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Resumen

Aunque la percepción visual se ha estudiado extensamente durante siglos, los mecan-

ismos neuronales subyacentes de la percepción visual siguen siendo confusos. El pre-

sente estudio tiene como objetivo desarrollar un modelo computacional basado en el

procesamiento de bajo nivel del sistema visual (es decir, consistente con propiedades

conocidas de áreas visuales tempranas), para desvelar mecanismos y estrategias de cod-

ificación computacional subyacentes a las percepciones básicas de brillo y luminosidad

para estímulos visuales acromáticos. El modelo implementa dos mecanismos unificadores

hipotéticos: uno basado en la variabilidad en la respuesta que segrega el gradiente de lu-

minancia frente a las características sin gradiente, y el otro en la redundancia-reducción

de las representaciones de los bordes. Mediante estos mecanismos, el modelo predice con

éxito los fenómenos de brillo y ligereza de gran cantidad de ilusiones visuales. Muchas

de estas predicciones coinciden con algunos resultados de experimentos psicofísicos, lo

que indica que los mecanismos hipotéticos presentados podrían ser principios computa-

cionales subyacentes prominentes para las percepciones de brillo y luminosidad en el

sistema visual.
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Abstract

Although visual perception has been extensively studied for centuries, the underlying

neural mechanisms remain puzzling. The present study aims to develop a computa-

tional model based on the low-level processing of the visual system (i.e., consistent with

known properties of early visual areas), to unveil mechanisms and computational en-

coding strategies underlying basic perceptions of brightness and lightness for achromatic

visual inputs. The model implements two hypothetical unifying mechanisms: one based

on variability in response that segregates gradient vs. non-gradient features, and the

other based on dynamic filtering that reduces redundancy of edge representations. By

these mechanisms, the model successfully predicts the brightness and lightness phe-

nomena of many visual illusions. Many of these predictions concur with some results

of psychophysical experiments, indicating that the variability-based segregation mecha-

nism and dynamic filtering could be prominent underlying computational principles for

brightness and lightness perceptions in the visual system.

Keywords: brigthness, lightness, computational model, visual illusions
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Chapter 1

Global Introduction

The brain analyses the visual world through the luminance patterns that reach the

retina. When luminance reaches the retina, it stimulates the retinal photoreceptors,

which transmit information about the visual world to our brain (in the visual system)

as visual input. Formally, luminance (as measured by the retina) is the product of il-

lumination and reflectance. The illumination is defined as the amount of source light

incident to the scene, while the reflectance is defined as the amount (in percentage) of

light object surface reflected in the visual scene. Because reflectance is multiplicatively

coupled to illumination when illumination is homogeneous in a scene (very rare), the

reflectance directly correlates with luminance. However, when the illumination is in-

homogeneous (very common), infinite combinations of reflectance and illumination can

produce ambiguous visual input that reaches the retina. Because of this ambiguity, re-

flectance and illumination are intrinsically mixed in visual input (luminance), and then,

the brain is faced with solving an inverse problem (Pizlo, 2001) to distinguish them.

This problem has many solutions, but the brain successfully achieves only one or a few

of them, depending on certain constraints, tasks, and context. As a result of this pro-

cess, the physical properties of visual input are phenomenologically distinguished (i.e.,

perceived) by the visual system.

For instance, look at Adelson’s checker-shadow illusion (adapted version) in Figure 1.1

(left). At first sight, it is a checkerboard under a shading. Easily, by distinguishing

a bright vs. shaded region in the visual scene, we can perceive the appearance of

illumination. In addition, by distinguishing different gray levels of luminance (from

"white to black") that compose the whole visual scene (i.e., visual input), we can directly
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Chapter 1: Global Introduction

perceive the appearance of luminance. Beyond the appearance of luminance, we also

can distinguish the appearance of surface reflectance across checker by "white vs. black"

squares. Notice that the difference between the appearance of luminance is distinct

from the appearance of reflectance: In Adelson’s checker-shadow illusion, the sensation

of "white vs. black" remains despite the squares lying in different regions but, indeed,

the "white" squares under the shaded region have the same luminance as the "black"

squares under the bright region (compare with Figure 1.1, right).

Formally, the process of distinguishing the appearance of luminance is usually defined

as brightness perception (Arend et al. 1993), while the process of distinguishing the

appearance of surface reflectance is defined as lightness perception (Arend et al. 1993).

Thus, formally, brightness perception comprises all scene perceptual aspects (appearance

of luminance), while lightness perception is implicitly included in brightness. How the

brain achieves and distinguishes brightness and lightness is still an ongoing scientific

debate.

Figure 1.1: Left. Adapted version of Adelson’s checker-shadow, squares with red A and red

B have the same luminance but are perceived as lighter and darker, respectively

(Adelson 1995). Right. The A and B squares without the context of the visual

scene.

Historically, visual illusions, brightness, and lightness phenomena are natural ways to

understand brightness and lightness perceptions. Understanding how the visual system

makes accurate perceptions are often best clarified by understanding why it sometimes

does not. A typical phenomenon concerning lightness is the "lightness constancy": it
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Chapter 1: Global Introduction

refers to the appearance of an object’s lightness that generally remains constant despite

changes of external conditions such as illumination and distance (e.g., Adelson’s checker-

shadow illusion). Unlike lightness constancy, slight modifications of adjacent luminance

patterns or spatial configurations in certain conditions could lead to different bright-

ness/lightness phenomena such as contrast, assimilation, or induction effects. In the

contrast phenomenon, the brightness/lightness of the test fields are contrasted with the

background; the Simultaneous Contrast illustrates this phenomenon (see Figure 1.2A).

On the contrary, the assimilation phenomenon means that the brightness/lightness1 of

the test fields averages with the background; Dungeon illustrates this phenomenon (see

Figure 1.2B). Further, other brightness (or lightness) phenomena also emerge depending

on certain configurations of visual features like gradients, edges, shapes (see Figure 1.2C,

1.2D, 1.2E).

These kinds of brightness/lightness phenomena and visual illusions are not only of great

utility for building hypotheses about computational mechanisms or perceptual rules

that underlie visual perception but also highlight the incompleteness or inconsistency of

the proposed mechanisms. For instance, to explain Hering Grid (see Figure 1.2E), the

classical explanation deems the lateral inhibition produced center-surround receptive

fields of retinal ganglion cells as the principally acting mechanism (Baumgartner, 1960).

However, the mechanism is insufficient to explain why the effect is considerably reduced

(or even removed) if the bars are slightly corrugated (see Figure 1.2F). Similarly, Simul-

taneous Contrast can be explained "also" by lateral inhibition between a target region

(center) and its context (surround). However, the mechanism is insufficient to explain

why the appearance of self-luminosity (e.g., halo) enhances "contrast," although the lo-

cal contrast luminance of visual input remains unchanged (e.g., Figure 1.2D). Unlike

contrast phenomenon, assimilation (e.g., Figure 1.2B) pulls a target’s brightness to-

wards that of its immediate context, and therefore cannot be explained by mechanisms

based on direct lateral inhibition. Overall, the neural mechanisms involved in generating

brightness and lightness, respectively, appear to be more intricate (e.g., Grossberg, 2017;

Schmid & Anderson 2017; Anderson et al. 2014; Kingdom 2011; Anderson & Winawer,

2005).
1As a clarification, here, for homogeneous illumination, we refer to brightness/lightness (together) due

to the judgments of apparent reflectance (lightness) for homogeneous illumination are either identical

to judgments of apparent intensity (brightness) (Blakelsee et al., 2008; Keil 2008).
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Chapter 1: Global Introduction

Figure 1.2: A. Simultaneous brightness contrast: The two gray patches with identical lu-

minance increase their brightness/lightness difference with their respective back-

grounds. B. Dungeon: The two gray areas with identical luminance reduce their

brightness/lightness difference with their respective backgrounds. C. Cow Skin Il-

lusion: a variation of Craik-O’Brien-Cornsweet illusion. All regions have identical

luminance; however, such regions are differently perceived because the opposite

luminance gradients ("cusps "almost unperceived) at the edges. D. Simultane-

ous brightness contrast with ramps: although the white and black regions have

the same level of luminance, respectively, the ramps contribute to a sensation of

self-luminosity (halo vs. glow) between regions. Notice a stronger sensation of

contrast effect than the classic simultaneous contrast in A. E, F. Hermann/Hering

(HG) illusion and a corrugated version. At the intersections of the white grid lines,

illusory gray spots are perceived in the HG but less intense (or even removed) in

the corrugated grid.
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Chapter 1: Global Introduction

It is particularly challenging for computational proposals to simultaneously explain con-

trast assimilation effects or distinguish brightness or lightness with identical model pa-

rameters or what "neural coding principles" are involved. For instance, filling-in (FI)

models (Cohen MA & Grossberg S, 1987; Gerrits HJM & Vendrik AJH. 1970) can

be considered a neural implementation of edge integration, where boundary activity is

propagated laterally to generate perceptible surface properties. Whereas the prediction

of brightness contrast or lightness surface usually is straightforward with (most) filling-

in architectures, assimilation effects remain challenging. Typically, a solution using FI

models consists of distinguishing two types of contours between local and global (or

"remote") boundary maps (Grossberg S & Todorovic D. 1988; Rudd Michael E. 2017).

If local vs. global boundaries are chosen "carefully," FI models can achieve compatibility

between contrast and assimilation. However, their implementations are based on artifi-

cial descriptors (but see Grossberg S. & Todorovic D. 1988; Domijan 2015) or limited

to synthetic images (i.e., incompatible with real-world images).

Other computational models (the majority) for computing brightness estimates decom-

pose an input image typically with filters of different orientations and multiple spatial

frequencies, which mimic some neural response properties in the early visual system.

Blakeslee and McCourt (Blakeslee B, McCourt ME. 1999; 2004) proposed a highly suc-

cessful image decomposition with oriented difference of Gaussians (ODOG) filters. In

the ODOG-model, the main mechanism is a “normalization response” consisting of two

steps. First, a weighted sum of filter responses across spatial frequencies is computed for

each orientation (orientation channels). Second, each orientation channel is divided by

its root mean square level before they are summed to yield the final brightness map. The

ODOG model successfully predicts contrast brightness and many assimilation displays.

However, the correctness of these predictions is limited to visual input with homogeneous

illumination (i.e., when brightness = lightness). The predictions fail to deal with the

effects of non-homogeneous illumination on lightness perception (e.g., see Figure 1.2D)

or perceived illumination as the glare effect (e.g., see Figure 1.3). Further, these models

also fail to predict visual illusions where the figure-ground relations modify brightness or

lightness perception; as an example, see Benary-Cross and Reverse Contrast in Figure

1.3.

Unlike spatial filter models, layers decomposition approaches are (computational) mod-

els which aim at deriving further images based on the characteristics of the depicted
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Chapter 1: Global Introduction

Figure 1.3: Glare. An example of the glare effect, the white region has the same luminance,

but it appears self-luminous modifying the perceived brightness. Benary Cross,

both grey triangles have the same luminance and are flanked by an equal amount of

black and white; however, the triangle belonging to the cross is perceived as lighter

than the other. Contrast. An example of Simultaneous Contrast (SC) similar to

Figure 1.2A: The two gray patches with identical luminance increase their bright-

ness/lightness difference with their respective backgrounds. Reverse Contrast.

The simultaneous contrast is reversed (into "assimilation") by adding more struc-

tures to the original SC display: The two gray patches with identical luminance

reduce their brightness/lightness difference with their respective backgrounds.

visual scene of an input image. Typical approaches with respect to layer decomposi-

tion are based on intrinsic images, which, in a wider sense, address surface qualities

such as transparency, lightness, and occlusions (references). These models work very

well to describe lightness for non-homogeneous illumination and successfully describe

certain lightness phenomena as lightness constancy. However, typically they offer no

robust mechanistic explanation of how layer decomposition (or intrinsic images) is com-

bined with luminance values to compute lightness (or brightness) or how figure-ground

relations (as reverse contrast) modify the perception of brightness or lightness.

Other proposal models (indeed theories) suggest higher-level processing to explain how

6



Chapter 1: Global Introduction

figure-ground relations modify lightness perception based on perceptual grouping. The

best-known is the anchoring theory (Gilchrist et al., 1999), which suggests the stimulus

is perceptually "anchored" into local and global perceptual frameworks in the visual

scene: Each framework is assumed to be illuminated equally. The theory proposes that

the highest luminance in each framework is "anchored" to correspond to a lightness

of white, while the lightness of other regions (with lower luminance) are rescaled (or

codetermined) relative to the other "anchors" within its local framework in relation

to the entire global framework. Although this simple approach (or rules) describes

some lightness phenomena even for non-homogeneous illumination, it fails to describe

brightness phenomena (e.g., glare effect). Further, the "rule" is limited only to visual

illusions (or images) with low complexity, being the "rule" un-computable to specifying

frameworks in real-world images.

A completely different approach for explaining visual illusions is based on a statistical

analysis of real-world images (Purves D et al., 2004; Yang & Purves, 2004). This

approach suggests that the perception of brightness or lightness is related to knowledge

about the statistical relationships between visual patterns across space. The perception

of the target then depends on its expected luminance given its current context: It is

perceived as brighter if the expected luminance is lower input luminance, and it is

perceived as darker otherwise. This approach is successful in predicting contrast and

assimilation for several visual illusions and suggests a statistical relationship between

luminance patterns and brightness perception. Unfortunately, no attempts have been

made to unveil any underlying mechanisms involved in the computation of brightness

and lightness from the statistical analysis (but see Morgenstern Y et al. 2014).

In summary, the neuronal underpinnings of brightness and lightness perception remain

a mystery. Many existing models for proposing neural mechanisms only work with syn-

thetic input images but often struggle with real-world images. Yet different models

are only phenomenological descriptors based on psychophysical studies and, as such,

cannot make predictions about neural mechanisms. Other models present some incon-

sistencies in robustness and fail in their predictions if illusions are slightly modified.

On the other hand, neurophysiological studies attempting to link neuronal activity to

lightness/brightness perception have proven difficult. On top of that, in psychophysical

experiments, lightness is often confused with brightness, which complicates the compar-

ison of corresponding results. It is due in large to the most extended consensus that

7



Chapter 1: Global Introduction

defines brightness as the "appearance" of luminance and lightness as the "appearance"

of surface reflectance (Arend et al. 1993). However, since "appearance" is subjective,

the interpretation or judgments of brightness or lightness may account for numerous

"errors," especially in achromatic images (see Blakeslee & McCourt 2015; with replies).

In this study, we propose hypothetical unifying mechanisms for estimating brightness

perception and lightness perception for achromatic images. On the one hand, for vi-

sual scenes containing inhomogeneous illumination (i.e., ambiguity in visual patterns),

we hypothesize that the visual system could distinguish the apparent illumination and

apparent surface reflectance (i.e., lightness) by a segregation mechanism. On the other

hand, independently of illumination configuration (with homogenous or inhomogeneous

illumination), we hypothesize that the different kinds of brightness/lightness phenomena

emerge due to a mechanism that reduces context redundancy in edge representations.

8



Chapter 1: Global Introduction

Goals

The present study aims to develop a computational model based on the low-level pro-

cessing of the visual system, i.e., consistent with known properties of early visual areas.

We propose hypothetical unifying mechanisms for estimating brightness perception and

lightness perception for achromatic images. In particular, we hypothesize that the vi-

sual system could distinguish the apparent illumination and apparent surface reflectance

(i.e., lightness) by a segregation mechanism. In contrast, that different kinds of bright-

ness/lightness phenomena emerge due to a mechanism that reduces context redundancy

in edge representations. The main goals of the present study and proposed model are:

1. Propose computational encoding strategies according to the hypotheses to com-

pute the perception of brightness, lightness, and perceived illumination features.

2. The model must be well-defined: Robust in successfully processing real-world im-

ages and consistent in predicting a challenging set of brightness and lightness

phenomena.

3. The model must explain unifying principles of the different kinds of brightness and

lightness phenomena as possible and reproduce some of the trends of corresponding

psychophysical data.

4. The proposed mechanisms must be published to be reviewed and contrasted by

the scientific community.

9





Chapter 2

First Publication: "Luminance

Gradients and non-Gradients as a

cue for distinguishing reflectance

and illumination in achromatic

images: A computational

approach".

Chapter abstract: This chapter presents a published study describing a computa-

tional model compatible with the early visual system consisting of a segregation mech-

anism to distinguish the apparent illumination and surface reflectance of an achromatic

visual input. Since the publication corresponding to this chapter is not open access,

there is a post-print copy instead. Here, the corresponding "published version" DOI

https://doi.org/10.1016/j.neunet.2018.11.001
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Abstract10

The brain analyses the visual world through the luminance patterns that11

reach the retina. Formally, luminance (as measured by the retina) is the12

product of illumination and reflectance. Whereas illumination is highly vari-13

able, reflectance is a physical property that characterizes each object surface.14

Due to memory constraints, it seems plausible that the visual system sup-15

presses illumination patterns before object recognition takes place. Since16

many combinations of reflectance and illumination can give rise to identical17

luminance values, finding the correct reflectance value of a surface is an ill-18

posed problem, and it is still an open question how it is solved by the brain.19

Here we propose a computational approach that first learns filter kernels (“re-20

ceptive fields”) for slow and fast variations in luminance, respectively, from21

achromatic real-world images. Distinguishing between luminance gradients22

(slow variations) and non-gradients (fast variations) could serve to constrain23

the mentioned ill-posed problem. The second stage of our approach suc-24

cessfully segregates luminance gradients and non-gradients from real-world25

images. Our approach furthermore predicts that visual illusions that contain26

luminance gradients (such as Adelson’s checker-shadow display or grating27

induction) may occur as a consequence of this segregation process.28

Keywords: reflectance, illumination, computational model, lightness,29

image processing, brightness illusions30

Preprint submitted to Neural Networks October 26, 2018



1. Introduction31

Based on two slightly different retinal images, the brain assigns a rich32

set of perceptual attributes (“features”, such as color, depth, etc.) to object33

surfaces. Each visual object is composed of surfaces, and each surface can34

be characterized by its reflectance, which is a physical property. Here we35

define reflectance as specifying the ratio between impinging and reflected36

light intensity, which theoretically can range from zero (black) to one (white)37

in case of achromatic images. Reflected intensity (luminance) is eventually38

measured by the retinal photoreceptors, and represents the signal that the39

brain uses to interpret the visual world.40

Specifically, lightness cannot be extracted directly from luminance, be-41

cause reflectance is multiplied with illumination: if an illumination source42

gets more intense, so does the luminance that reaches the eye from a sur-43

face. This implies that for determining (absolute) reflectance, one ideally44

needs knowledge about the illumination. Since many combinations of re-45

flectance and illumination can produce the same value of luminance that46

reaches the retina, the brain has to approximate the solution to an inverse47

problem. A good estimation of reflectance and/or illumination, respectively,48

can be expected to make object recognition performance largely indepen-49

dent of illumination conditions. Notice that one and the same object can50

be found in a myriad of illumination conditions, and it is unlikely that the51

brain memorizes each corresponding condition, since the number of illumi-52

nation conditions is infinite. In what follows, we consider the spatial aspects53

of vision, neglecting temporal variations. Furthermore, we will consider only54

achromatic reflectance (the brain interprets chromatic reflectance as color,55

and achromatic reflectance as lightness).56

Rather than relying directly on absolute luminance, the visual system57

starts with comparing (spatially) adjacent luminance values (contrasts), be-58

cause if luminance is sampled from any adjacent surfaces with different re-59

flectance values, then these samples normally co-vary with illumination. But60

at which distance should we compare luminance values? A possible as-61

sumption is that reflectance changes are associated with abrupt jumps in62

luminance within relatively short distances, while illumination varies more63

smoothly, across larger distances [1, 2, 3, 4, 5]. This in turn relates to spatial64

frequencies and scale, respectively: High spatial frequencies are generated by65

luminance variations across relatively short distances, whereas lower spatial66

frequencies involve larger distances.67
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The idea of decomposing a (luminance) image into oriented contrasts68

at different spatial scales (i.e. layers with spatial frequencies) is exploited69

by most computational approaches to “brightness perception” (brightness is70

perceived luminance). Albeit these models are often successful in explain-71

ing many visual illusions (e.g., [6, 7]), they implicitly hold that simple and72

complex cells in the primary visual cortex create a kind of “all-in-one” repre-73

sentation of the retinal image(s). Otherwise expressed, they do not propose74

any concrete mechanism for determining reflectance, or suppressing illumina-75

tion, respectively. This is a major difference to so-called “filling-in” models76

