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Introduction

Risk is defined as the possibility of an adverse or harmful event occurring. In a
business environment, risk can be understood as the exposure to having an unex-
pectedly large economic loss. Despite the importance of risk analysis, it is only
in recent decades that the methodology used to carry out this type of analysis has
begun to evolve to take advantage the huge source of statistical data now available.

A company’s profit and losses have a distribution similar to the Normal distri-
bution, where losses are around zero. This thesis focuses on the risk of a negative
effect and, as such, considers losses as the positive values of the distribution.

There are numerous methodologies that study risk, many of which have only been
developed in recent years. This thesis uses the methodology of quantile regression.
This methodology is based on the linear regression that looks for a relationship
between one or several explanatory variables and the mean of a single response
variable. In the case of quantile regression the relationship of the variables is devel-
oped in relation to the quantile of the distribution or, in other words, the effect of
the variables on the extreme values of the distribution of the variable of interest.

Quantile regression was developed in 1979 by Koenker, R. and Basset, G. (1979),
and throughout the decade that followed, the majority of articles have a theoreti-
cal approach. Several papers from the 1990s apply quantile regression in practical
cases. Although these are fairly simple models, these study the effects of exogenous
variables on various quantiles. Poterba, J.M. and Rueben, K. (1994) compare wage
differences between employees and their private sector counterparts between 1979
and 1992. They fit different regressions depending on sex and use the explanatory
variables of level of education, experience and year. Buchinsky, M. (1998) stud-
ies the salary differences between women over the years 1968 to 1990, taking into
account the size of the family, income, race, education, experience, and number
and age of children. Eide, E. and Showalter, M.H. (1998) fit quantile regressions
to study the relationship between the quality of schools and the results of their stu-
dents. They take characteristics of the schools as diverse explanatory variables,
such as the length of the school year, the ratio between teachers and students and
the number of enrollments.

With the onset of the 21st century, studies begin to appear that apply quantile
regression together with other methodologies thus obtaining more powerful results,
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Introduction

with most continuing to focus on studying salary difference. Martins, P.S. and
Pereira, P.T. (2004) analyse the wage gap based on education in sixteen countries.
They apply a very simple model consisting only of the variables education and ex-
perience. Melly, B. (2005) also focuses on analyzing the wage gap in the United
States between 1973 and 1989, using a more elaborate model including variables
on education, experience, race, region, industry, and interactions between variables.
Angrist, J., Chernozhukov, V., and Fernández-Val, I. (2006) approach the quan-
tile regression as a minimization of a function of loss of the mean of the weighted
squared errors and study the salary difference in the 1980s, 1990s, and 2000s in the
United States.

During these years, studies also appear with slightly different themes. Koenker, R
and Geling, O. (2001) make an analysis of survival using quantile regression. They
use as a basis a study that monitors the mortality of fruit flies and conclude that
quantile regression refines several of the conclusions reached in that study. Fattouh,
B., Scaramozzino, P., and Harris, L. (2005) fit quantile regressions to compare the
debt-to-equity ratios of South Korean firms between 1992 and 2001, and discuss
how South Korean firms choose their capital structures by comparing firms in dif-
ferent quantiles in terms of debt-equity ratio. They use variables such as firm size,
liquidation values, financial assets, and year. Coad, A., and Rao, R. (2006)use quan-
tile regression to study the market values of firms as a function of the innovation
they apply. They use a database from the National Bureau of Economic Research
(NBER) and a Compustat database.

The variety of applications where quantile regression is used is expanding. For
example, Kaza, N. (2010) studies the effect of different variables, such as the size
of a house, its location or its age to consider its energy consumption. He applies
quantile regression for all deciles of the distribution of the variable of interest. Behr,
A. (2010) presents quantile regression as a way of approximating Farrell’s techni-
cal efficiency scores, which is a measure of productivity efficiency. In this case, he
focuses on looking at productivity for data for German banks grouped into com-
mercial banks, saving banks and cooperative banks. Hung, W. T., Shang, J. K., and
Wang, F. C. (2010) analyse, through quantile regression, the determinants of the
price of a hotel room in Taiwan. They also apply ordinary least squares regression
to compare the results.

More recent papers are much more varied and go beyond the field of economics,
applying quantile regression together with more complex methodologies. Liao,
W.C. and Wang X. (2012) use quantile regression to study house prices in China.
To perform the study they also use models of spatial econometrics. Tareghian, R.
and Rasmussen, P.F. (2013) use climate models to study rainfall in various seasons
of the Canadian climate, using different climatic variables such as wind, pressure
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or humidity. To select which variables are useful for each weather station, they use
a Bayesian method adapted to quantile regression. Daniel-Spiegel, E., et al. (2013)
attempt to improve the analysis of fetal growth charts using quantile regression.
They use a database of women who are between 12 and 42 weeks pregnant and fit
univariate quantile regressions for head diameter, femur length, and circumference
of the baby’s abdomen.

Briollais, L. and Durrieu, G. (2014) study the use of a quantile regression exten-
sion focusing on copulae to analyse the genomic loci that contribute to the levels of
mRNA or protein expression. Marrocu, E., Paci, R., and Zara, A. (2015) fit linear
regression models and quantile regression models to study the main determinants of
the expenditures of tourists who visited Sardinia between April and October 2012.
These are based on data obtained through a survey that asks questions such as the
size of the group, the length of stay or mode of transportation. They find significant
effects in the variables, especially for high quantiles. Lin, B. and Xu, B. (2018)
study which factors affect emissions of CO2 using the data of the provinces of
China. They fit regressions for 6 different quantiles dividing between groups with
high, medium and low emission. They take into account variables such as financial
capacity, urbanization and economic growth among others. Niemierko, R., Toppel,
J. and Tränkler, T. (2019) use data from German households to study the cost of
heating and propose the use of quantile regression through a D-vine copula to study
the factors that affect different levels of energy efficiency and study how the effects
change between the homes that save the most energy and those that waste the most.

In the field of insurance, the application of quantile regression is still very lim-
ited. Besides the scientific papers mentioned in this thesis, and which were pioneers
at the time, we found very few that apply quantile regression in the field of insur-
ance. Kudryavtsev, A. A. (2009) proposed quantile regression in insurance pricing
and showed a comparison between traditional methods. Heras, A., Moreno, I. and
Vilar-Zanón, J. L. (2018) also discussed this methodology, proposing the analysis
of the total cost of claims and showing that the QPP (Quantile Premium Principle)
improves the EVPP (Expected Value Premium principle) for the premium security
surcharge. The same methodology was extended by Baione, F. and Biancalana, D.
(2021). In recent years, the application of quantile regression has been generalized
and we can find applications from insurance against earthquakes (Pai, J., Li, Y.,
Yang, A. and Li, C., 2022), to the analysis of insurance fraud (Li, H., Song, Q. and
Su, J., 2021) to health insurance (Nortey, E. N., Pometsey, R., Asiedu, L., Iddi, S.
and Mettle, F. O., 2021), as well as insurance intended to cover cybersecurity (El-
ing, M., Jung, K. and Shim, J., 2022) and agricultural insurance (Yu, J., Sumner, D.
A. and Lee, H., 2021).

During my final doctorate year I worked in the automobile department of an
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insurance company, dealing with data closely related to the subject of the doctorate.
Although for reasons of confidentiality I cannot show any type of data or result, I
was able to gain experience in the sector and compare the theoretical work presented
in this thesis with what is done on a practical level in insurance companies.

The first and most important consideration is that each company has its own poli-
cies when it comes to pricing an insurance of any kind. There are companies that
prefer to focus on capturing clients with safe profiles, who have little risk of ac-
cidents and build a client portfolio in which there are few claims to pay, even if
returns are lower. In contrast, there are other companies that try to capture the max-
imum number of clients by taking a higher risk, but covering it with a larger client
base. No one strategy is better than the other and as in other fields within private
companies, the methodologies applied or the way they are applied will depend on
the risk aversion that each company has.

Although we know that insurance companies work with large amounts of data, we
are not aware of the millions of observationsused when applying pricing method-
ologies and grouping the insured. This has its positive and its negative side. On the
one hand, very precise models can be adjusted which closely reflect the personal
reality of each insurance contract. On the other hand, many processes take hours to
run and powerful software is required to work with such a massive amount of data.
It is, therefore, very important that the entire methodology that is developed for ac-
tuarial analysis is very agile and optimized to the maximum so that the computation
times are as short as possible.

The method for reflecting how an insured in the automobile industry drives in the
policy premium is an issue that insurance companies in Spain are reluctant to pursue
because people are very protective of giving their personal data. So, although this
type of data is being used, the sample size is quite small and this makes it difficult
to draw firm conclusions. There are other countries that do work with this type of
data in more detail and affirm that the variables obtained from this method provide
very important information when pricing car insurance.

Although these data is very useful, it would be a mistake to base the whole pric-
ing procedure on a model that only contemplates how the driver drives and does not
consider other variables that are included in current models. As mentioned earlier
databases of this type contain a huge amount of data, not only the number of ob-
servations but also the number of variables available in the internal databases. The
driving skills of the driver, therefore, should be treated as information complemen-
tary to current models.

A device can be installed in a vehicle which, apart from providing data, also has
an automatic emergency warning system in the event of an accident. This device is
linked to the driver’s mobile phone. In the event of a collision, a call to the driver
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is made to check the magnitude of the accident. In the case that the driver does not
answer the call, a call is made to the hospital to report the accident. The installation
of this device is very complicated mechanically and most people are reluctant to
install it in their vehicles. Drivers, through an app installed on their own mobile
phone, receive three different scores that evaluate different factors of their driving
and a general score and are able to consult them at any time.

There are many companies that are dedicated to marketing this product. The
problem is that there are numerous simultaneous data sources and insurance com-
panies do not have contracts with all of them. In addition, there are many vehicle
brands that, in their latest models, already have such a device installed. There exists,
therefore, a huge number of sources of information with various configurations.

From my own experience, I have noticed several differences between the models
that are applied in the thesis and those applied in insurance companies. As already
mentioned the devices used by companies contain many variables, although the
one used in this thesis contains a very reduced number. However, there are also
other differences worth highlighting in this study. The models applied in this thesis
lead me to conclude that sex is an important variable in determining the risk of
accident. Men are more prone to accidents than women and, combined with the
age of the driver, this variable plays a significant role. It is suspected that gender
actually determines very different driving habits and these may be responsible for
a greater or lesser accident rate. In Spain, as a result of the transposition of the
corresponding European directive, this variable cannot be applied by law since it
produces discrimination between the sexes.

Another of the explanatory variables that have been used in the models proposed
throughout the thesis is the percentage of urban driving of the driver. The impor-
tance attached to this variable is much higher in the company than in the model that
we apply in the thesis since here we only use it as an explanatory variable and de-
pending on the quantile in which we are applying the regression this variable does
not turn out to have a significant effect. In the information collected by the device,
this variable not only comes in the form of a percentage, but the client is also given
a score.

Finally, the driver also receives a score on acceleration and braking. In my opin-
ion, this variable is just as relevant as speeding above the speed limit when studying,
not only the risk of having a car accident, but also the seriousness of the accident. In
this thesis I only work with the variable of speed since information of acceleration
and braking was not available. However, this is a variable that should be taken into
account for future research.

In all the chapters of the thesis a series of models that share notation are used. Yi
corresponds to the value of the response variable of the model for the observation
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i= 1, . . . ,n in a set of n data. Xij corresponds to the matrix containing the value of
the explanatory variable j = 1, . . . ,k of observation i. The objective of the models is
to find how values of the variables of matrix X affect values of the response variable
Y. This effect is represented by βj . The model also contains an error term for the
effect that is not represented by the explanatory variables and is defined as εi.

The objective of the thesis is to look more closely into the methodology of quan-
tile regression and its generalizations in the analysis of insurance data. For this, the
study proposes a series of solutions to the problems mentioned above (assessment
of the risk of loss and analysis of the influence of certain risk factors and, ultimately,
pricing) explained in three sections. The first section focuses on the development of
explanatory models for the afore mentioned risk measures. This section is made up
of Chapters 2 and 3. The second section focuses on developing a score for drivers
depending on their car accident risk. This is covered by Chapter 4. The third sec-
tion, Chapter 5, focuses on the use of distributions to predict the risk of bad driving
habits.

The following describes each chapter in more detail. Chapter 2 is titled: Quantile
Regression as a Starting Point in Predictive Risk Models. I propose a methodol-
ogy to fit a regression inspired by the conditional tail expectation (CTE) based on
quantile regression. In this chapter, I explain in detail what quantile regression is
and how it adjusts for the effects of variables. I adjust the VaR and the CTE for
different quantiles and study the evolution of the estimated parameters. I show that
the developed methodology is a good approximation to estimate risk measures more
complex than VaR.

Chapter 3 is titled: An algorithm to fit conditional tail expectation regression
models for vehicle excess speed in driving data. In this chapter I present a model
that enables regression models to be adjusted for the tail expectation that are a nat-
ural generalization of quantile regression models. Here I consider a linear relation-
ship between covariates and show that quantile regression identifies risky drivers by
modelling quantiles of distance driven yearly above the speed limit. I observe that
the linear relationship between variables causes some adjusting problems; theseare
studied in the over the chapters that follow the thesis.

Chapter 4 is titled: Joint Generalized Quantile and Conditional Tail Expectation
Regression for Insurance Risk Analysis. Here I develop a method that adjusts the
VaR and the CTE in a two-part procedure. When fitting models that define a linear
relationship between the parameters, an error in the prediction of the risk measures
is found. To correct this, I introduce a link function that allows the non-linear
relationship between variables to be studied. The resulting model type which I call,
risk regression, provides a better fit of the CTE than the model methodology above
and has the potential to be developed for other risk measures.
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Chapter 5 is titled: "Interpolation of Quantile Regression to Estimate Driver’s
Risk of Traffic Accident Based on Excess Speed". A risk score of having a car acci-
dent can be assigned adjusting a quantile regression for each quantile and compar-
ing in which value τ it approximates the most to the observed value of the variable
of interest. Fitting a large number of regressions is not feasible from the point of
view of computational time and becomes a problem when dealing with models with
lots of data and variables, which is normal nowadays. In this chapter, I develop a
methodology where the values of the quantile regressions that I did not adjust can
be interpolated and I compute the score by fitting a small number of regressions,
obtaining acceptable predictions.

Chapter 6 is titled: "A Sarmanov Distribution with Beta Marginals: An appli-
cation to motor insurance pricing." In this chapter, I propose the use of a bivariate
model using a Sarmanov distribution to predict risk. The Sarmanov distribution
uses marginal distribution regressions for which I select Beta regressions. I adjust
three models with different variables and study how they improve the results. I es-
tablish three customer profiles and study the relationship of the variables depending
on the customer profile.

Chapters included in this doctoral thesis have been published and can be found
in:

1. Pitarque, A, Pérez-Marín, A.M., Guillen, M. (2019) "Regresión cuantílica
como punto de partida en los modelos predictivos para el riesgo." Anales del
Instituto de Actuarios Españoles, 25, 77-117.

2. Guillen, M., Bermúdez, LL., Pitarque, A. (2021) "Joint generalized quan-
tile and conditional tail expectation regression for insurance risk analy-
sis."Insurance: Mathematics and Economics, 99, 1-8.

3. Pitarque, A., Guillen, M. (2022) "Interpolation of Quantile Regression to Es-
timate Driver’s Risk of Traffic Accident Based on Excess Speed." Risks, 10,
1, 19.

4. Bolancé, C., Guillen, M. Pitarque, A. (2020) "A Sarmanov Distribution with
Beta Marginals: An Application to Motor Insurance Pricing" Mathematics,
8, 11

I also contributed on the following publications related with the thesis topic.

1. Uribe, J.M. and Guillen, M. (2020) "Quantile Regression for Cross-Sectional
and Time Series Data: Applications in Energy Markets Using R", Springer
Nature.

7



Introduction

2. Pitarque, A., Guillen, M. "An algorithm to fit conditional tail expectation
regression models for vehicle excess speed in driving data" (2020) CARMA
2020: 3rd International Conference on Advanced Research Methods and An-
alytics.

Finally, I participated in the congress "2020 Actuarial Research Conference" with
the presentation: Pitarque, A., Guillen, M. (2020) "Joint Generalized Quantile and
Conditional Tail Expectation Regression for Insurance Risk Analysis" 55th Actuar-
ial Research Conference (ARC 2020), Nebraska, August 10-12.
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Quantile Regression as a Starting
Point in Predictive Risk Models

1 Introduction

This paper looks at models oriented towards predicting value at risk or, in other
words, the percentile or quantile and other risk measures of a response variable
depending on multiple explanatory variables. Unlike other regression models where
the objective is to predict the mean value, in the case of quantile regression, we
want to know the estimated risk conditioned for given values of explanatory factors
within a tolerance level, for example, 95% or 99%.

Historically, one of the first authors to discuss the regression concept was Roger
J. Boscovich in the 18th century. This physicist and mathematician limited the mean
of the residuals of the regression to 0 and proposed minimizing the sum of abso-
lute values in order to estimate the effects of one variable on another. This type of
regression was named LAD regression (Least Absolute Deviations) and later was
generalized by Pierre-Simon Laplace for multiple variables. This antecedent, which
is prior to Carl F. Gauss and his Ordinary Least Square regression, aimed to adjust
the median of a response variable which is equal to the quantile at 50%. At the end
of the 19th century, Francis Y. Edgeworth proposed an algorithm to adjust regres-
sions so that the sum of the absolute value of the residuals was minimum. However,
this method and other posterior generalizations were not consolidated because more
computational power was required to obtain better optimization algorithms. Until
the middle of the 20th century, studies that used quantile regression focused on es-
timating a regression for the median. Among the first authors to study regressions
for different quantiles were Koenker and Bassett (1978), whose propositions have
continued to evolve.

The τ -quantile value of a continuous random variable, Y, is that value cτ at which
the probability that the response variable is equal to or no greater than τ , namely,
P (Y ≤ cτ ) = τ . Where cτ is the τ th quantile or percentile τ , in insurance and
finance, this is called value at risk at level τ and denoted as V aRτ (Y ).

