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Abstract 
 

Given the increasing use of the internet and the transfer of information in this 

era, it is crucial to focus on encryption and data security. According to the 

technological advances in optics and photonics and their multiple applications, 

many researchers have been urging to apply optics to encrypt and authenticate 

information in the last decades. In other words, optical waveforms involve many 

complex degrees of freedom, such as polarization, amplitude, phase, large 

bandwidth, quantum properties of photons, and multiplexing that can be 

combined in many ways to produce high-security information systems.  

In this thesis, we have been investigating different photonics techniques 

appropriate for optical security applications. This interdisciplinary investigation 

includes photonics techniques such as digital holography, beam shaping, 

Fourier optics, polarization optics, diffractive imaging system, and 

interferometry. Besides, our applied approaches demanded extensive research 

in computational methods such as pattern classification by means of machine 

learning algorithms, computer simulation, fringe analysis, statistical analysis, 

and binary encoding. However, despite the defined thesis title, our achievement 

has not been limited to optical security. 

Classifying synthesized (unique) optical codes can be mainly split into two 

categories. The first one is an approach for obtaining unique optical codes. The 

second one is a method or technique for classifying and distinguishing 

synthesized optical codes.  

Regarding the first category, in this thesis, on the one hand, we propose a 

method to obtain unique optical codes (polarimetric signature codes) from 

illuminating 3D printed samples by linearly polarized beams. Also, the ability 

of 3D printed samples to be considered as Physical Unclonable Functions based 

on polarimetric information is discovered in this thesis. Hence, we consider 3D 

printed samples as physical keys able to produce unique polarized optical codes. 

On the other hand, we obtain unique polarized optical codes by synthesizing a 

laser beam at the entrance pupil of a highly focusing system. Accordingly, we 

developed a binary approach for encoding character codes into holographic 

cells appropriate for transferring information in free space.  

Regarding the second category, on one side, we classify the polarimetric 

signature codes obtained by a physical key (3D printed sample) by means of the 

Support Vector Machine classifier using feature vectors extracted from 
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statistical analysis on speckle patterns. On the other side, we introduce 

polarimetric mapping images as multidimensional arrays to be inputs of a 

convolutional neural network model for the autodetection of character codes 

obscured in the longitudinal component of a highly focused electromagnetic 

field. This approach might be considered an alternative method, which 

eliminates the necessity of phase retrieval algorithms in particular cases. 

Besides, one of our motivations in this thesis is related to highly focused 

electromagnetic fields. Tightly focused beams attract much attention because of 

the non-neglectable component of the electric field in the direction of 

propagation. The potential applications of highly focused beams in many fields, 

such as microscopy, nonlinear optics, tomography, and optical encryption, have 

been reported. However, the detection of the longitudinal component of a highly 

focused electromagnetic field is not simple and still is a challenging task. In this 

thesis, we propose a method based on an experimental and numerical 

framework to estimate and visualize the longitudinal component of the field 

using a conventional imaging system. However, achieving this goal required a 

vast investigation in wavefront engineering and designing a proper optical 

system able to generate and detect highly focused beams.  

To generate an optical beam with an arbitrary intensity and phase distribution, 

we used a fast method to characterize a twisted-nematic liquid crystal display 

based on the Mach-Zehnder interferometer and fringe analysis in the Fourier 

domain. Then we applied the double-pixel hologram Arrizón’s approach, which 

is able to generate on-axis computer-generated hologram into a low-resolution 

twisted-nematic liquid crystal. Since this codification algorithm is time-

consuming, we developed a fast algorithm for mapping double-pixel holograms 

using the K-Nearest Neighbors machine learning algorithm, which has the 

potential to generate double-pixel holograms in real-time.  

Finally, in this thesis, we present a method to estimate the aberrated wavefront 

at the focal plane of a vectorial diffraction system. In contrast to the phase, the 

polarization state of optical fields is simply measurable. In this regard, we 

introduce an alternative approach for determining the aberration of the 

wavefront using polarimetric information and convolutional neural networks 

designed for estimating the Zernike polynomials coefficients.   
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Resumen 
 

En la actualidad, dado el creciente uso de Internet y la transferencia de 

información, es fundamental centrarse en el cifrado y la seguridad de los datos. 

De acuerdo con los avances tecnológicos en óptica y fotónica y sus múltiples 

aplicaciones, recientemente muchos investigadores han sugerido aplicar 

técnicas ópticas para encriptar y autenticar información. Esto es posible, ya que 

las ondas de luz se caracterizan por presentar muchos grados de libertad 

(polarización, amplitud, fase), gran ancho de banda, propiedades cuánticas de 

los fotones, y multiplexación, que se pueden combinar de muchas maneras para 

producir sistemas de información de alta seguridad. 

En esta tesis, hemos investigado diferentes técnicas fotónicas apropiadas para 

aplicaciones de seguridad óptica. Esta investigación interdisciplinaria incluye 

técnicas como holografía digital, codificación de información en haces, óptica 

difractiva y de Fourier, polarización, e interferometría, entre otras. Además, 

nuestro enfoque aplicado exigieron una amplia investigación en métodos 

computacionales como la clasificación de patrones mediante algoritmos de 

aprendizaje automático, simulación por ordenador, análisis de franjas, análisis 

estadístico y codificación binaria. Sin embargo, a pesar del título de la tesis, 

nuestros logros no se ha limitado a la seguridad óptica. 

La clasificación óptica de códigos sintéticos únicos, se puede dividir en dos 

ámbitos. El primero consiste en la obtención de códigos ópticos únicos. El 

segundo es un método para clasificar y distinguir códigos ópticos sintetizados. 

Respecto al primero, por un lado, proponemos un método para obtener códigos 

ópticos únicos (códigos de firma polarimétrica) a partir de la iluminación de 

muestras impresas mediante una impresora 3D utilizando luz polarizada 

linealmente. Además, analizamos la capacidad de las muestras generadas para 

ser consideradas funciones física no clonables basada en información 

polarimétrica. Por otro lado, hemos desarrollado un método para codificar 

información en la pupila de entrada de un sistema altamente enfocado. Dicho 

de otra manera, se ha desarrollado un enfoque binario para codificar códigos de 

caracteres en celdas holográficas apropiadas para transferir información en el 

espacio libre. 

En cuanto a la segunda tarea, por un lado, clasificamos los códigos de firma 

polarimétrica obtenidos mediante una clave física (la muestra impresa en 3D) 

mediante máquinas de soporte virtual, utilizando vectores de características 
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extraídos del análisis estadístico de los patrones de speckle. Por otro lado, 

introdujimos imágenes de mapeo polarimétrico como matrices 

multidimensionales para que actúen como entradas de un modelo de red 

neuronal convolucional para la autodetección de códigos de caracteres 

codificados en la componente longitudinal de un campo electromagnético 

altamente enfocado. Este enfoque podría considerarse como un método 

alternativo, que elimina la necesidad del algoritmo de recuperación de fase en 

casos particulares. 

Además, una de nuestras motivaciones en esta tesis, está relacionada con los 

campos electromagnéticos altamente focalizados. Los haces altamente 

enfocados atraen mucha atención debido a que la componente del campo 

eléctrico en la dirección de propagación puede ser no despreciable. 

Recientemente, han sido reportadas aplicaciones potenciales de estos haces en 

muchos campos: microscopía, óptica no lineal, tomografía y encriptación 

óptica. Sin embargo, la detección de la componente longitudinal de un campo 

electromagnético altamente enfocado no es simple y sigue siendo una tarea 

desafiante. En esta tesis, proponemos un método basado en un marco 

experimental y numérico para estimar y visualizar la componente longitudinal 

del campo utilizando un sistema de imágenes convencional. Lograr este 

objetivo requirió una vasta investigación en ingeniería de frente de onda y el 

diseño de un sistema óptico adecuado capaz de generar y detectar haces 

altamente enfocados. 

Para generar haces ópticos con intensidad arbitraria y distribución de fase, 

utilizamos un método rápido para caracterizar una pantalla de cristal líquido 

nemática basado en el interferómetro de Mach-Zehnder y el análisis de franjas 

en el dominio de Fourier. Luego aplicamos la técnica del holograma de doble 

píxel de Arrizón, que es capaz de generar hologramas en eje. Dado que este 

algoritmo de codificación requiere mucho tiempo, desarrollamos una técnica 

rápida para mapear hologramas de doble píxel utilizando el algoritmo de 

aprendizaje automático de los k vecinos más próximos, que permite generar 

hologramas de doble píxel en tiempo real. 

Finalmente, se ha presentado un método para estimar la aberración del frente de 

onda en el plano focal de un sistema de difracción vectorial. A diferencia de la 

fase, el estado de polarización se puede medir con facilidad. En este sentido, 

presentamos un enfoque alternativo para determinar la aberración del frente de 

onda utilizando información polarimétrica y redes neuronales convolucionales 

diseñadas para estimar los coeficientes de polinomios de Zernike. 
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1. Overview 

We have begun this PhD thesis with the title “Enhanced photonics techniques 

for device authentication and encryption” by focusing on two objectives as 

follows: 

1. Encryption methods in the axial domain 

2. Security and authentication using 3D optical codes 

Regarding objective 1, we used the visual encryption technique to encrypt 

character codes into two cipher-shares, in which each one obscured into the 

longitudinal component of a highly focused electromagnetic field. We applied 

the double-pixel hologram codification algorithm to design light beams. This 

approach is able to generate an on-axis computer-generated hologram into a 

low-resolution spatial light modulator. However, this approach demands an 

extensive search of the minimum Euclidean distance between desired complex 

values and the accessible ones according to the experimental modulation curve. 

We proposed an algorithm to map double-pixel holograms using the K-Nearest 

Neighbor classifier, which is 80 times faster than the conventional calculation. 

This method was orally presented at the 2021 OSA Imaging and Applied Optics 

Congress and published as “Fast Mapping of Double-Pixel Holograms using K-

Nearest Neighbors.” 

Based on this work, I was invited to contribute to writing the chapter titled 

“Beam implementation with a Translucent Twisted-Nematic Liquid Crystal 

Display” in the book titled “Holography- Recent Advances and Applications,” 

edited by Prof. Joseph Rosen.  

Besides, we developed a binary approach to encode character codes into 

holographic cells in order to synthesize optical beams appropriate for obscuring 

data into highly focused beams. This work was orally presented at the 

conference IONS Ireland 2021 titled “Encoding ASCII codes in an optical 

beam.”  

Finally, the propagation of the synthesized beams through a highly focusing 

system has been numerically simulated to provide the training dataset. 

Accordingly, we applied a convolutional neural network model to recover 

cipher shares at the focal plane. This project has been published in the Optics 

and Laser in Engineering journal with the title “Optical visual encryption using 

focused beams and convolutional neural network.” This proposed scheme can 
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be improved to reach a higher level of security by combining it with a photon-

counting model. We propose this be accomplished in future work. 

Also, in cooperation with other members of the Wavefront Engineering group, 

we developed an experimental and numerical approach using conventional 

optical and electro-optical devices in order to estimate and visualize the 

longitudinal component of a highly focused electromagnetic field. This 

approach also can be applied to encrypt data in the axial domain. This team-

working project has been published in the Scientific Reports journal titled 

“Experimental estimation of the longitudinal component of a highly focused 

electromagnetic field” with three equally contributed authors. This work 

involved several tasks for each participant, in which the implementation and 

design of the experiment was my task. 

Our published work proposed a relatively simple way to retrieve the 

longitudinal component of a tightly focused beam based on a phase retrieval 

framework that requires capturing polarimetric images at different planes in the 

focal area. Nevertheless, we did not consider the possible effects of aberrations 

introduced by the optical system on the results. In this regard, we have 

commenced developing an algorithm for instant detection of the longitudinal 

component considering the aberrated wavefronts using polarimetric information 

and neural networks. In the first step, we developed a numerical algorithm to 

estimate the Zernike polynomials coefficients using polarimetric mapping 

images and neural networks. This work has been orally presented at the V 

International Conference on Applications of Optics and Photonics- AOP2022, 

and it has been accepted to be published in the Journal of Physics: Conference 

Series. We hope to extend this work in the future for real-time reconstruction of 

the longitudinal component of highly focused beams.  

Regarding objective 2, to the best of our knowledge, we introduced 3D printer 

samples as 3D physical keys for the first time. Producing physical keys with 

unique microstructures and mechanical properties usually demands advanced 

technologies, which can be economically expensive. In contrast, we used a low-

cost 3D printer with conventional polylactic acid filament filled with metallic 

powder to produce 3D samples appropriate for polarimetric signature 

implementation. We investigated an interesting real-world scenario that shows 

how a single class of codes can be distinguished (authenticated) among a group 

of samples to be rejected. This classification was a difficult unbalanced problem 

since the number of polarimetric signatures that characterize the true class was 

small compared to the complete dataset. Each sample was characterized by 

analyzing the polarization state of the emerging light. We found high accuracy 

in recognizing the true class codes using the one-class support vector machine 
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classifier. This work has been published in the IEEE Photonics Journal with the 

title “Polarimetric identification of 3D-printed nanoparticle encoded optical 

codes.” 

The investigation of objective 1 encountered many interesting ideas that 

provided us to develop the application of our approach in the other research area 

(as mentioned above). One of the interesting topics that attracted my attention 

in this PhD thesis is the combination use of optical techniques and machine 

learning algorithms to find a solution for optics and photonics problems. This 

can be tracked based on the accomplished works in this thesis. We have mainly 

been dealing with pattern classifications, which mostly required techniques to 

obtain unique optical codes using polarimetric information. In this regard, we 

altered the title of this thesis, which specifically fulfills the purpose of this 

thesis. 

This thesis is organized as follows: 

The second section introduces a summary of the most relevant works to this 

thesis, accompanied by a short history of cryptography. Section 3 reviews the 

theory, basic techniques, and/ or algorithms applied in this thesis. The 

achievements in this thesis begin in section 4. An efficient approach to 

generating light beams with arbitrary intensity and phase distribution using 

twisted-nematic liquid crystals is described in section 4. Section 5 introduces a 

binary approach for encoding character codes into holographic cells. Section 6 

presents the experimental setup used in projects introduced in sections 6, 7, and 

8. Section 7 describes a method for estimating Zernike polynomials using 

polarimetric mapping images and neural networks. Sections 8 and 9 consist of 

the most relevant topics to the chosen title for this thesis. A novel technique is 

introduced in section 8, which can autodetect obscured information in a highly 

focused electromagnetic field. Section 9 describes a developed application of 

three-dimensional samples produced by a conventional 3D printer using a 

sensitive material to the polarization.  

 

 

 



4 

 

1.1. Publications 

1.1.1. Chapter books 

1) K. Ahmadi, “Beam implementation with a translucent twisted-nematic 

liquid crystal display,” P. J. Rosen (Ed.), “Holography- Recent Advances 

and Applications,” IntechOpen, Rijeka, 2022, Ch. 25. DOI: 

10.5772/intechopen.105671.  

 

1.1.2. Journal papers 

2) K. Ahmadi and A. Carnicer, “Optical visual encryption using focused 

beams and convolutional neural networks” Opt. Lasers Eng, 161, 107321 

(2023). 

3) D. Maluenda*, M. Aviñoá*, K. Ahmadi*, R. Martínez-Herrero, and A. 

Carnicer, “Experimental estimation of the longitudinal component of a 

highly focused electromagnetic field,” Sci Rep 11, 17992 (2021) [*Equally 

contributed authors].  

4) K. Ahmadi, P. Latorre-Carmona, B. Javidi, and A. Carnicer, “Polarimetric 

Identification of 3D-Printed Nano Particle Encoded Optical Codes,” IEEE 

Photonics, 12(3), 1-10 (2020).  

 

1.1.3. Conference papers 

5) K. Ahmadi, A. Carnicer, “Estimation of Zernike polynomials for a highly 

focused electromagnetic field using polarimetric mapping images and 

neural network,” in V International Conference on Applications of Optics 

and Photonics-AOP2022, Guimaraes, Portugal (accepted). 

6) K. Ahmadi, D. Maluenda, and A. Carnicer, “Fast mapping of Double-

Pixel Holograms using K-nearest Neighbors,” OSA Imaging and Applied 

Optics Congress [On-line], DW5E.7, 2021. 

7) K. Ahmadi, I. Juvells, A. Carnicer, “On how thick diffusers can contribute 

to the design of optical security systems,” Proc. SPIE 11207, Fourth 

International Conference on Applications of Optics and Photonics, Lisbon, 

Portugal, 112071H, 2019. 

 

1.2. Other contributions 

8) K. Ahmadi, “Encoding ASCII codes into an optical beam,” IONS Ireland 

2021 [On-line] (oral presentation). 

9) M. Aviñoá, D. Maluenda, K. Ahmadi, R. Martínez-Herrero, and A. 

Carnicer, “GUI-Based Phase Retrieval Algorithm for the Reconstruction of 

the Longitudinal Component of Electromagnetic Beams,” in V International 



5 

 

Conference on Applications of Optics and Photonics-AOP2022, Guimaraes, 

Portugal (poster presentation). 

10)  D. Maluenda, M. Aviñoá, K. Ahmadi, A. Carnicer, and R. Martínez-

Herrero, “On the total estimation of the electromagnetic field in the focal 

area with no interaction with the media,” in V International Conference on 

Applications of Optics and Photonics-AOP2022, Guimaraes, Portugal 

(keynote). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

2. Introduction 

Cryptography is the science of protecting sensitive information by applying a 

specific algorithm or/and generating keys that it has a long history. Despite the 

classic encryption methods such as Caesar’s encryption technique based on 

substitution cipher, the invention of electromechanical machines, such as the 

Enigma rotor machine used during World War II, enhanced encryption. In 

parallel to enhancing encryption methods, the so-called cryptoanalysis has 

developed the analyzing information system to break down the encryption 

algorithm. For instance, Al-Kindi invented the frequency analysis technique for 

breaking monoalphabetic substitution ciphers in the 9th century.   

In modern times, Encryption algorithms have become mature, using keys that 

can be the same (symmetric-key) or different (asymmetric-key) for ciphering 

and deciphering processes. We can name the Data Encryption Standard (DES) 

and Advanced Encryption Standard (AES) as two well-known digital 

encryption standard methods applying a symmetric key, developed from 1970 

to 2002. The main disadvantage of symmetric key algorithms is the necessity of 

a secure channel for exchanging the key between the communicating parties. In 

1976, Whitfield Diffie and Martin Hellman introduced a method of distributing 

cryptographic keys, which sparked asymmetric key algorithms. 

In contrast to the symmetric cryptography technique, the public-key 

cryptography or asymmetric cryptography technique uses a pair of keys, the so-

called public and private key, for ciphering and deciphering messages. Hence, 

authorized people who know the public key can encrypt a message, whereas the 

encrypted message can be decrypted just with the owner’s private key. The 

security level of this system depends on cryptographic algorithms used for 

generating the key pairs. Digital signatures for authentication purposes, key 

distribution, or a combination of both, for instance, the Rivest-Shamir-Adleman 

(RSA) algorithm, are some applications of the public-key algorithm. 

Generally speaking, humans have been trying to secure information by 

providing new encryption algorithms accompanied by developing the current 

ones, from the simplest encryption algorithm (Caesar’s encryption technique) 

to the high-advanced and currently used ones such as Transport Layer Security 

(TLS) and Secure Shell (SSH). In parallel, the vulnerability of the 

cryptosystems has been assessed and advanced by cryptanalytic methods [1]. 

Given the enormous increasing use of the Internet and the transfer of 

information in this digital era, it is crucial to focus on encryption and data 
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security. Although the main encryption algorithms belong to digital encryption 

algorithms, the technological advances in optics and photonics and their 

multiple applications have opened a new cryptosystem class. Many researchers 

have been urged to apply optics and photonics to encrypt information in the last 

decades. The use of optical techniques in security applications might be 

interesting because, on the one side, optical waveforms involve many complex 

degrees of freedom, such as polarization, amplitude, phase, large bandwidth, 

quantum properties of photons, and multiplexing that can be combined in many 

ways to produce high-security information systems. On the other side, optical 

techniques take advantage of high-speed, parallel, and multidimensional 

processing.  

In advance, optical processing and pattern recognition were developed for 

authentication purposes [2-7]. Then, in 1995, Réfrégier and Javidi proposed an 

optical image encryption method, the so-called Double Random Phase 

Encoding (DRPE) [8,9]. In the DRPE scheme, an image is encrypted into a 

complex-amplitude stationary white noise using two statistically independent 

random phase masks at the input and the Fourier plane of a 4f-imaging system. 

Although the proposed algorithm was relatively straightforward but sparked a 

new application of optical techniques for encryption systems, in which DRPE 

can be tracked in many publications [10-23]. Although the basic DRPE scheme 

demonstrated vulnerability against chosen-cyphertext attacks [24] and known-

plaintext attacks [25], several alternatives have been proposed to enhance the 

security level of the optical systems [26-29]. 

In general, the security level of the cryptosystem depends on the used key or 

keys, including the length, design, and randomness. In digital cryptography, 

keys are introduced based on mathematical algorithms. In contrast, in optical 

cryptosystems [30-32], designing a key is mainly based on the physical 

properties of optical processing, for instance, physical keys (such as diffusers), 

the state of polarization introduced by polarizers and retarders, modulation 

characteristics of spatial light modulators (SLMs), or combining digital 

algorithms with optical techniques [33-35].  

The phase distribution of light beams plays a significant role in optical security 

systems due to the disability of sensing by the human eye or recording by 

conventional cameras such as CCDs. For instance, phase encoding can be 

implemented with an optical system that works in the Fourier domain [8-10], 

the fractional Fourier domain [12-14], the Fresnel domain [15-17], or using 

graytor transform [18,19] which are belong to linear optical systems. Another 

interesting encryption technique that takes advantage of the phase property of 

lights is phase imaging or fully-phase encryption by transforming an amplitude-
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only image into a phase-only function [36-39] accompanied by techniques for 

converting phase imaging into an amplitude image or vice versa, for instance, 

phase retrieval algorithms [40-42] and phase-contrast method [43,44].   

Polarization is one of the reconfigurable properties of optical wave fields in 

which its different states specify the different geometric orientations of 

transverse wave oscillations. The polarization property of light attracts much 

attention in optical security systems due to its flexibility in the encryption key 

design and the encryption process [45-48]. Polarization-encoding systems often 

take advantage of recording intensities over phase-encoding systems. For 

instance, utilizing polarization in a phase-based optical encryption system for 

recording the decoded information with conventional intensity-sensitive 

detectors [49]. Since liquid crystal displays (LCDs) are polarization-sensitive 

devices, LCDs play a significant role in polarization encoding systems in which 

the dynamic generation of spatially variant polarized beams (vector beams) can 

be achieved [50-55]. Complex information can be encoded in transverse 

components of an electromagnetic field to introduce polarization masks as 

secret keys [56-61], or arbitrary data can be encoded in the longitudinal 

component of a highly focused and non-uniform polarized beam [62,63]. 

Besides, a technique for generating arbitrary 3D polarization orientation by 

superposition of a radially polarized beam and an azimuthally polarized beam 

applied to gold nanorods has been reported to provide an orientation-unlimited 

polarization encryption system with high security [64]. Regarding the 3D 

polarization key, the authors in [65] demonstrated the feasibility of 3D 

polarization multiplexing by optimizing a single vectorial beam using a 

multiple-signal window multiple-plane phase retrieval algorithm. Another 

exciting application of polarization encoding is implementing the logical XOR 

operation using LC-SLMs to encrypt binary images [66,67]. 

In 2016, Carnicer et al. proposed a numerical approach to encoding information 

in the longitudinal component of a highly focused beam [62,63]. Despite 

electromagnetic (EM) plane waves, the tightly convergent wavefront of light 

provided by propagating through a vectorial diffraction system, for instance, a 

high numerical aperture (NA) objective lens [68,69], demonstrates a non-zero 

contribution of the electric field in the direction of propagation. On one side, 

the longitudinal component cannot be recorded directly using a conventional 

imaging system [70, 71]. On the other side, the energy ratio between the 

longitudinal component and transverse ones of a focused EM field is variable 

from zero to even further than one, depending on the state of the input 

polarization and physical properties of the concentrated beam. Therefore, the 

selection of polarization of the input beam is a critical element in designing a 
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secure optical system based on highly focused fields. Due to the complexity of 

the experiments and the fact that the longitudinal component should be obtained 

by its lateral electric field, decoding the original data depends on the quality of 

retrieving the transverse parts of the electromagnetic field at the observed plane. 

The practically obtained results often suffer from the misalignment of optical 

elements, imperfection of polarizers/retarders, some aberrations such as 

spherical and distortion, and some errors caused by the coupled amplitude-

phase modulation. All mentioned errors challenge the decoding process. Since 

the proposed encoding approach has the same weakness as the DRPE approach, 

they enhanced the security of the system by applying the photon-counting 

model [72]. 

The photon-counting model is a nonlinear transformation that might overcome 

the vulnerability of linear optical systems. In photon-counting imaging systems, 

the number of photons reaching each pixel is limited by predefined incident 

photons [73]. Experimentally, the photon-limited images can be recorded by 

optical systems that work under low light conditions. Statistically, the photon-

limited images can be modeled by the Poisson distribution [74]. This approach 

is usually used to obtain a sparse representation of encrypted data for 

verification purposes [59].    

Regarding focused fields, we developed a practical method to estimate the 

longitudinal component of a highly focused beam using a conventional imaging 

system that might be applied to encrypt data in the axial domain. Furthermore, 

we introduced a novel approach for encoding and decoding data in the 

longitudinal component of a highly concentrated beam without the necessity of 

direct observation of the longitudinal component using a machine learning 

algorithm and polarimetric mapping images. 