[8, 9, 10]. In filling-in models, contrasts are extracted at first, possibly across77

different scales. These contrast maps can be processed further such that78

they delineate the contours of surfaces (surface boundaries). Subsequently,79

contrast measurements are propagated from the boundaries to the interior of80

surfaces, such that ideally each representation of a surface is “tagged” with81

a single activity value.82

Similar to the Retinex mechanism [2], activity propagation (filling-in) acts83

to suppress any smooth variations in luminance across a surface (discounting84

gradient luminance, [11]. In our paper, we build on the idea that reflectance85

changes are often associated with fast luminance variations (edges), and that86

shading is often associated with slow variations [12, 13, 14]. Especially in87

achromatic vision, this cue (fast versus slow luminance variations) is exploited88

by the visual system in order to estimate reflectance given luminance. Of89

course, it may fail in certain situations (e.g., shadows with sharp bound-90

aries), and further achromatic cues (e.g. textural continuity, [15]) as well as91

chromatic cues (e.g. chromatic versus achromatic variations, [16, 17]) are92

evaluated concurrently in everyday vision [18, 19]. Thus, the final estimation93

of reflectance and shading relies on the interaction between several cues, and94

this fact should be taken into account when interpreting our results. In what95

follows, we denote the shading-cue with gradients, and the reflectance-cue96

with non-gradients [12, 13, 14], and here we propose a computational model97

that generates corresponding representations. Again, we like to emphasize98

that the non-gradient representations as computed by our model may be99

different from the true estimation of reflectance (i.e. lightness) because our100

model relies only on one cue for identifying putative reflectance changes in101

luminance patterns. Furthermore, our model does not classify the detected102

gradients according to their source (e.g. shading, curvature, shadows).103

At first, our model learns two classes of filter kernels from natural (or real-104

world) gray-level images. One class of filters is constrained to high spatial105
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frequencies. This class of filters is therefore sensitive to non-gradient features106

such as surface boundaries and edges. The other class is sensitive to gradient107

features and thus captures smooth luminance variations such as shading. The108

second part of our model segregates gradients from non-gradients in gray-level109

images, and builds corresponding representations. As a consequence of this110

segregation process, we can predict visual illusions that contain luminance111

gradients. Since our approach successfully processes real-world images, and112

at the same time accounts for gradient-based visual illusions, we believe that113

it represents a plausible model for information processing in the first stages114

of the visual system, apart from demonstrating its suitability for estimating115

achromatic reflectance of object surfaces in gray-level images.116

2. Methods117

Our computational model consists of two stages. In the first stage, two118

sets of filter kernels were learned from patches that were randomly chosen119

from real-world images. The correlation matrix of all patches was computed,120

and their principal components were determined. With the latter, we ex-121

tracted the low and high frequency content from the patches. Using sparse122

coding techniques, two sets of filter kernels were learned from the (frequency-123

specific) patches, one from the low spatial frequency content, and another124

one from the high spatial frequency content. The low-spatial frequency filters125

respond better to smooth intensity variations and thus prefer luminance gra-126

dients. The high spatial frequency filters are more sensitive to non-gradient127

features (lines and edges). In the second stage, each set of learned filter ker-128

nels was used to compute corresponding representations (or intrinsic image):129

one for gradients and another one for non-gradients. The sum of both intrin-130

sic images yields what we call a “full reconstruction”. The full reconstruction131

serves to verify that no information has been lost in the segregation process.132

Notice, however, that some information is lost before the segregation takes133

place as a result of image encoding by the learned filter kernels.134

2.1. Learning of Filter Sets135

2.1.1. Training patches136

Figure 1.A illustrates the following description. We extracted square137

patches (samples) with size 13×13 pixels from gray-level images in the same138

way as described in [20]. Subsequently, we analyzed the sample set with139

singular value decomposition (SVD), and produced 169 (13 × 13) principal140
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components. With natural images, the statistics of luminance values depend141

only on their relative distance, but not on the absolute position from where142

they were extracted [21]. In that case, the principal components are the si-143

nusoidal basis functions of the Fourier transform, with decreasing amplitudes144

from low to high spatial frequencies [22]. In this way, we were able to modify145

the spatial frequency content of our sample set by selecting a subset of the146

principal components (spectral filtering). We used a log-normal kernel for147

spectral filtering:148

fα(�) =
α

�
√
2πσ2

e
(log( �

α )−µ)2

2σ2 (1)

where α is a dilation parameter, µ = 0, and σ = 1.2 and � ∈ {1, 2, ..., 169},149

α indicates the principal component index. Figure 1.B shows an example150

of this function for different alpha values. When applied to the sample set,151

this procedure produced two training sets for low (α = 8) and high (α = 64)152

spatial frequencies, respectively. Figure 1.C shows examples from the training153

set.154

Although different techniques for filtering exist to generate the training155

patches (e.g., whitening [20]), we used our procedure for two reasons: (i)156

The filtering process is directly done on the sample set, which allows a more157

precise control of the frequency content of the two generated training sets. (ii)158

We observed that it seems to guarantee a better convergence of our algorithm159

for filter learning.160

2.1.2. Filtering learning161

We used SPARSENET, an unsupervised learning algorithm [20], in order162

to learn the two sets of filter kernels from the corresponding training data.163

As a result, two sets of filter kernels were learned: one selective for low spa-164

tial frequencies (LSF), and another one selective for high spatial frequencies165

(HSF). Figure 1.D shows some of the learned filters. Each filter set was fur-166

ther pruned by computing the spatial correlation between the learned kernels167

with suitably parameterized 2D Gabor functions, where those with a corre-168

lation smaller than 0.8 were discarded. There are two main reasons for this169

procedure: (i) We wanted our learned filters to be as similar as possible to170

simple cells in the primary visual cortex, whose receptive fields can be mod-171

eled by Gabor functions [23]. (ii) SPARSENET returns a set of filter kernels172

that encodes the training samples [20]. However, some of the filter kernels173

do not account for much encoding variability (low variability or LV-kernels)174

with respect to other kernels in the set. In other words, when convolved with175
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natural images, LV-kernels have low amplitudes on the average, as compared176

to the other learned filters. The LV-kernels therefore can be omitted without177

significantly compromising the overall coding performance. Finally, we bal-178

anced the ON and OFF regions of our filters such that they did not respond179

to homogeneous regions of luminance.180

2.1.3. Preferred luminance gradient direction for a filter181

The preferred luminance gradient direction (GraDir) of a learned filter182

was evaluated by calculating the maximum correlation between the filter and183

an ideal luminance gradient. The latter was defined as a linearly increasing184

luminance ramp Sθ along some direction θ (the directional angle θ is measured185

in degrees):186

G(θ) =
�

p,q

Sθ(p, q)w(p, q) (2)

187

θ̂ = argmax
θ

G(θ) (3)

where w represents the filter, the parameters p, q denote pixel positions, and188

θ̂ is the preferred GraDir for the filter w.189

2.2. Image Decomposition190

Figure 2 illustrates how our model segregates and generates representa-191

tions of gradients and non-gradients, respectively. In the first stage (encoding192

stage), an input image is encoded by the learned filters, resulting in two sets193

of response maps (one response map for each learned filter kernel). In the194

second stage (contour detection), we used a variability measure in order to195

generate two respective sets of maps from the corresponding response maps;196

one for high variation (high variability map), and another one for low varia-197

tion (low variability map). Finally, in the reconstruction stage, we computed198

three intrinsic images, the non-gradient layer, the gradient layer, and the full199

reconstruction, which is the sum of the previous two layers. As mentioned200

earlier, the full reconstruction layer serves to illustrate that no information is201

lost due to segregation (although some information is lost before segregation202

due to image encoding by learned filters).203

2.2.1. Encoding an input image204

Given one set of learned filter kernels S ∈ {LSF,HSF}, an input image205

was convolved (symbol “∗”) with the learned filter kernels wi of S:206
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ai = wi ∗ Im (4)

resulting in a corresponding response map ai. Note that the filters kernels207

within each S could not be expected to form an orthogonal set. As a con-208

sequence, the response maps a ∈ {a1, ..., an} may contain redundant infor-209

mation. For redundancy reduction we introduced a local mechanism which210

aims at decorrelating the ai:211

bi(x, y) = (KS + Id)†ai(x, y) (5)

where KS is the correlation matrix over the filter set S , Id is the identity212

matrix, [.]† denotes the Moore-Penrose pseudo-inverse, and b ∈ {b1, ..., bn}213

represents the decorrelated response set for each respective S. The identity214

matrix has a positive sign because we used an implicit formulation of the215

decorrelation problem.216

2.2.2. Contour map, high and low variability maps217

Figure 2B and Figure 3 illustrate the calculation of the contour map.218

First we computed a variability map m, where we assigned at each image219

pixel a value as follows:220

Li = ∇2bi
221

m(x, y) = std(Li(x+ l, y + k)) (6)

The activities Li correspond to the highpass-filtered response maps bi, and222

are computed by applying the Laplacian ∇2 to a specific set S of bi. The223

variability map m corresponds to the standard deviation (std) of the Li,224

i ∈ {1, ..., n}, which are centered at pixel (x, y) and include the neighboring225

pixels (l, k ∈ {−1, 0, 1} ) using mirror (or symmetric) boundary conditions226

(Figure 3.A). Next, we used a sigmoidal function σα,τ for computing a contour227

map C from the variability map m(x, y):228

C(x, y) =

�
σα,τ (m(x, y)) if m(x, y) >= τ

0 otherwise
(7)

The slope of the sigmoid (“rate parameter”) is set to α ≡ 1
mean(m(x,y))

. The

threshold τ (which is also the inflection point of the sigmoid) is set so that
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the sum of the superthreshold m(x, y) is 0.01 times the total sum of m(x, y)
across all spatial positions (x, y):

τ = arg�τ{
�
x,y

m(x,y)>τ �

m(x, y) = 0.01
�

x,y

m(x, y)}

meaning that 99 percent of the “total activity” is superthreshold. Figure229

3.B shows the contour map of the Lena image. Finally, the high and low230

variability maps are computed by multiplicative gating of the response maps231

with the contour map C(x, y) (Figure 3.C). Specifically, the high variability232

maps are defined by biC , and the low variability maps by bi(1− C), where233

the matrices bi and C are multiplied entrywise (Hadamard product).234

2.2.3. Cost function for finding Gradient and Non-gradient representations235

We formulated the reconstruction of an image ẑ as an optimization prob-236

lem. Because more than one filter is involved in the reconstruction of the in-237

put image, we modified Tikhonov regularization accordingly. Our cost func-238

tion for gradients (h(bi, C) ≡ bi(1− C) ) and non-gradients (h(bi, C) ≡ biC)239

is defined as:240

ẑ = argminz

�

i

� h(bi, C)− v(z, wi) �22 +λ � ∇2z �22 (8)

where � . � denotes the Frobenius norm, h(bi, C) are the contour-gated re-241

sponse maps, bi are the decorrelated response maps (Equation 5), C is the242

contour map (Equation 7), λ is a regularization parameter, and ∇2 is the243

Laplacian operator. The function v(z, wi) describes the encoding of the re-244

constructed image z by the learned filter kernels wi (Equation 5):245

v(z, wi) ≡ (KS + Id)†wi ∗ z (9)

where [.]† denotes the Moore-Penrose pseudo-inverse, and ∗ denotes convo-246

lution. The correlation matrix corresponding to filter set S is denoted by247

KS.248

In order to minimize Equation 8, we used the conjugate gradient method,249

which was terminated either when having reached a maximum number of250

iterations n, or if the following error criterion was satisfied:251

� zn+1
NG + zn+1

G − (znNG + znG) �
� zn+1

NG + zn+1
G � < δ (10)
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The last equation measures the difference in reconstruction between sub-252

sequent iterations (“relative error”), where zn+1
NG and zn+1

G denote the non-253

gradient layer and gradient layer, respectively, at iteration n + 1. Notice254

that we have two free parameters in this process: One is the regularization255

parameter λ and the other one is the threshold δ. For all simulations, we256

used λ = 0.4 and δ = 10−5.257

2.2.4. Generating representations for gradients and non-gradients258

The non-gradient layer and the gradient layer were estimated by iterating259

Equation 8 for the low and high variability maps, respectively (i.e., with260

the correspondingly defined representation maps h(bi, C) (see response maps261

with high and low variability and Figure 3.C). The full reconstruction was262

computed by simply adding the non-gradient layer to the gradient layer. We263

included the full reconstruction for the purpose of verification. It illustrates264

that no features of the original images are lost as a consequence of segregating265

it into gradients and non-gradients. If not otherwise stated, we used the HSF266

filter set for computing the non-gradient layer, and the LSF set for computing267

the gradient layer. Figure 4 shows an illustration of segregating an input268

image into gradients and non-gradients, respectively: whereas the gradient269

layer captures only slow (or smooth) variations in luminance, these variations270

are suppressed in the non-gradient layer. As a consequence of the latter,271

the non-gradient contains only the abrupt luminance changes, that often272

correspond to changes in reflectance. Figure 4C furthermore demonstrates273

that the gradients and non-gradients cannot be obtained by simple lowpass274

and highpass filtering, respectively, of the input image.275

3. Results276

This section consists of four parts: (1) An analysis of the responses of277

the learned filter sets to luminance gradient direction (GraDir), and the role278

of the preferred GraDir in recovering the non-gradient and gradient layers279

for synthetic stimuli; (2) By means of an example we show that the cre-280

ation of (non-)gradient representations is implemented by activity propa-281

gation (filling-in); (3) A demonstration of the robustness of our proposed282

mechanisms by processing real-world images; and (4) model predictions of283

visual illusions which contain luminance gradients (simultaneous brightness284

contrast, Adelson’s checkershadow illusion, Logvinenko’s illusion, and grating285

induction).286
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3.1. Filter responses to luminance gratings and luminance steps287

We measured the preferred luminance gradient direction (GraDir) of the288

learned filters with Equation 2 (see methods section). Figure 5.A, shows the289

(computed) orientation preference versus the strength of the GraDir. Not290

surprisingly, we found that the filter’s internal structure is essential for de-291

tecting the GraDir: The odd symmetrical filters with low spatial frequencies292

(LSF) respond better to luminance gradients than their HSF counterparts,293

which in turn respond better than the even symmetrical filters with LSF and294

HSF, respectively. In addition to being detectors for oriented bar and line295

features, the receptive fields of simple cells are suited to discern luminance296

gradients, [14]. Figure 5.B suggests that filters with odd symmetry outnum-297

ber the even filters in the two learned sets. In fact, the LSF set hardly298

contains any even filters. This observation is consistent with previous neu-299

rophysiological studies on spatial structure of simple cells in primary visual300

cortex [24].301

In order to study the segregation performance of gradients versus no-302

gradients, we tested our model with synthetic input images. The latter303

images consisted of a sinusoidal grating (a gradient feature) with orienta-304

tion ψ that was superimposed on a luminance edge (a non-gradient feature)305

with orientation ρ. Figure 6.A shows a pair of such images with different306

orientations ψ and ρ. Next, for each stimulus, and for each learned filter,307

we measured the reconstruction correctness (see legend of Figure 6) of the308

resulting gradient representation and the (input) grating, and that of the309

non-gradient representation the (input) edge. The results (shown at the310

bottom row of Figure 6.C) suggest that gradient segregation is determined311

by the correlation between a filter’s orientation and grating orientation ψ.312

The lowest gradient activity is obtained when the filters orientation is per-313

pendicular to the grating. With the latter configuration, the LSF result for314

the gradients in Figure 6.C suggests that the gradient layer is nevertheless315

successfully generated. This is because of the nearly isotropic filter kernels,316

which produce relatively high responses at all orientations. For generating317

a gradient representation, only relatively few iterations of Equation 8 were318

required for both filter sets (i.e., LSF and HSF).319

The computation of non-gradient representations differs in three aspects320

from the gradient representations (second row of Figure 6.C): (i) non-gradient321

responses were less correlated with the filter’s orientation relative to the322

orientation of the luminance edge ρ; (ii) in general more iterations of Equation323

8 were required for building the non-gradient layer, but then (iii) the LSF324
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set required fewer iterations than the HSF set. For the full reconstruction325

(top row of Figure 6.C), the highest reconstruction correctness (for almost326

all filters) occurred if ψ, ρ and the filters orientation were the same. The327

latter case reveals a limitation of our model. As obvious from the lower328

left image of Figure 6.B, the segregation into gradients and non-gradients is329

not achieved cleanly, in the sense that the luminance gradient layer contains330

residual non-gradient components.331

3.2. Representations are Created with a Filling-in-like Process332

The previous results suggest that our model essentially implements a333

filling-in process. This can be understood by considering the filter kernels as334

diffusion operators. Specifically, odd-symmetrical filters implement a diffu-335

sion operator which propagates activity along a certain direction and orien-336

tation, while even symmetrical filters are bi-directional and oriented. As a337

consequence, image reconstruction by means of Equation 8 proceeds accord-338

ing to a filling-in process [25]. Figure 7 illustrates filling-in with a luminance339

staircase as input image. At 20 iterations a saw-tooth-like profile is rep-340

resented in the non-gradient layer (Figure 7C). The reconstruction process341

continues until the stopping criterion is satisfied (Equation 10), and at around342

70 iterations the staircase is fully recovered. The filling-in-like reconstruction343

process furthermore implies that non-gradient activity is propagated across344

edges. Observe that relatively few iterations are needed for building the gra-345

dient representation (Figure 7B). Note that the error function (Equation 10346

as a function of iterations) can decrease in a non-monotonical way (Figure347

7D). However, this did not cause any problems in our simulations, as our348

model converged (globally) to a stable solution in all considered cases.349

3.3. Segregation Performance with Real-World Images350

Although synthetic images are a valuable tool for the study of certain as-351

pects of the visual brain, the visual system evolved for the efficient processing352

of real-world images. Real-world images provide therefore a test of robust-353

ness for any model of the visual system. Figure 8 and 9 illustrate that our354

model successfully segregates gradients and non-gradients from real-world355

images. The gradient layer converges faster than the non-gradient layer. In356

the latter, non-gradient activity is propagated rather slowly from the con-357

tours to the interior of surfaces. This is because of: (i) Solving Equation358

8 proceeds according to a filling-in process when derivative filters (i.e. our359

even or odd symmetrical filter kernels, cf. Section 3.2) are used [25]; and (ii),360
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in natural images, gradients are more abundant and spatially more extended361

than non-gradients. This means that in the maps with low variability the362

activity is (already) distributed throughout the whole image, whereas in the363

high variability maps the activity is concentrated at surface contours. A per-364

fect segregation of non-gradients would imply that any gradients are removed365

from the non-gradient representation. However, Figure 8 (both layers) and366

Figure 9 (second row at 80 iterations) suggest that the segregation is not (en-367

tirely) perfect, as residual gradients may still exist in the non-gradient layer368

(e.g., at the hat of Lena image). Specifically, for the Lena image (Figure 9),369

this can be explained with that the model erroneously detects an illumination370

edge as a non-gradient feature.371

To study this issue in more depth, we tested the segregation performance372

of the model for natural images with a superimposed (simulated) sharp il-373

lumination edge or a soft shadow boundary (Figure 10). The gradient layer374

perfectly captures the soft shadow boundary (Figure 10B), and therefore the375

non-gradient layer contains by and large the input image (Figure 10C). For376

the sharp illumination edge (Figure 10A), on the other hand, the gradient377

representation is hardly distinguishable from the gradient representation of378

the original Peppers image (Figure 10C), because the sharp illumination edge379

is captured by the non-gradient layer. Notice the halo around the representa-380

tion of the sharp illumination edge in the non-gradient layer. This indicates381

that the illumination edge has a spatially limited influence on the rest of382

the non-gradients, because the corresponding activity propagation is atten-383

uated by the presence of adjacent boundary structures. As a consequence,384

the dynamic range of the input is compressed into the non-gradient layer;385

an effect that can also be appreciated in the full reconstruction. Dynamic386

range compression also occurs for the soft shadow boundary, but then in the387

non-gradient layer, and in the full reconstruction as well.388

How does the removal of high spatial frequencies affect the distinction be-389

tween gradients and non-gradients? The segregation criterion is not based on390

low versus high spatial frequencies in the first place, but rather on low versus391

high variability. Accordingly, the suppression of high spatial frequencies in an392

input image will cause a narrowing of the range of variability values (because393

variability is dispersed or diluted). The segregation still works for moderate394

amounts of lowpass filtering of the input image. In fact, a small amount of395

lowpass filtering increases the stability of the segregation process, because of396

noise suppression. For strong lowpass filtering, nevertheless, the segregation397

process breaks down. In the latter case, the input image is represented in398
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both layers, as illustrated in Figure 11.399

3.4. Prediction of Visual Illusions that Contain Luminance Gradients400

Our model can be used to predict a certain class of visual illusions that401

contain luminance gradients. Accordingly, we predict that simultaneous402

brightness contrast, Adelson’s checkershadow illusion [3], Logvinenko’s il-403

lusion [26] and grating inductions [27, 28] are reproduced in the non-gradient404

layer regardless of whether the HSF filter set or the LSF filter set it used.405

3.4.1. Simultaneous Brightness Contrast406

The simultaneous brightness contrast (SBC) display consists of two small407

and gray patches with identical luminance arranged over a background with408

different luminance. The patch on the dark background is perceived as409

brighter than the patch on the bright background. Figure 12 shows that410

our model correctly predicts this illusion with the non-gradient layer. SBC411

is usually attributed to low-level processing. For example, retinal ganglion412

cells may enhance the patch contrasts, but recent studies suggest that SBC413

may involve higher level processing as well [29]. In our model, SBC is repro-414

duced by the difference between the low variability of the background and415

the high variability at the contours of the patches. As a consequence, our416

model assigns the patches to the non-gradient layer, where their (predicted)417

brightness depends on their respective luminance difference with the local418

background. Clearly, SBC is also perceived with a luminance step as back-419

ground. It would be therefore interesting to study experimentally for which420

background (gradient or step) the effect is perceived stronger [26]. If the421

smooth luminance gradient was replaced by a sharp luminance step (Figure422

13), then our model predicts only a minor difference between the patches in423

the non-gradient layer. Furthermore, if the stopping criterion (Equation 10)424

was removed from the reconstruction process, an assimilation effect (albeit425

small) would be predicted from a certain iteration on (see the profile plot426

of the non-gradient layer of Figure 13). This is because the response maps427

with high and low variability are generated via the contour map C, where428

0 ≤ C < 1. Since non-gradient activity is determined by 1 − C (see meth-429

ods), a small part of the activity of the non-gradient layer is absorbed by the430

gradient layer in the reconstruction process, even though the stimulus is not431

composed of gradients.432

The stopping criterion that we adopted seems to be ad hoc at first sight.433

But a second look suggests that it could be a plausible metaphor for corre-434
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sponding mechanisms in the brain. Since perception is highly dynamic, it is435

conceivable that it occurs in time slices [30]. If this was true, then a neural436

mechanism could actively reset a representation at the beginning of a new437

time slice. In the context of filling-in, this implies that activity can only438

propagate within the duration of a time slice, what in essence corresponds to439

a stopping criterion. Further evidence for a mechanism that could possibly440

be related to a stopping criterion comes from [31, 32]. These results suggest441

that contrast integration is distance dependent, what essentially amounts to442

that distant boundaries will have a reduced effect on the activity in a layer443

that represents a target surface. [32] also suggested that contrast polarity444

(dark-light versus light-dark directional luminance changes) contributes dif-445

ferently to lightness. In summary, the stopping criterion could be related446

to more plausible mechanisms for determining non-gradient activity, and we447

plan to consider such mechanisms in future versions of our model.448

3.4.2. Adelson’s checker-shadow illusion449

This display consists of a checkerboard with bright and dark squares,450

where a part of the checkerboard is shaded. The bright squares in the451

shaded region have the same luminance as the dark squares in the bright452

region, yet they are perceived as being different. Figure 14 shows two ver-453

sions of the checker-shadow display: One with a smooth “shadow boundary”,454

and another one with a sharp “illumination edge”. As before, our model re-455

produces both versions of the illusion in the non-gradient layer, because it456

renders all white squares with nearly identical non-gradient activity (analo-457

gously all dark squares are rendered with approximately the same activity).458

Our model can reproduce both types of the illusion, albeit in different ways459

(see profile plots of Figure 14C). In the version with the smooth shadow460

boundary, the gradual changes are captured by the gradient layer, whereas461

the non-gradient layer contains only the checkerboard. With the sharp illu-462

mination edge, however, the gradient layer is “empty”, and the illumination463

edge is represented in the non-gradient layer. Because of the boundaries464

of the small squares, the influence of the illumination edge stays local its465

contrast cannot propagate very far (cf. Section 3.3 and Figure 10). There-466

fore, irrespective of the (shadow or illumination) boundary being smooth or467

sharp, Adelson’s checker-shadow illusion can principally be accounted for by468

low-level mechanisms, more specifically on grounds of variability. This re-469

sult contrasts with the original study in which the checker-shadow display470

was explained in terms of (double-reversing) X-junctions that are formed by471
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any four adjacent squares. The presence of X-junctions means that a con-472

trast change is interpreted (presumably at some higher level) as a change in473

non-gradients rather than a shadow [33].474

3.4.3. Logvinenko’s Illusion475

In the Logvinenko’s illusion (Figure 15A), all diamonds have the same476

luminance, but those in the shadow are perceived as being brighter than those477

in the lit regions (shadowed and lit regions are produced by a superimposed478

grating). The Logvinenko’s illusion can be considered therefore as a variation479

of the checker-shadow display, and is correctly predicted by our model in the480

non-gradient layer. As with Adelson’s checker-shadow illusion, our model481

suggests that Logvinenko’s illusion can be produced by low level mechanisms:482

The gradient layer captures the sinusoidal grating, while the non-gradient483

layer captures the reflectance estimates. Notice the difference between the484

non-gradient activity and the activity of the full reconstruction in Figure 15B:485

