based it on 

more parameters, such as the neighborhood of nodes, and presented a new objective 

model with a faster transitory response. Authors in [47] propose another model that 

defines the input parameters as the expected gain on success, the expected damage on 

a failure, the expected cost, the expected result, and the goal. Authors in [48] define a 

decentralized self-enforcing trust management system based on a feedback system and 

reputational secure multiparty calculations to ensure the privacy of each party's 

provided data. 

4. Consensus: it represents a state where all participants of the same distributed system 

agree on the same data values [49]. Consensus protocols can be divided into two 

general blocks: Proof-based consensus and byzantine-consensus. The first group is 

oriented to blockchain technology, where all participants compete with each other to 

mine a block, and the most used protocols are Proof-of-Work, Proof-of-Stake, and its 

variants [50], [105]. The main drawback of these protocols for IoT is that most devices 

have simple hardware specifications and low processing power, being incapable of 

performing the mining tasks of blockchain [51]. The second major group of consensus 

protocols is the more classical byzantine-based. These kinds of protocols implement 

voting-based mechanisms to reach an agreement rather than competing among them, 

which generally results in less resource consumption. The drawback of these 

mechanisms is the number of messages that need to be delivered through the network 

to reach an agreement. The most well-known protocols in this category are Practical 

Byzantine Fault Tolerance, RAFT, PaXoS, and Ripple, although several variants have 

emerged year-by-year [50]. 
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2.4. Network and service architecture 

Prior to applying the model of trustworthiness, the first goal is to define the architecture of the 

telemetry use case. As mentioned before, the concrete case is the improvement of permafrost 

studies by automating the data gathering from the GTN-P stations (the sensors), which 

measure 32 different parameters. Currently, data is gathered only once a day, and authors from 

[20] leave the complete automation of the GTN-P stations as an open challenge, given that 

their approach suffers from a lack of connectivity. It is important to remark that the 

architecture described below applies to any telemetry use case. However, we will use the 

example of the GTN-P stations' permafrost research for better understanding. 

We propose to use the architecture defined for the SHETLAND-NET project [14]. In our 

approach, we aim to interconnect all remote sensors to a control center, building a Global 

Wireless Sensor Network (GWSN) composed of several Wide Wireless Sensor Networks 

(WWSN), able to gather data more frequently. The first approach to designing a remote sensing 

system for the Antarctic region was described in [4] during the SHETLAND-NET project's 

early stages, describing how sensors could reach and use NVIS as a long backhaul link. 

However, it was mostly centered on designing the characteristics of the OSI model Layer 1 of 

the NVIS (backbone) network. In this paper, a more detailed description of the overall network 

architecture is presented. The network diagram is detailed in Figure 8.  

The access network (WWSN) will be in charge of providing connectivity to the remote sensors, 

transporting the gathered data from the sensors (GTN-P stations connected to a low-

consumption board) to the gateways (e.g., a Raspberry Pi). The main gateway of each WWSN 

will be located near the research base, with the GTN-P stations located around it in a few-

kilometer radius. For redundancy reasons, groups of GTN-P stations can be clustered and 

placed close enough to interpret that they measure the same permafrost values. These stations 

will sense the data and send it to the gateway once per hour. For this use case in Antarctica, it 

is logical to think that the wider the area can be covered by the access communication 

technology the better, because more sensors will be able to be placed far from the research 

base so researchers will have access to sensors placed farther away while saving valuable time 

in collecting the data. For this reason, short-range communications are less suitable, and 
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LPWAN communications are preferred. The lack of telecommunication operators providing 

service in Antarctica forces operator-dependent communication services such as Sigfox, NB-

IoT, or LTE eMTC to be discarded. This leads LoRa as the main candidate to deploy the access 

network. LoRa transceivers will be placed in each GTN-P station, responsible for sending the 

measured data to the LoRa gateway. As explained in [15], this gateway has been implemented 

with a Raspberry Pi 3B+ in previous Antarctic campaigns of the SHETLAND-NET project, 

and it is responsible for storing the gathered data from all the sensors it is giving service to, 

ready to send all these data through the backbone network. 

NVIS Radio Link

Raspberry Pi 
Gateway with 
NVIS Antenna

LoRa Coverage 
Area

GTN-P Station with 
LoRa Transceiver

Control Center

 

Figure 8. Network diagram of the SHETLAND-NET project telemetry service. 

The backbone network will be composed of all NVIS nodes, which will interconnect remote 

WWSNs through the long backhaul links to form the GWSN. Each NVIS node mainly 

consists of a Red Pitaya, a Raspberry Pi 3B+, and an HF antenna [11]. The link that can be 

established between two NVIS nodes has a range of up to 250 km. In order to interconnect all 
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the WWSNs and reach all remote areas, a multi-hop network will need to be deployed. Thus, 

some of the NVIS nodes will have to act as repeaters. At least one NVIS node will need to be 

connected to the control center, achieving to send all the data to it. To avoid a Single Point of 

Failure (SPF), having more than one NVIS node connected to the control center is 

recommended. The possibility of having multiple paths to reach one destination demands the 

need for a routing protocol able to find the best possible loop-free path in the network [17]. 

The operation of the backbone network can be summarized as follows. Each NVIS node will 

act as a concentrator, gathering the data from every GTN-P station inside their LoRa coverage 

area. Once all possible data is collected, the NVIS node will forward it to the node connected 

to the control center, following the path determined by the routing protocol through the 

backbone network.  

However, we can find three main issues that can provoke this architecture to become a 

challenge network:  

1. Due to Antarctica's extreme weather and environmental conditions, both sensors and 

gateways could experience temporary or persistent malfunctioning. 

2. The irregular elevations of the Antarctic terrain might provoke that sensors do not have a 

Line of Sight path through the gateway [13]. This fact degrades the performance of LoRa 

communications considerably. 

3. Depending on the ionosphere’s state and the solar activity, NVIS links may become 

unavailable temporally or intermittently. 

For this reason, our primary goal is to establish a model to measure the trustworthiness of a 

CPS, with which the performance of the proposed architecture can be evaluated, and its 

weaknesses can be detected and improved. 

2.5. Trustworthiness model definition 

Our proposal to measure the trustworthiness and evaluate a CPS's performance (in our case, a 

group of interconnected remote Antarctic Wireless Sensor Networks providing an IoT 
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telemetry service) is a layer-based model. This model is characterized by two base layers (Data 

Trustworthiness Layer and Network Trustworthiness Layer), two extension layers (Social 

Trustworthiness Layer and Consensus Layer), and the interaction between all of them. The 

Data Trustworthiness, Network Trustworthiness, Social Trustworthiness, and Consensus 

Layers can collectively define a system's trustworthiness. A graphic representation of the 

layered model is shown in Figure 9.  
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Figure 9. Trustworthiness model layers. 

We postulate that each layer is characterized by its definition (scope), how the trustworthiness 

of that layer is measured (metric), and how the value of this metric can be improved 

(correction). 

2.5.1. Trustworthiness layers’ definitions 

We propose the following definitions for each layer: 

1. Data Trustworthiness Layer: is the layer responsible for ascertaining the correctness of 

the data provided by the source. 
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2. Network Trustworthiness Layer: is the layer responsible for assuring that a packet 

reaches its destination on time and unaltered despite the adversities (e.g., link failure, 

link saturation, or malicious attacks, among others). 

3. Social Trustworthiness Layer: is the layer responsible for leveraging the capability of 

the objects to establish social relationships autonomously between them to improve 

the trust between them and the correctness of gathered data. 

4. Consensus Layer: is the layer responsible for reaching a state where all participants of 

a group agree on the same response or result. 

On the one hand, Data and Network Trustworthiness are the base layers of our model because 

the system that we want to measure is meaningless if we do not have some data to be exchanged 

between nodes through a network. On the other hand, Social Trustworthiness and Consensus 

are the extension layers because they include functionalities that are not needed in the service 

architecture but are optional to implement. 

2.5.2. Trustworthiness layers’ definitions 

Managing the trustworthiness of a system is possible when the different layers are separately 

understood. This way, objectives and metrics can be defined to measure the level of 

trustworthiness. In order to measure the four layers of trustworthiness, we have defined a 

quantitative metric for each layer. Once metrics are defined, a trustworthiness target can be 

determined, which is a quantitative objective given to a trustworthiness metric. If a 

trustworthiness characteristic does not meet its target, a change factor is needed to revert the 

situation. The combination of all change factors defined to meet the trustworthiness targets is 

called the trustworthiness implementation. 

We propose that the trustworthiness model will use the normalized metrics defined in Table 

III to quantify and measure trustworthiness. 
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TABLE III 

TRUSTWORTHINESS METRICS 

 
Layer Metric Range 

Data Faulty Sensing Ratio [0-1] 

Network Packet Delivery Ratio [0-1] 

Social Successful Transaction Rate [0-1] 

Consensus Byzantine Node Tolerance [0-1] 

Faulty Sensing Ratio (FSR) is defined as the proportion of false sensed values (FSV) by all 

nodes and total sensed values (TSV) in a defined time period, as stated in Eq. 1.  

 𝐹𝑆𝑅 =
𝐹𝑆𝑉

𝑇𝑆𝑉
  (1) 

We consider that a sensed value is every independent and semantically significant measured 

data that a sensor stores in its memory (e.g., RAM, Flash, hard-drive, among others). Suppose 

no corrective methods are used in the system. In that case, sensed data (e.g., temperature, 

humidity, position, ice content) is considered to be faultily sensed if the value stored in the 

sensing (source) node’s memory is different from the value that the sensor should have 

correctly read (within a tolerance percentage). In real implementations, the number of FSV can 

only be measured if the sensed data's value is known a priori (ground truth) [106]. Otherwise, 

only in simulations it is possible to quantify the number of FSV. FSV and TSV are parameters 

that must be gathered within the same time slot to calculate the ratio correctly. The lower the 

FSR is, the better the data trustworthiness. 

Packet Delivery Ratio (PDR) is calculated as the quotient between the total number of packets 

received (Pr) by all nodes and the total number of packets sent (Ps) by all nodes in the same 

time slot, as stated in Eq. 2. A packet is considered received if and only if the reception time 

(Trx) is less or equal to the transmission time (Ttx) plus a defined threshold offset η (Trx ≤ Ttx + 

η), and the packet content is not altered. The higher the PDR is, the better the network 

trustworthiness. In our proposal, retransmitted packets and original packets are counted 

separately to compute the metric value. 

 𝑃𝐷𝑅 =
𝑃𝑟

𝑃𝑠
  (2) 
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The Successful Transaction Rate (STR) is the proportion between the number of Successful 

Transactions (ST) and the total number of transactions (TT) in a defined time slot, as stated in 

Eq. 3. We define a transaction l as a sensed value v that a node j expects to receive from a node 

or group of nodes i. Retransmitted or duplicated packets for the same value v are considered 

part of a single transaction l. A transaction l is considered successful when a node j expects to 

get some information or data (v) from node i before a defined maximum reception time (Trxmax) 

and receives it as expected, thus providing good feedback (fij
l = 1) for that transaction to node 

i. ST and TT are parameters that must be gathered within the same time slot to calculate the 

ratio correctly. The higher the STR is, the better the social trustworthiness. 

 𝑆𝑇𝑅 =
𝑆𝑇

𝑇𝑇
  (3) 

The Byzantine Node Tolerance (BNT) is defined as the proportion of supported byzantine 

nodes (Nb) that can participate in the consensus system without affecting the correctness of 

the general agreement and the total number of nodes (Nt) that participate in the consensus 

system, as stated in Eq. 4. A node is considered to be byzantine if it experiences a crash or soft 

fault that incapacitates it to behave as expected, or if it does not behave as expected on purpose 

(malicious node). The higher the BNT is, the higher are the probabilities to reach a correct 

General Agreement. Although theoretically, the BNT value range is between 0 and 1, in 

practice, it is not possible to reach a correct consensus with a BNT >= 0.5. 

 𝐵𝑁𝑇 =
𝑁𝑏

𝑁𝑡
  (4) 

2.5.3. Trustworthiness improvement 

Now that we have defined the four trustworthiness layers and its associated metrics, we can 

give some examples of techniques and protocols that can be used at each layer to improve the 

metrics’ values.  

At the Data Trustworthiness Layer, corrective methods can be applied which try to detect 

abnormal data (False Sensed Values) stored in the source node due to a sensor malfunctioning, 

a misreading of the sensed data, or erratic writing to the node’s memory. Corrective methods 

can be used to detect and correct these abnormal values by comparing them to the values 
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sensed by the same node previously and other mechanisms such as hashes, checksums, and 

parity bits, among others. If these corrections are performed at the post-processing stage by 

the receiving server or gateway, the nodes' malicious data manipulation can also be detected. 

However, our model assumes that corrections are only made by the own node (source node). 

Otherwise, errors that originated during the data transport through the network, which are out 

of our scope definition of the Data Trustworthiness Layer, could be misinterpreted as source 

node errors. The drawback of this assumption is that only non-malicious errors are likely to be 

corrected at this layer because malicious nodes might not correct data on purpose. Our model 

specifies that other layers of the model are responsible for mitigating malicious behaviors (e.g., 

the Network Trustworthiness Layer). 

The method presented in [36] is a suitable example of a corrective method for data 

trustworthiness. This value-level corrective method defines thresholds to detect potential 

abnormal data (e.g., a lower-value limit tlow, an upper-value limit tup, and an abrupt change 

threshold tch). When a potential abnormal value is detected, it is compared with the values 

sensed from the node’s neighbors, computing the group value similarity (G). Since this breaks 

our model's assumption, this value similarity could be computed with the historical values from 

the own sensor. If the similarity is lower than a threshold tsim then the abnormal data is 

confirmed and corrected (e.g., interpolation with previous and posterior correct values sensed 

by the own node). This method might experience false positives (by detecting a correct value 

as abnormal and modifying it), and false negatives (by not detecting an abnormal value), which 

can be grouped into Faulty Sensed Values (FSV). If the thresholds are too strict, the number 

of false positives will increase, while the number of false negatives increases if the thresholds 

are too lax. The lesser the number of FSV, the better the data trustworthiness, so an optimal 

trade-off value for the thresholds must be found to minimize the overall number of FSV. This 

number is easy to gather in simulation scenarios, but in real implementations, it is only possible 

if the values are well-known a priori (ground truth values). 

At the Network Trustworthiness Layer, routing protocols and QoS mechanisms are used to 

find the best path from a source to a destination by quantifying the quality or performance of 

each link in the network. For each destination, more than one path can be determined as 
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feasible, thus providing load balancing. Many metrics exist to calculate the best path, such as 

the number of hops, the bandwidth of the link, the delay, and the expected number of 

retransmissions, among others. These routing protocols can be classified under different 

categories, such as proactive/reactive, link-state/distance-vector, or monometric/multimetric 

[42]. Selecting the best path for a traffic flow will eventually improve network statistics, such 

as throughput, delay, jitter, or Packet Delivery Ratio (PDR). In the case of challenge networks, 

DTN overlay architectures and protocols, such as the Bundle Protocol [107], is also a solution 

that can be used to improve the network trustworthiness. 

Another relevant element to take into account in this layer is the data security through the 

network. While traveling from the source to the destination, data should remain private, 

available, and unaltered, preventing it from cyberattacks. For this purpose, network elements 

such as Next-Generation Firewalls or Intrusion Detection Systems and security mechanisms 

such as data encryption, authentication, anti-spoofing techniques, and network filters are used 

in the network. 

At the Social Trustworthiness Layer, most solutions tend to use reputational mechanisms to 

determine which nodes to trust when exchanging information. This reputation is commonly 

based on previous transactions' feedback to build an opinion for the node’s trustworthiness 

[108]. More complex and robust mechanisms also incorporate parameters such as the indirect 

opinion of other nodes, the relevance (weight) of each transaction, the node’s centrality, the 

node's computational capacity, and the type of relationships between the nodes [45].  

The model of [46] provides two different ways for computing the reputation of a node. On 

the one hand, a subjective model of social trustworthiness is presented to compute the 

reputation of node i under the perspective of every other node (Rij), being these reputations 

different from each other because the experience of interaction with node i for two different 

nodes can be different. Moreover, reputations are asymmetric, meaning that the reputation that 

node j calculates from node i can be different from the reputation that node i calculates for 

node j (Rij ≠ Rji). Thus, the system's overall trustworthiness can be represented as an NxN 

matrix for the reputation that each node calculates for all the other nodes, where N is the total 

number of nodes. On the other hand, objective models calculate one single reputation for each 
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node (Ri), representing the trustworthiness that the system as a whole perceives from node i. 

This reputation takes into account the opinion and the feedback from all the other nodes. 

Thus, the system’s overall trustworthiness is represented as an N-size vector with the 

reputation that the whole network perceives for each node. 

Both the subjective and objective approaches aim to leverage the transactions between trustful 

nodes and isolate those with bad reputations, which are considered more faulty or malicious 

prone. Thus, their goal is to maximize the number of Successful Transactions (ST).  

At the Consensus Layer, several mechanisms can be used to reach a decentralized General 

Agreement (GA) that all nodes of the group consider to be true. Theoretically, if the number 

of byzantine nodes is more than 50% of the total number of participating nodes, every 

consensus mechanism will fail to reach a benevolent agreement. Consensus mechanisms aim 

to reach the GA while tolerating a percentage of byzantine nodes. Consensus protocols are 

generally classified into competing mechanisms (proof-based) and voting-based mechanisms. 

The latter are more suitable for IoT devices because they consume fewer resources from the 

node. These protocols commonly consist of various voting phases to reach the GA, and their 

goal is to maximize the number of tolerated Byzantine Nodes (BN). A drawback of these 

mechanisms is that they need participating nodes to exchange a large number of messages 

between them to reach a consensus, which can be a problem in low-bandwidth networks, 

consuming most of this bandwidth. Some protocols look for a trade-off between the number 

of tolerated BNs, throughput, and scalability. 

2.5.4. Trustworthiness layer’s dependencies 

Trustworthiness layers’ dependencies must also be understood. For instance, how will the data 

trustworthiness affect the consensus? Can a robust consensus protocol lower the 

trustworthiness of the network because it is causing bottleneck congestion? The trade-offs 

between these layers need to be carefully analyzed in order to obtain the optimal overall 

trustworthiness level. Our model dependencies proposal is exhibited in Figure 10. 
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Figure 10. Dependency diagram between trustworthiness layers. 

The Consensus Layer is affected by the other three layers. If FSV (Data Layer) is closer to 0, it 

means that nodes tend to measure the sensed values correctly, so they will be more prone to 

reach a correct general agreement. From the Social Layer, it is possible to ostracize those nodes 

with a lower reputation (which should be the ones with more false sensed values) if the 

application can afford to lose the data from them. In this case, if nodes with the worst 

reputation were omitted, it should be more probable to reach a correct general agreement for 

the rest of the nodes. Finally, suppose the PDR (network trustworthiness) is closer to 1. In that 

case, it means that the whole network delivers most packets unaltered and on time, so fewer 

nodes will be considered byzantine due to network issues, and reaching correct general 

agreements will be more feasible. It is important to notice that all these dependencies do not 
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affect the Consensus Layer metric, the Byzantine Node Tolerance, which depends only on the 

consensus algorithm used and the total number of nodes participating in the consensus group. 

We propose that the Social Layer can also be affected by the other layers. On the one hand, 

FSV and STR are inversely related. If the FSV is close to 0, a transaction coming from that 

node is less probable to have a false sensed value, meaning that it will become a Successful 

Transaction if the network delivers it properly to the destination. Also, the source node will 

obtain good feedback from the receiving node, increasing its reputation. On the other hand, 

PDR and STR are directly related. As the PDR decreases, it is more feasible that packets 

targeted to a node are lost in the network, decreasing the STR. Thus, the receiver would 

evaluate the transaction as a failure, providing bad feedback and decreasing the sender’s 

reputation. Finally, if the Consensus Layer is implemented, the negative effect of some false 

sensed values from byzantine nodes and lost packets can be masked thanks to the consensus 

algorithm. Nodes could still reach a correct general agreement, marking that transaction as 

successful and increasing the STR. 

The network layer can be affected by the Social and Consensus Layers in terms of congestion 

[56,57]. Depending on the application, if nodes with lowest reputation are ostracized, the 

system might tend to concentrate the majority of traffic to the network links that lead to the 

highest reputation nodes. Thus, these nodes' paths will be more congested and prone to packet 

drops, lowering the PDR. Similarly, as mentioned before, the use of a consensus mechanism 

introduces a considerable amount of network traffic. Also, the number of messages exchanged 

between a group of nodes is directly proportional to the number of nodes in the group. Thus, 

if the network bandwidth is not enough to support this extra traffic, the network is more prone 

to be congested and drop packets, decreasing the PDR. 

Finally, it is intuitive to think that the Data Layer should not be affected by the other layers. 

The variability of the FSV should depend on the error probability of the sensors and the node 

itself (equipment quality, battery degradation), which could also be affected by external factors 

(i.e.., environmental characteristics). However, we propose the Data Layer can be affected by 

the Social Layer. Suppose the Social Layer is implemented and is being used to ostracize the 

lowest reputation nodes. In that case, we consider that sensed values from omitted nodes must 
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not be counted for the FSR computation. Thus, if the lowest reputation nodes were the ones 

with more false sensed values, the overall FSR should increase. 

It is important to see that Data and Network Layers (the base layers, which are always present) 

are entirely independent, given that the correctness of data is always measured on the source 

node, never on the destination. This way, data loss or alteration caused by the network does 

not affect the data correctness measure. 

Notice that Social and Consensus Layers (the extension layers, which are optional) are the ones 

affected by the rest of the layers. However, the way they are affected is different. On the one 

hand, the dependencies from other layers to the Social Layer directly affect the value of its 

trustworthiness metric, the STR. On the other hand, the Consensus Layer metric, the BNT, is 

not affected by other layers, but these dependencies can improve the probability of reaching a 

correct general agreement, which in final terms improves the Social Layer metric, the STR.  

In that sense, we consider that the system's overall trustworthiness can be measured with the 

STR metric, which is the one affected by the four layers of our model, and intrinsically 

incorporates the effects of the other three metric values (FSR, PDR, and BNT). Moreover, 

notice that without implementing the extension layers, the STR can still be computed, which 

will combine the effects of the base layers (Data and Network Trustworthiness). 

Although the dependencies between the layers and metrics of our model have been identified, 

it is still challenging to quantify the effect of looped dependencies on the system's 

trustworthiness. We identify two actions that can provoke a looped dependency. First, if Social 

Trustworthiness Layer is used to ostracize the lowest reputation nodes, their sensed values will 

be omitted, decreasing the FSR and eventually increasing the STR. However, suppose more 

traffic than supported by the network is concentrated on the links that lead to most reputation 

nodes. In that case, it is possible to create network congestion that will decrease the PDR and 

eventually decrease the STR. Second, implementing a consensus mechanism might help 

tolerate byzantine nodes and faulty network links, which eventually increases the STR. 

Nonetheless, suppose the network bandwidth is not large enough to allocate the extra traffic 
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introduced by the consensus mechanism. In that case, the network may suffer from congestion, 

decreasing its PDR and eventually decreasing the STR. 

To quantify the effects and trade-off points between these dependencies, it is essential to test 

the model's applicability with a use case and measure the trustworthiness metrics under 

different circumstances and several times. Given the complexity and cost of performing such 

an amount of tests in the field, we opted to use simulation tests, which provides more flexibility. 

2.6. Simulation tests 

To validate the trustworthiness model, it is necessary to measure the metrics values for the use 

case scenario several times under different circumstances. For this purpose, the use case 

scenario has been represented and evaluated in the Riverbed Modeler Simulator [31]. As a 

reminder, our use case scenario is a group of interconnected remote Antarctic Wireless Sensor 

Networks providing an IoT telemetry service. Concretely, the telemetry service will be used to 

automatize the data gathering of GTN-P stations to study the permafrost of the Antarctic 

region. The remote sensors of WSNs will be connected to a concentrator gateway through 

LoRa (access network), and these gateways will be interconnected between them and a control 

center through long backhaul NVIS links (backbone network). The extreme conditions GTN-

P stations need to work with, added to the challenges of NVIS links and a LoRa network 

without LoS, might degrade the overall system's trustworthiness. In order to measure and 

evaluate it, our proposed trustworthiness model will be applied in this use case. 

The first step is the modeling of the network, the nodes, and the application. Once the model 

is designed and implemented in the simulator, the set of tests and the simulation parameters 

must be defined. After that, the simulations are run, and results are collected and evaluated. 

2.6.1. Network models 

For the use case scenario, the backbone network (NVIS) and the access network (LoRa) have 

been modeled separately. On the one hand, the NVIS channel has been modeled following the 

characteristics described in [11]. The transmission frequency is 4.3 MHz with a channel 

bandwidth of 2.3 kHz and a bitrate of 4.6 kbps. The range of the HF link is up to 250 km. 

Moreover, given that the ionosphere characteristics vary considerably during one day, we have 
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also modeled the probability of a packet being correctly delivered through an NVIS link hour 

by hour, following the results in [18]. These results show that the NVIS links are unlikely to be 

available from 17:00h until 6:00h, while the channel availability from 6:00h to 17:00h varies 

from 70% to 100% when both the ordinary and extraordinary waves received are combined, 

as shown in Figure 11. 

 

Figure 11. NVIS link availability depending on solar activity and the ionosphere’s state [18]. The graph's legend is defined 
as follows: OR refers to the performance of the ordinary wave, XOR refers to the performance of the extraordinary wave 
received. OR and XOR refers to the total performance between both ordinary and extraordinary modes. 

On the other hand, the LoRa channel has been modeled based on the results shown in [111] 

and [13]. The transmission frequency is 868 MHz, with a channel bandwidth that varies 

depending on the chosen Data Rate (DR) and the Rate Spreading Factor (SF). In our case, we 

chose DR3 and SF7, resulting in a channel bandwidth of 125 kHz and a bitrate of 5.47 kbps. 

The range of the link is up to 30 km. In the Line of Sight (LoS) case, the channel is always 

available with a Packet Loss of 0%. Otherwise, with no LoS, the packet loss varies from 0% to 

98% depending on the signal reflections, with an average value of 72%. Due to the Antarctic 

surface's irregularities, we can not assume that GTN-P stations will be located in LoS with the 

gateway. For this reason, we will consider that 25% of sensors will have LoS to the LoRa 
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gateway, while the remaining 75% will not have LoS. No LoS case. Table IV summarizes the 

characteristics of our network models. 

TABLE IV 

NETWORK PARAMETERS TO MODEL THE SCENARIO 

 
Parameter NVIS LoRa 

Transmission Band 4.3 MHz 868 MHz 

Channel Bandwidth 2.3 kHz 125 kHz 

Channel Bitrate 4.6 kbps 5.47 kbps 

Coverage range Up to 250 km Up to 30 km 

Daytime Availability (6am-5pm) 70%-100% 100% (LoS), 2%-100% (No LoS) 

Night Availability (5pm-6am) 0% 100% (LoS), 2%-100% (No LoS) 

Maximum Payload Size 242 bytes 140 bytes 

2.6.2. Node model 

In the case of the node, both the GTN-P station and the gateway will use the same finite state 

machine model, as shown in Figure 12. The “INIT” state initializes the model and its attributes. 

The “IDLE” state is used when the node is waiting for a packet to arrive, transitioning to the 

“PROCESS” state, or a self-interruption to send the sensed data values, transitioning to the 

“SEND” state. 

 

Figure 12. Node model finite state machine. 
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2.6.3. Application model 

Pseudocode algorithms for the application modeling are shown in Appendix A (section 2.9). 

The application consists of the telemetry service to gather data from measured values by 

sensors and send them to the control center.  

Each measured value v is considered a transaction l that must reach the control center. The 

application can be run without implementing any of the extension layers of the proposed 

trustworthiness model (standard mode), or can implement the Social and Consensus Layers of 

the model (redundancy mode). In standard mode, each value v is measured by a single GTN-

P station, while in redundancy mode, the implementation of a reputational or consensus 

mechanism leverages the creation of clusters (groups of GTN-P stations) that measure the 

same value v.  

GTN-P stations will send data packets once per hour, simulating the moment when the 32 

values are gathered from the GTN-P station sensors, stored in memory, and delivered to the 

gateway. In this process, if no consensus mechanism is performed, a hardcoded value v for 

each parameter will be inserted into a 132-byte payload (32 values and a timestamp, 4 bytes 

each). With a probability Pb, the value v will be modified to another value out of an acceptable 

range [vmin, vmax], and the total number of FSV will be increased by one. This payload will then 

be inserted into the packet to be sent to the gateway. If an ACK packet is not received from 

the gateway before a timeout Tout, the data packet will be retransmitted up to a maximum of 3 

times. In the case of implementing a consensus mechanism, all the GTN-P stations 

participating in the cluster (which are measuring the same v) will start the process to reach a 

general agreement. Once they have reached it, only the cluster leader will send the payload to 

the gateway with the agreed value v. During the consensus process, if the Social Layer is also 

implemented, each packet exchanged between the nodes participating in the consensus group 

will be used to compute the reputation Ri of nodes. The node with the highest reputation will 

be elected as the group leader. Moreover, a node i with a reputation Ri lower than Rmin will not 

have the right to vote for the value election. However, it will be allowed to continue 

participating in the consensus group to increase its reputation until it can be granted the right 
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to vote again. On the contrary, if no reputational mechanism is being used, all group members 

will always have the right to vote, and the leader will be chosen randomly. 

On the other site, gateways will collect the data from the GTN-P stations inside its LoRa 

coverage area and then forward it through the NVIS backbone network until it reaches the 

control center. Given that gateways are also nodes, they may experience a byzantine failure 

with probability Pb. In that case, the gateway will modify the payload's content. In standard 

mode, each value v received from node i must be forwarded to the control center. In 

redundancy mode, if no consensus mechanism is being used (only the Social Layer is 

implemented), the gateway will receive several candidates for the value v from every node in 

the cluster. The gateway will inspect the values from it and check if they are in the acceptable 

range [vmin, vmax]. In an affirmative case, gateway j will provide positive feedback for that 

transaction l from node i (fij
l = 1). Otherwise, the feedback will be negative (fij

l = 0). After 

providing feedback for every transaction, the reputation Ri of the nodes will be updated, and 

the value provided from the node with the greatest reputation will be chosen as the definitive 

value v. Alternatively, if a consensus mechanism is used in redundancy mode, the gateway will 

only receive a single value v for each cluster, which will have to be forwarded to the gateway. 

Due to the NVIS backbone network's unavailability during night hours (from 17:00 until 6:00), 

values received by the gateway during this period will be stored in the gateway’s memory and 

forwarded to the control center later (when the NVIS links start functioning, at 6:00). On the 

contrary, values received during daytime (from 6:00 until 17:00) will be forwarded to the 

control center as soon as the gateway receives and processes them. As GTN-P stations do, the 

gateways also expect to receive an ACK packet for every payload packet they send to the 

control center. If an ACK packet is not received from the control center before a timeout Tout, 

the data packet will be retransmitted up to a maximum of 3 times. 

Finally, the control center will receive all the transactions that had not been lost through the 

network. Each value v from the received payload by the control center from node or node 

cluster i will be considered a transaction l. The control center will compute the STR by 

comparing the received values for each payload with the hardcoded values. 



Chapter 2: A Heterogeneous Layer-Based Trustworthiness Model for Long Backhaul NVIS Challenge Networks and 
an IoT Telemetry Service for Antarctica 

 52 

The probability Pb of a node to have a byzantine fault is unlikely to be constant over time. As 

stated in [112], by associating the battery discharge to the WSN node aging process, the node 

reliability can be identified and associated with the battery charge level. Thus, following the 

model in [113], we can assume the impact of aging following a linear form, as defined in Eq. 

5: 

 𝑃𝑏(𝑡) =  𝑃𝑏0 + 𝑘𝑡 ,  (5) 

where 𝑃𝑏0 is the probability of a node having a byzantine fault at time 𝑡 = 0 and 𝑘 is the aging 

factor. Thus, the probability of a node having a byzantine fault will increase hour by hour until 

its battery is completely drained at 𝑡 = 𝑡𝑑 , when it experiences a crash fault and 𝑃𝑏(𝑡𝑑) = 1. 

However, this model will only be applied to GTN-P stations, which will be powered by 

batteries. On the contrary, we assume that the gateways will always have a constant power 

supply in our use case because they will be placed in the research base. Thus, their probability 

of experiencing a byzantine fault will remain constant over time, as defined in Eq.6: 

 𝑃𝑏(𝑡) =  𝑃𝑏0  (6) 

As explained in section 2.5, the use of corrective methods to improve the data trustworthiness 

provoke, in practice, that the probability 𝑃𝑏0 of a node experiencing a byzantine fault 

decreases, thus reducing the number of FSV. For that reason, different values of 𝑃𝑏0 will be 

used in our simulations to emulate the use of different corrective methods. 

2.6.4. Social Trustworthiness model 

The reputational model for implementing social trustworthiness in our use case is a simplified 

version of the objective model defined in [46]. Our use case simplification assumes that all 

transactions will have the same weight, all nodes have the same computational capability, and 

the relationship factors between them are equal. Thus, the reputation 𝑅𝑖 of node i can be 

measured as defined in Eq. 7: 

 𝑅𝑖 = 𝛼𝑂𝑖
𝑠ℎ𝑜𝑟𝑡 + (1 − 𝛼)𝑂𝑖

𝑙𝑜𝑛𝑔
 ,  (7) 
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where 𝑂𝑖
𝑠ℎ𝑜𝑟𝑡  is the short-term opinion of node i, 𝑂𝑖

𝑙𝑜𝑛𝑔
 is the long-term opinion of node i, 

and 𝛼 is a design value between [0, 1] to ponder the importance of short-term and long-term 

opinions. The short-term opinion of node i is measured as stated in Eq. 8: 

 𝑂𝑖
𝑠ℎ𝑜𝑟𝑡 = ∑ ∑ 𝐶𝑖𝑗 𝑓𝑖𝑗

𝑙𝐿𝑠ℎ𝑜𝑟𝑡

𝑙=1
𝑀
𝑗=1 ∑ ∑ 𝐶𝑖𝑗

𝐿𝑠ℎ𝑜𝑟𝑡

𝑙=1
𝑀
𝑗=1⁄  ,  (8) 

where 𝑀 is the total number of nodes of the group, excluding node i, 𝐿𝑠ℎ𝑜𝑟𝑡 is the number of 

last l transactions considered to be relevant for building the short-term opinion, 𝑓𝑖𝑗
𝑙  is the 

feedback that node j gave to node i for transaction l, and 𝐶𝑖𝑗  is the credibility of node j to 

evaluate node i.  

Analogously, the long-term opinion is calculated as defined in Eq. 9: 

 𝑂𝑖
𝑙𝑜𝑛𝑔

= ∑ ∑ 𝐶𝑖𝑗 𝑓𝑖𝑗
𝑙𝐿𝑙𝑜𝑛𝑔

𝑙=1
𝑀
𝑗=1 ∑ ∑ 𝐶𝑖𝑗

𝐿𝑙𝑜𝑛𝑔

𝑙=1
𝑀
𝑗=1⁄  ,  (9) 

where 𝐿𝑙𝑜𝑛𝑔  is the number of last l transactions considered to be relevant for building the long-

term opinion, and 𝐿𝑙𝑜𝑛𝑔 >  𝐿𝑠ℎ𝑜𝑟𝑡 . The credibility of node j to evaluate node i is calculated as 

shown in Eq. 10: 

 𝐶𝑖𝑗 =
𝑅𝑗

1+log (𝑁𝑖𝑗+1)
 ,  (10) 

where 𝑁𝑖𝑗 is the number of transactions between node j and node i. 

2.6.5. Consensus model 

A consensus protocol can be modeled by knowing the background traffic (bps) that introduces 

to the network and the number of byzantine nodes supported (Nb). In our use case, each 

group of redundant GTN-P stations will run the Practical Byzantine Fault Tolerance (PBFT) 

algorithm [114]. From [115] we can assume that the background traffic grows as the number 

of nodes participating in the consensus group is increased. Moreover, the number of tolerated 

byzantine nodes 𝑁𝑏 is calculated as: 
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 𝑁𝑏 = ⌊
𝑁𝑡−1

3
⌋  (11) 

In the simulation, if more than 𝑁𝑏 nodes experience a byzantine behavior, the agreement 

reached will have incorrect values. Otherwise, the resulting payload will contain the correct 

values. 