One of the most used applications of optical security is related to verification 

and authentication. The validity of documents, messages, or products is crucial, 

particularly for commercial, industrial, and military organizations. Document 

signature is a powerful technique used to determine whether a message is 

tampered with or valid. For instance, using a specific nanoparticle material 

doped in inks for security printing [75] or attaching a phase-encoded label with 

the specifications of an integrated circuit to the microchip package [76]. Hence, 

the physical support used for identifying the encoded data plays a crucial role 

in optical authentication approaches [77]. Among different optical techniques 

for authentication purposes [31], we focused on those authentication schemes 

that use optically tagged security codes accompanied by machine learning 

algorithms to classify and verify the optical codes without the necessity of 

decoding ciphertexts [78-81]. 
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In [78], a quick response (QR) code was sandwiched between a combination of 

diffusers and glass slides to provide a 3D optical phase mask as physical 

support. Unique speckle patterns obtained by passing a laser beam through the 

3D optical phase mask were classified with statistical analysis and the random 

forest classifier.  

In [79], a QR code made of metal nanoparticles covered with a diffuser was 

proposed as polarization-sensitive physical support. Polarimetric-signature 

speckle noises were obtained by passing a linearly polarized laser beam with 

different polarization directions. A multi-class Support Vector Machine (SVM) 

algorithm accompanied by speckle patterns analysis successfully distinguished 

between verified and counterfeit samples.  

In [80], QR samples were fabricated by standard lithographic and deposition 

technologies on flat glass substrates using two different thin films. In thin-film 

technology, many parameters can be freely selected, such as materials, 

compositions, homogeneous films, anisotropic films, layer thickness, etc. [82], 

providing an excellent degree of freedom. Since thin-film structures display 

distinctive polarization signatures, unique polarimetric-encoded codes were 

obtained by illuminating samples with a polarized laser beam. The polarimetric 

codes were measured in imaging and non-imaging systems based on an 

ellipsometry setup able to measure the Mueller matrix [83]. Particularly, in the 

more complicated situation, polarimetric-encoded codes were obtained using a 

linearly polarized beam passing through a phase-encoded anisotropic film in a 

non-imaging system. The Stokes vectors related to different directions of 

linearly polarized beams reflected from samples were recorded as a dataset to 

feed the K-Nearest Neighbors (KNN) classifier [84]. Even though the encoded 

information was not accessible because of converting to noise distributions, the 

KNN machine learning algorithm could still authenticate polarimetric codes. 

Besides, a similar approach has been implemented to authenticate 

pharmaceutical tablets produced with film-coated gold nanoparticles (AuNP). 

Since these coated tablets included unique polarimetric signatures, an 

ellipsometric optical technique accompanied by a machine learning technique 

successfully distinguished false and authentic ones [81].  

As explained above, the combination of polarimetric signatures, specific 

materials, and machine learning algorithms can distinguish among different 

samples even in a highly complex scenario. Very often, the number of samples 

might be restricted due to the production costs associated with these types of 

technologies. Hence, in this thesis, we developed an intelligent authentication 

system using commercially accessible materials produced with low-cost 

technology. 
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As defined in [85], machine learning is the technique that improves system 

performance by learning from experience via computational methods. In 

computer systems, experience exists in the form of data, and the main task of 

machine learning is to develop learning algorithms that build models from data. 

By feeding the learning algorithm with experience data, we obtain a model that 

can make predictions on new observations. In other words, machine learning is 

a subfield of artificial intelligence that involves developing self-learning 

algorithms to gain knowledge from that information to make predictions. 

Instead of requiring humans to manually derive rules and build models from 

analyzing large amounts of data, machine learning offers a more efficient 

alternative for capturing the knowledge in data to gradually improve the 

performance of predictive models and make data-driven decisions [86]. 

Classical machine learning algorithms can be mainly divided into three types:  

• Supervised learning: to learn a model from labeled training data to predict 

the label of unseen or future data 

• Unsupervised learning: to explore the structure of unlabeled input data to 

extract meaningful information resulting in grouping or clustering of data 

points 

• Reinforcement learning: to develop a system that improves its performance 

based on interactions with an environment 

Classification techniques are a subcategory of supervised learning to predict the 

categorical class labels of new observations based on the predefined-labeled 

training dataset. 

Deep learning is a subfield of machine learning that has recently become 

prominent. Deep learning-based algorithms involve the use of concepts from 

representation learning where various demonstrations of the data are learned in 

different layers that also aid automated feature extraction in contrast to classical 

machine learning algorithms, in which vector features must be extracted by 

applicants using statistical, mathematical, and data mining techniques. As a 

result, deep learning algorithms make machines more intelligent [87]. 

As mentioned previously, machine learning techniques can be applied in optical 

security systems to classify and distinguish authentic and counterfeit samples 

[78-81]. Besides, the use of machine-learning techniques to attack or evaluate 

the security of the current cryptosystems has been reported [88-92]. 

Particularly, recent advances in deep learning have given rise to applying deep 

learning algorithms in many optical techniques. For instance, applying deep 

learning in holography and coherent imaging [93-97], wavefront sensing [98, 
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99], fringe pattern analysis [100], fringe projection profilometry [101], phase 

unwrapping [102], phase retrieval [103-108], lensless computational imaging 

[109]. In this regard, we used machine learning algorithms to build an intelligent 

optical security system. 

The final issue that we discuss here is the secret sharing technique. The secret 

sharing technique is one of the cryptography techniques proposed by Shamir 

and Bakley independently in 1979 [110,111]. The concept of secret sharing is 

to split a secret into n shares ( 2n  ) in which the secret can only be decoded 

when all n-shares are accessible, and any 1n−  shares unmask no information 

about the secret. In 1989, Desmedt and Frankel developed the basis of secret 

sharing by introducing threshold cryptography [112]. In threshold cryptography 

scheme ( ,t n ), a secret is shared with n shareholders but can only be decrypted 

by the threshold number of legitimate users, t ( t n ). In this case, if one or a 

couple of shareholders is not accessible, still the secret can be decoded by a 

specific number of legitimate users. Furthermore, the visual secret sharing 

scheme was proposed by Naor and Shamir in 1994 [113]. The proposed method 

is one of the well-known techniques among visual cryptography techniques. 

The visual cryptography technique encrypts the visual information, for instance, 

images, plaintext, etc., in a way that the decoded information appears as a visual 

image. In this technique, an image is broken up into n image shares ( 2n  ), and 

none of them unmask any information about the original image.   

The basic mathematical algorithm used in secret sharing is the Lagrange 

interpolation theorem which is computationally complex. Since optical 

techniques take advantage of high-speed, parallel processing, and 

multidimensional processing, the concept of secret sharing has been used in 

optical encoding techniques [114-122]. For example, a secret image was 

encoded (shared) into three statistically independent phase-only masks using an 

iterative phase retrieval algorithm based on the propagation of a laser beam in 

the Fresnel domain, without any complicated mathematical operations. Among 

three phase-encoded masks, the existence of two of them was an essential tool 

to reveal the secret image at a specific propagation distance. At the same time, 

a single one unmasked the secret image [114].    
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3. Review of basic concepts 

3.1. Polarization optics 

In paraxial optics, beams are approximately transverse electromagnetic waves 

(TEM) in which their electric-field vectors lie approximately in transverse 

planes (the plane perpendicular to the optical axis) and have negligible axial 

components. Hence, the optical field consists of only two orthogonal 

components in the plane transverse to the direction of propagation. The electric 

field of the EM field propagating in free space can be obtained by Maxwell’s 

equation [123]  

2
2

2 2

1
0

c t

 
− = 

 
E ,                                                                                   (3.1-1) 

where 2
  is the Laplacian operator, t  is the time, and c  is the speed of light. 

The plane wave of Eq. (3.1-1) describes the electric field components as 

follows: 

0( , ) cos( )x x x
t tE E  = −  +r k r ,                                                              (3.1-2a) 

0( , ) cos( )y y y
t tE E  = −  +r k r ,                                                             (3.1-2b) 

Where k  is the vector that shows the direction of propagation, r  is the radius 

vector to a point in the field from the origin of the coordinate system as shown 

in Fig. (3.1.1a),   is the angular frequency, 0xE  and 0 yE  are the maximum 

amplitudes, and 
x  and y  are arbitrary phases. For a plane wave traveling in 

the z-direction, the electric field lies in the x-y plane, as shown in Fig. (3.1.1b). 

Correspondingly, Eqs. (3.1-2) can be rewritten as 

0( , ) cos( )x x x
z t t kzE E  = − + ,                                                                (3.1-3a)

0( , ) cos( )y y y
z t t kzE E  = − + ,                                                                (3.1-3b) 

where 2k  =  is the wave number. The components ( , )x z tE and ( , )y z tE  are 

sinusoidal oscillations in the x-z and y-z planes, which describe the polarization 

of light, respectively. Regardless of the time-space propagator t kz − , Eqs. 

(3.1-3) lead to the equation of an ellipse as follows: 

22

2

2 2
0 0 0 0

2 ( , ) ( , )( , )( , )
cos sin

y x yx

x y x y

z t z tz tz t E E EE

E E E E
 + − = ,     x y

  = − .       (3.1-4) 

This equation describes the polarization ellipse because it refers to polarized 

light. In general, the electric field of a TEM field can be written as follows: 
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ˆ ˆ( , ) ( , )X ( , )Yx yz t z t z tE E= +E ,                                                                  (3.1-5) 

in which the endpoint of the vector ( , )z tE describes the polarization of the beam 

(wave) at each position z as a function of time.  

 

 

 

 

 

 

 

 

 

Fig. 3.1.1. (a) Propagation of a transverse electromagnetic wave. The wavefronts of the 

paraxial field are exaggerated for illustration purposes. The electric field components lie in a 

plane (gray plane) tangential to the wavefront at the position r (b) Propagation of a plane 

wave in the z-direction. Own sketch extracted from [123,124]. 

 

The state of polarization of the wave is determined by the orientation and shape 

of the polarization ellipse, which is expressed by the orientation angle ψ  and 

the ellipticity angle χ , as shown in Fig. (3.1-2). The relationship between these 

angles and the parameters of the polarization ellipse is given by 

0 0

2 2
0 0

2
tan 2ψ cos

x y

x y

E E

E E
=

−
,         0 ψ                                                    (3.1-6a) 

0 0

2 2
0 0

2
sin 2χ sin

x y

x y

E E

E E
=

+
,    4 χ 4 −   .                                            (3.1-6b) 

Moreover, the size of the ellipse is determined by the intensity of the wave equal 

to 2 2
0 0x yE E+ . In general, the optical field is elliptically polarized, as shown in 

Fig. (3.1.2), but there are several combinations of amplitude and phase that are 

especially important. If 0 0xE = , the light is linearly polarized in the y- direction 

( LPY ). If 0 0yE = , the light is linearly polarized in the x-direction ( LPX ). If 
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0 =  or  = , the wave still is linearly polarized in which the plane of 

polarization is rotated as 0 0arctan( )y xE E  with respect to the x-axis (the +  

and −  signs correspond to 0 =  and  = , respectively). In particular, if 

0 0 0x yE E E= =  and 0 =  or  = , the plane of polarization makes an angle 

45º  with the x-axis denoted by LP 45 . If 2 =  and 0 0 0x yE E E= = , the 

wave is right circularly polarized (correspond to 2 = ) or left circularly 

polarized ( correspond to 2 = − ) denoted by RCP and LCP, respectively. 

The right and left correspond to clockwise and counterclockwise rotation of the 

electric field when viewed from the direction toward which the wave is 

propagating in the z-direction, respectively. 

 

 

 

 

 

 

 

 

 

Fig. 3.1.2. Polarization ellipse configuration. Own sketch extracted from [123,124]. 

 

The state of polarization of a light wave can be visualized by means of the 

polarization ellipse. However, practically is not easy to determine the 

orientation and ellipticity angles regarding the polarization ellipse. Another 

alternative is what Poincaré proposed in 1892. He defined a sphere, the so-called 

Poincaré sphere, that is a geometrical construct in which the state of polarization 

is presented by a point on the surface of a sphere of unit radius, as sketched in 

Fig. (3.1.3).  
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Fig. 3.1.3. The poincaré sphere representation. X, Y, and Z are Cartesian coordinate axes, ψ

and χ  are the spherical orientation and ellipticity angles, respectively, and P is a point on the 

surface. Own sketch extracted from [123,124]. 

 

The Cartesian coordinates are related to the spherical coordinates as 

cos(2χ)cos(2ψ)x = , cos(2χ)sin(2ψ)y = , sin(2χ)z =  in which 
22 2 1yx z+ + = . 

In this representation, any polarization state can be obtained by the coordinate 

pair (2ψ,2χ) . For instance, LPX corresponds to (0º, 0º), LPY corresponds to 

(180º, 0º), LP+45 corresponds to (90º, 0º), LP-45 corresponds to (270º, 0º), RCP 

corresponds to (0º, 90º), and LCP corresponds to (0º, -90º), as shown in Fig. 

(3.1.4). However, the measurable parameter of a wave is intensity, whereas the 

angle pair (2ψ,2χ) does not contain any information about the intensity. To 

overcome this limitation, Stokes introduced a set of four quantities: 0S , 1S , 2S

and 4S , which are real numbers and measurable, the so-called Stokes 

polarization parameters. These parameters can be obtained by taking a time 

average of the polarization ellipse (Eq. (3.1-5)). The time average is defined as

0

1
( , ) ( , ) lim ( , ) ( , )

T

i j i j
T

z t z t z t z t dtE E E E
T→

=  , where , ,i j x y=  and  T  is the total 

averaging time. Subsequently, the Stokes parameters are defined as follows: 



17 

 

2 2
0 00 x yS E E= + ,                                                                                         (3.1-7a)

2 2
0 01 x yS E E= − ,                                                                                          (3.1-7b)

0 02 2 cosx yS E E = ,                                                                                   (3.1-7c)

0 03 2 sinx yS E E = ,                                                                                   (3.1-7d) 

where 2 2 2 2
0 1 2 3S S S S= + + . In addition, by eliminating the time-space propagator 

( t kz − ) in Eqs. (3.1-3), the Stokes parameter can be presented in complex 

notation as follows: 

* *
0 x x y yS E E E E= + ,                                                                                    (3.1-8a)

* *
1 x x y yS E E E E= − ,                                                                                    (3.1-8b)

* *
2 x y y xS E E E E= + ,                                                                                    (3.1-8c)

* *
3 )( y y xxj ES E E E= − ,                                                                               (3.1-8d) 

where the components of the electric field are defined as 0( ) exp( )x x x
t jE E =  

and 0( ) exp( )y y y
t jE E = . Also, the relationship between the Stokes parameters 

and the orientation and ellipticity angles regarding the Poincaré sphere is 

defined as 

1 0 cos(2χ)cos(2ψ)S S = ,                                                                          (3.1-9a)

2 0 cos(2χ)sin(2ψ)S S = ,                                                                          (3.1-9b)

3 0 sin(2χ)S S = ,                                                                                        (3.1-9c) 

and subsequently, the orientation and ellipticity angles can be obtained by the 

Stokes parameters as follows: 

2

1

3

0

1
ψ arctan( ) 0 ψ

2

1
χ arcsin( ) χ

2 4 4

S

S

S

S



 

=  

= −  

 .                                                              (3.1-10) 

Therefore, the Cartesian coordinates of the Poincaré sphere can be defined by 

the Stokes parameters such as 1 0 2 0 3 0( , , ) ( , , )x y z S S S S S S= . The Stokes 

vector ( S ) containing the Stokes parameters as a column matrix completely 

defines the intensity and the state of polarization of a light wave. For instance,  
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0

1

S

 
 
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 
 
− 

S  are the Stokes vectors correspond to LPX, LPY, LP+45, 

LP-45, RCP, and LCP, respectively. The position of the mentioned states of 

polarization on the Poincaré sphere is shown in Fig. (3.1.4).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1.4. Points on the Poincaré sphere represent LPX, LPY, LP+45, LP-45, RCP, and LCP. 

Own sketch extracted from [123,124]. 

 

Note that unpolarized and partially polarized light can also be described using 

the Stokes parameters. However, unpolarized or partially polarized lights are 

beyond the scope of this thesis. As previously mentioned, the Stokes parameters 

are real and measurable with an intensity detector, for instance, a CCD camera. 

In practice, the four Stokes parameters can be obtained using a wave retarder 

and a linear polarizer. Figure (3.1.5) demonstrates the experimental setup for 

obtaining the Stokes parameters. 
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Fig. 3.1.5. The optical setup for measuring the Stokes parameters. The blue arrows 

demonstrate the transmission axis of the linear polarizer and the axes of the wave plate. Own 

sketch extracted from [123] 

 

The beam passing through the wave plate experiences a phase shift   between 

the orthogonal components. This phase shift depends on the applied wave plate, 

for instance, for a quarter wave plate (QWP) 2 = . The linear polarizer 

transmits the resultant field along its transmission axis at angle 2 with respect 

to the x-axis, and the intensity ( , )I    on the CCD (or any intensity detector) is 

given by 

0 1 2 3

1
( , ) [ cos 2 sin 2 cos sin 2 sin ]

2
I S S S S      = + + − ,                   (3.1-11) 

where 2 1  = − . In order to obtain the Stokes parameters 0S , 1S , and 2S  we 

remove the wave plate and place the transmission axis of the linear polarizer at 

0º = , 45º = , 90º = , and 135º =  to measure (0,0)I , (45,0)I , (90,0)I

, and (135,0)I . Moreover, to obtain the Stokes parameter 3S , we place the 

QWP and fix the axis of the linear polarizer at 2 0º = . In this situation, by 

rotating the fast axis of the QWP to 1 45º =  and 1 135º =  the intensities

(45,90)I and (135,90)I  can be obtained. Regarding Eq. (3.1-11) and measured 

intensities, the Stokes polarization parameters of the incident beam are given by 

0 (0,0) (90,0)I IS = + ,                                                                              (3.1-12a)

1 (0,0) (90,0)I IS = − ,                                                                              (3.1-12b)

2 (45,0) (135,0)I IS = − ,                                                                          (3.1-12c)

3 (45,90) (135,90)I IS = − .                                                                      (3.1-12d) 
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In this thesis, Stokes images have been experimentally obtained by the optical 

setup sketched in Fig. (3.1.5) and Eqs. (3.1-12).  

So far, we have considered three equivalent representations for describing the 

state of polarization of an optical field: the polarization ellipse, Poincaré sphere, 

and the Stokes vector. Another alternative for this purpose has been introduced 

by the Jones vector [124]. However, the Jones formulation is restricted to 

describing only completely polarized light, which fulfills the purpose of this 

thesis. In the Jones matrix description, the transverse components of an electric 

filed vector are defined as a matrix consisting of two rows and a column given 

by  

0

0

=
xx x

y yy

jeE E

jE eE





  
 = 
    

J .                                                                              (3.1-13) 

Subsequently, the intensity can be obtained by the inner product as follows:

( )†I=
x

x y x x y y

y

E
E E E E E E

E

   
 

 = = + 
 

JJ ,                                                (3.1-14) 

where †  is the conjugate transpose. 

By normalizing the intensity to one, the Jones vectors (matrix) for special 

polarization states are LPX

1
J

0

 
=  
 

, LPY

0
J

1

 
=  
 

 , LP 45

11
J

12
+

 
=  

 
, 

LP-45

11
J

12

 
=  

− 
, RCP

11
J

2 j

 
=  

 
, and LCP

11
J

2 j

 
=  

− 
. 

An arbitrary Jones vector J  can be obtained by the superposition of two 

orthogonal Jones vectors, say 1J and 2J , in which 1 2a b= +J J J  , where a  and 

b can be obtained by 1a = J J  and 2b = J J . For instance, an elliptically 

polarized light can be obtained by the superposition of two orthogonal 

oscillations of an electric field with arbitrary amplitude and phase as follows: 

0

0 0

0

1 0

0 1

xx
x yx y

yy

jeEj je eE E
jeE


 



    
 = + =          

J .                                         (3.1-15) 

The polarizing elements or polarization devices can be described by 2 2  Jones 

matrices. Subsequently, if the input and output waves are presented by Jones 

vectors inpJ and outJ , respectively, the Jones matrix T  which describes the 

optical system is given by 
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out inp= TJ J , 
11 12

21 22

t t

t t

 
=  
 

T ,                                                                      (3.1-16) 

where  11t , 12t , 21t , and 22t  are constants characterizing the device. All linear 

optical polarization devices obey Eq. (3.1-16). A linear polarizer with a 

transmission axis in x- and y-direction are represented by the Jones matrices 

LPX

1 0

0 0

 
=  
 

T  and LPY

0 0

0 1

 
=  
 

T , respectively. The Jones matrix for a wave 

retarder with its fast axis along the x-direction is WP

1 0

0 j
e
− 

 
=  
 

T  , which 

transforms a wave with field components ( 1xE , 1yE ) into another with 

components ( 1xE ,
1

j
xEe

−  ) by imposing a phase delay ( ) between y and x 

components. In particular, for a quarter-wave retarder 2 = , and for a half-

wave retarder  = . Another optical polarization devices which are mostly 

used in optical setups are polarization rotators. Despite the wave retarders, the 

polarization rotators keep the state of polarization of the input beam but rotate 

their polarization plane by a particular angle. The Jones matrix for a rotator is 

RT

cos sin
( )

sin cos

 


 

 
=  

− 
T . In addition, for a rotated polarizing element, the 

Jones matrix is given by 

RT RT( ) ( ) ( )  = −T TT T .                                                                          (3.1-17) 

As a result, a linear polarizer with a transmission axis rotated by   with respect 

to the x-axis is obtained as follows: 

2

LPθ 2

cos sin cos
( )

sin cos sin

  


  

 
=  
 

T .                                                         (3.1-18) 

Finally, the effect of cascaded optical devices on polarized light is determined 

by using matrix multiplication formulas, in which a system represented by the 

Jones matrix 1T  followed by another represented by the Jones matrix 2T  can be 

present as a single device characterized by the product matrix 2 1=T T T . In this 

thesis, linear polarizers and quarter wave-plates are simulated based on the 

Jones matrix representation.  
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3.2. Beams in the focal domain: Application to the optical 

encryption 

3.2.1. Fast calculation of the electromagnetic field in the focal domain 

In this subsection, we review a flexible implementation of the Debye integral 

incorporating the effects of the amplitude, phase, and polarization in an overall 

manner, which takes advantage of rapid numerical evaluation for calculating 

the amplitude, phase, and polarization of an EM field distribution generated by 

a high NA microscope objective (MO), which was proposed by Leutenegger et 

al. [125]. They evaluated the vectorial Debye diffraction integral [126] with the 

fast Fourier transform for calculating the EM field in the entire focal region 

instead of direct integration [127,128]. 

 

Fig. 3.2.1. The highly focused beam configuration. 

 

To go through the basic formalism based on the Deby diffraction integral and 

the formulation of this integral as a Fourier transform, consider the basic optical 

layout and the respective coordinate systems as shown in Fig. (3.2.1). We 

assume this imaging system obeys Abbe’s sine condition. In addition, we 

assume that a coherent plane wave in parallel to the optical axis crosses the 

entrance pupil passing through the objective lens and is refracted at the exit 

pupil and correspondingly focused at the focal plane. The spherical surface at 

the exit pupil is centered at the focal point (F), and the deflection angle   at the 

position P is given by 
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sin
r NA

R n
 = , and   0sinNA n = ,                                                            (3.2-1) 

where r , R , 0 , and n  are the off-axis coordinate of the incident wave, the 

radius of the entrance pupil, the semi-aperture angle, and the refractive index, 

respectively. Here, we consider the propagation of the electric field in the free 

space resulting in 1n = . In Debye approximation, the transmitted EM field at 

the Gaussian sphere (the spherical surface at the exit pupil) ( , )r E  is the plane 

wave spectrum of the focused field ( , , )x y zE  near the focal point. Therefore, 

the electric field in the focal region is defined by integrating the propagated 

plane waves as follows: 

2 2 2

1( )( , , ) ( , )
2

( )

z x y
x y

z

x y

if j z x yk k kx y z e dk dk
k

k k k

 



− −= −

+ 

E E ,     (3.2-2) 

where   

( ) ( ) ( ) ( )1 1 22
( , ) cos . . ,i

inc inc     
 
 
 

 = +E e e e eE E .                                    (3.2-3) 

In Eq. (3.2-2), f  is the focal length. Besides, the wave vector ( , , )x y zk k kk  in 

the spherical coordinates ( , ) is given by 

cos sin

( , ) sin sin

cos

k

 

   



− 
 

= − 
 
 

k     where  
2

k



= .                                            (3.2-4) 

The integral in Eq. (3.2-2) is limited to an area where evanescent fields are not 

included. In Eq. (3.2-3), incE  is the incident field, in which ( , , 0)E Einc ix iy=E ,

1e  and 2e are unit vectors in the radial and azimuthal directions, and 2e  is the 

projection of 2
i

e on the convergent wavefront surface, as shown in Fig. (3.2.1). 

The relationship between unit vectors 1e , 2e  and 2
i

e , and the Cartesian unit 

vectors xe , ye and ze can be obtained by the following formulas: 

( )1 sin cosx y  = − +e e e ,                                                                       (3.2-5a) 

( )2 cos sini
x y  = +e e e ,                                                                         (3.2-5b) 

( )2 , sin sin sin cos sinx y z      = + +e e e e .                                        (3.2-5c) 

Moreover, the wavefront vector is given by 
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( ), , sin cos sin sin cosx y z       = = + −s e e e .                                  (3.2-6) 

A direct numerical integration considering the coordinate transforms results in 

the Richard-Wolf integral representation [163,164]. However, Eq. (3.2-2) can 

be rewritten as a Fourier transform by splitting the phase factor into a lateral 

and an axial term. Hence, Eq. (3.2-1) can be rewritten as follows: 

2

2 2 2

( )( , , ) ( ( , ) cos )
4

( )

x yz
x y

x y

jf j x yj z k kkx y z ee dk dk

k k k


  




− += −

+ 

E E , 

which finally results in  

2
( , , ) FT[ ( , ) cos ]

4
z

jf j zkx y z e


  


= − E E ,                                            (3.2-7) 

where FT stands for the Fourier transform operation. Note that the electric field 

at the focal plane is ( , ,0).x yE  The numerical results related to highly focused 

beams obtained in this Ph.D. thesis are based on calculating Eq. (3.2-7).  