Whereas the full-reconstruction activity of the brighter and darker perceived486

diamonds are identical (top plot), the corresponding activities in the non-487

gradient layer are different and consistent with perception.488

3.4.4. Grating Induction489

Figure 16 shows the grating induction (GI) display. The GI display con-490

sists of two sinusoidal gratings (inducers) separated by a gap (test field).491

When the two inducer gratings are in-phase, then an illusory brightness mod-492

ulation is perceived across the test field. The brightness modulation has the493

opposite phase as the inducers. Brightness modulation decreases when shift-494

ing the phase of the inducer gratings, being minimum when the gratings495

are in anti-phase. The illusory modulation is furthermore attenuated with496

increasing separation and spatial frequency of the inducer gratings. Typi-497

cally, the GI is explained in terms of multi-scale filtering [34, 35]. As before,498

our model predicts that the illusory brightness modulation is produced in499

the non-gradients layer. Figure 16E shows profile plots of the non-gradient500

activity for in-phase versus anti-phase inducer gratings, for increasing the501

separation between the inducers, and for a higher spatial frequency of the502

inducers. In all cases, our model predictions are consistent with psychophys-503

ical results. Observe that the gradient layer contains the opposite pattern504

than the non-gradients layer. This means that the modulation of the test505

field is predicted as a direct consequence of discounting the gradient pattern,506

which leaves a (illusory) modulation in the non-gradients layer.507
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4. Discussion and Conclusions508

Here, we proposed a computational model for generating representations509

of gradients and non-gradients with achromatic real-world images. We pro-510

pose that gradients versus non-gradients can be exploited by the visual sys-511

tem as a possible powerful cue for detecting changes in reflectance versus512

illumination. This is to say that non-gradient representations can be linked513

to lightness computations, whereas gradient representations can be associ-514

ated with shading effects in natural images. Luminance is the product of re-515

flectance and illumination effects (e.g. shading, shadows, specular highlights516

and inter-reflectance). Brightness is perceived luminance, and thus should517

be composed of perceived reflectance (lightness) and perceived shading [14].518

In other words, we hypothesize that “normally” we perceive brightness di-519

rectly and lightness implicitly, as normally smooth luminance gradients are520

superimposed on object surfaces. Lightness could be perceived directly for521

flat surfaces (i.e., in the absence of overlaid luminance gradients), because522

in this special situation brightness equals lightness. A further advantage of523

segregating gradients from non-gradients lies in dynamic range reduction.524

Intensity values of shaded and lit regions in an image often differ by several525

orders of magnitude (of dynamic range). This difference can be reduced by526

removing corresponding luminance gradients, thus revealing (reflectance) de-527

tails in both lit and shaded regions. Moreover, our simulations suggest that528

dynamic range compression is still achieved with sharp illumination edges.529

Albeit a sharp illumination edge is represented in the non-gradient layer, its530

effect stays localized around the edge, meaning that it does not increase the531

contrast for the rest of the represented non-gradient features.532

Assume a sensor array with finite spatial resolution, such as the retina or533

a CCD. Then, with increasing viewing distance, low spatial frequencies will534

eventually shift to high spatial frequencies on the sensor array (while high535

spatial frequencies cannot be resolved anymore). This raises the question536

about how the viewing distance interacts with the perception of luminance537

gradients, and thus with distinguishing between reflectance and illumination538

changes based on spatial frequency. Neglecting optical constraints, the phys-539

ical limit for representing a luminance ramp across a sensor array is three540

pixels. Increasing the viewing distance would map this minimal ramp to two541

pixels. This means that at a short distance, the ramp would be represented542

in the gradient layer, whereas at a larger distance, it would be represented543

in the non-gradient layer. Our model therefore predicts that when viewing544
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smooth luminance gradients from a sufficiently large distance they could be545

interpreted as reflectance changes. However, as outlined in the introduction,546

the visual system uses further cues to distinguish between reflectance and547

illumination, such that the drop out of one cue could be compensated by548

the others. We are only aware of corresponding psychophysical data in the549

context of luminosity perception (i.e., the perception of light emitting sur-550

faces), which were successfully predicted by one of us ([14], Figure 8). The551

computational approach of ([14] is based on a similar idea as the present one:552

The suppression of high spatial frequency structures with subsequent diffu-553

sive reconstruction of a representation for luminance gradients. According to554

the model of ([14], the perception of luminosity depends on the presence of555

linear luminance gradients (“ramps”). With increasing viewing distance or556

spatial frequency, respectively, these ramps become narrower. Accordingly,557

the dependence of perceived luminosity from spatial frequency (or viewing558

distance) shows an inverted-U behavior (perceived strength versus spatial559

frequency), exactly as it is the case with Mach bands [10, 12, 13]. Returning560

to our initial question, the inverted-U curve suggests that smooth luminance561

gradients caused by illumination may indeed be interpreted as reflectance562

when viewed from a large distance.563

The relationship between brightness and lightness computations (and per-564

ceived gradients) is especially important for studying visual illusions. In line565

with previous approaches (e.g., [36]), our model successfully reproduces a cou-566

ple of those that include luminance gradients: Simultaneous brightness con-567

trast (with a smooth luminance gradient as background), Adelson’s checker-568

shadow illusion [3], Logvinenko’s illusion [26], and grating inductions [27, 28].569

As our model predicts most of these illusions with non-gradient representa-570

tions, we suggest that they could be explained as “errors” in lightness com-571

putations. Notice that some of the aforementioned illusions are frequently572

explained by higher-level mechanisms in the visual system which supposedly573

has “knowledge about the illumination”. Our computational model suggests574

that high-level knowledge may not be strictly necessary for their explana-575

tion, but then our model does not distinguish between different types of576

luminance gradients (shadows, shading, etc.), neither can it classify a sharp577

illumination edge as illumination feature. Therefore, higher level mechanisms578

and/or chromatic mechanisms may still be critical for recognizing and inter-579

preting the different types of luminance gradients, and for identifying sharp580

illumination edges, meaning that we do not claim that our low or mid-level581

computations (or intermediate representations) are sufficient for determining582
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lightness. Nevertheless, the advantages of having intermediate representa-583

tions of (non-)gradients (on which higher level mechanisms can operate) were584

elucidated before [37].585

Technically, our model could be subdivided into two independent com-586

putational steps: (i) two sets of filter kernels are first learned from natural587

(or real-world) gray-level images using sparse coding techniques, and (ii)588

once learning is completed, the filter kernels encode a luminance image in589

response maps. The response maps are analyzed for local variability and are590

transformed into two sets, where one corresponds to response maps with high591

variability (non-gradients), and another one with low variability (gradients).592

(In the absence of noise, computation of local variability essentially amounts593

to computing a contour map). Since the segregation of gradients from non-594

gradients is an inverse problem (more variables than equations), we used an595

optimization algorithm to find a solution.596

On first sight, our approach underlies similar assumptions as Retinex597

theory [2]. In Retinex theory, high contrast changes across space are clas-598

sified as reflectance edges, whereas low contrast changes (corresponding to599

illumination effects) are suppressed. It has been pointed out that Retinex600

would wrongly classify sharp illumination edges as reflectance changes (see601

[17], with references). This behavior is therefore identical with our model,602

where sharp illumination edges (that normally are associated with high activ-603

ity in the variability map) enter the non-gradient representation. However,604

unlike Retinex, we do not classify gradients and non-gradients based on con-605

trast strength: Gradients and non-gradients are distinguished according to606

blurred (i.e. low variability) versus sharp (i.e. high variability) contours,607

irrespective of contrast amplitude. In fact, this mechanism is essential for608

reducing dynamic range, as illumination edges can have far higher contrasts609

than reflectance edges. This is to say that we relax the constraint that an610

increase in the degree of blurring always leads to contrast reduction in nat-611

ural images (assuming conservative diffusion mechanisms). This assumption612

seems to make sense because of the independence of reflectance and shading613

edges at the local level. At a more global level (e.g. whole scene), how-614

ever, it is clear that, for example, any shadow boundary has to be caused615

by an object that occludes the illumination source. Furthermore, our con-616

tour map is adaptively computed based on the variability of the decorrelated617

response maps. Because of adaptation (Equation 7), when removing high618

spatial frequencies from an input image, it is still decomposed into gradients619

(low variability) and non-gradients (high variability).620
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Dynamic range reduction therefore cannot be achieved with the stan-621

dard Retinex algorithm, as reflectance edges are assumed to have always622

higher contrast than illumination effects. Some published models classify623

reflectance boundaries based on chromatic variations in space (e.g. [17]),624

thereby assuming that achromatic variations in an image are due to illumi-625

nation effects [16]. For instance, the model presented in [17] converted a color626

image from RGB into a red-green (RG) channel, a blue-yellow (BY) channel627

and a luminance-contrast (L) channel. The cue for distinguishing reflectance628

from illumination effects is that the latter cause variations predominantly in629

the L-channel, but also in the BY-channel, although to a less degree. By630

using an adaptive threshold, the two chromatic channels were combined into631

one (chromatic) map, and edge detection was applied. This binary edge map632

subsequently served to classify the boundaries of RG, BY, and L channels,633

where unclassified boundaries were suppressed. Finally, in order to recover634

estimates for reflectance and shading, the three pruned boundary maps were635

subjected to inverse filtering [38]. The similarity between this model and ours636

lies in the classification of edges, albeit according to different cues: [17] de-637

tect chromatic versus achromatic variations across space, whereas we detect638

sharp versus gradual achromatic variations.639

Similarly, the model proposed by [39] assumes that illumination-related640

variations multiply the RGB vector corresponding to reflectance by a scalar641

value. With this setup, they framed the segregation of reflectance from il-642

lumination as an optimization of an energy function. The energy function643

consisted of a smoothness constraint on illumination effects, a Retinex term644

(“gradient consistency”), and a term that enforces a small number of dif-645

ferent reflectance values based on clustering (global sparseness constraint on646

reflectance). The relative weighting of the three energy terms and the two647

threshold values amount to four free model parameters (optimized for an im-648

age or across a set of images). Their method outperformed other methods,649

for instance the one proposed by [40], or standard Retinex [2]. The latter650

method revealed a tendency to smooth across contours.651

The approach from [41] used a multi-scale wavelet decomposition of the652

input image. In this way, the input image was transformed into a representa-653

tion where actual reflectance values were stored at some location and scale,654

thereby implementing local sparseness (i.e., most of the wavelet coefficients655

are very small or zero). Similar to [39], a further (global) sparsity constraint656

was imposed on the number of different reflectance values. Again, the local657

and global sparsity constraints were used together with a smoothness con-658
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straint on illumination effects to minimize a cost function. In that sense, our659

approach also uses local sparsity, as the input image is processed by LSF and660

HSF filter kernels.661

Our original idea was to use the initially learned HSF set for building the662

non-gradient layer, and the LSF set for composing the gradient layer. The663

underlying reason is that high variable patterns in the input are supposed to664

be better encoded in the filter responses of the HSF set, while low variability665

is associated with LSF filter responses. Nevertheless, because the two filter666

sets are not mixed during layer computation, and the segregation according667

to variability could be applied to any of the two learned sets (HSF and LSF),668

both sets would be equally suitable in order to compute any layer. In other669

words, the important step is the variability-based segregation, but not the670

choice of a specific filter set. Layer computation based on the LSF set never-671

theless converges faster with Equation 8, because the filter kernels essentially672

implement a diffusion operator (cf. Section 3.2), and the (bigger) LSF ker-673

nels advance activity across larger distances per time step, as compared to674

the HSF filters. Therefore, this means that our model implements a filling-in675

process [42, 8, 9, 43, 44], where layer computations with the LSF set reaches676

a (semi-stable) solution within a few iterations.677

We also identified a functional role of the filter kernels: Odd symmetrical678

LSF filters respond the best to smooth luminance gradients, followed by their679

HSF counterparts. Even symmetrical filters (both sets, i.e. LSF and HSF)680

respond only poorly to gradient features. This is in line with a previous681

proposal which holds that high (spatial) resolution odd symmetrical filters682

are best suited to detect reflectance changes, even symmetrical filters detect683

“texture” features (e.g. lines and points), whereas low-resolution filters of684

both symmetries are suitable for detecting smooth luminance gradients [10,685

12, 13, 14].686

The notion of identifying the variability of contrast patterns with certain687

semantic features of an image is quite different from multi-scale approaches to688

brightness perception (e.g. [7, 6]). Multi-scale approaches typically compute689

the responses (filter coefficients) of a set of oriented band-pass filters with690

different sizes to an input image. Subsequently, filter response amplitudes691

are modified according to pre-defined criteria, such as the contrast sensitiv-692

ity function or normalization. Finally, a representation (normally identified693

with brightness) of the input image is computed by using the modified am-694

plitudes as local weights for generative band-pass kernels. As these models695

are targeted to explain brightness phenomena, they usually do not address696
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the segregation of illumination and reflectance explicitly, and do not propose697

mechanisms for suppressing illumination patterns.698

Although the filling-in process would be excellently suited to suppress699

low-contrast illumination patterns (similar to Retinex theory), low-contrast700

activity in filling-in models is often maintained (e.g. [9]), in order to en-701

able “imprinting” of smooth gradient patterns on surfaces (boundary webs,702

[45]), and explaining in this way a larger set of brightness illusions. In other703

words, typical filling-in models (such as [9, 8] usually target brightness phe-704

nomena, and as such usually do not address the segregation of reflectance705

from illumination. In fact, in some of these models the output is identified706

with perceived reflectance (lightness, e.g. [36, 25]), yet they still contain il-707

lumination patterns. Moreover, different to our approach (and the filling-in708

mechanism proposed in [10]), some of the cited models add a lowpass-filtered709

[9, 7] or even a full version [25] of the input image to their output in order710

to recover absolute brightness levels.711

The main limitation of our model with respect to visual illusions is that712

the present version cannot predict those which are devoid of luminance gradi-713

ents. This includes “flat” displays that are well predicted by some of the cited714

models above, such as Whites effect or assimilation displays. A possible rem-715

edy for our model could be to introduce a gain control mechanism or response716

normalization into the high variability map. As a result, the classical simulta-717

neous contrast could be perfectly reproduced (preliminary data not shown),718

but then again this requires to modify some of the models parameters. An-719

other remedy could be to superimpose an “invisible” luminance gradient over720

the input, which, in terms of perception, would not reach threshold. For suit-721

able amplitudes of these “invisible gradients”, they will be discounted by our722

model, and lead to contrast enhancement or reduction in the non-gradient723

layer. Examples for visual illusions that could be explained by “invisible”724

gradients include the Craik-OBrien-Cornsweet effect or the “phantom illu-725

sion” [46], in which, narrow (or sharp, respectively) imperceptible luminance726

gradients may produce a contrast (or assimilation, respectively) effect. In727

this context, it is interesting to note that many filling-in models produce728

such shallow gradients from the boundaries towards the interior of filled-in729

surfaces (depending of course on the specific type of filling-in equation under730

consideration). Thus, an extension of our model could in principle operate on731

a filled-in brightness representation, assuming that brightness is composed732

of lightness and (perceived) luminance gradients [14].733

A further limitation concerns the incomplete segregation of reflectance734
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from illumination if the orientation of a luminance gradient spatially coincides735

with, and has the same orientation as, a reflectance edge (Figure 6). This736

reflectance-gradient crosstalk may also influence the correct prediction of a737

bigger set of visual illusions. We therefore plan to study mechanisms for738

improving the segregation in future versions of our model.739
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6. Figures Caption745