2.6.6. Tests definitions 

A summary of the characteristics of the simulation tests is shown in Table V. 

TABLE V 

SIMULATIONS PARAMETERS 

 
Parameter Value 

Number of runs per test 30 

Simulation duration 120 hours (5 days) 

Simulation step 1 hour 

𝑃𝑏0 [1x10-3, 2x10-3, 4x10-3, 8x10-3, 1x10-2, 2x10-2, , 4x10-2, 8x10-2, 1x10-1] 

k 5.7x10-5 

Routing protocol [AODV, OLSR] 

Consensus Mechanism [None, PBFT] 

Social Trustworthiness [True, False] 

Number of NVIS gateways 5 

Number of GTN-P clusters per gateway [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096] 

Number of GTN-P stations per cluster [1-10] 

Each different test will be run 30 times, which gives us the total amount of 113400 tests. Each 

test has a simulation duration of 5 days (120 hours), and the average value of the STR 

trustworthiness metric will be calculated. The different byzantine probabilities are proposed to 

simulate scenarios with different corrective methods that can reduce the byzantine probability 

of a node. On the other hand, two different routing protocols will be used to analyze which 

kind of method (reactive or proactive) has a better impact on the service trustworthiness. 

Moreover, the Consensus and Social trustworthiness Layers will be implemented or not to 

analyze their influence on the service performance. Finally, the impact of the number of nodes 

connected to each gateway will also be studied by varying them. In standard mode, there is 

only one GTN-P station per group (because there is no redundancy). That means that each of 

the 9 𝑃𝑏0 values must be tested against each number of GTN-P clusters per gateway, giving 

us a total of 90 possibilities. In redundancy mode, this number increases to 900 since the 

number of GTN-P stations per cluster varies from 1 to 10. If we sum the cases of standard 
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mode, redundancy mode with consensus, and redundancy mode with social trustworthiness, 

we have a total of 1890 different cases, which are doubled to 3780 considering that we want to 

test the system with two different routing protocols. Considering that each test is repeated 30 

times, a total of 113400 simulations have been run in the simulator. 

2.7. Simulation results 

After performing all the simulations, the average value of the STR has been calculated for every 

set of 30 runs per test. Three different operational modes for the telemetry service can be 

clearly identified: the standard mode, the redundancy mode with Social Trustworthiness Layer, 

and the redundancy mode with Consensus Layer. For every mode, an NxM-dimension grid 

with all the possible combinations of stimulation parameters is formed, where M is the number 

of different 𝑃𝑏0 values (9 in our case), and N is the number of different GTN-P node 

combinations per gateway (10 in standard mode and 100 in redundancy mode). For every point 

in this grid, the average value of the trustworthiness STR metric is computed. If we link all the 

STR values for every neighboring point in the grid, a mesh with all the STR values is formed. 

We call this mesh the Trustworthiness Mesh. Figure 13 exhibits the Trustworthiness Mesh 3-

dimensional graph for all the operational modes. Given that the differences between the 

AODV and OLSR scenarios' obtained results are negligible, only the results for the AODV 

scenarios are shown. Figure 14 shows different 2-dimensional perspectives of the 

Trustworthiness mesh graph to understand and analyze the results better. 

From Figure 13 and Figure 14, we can analyze the behavior of the trustworthiness mesh. We 

can see how without redundancy, the STR is always lower than 0.8. Acceptable STR values 

(>0.6) are maintained if the number of sensor nodes is relatively low, although it decreases 

below 0.5 if the number of sensors per gateway is higher. Also, we can notice that the shape 

of the trustworthiness mesh is practically identical for all three cases in the “1xN sensors” zone 

(no redundancy). This means that, as was expected, adding the Social or the Consensus Layers 

does not improve the level of trustworthiness if there is no redundancy. 

From Figure 13 and Figure 14(a), we can conclude that adding sensor redundancy and 

implementing the extension layers of our model improves the trustworthiness of the system, 

given that STR values greater than 0.8 are achieved. In cases of low redundancy (“2xN sensors” 
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and “3xN sensors”), implementing the consensus mechanism does not improve the 

trustworthiness of the system when compared to the Social Trustworthiness case (the STR 

values are very similar). This is because, with two or three redundant nodes, the number of 

byzantine nodes tolerated by the consensus mechanism is still 0. Starting with four redundant 

nodes (“4xN sensors”), the consensus mechanism's effects start to be noticed, achieving better 

STR values than the Social Trustworthiness case. 

 

Figure 13. Trustworthiness Mesh graph for the standard operational mode (green), the redundancy mode with Social 
Trustworthiness (blue), and the redundancy mode with Consensus mechanism (red). The “Byzantine Fault Probability” axis 
has 9 discrete points, which are [1x10-3, 2x10-3, , 4x10-3, 8x10-3, 1x10-2, 2x10-2, , 4x10-2, 8x10-2, 1x10-1]. The “Redundant 
sensors x Sensor Clusters” axis has 100 discrete points, which are [1x8, 1x16, 1x32, …, 1x4096, 2x8, 2x16, 2x32 ,…, 2x4096, 
…, …, 10x8 , 10x16, 10x32, …, 10x4096]. 
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(a) 

 

(b) 
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(c) 

Figure 14. 2-dimensional views of the Trustworthiness Mesh graph for the standard operational mode (green), the 
redundancy mode with Social Trustworthiness (blue), and the redundancy mode with Consensus mechanism (red). (a) 
Frontal view of the trustworthiness mesh (STR vs Number of nodes). (b) Profile view of the trustworthiness mesh (STR 
vs Byzantine node probability). (c) Top view of the trustworthiness mesh (Byzantine node probability vs Number of nodes).  

However, as the Byzantine Fault Probability of the nodes gets lower (meaning the FSR is 

lower), the difference between the STR values from the Consensus mechanisms case and the 

Social Trustworthiness case gets smaller. This means that implementing a consensus 

mechanism is more appropriate when the probability of nodes experiencing byzantine 

behaviors is relatively high, and it is not necessary when this probability is low. In our cases, 

differences between STR values from both cases are not relevant from a 𝑃𝑏0 = 0.01.  

Moreover, the quantity of network traffic that the consensus mechanism adds, combined with 

the LoRa and NVIS networks' low bandwidth, provokes low scalability for this solution. We 

can see that by looking at the evolution of the Consensus Trustworthiness Mesh's STR values 

(red). We notice that as the number of sensors clusters increase, the STR values decreases until 

it drops to 0. This is because the nodes generate more traffics than the network supports. Thus, 
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the network is congested, and the PDR rapidly decreases. Furthermore, the higher the number 

of redundant sensors per cluster, the sooner the STR dropping point (network saturation) 

happens. This resolves one of the looped dependencies postulated in section 2.5.4.  

On the contrary, it seems that implementing a Social Trustworthiness approach is more robust 

to these variations. Even it does not achieve the same levels of STR as the Consensus 

mechanism case when the number of sensor clusters is low, its STR values never drop below 

0.55, even in the scenario with more sensors and worse FSR. It is clear that the trustworthiness 

of the Social case is also affected if the number of sensor nodes increase (which implies more 

network load and lower PDR), but its STR does not drop drastically and can maintain 

acceptable values. Due to our use case's nature, the Social Trustworthiness implementation 

does not ostracize the nodes so that paths to most reputation nodes congest. That is because 

the reputational mechanism is used to rate nodes that measure the same value, which implies 

that they share the same network domain. Thus, the behavior of the other looped dependency 

postulated in section 2.5.4 remains uncertain. 

From Figure 14(b), we can also conclude, as expected, that Data Trustworthiness has a direct 

affection to the overall system’s trustworthiness. In all cases, as the Byzantine Fault Probability 

𝑃𝑏0 increases (meaning that more values are faulty sensed, increasing the FSR), the STR 

decreases.  

Finally, Figure 14(c) shows, for each of the 900 possible scenarios, which is the most 

trustworthy option to implement the service. From this view, we can clearly see the robustness 

of the Social Trustworthiness case, showing how it gains ground as the number of sensors in 

the network increases. 

2.8. Conclusions 

This paper continues the SHETLAND-NET project's task to design a remote WSN for the 

Antarctic region using NVIS technology. The article focuses on the use case of deploying a 

group of interconnected remote Antarctic Wireless Sensor Networks providing an IoT 

telemetry service. A system and network architecture to implement the telemetry service has 

been defined, which uses LoRa at the access network and NVIS long backhaul links at the core 
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network. The extreme conditions remote sensors need to work with, added to the challenges 

of NVIS links and a LoRa network without LoS, can provoke a degradation of the overall 

system's trustworthiness. In order to study the viability of the service to be implemented, we 

have proposed a model to measure and evaluate the trustworthiness of the system proposed. 

This trustworthiness model consists of four layers (two base layers and two extension layers) 

that can affect the Successful Transaction Rate (STR) trustworthiness metric. 

The trustworthiness model and the system architecture has been validated using the Riverbed 

Modeler simulator. A total of 113400 tests have run under 3780 different scenarios. The results 

show that the defined system architecture can reach acceptable levels of STR (>0.6) in case a 

relatively low number of sensors are deployed, although it drops too much with a large number 

of sensors. Adding redundancy to the measured values with multiple sensors and applying a 

Social reputational mechanism improves the robustness of the system's trustworthiness, 

reaching higher STR values (>0.8) and never dropping below 0.55 even in high sensor-density 

scenarios. On the contrary, applying a consensus mechanism improves the trustworthiness 

when a low number of sensors is deployed. However, the STR values abruptly decrease as the 

number of deployed sensors increases.  

Future work aims to study the influence of implementing a DTN architecture at the NVIS 

backbone network, given that it has characteristics of challenge networks. The authors also 

plan to study the viability of deploying a FANET in the access network to provide connectivity 

to sensors placed outside the coverage area of the current LoRa network. 
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2.9. Appendix A 

Sensor node application pseudocode 

int t, gateway_id, own_id, pk_id, tx_time, num_retries; 
int data_values[32]; 
int node_reputations[N]; //N: number of redundnant nodes 
float Pb0, Pb, k; 
boolean consensus, social, is_leader, ack_received; 
initializeVariables(Pb0,k,consensus,social, gateway_id, own_id, is_leader, ack_received); 
for (t=0; t++; t<T_MAX){ 
    num_retries = 0; 
    Pb = Pb0 + k * t;  
    data_values = gatherData(Pb); 
    if (consensus==TRUE){ 
        data_values = reachGeneralAgreement(data_values); 
        if (social==TRUE){ 
        node_reputations = computeReputations(); 
        is_leader = checkLeader(node_reputations); 
        }else{ 
        is_leader = chooseRandomLeader(); 
        } 
        if (is_leader==TRUE) 
            [tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id); 
        }else{ 
            pk_id = NULL; 
        }  
    }else{ 
        [tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id); 
    }   
    if (pk_id != NULL){ 
        ack_received = checkAck(pk_id);  
        while(ack_received==FALSE && num_retries<MAX_RETRIES){ 
            if (currentTime() >= tx_time + MAX_TIMEOUT){ 
                [tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id); 
                num_retries++; 
            } 
            ack_received = checkAck(pk_id); 
        } 
    } 
    pk_id = NULL; 
} 

 

Gateway node application pseudocode 

int own_id, sensor_id; control_ctr_id, pk_id, tx_time, num_retries; 
int data_values[32]; 
int stored_values[N][32]; 
int node_reputations[N]; //N: number of redundnant nodes 
float Pb; 
boolean social, ack_received, data_pk_received; 
initializeVariables(Pb, social, sensor_id, pk_id, own_id, control_ctr_id, ack_received, data_pk_received); 
while(TRUE){ 
    num_retries = 0; 
    if (dataPkReceived()==TRUE){ 
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        [sensor_id, pk_id, data_values] = retrievePkData(); 
    if (social==FALSE){ 
        sendAck(pk_id, own_id, sensor_id); 
        [tx_time, pk_id] = forwardDataPk(pk_id, data_values, gateway_id, sensor_id, control_ctr_id); 
        ack_received = checkAck(pk_id);  
            while(ack_received==FALSE && num_retries<MAX_RETRIES){ 
            if (currentTime() >= tx_time + MAX_TIMEOUT){ 
            [tx_time, pk_id] = forwardDataPk(pk_id, data_values, gateway_id, sensor_id, control_ctr_id); 
            num_retries++; 
            } 
            ack_received = checkAck(pk_id); 
            } 
        ack_received=FALSE; 
        num_retries=0; 
    }else{ 
        stored_values[sensor_id] = data_values; 
            node_reputations[sensor_id] = computeReputation(data_values); 
            if (roundIsFinished()==TRUE){ 
        [data_values, sensor_id] = chooseData(node_reputations, stored_values); 
        [tx_time, pk_id] = forwardDataPk(pk_id, data_values, gateway_id, sensor_id, control_ctr_id); 
            ack_received = checkAck(pk_id); 
                while(ack_received==FALSE && num_retries<MAX_RETRIES){ 
                    if (currentTime() >= tx_time + MAX_TIMEOUT){ 
                        [tx_time, pk_id] = forwardDataPk(pk_id, data_values, gateway_id, sensor_id,  
                                                      control_ctr_id); 
                num_retries++; 
                } 
                ack_received = checkAck(pk_id); 
                }     
            ack_received=FALSE; 
        num_retries=0; 
        } 
        } 
    }  
} 

 

Control center application pseudocode 

int own_id, sensor_id; gateway_id, pk_id; 
int data_values[32]; 
boolean data_pk_received; 
initializeVariables(sensor_id, pk_id, own_id, gateway_id, data_pk_received); 
while(TRUE){ 
    if (dataPkReceived()==TRUE){ 
        [sensor_id, gateway_id, pk_id, data_values] = retrievePkData(); 
        storeData(data_values, sensor_id); 
        computeSTR(data_values); 
        sendAck(pk_id, gateway_id); 
    } 
} 
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C h a p t e r  3  

DTN TRUSTWORTHINESS FOR PERMAFROST TELEMETRY IOT NETWORK 

The SHETLAND-NET research project aims to build an Internet of Things (IoT) telemetry 

service in Antarctica to automatize the data collection of permafrost research studies on 

interconnecting remote wireless sensor networks (WSNs) through near vertical incidence 

skywave (NVIS) long fat networks (LFN). The proposed architecture presents some properties 

from challenging networks that require the use of delay tolerant networking (DTN) 

opportunistic techniques that send the collected data during the night as a bulk data transfer 

whenever a link comes available. This process might result in network congestion and packet 

loss. This is a complex architecture that demands a thorough assessment of the solution's 

viability and an analysis of the transport protocols in order to find the option which best suits 

the use case to achieve superior trustworthiness in network congestion situations. A 

heterogeneous layer-based model is used to measure and improve the trustworthiness of the 

service. The scenario and different transport protocols are modeled to be compared, and the 

system's trustworthiness is assessed through simulations.3 

Keywords: Transport Protocols; Trustworthiness; Antarctica; IoT; NVIS; remote WSN; LFN. 

3.1. Introduction 

Research studies from multiple disciplines are carried out every year in Antarctica [10]. 

Researchers are temporarily placed in Antarctic base stations, normally located in the peripheral 

areas of the continent. One of the main challenges in Antarctica is its lack of conventional 

telecommunication systems [10], which hinders the deployment of wireless sensor networks 

 
3 The work reported in this chapter was published as the paper entitled “DTN Trustworthiness for Permafrost Telemetry IoT 

Network” in the Remote Sensing journal, 2021, 13(22), 4493, https://doi.org/10.3390/rs13224493 Authors: Adrià 

Mallorquí, Agustín Zaballos, Alan Briones. 

https://doi.org/10.3390/rs13224493
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(WSNs). This fact reduces the possibilities of carrying out research studies (e.g., automation of 

data collection and remote bases interconnection). 

To overcome these difficulties, our research project, the SHETLAND-NET, proposes the use 

of near vertical incidence skywave (NVIS) high-frequency (HF) radio links to provide low-

consumption Antarctic communications, continuing previous research on ionospheric 

communications [116]. The ionosphere reflects this signal, providing a long backhaul link of a 

250 km radius coverage area [11], [18]. Networks using this type of links can be classified as 

long fat networks (LFNs), which are characterized by having long links with a bandwidth delay 

product (BDP) greater than 1 × 105 bits (12,500 bytes) [27], following Eq. 12, where the link 

bandwidth (BW) is expressed in bits per second (bps) and the round-trip time (RTT) in seconds 

(s). 

 𝐵𝐷𝑃 = 𝐵𝑊 × 𝑅𝑇𝑇  (12) 

The NVIS technology can be used to interconnect remote base stations [19]. Our final goal is 

to deploy a telemetry service by interconnecting remote WSNs [83], which will help in the 

automatization of data gathering for Antarctic research studies. This deployment will be carried 

out during the next Antarctic campaign in the field. However, this communication technique 

can be error-prone due to the variant properties of the ionosphere. It may present typical 

challenging network issues [25], such as intermittent connectivity, end-to-end disconnection, 

and variable error rates, which could degrade the performance of the overall offered IoT 

service.  

Therefore, before the deployment phase of our project, we had to study and try to anticipate 

the expected trustworthiness of the IoT telemetry service we want to deploy. For this reason, 

we defined a model to assess the trustworthiness of our proposed system [83]. This enabled us 

to foresee the possible trustworthiness issues that might arise during the campaign in the field 

and decide on the respective countermeasures. 

For our work, we focus on the use case of automating the monitoring of Ground Terrestrial 

Network-Permafrost (GTN-P) stations [20], which are used in permafrost research studies. 
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Each of these GTN-P stations senses 32 different values hourly, which need to be remotely 

monitored from a control center. During the Antarctic campaign, we will deploy a test scenario. 

WSNs will be placed in two locations: the Spanish Juan Carlos I Base in Livingston Island, and 

the Uruguayan Artigas Base in King George Island, both part of the South Shetland Islands. 

The Artigas Base will provide Internet connectivity, so data gathered from the WSNs can be 

reached remotely. However, sensors in the Juan Carlos I Base will not have direct Internet 

connectivity, and the data from these sensors will need to be sent through an NVIS link to the 

Artigas base in order to reach the Internet. Figure 15 shows the test scenario in Antarctica. 

Artigas Base

Juan Carlos I Base

Internet

 

Figure 15. Map of the South Shetland Islands in Antarctica [117], showing the position of the WSNs (blue circles) during 
the test scenario of the campaign. The NVIS link is represented with the discontinuous blue line, and the Internet 
connectivity is represented with the discontinuous red line. The reproduction of the image was slightly modified under a 
Creative Commons License (CC BY-SA 3.0). 

As seen in previous research [18], the main drawback of the NVIS link is its unavailability 

during the night, given that the ionosphere’s characteristics vary drastically due to solar activity. 

For this reason, we decided to adopt a delay tolerant network (DTN) technique to 
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opportunistically send all the data collected during the night as a bulk data transfer when the 

NVIS link becomes available in the morning. This complex scenario required a trustworthiness 

assessment to analyze its feasibility to be deployed in Antarctica before the campaign [83]. As 

shown in our first round of simulations, performing this opportunistic bulk data transfer in an 

LFN that presents network challenges could degrade the system’s performance (packet losses) 

due to network congestion caused by the large quantity of data sent. On the other hand, in 

prior work, we also analyzed the suitability of different transport protocols for LFNs and 

designed a new one, the Enhanced Adaptive and Aggressive Transport Protocol [27], [28]. 

Given that the NVIS links can also be considered as LFNs and given the strong performance 

that some modern transport protocols showed in our tests, we believed that it was crucial to 

assess how the use of modern transport protocols could improve or affect the performance 

and trustworthiness of the service, especially in this congestion situation provoked by the DTN 

technique. Having collected the initial results and analyzed the system’s trustworthiness in 

previous work with the standard transport protocols of the devices’ operative systems, this 

paper studies the trustworthiness and compares the usage of different transport protocols by 

modeling the scenario in the Riverbed Modeler. The paper contributions are as follows: 

1. The definition and concretion of the remote sensor network architecture that will be 

deployed in Antarctica, detailing the type of nodes, protocol stack, and communication 

techniques that will be used. 

2. The modeling of the Antarctic scenario in the simulator. To perform the simulation 

tests, we modeled the communication media (LoRa and NVIS), the telemetry 

application, the faulty behavior of Byzantine nodes, the social trust management and 

the consensus algorithms, the DTN technique, and the tested transport protocols. 

3. The assessment and analysis of the results using our proposed trustworthiness model. 

From this analysis, we conclude which transport protocol best suits our use case and 

propose a modification of the scenario to be deployed in Antarctica. 

The rest of this paper is structured as follows. Section 3.2 describes the related work in DTNs, 

transport protocols, and a system’s trustworthiness. Section 3.3 defines our use case’s network 
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architecture. Section 3.4 reminds our proposed model to measure and evaluate a system’s 

trustworthiness. Section 3.5 describes the simulation tests. Sections 3.6 and 3.7 present and 

discuss the obtained results, respectively. Finally, section 3.8 concludes the paper. 

3.2. Related work 

3.2.1. Delay Tolerant Networks 

The DTN was first presented as an alternative network architecture designed for challenging 

networks [25] which suffer from high bit error rates, lack of end-to-end connectivity, and long 

delays [69]. It was initially designed for interplanetary communications in space [68], given the 

number of disconnections that this network suffers. However, over the years, many other types 

of terrestrial networks have emerged in response to similar problems (e.g., underwater 

networks [72], wildlife tracking networks [118], sparse wireless sensor networks [119], and 

vehicular networks [120]).  

Conventional TCP/IP protocols are not suitable for these kinds of environments. In contrast, 

the RFC 5050 presented a DTN protocol, the Bundle Protocol (BP) [24], which enabled 

message delivery to cope with all the issues of challenging networks, even if the source and the 

destination were never connected to the network simultaneously. The BP is based on a store–

carry–forward overlay network, where “bundles” are transported through endpoints on top of 

the transport layer of the OSI model when a connection opportunity is present between two 

endpoints. The BP version 7 draft was recently released [107], which introduces new features, 

such as optional CRCs for nonprimary blocks, and proposes other changes to make it simpler, 

more capable, and easier to use. Many implementations of the Bundle Protocol adapted to the 

constraints of IoT and WSNs exist nowadays, such as IBR-DTN [121], µDTN [122], and 

DTN7 [107], among others.  

However, other DTN approaches are not based on the BP but use their own routing protocol 

designed to be disruption and delay-tolerant [25]. DIRSN [123], PASR [124], RMDTN [125], 

and PRoPHET [126] are some examples of this kind of approach. Moreover, we can find other 

schemes that mix DTN with other kinds of technologies, such as opportunistic networking 

[127], [128], machine to machine (M2M) communications [129], information-centric 

networking (ICN) [130], and fog computing [131].  
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As stated before, in our use case, we will use an opportunistic networking technique to send 

all the data collected during the night in the morning, when the NVIS link comes available, as 

a bulk data transfer. This kind of approach is possible because our research group has studied 

the behavior of the ionosphere and NVIS links in prior research [18], and were aware that the 

link is down at nighttime and becomes available at sunrise. However, we also know this bulk 

data transfer provokes network congestion, degrading the system’s performance with packet 

losses. For this reason, it is crucial to study how modern transport protocols can help improve 

this performance, especially in LFNs such as the NVIS links. 

3.2.2. Transport Protocols 

The performance of transport protocols for network communications has been a topic under 

discussion and development since the Internet was conceived [27]. The first extensions of the 

original Transmission Control Protocol (TCP) were [52] TCP Tahoe, TCP Reno, TCP New-

Reno, TCP SACK, and TCP-Vegas, which included new mechanisms such as the fast 

retransmit, the fast recovery, the packet pair link estimation, the duplicated acknowledgment 

(DUACK), and the selective acknowledgment (SACK).  

However, these legacy transport protocols suffered performance degradation over some types 

of networks, including LFNs. The LFN concept and its effects on TCP performance were 

firstly defined and detailed in the Request For Comments (RFC) 1072, which was obsoleted 

by the RFC 1323 to finally become the standard RFC 7323. Some TCP variants and other 

transport protocols developed during the last decade have improved their performance over 

LFNs [27]. Some of these are Scalable TCP (S-TCP) [53], FAST TCP [54], High-Speed TCP 

(H-TCP) [55], Binary Increase Control TCP (BIC-TCP) [56], and its evolution: TCP CUBIC 

[26]. TCP CUBIC (RFC 8312) is the most commonly used transport protocol nowadays, given 

that it is the TCP variant used by default on most operating systems. However, most of these 

protocols consider that packet loss always occurs due to network congestion, reducing the 

congestion window. This assumption is false for wireless links, where packets can also be 

dropped for other reasons (e.g., fading, channel interference) [28]. Under these circumstances, 

reducing the congestion windows might also degrade the transmission performance, achieving 

lower throughput [28].  
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For this reason, other transport protocols, such as Performance-oriented Congestion Control 

(PCC) [62], TCP Veno [63], TCP Westwood+ [64], Dynamic TCP [65], Jitter TCP [66], and 

Jitter Stream Control Transmission Protocol (JSCTP) [67] are focused on implementing 

mechanisms to detect if lost packets occur due to network congestion or random channel loss. 

They only reduce the congestion window in the first case, achieving better performance [28].  

In addition, other modern transport protocols, such as TCP BBR [58], Copa [59], Indigo [60], 

and Verus [61], can achieve high performance, as proven in several physical tests carried out 

by Stanford University’s platform Pantheon [60]. TCP BBR is one of the top-performance 

protocols, managing the maximum bandwidth with the minimum RTT. Copa is a practical 

delay-based protocol that fixes an RTT target and adjusts its congestion windows based on the 

minimum RTT and the standing RTT measured during data transfers. Indigo is a data-driven 

protocol that uses a machine-learning congestion control scheme that learns from previous 

performance data. Verus is a transport protocol oriented to cellular networks that relates the 

congestion windows with delay variations through short-term RTT measurement.  

Moreover, given that the aforementioned protocols did not meet the performance 

requirements of our cloud data-sharing use case from previous work [28], we presented the 

Adaptive and Aggressive Transport Protocol (AATP) [27] and its evolution, the Enhanced 

AATP (EAATP) [28], which incorporates mechanisms to differentiate the packet losses’ cause, 

fairly adapting its sending rate accordingly to the network circumstances. The performance in 

these tests was solid, both in simulations and in a physical testbed with an LFN emulator, 

showing better results than other protocols, maximizing throughput and minimizing packet 

losses [27], [28]. Figure 16 shows a summary of the tests’ results. However, we did not know 

how these protocols (including ours) could affect the trustworthiness of a system, especially in 

the use case of this paper. For this reason, we thought that we needed to assess whether using 

the EAATP in the remote Antarctic WSN use case could improve the system’s performance 

and trustworthiness, especially in congestion situations. 
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Figure 16. Results of average throughput (%) vs. packet loss ratio (%) of the transport protocols tested in previous work 
[28]. To represent the graph in semilogarithmic scale, the packet loss ratio values of 0% are represented as 0.001% in the 
graph. Each transport protocol was tested in three LFN scenarios: London to Iowa (L–I), Sidney to Iowa (S–I), and Sidney 
to London (S–L). 

3.2.3. Trustworthiness in Cyber Physical Systems 

A cyber physical system (CPS) is defined as a system with integrated computational and 

physical capabilities. Wireless sensor networks, smart grids, and some IoT devices are examples 

of CPSs [32]. Even though there is no consensus in the literature to define the trustworthiness 

property and its scope [132], we can define a CPS’s trustworthiness, in general terms, as the 

property of behaving as expected under adversarial conditions [32]. Network malfunction, 

Byzantine errors, and faulty nodes are examples of adverse conditions that can affect a system’s 

trustworthiness. Some authors limit this definition to system security issues only [133], while 

others propose a broader scope and relate trustworthiness with other terms such as resilience, 

availability, reliability, scalability, maintainability, heterogeneity, data quality, hardware 

resources, and fault management policies [132]. We can find many approaches to measuring 

or providing trustworthiness in literature, referring to different elements. We classify them into 

four main categories [83]: 
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1. Data trustworthiness: It is defined as the possibility to ascertain the correctness of the 

data provided by the source [34]. Many methods use different approaches that try to 

detect faulty nodes, false alarms, and sensor misreading. For instance, authors in [36] 

use a fog computing architecture to detect, filter, and correct abnormal sensed data. In 

addition, authors in [37] present a data intrusion detection system to trigger false data 

from malicious attacks. 

2. Network trustworthiness: Defined as the likelihood of a packet to reach its destination 

unaltered despite the adversities (e.g., link failure, link saturation, or malicious attacks, 

among others), it is a relevant aspect to consider in challenging networks [38], such as 

the use case we propose. The network’s performance and trustworthiness have been 

addressed from several perspectives, such as channel coding [134], transport protocols 

[28], dynamic routing and topology control protocols [41], [135], and DTN 

architectures and protocols [25]. 

3. Social trustworthiness: This field has become more popular since the appearance of 

the Social Internet of Things (SIoT) [44], [136]. In SIoT trustworthiness, objects or 

network nodes interact and establish social relationships, which are used to define trust 

and reputation models that take into account several input parameters. Authors in [46] 

present a model that considers factors as the computational capabilities of the nodes, 

the type of relationship between them, the total number of transactions, the credibility 

of a node, and the feedback provided by other nodes, among others. Authors in [137] 

present an evolution of the aforementioned trust management model, which applies a 

machine learning algorithm to calculate novel parameters such as the goodness, 

usefulness, and perseverance of a node. Thanks to these parameters, this upgraded 

trust model is resilient to more types of malicious node attacks. Authors in [47] propose 

another model that defines the input parameters as the expected gain on success, the 

expected damage on a failure, the expected cost, the expected result, and the goal. 

Authors in [48] define a decentralized self-enforcing trust management system which 

is based on a feedback system and reputational secure multiparty calculations to ensure 

the privacy of each party's provided data. 
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4. Consensus: It represents a state where all the participants of the same distributed 

system agree on the same data values [50]. Consensus protocols can be classified into 

two major groups: proof-based consensus and Byzantine consensus. The first group is 

related to blockchain technology, where all participants compete against each other to 

mine a block, and the most commonly used protocols are proof-of-work, proof-of-

stake, and their variants [50]. The main drawback of these protocols for the IoT is that 

devices usually have lesser hardware resources and low processing power, which make 

the mining tasks of blockchain extremely difficult [50]. On the other hand, Byzantine-

based protocols implement voting-based mechanisms to reach an agreement rather 

than competing among them, generating less resource consumption in general. Their 

main drawback is the number of messages that need to be delivered through the 

network to reach an agreement. Some well-known protocols from this category are 

Practical Byzantine Fault Tolerance (PBFT), RAFT, PaXoS, and Ripple, among others 

[50]. 

3.3. Remote sensor network architecture 

As stated before, the use case of this article is an IoT telemetry service to monitor remote 

WSNs in Antarctica interconnected through NVIS LFNs. The monitored data are used for 

permafrost studies and are gathered by GTN-P stations [20], which are the sensors of our 

network. Each of these GTN-P stations senses 32 different values hourly, and these values 

must reach the remote control center in Europe. 

The GTN-P stations are equipped with a Moteino [138], an Arduino-based board designed for 

low-power consumption applications. The Moteino will send, through LoRa, its sensed values 

to a Raspberry Pi 3B+ gateway acting as a concentrator (access network). LoRa was preferred 

over other alternatives (e.g., Sigfox, NB-IoT) as the access network protocol because of its 

teleoperator independence. The LoRa network will be configured with a transmission 

frequency of 868 MHz, a code rate CR3 (4/7), and a spreading factor SF7, obtaining a 125 

kHz channel bandwidth with a bit rate of 5.47 kbps. As proved in [13], this configuration can 

offer a coverage range of up to 30 km in Antarctica. Figure 17(a) shows the Moteino board 
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with the LoRa transceiver that will be used during the campaign to collect and forward the data 

from the GTN-P stations. 

The Raspberry Pi 3B+ gateway will forward these data through NVIS links (backbone 

network) to the Internet edge router in the Uruguayan Artigas Base in Antarctica. NVIS was 

preferred over satellite communication because the latter presents coverage issues in polar 

zones and has a higher economic cost [11]. The NVIS nodes will be configured to transmit at 

the 4.3 MHz transmission band, with a channel bandwidth of 2.3 kHz and a bit rate of 4.6 

kbps. As in [11], we will increase the NVIS transmission reliability with an FEC convolutional 

code (1/2 rate code) and interleaving. With this configuration, an NVIS link range is up to 250 

km. Figure 17(b) shows the NVIS node with the Raspberry Pi 3B+ gateway, and Figure 17(c) 

shows the NVIS antenna (inverted vee antenna). 

  

(a) 

 

(b) 

 

 
(c) 

Figure 17. Antarctic WSN Hardware. (a) Moteino node with LoRa transceiver. (b) NVIS node with Raspberry Pi 3B+ 
gateway. (c) NVIS inverted vee antenna. 
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From the closest NVIS node to the Internet edge router (the one with Internet connectivity), 

data will be pushed to the Internet. From this moment, data monitoring and gathering will be 

available remotely from the control center. Figure 18 shows the network architecture diagram 

of the remote WSN. 
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Figure 18. Network architecture of the remote WSN providing the IoT telemetry service. 

The Artigas Base's Internet connectivity is supposed to have high reliability, so our 

trustworthiness assessment is focused on the access network (LoRa) and the backbone 

network (NVIS). As mentioned before, the reliability of NVIS links is very dependent on the 

ionosphere state, so it is not possible to send data during the night as all of it would be lost. 

For this reason, we believed it was necessary to apply a DTN technique to prevent the loss of 

data gathered during the night. In our case, we apply the DTN in the backbone network, as it 
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is more likely to suffer from a lack of end-to-end connectivity, long delays, and network 

disruption.  

Given that, in our case, we can predict a specific time slot when the NVIS links do not work 

(nighttime), we opted to implement a lightweight DTN approach, opportunistically sending 

the data collected during the whole night as a bulk transfer when the NVIS channel becomes 

available in the morning. Each concentrator should have collected 13 different sets of sensed 

values from each GTN-P station during the night. Our project requires that, on average, at 

least 9 out of the 13 datasets gathered from each station (around 70%) reach the control center 

correctly [83]. 

The DTN is usually implemented as an overlay network below the application layer of the 

Open Systems Interconnection model (OSI model) and needs a convergence layer as an 

interface to connect to the lower layers of the protocol stack. Figure 19 shows the protocol 

stack from our use case. 
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Figure 19. Antarctic IoT network protocol stack. 
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In the access network, LoRa uses a reduced protocol stack, thus avoiding layers 3 to 6 of the 

OSI model. The application data is directly encapsulated into the LoRa data link layer. Once 

data arrives at the NVIS node, the protocol stack introduces all the OSI model layers and adds 

the DTN layer below the application layer. The DTN layer needs a convergence layer to adapt 

to the transport protocol below. Figure 19 shows the EAATP as the transport protocol in the 

backbone network, although we test diverse transport protocols in our simulations, as 

discussed in section 3.5. Finally, when the data arrives at the last NVIS node and must be 

forwarded through the Internet, the DTN and convergence layers are removed. The common, 

well-known TCP/IP model is used, given that end-to-end connectivity at this zone is assumed. 

3.4. Trustworthiness model specification 

In this section, we summarize our trustworthiness model. Further details of the model can be 

found in [83]. To the best of our knowledge, none of the prior analyzed trustworthiness 

approaches have tried to include all of the four trustworthiness areas but have instead focused 

on one or some of them without considering the interdependencies between all the four 

categories. This could lead to assuming incorrect reasons for a lower trustworthiness level and 

implementing the wrong countermeasures to improve it. For this reason, we believed it 

necessary to design our model to measure a system's trustworthiness level, which includes the 

four categories mentioned above and helps us to anticipate and identify the possible 

weaknesses of our IoT telemetry system. 