Similarly, it is defined as the tail value at risk at level τ for variable Y, TV aRτ ,
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is defined as the expected value of the conditional tail. In other words, the expected
value of variable Y that is greater than cτ . This risk measure is also called Expected
Shortfall (ESτ ) or Conditional Value at Risk (CV aRτ ). This corresponds to the
mean of the values that are greater than V aRτ and can be expressed by:

TV aRτ (Y ) = E(Y |Y > cτ ) =
1

1− τ

∫ ∞
cτ

yf(y)dy, (1)

where f(y) is the density function of the probability of the random variable Y .
More details can be found in Hardy (2006) who introduces risk measures with ac-
tuarial applications.

The issue that we address in this paper is how to estimate a regression model for
both risk measures. Until now, quantile regression that covers the first of the two
risk measures has been resolved but as yet not the second.

In other papers where quantile regression has been applied, only a few have been
oriented towards motor insurance. Kudryavtsev (2009) uses quantile regression to
price a robbery insurance analysing loss severity. Pitt (2006) focuses on income
protection insurance. Our intention is to llok more closely at the use and develop-
ment of methodology and its value in the field of actuarial science.

In Section 2 of this paper, we introduce quantile regression and explain how
goodness of fit is determined in this type of model. Next, in Section 3, we describe
the methodology that we propose to use approximate TVaR. In Section 4, we present
the data used in this paper and the results obtained. Lastly, in Section 5, we present
the main conclusions.

1.1 Introduction to quantile regression

To understand quantile regression, we must first appreciate that a linear regression
model is an approximation that fixes a linear relation between the response vari-
able (or dependent variable) and one or more explanatory variables (or independent
variables) with the following expression:

Yi = β0 +β1X1i+β2X2i+ · · ·+βkXki+ εi, (2)

where Yi corresponds with the dependent variable for the i-th case of the
sample(i = 1, · · · ,n) and Xji, the corresponding observations of the k explanatory
variables, being j = 1, · · · ,k. A disturbance term εi is considered and it captures all
deviations from the mean. In this case, given that the disturbance term is centred at
zero, this can be expressed by the following equation:

E(Yi|X1i, · · · ,Xki) = β0 +β1X1i+β2X2i+ · · ·+βkXki. (3)
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Model coefficients are estimated using ordinary least square method (OLS) so:

β̂ = argmin
β

S(β), (4)

where S(β) = ||Y −Xβ||2 represents a distance between the vector of the de-
pendent variable and the linear predictors calculated as the linear combination (3)
for each component.With the Euclidean norm, S(β) correspond to the sum of the
squared residuals. In quantile regression, we want to find a relation between the
quantile of the dependent variable, given values of the explanatory variables, so
that:

V aRτ (Yi|X1i, · · · ,Xki) = βτ0 +βτ1X1i+βτ2X2i+ · · ·+βτkXki, (5)

In this way, it can be shown (see Koenker and Bassett, 1978) that:

β̂τ = argmin
β

[
∑Yi≥X ′iβ τ |Yi−X

′
iβ|+ ∑Yi<X

′
iβ

(1− τ)|Yi−X ′iβ|
]
.

(6)
While the coefficient estimators of the OLS regression that follow a Student’s t-

distribution are known, for quantile regression coefficients the exact distribution of
its estimators is unknown. However, under certain conditions, studies have shown
that
√
n
(
β̂τ −βτ

)
tends to a Normal distribution. It is understood that the objective

function in (6) corresponds to the sum of n components, where each of them can be
expressed as:

ρτ (Yi−X ′iβ) = τ(Yi−X ′iβ)I{Yi≥X ′iβ}+

(1− τ(Yi−X ′iβ)I{Yi<X ′iβ} = (Yi−X ′iβ)(τ − I{Yi<X ′iβ}) (7)

being I{·} an indicator function that equals 1 if the condition of the subindex is
accomplished and 0 otherwise.

Koenker and Machado (1999) proposed an expression to measure the goodness
of fit in quantile regression based on a comparison between the objective functions
of the estimated quantile regression model and a restricted model that only includes
the independent term. More concretely, being

V̂ (τ) =
n

∑
y=1

ρτ (Yi−X ′iβ̂τ ) (8)

the value of the objective function of the complete model that includes all param-
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eters and

Ṽ (τ) =
n

∑
y=1

ρτ (Yi−X ′iβτ ) (9)

the value of the objective function of the model that only includes the inde-
pendent term. The goodness of fit measure, therefore, proposed by Koenker and
Machado(1999)is

R1(τ) = 1− V̂ (τ)/Ṽ (τ) (10)

which is analogous to the R2 of the linear regression model.

2 Proposed methodology to approximate regression
to TVaR

Although the risk measure used in quantile regression is the value at risk at level
τ , one of the main problems is that since only one quantile value is taken, it is a
risk measure that does not consider losses greater than itself. However, in Section 1
showed that TV aRτ (expected value of the values that are bigger than V aRτ ) can
do this.

Our contribution takes as a starting point the papers presented by Koenker regard-
ing quantile regression and, having referred to the recent results offered by Fissler
and Ziegel (2016) and Acerbi and Székely (2014) that quantile regression can be
applied to other risk measures, we establish a new loss function similar to the one
that is optimized for the quantile that will allow a parametric quantile regression
to be adjusted close to TV aRτ . This regression is an extension of the quantile re-
gression for quantile τ , which is why the way to calculate the effects of variables is
similar to the estimator of quantile regression.

In order to calculate the values of the coefficients of quantile regression, it is
necessary to minimize the objective function (6) that ponders the absolute value of
deviations according to the pre fixed τ level. Based on the definition of TVaR in
(1), this can be interpreted as an expected value, and to calculate the expected value
of a continuous random variable with density function f(x), the classic expression
E(X) =

∫∞
−∞xf(x)dx can be used.

To calculate the expected value of the entire random variable, the integral limits
include all the domain i.e., the limits go from −∞ to +∞ for non-bounded random
variables. However, our interest lies in the expected value of the values greater than
the value cτ . An alternate expression to (1) is:
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TV aRτ (Y ) =
1

1− τ

∫ 1

τ
V aRu(Y )du. (11)

Since it is not possible to directly obtain an objective function that allows the
analogous value to (6) for TV aRτ to be obtained, we consider the objective function
ρτ in (7), used to estimate the coefficients for quantile regression, as a density and
calculate the expected value in the tail of the distribution i.e., integrating from τ to
1. Solving this integral we obtain the following expression (see Pitarque, 2019):

∫ 1

τ
τρτ (Y −Xβ)dτ = (Y −Xβ)

∫ 1

τ
τ(τ − I(Y−Xβ)<0)dτ

= (Y −Xβ)

(
1

3
−
I(Y−Xβ)<0

2
− τ

3

3
+
τ2I(Y−Xβ)<0

2

)
. (12)

Finally, the coefficients of the model inspired in TV aR are obtained when mini-
mizing the following objective function:

ˆβτ (TV aR) = argmin
β

∑
n
y=1

[
(Yi−X ′iβ)

(
1
3 −

I(Yi−X′iβ)<0

2 − τ3

3 +
τ2I(Yi−X′iβ)<0

2

)]
(13)

The objective function and its minimization has been programmed in R and its
standard errors obtained using a resample method. We also adapt a calculation of
the goodness of fit measure analogous to the measure proposed by Koenker and
Machado (1999) in quantile regression.

3 Data and results

Data in this paper are used to model the distance driven above the speed limit by
a sample of drivers insured by a Spanish entity. The use of a "pay as you drive"
insurance programme is being offered in more and more countries and, despite it
being a novel idea, the possibility of taking out this type of policy, where the price
depends on driving patterns, is predicted to be fairly common in the coming years.
This insurance programme, requires information on the driving patterns obtained
through a device fitted to the vehicle which records telematics basic data, such as
speed or number of kilometres. The sample used in this study contains information
on 7.691 young drivers (aged between 18 and 32 years old) that took out this type of
policy during 2010. The reason that older people are not included in this database
is that the insurance company only offered this insurance policy to younger people.
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Information corresponding to each driver includes a total of six variables as shown
in Table 1. Various authors have already used this database to carry out studies. For
example, Boucher et al. (2017) studied the transformation of risk factors. Ayuso
et al. (2016a) and (2016b) analysed the effects of distance driven up until the first
crash car occurs also considering the difference in intensity and driving patterns
depending on the genre. Finally, Guillen et al. (2018) studied how to design premi-
ums that consider a high presence of zeros in the number of declared crashes by the
insured drivers and how to use telematics data.

Table 1: Variables of the database
Variable Description
Toler_km Total of kilometres driven above the posted speed limit during 2010.
lnKm Logarithm of the total of kilometres driven during 2010.
Porc_urba Percentage of kilometres driven on urban roads.
Porc_noct Percentage of kilometres driven at night.
Age Age of driver at 1 January, 2010.
Gender 1 = Male, 0 = Female.

Table 2: Descriptive analysis

Variable Mean Std. Median Minimum Maximum Asymmetry Kurtosis
Toler_km 1400.12 2008.67 689.42 0.00 23500.19 3.70 23.75
lnKm 9.26 0.76 9.37 -0.37 10.96 -1.95 13.38
Porc_urba 26.36 14.29 23.47 0.00 100 1.56 6.33
Porc_noct 7.01 6.10 5.30 0.00 46.34 1.03 4.16
Age 24.77 2.82 24.61 18.11 31.56 0.10 2.23

Table 2 shows the descriptive analysis of the variables of the database. A 50,88%
of the drivers are male which means that the database includes approximately the
same number of women and men. The age range is between 18 and 32 years old,
with the mean of age being 24 years old. The asymmetry coefficient is very low
which indicates that the variable is symmetrical. In Table 2 the dependent variable
Toler_km, which measures the total number of kilometres driven above the speed
limit, shows that drivers usually drive a great number of kilometres above the speed
limit each year but due to some extreme cases in the databae the mean is much
higher than the median. Nevertheless, a lot of drivers have never gone above the
posted speed limit. This fact is affirmed by the asymmetry coefficient, which is
high and positive. Kurtosis is high because the majorith of drivers do not go above
the posted speed limit or, if they do, it is not for a long period of time. However, the
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total kilometres covered while speeding is high, at 23.500,19 kilometres . It is likely
that these very high values are related to the driving zone, for example with very
low speed limits and little congestion, or the age of the driver, since it is believed
that the younger the driver, the higher the tendency to speed above the posted speed
limit. Another possible reason may be the profession of the driver, since certain
professions require more journeys by car. Nevertheless, these assumptions need to
be tested.
The total kilometres driven are entered into the model on a logarithmic scale. On
average, about 10.000 kilometres are traveled during the period in which the driving
data is recorded (one year), and the median is quite similar. We observe that the
maximum value corresponding to an annual distance is 57.000 kilometres. The
coefficient of asymmetry is negative and quite high and suggests that there is some
asymmetry to the left, indicating that there are more low values than high values.
The kurtosis of this variable is also very high, which indicates that the distribution is
sharper than the normal distribution and a large proportion of the observations take
similar values. The most common driving area, is seen to be the use of interurban
roads, with on average 26 % of the total mileage recorded. However, the maximum
value is equal to 100, which indicates that there are drivers who only drive in urban
areas, probably only using their vehicle to go from home to work in metropolitan
areas. This variable also presents some asymmetry to the right and a high kurtosis
coefficient. With regard to time of driving, drivers in the sample do not usually drive
at night since the average percentage of kilometres travelled at night is 7 %. The
maximum value obtained for night driving is 46.34 %, which could be for various
reasons; either the driver works at night or is a person, possibly young, who uses
the car for leisure. This variable also shows some asymmetry on the right, but not
very high. The kurtosis is also positive, but less high than that observed in the other
variables.

3.1 Quantile regression

In this section we present the results of the adjustment of quantile regression to the
analysis of the number of kilometres driven above the speed limit. In Table 3 we
present the values of the estimated coefficients for every quantile and for τ = 0,9 we
also include the corresponding p-values. To obtain these we use the function rq of
the quantreg R package (Koenker et al., 2018).
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Table 3: Estimated coefficients for quantile regression and its standard errors be-
tween parenthesis. βτrq represents the coefficients for τ -th percentile ob-
tained using rq funcion. βlm represents the linear model estimated coeffi-
cients.

Variable βlm β0.25rq β0.50rq β0.75rq β0.90rq p-value

Constant -8120.85
-2824.98
(148.44)

-4588.69
(273.60)

-6281.67
(470.82)

-6451.74
(1032.88) <0.0001

lnKm 1062.54
359.81
(14.90)

603.55
(27.89)

894.77
(44.62)

1086.12
(90.46) <0.0001

Porc_urba -21.31
-2.95
(0.45)

-9.11
(0.86)

-21.63
(1.91)

-38.64
(3.32) <0.0001

Porc_noct 5.35
3.18
(1.18)

3.49
(2.31)

4.07
(5.38)

19.69
(12.64) 0.12

Age 1.37
-2.77
(2.43)

-0.52
(4.70)

2.42
(9.48)

2.19
(20.47) 0.91

Gender 329.98
97.51
(14.07)

204.34
(27.82)

364.79
(58.18)

582.63
(141.87) <0.0001

Goodness of fit - 0.1937 0.1380 0.5114 0.6924

In Figure 1 we present the evolution of the effects of the explanatory variables.
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Figure 1: Graphs of the evolution of variable effects as τ quantile increases using
quantile regression.

The graphs in Figure 1 show that, in relation to the constant term, we cannot con-
sider it to be the same as the estimated effect using a linear model. This effect is
negative for all values of τ and decreases constantly until quantile 0,75. From quan-
tile 0,75 the effect keeps decreasing but less abruptly. For the variable that indicates
the total number of kilometres driven the effect is increasing for all quantiles and
more or less constant. From quantile 0,25 to 0,75 this effect can be considered dif-
ferent to the effect estimated using linear regression and for quantile 0,9 the effect
is considered equal to that estimated by linear regression and significantly differ-
ent from 0. For the variable that indicates the percentage of kilometres travelled
by urban road, the effect decreases as the quantile increases. For the 0,25 quantile,
this effect is practically zero and as the quantile increases it takes on increasingly
negative values. For quantiles 0,25 and 0,5, the effect of this variable reduces the
quantile of the response variable less than the effect estimated for the linear model.
For the 0,75 quantile, the effect is the same as that of the linear model and for the 0,9
quantile the effect is significant and there are again differences with respect to the
linear model. For the variable that indicates the percentage of kilometres driven at
night, the effect is practically the same as the one estimated using the linear model,
although it increases slowly as the quantile increases. From the 0.75 quantile, this
growth becomes more pronounced, differentiating itself from the effect of the lin-
ear model. However, for the 0.9 quantile, night driving has no significant effect.
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Regarding the variables that are related to the personal characteristics of the driver,
we see that in terms of age, the effect practically does not vary for different levels.
For the first two quantiles, this variable has a negative effect and for the 0,75 and
0,9 quantiles it has a positive effect. Even so, in none of the cases can this effect
be considered to be different from that of the linear model. For the 0,9 quantile the
effect of age is not significant. In relation to the gender variable, the behaviour is
the inverse of the variable that represents urban driving; as the quantile increases,
the effect increases to a greater extent. For the 0,25 and 0,5 quantiles the effect is
less than that of the linear model and can be considered different from it. For the
0,75 quantile the effect can be considered the same and for the 0.9 quantile it can be
considered different and greater again, being also significant. Finally, Table 3 also
provides the values of the goodness of fit following the formula (12) propose by
Koenker and Machado(1999). Most notably, the fit tends to improve as the τ level
increases, with a slight decrease in the median.

3.2 TVaR regression

In this section we show the results for the adjustment of TVaR in the same database.
Table 4 presents the results of the adjustment of the linear model as well as the
model based on TVaR for different τ levels, specifically, τ = (0.25;0.5;0.75;0.9).
The effects for τ = 0.9 are analysed in a more detailed way, including in this case
the corresponding p-values.

We can see that the constant takes negative values for all the adjusted models.
With respect to the logarithm of total kilometres driven, we see that its coefficient is
positive. For τ = 0,9 the coefficient value is 1091.75 and is significant. This means
that when the logarithm of the total number of kilometres increases a unit (thus the
total of kilometres driven is multiplied by 2.718) TVaR at level 90% of the distance
driven above the posted speed limit increases by 1091.75 km.

With regard to the driving on urban roads, we see that the associated coefficient
takes negative values in all models. This means that the more the vehicle is driven
on urban roads, the less is the TVaR of number of kilometres of speeding which
makes sense given that it is more difficult to go over the posted speed limit in built-
up areas. For τ = 0,9 the coefficient is significant; if the percentage of urban driving
increases by one point, the TVaR at 90% decreases by 54,68 kilometres.

With night driving, the coefficient is positive for all models and leads to an in-
crease of the risk of speeding. Specifically, for τ = 0,9, the coefficient is significant;
with one percentage increase the TVaR of speeding at 90% increases by 26.90 kilo-
metres.

Age is seen to be a positive parameter in that the older the driver, the greater the
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Table 4: Estimated coefficients for quantile regression model based on TVaR and its
standard errors between parenthesis. βτTV aR represents the coefficients for
TVaR at level τ . βlm represents the linear model estimated coefficients.

Variable βlm β0.25TV aR β0.50TV aR β0.75TV aR β0.90TV aR p-value

Constant -8120.85
-5936.59
(165.93)

-6753.75
(237.93)

-7050.46
(394.48)

-6194.13
(1117.77) <0.0001

lnKm 1062.54
831.87
(16.49)

953.45
(20.80)

1102.14
(37.44)

1091.75
(77.07) <0.0001

Porc_urba -21.31
-18.41
(0.56)

-22.59
(0.95)

-34.79
(1.11)

-54.68
(4.00) <0.0001

Porc_noct 5.35
4.78
(1.57)

4.90
(2.84)

16.75
(4.20)

26.90
(9.31) <0.01

Age 1.37
0.70
(2.82)

7.13
(5.00)

7.99
(7.47)

52.29
(21.56) 0.02

Gender 329.98
285.04
(19.05)

369.19
(30.22)

526.06
(47.71)

907.82
(116.33) <0.0001

Goodness of fit - 0.4698 0.5390 0.6682 0.8011

TVaR. The parameter is significant for τ = 0,9; one year increment in age repre-
sents an increment in the TVaR at 90% of 52.29 kilometres. Being a male driver
represents a significant increase in TVaR; for τ = 0,9 the coefficient is significant
and indicates that male TVaR at 90% is 907,82 kilometres higher than for female.