Figure 1: (A) Step-by-step illustration of the procedure for building our two training
sets: (1) A set of samples is extracted from natural images and its principal components
are computed, (2) the principal components are filtered according to low and high spatial
frequencies, what yields (3) two training data sets. (B) Top: Singular values of our training
data. Bottom: The response strength of the spectral filter fα (Equation 1) for different
values of alpha. (C) A subset of the training patches with high (HTS) and low (LTS)
spatial frequency content. (D) Low (LSF filters, α = 8 ) and high spatial frequency filter
kernels (HSF filters, α = 64) that were learned from the respective training data set. For
illustration, only learned filters are shown.
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Figure 2: Illustration of the three principal stages of image decomposition. Formulas and
mathematical symbols are defined in the text. (A) At the first stage we computed the
responses of each filter to an input image, resulting in a set of response maps bi for the
learned HSF and LSF filters, respectively. Subsequently the response maps of a set were
locally encoded by removing the correlations between themselves. (B) In the second stage,
a variability map is computed across each set of response maps. This means extracting the
pixels of a 3x3 neighborhood from each response map, where the center pixel has the same
position across all response maps. We then computed the standard deviation with all the
pixels corresponding to identical center positions (Equation 6). By thresholding of the
variability map with its mean standard deviation, and applying a suitably parameterized
sigmoidal function to the super-threshold values (Equation 7 and Figure 3, respectively),
we obtained a contour map with values ranging from zero to one. With the contour map,
we extracted a set of high variability maps and another one of low variability maps from
the response maps. The former set results from multiplicative gating of the decorrelated
response maps with the contour map, and the latter set is the result of multiplying the
decorrelated response maps with one minus the contour map. (C) Luminance gradients
(gradient layer) were estimated with the low variability maps, whereas the non-gradients
were estimated with the high variability maps.
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Figure 3: Illustration of the contour map, and the high and low variability maps. (A)
The variability map m(x, y) for the Lena image (Equation 6). (B) A sigmoidal func-
tion σα,τ is applied to the variability map, with its threshold τ chosen such that the
sum of those m(x, y) with m(x, y) > τ (i.e. the superthreshold values) is just one per-
cent of the total sum of all m(x, y). The rate parameter α of the sigmoid is equal to
1/mean[m(x, y). In order to convert the sigmoidized variability map into a contour map,
values with σα,τ [m(x, y)] < τ are set to zero. Note that the highest activity of the contour
map is typically located at sharp contrast structures. (C) Two examples of high variability
maps (top row) and two examples of low variability maps (bottom row), corresponding
to the shown filter kernels (inset). These maps were computed via biC and bi(1 − C),
respectively, where bi represents the decorrelated response maps (Equation 5).
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Figure 4: Illustration of segregating an input image into gradients and non-gradients. (A)
A homogeneous disk with a overlaid gradient corresponds to the input image. The corre-
sponding Contour Map as computed by Equations 6 and 7. (B) The result of segregating
the input image into Gradients and Non-Gradients by means of Equation 8. (C) Profile
plots of the reconstructed layers. Top: Gradient layer activity (green line) along with the
profile plot of a lowpass filtered version of input image (blue line) illustrates demonstrates
that gradient activity is not just equal to lowpass information. Middle: Analogous profile
plots for the non-gradient layer compared with a highpass filtered version of input image
show that non-gradient information is not the same as to highpass filtering of the input
image. Bottom: The profile plot of the full reconstruction (green line) compared with the
input (dashed red line) shows that no information of the input image is lost due to the
segregation process.
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Figure 5: The spatial structure of the filters determines the response properties of lumi-
nance gradients. (A) Polar plot for the learned filters showing the normalized strength and
the preferred luminance gradient direction (in degrees). The blue dashed line represents
odd filters with LSFs (mean response 0.5314), the green dashed line the odd filters with
HSFs (mean response 0.2704). The red dashed line represents even symmetric filters these
are only found in HSF set (mean response 0.0409). (B) Phase histogram for the two sets
of learned filters: red indicates the LSFs, and blue indicates HSFs, respectively, in units
of degree. A phase of 90 degrees corresponds to an odd symmetric spatial structure of the
filter, whereas 0 and 180 degrees to even symmetry.
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Figure 6: Segregation performance of non-gradients versus gradients. (A) Two examples
of synthetic test images, where a luminance step represents a non-gradient feature and the
grating a gradient feature. The test images are parameterized over grating orientation ψ
and step orientation ρ. (B) Segregation of the test images of (A) into non-gradients and
gradients, respectively, with the filter shown in the thumbnail image. (C) Reconstruction
correctness for the Full reconstruction, Non-Gradients, and Gradients, using the LSF, HSF,
and Even-symmetric filters. The “reconstruction correctness” is measured by c = 100(1−r)
where r is the relative error between the reconstructed feature and the corresponding
feature of the test image. The surfaces represent the “reconstruction correctness” of all
learned filters of LSF, HSF and Even. The domain of the surface plots is represented by
the relative orientation and with respect to the gradient direction (GraDir) of the learned
filters. All simulations involved 10 iterations of Equation 8.
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Figure 7: (A) Luminance staircase with an overlaid linear gradient along with correspond-
ing profile plots: Original input (red broken line); full reconstruction (blue line). (B)
Gradient layer and its corresponding profile plots: gradient activity (blue line); represen-
tation at 20 iterations (black broken line). (C) Non-gradient layer with corresponding
profile plots: non-gradient activity (blue line); representation at 20 iterations (black bro-
ken line). Activity propagation is local at the beginning, but it eventually spreads out
across the entire image. (D) Log-Error versus iterations. The black circle marks the error
at 20 iterations. Despite local maxima, the overall error is decreasing, what indicates
convergence.
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Figure 8: Illustration of gradient versus non-gradient segregation for a cartoon image with
superimposed soft checkerboard grating. The first image is the Input, the second image
the gradient representation and the last image the non-gradient representation. Notice
the “ghost”-contours in the gradient layer, and the halo-like luminance variations around
the contours in the non-gradient representation.
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Figure 9: Gradient versus non-gradient segregation as a function of time (“Lena” im-
age). (A) Each column is the representation at the indicated number of iterations (top)
of Equating 8. At the bottom, the structural similarity index (SSIM: [47]) of the full
reconstruction with respect to the original image is shown. Gradient and non-gradient
representations were estimated using LSF and HSF filters, respectively. (B) At 80 itera-
tions, the corresponding profile plots across the columns indicated by dashed yellow lines
are shown.
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Figure 10: Gradient versus non-gradient segregation (“Peppers” image). Across the origi-
nal pepper image (bottom row C) we superimposed a sharp illumination edge (top row A)
and a soft shadow edge (middle row B). (A) The sharp illumination edge is captured by
the non-gradient layer, but not by the gradient layer. The originally strong contrast of the
edge is spatially confined in its non-gradient representation (halo around the edge), what
leads to a compressed dynamic range both in the non-gradient layer and in the full recon-
struction. The gradient representation is similar to the original Pepper image (row C). (B)
The soft shadow boundary is captured by the gradient layer, what causes a corresponding
contrast reduction in the non-gradient layer and thus dynamic range compression (also
visible in the full reconstruction). (C) Results for the original Pepper image.
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Figure 11: Segregation performance with suppressed high spatial frequencies. Strong
lowpass filtering of the input image quenches the range of variability which is available to
distinguish between gradients and non-gradients. As a consequence, the segregation gets
ineffective, and the input image is principally represented in the non-gradient layer, and
to a less extent in the gradient layer.
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Figure 12: Simultaneous Brightness Contrast with a luminance gradient as background.
(A) The estimated representations of non-gradient and gradient as predicted by our model.
(B) Profile plots for the full reconstruction, gradients and non-gradients, corresponding to
the yellow dashed lines in A.
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Figure 13: Simultaneous Brightness Contrast with a luminance step as background. (A)
Gradient and non-gradient representations produced by our model. (B) Profile plots for the
full reconstruction, gradient representation and non-gradients, corresponding to the yellow
dashed lines in A. Bottom, the profile of the non-gradient layer with the default stopping
criterion (blue line) versus without stopping criterion at 250 Iterations (green dashed line).
Patch contrasts in the non-gradient layer are 0.2672 with the stopping criterion; −0.2059 at
250 iterations (opposite effect!); and 1.6048 in the SBC with gradient background (Figure
10).
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Figure 14: Model prediction for Adelson’s checker-shadow illusion. (A) Adelson’s checker-
shadow illusion with a shadow with a smooth boundary with corresponding gradient and
non-gradient representations. (B) Same as A, but now with a sharp illumination edge. (C)
Profile plots corresponding to the dashed yellow lines in A and B. Top: Full reconstruction.
Middle: Gradient representation. Bottom: Non-gradient representation. Legend labels
refer to (I)llumination (E)dge and (G)rafient-(S)hadow, respectively.
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Figure 15: Model prediction for Logvinenko’s Illusion. Although all diamonds have identi-
cal intensity values, we perceive them as light-gray and dark-gray, respectively, dependent
on the amplitude of the superimposed sine wave grating. (A) Gradient and non-gradient
representations produced by our model. (B) All profile plots correspond to the two vertical
dashed yellow lines. These are labeled as “input 1” (left yellow line), and “input 2” (right
yellow line) in the figure legends.
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Figure 16: Grating induction (GI). The non-gradient representations for GI as they are
produced by our model for varying the relative phase of the inducer grating, its spatial
frequency, and test field width. (A) Standard GI display (3 cyc/image and a test field width
of 16 pixels) (B) GI with anti-phase inducers (3 cyc/image and 16 pixels). (C) GI with the
double spatial frequency (6 cyc/img and 16 pixels). (D) Grating induction with double
test field width (3 cyc/img and 32 pixels). (E) The profile plots for non-gradient layers
“in middle of the test field” compared to the original default physical grating (in dots).
Notice that the non-gradient representations consistently predict that induced brightness
falls off with distance from the inducing edge [48].
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[10] M. S. Keil, G. Cristóbal, T. Hansen, H. Neumann, Recover-777

ing real-world images from single-scale boundaries with a novel778

filling-in architecture, Neural Networks 18 (10) (2005) 1319–1331.779

doi:10.1016/j.neunet.2005.04.003.780

[11] S. Grossberg, 3-D vision and figure-ground separation by vi-781

sual cortex, Perception & Psychophysics 55 (1) (1994) 48–121.782

doi:10.3758/BF03206880.783

[12] M. S. Keil, Smooth Gradient Representations as a Unifying Ac-784

count of Chevreul’s Illusion, Mach Bands, and a Variant of785

the Ehrenstein Disk, Neural Computation 18 (4) (2006) 871–903.786

doi:10.1162/089976606775774705.787
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Chapter 3

Second Publication: “Dynamic

Decorrelation as a unifying

principle for explaining a broad

range of brightness phenomena”

Chapter abstract: This chapter presents a published study describing a computational

model compatible with the early visual system that implements dynamic filtering to

predict different kinds of brightness/lightness phenomena.
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Abstract

The visual system is highly sensitive to spatial context for encoding luminance patterns.

Context sensitivity inspired the proposal of many neural mechanisms for explaining the per-

ception of luminance (brightness). Here we propose a novel computational model for esti-

mating the brightness of many visual illusions. We hypothesize that many aspects of

brightness can be explained by a dynamic filtering process that reduces the redundancy in

edge representations on the one hand, while non-redundant activity is enhanced on the

other. The dynamic filter is learned for each input image and implements context sensitivity.

Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain

control map. The gain control map then acts on simple cell responses before they are used

to create a brightness map via activity propagation. Our approach is successful in predicting

many challenging visual illusions, including contrast effects, assimilation, and reverse con-

trast with the same set of model parameters.

Author summary

We hardly notice that what we see is often different from the physical world “outside” of

the brain. This means that the visual experience that the brain actively constructs may be

different from the actual physical properties of objects in the world. In this work, we pro-

pose a hypothesis about how the visual system of the brain may construct a representation

for achromatic images. Since this process is not unambiguous, sometimes we notice

“errors” in our perception, which cause visual illusions. The challenge for theorists, there-

fore, is to propose computational principles that recreate a large number of visual illusions

and to explain why they occur. Notably, our proposed mechanism explains a broader set

of visual illusions than any previously published proposal. We achieved this by trying to

suppress predictable information. For example, if an image contains repetitive structures,

then these structures are predictable and will be suppressed. In this way, non-predictable

structures stand out. Corresponding mechanisms act as early as in the retina (which
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enhances luminance changes but suppresses uniform regions of luminance), and our

computational model suggests that such mechanisms also might be used at subsequent

stages in the visual system, where representations of perceived luminance (=brightness)

are created.

Introduction

Visual perception is relative rather than absolute; the visual system (VS) computes the percep-

tual attributes of a visual target not only based on its physical properties, but also by consider-

ing information from the surrounding region of the target (context). For example, it is

possible to induce different kinds of effects by context modification, such that the brightness

of a target is contrasted (increasing brightness differences) or assimilated (decreasing bright-

ness differences) with respect to its adjacent surround (e.g. [1]). Variants of these effects give

rise to a myriad of visual illusions, which are of great utility for building hypothesis about

computational mechanisms or perceptual rules for brightness perception.

At first sight it seems that contrast effects, such as simultaneous brightness contrast (SBC;

Fig 1A), can be explained by lateral inhibition between a target (center) and its context (sur-

round). However, activity related to brightness contrast does possibly not occur before V1,

albeit the receptive fields of retinal ganglion cells are consistent with lateral inhibition [2].

Unlike brightness contrast effects, brightness assimilation (e.g. Fig 1C and 1D) pulls a tar-

get’s brightness towards to that of its immediate context, and therefore cannot be explained by

mechanisms based on plain lateral inhibition. In fact, the neural mechanisms involved in

generating brightness (perceived luminance) and lightness (perceived surface reflectance),

respectively, appear to be more intricate (e.g., [3–7]). Intrinsic image approaches are (compu-

tational) models which aim at deriving further images based on the characteristics of the

depicted visual scene of an input image [8]. With respect to lightness computations, corre-

sponding algorithms estimate a (sometimes chromatic) reflectance image and a shading image

from an input image (e.g. [9–11]). Further approaches with respect to intrinsic images in a

wider sense address surface qualities such as transparency (e.g., [12]) or gloss (e.g., [13]).

The majority of models for computing brightness estimates decompose an input image typ-

ically with filters of different orientations and multiple spatial frequencies (image-based

decompositions, [8]). In this way, a set of images (=filter response maps) is derived, from

which the input can be recovered. The recovered image is considered as brightness prediction.

For instance, feature-based approaches classify filter responses into lines and edges (e.g. [14–

18]), and build a brightness prediction based on recognized features.

It is particularly challenging for computational proposals to simultaneously explain contrast

and assimilation effects with identical model parameters. Blakeslee and McCourt, [19, 20], pro-

posed a highly successful image decomposition with oriented difference of Gaussians (ODOG)

filters. In the ODOG-model, a brightness prediction is generated by two steps. First, a

weighted sum of filter responses across spatial frequencies is computed for each orientation

(orientation channels). Second, each orientation channel is divided by its root mean square

level before they are summed to yield the final brightness map. Although the ODOG model

predicts SBC and many assimilation displays, in our re-implementation it fails at the Benary

Cross (Fig 1D) and Chevreul’s Illusion.

Several variants of the multiscale-decomposition approach have been proposed. Dakin

and Bex, [21], showed that isotropic filters are sufficient to reproduce the Craik-O’Brien

Cornsweet effect and White’s effect. Otazu and co-workers, [22], used an invertible wavelet
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transformation with wavelet coefficients being weighted according to the contrast-sensitivity

function [23]. The weights are further adjusted dependent on local surround contrast. How-

ever, models based on adjusting the spatial frequency distribution of filter responses appear to

fall short of predicting brightness when the input images are contaminated by (band-pass fil-

tered) noise [24], (Fig 1F).

Computationally, the spatial operation of certain types of retinal ganglion cells can be

dumbed down to taking the second spatial derivative of the visual input. In this way, sharp

contrasts (edges or boundaries) are enhanced. Edge integration models [1, 25–27] try to invert

spatial differentiation (=contrast extraction) by thresholding (suppress shallow gradients due

to illumination effects), and integration (across edges in order to estimate lightness). This

means that edge integration models—unlike multi-scale approaches—propose explicit mecha-

nisms for suppressing illumination effects, and for estimating a reflectance image. Filling-in

(FI) models [28, 29] can be considered as a neural implementation of edge integration, where

boundary activity is propagated laterally in order to generate perceptible surface properties.

Fig 1. (A) Simultaneous brightness contrast: The two gray patches with identical luminance increase their brightness difference with their

respective backgrounds. (B) White’s effect is consistent with contrast at the horizontal contours of the bars, and with assimilation along the

vertical contours. (C, D) Examples of brightness assimilation: The gray structures with identical luminance decrease their brightness

difference with their respective background. (E) Sensitivity to context: The gray triangles have identical luminance and selectively contrast

with the cross (left) or the background (right). (F) White’s effect is still intact in the presence of noise.

https://doi.org/10.1371/journal.pcbi.1007907.g001
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Whether or not activity propagation plays a role in surface perception is subject of a yet

ongoing debate [6, 30, 31]; also, where it might occur in the visual system (e.g. [32, 33]). It is

often argued that with Grating Induction, FI-mechanisms would incorrectly predict a homo-

geneous test-field, because activity would “average out”. This argument, however, ignores that

boundary webs could form across the test field [34], and/or darkness and brightness channels

could interact [35, 36]. Furthermore, Grating Induction seems to be perceived instantaneously,

what seems incompatible with activity propagation at the neuronal level [6, 37]. However, this

argument ignores that the activity to be propagated can be initialized at a coarser scale than the

boundaries that contain it. Furthermore, FI may proceed simultaneously in layers with differ-

ent resolutions [38]. This would render the perceptual effect indistinguishable from multi-

scale filtering. Finally, it has been argued the addition of noise would disrupt activity propaga-

tion [6, 21]. This argument ignores, however, that texture-like features such as noise (even

symmetric simple cells with small receptive fields) and surface boundaries (odd symmetric fea-

tures) may be represented by different layers [36]. Furthermore, even with a single representa-

tion, noise would likely not form closed domains in order to contain activity (e.g. Fig 7 in [35,

39]), or would not fill in at all if the initial activity is computed at a coarser scale.

Typical FI models distinguish two types of contours [40]. The first type represent barriers

for activity propagation, and defines the boundary contour system (BCS). It represents the

complete 3-D boundary structure of a visual scene, including boundaries from texture and

depth. The second type is the feature contour system (FCS) and represents surface properties

to be filled-in, such as brightness, lightness, color and depth. FCS processing was suggested to

occur in cytochrome-oxidase staining regions in V1 (blobs) and thin stripes in V2. Interaction

between FCS and BCS was hypothesized to occur in V4 [41]. The hypothetical FCS/BCS

dichotomy is compatible with several experimental findings [42–46].

Whereas the prediction of brightness contrast usually is straightforward with (most) filling-

in architectures, assimilation effects remain challenging. On the basis of a one-dimensional

luminance profile, Grossberg and Todorovik (in [40]) explained how two (non-)adjacent

(luminance) regions could influence each other. If boundaries are sufficiently near in the BCS,

then their activity is reduced. Therefore, activity propagation in the FCS may not completely

be blocked, causing FCS activity to fill into (non-)adjacent surfaces. In this way, one surface

may not just be influenced by the brightness of its immediate surrounding region, but even

from further away.

Domijan, [47], extended these ideas to two dimensions. He computed luminance-modu-

lated FCS activity with an unbalanced center-surround kernel, similar to [48], but see also [35]

for a different way of luminance encoding. BCS activity is computed by first deriving a local

boundary map, where the loss of activity at junctions and corners was corrected. Based on the

local boundary map, a global boundary map was computed. In the latter, contours which are

parallel or co-linear to another contour were enhanced. Finally, local boundary activity was

divided, at each position, by global boundary activity. The division is approximately one at

those positions where no contour enhancement took place in the global boundary map (other-

wise it is smaller). The final BCS output keeps only those activities that are relatively close to

one—boundaries with smaller activity which are parallel to high contrast edges are eliminated.

This causes FCS activity to freely diffuse across the eliminated boundaries. In this way, Domi-

jan was able to predict 2-D assimilation displays with a FI-architecture.

Ross and Pessoa, [49], modified FCS activity before filling-in by using an occlusion-sensi-

tive copy of the BCS. The modification of the original boundaries is based on T-junctions:

Boundaries along the stem of the “T” are suppressed, while the others are enhanced. The modi-

fied boundary map (“context boundaries”) is subsequently used for suppressing contrast mea-

surements in the FCS. The original boundaries act as diffusion barriers in the FCS. Although
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the model successfully predicts White’s effect and the Benary Cross (Fig 1B and 1E), psycho-

physical evidence suggests that White’s effect seems not to be affected significantly if the T-

junctions are suppressed [50, 51] (cf. Fig 1D), nor seem to be other illusions [52]. Furthermore,

it is not readily clear whether junction rules do represent reliable cues in complex natural

scenes: The utility of junctions rules has only been illustrated with relatively simple artificial

displays [49, 53].

Barkan [54] used center-surround receptive fields at four resolution levels for edge (or con-

trast) extraction. At each resolution level, filter response amplitudes (“local contrast”) were

gain-controlled with a low-pass filtered version of themselves (“remote contrast”). A bright-

ness map was estimated from the gain-controlled contrast map with fixpoint iteration of a

Laplacian [55], which implements the filling-in process. The model was successful in simulat-

ing assimilation and reverse assimilation effects (mostly centered on challenging variants of

White’s effect), but failed in predicting Simultaneous Brightness Contrast (SBC).

A completely different approach for explaining visual illusions is based on a statistical anal-

ysis of real-world images. This approach suggests that the perception of brightness [56, 57] or

lightness [57–59] is related to knowledge about the statistical relationships between visual pat-

terns across space. In particular, [56] proposed that the brightness of a visual target embedded

in some context depends on the expected luminance according to a probability distribution

function. The probability distribution function integrates all contexts in that what which the

target was seen previously. The perception of the target then depends on its expected lumi-

nance given its current context: It is perceived as brighter if the expected luminance is lower,

and it is perceived as darker otherwise. This approach is successful in predicting contrast and

assimilation for several visual illusions, and suggests a statistical relationship between lumi-

nance patterns and brightness perception. Unfortunately, no attempt has been made in order

to unveil any information processing strategy from the statistical analysis (but see [59]).

As with some of the models reviewed above, our approach also emphasizes the importance

of boundaries in brightness perception: We propose to reduce redundancy in the boundary

maps. Such encoding strategies usually reduce the overall activity of a representation and thus

the expenditure of metabolic energy, [60, 61], and are also known as efficient coding [62], pre-

dictive coding [63], whitening [64] or response equalization [65].

With respect to mid- or higher-level processing, White [66] suggested that a pattern-spe-

cific inhibition mechanism acts in the visual cortex, which inhibits regularly arranged patterns

of a visual stimulus. Our model is related to White’s idea: We adjust a boundary map, such

that redundant activity is suppressed, while non-redundant activity is enhanced. Since neurons

that encode redundant patterns tend to be over-represented, the overall boundary activity is

reduced after the adjustment (response equalization). Response equalization is carried out by a

dynamic filter.

Fig 2 shows an overview of our model. In the first step an input image is encoded by two

sets of Gabor filters, which mimic the spatial response properties of simple cells in V1 [67].

The responses of the high-resolution filters define the Contrast-only channel (similar to the

BCS), while responses of the more coarse-grained filters define the Contrast-Luminance chan-

nel (similar to FCS). Here the term ‘channel’ refers to a feature of our model. We do not imply

two pathways for encoding luminance and contrast in the visual cortex. From the Contrast-

only channel, we compute boundary activity via local energy [16, 17]. Local energy is insensi-

tive to the phase information, and thus resembles complex cell responses. From the local

energy map, a decorrelation kernel is learned, and then applied to it, in order to reduce redun-

dancy (=dynamic filtering). The redundancy-reduced energy map then functions as a gain

control map for both contrast channels. As a consequence, contrast activity is modified. Subse-

quently, an iterative procedure is used to recover a brightness map from the two contrast

PLOS COMPUTATIONAL BIOLOGY Explaining brightness illusions using a dynamic decorrelation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007907 April 26, 2021 5 / 36

https://doi.org/10.1371/journal.pcbi.1007907


channels. Our iterative procedure resembles a filling-in process. The plausibility of our model

is underlined by predicting many challenging visual illusion, including some that were never

predicted by any other computational model so far.

Materials and methods

Fig 2 depicts the three stages of our model. Stage 1 encodes the input image into a Contrast-

only and a Contrast-Luminance channel by two respective set of Gabor filters. Stage 2 the

dynamic filtering process. It consists of equalizing response amplitudes of the local energy

map and then gain-controlling both channels. Finally, Stage 3 refers to the filling-in process

for estimating a brightness map. The brightness map represents the output of our model. The

three stages are detailed in the following subsections.

Fig 2. Model overview. Each of the three stages is mathematically specified in the Methods Section. (A) Stage 1: The Contrast-only channel and

Contrast-Luminance channel are instantiated by filtering an input image with a corresponding set of Gabor filters with high spatial resolution

(0.25 cycles per pixel) and coarse resolution (0.125 cycles per pixels), respectively. The local energy map is computed from the Contrast-only

channel. (B) Stage 2: The kernel of the dynamic filter is estimated from the local energy map. Dynamic filtering equalizes the amplitude

spectrum of the energy map, reducing redundancy. The decorrelated energy map serves as gain control for both contrast channels. (C) Stage 3:

The output of the model is a brightness map that is obtained by solving an inverse problem, that is recovering the image from both contrast

channels. Note that the two contrast channels do not interact with each other before Stage 3.

https://doi.org/10.1371/journal.pcbi.1007907.g002
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Stage 1: Encoding

Contrast-only and contrast-luminance channel. We use Gabor filters for encoding Con-

trast-only and Contrast-Luminance information. In the primary visual cortex, simple cells

respond to oriented light-dark bars across a certain spatial frequency range [68] and their

receptive fields can be modeled by Gabor filters [67, 69, 70]. Consistent with the properties of

Gabor filters, it seems that many simple cells in V1 encode contrast information. Under certain

circumstances though, neurons in V1 may respond to surface brightness as well, even without

(sharp luminance-)contrasts in their receptive fields [71, 72]. For example, [73] found such

neurons in V1 which have large receptive fields, broad orientation tuning, and a preference for

low spatial frequencies. These neurons respond to both contrast and luminance.