We propose a layer-based model to measure the trustworthiness and evaluate a system’s 

performance (in our case, a group of interconnected remote Antarctic wireless sensor networks 

providing an IoT telemetry service). This model is characterized by 1) two baseline layers (data 

trustworthiness layer and network trustworthiness layer), 2) two extension layers (social 

trustworthiness layer and consensus layer) that include optional functionalities, and 3) the 

interaction between all of them. The data trustworthiness, network trustworthiness, social 

trustworthiness, and consensus layers can collectively define a system's trustworthiness.  

We postulate that each layer is characterized by its definition (scope), how the trustworthiness 

of that layer is measured (metric), and how the value of this metric can be improved 

(countermeasures). 
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3.4.1. Data trustworthiness layer 

This layer aims to ascertain the correctness of the source’s collected data. We propose the 

measurement of this layer's trustworthiness with the metric faulty sensing ratio (FSR), defined 

in Eq. 13 as the proportion of false sensed values (FSV) by all nodes and total sensed values 

(TSV) in a defined period. The lower the FSR, the better the data trustworthiness. 

 𝐹𝑆𝑅 =
𝐹𝑆𝑉

𝑇𝑆𝑉
  (13) 

Corrective methods (e.g., [36], [37]) which try to detect abnormal data (FSV) stored in the 

source node due to a sensor malfunctioning, a misreading of the sensed data, or erratic writing 

in the node's memory, can be applied. Additional examples of corrective methods are hashes, 

checksums, and parity bits, among others (see Figure 20). 
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Figure 20. Trustworthiness model goals and countermeasures relationship [83]. 
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3.4.2. Network trustworthiness layer 

This layer is responsible for assuring that a packet reaches its destination on time and unaltered 

despite the adversities (e.g., link failure, network congestion). We measure this layer's 

trustworthiness with the packet delivery ratio (PDR), defined in Eq. 14 as the quotient between 

the total number of packets correctly received (Pr) by all nodes and the total number of packets 

sent (Ps) by all nodes in the same time slot. The higher the PDR is, the better the network's 

trustworthiness. 

 𝑃𝐷𝑅 =
𝑃𝑟

𝑃𝑠
  (14) 

At the network trustworthiness layer, transmission coding techniques [139] are used to increase 

the robustness of the transmitted signal. Routing protocols and quality of service (QoS) 

mechanisms are used to find the best path from a source to a destination by quantifying the 

quality or performance of each link in the network [41], [135]. Congestion control algorithms 

and other mechanisms of transport protocols [28] can also improve network trustworthiness. 

In the case of challenge networks, DTN overlay architectures and protocols, such as the 

Bundle Protocol [25], can also improve network trustworthiness (see Figure 20). 

3.4.3. Social trustworthiness layer 

This layer is responsible for leveraging the capability to autonomously establish social inter-

object relationships to improve the trust between them and the correctness of the collected 

data. We measure this layer's trustworthiness with the successful transaction rate (STR), 

calculated as the proportion between the number of successful transactions (ST) and the total 

number of transactions (TT) in a defined time slot, as stated in Eq. 15. A transaction l is 

considered successful when a node j expects to obtain some information or data (v) from node 

i before a defined maximum reception time (Trxmax) and receives it as expected, thus providing 

good feedback (fij
l = 1) for that transaction to node i. The higher the STR is, the better the 

social trustworthiness. 

 𝑆𝑇𝑅 =
𝑆𝑇

𝑇𝑇
  (15) 
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Most solutions tend to use reputational mechanisms to determine which nodes to trust when 

exchanging information. This reputation is commonly based on the feedback of previous 

transactions to build an opinion of the node's trustworthiness [46], [48], [137]. 

3.4.4. Consensus layer 

This layer is responsible for reaching a state where all group participants agree on the same 

response or result. We measure this layer's trustworthiness with the Byzantine node tolerance 

(BNT), defined as the proportion of supported Byzantine nodes (Nb) that can participate in 

the consensus system without affecting the correctness of the general agreement and the total 

number of nodes (Nt) that participate in the consensus system, as defined in Eq. 16. A node is 

considered Byzantine if it experiences a crash or soft fault that incapacitates it to behave as 

expected or if it does not behave as expected on purpose (malicious node). The higher the 

BNT is, the higher the probability of reaching a correct general agreement (GA). 

 𝐵𝑁𝑇 =
𝑁𝑏

𝑁𝑡
  (16) 

Several mechanisms can be used to reach a decentralized GA that all group nodes consider to 

be true. Theoretically, if the number of Byzantine nodes is higher than 50% of the total number 

of participating nodes, none of the consensus mechanism will reach a benevolent agreement 

[50]. A drawback of these mechanisms is that participating nodes need to exchange a large 

quantity of messages between them to reach a consensus, which can degrade the performance 

of low-bandwidth networks. 

3.4.5. Trustworthiness layers relationships 

Figure 20 synthesizes our trustworthiness model actors. Blue-colored elements form part of 

our model baseline layers, and orange-colored elements form part of the extension layers. The 

primary goal is to increase the STR to provide better trustworthiness. Three main factors 

directly help increase the STR: 1) Mitigate/tolerate Byzantine errors; 2) decrease the FSR; and 

3) increase the PDR. These factors can be seen as secondary goals that leverage the success of 

the final goal to provide trustworthiness. Each of these secondary goals can be accomplished 

by implementing a set of actions or countermeasures. Each of these countermeasures 

commonly affects only one of the goals. Moreover, two transversal actions impact more than 
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one secondary goal. These transversal actions implement the extension layers of our model: 

the social trustworthiness layer and the consensus layer. 

In Figure 20, continuous-line arrows indicate a positive outcome, discontinuous-line arrows 

indicate a negative outcome, and dotted-line arrows indicate an uncertain outcome. On the 

one hand, the use of social trustworthiness can reduce network congestion thanks to the 

ostracism of nodes with the worst reputation by only sending the values from nodes with the 

highest reputation to the control center. In addition, social trustworthiness also helps to reduce 

the FSR thanks to the ostracism of bad reputation nodes. It also leverages the mitigation of 

Byzantine errors because only values from high reputation nodes (leaders) are trusted. On the 

other hand, implementing a consensus mechanism mitigates Byzantine errors thanks to the 

general agreements reached by all nodes from a consensus group. Contrarily, the consensus 

layer can negatively affect the PDR, given that it introduces a considerable amount of extra 

traffic to the network, which could lead to link congestion. 

3.5. Simulation tests 

As mentioned before, the first tests we performed to assess the system’s trustworthiness in this 

use case [83] showed that it was possible to have an STR greater than 0.7 in some 

circumstances. However, we noticed that the DTN approach of using opportunistic bulk data 

transfers when the NVIS link becomes available produced network congestion in these 

periods. On the other hand, we also compared, evaluated, and designed modern transport 

protocols for heterogeneous LFNs to improve the performance of data transfers over this type 

of network. Our tests showed that our protocol, the EAATP, maximized throughput and 

minimized packet losses in LFNs. However, we did not evaluate how the use of these protocols 

could affect the trustworthiness of a system. Given that the NVIS links in the remote Antarctic 

WSN use case can be considered an LFN (with a BDP greater than 12,500 bytes, from Eq. 12), 

we thought that using a particular transport protocol might affect the system’s trustworthiness. 

For this reason, we decided to run a second round of tests and check if the hypothesis was 

correct. 

In order to 1) foresee which problems may occur during the Antarctic campaign, 2) decide 

which transport protocol to use, and 3) build more accurate expectations of the system's 
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performance and outcomes, we applied our trustworthiness model to measure and evaluate 

them in this use case. For this purpose, the use case scenario was represented and evaluated in 

the Riverbed Modeler simulator. The first step is the modeling of the different elements that 

characterize our use case. More details about the modeling of this scenario and its technologies 

and protocols can be found in [28], [83]. 

Firstly, the backbone network (NVIS) and the access network (LoRa) were modeled separately, 

characterized as stated in Table VI following the aforementioned description of the network 

architecture (please revisit section 3.3) and the link availability results from [18] and [13]. On 

the one hand, LoRa does not experience any availability variation between daytime and 

nighttime, being fully available if there is LoS between the sensor and the gateway, and with 

partial availability in the case of no LoS. On the other hand, NVIS is not affected by not having 

LoS. However, its availability varies hour by hour, depending on the ionosphere state, which 

is highly correlated to solar activity. During nighttime (5 p.m. to 6 a.m.), the NVIS links are not 

available, while during daytime (6 a.m. to 5 p.m.), their availability varies between 70% and 

100%. 

TABLE VI 

NETWORK PARAMETERS USED TO MODEL THE SCENARIO 

 
Parameter NVIS LoRa 

Transmission Band 4.3 MHz 868 MHz 

Channel Bandwidth 2.3 kHz 125 kHz 

Channel Bitrate 4.6 kbps 5.47 kbps 

Coverage range Up to 250 km Up to 30 km 

Daytime Availability (6 a.m. – 5 p.m.) 70%-100% 100% (LoS), 2%-100% (No LoS) 

Night Availability (5 p.m. – 6 a.m.) 0% 100% (LoS), 2%-100% (No LoS) 

Maximum Payload Size 242 bytes 140 bytes 

Secondly, we modeled the following transport protocols as in our previous work [28]: BBR, 

Copa, CUBIC, EAATP, Indigo, and Verus. We focused on modern transport protocols that 

have been proven to perform well [60] and TCP CUBIC, which is the standard transport 

protocol in most operating systems nowadays. These protocols were modeled according to the 

results from our previous work in physical testbeds and simulations [27], [28] and the Pantheon 

tests [60]. 
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Thirdly, we needed to model the Byzantine behavior of nodes. As stated in [113], the 

probability Pb of a node having a Byzantine fault is unlikely to be constant over time. The node 

reliability can be related to the battery charge level by associating the battery discharge with the 

WSN node aging process. Following the model in [113], we can assume the impact of aging as 

following a linear form, as defined in Eq. 17: 

 𝑃𝑏(𝑡) =  𝑃𝑏0 + 𝑘𝑡 ,  (17) 

where Pb0 is the probability of a node having a Byzantine fault at time t = 0, and k is the aging 

factor. This probability Pb increases hour by hour until its battery has practically run out at t = 

td, when it experiences a crash fault and Pb(td ) = 1. In the simulations, we tested nine different 

values of Pb0 to emulate the use of different corrective methods (see Table VII). 

As we are in a simulation environment and we can keep track of all collected, sent, and received 

values by all nodes, we can compute FSV and ST by comparing the values that the sensor 

should have collected with the values that the sensor actually sends and the values that the 

control center receives, respectively. In a testbed environment with real devices, this would 

only be possible if previously known ground truth values were sent, in order to compare them 

with the values received by other nodes. 

To model the implementation of the social trustworthiness layer, we used a simplified version 

of the objective reputational model from [46]. Our use case simplification assumes that all 

transactions will have the same weight, all nodes have the same computational capability, and 

the relationship factors between them are equal. Finally, a consensus protocol can be modeled 

by knowing the background traffic (bps) introduced to the network and the number of 

Byzantine nodes supported (Nb). In our use case, each group of redundant GTN-P stations 

will run the PBFT algorithm [114]. The background traffic grows exponentially as the number 

of nodes participating in the consensus (Nt) group increases. Moreover, the number of 

tolerated Byzantine nodes Nb is calculated as in Eq. 18:  

 𝑁𝑏 = ⌊
𝑁𝑡−1

3
⌋ (18) 
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Our scenario has five NVIS gateways, each providing an independent LoRa coverage area 

(access network) with its own sensors. For each gateway, there are clusters of sensors 

measuring the same data. In our test on the field during the campaign, we will deploy eight 

clusters per gateway. However, in the simulations, we also tested larger numbers of clusters (as 

seen in Table VII) to assess the goodness of our model and the system’s scalability. Each cluster 

will have a specific number of redundant sensors measuring the same data. From our previous 

tests, we defined that we would set seven redundant sensors (GTN-P stations) in each cluster 

in the field deployment, so two Byzantine nodes could be tolerated. Despite this, in the 

simulation tests, we varied this number from 1 to 10 in order to compare the results with 

different Byzantine node tolerances (from 0 to 4, following Eq. 18) and assess the system’s 

scalability. 

The simulations consider three different operational modes: the standard mode (no 

redundancy), the redundancy mode with social trustworthiness, and the redundancy mode with 

consensus. In the standard mode, all the values gathered by every sensor are pushed through 

the backbone network to the remote control center. On the contrary, in redundancy modes, 

only one value is forwarded to the control center by each cluster. This value is agreed by cluster 

members with the social or the consensus mechanism. This fact reduces the amount of traffic 

that has to pass through the NVIS backbone LFN, although, contrarily, it introduces more 

overload to the LoRa access network due to the messages that need to be exchanged between 

cluster members. 

All these possibilities add up a total amount of 16,200 different scenarios. Each scenario was 

simulated for 120 hours (5 days) to experience diverse nighttime and daytime cycles, and each 

test was repeated 30 times to assure results confidence. A summary of the simulation 

parameters to run our tests is shown in Table VII. 
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TABLE VII 

SIMULATIONS PARAMETERS 

 
Parameter Value 

Number of runs per test 30 

Simulation duration 120 hours (5 days) 

𝑃𝑏0 [1x10-3, 2x10-3, 4x10-3, 8x10-3, 1x10-2, 2x10-2, , 4x10-2, 8x10-2, 1x10-1] 

k 5.7x10-5 

Transport protocol [BBR, Copa, CUBIC, EAATP, Indigo, Verus] 

Redundancy Mode [None, Social, Consensus (PBFT)] 

Number of NVIS gateways 5 

Number of GTN-P clusters per gateway [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096] 

Number of GTN-P stations per cluster [1-10] 

3.6. Results 

After performing all the simulations, the average value of the STR was calculated for every set 

of 30 runs per test. The results obtained have a maximum error deviation of 0.68% with a 

confidence interval of 99%. Three different operational modes for the telemetry service can be 

identified: the standard mode, the redundancy mode with social trustworthiness layer, and the 

redundancy mode with consensus layer. For every mode, an N × M-dimension grid with all 

the possible combinations of stimulation parameters is formed, where M is the number of 

different Pb0 values, and N is the number of different GTN-P node combinations per gateway. 

For every point in this grid and for every transport protocol, the average value of the 

trustworthiness STR metric is computed. If we link all the STR values for every neighboring 

point in the grid, a mesh with all the STR values for each transport protocol is formed. We call 

this mesh the trustworthiness mesh. 

Given that it is complex to understand the trustworthiness mesh results, we first use an 

example to describe how the results are visualized. If we wanted to represent the results for 

only one transport protocol, when the number of redundant sensors per cluster is 1, and the 

number of clusters varies from 8 to 4096 (Table VII, row 9) we could obtain a mesh similar to 

Figure 21(a). The “Byzantine Fault Probability” axis has nine discrete points, corresponding to 

the nine different 𝑃𝑏0 values shown in Table VII, row 4. The “Redundant Sensors × Sensor 

Clusters” axis has 10 discrete points, which are 1 × 2N, where N = [3, 4, …, 12], according to 

the values shown in Table VII, row 9. Figure 21(a) shows the general behavior that STR values 

will follow in the actual results. On the one hand, across the “Byzantine Fault Probability” axis, 

the STR decreases as the 𝑃𝑏0 increases, given that more values are faulty sensed when the 𝑃𝑏0 
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is higher. On the other hand, across the “Redundant Sensors × Sensor Clusters” axis, the STR 

decreases as the number of clusters increases, given that more devices are introduced to the 

network, provoking more packet losses caused by network congestion. 

Similarly, suppose we wanted to show, in a single mesh, the results from the same scenario, 

but the number of redundant sensors per cluster varied between 1 and 2. In that case, we could 

obtain a mesh similar to Figure 21(b). In this case, the “Byzantine Fault Probability” axis 

remains the same. In contrast, now the “Redundant Sensors × Sensor Clusters” axis has 20 

discrete points, which are [1 × 2N, 2 × 2N] where N = [3, 4, …, 12]. If all the discrete points of 

this axis were labeled, it could be too congested. For this reason, we only label the beginning 

of each “redundant sensors” series, i.e., the “1 × 8” and the “2 × 8” discrete points. The same 

behavior as before is observed, but now the STR values recover when we jump from the “1 × 

4096” to the “2 × 8” discrete point, given that much fewer nodes are introduced to the 

network, i.e., fewer packets are dropped due to network congestion. 

Analogously, Figure 21(c) shows the trustworthiness mesh if we wanted to visualize all the 

results simultaneously, varying the number of redundant sensors from 1 to 10 (Table VII, row 

10). In this case, the “Redundant Sensors × Sensor Clusters” axis has 100 discrete points, which 

are [1 × 2N, 2 × 2N, …, 10 × 2N] where N = [3, 4, …, 12]. In this case, we observe the same 

general behavior again. However, now we can also detect that, if we compare the discrete 

points with the same number of clusters, the STR also decreases as the number of redundant 

sensors per each cluster increases, i.e., more packet losses are caused by network congestion as 

more nodes are introduced to the network. 

Figure 22 shows the frontal view of the trustworthiness mesh from Figure 21(c). From this 

view, we can observe how the STR varies across the “Redundant Sensors × Sensor Clusters” 

axis without showing the variance, depending on the 𝑃𝑏0 of the nodes. 
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(a) 

 

(b) 

 

(c) 

Figure 21. Trustworthiness mesh examples: (a) only one redundant sensor per cluster; (b) one or two redundant sensors 
per cluster; (c) one to ten redundant sensors per cluster. 



Trustworthiness Mechanisms for Long-Distance Networks in Internet of Things 

 87 

 

Figure 22. Example of frontal view of the trustworthiness mesh, corresponding to Figure 21(c). The yellow line is used to 
construct the trustworthiness working domain shown in Figure 23. 

 

Figure 23. Example of the trustworthiness working domain corresponding to Figure 21(c) and Figure 22 with a minimum 
STR required of 0.7. 

Our model can also be used to visualize the working domain in which to implement our service, 

given a desired minimum trustworthiness level. As stated before, our use case requires a 

minimum STR of 0.7, so an average of 9 out of 13 sensed values per night reach the control 

center correctly to meet the objective of [20]. Figure 23 shows the working domain of the 

example trustworthiness mesh presented in Figure 21(c) and Figure 22, requiring an STR 

higher than 0.7. For every point in the grid, if no solution provides an STR higher than the 

desired minimum value, the surface for that area is white-colored, meaning we cannot deploy 
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the service with those conditions. On the contrary, if one or more solutions achieve an STR 

higher than the desired minimum value, the surface is painted with the color of the solution 

with the highest STR. This representation is achieved by “cutting” Figure 22 along the yellow 

line, which represents the minimum STR level that must be achieved. The part of the 

trustworthiness mesh above the yellow line meets the criteria and is part of the working 

domain, while the part below does not. 

After clarifying how to visualize the data shown in these graphs, we present the tests’ results in 

the following graphs. Figure 24, Figure 25, and Figure 26 show the trustworthiness mesh for 

the standard mode, the redundancy mode with social trustworthiness, and the redundancy 

mode with consensus, respectively. In each graph, the trustworthiness mesh of each transport 

protocol is superposed with the others in order to visualize which one achieves the highest 

STR. Moreover, Figure 27 shows the trustworthiness working domain of our telemetry service 

for an STR higher than 0.7. 

 

Figure 24. Trustworthiness mesh (standard mode). 
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Figure 25. Trustworthiness mesh (social trustworthiness). 

 

Figure 26. Trustworthiness mesh (consensus). 

 

Figure 27. Trustworthiness working domain requiring STR > 0.7. 
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3.7. Discussion 

On the one hand, Figure 24, Figure 25, and Figure 26 show that the levels of trustworthiness 

achieved are similar for all the studied transport protocols with low network load (left side of 

the mesh and cases with fewer sensor clusters). This fact seems reasonable because we already 

selected the most suitable and top-performance transport protocols to perform our tests, 

discarding those that do not adapt well in LFNs. We believe that if other transport protocols 

less suitable for this kind of network had been tested, the difference in the results would be 

more evident. However, 1) the levels of BBR and Verus are slightly lower than their 

competitors, and 2) Copa, Indigo, and EAATP share the highest STR values in the case of low 

network load, although the predominance of EAATP grows as the network load increases (the 

yellow mesh is more visible than the others). 

On the other hand, we can also see that the redundancy mode with social trustworthiness 

(Figure 25) is the most robust scenario, given that its STR decrease in high-load situations is 

less accentuated compared to the other cases (Figure 24 and Figure 26), always maintaining 

STR values greater than 0.5. Furthermore, it is confirmed that, in general, as the probability of 

a node experiencing a Byzantine error decreases, the achieved STR values accordingly increase. 

From the trustworthiness working domain (Figure 27), we can see the aforementioned 

predominance of the EAATP. As mentioned in section 3.5, the scenario intended to deploy in 

the next Antarctic campaign was the “7 redundant sensors × 8 sensor clusters”. Concretely, 

we can check that this case reaches the STR requirement of 0.7 for any Pb0 value. 

If we focus on this case, in Figure 27, we can see that the EAATP is the most trustworthy 

protocol except for the Pb0 = 1 × 10−1 and Pb0 = 8 × 10−2 cases, in which Copa performs better. 

Table VIII shows, in detail, the results for the “7 redundant sensors × 8 clusters” case. For 

each protocol and each Pb0, we show the best STR achieved from the three possible operational 

modes (standard, social, and consensus). Although Copa, CUBIC, and EAATP have similar 

results, the latter can outperform Copa and CUBIC between 0.1% and 0.5% better in terms of 

STR in most cases, and also outperforms up to 7% more than its other competitors. These 

results confirm our hypothesis, i.e., using a particular transport protocol can directly affect the 

system’s trustworthiness in our use case. 
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TABLE VIII 

BEST STR ACHIEVED BY EACH TRANSPORT PROTOCOL IN THE “7 REDUNDANT SENSORS × 8 CLUSTERS” 

CASE. THE BEST STR FOR EACH PB0 IS HIGHLIGHTED IN BOLD. 

 

𝑷𝒃𝟎 BBR Copa CUBIC EAATP Indigo Verus 

1 × 10−3 0.767 0.818 0.817 0.818 0.814 0.801 

2 × 10−3 0.767 0.814 0.814 0.819 0.817 0.802 

4 × 10−3 0.772 0.819 0.819 0.819 0.811 0.795 

8 × 10−3 0.768 0.816 0.814 0.817 0.807 0.797 

1 × 10−2 0.767 0.818 0.817 0.820 0.805 0.794 

2 × 10−2 0.767 0.814 0.813 0.815 0.799 0.782 

4 × 10−2 0.762 0.811 0.809 0.813 0.777 0.765 

8 × 10−2 0.750 0.796 0.795 0.794 0.741 0.727 

1 × 10−1 0.731 0.785 0.781 0.779 0.724 0.710 

We believe that the EAATP's superior trustworthiness is caused by the fact that it incorporates 

a fairness mechanism to share the network bandwidth, which reduces congestion and packet 

losses. Moreover, EAATP's congestion control tries to occupy the entire network bandwidth 

rapidly, and its mechanism to differentiate between random channel losses and congestion 

losses optimizes its achieved throughput in heavy congestion situations. These features give 

the EAATP a competitive advantage in terms of performance in our use case, where the DTN 

opportunistic scheme we use to send accumulated data during the night as a bulk data transfer 

congests the network. 

For these reasons, we decided to use the EAATP as the backbone network transport protocol 

for our IoT telemetry service that will be deployed in the field during the next Antarctic 

campaign. Moreover, we can identify which of the three modes best suits the different 

scenarios which may arise. In general, the standard mode obtains the highest STR values when 

there is no redundancy (1 × N zone). If redundancy is applied, the consensus solution shows 

the highest levels of trustworthiness in most cases with a low network load. However, as 

mentioned before, when the network load increases, the social trustworthiness solution is more 

robust, achieving the highest STR values for those cases. 

Finally, we also propose that the scenario to be deployed is reconsidered. In the “7 redundant 

sensors × 8 clusters” scenario, each gateway has 56 sensors connected, while only eight 

different values are sensed, which might be an excessive low efficiency. We propose to switch 

to the “5 redundant sensors × 16 clusters”. In this case, increasing the number of sensors by 
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43% (80 sensors per gateway) results in increasing the number of different sensed values by 

100% (16 values). Table IX shows the detailed results for this use case. If we compare the 

results from Table VIII and Table IX, the latter case achieves slightly worse STR values (which 

seems evident because we decrease the redundancy and increase the total number of sensors). 

However, Copa, CUBIC, EAATP, and Indigo still meet the required STR level of 0.7, 

providing trustworthiness to the service. In this case, we can also confirm the predominance 

of the EAATP, being the protocol with the highest STR in five of the nine Pb0cases, while 

Copa and CUBIC achieve the highest STR in two cases each. Moreover, EAATP outperforms 

its competitors by up to 5.1%, while in the cases where another protocol outperforms the 

EAATP, it is only by 0.3% at most. Thus, we believe that the EAATP would also be the most 

suitable transport protocol to be used in this case. 

TABLE IX 

BEST STR ACHIEVED BY EACH TRANSPORT PROTOCOL IN THE “5 REDUNDANT SENSORS × 16 CLUSTERS” 

CASE. THE BEST STR FOR EACH PB0 IS HIGHLIGHTED IN BOLD. 

 

𝑷𝒃𝟎 BBR Copa CUBIC EAATP Indigo Verus 

1 × 10−3 0.757 0.797 0.798 0.797 0.795 0.783 

2 × 10−3 0.752 0.799 0.799 0.798 0.796 0.783 

4 × 10−3 0.748 0.796 0.798 0.797 0.792 0.777 

8 × 10−3 0.75 0.794 0.795 0.801 0.792 0.775 

1 × 10−2 0.749 0.793 0.795 0.796 0.786 0.775 

2 × 10−2 0.74 0.79 0.787 0.792 0.779 0.764 

4 × 10−2 0.73 0.776 0.781 0.781 0.757 0.747 

8 × 10−2 0.698 0.74 0.736 0.737 0.727 0.706 

1 × 10−1 0.672 0.717 0.714 0.718 0.704 0.692 

3.8. Conclusions 

This paper analyzes the applicability of the deployment of a remote WSN for the Antarctic 

region using NVIS technology and the provision of an IoT telemetry service for permafrost 

studies. This service will be deployed during the 2021–2022 Antarctic campaign of the 

SHETLAND-NET project. This work focuses on analyzing and comparing transport 

protocols' trustworthiness in our remote WSN with DTN use case, which uses LoRa at the 

access network and NVIS links at the backbone network. Due to certain ionospheric 

characteristics, NVIS links do not work correctly at night. For this reason, values sensed at 

night are sent opportunistically to the control center as bulk data when the NVIS channel 

becomes available, which might cause network congestion. In this situation, the choice to use 
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a particular transport protocol might affect the overall system’s trustworthiness. In order to 

study the viability of the service to be implemented before its deployment in the field during 

the Antarctic campaign and in an attempt to compare the performance of various transport 

protocols, we use our model to measure and evaluate the trustworthiness of the proposed 

system. This trustworthiness model consists of four layers that can affect the STR 

trustworthiness metric. 

Three operational modes and six transport protocols were analyzed under different conditions 

using the Riverbed Modeler simulator. The results show a predominance of the EAATP as the 

most trustworthy transport protocol, while BBR and Verus have the worst trustworthiness. 

Adding redundancy to the measured values with multiple sensors and applying a social 

reputational mechanism improves the robustness of the system's trustworthiness, reaching 

higher STR values and never dropping below 0.5, even in high-load scenarios. On the contrary, 

a consensus mechanism improves the system's trustworthiness if the number of sensors is kept 

at a low value. 

The research group decided to deploy eight clusters for each NVIS gateway and seven GTN-

P redundant stations per cluster in the Antarctic campaign. The collected results confirm that 

this scenario achieves the minimum STR required of 0.7, resulting in a feasible deployment. In 

this case, the results show that the EAATP can outperform up to 7% of the other analyzed 

transport protocols in terms of trustworthiness (STR). However, we recommend sacrificing 

some redundancy (i.e., trustworthiness) and increasing the number of different sensed values, 

implementing the scenario with 16 clusters and five GTN-P redundant stations. In this case, 

although slightly worse STR values are achieved, the requirement of achieving at least an STR 

of 0.7 is met, while more data can be remotely monitored from the control center. The EAATP 

is also the most trustworthy transport protocol in this case, outperforming its competitors by 

up to 5.1%. Thus, the research group has decided to use the EAATP as the transport protocol 

for the offered telemetry service. 

Future work aims to 1) study the viability of using the same network architecture to deploy an 

integrated sensing and communication system (ISAC) capable of using ionosondes as data 

transmission signals through NVIS; and 2) analyze the implementation of other DTN 
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architectures and protocols to improve the trustworthiness of the entire system in situations 

when the availability of the NVIS link is not previously known (daytime). 
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C h a p t e r  4  

A DELAY TOLERANT NETWORK FOR ANTARCTICA 

Antarctica is the land of science. Every year, many studies are carried out in diverse disciplines. 

Some of these studies collect relevant data for their research with sensors. However, 

Antarctica’s lack of telecommunication technologies hardens the possibility of automatizing 

this data collection. In most cases, the collection is done manually, limiting research projects' 

time and space scopes. Over the last years, some alternatives have been studied to deploy 

remote Wireless Sensor Networks in Antarctica. Near-Vertical Incidence Skywave (NVIS) 

communications are an example of these alternatives. However, NVIS presents problems that 

cannot guarantee persistent end-to-end connectivity. For this reason, this paper assesses 

adapting a Delay Tolerant Network protocol, the Bundle Protocol, to deliver sensor data 

reliably through an NVIS network. The scenario is developed and tested in the Riverbed 

Modeler simulator, and performance is evaluated through a trustworthiness model. A practical 

testbed is also presented.4 

Keywords: Antarctica; IoT; WSN; NVIS; Trustworthiness; Reliability; DTN; Bundle Protocol. 

4.1. Introduction 

The Antarctic continent is crucial for understanding Earth’s past, present, and future status [9]. 

For this reason, many research projects from multiple disciplines have been carried out yearly 

in Antarctica. In addition to the adverse climate conditions, one of the main challenges in 

Antarctica is the lack of telecommunication systems. Common service providers do not offer 

connectivity services in the Antarctic land, and satellite communications are the only 

alternative. However, the available bandwidth is often insufficient to cope with researchers’ 

needs [10]. 

 
4 The work reported in this chapter was published as the paper entitled “A Delay Tolerant Network for Antarctica” in the 

IEEE Communications Magazine on August 2nd, 2022 for the 12th issue of Volume 60, 

https://doi.org/10.1109/MCOM.007.2200147 Authors: Adrià Mallorquí, Agustín Zaballos, Daniel Serra. 

 
 

Due to copyright reasons, content from pages 95-110 
was omitted from this version. 

https://doi.org/10.1109/MCOM.007.2200147


Chapter 4: A Delay Tolerant Network for Antarctica 

 96 

One of the challenges to delivering modern scientific research in Antarctica is deploying 

Wireless Sensor Networks (WSNs). Currently, many Antarctic research projects aim to study 

and monitor specific elements from the continent, such as animals, plants, or the surface [20]. 

Sensors often obtain the collected data in these cases. However, these data are gathered 

manually, so researchers must go to the sensor location to save the data (e.g., with USB drives). 

For this reason, sensors are commonly placed near research stations, or if they are placed in 

remote locations, the data collection is very sporadic, and there is a low capacity to respond to 

unexpected problems. In addition, most research projects in Antarctica are constrained by the 

short duration of their campaigns, which commonly last a few months. These facts limit the 

scope of research projects in terms of time, coverage, and data volume. 

For this reason, automation in data collection is currently one of the demands of Antarctic 

researchers [10]. Some research projects have deployed ad-hoc solutions to automize their data 

collection. However, a common infrastructure for Antarctic research is still needed. 

LoRa is a well-suited solution to deliver WSN connectivity, given its independence from service 

providers and a coverage range of up to tens of kilometers. However, other solutions are 

needed when remote WSNs are separated by far more distance without Line-of-Sight (LoS). 

LoRa satellite-to-earth communications were explored for long-range communications 

without LoS [140]. However, its bitrate is low (around 20 bps), and no current satellite 

constellations in Antarctica provide this type of coverage. A proposed alternative is a hybrid 

WSN that uses LoRa and Near-Vertical Incidence Skywave (NVIS) communications [85]. 

NVIS links are radio waves in the High Frequency (HF) band, propagated near-vertically 

upwards into the ionosphere. The ionosphere reflects these signals to the Earth’s surface, 

achieving a coverage range of up to 250 km without needing LoS. The maximum achievable 

bandwidth is 20 kbps, sufficient to transport aggregated data from WSNs. 

However, NVIS link availability depends on the ionosphere’s status, which strongly correlates 

to solar activity (e.g., the same frequency band cannot be used to transmit at daytime and 

nighttime, so two different frequencies are needed) [85]. Recent studies evidenced that NVIS 

WSNs suffered reliability issues, given the irregular availability of NVIS links. NVIS channels 

cannot guarantee persistent end-to-end connectivity and might have long delays and 
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disconnections. These characteristics are typical of challenging networks, such as interplanetary 

communications, and are often counteracted with Delay Tolerant Network (DTN) techniques 

[25]. DTNs have also been explored for WSNs and the Internet of Things (IoT). 

This work aims to introduce a DTN protocol, the Bundle Protocol (BP), to the Antarctic WSN 

and deploy the first-ever Antarctic DTN during the next campaign in the field in the 

framework of the SHETLAND-NET project. Concretely, the project focuses on the use case 

of permafrost monitoring, where Ground Terrestrial Network-Permafrost (GTN-P) stations 

act as sensors to study the state of the frozen Antarctic ground. GTN-P stations are placed in 

the Livingston and King George islands, separated by more than 90 km. This DTN will 

improve the telemetry service's reliability that oversees the delivery of collected data from the 

GTN-P stations to the control center. 

The use case and BP were modeled into the Riverbed Modeler simulator to assess this 

architecture’s feasibility, and the results were evaluated through a trustworthiness model. 

Moreover, the paper presents a physical DTN testbed deployed in the past Antarctic campaign 

(February 2022). 

The paper’s main contributions are: 

1. A DTN architecture design that will provide the permafrost telemetry service in 

Antarctica. 

2. A BP implementation in Riverbed Modeler simulator. 

3. A trustworthiness assessment of the Antarctic telemetry service through simulation 

tests. 

4. A physical DTN testbed with the NVIS nodes deployed in the past Antarctic 

campaign. 

The rest of the paper is organized as follows: Section 4.2 reviews the related work in DTNs; 

section 4.3 describes the system and network architecture for the Antarctic use case; section 
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4.4 describes the modeling of the DTN and the simulation tests carried out; section 4.5 

discusses the simulations results; section 4.6 presents the physical testbed that has been 

deployed in Antarctica; finally, section 4.7 presents the conclusions and future work. 

4.2. Delay Tolerant Networks 

The term challenging network was defined as a network with a high bit error rate, long delay, 

and lack of persistent end-to-end connectivity [69]. Since packet-switched networks are 

conceived under the standard TCP/IP architecture, where end-to-end connectivity is assumed, 

challenging networks degrade the applications' performance and reliability. The first type of 

studied challenging networks were the interplanetary networks, and a DTN architecture was 

defined to cope with these problems and achieve successful outer space communications. 

Nonetheless, other challenging networks with similar characteristics have been identified, such 

as vehicular networks, sparse WSNs, wildlife tracking networks, and underwater networks [69]. 

DTNs have also been explored in the military field, given the use of WSNs in harsh 

environments [141]. 

The DTN mechanisms and architecture defined to cope with challenging networks evolved 

into the definition of the standard DTN protocol, BP, in RFC 5050. BP allows reliable message 

delivery through challenging networks. For instance, BP can provide data transmission and 

reception even if the source and destination nodes are never online simultaneously. While 

conventional TCP/IP protocols cannot deliver messages under these circumstances, BP does. 

This protocol defines its Protocol Data Unit (PDU), the bundle. A bundle is the minimum 

quantity of data the running application or service needs to ensure semantic significance. 