 

3.2.2. Optical encryption in the axial domain 

In 2016, Carnicer et al. proposed an optical cryptosystem based on using 

properties of highly focused beams in addition to the DRPE scheme and a 

quantum imaging technique [62]. However, their approach is based on a 

numerical framework that practically requires an algorithm to retrieve the 

longitudinal component to decode the cipher data. Despite the paraxial waves, 

a tightly focused EM field demonstrates a non-negligible amount of energy in 

the direction of propagation in the depth of focus, in which, in some situations, 

this distribution of the energy is compromised with the distribution of intensity 

in the lateral directions. Very often, the longitudinal components of highly 

convergent vector beams are weak and completely embedded by their 

transverse components. Besides, it is not possible to isolate the irradiance of the 

longitudinal component using well-known optical techniques, for instance, 

digital holography or utilizing polarizers. Hence, the unique properties of highly 

focused beams might be an appropriate tool for hiding and/or securing 

information. 

Regarding Eq. (3.2-7), the EM field at the focal plane ( 0z = ) can be rewritten 

in a compact form as follows: 
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( ), ,0 FT
cos

fx y 


 
=  

 

E
E ,                                                                          (3.2-8) 

where the subindex f  indicates that spatial frequencies are scaled 

accordingly, and the constant value in Eq. (3.2-7) is eliminated for the sake of 

simplicity. By substituting Eq. (3.2-5) in Eq. (3.2-3), the longitudinal 

component at the exit pupil can be obtained as follows:  

cos ( cos sin )sinz ix iyE E    = +E ,                                                    (3.2-9) 

considering the input field as ( , ,0)E Einc ix iy=E . Using Eq. (3.2-9) and Eq. (3.2-

8) gives a tool to relate the longitudinal component zE  of the focused field at 

the focal plane with the transverse components of the input beam at the entrance 

pupil as follows: 

 1cos
cos sin FT

sin
ix iy f zE E E


 


−+ = ,                                                   (3.2-10) 

where 1
FT

−  indicates the inverse Fourier transform. Taking Eq. (3.2-10) into 

account, the phase and amplitude distribution of the z-component at the focal 

plane strongly depend on the phase and amplitude distribution of the transverse 

components of the plane wave at the entrance pupil. Besides, the transverse 

components at the entrance pupil are related to each other based on the state of 

polarization. Hence, information can be encoded in zE , which the selection of 

the polarization at the entrance pupil plays a significant role in designing an 

optical cryptosystem based on a highly focused beam [63]. Since the z-

component can not be visualized directly by conventional optical means, zE  

can be an appropriate container for encoding data. However, zE  can be 

obtained numerically through Gauss’s theorem. 

3.2.2.1. Obtaining the longitudinal component of an EM field from its 

transverse components 

The EM field in free space must satisfy Maxwell’s Equations, specifically, the 

Gauss’ theorem 

( ) 0 =E r ,                                                                                              (3.2-11) 

where ( )E r  is the electric field, and r is the position vector. Since here we 

consider quasi-monochromatic waves, the time dependence is dropped. 

Regarding plane waves, Gauss’ theorem satisfies the transverse condition for 

the EM field. In other words, the polarization direction of the beam is 

perpendicular to the direction of propagation. Note that non-homogeneous 

fields can be considered as a composition of a set of plane waves propagating 
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in different directions. As a consequence, we cannot strictly talk about the 

transverse waves due to the direction of propagation is not perfectly defined. 

Without loss of generality, the EM field ( )E r propagating alongside a reference 

axis, say the z-axis, can be split into transverse and longitudinal components as 

follows: 

( ) ( ) ( )z zE⊥= +E r r r eE ,                                                                              (3.2-11) 

where ( )r⊥E and ( )z rE are the transverse and parallel components to the z-axis, 

respectively, and ze  is the unit vector in the direction of the z-axis. By 

substituting Eq. (3.2-11) into Eq. (3.2-10), the following identity is obtained as  

( )
( ) 0z rE
r

z
⊥⊥


 + =


E ,                                                                           (3.2-12) 

with x y
x y

⊥

 
= +

 
e e  and xe , ye , ze  is an orthogonal triad of unit vectors. 

Hence, each component of the EM field can be considered as a superposition of 

plane waves (for more details, see section 3.2.1) as follows: 

2

2

2

2

1 .ˆ( ) ( ; )
4

1 .ˆ( ) ( ; )
4

z z

jz e d k

jz z e d kE E





⊥
⊥ ⊥ ⊥⊥

+

⊥
⊥ ⊥

+
 =

 −



=
 −





rkrE kE

rkk

,                                                    (3.2-13) 

where ( , )x yk k⊥ =k  and zk are the transverse and longitudinal wave-vectors, 

respectively, satisfying 
2 22

zk k⊥= +k : 

2 2 2 2

2 2 2 2

z

z

k k k k k

jk k k k k

⊥ ⊥

⊥ ⊥

 = − 


= − 

.                                                                         (3.2-14)

ˆ ( ; )z⊥⊥ kE , ˆ ( ; )
z

zE ⊥k  are the plane wave spectra of the transverse and 

longitudinal components, respectively. By substituting Eq. (3.2-13) in Eq. (3.2-

12), the following equality is obtained 

ˆ ( ; )
ˆ ( ; ) 0z

z
j z

z

⊥

⊥ ⊥⊥

 + =


kE
k kE .                                                               (3.2-15) 

By considering waves propagating through free space, each Cartesian 

component satisfies its own Helmholtz equation, 
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2 2( ) ( ) 0i ik+ = r rE E ,                                                                               (3.2-16) 

where , ,i x y z= . Using the decomposition into plane waves of Eq. (3.2-13) in 

the Helmholtz equation (Eq. (3.2-16)) gives 

2

2

2

ˆ ( ; )
ˆ ( ; ) 0i

z i

z
zk

z

⊥

⊥


+ =



kE
kE ,                                                                    (3.2-17) 

with the general solution  

ˆ ˆ( ; ) ( ; 0)exp( )zi i
z z j zk⊥ ⊥= =k kE E .                                                          (3.2-18) 

Introducing Eq. (3.2-18) into Eq. (3.2-15) gives 

( ; 0)
ˆ ( ; 0)

z

z

z
z

k

⊥ ⊥ ⊥
⊥

 =
= = −

k E k
kE .                                                          (3.2-19) 

Finally, the longitudinal component in real space is just the inverse Fourier 

Transform of this spectrum, multiplied by the complex factor exp( )zj zk  

2 2

2

2

ˆ ( ; 0)1
( )

4
z

z

zk k

zk j z jke e d kE
k

⊥

⊥ ⊥⊥ ⊥
⊥



 = = − 
k E rkr .                               (3.2-20) 

As a result, the longitudinal component of the EM field can be written in terms 

of just the transverse component, up to a unimodular complex factor.  

3.2.2.2 Optical encryption process 

The proposed encryption algorithm is explained as follows: Let t be a plain text 

to be encrypted, 1RPM   and 2RPM  two random phase masks to perform the 

DRPE scheme. Hence, the encrypted beam reached the entrance pupil is 

 2 1tRPM FT RPMf . Then, the signal is encoded in the longitudinal 

component, that is,  2 1tFT RPM FT RPMz f fE   =   . Correspondingly, the 

transverse components of the EM field are encoded as follows [ see Eq. (3.2-

10)]:  

2 1

cos
cos sin tRPM FT RPM

sin
e e
ix iy fE E 


 


  + = ,                            (3.2-21) 

where uppercase e indicates the encoded components. Note that the transverse 

components at the entrance pupil should be appropriately synthesized to encode 

information in the z-component of a highly focused EM field. Since the 

transverse components at the entrance pupil are related to each other regarding 

the state of polarization, the selection of polarization gives a degree of freedom 

to manipulate the performance of the encryption system. For instance, if the 
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input beam is circularly polarized ( )0 0
, ,0

ee
inc jEE=E , the synthesized-encoded 

EM field at the entrance pupil will be 

0 2 1

cos
exp( ) tRPM FT RPM

sin
e

fjE 





  = − ,                                      (3.2-22) 

where 0 0
e e

xE E=  and 0 0

ee
y jEE = . If the input beam is radially polarized 

( )0 0cos sin, ,0e e
inc E E =E , the synthesized-encoded EM field at the entrance 

pupil will be 

0 2 1

cos
tRPM FT RPM

sin
e

fE 




  = ,                                                        (3.2-23) 

where 0 0 cose e
xE E =  and 0 0sine e

yE E = . 

Since the longitudinal component at the focal plane can not be obtained 

experimentally with direct observation, the encoded information in the z-

component should be obtained numerically from the transverse components at 

the focal plane, as explained in subsection 3.2.2.1. At the focal plane ( 0z = ), 

Eq. (3.2-20) can be rewritten based on the Fourier transform as follows: 

 1 1

22

( , ,0) ( , ,0)FT FT
( , ,0) FT

1

f x f y

z f

x y x yE E
x yE

 



 



− − +    =
 − − 

,               (3.2-24) 

with considering 221 = − − −  ( and  are defined in Eq. (3.2-6)). In this 

regard, the relationship between the encoded transverse component at the 

entrance pupil and the transverse components at the focal plane is derived using 

Eqs. (3.2-3), (3.2-5), and (3.2-8) as follows:

2 2
00

1
( , ,0) ( cos ) sin cos (1 cos ))( sin cos = FT

cos

ee e
x f yx

x y EE E      


 
+ − − 

 
     

                                                                                                               (3.2-25a)

2 2
0 0

1
( , ,0) ( sin cos (cos 1) ( cos ))cos sinFT

cos

e e e
y f x yx yE E E      



 
= − + + 

 
.                                                                                                                                                                                                                                                         

                                                                                                               (3.2-25b) 

Finally, by substituting Eqs. (3.2-25) into Eq. (3.2-24), the encrypted plain text 

can be decoded as follows: 
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1 1

1 *
2

( , ,0) ( , ,0)FT FT
FT RPM

221

e e
f x f y

f

x y x yE E
t

 



 



− −

−

 +       =
 

− − 

.                (3.2-26) 

Although the intensity pattern of the transverse components, ( , ,0)e
x x yE  and

( , ,0)e
y x yE , can easily be recorded by a CCD camera, obtaining their phase 

distributions requires proper techniques such as phase retrieval algorithms or 

digital holography. 

Note that information that reaches the entrance pupil is encoded by means of 

the DRPE approach, and cipher data is obscured into the inverse Fourier 

transform of the longitudinal component. Consequently, the encoding system is 

vulnerable to attacks designed to break down the linear transform optical 

system. Therefore, they enhanced the security level of the proposed scheme by 

modeling a photon-limited illumination condition using the photon-counting 

scheme. As a result, the linearity of the encryption procedure is solved, and the 

encrypted plain text is no longer accessible, whereas it can be authenticated.  

According to the photon-counting model, a low light condition for an optical 

system can be statistically modeled by Poisson distribution. Thereby, the 

transverse components obtained by Eqs. (3.2-25) can be encrypted by the 

Poisson distribution as follows: 

0 rand( , ) exp( ( , ))
( , ) ,

1 otherwise

ph pe
x

x y x yn
x yE

 −
= 


                                        (3.2-27) 

where uppercase ph indicates the photon-counting binary version of transverse 

components, rand(x,y) is a uniformly distributed random number ranging from 

0 to 1, and ( , )p x yn is the normalized irradiance at pixel (x,y) given by 

2

,
2

, 1

( , )
( , )

( , )

e
xp

p N M

e
x

n m

x yN E
x yn

n mE
=

=


,                                                                         (3.2-28) 

where pN  is the predetermined number of photon counts in the entire scene, and 

N×M is the total number of pixels. Note that e
yE is encrypted in the same way. 

Besides, the amplitudes of the transverse components are encrypted using Eqs. 

(3.2-27) and (3.2-28), but their phase remain unchanged as follows: 
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e
ph xph e

x x e
x

E
E E

E
=                                                                                          (3.2-29) 

and  

e
ph yph e

y y e
y

E
E E

E
= .                                                                                       (3.2-30) 

Finally, the photon-limited plain text ph
t can be obtained by applying Eqs. (3.2-

27) to (3.2-30) into Eq. (3.2-26). Although ph
t  can not reveal the original 

information of the plain text t, the contained information can be verified by the 

correlation coefficient  given by  

,

, 1

2, , 2

, 1 , 1

( , ) ( , )

( , )

( , ) ( , )

N M

ph ph

n m

N M N Mph ph

n m n m

m x n y t m n tt t

x y

m nt t t m n t


−

− −

  + + − −  
=

 −  −    



 
,                    (3.2-31) 

where ...   represents the mean value. 
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3.3. Computer-generated hologram: Double-pixel Arrizón’s 

approach 

Arrizón’s approach is a type of cell-oriented computer-generated hologram 

(CGH) encoding. In the cell-oriented method, each encoding point is split into 

a couple of holographic cells [129,130]. Arrizón proposed a modification of the 

previous works regarding a double-phase CGH method with an on-axis 

reconstruction field [131-133]. His approach improved the signal-to-noise ratio 

(SNR) in the reconstruction plane using two pixels of SLM to encode one 

holographic cell [134]. Since then, he generalized his encoding method to 

produce a more symmetric and high-SNR-signal domain using four pixels 

rather than two pixels of SLM, the so-called the modified Double-Pixel 

Hologram (DPH) [135]. Nevertheless, his approach was suited for encoding 

information on phase-only SLMs. Also, he adjusted his method to encode 

complex modulation with a transmission TNLC as a low-resolution spatial light 

modulator [136-138]. 

In this subsection, we first describe the DPH Arrizón’s approach to expanding 

the accessible modulations beyond the restricted SLM response. Then, we 

review the modified DPH approach by applying 4 pixels to encode one 

holographic cell adapted to an experimentally obtained modulation curve. In 

this regard, we aim to produce an on-axis computer-generated hologram with 

the optimum reconstruction efficiency, maximum signal bandwidth, and high 

SNR suitable for encoding arbitrary complex modulation into a low-resolution 

TNLC display.  

Here, we consider a phase-mostly modulation curve, as shown in Fig. (3.3.1). 

The experimental way to obtain this modulation curve is introduced in section 

4. We assume that each complex modulation point belongs to the modulation 

curve as follows: 

exp( )g g g
jM M = ,                                                                           (3.3-1) 

where subscript g denotes 8-bit integer gray values ranging from 0 to 255. In 

addition, regarding the pixelated structure of the display, we consider the 

display as a matrix with N M  pixels. The modulation nmM  at the (n, m)th 

pixel can be described by 

exp( )nm nm nm
jM M = .                                                                             (3.3-2) 

To encode a desired complex modulation value 
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exp( )nmmn nm
jq q = ,                                                                                  (3.3-3) 

Arrizón employed the holographic double pixel shown in Fig. (3.3.2), whose 

pixels have complex modulations 1
nmM  and 2

nmM  that belong to the modulation 

curve. As shown in Fig. (3.3.2), the holographic cell is equal to a double pixel 

with the encoded modulation 
mn

q  plus an error double pixel, with modulation 

values 1
nme  and 2

nme . 

 

 

 

 

 

 

 

 

Fig. 3.3.1. The pair of modulation points on the modulation curve in order to encode an 

arbitrary complex value in the (n, m)th pixel. Figure from [139] under the CC Attribution 3.0 

Unported License. 

 

The conditions required to produce an on-axis signal reconstruction with a null 

contribution of the error term at the zero frequency are as follows: 

 ( )1 2 2nm nmnm
q M M= + ,                                                                             (3.3-4a) 

2 1
nm nme e= −   .                                                                                               (3.3-4b) 

 

Fig. 3.3.2. The DPH configuration. Own sketch extracted from [136] 
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Consequently, we can access the modulation points ( q ) beyond the restricted 

SLM responses ( gM ), as shown in Fig. (3.3.1). Considering the modulation 

points on the modulation curve ( gM ) as a vector with the origin of the polar 

plot shown in Fig. (3.3.1), encoded modulation points ( q ) are obtained by the 

average of the superposition of vectors 1
M  and 2

M . Consequently, the 

modulation errors are 1 1
nmnm nm

qe M= −  and 2 2
nmnm nm

qe M= −   which lead to Eq.  

(3.3-4b). 

To go through Arrizón’s approach in more detail, we assume that the 

transmittance of the CGH that can be displayed on the LCD is  

 
,

( , ) ( , )nm

n m

h x y w x np y mpM= − − ,                                                           (3.3-5) 

where p  is the pixel pitch, and ( , ) rect( ) rect( )w x y x a y b= . Considering the 

CGH is intended to encode the spatially quantized complex function 

( , ) ( , )
nm

nm

q x y w x np y mpq= − − ,                                                               (3.3-6) 

where 
nm

q  is defined in Eq. (3.3-3), and 1
nm

q  . Let us assume the spectrum 

of ( , )q x y , denoted ( , )Q u v , is centered at the zero frequency ( , ) (0,0)u v = . 

Hence, the CGH transmittance must be related to the encoded complex 

modulation ( , )q x y  by the following expression: 

0( , ) ( , ) ( , )h x y q x y e x yA= + ,                                                                       (3.3-7) 

where 0A  is the SLM amplitude modulation, which fulfills

   0max min
nm

q A= . Then, the Fourier transform of Eq. (3.3-6) gives

0( , ) ( , ) ( , )H u v Q u v E u vA= + .                                                                     (3.3-8) 

The error spectrum, ( , )E u v , should be negligible within the largest possible 

bandwidth centered at the zero frequency to obtain a high SNR, so Arrizón 

proposed an error function as follows: 

( , ) ( , ) ( , )e x y l x y g x y= ,                                                                             (3.3-9a) 

,

( , ) ( , )nm

n m

l x y w x np y npl= − − ,                                                                (3.3-9b)

,

( , ) ( , )
nm

n m

g x y w x np y npg= − − .                                                             (3.3-9c) 

He demonstrated that the optimal choice ( , )l x y  is binary grating with discrete 
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modulation ( )1
n m

nml
+

= − . Accordingly, the Fourier transform of the error 

function, which is contributed by the noise field, is given mainly by four off-

axis replicas of the function ( , )G u v  centered at the spatial frequency 

coordinates (1 2 ,1 2 )p p , ( 1 2 ,1 2 )p p− , (1 2 , 1 2 )p p− , ( 1 2 , 1 2 ).p p− −  

Therefore, the reconstructed field with a zero noise contribution places on the 

optical axis, whereas symmetric off-axis error contributions occur far enough 

from the optical axis at the Fourier plane, which can be removed using a 4-f 

spatial filtering system. According to Eqs. (3.3-5) to (3.3-9), ( , )g x y is specified 

by its discrete modulation nml  , which is related to the CGH modulation by the 

formula 

( )0 1
n m

nm nm nm
q gM A

+
= + − .                                                                       (3.3-10) 

Since both function ( , )q x y and ( , )g x y  have on-axis spectrum bands, their 

variation should be negligible when the increment ( 1n = ) in x  is of the order 

of the pixel pitch. To satisfy this condition, Arrizón proposed to establish the 

discrete function nmg  such that both complex vectors,  

1
0nm nm nmq gM A= + ,                                                                                 (3.3-11a) 

2
0nm nm nmq gM A= −  ,                                                                                (3.3-11b) 

belong to the SLM modulation curve. Note that Eqs. (3.3-11) are the general 

form of Eqs. (3.3-4). The constant value 0A  is the maximum possible 

amplitude, for instance, the radius of a circle to fulfill complex amplitude-phase 

modulation, in which the average of each pair of modulation points 1 2( , )nm nmM M

on the modulation curve should be an interior point inside this circle. As a result, 

the pair of modulation points 1 2( , )nm nmM M always exist. The maximum CGH 

efficiency is related to the maximum possible value 0A . Since the set of the 

modulation points is finite and discrete, we should find the nearest accessible 

complex value denoted 
a

nm
q  to the desired complex value 0 nm

qA . Thus, we select 

the pair modulation points 1 2( , )nm nmM M in such a way that its middle point has 

the minimum Euclidean distance nm  from the desired complex value regarding 

each holography cell as 

0min
a

nm nm nm
q qA = −  .                                                                            (3.3-12) 

The remaining issue is to select the position of 1
nmM  and 2

nmM  with respect to 

each other on the modulation plot. In this regard, there are two possibilities: 
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• Selection 1: 1
nmM  performs a clockwise rotation (smaller than 180º) of 

the radial line that contains 
a

nm
q , which 1

nmM  has a phase smaller than 

2
nmM , as demonstrated in Fig. (3.3.3a). 

• Selection 2: 1
nmM  performs a counterclockwise rotation of this radial 

line, which 2
nmM  has a phase smaller than 1

nmM , as demonstrated in Fig. 

(3.3.3b). 

On one side, he showed that the appropriate position-selection of the pair 

modulation points to encode a discrete modulation exp( )nmnm nm
jq q = , where 

both the modulus nm
q  and the phase nm  are soft or quasi-continuous functions, 

is a way explained in selection 1, which leads to 

1

2

( )even

( )odd

nm

nm

nm

n mM
M

n mM

+
= 

+
 .                                                                    (3.3-13) 

This configuration is shown in Fig. (3.3.4). On the other side, he proved that the 

appropriate position-selection for the pair modulation points to encode complex 

functions of the type  

0exp( )nm nmnm
jq r = ,                                                                                  (3.3-14) 

is as follows: 

1

2

2

1

( )even
0

( )odd

( )even
0

( )odd

nm

nm

nm

nm

nm

nm

nm

n mM
r

n mM
M

n mM
r

n mM

 +


+
= 

+
 +

 .                                                    (3.3-15) 

In Eq. (3.3-14), both nmr  (which is a real factor) and phase 0
nm  are quasi-

continuous functions. This configuration is shown in Fig. (3.3.5). The top half 

of Fig. (3.3.5) (area U) corresponds to 0r  , and the bottom half (area D) to 

0r  . This encoding algorithm is also appropriate for encoding continuous 

functions of the type ( , ) ( ) exp( )F r R r jt = , where t  is the topological charge, 

( , )r   are polar coordinates, and ( )R r is a real function of the radial coordinate. 

In addition, if we intend to encode the complex function exp( )nm nm nmjF r = , 

the sampling point of this function should be defined as ( )
1 2

22
nm nm nm

yxr = + ,

2n npx =  2
n

mpy = , 2 2nN N−   , and 2 2mM M−   . Note that the 

pixel size of the function is twice the pixel size of the applied LCD, in which 
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four pixels of the LCD encode one holographic cell, as shown in Figs (3.3.4) 

and (3.3.5). 

 

 

 

Fig. 3.3.3. (a) Selection 1. (b) Selection 2. Figure from [139] under the CC Attribution 3.0 

Unported License. 
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Fig. 3.3.4. The representation of the modified DPH at the LCD plane regarding selection 1. 

Figure from [139] under the CC Attribution 3.0 Unported License. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.5. The representation of the modified DPH at the LCD plane regarding selections 1 and 2. 

The order of the distribution of values 1
nmM and 2

nmM  in the transition area from U to D is 

changed. Figure from [139] under the CC Attribution 3.0 Unported License. 
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3.4. Phase retrieval algorithm 

In this subsection, we review the iterative phase retrieval algorithm proposed 

by Fienup [41]. He demonstrated an iterative approach to reconstructing a 

general object from the modulus of its Fourier transform in order to solve the 

phase problem of the optical-coherence theory. The reconstructed digital 

method can be described as follows: Let ( )f x  be the object and ( )F u  its 

Fourier transform:  

 ( ) ( ) exp( ( )) FT ( )F F j f= =u u u x ,                                                      (3.4-1) 

where the vector position x represents a two-dimensional spatial coordinate and

u spatial frequency. The iterative algorithm requires prior knowledge of the 

problem, for instance, considering ( )f x as a real and nonnegative function, and 

the Fourier modulus ( ( )F u ) is known. Fienup modified the original 

Gerchberg-Saxton algorithm [40] by setting a new set of object constraints. The 

principal constraints are that the object is nonnegative, and the diameter of the 

retrieved object is enforced not to exceed the known diameter (which can be 

obtained by the half diameter of the autocorrelation). The general iterative phase 

retrieval algorithm (the Gerchberg-Saxton algorithm) can be summarized as 

follows: 

1. To start the iterations using a random estimation of the object 
1
( )g x  

2. To apply the Fourier transform to 
1
( )g x  resulting 

1 1 1
( ) ( ) exp( ( ))jG G =u u u  

3. To reserve the obtained phase 
1
( ) u and substitute 1( )G u  with the 

known Fourier modulus ( )F u  

4. To apply the inverse Fourier transform to 1 1
( ) ( ) exp( ( ))F jG = u u u

resulting  ( )g  x  

5. To form a new estimate of the object using the object-domain 

constraints: 

( )
( )

0

g x
g

x





 
= 



x
x ,                                                                                (3.4-2) 

in which   indicates the region that all points corresponding with ( )g  x  violate 

the constraints. The iteration can be continued by repeating steps 2 to 5 and 

monitoring the mean square error (MSE) at each iteration in the Fourier domain 

defined by 
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2

2

2

( ) ( )

( )

k

F

F duG
E

F du



−



−

 −  
=
 

 

u u

u

,                                                                 (3.4-3) 

where k indicates the kth iteration. In the object domain, the MSE is defined as 

 

 

2

2
0

2

( )

( )

k

k

dg
E

dg





−


=



 

 

x x

x x

.                                                                                (3.4-4) 

This approach is the so-called error-reduction approach. The disadvantage of 

this approach is a slow convergence to the solution, which requires a large 

number of iterations. In order to speed up the convergence process, Fienup 

developed an efficient approach, the so-called input-output approach, by 

defining a new constraint in the object domain. The iterative steps in the input-

output approach are the same as those defined in steps 1 to 4, but step 5 is 

modified. The block diagram of the error reduction and the input-output 

approaches are shown in Figs. (4.1a) and (4.1b), respectively. As shown in Fig. 