In our model, the set of Gabor filters for the Contrast-only channel had a spatial frequency

of 0.25 cycles/pixel and balanced ON-OFF sub-regions (i.e., the sum across the kernel is zero)

In this way they did not respond to homogeneous regions of the input (DC-free). For the Con-

trast-Luminance channel we used Gabor filters with a lower spatial frequency (0.125 cycles/

pixel), and unbalanced ON-OFF sub-regions (i.e., the sum across the kernel is positive) such

that they respond to both luminance and contrast (non-zero DC part). Strictly speaking, these

filters are actually no longer pure bandpass filters. But since the sum across the kernel is very

small, the bandpass properties dominate the response. The use of bigger kernels which are

selective for even lower spatial frequencies would not alter significantly our results. However,

the computational cost would increase. For this reason, we chose the kernels of the Contrast-

Luminance channel with half the spatial frequency of the Contrast-only channel. Fig 2A illus-

trates the two filter sets. Parameter values and a mathematical description of unbalancing the

ON/OFF subregions is provided in section A in S1 Text.

The responses of the Contrast-only and the Contrast-Luminance channel were computed

by convolving (symbol “�”) a luminance image with the corresponding set of Gabor filters.

That is, if g represents a Gabor kernel (either from the Contrast-only or the Contrast-Lumi-

nance channel), then Rg represents its activity in response to the input image as:

Rgðx; yÞ ¼ g � Imðx; yÞ ð1Þ

The arguments (x,y) denote 2D spatial coordinates. The contrast channels remain separated

until the filling-in process. Fig 3A shows examples of filter responses. Notice that contrast

responses dominate the response map of the Contrast-Luminance channel in Fig 3A. Fig 3C

shows filter responses of the two channels to a luminance step (contrast) and a uniform region:

The DC-response of the Contrast-Luminance filter is small compared with its contrast

response.

Local energy map. The local energy map resembles the properties of complex cells in the

primary visual cortex [74]. Complex cell responses are similar to those of simple cells in terms

of orientation and spatial frequency preference, but tend to be non-linear and shift-invariant

with respect to contrast phase [74, 75]. Local energy can be calculated from a pair of Gabor fil-

ters in quadrature phase by summing their squared responses and then taking the square root

[16, 17, 76, 77]. A quadrature pair are two Gabor filters with 90 degree phase difference, but

with identical preference in orientation and spatial frequency. Finally, the local energy map E

was computed through averaging the activity of our model complex cells across all orienta-

tions. Fig 2A shows an example local energy map. It essentially corresponds to the contours of

the input image. Mathematical details are given in section B in S1 Text.
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Stage 2: Decorrelation

In this section we describe stage 2 of our model (Fig 2B). The first subsection describes how

the dynamic filter is computed with zero-phase component analysis (ZCA: [78]). ZCA is a dec-

orrelation method that whitens the covariances of the original data while preserving their orig-

inal direction [79]. With the dynamic filter we equalize the amplitude spectrum of the energy

map. In fact, it produces very similar results to the “Whitening-by-Diffusion” method pro-

posed in [65]. In the second and third subsections we detail the computation of the gain con-

trol map and how it interacts with the whitened energy map, respectively.

Fig 3. Sensitivity to contrast and luminance. (A) (left) Fruits filtered by a Contrast-Luminance filter g (Eq 1). (Middle) Fruits filtered by a

Contrast-only filter g with the same orientation (Eq 1). (Right) Fruits filtered by a low-pass filter. (B) Example luminance step (values -0.3 to

0.5) and an example for a homogeneous region with luminance 0.3. (C) Responses (maximum) of Contrast-Luminance filters (solid lines) and

Contrast-only filters (dashed lines) to the homogeneous region (red color) and the luminance step (blue color). For the luminance step, the

lower luminance was increased from -0.5 to 0.5. Negative filter responses result from the use of negative input values.

https://doi.org/10.1371/journal.pcbi.1007907.g003
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Dynamic filter. The purpose of the dynamic filter is to equalize the amplitude spectrum

of the energy map. It is computed with zero-phase whitening (ZCA), a technique which has

been used for learning the receptive fields of retinal ganglion cells [78]. ZCA resembles princi-

pal component analysis (PCA), and signal decorrelation can be achieved with both of the lat-

ter. However, the components are constrained to be symmetrical with ZCA. This “symmetry

constraint” guarantees that the principal components are localized in the spatial domain [78],

and therefore can be used as filter kernels. We nevertheless introduced a couple of modifica-

tions to the original ZCA (see section C in S1 Text). As a result of the modifications, we

obtained a spatial filter that adapts to the spatial structure of the local energy map of an image.

It is called “dynamical” because a different filter is learned from each image. After filtering, the

amplitude spectrum of the energy map is more uniform (see Fig 4). By the Wiener–Khinchin

theorem, a more uniform power or amplitude spectrum implies that the original signal is

more decorrelated [80, 81]. For the decorrelated energy map, this means that spatial patterns

with low redundancy tend to be intensified, while patterns with high redundancy tend to be

attenuated. This is illustrated with Fig 4, where after filtering, horizontal edges are intensified

in the energy map as compared to vertical ones.

Gain control map. The gain control map G is computed in two steps. First, the dynamic

filter F is used as a convolution kernel for the energy map E:

~Eðx; yÞ ¼

( F � ðEðx; yÞ � meanðEÞÞ if Eðx; yÞ � o

0 if Eðx; yÞ < o
ð2Þ

Here, the symbol “�” indicates convolution. We set the threshold to 10 percent of the maxi-

mum activity as ω = 0.1max(E). We observed that without thresholding, artifacts and noise

tend to accumulate in the brightness prediction. In addition, thresholding increases sharpness.

The exact percentage value is not critical. Our results would not change significantly when

using, for example, 0.15, 0.2, or 0.3 times the maximum. In the second step we normalized the

activity of the gain control map with a sigmoid function S(x, a, b) = 1/(1 + e−ax−b) as

Gðx; yÞ ¼
2 S ~Eðx;yÞ

maxj~E j ; a; b
� �h i

� 1 if ~Eðx; yÞ 6¼ 0

0 if ~Eðx; yÞ ¼ 0

8
><

>:
ð3Þ

The parameters were fixed as a = 5 and b ¼ minð3meanð~EÞ; 0:3Þ. Notice that the gain con-

trol map G is normalized to [−1, 1]. The sigmoid’s slope a controls the intensity and smooth-

ness of G. For bigger values of a the soft-thresholding turns into hard thresholding. Even with

hard thresholding, the results will be not significantly affected. For small values (a< 1), the

Gain control map was practically useless due to the small values of G. The inflection point b (if

a� 1 it would be the threshold) is, however, important for estimating brightness, as it deter-

mines when the values of G change from negative to positive: If G(x, y)>0, then the brightness

contrast at (x, y) is increased, while contrast will be reduced (=assimilation) if G is negative.

We found b by manual optimization.

Feedback interaction and channel gain control. The Contrast-only and the Contrast-

Luminance channel were subjected to gain control using the decorrelated energy map as

R�gðx; yÞ ¼ Rgðx; yÞ½
tþ tGðx; yÞ

tþ jRgðx; yÞjGðx; yÞ
� ð4Þ

Here, G is the gain control map, τ is a control parameter, Rg represents the activity of a

Gabor filter g of the corresponding filter set (i.e., Contrast-only or Contrast-Luminance), (x,y)
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Fig 4. Action of the dynamic filter. (A) The arrows indicate the steps in order to obtain the gain control map: (i) A

local energy map is computed; (ii) a dynamical filter is constructed with a customized zero-phase whitening procedure

(ZCA, see section C in S1 Text); (iii) a gain control map is obtained by filtering the energy map with the dynamical

filter (see subsection Gain Control Map). (B) The power spectrum (= square of amplitude spectrum) before and after

of applying the dynamic filter on the local energy map.

https://doi.org/10.1371/journal.pcbi.1007907.g004
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denote pixel coordinates, and τ is a control parameter. The control parameter τ acts as an

upper bound for the maximum activity that any filter can reach when it encodes a luminance

grating (min=-0,5, max = 0.5) that matches the spatial frequency of the filter.

Fig 5 illustrates the behavior of Eq 4 for different values of the gain control map G, where G
was set to the (scalar) values indicated in the figure legend. Gabor filter responses are amplified

for G> 0. For G< 0, they are attenuated. The gain control map G is furthermore modulated

by the denominator of Eq 4. The modulation is weak or absent when Gabor filter responses Rg

are equal to τ or 0, (Fig 5), while it is strong between the latter values. The modulation is crucial

for explaining Chevreul’s illusion and Mach Bands, but it is not relevant for all other brightness

displays. Finally, after applying Eq 4 to each channel, the results were lowpass filtered with a

Gaussian kernel (standard deviation 1 pixel) in order to reduce possible artifacts.

Stage 3: Brightness estimation as a filling in process

The brightness map ẑ is the output of our model. It is estimated by minimizing an objective

function E(z), which optimizes the trade-off between the reconstruction error (first term in the

sum of Eq 5) using the gain-controlled contrast channels R�g and a smoothness constraint (sec-

ond term):

ẑ ¼ argminzEðzÞ :¼ argminz

X

g

k R�g � g � zk2 þ m k r2zk2

ð5Þ

Fig 5. Filter responses before and after applying Eq 4. Each curve represents a different scalar value for the gain

control G (notice that in Eq 4, G is two-dimensional). The values of G corresponding to each curve are indicated in the

figure legend.

https://doi.org/10.1371/journal.pcbi.1007907.g005
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Notice that the sum involves the Gabor filters g of both contrast channels (i.e., Contrast-

only and Contrast-Luminance). The regularization parameter controls the smoothness con-

straint and is set to 0.01. The Laplacian is denoted byr2. The smoothness term and the Con-

trast-only channel serve to reduce artifacts produced at discontinuities (Fig 6). The equation is

solved iteratively with the conjugate gradient method. The method starts with an image z0 of

random values. The weights of zk are updated such that the value of the cost function E(zk)
decreases with each iteration step. This gradient descent continues until a maximum of 100

iterations is reached, or until an error criterion is satisfied (see section D in S1 Text for more

details). The filter responses Rg determine how the weights zk are updated. Because the Rg are

higher at the edges, activity is iteratively propagated from the edges. Direction and orientation

of activity spreading are determined by the odd-symmetrical Gabor filters that are used for

encoding the image. Thus, image reconstruction (i.e., brightness estimation) proceeds accord-

ing to a filling-in process.

Fig 6. Contribution of each channel to brightness estimation. (A) A luminance staircase (giving rise to Chevreul’s

Illusion) served as input. (B) The resulting brightness profiles are estimated at 10 iterations. The blue curve (legend

label “CL”) uses only the Contrast-Luminance channel in Eq 5. The red curve (“CO”) uses only the Contrast-Only

channel without responses to luminance. (C) Resulting brightness profile at the stop criterion for the Contrast-

Luminance channel. Aliasing artifacts appear due to undersampling. (D) Brightness estimation with both channels.

The Contrast-only channel eliminates undersampling.

https://doi.org/10.1371/journal.pcbi.1007907.g006
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It is instructive to highlight the role of both channels for estimating brightness. The bulk of

activity propagation depends on the Contrast-Luminance channel. Since it has bigger filter

kernels than the Contrast-only channel, it propagates activity across greater distances per unit

time. The time to convergence is further reduced by the residual luminance responses of the

kernels in the Contrast-Luminance channel. Fig 6 compares the reconstruction of a luminance

staircase at 10 iterations based on a single channel. Although both channels are used in Eq 5,

the major contribution to brightness estimation comes from the Contrast-Luminance channel,

while the Contrast-only channel serves to encode edge-information. As a consequence, the

Contrast-only channel could be excluded from the reconstruction without significantly affect-

ing brightness predictions. Nevertheless, the participation of the high-frequency filters (Con-

trast-only channel) eliminates undersampling (or sub-sampling), which would cause an

accumulation of oscillatory artifacts (due to aliasing) close to the edges (see Fig 6C versus

Fig 6D).

Classification of model predictions according to three scenarios

The effect of the Gain Control Map on estimated brightness (=model output) is as follows. If a

Gabor response amplitude after gain control has increased (decreased), it would produce a

major (minor) contrast in the reconstructed image (=estimated brightness). This means that

brightness estimates as generated by our model depend critically on Eq 4 (see also Fig 5). The

purpose of this section is to evaluate the influence of dynamic filtering and Eq 4 on predicted

brightness. To this end, we identified three prominent scenarios for explaining corresponding

classes of brightness illusions (Fig 7).

The luminance pattern giving rise to Scenario 1 differs only in its spatial layout (Fig 7A), as

all structures have the same intensity value. In this case, the patterns with high spatial correla-

tions are attenuated by the dynamic filter, while patterns with lower spatial correlation are

somewhat increased such that a brightness contrast effect in predicted for the central disk. Sce-

nario 2 is defined by luminance patterns with similar spatial structure but different intensity

range (see Fig 7B). Here the effect is limited by the size of the dynamic filter. We observed that

the dynamic filter will not only reduce the spatial correlations, but it will also act as a contrast

filter, if the redundant activity is in a sufficiently small spatial region. As a result, redundant

activity with higher (lower) intensity than the other patterns would be increased (decreased). If

this increment (or decrement) is sufficiently big, it will produce a major (minor) brightness

contrast effect.

In Scenario 3, the major contribution to predicted brightness is caused by the Contrast-

Luminance channel and modulation (denominator of Eq 4, see Fig 5). Edges in the Contrast-

Luminance channel might be enhanced via the Gain Control Map. The enhanced edges even-

tually produce a boost in (estimated) brightness contrast. The degree of boosting depends on

the ratio between the activity (after boosting) and the control parameter (upper bound) in Eq

4. An example of this effect can be observed by comparing both input images and their profiles

(at the edges) in Fig 8. It is essential to highlight that Scenario 3 serves just to explain Chev-

reul’s illusion and Mach Bands (see results section), but is not relevant for all other brightness

displays.

Results

All of the following simulation results are based on the same set of model parameters. This

means that model parameters were never changed. This section presents simulation results (i.e.

brightness predictions) from our model. The first subsection focuses on contrast effect: Simulta-

neous Brightness Contrast, Benary Cross and Reverse Contrast. The second subsection is
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dedicated to assimilation effects: White’s effect, Todorović’s Illusion, Dungeon illusion, Check-

erboard illusion, and Shevell’s Rings. The third subsection shows our brightness predictions for

the Craik-O’Brien-Cornsweet effect, Hermann/Hering grid, Chevreul’s illusion (including the

luminance pyramid), Mach Bands, and Grating induction. Finally, the last subsection shows

how our model deals with Real-World Images and Noise. It is essential to highlight that all

input images were normalized such that pixel intensity ranged between −0.5 and 0.5.

Brightness contrast effects

Simultaneous brightness contrast (SBC). The SBC display consists of two gray patches

with identical luminance which are embedded in a dark and bright background, respectively.

The patch on the bright background is perceived as darker than the patch on the dark back-

ground (Fig 7A). SBC can be attributed to low-level processing. For example, retinal ganglion

cells may enhance patch contrast by lateral inhibition. However, other studies suggest that

SBC may involve higher-level processing as well [82]: The apparent brightness of the patches

can be modulated by the region surrounding the patches (=spatial context). In fact, psycho-

physical studies report that the contrast effect is perceived more intense for smaller patches

[83–87]. Fig 9 shows the estimated brightness for SBC. In our model, the effect conforms to

Fig 7. Scenario 1 and scenario 2. (A) Scenario 1: A disk embedded in a redundant pattern of eight squares served as

input (first column). The middle column depicts the corresponding gain control map G, and the right column the

profiles of input (black line) and brightness estimation (red line). The brightness of the center disk ts enhanced with

respect to luminance, meaning that a brightness contrast effect is predicted merely based on redundancy (but not on

grounds of luminance—note that all features have the same luminance). (B) Scenario 2. (Top) The input consists of a

series of nine squares arranged in a spatially redundant pattern, where the middle square has a different luminance.

The profile plot suggests an overall increase in brightness contrast: Brightness of the middle square is further reduced,

while the brightness of the surrounding squares is enhanced. (Bottom) While the brightness contrast also increased in

the display with the bright middle square, this increase in contrast is caused nearly exclusively by the middle square.

https://doi.org/10.1371/journal.pcbi.1007907.g007
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Fig 8. Scenario 3. A luminance step and a luminance staircase, respectively, served as input images. Activity in

response to the luminance step is close to the control parameter of Eq 4 (τ = 0.5), producing barely changes in the

corresponding brightness estimation at the edges. In contrast, for the luminance staircase, the activity at the edges is

relatively far from the control parameter, inducing a boost (an increment of brightness contrast) in the corresponding

brightness estimation.

https://doi.org/10.1371/journal.pcbi.1007907.g008

Fig 9. Model prediction for simultaneous brightness contrast (SBC). (A) Simultaneous brightness contrast display

(model input). (B) The corresponding Gain Control Map. (C) Profile plot of the estimated brightness map (red line)

and the input (black line). (D) Mean absolute brightness difference between the left and the right patch as predicted by

our model (filled circles). The continuous (red) lines show the fit of y = a + blog(x) to the model data. The fit was

carried out by linear regression with fitting parameters: intercept a = −0.3851, slope b = −0.0823, R2 = 0.9831, and

RMSE = 0.0086.

https://doi.org/10.1371/journal.pcbi.1007907.g009
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Scenario 1. In SBC, the patterns with low spatial correlation are the patch edges with equal

intensity, what causes an enhancement of their contrast after gain control (Gain Control Map:

Fig 9C). This translates to an increased contrast in predicted brightness (profile plot in Fig 9B).

We also studied the relation between patch size and their predicted brightness. In agreement

with previous studies, Fig 9D shows a logarithmic relationship between patch size and our

brightness estimation [88].

Benary cross. The Benary Cross [89] is composed of a black cross and two gray triangles

with the same luminance (Fig 10). The triangle embedded in the cross is perceived as brighter

than the other. Notice that both triangles have identical contrast edges—one white to gray and

two black to gray. This effect cannot be explained by lateral inhibition and is usually attributed

to “belongingness theory”, where the region in which the triangle appears to belong to induces

a contrast effect [89]. Noise masking experiments support the idea that the effect is caused by

Fig 10. Prediction for Benary Cross illusion. (A) Benary Cross (input). Both triangles have the same intensity, but the

triangle embedded in the cross is perceived as brighter. (B) In the gain control map, redundant edges (=aligned with

the cross) of the triangle are weakened. (C) Profile plots of predicted brightness (red line) versus luminance (black

line). The left profile plot shows the left triangle.

https://doi.org/10.1371/journal.pcbi.1007907.g010
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low-level mechanisms [90]. Our model predicted the brightness difference in the triangles

according to two scenarios. According to Scenario 1 (but also 2, considering the intensity dif-

ferences), the redundant patterns correspond to those edges of the triangles which are aligned

with the cross. These are attenuated, while the non-redundant edges are enhanced. The Gain

Control Map suggests (Fig 10) a rather balanced effect, which is confirmed by the model’s pre-

dicted brightness map. Notice, however, that the length of the non-suppressed edges is bigger

for the left triangle.

Reverse contrast. Gilchrist & Annan (in [91]) suggested that simultaneous brightness

contrast (SBC) can be reversed (e.g. by overcoming lateral inhibition) by adding more struc-

tures to the original SBC display. This is Reverse Contrast (Fig 11). The purported mechanism

acts on grounds of perceptual grouping of these structures.

Our model predicted the reverse contrast effect according to Scenario 1 and 2, respectively.

In case of SBC, dynamic filtering increments the activity of the non-redundant edges that out-

line the two patches (Gain Control Map: Fig 11B). In the case of reverse contrast, the redun-

dant activity depends on both edge orientation (Scenario 1) and contrast polarity (Scenario 2).

Accordingly, all parallel edges of the (flanking) patches with equal intensity are weakened by

the dynamic filter. However, the central patch has a different intensity than the flanking

patches, and its edges are enhanced. In order to better understand how our model predicted

reverse contrast, we probed it with further configurations (see Fig 11). We observed that the

change in brightness of the gray patches increases as a function of the number of flanking bars

(Fig 12A). On the other hand, if the flanking bars were misaligned to various degrees (disrupt-

ing the good continuation principle of perceptual organization), the effect was considerably

reduced (Fig 12B). Both results stand in agreement with psychophysical experiments [92].

However, in the latter study the authors examined displays with even more configurations that

our model cannot predict (results not shown).

Fig 11. Model prediction for reverse contrast effect. (A) Simultaneous Brightness Contrast (SBC, top) and Reverse Contrast

(bottom) which is constructed by adding flanking bars to the SBC configuration. All gray patches have the same luminance. Reverse

contrast can be explained either by assimilation with the in-between bars that have the same intensity as the background, or as

contrast with the flanking bars that have the opposite luminance to the background. (B) Gain Control Maps obtained by dynamic

filtering. Notice the suppression of parallel edges corresponding to flanking patches with the same intensity. (C) Profile plots of

predicted brightness (red line) versus luminance (black line).

https://doi.org/10.1371/journal.pcbi.1007907.g011
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Brightness assimilation effects

White’s effect. Fig 13A shows the White’s effect, where two gray bars with identical lumi-

nance are embedded in alternating black and white stripes. The bar on the black stripe is per-

ceived as brighter as the other one. Lateral inhibition cannot account for this effect, and it has

been suggested that the effect is caused by assimilation [66, 93, 94]. Assimilation means that

the brightness of the flanking stripes averages with the gray bars, and therefore one expects

that reducing the bar height would also reduce the strength of assimilation. However, experi-

mental data indicate that the perceived difference between the bars increases with smaller

heights [95], and that bandpass-filtered noise with the same orientation as the stripes enhanced

the effect, while with perpendicular orientation the effect was diminished [90]. Therefore,

White’s effect seems to be principally generated by contrast at the horizontal edges of the bars

(Fig 13B and 13C), and to a lesser extend by assimilation from the flanking stripes [96]. In fact,

a mainly contrast-based account is supported by the Gain Control Maps of Fig 13A and 13B.