However, BP incorporates mechanisms to fragment and reassemble if a bundle is too large to 

be successfully delivered through the network. 

BP runs on the upper layers of the protocol stack, under the application layer, building an 

overlay network with a store-carry-forward philosophy. The overlay network nodes can keep 

bundle custody, which means they can store the bundle for an extended period if the next hop 

is unavailable. When a connection opportunity with the next hop appears, the bundle is 

delivered, and the custody is transferred. While the neighbor discovery and the overlay network 
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routing can be defined statically, dynamic mechanisms are also available for large networks 

[69]. 

Given that BP can run among various underlay protocols (TCP, UDP, and IP, among others), 

a specific Convergence Layer Adapter (CLA) is needed for each of these protocols. RFC 5050 

does not define the specific operation of these CLAs but states the requirements they should 

accomplish. An improved version of BP, BP version 7, was released as a draft. It introduces 

new features to simplify BP's operation. 

Although the RFC 5050 defines BP operation and architecture, there is no standard 

implementation. However, popular BP implementations are in use nowadays [25]. For 

instance, the Interplanetary Overlay Network (ION) is NASA’s implementation for outer 

space communications. DTN2 is also a widespread open-source implementation. BP version 

7 also has its implementation, DTN7. Aiming to enable DTN applications in IoT and WSNs, 

some lightweight BP implementations such as IBR-DTN, µDTN, µD3TN, and NanoDTN 

appeared. 

However, other DTN approaches are not based on BP but use a routing protocol designed to 

be delay-tolerant [69]. Moreover, we can find schemes that mix DTN with other technologies, 

such as opportunistic networking, Machine-to-Machine (M2M) communications, 

Information-Centric Networking (ICN), and fog computing. 

In the case of the Antarctic WSN, the current system [85] works with an inverted-V dipole 

antenna, so it can only be adapted to one of the ionosphere’s working frequencies [11]. The 

daytime frequency was the chosen one. Thus, the NVIS antenna cannot transmit during 

nighttime because the working frequency is different. To solve this, a reconfigurable antenna 

to switch between the ionosphere’s working frequencies would be needed, but it was discarded 

due to its higher complexity and loss insertion. A simple opportunistic networking scheme was 

proposed to solve the lack of persistent end-to-end connectivity [85]. With this scheme, the 

collected data is stored and later forwarded when the links become available in the morning. 

However, since the NVIS network has a low capacity (up to 20 kbps), this mechanism might 

congest the network and degrade the service reliability. Therefore, using BP is proposed, which 
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can control the pace of bundle transmissions, thus avoiding network congestion and increasing 

the system’s reliability. 

4.3. Antarctic DTN architecture 

The Antarctic use case is a permafrost telemetry service that interconnects remote WSNs. The 

communications and hardware had to be lightweight, low-cost, and low-power-consuming to 

increase the system’s autonomy and last the period between consecutive campaigns. During 

the initial stages of the SHETLAND-NET project, the system architecture had to be decided. 

Various hardware platforms, communication technologies, and DTN implementations were 

studied to choose the best suited. For this reason, a qualitative benchmark was carried out, 

analyzing several aspects of each alternative and giving them a value of “desired,” “acceptable,” 

or “unacceptable,” depending on the level of meeting the use case requirements. Table X 

synthesizes the qualitative benchmark based on the mentioned analysis and practical experience 

in the field. Green, orange, and red-colored items identify “desired,” “acceptable,” and 

“unacceptable” qualifications, respectively. Any option with at least one “unacceptable” 

qualification was immediately discarded. As for the remaining candidates, the ones with better 

qualifications were chosen. 

The Antarctic telemetry service is deployed by interconnecting WSNs through an NVIS 

backbone network. A BP overlay network is set up to increase the service's reliability. GTN-P 

stations are the sensors of the network, which monitor the state of the frozen ground. Each 

GTN-P station collects 32 different parameters hourly [20], and these values must reach the 

remote control center. Figure 28 shows the diagram of the network architecture. GTN-P 

stations are equipped with a Moteino, an Arduino-based board for low-power consumption 

applications. Each Moteino sends its collected data from a measuring spot to a Raspberry Pi 

3B+ gateway through the LoRa WSN. This LoRa WSN is the access network. As stated before, 

LoRa is a well-suited technology to deploy a WSN in Antarctica, given its service provider 

independence (see Table X). The LoRa network is configured at the transmission band of 868 

MHz, with a code rate CR3 and a spreading factor SF7, obtaining a 125 kHz channel bandwidth 

with a bit rate of 5.47 kbps. This configuration was already tested in Antarctica, achieving a 
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coverage range of up to 30 km with LoS and providing a few-kilometer coverage range without 

LoS [13]. It was also validated in the project’s past campaign in Antarctica. 

TABLE X 

TECHNOLOGIES QUALITATIVE BENCHMARK 

 
DTN 

Implementation ION DTN2 DTN7 IBR-DTN μDTN NanoDTN μD3TN 

Source Code 
Available 

Yes Yes Yes Yes Yes No Yes 

Linux supported Yes Yes Yes Yes No No Yes 

Lightweight No No No Yes Yes Yes No 

TCP/IP 
Compatible 

Yes Yes Yes Yes No No Yes 

Ease of use Medium Medium High High High Unknown High 

Meets use case 
requirements 

No No No Yes No No No 

Communications Satellite NVIS LoRa Satellite Sigfox LoRa NB-IoT 802.15.4 

Transmission 
Power 

Medium Medium Medium Low Low 
Low-

Medium 
Low 

Bit rate Very High Medium Low Low Medium 
Medium-

High 
Medium 

Deployment 
Service 

Provider 
Standalone Standalone Service Provider Standalone 

Service 
Provider 

Standalone 

Range Very Long Long Very Long Medium Medium Medium Short 

Battery life Low Medium Medium High High Medium High 

Reliability High Medium Medium High High High High 

Cost Very High Low Very High Medium Low Medium Low 

Current coverage 
in Antarctica 

Limited Yes No No Yes No Yes 

Meets use case 
requirements 

No 
Yes 

(Backbone) 
No No Yes (Access) No No 

Hardware Ettus Red Pitaya Tinker Board Raspberry Pi Arduino Moteino Waspmote 

Power 
consumption 

Medium High High Medium Low Very Low Medium 

Resource 
consumption 

(CPU, memory) 
Medium Medium Medium Medium Low Very Low Low 

Reliability High Very High High High High High High 

Cost Very High High Medium Medium Low Very low Low 

Meets use case 
requirements 

No Yes (SDR) Yes (Backbone) Yes (Backbone) Yes (Sensor) Yes (Sensor) No 

To provide redundancy, more than one sensor can be placed at a measuring spot, monitoring 

the same frozen ground status, thus increasing the reliability of the measures. The Raspberry 

Pi 3B+ nodes are the gateways of the architecture, forwarding data from LoRa networks to the 

NVIS backbone network. An NVIS antenna, a Raspberry Pi 3B+, and a Red Pitaya Software-

Defined Radio (SDR) board form an NVIS node [11]. 

NVIS nodes are configured to transmit at 4.3 MHz, with a channel bandwidth of 2.3 kHz and 

a bit rate of 4.6 kbps. The NVIS transmission uses a convolutional code (1/2 rate code) and 

interleaving. With this configuration, an NVIS link range is up to 250 km. This configuration 
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was also validated in the past campaign. However, as stated before, given that the system works 

at a single frequency band, it cannot simultaneously transmit data during daytime and 

nighttime, being only available in the daytime. Each NVIS node forwards the data from its 

WSN to the central NVIS node, where the control center is based. The NVIS nodes can use 

two transport protocols to transmit the data: TCP CUBIC, the default one in a Raspberry Pi; 

and the Enhanced Adaptive and Aggressive Transport Protocol (EAATP), an ad-hoc transport 

protocol that proved to have better performance in other studies [85]. 
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Figure 28. Antarctic DTN diagram. 

To ensure reliable results, the permafrost study needs, on average, a minimum of 70% of the 

collected samples to be correctly received at the control center, given that, in general, the 

control center needs 16 of the 24 samples collected during a day to process permafrost data 

for each measuring spot. 
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The DTN overlay architecture with BP is implemented in the NVIS network backbone, as 

shown in the protocol stack (Figure 28). BP is implemented in the NVIS nodes to overcome 

non-persistent end-to-end connectivity and long delays. As stated, BP needs a CLA to interface 

with the underlying protocols. BP implementations already incorporate a CLA for TCP. 

However, BP also needs a CLA for EAATP, developed in this work for the use case (as seen 

in section 4.4). 

4.4. Simulation tests 

The scenario was simulated in the Riverbed Modeler to assess the feasibility and reliability of the 

proposed architecture. The following use case elements were modeled: the telemetry application, 

the nodes and their byzantine fault probability, the redundancy modes, LoRa and NVIS 

networks, EAATP transport protocol, and BP DTN protocol. Only BP was explicitly modeled 

for this work. The other elements were already modeled from previous research [85]. Nine 

different values for byzantine fault probability (Pb0) ranging from 10-1 to 10-3 were simulated to 

assess the effects of using different sensor sources and battery charge levels. This byzantine fault 

probability increases over time, following the model from [113]. 

For redundancy, two different modes were modeled: the “Standard” mode, which does not take 

advantage of redundant sensors; and the “Social” mode, which uses a social trust management 

mechanism [137] to select the values gathered from the redundant sensors with the highest 

reputation. Other redundancy modes tested in previous research were omitted due to their lower 

reliability [85]. 

The Riverbed Modeler is an event-based simulator, and all network protocols must be modeled 

as Finite State Machines (FSMs) [142]. Thus, EAATP and BP were modeled as two independent 

FSMs in Proto-C. BP model includes BP itself and the CLAs for TCP and EAATP. Notice that 

TCP CUBIC is already provided by default as a standard simulator model. Neighbor discovery 

and routing were configured statically. 
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TABLE XI 

SIMULATION PARAMETERS 

 
Parameter Value 

# Runs per test 30 

Simulation duration 400 days 

Pb0 
[1 × 10−3, 2 × 10−3, 4 × 10−3, 8 × 10−3, 1 × 10−2, 2 × 10−2, 4 × 10−2,  
8 × 10−2, 1 × 10−1] 

Transport Protocol [CUBIC, EAATP] 

Operation Mode [Standard, Social] 

DTN Mechanism [Opportunistic, BP] 

NVIS Gateways 5 

Measuring Spots [32, 64] 

Redundant Sensors [1-5] 

Payload Size 140 bytes 

Network Parameter NVIS LoRa 

Transmission Band 4.3 MHz 868 MHz 

Channel Bandwidth 2.3 kHz 125 kHz 

Channel Bitrate 4.6 kbps 5.47 kbps 

Coverage Range 250 km 30 km 

Day Availability 70-100% 100% (LoS), 2-100 (No LoS) 

Night Availability 0% 100% (LoS), 2-100 (No LoS) 

The simulation scenario has five NVIS nodes, each providing an independent LoRa coverage 

area for its sensors (see Figure 28). Redundant sensors measuring the same data have been 

simulated at each measuring spot to assess the goodness of the “Social” redundancy mode. Up 

to five additional redundant sensor nodes could be deployed in each measuring spot. 

According to Antarctica’s permafrost use case, we considered a simulation scenario of 32 and 

64 permafrost measuring spots. 

The access network (LoRa) is not affected by the time of day, varying its availability depending 

on the LoS. On the other hand, the backbone network (NVIS) is not affected by LoS. However, 

its availability varies between 70% and 100% during daytime (6 am – 5 pm), depending on the 

ionosphere state, which is highly correlated to solar activity, and is not available during nighttime. 

A trustworthiness model [85] is used to assess the reliability of the telemetry service. This model 

states that the primary metric to assess the reliability of a system is the Successful Transaction 

Rate (STR), defined as the relationship between the number of successful transactions and the 

total number of transactions in an observed time slot. For this use case, a transaction is successful 

when a collected value arrives correctly and on time at the control server. If the expected value 

does not arrive at the control server on time or the measured value is wrong, that transaction is 
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unsuccessful. This model is used to compare different scenario configurations and to measure 

which one offers the best reliability quantitatively. 

The use case scenario was tested under different conditions. Both EAATP and TCP were tested 

as possible transport protocols. The redundancy operation mode varied between the ones stated 

before to confirm that the “Social” mechanism achieves the highest reliability with BP. Finally, 

the DTN mechanism (opportunistic networking or BP) was also varied to compare their 

performance. The simulated duration was 400 days, the approximate timespan between two 

consecutive campaigns. Each test was repeated 30 times to assure confidence in the results. 

4.5. Results 

 

Figure 29. Trustworthiness surfaces comparison for “EAATP” (red), “CUBIC” (blue), “EAATP + BP” (green), “CUBIC 
+ BP” (beige), and the trustworthiness threshold (orange) in “Social” mode (left) and “Standard” mode (right). 

The results are shown in Figure 29. The number of redundant sensors per cluster (from 1 to 5) 

and the number of measuring spots (32 and 64) vary on the horizontal axis. Therefore, the 

“Measuring Spots × Redundant Sensors” axis has ten discrete points. The “Byzantine Fault 

Probability” is placed in the depth axis, with nine discrete points corresponding to the different 

Pb0 values. Finally, the obtained STR is shown on the vertical axis. Simulations compute a colored 

surface for each of the four combinations of transport protocol and DTN mechanism: CUBIC 

without BP, EAATP without BP, CUBIC with BP, and EAATP with BP. The results show how 

the number of redundant sensors and measuring spots impacts the system’s performance (STR). 

Moreover, for each operation mode (“Standard” on the right and “Social” on the left), an 

independent graph is used to represent the results, given that if they were all drawn in a single 

graph, the results would be illegible. The trustworthiness assessment can also visualize the 
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working domain available to implement the permafrost telemetry service by fixing the desired 

minimum reliability level (trustworthiness threshold). As stated before, this use case requires a 

minimum average STR of 0.7 to meet the desired level of reliability. For every point in the grid, 

if the orange surface (the trustworthiness threshold) is on top of the other surfaces, no solution 

provides an STR higher than the desired minimum value, so we cannot deploy the service under 

these conditions. On the contrary, if one or more solutions achieve an STR higher than the 

desired minimum value, their surfaces are on top of the orange surface, meaning that the desired 

reliability can be achieved with those configurations. Several conclusions can be extracted from 

Figure 29: 

1. Across the “Measuring spots × Redundant sensors” axis, the STR generally decreases 

as the number of measuring spots increases, given that more devices are introduced to 

the network, which causes more packet losses due to the subsequent congestion 

increment. 

2. Overall, the service can accomplish the desired level of STR ≥ 0.7 when BP is being 

used. Concretely, “Standard” and “Social” modes with BP mainly achieve the 

minimum reliability level. However, the criterion is not met when opportunistic 

networking is used instead. Thus, the desired reliability level is not guaranteed without 

BP in the timespan between consecutive campaigns. 

3. Even though both “Standard” and “Social” modes can consistently achieve the 

required reliability level, the “Social” achieves the highest STR values, taking advantage 

of its social trust management mechanism when there is sensor redundancy. 

Concretely, the maximum STR is achieved by the “Social” mode with EAATP and BP, 

when there are 32 measuring spots and five redundant sensors per spot, with an STR 

value of 0.79. Figure 30 details the results for this case. 

4. Figure 30 shows that the “Social” mode with BP always has a higher STR. BP can 

outperform the opportunistic networking scheme by up to 14%. Moreover, EAATP 

is generally the transport protocol with the highest STR (7 out of 9 cases in Figure 30). 
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Figure 30. Detailed STR results (32×5 case). 

5. The “Social” mode is the most robust, given that it can achieve the minimum STR in 

cases with higher Pb0 (0.04 and 0.08) where the “Standard” mode cannot meet the 

reliability criterion. 

6. Nevertheless, the “Standard” mode is the most suitable option if redundant sensors 

are not affordable. Thanks to BP, it still achieves the minimum required STR, obtaining 

a maximum STR of 0.77. 

4.6. DTN Implementation Unit (DIU) 

Given the successful results of BP in the simulations, it was decided to deploy a BP DTN testbed 

(called DTN Implementation Unit (DIU)) in the past Antarctic campaign (February 2022) with 

the physical hardware described in section 4.3. 
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Node A
Subnet 1 Subnet 2 Subnet 3

Node B

Node C Node D Node E

WANem

DATA BUNDLES FLOW
 

Figure 31. DTN Implementation Unit diagram. 

An existing implementation of BP, IBR-DTN [121], was adapted and installed into the Raspberry 

Pi 3B+ gateways. This release was chosen among other alternatives for its accessibility, ease of 

use, lightweight, and documentation. It is developed to suit IoT requirements, including intuitive 

commands to run the protocol, making it the ideal option for this use case. The IBR-DTN 

package already contains CLAs for IP, IPv6, TCP, and UDP. However, a CLA for EAATP still 

needs to be developed. The DIU was deployed with five gateways or DTN nodes. These devices 

were organized into three subnets, as shown in Figure 31. Three nodes (A, B, and C) were placed 

in the first subnet, with node C connecting the first and the second subnet. The second subnet 

had nodes C and D, with node D in charge of interconnecting subnets 2 and 3. Finally, the third 

subnet had two nodes, D and E, and node E was the control center. 

This BP implementation provides useful commands like dtninbox, dtnoutbox, and dtntrigger, among 

others, an ideal interface for implementing the telemetry service. In addition, it also offers many 

configuration options, from the neighbor discovery and routing methods to protocol-related 

timers. The dtnoutbox and dtninbox commands were used to send and receive the bundles, 

respectively. The dtnoutbox command tries to send as bundles all the files stored in a predefined 

folder, while the dtninbox command stores all received bundles as files into another predefined 

folder. Moreover, the dtntrigger command allows executing a predefined script when a bundle is 
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received. In the testbed, this command was used to send back an ACK bundle to the sender to 

confirm bundle reception at the application layer. 

Functional tests were performed over this scenario, sending data bundles from nodes A, B, C, 

and D to node E while forcing node disconnections and introducing network errors, long delays, 

and interferences with a Linux-based WAN emulator node called WANem. The results were 

satisfactory, given that in all cases if the network disconnection was shorter than the bundle 

custody timeout, the bundles were eventually received by node E. 

Thus, it can be confirmed that NVIS nodes are entirely functional and correctly configured to 

work with BP and TCP CUBIC. However, it is still needed to finish the development of the CLA 

to test BP with EAATP. On the other hand, in the past campaign, a 90 km NVIS backbone link 

was also deployed with the configuration described in section 4.3, validating the chosen system. 

After these successful tests, the project aims to deploy the active DTN telemetry service in the 

next Antarctic campaign. 

4.7. Conclusions 

This work aims to deploy the first-ever DTN in Antarctica, offering an IoT telemetry service to 

monitor the status of the Antarctic permafrost. This DTN interconnects remote WSNs through 

an NVIS backbone network. The DTN is implemented with BP, which copes with the 

challenging network issues from NVIS links. A trustworthiness model is applied in this use case 

to assess the viability of the proposed solution and improve its reliability. The use case is modeled 

and simulated. 

Results show that the required minimum reliability is guaranteed using BP. The system’s reliability 

is increased by up to 14% with BP compared to the opportunistic networking scheme. In 

contrast, opportunistic networking cannot meet the reliability criterion. 

The “Social” mode shows the best reliability and robustness against byzantine faults. It achieves 

the required STR consistently and provides sensor redundancy. However, if sensor redundancy 

is not affordable, the “Standard” mode in conjunction with BP also meets the reliability criterion. 
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Overall, EAATP performs more reliably than TCP CUBIC, but it does not make a significant 

difference as BP does. 

Finally, since BP performs successfully in simulations, a functional DTN physical testbed is 

deployed with the actual Antarctic nodes. Future work aims to develop BP CLA for EAATP 

and deploy the DTN in Antarctica. 
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C h a p t e r  5  

RESULTS 

This chapter presents and summarizes the results obtained in each publication [83], [85], [87]. 

Then, the results are discussed and related to the objectives posed in the introduction (section 

1.3). As a reminder, the thesis objectives are focused on the use case to answer the research 

questions and validate the proposed trustworthiness model with quantitative results. The 

objectives are listed below: 

• O1. Establish a scope for the trustworthiness term. 

• O2. Define a model that enables trustworthiness accountability to detect weaknesses 

and propose appropriate countermeasures for trustworthiness improvement. 

• O3. Assess the trustworthiness of the Antarctic use case. 

• O4. Propose new mechanisms to improve the trustworthiness of the Antarctic use 

case. 

• O5. Deploy a PoC of the proposed service architecture in the field during the 2021-

2022 Antarctic campaign. 

5.1. A Heterogeneous Layer-Based Trustworthiness Model for Long Backhaul 

NVIS Challenging Networks and An IoT Telemetry Service for Antarctica 

This work aimed at objectives O1, O2, O3, and O4. For O1, a related work review was 

presented, classifying related work in trustworthiness into four categories. From this review, 

the scope of trustworthiness in CPS was limited to the areas of data trustworthiness, network 

trustworthiness, social trustworthiness, and consensus for the Antarctic use case. This led to 

the model definition (O2), which was based on four layers, each of them defined by its scope, 

its metric, its countermeasures, and the interdependencies between them (see Table XII): 
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TABLE XII 

TRUSTWORTHINESS MODEL’S LAYERS SUMMARY. 

 

Layer Definition Metric Countermeasures examples Interdependencies 

Data 
Is the layer responsible for ascertaining the 
correctness of the data provided by the 
source. 

FSR 

Autocorrection methods, node 
robustness, computational 
resources improvement, node 
ostracism. 

FSR can be reduced thanks to social trust and 
consensus mechanisms, relying only on data 
from trusted nodes or agreed for all group 
members. 

Network 
Is the layer responsible for assuring that a 
packet reaches its destination on time and 
unaltered despite the adversities. 

PDR 

Congestion decrease, load 
balancing, QoS, coding, MAC 
protocols, transport protocols, 
routing, DTN. 

Social ostracism can remove untrusted nodes 
from the network, thus decreasing network 
congestion and increasing PDR. 
Consensus mechanisms introduce extra traffic to 
the network, potentially congesting the network 
and decreasing PDR. 

Social 

Is the layer responsible for leveraging the 
capability of the objects to establish social 
relationships autonomously between them 
to improve the trust between them and 
the correctness of gathered data. 

STR 
Sensor redundancy, node 
ostracism. 

Data and network trustworthiness directly affect 
social trustworthiness. As less data is faulty-
sensed and more packets are correctly delivered, 
more trusted nodes and successful transactions 
can be achieved. 

Consensus 
Is the layer responsible for reaching a state 
where all group participants agree on the 
same response or result. 

BNT 
Increase the number of group 
participants, use social trust for 
weighted voting. 

Data and network trustworthiness directly affect 
consensus. As less data is faulty-sensed and 
more packets are correctly delivered, more 
general agreements can be achieved. 
Social trustworthiness can improve general 
agreements by using weighted voting depending 
on nodes’ social trust. 
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1. Data Trustworthiness Layer: is the layer responsible for ascertaining the correctness of 

the data provided by the source. This layer’s metric is the FSR. Countermeasures 

include autocorrection methods to detect faulty nodes, false alarms, and sensor 

misreading. Data trustworthiness can be affected by social trustworthiness and 

consensus. 

2. Network Trustworthiness Layer: is the layer responsible for assuring that a packet 

reaches its destination on time and unaltered despite the adversities. This layer’s metric 

is the PDR. Countermeasures include channel coding, transport protocols, dynamic 

routing and topology control protocols, and DTN architectures and protocols. 

Network trustworthiness can be affected by social trustworthiness and consensus. 

3. Social Trustworthiness Layer: is the layer responsible for leveraging the capability of 

the objects to establish social relationships autonomously between them to improve 

the trust between them and the correctness of gathered data. This layer’s metric is the 

STR. Countermeasures for social trustworthiness include increasing sensor 

redundancy and using node ostracism to remove untrusted nodes. Social 

trustworthiness is directly affected by data and network trustworthiness. 

4. Consensus Layer: is the layer responsible for reaching a state where all group 

participants agree on the same response or result. This layer’s metric is the BNT. 

Consensus’ countermeasures include using social trust to implement weighted voting 

among the consensus group participants and increasing the total number of 

participants to tolerate more byzantine nodes. This layer has dependencies with all the 

other trustworthiness layers. 

Given the nature of the Antarctic use case, it was proposed to use the STR as the metric that 

would quantify the reached level of trustworthiness. The first version of a hybrid IoT 

architecture was proposed, using LoRa as the access network communications technology and 

NVIS at the core network. For O4, it was proposed to use social trust management and 

consensus mechanisms to take advantage of sensor redundancy, defining three operation 

modes: the Standard mode, the Social mode, and the Consensus mode. For O3, the use case 



Chapter 5: Results 

 114 

scenario was modeled into Riverbed Modeler, simulating the scenario several times and varying 

its parameters to validate the model's goodness.  

The use case modeling and simulation have been the core and the most time-consuming tasks 

of this thesis, with continuous development and testing for several months (please revisit the 

roadmap in Figure 7). The LoRa access network and the NVIS backbone network were 

modeled separately, each characterized by their transmission frequency, channel bandwidth, 

throughput, and range, among other parameters. The nodes and their byzantine behavior were 

also modeled, as well as the social trust and consensus mechanisms. The application 

(permafrost monitoring service), BP, and EAATP were also modeled as node modules. Each 

module executes a specific piece of software coded as an FSM and interconnects with other 

modules from the same node. Figure 12 shows the DTN node model with the modules’ 

architecture.  

 

Figure 32. DTN node model in the Riverbed Modeler Simulator. 
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From the tests results, it could be extracted that: 

• All the combinations achieve an STR lower than 0.82 (Figure 13). In all cases, as the 

Pb0 increases, the STR decreases. This happens because increasing Pb0 implies a worse 

(higher) FSR, which, as seen in Figure 10, is inversely related to the STR. 

• The number of sensors affects hugely on the STR, given that NVIS and LoRa networks 

have reduced bandwidth (especially the LoRa access network). As more sensors send 

their data, more bandwidth is demanded. This provokes a network congestion that 

decreases the PDR and, consequently, the STR, as seen in Figure 10. Approximately, 

if more than 700 sensors per gateway are placed, the STR drops significantly to values 

lower than 0.65 with the Standard and Social modes and drops to values close to or 

equal to 0 with the Consensus mode (see Figure 13). 

• The Social mode only improves the trustworthiness of the Standard mode if there is 

sensor redundancy. This happens because the social trust mechanism does not reduce 

network congestion if there are no redundant sensors, given that all sensed values must 

reach the control center in any case. Contrarily, the Social mode takes advantage when 

various sensors collect the same data, but only the most trusted one reaches the control 

center without increasing network congestion. Thus, the PDR is similar, but the FSR 

is better (lower), consequently improving the STR. 

• In contrast, the Consensus mode only improves the Standard if a minimum of four 

redundant sensors are used. This happens because, following Eq. 11, at least four 

participants are needed in the consensus group to tolerate a byzantine error. This way, 

the FSR decreases thanks to GAs and, consequently, the STR increases. 

• With four or greater redundant sensors, the Consensus mode generally achieves higher 

STR than the Social if the total number of sensors is kept to less than 200, 

approximately. However, their difference reduces with low Pb0, negligible if it is equal 

to or lower than 0.01. 
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• The Social mode is more robust than Consensus due to its achieved STR never 

dropping below 0.55. Contrarily, the Consensus mode’s STR can drop to 0 due to the 

congestion that the PBFT mechanism adds to the network. This happens because the 

social trust mechanism adds minimal extra traffic without affecting network 

congestion, while the PBFT algorithm’s data to be exchanged over the network 

increases exponentially following Eq. 19, where N is the number of participants in a 

consensus group, M is the number of consensus groups in the same network, and P is 

the payload size of the messages exchanged between group participants. Thus, with 

PBFT, more congestion is introduced to the network as N and M increase, worsening 

the PDR and, consequently, decreasing the STR. 

 𝑃𝐵𝐹𝑇𝑑𝑎𝑡𝑎[𝑏𝑖𝑡𝑠] =  𝑃[𝑏𝑖𝑡𝑠] ∗ 𝑀 ∗ (2𝑁2 − 𝑁) (19) 

• Thus, a trade-off between the number of sensors in the network and the congestion 

their traffic caused was identified for the Antarctic use case. Figure 13 shows a 

threshold of 700 GTN-P stations for the Social mode and 200 GTN-P stations for the 

Consensus mode. If more sensors were placed in the network, the network would be 

excessively congested, dropping its PDR and, consequently, decreasing the STR. 

• These results validated the proposed trustworthiness model, given that it could 

quantify the level of trustworthiness reached and distinguish the configurations with 

better reliability, recommending the Social mode as the most robust. 

5.2. DTN Trustworthiness for Permafrost Telemetry IoT Network 

This work aimed at objectives O3 and O4. Given the proposed architecture for the telemetry 

service, data could not be exchanged during nighttime due to NVIS links’ unavailability. 

Attempting to prevent data loss, it was proposed to keep collected data in the intermediate 

gateways (NVIS nodes) and opportunistically send the accumulated data as a bulk data transfer 

when NVIS links became available in the daytime. However, these bulk data transfers 

provoked network congestion, given the low bandwidth of NVIS links. Therefore, data did 

not reach the control center due to packet losses. In this work, it was introduced that the use 

case required that at least 70% of the samples had to reach the control center successfully to 
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guarantee a reliable permafrost monitoring service. Thus, we fixed an STR of 0.7 as our 

trustworthiness threshold. For this reason, previous results had to be improved (O4). 

Using modern transport protocols proved to improve the performance of data exchange in 

network congestion situations over long-distance links, so it was proposed to test some of 

these protocols in our use case and validate them through simulations. Concretely, we 

compared the performance and trustworthiness of BBR, Copa, Indigo, TCP CUBIC, Verus, 

and our proprietary transport protocol from the VSNoIPv6 project, EAATP (see the roadmap 

in Figure 7). We also tested the three operational modes (Standard, Social, and Consensus) to 

validate if the general behavior was still the same as in previous tests despite changing the 

transport protocol. This was the second major iteration of O4, which was modeled and 

assessed again (O3) with Riverbed Modeler. From the results of the tests, we extracted the 

following: 

• The general behavior regarding trustworthiness remained the same regarding which 

transport protocol was used. On the one hand, if no redundancy was used, the 

Standard mode was the most trustworthy. On the other hand, with redundant sensors, 

the Social mode was the most robust, keeping its STR higher. Contrarily, the 

Consensus mode could not achieve good trustworthiness values consistently, even 

with modern transport protocols, introducing excessive network congestion and 

provoking too many packet losses. For this reason, the Consensus mode was discarded 

to implement during the Antarctic campaign. 

• In Standard and Social modes, with less than 700 sensors, when the network load was 

under the maximum capacity (i.e., not provoking congestion), the difference between 

the tested transport protocols was practically negligible, achieving similar STR values. 

This happens because, in this situation, packet losses are caused by channel errors or 

network disruptions, but not by congestion. Thus, the different congestion control 

algorithms of the studied transport protocols are less significant. However, as the 

number of sensors increased, more differences could be spotted, with Copa, CUBIC, 

EAATP, and Indigo capable of reaching the required STR. In contrast, BBR and Verus 

performed worse and did not reach the trustworthiness threshold. These results 



Chapter 5: Results 

 118 

proved that the congestion control algorithms of Copa, CUBIC, EAATP, and Indigo 

managed better the use case congestion situations by minimizing packet losses, thus 

increasing the PDR and consequently the STR.  

• Furthermore, in most situations, the EAATP was the protocol with the highest STR 

thanks to its fairness mechanism, which balances the throughput of all EAATP flows 

on the same network and minimizes packet losses even more. For this reason, it was 

considered the best option to implement in the physical scenario. 

• Concretely, in the case with the best trustworthiness (7 redundant sensors × 8 sensor 

clusters), EAATP could achieve the best STR values in 7 out of 9 cases. It could 

outperform the other tested transport protocols by up to 7%. However, it only 

outperformed the other best alternatives (Copa and CUBIC) between 0.1% and 0.5%.  

• In another scenario, 5 redundant sensors × 16 sensor clusters, by doubling the total 

potential samples, the performance of all protocols slightly decreased. Indeed, Copa, 

CUBIC, EAATP, and Indigo reached the required STR, with EAATP being the best 

in 5 out of 9 cases and CUBIC performing better in 2 cases. 

• These results confirmed that the election of a particular transport protocol is significant 

and can be a countermeasure for the network trustworthiness layer, given that it 

impacts the network PDR and, consequently, can affect the overall trustworthiness of 

a system, answering RQ4.  

• Given these results, we considered EAATP and TCP CUBIC for the physical 

deployment during the Antarctic campaign. EAATP was elected because it showed the 

best results overall. TCP CUBIC was also elected because its results were also 

satisfactory for the use case (it could reach an STR greater or equal to 0.7). Additionally, 

it is the default transport protocol of the NVIS nodes’ (Raspberry Pi) operating system. 

As a reminder, the Raspberry Pi and the Moteino boards were chosen as the hardware 

for the physical deployment because their ease of use and low power consumption 

characteristics (among others) met the requirements of the harsh Antarctic 
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environment (revisit Table X). The Raspberry Pi uses the Raspbian operating system, 

which is Linux-based, so its default TCP variant is CUBIC. Using TCP CUBIC reduces 

development time and minimizes risks that an experimental protocol such as EAATP 

implies, which is a relevant element to consider in time-constrained experiments such 

as the deployment in the Antarctic campaign. 

5.3. A Delay Tolerant Network for Antarctica 

This work aimed at objectives O3, O4, and O5. Given the congestion problems that the 

opportunistic networking scheme caused despite using modern transport protocols, a DTN 

architecture using BP was proposed. In contrast to previous tests, in which the simulated 

duration was five days, in this third iteration, we wanted to test the use case for 400 days, which 

is the approximate timespan between two consecutive campaigns in Antarctica. This way, we 

could foresee if our proposed architecture could provide the telemetry service reliably for the 

entire campaign duration. Given that the amount of simulated time was increased, it was 

expected that achieved STR values would decrease. Thus, another mechanism was needed to 

improve the service’s trustworthiness, proposing BP for this purpose. 

In this third major iteration for O4, in addition to introducing a DTN architecture with BP 

and increasing the simulation time, we also discarded BBR, Copa, Indigo, and Verus transport 

protocols and the Consensus operational mode, given the aforementioned results from 

previous work. Moreover, we also discarded using a vast number of sensors, limiting the 

number of measuring spots to 32 or 64 and the number of redundant sensors from 1 to 5, 

given the constraints we would have in the campaign regarding available time and budget. 

From the trustworthiness assessment with Riverbed Modeler (O3), we could extract the 

following: 

• When BP was not used, the service could not reach the required STR, given that these 

tests were performed with a long-term duration instead of the short-term duration (five 

days) of the previous tests. This happened because the opportunistic networking 

scheme only solved the disconnections of the NVIS network at nighttime, which were 

the predictable disruptions. These disruptions were predictable because the previous 

study on the NVIS channel showed that, due to the ionosphere’s properties dependent 
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on solar activity, the working frequency of NVIS differs during daytime and nighttime. 

Given that the NVIS antenna of the SHETLAND-NET project only works at a single 

frequency, the daytime frequency was chosen, expecting network disruption at 

nighttime. However, the intermittent disconnections and long delays of the NVIS 

network during the daytime were unpredictable. Therefore, the proposed opportunistic 

networking scheme could not handle these situations, and packets were dropped. Thus, 

in the long term, all cases using the opportunistic networking scheme suffered a 

decrease in their PDR, consequently worsening the STR to values lower than 0.7, not 

meeting the use case’s trustworthiness threshold.  

• Contrarily, if BP was used, the service could accomplish the required minimum 

trustworthiness level to guarantee a reliable service, both with the Standard and Social 

modes, because BP was able to mitigate predicted and unpredicted network disruptions 

and delays thanks to its store-carry-forward methodology for bundle exchange, 

improving the overall PDR in the long-term compared to the opportunistic networking 

scheme, and consequently increasing the STR above 0.7. Thus, it was clear that BP was 

strictly necessary to deploy the monitoring service in Antarctica. Concretely, BP 

outperformed the opportunistic networking scheme by up to 14 % in terms of STR, 

which marked the difference between meeting or not the use case’s trustworthiness 

requirements. 