(4.1b), the operation can be considered as a nonlinear system with an input ( )g x

and output ( )g  x . In other words, instead of modifying the last output, as in Eq. 

(3.4.2), the previous input can be modified to form a new input. Thereby, to 

drive the output to be nonnegative, a logical selection for the next input would 

be as follows: 

1

( )
( )

( ) ( )

k

k

k k

xg
g

xg g



 +


= 

− 

x
x

x x
,                                                            (3.4-5) 

where   is a constant. A method for choosing 
1
( )

k
g

+
x  is required depending on 

the different applications and different trade-offs inherent in the input-output 

approach. For instance, he demonstrated that a successful method for choosing 

1
( )

k
g

+
x is a combination of the first line of Eq. (3.4-2) and the second line of Eq. 

(3.4-5). Also, he found out that the iterative algorithm works better by changing 

the method of choosing
1
( )

k
g

+
x after a few iterations rather than applying a 

method for all the iterations. 
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Fig. 3.4.1. (a) Block diagram of the error-reduction approach (Gerchberg-Saxton algorithm), 

(b) block diagram of the input-output system. Own sketch extracted from [41]. 
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3.5. Machine learning  

 

As defined in [86], machine learning is the application and science of algorithms 

that make sense of data, which is, arguably, the most exciting field of all the 

computer sciences. Using self-learning algorithms from the field of machine 

learning, we can turn data into knowledge. Despite manual approaches to infer 

rules and build models from processing a large amount of data, machine 

learning is able to capture the knowledge in data to gradually improve the 

performance of predictive models and make data-driven decisions. Among 

three main types of machine learning algorithms: supervised, unsupervised, and 

reinforcement learning, here we review those algorithms which belong to the 

supervised learning used in this thesis. 

The main application of supervised learning is classification. The classification 

task is to classify the known data into discrete class labels in order to predict the 

categorical class labels of new observations. The known data used for training 

the machine is called the training dataset, and those known data which is not 

used for training the machine but used for estimating the predictive model is 

called the test dataset. The whole known dataset is often randomly split into two 

categories: the training dataset and the test dataset with a ratio of 80:20 or 70:30, 

respectively [140]. The predictive model is developed and optimized using the 

training dataset, whereas the test dataset is used to measure the performance of 

the final model. One of the most used metrics for evaluating the performance of 

the model is accuracy, the proportion of the number of the correctly predicted 

class labels by the model over the number of the whole test dataset.  Then, the 

developed predictive model achieving high accuracy is ready to predict the class 

label of unseen data (new data). This classification process is summarized in the 

sketch shown in Fig. (3.5.1). 

One of the most crucial steps in any machine learning application is to get raw 

data into a proper shape; this step is called pre-processing.  To explain this, let 

us consider the dataset collected from a hospital. The number of examined 

patients is considered as the number of samples. Each patient is independently 

analyzed, for instance, with the temperature of the body, blood pressure, age, 

weight, etc., which provide a set of features regarding each sample (patient). 

This set of data shapes a matrix with a size of N-sampleM-feature, where N is 

the number of samples (patients), and M is the number of features (the 

temperature, blood pressure, etc.). To generalize this, let us use a matrix and 

vector notation to refer to the dataset.  
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Fig. 3.5.1. The process of training and evaluating the machine. Own sketch extracted from 

[86]. 

 

Regarding N samples and M features, the feature matrix indicated by N MX  is 

presented as follows: 

(1) (1) (1) (1)
1 2 1

(2) (2) (2) (2)
1 2 1

( ) ( ) ( ) ( )
1 2 1

( ) ( ) ( ) ( )
1 2 1

. . .

. . .

. . . .

. . .

. . . .

. . . .

. . .

MM

MM

n n n n
N M MM

N N N N
MM

x x x x

x x x x

x x x x

x x x x

−

−

 −

−

 
 
 
 
 

=  
 
 
 
 
 

X ,                                          (3.5-1a) 

where ( )n
mx  represents the feature m regarding the sample n, in which [1, ]n N

and [1, ]m M . Each row of the feature matrix is called the feature vector of 

the corresponding sample. The feature vector extraction is a significant step for 

achieving a successful classification purpose in which these features can be 

obtained by statistical approaches, image or signal processing, and data mining, 

depending on the data type. Note that the feature vectors in deep learning 

algorithms are extracted by the used model without the necessity of applying 

the mentioned analysis. 



43 

 

Furthermore, the class labels or variable targets should be placed in a column 

matrix indicated by Y as follows: 

(1)

( )

( )

.

.

.

.

l

n

l

N

l

y

y

y

 
 
 
 
 

=  
 
 
 
 
  

Y ,                                                                                              (3.5-1b) 

where ( )n

l
y  represents the class label of the sample n, and it is labeled from 0 to 

the number of classes. In addition, to reach an optimal performance of machine 

learning algorithms is necessary to scale the selected features similarly, for 

instance, by transforming the features in the range [0,1] or a standard normal 

distribution. 

After preparing data applicable for the machine, the learning algorithm should 

be appropriately selected corresponding to the problem. The three supervised 

machine learning algorithms: K-Nearest Neighbors (KNN), Support Vector 

Machine (SVM), and Convolutional Neural Network (CNN), applied in this 

thesis are described in the following subsections. 

3.5.1. K-Nearest Neighbors 

K-nearest neighbor classifier is a type of nonparametric supervised machine 

learning algorithm. Based on parametric models, new data can be classified 

without the necessity of the original training dataset. On the contrary, the 

nonparametric models can not be characterized by a fixed set of parameters, and 

the number of parameters grows with the training dataset. In parametric models, 

the machine learns a function from the training dataset, whereas the 

nonparametric models memorize the training dataset instead of learning a 

discriminative function from them. Although the KNN algorithm is relatively 

straightforward, but is powerful and can be used in various complex scenarios. 

This technique aims to train a dataset to label them into different known classes 

based on defined features. This algorithm can be described in three main steps: 

1. To select the optimum number of neighbors k and a distance metric 

2. To find the k nearest neighbors of the sample to be classified  

3. To predict the class label by majority vote. 
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In those cases where there is no majority vote, the machine predicts the class 

label based on the defined weight.   

For instance, we assume training datasets that are labeled with three classes (as 

shown in three different colors in Fig. (3.5.2)), and each sample is characterized 

by two features ( 1x , 2x ). As shown in Fig. (3.5.2), a new data point which is 

indicated by (?) is predicted as green color (class label) based on majority voting 

among its seven nearest neighbors ( 7k = ). 

  

  

 

 

 

 

 

 

 

 

Fig. 3.5.2. The distribution of training datasets is shown with colored points in the feature 

spaces 1x  and 2x . The sample points are classified with the KNN classifier in three different 

classes shown with three different colors. The new sample point indicated by (?) is predicted 

as a green color (class) based on majority voting among its seven nearest neighbors. Own 

sketch extracted from [86]. 

The optimum number of neighbors should be searched to find a good balance 

between over- and underfitting. In addition, a distance metric should be selected 

properly based on the feature vectors. The distance between k nearest neighbors 

can be measured by Minkowski distance which is a generalization of the 

Euclidean and Manhatten distance. The Minkowski distance of order p  

between two sample points 
(1) (1) (1)(1)
1 2( . . . )Mx x x=x  and 

(2) (2) (2)(2)
1 2( . . . )Mx x x=x  is defined as follows: 

1

(1) (2)(1) (2)

1

( , )

M p
p

i i
i

d x x
=

 
= − 
 
x x  ,                                                                 (3.5-2) 
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in which, the Minkowski distance is metric for 1p  , and is equal to the 

Euclidean distance when 2p = , and the Manhattan distance when 1p = . 

 

3.5.2. Support Vector Machine 

The SVM is a supervised learning model that analyzes data for classification 

and regression purposes. SVMs are based on statistical learning frameworks, 

which are one of the most robust prediction methods. Basically, SVMs construct 

a hyperplane or set of hyperplanes in a feature space in which the training 

dataset can be classified into one or two categories. To explain this, assume the 

training dataset ( ) ( ) ( ) (1) (2) ( )(1) (2) ( )T , , , ,..., ,
NN

l l l
y y yx x x= , where ( ), [1, ]n n Nx 

indicates the sample points and ( )
[ 1, 1]

n

l
y  − +  demonstrates the binary 

classification labels assigned to each sample. The objective of the binary 

classification is to find a separating hyperplane in the feature space in order to 

separate the sample points with different classes. Thus, the main issue in the 

SVM algorithm is to define a hyperplane in such a way that, on one side, the 

misclassification errors should be minimized. On the other side, the gap 

between sample points belonging to two different classes should be maximized. 

This gap is called margin and is defined as the distance between the separating 

hyperplane (decision boundary). Correspondingly, the sample points that are 

closest to this hyperplane are the so-called support vectors. These details are 

illustrated in Fig. (3.5.3). 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5.3. Support vectors and margin. Own sketch extracted from [85, 86]. 



46 

 

To find the maximum margin, let us formulate the separating hyperplane in the 

feature space as the following linear function: 

( ) 0n bw x
 + = ,                                                                                           (3.5-3) 

where 1 2( , ,..., )Mw w w w=  is the normal vector, which defines the direction of 

the hyperplane, b is the bais, which defines the distance between the hyperplane 

and the origin, and ( )n
w x

  is the inner product defined as ( ), nw x . In order to 

classify the sample points correctly, the hyperplane should satisfy the following 

conditions: 

( )

( )

1, 1

1 1

npnp

l

nnnn

l

b yw x

b yw x





 +  + = +


+  − = −

,                                                                     (3.5-4) 

where ( )np
x and ( )nn

x   indicate those sample points labeled as positive and 

negative classes, respectively. In addition, the distance from any sample points 

( ( )n
x ) in the feature space to the hyperplane is given by 

( )n bw x
r

w

 +
= ,                                                                                         (3.5-5) 

where 2
1

M

jjw w==   is the length of the vector w . Regarding Eq. (3.4-4), the 

separating hyperplanes (positive and negative), including support vectors, 

correspond to ( ) 1np bw x
 + = +  and ( ) 1nn bw x

 + = −  , respectively. Hence, the 

total distance from two support vectors (positive and negative) to the hyperplane 

can be obtained by subtracting the support vector formulas as follows: 

( ) ( )( ) 2np nn
w x x

w w

 −
= ,                                                                              (3.5-6) 

in which 
2

w
 is the so-called margin that should be maximized. The margin can 

be optimized by maximizing 
1

w
−

 or equivalently by minimizing 
2

w . As a 

result, Eq. (3.5-4) can be written as  

2

,

1
min

2w b
w   ,  

( ) ( )( ) 1
n n

ly bw x
 +  , and 1, 2,...,n N= .                              (3.5-7) 

This is the primal form of SVM, and the reciprocal term 
21

2
w  can be solved 

by quadratic programming [85,141]. However, Eq. (3.5-7) is appropriate for 

those scenarios in that the datasets are linearly separable. Vapnik [141] 
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introduced a slack variable   to achieve a soft-margin classification to expand 

this concept to nonlinearly separable data. Subsequently, Eq. (3.5-4) can be 

rewritten by adding the positive-value slack variable to the linear constraints as 

follows: 

( )( )

( )( )

1, 1

1 1

n nn

l

n nn

l

b yw x

b yw x









 +  + = −


+  − = +

.                                                                 (3.5-8) 

Correspondingly, the new margin is obtained as 
2 ( )

1

1

2

N
i

i

w C 
=

 
+  

 
 , where the 

variable parameter C  controls the width of the margin and tunes the bais-

variance trade-off. Another interesting property of the SVM algorithm is its 

ability to be kernelized, which ables it to solve nonlinear classification 

problems. Generally speaking, the kernel method projects the linearly 

inseparable datasets distributed in the feature space onto a higher dimensional 

space via a mapping function ( )  in such a way that the datasets become 

linearly separable. To explain this mapping feature and kernel SVM, we need 

to go through details about the dual problem, solving quadratic programming, 

and the kernel trick, which is beyond the scope of this thesis. However, 

interested readers are referred to chapter 6 of reference [85]. As summarized in 

[86], the term kernel can be explained as a similarity function between a pair of 

samples. Practically, this similarity can be obtained by inner product among 

sample points defined by ( ) ( ) ( ) ( ),i j i j
x x x x

= , where , [1, ]i j N . In this regard, 

the kernel function  is the inner product of the mapped feature vectors of ( )i
x

and ( )j
x given by 

( ) ( ) ( ) ( )( , ) ( ), ( )i j i j
x x x x  = .                                                                   (3.5-9) 

In other words, instead of the inner product of ( )i
x  and ( )j

x in the feature space, 

the kernel function   calculates the inner function in a higher-dimensional 

space introduced by the mapping function ( ) . The choice of the kernel 

function should be searched in order to map the samples to a proper feature 

space. Some of these kernel functions are the Linear, Polynomial, Laplacian, 

Sigmoid, and Gaussian kernels. For instance, two of these kernel functions 

which are used in this thesis are the Gaussian kernel or the Radial Basis 

Function Kernel (RBF kernel) and the Sigmoid kernel. The Gaussian kernel is 

given by 

( )( ) ( ) ( ) ( )( , ) expi j i j
x x x x = − − ,  

2

1

2



=                                             (3.5-10) 
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where  is a free parameter that should be searched to optimize the performance 

of the kernel. The Sigmoid kernel is given by 

( ) ( ) ( ) ( )( , ) tanh( )i j i j
x x x x  = + ,                                                             (3.5-11) 

where tanh is the hyperbolic tangent function, 0  , and 0  . In conclusion, 

a kernel SVM is able to separate data points by a nonlinear decision boundary.  

 

3.5.3. Convolutional Neural Network 

In 1988, LeCun built the first CNN called LeNet [142]. The CNN algorithms 

are one of the most popular neural network architectures in deep learning. Deep 

learning is one of the most well-known representations of Machine learning 

nowadays. Deep learning applications have achieved notable accuracy and 

popularity in various fields, especially in the computer vision field. To explain 

deep learning and CNN, we need to have enough knowledge about Artificial 

Neural Networks (ANNs). However, the mathematics and theory behind the 

ANN are quite advanced, and it is beyond the purpose of this thesis. Here, we 

limit ourselves to introducing the general idea of deep learning, ANN, and 

CNN. Nevertheless, the interested readers are referred to reference [143].  

In 1958, Rosenblatt introduced a model called perceptron, which can be 

considered as a primary neural network algorithm. As explained in [87], the 

principle of ANNs is to learn from distributed data in such a way that the 

generated data results from a nonlinear combination of a set of hidden factors 

(neurons) that can predict a new unseen set of data. The neural network 

architectures consist of an input layer, a hidden layer (a result of applying a 

nonlinear transformation to the input data), and an output layer. Besides, the 

weights of each connection including in the network and a bias are two 

parameters of an ANN model. A simple sketch of a neural network with just 

one hidden layer is shown in Fig. (3.5.4). In deep neural networks, there is more 

than one hidden layer. The neural network architecture illustrated in Fig. (3.5.4) 

consists of the input vector of size 5, the hidden layer of size 6, and the output 

vector of size 3.  
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Fig. 3.5.4. A neural network structure. Neurons are indicated by circles. Neurons are 

connected by the parameter weight w. Arrows show the connection among neurons in 

different layers. Own sketch extracted from [87]. 

 

The learning process of an ANN can be summarized as follows: 

• To select the structure of the network, including neurons and layers. 

• To define the nonlinear transformation applying to each connection, in 

which transformation controls the activeness of each neuron in the 

network. 

• To select a proper loss function applicable for supervised learning to 

optimize the output layer associated with the class label of each data 

point, 

resulting in learning the parameters of the neural network, for instance, the value 

of each connection weight w. The parameters should be optimized using 

optimization methods and a method called backpropagation.  

One of the promising deep learning algorithms which gained popularity in the 

computer vision domain is CNN due to its excellent performance on image 

classification tasks. As explained in [86], CNNs build many layers of feature 

detectors from the spatial arrangement of pixels in an input image. Despite 

different variants of CNNs, here we just summarize the general idea of CNN. 
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Using CNNs, the extracted feature vectors from an image are fully connected 

to the hidden layer resulting in connecting the input layer to a feature map. This 

approach can be described as overlapping windows that slide over the pixels of 

an input image to create feature maps. This process of extracting feature maps 

in this way is called convolution. In addition, the stride lengths of the window 

and the size of windows are the pre-defined hyperparameters of a CNN model, 

which can cause different feature maps. A structure of a CNN model is 

illustrated in Fig. (3.5.5).  

 

Fig. 3.5.5. A CNN architecture. Own sketch extracted from  [85, 86, 87]. 

 

The convolutional layer connects the input pixels to neurons (units) in the 

feature map. Feature detectors or filters (kernels) detect features like edges or 

convex shapes, and a feature map is a convolution of the input image with a 

feature detector which is an element-wise multiplication of matrices considering 

pixelated input image as a matrix. Since the feature detectors are replicates, the 

model that maps the features to the neurons shares the same weight in the next 

layer. As a consequence, the number of parameters that need to be learned is 

dramatically reduced. 

Recognizing objects of different sizes and different positions in an image is one 

of the interesting abilities of CNNs. In general, CNNs are broadly comprised of 

three types of layers: convolutional layer, pooling layer, and fully connected 

layer. In CNN schemes, a convolutional layer is usually followed by a pooling 

layer. In the pooling process, the number of feature detectors is reduced by 

taking the average or maximum value of a patch of neighboring features. This 

process is shown in Fig. (3.5.6). 
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Fig. 3.5.6. The illustration of obtaining the input layer for an ANN structure using a 

convolutional layer followed by a pooling layer. Own sketch extracted from [85,86] 

 

In order to build a model, the first step is to select a model structure which can 

be either a sequential model or a functional model. The basic model can be 

enriched by adding different layers such as the Drop out layer, the Dense layer, 

and the activation layer. Adding a set of layers should be based on the 

requirement of the model. The next step is the compilation of the model, defined 

as the configuration of the learning process. During the learning process, there 

are three main parameters as Optimizer, Loss function, and performance 

metrics. The optimizer specifies the actual optimization algorithm to train the 

model and minimize the error or loss. The loss function specifies the objective 

of minimizing loss to guarantee the best performance of the model over multiple 

epochs or iterations. In particular, a cross-entropy loss is used for classification 

purposes. The performance metric measures the learning process, for instance, 

accuracy for classification models.  
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4. Beam modulation with a twisted nematic liquid crystal 

display  

Liquid crystal display devices are a kind of spatial light modulator (SLM). 

SLMs are able to relate electronic data to spatially modulated light beams. In 

particular, the twisted nematic liquid crystal (TNLC) spatial light modulators 

are kind of relatively low-cost electro-optics devices widely used in many 

branches of optical information processing such as digital holography 

[144,145], spatially-variant polarized beams [54], coherent diffraction imaging 

[146], generating vector beams [147-149], pattern recognition and optical 

correlators [150], Fresnel lenses [151,152], and optical cryptosystem 

[59,153,154]. 

Regarding specific situations, including the state of polarization, the wavelength 

of input beams, and applied voltages, three different modulations are mainly 

interesting: amplitude-only, phase-only, and complex phase-amplitude. The 

twisted angle and the birefringence of the TNLC are the two main parameters 

that control the modulation. There are several proposed methods and 

configurations to find these parameters to obtain the Jones matrix of a TNLC 

[155-167]. We briefly explain the optical property of a TNLC in the following 

subsection. To summarize the effects of a TNLC in the optical system, we 

introduce the following equation: 

exp( )t A jE = −                                                                                                                          (4.1) 

where A  stands for the transmitted amplitude and   represents the imposed 

phase to the transmitted beam. The phase and amplitude of a transmitted beam 

are directly related to the optical setup configuration, the state of input 

polarization, the wavelength of the input beam, and the applied voltages. 

Characterizing a SLM aims to obtain Eq. (4.1). In this work, we used a 

translucent Holoeye HEO 0017 TNLC-SLM with a resolution of 1024 × 768 

pixels and a pixel pitch ( p ) of 32 µm. The mentioned SLM can provide the 

maximum phase shift of about 1.75π for a laser beam with a 514 nm wavelength. 

4.1. Twisted nematic liquid crystal display 

A twisted nematic liquid crystal display is constructed by sandwiching a 

nematic liquid crystal between two transparent glass plates. Different voltages 

impose an external electric field through the medium using electrodes 

connected to each glass plate. Nematic molecules inside the medium have a 

helical structure with an optical axis parallel to their elongated direction. In this 
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regard, TNLCs are a sort of birefringent medium with ordinary and 

extraordinary refractive indices ( on , en ). The birefringence of the medium is 

altered by applying different voltages resulting in tilting nematic molecules in 

the direction of the applied electric field. Hence, TNLCs can electrically be 

controlled to be used as optical wave retarders, modulators, and switches. In the 

absence of the applied electric field, nematic molecules are oriented with respect 

to each other in the plane parallel to the surface of the glasses. In the particular 

case that the input beam is linearly polarized parallel to the direction of the 

liquid crystal director (practically, it is unknown to users), the beam keeps its 

state of polarization traveling through TNLC but rotating as much as its twisted 

angle , which is usually equal to 90º. In this condition, the TNLC acts as a 

polarization rotator. If the direction of polarization of the input beam is oriented 

concerning the LC director, the beam experiences phase retardation as 

2 ( )e on n d − , where d is the thickness of LC display. In the presence of the 

applied electric field, the nematic molecules tilt to be aligned with the direction 

of the applied field. The amount of this tilt angle ( ) depends on the applied 

voltages causing different birefringence. So, LC becomes a variable retarder 

with retardation  02 ( ) -n dn   = . The retardation varies monotonically 

from 0 (when the molecules are not tilted, 0 = ) to  max 02 -e dn n =  

(when molecules are tilted 90º, 90 = ). In summary, based on the physical 

configuration of the experimental setup, an input beam traveling through 

nematic liquid crystal cells might face only-twisted, twisted and tilted, or only-

tilted nematic molecules. The twisted angle, the birefringence, and the director 

of LC should be obtained to introduce the Jones matrix of TNLC display [124]. 

4.2. Characterizing TNLC displays 

Since SLMs change the properties of light, such as amplitude, phase, and 

polarization, it is necessary to find the proper operating conditions in order to 

control the response of the SLM. Martín-Badosa et al. proposed a method to 

characterize LCD based on the fringe analysis obtained by a Mach-Zehnder 

interferometer configuration without the necessity of finding the physical 

properties of LCD [168]. Nevertheless, their approach is based on counting the 

displacement of the fringes and is time-consuming. With the same optical setup 

and a different mathematical description, Wang et al. proposed a faster and more 

convenient way to obtain phase modulation [169]. They indicated that analyzing 

the phase values of those frequencies where 1  diffraction orders occurred is 

sufficient to obtain the imposed modulated phase. Since the interferometric 

patterns were obtained by propagating beam at a distance between LCD and  
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CCD camera, their mathematical approach was based on Fresnel diffraction 

considering the transfer function. 

Since the digital holography approach used in this work is based on the double-

pixel Arrizón’s approach, the Mach-Zehnder interferometer should be modified 

in order to eliminate the off-axis diffraction orders caused by the codification 

algorithm ( as explained in 3.3). Therefore, the optical setup used in this work 

is modified by adding a 4f-spatial filtering system. Accordingly, the 

mathematical analysis based on this experimental setup is presented. Apart from 

the phase calibration, the characterization of the amplitude with the same setup 

is obtained. 

Different gray values displayed on a SLM correspond to the various applied 

voltages, resulting in different degrees of birefringence. Accordingly, the phase 

and intensity of the input beam are modified by passing through the SLM, as 

introduced in Eq. (4.1). This subsection aims to obtain Eq. (4.1) for each gray 

value ranging from 0 to 255. 

The calibration setup is a Mach-Zehnder interferometer plus a 4-f spatial 

filtering system, as shown in Fig. (4.1). A collimated and linearly polarized 

green laser beam ( λ=514nm ) is divided into two arms of the interferometer by 

the first beam splitter (BS1). On the one hand, the right arm of the 

interferometer, which the object beam passes through, includes a half-wave 

plate (HWP1), a quarter-wave plate (QWP1), and the transmissive TNLCD. On 

the other hand, the left arm of the interferometer, which the reference beam 

passes through, includes a half-wave plate (HWP2). Subsequently, the 

interference occurs when the two beams reach the second beam splitter (BS2). 

Then the interference pattern passing through the second linear polarizer (LP2) 

reaches the sensor plane of the CCD camera by means of the 4-f spatial filtering 

system.  
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Fig. 4.1. The experimental setup. LP, BS, HWP, QWP, M, SF, and CCD stand for the linear 

polarizer, beam splitter, half-wave plate, quarter-wave plate, mirror, spatial filter, and 

charged-coupled device, respectively. Figure from [139] under the CC Attribution 3.0 

Unported License. 

 

Regarding the experimental setup, LCD is placed at the back focal plane of lens 

A (LA), and the CCD camera is located at the front focal plane of lens B (LB). 

Besides, the diffraction orders (except zero-order) caused by the pixelated 

structure of the LCD and the digital holography approach are eliminated using 

a spatial filter placed at the common focal plane of LA and LB. Mirror M2 is 

properly tilted in such a way that the fringes are aligned in the y-direction 

(vertical direction), as shown in Fig. (4.1a). 