Figure 2 shows the evolution of the effects of the explanatory variables depending
on level τ of the TVaR. We see that as τ rises, the Constant effect becomes more
negative, approaching the Constant value of the linear model but never entering into
its confidence interval. Between τ = 0,75 and τ = 0,9, constant value increases.
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Figure 2: Graphs of the evolution of variable effects as τ quantile increases using
quantile regression to predict TVaR.

With respect to the logarithm of number of kilometres driven during the year, we
can see that its effect increases as τ does until the effect matches the effect of the
linear model for values of τ between 0,75 and 0,9. It could be that this effect is
countered by the Constant effect, so that the conjoint effect is equal to the classical
model.

With respect to distance driven in urban areas, this effect is the same as in the
linear model for τ values less or equal to 0,5. From this point, when the percentile
increases, the effect takes more negative values. In relation yo night driving, it can
be seen that the effect is also the same as in the linear model until τ is equal to 0,5
and then the effect increases.

A huge coincidence is seen in age, with the effects corresponding to the linear
model, given that it lies between the confidence interval for τ values under 0,75.
From this value, the effect increases drastically. Finally, the gender variable has the
same effect in the linear model and in models with τ less than 0,5 and from this
point, the effect also increases drastically.

Finally, Table 4 also shows goodness of fit values. In this case we observe that
for small values of τ , goodness of fit decreases but as τ increases, goodness of fit
also does until it reaches 0,8011 which indicates a good adjustment.
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4 Conclusions

This paper sets out to analyse a way of predicting the value at risk and the value
at risk in the tail. We sohw that the use of quantile regression does not provide
the same results as when using an ordinary least square regression to predict the
expected value. Specifically, in this study we show how quantile regression can be
used to estimate the value at risk and the approximation to the value at risk of the
tail for each insured driver depending on his/her driving patterns. The application of
this methodology allows the risk that a specific driver represents to be assessed, not
only with regard to the set of the sample but to other drivers with similar patterns.
For example, our practical example shows that, driving above the posted speed limit
for a number of kilometres can be more, or less, risky, depending on the other pat-
terns of the same driver, in particular the total number of kilometres driven during
the year. This practical application, in the case of TVaR, enables the mean of the
number of kilometres driven above the posted speed limit to be calculated, for ex-
ample, for the level of 90%, from certain characteristics of independent variables.
So, if a driver is coming close to this value or if he/she is likely to exceed it, this
anomalous behaviour can be identified and, with a "pay as you drive" insurance
programme, a premium could be added to the price as a way of penalizing the driv-
ing pattern. Car insurance based on use, apart from considering the total number
of driven kilometres, should adapt the price to the driving patterns. In the case of
speeding, used as an example in this paper, it seems only fair to reward those drivers
with low risk levels.
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An algorithm to fit conditional tail
expectation regression models in
driving data for vehicle excess speed

1 Introduction

The analysis of data collected from vehicles in motion is an emerging area in trans-
portation research. The reason for its growing interest is the opportunity it offers
to improve road safety and to develop fairer ways of calculating motor insurance
prices. The aim of this paper is to propose new models for risk analysis. We present
an algorithm that allows regression models to be adjusted for the tail expectation,
which are a natural generalization of quantile regression models. Unlike the clas-
sical linear model, which finds the effects of covariates on the mean of a response
variable, quantile regression identifies the effects on the quantile of the response.
Tail expectation regressions can model conditional average responses above a given
conditional quantile. In our case study, we show that quantile regression identi-
fies risky drivers by modelling quantiles of distance driven yearly above the posted
speed limits. The quantile order is fixed at high levels, such as 95%. We denote as
cτ the quantile at level τ (τ between 0 and 1) of a variable response Y. By definition,
the probability that Y is greater or equal to cτ is equal to τ . Quantiles are used in
areas such as finance, insurance and risk analysis, where they are usually referred
to as τ – Value at Risk (V aRτ ). Another risk measure is the Expected Shortfall
(ESτ ) also known as Conditional Tail Expectation (CTEτ ) or Tail Value at Risk
(TV aRτ ). This is defined as:

TV aRτ (Y ) = E(Y |Y > cτ ). (1)

Quantile regression and tail expectation regression specify V aRτ and TV aRτ , re-
spectively, as a linear combination of regressors.
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2 Methodology

The starting point for this study is quantile regression. Quantile regression is an
extension of the linear regression that is especially interesting when the response
variable has asymmetry, for instance, when there is a substantial difference between
the conditional mean and the conditional median. As is widely known, the median
is robust to the presence of outliers, while the mean is not. Koenker and Bassett
(1978) proposed an optimization framework to fit quantile regressions. Here, a new
procedure to estimate the tail expectation model is presented and implemented in
open source software R.

A classical linear regression model is represented as follows:

Yi = β0 +β1X1i+β2X2i · · ·βkXki+ εi, (2)

where Yi is the response variable for the ith individual (i = 1,· · · , n), Xji represents
the value of the ith observation of explanatory variable j (j = 1, · · · , k) and βj is the
jth parameter. The ith linear predictor is defined as β0 +β1X1i+β2X2i · · ·βkXki.
The error term, εi, is the part of the response variable that cannot be explained by
the covariates. Parameter β0 is known as the intercept and it is usually included in
the model, so it can be assumed that the error term has expectation equal to zero.
Model (1) is usually estimated by ordinary least squares (OLS), i.e. by minimizing
the sum of squared residuals:

β̂ = argmin
β

n

∑
i=1

fi(β), (3)

where fi(β) = (Yi−Xiβ)2 represents the difference between the observed response
and the linear predictor.

Quantile regression assumes that the quantile at level τ of the response equals a
linear combination of the regressors:

V aRτ (Yi|Xj1, · · · ,Xji) = βτ0 +βτ1X1i+βτ2X2i+ · · ·+βτkXki. (4)

Coefficient estimates are obtained as follows (see Koenker and Bassett, 1979;
Koenker and Machado 1999):

β̂τ = argmin
β

n

∑
i=1

[ρτi (Yi−Xijβj ] . (5)

where ρiτ represents a loss function of the quantile, which is equal to τ when
Yi−Xiβ is greater or equal to 0, and τ−1 otherwise. The standard deviation of the
estimated coefficients can be calculated following the bootstrap method (Chernick,
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2011; Hestenberg, 2011).
The specification of tail expectation regression is defined as:

TV aRτ (Yi|Xj1, · · · ,Xji) = βτ0 +βτ1X1i+βτ2X2i+ · · ·+βτkXki. (6)

Acerbi and Szekely (2014) recently proposed a loss function to estimate the con-
ditional tail expectation using the quantile. Despite developing this method theoret-
ically, these authors did not consider a linear predictor. In the field of risk analysis,
databases are large. This is the reason why we focus on studying the optimization
underlying the estimation procedure. Computational time remains a challenge.

3 Data

Information about different characteristics of 9.614 car drivers was collected during
2010 by an insurance company, using a telematics device. Driving data measure pat-
terns of vehicles in motion, such as distance driven, vehicle speed, time of day, and
zone (urban versus nonurban). For privacy reasons, GPS localization data are not
recorded. A definition of the variables is presented in Table 1. Drivers are aged be-
tween 18 and 35 years because the insurance company offered a "pay as you drive"
motor policy only to young drivers. Boucher et al. (2017) studied the transforma-
tion of the risk factors with the same dataset; Ayuso et al.(2016a, 2016b) compared
the driving patterns between male and female drivers; Guillen et al. (2019) pro-
posed new methods to calculate the price of motor insurance. Pitarque et al. (2019)
used quantile regression to analyse risk of having an accident.

Table 1: Definition of the variables in the insurance dataset (9.614 observations in
2010)

Variable Description
Toler_km Total number of kilometres driven exceeding the posted limit

lnKm Logarithm of the total kilometres driven
P_urban Percentage of kilometres driven in urban areas
P_night Percentage of kilometres driven at night

Age Age of driver on 1st of January, 2010
Male Gender of driver (1 = male, 0 = female)

A descriptive analysis of the data is presented in Table 2. Skewness equal to 3.64
is one of the most relevant features of total distance driven above the posted speed
limits during one year. This means that while most drivers have low levels of excess
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speeding, a few show larger values. However, all factors total driving distance,
urban driving and night driving should be considered before drawing conclusions.

Table 2: Descriptive statistics in the insurance dataset (9.614 observations in 2010)

Mean Median Minimum Maximum Standard deviation Skewness
Toler_km 1398.21 689.23 0.00 23500.19 1995.37 3.64

lnKm 9.27 9.37 -0.37 10.96 0.75 -1.87
P_urban 26.29 23.39 0.00 100.00 14.18 1.03
P_night 7.02 5.31 0.00 78.56 6.13 1.68

Age 24.78 24.63 18.11 35.00 2.82 0.11

4 Results

A simple quantile regression with only one explanatory variable is adjusted to model
the percentage of kilometres driven above the speed limit with τ = 0.9 as a function
of the percentage of kilometres driven in urban areas. The tail expectation regres-
sion is also fitted. Parameter estimates are not displayed for brevity. The results
are shown graphically in Figure 1. Quantile regression at the 0.9 level indicates
that when there is an increase of 1% in the percentage of kilometres driven in urban
areas, the Value at Risk of the percentage of kilometres driven above the speed limit
decreases by 0.35% and the average beyond the quantile level decreases 52 basis
points.
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Figure 1: Graph of the relation between the percentage of kilometres driven above
the speed limit and the percentage of kilometres driven in urban areas in
the insurance dataset. The blue line represents a 90% quantile regression
line and the red line represents a 90% tail expectation regression.

In the multivariate case, the total number of kilometres driven above the speed
limit as the response variable is analysed for quantile levels τ = 0.5 (median) and
τ = 0.9 (upper decile). A linear regression model is also estimated to compare the
coefficient estimates.

Coefficient and standard deviation estimates are calculated using the quantreg
package of R (Koencker et al., 2019). Standard errors are computed from 3000
replications with samples of the same length as the original sample with replace-
ment, so that a comparison between models can be analyzed. Table 3 presents
results for the linear regression, the quantile regression and the tail expectation re-
gression together with the goodness-of-fit statistic. As in the univariate case ex-
trapolation of the linear specifications can produce abnormalities such as negative
predictions or values of the conditional tail expectation lower than its corresponding
quantile level. A summary is reported in Table 4.
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Table 3: Results of models of linear regression (OLS), quantile regression (VaR)
and tail expectation regression (TVaR) for quantile levels τ = 0.5 and τ
= 0.9 in the insurance dataset. In parenthesis, the standard errors of the
estimated coefficients.

Variable OLS VVV aaaRRR0.5 TTTVVV aaaRRR0.5 VVV aaaRRR0.9 TTTVVV aaaRRR0.9

Intercept
-8082.51

(309.95)

-4496.53

(186.02)

-11708.92

(843.57)

-6418.11

(742.98)

-14068.39

(3505.13)

lnKm
1064.51

(26.51)

597.60

(19.32)

1588.38

(86.59)

1074.66

(64.46)

2229.62

(364.14)

P_urban
-21.87

(1.39)

-9.19

(0.62)

-39.72

(2.16)

-39.59

(2.34)

-86.08

(7.14)

P_night
7.54

(2.93)

5.41

(1.82)

11.99

(6.10)

21.76

(9.80)

26.56

(19.21)

Age
-1.13

(6.26)

-2.56

(3.26)

0.96

(11.09)

5.16

(15.24)

7.71

(37.13)

Male
328.01

(35.89)

206.76

(19.01)

528.84

(66.51)

574.08

(103.97)

913.63

(223.48)
R2 0.25 0.14 0.17 0.20 0.49
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Table 4: Percentage of cases where the predicted TVaR is lower than the predicted
VaR and percentage of cases where the predicted TVaR is negative in the
insurance database. Two quantile levels are considered, τ = 0.5 and τ =
0.9.

%TTTVVV aaaRRR0.5 <<< VVV aaaRRR0.5 8.20%
%TTTVVV aaaRRR0.5 <<< 000 7.41%

%TTTVVV aaaRRR0.9 <<< VVV aaaRRR0.9 6.48%
%TTTVVV aaaRRR0.9 <<< 000 3.60%

The implementation of a routine to estimate the coefficients for the tail expecta-
tion regression can be compared with the VaR regression computation. An evalua-
tion of computational time is presented in Table 5. The difference between TVaR
regression and VaR regression is about double time both for the parameter estimates
and the standard error. In both cases, the parameter estimates are obtained in less
than 0.2 seconds for our working sample of almost 10 thousand cases and six coef-
ficients. The most relevant result is the time needed to compute the standard errors,
which is quite low given the number of replicates. The quantile level did not affect
computational time required.

Table 5: Computational time comparison in our case study.

Output generated Computational time
Estimation of the VaR coefficients 0.088 seconds

Estimation of the standard deviation of the VaR coefficients 2,618 minutes
Estimation of the ES coefficients 0.175 seconds

Estimation of the standard deviation of the ES coefficients 5,410 minutes

5 Conclusions

In this paper, an innovative method is implemented that generalizes quantile regres-
sion in order to study risky drivers. The study ss done using a database of approxi-
mately 10.000 observations, which contain a highly skewed response variable. This
is a typical feature of risk analysis problem settings. In the case of the bivariate
regression, the results show that the percentage of kilometres driven in urban areas
influences the risk of exceeding speed limits. Specifically, each additional percent
point driven in an urban area reduces the highest decile of the percentage of distance

31



An algorithm to fit conditional tail expectation regression models in...

driven above the speed limits by 0,35%. This decrease is emphasized in the case of
the tail expectation where an increase of 1% in the percentage of kilometres driven
in urban areas reduces the expected percentage of kilometres driven above the speed
limit by 52 basis points, for those drivers that are in the top decile.

In the multivariate case similar conclusions are drawn from quantile regression
and tail expectation regression for quantile levels 0.5 and 0.9. Some problems arose
when applying the models for an “in-sample” prediction exercise. In a few cases,
the tail expectation was lower than the value provided by the quantile, or even neg-
ative. This could be a result of the simplicity of the linear specification and further
research should be carried out to develop possible solutions to this issue. Despite
these problems, the computational time of the estimation procedure to obtain the
coefficient estimates is low, so the routine for the tail expectation regression created
here is not excessively slow. The computational time for the standard errors is also
relatively low, taking into account that the bootstrap method iterates the estimation
in a large number of sample replicates.

For future studies, other methods to calculate the standard errors of the coefficient
estimates should be investigated so that computational effort does not increase too
much with sample size. Certainly with the bootstrap method, there are currently
several possible alternatives that seem suitable for addressing this problem. Another
area for further analysis is larger datasets and tuning the parameters of the bootstrap
method to estimate coefficients and standard errors in a reasonable computational
time window.
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Joint Generalized Quantile and
Conditional Tail Expectation
Regression for Insurance Risk
Analysis

1 Introduction

Our predictive modelling focuses on Value at Risk (VaR) and the Conditional Tail
Expectation (CTE). While classical linear regression finds the effects of covari-
ates on the mean of a response variable via a linear predictor, quantile regression
focuses on the VaR of the response, and CTE regression links covariates to the
conditional average responses beyond a quantile. We consider the usual case in in-
surance, where risk concentrates on positive losses. In finance, where risk focuses
on negative returns, the usual risk measure is Expected Shortfall (ES) rather than
CTE because ES looks at the lack of resources needed to cope with unexpected
negative outcomes. In finance, CTE regression is known as ES regression. We call
these models risk regressions, in general.

Risk regressions have not been popular in insurance because of the technical dif-
ficulty of fitting the models. However, they may be extremely useful for identifying
factors that influence the worst case outcomes. There are many examples of loss
random variables that are asymmetric and right skewed, where risk is located at
higher quantiles. A prime example is that of accident severity.

The first complication in risk regression lies in establishing a suitable score func-
tion, similar to the sum of squared residuals in the least squares method for linear
regression. However, such a score function is not always possible to find. The
second complication is that the existing models may produce negative predictions,
or even a predicted CTE imcompatible with the predicted VaR1. Our contribution
solves these two issues and proposes generalized quantile and CTE regressions.

A risk measure is called elicitable (Gneiting, 2011) if a scoring function exists

1Note that for positive responses, CTE should be larger than the VaR
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such that the expected score under a distribution takes its unique minimum at the
risk value of the distribution. Wang and Ziegel (2015) and Kou and Peng (2016)
have shown that distortion risk measures are rarely elicitable.

Koenker and Bassett Jr (1978) provided a score function for quantile regression
(VaR regression) and initiated a methodology that has become increasingly popular
over the years (see, Koenker, 2017). Gneiting (2011) showed that the ES is not a
1-elicitable risk measure, which means that there is no score function that can be
minimized to obtain ES (or CTE) alone. Therefore, it is not possible to estimate
ES regression in the same way as quantile regression. However, Fissler and Ziegel
(2016) have established the joint elicitability of VaR and ES risk measures under
some regularity conditions for random variables that take negative values and cap-
ture left-side risks, and they have shown that the corresponding joint score function
is not unique. One particular case is the score function proposed by Acerbi and
Szekely (2014). Dimitriadis and Bayer (2019) have analysed possible choices for
the family of score functions put forward by Fissler and Ziegel (2016), finding that
they have the property of positive homogeneity such that linear rescaling of the
input variable does not alter the ranking of losses.

All of the above studies have dealt with left-side risks. However, in insurance
and actuarial applications, economic losses are defined as positive. As a result,
insurance risk analysis concentrates on large positive values, which are naturally
located on the right side of the distribution. We therefore work with positive, right-
side risks. This implies a change of sign that is often confusing when drawing on
sources that use the other convention. We distinguish CTE regression, for positive
right tails, from ES regression, for negative left tails, and we convey all of our
results in terms of the risk analysis of random variables defined on the positive real
semi-axis. Many recent results for ES regression and forecasting can be easily,
but cautiously, rewritten for positive values by changing the sign of the response
variable and establishing low quantile levels, such as 5% instead of 95%.