• As in previous tests, the Social mode was the most robust, achieving the highest STR 

values in all cases due to its advantage of using the social trust management mechanism 

with sensor redundancy. Nevertheless, the Standard mode with BP could also reach 

the required trustworthiness threshold without needing sensor redundancy if the Pb0 

was equal to or less than 0.02.  

• Using EAATP as the transport protocol was less relevant than BP regarding reaching 

trustworthiness in the long term. Using BP instead of opportunistic networking could 

improve STR values by up to 14%, while using EAATP instead of TCP CUBIC could 

only improve the STR by up to 5%. Moreover, this 5% improvement by EAATP was 
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not decisive in helping reach the required reliability level because all cases without BP 

could not reach it, and all cases satisfying it were using BP regardless of the transport 

protocol. 

Given the simulation results, it was decided that the physical deployment would include BP. 

Concretely, we used the IBR-DTN implementation of BP in our devices to validate the 

simulation results. This implementation was chosen among other alternatives because it met 

all the use case requirements, including the support for Linux-based operating systems, the 

compatibility with TCP/IP protocols, its lightweight and ease of use, and its open-source code 

(see Table X). The source code of IBR-DTN had to be slightly modified to adapt it to the 

Raspberry Pi, given that the original version presented some bugs due to incompatibilities with 

the Raspbian operating system. 

In addition, it was also decided that we would use TCP CUBIC as the transport protocol of 

the PoC because to use EAATP, it was required to develop an ad-hoc CLA for any BP 

implementation, including IBR-DTN. Developing a CLA for EAATP in IBR-DTN would 

have added more stress in the deployment phase of the project, given that new software had 

to be designed, coded, and tested in a time-constrained stage. In contrast, the CLA for TCP 

(and, by extension, TCP CUBIC) was already developed and included in IBR-DTN, allowing 

more time to perform the other planned tasks of the project. It was considered that using TCP 

CUBIC instead of EAATP was not critical because CUBIC proved in simulations that it also 

reached the required reliability level for the telemetry service, despite EAATP slightly improved 

the obtained STR. The development of the EAATP CLA for IBR-DTN was postponed for 

future work. 

For the PoC in the Antarctic campaign, we presented the DIU. This physical testbed consisted 

of five NVIS nodes exchanging sensor data across NVIS links. With this testbed, we could 

validate the functionality of BP over NVIS for the backbone network. Finally, in the Antarctic 

campaign, we attempted to deploy the PoC between the Uruguayan Artigas Base on King 

George Island and the Spanish Juan Carlos I Base on Livingston Island. We could validate the 

correct functioning of the LoRa access networks, exchanging data between sensors and NVIS 

gateways. In addition, we could also verify the 93 km NVIS backbone link between the two 



Chapter 5: Results 

 122 

bases, with BP deployed across the backbone network. However, a COVID-19 outbreak in 

Antarctica [143] caused the modification of the logistic plans from all research projects in Juan 

Carlos I Base, forcing us to interrupt and cancel our final tests merging the access and core 

networks, and deploying the permafrost monitoring service. These validation tests had to be 

continued in Catalonia afterward, as seen in the following section. 

5.4. Discussion 

The SHETLAND-NET project proposed an NVIS-based IoT network to automatize data 

collection and exchange for Antarctic research. Due to reliability issues of NVIS 

communications, this thesis aimed to improve the trustworthiness of this IoT network without 

modifying NVIS specifications, focusing on the use case of permafrost monitoring. To 

accomplish it, objectives O1-O5 were set. These objectives were addressed through [27], [28], 

[83]–[87].  

In [83], we presented a review of the related work to build a picture of how the trustworthiness 

term was interpreted and managed from different points of view. From this review, we 

proposed an integrated scope for trustworthiness in the Antarctic use case, binding the 

different perspectives studied in the literature and accomplishing O1. Next, we proposed a 

trustworthiness model (O2) composed of four layers, each centered on a different 

trustworthiness field, with its own metric to enable trustworthiness quantification, its 

countermeasures to improve it, and the interdependencies between the layers. The STR was 

proposed as the metric to quantify trustworthiness in our use case. We verified the usefulness 

of this model by modeling all the elements of the Antarctic use case in the Riverbed Modeler 

simulator. In these tests, we could quantify the expected trustworthiness of the use case under 

different circumstances by computing the STR and accomplishing O2. 

These tests were also the first step toward reaching O3 and O4. In [83], we proposed a hybrid 

IoT architecture with LoRa and NVIS as the communication technologies for the access and 

core networks, respectively. Moreover, we proposed using the consensus and social trust 

management mechanisms to take advantage of sensor redundancy. The results of this first 

round showed that it could be possible to accomplish the required trustworthiness level (0.7) 

in the short term if less than 700 or 200 GTN-P stations were used with the Social or 



Trustworthiness Mechanisms for Long-Distance Networks in Internet of Things 

 123 

Consensus mode, respectively. Using more sensors caused excessive traffic and provoked 

congestion in LoRa and NVIS low bandwidth networks. Moreover, we could conclude that 

the Social mode was the most robust, while the Consensus mode was not recommended 

because it introduced even more congestion. 

This behavior was confirmed in [84], [85], which were the second iteration of trustworthiness 

improvement to reach the goals of the thesis. We proposed using modern transport protocols 

we had worked with in other works [27], [28], aiming to maximize bandwidth usage and 

minimize packet losses in congestion situations. The scenario was tested in five-day (short-

term) simulations to observe the difference in the behavior and performance of the assessed 

transport protocols. The results of the tests showed that EAATP and TCP CUBIC were the 

most suitable candidates. On the one hand, EAATP was the transport protocol that reached 

the highest STR values in most cases, surpassing the trustworthiness threshold. In the short 

term, it could outperform its competitors by up to 7% in terms of obtained STR. It is believed 

that it is caused by the fact that EAATP incorporates a fairness mechanism to share the 

network bandwidth, which mitigates congestion and packet losses. Moreover, EAATP’s 

congestion control tries to occupy the entire network bandwidth rapidly, and its mechanism to 

differentiate between random channel losses and congestion losses optimizes its achieved 

throughput in heavy congestion situations. On the other hand, TCP CUBIC could also reach 

the required minimum trustworthiness level. Furthermore, CUBIC is the default transport 

protocol of the NVIS nodes, simplifying the deployment in the field. 

However, in [86], [87], we saw that short-term results could not be extrapolated to the long 

term (400 days), i.e., the timespan between consecutive Antarctic campaigns. In this third major 

iteration of O3 and O4, we assessed using a DTN architecture with BP instead of the 

opportunistic networking scheme. Thanks to it, we could avoid the congestion provoked by 

the bulk data transfer when NVIS became available in the daytime and packet losses in front 

of unpredicted NVIS disruptions due to the ionosphere’s changing properties. The results 

showed that it was mandatory to use BP to accomplish the required minimum level of 

reliability, increasing the obtained STR values by up to 14% compared to the results without 
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using BP. In contrast, the election of EAATP or TCP CUBIC was less relevant, with EAATP 

slightly improving the results of TCP CUBIC. 

With these three iterations, we were able to accomplish O3 and O4, determining that it was 

possible to implement the permafrost monitoring service in Antarctica and guarantee the 

required trustworthiness level if we deployed BP for the DTN architecture, the Standard or 

Social modes, EAATP or TCP CUBIC as the transport protocol, 64 or less measuring spots, 

and five or less redundant sensors per spot. 

We finally attempted to deploy a PoC of the hybrid IoT DTN architecture in the 2021-2022 

Antarctic campaign (O5). We aimed to perform validation tests with a DTN composed of two 

NVIS gateways distanced by 93 km and five sensors per gateway. It was not considered to 

deploy and test more complex scenarios given the time constraints and the available resources 

for the campaign, in addition to the harsh conditions of the use case in the Antarctic field. In 

the PoC deployed in Antarctica, we validated the correct functioning of the LoRa access 

network, with the Moteino boards sending the data samples collected with the sensors to a 

Raspberry Pi NVIS gateway with LoS. We could also validate the data exchange across BP 

nodes over the NVIS backbone network. Figure 33 shows the NVIS node deployed in the 

Juan Carlos I base. However, due to the campaign’s restrictions imposed by a COVID-19 

outbreak, we had to discontinue our tests and could not validate the whole permafrost 

telemetry system in Antarctica.  

  

(a) 

 

(b) 

 
Figure 33. NVIS Hardware deployed in Juan Carlos I base (Antarctica). (a) NVIS node. (b) NVIS inverted vee antenna. 
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Figure 34. PoC deployment in Catalonia. 

To accomplish O5, the validation tests were completed in Catalonia. To emulate with the best 

possible fidelity the deployment in Antarctica, a 150 km NVIS link was established between 

two remote rural locations placed in Hostalric and Cambrils. The Cambrils node was in charge 

of sending the collected data to the control center through the Internet (see Figure 34). Five 

sensors with a Moteino board were placed in each location, which sent the collected data to 

the Raspberry Pi NVIS nodes through LoRa. In addition, the Raspberry PI nodes also acted 

as BP nodes, which exchanged the collected data through the NVIS link. Figure 35 shows the 

hardware deployed in Hostalric (please revisit Figure 17 to see Cambrils’ hardware).  
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(a) 

 

(b) 

 

  

(c) 

 

(d) 

 
Figure 35. Hardware deployed in Hostalric. (a) Moteino board with attached sensors. (b) Sensor and Moteino embedded 
into protection box. (c) Deployment of the NVIS antenna. (d) NVIS node with the Raspberry Pi and peripheral elements. 

This deployment was tested for an entire week, and the monitoring service could be 

successfully executed every day, being able to review sensor data collected in both remote 

locations from the control center. The DTN architecture with BP handled the NVIS network’s 

predicted and unpredicted disruptions, exchanging data bundles between the remote DTN 

nodes. With the functional tests in Antarctica, which were later completed in Catalonia, O5 

was achieved, following the design recommendations extracted from the simulations’ 

assessment and the trustworthiness model, and validating the proposed architecture for the 

monitoring service.  
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C h a p t e r  6  

FINAL CONCLUSIONS AND FURTHER WORK 

This thesis focuses on improving the trustworthiness of harsh IoT environments with long-

distance adversarial networks, focusing on the use case of the NVIS-based IoT long-distance 

network of the SHETLAND-NET project in Antarctica, by proposing and assessing new 

mechanisms and architectures for the permafrost telemetry use case. Three main contributions 

can be extracted from this thesis: 

1. The definition of the scope of trustworthiness for harsh IoT environments in long-

distance challenging networks. 

2. A multi-layered trustworthiness model, based on the data, network, social, and 

consensus layers, used to assess the trustworthiness of a given use case quantitively, 

detect its weaknesses and apply appropriate countermeasures for trustworthiness 

improvement. 

3. The proposal of new mechanisms and an IoT telemetry service architecture to provide 

a trustworthy permafrost monitoring service in Antarctica, which was validated 

through simulations and the deployment of a PoC testbed. 

In the initial phase of the thesis, it was hypothesized that: 

“Achieving reliable data exchange over a harsh environment is possible by improving its trustworthiness through 

the design of a multi-layered model that takes into account different facets of trustworthiness and through the 

implementation of the model’s associated countermeasures.” 

To verify or deny the hypothesis, six research questions were posed: 
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RQ1. What is the definition and scope of the trustworthiness term in the field of Cyber 

Physical Systems (CPS)? 

RQ2. How can trustworthiness be measured? 

RQ3. How can a model be used to foresee, assess, and improve the achieved 

trustworthiness in harsh environments? 

RQ4. How does using modern transport protocols affect the achieved trustworthiness 

in adversarial networks? 

RQ5. How does a DTN architecture affect the trustworthiness of adversarial 
networks? 

RQ6. Are the reached levels of trustworthiness in real implementations match the ones 

derived from the assessment through the trustworthiness model? 

RQ1 was answered by accomplishing O1 (establish a scope for the trustworthiness term.). We 

set the scope of trustworthiness in CPS into four main areas: data trustworthiness, network 

trustworthiness, social trustworthiness, and consensus. 

RQ2 was answered by accomplishing O2 (define a model that enables trustworthiness 

accountability to detect weaknesses and propose appropriate countermeasures for 

trustworthiness improvement). We proposed a four-layer model that provided trustworthiness 

accountability. We could quantify our use case’s trustworthiness by measuring the achieved 

STR. 

RQ3, RQ4, and RQ5 were answered by accomplishing O3 (assess the trustworthiness of the 

Antarctic use case) and O4 (propose new mechanisms to improve the trustworthiness of the 

Antarctic use case). The trustworthiness assessment was made using the proposed model and 

implementing the permafrost use case into the Riverbed Modeler simulator. In summary, three 

operational modes, six transport protocols, an opportunistic networking scheme, and a DTN 

scheme were tested, as well as other parameters of the service were modified throughout 

simulations. Three significant design and testing iterations were performed. The final proposal 
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consisted of a 2-tier IoT network architecture, using LoRa in the access network and BP over 

NVIS in the backbone network (see Figure 28). EAATP and TCP CUBIC were the 

recommended transport protocols. This architecture guaranteed the required trustworthiness 

level for the permafrost telemetry service if 64 or fewer measuring spots and five or fewer 

redundant sensors were deployed per each NVIS gateway. The simulation results validated the 

goodness of the trustworthiness model. 

Finally, RQ6 was answered through O5 (deploy a PoC of the proposed service architecture in 

the field during the 2021-2022 Antarctic campaign) and completing the PoC deployment in 

Catalonia. Unfortunately, during the Antarctic campaign, we had to interrupt and cancel our 

deployment in the field due to a COVID-19 outbreak in the Spanish delegation. However, we 

could independently validate the LoRa access network and the BP over the NVIS backbone 

network, establishing a 93 km link between Spain’s Juan Carlos I base on Livingston Island 

and Uruguay’s Artigas base on King George Island. Moreover, to answer RQ6 and finish the 

PoC deployment, the validation tests were completed in Catalonia, deploying the same scenario 

as in Antarctica but placing the remote NVIS nodes in rural areas from Hostalric and Cambrils, 

distanced by 150 km.  

Overall, given that RQ1-6 could be answered satisfactorily, it is considered that a reliable data 

exchange over a harsh IoT environment (in this case, the Antarctic use case) could be achieved 

by improving its trustworthiness through the design of a model that enabled trustworthiness 

accountability and its improvement by implementing the model’s associated countermeasures. 

Thus, the thesis hypothesis is confirmed. 

Finally, a few future lines of work have been derived from this research: 

1. The current model of the use case has some areas for improvement. Currently, the 

byzantine-fault model is based on a linear approach that associates faults to the battery 

discharge level and an initial fault probability. However, it is believed that other fault 

models could better represent the actual behavior of nodes in a harsh environment like 

Antarctica. As a future line, more complex fault models such as the ones described in 

[113] could be explored. 
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In addition, the PBFT algorithm was the only consensus mechanism modeled into the 

simulator, given that this thesis was focused on other studies, such as transport 

protocols and DTNs, rather than consensus mechanisms. Given the poor scalability 

of PBFT, some modern consensus mechanisms such as Delegated Practical Byzantine 

Fault Tolerance (DPBFT) [144] or RapidChain [145] have been proposed in the 

literature to solve this issue, which would require more complex modeling into the 

simulator. Assessing the use of new consensus mechanisms is another future line of 

this research. 

2. The use of drones is growing worldwide, with new applications and usages emerging 

regularly. In rural areas, drones can conduct many different actions, such as monitoring 

based on cameras or other sensors, providing connectivity as a mobile gateway, or even 

transporting products in hard-to-reach areas. Many of these uses can be directly linked 

with primary sector activity, but their use can be extended to other fields.  

When various drones work together for data gathering and exchange, they form a 

FANET. It is thought that for the Antarctic use case, the coverage of the LoRa access 

network could be increased by deploying a FANET. Currently, the placement of GTN-

P stations is limited by the coverage area of LoRa, which is strongly related to the 

presence of LoS. With a FANET, GTN-P stations could be extended to zones without 

LoS with the gateway. This FANET would be formed by drones capable of 

downloading sensor data when they enter the contact zone. The DTN architecture 

would have to be extended to the access network to achieve this, using the BP with 

LoRa. This would demand the development of a CLA for LoRa. These changes would 

mean a major iteration in the system’s architecture, which would need a new 

trustworthiness assessment to evaluate if the required level of trustworthiness could 

still be reached. 

3. Ionosondes are radars transmitting vertical pulses of a sweep of frequencies, usually in 

the range of 0.1–20 MHz. The signals reflected from the ionosphere are given in a 

graph of the time of reflection as a function of the frequency called the ionogram. 

These ionograms are used to detect the best operating frequencies for data 
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transmission. Currently, NVIS channel sounding is performed by sending ionosondes 

that block channel utilization (sensor data cannot be transmitted) during the sounding 

period.  

As a step beyond simply sharing the spectrum, the codesign of sensing and 

communication functionalities seems promising. Such an approach allows 

considerable gains in terms of spectral, energy, hardware, and cost efficiency. This type 

of research, normally referred to as integrated sensing and communication (ISAC), is 

a paradigm change where the previously competing sensing and communication 

operations can be jointly optimized via the shared use of a single hardware platform 

and a joint signal processing framework. A future line of research would be designing 

an ISAC device capable of using ionosondes as data transmission signals, maximizing 

NVIS channel time availability for sounding and data exchange purposes. Given that 

this hardware should be capable of working at multiple frequencies for channel 

sounding, the system could also be used to transmit data at all these frequencies, solving 

the current problem of nighttime unavailability. 

4. In challenging networks such as LoRa and NVIS networks, Software-Defined 

Networking (SDN) [146] might be able to optimize the network’s resources to 

optimize its performance and prevent packet losses, improving the system’s 

trustworthiness. For example, by decoupling the control plane from the data plane, the 

ISAC system described below could be used to adjust the operating frequencies on-

the-go to reconfigurable antennas based on the information received from channel 

soundings, optimizing the transmitting channel, and minimizing packet losses. Other 

SDN examples that could apply to this use case are the implementation of adaptive 

QoS and routing policies defined by software in multipath NVIS networks, which 

could optimize bandwidth allocation and increase the effective network usage in 

congestion or packet-loss situations in these capacity-constrained networks. 

5. An important goal of a DTN architecture is to accommodate a wide range of 

networking technologies and environments. BP requires the services of a CLA to send 

and receive bundles using the service of some “native” link, network, or internet 
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protocol. The CLA must define the syntax and format of the messages exchanged 

between BP and the native protocol, acting as an interface between both layers.  

Currently, CLAs have been specified for well-known internet protocols, such as TCP 

[147], UDP [148], or HTTP [149]. However, given that EAATP is a novel proprietary 

transport protocol, a CLA of it does not exist. Thus, to deploy the proposed DTN 

architecture with EAATP in a deployment with real hardware, it is necessary to design, 

develop, and implement a CLA for this transport protocol in physical hardware. Given 

the results of the simulations, it is believed that using EAATP could improve the 

overall system’s trustworthiness of the physical deployment. 

6. Obviously, a future objective is to deploy in Antarctica a permanent architecture that 

can provide service to other research proposes. The research group aims to accomplish 

it in future campaigns. To do so, and given the harsh conditions in Antarctica, 

improvements to the current NVIS hardware are needed to guarantee its autonomy 

and trustworthiness for an entire timespan between consecutive campaigns. 

First, for NVIS nodes placed far from research bases, a power supply system that 

provided enough autonomy for a whole year would be needed. This system would also 

be necessary for nodes placed in research bases that only operate during the Antarctic 

summer, given that, in this case, all systems and power generators are shut down during 

the winter season. Currently, a prototype of an NVIS node powered by high-capacity 

batteries is being tested in Hostalric. Secondly, the current NVIS hardware is 

vulnerable to the harsh climatic conditions of Antarctica, especially to the strong gusts 

of wind that could damage the antenna of big dimensions exposed outdoors. For this 

reason, underground antennas buried in the soil have been proposed. Currently, an 

underground antenna is being tested to provide NVIS communications in Cambrils. 

However, the possible effects of snow covering in Antarctica need to be assessed for 

this type of antenna. Figure 36 shows these next-generation prototypes. 
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(a) 

 

(b) 

 
Figure 36. Next-generation NVIS hardware prototypes. (a) Battery-based power supply tested in Hostalric. (b) 
Underground antenna tested in Cambrils. 

7. It is also desirable to expand the usage of the proposed architecture to other use cases 

so that Antarctic research projects can be modernized. Currently, we started working 

with the use case of Antarctic volcanoes’ monitoring on Deception Island (South 

Shetland Islands) [150]. Deception Island is one of the most active volcanoes in 

Antarctica (revisit Figure 4 to see its location). In the 1988–1989 austral summer, after 

the most recent eruptive process on the island (1967–1970), monitoring of volcanic 

activity through geophysical and geodetic techniques was resumed by Spanish and 

Argentinean scientists. A geodetic network was deployed to monitor the island's 

tectonic and volcanic behavior. Currently, this network consists of 15 geodetic 

benchmarks located around Port Foster, Deception's inner bay open to the sea. 

However, current studies can only analyze data once it is manually exported from the 

geodetic sensors. Thus, it is not possible to monitor the status of the Deception 

volcano in real time. Live monitoring would be a major advance in the surveillance of 

this volcano, given that it could allow a fast response to unexpected situations. For 

instance, a new eruption like the one that happened in the late 1960s could potentially 

vanish the entire Spanish Gabriel de Castilla research base on that island. Currently, if 

a catastrophe like this happened during the winter season, the Spanish delegacy could 

only acknowledge it once they arrived on the island, being forced to cancel the entire 

campaign and wasting many resources unnecessarily. Contrarily, if live monitoring was 
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enabled, a fast response could be provided, canceling the campaign before wasting the 

resources and dedicating all of them to rebuilding the base station. 

Given that the Gabriel de Castilla base closes during winter, it is proposed to deploy a 

similar architecture to the used one in this thesis, providing coverage to the geodetic 

network through LoRa and interconnecting the Gabriel de Castilla base to another one 

with permanent Internet connectivity through an NVIS link. 

8. The analyzed consensus mechanisms bring a considerable overhead to the 

communication network that degrades the overall system throughput limiting the data 

processing capabilities. This is especially concerning in remote sensing scenarios with 

low bandwidth capacities. Recently, quantum technologies have emerged as an 

appealing alternative to building prospective quantum Internet by maximizing the 

benefits of inherent privacy and instantaneous coordination. In the long term, we aim 

to apply quantum networking techniques to the architecture. Concretely, we propose 

to use a quantum consensus mechanism [151], which eliminates the problem of added 

network congestion. If this was accomplished, the quantum consensus mechanisms 

could help improve the overall system’s trustworthiness. 
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Abstract: Antarctica is a key location for many research fields. The lack of telecommunication systems
that interconnect remote base camps hardens the possibility of building synergies among different
polar research studies. This paper defines a network architecture to deploy a group of interconnected
remote Antarctic wireless sensor networks providing an IoT telemetry service. Long backhaul NVIS
links were used to interconnect remote networks. This architecture presents some properties from
challenging networks that require evaluating the viability of the solution. A heterogeneous layer-
based model to measure and improve the trustworthiness of the service was defined and presented.
The model was validated and the trustworthiness of the system was measured using the Riverbed
Model simulator.

Keywords: trustworthiness; model; telemetry; IoT; NVIS; challenging network; Antarctica

1. Introduction

During the last half-century, Antarctica has been a key location for many research
studies in several fields such as oceanography, bioscience, geoscience, physical sciences,
and other environmental studies [1]. Although many bases have been settled in the
peripheral areas of the Antarctic continent [2], the difficult environment and terrain provoke
numerous challenges when it comes to implementing new operational services for modern
studies. One of these challenges is the lack of telecommunication systems in Antarctica [3],
especially wireless sensor networks (WSNs). Without WSNs, new research studies tend
to use non-automatized ways of gathering data, which are more complex logistically, less
scalable, and more error prone. Moreover, most Antarctic bases are not interconnected [3].
This fact lowers the possibilities for different research groups to collaborate on similar
studies, and the advantages of providing synoptic region-wide observations and building
synergies are lost [3].

The lack of conventional telecommunication services in Antarctica leverages the use
of satellite communications or other systems such as high-frequency (HF) links to build
a network of interconnected remote WSNs [4]. The first option is commonly discarded
because of economic reasons, given the high costs of subscribing to this type of service.
Furthermore, the degree of coverage offered by satellite constellations in Antarctic latitudes
is not desirable [4]. To overcome these difficulties, the SHETLAND-NET [5] project aims
to expand the use of communications in HF (3–30 MHz) by ionospheric reflection to the
establishment of a low consumption communications system that allows the collection of
sensor data distributed throughout the archipelago of the South Shetland Islands. This
technology, called near vertical incidence skywave (NVIS), does not require direct vision
and is totally independent of the satellite since the signal is transmitted upwards, allowing it
to overcome any geographical feature [4,6,7]. The long backhaul NVIS link has a coverage
range of up to 250 km, and its reliability is dependent on ionospheric conditions and
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solar activity. Researchers from our university have previously participated in research
campaigns on Livingston Island, studying and verifying the NVIS communication system’s
viability [8–10]. A new campaign is planned to be carried out in the Antarctic field, with
the goal to test the new improvements of the NVIS link [11] and deploy an IoT network
for three different use cases: a telemetry service for light data (e.g., penguin tracking [12],
a telemetry service for fat data (e.g., lichen observation [13]), and a distributed computing
service to map the ionosphere along Antarctica).

However, a network deployed with long backhaul NVIS links may present some
situations typical of challenging networks [14], such as intermittent connectivity, end-to-end
disconnection, and variable error rates, making the implementation of the aforementioned
services over a traditional TCP/IP architecture difficult. For the sake of the project, it
is not feasible to wait until the Antarctic campaign starts to test the system in the field.
Antarctic campaigns are usually very time restricted due to the meteorological conditions.
Its remote location makes it challenging to overcome unanticipated difficulties that may
arise (e.g., incorrect dimensioning of the needed equipment, poor performance of the
proposed architecture). For this reason, it is necessary to study the viability and the
expected trustworthiness of implementing this kind of network before its deployment in
the field. The pre-deployment phase of the SHETLAND-NET project needs this previous
research on the factors that affect the robustness of a communication network, which will
help us build more reliable expectations for our proposed service’s results and minimize
the number of unexpected adversities (e.g., degraded service performance and reliability,
loss of connectivity). In our case, this study was executed by simulating the conditions and
the service that will be deployed in Antarctica.

This paper focuses on the use case of the telemetry service for light data. Many
Antarctic studies could be helped by automating the data gathering of their research (e.g.,
geomagnetic studies [15], blowing snow monitoring [16], climate change [17], biological
monitoring [12], or permafrost analysis [18]). Most of the data for these studies are currently
gathered manually, and some zones might be challenging to reach, even with special
vehicles such as snow motorbikes. For these reasons, the studies are focused on small
areas of the Antarctic region. Thus, a WSN that provides a broader coverage area and the
interconnection of remote areas could increase the results’ relevance (e.g., more samples
could be collected, broader synergies could be built). Moreover, the long backhaul links
in charge of communicating remote WSNs could also be used to interconnect different
Antarctic bases [4].

The paper has two main objectives. First, it was necessary to define which architecture,
technologies, and protocols the telemetry service will use. As mentioned before, the
drawbacks of challenging networks in addition to the extreme conditions sensors and
other equipment need to work within is that it can provoke the service to reach low
levels of performance and trustworthiness in the face of adversities. Thus, the paper’s
second objective was to propose and validate a model for visualizing, understanding, and
measuring the trustworthiness of the overall service before its deployment in the field.
With this model, the service’s weaknesses could be detected, and countermeasures could
be proposed to improve its trustworthiness and foresee their impact. We used the Riverbed
Modeler simulator [19] to validate the model and measure the service’s trustworthiness. To
confirm the results, the tests were performed by modeling the permafrost use case of [18],
where Ground Terrestrial Network-Permafrost (GTN-P) stations were used to measure
32 different parameters. These tests can be replicated to other concrete telemetry use cases
by modeling them too.

The rest of the paper is organized as follows. In Sections 2 and 3, the background and
related work are described, respectively. Section 4 defines the use case’s service architecture.
Section 5 presents the trustworthiness model. In Section 6, the performed simulations are
described, and the extracted results are discussed in Section 7. Finally, the conclusions of
the paper and future work are detailed in Section 8.
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2. Background Work in IoT

This section presents mature IoT and WSN technologies that can help to define the
network architecture of our telemetry use case for remote regions. In terms of network
architecture for WSNs, it is necessary to differentiate between the access network and the
backbone network. On the one hand, the access network provides connectivity to the IoT
sensors in a variable coverage range, depending on the technology. On the other hand, the
backbone is in charge of interconnecting the access networks to build a global WSN. The
backbone network can use long backhaul links to reach remote areas and broader coverage
than access network technologies.

2.1. IoT Access Network

The access network technologies for WSNs are commonly known as the IoT commu-
nication protocols [20] or IoT MAC layer protocols [21]. These protocols are commonly
classified, depending on the size of the coverage area, as short-range coverage protocols
and long-range protocols. Networks built on the latter kind of protocols are commonly
known as low-power wide area networks (LPWANs). The authors of [20,21] classified the
most used technologies in IoT. For short-range networks, the most common technologies
are RFID, NFC, Bluetooth Low Energy (BLE), Zigbee, 6LoWPAN, and Z-Wave. For LP-
WANs, the most used communication protocols are narrow-band IoT (NB-IoT), long-term
evolution-enhanced machine-type communication (LTE eMTC), Sigfox, and LoRa. To the
best of our knowledge, in the specific case of Antarctica, the deployment of WSNs are
scarce and limited to temporary testing deployments but not persistent. One example of
short-range communications is the SNOWWEB project [22], where a network of weather
stations was built using Zigbee transceivers. LPWANs seem to be more suitable options
since the coverage area for deploying the WSN is more extended. For that reason, the
authors of [23] studied the applicability of LoRa in Antarctic regions by characterizing its
channel in the field, achieving a coverage area of up to a 30 km radius. Despite this, it
seems feasible that some sensors of the WSN can be located out of range of the gateway
due to the geographic conditions. In this case, there is the need to use mobile gateways
and deploy mobile ad hoc networks (MANETs) [4,24–26].

2.2. IoT Backbone Network

On the other hand, the backbone network is in charge of interconnecting remote
WSNs to build a single major network. For this purpose, LPWAN communications are
not valid because the links that need to be established must have a broader range (several
tenths of kilometers). Moreover, since the Antarctic region has many terrain variations,
it is expected that two nodes separated by several kilometers do not have line of sight
(LOS) [7]. Satellite communications are a solution to overcome these problems. However,
geostationary Earth orbit (GEO) satellites do not cover Antarctica’s latitudes adequately,
and current low-altitude Earth orbit (LEO) satellites provide partial or no coverage in
deep polar regions [27]. The authors of [27] studied the possibility of covering the whole
Antarctic continent with a three-satellite constellation in elliptical orbits, but it has not been
implemented. A significantly lower cost solution suitable for WSNs in remote areas is the
use of HF communications. Specifically, the NVIS technique has already been tested in
Antarctica [4,6,7]. Results show that this kind of long backhaul link can reach a throughput
of up to 20 Kbps and a coverage radius of up to 250 Km without the need for LoS [28].
The main drawback of NVIS is the considerable variation of the transmitting channel’s
characteristics, the ionosphere, which can lead to periods of non-connectivity, becoming
a challenging network [14]. Thus, it is necessary to test and measure NVIS networks’
trustworthiness when used to transport data from actual use cases.

3. Related Work on Cyber Physical Systems’ Trustworthiness

This section describes the related work by other authors to define and measure the
trustworthiness of cyber physical systems (CPS). A CPS is defined as a system with inte-
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grated computational and physical capabilities. Common examples of CPSs include indus-
trial control systems, automated vehicles and aircraft controls, wireless sensor networks,
smart grids, and almost all devices typically encompassed by the Internet of Things [29,30].
The trustworthiness of CPS is defined in the literature, in general terms, as the property
of behaving as expected under adversarial conditions [31]. However, these adversarial
conditions can come from different reasons, e.g., faulty nodes, byzantine errors, malicious
behaviors, and network malfunction [32]. For this reason, in the literature, there can be
found many different approaches to measuring or providing trustworthiness that refer to
disparate elements. We propose to classify them into the following four categories that will
be used later to define our trustworthiness model:

1. Data Trustworthiness: It is defined as the possibility of ascertaining the correctness
of the data provided by the source [33]. Many methods try to detect faulty nodes,
false alarms, and sensor misreading using different approaches [32]. For instance,
the authors of [34] presented a distributed Bayesian algorithm to detect faulty nodes,
while the authors of [35] used a fog computing architecture to detect, filter, and correct
abnormal sensed data. In addition, the authors of [36] presented a data intrusion
detection system to trigger false data from malicious attacks;

2. Network Trustworthiness: It can be defined as the probability that a packet will
reach its destination unaltered despite the adversities (e.g., link failure, link satura-
tion, malicious attacks), and it is a crucial factor of low-power and lossy networks
(LLNs) [37]. Improving network trustworthiness and performance is a challenge that
has been addressed from different perspectives such as transmission coding [38–41],
load balancing and redundancy protocols [42], transport protocols [43], dynamic
routing and topology control protocols [44,45], cybersecurity mechanisms [46], and
delay tolerant network (DTN) architectures and protocols [47]. In the case of routing,
both proactive routing protocols (e.g., the IPv6 Routing Protocol for low-power and
lossy networks (RPL) and optimized link state routing (OLSR)) and reactive routing
protocols (e.g., ad hoc on-demand distance vector (AODV) and link-quality source
routing (LQSR)) have been proposed in the literature to solve the drawbacks of LLNs
and MANETs [44,45];

3. Social Trustworthiness: This trend has gained more attention since the irruption
of the Social Internet of Things (SIoT) concept [48,49]. In SIoT trustworthiness, the
capability of the objects to establish social relationships autonomously between them
is leveraged to define more complex trust and reputation models that take into account
several input parameters. The authors of [50] define a subjective model that considers
factors as the computational capabilities of the nodes, the type of relationship between
them, the total number of transactions, the credibility of a node, and the feedback
provided by other nodes, among others. In [51], the authors evolved their previous
model and based it on more parameters, such as the neighborhood of nodes, and
presented a new objective model with a faster transitory response. The authors of [52]
proposed another model that defines the input parameters as the expected gain on
success, the expected damage on a failure, the expected cost, the expected result, and
the goal. The authors of [53] define a decentralized, self-enforcing trust management
system based on a feedback system and reputationally secure multiparty calculations
to ensure the privacy of each party’s provided data;

4. Consensus: This represents a state where all participants of the same distributed
system agree on the same data values [54]. Consensus protocols can be divided
into two general blocks: proof-based consensus and byzantine consensus. The first
group is oriented to blockchain technology, where all participants compete with
each other to mine a block, and the most used protocols are proof-of-work, proof-of-
stake, and its variants [55–59]. The main drawback of these protocols for IoT is that
most devices have simple hardware specifications and low processing power, being
incapable of performing the mining tasks of blockchain [60]. The second major group
of consensus protocols is the more classical byzantine based. These kinds of protocols
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implement voting-based mechanisms to reach an agreement rather than competing
among them, which generally results in less resource consumption. The drawback
of these mechanisms is the number of messages that need to be delivered through
the network to reach an agreement. The most well-known protocols in this category
are Practical Byzantine Fault Tolerance, RAFT, PaXoS, and Ripple, although several
variants have emerged year-by-year [55].

To the best of our knowledge, all the approaches that can be found in the literature
focus on specific areas of trustworthiness, but none of them include all of the four trust-
worthiness topics. This fact can lead to misinterpreting the reasons for an inferior service’s
trustworthiness level, and wrong countermeasures to improve it could be applied if the
interdependencies between different trustworthiness categories are not considered (as
will be seen in Section 5.4). For this reason, we found the need to design our own model
to measure a system’s trustworthiness level that included the four categories mentioned
above, which could help us anticipate and identify the possible weaknesses in our IoT
telemetry system. Table 1 summarizes the characteristics of the analyzed trustworthiness
approaches.