The fringe pattern recorded by the CCD can be expressed mathematically in the 

form: 

0
( , ) ( , ) ( , )cos[2 ( , ) ]

m
g x y a x y b x y x x yf  = + + + ,                                              (4.2) 

where ( , )x y  and m  are the phase of the object and the modulated phase 

imposed by SLM, respectively. Furthermore, ( , )a x y  represents possible 

nonuniform background, ( , )b x y  represents the local contrast of the pattern, and 

0
f is the spatial-carrier frequency. As explained in [170], the fringe pattern can 

be rewritten in the following form: 

*

0 0
( , ) ( , ) ( , )exp( 2 ) ( , )exp( 2 )g x y a x y c x y j x x y j xf fc = + + − ,                  (4.3a) 

with 
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( )( , ) 1 2 ( , ) exp( ( , )]exp( )
m

c x y b x y j x y j = .                                                         (4.3b) 

The Fourier transform of Eq. (4.3) gives 

*

0 0
( , ) ( , ) ( , ) ( , )

x y x y x y x y
G A Cf f f f f f f f f fC= + − + + ,                                  

(4.4) where the capital letters denote the Fourier spectra, 
x

f  and 
y

f  are the 

spatial frequencies in the x and y-direction, respectively. In fact, ( , )
x y

A f f  is 

the zero-order of the interference, C and C
  are ±1  interference orders, 

respectively. Since the spatial variations of ( , )a x y , ( , )b x y , and ( , )x y are 

slow compared with spatial frequency 
0f , the Fourier spectra are separated by 

carrier frequency 0f , as shown in Fig. (4.2b). 

 

 

 

 

 

 

 

 

Fig. 4.2. (a) The interferometric pattern. (b) The corresponding frequency Fourier spectra. 

Figure from [139] under the CC Attribution 3.0 Unported License. 

 

Note that here we are not interested in finding the phase of the object. We intend 

to find the phase shift resulting from loading the different gray values on the 

LCD. Once the configuration of the experiment, for instance, wavelength and 

the optical path difference between the reference and object beam, remains 

constant, the position of the peaks in the frequency domain remains unchanged. 

Thereby, the modulated phase can be obtained by analyzing either C  or *
C . 

Complex value C can be rewritten as follows: 

( ) 0
( , ) FT 1 2 ( , ) exp[ ( ( , ) 2 )]exp( )

mx y
C b x y j x y x jf f f  = +   

( , ) exp( )exp( )
mx y

C C j jf f =                                                                                       (4.5)                                                                                                                                                                                                                                                          

where  FT ...  denotes the Fourier transform, and C and  are the amplitude 

and phase of C  in the frequency domain, respectively. Therefore, according to 
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the fact that the experimental parameters remain constant during the whole 

process of the measurement, the phase of ( , )
x y

C f f  varies only with m , that 

is, the modulated phase imposed by SLM according to gray values loading on 

LCD.  

In conclusion, if we split the object into two parts which are separated by a 

reference gray value (zero) and variable gray values ranging from 0 to 255, the 

subtracting of the phase of ( , )
x y

C f f  gives the phase shift as follows:

( , ) exp( )exp( )x y rgrg
C f f C j j=  ,                                                                              (4.6a)

( , ) exp( )exp( )x y vgvg
C f f C j j=  ,                                                                             (4.6b)

0
( , ) ( , )arg[ ] arg[ ]x y x yvg rg

C Cf f f f  = − + ,                                                         (4.6c) 

where subscripts rg , vg , and   indicate the reference and variable gray 

values, and the phase shift, respectively. Besides, 0  is chosen in which 0 =  

when the image loading on LCD has zero value. In the following, the 

experimental process is expressed in two main stages: phase modulation and 

amplitude modulation, step by step. 

4.2.1. Phase modulation 

Firstly, we synthesize gray-level images in such a way that the half-upper part 

of images varies from 0 to 255 while the half-lower part remains zero as a 

reference. Applying these images on SLM cause different phase shift between 

the upper and lower part of the interference pattern resulting in a displacement 

of fringes. The amount of this phase shift can be obtained by Eq. (4.6c). The 

first row of Fig. (4.3) shows the provided gray-level images loaded on the LCD, 

whereas the second row indicates the corresponding interference patterns which 

were recorded by the CCD camera. 
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Fig. 4.3. Three examples of gray-level images loaded on the TNLC display and corresponding 

interference patterns recorded by the CCD camera are shown in the first and the second row, 

respectively. Figure from [139] under the CC Attribution 3.0 Unported License. 

 

We used the LabVIEW (program language) in order to load 256 gray-level 

images on the LCD, record the interference patterns by CCD camera and save 

them automatically. Note that it is necessary to apply a delay between loading 

images and capturing them regarding the molecules of the TNLC being aligned 

with the applied voltages (around 100 µs) and relaxing back to their original 

state (around 20 ms). The next step is analyzing the interference patterns to 

obtain the phase modulation imposed by each gray value. Accordingly, two 

equal parts of the upper and lower part of each interference pattern are chosen, 

as shown in Fig. (4.4b), separated by red rectangles. Then, we calculate the 2D 

fast Fourier transform of the selected upper and lower part to find the frequency 

( , )
x y

C f f that first order of the interference occurs, as shown in Fig. (4.4c). This 

point in the frequency domain should be the same not only for the upper and 

lower part but also for all 256 interference patterns. Subsequently, the phase 

shift between variable gray values (the upper part) and zero value (the lower 

part) is calculated separately for each gray-level image be means of Eq. (4.6).  
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Fig. 4.4. (a) a gray-level image loaded on LCD, which is separated with two different gray 

values. (b) Fringe displacement in the x-direction. The red selected rectangles are used for 

calculating the 2D Fourier transform. (c) The corresponding modulus of the Fourier transform. 

Figure from [139] under the CC Attribution 3.0 Unported License. 

 

Therefore, the possible imposed phase versus each gray value is adjustable from 

zero to the maximum available one. In this case, the maximum achievable phase 

imposed by SLM is around 1.75π. However, this value depends on the TNLC 

physical properties, the optical wavelength, and the polarization state of the 

incoming light. Thus, finding the proper modulation curve is a practical task. In 

regard to the experimental setup (Fig. (4.1)), we set the axis of LP1 parallel to 

the axis x while the axis of LP2 was parallel to the axis y. The role of HWP2 is 

to control the contrast intensity of the interference pattern. We applied the 

HWP1 in order to remove the necessity of rotating the axis of LP1. Hence, the 

desired modulation has been obtained by some practical attempts by rotating 

the fast axes of HWP1 and QWP1 with respect to each other. In this regard, the 

fast axis of HWP2, HWP1, and QWP1 were rotated -20, -63, and 45 degrees 

with respect to the axis x, respectively. The obtained phase curve versus gray 

values is shown in Fig. (4.5a). 

 4.2.2. Amplitude modulation 

With the same setup without changing the direction axes of linear polarizers or 

retarders, the amplitude curve was obtained as follows: Firstly, we blocked the 

left arm of the Mach-Zehnder interferometer. Then, we provided 256 gray-level 

images in which the entire images had the same value ranging from 0 to 255, 

corresponding with each gray value. Each gray-level image was loaded on the 
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SLM, and the images were subsequently recorded by the CCD camera. By 

calculating the square root of the mean value of the recorded images and 

normalizing them to the maximum obtained amplitude, the modulated 

amplitude versus each gray value was obtained. Also, this process can be done 

by using an intensity detector. Note that all the attribution of the camera, such 

as Brightness, Shutter, and Contrast, should be constant during the 

measurement, and the other attributions, such as Gamma and Gain, must be 

disabled. The obtained amplitude curve is shown in Fig. (4.5b). 

Finally, Eq. (4.1) was obtained for each gray value by combining the amplitude 

and phase responses of the SLM in consequence of the present configuration. 

This process is called the characterization or calibration of SLM. The polar plot 

of the obtained complex amplitude-phase modulation is shown in Fig. (4.5c). 

 

 

 

 

Fig. 4.5. (a) The phase modulation. (b) The amplitude modulation. (c) The polar plot shows 

the complex amplitude-phase modulation curve. Figure from [139] under the CC Attribution 

3.0 Unported License. 
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4.3. Fast generating DPHs using KNN classifier 

 

As explained in subsection 3.3, the DPH approach proposed by Arrizón is able 

to produce an on-axis CGH into a low-resolution SLM for encoding arbitrary 

complex modulation. Since the modulation points on the modulation curve 

(shown in Fig. (4.5c)) are limited, we applied Eq. (3.3-4) to expand the 

accessible modulations beyond the restricted SLM responses according to 

DPH’s approach. All the possible complex values which can be obtained by 

means of Eq. (3.3-4) and the phase-mostly modulation curve are shown with the 

green points in Fig. (4.6). Among all possible complex values, only those that 

fall inside the blue circle with radius 0 0.29A = can encode a complex function 

with the amplitude ranging from 0 to 0A and the phase ranging from 0 to 2π. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6.  The Red and green points show the experimental modulation curve and all possible 

complex values using the DPH approach, respectively. The green points inside the blue circle 

with the radius A0=0.29 are those accessible complex values to encode a complex function. 

Figure from [139] under the CC Attribution 3.0 Unported License. 

 

The encoding procedure can be summarized as follows: Let 

exp( )nmnm nm
jq q =  be a complex modulation value to be encoded in the 

holographic cell [n,m], where 
nm

q  and nm  stand for the amplitude and the 

phase of 
nm

q . Let a be a point that belongs to the set of accessible values 
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obtained using the DPH approach (for instance, green points in Fig. (4.6)). 

Among all possible points ( exp( )
a a a

nmnm nm
jq q = ), we select the one that fulfills 

that the Euclidean distance between 
nm

q  and a

nm
q  is minimum (see Eq. (3.3-

12)). This calculation requires an extensive search of the minimum Euclidean 

distance between the desired complex values and the accessible ones. In other 

words, This involves the use of several nested loops to search the minimum 

Euclidean distance for each cell to find the nearest available complex value a

nm
q

provided by the experimental modulation curve (see Fig. (4.6)) to the desired 

complex value (
nm

q ). This conventional calculation is time-consuming. For 

instance, to generate a CGH with 768×1024 pixels, and since four pixels at the 

SLM plane provide one holographic cell, there are (768×1024)/4=196,608 

holographic cells that should be mapped among all accessible complex values. 

Thereby, we present a fast method using the KNN machine learning algorithm 

in order to classify all accessible modulation values and predict the nearest 

complex value to the desired one.  

We used the Scikit-learn Python library to implement the KNN algorithm. 

Regarding the KNeighborsClassifier module, three parameters should be 

determined, such as k, weight, and metrics, as explained in section 3.5.1. 

Besides, to train the machine, a matrix with a-samples and b-features should be 

defined (see section 3.5).  

In our case, the number of samples is the number of all accessible complex 

points, while the features are chosen based on the real and imaginary values of 

each accessible complex point (green points fall inside the blue circle in Fig. 

(4.6)). Regarding the modulation curve shown in Fig. (4.6), the total number of 

classified samples is a=3540 with two features (b=2). The machine is trained 

based on data that comes from the experimental modulation curve (as shown in 

Fig (4.6)), whereas the nearest accessible complex values to the desired ones 

will be predicted by the machine for each holographic cell. The optimum results 

were obtained by choosing k=1, weights= distance, and metrics= Euclidean 

distance for each CGH. 

On the one hand, we provided a look-up matrix from all accessible complex 

values (
a

nm
q ), as shown in Fig (4.7a). On the other hand, we trained the machine, 

as shown in Fig (4.7b). 
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Fig. 4.7. (a) The provided look-up matrix with 3540 rows and three columns. (b) The 

configuration of the labeled training dataset with 3540 samples and two features. Figure from 

[139] under the CC Attribution 3.0 Unported License. 

 

So, the machine predicted the class label of the nearest accessible complex value 

to the desired one. Then, the pair of gray-level ( 1
Mg , 2

Mg ) corresponding with 

the predicted label has been distributed to the related holographic cell, as shown 

in either Fig (3.3.4) or Fig (3.3.5). 

In order to evaluate the advantage of using the KNN classifier over the 

conventional calculation, we compared the processing time to build a CGH with 

different resolutions. We tested the method by calculating the DPH associated 

with this function: 1 0
( , ) (2 )exp( )B r r r jJ  = , where r and   are polar 

coordinates, 1J  is the first order of Bessel function, and 
0  is the radial spatial 

frequency of the beam. Numerical calculations have been carried out using 

Python 3.7.5, a laptop with CPU i7-4510U (2 GHz) and 6 GB RAM. Besides, 

the processing time was obtained by the timeit module. The results are shown 

in Table. (4.1), which are averages of 10 runs.   

 

Table. 4.1. Processing time (in seconds) 

 

The first row of Fig. (4.8) demonstrates the amplitude and phase distribution of 

( , )B r  , whereas the second row shows their nearest values predicted by the 

KNN classifier. The absolute value of MSE between the actual function and the 

Resolution 250×250 512×512 768×1024 1152×1920 

k-NN Classifier 0.45 1.45 4.67 12.78 

Conventional calculation 30.35 126.54 383.13 1095.57 
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predicted one is 0.0003, due to the limited number of accessible modulation 

points. Note that the MSE was the same for both approaches: mapping by the 

KNN classifier and conventional calculations. The corresponding CGH and the 

recorded intensity pattern of the wavefunction are shown in Fig. (4.9). 

 

 

Fig. 4.8. The first row shows the distribution of the amplitude and phase of ( , )B r  , 

respectively. The second row shows their nearest values predicted by the KNN classifier. 

 

The results demonstrate that the KNN Classifier speeds up the numerical 

calculation for generating CGHs around 80 times without losing precision. 

However, since the KNN classifier is a type of nonparametric supervised 

machine learning algorithm, increasing the number of accessible modulation 

points causes the curse of dimensionality [86]. In this regard, performing KNN 

using the RAPIDS cuML library on GPUs not only can solve this problem, but 

also dramatically accelerates the numerical calculations. As reported in [171], 

implementing KNN by the RAPID cuML library on GPUs is 600 times faster 

than performing KNN applying the Scikit-learn library on CPUs. In conclusion, 

this proposed approach can generate double-pixel computer-generated 

holograms in real-time.  
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Fig. 4.9. (a) The CGH corresponding with ( , )B r  and (b) the corresponding intensity pattern 

recorded by the CCD camera. 
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5. Encoding character codes in an optical beam 

In this section, we introduce the Circular Encoder (CE), in which binary 

information can be distributed in the radial and azimuthal parts of a circular 

environment adjusted to an optical beam. Then, the synthesized CE is encoded 

into holographic cells to be propagated in free space.  

Character codes define a relationship between specific characters and sequences 

of bits. For instance, ASCII (American Standard Code for Information 

Interchange) is 7-bit, and the Extended ASCII is an 8-bit character code. The 

number of characters is expanded by other standard encoding designs such as 

Unicode (16-bit) and UTF-32 (32-bit Unicode Transformation Format). 

Besides, character codes facilitate the processing, transmission, and display of 

texts from numerous languages and technical disciplines, including 

mathematical and musical icons and symbols accompanied by control 

characters (non-printable characters). This section aims to propose an approach 

to encode binary information into a laser beam, which might be used in auto-

detection applications, free-space optical communication, and optical 

encryption. 

  

5.1. Configuration of CEs  

A CE consists of several annuli (concentric rings) and several parts (angular 

sectors) defined by r and  , respectively. The radial direction is divided into 

several annuli according to the number of characters, while the azimuthal 

direction is divided into angular sectors according to the number of bits. This 

design is illustrated in Fig. (5.1).  
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Fig. 5.1. Circular Encoder design. The CE is divided into the m+1 annulus in the radial 

direction ( max Rr = ) and 2n angular sectors ( ) to encode m n-bit character codes. R0 is an 

arbitrary radius regarding a null region. 

 

As shown in Fig. (5.1), the first region is a null and opaque area with an arbitrary 

radius (R0). The encoding area ( 0 r RR   ) is divided into m annuli, and each 

annulus is divided into n angular sectors where n is an integer equal to the 

number of bits. Each angular sector from n  to ( 1) n + , where 

[0, 1]n − , corresponds to the digit position from the most valuable position 

of digits to the lowest ones, respectively. Binary values, 0 and 1, are encoded 

into CE as opaque and transparent angular sectors. Besides, CEs are designed 

radially symmetric.  

For instance, consider the list of letters as [‘K’, ‘a’, ‘v’, ‘a’, ‘n’] to be encoded 

in this way. Letters are transferred to decimal values regarding the ASCII table, 

then to binary values, and finally, the binary codes are distributed in a CE, as 

shown in Fig. (5.2).  
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Fig. 5.2. CE corresponds to the list of letters [‘K’, ‘a’, ‘v’, ‘a’, ‘n’]. The red concentric rings 

separate each annulus corresponding with each letter, whereas the yellow lines separate each 

angular part corresponding with binary values. 
 

 

5.2. Experiment and results 

The message of Fig. (5.2) is encoded into holographic cells according to DPH 

Arrizón’s approach. Then the synthesized laser beam can be propagated in free 

space. The experimental setup is sketched in Fig. (5.3). A green laser 

accompanied by a Lens L1 provides a collimated coherent beam. Linear 

polarizer LP1 and quarter-wave plate QWP accompanied by linear polarizer 

LP2 are used to characterize TN-LCD, as explained with details in subsection 

4.2. The 4f-imaging system images the synthesized laser beam at the sensor 

plane of the CCD. 

 

Fig. 5.3. The experimental setup. 
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A spatial filter is used to eliminate the orders of diffraction caused by the DPH 

approach and pixelated display except for the zero-order. The magnification of 

the 4f-system is tuned to adjust the size of the laser beam into the sensor size of 

the CCD. In order to synthesize the laser beam based on the CE configuration 

shown in Fig (5.2), we calculated the corresponding CGH with the fast approach 

introduced in subsection 4.3. Figure (5.4a) demonstrates the corresponding 

CGH, whereas Fig. (5.4b) indicates the associated intensity pattern recorded by 

CCD.  

 

  

                        (a)                                                           (b) 

Fig. 5.4. (a) CGH corresponds to CE shown in Fig. (4.2). (b) The corresponding intensity 

pattern recorded by the CCD camera. 

 

Finally, binary values will be decoded by averaging and binarizing the intensity 

of all pixels located on each angular part that belongs to each annulus. 

Accordingly, the encoded character code can be recovered.  

In Fig (5.5), we provide another more complex example in order to include 15 

8-bit character codes in a laser beam with a radius equal to 5.3 mm, and each 

annulus is separated by a radial distance equal to 320 μm.  

In conclusion, this approach might be used to transfer character codes in free 

space by encoding character codes into holographic cells. However, there is a 

limitation regarding the maximum possible number of character codes that can 

be included in a laser beam. The maximum number of character codes depends 

on the physical properties of the spatial light modulator, such as pixel pitch and 

resolution, the radius of the laser beam, and the approach used to generate 

CGHs.  
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Fig. 5.5. (a) CE encodes the list of letters and numbers [‘I’,’O’,’N’,’S’, ‘I’, ‘R’, ‘E’, ‘L’, ‘A’, 

‘N’, ‘D’, ‘2’, ‘0’, ‘2’, ‘1’]. (b) The corresponding CGH and (C) the recorded intensity pattern 

by the CCD camera. 

 

We applied this method to synthesize optical beams at the entrance pupil of a 

focusing system in order to manipulate the intensity patterns of the focused 

beam at the focal plane. This approach helped us to obtain a training dataset for 

pattern classification using deep learning. The method is explained in section 8.  
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6. Generating highly focused EM fields and recovering 

their transverse and longitudinal components in the focal 

area 

Highly focused beams and their potential applications in many fields such as 

nonlinear optics, microscopy, and plasmonics have been studied over the last 

years [172-189]. A combination of optical techniques such as diffraction, 

interferometry, and holography might be used in order to control the complex 

amplitude and polarization distributions of the input field, for instance, see 

[190-200].  

This section describes the experimental setup for generating highly focused 

beams with arbitrary complex amplitude and phase distributions and introduces 

a relatively simple method to retrieve the corresponding vector components 

from their corresponding intensity patterns recorded in two observed planes.  

In subsection 6.1, we describe an optical setup appropriate for generating beam 

profiles with arbitrary intensity and phase distribution. The quality of the 

produced beams using a spatial light modulator and a digital holography 

technique is assessed at the entrance pupil and at the focal plane of a high-NA 

microscope objective. 

Despite the intensity patterns that can be easily recorded, the phase information 

of optical fields can not be obtained by means of a CCD camera. In subsection 

6.2, we apply a phase retrieval algorithm to retrieve the complex amplitudes of 

the transverse components of a highly focused EM field in the focal area. 

In subsection 6.3, we propose a method for retrieving the longitudinal 

component of highly focused EM fields using a conventional imaging system. 
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6.1. Optical setup 

The experimental setup is sketched in Fig. (6.1), which is developed by 

modifying the optical setup sketched in Fig. (4.1). 

Fig. 6.1. The sketch of the experimental setup. R stands for a retarder which can be a QWP or 

Vortex for providing circularly or radially polarized beam, respectively. MO stands for 

microscope objective. MS stands for the movable stage. Figure from [139] under the CC 

Attribution 3.0 Unported License. 

 

According to the optical setup sketched in Fig. (6.1), the fiber end of a pig-tailed 

laser (Thorlabs LP520-SF12@ 514 nm) is located at the back focal plane of a 

lens in order to collimate the laser beam. Then, the optical beam is modulated 

by means of  LP1, HWP1, QWP1, TNLC display, and LP2, as explained in 

subsection 4.2. Note that the left arm of the Mach-Zehnder interferometer is 

blocked by an obstacle. A vortex retarder (ThorLab, WPV10L-532) or a QWP 

denoted by R is added after LP2 to provide a radially or circularly polarized 

beam, respectively. In order to provide radial polarization, the fast axis of the 

vortex retarder was placed parallel to the y-axis. In order to provide a circular 

polarization, the fast axis of QWP was rotated 45º with respect to the x-axis. 

Note that for providing a linearly polarized beam, retarder R (vortex retarder or 

QWP) can be easily removed. 

The beam is separately imaged at the entrance pupil of microscope objective 

MO1 (Nikon Plan Fluorite N40X-PF with NA=0.75) and at the sensor plane of 

CCD1 by means of the 4f-system and beam splitter BS3. Microscope objective 

MO2 (Nikon with NA=0.8) is mounted on a movable stage driven by a 

motorized device (Newport LTA-HL) with uni-directional repeatability of ±100

nm. MO2 has been used to scan different planes close to the focal plane of MO1 
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and image them to the sensor plane of the CCD2 camera (Stingray with a 14-

bit depth and a pixel pitch of 3.75 μm). Note that MO2 has a larger NA than 

MO1 to collect the entire beam. Furthermore, the actual magnification of the 

imaging system (as shown in Fig. (6.2)) provided by MO2 was obtained by 

imaging a USAF target placed in the front of MO2, resulting in a 100x and 

spatial sampling of 37.5 nm. LP3 and QWP2 were used to obtain a set of six 

polarimetric images, as explained in subsection 3.1.  

The performance of the experimental setup can be summarized in three parts: 

Polarized beam generator, Focusing system, and Imaging system, as shown in 

Fig. (6.2). 

 

Fig. 6.2. The effective illustration of the experimental setup included three main parts: 

polarized beam generator, focusing system, and imaging system. Figure adapted from [201] 

under a Creative Commons By 4.0 license. 

 

The operation condition of the first part (Polarized beam generator) is explained 

in subsection 4.2, including characterizing the TNLC display and a 4f spatially 

filtering system to remove the diffraction orders caused by DPH Arrizón’s 

approach and pixelated structure of the display. In part 2 (Focusing system), the 

modulated and polarized laser beam that reached the entrance pupil of MO1 is 

focused. 

In part 3 (Imaging system), since the MO2 is mounted on a movable stage, 

different planes near the focal plane of MO1 can be scanned and imaged at the 

sensor plane of CCD2.  

In order to evaluate the operation of the experimental setup, we considered two 

differently polarized wave functions and compared the experimentally recorded 

polarimetric images with the numerical ones.  
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The first example is a (1,1)-Hermite-Gaussian ( 11HG ) with the wave equation 

given by 

2

11 2
00

4
exp circ( )HG

xy r r

Rww

  
= −     

,                                                                                  (6.1) 

where 
22r yx= +  , 0w  is the beam waist ( 0 2Rw = ), and R is the radius of 

the circular beam support, which is equal to 3.75 mm. The first row of Fig. (6.3) 

indicates the amplitude and phase of 11HG , respectively, whereas the second 

row demonstrates the nearest accessible values predicted by the KNN classifier, 

as explained in subsection 4.3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3. The first row shows the distribution of the amplitude and phase of 11HG , 

respectively. The second row shows their nearest values predicted by the KNN classifier. 

Figure from [139] under the CC Attribution 3.0 Unported License. 

 

The second example is a (0,1)-Laguerre-Gaussian ( 01LG ), in which the 

complex wave equation is  

2

01

0 0 0

2 2
exp ( )LG

x y r r
j circ

Rw w w

       
= + −                

.                                                      (6.2) 

The amplitude and phase distribution of 01LG  and their nearest accessible 

values predicted by the KNN classifier are shown in the first and second rows 
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of Fig. (6.4). The corresponding CGHs for 11HG and 01LG  are shown in Fig. 

(6.5).  

 

 

 

 

 

 

 

 

 

 

Fig. 6.4. The first row shows the numerical distribution of the amplitude and phase of 01LG , 

respectively. The second row shows their nearest values predicted by the KNN classifier. 

Figure from [139] under the CC Attribution 3.0 Unported License. 

Fig. 6.5. The CGHs corresponding with (a) 11HG  and (b) 01LG . The practical part of CGHs is 

selected for illustration purposes. Figure from [139] under the CC Attribution 3.0 Unported 

License. 

 

The required time for generating the CGHs corresponding with 11HG and 01LG  

with a resolution of 768×1024 pixels were 1.92 and 5.53 seconds, respectively. 

Since the intensity pattern of a beam at the focal plane strongly depends on its 

polarization state at the entrance pupil of MO1, two different states of 

polarization were considered to compare the experimental results with the 

numerical ones. The numerical calculations have been implemented by 
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applying the focused field calculation method, as explained in subsection 3.2.1. 

Figures (6.6a) and (6.6b) show the intensity patterns of beam 11HG and 01LG  

recorded by CCD1.  

 

Fig. 6.6. The intensity patterns corresponding to beams (a) 11HG  and (b) 01LG  recorded by 

CCD1. Figure from [139] under the CC Attribution 3.0 Unported License. 