We present predictive models for positive risks. Here, we propose an algorithm
to fit generalized CTE regression as a correction of generalized quantile regression,
where we include a link function similar to a Generalized Linear Model (GLM)
setting. As a result, we can predict the expectation of the dependent variable in
the tail of the distribution for given values of the explanatory variables. We specify
the model so that we can compare the results of generalized quantile regression
and CTE regression without any inconsistencies between the predicted values of
the two regressions. We guarantee non-negative predictions and naturally restrict
CTE to exceed VaR by definition. Standard errors for the parameter estimates can
be found via bootstrap. In the linear case, standard errors can be approximated with
a large sample as in Dimitriadis and Bayer (2019).
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2 Notation and Basics

Before delving into our regression modelling framework, let us formally define VaR
and CTE. Value-at-risk at level τ , τ ∈ (0,1), also known as the (τ × 100)-th per-
centile or τ -quantile, is defined as follows:

V aRτ (Y ) = inf
{
y ∈ R+ : FY (y)> τ

}
,

where FY (y) corresponds to the cumulative distribution function of a continuous
non-negative random variable Y . VaR does not consider observations beyond the
quantile, but it is one of the most popular measures to analyse risk since it is simple
and easy to understand.

To account for observations in the tail, CTE averages the extreme values of the
distribution function. This risk measure in continuous variables is also known as
Tail Value at Risk (TVaR) or Conditional Value at Risk (CVaR) and is the mean of
the values that exceed the VaR. CTE is defined as follows:

CTEτ (Y ) = E [Y |Y > V aRτ ] .

Definition 3.1. A risk measure ϕ(Y ) of a random variable Y is elicitable when it
minimizes the expected value of a scoring function, S(ϕ,Y ). So, an estimator of an
elicitable ϕ(Y ) comes from ϕ̂= argmin

φ
E[S(ϕ, Y )].

In practice, for a sample Y1, ...,Yn of size n, an estimator ϕ̂ can be found mini-
mizing ∑

n
i=1S(ϕ, Yi). While V aRτ (Y ) is elicitable, CTEτ (Y ) is not, essentially

because V aRτ (Y ) is needed to define CTEτ (Y ). However, they are jointly elic-
itable under regularity conditions (see, Fissler and Ziegel, 2016).

3 Predictive Models for VaR and CTE

The starting point of our study is quantile regression (Koenker and Bassett Jr, 1978).
Even though quantile regression is a relatively new methodology, an increasing
number of applications exist in a wide variety of fields (see, Uribe and Guillen,
2020, for an overview of recent methods and R implementation) .

Quantile regression is an extension of linear regression that is especially interest-
ing when the response variable has asymmetry, for instance, when there is a sub-
stantial difference between the conditional mean and the conditional median. As is
widely known, the median is robust to the presence of outliers, while the mean is
not. Risk analysis actually focuses on quantile regression for large τ -quantiles.
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To fix notation, let us consider a classical linear regression model for n observa-
tions and k covariates, which is specified as:

Yi = β0 +β1X1i+β2X2i+ · · ·+βkXki+ εi, (1)

where Yi is the response variable for the i-th individual (i= 1, . . . ,n),Xji represents
the value of the i-th observation of explanatory variable j (j = 1, . . . ,k) and βj is the
j-th parameter. The i-th linear predictor is defined as β0 +β1X1i +β2X2i + · · ·+
βkXki or as X ′iβ in its matrix form. The error term, εi, is the part of the response
variable, Yi, that cannot be explained by the covariates. Parameter β0 is the intercept
and it is usually included in the model so that it can be assumed that the error term
has expectation equal to zero, E(εi) = 0. Thus, linear regression under the previous
assumption sets E(Yi|Xi) =X ′iβ.

Model (1) is estimated using ordinary least squares (OLS) by minimizing the sum
of squared residuals,

β̂ = argmin
β

n

∑
i=1

Si(β)

where Si(β) = (Yi−X ′iβ)2, so this is a score function that represents the difference
between the observed and predicted responses of the i-th observation. The expecta-
tion is approximated by the sample mean, and the term (1/n) is omitted because it
does not affect the minimization.

In GLM, McCullagh and Nelder (1989) introduce a link function g(·), with
g−1(·) = F (·), and the conditional expectation is specified as E(Yi|Xi) = F (X ′iβ).
The choice of F (·) is not completely free as it must satisfy regularity conditions
for likelihood maximization. In addition, F (·) is usually dictated by the nature of
Y (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989). For example,
for a discrete count dependent variable, a Poisson distribution is assumed, with the
canonical link function g(z) = ln(z), so that F (z) = exp(z) and the conditional
expectation is always positive.

4 Quantile regression

Unlike linear regression, which estimates the effect of each explanatory variable
on the mean of the response variable, quantile regression establishes the effect of
explanatory variables on the quantile of the response variable. We can specify the
τ -quantile regression model at level τ ∈ (0,1) as follows:

Yi = βτ0 +βτ1X1i+βτ2X2i+ · · ·+βτkXki+ ετi ,
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where we assume that V aRτ (ετi ) = 0 and βτ is the vector of unknown parameters.
There is no assumption made about the distribution of Yi, and this is the reason why
quantile regression is sometimes called semiparametric.

Alternatively, we can write quantile regression as a link between the τ -quantile
of Yi and a linear combination of the regressors, i.e. the linear predictor:

V aRτ (Yi|X1i, . . . ,Xki) = βτ0 +βτ1X1i+βτ2X2i+ · · ·+βτkXki. (2)

In short, V aRτ (Yi|Xi) = X ′iβ
τ . Koenker and Bassett Jr (1978) proposed an opti-

mization framework to fit quantile regressions. Basically, the parameter estimates
can be obtained as the solution of the following optimization problem (see, Koenker
and Bassett Jr, 1982; Koenker and Machado, 1999):

β̂τ = argmin
βτ

n

∑
i=1

ρτq (Yi−X ′iβτ ), (3)

where ρτq represents the score function of the τ -quantile, which is equal to τ(Yi−
X ′iβ

τ ) when (Yi−X ′iβτ ) is greater than or equal to 0, and (τ −1)(Yi−X ′iβτ ) oth-
erwise. The standard error of the estimated coefficients can be calculated following
the bootstrap method (see, Chernick, 2011; Hesterberg, 2011).

With no loss of generality, we may introduce link function F v(·) in (2). So, as
opposed to quantile linear regression, or simply quantile regression, we can define
the generalized quantile regression as:

V aRτ (Yi|Xi) = F v(X ′iβ
τ ),

where F v(·) is monotone and twice continuously differentiable to meet GLM as-
sumptions. For example, we can choose F v(z) = exp(z) to guarantee that the pre-
dictions are positive. This is exactly the generalized quantile regression that is later
implemented in our case study, using

V aRτ (Yi|Xi) = exp(X ′iβ
τ ). (4)

In a simultaneous and independent work, Dimitriadis and Schnaitmann (2019)
also introduce link functions.

5 CTE regression

If it is possible to establish a relationship between the explanatory variables and
VaR, it should also be possible to do so with other risk measures. The specification
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of a conditional tail expectation linear regression is:

CTEτ (Yi|X1i, . . . ,Xki) = γτ0 +γτ1X1i+γτ2X2i+ · · ·+γτkXki, (5)

where γτ corresponds to the parameters for the effects of the explanatory vari-
ables on the expectation above the conditional quantile V aRτ (Yi|Xi). Equivalently,
we can use an error term whose CTEτ equals zero. To ease notation, we write
CTEτ (Yi|Xi) =X ′iγ

τ and we assume that (2) and (5) have the same regressors, but
we could define a set Xq

i for (2) and another possibly overlapping set Xe
i (5) as in

Dimitriadis and Bayer (2019).
With no loss of generality, we may also introduce a link function F e(·) in (5). We

only need the same monotonicity and regularity conditions as before. So, the gener-
eralized CTE regression is denoted as CTEτ (Yi|Xi) = F e(X ′iγ

τ ). The generalized
CTE regression that is implemented subsequently in our case study is:

CTEτ (Yi|Xi) = exp(X ′iγ
τ ). (6)

5.1 Extensions of generalized VaR and CTE regressions

We have now introduced the link function in the VaR and CTE models. This is
the reason why we include the word “generalized" in the name of our models. The
choice of the link function has to do with the domain of the response variable,
which is non-negative. Unlike in GLM, we do not have to specify a link between
the canonical parameter of the exponential distribution of the dependent variable
and the linear predictor. In risk regression, our choice of a link function is guided
by the need to provide predictions that stay in the domain of our variable of interest.

One of the earliest attempts to introduce a connection between VaR and ES and
the predictors appears in a recent study by Taylor (2019). His proposal is to set:

CTEτ (Yi|Xi) = V aRτ (Yi|Xi)(1 +X ′iγ
θ)

to force CTE to exceed VaR. With the above form, however, this is not necessarily
true.

Our proposal is to choose exponential links in order to guarantee that predictions
are positive. In addition, we also consider the following specification:

CTEτ (Yi|Xi) = F v(X ′iβ̂
τ ) +F e(X ′iη

τ ), (7)

where β̂τ is the corresponding term in the generalized quantile regression and ητ is
the vector of unknown parameters that guide the additive term in the CTE regres-
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sion. This specification guarantees that CTEτ (Yi|Xi)≤ V aRτ (Yi|Xi) for all given
τ ∈ (0,1) and that the predictions of VaR and CTE, conditional on Xi, are always
positive. We call this specification the generalized additive term CTE regression.

6 Estimation Procedure

As mentioned before, the parameter estimates in quantile regression are obtained
via the optimization problem as in (3). We do not reproduce the details on how
to obtain the score function because this has already been developed extensively in
Koenker and Bassett Jr (1982).

Nadarajah et al. (2014) reviewed the estimation methods for CTE in the univariate
case, but they are not suitable for the inclusion of regressors. Unfortunately, there is
no stand-alone score function parallel to equation (3) to find the parameter estimates
of a conditional tail expectation regression. However, Acerbi and Szekely (2014)
proposed a way to obtain VaR and CTE together using a score function that relates
both risk measures.

Fissler and Ziegel (2016) showed that there are an infinite number of score func-
tions to achieve the joint elicitability of VaR and CTE, but they did not introduce
regressors. In order to estimate the effects of the explanatory variables on CTE, we
take the score function proposed by Acerbi and Szekely (2014) as a starting point.
Dimitriadis and Bayer (2019), based on the work by Fissler and Ziegel (2016), con-
ducted a simulation study in which they showed that some particular choices in the
score function might have better small-sample properties than others. Dimitriadis
and Bayer (2019) created an R package, esreg, which can be used to fit linear quan-
tile and ES regressions in (2) and (5). To fit risk regression on large positive values,
the implementation needs to be adapted: the sign of the dependent variable, the
level, (1− τ), and the sign of the resulting parameters have to be reversed.

In addition to the problem of the joint score function to be minimized, a few
additional problems arise in practice when fitting VaR and CTE regressions. The
first such problem concerns numerical instability, i.e. the fact that local minima
may be found. This is the reason why Dimitriadis and Bayer (2019) recommend
iterative local metaheuristics inspired by Lourenço et al. (2003). The issue is that
this optimization is stochastic, because there is a small random noise alteration of
the solution to refine the search for a minimum. So, to obtain the same results, one
should always remember to use the same seed in the random number generation.
The second problem is that the predicted values may lie outside the plausible range
for the identity link, namely F v(z) = z and F e(z) = z. A prediction is implau-
sible when, given the exogenous information or the covariates, the predicted CTE
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does not exceed the predicted VaR, or when a predicted conditional risk measure is
negative when we are only considering a non-negative dependent variable.

6.1 Score minimization for VaR and CTE regression

To propose a suitable estimation method, we consider the joint score function estab-
lished by Fissler and Ziegel (2016) in the univariate setting. In our notation we have
positive outcomes and a large τ , for example τ = 0.90, whereas in their original
study, the returns were negative and the focus was on low τ levels.

Based on the results obtained by Fissler and Ziegel (2016), the general score
function for VaR and CTE regressions (2) and (5) for a non-negative Yi and linear
predictors X ′iβ

τ and X ′iγ
τ is:

ρ(Yi,Xi,β
τ ,γτ ) = I(Yi ≥X ′iβτ )

[
G1(−X ′iβτ )−G1(−Yi)

]
+G2(−X ′iγτ )

[
X ′iβ

τ −X ′iγτ −
(Yi−X ′iβτ )

1− τ
I(Yi ≥X ′iβτ )

]
−G2(−X ′iγτ ) +a(−Yi). (8)

where G2 is the first derivative of G2. Functions G1(·) and G2 must satisfy some
regularity conditions. Also, a(·) can be eliminated in the optimization procedure,
but it should be carefully selected to guarantee that ρ(Yi,Xi, β̂

τ , γ̂τ ) > 0 for the
goodness-of-fit calculation (Koenker and Machado, 1999, see). A common choice
is a(z) = (1− τ)G1(z) +G2(z), (see, Dimitriadis and Bayer, 2019).

To obtain joint estimates from (8), the following optimization problem needs to
be solved for a sample (Yi,Xi), i= 1, ...,n:

(β̂τ , γ̂τ ) = argmin
γτβτ

n

∑
i=1

ρ(Yi,Xi,β
τ ,γτ ). (9)

The proposal put forward by Acerbi and Szekely (2014) is equivalent to set-
ting G1(z) = −Wz2/2) and G2(z) = (1− τ)z2/2, where W is a constant so
that WVaR>CTE. This guarantees the required regularity conditions, namely that
G2(η)v/(1− τ) +G1(v) is a strictly increasing function of v, a V aRτ , and η is
its corresponding CTEτ . But the choice of W is unclear. Dimitriadis and Bayer
(2019) suggest either G1(z) = 0 or G1(z) = z, like Fissler and Ziegel (2016), and
they also propose five options2 for G2(·).

An indirect estimator for CTE regression is also presented in Dimitriadis and
Bayer (2019), where it is called the oracle estimator of CTE regression. We obtain

2Some of the choices of G1 and G2 were unstable in our implementation and no standard error
estimates could be obtained.
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estimates of βτvia the quantile regression score in (3), β̂τO, and then minimize the
sum of squares of conditional residuals (Yi−Xiγ̂

τ
O) only for those observations that

satisfy Yi >Xiβ̂
0
O . However, this procedure is not recommended for small samples

or extreme quantiles, due to the small number of observations beyond the quantile.
We denote the oracle estimator as (β̂τO, γ̂

τ
O).

6.2 Two-step procedure for linear CTE regression

We propose the use of a two-step process to solve (9). First, we estimate βτ via the
quantile regression score in (3) as β̂τO and then we find γ̂τ :

γ̂τ = argmin
γτ

n

∑
i=1

ρAS(Yi,Xi, β̂τO,γ
τ ), (10)

where the score function is taken from Acerbi and Szekely (2014), and we follow
our positive sign convention:

ρAS(Yi,Xi, β̂τO,γ
τ ) = (1− τ)

(
(X ′iγ

τ )2

2
+W

(X ′iβ̂
τ
O)2

2
−Xiγ

τX ′iβ̂
τ
O

)

+I(Yi ≥X ′iβ̂τO)

(
−X ′iγτ (Yi−X ′iβ̂τO) +W

Y 2
i − (X ′iβ̂

τ
O)2

2

)
+(1− τ)(W −1)Y 2

i /2, (11)

where I(Yi ≥ Xiβ̂τO) equals 1 if Yi ≥ Xiβ̂τO and equals 0 otherwise. W is a fixed
constant that is selected as before, but this has no impact on the minimization.

In our second step, γ̂τ is fixed and the minimization of (10) is on βτ to refine the
quantile regression estimate part. However, this should be done carefully to avoid
numerical instability, for instance, by using partial gradient descent.

Standard errors for the linear CTE regression can be found via bootstrap or with
the asymptotic approximation provided by Dimitriadis and Bayer (2019). In addi-
tion, Taylor (2019) has recently proposed a semiparametric approach to estimate
VaR and ES regression, but no asymptotic statistical theory is available.

Following Theorem 2.6 and the notation in Dimitriadis and Bayer (2019), we can
approximate the variance and covariance matrix of the estimator for the linear CTE
model as follows:

Λ−122 C22Λ
−1
22 ,

Λ22 = E(XiX
′
iG

(1)
2 (−X ′iγτ )), G(1)

2 is the derivative of G2,

C22 =XiG
(1)
2 (−X ′iγτ )2V

(
X ′iγ

τ −X ′iβτ − (1− τ)−1(Yi−X ′iβτ )I(Yi−X ′iβτ )
)
X ′i.
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Then C22, the asymptotic variance and covariance term of the covariance matrix for
the estimator of the CTE model using (11) in the linear case, is approximated as:

n

∑
i=1

XiV
(
X ′γτ −X ′βτ − (1− τ)−1(Y −X ′βτ )I(Y −X ′βτ )

)
X ′i.

The scalar term, V
(
X ′γτ −X ′βτ − (1− τ)−1(Y −X ′βτ )I(Y −X ′βτ )

)
, can be

approximated as:(
X ′iγ

τ −X ′iβτ
)2− (1− τ)−2V(Yi−X ′iβτ )I(Yi−X ′iβτ ).

6.3 Two-step procedure for generalized CTE regression

In all the previous settings, an identity link with the linear predictor has been as-
sumed. When we replace X ′iβ

τ and X ′iγ
τ by the generalized terms using monotone

transformations F v(·) and F e(·) in (8) and (11), then we obtain the new score func-
tions to be minimized. The asymptotic statistical theory for the linear case is no
longer valid for generalized specifications. In the generalized case, we propose a
bootstrap method (Efron and Tibshirani, 1994). To obtain the bootstrap estimates,
B samples are generated, that is, for each b = 1, . . . ,B, a resample of the original
data (Yi,Xi) is considered for all i = 1, . . . ,n. Then the bootstrapped parameter
estimate is the average of the estimates obtained in the replication process and the
bootstrapped covariance matrix is given by the sample covariance over all boot-
strapped parameter estimates.