Because the vertical edges (assimilation) are highly redundant, their activity is reduced (Sce-

nario 1 & 2). The brightness estimation is dominated by the horizontal edges of the bars

Fig 12. Model prediction for reverse contrast effect for displays with different configurations. (A) Reverse contrast with a varying number of

adjacent bars to the gray patch. The bar plots show the predicted brightness difference between the gray patches for the corresponding display (a

positive value indicates contrast, while negative values “reverse contrast”). (B) Reverse contrast where the good continuation of the end points is

varied. This in turn affect the suppression of redundant edges, which increases with the alignment of the flanking bars.

https://doi.org/10.1371/journal.pcbi.1007907.g012
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(contrast), which are enhanced. The vertical edges nevertheless account for a residual assimila-

tion, but the effect on estimated brightness is less for Fig 13B than for Fig 13A. Therefore, the

display with the smaller bars (Fig 13B) has a higher predicted brightness difference between

the patches, because less activity from the vertical edges “mixes” with that from the horizontal

edges during filling-in.

Despite of the presence of stripes (but with low contrast), the display of Fig 13C shows a

clear contrast effect of the bars according to Scenario 2. We also studied the relation between

the target size and brightness estimation. We observed that the predicted brightness of the bars

could be modified as a function of bar height and spatial frequency of the background (Fig

13D). Specifically, the predicted brightness difference between the bars increases both with

decreasing bar height and with increasing spatial frequency. These model predictions are in

agreement with previous studies [20].

Todorovic’s illusion. Todorovic’s illusion consists of a display with two luminance disks

with identical intensity and two sets (black and white) of four squares. The original illusion is

designated as Context B in Fig 14, where the disks are occluded by the squares. The test patch

occluded by the white squares appears to be brighter than the other. This illusion was origi-

nally explained in terms of T-junctions [53]. However, Yazdanbakhsh et al. [50] showed that

the effect persisted without T-junctions. Later, [97] studied different variations of Todorovic’s

Fig 13. Model prediction for White’s illusion. (A) Top: White’s illusion; middle: the corresponding gain control map; bottom: profile plot of

estimated brightness (red line) and luminance (black line). (B) With smaller bar height, the brightness difference between the bars increases. (C)

Modification of White’s illusion which produces a strong contrast effect. (D) Surface plot of the estimated brightness difference (effect strength)

between the bars as a function of bar height (in units of pixels) and spatial frequency of the background stripes (in units of cycles/image). Image size was

256 x 256 pixels.

https://doi.org/10.1371/journal.pcbi.1007907.g013
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Illusion (labeled Context A and Context C in Fig 14). They found that the target size interacted

with the strength of assimilation. The original effect can be reversed according to Context C

(Fig 14), which looks like looking through a window cross. It can also be abolished by moving

the disk into the foreground (Fig 14, Context A). The bottom row of Fig 14 shows the profile

plots of the brightness maps produced by our model. The results could be understood by ana-

lyzing the corresponding gain control maps. For Context B, the activity of the occluding edges

(disk with squares) is reduced by dynamic filtering. As a consequence, less contrast is pro-

duced in the brightness estimation. On the other hand, the edges between the disk and the

(black or white) background are enhanced, which produces more contrast in the brightness

estimation. This double effect combined to the finally predicted brightness. For Context C, the

effect is analogous to Context B, but with opposite disk brightness. With Context A, edge activ-

ity along the disks’ circumferences is enhanced. Note that the edge covers the squares as well

as the background. Although this enhancement of activity produced locally more contrast, it is

approximately the same for the two disks, thus producing almost no effect (profile plot of Con-

text B). Fig 15 shows simulation results for the three Contexts as a function of disk size, where

we observed qualitatively similar results to previous studies [97].

More assimilation displays: Dungeon, checkerboard and shevell. The predictions of our

model generalize well to further assimilation displays. Fig 16 shows the Dungeon illusion [52],

Fig 14. Model prediction for Todorovic’s illusion. (A) Top: A variation of Todorovic’s original illusion with the gray disks in the

foreground (Context A). An effect is hardly perceivable. Middle: The corresponding Gain Control Map. Bottom: Profile plots of estimated

brightness (red line) and luminance (black line). The model predicted at most a very weak effect. (B) Original Todorovic Illusion (Context B),

where the occluded left disk is perceived as being brighter. (C) Reversed Todorovic Illusion (Context C). Now it looks like viewing the disks

on a single square background through a window cross, and the left disk is perceived as being darker.

https://doi.org/10.1371/journal.pcbi.1007907.g014
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the Checkerboard illusion [23] and Shevell’s Ring [98]. Although all three reveal an assimila-

tion effect on the gray areas, they are different with respect to their spatial configuration.

Notice in particular the absence of T-junctions in the Shevell’s Ring display. Fig 16 also shows

the corresponding simulation results. All three illusions can be explained according to Sce-

nario 2 since the edges corresponding to the gray areas represent redundant patterns with low

intensity.

Further visual illusions

Craik-O’Brien-Cornsweet effect (COCE). Fig 17A shows the COCE, which consists of

regions separated by opposing luminance gradients (“cusps”) starting at the edges. The cusps

drop quickly to a homogeneous gray level and thus the regions between the edges have the

same luminance. Nevertheless, especially at low contrast, the gradients seem to fill into the

intermediate regions, such that the display is perceived as a low-contrast rectangular wave.

The perception of a rectangular wave is less pronounced with high contrast cusps.

Fig 15. Brightness dependence on target size for Todorovic’s display. The Scheme shows the smallest and biggest

disk size that was used with respect to the squares in order to generate the plots. Each plot indicates the brightness

effect for each of the three Contexts shown in Fig 14. The empty circles indicate the predicted brightness of the disk

with the white squares. The filled symbols show disk brightness with the black squares. The continuous lines show the

estimated brightness difference between both disks and indicate the predicted strength of the illusion.

https://doi.org/10.1371/journal.pcbi.1007907.g015
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Our model predicted the COCE, but the explanation is more intricate. At first sight, being a

filling-in type effect, it should be predicted in a straightforward way by our model. We verified

that without gain control (Eq 4), the COCE cannot be predicted. Could it be then that the

effect is produced by the low-pass filtering which is applied after the gain control mechanism

(see method section). This is not the case, since the removal of low-pass filtering did not affect

the prediction of the COCE (see profile plot 2 in Fig 17A). Therefore, the gain control mecha-

nism contributes to producing the effect. Indeed, the luminance gradients cause negative val-

ues (indicated by black lines) in the Gain Control Map around the edges (cf. Fig 17A). As a

consequence, activity corresponding to the luminance gradients is suppressed by the gain con-

trol mechanism, which furthermore reduces the peak activity at the edges. After all, the gradi-

ents are “ignored”, and our model generates the COCE as a result of assimilation of the edges.

This explanation is also consistent with the cow-skin illusion, which is a variant of the COCE

without luminance gradients. It is composed exclusively of adjacent black and white lines, and

the empty regions are randomly arranged. Fig 17B shows the brightness prediction for the

cow-skin illusion.

Hermann/Hering grid. Fig 18A (in the top) shows the Hermann/Hering Grid (HG).

Although the luminance between the black squares is constant, illusory gray dots appear at the

(white) intersections. The textbook explanation deems the center-surround receptive fields of

retinal ganglion cells as the principal acting mechanism [99]: Assume a circular receptive field

Fig 16. Model predictions for Dungeon, Checkerboard and Shevell. In each display, the gray areas have the same luminance, yet they are

perceived differently because of assimilation with the adjacent structures. (A) Top: Dungeon illusion. Middle, corresponding gain control

map. Bottom, profile plot of the estimated brightness (red line) compared with the input (black line). (B) Checkerboard illusion. (C)

Shevell’s Rings. Notice that this illusion cannot be explained with T-junctions.

https://doi.org/10.1371/journal.pcbi.1007907.g016
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with an excitatory center which has the same width as the white grid lines. The inhibitory sur-

round covers in addition the black squares. If the center is located right at an intersection, it

receives more inhibition from the surround (from two white lines) than when the center is

positioned between two intersections (inhibition from one line). This translates to a brightness

reduction at the intersections, but not in between. This mechanism, though, is insufficient to

explain why the effect is considerably reduced (or even removed) if the bars are slightly corru-

gated (Fig 18A, bottom). It is also reduced as a function of the ratio between grid line width

and block width, where no effect is produced for a ratio of one [100]. Our model predicted the

darkening of the intersections for the HG, and the absence of darkening for the corrugated

HG. The HG adheres to Scenario 1, where redundant activity is inhibited. Inhibition is espe-

cially strong at the intersections of the Gain Control Map. In this way, an assimilation effect is

induced. As to the corrugated HG, the corners also represent the redundant patterns, but

because the spatial structure are less regular, the inhibition is correspondingly weaker (com-

pare the Gain Control Maps shown in Fig 18B). Consequently, the brightness reduction at the

intersections is considerably weaker for the corrugated HG.

Fig 18D shows the dependence of the darkening effect on the ratio between grid line width

and block width. In agreement with the results from [100], we find that the darkening effect

decreases while the ratio approaches one. We were unable to predict further results with the

HG that were presented in [100].

Luminance staircase and pyramid (Chevreul’s illusion). Chevreul’s illusion consists of

increasing levels of luminance, arranged as a staircase or as a pyramid. Although luminance is

constant at each step, one perceives an illusory brightening on the side of each step where the

Fig 17. Prediction for Craik-O’Brien-Cornsweet Effect (COCE). (A) Top: COCE along with the Gain Control Map. Notice

that black lines (adjacent to the edges) in the Gain Control Map, which indicate negative values. Bottom: The first profile plot

shows the predicted brightness (red line) along with input luminance (black line). The second profile plot shows the predicted

brightness without low-pass filtering after the gain control mechanism (Eq 4). (B) The cow-skin illusion is a variant of the

COCE without luminance gradients. It consists only of adjacent black and white lines. Our model consistently predicted this

illusion: The brightness map generated by our model is shown at the bottom right.

https://doi.org/10.1371/journal.pcbi.1007907.g017
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adjacent step is darker, and an illusory darkening on the other. In the pyramid version, one

perceives in addition (illusory) glowing diagonals (Fig 19). The effect is absent at the lowest

(black) and highest (white) luminance level, and is considerably reduced on the middle step

for a staircase made up of three steps.

All aspects of Chevreul’s illusion are consistently predicted by the gradient system, which is

a computational model for representing luminance gradients [10, 101]. The idea behind gradi-

ent representations is to capture the smooth variations of luminance (illumination effects) in

order to help to disentangle reflectance from the illumination component in luminance (since

luminance is the product of reflectance with illumination).

Brightness predictions from our model for the luminance staircase and the pyramid are

shown in Fig 19. The illusory whitening and darkening at the stairs can be explained according

to Scenario 3: On the one hand, the gain control map increases the activity of the Contrast-

Luminance channel. On the other hand, the increase in excitation is offset by the modulation

mechanism of Eq 4, thereby producing non-uniform brightness activity at the stairs. The glow-

ing diagonals of the Pyramid Illusion are produced according to Scenario 1, where the activity

of non-redundant spatial patterns—especially at the corners—is enhanced. On the other hand,

the edges of the staircase represent a redundant pattern, the activity of which is decreased.

Consequently, more (less) contrast at the corners (at edges) is generated in the brightness esti-

mation (Fig 19C, bottom). Finally, it is important to emphasize a limitation of our model in

this context. We observed that for a big number of steps (i.e., very narrow steps) the dynamic

filter “collapses” and the model could not longer predict the illusion nor the glowing diagonals.

This is a consequence of the scale-sensitivity of the dynamic filter (i.e., the size of the sampling

Fig 18. Model predictions for Hermann/Hering grid and corrugated grid. (A) Hermann/Hering (HG) illusion and a corrugated version of it. At the

intersections of the white grid lines, illusory gray spots are perceived in the HG, but not in the corrugated grid. (B) The corresponding gain control

maps of the input images of A. (C) The brightness estimation from our model. The surfaces plots (insets) illustrate the 3D profile of the brightness

estimation corresponding to regions highlighted with red. (D) The predicted brightness magnitude at the intersections as a function of the ratio
line width

grating width, where the red curve corresponds to the corrugated grid, and the blue curve to the HG.

https://doi.org/10.1371/journal.pcbi.1007907.g018
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patches), since with decreasing step size, the staircase eventually approaches a linear luminance

gradient, and the filter cannot resolve anymore individual steps.

Mach bands. Mach Bands [102] are illusory glowing stripes that are perceived adjacent to

knee points that are connected with a luminance ramp, where the bright (dark) band is

attached to the plateau with high (low) luminance (Fig 20). Notice that Mach bands do not

cause Chevreul’s illusion. The perceived strength of Mach bands decreases when the ramp gets

steeper and eventually approaches a luminance step. Also, for very shallow ramps, the per-

ceived strength decreases. The perceived strength has thus a maximum at intermediate ramp

widths [103, 104]. The textbook explanation based on lateral inhibition is insufficient to

explain the variation of strength with ramp width—it would wrongly predict maximum per-

ceived strength at a luminance step [101, 105–107]. The perceived strength of Mach bands is

also modulated by the proximity, contrast and sharpness of an adjacently placed stimuli [105,

107].

The only computational model published so far that quantitatively predicted all published

data about Mach Bands is the gradient system [55, 101]. The gradient system suggests that

Mach bands are also perceived at the peaks and troughs of a triangular wave. The gradient sys-

tem furthermore predicts that bright Mach bands are key for the perception of light-emitting

surfaces [10]. Our model predicts the Mach bands, as well as the absence of them at steps (see

profile plots in Fig 20). It furthermore succeeds in predicting the inverted-U curve of the per-

ceived strength of Mach Bands as a function of the ramp width (Fig 20C). The inverted-U

behavior replicates the trend for measured threshold contrasts for perceiving Mach bands

[104]. The threshold is assumed to be minimal where the model predicts the maximum bright-

ness. The measured threshold contrasts for the bright Mach band are also shown in Fig 20C.

The inverted-U curve could be explained by two mechanisms which act in opposite ways.

(i) If the ramp width decreases, then the activity at the knee points reaches a maximum that

Fig 19. Model predictions for luminance staircase and pyramid (Chevreul’s illusion). (A) Top: Luminance staircase.

Bottom: luminance pyramid. (B) The corresponding gain control maps as a result of dynamic filtering. (C) Top: Profile

plot of the estimated brightness (red line) of the luminance staircase (black line). Bottom: The induced brightness,

which consists of the difference map between estimated brightness and input luminance (i.e., brighter gray level mean

positive values, and darker gray levels mean negative values).

https://doi.org/10.1371/journal.pcbi.1007907.g019
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renders the modulation mechanism (denominator of Eq 4) of the gain control mechanism

ineffective (Scenario 3; ideal step luminance). If the ramp width increases, then the luminance

transition between the plateaus is more gradual, which is associated with less activity at the

edge locations. In this way, the edge activity becomes more susceptible to the gain control

mechanism towards the maximum of the perceived strength. However, this effect does not

remain constant. After a certain ramp width, the activity across the ramp gets comparable to

the activity at the knee points, which produces less variability in the energy map E. As a result,

(ii) the dynamic filter has less effect in Eq 2, reducing gradually the perceived strength induced

by the dynamic filtering.

Grating induction (GI). Fig 21 shows the grating induction (GI) display [108], which

consists of two sinusoidal gratings (inducers) separated by a gap (test field). Although it has a

constant luminance, an illusory brightness modulation is perceived across the test field if the

two inducers are in-phase. The phase of the brightness modulation is opposite to the induction

wave. The effect decreases when shifting the phase of the inducer gratings relative to each

other, being minimum when the gratings are in anti-phase. The illusory modulation is further-

more attenuated with increasing distance between the inducer gratings and with increasing

spatial frequency. The GI can be explained in terms of multi-scale filtering [19, 83]), but also

by filling-in models [36]. Notice that a common misconception with diffusion-based

approaches (=filling-in models) is that the illusory brightness modulation across the test field

would average out. This, however, is usually not the case. The exact explanation depends on

the model under consideration. For instance, a mechanisms that counteracts “averaging out”

are boundary webs from the boundary contour system (BCS) that extend across the test field

Fig 20. Model prediction for mach bands. (A) Top, A luminance ramp that leads to the perception of Mach bands close to the knee

points of the ramp. Bottom, a luminance step (no Mach bands are perceived). (B) Profiles plots of estimated brightness (red line)

compared with the corresponding input (black line) of A. (C) Brightness magnitude (at the inflection point of the ramp) as a

function of ramp width. The plots show the predictions of our model on the perceived strength of the bright Mach band. The colored

curves (left axis label: response amplitude) represent model predictions for different dynamic ranges (i.e., differences between

luminance values of the upper and the lower plateau, see legend). The gray curves are the threshold contrasts (axis label on the right)

for seeing the bright Mach bands at trapezoidal waveforms according to [104]. The trapezoidal waves are characterized by a shape

parameter t (see legend; t = 0.5 corresponds to a triangular wave).

https://doi.org/10.1371/journal.pcbi.1007907.g020
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and trap feature contour activity (FCS) [34]. Other mechanisms include cross-channel inhibi-

tion between brightness and darkness activity during filling-in [109].

Fig 21 shows that our model consistently predicted the illusory modulation of brightness

across the test field. The strength of the effect decreases in an approximately linear fashion

with increasing phase difference between the inducer gratings (Fig 21C). We also observed

from a specific spatial frequency on (4 cycles/image) that the brightness modulation decreases

with increasing separation and spatial frequency, respectively, of the inducer gratings (surface

plot in Fig 21C). Unlike the rest of the illusions the GI effect was produced mainly at the fill-

ing-in stage (Eq 5), and to a lesser degree by dynamic filtering. Dynamic filtering increased the

activity at the boundaries of the inducer gratings (see gain control maps in Fig 21); this incre-

ment produces a significant contrast in estimated brightness between the inducer gratings and

the test field, which eventually propagated (by filling-in) across the test field.

Fig 21. Model prediction for grating induction. (A) The Grating Induction refers to the illusory perception of a brightness modulation across the

gap (=test field) between the inducer gratings. The brightness modulation is perceived in opposite phase to the inducer gratings. (B) When the

inducer gratings stand in opposite phase to each other, then brightness modulation is considerably reduced. The corresponding gain control maps

are shown in the middle row, and the last row shows the induced brightness, which consists of the difference map between estimated brightness

and input luminance (i.e., brighter gray levels mean positive values, and darker gray levels mean negative values). (C) Top: Profile plot of brightness

estimation for display A (black line) and display B (blue line). The dashed blue line shows the luminance profile of the inducer grating A. Middle,

modulation depth as a function of the phase difference between the two inducer gratings. Bottom: Surface plot that shows how modulation depth

depends on test field width and spatial frequency of the inducer grating.

https://doi.org/10.1371/journal.pcbi.1007907.g021
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Real world images and noise

Although synthetic images are a valuable tool for the study of certain aspects of the visual sys-

tem, it nevertheless evolved to the processing of real-world images. Real-world images provide,

therefore, a test of robustness for any model of the visual system. Fig 22 demonstrates that our

model is capable of real-world image processing, as well as its ability to handle noisy versions

of visual illusion displays (Benary Cross, Simultaneous Brightness Contrast, and White’s Illu-

sion). Previously we showed that by using a set derivative filters that cover all orientations

(similar to simple cells), Eq 5 globally converges to a stable solution [110]. The convergence is

robust against adding noise to the input, or using a high dynamic range of luminance values

(Fig 22A, top, middle). Fig 22 suggests that our model’s noise reduction performance is worse

than a control model based on Tikhonov regularization [111]. The robustness of our model

extends to the consistent prediction of visual illusions in the presence of additive noise. In par-

ticular, we noted that simultaneous brightness contrast was more sensitive to the presence of

uncorrelated noise than assimilation displays. The robustness against noise relates to dynamic

filtering, which reduces the correlated (or redundant) spatial information in the edge map.

The redundancy of the edges would not be affected by spatially uncorrelated noise. Finally, we

Fig 22. Real-world image processing. (A) Top: Fruits image with additive white noise (SNR = 2.6266dB and PSNR = 8.9813dB) along with the

corresponding model output (SNR = 5.4682db and PSNR = 11.8228dB); The models capacity for noise removal is worse than an algorithm based on

Tikhonov regularization (SNR = 8.30dB and PSNR = 14.65dB; [111]. Middle: A high-dynamic-range version of a real image (where dynamic range of

each quadrant decreases clockwise by one order of magnitude) and model output; the dynamic range of the input is 1, and that of the output is 0.9596.

Bottom: Bridge image alongside with corresponding model output (SNR = 6.1084dB and PSNR = 13.6201dB). (B) Top: Simultaneous Brightness

Contrast display with additive white noise and corresponding brightness profile (red line) as predicted by the model. The dashed line indicates the

gray level of the gray squares. Middle: White Effect. Bottom: Benary Cross.

https://doi.org/10.1371/journal.pcbi.1007907.g022
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note that dynamic filtering has a couple of limitations with respect to spatially correlated

noise, such as band-pass-limited additive noise (see discussion). We did not study this issue in

more depth, as it would go beyond the scope of the present paper.