 

Fig. (6.7) indicates the intensity patterns of the circularly polarized 11HG  beam 

at the focal plane of MO1. The first row indicates the Stokes images, which are 

obtained numerically, whereas the second row shows the intensity measurement 

of the Stokes images, which are recorded by CCD2. The Stokes images are 

denoted by ,I  , where  and  are the rotation angle of the axis of LP3 and the 

phase delay introduced by means of QWP2  with respect to the x-axis, 

respectively. Moreover, the polarimetric images are normalized by the 

maximum intensity of the transverse components of the electromagnetic field. 

In a similar way, Fig. (6.8) indicates the Stokes images correspond to the 

radially polarized 01LG  beam. As results show, the obtained Stokes images are 

in excellent agreement with the numerical ones. However, the state of 

polarization is altered slightly due to the imperfection of applied retarders. In 

conclusion, the results validate the performance of the optical setup for 

generating highly focused beams and correspondingly recording the intensity 

patterns of the transverse components. In order to retrieve the complex 

amplitude of transverse components, their phase distributions should be 

obtained, which is explained in the next subsection.   
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Fig. 6.7. The stokes images correspond to the circularly polarized 11HG  beam at the focal 

plane. The first row shows the numerical results, while the second row demonstrates the 

recorded intensity by CCD2. The size of each image is 3 μm. Note that the values on the color 

bar corresponding to 90,135I are very small compared to the other polarimetric images. Figure 

from [139] under the CC Attribution 3.0 Unported License. 

 

 

Fig. 6.8. The stokes images correspond to the radially polarized 01LG  beam at the focal plane. 

The first row shows the numerical results, while the second row demonstrates the recorded 

intensity by CCD2. The size of each image is 3 μm. Note that the values on the color bar 

corresponding to 90,135I are very small compared to the other polarimetric images. Figure from 

[139] under the CC Attribution 3.0 Unported License. 

 

6.2. Recovering the transverse components  

Despite the amplitude of the transverse components, their phase distribution can 

not be inferred from a conventional camera. Here, we apply an iterative phase 

retrieval algorithm based on a derivative approach from the Gerchberg-Saxton 

algorithm and the input-output Fienup algorithm [202, 203].  

Since optical beams considered in this work propagate in free space, the planes 

perpendicular to the direction of the propagation are computationally connected 

by means of the Fresnel transfer function [204]. Note that the theory of 
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propagation of the EM field in free space is explained in subsection 3.2.2.1, and 

the input-output Fienup phase retrieval algorithm is explained in subsection 3.4. 

In order to obtain the phase distribution of the transverse components, we apply 

an iterative algorithm (see subsection 3.4) on the recorded modulus of each 

transverse component of the EM field separately at two different planes 

perpendicular to the z-axis 

22
1 1( , , )i i x yA E z= ,                                                                                                                   (6.3a)

22
2 2( , , )i i x yA E z= ,                                                                                                                  

(6.3b) with ,i x y= . The relationship between two planes separated a distance

2 1z z z= −  is  

2 2

2

1 ˆ( , , ) ( , ,0)exp( )exp[ ( )]
4

x y z x y x y

k k

U x y z U j z j x yk k k k k dk dk


⊥

= + ,              (6.4) 

where ˆ ( , ,0)x yU k k  is the spectrum at the first plane ( 1z z= ), and 

11 1 1
( , , ) exp( )ii i
x y z jU A = and 22 2 2

( , , ) exp( )ii i
x y z jU A = . The propagation of 

the EM field is performed using the angular spectrum of plane waves and the 

free space transfer function (see Eqs. (3.2-13) and (3.2-18)). Note that other 

propagation methods could be used as long as the size of the window is not 

modified [205, 206]. 

The iterative algorithm begins with an initial guess (random distribution) of
1
.

i

The iterative algorithm includes propagating 1 1( , , )i x y zU  to plane 2z  applying 

Fresnel propagation, reserving the obtained phase (
2i ) and replacing the 

obtained modulus with the measured modulus at plane 2z ( 2iA ), back-

propagating 2 2( , , )i x y zU to plane 1z , reserving the obtained phase (
1i ) and 

replacing the obtained modulus with the measured modulus at plane 1z ( 1iA ). 

For each iterative process, the error is measured, and the process continues until 

arriving the measured error close to zero. Note that the detailed discussion about 

the phase retrieval algorithm used in this work, such as accelerating the 

algorithm [207] and solving the stagnation at local minima of the error function 

[208] is beyond the scope of this thesis. For obtaining more information, see 

[201]. 

By means of this algorithm, the phase of the transverse components, 1( , , )x x yE z

and 1( , , )y x yE z , can be retrieved. However, there is a relative phase between 
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the two transverse components that can be obtained by means of polarimetric 

analysis according to the measurement of Stokes images in the observation 

planes [209]. Once the electric field is determined at a given plane, the beam 

can be propagated to any new location [210]. 

Note that for doing this experiment, we had to replace the fiber of the pig-tailed 

laser with another one (Thorlabs LP520-SF115) with a wavelength of 520 nm 

due to a technical problem. Correspondingly, the magnification and the 

resolution of the imaging system were measured in a similar way that is 

explained in subsection 6.1, resulting in M=50x and spatial sampling of 75 nm. 

Two different beam profiles were considered to recover their corresponding 

transverse and longitudinal components in the focal region. Retrieving the 

longitudinal component is explained in subsection 6.3. 

The first beam is a radially polarized Gaussian-like beam with a vortex phase 

given by 

2

2 2
( , ) exp( )exp circ[cos ,sin ]

NANA
i

ee

jE
ff


    

    
= −   

  
,                     (6.5) 

where ( , ,0)x y = ,   is the azimuthal coordinate, and 5f = mm is the focal 

length of MO1. NAe  is the effective pupil size of the beam, which was 

determined according to the present size of the beam. 

The second beam is a linearly polarized (1,1)-Hermite-Gauss with the wave 

function given by 

2

1 1 2 2

2 2
( ) 0, exp circH H

NA NA NANA
i

e e ee

x y
E

f f ff






        
= −           

        

.        (6.6) 

We replaced NA (numerical aperture of MO1) with NAe , because each optical 

element’s aperture limits the size of the beam as it propagates. So, the size of 

the beam is limited by propagating through each optical element, specifically 

by the EP of MO2 (the EP of the objective is not physically accessible nor 

measurable). Since the spectra of each component are limited by the physical 

size of the EP of the microscope, all generated beams are band limited. Then, 

the diameter of the effective pupil size for each beam was obtained by 

calculating the half diameter of the autocorrelation of the corresponding 

intensity.  

The calculation of the autocorrelation of the recorded intensity regarding the 

radially polarized vortex and the Hermite–Gauss beams gave NAe
= 0.406 and 
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NAe
= 0.379, respectively. Note that the diameter of the autocorrelation is twice 

the diameter of the beam. The Stokes parameters for two experimentally 

measured planes (first and second rows) for the radially polarized vortex beam 

are shown in Fig. (6.9). The Stokes parameters were obtained by means of Eqs. 

(3.1-12), and the distance between the two observed planes was 2 μm. Our 

investigation shows that obtained phases converge to a spherical wave 

regardless of the shape of the beam for distances shorter than 2 μm.  

  

 

Fig. 6.9. Stokes parameters for the radially polarized vortex beam measured at two planes 

perpendicular to the optical axis. The distance between these two planes is 2μm. Figure from 

[201] under a Creative Commons By 4.0 license. 

 

The position
0z  shown in Fig. (6.9) is close to the focal plane. As the Stokes 

parameters indicate, the polarization state of the beam is a complex combination 

of radial and circular polarizations distributed along the width of the beam. 

Nevertheless, the exact polarization state of the beam alters as it propagates, 

especially near the center of the beam. This might be attributed to the spiral 

phase of the beam, which curls and uncurls while changing the phase difference 

between components. Fig. (6.10) demonstrates the recovered phases, x and 
y

by means of the iterative phase retrieval algorithm on amplitudes 0,0I and 

0,90I  at planes 
0z  and 0z +2 μm, respectively. 
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Fig. 6.10. Vortex beam: Amplitudes and phases of the two experimentally observed planes 

(first two rows) and the synthetically refocused focal plane (bottom row). Figure from [201] 

under a Creative Commons By 4.0 license. 

 

Since each phase is recovered separately, the origin of phases for both x and 

y  might be different. We determined this constant random phase difference 

0 at the maximum irradiance of the beam 
0,0 0,90max(I I )+  to be the one given 

by the Stokes parameters (Fig. (6.9)), 0 3 2arctan( )S S = . With this 

information, the beam was propagated up to the focal plane (
fz ).  

Note that 
fz  cannot be easily set experimentally with enough precision. Hence, 

it is numerically estimated as the plane where the circle of the smallest size of 

the beam can be, or the beam is tightly concentrated. The results show that the 

phase difference ( 0 ) in the focal plane is 0.062
x y − = rad, whereas it 

theoretically should be 2  rad. This discrepancy might be due to some optical 

elements introducing an uncontrolled phase difference between components 

caused by aberrations, misalignment, and the error of the codification algorithm 

(DPH Arrizón’s approach). In this regard, the discrepancy observed 

experimentally was compensated by including the phase difference between 

theory and experiment in the simulations of the beam in Eq. (6.5). 
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Since the Hermite–Gaussian beam is linearly polarized, calculation of the 

Stokes parameters was unnecessary. Figure (6.11) indicates the transverse 

amplitudes of the experimentally measured beam and the synthetically 

refocused at the focal plane. The x-component, although present, is very weak 

in comparison with the y-component and does not affect the shape of the total 

irradiance. Its presence can be attributed to the imperfection of used retarders 

and polarizers. 

 

Fig. 6.11. Hermite–Gauss beam: Amplitudes and phases of the two experimentally observed 

planes (first two rows) and the synthetically refocused focal plane (bottom row). Figure from 

[201] under a Creative Commons By 4.0 license. 

 

 

6.3. Recovering the longitudinal component  

In contrast to the intensity patterns of transverse components of a highly focused 

EM field that can be recorded by an imaging system, the longitudinal 

component can not be recorded or observed directly by a conventional imaging 

system [70, 71]. However, several techniques have been reported for direct 

measuring of the longitudinal component, which are typically complex or 

designed for specific applications [211-220].  
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In this subsection, we propose a new method by estimating the longitudinal 

component using Gauss’ theorem, provided the complex amplitude and 

polarization of the transverse field are known. 

In subsection 3.2.2.1, the numerical method was described for obtaining the 

longitudinal component of a highly focused EM field from its transverse 

components. Subsequently, in subsection 6.2, we retrieved the complex 

amplitude of the transverse vector ( ; 0)z⊥ ⊥ =E k using the phase retrieval 

algorithm. Correspondingly, the retrieved longitudinal components 

( ; 0)z z⊥ =E k  for two beams considered are shown in Fig. (6.12), which are 

obtained by applying Eq. (3.2-20) on the retrieved ( ; 0)z⊥ ⊥ =E k . 

The results demonstrate an acceptable agreement between the theoretical and 

experimentally estimated longitudinal components. However, the discrepancy 

observed for the radially polarized vortex beam (as explained in the previous 

subsection) causes a difference between the theoretically expected longitudinal 

component and the recovered one. Although the shape of the longitudinal 

component for a radial vortex beam should be a doughnut, the two protruding 

lopes (shown in Fig. (6.12b)) were obtained theoretically by modifying Eq. 

(6.5), according to an unforeseen phase difference that was observed 

experimentally. This phase difference might be caused by aberrations 

introduced by optical elements in the experimental setup or/and the 

imperfections in the hologram at the EP of the optical system, mainly due to the 

DPH method used.   

The results regarding the Hermite–Gauss beam demonstrate an excellent 

agreement between theory and experiment due to this beam being linearly 

polarized, and the stokes analysis was not necessary to be carried out.  
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Fig. 6.12. Estimation and theoretical irradiances at the focal plane of the microscope 

objective: (a-c) vortex beam: (a, b) 2D irradiance distribution; (c) profile of the irradiance 

across the diagonal depicted in red. The solid blue line and the orange dots correspond to the 

theoretical and experimental values, respectively. (d–g) Hermite–Gauss beam: (d, e) 2D 

irradiance distribution; (f, g) irradiance profiles across the horizontal and vertical lines 

superimposed on the experimental image. As in the previous case, orange points represent 

values obtained from experimental measures, whereas the blue line has been obtained from 

theoretical calculations. Figure from [201] under a Creative Commons By 4.0 license. 
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7. Estimation of Zernike polynomials for a highly focused 

EM field using polarimetric mapping images and neural 

networks 

In the previous section, we described a relatively simple method for visualizing 

the longitudinal component of highly focused beams using conventional 

imaging systems. Since recovering the longitudinal component depends directly 

on the quality of retrieving the transverse components, considering any possible 

error in the optical setup is essential. In general, one of the main errors in a 

complex optical system is the aberration caused by optical elements and the 

misalignment. 

Aberration is a well-known topic in adaptive optics, astronomy [221], 

optometry [222], coherent diffractive imaging [223], and ptychography [224]. 

An aberrated wavefront can be measured by a Hartmann-Shack wavefront 

sensor [225] or conventionally by interferometric methods [226,227]. However, 

the first one requires the device, and the interferometric techniques require a 

complex optical setup, high-resolution cameras, and controlling the vibration 

between two arms of the interferometer. 

Since simulated artificial neural networks (ANN) have been proved to be a very 

powerful tool in many fields of research, ANNs have also been used for 

aberration measurements in several optical systems. For instance, applying 

neural networks to determine the spherical aberration coefficient of a confocal 

objective from an axial intensity response [228] or using neural networks 

designed to estimate optical aberrations of the Hubble Space Telescope [229]. 

Furthermore, neural networks have been used for wavefront reconstruction 

considering aberrated wavefronts [230, 108]. 

In particular, White et al. proposed a practical method applicable for 

reconstructing the wavefront of a focused beam from a measured diffraction 

pattern [108]. Since the phase property of optical waves can not be recorded by 

intensity detectors (for instance, CCD cameras), they applied a phase-retrieval 

framework based on a neural network to solve the phase problem. In their 

approach, the neural network was trained by the labeled training datasets 

obtained by simulating aberrations according to Zernike polynomials. On the 

one hand, the labeled objects (outputs of the neural network) were obtained by 

applying the Fourier transform to a Gaussian beam which was multiplied by 

random phases consisting of Zernike polynomials with random scalar 

coefficients. On the other hand, the neural network inputs were diffraction 
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patterns obtained by simulating the propagation of the objects through a 

diffractive mask consisting of a thin, absorbing metal film on a silicon nitride 

membrane with holes. In this work, we used the way they applied to simulate 

the aberrated wavefronts to obtain a training dataset.   

In this section, we present an alternative approach to estimating the Zernike 

polynomials at the focal plane regarding a highly focused EM field by means of 

the polarization property of optical beams. Despite the phase, the polarization 

state of optical waves is simply measurable using a linear polarizer followed by 

a quarter-wave plate and a CCD camera. In this regard, a radial polarization is 

imposed on randomly aberrated Gaussian-like beams. Then the focused fields 

are simulated through a high-NA microscope objective to calculate the Stokes 

images at the focal plane. Accordingly, we introduce the polarimetric mapping 

images (PMI) to a convolutional neural network in order to map the Zernike 

polynomials based on the polarimetric information. Our approach takes 

advantage of recording the Stokes images at a single plane (focal plane) and 

eliminating the necessity of phase retrieval. 

The following text is organized as follows: Subsection 7.1 reviews the Zernike 

polynomials. Subsection 7.2 describes the simulation procedure, including the 

training dataset and the neural network model. Subsection 7.3 discusses the 

results with possible improvements. 

 

7.1. Zernike polynomials 

The Zernike expansion represents wavefront aberration functions, which is a set 

of polynomials indexed by the nonnegative integers corresponding with the 

degree of polynomials that are orthogonal on a circular pupil. The even and odd 

Zernike polynomials are defined by ( , ) ( )cos( )m m
n n mZ R   =  and

( , ) ( )sin( )m m
n n mZ R   − = , respectively, where n and m are nonnegative integers 

with the condition 0n m  ,   and   are the azimuthal angle and the radial 

distance, respectively, and ( )m
nR  are the radial polynomials given by
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(7.1) with a special value (1) 1m
nR = . 
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7.2. Simulation 

Here we consider a numerical framework adjustable to the experimental setup 

that we used to estimate the longitudinal component of highly focused beams, 

as explained in subsection 6.1. Without loss of generality, our approach can be 

adapted to any complex optical system dealing with aberrations and focused 

fields. The numerical calculations have been carried out using Python 3.7.5 and 

a Laptop with CPU i7-1165G7 (2.8 GHz) and 16 GB RAM. Besides, the neural 

network has been implemented by TensorFlow 2.1 on GPU: NVIDIA Geforce 

M450. 

7.2.1 Training dataset 

The training dataset was obtained by calculating aberrated focused fields 

corresponding with a radially polarized Gaussian-like beam with random phases 

described by Zernike polynomials. Hence, the input beam is  

( )( )2

0 0exp exp( )
z

r r jwE = − ,                                                                                     (7.2) 

where 
22r yx= + and 0w  is the beam waist. The phase distortion caused by 

aberrations is introduced by 
z , which is obtained by a combination of random 

coefficients of the first four order (15 Zernike polynomials) as follows: 

0 1 1 0 4
0 1 1 2 41 2 3 4 15...

z c c c c cZ Z Z Z Z −= + + + + + ,                                                                   (7.3) 

where ic  denotes a randomly-selected coefficient ranging from 0 to 0.01. Note 

that this range should be scaled and calibrated based on the experimental 

measurements for the specific application. For instance, in [228], the authors 

calibrated the aberration coefficient  0.7 0.3 −  into  0.05 0.95 . The 

vector components of the focused field for the radially polarized input beam 0E  

(Eq. (7.2)) is calculated by means of Eqs. (3.2-3), (3.2-5), and (3.2-7), resulting 

in  

02
( , ,0) FT cos cos

4
x

jf
x yE E


 


 = −
  ,                                                                      (7.4)
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  ,                                                                      (7.5)
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 = −
  .                                                                     (7.6) 
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We considered 2000 random possibilities of 
z  , introduced into Eq. (7.2). 

Then, for each possibility, the vector components of the focused field were 

obtained using Eqs. (7.4) to (7.6). Subsequently, the corresponding Stokes 

images were calculated at the focal plane by the matrix multiplication of the 

transverse components of the focused field and a linear polarizer and a quarter-

wave plate in which their axes were rotated appropriately based on the Jones 

matrix representation (see subsection 3.1). Besides, the Stokes parameters were 

obtained by means of Eq. (3.1-12). Finally, for each possibility, we formed an 

image named polarimetric mapping image (PMI) based on the calculated Stokes 

parameters. Actually, PMIs are multidimensional arrays, but we name them 

images for the sake of simplicity. To the best of our knowledge, this is the first 

report of PMIs for pattern classification and object recognition. 

In this work, a PMI consists of three channels: 1 0S S , 2 0S S , and 3 0S S . 

Thereby, these PMIs are the inputs of the CNN model for training the machine. 

We calculated 2000 PMIs corresponding to 2000 random possibilities of 
z . 

Furthermore, the number of elements of the dataset was increased to 18000 by 

adding Gaussian noises with a variance ranging from 0 to 0.25 to each channel 

of every PMI.  

Figure. (7.1) shows the Stokes images obtained for a radially polarized 

Gaussian-like beam without aberrations at the focal plane. Figure. (7.2) 

indicates the Stokes images obtained for a radially polarized Gaussian-like 

beam with the coefficients of Zernike polynomials equal to c1= 4.8×10-3, c1= 

4.8×10-3, c1= 4.8×10-3, c2= 2.4×10-3, c3= 6.2×10-5, c4= 4.7×10-3, c5= 6.8×10-3, 

c6= 8.5×10-3, c7= 4.4×10-4, c8= 5.9×10-3, c9= 4.7×10-3, c10= 8.1×10-3, c11= 

4.5×10-4, c12= 5.9×10-3, c13= 4.8×10-3, c14= 5.1×10-3, c15= 5.2×10-3. Figure. (7.3) 

shows the normalized Stokes parameters, which form a PMI, corresponding 

with Stokes images shown in Figs.  (7.1) and (7.2). Finally, the total dataset was 

split into two sets: 80% for the training dataset (14400 PMIs) and 20% for the 

test dataset (3600 PMIs). 

7.2.2 Neural network model 

The applied neural network model is a sequential model summarized in Fig. 

(7.4). The model consists of three convolutional layers with 32, 64, and 128 

filter sizes and a kernel size of 3, accompanied by the hyperbolic tangent 

activation function. The batch normalization and average pooling layers are 

applied after each convolutional layer. Then, the resulting feature map is 

flattened into an one-dimensional array as an imaging outcome. 

Correspondingly, the image outcome is connected to 3000 neurons applying a 

dense layer by means of the sigmoid function. Next, 25% of connected neurons 
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are removed by a drop-out layer. Finally, the last dense layer provides 2000 

probability distributions ranging from 0 to 1 by means of the softmax activation 

function, which is used to label 2000 possibilities of 
z . 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1. Stokes images obtained at the focal plane corresponding to a radially polarized 

Gaussian-like beam. 

 

 

 

 

 

 

 

 

 

 

Fig 7.2. Stokes images obtained at the focal plane corresponding to a radially polarized 

Gaussian-like beam with a random phase obtained by Zernike polynomials. 

 

Besides, the model was compiled with the root-mean-square error, the cross-

entropy loss, and the accuracy as the optimizer, loss function, and performance 

metrics, respectively. To avoid overfitting, we monitored the accuracy and the 
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loss obtained after each epoch by separating a randomly-selected 20% of the 

training dataset as a valid test dataset. Note that the valid test dataset differs 

from the test dataset mentioned previously. In this regard, the training process 

was stopped after 50 epochs, when the error loss was decreasing while the valid 

error loss began increasing. 

To sum up, the input of the model is PMIs with a size of 50×50×3, and the 

output is the predicted Zernike polynomials coefficients, which were saved 

previously regarding each class label. The obtained accuracy and the loss error 

of the classification are 0.989 and 0.033, respectively. The obtained accuracy 

for predicting the test dataset is 0.978, which shows a high rate of success for 

predicting the unseen dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3. The normalized Stokes parameters corresponding to a radially polarized 

Gaussian-like beam without aberrations (the first row) and with a random phase obtained by 

Zernike polynomials (the second row). 
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Fig. 7.4. CNN model. PMI, FM, IO, HL, and OL stand for polarimetric mapping image, 

feature-map, image-outcome, hidden layer, and output layer, respectively. 

 

7.3. Discussion and conclusions 

We demonstrated that by means of PMIs, the neural network model could 

successfully predict the Zernike polynomial coefficients of the aberrated beam 

based on polarimetric information. However, the training dataset can be easily 

enriched by adding more possibilities. The first fifteen aberrations were 

considered, including oblique astigmatism, horizontal and vertical coma, 

primary spherical, defocus (longitudinal position), tilt in x- and y-direction, etc. 

This set of aberrations can be modified based on the experimental setup used 

for a specific application. As a result, the training dataset can be practically 

modified based on the type of application. Although we considered a uniform 

range ([0,0.01]) of the Zernike polynomials coefficients ( ic ) but also this range 

might be practically selected as non-uniform coefficients based on the used 

experimental setup. 

We imposed a radial polarization on the incident beam in order to provide 

different intensity patterns of the Stokes images. Other polarization states that 

fulfill this condition can be applied, for instance, spiral polarization or spatial-

variant polarization. 

Our approach aims to encode phase information into polarimetric information. 

In the future, we plan to extend the application of our approach for instant 

detection of the aberrated longitudinal component of highly focused fields 
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without the necessity of fully retrieving the transverse components. Figure (7.5) 

indicates the corresponding longitudinal component of the Stokes parameters 

shown in Fig (7.3). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7.5. Longitudinal component of a focused radially polarized Gaussian-like beam (a) 

without aberration (b) with aberrations obtained by the Zernike polynomials. 

 

 

In conclusion, this approach can be applied for two purposes as follows: 

• In order to calibrate a complex optical setup by detecting the Zernike 

polynomials coefficients at the focal plane by synthesizing a properly 

polarized beam at the EP of a focusing system. 

• Instant reconstruction of aberrated wavefronts based on polarimetric 

information provided the beam used is known. In this case, applying 

phase recovery algorithms is not necessary anymore for wavefront 

sensing applications.  
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8. Secret sharing of optically obscured character codes in a 

highly focused EM field 

In subsection 3.2.2, we described a method to obscure data into a highly focused 

EM field depending on the state of the input polarization and physical properties 

of the concentrated beam that requires a method for recovering encrypted data 

in the longitudinal component. 

In section 6, we described a relatively simple method to recover the longitudinal 

component using conventional imaging systems that can be applied for 

decoding the encrypted information. However, due to the complexity of the 

experiment and according to the fact that the longitudinal component should be 

obtained by its lateral electric field, decoding the original data might be failed. 

Very often, the practically obtained results suffer from the misalignment of 

optical elements, imperfection of polarizers/retarders, and aberrations such as 

spherical and distortion. All mentioned errors might cause various undesirable 

results in the decoding process, which demand a new encoding and decoding 

processes approach.  

In recent years, applying Deep Neural Networks (DNNs) in phase retrieval 

algorithms has been increasing due to the ability of DNNs to make the algorithm 

robust [103-108, 231,232]. However, most of the reported algorithms are based 

on supervised learning, which demands a pre-defined training dataset.  

In this section, we implement a visual object recognition technique using a 

supervised deep learning algorithm [233] by recording Stokes images at the 

focal plane. To implement this method, we use CEs (as explained in section 5) 

to encode 10-bit character codes into the holographic cells in order to synthesize 

laser beams at the entrance pupil of the focusing system to provide a supervised 

training dataset. Regarding the decoding process, we use the polarimetric 

mapping images (PMIs) at the focal plane to classify and correspondingly 

retrieve the original codes using a CNN model. Moreover, character codes are 

encrypted by Moni Naor and Adi Shamir’s secret sharing technique [113] using 

the bitwise XOR operation.     