7 Case Study: Predicting the Risk of Driving over the
Speed Limit

An increasing number of companies are starting to work with telematics data in
order to fit a better price for motor insurance by analysing driving patterns. For this
study, we used a database containing information on 9,618 car drivers aged between
18 and 35 years in 2010. The data contain information on the distance driven over
one year, the type of roads, the time of day and the distance driven above the posted
speed limit. The definitions of the variables appear in Table 1. The data have been
used in previous studies together with claims information. Boucher et al. (2017)
have analysed the simultaneous effect of the distance traveled and exposure time
on the risk of accident by using Generalized Additive Models (GAM), while Ayuso
et al. (2016b) have compared the driving patterns between male and female drivers
and Guillen et al. (2019a) have proposed new methods to calculate the price of
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Table 1: Definition of variables in the telematics data set for 2010.
Variable Description∗

Speed_km∗∗ Total number of kilometres driven over the speed limit
lnKm Logarithm of the total number of kilometres driven
P_urban Percentage of kilometres driven in urban areas
P_night Percentage of kilometres driven at night
Age Age of driver
Male Gender of driver (1 = male, 0 = female)
∗Distances driven are measured over one year
∗∗P_speed is the proportion (percentage) of total kilometres driven
above the speed limit. P_speed= 100 × Speed_km /exp(lnKm)

Table 2: Descriptive analysis of the continuous variables in the telematics data set
for 2010 (n= 9,618).

Mean Median Min. Max. Std. Dev. Skewness
Speed_km 1398.21 689.23 0.00 23500.19 1995.37 3.64
lnKm 9.27 9.37 -0.37 10.96 0.75 -1.87
P_urban 26.29 23.39 0.00 100.00 14.18 1.03
P_night 7.02 5.31 0.00 78.56 6.13 1.68
Age 24.78 24.63 18.11 35.00 2.82 0.11

motor insurance. Pitarque et al. (2019) have used quantile regression to analyse the
risk of having an accident and Pérez-Marín et al. (2019b) have analysed speeding.

Our variable of interest is the total number of kilometres driven over the speed
limit, Speed_km, which is highly positively skewed. Following previous analyses,
we consider the distance driven on a logarithmic scale. The descriptive statistics
appear in Table 2. There are 4,873 male and 4,741 female drivers in the sample.

7.1 Results for a bivariate analysis

We present a simple model with one covariate. Our objective is to show the pitfals of
existing methods and the advantage of our proposal in an illustrative example. We
model the percentage of kilometres driven above the speed limit as a function of
the percentage driving in urban areas. Thus, our initial predictive model for risk es-
tablishes a linear relationship between the percentage of total distance driven above
the posted speed limit, P_speed, computed as (Speed_km × 100)/ exp(lnKm), and
the percentage driven in urban areas, P_urban. The parameter estimates for linear
quantile and CTE regression together with their standard errors have been found
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using our estimation approach.3 A simple linear regression (the details are omitted)
finds a negative relationship between P_speed and P_urban, since the slope equals
−0.178 (p-value < 0.001), which means that the higher the proportion of driving
in urban areas, the lower the proportion of driving above the speed limit. This was
expected, because urban areas tend to be more congested than non-urban areas and
the possibility of exceeding the speed limit is therefore reduced by traffic. However,
we also expect the slope and the intercept to change when looking at the median re-
gression and quantiles with τ > 0.5. Table 3 shows the results for the identity link
corresponding to model (2) for VaR (linear quantile regression) and to model (5) for
CTE (linear CTE regression) and for the exponential link corresponding to model
(4) for VaR (generalized quantile regression) and model (6) for CTE (generalized
CTE regression).

3A table showing the results obtained with the esreg package for linear models and the oracle
estimator for τ = 0.50,0.75,0.90,0.95 is available from the authors
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Figure 1: Linear (left) and generalized (right) quantile regression for VaR (solid)
and CTE (dashed) of the percentage of distance driven above the speed
limit as a function of the percentage of urban driving, at τ = 0.9.

As Figure 1 (left) shows, the 90th-quantile regression finds a linear relationship
between the exogenous variable and the response. In the left plot, the problem lies
in the extremely large values of the exogenous variable where the predicted values
of both risk measures in the linear quantile regression and the linear CTE regression
are sometimes negative (0.15% of cases for V aR and 0.24% of cases for CTE) and
also where CTE is predicted to be lower than VaR, in 1.02% of cases. The right plot
presents the results of the generalized quantile regression (4) and the generalized
CTE regression (6).

As can be seen on the right in Figure 1, the main difference is that it is impossible
to have negative predictions. The estimation results using our two-step minimiza-
tion (10) appear in Table 3.
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Table 3: Model results for the percentage of distance driven above the speed limit,
at quantile levels τ = 0.50,0.75,0.90 and 0.95, as a function of the percent-
age of urban driving. Identity link (upper) and exponential link (lower).
Standard errors in parenthesis.

V aRτ (P_speedi|P_urbani) = βτ0 +βτ1P_urbani
CTEτ (P_speedi|P_urbani) = γτ0 +γτ1P_urbani

τ
0.5 0.75 0.90 0.95

β̂0 9.322∗∗∗ 18.329∗∗∗ 29.793∗∗∗ 37.334 ∗∗∗

(0.116) (0.146) (0.306) (0.382)
β̂1 -0.107∗∗∗ -0.221∗∗∗ -0.353∗∗∗ -0.434∗∗∗

(0.002) (0.004) (0.007) (0.009)
γ̂0 22.822∗∗∗ 31.538∗∗∗ 41.549∗∗∗ 47.472∗∗∗

(0.226) (0.295) (0.417) (0.501)
γ̂1 -0.300∗∗∗ -0.413∗∗∗ -0.522∗∗∗ -0.565∗∗∗

(0.006) (0.008) (0.012) (0.015)
Goodness-of-fit (R2) 0.003 0.022 0.088 0.189
Score×103 44,711.26 23,147.33 9,167.40 4,229.30
Score0×103 44,867.09 23,669.75 10,055.20 5,217.83

V aRτ (P_speedi|P_urbani) = exp(βτ0 +βτ1P_urbani)
CTEτ (P_speedi|P_urbani) = exp(γτ0 +γτ1P_urbani)

τ
0.5 0.75 0.90 0.95

β̂0 2.412∗∗∗ 3.109∗∗∗ 3.580∗∗∗ 3.798∗∗∗

(0.018) (0.015) (0.014) (0.015)
β̂1 -0.022∗∗∗ -0.024∗∗∗ -0.023∗∗∗ -0.023∗∗∗

(0.001) (0.001) (0.001) (0.001)
γ̂0 3.310∗∗∗ 3.639∗∗∗ 3.903∗∗∗ 4.028∗∗∗

(0.015) (0.015) (0.015) (0.016)
γ̂1 -0.025∗∗∗ -0.026∗∗∗ -0.025∗∗∗ -0.023∗∗∗

(0.001) (0.001) (0.001) (0.001)
Goodness-of-fit (R2) 0.012 0.023 0.087 0.155
Score×103 3,601.57 1,657.90 505.68 176.99
Score0×103 3,645.02 1,696.77 554.16 209.46
Score0 is the value of the score function in a model with only intercepts.
p-value <1% ***, <5% **and <10% *.
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7.2 Results for a multivariate analysis

Our aim is now to model the total kilometres driven above the posted speed limit
by considering all other covariates to identify risky drivers who exceed the posted
speed limit. We use a generalized quantile and generalized CTE regression in order
to avoid negative predictions. We therefore, use an exponential link as in (4) and
(6). In addition, we estimate the model where the CTE regression part is an additive
term, using the specification presented in (7). We prefer the latter for interpreting
the effects of covariates on the tail average, as opposed to the quantile effects.

Table 4 below presents the parameter estimates for the generalized quantile re-
gression in (4) and the generalized CTE regression in (6). We omit the results for
the linear case because they produce predictions that are out of scope (1.93% of pre-
dicted cases for V aR and 3.60% of cases for CTE are negative and CTE is predicted
to be lower than VaR, in 6.48% of cases). Table 5 presents the generalized with ad-
ditive term CTE regression in (7), so that we can interpret the quantile effects and
the additional effects for the tail conditional expectation.
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Table 4: Model results for distance driven above the speed limit as a function of
total distance driven, percentage night driving, percentage urban driving,
age and gender at quantile levels τ = 0.50,0.75,0.90 and 0.95. Standard
errors in parenthesis.

V aRτ (Yi|Xi) = exp(X ′iβ
τ )

CTEτ (Yi|Xi) = exp(X ′iγ
τ )
τ

0.5 0.75 0.9 0.95
βIntercept -5.247∗∗∗ -3.541∗∗∗ -2.494∗∗∗ -1.884∗∗∗

(0.157) (0.168) (0.163) (0.125)
βlnKm 1.320∗∗∗ 1.207∗∗∗ 1.141∗∗∗ 1.094∗∗∗

(0.014) (0.014) (0.014) (0.010)
βP_urban -0.015∗∗∗ -0.019∗∗∗ -0.020∗∗∗ -0.020∗∗∗

(0.001) (0.001) (0.001) (0.001)
βP_night 0.004∗∗ 0.003∗∗ 0.001 0.002

(0.001) (0.001) (0.001) (0.002)
βAge -0.011∗∗∗ -0.007∗∗ -0.001 0.002

(0.003) (0.003) (0.002) (0.002)
βMale 0.290∗∗∗ 0.246∗∗∗ 0.174∗∗∗ 0.123∗∗∗

(0.014) (0.014) (0.015) (0.015)
γIntercept -4.385∗∗∗ -3.529∗∗∗ -2.802∗∗∗ -2.279∗∗∗

(0.351) (0.372) (0.380) (0.403)
γlnKm 1.364∗∗∗ 1.303∗∗∗ 1.237∗∗∗ 1.180∗∗∗

(0.038) (0.040) (0.041) (0.044)
γP_urban -0.021∗∗∗ -0.022∗∗∗ -0.021∗∗∗ -0.020∗∗∗

(0.001) (0.001) (0.002) (0.002)
γP_night -0.002 -0.002 -0.002 -0.001

(0.002) (0.002) (0.002) (0.002)
γAge -0.023∗∗∗ -0.019∗∗∗ -0.011∗∗∗ -0.005

(0.004) (0.004) (0.004) (0.005)
γMale 0.140∗∗∗ 0.086∗∗ 0.043 0.049

(0.026) (0.028) (0.028) (0.027)
Goodness-of-fit (R2) 0.029 0.110 0.472 0.996
p-value <1% ***, <5% **and <10% *.
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Table 5: Model results for distance driven above the speed limit, as a function of
total distance driven, percentage night driving, percentage urban driving,
age and gender at quantile level τ = 0.90. Standard errors in parenthesis.

V aR0.9(Yi|Xi) = exp(X ′iβ
0.9)

CTE0.9(Yi|Xi) = exp(X ′iβ
0.9) + exp(X ′iη

0.9)

Variable β̂0.9 η̂0.9

Intercept -2.494∗∗∗ -8.500∗∗∗

(0.242) (0.238)
lnKm 1.141∗∗∗ 0.784∗∗∗

(0.021) (0.025)
P_urban -0.020∗∗∗ -0.018∗∗∗

(0.001) (0.001)
P_night 0.001 -0.018∗∗∗

(0.001) (0.001)
Age -0.001 -0.045∗∗∗

(0.004) (0.002)
Male 0.174∗∗∗ -0.373∗∗∗

(0.026) (0.015)
Goodness-of-fit (R2) 0.467
p-value <1% ***, <5% **and <10% *.

An important factor that must be considered when jointly modelling two different
risk measures like VaR and CTE is that there is a possibility that an explanatory
variable has an impact on one but not the other. In other words, when considering
the mean of the worst cases, CTE does not necessarily depend on the same factors
as VaR. In Table 4, we see that gender has a positive coefficient in the quantile part,
meaning that male drivers have a higher predicted quantile than female drivers at
all levels, but we see no significant association between the tail expectation, i.e., the
expected driving distance in excess of the speed limit and gender at the 90th and
95th percentiles, all other variables being equal. So, in the top decile, the quantile
parameter is higher for males than for females (quantile parameter positive and
significant), the tail average distance driven above the speed limit does not differ
for the two groups of drivers (CTE parameter not significant).

Table 5 presents the generalized VaR regression and the generalized CTE re-
gression as an additive term as in (7) for the 90th quantile. We want to interpret
the results for the top decile of risky drivers which is why we fix τ = 0.90. Here,
CTE0.9(Yi|Xi) = exp(X ′iβ

0.9) + exp(X ′iη
0.9). We argue that with this specifica-

tion we can see the additional influence of each regressor on the tail average. For
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example, when looking at the results in Table 5, we conclude that an increment of
1% of the total distance (lnKm) causes an increase of 1.141% in the VaR0.9 of kilo-
metres driven over the speed limit and an additional increase of 1.784% in the mean
kilometres for those drivers exceeding the VaR0.9, all other variables being equal.
In addition, we see that the effect of age is negative on the CTE regression part,
meaning that the average distance driven above the speed limit by drivers in the
top decile, τ = 0.9, diminishes with age, whereas age does not preclude them from
being in the top risk decile. i.e., the age parameter is not a significant parameter in
the quantile regression part. Here again, we see the impact of gender with opposite
signs on the quantile part and the CTE additive term part which indicates, as before,
that in the top decile the difference in the average distance above the speed limits
between male and female drivers at the top decile vanishes. Both the percentage of
night driving and the percentage of urban driving have negative effects on the tail
average, so the higher the percentage of night driving and urban driving, the lower
the tail average distance driven above the speed limit in the top decile, given that
we have set τ = 0.90.

In Table 6, VaR and CTE are predicted at level τ = 0.9 using model (7) for the
first six observations in our dataset using the multivariate models with exponen-
tial links. Note that each driver has a different 90th-percentile and CTE prediction
because they depend on the driver’s characteristics. Note also that the fifth obser-
vation stands out. This particular driver has an observed total speeding distance
equal to 2,009.42, which is well above the predicted 90th percentile for drivers with
the same characteristics and his observation is almost equal to the tail conditional
expectation at level 0.9. This can be used as an indicator of risky driving, as it is
widely known that speeding is positively correlated with accident occurrence. The
situation is quite different for all other drivers and especially for the third, fourth and
sixth drivers, who drive at a much less risky speed than the predicted 90th quantile.
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Table 6: Observed distance driven above the speed limit over one year, predicted
VaR0.9 and CTE0.9 for the first six observations in the telematics data set.

Observation Speed_km Predicted VaR0.9 Predicted CTE0.9

1 4,212.34 9,875.67 12,897.10
2 3,647.30 4,902.82 6,405.09
3 808.59 5,913.95 7,101.61
4 966.69 7,743.66 9,632.31
5 2,009.42 1,681.38 2,077.91
6 187.67 1,024.24 1,093.68

In Figure 2, all the observations versus the CTE predictions are compared at
different τ levels. The black dots indicate the observations that exceed the mean
of the worst cases, (1− τ). This serves to identify risky drivers. These drivers
have more distance driven above the speed limit than the average of the tail, at the
50th (top left), 75th (top right), 90th (bottom left) and 95th (bottom right) percentile
levels. The grey dots indicate the remaining observations.
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Figure 2: Observed total distance driven above the speed limit (y-axis) versus pre-
dicted CTE (x-axis) at τ = 0.5 (top left), 0.75 (top right), 0.90 (bottom
left), 0.95 (bottom right). Black dots indicate drivers whose observed
distance exceeds the corresponding CTE prediction. Other drivers are
displayed in grey.

8 Conclusions

This paper has proposed solutions to the prediction of VaR and CTE for positive
losses. In our view, CTE considers values at the extremes and is therefore more in-
formative than VaR. When we adjusted the linear regression versions, we observed
that there were predictions that did not fall within a plausible range of the response
variable and that the predictions for CTE were greater than for VaR, which is not
possible.

We have shown that CTE predictive modelling is helpful in locating risky drivers
in a telematics dataset. These methods are easy to implement and can guide risk
analysis when there is exogenous information to be considered on the right side of
the distribution of a positive response variable.

Our case study shows that risk regression can be used to identify of bad drivers
and may guide portfolio selection in motor insurance companies once a level of risk
appetite has been selected.
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8 Conclusions

The paper also opens up new lines of research. If it is possible to estimate the
effect of covariates for a non-elicitable risk measure such as CTE, it should be
possible to follow a similar process to predict other risk measures, or to implement
other machine learning methodologies to identify the effects of covariates on a risk
measure.
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Interpolation of Quantile Regression
to Estimate Driver’s Risk of Traffic
Accident Based on Excess Speed

1 Introduction

Our paper focuses on adjusting the risk level of drivers in car insurance data. Quan-
tile regression adjusts the effects of multiple covariates as function of the Value-at-
Risk (VaR) of the response variable. In other words, quantile regression estimates
a relation between covariates and the risk of having a high value in the response
variable. Value-at-risk at level τ , τ ∈ (0,1), also known as τ -quantile is defined as:

V aRτ (Y ) = inf{y ∈ R+ : FY (y)> τ}, (1)

where FY (y) corresponds to the cumulative distribution function of a continuous
random variable Y. This measure is the most common in risk analysis in spite of its
simplicity.

In recent decades, motor insurance companies have been interested in personal-
izing prices for their customers. There are different methods to adjust the price. Pay
as you drive (PAYD) method determines the price of the insurance depending on the
distance driven during one year. This method does not consider the driving patterns
of the customer. Pay how you drive (PHYD) method considers the driving patterns
of the customer to determine the price of the insurance. Data are collected over the
course of a year through a device set up in the motor of the car. The newest method
is Manage how you drive (MHYD) method. This is similar to PHYD but in this
case, data is obtained almost in real time. Because of the cost, companies are being
slower to offer this. Although pricing in insurance has different methodologies, risk
regressions have not been popular because of the complexity of fitting models.

In this paper we model the number of kilometres driven above the posted speed
limit as function of different characteristics related to the driving patterns of the
customers. We also include gender and age in the model. We consider that our
variable of interest is strongly related to the risk of having a traffic accident and
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should affect the pricing of the insurance. Using quantile regression we compare the
predicted values of the response variable for each quantile level with the observed
value. The quantile level τ that minimizes this difference will indicate the risk
profile of the observation. A τ value close to 1 will indicate that this observation
has a high risk of having a high number of kilometres driven above the speed limit.
The possibility of identifying a high-risk customer before selling a new policy will
allow insurance companies to take measures to protect themselves from extra risk.

The main problem with this method is that a regression must be adjusted for
every quantile to obtain the best τ predictions. When this methodology is applied
to databases with a large number of variables and to models with a lot of variables,
it requires a huge computational time to obtain results. To overcome this, we adjust
a reduced number of models and propose an extrapolation method to calculate the
effects of those regressions that are not adjusted. We also want to determine the
minimum of regressions required to obtain accurate predictions of the risks of the
drivers. Obtaining fast predictions of the risk is crucial for providing a good service
and the methodology proposed in this paper offers a huge improvement in terms of
computational time.