Discussion

The perceived luminance (brightness) of target structure is highly sensitive to its spatial con-

text. Despite of many modeling attempts for brightness, we still have not arrived at a detailed

understanding of the corresponding neuronal information processing principles. With our

model, we emphasize the role of decorrelation and response equalization, respectively, in

brightness perception. Response equalization is implemented by a dynamic filter that adapts to

the spatial structure of luminance patterns in each image in order to reduce the redundancy of

boundary maps. Coding strategies that aim at reducing activity and thus energy expenditure in

organisms are consistent, for example, with efficient coding [60–62, 64, 112], predictive coding

[63], whitening [64] or response equalization [65]. In this sense, we propose that brightness

perception is the consequence of suppressing redundant (i.e., predictable) information. Our

model is build on the latter idea(s), and apart from being able to process real-world images, it

predicts a bigger set of visual illusions than any other previously published model.

Our focus is thereby on low-level vision, as our model simulates the activity of simple and

complex cells of the primary visual cortex. For each input, the model learns a filter kernel by

identifying redundant patterns in (simulated) complex cell responses (i.e., the edge map), and

subsequently uses the filter kernel to suppress redundant information (dynamic filtering).

Dynamic filtering amounts to response equalization of simulated complex cell responses,

much like the previously proposed “Whitening-by-Diffusion” method which directly acts on

the (Fourier) amplitude spectrum [65]. The equalized responses are subsequently used for cre-

ating a representation of the sensory input by filling-in (brightness estimation). Nevertheless,

dynamic filtering is a global mechanism, which was adopted for the ease of implementation. In

the primary visual cortex, we expect that dynamic filtering acts in a more local fashion, but still

on a spatial scale that exceeds the typical receptive field sizes of V1 neurons. Such non-local

mechanisms could be biologically implemented by feedback from mid-level visual neurons

with sufficiently big receptive fields for detecting non-local correlations in activity.

We believe that our success in predicting a relatively large number of visual illusions lends

some support to our proposed computational principle. Without changing any of our model’s

parameter values, we are able to predict Simultaneous Brightness Contrast (SBC), White’s

Effect, Reverse Contrast, Benary’s Cross, Todorovic’s illusion (with variations), the Dungeon

Illusion, the Checkerboard Illusion, Shevell’s Ring, the Craik-O’Brien-Cornsweet effect

(COCE), the Hermann/Hering grid, the corrugated grid, Chevreul’s illusion (including the

luminance pyramid), Grating Induction (GI), and Mach Bands. Additionally, for some of the

illusions, we were able to reproduce the trend for corresponding psychophysical data (SBC,

White, Reverse Contrast, Hermann/Hering grid, Todorovic, GI, and Mach Bands). Despite all

of these successes, we must not forget to mention some of the limitations of our model. We

cannot predict illusions—without modifying the current parameters—such as achromatic

neon “color” spreading, the Ehrenstein illusion, Chubb’s Illusion and some variations of the

Hermann/Hering grid; Reverse Contrast with different grouping factors, SBC with articulated

noise, and Mach Bands with an adjacently placed stimuli.

A further limitation is handling visual illusions where a target patch is surrounded by an

articulation pattern. An articulation pattern can be created from a region with uniform lumi-

nance. The region is subdivided into small square patches. The luminance of each patch is ran-

domly modulated according to a Gaussian random variable, with the mean value being the
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original luminance value, and the standard deviation being the modulation depth. The average

luminance across the articulated pattern has to be identical to the luminance of the original

uniform region. The articulation patterns would introduce additional spatial redundancy into

a luminance display, and the kernel would eventually learn this excess redundancy for

dynamic filtering. As a consequence, dynamic filtering may modify the target’s edge represen-

tation in an unpredictable way. For brightness estimation, this could mean, for instance, that

assimilation effects turn into contrast effects or vice versa. This behavior appears to be incon-

sistent with current psychophysical observations [113], and may hint at additional mecha-

nisms that need to be considered. It cannot be ruled out that additional mechanisms reduce

the redundancy along other stimulus dimensions as well, for example luminance, relative con-

trast, or auto-correlation. The global nature of the dynamic filter represents another trade-off.

In order to learn the kernel for dynamic filtering, we sample patches randomly across the

input. As a consequence, local statistical information between (unrelated) patches that are far

away from each other could be intertwined, affecting their brightness predictions. A possible

solution would be to introduce local constrains upon sampling, or as well to introduce a local

normalization function, which takes into account local spatial auto-correlations.

Comparison with other models that predict contrast and assimilation

Our approach produces contrast effects by enhancing non-redundant edges through dynamic

filtering according to Scenario 1. Assimilation effects are generated by suppressing redundant

edges as a function of their relative intensity with respect to the other edges (Scenario 2). We

thus do not make any explicit assumptions about how a visual target is related to its context in

terms of segmentation, or belongingness and perceptual frameworks, respectively. We do not

require the categorization of image features either. In this sense, our approach is more general

than previous computational proposals and theories [47, 49, 114], which purport that a stimu-

lus is divided into perceptual frameworks based on anchors [114] or T-junctions [49]. How-

ever, it is not clear whether anchors or T-junctions are sufficiently robust cues in real-world

images, and actually few previously published models demonstrated the processing of real-

world images.

Dynamic filtering is sensitive to the correlation structure of spatial patterns in order to gen-

erate contrast and assimilation effects. In this way, the output of our model would not be sig-

nificantly affected if uncorrelated noise was added to the input. Yet multi-scale models are

highly sensitive to additive noise [19, 20, 22], because their predictions depend on a careful re-

adjustment of filter responses across spatial frequencies. Thus, if noise was added to contrast

and assimilation displays, then corresponding predictions would be altered, because of corre-

sponding changes in the spatial frequency spectrum [24].

Our model adapts to the statistical structure of each input image. This is to say that we do

not evaluate each input image in a previously learned long-term statistical context. A long-

term statistical context usually is learned from a big number of input samples in order to derive

feature-specific probability distributions. In connection with brightness, a relationship

between occurrence frequency of certain types of natural images and brightness perception

has been proposed [56–58]. The main limitation of such models is that they require an enor-

mous amount of data, and that visual illusions act much like an associative trigger or they are

perceived according to humdrum Bayesian inference.

Conclusion

One might ask whether the range of illusions that we successfully predict with our model can

be attributed to a common mechanism. The answer is yes, and the underlying mechanism is
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dynamic filtering. Dynamic filtering acts to equalize the amplitude spectrum of a boundary

map. In the spatial domain, thus, dynamic filtering depends on pattern redundancy (but not

on activity). In this way, non-redundant patterns are enhanced (i.e., contrasted) compared to

to redundant patterns (which are assimilated). In conclusion, this study provides a proof of

concept of a hypothetical information processing strategy for visual system, based on econo-

mizing edge representations. Our predictions are reliant on the self-structure of the visual

input, but not on accumulated visual experience, spatial frequency representations, or prede-

fined detectors. Our proposed mechanism does not exclude information processing principles

like accumulating visual experience or spatial frequency representations, and should be con-

sidered as being complementary to these. Finally, future work should address the understand-

ing of how the statistical structure of the context surrounding a target patch influences its

appearance. We also plan to study how different noise structures (as narrow-band, oriented,

or correlated) influences the predictions of our model. Our redundancy-reduction hypothesis

should be compatible with all levels of information processing. This means that redundancy

reduction likely might apply to higher-order patterns and shapes that form the primitives for

object recognition.

Supporting information

S1 Text. A. Gabor filters. In this section are described the parameter values and a mathemati-

cal description of unbalancing the ON/OFF subregions for the filters used in the Contrast-

Luminance channel and the Contrast-only channel. B. Energy Map. In this section are

included the mathematical details corresponding to the local energy map. C. Dynamic filter-

ing with zero-phase whitening (ZCA). In this section are described the mathematichal details

to perform dynamic filtering of our model. D. Solving Eq 5. In this section, a solution for Eq 5

is derived, which is used to estimate the output (brightness map) of our model.

(PDF)
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Chapter 4

Global results

Chapter abstract: This chapter describes the overall results of the present study.

Subchapters 4.1 and 4.2 summarize the most significant results presented in Chapter

2 and Chapter 3, respectively. Subchapter 4.3, as a proof of concept, describes an

extended model version that unifies the hypothetical mechanisms presented in Chapter

2 and Chapter 3; it also includes some simulations that combine both mechanisms in

predicting (or explaining) brightness and lightness phenomena.
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4.1 Summary First Publication

This study builds on the idea that reflectance changes are often associated with fast lu-

minance variations (e.g., edges) and that shading is often associated with slow variations

(.e.g., gradients (Keil et al., 2006; Keil, 2006). In achromatic images, we hypothesize

that the visual system could exploit this cue (fast versus slow luminance variations) in

order to estimate the apparent reflectance of a surface (i.e., lightness) and the apparent

shading (or illumination) by segregating low vs. high neural variability responses of

encoded visual input. Then, the final estimation of apparent reflectance and perceived

illumination (shading) relies on the segregation and interaction between non-gradients

and gradients.

To test the above idea, we proposed a computational approach. Initially, the model

encodes an achromatic visual image using a set of filters. Further, since the luminance

spatial frequency difference, in general, facilitate the segmentation of superimposed tex-

tures and perhaps gradients and non-gradients cues, we first learned two classes of

filter kernels from natural (or real-world) gray-level images constrained to low spatial

frequencies (LSF) and high spatial frequencies (HSF). The filter kernels served to even-

tually segregate gradients from non-gradients through a gating map based on a response

variability mechanism. The gating map was computed from the variability over a set

of filter kernels. The high variability estimates non-gradients, while the low variabil-

ity set estimates smooth luminance gradients. Finally, in order to reconstruct both

segregated representations (gradient and non-gradient layers), we implemented an opti-

mization method based on conjugate gradient descent; it served to recover both layers

through an iterative procedure that resembles a filling-in process (Gerrits & Vendrik

1970; Grossberg 1988, Rossi 1996, Komatsu 2006).

Computationally, our model successfully segregated the luminance of any achromatic in-

put image (e.g., real-world images) into two layers. The segregated layers correlated with

various perceptual attributes as lightness and perceived illumination (e.g., shadings) and

successfully predicted lightness phenomena of visual illusions such as Adelsons’s checker-

shadow display or grating induction. More specifically, the non-gradient layer captured

the estimated lightness. In particular, the direction - increasing or decreasing - of the

estimated non-gradients was "balanced" in the opposite direction of the luminance gra-

dients according to our initial hypothesis. Figure 4.1 shows an example of commented
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results.

Figure 4.1: Example of segregation into gradients and non-gradients of Real

Image and Diamond’s Illusion. Although in Diamond’s Illusion, all di-

amonds have identical intensity values, we perceive them as light-gray and

dark-gray, respectively, dependent on the amplitude of the superimposed sine-

wave grating. The image corresponding to Real Image was extracted from

https://search.creativecommons.org/ with license CC BY.

Regarding the segregation mechanism, we identified the variability response and not

the choice of a specific spatial frequency as a vital step to luminance’s segregation.

Indeed, the segregation of gradient and non-gradient we noted could not be only based

on spatial frequencies (e.i., lowpass and highpass filtering) since the gradient and non-

gradient tend to be mixed across the spatial scale (see Figure 4.2). The gradient layer

captured only slow (or smooth) variations in luminance suppressed in the non-gradient

layer. In contrast, non-gradient contained only the abrupt luminance changes that often
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correspond to changes in reflectance. In addition, we also identified a plausible functional

role in the shape of the learned filter kernels in computing (reconstruction) both layers:

Odd symmetrical filters responded the best to smooth luminance gradients being LSF

odd the set of filters that propagated activity across greater distances per unit time

(iteration) than their HSF odd counterparts. In contrast, the even symmetrical filters

(independent of the frequency range, i.e., LSF and HSF) responded poorly to gradient

features.

Figure 4.2: Illustration of segregating an input image into gradients and non-

gradients. First row: A homogeneous disk with an overlaid gradient corresponds

to the Input image with its corresponding lowpass and high-pass filtering. Second

row: The corresponding gating map based on a response variability computed with

the actual model. The result of segregating the input image into Gradients and

Non-Gradients. Notice gradient activity is not just equal to lowpass information,

and similarly, non-gradient information is not the same as high-pass filtering of the

input image.
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4.2 Summary Second Publication

Here we proposed a novel computational model for estimating the brightness/lightness

of many visual illusions. Context sensitivity inspired the proposal of many neural mech-

anisms for explaining the perception of luminance (brightness). In this approach, we

hypothesize that many aspects of brightness can be explained by a dynamic filtering

process that reduces context redundancy edge representations on the one hand, while

non-redundant context activity is enhanced on the other. The dynamic filter is learned

for each input image and implements context sensitivity. Dynamic filtering is applied

to the responses of (model) complex cells in order to build a gain control map. The

gain control map then acts on simple cell responses before they are used to create a

brightness map via activity propagation.

To test the above idea, we developed a computational model in which a dynamic filter

carries out equalization. In the first step, an input image is encoded by two sets of

Gabor filters, which mimic the spatial response properties of simple cells in V1 (Jones &

Palmer, 1987a). The high-resolution filters’ responses encoded the contrast-only infor-

mation, while the more coarse-grained filters encoded the contrast-luminance informa-

tion. From contrast-only information filters, we computed boundary activity via local

energy (Morrone & Burr, 1988; Morrone & Owens, 1987), which is insensitive to the

phase of simple cells and resembles complex cell responses. A decorrelation kernel (dy-

namic filtering) was then learned from the local energy map and applied to the latter to

reduce (equalize) its redundancy. The redundancy-reduced energy map then functions

as a ’Gain control map’ for both sets of filters, which served to recover a brightness map

through an iterative procedure that resembles a filling-in process (Gerrits & Vendrik

1970; Grossberg 1988, Rossi 1996, Komatsu 2006).

Without changing any of our model’s parameter values, the model successfully predicted

different "styles" of brightness phenomena for a great number of visual illusions: Simul-

taneous Brightness Contrast (SBC), White’s Effect, Reverse Contrast, Benary’s Cross,

Todorovic’s illusion (with variations), the Dungeon Illusion, the Checkerboard Illusion,

Shevell’s Ring, the Craik-O’Brien-Cornsweet effect (COCE), the Hermann/Hering grid,

the corrugated grid, Chevreul’s illusion (including the luminance pyramid), Grating In-

duction (GI), and Mach Bands. Figure 4.3 shows some of these predictions. Addition-

ally, we could reproduce the trend of corresponding psychophysical data (SBC, White,
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Reverse Contrast, Hermann/Hering grid, Todorovic, GI, and Mach Bands). Further-

more, our model overcame some inconsistencies of traditional explanations for these

illusions (e.g., T-junctions, variants of White’s illusion). Finally, the model was capable

of real-world image processing and handling noisy versions of visual illusion displays

with uncorrelated additive noise (see Figure 4.4).

Figure 4.3: Prediction of Simultaneous Contrast, White’s illusion and Craik-O’Brien-

Cornsweet Effect and their corresponding profiles. Each profile plot shows the

predicted brightness (red line) along with input luminance (black line)
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Figure 4.4: Prediction of Variant of White’s Effect, Simultaneous Brightness Contrast (SBC)

masked with uncorrelated white Gaussian noise, and a real-world image (Bridge).

Bottom, their corresponding profiles for Variant of White’s Effect, SBC and image

reconstruction of real-world image. Each profile plot shows the predicted brightness

(red line) and input luminance (black line or gray line). The image corresponding

to bridge was extracted from https://search.creativecommons.org/ with license CC

BY.

4.3 Unifying Mechanisms: An extension of both models

As a proof of concept of a unifying mechanism, we have developed an extended model

unifying the mechanisms of our previous studies (see Chapter 2 and Chapter 3). Figure

4.5 illustrates a scheme of the extended model. Overall, in the first stage, the extended

model initially encodes through a set of Gabor Filters the contrast-only and the contrast-

luminance information of a given input image similar to the model presented in Chapter

3. Subsequently, the extended model segregates gradient responses and non-gradient

responses through a gating map based on a response variability mechanism similar to

the model presented in Chapter 2. After that, in the second stage, the extended model
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implements dynamic filtering on the gradient and non-gradient responses, respectively.

Finally, in the third stage, after dynamic filtering, both segregated representations –

gradient and non-gradient responses – served to recover both layers through an iterative

procedure that resembles a filling-in process similar to the models presented in Chapter

2 and Chapter 3. Importantly, although the unifying of both mechanisms was compu-

tationally feasible, it was necessary to introduce certain modifications in the parameter

values (see Appendix A).

Figure 4.5: Extended Model Scheme. Firstly, in the first stage, the input image is encoded

by a set of Gabor filters that mimic the responses of simple cells in V1. Then, in

the same way as described in Chapter 2, we used a variability measure in order

to generate two sets of maps from the corresponding response maps - one for high

variation (i.e., high variability map) and another one for low variation (i.e., low

variability map). Subsequently, in the second stage, we implemented dynamic

filtering in both low and high variability responses in the same way as described

in Chapter 3. Finally, in the third stage, the gradient and non-gradient layers are

obtained by solving an inverse problem described in Chapter 2 and Chapter 3.

The image example was extracted from https://search.creativecommons.org/ with

license CC BY.
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We noted two significant variations in the output results concerning previous studies.

First, unlike our first study described in Chapter 2, the extended model involves filters

responses of contrast-luminance information similar to the second study described in

Chapter 3. Consequently, it may produce partial segregation where the non-gradient

layer contains residual gradient components and vice versa for certain configurations (see

Appendix C). Second, the brightness/lightness phenomena induced by the dynamic fil-

tering were predicted in the full reconstruction (summing both layers), being dominated

by the non-gradient layer. Figure 4.6 and Figure 4.7 illustrate simulations to understand

these two points better. Notice in the case of luminance step, the response to luminance

information led to the apparition of “artificial gradients,” while the full reconstruction

remains barely changed (see Figure 4.6). In contrast, in the case of luminance ramp (see

Figure 4.7), the gradient layer captured almost all the luminance information, whereas

the non-gradient layer correlated the surface appearance with three luminance levels.

Notice, however, that the full reconstruction still predicts the tendency of brightness

phenomena.

Figure 4.6: Simulations using the extended model for luminance step. A luminance

step (no Mach bands are perceived) and corresponding segregation into gradients

and non-gradients layers. Under each display, the corresponding profiles (left to

right): the input image (black line) with full reconstruction (red line), gradients,

and non-gradients.
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Figure 4.7: Simulations using the extended model for luminance ramp. A luminance

ramp leads to the perception of Mach bands close to the knee points of the ramp

and its corresponding segregation into gradients and non-gradients layers. Under

each display, the corresponding profiles (left to right): the input image (black line)

with full reconstruction (red line), gradients, and non-gradients.

4.3.1 Simulation I: Simultaneous Contrast with adjacent luminance
gradient

To test our extended model, we focused on a phenomenon of lightness and brightness

presented by (Zavango & Daneyko, 2012; Agostini & Galmonte, 2002). They stud-

ied how the apparent luminosity of different configurations modified the contrast effect

despite the local stimulation remaining identical (see Figure 4.8). The configurations

involved luminance gradients (with positive and negative ramps) and solid squares. The

luminance gradient originated an appearance of illumination (e.g., halo or glow) despite

the absence of physical illuminants, while a sensation of homogeneous illumination for

solid squares. The appearance of illumination induced a strong contrast enhancement

(or minor reduction) with respect to “original.” A possible explanation of these phe-

nomena suggests that luminance gradients are encoded as perceptual features, involving

a sensation of self-luminosity, affecting brightness, and it may, in turn, affect lightness

computations (Keil, 2008; Correani et al., 2005). Notice that this phenomenon is not

necessarily a simultaneous contrast since the tendency remains even if the backgrounds

are isolated (see Figure 4.9A).

For the isolated version, our extended model successfully segregated the luminance of
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Figure 4.8: Simultaneous Contrast with different adjacent configurations. The con-

trast effect varies for each configuration even though local stimulation remained

identical across displays.

each configuration (see Figure 4.9B and Figure 4.9C). Notice, in the positive and negative

ramp configuration, that the gradient layer captured the "illumination effects" as "glow"

and "halo." Figure 4.9D shows the tendency of the target test for each configuration in

the full reconstruction profiles: We noted that the most intense contrast with respect

to the background is produced by positive ramp configuration, followed (in decreasing

order) for original configuration, negative ramps configuration, and solid configuration.

This simulation illustrates very well how both mechanisms are combined in the extended

model. In the case of solid squares configuration, the contrast response reduction – com-

pared with "the original configuration" – was due to the spatial sensitivity of the dynamic

filtering mechanism previously discussed in Chapter 3. Since the solid squares increment

the spatial redundancy of edges, the dynamic filtering process led to less excitability on

the target test in the square configuration than the original configuration. In the case

of positive and negative ramps configurations, the tendency of the appearance of target

tests was balanced in the "opposite direction" of the gradient luminance background,

similar to results presented in Chapter 2. Consequently, an increment (or reduction) in
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the target test of positive (or negative) ramps compared to the original configuration,

respectively.

Figure 4.9: Predictions of Simultaneous Contrast with different adjacent configu-

rations. A. First column from top to bottom: Classic configuration (or light-

ness) contrast; solid squares configuration; squares with positive ramps (halo);

and squares with negative ramps (glow). B. The corresponding estimated gradi-

ent layer of each configuration input image of A. C. The corresponding estimated

non-gradient layer of each configuration input image of A. D. The corresponding

profiles of the input image ( in black ) and the full reconstruction (in red).

4.3.2 Simulation II: Staircase Gelb Effect

Another interesting stimulus to test our extended model is the staircase Gelb effect.

Figure 4.10 illustrates the classical and a modified version of the staircase Gelb effect.

The classical version of the Gelb effect consists of a row of squares ranging from black

to white which is successively placed from left to right on a constant darker space (or

background). Initially, the first square appears to be gray or white, and suddenly it

appears to be darker when the subsequent whiter (in reflectance) square is placed in
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the visual field, inducing a lightness rescaling phenomenon (Cattaliotti & Gilchrist,

1995). As a clarification, do not confuse with lightness compression, which in addition

to lightness rescaling, the gamut of perceived values of the presented five squares is

compressed relative to the actual values. A modified version is proposed since it is

difficult to notice the psychophysical effect of lightness rescaling on a computer screen.