8.1. Encrypting and encoding character codes into an optical beam 

One of the well-known visual secret sharing schemes was developed by Moni 

Naor and Adi Shamir. Regarding the proposed scheme, an image is split into n 

shares ( n 2 ). Accordingly, the original image only can be decoded when all 

n-shares are accessible, and any n-1 shares unmask no information about the 
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original image. To provide a secure communication channel, we use the secret 

sharing scheme. Since each character code is transferred into 10-bit binary 

values, we split each character code into two shared-character codes by means 

of the bitwise XOR operation. A bitwise XOR is a binary operation that 

performs the logical inclusive OR operation on each pair of corresponding bits. 

The output of a logical function (XOR) is one if the inputs are not identical, 

whereas it is zero if the inputs are the same. Therefore, applying the bitwise 

XOR operation on two 10-bit binary values results in another 10-bit binary 

value. Each bit’s binary value (0 or 1) is obtained by applying the XOR 

operation on each pair of corresponding bits. 

The encryption process can be explained in three steps: 

• According to the Unicode table, the original character code is transferred 

into the decimal value and correspondingly into 10-bit binary values, 

ORCEdenoted by . 

• 
1CETo define a 10-bit random key named . 

• ORCETo apply the bitwise XOR operation on and 1CE to obtain another 

CE  named 
2CE , such as 

OR 1 2CE XOR CE CE= . 

Then two cipher-character codes 1CE  and 2CE  are encoded into holographic 

cells, as explained in section 4. For instance, we encrypt the character code ň 

with decimal value 328 correspond to [0 1 0 1 0 0 1 0 0 1] binary values, in this 

way. Additionally, a 10-bit random key can be a character code like á with 

decimal value 225 and correspond to [0 0 1 1 1 0 0 0 0 1] binary values. 

Applying the bitwise XOR gives 2CE = [0 1 1 0 1 0 1 0 0 1], which is equal to 

decimal value 425, corresponding to character code Ʃ. Hence, each character 

code (
ORCE ) is split into two cipher-character codes ( 1CE and 2CE ) in order to 

share with two different optical systems A and B. Correspondingly, the original 

character code can be obtained by 
A B ORCE XOR CE CE= . The configuration 

of used CEs in this work is shown in Fig. (8.1). 

The circular area is divided into two regions (concentric rings). The first region 

is a null and opaque area with a radius of r = 1.8 mm, as shown in black space. 

In contrast, the rest is the encoding area with a maximum radius of R = 3.75 

mm, equivalent to the radius of the laser beam. Here, we limit ourselves to 

encoding 10-bit character codes, so we just consider CEs that consist of an 

annulus with ten angular sectors. However, the proposed algorithm can be 

applied for any arbitrary binary set, for instance, the full 16-bit Unicode set. 
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Fig. 8.1. Design of the Circular Encoder to encode 10-bit binary values. R and r denote the 

radius of the laser beam and the null region, respectively, while d stands for digit position. 

The encoded area is divided into 20 angular sectors divided by red dashed lines, while the 

black area shows the null region. 

 

The advantage of the proposed binary approach is to synthesize the objects at 

the entrance pupil of the focusing system and correspondingly encode 1024 

character codes, including most European alphabets, numbers, symbols, and 

punctuation characters. Significantly, CEs give a facility to obtain the 

supervised training datasets at the focal plane to eliminate the necessity of 

retrieving the vector components of a highly focused EM field. Three CEs, 

which encode character codes ň, á, and Ʃ are shown in Fig. (8.2). 

 

Fig. 8.2. CEs that encode character codes (a) Latin small letter N with caron, ň, with decimal 

value 328. (b) Latin small letter A with acute, á, with decimal value 225. (c) Greek capital 

letter Esh, Ʃ, with decimal value 425. Accordingly, the 10-bit binary values related to each CE 

are shown below of them. 
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8.2. Obscuring CEs into the longitudinal component 

In subsection 3.2.1, we explained the vector behavior of an EM field 

x y z=( , , )E E EE  in the focal area. In subsection 3.2.2, we described a method to 

obscure data into a longitudinal component of a highly focused beam. We 

rewrite Eq. (3.2-8) as follows:  

( ) ( )
sin

, ,0 cos sinFT FT
cos cos

z
z f f ix iy

E
x y  


 

 

   
= = +  

   
E E E .                  (8.1) 

On the one hand, the longitudinal component of the focused field is connected 

to the transverse components of the input beam, according to Eq. (8.1). On the 

other hand, the transverse components of the input electric field are related to 

each other based on the state of the input polarization. Hence, by manipulating 

the state of the polarization and synthesizing the intensity pattern of the input 

beam, the vector components of the focused EM field alter accordingly. Here, 

we consider an input beam with spiral polarization. When the input field is 

spirally polarized, the transverse components are related by means of 

( )tanix iy  = − +E E ,                                                                                                              (8.2) 

where   is a constant angle to be tuned. By substituting Eq. (8.2) into Eq. (8.1), 

the transverse components of the input field are obtained as follows:

 1cos
FT

sin
ix zx



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−=E E , 
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                                     (8.3)
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=

− +
 .                                 (8.4) 

Depending on   different polarization states across the beam section can be 

obtained, ranging from azimuthal (when ω = 0 ) to radial (when 2 = ) 

[234]. Since the azimuthal polarization provides a purely transverse focused 

field, ω=0 is not our interest in this communication. 

Since zE  xEis embedded by  and yE , we encode CEs in the inverse Fourier 

transform of the z-component. Subsequently, ( )0 cos sin CEe
E  = , where 

 1 CEFT z
− =E . So, by substituting Eqs. (8.3) and (8.4) into Eq. (3.2-8), the 

encoded vector components of the focused electric field (denoted by uppercase 

e) are obtained as follows: 
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Note that there are no singularities in Eqs. (8.5) and (8.6) due to the specific 

design of CEs. 

Accordingly, the intensity pattern of the encoded transverse components 

depends on the physical properties of the focusing system ( ), the intensity 

pattern (the design of CEs), and the angle  . As a result, manipulating the 

longitudinal component of a highly focused EM field causes different intensity 

patterns and polarization vectors of the transverse components of the focused 

field. 

Subsequently, to decode the original data, we need to obtain the longitudinal 

component at the focal plane according to Eq. (8.7). One possible method to 

obtain zE was introduced in section 6. Nevertheless, the algorithm proposed in 

section 6 or the other method based on a phase retrieval algorithm demands 

recording the intensity pattern of the electric field at different planes that can be 

the pair of the object and focal plane or a couple of at least two planes through 

the propagation path of the beam. Since we synthesize the optical beam (CEs) 

at the entrance pupil of a microscope objective, we use CNN as a supervised 

machine learning algorithm to classify and recover the obscured CEs by 

introducing PMIs.  

8.3. Polarimetric mapping images and CNN model 

Here we present an alternative algorithm to retrieve the CEs or decode character 

codes at the focal plane using polarimetric information. The proposed algorithm 

demonstrates that recording Stokes images at the focal plane is sufficient input 

into CNN to classify and retrieve the encoded character codes. The training 

dataset was obtained as follows: 

i. To provide 1024 CEs to encode all 10-bit character codes with decimal 

values ranging from 0 to 1023. Note that each CE encodes just one 

character code. 

ii. To calculate the encoded transverse components of the focused EM field 

using Eqs. (8.5) and (8.6) for each CE. Moreover, we obtained the other 

Stokes images using Jones matrix formalism (see subsection 3.3).  
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iii. To compress the numerical Stokes images into a multidimensional array 

image named PMI corresponding with each CE. In the present works, 

0,0IPMIs consist of six channels comprising the 6 Stokes images as , 

0,90I , 0,45I , 0,135I 90,45I, , and 90,135I , respectively. Hence, 1024 PMIs were 

obtained corresponding with all CEs or 10-bit character codes. 

iv. To classify and label the PMIs from 0 to 1023 by applying a CNN 

model. Moreover, the number of the training dataset was increased by 

adding Gaussian noises to each polarimetric image and rescaling images 

to provide 8 PIMs for each character code. Particularly, we provided 

1024×8 PIMs with 50×50×6 sizes, which 20% of them were randomly 

selected as a test dataset, while the other 80% were used as the training 

dataset. 

 

We repeated these steps to obtain two different types of training datasets 

regarding two optical systems named A and B with differently polarized input 

beams. The numerical training dataset corresponding with optical systems A 

and B were obtained by substituting ω= π 8  and ω= π 2  into Eqs. (8.5) and 

(8.6), respectively. So, the machine was trained separately for optical systems 

A and B. The total numerical dataset is 8192, and 1639 of them were selected 

randomly as test datasets, and the rest was used to train the machine (6553 

images). 

Figure. (8.3) demonstrates the configuration of a PMI. The simulation 

parameters to obtain the training dataset are based on the physical properties of 

the used experimental tools. These details were explained in subsections 6.1 and 

6.2. We implemented CNN using python 3.7 and TensorFlow 2.1, and a Laptop 

with GPU NVIDIA GeForce MX450. 

The applied CNN model is a sequential model that is summarized in Fig. (8.4). 

The model consists of three convolutional layers with 32, 64, and 128 filter sizes 

and a kernel size of 3, accompanied by the hyperbolic tangent activation 

function. Moreover, batch normalization and average pooling layers are applied 

after each convolutional layer. The feature map obtained by different layers is 

flattened into one-dimension 2048 arrays as an imaging outcome. The image 

outcome is connected to 1843 neurons using a dense layer accompanied by the 

sigmoid activation function. Then, 25% of connected neurons are removed by 

a drop-out layer. Finally, the last dense layer provides 1024 probability 

distributions ranging from 0 to 1 applying the softmax activation function, 

which is used to label 1024 character codes. 
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Fig. 8.3. An example of a PMI with a height and width of 50 pixels and 6 

channels. These images are used as the inputs of the CNN model. 

 

 

 

 

Fig. 8.4. CNN model. PMI, FM, IO, HL, and OL stand for polarimetric 

mapping image, feature-map, image-outcome, hidden layer, and output 

layer, respectively. 
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To compile the model, ‘rmsprop’, ‘sparse_categorical_crossentropy’, and 

‘accuracy’ have been used as optimizer, loss, and metrics, respectively. 

Furthermore, the model was fitted with 30 and 40 epochs for optical systems A 

and B, respectively. 

The obtained accuracy and loss values are shown in Table (8.1) for optical 

systems A and B. The obtained scores prove that the machine successfully 

classifies 1024 character codes using PMIs. Moreover, the class labels of 

randomly selected test datasets are predicted with high precision.  

 

 

 

Table. 8.1. Network accuracy and loss 

  Accuracy Loss 

System A 

( 8 = ) 

Training 

dataset 

0.997 0.011 

 Test 

dataset 

0.967  

 Experiment 0.901  

System B  

2 =( ) 

Training 

dataset 

0.992 0.028 

 Test 

dataset 

0.925  

 Experiment 0.921  

 

 

8.4. Optical implementation and results 

The sketch of the experimental setup is shown in Fig. (8.5). Since the optical 

systems A and B are identical, we display both in one illustration. The 

difference between the two optical systems is related to providing different 

spirally polarized input beams at the entrance pupil of microscope objective 
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MO1. The orientation of the fast axis of vortex retarder VR with respect to the 

axis of linear polarizer LP2 defines the parameter  in Eqs. (8.3) and (8.4), 

indicated in the red rectangle, up and down of the common part of the optical 

setup A and B, respectively. 

 

 

Fig. 8.5. The experimental setup. L, LP, QWP, TNLCD, VR, SF, MO, and CCD present lens, 

linear polarizer, quarter-wave plate, twisted nematic liquid crystal display, vortex retarder, 

spatial filter, microscope objective, and charge-coupled device. Figure adapted from [201] 

under a Creative Commons By 4.0 license. 

 

The optical elements and the operation of the experimental setup were explained 

in detail in subsection 6.1. In optical setup A, the fast axis of VR was rotated 

157.5º, while the polarizer axis of LP2 was rotated 90º with respect to the x-axis 

to polarize the encoded beam spirally ( ω= π 8 ). In optical setup B, the fast axis 

of VR and the polarizer axis of LP2 were oriented 90º concerning the x-axis to 

polarize the encoded beam radially ( ω= π 2 ). By moving precisely MO2 on the 

optical axis, forward and backward to MO1, we could practically find the back 

focal plane of MO1 or at least the nearest accessible plane using the movable 

stage. Once the focal plane was imaged on the sensor plane of the CCD, the 

position of MO2 and CCD camera remained constant during the whole 

experimental process.  

We randomly selected 210 character codes equal to 20% of all 10-bit character 

codes to implement the experiment. Subsequently, their CEs and 0
e

E  were 

calculated, and corresponding CGHs were obtained and loaded on the LCD. 



102 

 

Figure. (8.6) demonstrates three examples of CEs (the first row), 0
e

E  (the second 

row), and CGHs (the third row) regarding character codes ň, á, and Ʃ, 

respectively. For each optical system (A and B), 210 × 2× 6 images have been 

recorded independently. Note that due to the instability of the laser intensity and 

the possible imposed noises caused by the CCD camera, recording 6 Stokes 

images has been repeated twice for each CGH. Then, experimentally obtained 

Stokes images were cropped and compressed into an image with 50×50×6 sizes. 

 

 

 

 

 

  

 

 

 

 

Fig.8.6. The first row shows CEs corresponding with character codes (a) ň, 

(b) á, and (c) Ʃ. The second row shows E0
es corresponding with character 

codes (d) ň, (e) á, and (f) Ʃ. The third row indicates CGHs corresponding 

with character codes (g) ň, (h) á, and (i) Ʃ. Note that CGHs have twice the 

size of the CEs, because of  DPH Arrizón’s approach. 

 

Particularly, 410 PMIs were recorded for each optical system to be predicted by 

the CNN model. Figure. (8.7) indicates the numerical and experimental Stokes 

images regarding character code á in two optical systems A (separated by the 

red dashed line) and B (separated by the blue dashed line). In contrast, Figure. 

(8.8) shows the Stokes images in regard to two character codes á (separated by 

the red dashed line) and Ʃ (separated by the blue dashed line) in optical system 

A. 

Interestingly, the obtained accuracies of the predicted class labels by the 

machine are 0.901 and 0.921 for optical systems A and B, respectively, as 



103 

 

shown in Table. (8.1). The results show an excellent agreement between the 

numerical and experimental results. 

Generally speaking, we consider two optical systems (A and B), which are 

differentiated by providing different spirally polarized input beams. Each CGH 

corresponds to a cipher-share character code that can be transferred between a 

sender and a couple of receivers with individual optical systems. On one side, 

each cipher-share character code can be decoded by authorized receivers that 

access the proper optical system. On the other side, none of the receivers have 

access to the original data. The original data can be decoded by applying the 

bitwise XOR operation on the cipher-shared character codes, as sketched in Fig. 

(8.5). 

 

 

Fig. 8.7. The first and second rows of the red dashed rectangle indicate the 

numerically and practically obtained Stokes images corresponding with 

character code á in optical system A, respectively. The first and second rows 

of the blue dashed rectangle indicate the numerically and practically 

obtained Stokes images corresponding with code á in optical system B, 

respectively. 
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Fig. 8.8. The first and second rows of the dashed red rectangle indicate the 

numerically and practically obtained Stokes images corresponding with 

character code á, respectively. The first and second rows of the blue dashed 

rectangle indicate the numerically and practically obtained Stokes images 

corresponding with character code Ʃ. 

 

8.5. Analyzing the operation of the system  

We previously claimed that the training dataset depends on the design of CEs. 

In subsection 8.5.1, we evaluate the recognition ability of the CNN model for 

recovering the character code with the PMIs that are obtained from three CEs 

with different designs. In subsection 8.5.2, we evaluate the channels of PMIs 

and their effect on recovering the character codes.  

 8.5.1 Design of CEs 

Radii R and r can be considered as design variables of CEs. The training dataset 

might be completely different by changing these values. In case the codes to be 

optically analyzed use other radii values, it is very likely that recognition will 

not be possible. Figures (8.9) and (8.10) demonstrate synthetically produced 

PMIs for code 328 (ň) using different values R and r in systems A and B, 

respectively. 
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Fig. 8.9. CE corresponding to code 328 in system A with (a) R = 3.75 mm and r = 1.8 mm, (b) 

R = 3.75 mm and r = 0.36 mm, (c) R = 3.75 mm and r = 1.8 mm, and (d) R = 2.5 mm and r = 

1.8 mm. 

Table. (8.2) indicates the predicted class labels corresponding with code 328 

using the CNN model regarding the four CEs depicted in Figs. (8.9) and (8.10). 

The results show that the model can predict the correct class label only if the 

PMIs obtained from the correct physical properties of CEs. 

 

Table. 8.2. Predicted class labels by the CNN model regarding different CE 

designs 

CEs Predicted class label by 

machine (System A) 

Predicted class label by 

machine (System B) 

CE (a): code 328 328  Correct 328  Correct 

CE (b): code 328 421  Wrong  437 Wrong 

CE (c): code 328 420  Wrong  724 Wrong 

CE (d): code 328 980  Wrong  724 Wrong 
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Fig. 8.10. CE corresponding to code 328 in system B with (a) R = 3.75 mm and r = 1.8 mm, 

(b) R = 3.75 mm and r = 0.36 mm, (c) R = 3.75 mm and r = 1.8 mm, and (d) R = 2.5 mm and r 

= 1.8 mm. 

8.5.2. PMIs 

In this subsection, we consider two analyses. The first one evaluates the 

requirement of the order of channels in the configuration of PMIs. The second 

analysis investigates the possibility of recovering codes while one channel of 

PMIs is missed.  

As shown in Fig. (8.3), the configuration of PMIs used for training the machine 

consists of 6 channels in this order: 0,0I , 0,90I , 0,45I , 0,135I 90,45I , and 90,135I . We 

provided a new test dataset of PMIs obtained from 500 codes (total code is 

1024) with different orders of channels to be predicted (or recognized) by the 

machine. The results corresponding to this analysis are shown in Table. (8.3), 

which demonstrates that if the order of channels is not the same as the order of 

channels used for training the machine, the machine is not able to predict the 

corresponding codes. 

Table. 8.3. Test accuracy for a different order of channels 

Order of channels System A(spiral) System B(radial) 

0,90I , 
0,0I  , 

0,45I  , 
0,135I  , 

90,45I  , 
90,135I  0.008 0.006 

0,90I , 
0,0I  , 

0,135I 0,45I,  , 
90,45I  , 

90,135I   0.002 0.022 

0,45I 0,90I,  , 
0,0I  , 

0,135I  , 
90,45I  ,

90,135I  0.132 0.11 

0,135I 0,45I,  , 
0,90I  , 

0,0I  , 
90,45I  ,

90,135I  0.008 0.006 
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We provided a new test dataset for the second analysis by considering one of 

the six channels is missed and replaced by random noise. For doing this 

analysis, we considered 500 codes, and for each one, one of the channels was 

missed (see Fig. (8.11)). Note that since 90,45I  and 90,135I  are very similar, we 

just consider that knowing one of them provides the other one. An example of 

a test dataset corresponding to code 328 in system B is shown in Fig. (8.11). 

The obtained accuracies corresponding with the test dataset are shown in Table. 

(8.4). 

 

Fig. 8.11. Test dataset corresponding with code 328 in System B with one missed channel. 

The missed channel is replaced with Gaussian noise with a variance of 0.3. 

 

0,0IThe results justify that the four channels , 0,90I , 0,45I , and 0,135I   must be 

provided in order to recover the code. Since the system is illuminated with non-

uniform linear polarized light (radial and spiral), the contribution of channels 

90,45I and 90,135I  is less critical for the recognition process. Interestingly, if we 

simultaneously remove the information from the 90,45I  and 90,135I channels, the 

accuracy value depends on the polarization of the illuminating beam. In 

particular, when using radial polarization, it is enough to use the channel set: 



108 

 

0,0I , 0,90I , 0,45I , 0,135I  to achieve a high accuracy value. However, this is no 

longer true for spiral polarization. As a result, to avoid false recognition, it is 

required not to ignore any channel. 

 

Table. 8.4. The accuracies of test dataset corresponding to missed channels. 

Missed channel System A(spiral) System B(radial) 

0,0I  0.012 0.014 

0,90I  0.012 0.012 

0,45I  0.026 0.038 

0,135I  0.008 0.056 

90,45I and 90,135I  0.436 0.96 

 

8.6. Robustness of the system against noise and occlusion attack 

In this subsection, we evaluate the recognition ability of codes under noise and 

occlusion attacks. 

8.6.1 Noise 

Noise can be added to the beam during the propagation and recording of the 

optical information. In this regard, we have already considered this issue by 

adding Gaussian noise with a variance ranging from 0 to 0.25 to each channel 

of every PMI. Figure (8.12) demonstrates an example of a training dataset 

considering Gaussian noise. Note that for each character code (CE), we 

considered 8 PMIs in which five of them correspond with additive Gaussian 

noise, and the other ones are related to rescaling the original PMIs. 

 

 Fig. 8.12. The first channel of the 8 PMIs for code 328 calculated for polarization case A. (a) 

original PMI, (b) zoomed with scale factor = 0.95, (c) zoomed with scale factor = 1.05; PMIs 

degraded with additive Gaussian noise with a variance of (d) 0.05 (e) 0.1 (f) 0.15 (g) 0.2 (h) 

0.25. Note that all noises are added to each channel, but we just show the first channel of each 

PMI for illustration purposes. 
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As a result, the recognition ability of the neural network is robust against a 

severe amount of noise. Taking into account that the other types of noise can be 

considered in the training dataset. 

 

8.6.2. Occlusion attack 

Information occlusion or losing information is one of the most common attacks 

in optical cryptosystems. In order to evaluate the robustness of the system 

against occlusion attacks, we produced three 500-character PMI test sets. Every 

set contains no information in continuous areas equivalent to 6%, 10%, and 16% 

of the total pixels. Figure (8.13) shows the first channel of the synthesized 

occluded PMIs with 5 different positions corresponding with codes 0, 100, 200, 

300, and 400 obtained for system B. 

 

Fig. 8.13. The first row demonstrates the first channel of PMIs regarding codes 0, 100, 200, 

300, and 400, respectively, in which 6% of their pixels are occluded with 5 different positions. 

The second and third rows contain the same information, but 10% and 16% of their pixels are 

occluded, respectively. Note, PMIs are related to radial polarization (System B). 

 

Table. (8.5) indicates the corresponding accuracies. The results indicate that the 

model is robust against the occlusion attack below 10% loss of information. 

Nevertheless, the accuracy decreases rapidly for more than 10% of occluded 

information. This can be explained by the specific design of the CNN model. 

We designed the model for pattern recognition and classification purposes to be 

efficient for a visual encryption system. 
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Table. 8.5. Test accuracy for PMIs containing random information. Test 

dataset: 500 codes 

Test set System A System B 

Area occluded: 6% 0.974 0.976 

Area occluded: 10% 0.980 0.974 

Area occluded: 16% 0.820 0.810 

 

A possible solution for avoiding this attack for higher occluded information is 

to train the machine with a large set of occluded PMIs. This methodology is 

equivalent to the proposed design of PMIs to avoid noise. 

To sum up, we designed a successful optical setup and a coding procedure able 

to implement visual encryption. Some of the design variables can be modified 

in order to deploy alternative systems with similar performance: 

1. The characters were encoded assuming the longitudinal component E z
was 

described by the Fourier transform of CE. Alternative implementations of 

E can also be considered, provided the network is trained accordingly. 

2. The system has been demonstrated using a high NA microscope objective 

and spiral polarization. However, low NA lenses or other polarizations 

might be used as well. 

3. The character set used was limited to 1024 codes, but the method can be 

easily scaled to include any arbitrary binary set. 

4. Here, we transfer CGHs between a sender and a couple of receivers with 

individual optical systems. However, the polarimetric images can be 

transferred accordingly. Regarding the obtained results from analyzing the 

PMIs, the CNN will provide a correct answer only if the complete group of 

polarimetric images is available. Thereby, the number of recipients can be 

increased up to twelve.  

5. Since the channels 0,0I , 0,90I , 0,45I , and 0,135I  play the main role in recovering 

character codes, one of the channels can be encrypted by the photon 

counting model (see subsection 3.2.2.2). In other words, new training 

datasets (PMIs) can be obtained considering a photon-limited channel for 

authentication purposes.  
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9. Polarimetric identification of 3D-printed nanoparticle 

encoded optical codes 

This section describes a method to obtain unique optical codes using 3D 

physical keys. 3D physical keys are obtained by a low-cost 3D printer using 

low-cost materials sensitive to the state of polarization of EM fields. Each 3D 

physical key can be used for authentication purposes.  

As previously explained, optical authentication can arguably be considered as a 

well-established research field (see [235] for a comprehensive tutorial on this 

topic). In particular, photonics devices produced with metamaterials play a key 

role in optical security technology [236]. Besides, the polarimetric signature is 

one of the properties that has been used to authenticate and classify samples 

[79-81]. Very likely, providing the samples sensitive to the state of polarization 

of optical beams requires advanced technologies using specific materials. In this 

regard, the number of samples produced might be highly restrictive due to the 

production costs associated with the used technology. 

The term 3D printing can be considered as a synonym for additive 

manufacturing [237-244]. Additive manufacturing is a process that builds parts 

layer by layer by depositing material based on digital 3D design data. This 

process is able to join or solidify some materials through a computer-controlled 

system to fabricate 3D physical models. Since the mechanical properties of 3D 

printed samples depend on different variables, many publications have been 

dedicated to observing the effects of these variables. These variables mainly 

include the composition of powder, temperature during manufacturing, binder, 

binder saturation level, building orientation, layer thickness, filling pattern, type 

of filaments, etc. [239]. In general, additive manufacturing techniques results in 

anisotropic mechanical properties that have been investigated by measuring 

fracture strength, tension, stress, etc. [240]. Those measurements or tests that 

usually cause damaging the samples proved that the microstructure and the 

mechanical properties of each 3D production are directly dependent on the 

many variables during additive manufacturing processes. 