We also study the evolution of the extrapolated values depending on the number
of regressions adjusted. We see that for extreme values, the number of regressions
adjusted has high impact on the accuracy of the predictions. As the number of
regressions adjusted increases, the fit is better.

The paper proceeds as follows. First, we present a literature review of papers that
study risk of traffic accident from different points of view. In the next section, we
present quantile regression starting from the basic linear regression model and the
extrapolation method used to estimate the covariates effects. After methodology,
we present data used in this paper and in the following subsections we show the
results obtained adjusting a model with multiple covariates and determining the
minimum regressions required to obtain adequate results. The last section offers
the conclusions.

2 Literature review

Most of the research on risk focuses on studies related to health or the economy.
However, there are a number of studies that look at risk in the field of insurance.
This brief literature review presents papers from the past five years that study the
risk of having a traffic accident.

Smith Smith (2016) studies the relation between having an accident and the driv-
ing patterns of drivers. He also considers the risk taken while driving and driving
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when the conductor is tired. He carries out a qualitative study using a survey com-
pleted in the UK. Another similar study is by Singh Singh (2017) who, from infor-
mation of multiple traffic accidents in India, assesses which scenarios are likely to
be a higher risk of road accident. He considers the weather and location of the crash
and discusses solutions to lowering the number of accidents.

Guillen et al. (2020) study the use of reference charts to estimate the percentiles
of the distance driven at high speed. Reference charts are usually used to study the
weight and height of children and they propose an approach based on telematics
data. The authors adjust quantile regression models at different quantiles using
variables that show the driving patterns of the sample. They find that total distance
driven, gender and percentage of urban driving have a significnt role in explaining
the total distance driven above the speed limit over a year. They also found that
the relation between the total distance driven above the posted speed limit and the
distance driven in total have an exponential relation which causes a difference in the
reference chart, allowing for a better fit of the percentiles of the observations in the
sample.

Sun et al. (2020) adjust ordinary least square and binary logistic regressions to
calculate a driving risk score on different drivers using internet of vehicles (IoV)
data. Usage-based insurance is a new methodology based on IoV to customize in-
surance prices. However, this method requires clear identification of risky drivers.
They find that revolutions per minute, speed, braking and accelerations are impor-
tant variables for the prediction of risky variables while GPS related variables do
not provide much information. In both linear and logistic regressions, the number
of mistakes made by the prediction system is very low.

Pérez-Marín et al. (2019) also study the risk of speeding adjusting quantile re-
gression at different quantile levels. They use information related to the driving
patterns of drivers, in line with in Guillen et al. (2020), but they focus more on the
differences of the effects of explanatory variables for different regressions. They
conclude that total distance driven, night driving, urban driving, gender and age
are important factors in the risk of speeding and propose quantile regression as a
methodology when calculating premiums for car insurance. Guillen et al. (2019)
study the high number of drivers with zero claims adjusting a zero-inflated Poisson
model. Their goal is to propose methodology to improve the design of insurance.
They adjust different models for all reported claims and those claims where the
driver is at fault obtaining a better adjustment on the latter. In the case of the study
of all claims, gender, driving experience, vehicle age, power of the vehicle, dis-
tance driven at high speed and urban driving are significant. In the second model, a
similar result is obtained but neither gender nor power are significant. The authors
highlight the importance of distance driven when analysing risk of accidents and
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discuss the addition of different prices depending on distance in pay-as-you drive
insurances.

A significant number of papers attempt to relate traffic accidents with an specific
disease. Gohardehi et al. Gohardehi et al. (2018), for example, review papers that
study if toxoplasmosis has any influence on the risk of having a traffic accident.
They use conclusions of studies carried out in different countries to evaluate if the
disease is an impact factor. Huppert et al. Huppert et al. (2019) study the risk of
road accident in drivers diagnosed in the last five years with some diseases that
can cause vertigo. These drivers were not diagnosed at the time that they took out
insurance of the vehicle. Matsuoka et al. Matsuoka and Saji (2019) study if there
is any correlation between traffic accidents and epileptic drivers that have sleep-
related problems. They consider driver characteristics and the type of epilepsy that
they suffer.

Closer to the aim of this paper, are other studies that try to examine which fac-
tors affect the risk of crash adjusting mathematical models. In the case of Mao et
al. Mao et al. (2019) a multinomial logistic regression is adjusted to identify which
factors affect to the risk of having a traffic accident in China. They consider four
different types of crashes depending on the collision characteristics, and separate
the factors into six categories. Rovsěk et al. Rovšek et al. (2017) identify the risk
factors adjusting a Classification and Regression Tree (CART) using data collected
from Slovenia which provide information about the conditions when the accident
happen. Lu et al. Lu et al. (2016) study the agents that affect the severity of traf-
fic accidents adjusting an ordered logit model. The data contain information about
different traffic accidents that occur in different Shanghai tunnels and include char-
acteristics of the driver, time, weather conditions and site features.

3 Proposed Methodology

Lets consider the linear model

Yi = β0 +β1X1i+β2X2i+ · · ·+βkXki,

where Yi represents the response variable for the i-th individual (i = 1...n), Xji

represents the value of the i-th observations of the explanatory variable j (k = 1...k),
βj is the parameter for the j-th explanatory variable and εi represents the residuals
of the model that follows E[ε|Xβ] = 0. This model allows the effects for multiple
covariates to be adjusted with respect to the mean of the response variable. In order
to calculate the estimations of β parameters, an optimization problem is solved.
This problem is known as Ordinary Least Square (OLS) and minimizes the sum of
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the squared residuals.

β̂ = argmin
β

n

∑
i=1

Si(β), (2)

where Si(β) = (Yi−X ′iβ)2 and represents the diference between the predicted
and observed values of the response variable.

3.1 Quantile Regression

In risk analysis, studying regression for extreme positive values of the response
variable can be of great interest. These values correspond to high values of the
quantile τ ∈ (0,1). Koenker and Bassett (1978) Koenker and Bassett Jr (1978)
propose an extension of the linear regression called quantile regression. Quantile
regression adjusts the effects of the explanatory variables for the τ -th quantile of
the variable of interest. This methodology works extremely well when the response
variable is not symmetrical because the median of a random variable is robust to the
outliers of the distribution while the mean is affected. We can specify the regression
model at level τ as follows:

Yi = βτ0 +βτ1X1i+βτ2X2i+ · · ·+βτkXki+ ετi , (3)

where V aRτ (ετi ) = 0 and βτ is the vector of unknown parameters. Quantile
regression can also be specified as a relation between the τ -th quantile of Yi and the
linear combination of the covariates with the equation:

V aRτ (Yi|X1i, · · · ,Xki) = βτ0 +βτ1X1i+βτ2X2i+ · · ·+βτkXki+ ετi (4)

Koenker and Bassett (1982) Koenker and Bassett Jr (1982) and Koenker and
Machado (1999) Koenker and Machado (1999) specify the adapted optimization
problem to adjust the quantile regression model.

βτ = argmin
βτ

n

∑
i=1

ρτq (Yi−X ′iβτ ), (5)

where ρτq represents a score function of the quantile that equals τ(Yi−X ′iβτ )

when (Yi−X ′iβτ )≥ 0 and (τ −1)(Yi−X ′iβτ ) otherwise.

3.2 Extrapolating parameters

Let us suppose that, instead of adjusting V aRτ (Yi|X ′iβτ ), we want to identify at
which quantile τ corresponds to every observation depending on its observed vari-
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ables. To adjust the quantile value we solve the following optimization problem

τ̂i = argmin
τi

(Yi−Xiβ
τ )2, (6)

which represents the difference between the observed value of the variable Y
and the predicted value of the response variable for quantile τ . The ideal scenario
to solve this problem would be to dispose of an adjusted regression adjusted for
each quantile τ because we would have more predicted values to compare with
the observed one. This is non-viable when the database has a massive number
of observations and when we are trying to adjust a model with a big number of
variables because of the required computational time. In this paper we want to
determine how many quantile regressions are required to get accurate predictions of
τ without modelling for all quantiles and to save time.

We adjust 99 regressions (1 for each entire number between 1 and 99) and select
m < 99 regressions that are in a similar distance from each other. I.e. if m=6,
τ = (0.01,0.2,0.4,0.6,0.8,0.99). To extrapolate the values of βτ for the not selected
τ , we use the formula:

β̂τ0+c =
βτ0 + c(βτ1−βτ0)

τ1− τ0
. (7)

In this formula values of τ are multiplied by 100 to have integer quantiles. We
will select two consecutive values of the vector of quantiles to estimate values of
βτ between them. τ0 represents the lower selected quantile, τ1 represents the upper
selected quantile and c is the difference between the lower quantile and the value τ
that we are extrapolating. c must accomplish c ∈ (0,(τ1− τ0)).

To compare the obtained predictions extrapolating regressions and predictions
adjusting all possible regressions we calculate the Mean Square Error (MSE) using
the formula:

MSE =
∑
n
i=1(τ

99
i − τmi )2

n
, (8)

where n represents the number of observations, τ99i represents the predicted tau
for the i-th observation adjusting 99 regressions and τmi represents the predicted tau
for the i-th observation adjusting m regressions.

3.3 Other methodology to extrapolate parameters

Using the methodology proposed to extrapolate the coefficients, we choose m re-
gressions with τ values that are equidistant. Thus, we are adjusting the same amount
of regressions at parts of the distribution of the response variable which have a lot
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of information and at those parts that do not. The following figure shows that for the
lower quantiles the distribution function rises steeply, then the increase is constant
and for higher quantiles the increase is exponential again.

Figure 1: Distribution of log(Y) dependent on quantile τ .

Bearing in mind that when we work with quantile regression we are establishing
a linear relation between the effects of the variables, it is important to determine at
which zones of the distribution more regressions should be adjusted. In the case
of our data, we need to adjust the major number of regressions for lower quantiles
because this is where the biggest increase of the distribution appears. Also, we need
to adjust the minimum number of regressions for the central part of the distribution
because the increase is linear. Using this methodology, it is really important to select
appropiate τ values because they have a huge impact on the results. Changing the
amount of regressions adjusted at each part of the distribution or even changing
the distance between τ values selected lead to poor results for the adjustment of
the risk. In this paper we do not propose any specific methodology to identify
which regressions provide the best results, rather we make an arbitrary selection
that improves the results of choosing equidistant quantiles.

4 Data and results

Telematics data have become more relevant in recent years. In the field of motor
insurance, they are used to adjust personalized prices for customers, depending on
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their driving patterns. In this paper we use a database containing information of
9.614 drivers aged between 18 and 35 years. The information contained on each
observation includes distance driven, time of day, type of road and distance driven
above the posted speed limit. It also contains information on the drivers such as age
and gender. All information contained in the database was collected during the year
2010. The description of used variables can be found in Table 1.

Table 1: Definition of variables in the telematics data set for 2010.
Variable Description
Speed_km∗ Total number of kilometres driven over the speed limit
lnKm Logarithm of the total number of kilometres driven
P_urban Percentage of kilometres driven in urban areas
P_night Percentage of kilometres driven at night
Age Age of driver
Male Gender of driver (1 = male, 0 = female)
∗P_speed is the proportion (percentage) of total kilometres driven above
the speed limit. P_speed= 100 × Speed_km /exp(lnKm)

Table 2 presents a descriptive analysis of the variables used in this study. The
sample contains 4.873 male and 4.741 female. We use total distance driven in a
logarithmic scale. Our variable of interest is the number of kilometres driven above
the speed limit and we can see that this is positively skewed.

Table 2: Descriptive analysis of the continuous variables in the telematics data set
for 2010 (n= 9,618).

Mean Median Min. Max. Std. Dev. Skewness
Speed_km 1398.21 689.23 0.00 23500.19 1995.37 3.64
lnKm 9.27 9.37 -0.37 10.96 0.75 -1.87
P_urban 26.29 23.39 0.00 100.00 14.18 1.03
P_night 7.02 5.31 0.00 78.56 6.13 1.68
Age 24.78 24.63 18.11 35.00 2.82 0.11

Other studies also used this database. Ayuso et al.(2016)(Ayuso et al., 2016b)
compared driving patterns between male and female drivers and Guillen et
al.(2019)Guillen et al. (2019a) proposed new methodology to determine the in-
surance price. Boucher et al.(2017)Boucher et al. (2017) analysed the effects of
distance driven and the exposure time to the risk of having a traffic accident using
Generalized Additive Models (GAM). Pitarque et al.(2019)Pitarque et al. (2019)
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used quantile regression to analyse the risk of traffic accident and Pérez-Marín
(2019)Pérez-Marín et al. (2019b) analysed speeding.

4.1 Multivariate case study

Our objective is to model the total number of kilometres driven above the speed
limit to identify which observations correspond to risky drivers, given their driving
patterns. We work with the logarithm of the response variable. In this case, we
compare τ predictions for each driver using the parameters estimated adjusting a
regression for every quantile and those estimated adjusting a lower number of mod-
els. First, Figure 2 show τ predictions change as the number of adjusted models
increase.

Figure 2: Multivariate predictions.

The horizontal axis represents the value of τ predictions obtained adjusting m re-
gressions and vertical axis represents predictions obtained adjusting 99 regressions.
We see that adjusting 6 models, there is a problem when predicting lower quantile
values. In these cases, the predicted value is larger than it should be. There are
also some differences in the predictions of the larger quantiles but to lesser mag-
nitude. Adjusting 11 regressions, predictions for τ ∈ (0.4,0.85) are more accurate
than before and the problem of predicting extreme values of τ relaxes, especially
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for large values. Adjusting 21 regressions, we see that in general all predictions are
more accurate but there are still some discrepancies for lower quantile predictions.
To determine how many regressions are necessary to obtain a good fit we present
Figure 3 that shows the behaviour of the MSE as we adjust more regressions. Some
of its corresponding values appear in Table 3.

Figure 3: MSE values for predictions adjusting m regressions.

Table 3: MSE values for predictions adjusting m regressions.

m 2 6 9 11 13 15 18 21
MSE 170.890 14.713 12.609 11.545 11.116 11.573 11.264 10.836

In both Figure 3 and Table 3 we see that MSE values decrease sharply as the
number of adjusted regressions increases and then stabilizes around m = 10. Despite
there being, for m = 11, problems predicting lower quantiles, in general, there is
no significant improvement in the results of the predictions. For upper quantiles,
these predictions are accurate, which is positive in terms of risk analysis. As seen
in Figure 5, the evolution of βτ parameters is not necessarily linear. Depending
on which m quantiles are selected to model, increases or decreases in MSE are
produced. To study the possible causes of the prediction problems, in Figure 4
we present the evolution of βτ parameters and the extrapolation, adjusting m = 13
regressions that had the lowest MSE value for m< 15.
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Figure 4: Comparison between βτ estimation.

Figure 4 shows that, in general for all covariates, extrapolations do not fit the param-
eters for lower quantiles well. In all cases except total distance driven, the extrapo-
lated value is lower than the adjusted value for m = 99. Since the extrapolated value
is lower than it should be, a larger value of τ is required to obtain the minimum
value for Yi−X ′iβτ . For upper quantiles, the unique variable that has problems of
fit is the percentage of night driving. Adjusting m=13 regressions, it takes thirteen
seconds to obtain all predictions while adjusting m=99, the computational time is
two minutes. This would suppose a major improvement in terms of computational
time for larger of databases containing more observations.

Considering the distribution on 1, we decide to adjust m=13 regressions selected
as follows: 5 regressions for τ ∈ [0.01,0.20), 4 regressions for τ ∈ [0.20,0.80) and
4 regressions for τ ∈ [0.80,0.99). In this example, unbalancing distance between
τ values gives us more accurate extrapolations for βτ parameters for the extreme
values of τ . Observing the new comparison between βτ estimation, we see that the
problem for the estimation of lower quantile coefficients that appeared in Figure 5
is resolved and an acceptable adjustment for the rest of the quantile coefficients is
maintained.
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Figure 5: Comparision between βτ estimation with unbalanced τ values.

The multivariate predictions show a good fit for all quantiles especially for the ex-
treme values of τ , this being the aim of unbalancing distances between the selected τ
values. MSE is also affected positively when we extrapolate βτ with this methodol-
ogy. Compared with 11,116 (value obtained from Table 3) MSE now equals 10,057,
which indicates an improvement on the quality of our predictions.
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Figure 6: Comparision between βτ estimation with unbalanced τ values.

5 Conclusion

In this paper, we propose methodology to extrapolate βτ parameters of quantile
regression without adjusting a regression for all quantile levels τ . When offering
insurance policies, it is really important to detect which drivers hold a major risk of
having a traffic accident or bad driving patterns. Adjusting a quantile regression for
each quantile to check which quantile level is more similar to the observation has
a high computational time cost. This cost is accentuated when the adjusted model
has more variables or the database has a large number of observations. We see that,
for 9.614 observations, the computational time is drastically reduced.

We show that our extrapolation adjusting a reduced number of regressions, gives
good results when predicting quantile τ . Adjusting 10 regressions is enough to ob-
tain good predictions, and that increasing the number of regressions would provide
few benefits. Nevertheless, the evolution of βτ parameters should be studied in each
case to select an appropriate number of models to adjust.

We see that as the number of regressions adjusted increases, βτ extrapolated
parameters are closer to the adjusted parameters. However, for lower quantiles there
is always a small error that provokes some deviation in our predictions. Applying
the different methodology proposed in this paper we show that if we take τ values
observing the distribution of the response variable we can obtain better predictions
on the quantile of each observation. Although in this study the improvement is
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huge, this is very sensitive to which regressions we are choosing to adjust and how
many for each part of the distribution.

This paper opens up new fields of research. In our case we establish a linear
relation between the extrapolated βτ . Finding new extrapolation methods would
allow correction of the prediction mistakes for extreme quantiles. Further study is
required into how this extrapolation method improves computational time in data
that contains more variables and observations.
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A Sarmanov Distribution with Beta
Marginals: An Application to Motor
Insurance Pricing

1 Introduction

We analyse a bivariate model based on the Sarmanov distribution with marginal
Beta distributions. These marginals are specified based on a generalized lin-
ear model (Beta-GLM) or Beta regression as defined by Ferrari and Cribari-Neto
(2004). The objective is to fit data defined in the (0,1) interval.