Table 1. Qualitative benchmark of the studied trustworthiness approaches.

Trustworthiness
Use [34–36] [38–41] [42] [43] [44,45] [47] [50–53] [54–60] Own Model

Data
Trustworthiness High None None None None None Medium Medium High

Network
Trustworthiness Low Medium High Medium High High Low Low High

Social
Trustworthiness None None None None None None High None High

Consensus None None None None None None None High High

Metrics used
Faulty
Sensed

Data

Bit Error
Rate

Packet
Delivery

Ratio
(PDR)

PDR,
Throughput,

Delay

PDR,
Delay

PDR,
Delay

Successful
Transac-

tions

Successful
Transaction,
Byzantine

Node
Tolerance,

Throughput

Faulty Sensing
Ratio, PDR,
Successful

Transaction
Rate, Byzantine
Node Tolerance

4. Network and Service Architecture

Prior to applying the model of trustworthiness, our first goal was to define the archi-
tecture of the telemetry use case that was to be deployed in the Antarctic campaign of the
SHETLAND-NET project. As mentioned before, the concrete case was the improvement of
permafrost studies by automating data gathering from the GTN-P stations (the sensors),
which measure 32 different parameters. Currently, data are gathered only once a day,
and the authors from [18] left the complete automation of the GTN-P stations as an open
challenge, given that their approach suffers from a lack of connectivity. It is important to
remark that the architecture described below applies to any telemetry use case. However,
we will use the example of the GTN-P stations’ permafrost research that will be carried out
during our campaign in the field.

We propose to use the architecture defined for the deployment phase SHETLAND-
NET project [5]. In our approach [28], we aim to interconnect all remote sensors to a control
center, building a heterogeneous global wireless sensor network (GWSN) composed of
several wide wireless sensor networks (WWSN), able to gather data more frequently. The
first approach to designing a remote sensing system for the Antarctic region was described
in [4] during the SHETLAND-NET project’s early stages, describing how sensors could
reach and use NVIS as a long backhaul link. However, it was mostly centered on designing
the characteristics of the physical layer of the NVIS (backbone) network. In this paper,
a more detailed description of the overall network architecture is presented. The network
diagram is detailed in Figure 1.
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Figure 1. Network diagram of the SHETLAND-NET project telemetry service.

The access network (WWSN) will be in charge of providing connectivity to the remote
sensors, transporting the gathered data from the sensors (GTN-P stations connected to a
low-consumption board) to the gateways (e.g., a Raspberry Pi). The main gateway of each
WWSN will be located near the research base, with the GTN-P stations located around
it in a few-kilometer radius. For redundancy reasons, groups of GTN-P stations can be
clustered and placed close enough to interpret that they measure the same permafrost
values. These stations will sense the data and send it to the gateway once per hour. For
this use case in Antarctica, it is logical to think that the wider the area that can be covered
by the access communication technology the better, because more sensors will be able
to be placed far from the research base so researchers will have access to sensors placed
farther away while saving valuable time in collecting the data. For this reason, short-range
communications are less suitable, and LPWAN communications are preferred. The lack of
telecommunication operators providing service in Antarctica forces operator-dependent
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communication services, such as Sigfox, NB-IoT, or LTE eMTC, to be discarded. This
leaves LoRa as the main candidate to deploy the access network. LoRa transceivers will
be placed in each GTN-P station, responsible for sending the measured data to the LoRa
gateway. As explained in [4], this gateway was implemented with a Raspberry Pi 3B+ in
previous Antarctic campaigns of the SHETLAND-NET project, and it is responsible for
storing the gathered data from all the sensors it is giving service to, ready to send all these
data through the backbone network.

The backbone network will be composed of all NVIS nodes, which will interconnect
remote WWSNs through the long backhaul links to form the GWSN. Each NVIS node
mainly consists of a Red Pitaya, a Raspberry Pi 3B+, and an HF antenna [7]. The link
that can be established between two NVIS nodes has a range of up to 250 km. In order to
interconnect all the WWSNs and reach all remote areas, a multi-hop network will need
to be deployed. Thus, some of the NVIS nodes will have to act as repeaters. At least one
NVIS node will need to be connected to the control center in order to send all the data to
it. To avoid a single point of failure (SPF), having more than one NVIS node connected to
the control center is recommended. The possibility of having multiple paths to reach one
destination demands the need for a routing protocol able to find the best possible loop-free
path in the network [28].

The operation of the backbone network can be summarized as follows. Each NVIS
node will act as a concentrator, gathering the data from every GTN-P station inside their
LoRa coverage area. Once all possible data are collected, the NVIS node will forward it
to the node connected to the control center, following the path determined by the routing
protocol through the backbone network.

However, we can find three main issues that can provoke this architecture to become
a challenging network [14]:

1. Due to the fact of Antarctica’s extreme weather and environmental conditions, both
sensors and gateways could experience temporary or persistent malfunctioning;

2. The irregular elevations of the Antarctic terrain might create situations where sensors
do not have a LoS path through the gateway. This fact degrades the performance of
LoRa communications considerably [23];

3. Depending on the ionosphere’s state and the solar activity, NVIS links may become
unavailable temporally or intermittently [4,6,7,11].

For this reason, our primary goal was to establish a model to measure the trustworthi-
ness of a CPS, with which the performance of the proposed architecture can be evaluated
and its weaknesses detected and improved. Our model will be used in the pre-deployment
phase of the SHETLAND-NET project to foresee performance difficulties of the defined
architecture that may arise during its deployment in the field and predict the effect of the
proposed countermeasures.

5. Trustworthiness Model Definition

Our model proposal to measure the trustworthiness and evaluate a CPS’s performance
(in our case, a group of interconnected remote Antarctic wireless sensor networks providing
an IoT telemetry service) is a layer-based model. This model is characterized by two base
layers (Data Trustworthiness Layer and Network Trustworthiness Layer), two extension
layers (Social Trustworthiness Layer and Consensus Layer), and the interaction among
all of them. The Data Trustworthiness, Network Trustworthiness, Social Trustworthiness,
and Consensus Layers can collectively define a system’s trustworthiness. A graphic
representation of our layered model is shown in Figure 2.

We postulated that each layer is characterized by its definition (scope), how the
trustworthiness of that layer is measured (metric), and how the value of this metric can be
improved (correction).
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On the one hand, Data and Network Trustworthiness are the base layers of our model,
because the system that we want to measure is meaningless if we do not have data to be
exchanged between nodes through a network. On the other hand, Social Trustworthiness
and Consensus are the extension layers because they include functionalities that are not
needed in the service architecture but are optional to implement.

5.1. Trustworthiness Layers’ Definitions

We propose the following definitions for each layer, based on the classification of
trustworthiness approaches we defined in Section 3:

1. Data Trustworthiness Layer: Is the layer responsible for ascertaining the correctness
of the data provided by the source;

2. Network Trustworthiness Layer: Is the layer responsible for assuring that a packet
reaches its destination on time and unaltered despite the adversities (e.g., link failure,
link saturation, or malicious attacks);

3. Social Trustworthiness Layer: Is the layer responsible for leveraging the capability of
the objects to establish social relationships autonomously between them to improve
the trust between them and the correctness of gathered data;

4. Consensus Layer: Is the layer responsible for reaching a state where all participants
of a group agree on the same response or result.

5.2. Trustworthiness Layers’ Metrics

Managing the trustworthiness of a system is possible when the different layers are
separately understood. This way, objectives and metrics can be defined to measure the level
of trustworthiness. In order to measure the four layers of trustworthiness, we have defined
a quantitative metric for each layer. Once metrics are defined, a trustworthiness target can
be determined, which is a quantitative objective given to a trustworthiness metric. If a
trustworthiness characteristic does not meet its target, a change factor is needed to revert
the situation. The combination of all change factors defined to meet the trustworthiness
targets is called the trustworthiness implementation.
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We propose that the trustworthiness model will use the normalized metrics defined in
Table 2 to quantify and measure trustworthiness. We selected these well-known metrics as
they are also used to measure the impact of the technologies and approaches described in
Section 3. We normalized all of them for better cohesion with our layer-based approach.

Table 2. Trustworthiness metrics.

Layer Metric Range

Data Faulty Sensing Ratio [35,36] [0, 1]
Network Packet Delivery Ratio [44,45] [0, 1]

Social Successful Transaction Rate [50,51] [0, 1]
Consensus Byzantine Node Tolerance [55,56] [0, 1]

The faulty sensing ratio (FSR) is defined as the proportion of false sensed values (FSV)
by all nodes and total sensed values (TSV) in a defined time period as stated in Equation (1).

FSR =
FSV
TSV

. (1)

We considered that a sensed value is every independent and semantically significant
measured data that a sensor stores in its memory (e.g., RAM, Flash, hard drive). Suppose
no corrective methods are used in the system. In that case, sensed data (e.g., temperature,
humidity, position, ice content) are considered to be faultily sensed if the value stored in
the sensing (source) node’s memory is different from the value that the sensor should have
correctly read (within a tolerance percentage). In real implementations, the number of
FSV can only be measured if the sensed data’s value is known a priori (ground truth) [61].
Otherwise, only in simulations it is possible to quantify the number of FSV. FSV and
TSV are parameters that must be gathered within the same time slot to calculate the ratio
correctly. The lower the FSR, the better the data trustworthiness.

The packet delivery ratio (PDR) is calculated as the quotient between the total number
of packets received (Pr) by all nodes and the total number of packets sent (Ps) by all nodes
in the same time slot as stated in Equation (2). A packet is considered received if and only
if the reception time (Trx) is less or equal to the transmission time (Ttx) plus a defined
threshold offset η (Trx ≤ Ttx + η), and the packet content is not altered. The higher the PDR
is, the better the network trustworthiness. In our proposal, retransmitted packets (if any)
and original packets are counted separately to compute the metric value.

PDR =
Pr
Ps

. (2)

The successful transaction rate (STR) is the proportion between the number of suc-
cessful transactions (STs) and the total number of transactions (TTs) in a defined time slot
as stated in Equation (3). We defined a transaction, l, as a sensed value, v, that a node, j,
expects to receive from a node or group of nodes, i. Retransmitted or duplicated packets
for the same value, v, are considered part of a single transaction, l. A transaction, l, is
considered successful when a node, j, expects to get some information or data (v) from
node i before a defined maximum reception time (Trxmax) and receives it as expected, thus
providing good feedback (fijl = 1) for that transaction to node i. ST and TT are parameters
that must be gathered within the same time slot to calculate the ratio correctly. The higher
the STR, the better the social trustworthiness.

STR =
ST
TT

. (3)

The byzantine node tolerance (BNT) is defined as the proportion of the supported
byzantine nodes (Nb) that can participate in the consensus system without affecting the
correctness of the general agreement and the total number of nodes (Nt) that participate
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in the consensus system as stated in Equation (3). A node is considered to be byzantine if
it experiences a crash or soft fault that incapacitates it to behave as expected, or if it does
not behave as expected on purpose (malicious node). The higher the BNT, the higher the
probability to reach a correct general agreement. Although theoretically, the BNT value
range is between 0 and 1, in practice, it is not possible to reach a correct consensus with a
BNT ≥ 0.5.

BNT =
Nb
Nt

. (4)

5.3. Trustworthiness Improvement Examples

Now that we have defined the four trustworthiness layers and their associated metrics,
we can give some examples of techniques and protocols that can be used as countermea-
sures at each layer to improve the metrics’ values.

5.3.1. Data Trustworthiness Countermeasures

At the Data Trustworthiness Layer, corrective methods can be applied that try to detect
abnormal data (false sensed values) stored in the source node due to the fact of a sensor
malfunctioning, a misreading of the sensed data, or erratic writing to the node’s memory.
Corrective methods can be used to detect and correct these abnormal values by comparing
them to the values sensed by the same node previously and other mechanisms such as
hashes, checksums, and parity bits. If these corrections are performed at the post-processing
stage by the receiving server or gateway, the nodes’ malicious data manipulation can also
be detected. However, our model assumes that corrections are only made by the own
node (source node). Otherwise, errors that originated during the data transport through
the network, which are out of our scope of definition for the Data Trustworthiness Layer,
could be misinterpreted as source node errors. The drawback of this assumption is that
only non-malicious errors are likely to be corrected at this layer because malicious nodes
might not correct data on purpose. Our model specifies that other layers of the model are
responsible for mitigating malicious behaviors (e.g., the Network Trustworthiness Layer).

The method presented in [35] is a suitable example of a corrective method for data
trustworthiness. This value-level corrective method defines thresholds to detect potential
abnormal data (e.g., a lower-value limit tlow, an upper-value limit tup, and an abrupt
change threshold tch). When a potential abnormal value is detected, it is compared with
the values sensed from the node’s neighbors, computing the group value similarity (G).
Since this breaks our model’s assumption, this value similarity could be computed with the
historical values from the sensor itself as in [36]. If the similarity is lower than a threshold
tsim, then the abnormal data are confirmed and corrected (e.g., interpolation with previous
and posterior correct values sensed by the own node). This method might experience false
positives (by detecting a correct value as abnormal and modifying it) and false negatives
(by not detecting an abnormal value), which can be grouped into faulty sensed values
(FSV). If the thresholds are too strict, the number of false positives will increase, while the
number of false negatives increases if the thresholds are too lax. The fewer the number of
FSV, the better the data trustworthiness, so an optimal trade-off value for the thresholds
must be found to minimize the overall number of FSV. This number is easy to gather
in simulation scenarios, but in real implementations, it is only possible if the values are
well-known a priori (ground truth values).

5.3.2. Network Trustworthiness Countermeasures

At the Network Trustworthiness Layer, transmission coding techniques such as FEC
convolutional codes [38], LDPC codes [39,40], and polar codes [41] are used to increase
the robustness of the transmitted signal. Routing protocols and quality of service (QoS)
mechanisms are used to find the best path from a source to a destination by quantifying
the quality or performance of each link in the network. For each destination, more than
one path can be determined as feasible thus providing load balancing. Many metrics
exist to calculate the best path such as the number of hops, the bandwidth of the link,
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the delay, and the expected number of retransmissions. These routing protocols can be
classified under different categories such as proactive/reactive, link-state/distance-vector,
or monometric/multimetric [45]. Selecting the best path for a traffic flow will eventually
improve network statistics such as throughput, delay, jitter, or packet delivery ratio (PDR).
In the case of challenging networks, DTN overlay architectures and protocols, such as
the Bundle Protocol [62], is also a solution that can be used to improve the network
trustworthiness.

Another relevant element to take into account in this layer is the data security through
the network. While traveling from the source to the destination, data should remain
private, available, and unaltered, preventing it from cyberattacks [63]. For this purpose,
network elements such as next-generation firewalls or intrusion detection systems and
security mechanisms, such as data encryption, authentication, anti-spoofing techniques,
and network filters, are used in the network.

5.3.3. Social Trustworthiness Countermeasures

At the Social Trustworthiness Layer, most solutions tend to use reputational mecha-
nisms to determine which nodes to trust when exchanging information. This reputation
is commonly based on previous transactions’ feedback to build an opinion for the node’s
trustworthiness [64]. More complex and robust mechanisms also incorporate parameters
such as the indirect opinion of other nodes, the relevance (weight) of each transaction, the
node’s centrality, the node’s computational capacity, and the type of relationships between
the nodes [50].

The model in [51] provides two different ways for computing the reputation of a node.
On the one hand, a subjective model of social trustworthiness is presented to compute the
reputation of node i under the perspective of every other node (Rij), these reputations being
different from each other, because the experience of interaction with node i for two different
nodes can be different. Moreover, reputations are asymmetric, meaning that the reputation
that node j calculates from node i can be different from the reputation that node i calculates
for node j (Rij 6= Rji). Thus, the system’s overall trustworthiness can be represented as an
N × N matrix for the reputation that each node calculates for all the other nodes, where
N is the total number of nodes. On the other hand, objective models calculate one single
reputation for each node (Ri), representing the trustworthiness that the system as a whole
perceives from node i. This reputation takes into account the opinion and the feedback
from all the other nodes. Thus, the system’s overall trustworthiness is represented as an
N-size vector with the reputation that the whole network perceives for each node.

Both the subjective and objective approaches aim to leverage the transactions between
trustful nodes and isolate those with bad reputations, which are considered more faulty
or malicious prone. Thus, their goal is to maximize the number of successful transactions
(STs).

5.3.4. Consensus Countermeasures

At the Consensus Layer, several mechanisms can be used to reach a decentralized
general agreement (GA) that all nodes in the group consider to be true. Theoretically, if the
number of byzantine nodes is more than 50% of the total number of participating nodes,
every consensus mechanism will fail to reach a benevolent agreement. Consensus mecha-
nisms aim to reach the GA while tolerating a percentage of byzantine nodes. Consensus
protocols are generally classified into competing mechanisms (proof-based) and voting-
based mechanisms. The latter are more suitable for IoT devices because they consume
fewer resources from the node. These protocols commonly consist of various voting phases
to reach the GA, and their goal is to maximize the number of tolerated byzantine nodes
(BNs). A drawback of these mechanisms is that they need participating nodes to exchange
a large number of messages between them to reach a consensus which can be a problem in
low-bandwidth networks, consuming most of this bandwidth. Some protocols look for a
trade-off between the number of tolerated BNs, throughput, and scalability.
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5.4. Trustworthiness Layers’ Dependencies

Trustworthiness layers’ dependencies must also be understood before deploying the
system’s architecture. In this way, we can build more accurate expectations of how the
model’s overall trustworthiness and concrete layers will be affected by applying a trustwor-
thiness countermeasure in one layer. If the impact of applying specific countermeasures
could not be foreseen, their implementation in the field could negatively affect the overall
system’s trustworthiness. For instance, how will the data trustworthiness affect the consen-
sus? Can a robust consensus protocol lower the trustworthiness of the network because it
is causing bottleneck congestion? In the SHETLAND-NET project, the trade-offs between
these layers need to be carefully analyzed before deploying the system in the field to obtain
the optimal overall trustworthiness level. If we were not considering these dependencies,
it could be possible to experience a degraded performance of the deployed architecture
without the necessary resources or response time to correct it during the campaign. Our
model dependencies proposal is exhibited in Figure 3. These dependencies are qualitatively
analyzed below, and the simulation tests performed in Section 6 were necessary to validate
the model and quantify their actual impact on the overall system’s trustworthiness.
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The Consensus Layer is directly affected by the other three layers. If FSV (Data Layer)
is closer to 0, it means that nodes tend to measure the sensed values correctly, so they will
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be more prone to reach a correct general agreement. From the Social Layer, it is possible
to ostracize those nodes with a lower reputation (which should be the ones with more
false sensed values) if the application can afford to lose the data from them. In this case,
if nodes with the worst reputation were omitted, it should be more probable to reach a
correct general agreement for the rest of the nodes. Finally, suppose the PDR (network
trustworthiness) is closer to 1. In that case, it means that the whole network delivers the
most packets unaltered and on time, so fewer nodes will be considered byzantine due to
the network issues and reaching correct general agreements will be more feasible. It is
important to notice that all these dependencies do not affect the Consensus Layer metric,
the byzantine node tolerance, which depends only on the consensus algorithm used and
the total number of nodes participating in the consensus group.

We propose that the Social Layer can also be directly affected by the other layers. On
the one hand, FSV and STR are inversely related. If the FSV is close to 0, a transaction
coming from that node is less probable to have a false sensed value, meaning that it will
become a successful transaction if the network delivers it properly to the destination. In
addition, the source node will obtain good feedback from the receiving node, increasing its
reputation. On the other hand, PDR and STR are directly related. As the PDR decreases,
it is more feasible that packets targeted to a node are lost in the network, decreasing the
STR. Thus, the receiver would evaluate the transaction as a failure, providing bad feedback
and decreasing the sender’s reputation. Finally, if the Consensus Layer is implemented,
the negative effect of some false sensed values from byzantine nodes and lost packets can
be masked thanks to the consensus algorithm. Nodes could still reach a correct general
agreement, marking that transaction as successful and increasing the STR.

The network layer can be directly affected by the Social and Consensus Layers in terms
of congestion [65,66]. Depending on the application, if nodes with the lowest reputation
could be ostracized, their sensed data might not be sent through the network because they
might not be requested. Thus, these nodes’ links might be less congested and less prone
to packet drops, increasing the PDR. Adversely, as mentioned before, using a consensus
mechanism introduces a considerable amount of network traffic. In addition, the number
of messages exchanged between a group of nodes is directly proportional to the number of
nodes in the group. Thus, if the network bandwidth was not enough to support this extra
traffic, the network could be more prone to be congested and drop packets, decreasing
the PDR.

Finally, it is intuitive to think that the Data Layer should not be affected by the other
layers. The variability of the FSV should depend on the error probability of the sensors and
the node itself (e.g., equipment quality, battery degradation), which could also be affected
by external factors (e.g., environmental characteristics). However, we propose that the
Data Layer can be affected by the Social Layer. Suppose the Social Layer is implemented
and is being used to ostracize the lowest reputation nodes. In that case, we considered that
sensed values from omitted nodes must not be counted for the FSR computation. Thus, if
the lowest reputation nodes were the ones with more false sensed values, the overall FSR
should increase.

It is important to see that Data and Network Layers (the base layers, which are always
present) are entirely independent, given that the correctness of data is always measured on
the source node, never on the destination. This way, data loss or alteration caused by the
network does not affect the data correctness measure.

Notice that Social and Consensus Layers (the extension layers, which are optional) are
the ones affected by the rest of the layers. However, the way they are affected is different.
On the one hand, the dependencies from other layers to the Social Layer directly affect
the value of its trustworthiness metric, the STR. On the other hand, the Consensus Layer
metric, the BNT, is not affected by other layers, but these dependencies can improve the
probability of reaching a correct general agreement, which in final terms improves the
Social Layer metric, the STR.
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In that sense, we considered that the system’s overall trustworthiness can be measured
with the STR metric, which is the one affected by the four layers of our model, and
intrinsically incorporates the effects of the other three metric values (i.e., FSR, PDR, and
BNT). Moreover, notice that without implementing the extension layers, the STR can still
be computed, which will combine the effects of the base layers (i.e., Data and Network
Trustworthiness).

Although the dependencies between the layers and metrics of our model have been
identified, it is still challenging to quantify the effect of looped dependencies on the system’s
trustworthiness. We identified two actions that can provoke a direct looped dependency.
First, if Social Trustworthiness Layer is used to ostracize the lowest reputation nodes,
their sensed values will be omitted, decreasing the FSR and eventually increasing the STR.
However, suppose more traffic than supported by the network is concentrated on the links
that lead to most reputation nodes. In that case, it is possible to create network congestion
that will decrease the PDR and eventually decrease the STR. Second, implementing a
consensus mechanism might help tolerate byzantine nodes and faulty network links, which
eventually increases the STR. Nonetheless, suppose the network bandwidth is not large
enough to allocate the extra traffic introduced by the consensus mechanism. In that case,
the network may suffer from congestion, decreasing its PDR and eventually decreasing the
STR.

To quantify the effects and trade-off points between these dependencies, it is essential
to test the model’s applicability with a use case and measure the trustworthiness metrics
under different circumstances and several times. Given the complexity and cost of per-
forming such a number of tests in the field during the Antarctic campaign, we opted to
use simulation tests, which provides more flexibility. These pre-deployment simulations
will help us decide which are the most suitable and trustworthy architectures for our
system and anticipate the possible weaknesses and problems that may arise during the
deployment in the field.

6. Simulation Tests

To validate the trustworthiness model, it was necessary to measure the metrics values
for the use case scenario several times under different circumstances. For this purpose, the
use case scenario was represented and evaluated in the Riverbed Modeler Simulator [19].
As stated before, our use case scenario was a group of interconnected remote Antarctic wire-
less sensor networks providing an IoT telemetry service. Concretely, the telemetry service
will be used to automatize the data gathering of GTN-P stations to study the permafrost of
the Antarctic region. The remote sensors of WSNs will be connected to a concentrator gate-
way through LoRa (access network), and these gateways will be interconnected between
them and a control center through long backhaul NVIS links (backbone network). The
extreme conditions GTN-P stations need to work with, added to the challenges of NVIS
links and a LoRa network without LoS, might degrade the overall system’s trustworthiness.
In order to foresee which problems may occur during the Antarctic campaign and build
more accurate expectations of the system’s performance and outcomes, we applied our
proposed trustworthiness model to measure and evaluate them.

The first step was the modeling of the network, the nodes, and the application. Once
the model is designed and implemented in the simulator, the set of tests and the simulation
parameters must be defined. After that, the simulations were run, and results were collected
and evaluated.

6.1. Network Models

For the use case scenario, the backbone network (NVIS) and the access network (LoRa)
were modeled separately. On the one hand, the NVIS channel was modeled following the
characteristics described in [7]. The transmission frequency was 4.3 MHz with a channel
bandwidth of 2.3 kHz and a bit rate of 4.6 kbps. An FEC convolutional coding with a 1

2
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rate code and interleaving were used to increase the reliability of the transmission. The
range of the HF link was up to 250 km.

Moreover, given that the ionosphere characteristics vary considerably throughout a
day, we also modeled the probability of a packet being correctly delivered through an NVIS
link hour by hour, following the results in [11]. These results showed that the NVIS links
are unlikely to be available from 17:00 until 6:00. In contrast, the channel availability from
6:00 to 17:00 varied from 70% to 100% when both the ordinary and extraordinary waves
received were combined as shown in Figure 4.

Sensors 2021, 21, 3446 16 of 31 
 

 

 
Figure 4. NVIS link availability depending on solar activity and the ionosphere’s state [11]. The 
graph’s legend is defined as follows: OR refers to the performance of the ordinary wave, XOR re-
fers to the performance of the extraordinary wave received. OR and XOR refer to the total perfor-
mance between both the ordinary and extraordinary modes. We have the copyright of [11], it be-
longs to the GRITS research group from La Salle. 

On the other hand, the LoRa channel was modeled based on the results shown in 
[23,67]. The transmission frequency was 868 MHz with a channel bandwidth that varied 
depending on the chosen data rate (DR) and the rate spreading factor (SF). In our case, we 
chose CR3 (4/7) and SF7, resulting in a channel bandwidth of 125 kHz and a bit rate of 
5.47 kbps. The range of the link was up to 30 km. In the line of sight (LoS) case, the channel 
was always available with a packet loss of 0%. Otherwise, with no LoS, the packet loss 
varied from 0% to 98% depending on the signal reflections, with an average value of 72%. 
Due to the Antarctic surface’s irregularities, we cannot assume that the GTN-P stations 
will be located in LoS with the gateway. For this reason, we considered that 25% of the 
sensors will have a LoS to the LoRa gateway, while the remaining 75% will not have LoS. 
Table 3 summarizes the characteristics of our network models. 

Table 3. Network parameters used to model the scenario. 

Parameter NVIS LoRa 
Transmission Band 4.3 MHz 868 MHz 
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On the other hand, the LoRa channel was modeled based on the results shown
in [23,67]. The transmission frequency was 868 MHz with a channel bandwidth that varied
depending on the chosen data rate (DR) and the rate spreading factor (SF). In our case, we
chose CR3 (4/7) and SF7, resulting in a channel bandwidth of 125 kHz and a bit rate of 5.47
kbps. The range of the link was up to 30 km. In the line of sight (LoS) case, the channel was
always available with a packet loss of 0%. Otherwise, with no LoS, the packet loss varied
from 0% to 98% depending on the signal reflections, with an average value of 72%. Due
to the Antarctic surface’s irregularities, we cannot assume that the GTN-P stations will be
located in LoS with the gateway. For this reason, we considered that 25% of the sensors
will have a LoS to the LoRa gateway, while the remaining 75% will not have LoS. Table 3
summarizes the characteristics of our network models.

Table 3. Network parameters used to model the scenario.

Parameter NVIS LoRa

Transmission Band 4.3 MHz 868 MHz
Channel Bandwidth 2.3 kHz 125 kHz

Channel Bitrate 4.6 kbps 5.47 kbps
Coverage Range Up to 250 km Up to 30 km

Daytime Availability (6 a.m.–5 p.m.) 70–100% 100% (LoS), 2–100% (No LoS)
Night Availability (5 p.m.–6 a.m.) 0% 100% (LoS), 2–100% (No LoS)

Maximum Payload Size 242 bytes 140 bytes
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6.2. Node Model

In the case of the node, both the GTN-P station and the gateway will use the same
finite state machine model. The “INIT” state initializes the model and its attributes. The
“IDLE” state is used when the node is waiting for a packet to arrive, transitioning to the
“PROCESS” state, or a self-interruption to send the sensed data values, transitioning to the
“SEND” state.

6.3. Application Model

Pseudocode algorithms for the application modeling are shown in Appendix A,
Algorithms A1, A2, and A3. The application consists of the telemetry service to gather data
from measured values by sensors and send them to the control center. To better understand
the below explanations, we encourage revisiting Figure 1 to recall the proposed network
architecture.

Each measured value, v, is considered a transaction, l, that must reach the control
center. The application can be run without implementing any of the extension layers
of the proposed trustworthiness model (standard mode) or can implement the Social or
Consensus Layers of the model (redundancy mode), inclusively or exclusively. In standard
mode, each value, v, is measured by a single GTN-P station, while in redundancy mode,
the implementation of a reputational or consensus mechanism leverages the creation of
clusters (groups of GTN-P stations) that measure the same value v.

The GTN-P stations will send data packets once per hour, simulating the moment
when the 32 values are gathered from the GTN-P station sensors, stored in memory,
and delivered to the gateway. We decided to sense these values hourly because it is the
same sensing frequency that the members of the PERMASNOW project [18] used when
they performed their automatization tests. In this process, if no consensus mechanism
is performed, a hardcoded value, v, for each parameter will be inserted into a 132 byte
payload (32 values and a timestamp, 4 bytes each). With a probability, Pb, the value, v, will
be modified to another value out of an acceptable range (vmin, vmax), and the total number
of FSV will be increased by one. This payload will then be inserted into the packet to be
sent to the gateway. If an ACK packet is not received from the gateway before a timeout
Tout, the data packet will be retransmitted up to a maximum of three times. In the case of
implementing a consensus mechanism, all the GTN-P stations participating in the cluster
(which are measuring the same v) will start the process to reach a general agreement. Once
they have reached it, only the cluster leader will send the payload to the gateway with
the agreed value v. During the consensus process, if the Social Layer is also implemented,
each packet exchanged between the nodes participating in the consensus group will be
used to compute the reputation Ri of nodes. The node with the highest reputation will be
elected as the group leader. Moreover, a node i with a reputation Ri lower than Rmin will
not have the right to vote for the value election. However, it will be allowed to continue
participating in the consensus group to increase its reputation until it can be granted the
right to vote again. On the contrary, if no reputational mechanism is being used, all group
members will always have the right to vote, and the leader will be chosen randomly.

On the other site, gateways will collect the data from the GTN-P stations inside its
LoRa coverage area and then forward it through the NVIS backbone network until it
reaches the control center. Given that gateways are also nodes, they may experience a
byzantine failure with probability Pb. In that case, the gateway will modify the payload’s
content. In standard mode, each value v received from node i must be forwarded to the
control center. In redundancy mode, if no consensus mechanism is being used (only the
Social Layer is implemented), the gateway will receive several candidates for the value v
from every node in the cluster. The gateway will inspect the values from it and check if
they are in the acceptable range (vmin, vmax). In an affirmative case, gateway j will provide
positive feedback for that transaction l from node i (fijl = 1). Otherwise, the feedback will be
negative (fijl = 0). After providing feedback for every transaction, the reputation Ri of the
nodes will be updated, and the value provided from the node with the greatest reputation
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will be chosen as the definitive value v. Alternatively, if a consensus mechanism is used in
redundancy mode, the gateway will only receive a single value v for each cluster, which
will have to be forwarded to the gateway.

Due to the NVIS backbone network’s unavailability during night hours (from 17:00
until 6:00), values received by the gateway during this period will be stored in the gateway’s
memory and forwarded to the control center later (when the NVIS links start functioning
at 6:00). On the contrary, values received during daytime (from 6:00 until 17:00) will be
forwarded to the control center as soon as the gateway receives and processes them. As
GTN-P stations do, the gateways also expect to receive an ACK packet for every payload
packet they send to the control center. If an ACK packet is not received from the control
center before a timeout, Tout, the data packet will be retransmitted up to a maximum of
three times.

Finally, the control center will receive all the transactions that had not been lost
through the network. Each value v from the received payload by the control center from
node or node cluster i will be considered a transaction l. The control center will compute
the STR by comparing the received values for each payload with the hardcoded values.

The probability, Pb, of a node having a byzantine fault is unlikely to be constant over
time. As stated in [68], by associating the battery discharge to the WSN node aging process,
the node reliability can be identified and associated with the battery charge level. Thus,
following the model in [69], we can assume the impact of aging following a linear form as
defined in Equation (5):

Pb(t) = Pb0 + kt, (5)

where Pb0 is the probability of a node having a byzantine fault at time t = 0, and k is the
aging factor. Thus, the probability of a node having a byzantine fault will increase hour
by hour until its battery is completely drained at t = td, when it experiences a crash fault
and Pb(td) = 1. However, this model will only be applied to GTN-P stations that will be
powered by batteries. On the contrary, we assume that the gateways will always have a
constant power supply in our use case because they will be placed in the research base.
Thus, their probability of experiencing a byzantine fault will remain constant over time as
defined in Equation (6):

Pb(t) = Pb0. (6)

As explained in Section 4, the use of corrective methods to improve the data trustwor-
thiness provoke, in practice, that the probability, Pb0, of a node experiencing a byzantine
fault will decrease, thus reducing the number of FSV. For that reason, different values of
Pb0 will be used in our simulations to emulate the use of different corrective methods.

6.4. Social Trustworthiness Model

The reputational model for implementing social trustworthiness in our use case is
a simplified version of the objective model defined in [51]. Our use case simplification
assumes that all transactions will have the same weight, all nodes have the same computa-
tional capability, and the relationship factors between them are equal. Thus, the reputation
Ri of node i can be measured as defined in Equation (7):

Ri = αOshort
i + (1− α)Oshort

i (7)

where Oshort
i is the short-term opinion of node i, Oshort

i is the long-term opinion of node i,
and α is a design value between (0, 1) to ponder the importance of short-term and long-term
opinions. The short-term opinion of node i is measured as stated in Equation (8):

Oshort
i =

M

∑
j=1

Lshort

∑
l=1

Cij f l
ij/

M

∑
j=1

Lshort

∑
l=1

Cij, (8)
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where M is the total number of nodes of the group, excluding node i, Lshort is the number
of last l transactions considered to be relevant for building the short-term opinion, f l

ij is the
feedback that node j gave to node i for transaction l, and Cij is the credibility of node j to
evaluate node i.

Analogously, the long-term opinion is calculated as defined in Equation (9):

Olong
i =

M

∑
j=1

Llong

∑
l=1

Cij f l
ij/

M

∑
j=1

Llong

∑
l=1

Cij , (9)

where Llong is the number of last l transactions considered to be relevant for building
the long-term opinion, and Llong > Lshort . The credibility of node j to evaluate node i is
calculated as shown in Equation (10):

Cij =
Rj

1 + log
(

Nij + 1
) , (10)

where Nij is the number of transactions between node j and node i.

6.5. Consensus Model

A consensus protocol can be modeled by knowing the background traffic (bps) that is
introduced into the network and the number of byzantine nodes supported (Nb). In our
use case, each group of redundant GTN-P stations will run the practical byzantine fault
tolerance (PBFT) algorithm [70]. From [71], we can assume that the background traffic
exponentially grows as the number of nodes participating in the consensus (Nt) group
increases. Moreover, the number of tolerated byzantine nodes, Nb, is calculated as:

Nb =
Nt− 1

3
, (11)

In the simulation, if more than Nb nodes experience a byzantine behavior, the agree-
ment reached will have incorrect values. Otherwise, the resulting payload will contain the
correct values.

6.6. Tests Definitions

A summary of the characteristics of the simulation tests is shown in Table 4.

Table 4. Simulation parameters.