Thanks to optics, in this work, we used a contactless approach without 

damaging the samples to show, on the one hand, the microstructure of 3D 

printed samples depends on the 3D printing parameters. On the other hand,  the 

microstructure of 3D printed samples filled with metallic powder is not 

predictable, which shows the possibility of considering 3D printed samples as 

Physical Unclonable Functions (PUFs) [245, 246]. Therefore, a 3D printed 
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sample filled with metallic powder can be used as a physical key to obtaining 

synthesized optical codes for security authentication.  

We used a 3D printer to produce different types of structures using several 

materials and with different types of filling patterns. In particular, 3D printing 

allowed us to create a relatively large number of samples with an excellent 

degree of freedom to be categorized into different classes. In the experiments, 

we discuss the classification of a single class of codes and how a 3D printed 

sample can be distinguished from a group of samples to be rejected. 

Experimental results and theoretical analysis verify the feasibility of the 

proposed approach. The samples in the experiments are created using 

commercially accessible materials and a low-cost 3D printer. In particular, we 

used polylactic acid (PLA), which is a particular type of thermoplastic filament 

used in 3D printing, combined with metallic powder. Then, we obtained 

synthesized optical codes which are comparable with polarimetric signatures 

generated by samples made of metallic nanoparticles or thin-film structures. 

 

9.1. Design of 3D printed samples 

Here we used an inexpensive Anet A8 DIY 3D printer accompanied by PLA 

filaments filled with metallic powder: Aluminum, Brass, and Copper (AptoFun 

wire, produced by Aptotec UG, Tübingen, Germany). In this work, we suggest 

attaching encoded data such as QR codes on the flat surface of each 3D printed 

sample and using its coarse surface for verification. Since the production of each 

3D sample required a set of design variables such as the filling pattern, the bed 

and nozzle temperatures, the filling pattern density, the diameter of the 

filaments, and the 3D printer extrusion type, the manufacturing process 

provides an excellent degree of freedom to produce different samples, in which 

each on can be classified as different categories.  

We produced samples with four different filling patterns: Hilbert, Archimedean, 

Octagram, and Rectilinear, which are configurable by 3D printers, while the 

other 3D printing parameters remained identical for all produced samples.   

Figure (9.1) shows four produced samples made of PLA-Aluminum with 

different filling algorithms. As shown in Fig. (9.1), the coarse surfaces of 

printed samples have a random irregular look, concentric circles, a Malta cross 

look, and parallel lines for the Hilbert, Archimedean, Octagram, and Rectilinear 

filling algorithms, respectively. Note that the back surface of all produced 

samples is flat without specific differences, so we did not show these surfaces. 
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A description of the printing algorithms used can be found elsewhere. See, for 

instance, [247].  

We provided 12 different classes of samples with a combination of the three 

different PLA filaments and the four different filling algorithms. We produced 

19 samples with a size of 20 × 20 × 2 mm3 in order to implement the 

polarimetric signature experimentally. Table (9.1) shows the number of printed 

samples. Note that, the other printing variables have been kept constant for all 

the samples with the following details: Fill pattern density: 5%; nozzle 

temperature: 190 ºC; bed temperature: 50 ºC; filament diameter: 1.75 mm; layer 

height: 0.3 mm. Taking into account that changing printing parameters can 

produce a different class of samples.  

 

 

 

Fig. 9.1. Four examples of 3D printed samples made of PLA- Aluminum with different filling 

algorithms: (a) Hilbert, (b) Archimedean, (c) Octagram, and (d) Rectilinear. The size of each 

sample is 20 × 20 × 2 mm3. Figure from [248] under a Creative Commons By 4.0 license.  

 

Using a confocal microscope, we were able to take images of the surface 

topography in order to provide information on the characterization of the 

metallic powder (aluminum, copper, and brass) solidified in the PLA wire. Note 

that the manufacturer of the filaments does not provide any information on the 

characteristics of the metallic powder used in the fabrication of the PLA 

filament. The size of the topographical images is 770 × 576 pixels 

corresponding to an area of 85 μm × 64 μm with a pixel depth of 8 bits, which 

were obtained using a Sensorfar PLμ 200 microscope with a 150x  NA=0.95 

Nikon objective and the resolution depth of  25 μm with elevation values 

ranging from 43 to 255. Note that the topography of the samples shown in Fig. 

(9.2a) to (9.2c) is irregular and does not follow any pattern. 
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Table. 9.1. Produced samples categorized into 12 classes. The numbers indicate the number of 

produced samples. The abbreviations distinguish each class label.  

 Archimedian Hilbert Rectilinear Octagram 

PLA-Aluminum  2 (AA) 5 (AH) 2 (AL) 2 (AO) 

PLA-Brass  1 (BA) 1 (BH) 1 (BL) 1 (BO) 

PLA-Copper 1 (CA) 1 (CH) 1 (CL) 1 (CO) 

 

 

 

Fig. 9. 2. The confocal microscope images obtained for the Hilbert filling algorithm 

corresponding with PLA-: (a) Aluminum; (b) Brass (c) Copper. The size is 85 × 64 μm2 and 

the peak-to-valley depth is 25 μm (elevation values range from 43 to 255). Figure from [248] 

under a Creative Commons By 4.0 license. 

 

 

 

9.2. Experimental procedure: Polarimetric signature codes 

The experimental setup is shown in Fig. (9.3), which has been designed to 

implement the polarimetric signature in order to obtain synthesized polarimetric 

codes from illuminating 3D printed samples, which are considered as 3D 

physical keys. Note that each 3D printed sample has two faces: one face has a 

flat surface proper for attaching the encoded data, and the other face, which has 

a coarse surface was used for the experiment.  
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Fig. 9.3. The optical setup. Figure from [248] under a Creative Commons By 4.0 license. 

 

A green laser diode (λ=532 nm) is placed at the back focal plane of the lens to 

provide a collimated coherent optical beam. Since the used laser source is 

linearly polarized, we used a linear polarizer followed by a quarter-wave plate 

in order to produce a circularly polarized beam. The second linear polarizer 

(Linear polarizer 2) is used to implement the polarimetric signature by means 

of rotating its polarizer axis. In other words, the optical beam passing through 

Linear polarizer 2 is linearly polarized with different directions of polarization. 

Moreover, we used a custom-made holder properly turned with respect to the 

optical axis to provide the incident angle of the incoming light at 55º and reflect 

the outcoming beam with the same angle forward to an 8-bit CCD camera, 

which is placed at a fixed distance. Since the beam is coherent and the surface 

of each sample is rough, the reflected beam forms a speckle pattern which is 

recorded by the CCD camera. 

Each obtained speckle pattern is considered a polarimetric signature code 

corresponding with the orientation angle of the polarizer axis of Linear polarizer 

2. The polarizer axis of Linear polarizer 2 has been oriented from 0 to 175º in 

steps of 5º. Moreover, for each orientation angle, ten speckle patterns were 

recorded continuously by the CCD camera. Hence, 360 speckle patterns were 

obtained for each sample corresponding with 36 orientation angles and 10 

repeated measurements. 
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The strongest dependence of the reflected intensity as a function of the direction 

of polarization of the incident beam has been found by placing the samples at 

55º with respect to the optical axis corresponding with the Brewster angle of the 

samples made of PLA (the refractive index of PLA is nd =1.465 [249]). Three 

examples of recorded speckle images corresponding to AA, BA, and CA 

samples (see Table (9.1) for nomenclature) are shown in Fig. (9.4).  

 

Fig. 9.4. Three examples of recorded speckle images corresponding with AA (left), BA 

(center), and CA (right). In the three cases, the second polarizer is set to 0º. Figure from [248] 

under a Creative Commons By 4.0 license. 

 

 

In general, our total dataset consists of 36 × 10 × 19 speckle patterns, which are 

corresponding to 36 orientation angles of the polarizer axis of Linear polarizer 

2 (polarimetric signature), 10 times recording of each polarimetric signature, 

and 19 samples. In order to extract meaningful characteristics from each speckle 

pattern, we implemented statistical analysis, which is explained in the following 

subsection.   

    

9.3. Statistical analysis: Feature extraction 

In this subsection, we analyze statistically speckle patterns obtained optically. 

In the first step, we assess the histograms obtained from every speckle image, 

which demonstrate the intensity distribution of each speckle pattern. The 

histograms and cumulative histograms (normalized to the number of pixels) 

calculated from a speckle image for one sample of the 12 classes are displayed 

in Fig. (9.5). Since the direction of the second polarizer is set to 0º for all the 

depicted cases, the shape of histograms is partially or totally different regarding 

different filaments or/ and different filling algorithms. As a result, the intensity 

patterns of reflected beams have been altered based on the design variables. 
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Furthermore, we obtained the mean and standard deviation of each histogram 

to compare with a Gamma probability distribution. Interestingly, the shape of 

these curves (histograms) calculated from recorded images statistically are 

compatible with a Gamma Probability Distribution [250]: 
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where g is the corresponding gray level, and g and   are the mean and the 

standard deviation of the experimental recorded image; ()  stands for the 

Gamma function. We also displayed ( )P g in Fig. (9.5) (see dotted line curves, 

labeled with ‘(T)’ in the legend). Interestingly, the ( )P g  distributions 

approximately reproduce the experimental histograms. This fact is confirmed 

when the cumulative histograms are analyzed (see the second row of Fig. (9.5)). 

 

 

 

Fig. 9.5. The first row shows the Probability Density Function for one example of each class 

of printed sample (left: aluminum, center: brass, right: copper) at 0º of incident polarization 

direction as a function of gray level g. The corresponding theoretical estimation curve is 

labeled with (T), according to ( )P g  [Eq. (9.1)]. The second row shows the corresponding 

cumulative histograms. Figure from [248] under a Creative Commons By 4.0 license. 

 

 

As previously explained, the speckle characteristics of the reflected beam 

strongly depend on the direction of polarization of the incident light. This can 
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be explained based on the Fresnel formulae, in which p- and s- polarization 

depends on the angle of incidence and the refraction index of the sample 

material. Indeed, the presence of metallic powder with complex refractive 

indexes (aluminum: n=0.938 + 6.420j, brass: 0.568 + 2.589j, and copper: 1.116 

+ 2.596j [249]) modifies slightly the refractive index of the PLA samples.  

Moreover, the angle of incidence varies at each point of the surface due to the 

different topographical characteristics at the microscopic level (Fig. (9.2)), and 

thus, each sample can be considered unique. 

Figure (9.6) compares the obtained probability distributions regarding three 

samples: {AH, BH, CH} while the orientation angles of Linear Polarizer 2 were 

placed at the following angles: {0º, 20º, 40º, 60º, 80º}. These results prove that 

the shape of histograms depends on the direction of the fluctuation of the 

incoming EM field reaching the surface of 3D printed samples.   

   

Fig. 9.6. The Probability Density Functions corresponding with AH sample (left), BH sample 

(center), CH sample (right) of printed codes for different directions of polarization as a 

function of gray level g. Figure from [248] under a Creative Commons By 4.0 license. 

 

Hence, we identified each speckle pattern by means of the mean and the 

variance (see Eq. (9.1)) obtained from the corresponding histograms. These two 

features are used to define the feature vector for classification purposes.  

Figure (9.7) indicates all polarimetric signature codes (speckle patterns) 

corresponding with 19 samples shown as data points in the feature space 

(variance versus the mean). The distribution of data points shows the 

complexity of the classification problem.    

It is important to note that each data point that appears in Fig. (9.7) represents a 

particular feature vector (see subsection 3.5). This feature vector corresponds to 

a particular polarization measurement of a particular printed QR material and 
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printed architecture (design), and these data points are used to be classified by 

the one-class support vector machine (OC-SVM) classifier.  

 

 

Fig. 9.7. The plot of the total dataset in feature coordinate (variance versus mean) 

corresponding with the experimental recorded speckle images is shown on the left side of the 

figure. Note that for the sake of clarity, the data corresponding to classes B and C are grouped. 

The right plot shows the distribution of data points in feature space corresponding with the 

samples belonging to class AH. Figure from [248] under a Creative Commons By 4.0 license. 

 

 

9.4. Pattern classification 

In subsection 9.1, we explained the process of providing 3D printed samples 

based on design variables such as the type of filling algorithm and filament. In 

subsection 9.2, the experimental process for obtaining unique speckle patterns 

has been described. In this subsection, we classify obtained speckle patterns into 

two main categories: the class of interest (or True class) and a class of no interest 

(or False class). Since the OC-SVM classifier is a type of binary classification, 

we used this machine learning algorithm to distinguish (classify) a group of 

optical codes as a class of interest from the other optical codes that belong to 

the class of no interest.  The SVM machine learning algorithm with a brief 

mathematical description has been introduced in subsection 3.5.2.  

One-class classification may be seen from two complementary perspectives: (a) 

from the anomaly detection and (b) from the target detection point of view. 

Anomaly detection is referred to the problem of detecting data and/or patterns 

that do not follow the expected behavior. We refer to them as the outlier data. 

Target detection is applied to identify specific data of interest (target data). 

Classifying positive (target) cases in the absence of appropriately defined 

negative cases (outliers) has attracted more attention in the last few years [251-
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253]. There is a diverse and rich field of one-class classification methodologies. 

The interested reader is referred to [254-256].  

As explained in subsection 3.5.2, the SVM classifier aims to find the 

hyperplanes that separate the data from the origin with a maximal margin. One 

of the most important problems in pattern recognition is that the dataset may 

have a cardinality unbalance, defining a scenario where the number of data 

points of one of the classes is much lower than that of the other(s).  

In our case, we are also dealing with an unbalanced problem due to the number 

of data points of interest being much lower than the total number of points in 

the dataset. Some strategies have been developed in general unbalanced 

classification scenarios to improve accuracy or gain insight into the specific 

aspects of the problem at hand [257, 258].  

Here, we considered two different classification scenarios based on two 

different situations. In the first one, we considered the design variables such as 

the type of filling algorithm and the type of PLA-metal. All the physical samples 

made using the identical design variables are considered as part of the class of 

interest, as described in subsection 9.4.1. In this situation, we obtained different 

polarimetric signature codes depending on the design variable. 

In the second scenario, just one physical sample of one particular combination 

of the material and the filling pattern is considered the class of interest, and the 

aim is to distinguish this from the other four (presumably) identical samples, as 

described in subsection 9.4.2. In this condition, we show that 3D printed 

samples might be considered as PUFs. 

9.4.1. Classifying one group of identical 3D printed samples against the 

other different samples 

In the first scenario, we intend to classify the 5 samples made of PLA-

Aluminum with the Hilbert filling algorithm as validated samples. All the data 

points (speckle patterns or polarimetric signature codes) obtained from these 5 

samples (AH1, AH2, AH3, AH4, and AH5) distributed in feature space (Fig. 

(9.7)) are grouped as the class of interest or True class.  The OC-SVM classifier 

is designed to recognize these 5 samples as validated samples, whereas the 

machine should reject the other 14 samples. Note that the other 14 samples are 

made using different filling algorithms or/ and different materials (PLA- Brass 

and - Copper). The total data set for the class of interest as the combination of 

sample and polarization direction, based on the procedure detailed in subsection 

9.2, is 360 × 5 =1800 data points corresponding with 5 AH samples, in which 

10 speckle patterns have been recorded from each one of the 36 different 

polarization directions (from 0 to 175º). Note that, Due to the instability of the 
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illuminating laser beam, for each orientation angle of Linear polarizer 2 (from 

0 to 175º), we recorded 10 speckle patterns during a short time in order to 

enhance the recognition ability of the classifier.  

To train the SVM classifier, we formed a matrix with a size of 900 × 2 

corresponding with 900 data points obtained from the class of interest (5 AH 

samples) and two selected features (the mean and variance of the histogram 

distribution). The pre-processing dataset for machine learning implementation 

is explained in subsection 3.5. Note that the total dataset from the class of 

interest is 1800 data points, while we selected randomly 50% of them for testing 

the performance of the classifier. In other words, the total dataset coming from 

the class of interest is split randomly into a 50% for the training stage and a 50% 

for the testing stage. 

We used the Scikit-learn OC-SVM implementation [259] accompanied by a 

Gaussian kernel function. During the training stage, the parameter   introduced 

in Eq. (3.5-10) was optimized using a standard grid search (in logarithmic scale) 

in the feature space. In this case,   corresponds to the width parameter 

associated with a Gaussian kernel function. This value gave the best 

classification accuracy rate on the training dataset and define a nonlinear 

decision border to isolate the data points coming from the class of interest from 

the other data points corresponding with the other 14 samples. This optimized 

decision border is shown in Fig. (9.8). However, we can observe in Fig. (9.8) 

some of the data points from the class of no interest are wrongly placed inside 

the decision border. This happens in most of the real classification problems. 

The machine was trained only by data points of the class of interest. The 

accuracy A during training was defined as: A 100tr Errors

tr

N N

N

−
=  , where trN  

is the number of training data points and  ErrorsN  is the number of points 

classified by OC-SVM as points of the class of no interest. This accuracy 

measure can also be formulated as follows:
TP

A 100
TP FN

= 
+

 . 

In this case, the number of data points of the class of interest that are correctly 

classified is identified with TP (True Positives), and the number of data points 

of the class of interest that are wrongly classified is identified with FN (False 

Negatives). Since during training the machine we only access data points of the 

class of interest, maximizing the accuracy rate defined in this way minimizes 

the number of False Negative cases.  
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After training the machine, we tested the performance of the classifier by 

predicting the unseen dataset. The test dataset that we used consisted of 50% of 

the randomly selected data points (900 data points) from the class of interest in 

addition to all data points that belong to the other 14 samples (14 × 360 = 5040), 

in which was grouped as the class of no interest. In this regard, the total number 

of the test dataset is 5940, which shows an unbalanced number of training 

datasets compared with the test dataset. In this situation, some measures of 

accuracy may fail [260], in the sense that they may give high accuracy values, 

even for cases when 50% or more of the data points of the class with the lowest 

number of points are wrongly classified. 

The geometric mean of accuracies (gma) [261] defined as:

gma= 100TNTPr r   (
TP

TP
TP FN

r =
+

; 
TN

TN
TN FP

r =
+

) was considered to 

measure the classification quality in order to deal with this problem. 

The number of samples of no interest classified as samples of interest is 

identified with  FP and the number of samples of interest classified as samples 

of no interest is identified with FN. The obtained classification accuracy is 

gma= 98.23%. In particular, TP= 889, FN=11, TN= 4923 and FP=117. 

The result demonstrates that the classifier only mistakenly classifies 11 out of 

900 data points corresponding to a class of interest sample as the class of no 

interest, which indicates a high identification capability for recognizing the 

class of interest. 

Figure (9.8) shows the decision border given by OC-SVM. A zoomed-in version 

of it is also shown in order to better visualize the classification result. 

 

Fig. 9.8. The optimum decision border obtained during the training stage using the OC-SVM 

classifier for isolating the data points coming from the 5 validated AH samples. A zoomed-in 

version is also shown for visualization purposes. Figure from [248] under a Creative 

Commons By 4.0 license. 
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9.4.2. Classifying one sample against the other identical 3D printed samples 

In the second scenario, we intend to classify one sample made of PLA- 

Aluminum with the Hilbert filling algorithm as a validated sample. In this case, 

we trained the machine in order to isolate the data points obtained from AH1 

sample from the data points extracted from AH2, AH3, AH4, and AH5 samples. 

Note that all samples (AH1, AH2, AH3, AH4, and AH5) are made from the 

identical material (PLA- Aluminum) and filling algorithm (Hilbert). In this 

regard, data points corresponding with AH1 sample are classified as the class 

of interest, while the other data points corresponding with the 4 AH samples 

form the class of no interest. 

So, the total number of datasets for the class of interest is 360 data points 

extracted from AH1 sample, but 50% of them (180 data points) were randomly 

selected as a training dataset, whereas the rest were used as a part of the test 

dataset. Moreover, the data points obtained from the AH2, AH3, AH4, and AH5 

samples (4 × 360 = 1440) form the other part of the test dataset. Generally 

speaking, 180 data points (speckle patterns or polarimetric signature codes) are 

used as a training dataset, and 1620 (1440 + 180) data points coming from 

AH1(just 50% of the randomly selected dataset), AH2, AH3, AH4, and AH5 

samples are used as a test dataset.  

We retrained the machine with this new training dataset in a similar way 

explained in the previous subsection. Also, during the training stage, we found 

a new optimum   parameter corresponding with a Gaussian kernel function 

using a standard grid search (in logarithmic scale) in the feature space. The 

performance of the OC-SVM classifier to find the optimum nonlinear decision 

border is shown in Fig. (9.9), in which the data points corresponding with the 

validated sample are isolated from the data points corresponding with false 

samples (AH2, AH3, AH4, and AH5). 

In this case, the obtained classification accuracy is gma=96.39%. In particular, 

TP= 180, FN= 0, TN= 1338 and FP= 102. This demonstrates that all data points 

of the class of interest are correctly classified inside the decision border, 

whereas the trained machine mostly rejects data points (polarimetric signature 

codes) extracted from invalid samples.   

These results indicate that 3D printers print identical samples with different 

microstructures and mechanical properties, and therefore, they might be used as 

PUF materials, in which this physical structure is hard to predict [245, 246].  
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Fig. 9.9. The optimum decision border obtained during the training stage using the OC-SVM 

classifier for isolating the data points coming from a validated AH sample. Figure from [248] 

under a Creative Commons By 4.0 license. 

 

 

In conclusion, we suggested an approach to synthesize and fabricate the 

nanoparticle encoded optical codes using a low-cost 3D printer. Our practical 

approach can substantially simplify the transition of optical techniques for 

security authentication. We set out this problem as a highly unbalanced, one-

class pattern recognition in the sense that the system should be able to 

distinguish just one type of 3D printed structure. 

To sum up, we considered two classification scenarios, in which the unique and 

synthesized optical codes using polarimetric signatures and 3D physical keys 

have been obtained. According to the accuracies obtained from two 

classification scenarios, our approach can identify the validated samples with a 

high rate of success using a relatively simple optical setup and low-cost 

technology.   
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10. Conclusion remarks 

This section aims to summarize the algorithms and methods proposed in this 

thesis. In section 4: 

1. We described an efficient approach to generating light beams with 

arbitrary intensity profiles and phase distributions. 

2. A fast method has been introduced to characterize liquid crystal displays 

based on the Mach-Zehnder interferometer and fringe analysis in the 

Fourier domain. 

3. We suggested using the KNN classifier to map DPH Arrizón’s approach 

into any arbitrary modulation curve. This approach is around 80 times 

faster than conventional calculations, which require an extensive search 

of the minimum Euclidean distance.  

In section 5: 

4. A binary approach has been introduced to synthesize optical beams in 

order to encode character codes. 

5. The distribution of binary values in radial annuli and azimuthal sectors 

forms a Circular Encoder, which can be encoded into holographic cells 

to be propagated in free space. 

6. We demonstrated how characters of a list or a text could be encoded in 

this way in order to be used for autodetection applications, free-space 

optical communications, and optical encryption. 

In section 6: 

7. We described the experimental setup for generating highly focused 

beams with arbitrary complex amplitude and phase distributions and 

recording the corresponding Stokes images at the focal area without 

interaction with media. 

8. We assessed the practical performance of the optical setup by comparing 

obtained experimental results with the numerically expected ones. 

9. Since the detection of the longitudinal components of highly focused 

beams is a challenging task, we proposed a convenient method of 

estimating them using a phase retrieval algorithm and Gauss theorem. 

10. The proposed approach also can be applied for decoding encrypted data 

into the longitudinal component of a highly focused beam. 
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In section 7: 

11. We proposed an alternative method to estimate the aberrated wavefront 

at the focal plane of a vectorial diffraction system. 

12. In contrast to the phase, the polarization state of optical fields is simply 

measurable; hence, we used polarimetric information in order to map 

the Zernike polynomials coefficients by means of trained neural 

networks. 

13. Our approach aims to eliminate the necessity of phase retrieval for 

wavefront sensing applications, provided the beam used is known. 

14. Our approach also can be applied for calibrating the complex optical 

system suffering from aberrations by synthesizing a properly polarized 

beam multiplied by a phase term that describes the Zernike expansion. 

In section 8: 

15. We presented an optical implementation of the visual encryption method 

using focused fields and tunable spiral polarization. 

16. The numerical and experimental framework for encrypting 10-bit 

character codes based on Naor’s and Shamir’s secret sharing using the 

bitwise XOR operation has been proposed. 

17. A proper binary approach was introduced to encode obscured cipher-

character codes into holography cells, which formed a set of training 

datasets dependent on the properties of the optical system and design 

variables.  

18. A multidimensional array (PMI), including polarimetric information, 

has been introduced to convolutional neural networks to recover 

obscured character codes into the longitudinal component of a highly 

focused beam without the necessity of applying phase retrieval 

algorithms. 

19.  Based on analyzing the system, the proposed algorithm is robust against 

noises and partially against occlusion attacks. 

20. We justified that if an attacker is not able to access the complete group 

of channels of polarimetric mapping images, they will not be able to 

recover the expected character. Hence, the number of recipients 

involved might be increased up to twelve. 

In section 9: 

21. We proposed the synthesis, implementation, and classification of 

nanoparticle encoded optical codes.  
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22. We demonstrated the nanoparticle encoding and fabrication of PUFs 

using thermoplastic 3D printer filaments with metallic-like powder 

(aluminum, copper, or brass). 

23. The classification of the codes has been carried out using polarimetric 

imaging based on the polarimetric signature. 

24. Two classification scenarios have been considered: in the first one, one 

type of codes with the identical printed material and printing algorithm 

was discriminated against a large number of other codes. In the second 

one, one particular sample was compared against the rest identical 

samples. 

25. In our experiments, not only the overall accuracy in both cases was 

excellent, but also the False Negative value, for instance, the number of 

polarimetric signatures of the code class of interest wrongly classified 

as a class of no interest, was very low, which confirms the capability of 

the proposed optically encoded samples with the polarimetric signature 

approach. 
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