Many authors have analysed bivariate Beta distributions [see, for example,
(Gupta and Wong, 1985; Olkin and Liu, 2003; Olkin and Trikalinos, 2015; Arnold
and Ng, 2011)]. However, these distributions pose several difficult challenges: their
generalization to higher dimensions and their specification as a generalized linear
model are not straightforward. The Sarmanov distribution provides a way to address
these challenges.

Originally, the Sarmanov distribution in its bivariate form was introduced by Sar-
manov (1966), its multivariate version was suggested by Joe and Xu (1996) and was
generalized by Bairamov et al. (2011). Its use to model the bivariate behaviour of
random variables with a marginal Beta(α,β) distribution was proposed by Gupta
and Wong (1985). These authors defined the five parameter bivariate Beta distri-
bution from what is known as Morgenstern’s distribution (Morgenstern, 1956) with
marginal Beta, which is a particular case of the Sarmanov distribution.

The bivariate Sarmanov distribution is characterized by its flexibility in the
marginal distributions and, furthermore, given that its functional form establishes
that the marginals are clearly separated from the dependency model, the specifica-
tion in terms of a bivariate generalized linear model turns out to be natural. Gen-
eralizing from two dimensions to higher dimensions is simple—(see (Bolancé and
Vernic, 2019) for an example of a trivariate Sarmanov distribution specified as a
generalized linear model with Negative Binomial marginals).

In this work, we show an application of the bivariate Sarmanov distribution with
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Beta marginals generalised linear model to predict two of the most relevant telem-
atics variables in motor insurance (Guillen et al., 2019a). Telematics variables are
obtained from GPS/inertial devices installed in vehicles and they provide an abun-
dant source of information to motor insurers. In our case study, a bivariate model
is specified, for the proportion of kilometres driven above the posted speed limit
and the proportion of kilometres driven at night. These two variables seem to be
related, but researchers have not yet been able to find a good way to understand
their association. The explanatory variables are the characteristics of the insured
policyholder and the vehicle. The database used in our application has already been
analysed in various works published in statistical, transport and risk analysis jour-
nals (see (Ayuso et al., 2019; Pérez-Marín et al., 2019b; Pesantez-Narvaez et al.,
2019; Pérez-Marín et al., 2019a; Pérez-Marín and Guillen, 2019; Guillen et al.,
2019a; Sun et al., 2020)). In all previous studies, the two telematics variables that
we analyse here were used as predictors of the accident rate, and they were assumed
to be uncorrelated.

In subsection 2, the new bivariate Sarmanov model is specified and the particular
case with marginal Beta-GLM with a domain in the (0,1) interval is analysed; the
estimation method is also discussed. The results of our case study are shown in
subsection 3. Finally, subsection 4 contains the conclusions.

2 The Models

Let (Y1,Y2) be a bivariate random vector that, for convenience, is defined in (0,1)2.
Its distribution depends on a set of k quantitative or binary covariates, whose val-
ues are represented by the vector xj =

(
x1j , ...,xkj

)′, j = 1,2, where x1j = 1 is a
constant term. The relationship between Yj and the covariates is given by the linear

predictor x′jβ
j , where βj =

(
βj1, ...,β

j
k

)′
, j = 1,2, are vectors of parameters to be

estimated. To simplify the notation, the covariates are assumed to be the same for
j = 1 and j = 2, and so the vector of explanatory variables is denoted as x. The bi-
variate probability density function (pdf) associated with the Sarmanov distribution
is:

fY1,Y2(y1,y2|x′β1,x′β2) = f1(y1|x′β1)f2(y2|x′β2)
×

[
1 +ωφ1(y1|x′β1)φ2(y2|x′β2)

]
, y1,y2 ∈ (0,1) (1)
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where ω is the dependence parameter and φj , j = 1,2, are bounded kernel functions.
For the function defined in (2) to be a pdf, the following conditions must hold:∫ 1

0
φj(yj |x′βj)fj(yj |x′βj)dyj = 0, j = 1,2 (2)

and
1 +ωφ1(y1|xβ1)φ2(y2|xβ2)≥ 0, ∀(y1,y2) ∈ (0,1)2. (3)

For given values of x′βj , j = 1,2, we define:

mj

(
x′βj

)
= inf

0<yj<1
φj
(
yj |x′βj

)
and Mj

(
x′βj

)
= sup

0<yj<1
φj
(
yj |x′βj

)
, j = 1,2.

Taking into account the condition defined in (3), bounds can be defined for
the dependency parameter ω. However, as this parameter does not depend on
the linear predictor, new extreme values are defined as: m?

j = max
∀x′βj

mj(x
′βj) and

M?
j = min

∀x′βj
Mj(x

′βj), so that the bounds of the dependency parameter are:

max

{
− 1

m?
1m

?
2

,− 1

M?
1M

?
2

}
≤ ω ≤min

{
− 1

m?
1M

?
2

,− 1

M?
1m

?
2

}
. (4)

The previous condition holds for every vector of covariates x, which implies that the
dependency parameter must be located within the narrowest bounds. In practice, we
will assume that the vectors observed in the sample dataset lead to the entire domain
of values of linear predictors x′βj , j = 1,2. In the insurance context, where we will
discuss our illustration, we assume that all possible risk profiles that can be insured
by the company are already present in the portfolio.

For each vector of covariate observations x, we can also obtain the covariance
between the dependent variables as:

cov(Y1,Y2) = ωv1(x)v2(x), (5)

where vj(x) =
∫ 1
0 yjφj(yj |xβj)fj(yj |x′βj)dyj , j = 1,2. The correlation is obtained

by dividing by the product of standard deviations.

There exist many possible specifications for the kernel functions φj , j = 1,2

(see (Bahraoui et al., 2015) [for a description of kernel functions proposed in the
literature). When fitting the bivariate Beta distribution without covariates, Gupta
and Wong (1985) propose a kernel function such as φj = 2Fj − 1, where Fj is the
cumulative distribution function (cdf). This specification has the advantage that
the bounds for the dependency parameter are given by −1 ≤ ω ≤ 1 for any vector
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x. However, the previous model does not allow obtaining closed expressions for
some magnitudes of interest, such as the conditioned moments. In this work, we
propose to use kernels φj = yrj −E(Y rj ), where r is a value to be determined by
the analyst. Next, some results obtained for the particular case of the Sarmanov
distribution with marginal Beta(α,β) distribution with r = 1 are analyzed. These
cases intuitively correspond to a situation of linear dependency, controlled by the
dependence parameter ω.

2.1 The Bivariate Beta GLM Model

The pdf of a random variable Y with Beta(α,β) distribution, with parameters
α, β > 0, is:

fY (y;α,β) =
Γ(α+β)

Γ(α)Γ(β)
yα−1(1−y)β−1 =

1

B(α,β)
yα−1(1−y)β−1

and its cdf is:

FY (y;α,β) =
B(y,α,β)

B(α,β)
,

where Γ(·) andB(·, ·) are the Gamma and Beta functions, respectively, andB(y, ·, ·)
is the incomplete Beta function.

The Beta regression was proposed by Ferrari and Cribari-Neto (2004), with the
reparametrization µ= α

α+β and ψ = α+β, so that:

f(y;µ,ψ) =
1

B (µψ,(1−µ)ψ)
yµψ−1(1−y)(1−µ)ψ−1,

where E(Y ) = µ, with 0 < µ < 1, and V (Y ) = µ(1−µ)
(1+ψ) , with ψ > 0, where ψ−1

is the scale parameter. We note that, given the values of µ and ψ, it holds that
V (Y ) < 0.25. The specification as GLM is defined as (note that we use µ(x) to
emphasize that µ depends on the linear predictor):

g [µ(x)] = x′β,

where g[·] is a link function that can be defined in different ways, in this work, we
use the logit link, g [µ(x)] = log

[
µ(x)

1−µ(x)

]
.

To simplify the notation from now on, we eliminate the linear predictors in the
conditioned part. The pdf associated with the bivariate random vector (Y1,Y2) with
a Sarmanov distribution and Beta GLM marginals that will be called the Sarmanov-
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Beta-GLM is ():

fY1,Y2(y1,y2) =
1

B (µ1(x)ψ1,(1−µ1(x))ψ1)
y
µ1(x)ψ1−1
1 (1−y1)(1−µ1(x))ψ1−1

× 1

B (µ2(x)ψ2,(1−µ2(x))ψ2)
y
µ2(x)ψ2−1
2 (1−y2)(1−µ2(x))ψ2−1

× [1 +ω(y1−µ1(x))(y2−µ2(x))] , y1,y2 ∈ (0,1). (6)

For the previous expression to be a pdf, the dependency parameter must be located
within the bounds defined in (4), which, for the kernel functions that we propose,
are:

max

− 1

max
∀x′β1

(−µ1(x)) max
∀x′β2

(−µ2(x))
,− 1

min
∀x′β1

(1−µ1(x)) min
∀x′β2

(1−µ2(x))


≤ ω ≤

min

− 1

min
∀x′β1

(1−µ1(x)) max
∀x′β2

(−µ2(x))
,− 1

max
∀x′β1

(−µ1(x)) min
∀x′β2

(1−µ2(x))

 .

(7)

The bivariate cdf associated with a Sarmanov-Beta-GLM is obtained directly
from the double integral of the bivariate pdf defined in (6):

FY1,Y2(y1,y2) =
B (y1,ψ1µ1(x),(1−µ1(x))ψ1)

B (ψ1µ1(x),(1−µ1(x))ψ1)
× B (y2,ψ2µ2(x),(1−µ2(x))ψ2)

B (ψ2µ2(x),(1−µ2(x))ψ2)

×
[
1 +ω

(
B (y1,ψ1µ1(x) + 1,(1−µ1(x))ψ1)

B (ψ1µ1(x),(1−µ1(x))ψ1)
−µ1(x)

B (y1,ψ1µ1(x),(1−µ1(x))ψ1)

B (ψ1µ1(x),(1−µ1(x))ψ1)

)
×
(
B (y2,ψ2µ2(x) + 1,(1−µ2(x))ψ2)

B (ψ2µ2(x),(1−µ2(x))ψ2)
−µ2(x)

B (y2,ψ2µ2(x),(1−µ2(x))ψ2)

B (ψ2µ2(x),(1−µ2(x))ψ2)

)]
,

(8)

where y1,y2 ∈ (0,1).

Proposition 1. The conditioned pdf is:

fY1|Y2(y1|Y2 = y2) =
1

B (µ1(x)ψ1,(1−µ1(x))ψ1))
y
µ1(x)ψ1−1
1 (1−y1)(1−µ1(x))ψ1−1

× [1 +ω(y1−µ1(x))(y2−µ2(x))] , y1,y2 ∈ (0,1) (9)

and similarly for fY2|Y1(y2|Y1 = y1). Integrating the previous expression, the con-
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ditional cdf is obtained as

FY1|Y2(y1|Y2 = y2) = F1(y1)× [1 +ω (y2−µ2(x))(1−µ1(x))]

− ω (y2−µ2(x))
y1(1−y1)
ψ1µ1(x)

f1(y1), y1,y2 ∈ (0,1)

(10)

.

Proof. The conditioned pdf is obtained directly as

fY1|Y2(y1|Y2 = y2) =
fY1,Y2(y1,y2)

fY2(y2)
.

Integrating the result of fY1|Y2(y1|Y2 = y2) in (9), we obtain:

FY1|Y2(y1|Y2 = y2) =
∫ y1

0
f1(t)dt+ω (y2−µ2(x))

∫ y1

0
f1(t)(t−µ1(x))dt

= F1(y1) +ω (y2−µ2(x))

[
B (y1,ψ1µ1(x) + 1,(1−µ1(x))ψ1)

B (ψ1µ1(x),(1−µ1(x))ψ1)
−µ1(x)F1(y1)

]
.

(11)

In addition, since

B (y1,ψ1µ1(x) + 1,(1−µ1(x))ψ1)

B (ψ1µ1(x),(1−µ1(x))ψ1)

=
B (y1,ψ1µ1(x),(1−µ1(x))ψ1)

B (ψ1µ1(x),(1−µ1(x))ψ1)
−

y
µ1(x)ψ1
1 (1−y1)(1−µ1(x))ψ1

ψ1µ1(x)B (ψ1µ1(x),(1−µ1(x))ψ1)

= F1(y1)−
y1(1−y1)
ψ1µ1(x)

f1(y1),

then, by substituting the previous expression in (2.1), then (1) follows directly.

The conditioned quantile is obtained from the inverse of expression (1), for which
a numerical method (such as Newton’s method) can be used.

Proposition 2. The conditional expectation is:

E (Y1|Y2 = y2) = µ1(x) +ω(y2−µ2(x))V (Y1|x) , (12)

where V (Y1|x) = µ1(x)(1−µ1(x))
(ψ1+1) is the variance, which also depends on the vector

of covariates. Similarly, E (Y2|Y1 = y1) can be found.
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Proof. The conditional expectation is obtained directly by solving the integral:

E (Y1|Y2 = y2) =
∫ 1

0
y1fY1|Y2(y1|Y2 = y2)dy1

=
∫ 1

0
y1fY1(y1)dy1× (1 +ω(y1−µ1(x))(y2−µ2(x)))

=
∫ 1

0
y1fY1(y1)dy1

+ω(y2−µ2(x))

(∫ 1

0
y21fY1(y1)dy1−µ1(x)

∫ 1

0
y1fY1(y1)dy1

)
= µ1(x) +ω (y2−µ2(x))

(
E(Y 2

1 |x)−µ1(x)2
)

= µ1(x) +ω (y2−µ2(x))V (Y1|x) .

Likewise, the corresponding result is obtained for E (Y2|Y1 = y1).

Proposition 3. From (5), the conditional covariance which depends on the vector
of covariates x is:

cov(Y1,Y2) = ωV (Y1)V (Y2) = ω
µ1(x)(1−µ1(x))

(ψ1 + 1)

µ2(x)(1−µ2(x))

(ψ2 + 1)
(13)

and the correlation is:

corr(Y1,Y2) = ω

√
µ1(x)(1−µ1(x))

(ψ1 + 1)

√
µ2(x)(1−µ2(x))

(ψ2 + 1)
. (14)

Proof. Note that the covariance and the correlation are calculated directly if, in
expression (5), we see that:

vj(x) =
∫ 1

0
yjφj(yj |xβj)fj(yj |x′βj)dyj

=
∫ 1

0
yj(yj−µj(x))fj(yj |x′βj)dyj = E(Y 2

j |x)−µj(x)2, j = 1,2

The dependence parameter of the model proposed in Gupta and Wong (1985),
which uses kernel functions φj = 2Fj − 1, j = 1,2, is located in the interval
−1 ≤ ω ≤ 1 and is the same for all x. Our proposal bounds the dependence pa-
rameter to the narrowest interval among those obtained from all x. However, the
advantage of our proposal is that our model allows for obtaining closed expres-
sions for some magnitudes of interest such as bivariate moments (covariance) and
conditional moments. In the numerical analysis subsection, we also compare the
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correlations estimated from our model and that of Gupta and Wong (1985).

2.2 Estimation

In practice, we start from a bivariate sample of n observations. Let us denote the
sample information as (Yi1,Yi2), i = 1, ...,n, where for each i we know the values
of the covariates Xi = (Xi1, ...,Xik)

′. Our objective is to estimate the parameter
vectors βj , the scale parameters, ψj and j = 1,2, and the dependency parameter ω,
from the maximization of the logarithm of the likelihood function associated with
the Sarmanov distribution:

l
(
β1,β2,ψ1,ψ2,ω

)
=

n

∑
i=1

logf1(Yi1|X ′iβ1) +
n

∑
i=1

logf2(Yi2|X ′iβ2)

+
n

∑
i=1

log
(
1 +ωφ1(Yi1|X ′iβ1)φ2(Yi2|X ′iβ2)

)
= l1(β

1,ψ1) + l2(β
2,ψ2) + l12(ω,β

1,β2,ψ1,ψ2), (15)

The maximization of (15) cannot be carried out directly without considering that
the parametric space is restricted and, in addition, as it was shown in expression
(4), the bounds of the dependence parameter are closely related to the parameters
of the marginals. Thus, in the maximization process, infeasible solutions will often
be reached unless a careful numerical procedure is specifically designed. One way
to address these difficulties is to rely on the IFM (Inference from Margin) method
that has been widely used in the estimation of copulas see (Joe and Xu, 1996) [for
a review]. For the estimation of the Sarmanov distribution, the IFM was already
used by Bolancé and Vernic (2019) for the case of GLM marginals with Negative
Binomial distributions.

The IFM method is implemented as follows:
Inicialization. The parameters for the marginals are estimated as:(

β̂1(0), ψ̂
(0)
1

)
= max

β1,ψ1

l1(β
1,ψ1) (16)(

β̂2(0), ψ̂
(0)
2

)
= max

β2,ψ2

l2(β
2,ψ2). (17)

For the initial estimation, function betareg() of betareg R package is used.
With these parameters of the marginals, we start the iterative process in the two
steps described below.

Step 1. Given the estimated marginal parameters in iteration m− 1 and taking
into account the limits of the dependence parameter ω defined in (4), with function
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optim() and the L-BFGS-B method using R , we estimate ω from the maximization
of the likelihood function given fixed values of the marginal parameters, which is:

ω̂(m) = max
ω

lω|12

(
ω|β̂1(m−1), β̂2(m−1), ψ̂(m−1)

1 , ψ̂
(m−1)
2

)
, (18)

where lω|12 is the likelihood as a function of ω given the estimated parameters for
the marginals in iteration m−1.

Step 2. Given the estimated dependency parameter ω̂(m) in step 1, the marginal
parameters are re-estimated in iteration m as:(

β̂1(m), ψ̂
(m)
1 , β̂2(m), ψ̂

(m)
2

)
= max
β1,ψ1,β2,ψ2

l12|ω(β1,ψ1,β
2,ψ2|ω̂(m)), (19)

where l12|ω is the likelihood as a function of the marginal parameters given the de-
pendence parameter estimated in step 1. The above maximization is also performed
with function optim() and the L-BFGS-B method of R.

Steps 1 and 2 described above are repeated until reaching the convergence crite-
rion based on the differences between parameter estimates obtained in two consec-
utive iterations.