Parameter Value

Number of runs per test 30
Simulation duration 120 hours (5 days)

Simulation step 1 h

Pb0
[1 × 10−3, 2 × 10−3, 4 × 10−3, 8 × 10−3, 1 × 10−2,

2 × 10−2, 4 × 10−2, 8 × 10−2, 1 × 10−1]
k 5.7 × 10−5

Routing protocol [AODV, OLSR]
Consensus mechanism [None, PBFT]
Social Trustworthiness [True, False]

Number of NVIS gateways 5
Number of GTN-P clusters per gateway [8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

Number of GTN-P redundant stations per
cluster [1–10]

Each different test will be run 30 times, which gives us the total amount of 113,400 tests.
Each test has a simulation duration of 5 days (120 hours), and the average value of the
STR trustworthiness metric will be calculated. The different byzantine probabilities are



Sensors 2021, 21, 3446 19 of 30

proposed to simulate scenarios with different corrective methods that can reduce the
byzantine probability of a node. On the other hand, two different routing protocols will be
used to analyze which kind of method (reactive or proactive) has a better impact on the
service’s trustworthiness. Moreover, the Consensus and Social Trustworthiness Layers will
be implemented or not to analyze their influence on the service’s performance. Finally, the
impact of the number of nodes connected to each gateway will also be studied by varying
them. In standard mode, there was only one GTN-station per group (because there is no
redundancy). This means that each of the 9 Pb0 values must be tested against each number
of GTN-P clusters per gateway, giving us a total of 90 possibilities. In redundancy mode,
this number increases to 900 since the number of GTN-P stations per cluster varies from
1 to 10. If we sum the cases of standard mode, redundancy mode with consensus, and
redundancy mode with social trustworthiness, we have a total of 1890 different cases, which
are doubled to 3780 considering that we want to test the system with two different routing
protocols. Considering that each test is repeated 30 times, a total of 113,400 simulations
were run in the simulator.

7. Simulation Results

After performing all the simulations, the average value of the STR was calculated for
every set of 30 runs per test. The obtained results had a maximum error deviation of 0.61%
with a confidence interval of 99%. Three different operational modes for the telemetry
service can be clearly identified: the standard mode, the redundancy mode with Social
Trustworthiness Layer, and the redundancy mode with Consensus Layer. For every mode,
an N x M-dimension grid with all the possible combinations of stimulation parameters
was formed, where M is the number of different Pb0 values (nine in our case as stated in
Table 4, row 5), and N is the number of different GTN-P node combinations per gateway
(10 in standard mode and 100 in redundancy mode). For every point in this grid, the
average value of the trustworthiness STR metric was computed. If we link all the STR
values for every neighboring point in the grid, a mesh with all the STR values is formed.
We call this mesh the trustworthiness mesh. Figure 5 exhibits the trustworthiness mesh
three-dimensional graph for all the operational modes. Given that the differences between
the AODV and OLSR scenarios’ obtained results are negligible, only the results for the
AODV scenarios are shown. Figure 6 shows different two-dimensional perspectives of
the trustworthiness mesh graph to understand and analyze the results better. For both
figures, the “byzantine fault probability” axis has nine discrete points, which are (1 × 10−3,
2 × 10−3, 4 × 10−3, 8 × 10−3, 1 × 10−2, 2 × 10−2, 4 × 10−2, 8 × 10−2, 1 × 10−1). The
“redundant sensors x sensor clusters” axis has 100 discrete points, according to Table 4,
rows 11 and 12, which are (1 × 2N, 2 × 2N, . . . , 10 × 2N), where N = (3, 4, . . . , 12).

From Figures 5 and 6, we can analyze the behavior of the trustworthiness mesh. We
can see how without redundancy, the STR is always lower than 0.8. Thus, we can conclude
that due to the characteristics of the NVIS and LoRa networks, the threshold of maximum
trustworthiness that can be achieved is approximately 80% of total transactions in our
use case. This means that, on average, each monitored value arrives at the control center
19 times a day at most. The authors of [18] left the complete automatization of this use
case as an open challenge, aiming to increase the monitoring frequency to visualize the
daily variations of the monitored properties (air, snow, bottom snow, surface, and ground
temperature, among others). Our project’s objective was to receive 14 out of 24 (58.33%)
values each day at least. This is the minimum acceptable threshold to achieve the goals
in [18]. In the tests results, acceptable STR values (>0.58) are maintained if the number of
sensor nodes is kept under 512, although it decreases below the desired trustworthiness
threshold if the number of sensors per gateway is higher. Also, we can notice that the
shape of the trustworthiness mesh is practically identical for all three cases in the “1 × N
sensors” zone (no redundancy). This means that, as was expected, adding the Social or the
Consensus Layers did not improve the level of trustworthiness if there was no redundancy.



Sensors 2021, 21, 3446 20 of 30Sensors 2021, 21, 3446 21 of 31 
 

 

 
Figure 5. Trustworthiness mesh graph for the standard operational mode (green), the redundancy mode with Social Trust-
worthiness (blue), and the redundancy mode with Consensus mechanism (red). 

 

(a) 

Figure 5. Trustworthiness mesh graph for the standard operational mode (green), the redundancy mode with Social
Trustworthiness (blue), and the redundancy mode with Consensus mechanism (red).

From Figures 5 and 6a, we can conclude that adding sensor redundancy and imple-
menting the extension layers of our model improved the trustworthiness of the system,
given that STR values greater than 0.8 were achieved. In cases of low redundancy (“2 × N
sensors” and “3 × N sensors”), implementing the consensus mechanism did not improve
the trustworthiness of the system when compared to the Social Trustworthiness case (the
STR values are very similar). This is because, with two or three redundant nodes, the
number of byzantine nodes tolerated by the consensus mechanism was still 0. Starting
with four redundant nodes (“4 × N sensors”), the consensus mechanism’s effects started to
be noticed, achieving better STR values than the Social Trustworthiness case.

However, as the byzantine fault probability of the nodes decreases (meaning the FSR is
lower), the difference between the STR values from the consensus mechanisms case and the
Social Trustworthiness case becomes smaller. This means that implementing a consensus
mechanism is more appropriate when the probability of the nodes experiencing byzantine
behaviors is relatively high, and it is not necessary when this probability is low. In our
cases, differences between STR values from both cases were not relevant as Pb0 ≤ 0.01.

Moreover, the quantity of network traffic that the consensus mechanism adds, com-
bined with the LoRa and NVIS networks’ low bandwidth, provokes low scalability for
this solution. We can see that by looking at the evolution of the consensus trustworthi-
ness mesh’s STR values (red). We notice that as the number of sensor clusters increase,
the STR values decreases until it drops to 0. This is because the nodes generate more
traffic than the network supports. Thus, the network is congested, and the PDR rapidly
decreases. Furthermore, the higher the number of redundant sensors per cluster, the sooner
the STR dropping point (network saturation) happens. This resolves one of the looped
dependencies postulated in Section 5.4.
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On the contrary, it seems that implementing a social trustworthiness approach is
more robust to these variations. Even if it did not achieve the same levels of STR as the
consensus mechanism case when the number of sensor clusters was low, its STR values
never dropped below 0.55 (very close to our desired minimum trustworthiness threshold),
even in the scenario with more sensors and worse FSR. It is clear that the trustworthiness
of the social case was also affected when the number of sensor nodes increased (which
implies more network load and lower PDR), but its STR did not drop drastically and
could maintain acceptable values. Due to the fact of our use case’s modeling, the social
trustworthiness implementation did not ostracize the nodes so that their sensed values
were not collected, and the network load decreased. This is because in our simulations,
each node had the same probability of experiencing a byzantine fault or sensing the value
correctly, so ostracizing one of them could negatively affect the results. Thus, the behavior
of the other looped dependency postulated in Section 5.4. remains uncertain.

From Figure 5, we can also conclude, as expected, that data trustworthiness had a
direct affection on the overall system’s trustworthiness. In all cases, as the byzantine fault
probability, Pb0, increased (meaning that more values are faultily sensed, increasing the
FSR), the STR decreased.

Finally, Figure 6b shows for each of the 900 possible scenarios which is the most
trustworthy option to implement the service. From this view, we can clearly see the
robustness of the social trustworthiness case, showing how it gains ground as the number
of sensors in the network increases.

8. Conclusions

This paper continues the SHETLAND-NET project’s task to design a remote WSN
for the Antarctic region using NVIS technology. The article focused on the use case of
deploying a group of interconnected remote Antarctic wireless sensor networks providing
an IoT telemetry service. A system and network architecture to implement the telemetry
service was defined, using LoRa at the access network and NVIS long backhaul links at the
backbone network. The extreme conditions remote sensors need to work with, added to
the challenges of NVIS links and a LoRa network without LoS, can provoke a degradation
of the overall system’s trustworthiness. In order to study the viability of the service to be
implemented before its deployment in the field during the Antarctic campaign, and aiming
to anticipate the possible challenges that may arise, we proposed a model to measure and
evaluate the trustworthiness of the system proposed. This trustworthiness model consists
of four layers (two base layers and two extension layers) that can affect the successful
transaction rate (STR) trustworthiness metric.

The trustworthiness model and the system architecture were validated using the
Riverbed Modeler simulator. The obtained results have a maximum error deviation of
0.61% with 99% of confidence. The results show that the defined system architecture
can reach acceptable levels of STR (>0.58) in case a relatively low number of sensors are
deployed, although it drops too much with a large number of sensors. Adding redundancy
to the measured values with multiple sensors and applying a social reputational mechanism
improves the robustness of the system’s trustworthiness, reaching higher STR values (>0.8)
and never dropping below 0.55 even in high sensor-density scenarios. On the contrary,
applying a consensus mechanism improves the system’s trustworthiness when a low
number of sensors are deployed. However, the STR values abruptly decrease as the
number of deployed sensors increases.

Our model can also be used to visualize the work domain to implement our service,
given a desired minimum trustworthiness level. For example, suppose our project requires
a minimum STR of 0.7, so an average of 16 out of 24 sensed values per day reach the control
center correctly. In this case, we could tolerate situations where the number of successful
transactions that reached the control center was less than the average due to the fact of
unexpected conditions but still achieving an STR higher than 58.33% to meet the objective
of [18]. Figure 7 shows the work domain of our telemetry service for an STR higher than
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0.7. For every point in the grid, if no solution provides an STR higher than the desired
minimum value, the surface for that area is white-colored, meaning we cannot deploy the
service with those conditions. On the contrary, if one or more solutions achieve an STR
higher than the desired minimum value, the surface is painted with the color of the solution
with the highest STR. However, it could be possible that we would prefer a solution that
was not the one with the highest STR if all of the following criteria were met:

• The solution still has an STR greater than the desired minimum value;
• The solution has less cost than the solution with the highest trustworthiness in any

sense (e.g., economic, computational resources, network load);
• The difference of the STR value achieved by the solution with less trustworthiness

and the solution with the highest trustworthiness is less or equal to an established
threshold value dmax.

Sensors 2021, 21, 3446 24 of 31 
 

 

• The difference of the STR value achieved by the solution with less trustworthiness 
and the solution with the highest trustworthiness is less or equal to an established 
threshold value dmax. 

 
Figure 7. Trustworthiness mesh top view, coloring working domains with STR > 0.7. 

We first preferred to deploy the standard mode in our use case, followed by the re-
dundancy mode with the Social Trustworthiness Layer implementation and the redun-
dancy mode with Consensus Layer implementation. This way, we prioritized the solution 
with lower resource consumptions (computational and network loads). To construct Fig-
ure 7, we set the value of dmax to 0.01. For our use case example, we chose this value arbi-
trarily. However, the value of this design parameter must be carefully analyzed for every 
particular use case to choose the actual optimal solution. The graph provides a clear vision 
of the work domains or areas that meet the necessary conditions to deploy the requested 
service guaranteeing the required minimum trustworthiness level. Furthermore, we can 
identify which solution to implement with the highest STR or the best trade-off between 
cost and STR for every grid point. 

Performed simulations have also led us to understand better how all the proposed 
model actors work and relate to each other. Figure 8 synthesizes it. Blue-colored elements 
form part of our model base layers, and orange-colored elements form part of the exten-
sion layers. The final goal was to increase the STR to provide better trustworthiness. Three 
main factors directly help to increase the STR: (1) mitigating/tolerating byzantine errors; 
(2) decreasing the FSR (2), and (3) increasing the PDR. These factors can be seen as sub-
goals that leverage the success of the final goal to provide trustworthiness. Each of these 
subgoals can be accomplished by implementing a set of actions or countermeasures. Each 
of these countermeasures affects only one of the subgoals.  

Figure 7. Trustworthiness mesh top view, coloring working domains with STR > 0.7.

We first preferred to deploy the standard mode in our use case, followed by the redun-
dancy mode with the Social Trustworthiness Layer implementation and the redundancy
mode with Consensus Layer implementation. This way, we prioritized the solution with
lower resource consumptions (computational and network loads). To construct Figure 7,
we set the value of dmax to 0.01. For our use case example, we chose this value arbitrarily.
However, the value of this design parameter must be carefully analyzed for every particular
use case to choose the actual optimal solution. The graph provides a clear vision of the
work domains or areas that meet the necessary conditions to deploy the requested service
guaranteeing the required minimum trustworthiness level. Furthermore, we can identify
which solution to implement with the highest STR or the best trade-off between cost and
STR for every grid point.

Performed simulations have also led us to understand better how all the proposed
model actors work and relate to each other. Figure 8 synthesizes it. Blue-colored elements
form part of our model base layers, and orange-colored elements form part of the extension
layers. The final goal was to increase the STR to provide better trustworthiness. Three
main factors directly help to increase the STR: (1) mitigating/tolerating byzantine errors;
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(2) decreasing the FSR (2), and (3) increasing the PDR. These factors can be seen as subgoals
that leverage the success of the final goal to provide trustworthiness. Each of these subgoals
can be accomplished by implementing a set of actions or countermeasures. Each of these
countermeasures affects only one of the subgoals.
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Moreover, we have two transversal actions that affect more than one subgoal. These
transversal actions implement the extension layers of our model: the Consensus Layer
and the Social Trustworthiness Layer. Continuous-line arrows indicate a positive outcome,
discontinuous-line arrows indicate a negative outcome, and dotted-line arrows indicate an
uncertain outcome. Using social trustworthiness can reduce network congestion thanks to
the ostracism of nodes with the worst reputation and send only the values from nodes with
the highest reputation to the control center. Social trustworthiness also helps to reduce the
FSR thanks to the ostracism of bad reputation nodes. It also leverages the mitigation of
byzantine errors because only values from high reputation nodes (leaders) are trusted.

On the other hand, implementing a consensus mechanism mitigates byzantine errors
thanks to the general agreements that are reached by all nodes from a consensus group.
Contrarily, the Consensus Layer can negatively affect the PDR, given that it introduces
a considerable amount of extra traffic to the network that could lead to link congestion.
Finally, the Consensus Layer could also be affected by the Social Trustworthiness Layer
if nodes’ reputations were used to increase the reliability of general agreements (e.g.,
weighted voting based on node’s reputation, ostracism of byzantine nodes), although its
exact effect still remains unclear.

Future work aims to study the influence of implementing a DTN architecture at the
NVIS backbone network, given that it has characteristics of challenging networks. The
authors also plan to study the viability of deploying a FANET in the access network to
provide connectivity to sensors placed outside the coverage area of the current LoRa
network.
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Appendix A

Algorithm A1: Sensor Node Application Pseudocode

int t, gateway_id, own_id, pk_id, tx_time, num_retries;
int data_values[3 2], node_reputations[N]; //N: number of redundnant nodes
float Pb0, Pb, k;
boolean consensus, social, is_leader, ack_received;
initializeVariables(Pb0,k,consensus,social, gateway_id, own_id, is_leader, ack_received);
for (t=0; t++; t<T_MAX){
num_retries = 0;
Pb = Pb0 + k * t;
data_values = gatherData(Pb);
if (consensus==TRUE){
data_values = reachGeneralAgreement(data_values);
if (social==TRUE) node_reputations = computeReputations();

if (checkLeader(node_reputations)==TRUE)
[tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id);
}else{
pk_id = NULL;
}
}else{
[tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id);
}
if (pk_id != NULL){
ack_received = checkAck(pk_id);
while(ack_received==FALSE && num_retries<MAX_RETRIES){
if (currentTime() >= tx_time + MAX_TIMEOUT){
[tx_time, pk_id] = sendPacket(data_values, gateway_id, own_id);
num_retries++;
}
ack_received = checkAck(pk_id);
}
}
pk_id = NULL;
}
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Algorithm A2: Gateway Node Application Pseudocode

int own_id, sensor_id; control_ctr_id, pk_id, tx_time, num_retries;
int data_values[32], stored_values[N][32], node_reputations[N]; //N: number of redundnant
nodes
float Pb;
boolean social, ack_received, data_pk_received;
initializeVariables(Pb, social, sensor_id, pk_id, own_id, control_ctr_id, ack_received,
data_pk_received);
while(TRUE){
num_retries = 0;
if (dataPkReceived()==TRUE){
[sensor_id, pk_id, data_values] = retrievePkData();

if (social==FALSE){
sendAck(pk_id, own_id, sensor_id);
[tx_time, pk_id] = forwardDataPk(data_values, gateway_id, sensor_id,

control_ctr_id);
ack_received = checkAck(pk_id);

while(ack_received==FALSE && num_retries<MAX_RETRIES){
if (currentTime() >= tx_time + MAX_TIMEOUT){

[tx_time, pk_id] = forwardDataPk(data_values, gateway_id, sensor_id,
control_ctr_id);

num_retries++;
}
ack_received = checkAck(pk_id);

}
ack_received=FALSE;
num_retries=0;

}else{
stored_values[sensor_id] = data_values;

node_reputations[sensor_id] = computeReputation(data_values);
if (roundIsFinished()==TRUE){

[data_values, sensor_id] = chooseData(node_reputations, stored_values);
[tx_time, pk_id] = forwardDataPk(data_values, gateway_id, sensor_id,

control_ctr_id);
ack_received = checkAck(pk_id);

while(ack_received==FALSE && num_retries<MAX_RETRIES){
if (currentTime() >= tx_time + MAX_TIMEOUT){
[tx_time, pk_id] = forwardDataPk(data_values, gateway_id, sensor_id, control_ctr_id);

num_retries++;
}
ack_received = checkAck(pk_id);

}
ack_received=FALSE;
num_retries=0;

}
}
}
}
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Algorithm A3: Control Center Application Pseudocode

int own_id, sensor_id; gateway_id, pk_id;
int data_values[32];
boolean data_pk_received;
initializeVariables(sensor_id, pk_id, own_id, gateway_id, data_pk_received);
while(TRUE){
if (dataPkReceived()==TRUE){
[sensor_id, gateway_id, pk_id, data_values] = retrievePkData();
storeData(data_values, sensor_id);
computeSTR(data_values);
sendAck(pk_id, gateway_id);
}
}
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Abstract: The SHETLAND-NET research project aims to build an Internet of Things (IoT) telemetry
service in Antarctica to automatize the data collection of permafrost research studies on interconnect-
ing remote wireless sensor networks (WSNs) through near vertical incidence skywave (NVIS) long fat
networks (LFN). The proposed architecture presents some properties from challenging networks that
require the use of delay tolerant networking (DTN) opportunistic techniques that send the collected
data during the night as a bulk data transfer whenever a link comes available. This process might
result in network congestion and packet loss. This is a complex architecture that demands a thorough
assessment of the solution’s viability and an analysis of the transport protocols in order to find
the option which best suits the use case to achieve superior trustworthiness in network congestion
situations. A heterogeneous layer-based model is used to measure and improve the trustworthiness
of the service. The scenario and different transport protocols are modeled to be compared, and the
system’s trustworthiness is assessed through simulations.

Keywords: transport protocols; trustworthiness; Antarctica; IoT; NVIS; remote WSN; LFN

1. Introduction

Research studies from multiple disciplines are carried out every year in Antarctica [1].
Researchers are temporarily placed in Antarctic base stations, normally located in the
peripheral areas of the continent. One of the main challenges in Antarctica is its lack of
conventional telecommunication systems [1], which hinders the deployment of wireless
sensor networks (WSNs). This fact reduces the possibilities of carrying out research studies
(e.g., automation of data collection and remote bases interconnection).

To overcome these difficulties, our research project, the SHETLAND-NET, proposes
the use of near vertical incidence skywave (NVIS) high-frequency (HF) radio links to
provide low-consumption Antarctic communications, continuing previous research on
ionospheric communications [2]. The ionosphere reflects this signal, providing a long
backhaul link of a 250 km radius coverage area [3,4]. Networks using this type of links can
be classified as long fat networks (LFNs), which are characterized by having long links with
a bandwidth delay product (BDP) greater than 1 × 105 bits (12,500 bytes) [5], following
Equation (1), where the link bandwidth (BW) is expressed in bits per second (bps) and the
round-trip time (RTT) in seconds (s).

BDP = BW × RTT. (1)

The NVIS technology can be used to interconnect remote base stations [6]. Our final
goal is to deploy a telemetry service by interconnecting remote WSNs [7], which will help in
the automatization of data gathering for Antarctic research studies. This deployment will be
carried out during the next Antarctic campaign in the field. However, this communication
technique can be error-prone due to the variant properties of the ionosphere. It may
present typical challenging network issues [8], such as intermittent connectivity, end-to-
end disconnection, and variable error rates, which could degrade the performance of the
overall offered IoT service.

Remote Sens. 2021, 13, 4493. https://doi.org/10.3390/rs13224493 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8930-6211
https://orcid.org/0000-0003-2755-4428
https://orcid.org/0000-0003-2009-8669
https://doi.org/10.3390/rs13224493
https://doi.org/10.3390/rs13224493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13224493
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13224493?type=check_update&version=2


Remote Sens. 2021, 13, 4493 2 of 24

Therefore, before the deployment phase of our project, we had to study and try to
anticipate the expected trustworthiness of the IoT telemetry service we want to deploy. For
this reason, we defined a model to assess the trustworthiness of our proposed system [7].
This enabled us to foresee the possible trustworthiness issues that might arise during the
campaign in the field and decide on the respective countermeasures.

For our work, we focus on the use case of automating the monitoring of Ground
Terrestrial Network-Permafrost (GTN-P) stations [9], which are used in permafrost research
studies. Each of these GTN-P stations senses 32 different values hourly, which need to be
remotely monitored from a control center. During the Antarctic campaign, we will deploy
a test scenario. WSNs will be placed in two locations: the Spanish Juan Carlos I Base in
Livingston Island, and the Uruguayan Artigas Base in King George Island, both part of
the South Shetland Islands. The Artigas Base will provide Internet connectivity, so data
gathered from the WSNs can be reached remotely. However, sensors in the Juan Carlos I
Base will not have direct Internet connectivity, and the data from these sensors will need to
be sent through an NVIS link to the Artigas base in order to reach the Internet. Figure 1
shows the test scenario in Antarctica.

Remote Sens. 2021, 13, x FOR PEER REVIEW 2 of 26 
 

 

end-to-end disconnection, and variable error rates, which could degrade the performance 
of the overall offered IoT service. 

Therefore, before the deployment phase of our project, we had to study and try to 
anticipate the expected trustworthiness of the IoT telemetry service we want to deploy. 
For this reason, we defined a model to assess the trustworthiness of our proposed system 
[7]. This enabled us to foresee the possible trustworthiness issues that might arise during 
the campaign in the field and decide on the respective countermeasures. 

For our work, we focus on the use case of automating the monitoring of Ground Ter-
restrial Network-Permafrost (GTN-P) stations [9], which are used in permafrost research 
studies. Each of these GTN-P stations senses 32 different values hourly, which need to be 
remotely monitored from a control center. During the Antarctic campaign, we will deploy 
a test scenario. WSNs will be placed in two locations: the Spanish Juan Carlos I Base in 
Livingston Island, and the Uruguayan Artigas Base in King George Island, both part of 
the South Shetland Islands. The Artigas Base will provide Internet connectivity, so data 
gathered from the WSNs can be reached remotely. However, sensors in the Juan Carlos I 
Base will not have direct Internet connectivity, and the data from these sensors will need 
to be sent through an NVIS link to the Artigas base in order to reach the Internet. Figure 
1 shows the test scenario in Antarctica. 

Artigas Base

Juan Carlos I Base

Internet

 
Figure 1. Map of the South Shetland Islands in Antarctica [10], showing the position of the WSNs 
(blue circles) during the test scenario of the campaign. The NVIS link is represented with the dis-
continuous blue line, and the Internet connectivity is represented with the discontinuous red line. 
The reproduction of the image was slightly modified under a Creative Commons License (CC BY-
SA 3.0). 

As seen in previous research [4], the main drawback of the NVIS link is its unavaila-
bility during the night, given that the ionosphere’s characteristics vary drastically due to 
solar activity. For this reason, we decided to adopt a delay tolerant network (DTN) tech-
nique to opportunistically send all the data collected during the night as a bulk data trans-
fer when the NVIS link becomes available in the morning. This complex scenario required 
a trustworthiness assessment to analyze its feasibility to be deployed in Antarctica before 
the campaign [7]. As shown in our first round of simulations, performing this opportun-
istic bulk data transfer in an LFN that presents network challenges could degrade the 

Figure 1. Map of the South Shetland Islands in Antarctica [10], showing the position of the WSNs (blue
circles) during the test scenario of the campaign. The NVIS link is represented with the discontinuous
blue line, and the Internet connectivity is represented with the discontinuous red line. The reproduction
of the image was slightly modified under a Creative Commons License (CC BY-SA 3.0).

As seen in previous research [4], the main drawback of the NVIS link is its unavailabil-
ity during the night, given that the ionosphere’s characteristics vary drastically due to solar
activity. For this reason, we decided to adopt a delay tolerant network (DTN) technique
to opportunistically send all the data collected during the night as a bulk data transfer
when the NVIS link becomes available in the morning. This complex scenario required a
trustworthiness assessment to analyze its feasibility to be deployed in Antarctica before the
campaign [7]. As shown in our first round of simulations, performing this opportunistic
bulk data transfer in an LFN that presents network challenges could degrade the system’s
performance (packet losses) due to network congestion caused by the large quantity of
data sent. On the other hand, in prior work, we also analyzed the suitability of different
transport protocols for LFNs and designed a new one, the Enhanced Adaptive and Aggres-
sive Transport Protocol [5,11]. Given that the NVIS links can also be considered as LFNs
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and given the strong performance that some modern transport protocols showed in our
tests, we believed that it was crucial to assess how the use of modern transport protocols
could improve or affect the performance and trustworthiness of the service, especially in
this congestion situation provoked by the DTN technique. Having collected the initial
results and analyzed the system’s trustworthiness in previous work with the standard
transport protocols of the devices’ operative systems, this paper studies the trustworthiness
and compares the usage of different transport protocols by modeling the scenario in the
Riverbed Modeler. The paper contributions are as follows:

1. The definition and concretion of the remote sensor network architecture that will be
deployed in Antarctica, detailing the type of nodes, protocol stack, and communica-
tion techniques that will be used.

2. The modeling of the Antarctic scenario in the simulator. To perform the simulation
tests, we modeled the communication media (LoRa and NVIS), the telemetry appli-
cation, the faulty behavior of Byzantine nodes, the social trust management and the
consensus algorithms, the DTN technique, and the tested transport protocols.

3. The assessment and analysis of the results using our proposed trustworthiness model.
From this analysis, we conclude which transport protocol best suits our use case and
propose a modification of the scenario to be deployed in Antarctica.

The rest of this paper is structured as follows. Section 2 describes the related work in
DTNs, transport protocols, and a system’s trustworthiness. Section 3 defines our use case’s
network architecture. Section 4 reminds our proposed model to measure and evaluate a
system’s trustworthiness. Section 5 describes the simulation tests. Sections 6 and 7 present
and discuss the obtained results, respectively. Finally, Section 8 concludes the paper.

2. Related Work
2.1. Delay Tolerant Networks

The DTN was first presented as an alternative network architecture designed for
challenging networks [8] which suffer from high bit error rates, lack of end-to-end connec-
tivity, and long delays [12]. It was initially designed for interplanetary communications in
space [13], given the number of disconnections that this network suffers. However, over
the years, many other types of terrestrial networks have emerged in response to similar
problems (e.g., underwater networks [14], wildlife tracking networks [15], sparse wireless
sensor networks [16], and vehicular networks [17]).

Conventional TCP/IP protocols are not suitable for these kinds of environments. In
contrast, the RFC 5050 presented a DTN protocol, the Bundle Protocol (BP) [18], which
enabled message delivery to cope with all the issues of challenging networks, even if the
source and the destination were never connected to the network simultaneously. The BP is
based on a store–carry–forward overlay network, where “bundles” are transported through
endpoints on top of the transport layer of the OSI model when a connection opportunity is
present between two endpoints. The BP version 7 draft was recently released [19], which
introduces new features, such as optional CRCs for nonprimary blocks, and proposes other
changes to make it simpler, more capable, and easier to use. Many implementations of
the Bundle Protocol adapted to the constraints of IoT and WSNs exist nowadays, such as
IBR-DTN [20], µDTN [21], and DTN7 [19], among others.

However, other DTN approaches are not based on the BP but use their own rout-
ing protocol designed to be disruption- and delay-tolerant [8]. DISRN [22], PASR [23],
RMDTN [24], and PROPHET [25] are some examples of this kind of approach. More-
over, we can find other schemes that mix DTN with other kinds of technologies, such
as opportunistic networking [26,27], machine to machine (M2M) communications [28],
information-centric networking (ICN) [29], and fog computing [30].

As stated before, in our use case, we will use an opportunistic networking technique
to send all the data collected during the night in the morning, when the NVIS link comes
available, as a bulk data transfer. This kind of approach is possible because our research
group has studied the behavior of the ionosphere and NVIS links in prior research [4], and
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were aware that the link is down at nighttime and becomes available at sunrise. However,
we also know this bulk data transfer provokes network congestion, degrading the system’s
performance with packet losses. For this reason, it is crucial to study how modern transport
protocols can help improve this performance, especially in LFNs such as the NVIS links.

2.2. Transport Protocols

The performance of transport protocols for network communications has been a
topic under discussion and development since the Internet was conceived [5]. The first
extensions of the original Transmission Control Protocol (TCP) were [31] TCP Tahoe, TCP
Reno, TCP New-Reno, TCP SACK, and TCP-Vegas, which included new mechanisms such
as the fast retransmit, the fast recovery, the packet pair link estimation, the duplicated
acknowledgment (DUACK), and the selective acknowledgment (SACK).

However, these legacy transport protocols suffered performance degradation over
some types of networks, including LFNs. The LFN concept and its effects on TCP per-
formance were firstly defined and detailed in the Request For Comments (RFC) 1072,
which was obsoleted by the RFC 1323 to finally become the standard RFC 7323. Some TCP
variants and other transport protocols developed during the last decade have improved
their performance over LFNs [5]. Some of these are Scalable TCP (S-TCP) [32], FAST
TCP [33], High-Speed TCP (H-TCP) [34], Binary Increase Control TCP (BIC-TCP) [35],
and its evolution: TCP CUBIC [36]. TCP CUBIC (RFC 8312) is the most commonly used
transport protocol nowadays, given that it is the TCP variant used by default on most
operating systems. However, most of these protocols consider that packet loss always
occurs due to network congestion, reducing the congestion window. This assumption is
false for wireless links, where packets can also be dropped for other reasons (e.g., fading,
channel interference) [11]. Under these circumstances, reducing the congestion windows
might also degrade the transmission performance, achieving lower throughput [11].

For this reason, other transport protocols, such as Performance-oriented Congestion
Control (PCC) [37], TCP Veno [38], TCP Westwood+ [39], Dynamic TCP [40], Jitter TCP [41],
and Jitter Stream Control Transmission Protocol (JSCTP) [42] are focused on implement-
ing mechanisms to detect if lost packets occur due to network congestion or random
channel loss. They only reduce the congestion window in the first case, achieving better
performance [11].

In addition, other modern transport protocols, such as TCP BBR [43], Copa [44],
Indigo [45], and Verus [46], can achieve high performance, as proven in several physical
tests carried out by Stanford University’s platform Pantheon [45]. TCP BBR is one of
the top-performance protocols, managing the maximum bandwidth with the minimum
RTT. Copa is a practical delay-based protocol that fixes an RTT target and adjusts its
congestion windows based on the minimum RTT and the standing RTT measured during
data transfers. Indigo is a data-driven protocol that uses a machine-learning congestion
control scheme that learns from previous performance data. Verus is a transport protocol
oriented to cellular networks that relates the congestion windows with delay variations
through short-term RTT measurement.

Moreover, given that the aforementioned protocols did not meet the performance
requirements of our cloud data-sharing use case from previous work [11], we presented the
Adaptive and Aggressive Transport Protocol (AATP) [5] and its evolution, the Enhanced
AATP (EAATP) [11], which incorporates mechanisms to differentiate the packet losses’
cause, fairly adapting its sending rate accordingly to the network circumstances. The
performance in these tests was solid, both in simulations and in a physical testbed with an
LFN emulator, showing better results than other protocols, maximizing throughput and
minimizing packet losses [5,11]. Figure 2 shows a summary of the tests’ results. However,
we did not know how these protocols (including ours) could affect the trustworthiness of a
system, especially in the use case of this paper. For this reason, we thought that we needed
to assess whether using the EAATP in the remote Antarctic WSN use case could improve
the system’s performance and trustworthiness, especially in congestion situations.
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2.3. Trustworthiness in Cyber Physical Systems

A cyber physical system (CPS) is defined as a system with integrated computational
and physical capabilities. Wireless sensor networks, smart grids, and some IoT devices
are examples of CPSs [47]. Even though there is no consensus in the literature to define
the trustworthiness property and its scope [48], we can define a CPS’s trustworthiness, in
general terms, as the property of behaving as expected under adversarial conditions [47].
Network malfunction, Byzantine errors, and faulty nodes are examples of adverse condi-
tions that can affect a system’s trustworthiness. Some authors limit this definition to system
security issues only [49], while others propose a broader scope and relate trustworthiness
with other terms such as resilience, availability, reliability, scalability, maintainability, het-
erogeneity, data quality, hardware resources, and fault management policies [48]. We can
find many approaches to measuring or providing trustworthiness in literature, referring to
different elements. We classify them into four main categories [7]:

1. Data trustworthiness: It is defined as the possibility to ascertain the correctness of the
data provided by the source [50]. Many methods use different approaches that try to
detect faulty nodes, false alarms, and sensor misreading using. For instance, authors
in [51] use a fog computing architecture to detect, filter, and correct abnormal sensed
data. In addition, authors in [52] present a data intrusion detection system to trigger
false data from malicious attacks.

2. Network trustworthiness: Defined as the likelihood of a packet to reach its destination
unaltered despite the adversities (e.g., link failure, link saturation, or malicious attacks,
among others), it is a relevant aspect to consider in challenging networks [53], such
as the use case we propose. The network’s performance and trustworthiness have
been addressed from several perspectives, such as channel coding [54], transport
protocols [11], dynamic routing and topology control protocols [55,56], and DTN
architectures and protocols [8].

3. Social trustworthiness: This field has become more popular since the appearance
of the Social Internet of Things (SIoT) [57,58]. In SIoT trustworthiness, objects or
network nodes interact and establish social relationships, which are used to define
trust and reputation models that take into account several input parameters. Authors
in [59] present a model that considers factors as the computational capabilities of
the nodes, the type of relationship between them, the total number of transactions,
the credibility of a node, and the feedback provided by other nodes, among others.
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Authors in [60] present an evolution of the aforementioned trust management model,
which applies a machine learning algorithm to calculate novel parameters such as the
goodness, usefulness, and perseverance of a node. Thanks to these parameters, this
upgraded trust model is resilient to more types of malicious node attacks. Authors
in [61] propose another model that defines the input parameters as the expected gain
on success, the expected damage on a failure, the expected cost, the expected result,
and the goal. Authors in [62] define a decentralized self-enforcing trust management
system which is based on a feedback system and reputational secure multiparty
calculations to ensure the privacy of each party’s provided data.