In the modified version, the row of squares is successively placed on a gradient luminance

background that changes from “higher” to “lower” luminance. Although all squares have

identical luminance ranges, the newly introduced square is perceived as brighter than the

original square. Each new square that previously appeared brighter (left) now appears

a shade of gray upon the addition of a square (right), inducing the lightness rescaling.

Notice this phenomenon in G.E version II by comparing the rightest square of the display

(n = 3) that is perceived as white while the same square is perceived as gray for display

(n = 5).

Figure 4.10: Gelb effect. A. Computational representation of staircase Gelb effect (G.E

version I). The luminance level of the squares (from left to right) are fixed in-

creasingly. B. The modified Staircase Gelb effect. All squares have the same

luminance ramps. Notice, the ramp induced a slight contrast between adjacent

squares.

Our extended model successfully segregated the luminance of both G.E versions (see

Figure 4.11). In addition, Figure 4.12 shows, in the full reconstruction, the predicting

of the tendency of lightness rescaling of both Gelb’s versions: The reduction response
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of the first square as a function of subsequent ones. Specifically, the phenomenon was

dominated by the non-gradient layer (data not shown). Here, the lightness rescaling

could be explained in terms of redundancy reduction by the dynamic filtering mecha-

nism: The greater the number of squares, the greater the redundancy in the edges which

separate them, involving progressively more assimilation between the squares and the

background as the number of square increase (i.e., a lightness rescaling).

Figure 4.11: Example of segregation of model predictions for G.E version I and G.E

version II. Top, input for both versions with exactly (n = 3) successive squares.

Middle the corresponding gradient layer. Bottom, the corresponding non-gradient

layer.
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Figure 4.12: Profiles of full reconstruction (gradient + non-gradient) for G.E version I and

G.E version II. Left. The profiles indicate the full reconstruction responses for

n = 1, 2,3,4, and 5 squares for Gelb version I and Gelb version II. The legend

indicates the color line corresponding to the number of squares in the sequence

(for all profiles). Right. The amplified profiles show the section indicated by the

arrow in the left. Notice the tendency of rescaled lightness when the number of

squares increases in sequence.
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General Discussion

Chapter abstract: This chapter describes an overall discussion of the scope, viability,

and limitations of the presented mechanisms in this study. These mechanisms con-

sisted of a segregation mechanism (Chapter 2), dynamic filtering (Chapter 3), and a

reconstruction stage (Chapter 2 and 3). The output of our model is the visual input

(luminance) segregated in two layers: gradient and non-gradient representations – which

correlated to lightness and the perceived illumination, respectively, while full reconstruc-

tion (summing both layers) correlated to brightness. In the context of this segregation

hypothesis, we also discuss the linearity between brightness and lightness computations

achieved by our model.
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Segregation Mechanism

The segregation mechanisms proposed in Chapter 2 build on the idea that surface re-

flectance changes are often associated with fast luminance variations (e.g., surface edges)

and shading is often associated with slow variations (i.e., gradients). Although it is

clear that edges surface and gradient representations have to interact at some level in

the object recognition hierarchy (e.g., in order to derive shape from shading), how such

interactions could be implemented - if they exist - at an early level in the visual system

is not clear.

At first sight, multi-scale models based only on frequency range may encode luminance

gradients through large-scale filters that respond to a low spatial frequency range. How-

ever, as noted, the low-spatial filters respond to gradient information (smooth transi-

tions) and surface changes (see Figure 4.2 in Chapter 4). being the gradient and non-

gradient information is mixed across the frequency range, and an additional mechanism

is necessary to distinguish gradients vs. non-gradients. A proposed mechanism that

successfully distinguishes gradients vs. non-gradients is the ’gradient system’ proposed

by Keil (Keil, 2008). The ’gradient system’ consists of a hypothetical neuronal circuit

in the retina based on ON and OFF’ channels’ interaction. Gradients are detected ac-

cording to the activity peaks of ON and OFF cells occurring in close or remote. This

mechanism indirectly amounts to a boundary detection that serves as a source or sinks

to generate representations of linear luminance gradients through lateral propagation of

activity.

Inspired by Keil’s model, we implemented an alternative mechanism based on filter

responses’ variability. The mechanism distinguishes the gradient and non-gradient re-

sponses according to low vs. high variability, which indirectly amounts to boundary

detection. Although any contour detector could compute segregation, we noted some

interesting aspects and advantages of the variability response mechanism (see Chapter

2). In particular, the variability response was irrespective of each filter’s contrast am-

plitude or preference response. It means that different shapes of receptive fields would

be feasible to compute variability response "without the need to use contour detectors"

as simple cells in V1. Since other shapes of receptive fields would be compatible, we

propose the segregation mechanism – if it exists – may be located in other areas (e.g.,

the retina, the lateral geniculate nucleus (LGN), or higher visual areas).
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Further, considering that variability response was computed locally, the variability-based

segregation mechanisms could be feasibly implemented via population coding (Averbeck

et al., 2006). It suggests variability-based encoding strategies may be a promising mech-

anism for conveying information about visual attributes. Indeed, recently, response

variability in individual neurons of oriented-selective neurons has been modeled from

neural recordings to encode the uncertainty of orientation and texture (Hénaff et al.,

2020). However, at present, we are not aware of any neurophysiological study that

connects response variability to gradient and non-gradient cues, and the approach of

luminance gradients remains only for psychophysical studies and computational models.

Reconstruction Stage

Unlike the segregation mechanism, the shape of filters was essential for computing gra-

dients and non-gradients layers in the reconstruction stage. We identified that the

odd-symmetrical filters responded best to smooth luminance gradients, whereas the

even-symmetrical filters responded poorly to gradient features (see Chapter 2). Indeed,

the odd-symmetrical filters act as first-order derivative filters which determine the direc-

tion of propagated activity in a filling-in process. Since the primary visual cortex (V1)

and secondary visual cortex (V2) contain simple cells with odd "derivative" symmetrical

shapes, the result suggests feasible V1 or V2 in computing non-gradient and gradient

representations. Assuming in our hypothesis that the non-gradients representation "cor-

relates" with surface representations; this result is in agreement with the conclusion of

previous neurophysiological recordings that suggest neurons in V1 and V2 as the first

stage to compute brightness/lightness surface perception (Huang and Paradiso 2008;

Hung 2007; Vladusich et al. 2006; Roe et al. 2005; Friedman et al. 2003; Kinoshita and

Komatsu 2001; MacEvoy et al. 1998; MacEvoy and Paradiso 2001; Rossi and Paradiso

1996; Rossi et al. 1996).

Dynamic Filtering

The dynamic filtering (DF) mechanism proposed in Chapter 3 successfully estimated

different brightness/lightness phenomena (e.g., contrast effects, assimilation, induced

brightness) for many visual illusions containing homogeneous illumination (except for

Mach Bands), and also it predicted, phenomenologically, the tendency of some psy-
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chophysical studies (see Chapter 3). Further, as we noted in Chapter 4, DF is compati-

ble with the segregation mechanism. DF still predicts brightness/lightness phenomena

predicted in the full reconstruction (summing both layers), being dominated by either

or one of the two layers. It expands the scope of the DF mechanism for visual inputs

that also contain gradients luminance patterns (e.g., illumination inhomogeneous).

Computationally, DF implements a spatial neural coding based on contextual modula-

tion that reduces spatial redundancy (correlations) at boundary representations of an

energy map that mimics the activity of complex cells in V1. The redundancy reduction

(or efficient representation) links with other prominent coding strategies for the early

visual system as the efficient coding ( H. B. Barlow 1961; Atick & Redlich, 1992; Levy

& Baxter, 1996; Simoncelli & Olshausen, 2001; Vincent et al., 2005), predictive coding

(Srinivasan et al., 1982), whitening (Atick & Redlich, 1992) or response equalization

(Keil, 2008a). have been chosen independently for each illusion and each model, to

obtain the best possible replication of the visual illusion.

Recently, other models based on efficient representations of neural dynamics in V1 have

shown promise in explaining distinct brightness phenomena (Bertalmío et al., 2020), but

the parameters of these models were chosen independently for each simulation. Here,

we believe the success in predicting a relatively large number of visual illusions with-

out changing any parameter supports DF as a computational principle (see Chapter

3). However, the nature of the dynamic filter represents a difficulty. In order to learn

the kernel for dynamic filtering, it is necessary somehow to compute local spatial au-

tocorrelations. Besides, because DF is learned by data-driven, i.e., DF is reliant on

the self-structure of the visual input but not on accumulated visual experience, such

autocorrelations have been achieved in early visual areas as V1. Various models suggest

that the columns are the locus for the computation of local spatial autocorrelation func-

tions where strong intracolumnar excitation of the complex cells (in V1) could provide

a substrate for detecting the local auto-correlation functions (Zucker 2006). However,

physiological evidence of spatial autocorrelations in V1 is still lacking at the moment.

Limitations

In our simulations, we detected some counterexamples in addition to those described

in our previous studies (Chapter 2 and Chapter 3) that challenge the core mechanism
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and ’concepts’ of the current model. In particular, these counterexamples emerge in

predicting some visual illusions that contain certain articulated patterns. For instance,

in the simultaneous contrast illusion, some studies have recorded a tendency to increase

the perceived contrast if the background contains articulation patterns in a certain

luminance range (Bressan & Actis-Grosso, 2006). Notice in Figure 5.1, the contrast in

the articulated display is more "intense" than the original. As we noted in our second

study (Chapter 3), dynamic filtering is inconsistent with this fact— since the more

articulated patterns in visual input, the more spatial correlation with respect to the

target test (i.e., Scenario 2 described in Chapter 3). Therefore, DF’s would involve, on

the target test, assimilation on the background instead of contrast.

Figure 5.1: Example 1 that challenge the model. Original Simultaneous Contrast and Si-

multaneous Contrast with articulated patterns. The articulated patterns intensify

the contrast phenomena (Bressan & Actis-Grosso, 2006). The articulated patterns

have the same mean luminance as the background of the original displays.

We tried a “possible” solution. We readjusted the threshold parameter on the variability

response of the segregation mechanism (equation 3 in Appendix A) in such a way that the

articulated patterns were detected as gradient cues while the target tests were detected

as non-gradients. In this way, on the one hand, the DF of the target test on the non-

gradient layer was unaffected by articulated patterns, whereas, on the other hand, the

articulated pattern served to increase balancing between gradient and the non-gradient

layer. By this adjustment, the model estimated the tendency of articulated simultaneous

contrast, but it was very slight (see Appendix B).

Another counterexample that challenges our model concerns articulated patterns that

form luminance pseudo gradients. Physically, these luminance pseudo gradients are not

gradients, but phenomenologically they seem to act as if they were. Figure 5.2 shows
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an example of the phenomenon described.

Figure 5.2: Example 2 that challenges the model. Simultaneous Contrast with a lumi-

nance pseudo gradient configuration and disordered configuration. In both cases,

the luminance level of bars correspond to same values range.

Notice that the perception of luminance pseudo gradients. Similar to gradient con-

figuration (in Chapter 4), a self-luminosity sensation emerges with luminance pseudo

gradients, inducing, in turn, a stronger contrast effect than ’disordered’ bars. The only

way that the model can predict this phenomenon is by detecting pseudo gradients as

gradients cues. A "first" solution would be to smooth visual input by a low-pass filter.

However, the problem is that the luminance pseudo gradients contain gaps between bars,

involving high variability responses – even with low-pass filtering – and therefore, they

would be captured by the non-gradient layer instead of the gradient layer. We tried

other strategies based on the current model’s existing ideas, but they failed to find a

satisfactory solution. Then, how detect luminance pseudo gradients as gradients cues

for our model? Since the luminance pseudo gradients have a spatial structure (i.e., are

not allocated randomly), a possible solution would be to introduce a selective integra-

tion mechanism that distinguishes contours: detecting boundaries that contain abrupt

luminance changes – with spatial structure – susceptible to be gradient cues. Computa-

tionally this approach would be feasible because other contour systems that distinguish

boundaries have been previously implemented successfully in brightness/lightness mod-

els ( W. D. Ross & Pessoa, 2000), even considering biological constraints (Domijan,

2015; Grossberg & Todorovic, 1988). Perhaps, another possible mechanism would be to

introduce a “texture system.” After having segregated the bars (= texture), the resid-

ual gradient should remain. Diffusive reconstruction of these residual gradients should

reconstruct the perceived gradient representation (see Keil, 2018 section 4).
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Full reconstruction: Brightness and Lightness computations

What or how computations achieve and distinguish brightness and lightness from lumi-

nance is still unclear. Initially, we suggested linear computation between lightness and

brightness by distinguishing (or balancing) gradient and non-gradient representations:

the perceived illumination as gradient representations, lightness with non-gradient, and

brightness with full reconstruction (summing both representations). However, we ob-

served that this linearity only worked for certain visual configurations. We refer term

linearity to indicate a direct distinction between perceived lightness, brightness, and

apparent illumination through layers representations.

On the one hand, in visual images containing smooth inhomogeneous illumination (i.e.,

gradients) over the same surface background, our model easily distinguishes linearly

lightness vs. brightness: In the case of positive and negative ramps configurations,

the appearance of the surface in non-gradient representation balances in the "opposite

direction" of the gradient luminance background (see Chapter 2 and Chapter 4). It

corroborates with previous studies, which concluded luminance gradient as a perceptual

feature that interacts in some level with lightness computations (Keil, 2008; Correani

et al., 2006), and the perceived lightness goes with an equal but opposite error in per-

ceived illumination induced by gradient configuration. Although this result would be

in concordance with discounting illumination hypothesis, remember that the segrega-

tion mechanism erroneously detects an illumination edge as a non-gradient feature (see

Chapter 2). Our model would operate as partial discounting illumination rather than to-

tal discounting illumination. Partial discounting illumination was suggested in previous

studies, in which the luminance border produced by an illumination edge was perceived

as partly a surface-brightness edge and partly a lightness edge (Logvinenko 2011).

On the other hand, in visual images containing a homogeneous (constant) illumination,

we noted linearly in concordance with one would expect of the judgments of brightness

and lightness inhomogeneous illumination (Blakeslee et al., 2008). However, due to the

architecture of the extended model, this linearity depended on certain configurations of

the background. As mentioned in Chapter 4, the response to luminance information

of the extended model led to partial segregation introducing mixed artifacts between

gradient and non-gradient layers.

In particular, for a background containing only a single luminance level or containing
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high articulation patterns (e.g., checker), the mixed artifacts were located locally, and

we observed almost complete linearity. However, the mixed artifacts extended through

the layers for a background containing large regions with different luminance (e.g., low

articulations), failing linearity (see Appendix C). We think the latter is a limitation in the

reconstruction stage rather than the segregation mechanisms. Linearity could be solved

in different ways: modifying luminance response or other complementary mechanisms

without contradicting the presented results or conclusions.

In short, our results suggest linearity between lightness and brightness computations for

visual images containing homogeneous or smooth inhomogeneous illumination. In the

case of illumination edges, brightness and lightness computations seem more intricate

(Logvinenko 2011) and possibly depend on other factors such as higher-level mechanisms

or accumulated experience.

Future Directions

This thesis aims to help understand the underlying principles of low-level perception (as

brightness and lightness) results from neural-based computations.

In Chapter 2 and Chapter 3, a segregation-based mechanism and a dynamic filter-

ing mechanism were proposed. Although these mechanisms are prominent underlying

computational principles in the visual system (for explaining brightness and lightness),

neurophysiology studies will need to examine whether these mechanisms exist or are

plausible as a neural coding strategy. For the segregation-based mechanism, we motivate

future neurophysiology studies to record the variability response in neuronal populations.

As our simulations suggest, the segregation-based mechanism could be implemented by

a population coding, and it perhaps ubicated indistinctly in different visual areas as

the retina, LGN, V1, or higher areas as V4. For the dynamic filtering mechanism, we

suggest studying modulation responses of the extra-classical receptive field on simple

and complex cells in V1 for stimuli that contain (in spatial context) high redundancy

versus low redundancy in luminance patterns. Ideally, the modulation would work sim-

ilarly to surround inhibition but as a function of spatial correlations. It could be tested

with visual illusions containing contrast and assimilation. It would provide practical

information on whether or not dynamic filtering exists and how brightness or lightness

changes can be figured in cortical representations.
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A consistent theme throughout the thesis work was the emphasis on studying how to

predict a great number of visual illusions involving different phenomena under the pre-

sented mechanisms in Chapter 2, Chapter 3, and Chapter 4. Computationally, the main

goal was to reduce the parameter space in each simulation (visual illusion) as low as

possible. We build on the idea that if model parameters are adjusted for each illu-

sion, then a model can hardly claim to propose a plausible mechanism for explaining

underlying computations in perception. In this line, we want to motivate future com-

putational models in predicting basic perceptions, a reduction in the parameter space

in the simulations; we believe that it will be essential to better understand the scope

of the hypothetical mechanisms, especially in the absence of neurophysiological stud-

ies. We also want to emphasize the importance of pointing out the inconsistencies of

hypothetical mechanisms for future studies, which are sometimes omitted in previous

studies. We believe, like visual illusions, understanding how models make accurate

estimations is often best clarified by understanding why it sometimes does not. For

instance, luminance pseudo gradient, articulated patterns, and edge illumination chal-

lenge our proposed mechanisms, and they could inspire future models to understand

brightness and lightness perception better.

Altogether, this proposed computational model will provide important information con-

cerning brightness and lightness computations. The work presented in this thesis pro-

vides a foundation upon which future simulations or computational models can be built.

Understanding, unveiling principles, and coding strategies of basic perceptions through

a computational model will lead to a better knowledge of neural coding for more complex

processes.
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Conclusions

1. This thesis contributes new insight into brightness/lightness computations with a

computational model for achromatic visual inputs.

2. The model successfully predicted many brightness and lightness phenomena for

visual images with homogeneous or smooth inhomogeneous illumination, based on

two hypothetical neural mechanisms: one based on variability in response that

segregates gradient vs. non-gradient features the other on redundancy-reduction

of edge representations.

3. In the simulations, some of these predictions were in concordance with psychophys-

ical experiments, indicating these mechanisms could be prominent underlying com-

putational principles in the visual system. However, there is a lack of neurophysi-

ology studies correlating neural activity to such mechanisms, and this model must

be considered only a proof of concept.

4. Since the model is compatible with low-level processing; we recommend in the

future exploring these hypothetical mechanisms (if they exist) in early visual areas

as V1/V2 and V4.

5. The neural mechanisms proposed in this thesis: redundancy-reduction hypothesis

and variability-based segregation, should be compatible with all levels of infor-

mation processing. This means that both might apply as well to other kinds of

perceptions – even beyond brightness and lightness – as higher-order patterns and

shapes that form the primitives for object recognition.
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Appendix

A. Details and modification of parameters of the extended model

Filters. We used a set of Gabor filters to the encoding input image. The parameters

and configuration of the set of filters were equal to our second study (Chapter 3). The

single modification was the unbalanced parameter for Contrast-Luminance filters which

we adjusted to 0.02 – see Appendix S1.Text in Chapter 3.

Variability response. To simplify computations, we modified the original variability

map response presented in (Chapter 2, equation 6). Here, for each activity response

filter (i.e. “activity in response to the input image by filter g”) the model measures:

mapg = V arL(Rg)

where V arL indicates the local variance in a small neighborhood (7 × 7 pixels moving

window, with mirror boundary conditions). Subsequently, the final variability map is

computed as the square root of the sum of each variability filter response:

Vmap =
��

g

mapg

Notice that, mathematically, this computation could be interpreted as the local standard

deviation between all filter responses if we assume the filter responses as independent

random variables.

Gating map of segregation mechanism. We formulated the gating map, threshold-

ing the variability response map as:

Gmap(x, y) =





1 if Ṽmap(x, y) > 0.1

0 otherwise
(A.1)

where (x,y) indicates the spatial pixel coordinates and is the normalization of measured

as:

Ṽmap = Vmap

maxx,y{Vmap(x, y)}

Dynamic filtering. The extended model applies dynamic filtering (in parallel) to the

gradient and non-gradient response after segregation. We adjusted the parameters with

identical values of our second study (Chapter 3).

Reconstruction of gradient and non-gradient layer. The parameters and equa-

tions of the reconstruction stage for both layers – gradient and non-gradient – were the
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same as the published studies (Chapter 2 and Chapter 3), but we fixed the stop criterion

to 10−6.

B. Simulation for Simultaneous Contrast With articulated patterns

Figure A1 illustrates the results of our extended model for Simultaneous Contrast with

the articulated pattern. The tendency in increasing the contrast intensity on articulated

S.C with respect to classical S.C was achieved by readjusting the threshold of segrega-

tion mechanism of the equation A.1 (see Appendix A) to 0.25 instead of 0.1 In full

reconstruction, the contrast intensity prediction was approximately 0.16 for articulated

S.C and approximately 0.12 for classical S.C.
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Figure A1: Simulations of Simultaneous Contrast with and without articulated pat-

terns. In both cases, the luminance backgrounds were fixed equivalent average

luminances. Top. The Classical Simultaneous Contrast and the corresponding

gradient and non-gradient layer segregation. Middle. The Articulated Simultane-

ous Contrast and the corresponding gradient and non-gradient layer segregation.

Bottom. The corresponding profiles of each estimation of in red (articulated), in

blue (original). The (left to right) profiles show the full reconstruction, gradients,

and non-gradients.

C. Simulation with different backgrounds.

Figure B1 illustrates the simulations for different visual inputs containing different back-

ground styles. The mixed artifacts were located locally for a single luminance level or

high articulation patterns (e.g., checker). However, the mixed artifacts extended through

the layers for large regions with different luminance (e.g., low articulations).
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Figure B1: Simulations with different backgrounds. Top. A visual input with a back-

ground containing only a single level of luminance and its corresponding profile of

non-gradient representation. Middle. A visual input with a background contain-

ing different luminance but with high articulation patterns and its corresponding

profile of non-gradient representation. Bottom. A visual input with a background

containing two large regions with different level luminance and its corresponding

profile of non-gradient representation.
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