Remark 1. In the initialization process, if the dependent variables contain zeros or
ones, the following correction Ỹj = (Yj ∗ (n− 1) + 0.5)/n, j = 1,2 was proposed
by Smithson and Verkuilen (2006).

In practice, the algorithm described above is based on the optimization of condi-
tional likelihood functions and not on the likelihood function defined in (15). How-
ever, in the last stage, the parameters estimated with the IFM method can be used as
initial parameters in the process of maximizing the full likelihood function defined
in (15). For this purpose, function optim() and method L-BFGS-B of R are used
again.

Remark 2. To estimate the Sarmanov model proposed by Gupta and Wong (1985),
it is not necessary to use the two-step process, since the bounds of the dependence
parameter do not depend on the parameters of the marginal distributions.

3 Numerical Analysis

We analyse a database corresponding to a car insurance portfolio, in which part
of the variables have been measured via a telematic system. The objective of our
analysis is to model the joint behaviour of the percentage of kilometres driven above
the posted speed limits (Y1) and percentage of kilometres driven at night (Y2). It is
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well known that both variables are related to the risk of having an accident. In
Table 1, we show the main descriptive statistics of the dependent variables and the
covariates used in the modelling process. For the estimation of the Sarmanov-Beta-
GLM, the dependent variables have been transformed as indicated in Remark 1 in
subsection 2.2. Furthermore, to avoid very low coefficient values due to the scale
of some covariates, variables age (X1), age of driving license (X2) and age of the
vehicle (X5) have been divided by 10; the vehicle power variable (X6) is divided by
100 and the total annual distance driven in kilometres (X7) is divided by 1000. In
addition, note that, in this study, we have included a variable denoting the driver’s
gender (X3) and an indicator of private garage (X4) as covariates.

The last row of Table 1 shows the Pearson correlation between the two dependent
variables. This correlation is compared with the corresponding parameter estimate
obtained from the Sarmanov model with marginal Beta proposed here and with
the one proposed by Gupta and Wong (1985), from now on the GW model. With
this objective, Table 2 shows the dependence parameters estimated with both mod-
els, and the AIC and BIC statistics without including the covariates and including
them. Using expression (14) and without covariates, from the dependence parame-
ters ω̂ = 14.883, it can be deduced that the estimated correlation is 0.0601, which is
within the confidence interval of the Pearson correlation as shown in the last row of
Table 1. On the contrary, if we use the five parameter Beta distribution, the (resid-
ual) correlation that is obtained from the numerical calculation of expression (5) is
practically zero. This means that the association is captured by the bivariate model.
Comparing both models, with and without covariates, using the AIC and BIC statis-
tics, the results of Table 2 show that the fit is better for the model proposed here than
it is for the GW model.

Table 1: Definition of variables and descriptive statistics: mean, standard deviation
(STD), minimum (Min) and Maximum (Max). The last row shows the
linear correlation between dependent variables and a confidence interval at
the 95% level.

Variable Description Mean STD Min Max
Y1 Percentage of kilometres driven above the speed limit 0.063 0.068 0.000 0.704
Y2 Percentage of kilometres driven at night 0.069 0.064 0.000 1.000
X1 Age of the driver 27.565 3.094 19.849 36.904
X2 Age if driver License 7.174 3.053 1.810 15.910
X3 Gender (=1 Men, =0 Women) 0.489 0.500 0.000 1.000
X4 Night parking (=1 yes, 0=no) 0.774 0.418 0.000 1.000
X5 Age of the vehicle 8.749 4.174 1.938 20.468
X6 Power of the vehicle in Horse Power (HP) 97.226 27.772 12.000 500.000
X7 Total Km 7159.510 4191.753 1.590 50,035.560
ρ Pearson correlation between dependent variables (CI) 0.070 (0.057,0.082)

Table 3 shows the results of our Sarmanov-Beta-GLM using different vectors of
covariates. Model I includes all the explanatory variables, among which we have the
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Table 2: Estimated dependence from Sarmanov-Beta models and goodness of fit
criteria

ω̂ (p-Value) AIC BIC

Proposed Model
No covariates 14.883 (<0.001) −171,282.2 −171,241.5
With all covariates 2.388 (0.055) −177,508.8 −177,354.4

GW Model
No Covariates 0.002 (0.346) −171,165.4 −171,124.8
With all covariates 0.002 (0.356) −177,497.2 −177,342.8

age (X1), the age of the driving license (X2) and the total distance driven annually
(X7), these three variables are associated with driving experience. To analyze the
robustness of the results, in Model II, age (X1) is eliminated, and, in addition, in
Model III, the age of a driver’s license (X2) is also eliminated. The results of Model
I show that the effect of age is negative on both Y1 and Y2 that the effect of the
driver’s license age is positive on Y1 and negative on Y2 and the effect of total
distance, X7, is positive on both dependent variables. By eliminating age (X1) in
Model II, the signs of the parameters associated with X2 and X7 are maintained,
although the value is smaller in the case of X2 and remains practically the same
for X7. After eliminating variables X1 and X2, we see that the effect of the total
annual distance driven remains practically the same. If we observe the effects of
the rest of covariates, these are practically the same in models I, II, and III. A man
driver (X3) with a powerful vehicle (X6) would have larger Y1 and Y2 than the rest,
all other characteristics being the same. However, using parking at night (X4) has
a positive effect on the percentage of speeding distance (Y1) and a negative effect
on the percentage of night-time driving (Y2); the opposite happens with the age of
the vehicle (X5). The effect of X5 indicates that, when the vehicle is older, drivers
tends to diminish the percent of speed driving, while night-time driving is larger.

To visualize the dependence between Y1 and Y2 in different quantiles, the follow-
ing three examples of insured drivers are graphically analysed:

• Profile 1 corresponds to a 27-year-old man, who drives about 7000 kilometres
per year, with a 7-year-old driving license, with parking, with a vehicle of
about 8 years and 100 HP.

• Profile 2 corresponds to a 20-year-old man, who drives about 4000 kilometres
per year, with a 2-year-old driving license, with parking, with a vehicle of
about 2 years and 75 HP.

• Profile 3 corresponds to a 36-year-old man, who drives about 10,000 kilo-
metres per year, with a 15-year-old driving license, without parking, with a
vehicle of about 15 years and 200 HP.
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Table 3: Parameter estimates (p-values) for the Sarmanov-Beta models and good-
ness of fit statistics.

Model I Model II Model III
Y1 Y2 Y1 Y2 Y1 Y2

Cons. −3.055 (<0.001) −2.556 (<0.001) −3.819 (<0.001) −2.975 (<0.001) −3.796 (<0.001) −3.061 (<0.001)
X1 −0.339 (<0.001) −0.185 (<0.001) - -
X2 0.294 (<0.001) −0.052 (0.018) 0.048 (0.002) −0.187 (<0.001) -
X3 0.097 (<0.001) 0.274 (<0.001) 0.107 (<0.001) 0.281 (<0.001) 0.109 (<0.001) 0.274 (<0.001)
X4 0.108 (<0.001) −0.031 (0.007) 0.107 (<0.001) −0.031 (0.007) 0.107 (<0.001) −0.031 (0.007)
X5 −0.043 (0.001) 0.055 (<0.001) −0.043 (0.001) 0.055 (<0.001) −0.043 (0.001) 0.055 (<0.001)
X6 0.653 (<0.001) 0.077 (<0.001) 0.654 (<0.001) 0.079 (<0.001) 0.664 (<0.001) 0.038 (0.027)
X7 0.045 (<0.001) 0.035 (<0.001) 0.046 (<0.001) 0.035 (<0.001) 0.046 (<0.001) 0.035 (<0.001)
φ1 18.480 (<0.001) 18.300 (<0.001) 18.294 (<0.001)
φ2 14.823 (<0.001) 14.782 (<0.001) 14.703 (<0.001)
ω 2.388 (0.055) 2.325 (0.059) 2.214 (0.060)
AIC −177,508.8 −177,238.5 −177,113.5
BIC −177,354.4 −177,100.3 −176,991.6

hline

Profile 1 represents the average insured individual of the portfolio; Profile 2 is
a younger man driver, less experienced than Profile 1 and with a newer and less
powerful vehicle; finally, Profile 3 is an older man driver, more experienced than
Profile 1 and an older and more powerful vehicle. Figure 1 represents different
quantiles of the variable kilometres driven above the speed limit (Y1) in the y-axis
given the values of the percentage of kilometres driven at night (Y2) for Profile 1
in the x-axis. Quantiles have been obtained from the expression (1). Note that,
if the dependence parameter was zero, all the curves would remain constant. The
adjusted dependence structure results in the represented conditional quantiles hav-
ing a negative nonlinear relationship and, furthermore, the curves for the different
quantile levels are non-parallel. Figure 1 indicates that, for Profile 1, the higher the
percentage of kilometres driven at night (Y2), the greater the caution in driving and,
therefore, the lower the percentage of distance driven above the speed limits (Y1).
The same quantiles at 75% (plot on the left) and 95% (plot on the right) confidence
levels are represented in Figure 2. These plots show that the curves are non-parallel
and that Profile 3 is the most risky, followed by Profiles 1 and 2.
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Figure 1: Quantiles of percentage of kilometres driven over the speed limit (Y1) in
the y-axis for Profile 1 given the values of percentage of kilometres driven
at night (Y2) in the x-axis.
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Figure 2: Quantiles of percentage of kilometres driven over the speed limit (Y1) for
each driver profile given the values of percentage of kilometres driven at
night (Y2), (left) 75% level and (right) 95% level.
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4 Conclusions

We have developed a bivariate model based on the Sarmanov distribution with
marginal Beta GLM which has allowed us to model two important variables in
modern motor insurance telematics databases. Our model is an alternative to a
proposal previously made by Gupta and Wong (1985) based on what is known as
Morgenstern’s distribution, which is a particular case of the Sarmanov distribution.
Our proposal allows for obtaining closed expressions for some magnitudes of inter-
est, such as the bivariate cdf and conditioned moments, covariance and correlation,
which are fundamental in risk analysis. We have shown that our Sarmanov-Beta-
GLM model presents better fits than previous proposals also based on the Sarmanov
distribution.

The results of our case study have shown that, for a specific example, although
the dependence parameter is positive, which directly implies that, in the mean, the
relationship between the conditioned mean and the values of the variable that con-
ditions is positive, the conditional quantiles show that the relationship between the
conditioned quantile, and the value of the conditioning variable may be negative
for high quantile levels, a result that is consistent with the expected behaviour of
drivers.
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The objective of the thesis is to look more closely at the methodology of quan-
tile regression and its generalizations in the analysis of insurance work. For this,
we use the telematics data, a type of data that is being used more and more in the
world of insurance because it allows information to be obtained, practically in real
time. The study proposes a series of solutions for analysing of the influence of var-
ious accident risk factors when driving based on quantile regression, which allows
a quantile of the distribution of the variable of interest to be studied in a precise
way. To expand on the study of risk, other methodologies are also applied, such as
bivariate Sarmanov distribution, which allows two risk factors to be studied in the
same distribution.

The first chapter presents the foundations for the study of the thesis. I noted
how the results obtained to adjust the VaR (Value at Risk) and an approximation
for the TVaR (Tail Value at Risk) were not the same if we used a linear regression
or quantile regression when fitting the model. When studying the risk based on the
number of kilometers driven over the speed limit, I determined the most important
variable to be the total number of kilometres driven during the year. In the case of
models fitted to TVaR, I noted that I could set the average kilometres driven over
the speed limit for a specific level based on drivers’ driving patterns. If this level
is close to the average or even just exceeds it, this driver can be identified as risky.
If a pricing model such as pay how you drive were used, the insurance company
could add a premium to the price of the insurance because the driver falls into the
risk category.

In the second chapter, I fit the TVaR instead of the approximation from the previ-
ous chapter using quantile regression. Here I consider a linear relation between the
explanatory variables, which produce some mistakes in the prediction of the risk
measures. For example, the value of the predictions appear in a range that is not
feasible with some predictions for the TVaR lower than for the VaR, which is not
possible by definition. To correct these mistakes, in the third chapter I propose the
use of an additive model for both risk measures. The model for the TVaR turns out
to be a very powerful tool for identifying drivers with a high risk of traffic accident
through the number of kilometres driven above the speed limit. It is also a really
easy model to implement. This type of model allows the different types of insured
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customers to be grouped and gives a better profile of drivers in the portfolio. Many
of the scientific papers that use this methodology do not share the same notation.
Some of them consider that high risk values are the highest of the distribution while
others consider that risky values are the lower ones. In our case I propose a com-
mon notation, which is more natural for the analysis of accident cost or loss models,
where the worst profiles are located on the right side of the distribution.

In the fourth chapter I propose a method to interpolate β coefficients of the quan-
tile regression. This methodology is useful to speed up the process of scoring the
risk of the drivers based on quantile regression by forfeiting some accuracy in the
predictions. This method is based on adjusting a reduced number of regressions
and, considering that the coefficients estimated follow a linear increase, performing
an interpolation between the estimations. In this chapter, I find it really important to
determine correctly at which quantiles the quantile regression is adjusted depending
on the distribution of the response variable. I also patent that it must be known how
many regressions are adjusted. The more regressions, the better the predictions
will be but, the computational time will rise. In this chapter I achieve a balance
where the computational time is very low and the predictions obtained are suffi-
ciently accurate. Thus, with the proposed process, I manage to establish an agile
and reasonably accurate method that can be implemented in real life cases with few
calculus difficulties.

In the final chapter, I look at different methodologies apart from quantile regres-
sion. Here I use a Bivariate Sarmanov distribution that allows two risk factors to be
studied at the same time, depending on how are distributed. In this chapter, I use
as risk factors the number of kilometres driven above the speed limit and the per-
centage of kilometres driven at night time. I assume that both risk factors follow a
marginal beta distribution. There are other studies that use this type of distribution,
but the model adjusted in this chapter shows better results that the ones obtained in
previous approximations. The adjusted model allows expressions to be obtained for
some interesting measures, such as the conditional moments, covariance, correla-
tion and the cumulative distribution function of both response variables. Despite the
positive dependency of the parameters used in the study, the conditional quantiles
show that the relation between the conditional quantile and the value of the condi-
tional variable is negative for upper quantiles which, although this is an expected
result, is novel in being able to obtain bivariate risk measures not conditional on
other covariates.

In this thesis, the application of quantile regression to study which driver char-
acteristics affect the risk factor, such as speeding has been studied in depth. I start
with a model that approximated TVaR, adjust an additive model to study two risk
measures and develop a methodology that allows drivers to be rated depending on
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their risk of having a traffic accident, using their driving patterns. I also widen the
study and apply other methodologies to study other risk factors not related to speed-
ing. I develop agile methods that can be adapted to the huge volume of data that
insurance companies use nowadays.

Chapters one, two and three were the first ones to be written. Then chapter five
was written and finally chapter four is the most recently written one, opening up a
number of future areas of study. The writing of the final chapter corresponds with
my incorporation into an insurance company, which gave me a more in depth view
of how these data are treated and enabled me to evaluate possible limitations more
closely.

This thesis, apart from providing methodologies to study risk measures beyond
classical VaR, opens up new research lines that will allow risk studies to be carried
out in a more precise and comprehensive way.

In the second and third chapters of the thesis, I adjust a quantile regression to the
TVaR that is not a direct quantile. In this way, I prove that it is possible to adjust
more complex risk measures, even considering that it can be expressed conditional
on the covariates. A new possible study, starting from the same point as this study,
could be to adjust other risk measures apart from the TVaR. In addition modelling
methodologies other than quantile regression could be adapted to adjust complex
risk measures, for example, changing the loss function used on the adjustment.

In the fourth chapter of the thesis, I develop a methodology that approximates
variable coefficients for the quantiles where an adjustment is not made through an
interpolation that considers that the effects change constantly as the quantile in-
creases. As shown by the evolution of the effects graph, the increase or decrease of
the coefficients is not lineal but neither is this always the case. I note that, mainly
for extreme quantiles this variation can be more volatile, and this is the case in the
study analysed in this chapter. Finding another way to approximate the values of
the coefficients that are not approximated using quantile regression would allow to
solve the detected approximation problems and even reduce the required number of
regressions to interpolate all the coefficients.

Related to this number of necessary coefficients, other interesting topics appear.
In the paper, I study how the distribution function of the response variable was
varying and, depending on the growth rate, I adjust a higher number of regressions
where the distribution vary more abruptly and less where the increase is linear. I
establish three intervals of quantiles where the increases are different and for each
interval I adjust a different number of regressions equally spaced. Another possi-
ble study could be to find a methodology that allows the number of quantiles that
provides an optimum approximation to be determined and for which quantiles the
quantile regression should be adjusted. A possible way to do this could be study-
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ing the derivative function of the response variable distribution and selecting the
adjustment points, depending on the value of the derivative.

Moving away from the methodological part, I find a broad range of possibilities
for the application of the processes to other factors. For motor insurance, I focused
on the risk factor of the number of kilometres driven above the speed limit but there
are other factors that affect the risk of having a traffic accident, such as sudden
braking or accelerating. It would be interesting to see the results when applying the
methodology proposed in the thesis to other risk factors, even those of a different
nature, such as sudden acceleration. In the latter, this is a recount variable that
counts discrete values in contrast to the variables used in this study that are of a
continuous nature.

Moving on to a completely different field outside of the world of insurance, it
would be interesting to apply quantile regression in other disciplines, in particular
the field of healthcare. An example of this could be in the study of experimental
medicine when treating certain diseases by detecting those factors that affect the
mortality risk or the risk of developing health difficulties or severe secondary ef-
fects, particularly when the response variable is of a continuous nature, such as,
certain clinical analyses. Not only could quantile regression be applied in this type
of study but also, more advanced methodologies that enable the identification of
the mean effect of a normal dose and also its influence on the response quantile.
For example, let us assume that dispensing a standard dose of a drug increases the
expected value of a parameter, such as glucose. The idea is rather than studying
how the medicine affects patients on the mean, to study patients that already have a
high level of glucose, for example at quantile 95%. Moreover, in this type of field,
it is common to study the evolution of patients, dividing them not only by gender
but also creating different groups and having a control group. Developing a new
methodology that allows the results of quantile regressions between groups to be
compared could provide very interesting results that consider scenarios with high
risk. This could become a very promising area of study in years to come.
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