4. Consensus: It represents a state where all the participants of the same distributed
system agree on the same data values [63]. Consensus protocols can be classified
into two major groups: proof-based consensus and Byzantine consensus. The first
group is related to blockchain technology, where all participants compete against
each other to mine a block, and the most commonly used protocols are proof-of-work,
proof-of-stake, and their variants [63]. The main drawback of these protocols for the
IoT is that devices usually have lesser hardware resources and low processing power,
which make the mining tasks of blockchain extremely difficult [63]. On the other
hand, Byzantine-based protocols implement voting-based mechanisms to reach an
agreement rather than competing among them, generating less resource consumption
in general. Their main drawback is the number of messages that need to be delivered
through the network to reach an agreement. Some well-known protocols from this
category are Practical Byzantine Fault Tolerance (PBFT), RAFT, PaXoS, and Ripple,
among others [63].

3. Remote Sensor Network Architecture

As stated before, the use case of this article is an IoT telemetry service to monitor
remote WSNs in Antarctica interconnected through NVIS LFNs. The monitored data are
used for permafrost studies and are gathered by GTN-P stations [9], which are the sensors
of our network. Each of these GTN-P stations senses 32 different values hourly, and these
values must reach the remote control center in Europe.

The GTN-P stations are equipped with a Moteino [64], an Arduino-based board
designed for low-power consumption applications. The Moteino will send, through LoRa,
its sensed values to a Raspberry Pi 3B+ gateway acting as a concentrator (access network).
LoRa was preferred over other alternatives (e.g., Sigfox, NB-IoT) as the access network
protocol because of its teleoperator independence. The LoRa network will be configured
with a transmission frequency of 868 MHz, a code rate CR3 (4/7), and a spreading factor
SF7, obtaining a 125 kHz channel bandwidth with a bit rate of 5.47 kbps. As proved in [65],
this configuration can offer a coverage range of up to 30 km in Antarctica. Figure 3a shows
the Moteino board with the LoRa transceiver that will be used during the campaign to
collect and forward the data from the GTN-P stations.

The Raspberry Pi 3B+ gateway will forward these data through NVIS links (backbone
network) to the Internet edge router in the Uruguayan Artigas Base in Antarctica. NVIS
was preferred over satellite communication because the latter presents coverage issues
in polar zones and has a higher economic cost [3]. The NVIS nodes will be configured to
transmit at the 4.3 MHz transmission band, with a channel bandwidth of 2.3 kHz and a bit
rate of 4.6 kbps. As in [3], we will increase the NVIS transmission reliability with an FEC
convolutional code (1/2 rate code) and interleaving. With this configuration, an NVIS link
range is up to 250 km. Figure 3b shows the NVIS node with the Raspberry Pi 3B+ gateway,
and Figure 3c shows the NVIS antenna (inverted vee antenna).
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From the closest NVIS node to the Internet edge router (the one with Internet con-
nectivity), data will be pushed to the Internet. From this moment, data monitoring and
gathering will be available remotely from the control center. Figure 4 shows the network
architecture diagram of the remote WSN.

The Artigas Base’s Internet connectivity is supposed to have high reliability, so our
trustworthiness assessment is focused on the access network (LoRa) and the backbone
network (NVIS). As mentioned before, the reliability of NVIS links is very dependent on
the ionosphere state, so it is not possible to send data during the night as all of it would be
lost. For this reason, we believed it was necessary to apply a DTN technique to prevent
the loss of data gathered during the night. In our case, we apply the DTN in the backbone
network, as it is more likely to suffer from a lack of end-to-end connectivity, long delays,
and network disruption.

Given that, in our case, we can predict a specific time slot when the NVIS links do not
work (nighttime), we opted to implement a lightweight DTN approach, opportunistically
sending the data collected during the whole night as a bulk transfer when the NVIS channel
becomes available in the morning. Each concentrator should have collected 13 different
sets of sensed values from each GTN-P station during the night. Our project requires that,
on average, at least 9 out of the 13 datasets gathered from each station (around 70%) reach
the control center correctly [7].

The DTN is usually implemented as an overlay network below the application layer
of the Open Systems Interconnection model (OSI model) and needs a convergence layer as
an interface to connect to the lower layers of the protocol stack. Figure 5 shows the protocol
stack from our use case.
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In the access network, LoRa uses a reduced protocol stack, thus avoiding layers 3 to 6
of the OSI model. The application data is directly encapsulated into the LoRa data link layer.
Once data arrives at the NVIS node, the protocol stack introduces all the OSI model layers
and adds the DTN layer below the application layer. The DTN layer needs a convergence
layer to adapt to the transport protocol below. Figure 4 shows the EAATP as the transport
protocol in the backbone network, although we test diverse transport protocols in our
simulations, as discussed in Section 5. Finally, when the data arrives at the last NVIS node
and must be forwarded through the Internet, the DTN and convergence layers are removed.
The common, well-known TCP/IP model is used, given that end-to-end connectivity at
this zone is assumed.

4. Trustworthiness Model Specification

In this section, we summarize our trustworthiness model. Further details of the
model can be found in [7]. To the best of our knowledge, none of the prior analyzed
trustworthiness approaches have tried to include all of the four trustworthiness areas but
have instead focused on one or some of them without considering the interdependencies
between all the four categories. This could lead to assuming incorrect reasons for a lower
trustworthiness level and implementing the wrong countermeasures to improve it. For this
reason, we believed it necessary to design our model to measure a system’s trustworthiness
level, which includes the four categories mentioned above and helps us to anticipate and
identify the possible weaknesses of our IoT telemetry system.

We propose a layer-based model to measure the trustworthiness and evaluate a
system’s performance (in our case, a group of interconnected remote Antarctic wireless
sensor networks providing an IoT telemetry service). This model is characterized by (1)
two baseline layers (data trustworthiness layer and network trustworthiness layer), (2) two
extension layers (social trustworthiness layer and consensus layer) that include optional
functionalities, and (3) the interaction between all of them. The data trustworthiness,
network trustworthiness, social trustworthiness, and consensus layers can collectively
define a system’s trustworthiness.

We postulate that each layer is characterized by its definition (scope), how the trust-
worthiness of that layer is measured (metric), and how the value of this metric can be
improved (countermeasures).

4.1. Data Trustworthiness Layer

This layer aims to ascertain the correctness of the source’s collected data. We propose
the measurement of this layer’s trustworthiness with the metric faulty sensing ratio (FSR),
defined in Equation (2) as the proportion of false sensed values (FSV) by all nodes and
total sensed values (TSV) in a defined period. The lower the FSR, the better the data
trustworthiness.

FSR =
FSV
TSV

. (2)

Corrective methods (e.g., [51,52]) which try to detect abnormal data (FSV) stored in
the source node due to a sensor malfunctioning, a misreading of the sensed data, or erratic
writing in the node’s memory, can be applied. Additional examples of corrective methods
are hashes, checksums, and parity bits, among others (see Figure 6).
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4.2. Network Trustworthiness Layer

This layer is responsible for assuring that a packet reaches its destination on time and
unaltered despite the adversities (e.g., link failure, network congestion). We measure this
layer’s trustworthiness with the packet delivery ratio (PDR), defined in Equation (3) as the
quotient between the total number of packets correctly received (Pr) by all nodes and the
total number of packets sent (Ps) by all nodes in the same time slot. The higher the PDR is,
the better the network’s trustworthiness.

PDR =
Pr
Ps

. (3)

At the network trustworthiness layer, transmission coding techniques [66] are used
to increase the robustness of the transmitted signal. Routing protocols and quality of
service (QoS) mechanisms are used to find the best path from a source to a destination by
quantifying the quality or performance of each link in the network [55,56]. Congestion
control algorithms and other mechanisms of transport protocols [11] can also improve
network trustworthiness. In the case of challenge networks, DTN overlay architectures
and protocols, such as the Bundle Protocol [8], can also improve network trustworthiness
(see Figure 6).
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4.3. Social Trustworthiness Layer

This layer is responsible for leveraging the capability to autonomously establish social
inter-object relationships to improve the trust between them and the correctness of the
collected data. We measure this layer’s trustworthiness with the successful transaction rate
(STR), calculated as the proportion between the number of successful transactions (ST) and
the total number of transactions (TT) in a defined time slot, as stated in Equation (4). A
transaction l is considered successful when a node j expects to obtain some information or
data (v) from node i before a defined maximum reception time (Trxmax) and receives it as
expected, thus providing good feedback (fijl = 1) for that transaction to node i. The higher
the STR is, the better the social trustworthiness.

STR =
ST
TT

. (4)

Most solutions tend to use reputational mechanisms to determine which nodes to
trust when exchanging information. This reputation is commonly based on the feedback of
previous transactions to build an opinion of the node’s trustworthiness [59,60,62].

4.4. Consensus Layer

This layer is responsible for reaching a state where all group participants agree on
the same response or result. We measure this layer’s trustworthiness with the Byzantine
node tolerance (BNT), defined as the proportion of supported Byzantine nodes (Nb) that
can participate in the consensus system without affecting the correctness of the general
agreement and the total number of nodes (Nt) that participate in the consensus system, as
defined in Equation (5). A node is considered Byzantine if it experiences a crash or soft
fault that incapacitates it to behave as expected or if it does not behave as expected on
purpose (malicious node). The higher the BNT is, the higher the probability of reaching a
correct general agreement (GA).

BNT =
Nb
Nt

. (5)

Several mechanisms can be used to reach a decentralized GA that all group nodes
consider to be true. Theoretically, if the number of Byzantine nodes is higher than 50% of
the total number of participating nodes, none of the consensus mechanism will reach a
benevolent agreement [63]. A drawback of these mechanisms is that participating nodes
need to exchange a large quantity of messages between them to reach a consensus, which
can degrade the performance of low-bandwidth networks.

4.5. Trustworthiness Layers Relationships

Figure 6 synthesizes our trustworthiness model actors. Blue-colored elements form
part of our model baseline layers, and orange-colored elements form part of the extension
layers. The primary goal is to increase the STR to provide better trustworthiness. Three
main factors directly help increase the STR: (1) Mitigate/tolerate Byzantine errors; (2)
decrease the FSR; and (3) increase the PDR. These factors can be seen as secondary goals that
leverage the success of the final goal to provide trustworthiness. Each of these secondary
goals can be accomplished by implementing a set of actions or countermeasures. Each of
these countermeasures commonly affects only one of the goals. Moreover, two transversal
actions impact more than one secondary goal. These transversal actions implement the
extension layers of our model: the social trustworthiness layer and the consensus layer.

In Figure 6, continuous-line arrows indicate a positive outcome, discontinuous-line
arrows indicate a negative outcome, and dotted-line arrows indicate an uncertain outcome.
On the one hand, the use of social trustworthiness can reduce network congestion thanks
to the ostracism of nodes with the worst reputation by only sending the values from nodes
with the highest reputation to the control center. In addition, social trustworthiness also
helps to reduce the FSR thanks to the ostracism of bad reputation nodes. It also leverages
the mitigation of Byzantine errors because only values from high reputation nodes (leaders)
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are trusted. On the other hand, implementing a consensus mechanism mitigates Byzantine
errors thanks to the general agreements reached by all nodes from a consensus group.
Contrarily, the consensus layer can negatively affect the PDR, given that it introduces a
considerable amount of extra traffic to the network, which could lead to link congestion.

5. Simulation Tests

As mentioned before, the first tests we performed to assess the system’s trustworthi-
ness in this use case [7] showed that it was possible to have an STR greater than 0.7 in
some circumstances. However, we noticed that the DTN approach of using opportunistic
bulk data transfers when the NVIS link becomes available produced network congestion
in these periods. On the other hand, we also compared, evaluated, and designed modern
transport protocols for heterogeneous LFNs to improve the performance of data transfers
over this type of network. Our tests showed that our protocol, the EAATP, maximized
throughput and minimized packet losses in LFNs. However, we did not evaluate how the
use of these protocols could affect the trustworthiness of a system. Given that the NVIS
links in the remote Antarctic WSN use case can be considered an LFN (with a BDP greater
than 12,500 bytes, from Equation (1)), we thought that using a particular transport protocol
might affect the system’s trustworthiness. For this reason, we decided to run a second
round of tests and check if the hypothesis was correct.

In order to (1) foresee which problems may occur during the Antarctic campaign, (2)
decide which transport protocol to use, and (3) build more accurate expectations of the
system’s performance and outcomes, we applied our trustworthiness model to measure
and evaluate them in this use case. For this purpose, the use case scenario was represented
and evaluated in the Riverbed Modeler simulator. The first step is the modeling of the
different elements that characterize our use case. More details about the modeling of this
scenario and its technologies and protocols can be found in [7,11].

Firstly, the backbone network (NVIS) and the access network (LoRa) were modeled
separately, characterized as stated in Table 1 following the aforementioned description of
the network architecture (please revisit Section 3) and the link availability results from [4]
and [65]. On the one hand, LoRa does not experience any availability variation between
daytime and nighttime, being fully available if there is LoS between the sensor and the
gateway, and with partial availability in the case of no LoS. On the other hand, NVIS is not
affected by not having LoS. However, its availability varies hour by hour, depending on
the ionosphere state, which is highly correlated to solar activity. During nighttime (5 p.m.
to 6 a.m.), the NVIS links are not available, while during daytime (6 a.m. to 5 p.m.), their
availability varies between 70% and 100%.

Table 1. Network parameters used to model the scenario.

Parameter NVIS LoRa

Transmission Band 4.3 MHz 868 MHz
Channel Bandwidth 2.3 kHz 125 kHz

Channel Bitrate 4.6 kbps 5.47 kbps
Coverage Range Up to 250 km Up to 30 km

Daytime Availability (6 a.m.–5 p.m.) 70–100% 100% (LoS), 2–100% (No LoS)
Night Availability (5 p.m.–6 a.m.) 0% 100% (LoS), 2–100% (No LoS)

Maximum Payload Size 242 bytes 140 bytes

Secondly, we modeled the following transport protocols as in our previous work [11]:
BBR, Copa, CUBIC, EAATP, Indigo, and Verus. We focused on modern transport protocols
that have been proven to perform well [45] and TCP CUBIC, which is the standard transport
protocol in most operating systems nowadays. These protocols were modeled according
to the results from our previous work in physical testbeds and simulations [5,11] and the
Pantheon tests [45].
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Thirdly, we needed to model the Byzantine behavior of nodes. As stated in [67], the
probability Pb of a node having a Byzantine fault is unlikely to be constant over time.
The node reliability can be related to the battery charge level by associating the battery
discharge with the WSN node aging process. Following the model in [67], we can assume
the impact of aging as following a linear form, as defined in Equation (6):

Pb(t) = Pb0 + kt, (6)

where Pb0 is the probability of a node having a Byzantine fault at time t = 0, and k is the
aging factor. This probability Pb increases hour by hour until its battery has practically run
out at t = td, when it experiences a crash fault and Pb(td) = 1. In the simulations, we tested
nine different values of Pb0 to emulate the use of different corrective methods (see Table 2).

Table 2. Simulation parameters.

Parameter Value

Number of runs per test 30
Simulation duration 120 h (5 days)

Pb0
[1 × 10−3, 2 × 10−3, 4 × 10−3, 8 × 10−3, 1 × 10−2, 2 ×

10−2, 4 × 10−2, 8 × 10−2, 1 × 10−1]
k 5.7 × 10−5

Transport protocol [BBR, Copa, CUBIC, EAATP, Indigo, Verus]
Redundancy Mode [None, Social, Consensus (PBFT)]

Number of NVIS gateways 5
GTN-P clusters per gateway [8,16,32,64,128,256,512,1024,2048,4096]

GTN-P redundant stations per cluster [1,2,3,4,5,6,7,8,9,10]

As we are in a simulation environment and we can keep track of all collected, sent,
and received values by all nodes, we can compute FSV and ST by comparing the values
that the sensor should have collected with the values that the sensor actually sends and
the values that the control center receives, respectively. In a testbed environment with real
devices, this would only be possible if previously known ground truth values were sent, in
order to compare them with the values received by other nodes.

To model the implementation of the social trustworthiness layer, we used a simplified
version of the objective reputational model from [59]. Our use case simplification assumes
that all transactions will have the same weight, all nodes have the same computational
capability, and the relationship factors between them are equal. Finally, a consensus
protocol can be modeled by knowing the background traffic (bps) introduced to the network
and the number of Byzantine nodes supported (Nb). In our use case, each group of
redundant GTN-P stations will run the PBFT algorithm [68]. The background traffic grows
exponentially as the number of nodes participating in the consensus (Nt) group increases.
Moreover, the number of tolerated Byzantine nodes Nb is calculated as in Equation (7):

Nb =

⌊
Nt − 1

3

⌋
. (7)

Our scenario has five NVIS gateways, each providing an independent LoRa coverage
area (access network) with its own sensors. For each gateway, there are clusters of sensors
measuring the same data. In our test on the field during the campaign, we will deploy
eight clusters per gateway. However, in the simulations, we also tested larger numbers of
clusters (as seen in Table 2) to assess the goodness of our model and the system’s scalability.
Each cluster will have a specific number of redundant sensors measuring the same data.
From our previous tests, we defined that we would set seven redundant sensors (GTN-P
stations) in each cluster in the field deployment, so two Byzantine nodes could be tolerated.
Despite this, in the simulation tests, we varied this number from 1 to 10 in order to compare
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the results with different Byzantine node tolerances (from 0 to 4, following Equation (7))
and assess the system’s scalability.

The simulations consider three different operational modes: the standard mode (no
redundancy), the redundancy mode with social trustworthiness, and the redundancy mode
with consensus. In the standard mode, all the values gathered by every sensor are pushed
through the backbone network to the remote control center. On the contrary, in redundancy
modes, only one value is forwarded to the control center by each cluster. This value is
agreed by cluster members with the social or the consensus mechanism. This fact reduces
the amount of traffic that has to pass through the NVIS backbone LFN, although, contrarily,
it introduces more overload to the LoRa access network due to the messages that need to
be exchanged between cluster members.

All these possibilities add up a total amount of 16,200 different scenarios. Each
scenario was simulated for 120 h (5 days) to experience diverse nighttime and daytime
cycles, and each test was repeated 30 times to assure results confidence. A summary of the
simulation parameters to run our tests is shown in Table 2.

6. Results

After performing all the simulations, the average value of the STR was calculated
for every set of 30 runs per test. The results obtained have a maximum error deviation
of 0.68% with a confidence interval of 99%. Three different operational modes for the
telemetry service can be identified: the standard mode, the redundancy mode with social
trustworthiness layer, and the redundancy mode with consensus layer. For every mode,
an N × M-dimension grid with all the possible combinations of stimulation parameters is
formed, where M is the number of different Pb0 values, and N is the number of different
GTN-P node combinations per gateway. For every point in this grid and for every transport
protocol, the average value of the trustworthiness STR metric is computed. If we link all
the STR values for every neighboring point in the grid, a mesh with all the STR values for
each transport protocol is formed. We call this mesh the trustworthiness mesh.

Given that it is complex to understand the trustworthiness mesh results, we first use
an example to describe how the results are visualized. If we wanted to represent the results
for only one transport protocol, when the number of redundant sensors per cluster is 1, and
the number of clusters varies from 8 to 4096 (Table 2, row 9) we could obtain a mesh similar
to Figure 7a. The “Byzantine Fault Probability” axis has nine discrete points, corresponding
to the nine different Pb0 values shown in Table 2, row 4. The “Redundant Sensors × Sensor
Clusters” axis has 10 discrete points, which are 1 × 2N, where N = [3, 4, . . . , 12], according
to the values shown in Table 2, row 9. Figure 7a shows the general behavior that STR values
will follow in the actual results. On the one hand, across the “Byzantine Fault Probability”
axis, the STR decreases as the Pb0 increases, given that more values are faulty sensed when
the Pb0 is higher. On the other hand, across the “Redundant Sensors × Sensor Clusters”
axis, the STR decreases as the number of clusters increases, given that more devices are
introduced to the network, provoking more packet losses caused by network congestion.

Similarly, suppose we wanted to show, in a single mesh, the results from the same
scenario, but the number of redundant sensors per cluster varied between 1 and 2. In that case,
we could obtain a mesh similar to Figure 7b. In this case, the “Byzantine Fault Probability”
axis remains the same. In contrast, now the “Redundant Sensors × Sensor Clusters” axis has
20 discrete points, which are [1 × 2N, 2 × 2N] where N = [3, 4, . . . , 12]. If all the discrete
points of this axis were labeled, it could be too congested. For this reason, we only label the
beginning of each “redundant sensors” series, i.e., the “1 × 8” and the “2 × 8” discrete points.
The same behavior as before is observed, but now the STR values recover when we jump
from the “1 × 4096” to the “2 × 8” discrete point, given that much fewer nodes are introduced
to the network, i.e., fewer packets are dropped due to network congestion.

Analogously, Figure 7c shows the trustworthiness mesh if we wanted to visualize all
the results simultaneously, varying the number of redundant sensors from 1 to 10 (Table 2,
row 10). In this case, the “Redundant Sensors × Sensor Clusters” axis has 100 discrete
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points, which are [1 × 2N, 2 × 2N, . . . , 10 × 2N] where N = [3, 4, . . . , 12]. In this case, we
observe the same general behavior again. However, now we can also detect that, if we
compare the discrete points with the same number of clusters, the STR also decreases as
the number of redundant sensors per each cluster increases, i.e., more packet losses are
caused by network congestion as more nodes are introduced to the network.
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Figure 8 shows the frontal view of the trustworthiness mesh from Figure 7c. From
this view, we can observe how the STR varies across the “Redundant Sensors × Sensor
Clusters” axis without showing the variance, depending on the Pb0 of the nodes.
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our service, given a desired minimum trustworthiness level. As stated before, our use
case requires a minimum STR of 0.7, so an average of 9 out of 13 sensed values per night
reach the control center correctly to meet the objective of [9]. Figure 9 shows the working
domain of the example trustworthiness mesh presented in Figures 7c and 8, requiring an
STR higher than 0.7. For every point in the grid, if no solution provides an STR higher than
the desired minimum value, the surface for that area is white-colored, meaning we cannot
deploy the service with those conditions. On the contrary, if one or more solutions achieve
an STR higher than the desired minimum value, the surface is painted with the color of
the solution with the highest STR. This representation is achieved by “cutting” Figure 8



Remote Sens. 2021, 13, 4493 17 of 24

along the yellow line, which represents the minimum STR level that must be achieved. The
part of the trustworthiness mesh above the yellow line meets the criteria and is part of the
working domain, while the part below does not.

After clarifying how to visualize the data shown in these graphs, we present the tests’
results in the following graphs. Figures 10–12 show the trustworthiness mesh for the
standard mode, the redundancy mode with social trustworthiness, and the redundancy
mode with consensus, respectively. In each graph, the trustworthiness mesh of each
transport protocol is superposed with the others in order to visualize which one achieves
the highest STR. Moreover, Figure 13 shows the trustworthiness working domain of our
telemetry service for an STR higher than 0.7

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 26 
 

 

After clarifying how to visualize the data shown in these graphs, we present the tests’ 
results in the following graphs. Figures 10–12 show the trustworthiness mesh for the 
standard mode, the redundancy mode with social trustworthiness, and the redundancy 
mode with consensus, respectively. In each graph, the trustworthiness mesh of each 
transport protocol is superposed with the others in order to visualize which one achieves 
the highest STR. Moreover, Figure 13 shows the trustworthiness working domain of our 
telemetry service for an STR higher than 0.7 

 
Figure 10. Trustworthiness mesh (standard mode). 

 
Figure 11. Trustworthiness mesh (social trustworthiness). 

Figure 10. Trustworthiness mesh (standard mode).

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 26 
 

 

After clarifying how to visualize the data shown in these graphs, we present the tests’ 
results in the following graphs. Figures 10–12 show the trustworthiness mesh for the 
standard mode, the redundancy mode with social trustworthiness, and the redundancy 
mode with consensus, respectively. In each graph, the trustworthiness mesh of each 
transport protocol is superposed with the others in order to visualize which one achieves 
the highest STR. Moreover, Figure 13 shows the trustworthiness working domain of our 
telemetry service for an STR higher than 0.7 

 
Figure 10. Trustworthiness mesh (standard mode). 

 
Figure 11. Trustworthiness mesh (social trustworthiness). Figure 11. Trustworthiness mesh (social trustworthiness).



Remote Sens. 2021, 13, 4493 18 of 24Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 12. Trustworthiness mesh (consensus). 

 
Figure 13. Trustworthiness working domain requiring STR > 0.7. 

7. Discussion 
On the one hand, Figures 10–12 show that the levels of trustworthiness achieved are 

similar for all the studied transport protocols with low network load (left side of the mesh 
and cases with fewer sensor clusters). This fact seems reasonable because we already se-
lected the most suitable and top-performance transport protocols to perform our tests, 
discarding those that do not adapt well in LFNs. We believe that if other transport proto-
cols less suitable for this kind of network had been tested, the difference in the results 
would be more evident. However, (1) the levels of BBR and Verus are slightly lower than 
their competitors, and (2) Copa, Indigo, and EAATP share the highest STR values in the 
case of low network load, although the predominance of EAATP grows as the network 
load increases (the yellow mesh is more visible than the others). 

Figure 12. Trustworthiness mesh (consensus).

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 12. Trustworthiness mesh (consensus). 

 
Figure 13. Trustworthiness working domain requiring STR > 0.7. 

7. Discussion 
On the one hand, Figures 10–12 show that the levels of trustworthiness achieved are 

similar for all the studied transport protocols with low network load (left side of the mesh 
and cases with fewer sensor clusters). This fact seems reasonable because we already se-
lected the most suitable and top-performance transport protocols to perform our tests, 
discarding those that do not adapt well in LFNs. We believe that if other transport proto-
cols less suitable for this kind of network had been tested, the difference in the results 
would be more evident. However, (1) the levels of BBR and Verus are slightly lower than 
their competitors, and (2) Copa, Indigo, and EAATP share the highest STR values in the 
case of low network load, although the predominance of EAATP grows as the network 
load increases (the yellow mesh is more visible than the others). 

Figure 13. Trustworthiness working domain requiring STR > 0.7.

7. Discussion

On the one hand, Figures 10–12 show that the levels of trustworthiness achieved
are similar for all the studied transport protocols with low network load (left side of the
mesh and cases with fewer sensor clusters). This fact seems reasonable because we already
selected the most suitable and top-performance transport protocols to perform our tests,
discarding those that do not adapt well in LFNs. We believe that if other transport protocols
less suitable for this kind of network had been tested, the difference in the results would
be more evident. However, (1) the levels of BBR and Verus are slightly lower than their
competitors, and (2) Copa, Indigo, and EAATP share the highest STR values in the case
of low network load, although the predominance of EAATP grows as the network load
increases (the yellow mesh is more visible than the others).
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On the other hand, we can also see that the redundancy mode with social trustwor-
thiness (Figure 11) is the most robust scenario, given that its STR decrease in high-load
situations is less accentuated compared to the other cases (Figures 10 and 12), always
maintaining STR values greater than 0.5. Furthermore, it is confirmed that, in general,
as the probability of a node experiencing a Byzantine error decreases, the achieved STR
values accordingly increase.

From the trustworthiness working domain (Figure 13), we can see the aforementioned
predominance of the EAATP. As mentioned in Section 5, the scenario intended to deploy in
the next Antarctic campaign was the “7 redundant sensors × 8 sensor clusters”. Concretely,
we can check that this case reaches the STR requirement of 0.7 for any Pb0 value.

If we focus on this case, in Figure 13, we can see that the EAATP is the most trustworthy
protocol except for the Pb0 = 1 × 10−1 and Pb0 = 8 × 10−2 cases, in which Copa performs
better. Table 3 shows, in detail, the results for the “7 redundant sensors × 8 clusters” case.
For each protocol and each Pb0, we show the best STR achieved from the three possible
operational modes (standard, social, and consensus). Although Copa, CUBIC, and EAATP
have similar results, the latter can outperform Copa and CUBIC between 0.1% and 0.5%
better in terms of STR in most cases, and also outperforms up to 7% more than its other
competitors. These results confirm our hypothesis, i.e., using a particular transport protocol
can directly affect the system’s trustworthiness in our use case.

Table 3. Best STR achieved by each transport protocol in the “7 redundant sensors × 8 clusters” case.
The best STR for each Pb0 is highlighted in bold.

Pb0 BBR Copa CUBIC EAATP Indigo Verus

1 × 10−3 0.767 0.818 0.817 0.818 0.814 0.801
2 × 10−3 0.767 0.814 0.814 0.819 0.817 0.802
4 × 10−3 0.772 0.819 0.819 0.819 0.811 0.795
8 × 10−3 0.768 0.816 0.814 0.817 0.807 0.797
1 × 10−2 0.767 0.818 0.817 0.820 0.805 0.794
2 × 10−2 0.767 0.814 0.813 0.815 0.799 0.782
4 × 10−2 0.762 0.811 0.809 0.813 0.777 0.765
8 × 10−2 0.750 0.796 0.795 0.794 0.741 0.727
1 × 10−1 0.731 0.785 0.781 0.779 0.724 0.710

We believe that the EAATP’s superior trustworthiness is caused by the fact that
it incorporates a fairness mechanism to share the network bandwidth, which reduces
congestion and packet losses. Moreover, EAATP’s congestion control tries to occupy the
entire network bandwidth rapidly, and its mechanism to differentiate between random
channel losses and congestion losses optimizes its achieved throughput in heavy congestion
situations. These features give the EAATP a competitive advantage in terms of performance
in our use case, where the DTN opportunistic scheme we use to send accumulated data
during the night as a bulk data transfer congests the network.

For these reasons, we decided to use the EAATP as the backbone network transport
protocol for our IoT telemetry service that will be deployed in the field during the next
Antarctic campaign. Moreover, we can identify which of the three modes best suits the
different scenarios which may arise. In general, the standard mode obtains the highest STR
values when there is no redundancy (1 × N zone). If redundancy is applied, the consensus
solution shows the highest levels of trustworthiness in most cases with a low network load.
However, as mentioned before, when the network load increases, the social trustworthiness
solution is more robust, achieving the highest STR values for those cases.

Finally, we also propose that the scenario to be deployed is reconsidered. In the
“7 redundant sensors × 8 clusters” scenario, each gateway has 56 sensors connected, while
only eight different values are sensed, which might be an excessive low efficiency. We
propose to switch to the “5 redundant sensors × 16 clusters”. In this case, increasing the
number of sensors by 43% (80 sensors per gateway) results in increasing the number of
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different sensed values by 100% (16 values). Table 4 shows the detailed results for this
use case. If we compare the results from Tables 3 and 4, the latter case achieves slightly
worse STR values (which seems evident because we decrease the redundancy and increase
the total number of sensors). However, Copa, CUBIC, EAATP, and Indigo still meet the
required STR level of 0.7, providing trustworthiness to the service. In this case, we can also
confirm the predominance of the EAATP, being the protocol with the highest STR in five
of the nine Pb0 cases, while Copa and CUBIC achieve the highest STR in two cases each.
Moreover, EAATP outperforms its competitors by up to 5.1%, while in the cases where
another protocol outperforms the EAATP, it is only by 0.3% at most. Thus, we believe that
the EAATP would also be the most suitable transport protocol to be used in this case.

Table 4. Best STR achieved by each transport protocol in the “5 redundant sensors × 16 clusters”
case. The best STR for each Pb0 is highlighted in bold.

Pb0 BBR Copa CUBIC EAATP Indigo Verus

1 × 10−3 0.757 0.797 0.798 0.797 0.795 0.783
2 × 10−3 0.752 0.799 0.799 0.798 0.796 0.783
4 × 10−3 0.748 0.796 0.798 0.797 0.792 0.777
8 × 10−3 0.75 0.794 0.795 0.801 0.792 0.775
1 × 10−2 0.749 0.793 0.795 0.796 0.786 0.775
2 × 10−2 0.74 0.79 0.787 0.792 0.779 0.764
4 × 10−2 0.73 0.776 0.781 0.781 0.757 0.747
8 × 10−2 0.698 0.74 0.736 0.737 0.727 0.706
1 × 10−1 0.672 0.717 0.714 0.718 0.704 0.692

8. Conclusions

This paper analyzes the applicability of the deployment of a remote WSN for the
Antarctic region using NVIS technology and the provision of an IoT telemetry service for
permafrost studies. This service will be deployed during the 2021–2022 Antarctic campaign
of the SHETLAND-NET project. This work focuses on analyzing and comparing transport
protocols’ trustworthiness in our remote WSN with DTN use case, which uses LoRa at
the access network and NVIS links at the backbone network. Due to certain ionospheric
characteristics, NVIS links do not work correctly at night. For this reason, values sensed at
night are sent opportunistically to the control center as bulk data when the NVIS channel
becomes available, which might cause network congestion. In this situation, the choice
to use a particular transport protocol might affect the overall system’s trustworthiness.
In order to study the viability of the service to be implemented before its deployment in
the field during the Antarctic campaign and in an attempt to compare the performance of
various transport protocols, we use our model to measure and evaluate the trustworthiness
of the proposed system. This trustworthiness model consists of four layers that can affect
the STR trustworthiness metric.

Three operational modes and six transport protocols were analyzed under different
conditions using the Riverbed Modeler simulator. The results show a predominance
of the EAATP as the most trustworthy transport protocol, while BBR and Verus have
the worst trustworthiness. Adding redundancy to the measured values with multiple
sensors and applying a social reputational mechanism improves the robustness of the
system’s trustworthiness, reaching higher STR values and never dropping below 0.5, even
in high-load scenarios. On the contrary, a consensus mechanism improves the system’s
trustworthiness if the number of sensors is kept at a low value.

The research group decided to deploy eight clusters for each NVIS gateway and seven
GTN-P redundant stations per cluster in the Antarctic campaign. The collected results
confirm that this scenario achieves the minimum STR required of 0.7, resulting in a feasible
deployment. In this case, the results show that the EAATP can outperform up to 7% of
the other analyzed transport protocols in terms of trustworthiness (STR). However, we
recommend sacrificing some redundancy (i.e., trustworthiness) and increasing the number
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of different sensed values, implementing the scenario with 16 clusters and five GTN-P
redundant stations. In this case, although slightly worse STR values are achieved, the
requirement of achieving at least an STR of 0.7 is met, while more data can be remotely
monitored from the control center. The EAATP is also the most trustworthy transport
protocol in this case, outperforming its competitors by up to 5.1%. Thus, the research group
has decided to use the EAATP as the transport protocol for the offered telemetry service.

Future work aims to (1) study the viability of using the same network architecture
to deploy an integrated sensing and communication system (ISAC) capable of using
ionosondes as data transmission signals through NVIS; and (2) analyze the implementation
of other DTN architectures and protocols to improve the trustworthiness of the entire
system in situations when the availability of the NVIS link is not previously known
(daytime).
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The following abbreviations are used in this manuscript:
AATP Adaptive and Aggressive Transport Protocol
BDP Bandwidth Delay Product
BIC-TCP Binary Increase Control TCP
BNT Byzantine Node Tolerance
BP Bundle Protocol
bps Bits per second
BW Bandwidth
CPS Cyber Physical System
DTN Delay Tolerant Network
DUACK Duplicated Acknowledgment
EAATP Enhanced AATP
FSR Faulty Sensing Ratio
FSV False Sensed Values
GA General Agreement
GTN-P Ground Terrestrial Network-Permafrost
HF High Frequency
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H-TCP High-Speed TCP
ICN Information-Centric Networking
IoT Internet of Things
ISAC Integrated Sensing and Communication System
JSCTP Jitter Stream Control Transmission Protocol
LFN Long Fat Network
M2M Machine to Machine
NVIS Near Vertical Incidence Skywave
OSI Open Systems Interconnection
PBFT Practical Byzantine Fault Tolerance
PCC Performance-oriented Congestion Control
PDR Packet Delivery Ratio
QoS Quality of Service
RFC Request For Comments
RTT Round-Trip Time
SACK Selective Acknowledgment
SIoT Social Internet of Things
S-TCP Scalable TCP
ST Successful Transactions
STR Successful Transaction Rate
TCP Transmission Control Protocol
TSV Total Sensed Values
TT Total Transactions
WSN Wireless Sensor Network
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