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When you get free from certain fixed concepts of the
way the world is, you find it is far more subtle, and far
more miraculous, than you thought it was, (...) parts
exist only for purposes of figuring and describing, and
as we figure the world out we become confused if we
do not remember this all the time, (...) we are a function
of what the whole universe is doing in the same way
that a wave is a function of what the whole ocean is doing.

Alan Watts





A short tale in Gaia

In a future that already happened in another galaxy, little Marie, with her indomitable and persevering spirit,
full of curiosity, one day felt dissatisfied with the answers of her friends and parents.

A short time later, on a family visit to the mountain where her father’s old aunt lived, late at night, she heard
Selene, the moon. She asked the little girl: why was her sight lost in the immensity of the sky, which you are
looking for? Little Marie only told her that she didn’t understand how and why so many atrocious things and
so many wonderful things were happening on Gaia, her planet, that she felt fuller seeing her and the stars!
Selene replied that everything followed a natural flow, that no being could oppose it, not even her sister Gaia
or her brother Helios, nor the stars that her soul longed for so much.

With her answer, she gave light to the unsatisfied soul of the girl and immediately lit again her inner fire.
Marie asked her if she knew what that natural flow was and why it existed. The moon, showing solemnity,
recognized that it was not for her to know why, but she knew that the natural flow was any action that ful-
filled an equivalent exchange of energy. What do you mean,.asked the little girl. Well, simple, if you want
something, you must give something of yourself, if you climb that great mountain, you must breathe a lot
and use your inner energy, if the tree wants to grow, it must take water and nutrients from the soil if the river
flows, it is because the form of its energy changes, it gives its potential energy so that it becomes kinetic
energy, even the river that you see coming down from the mountain must exchange something. My little
one, this flow of nature is nothing more than a balance of energies, conservation because even my brother
sun does it because he spends his most condensed energy - mass - to give me shine and to warm Gaia and
all the beings that live in her.

Marie felt her heart shaking, her hair standing up, her eyes watering and her stomach creating a vacuum.
She probably had a moment of joy and full realization, which many people do not even manage to live in
their lives with such purity and strength.

Wait! someone said it on the horizon, you missed something to tell the little one! The sun was rising, and
this voice was that of Helios, Selene’s brother. He said: Marie, life and the universe is not just equivalent
exchange, it is not just a balance of energy or efforts, never forget that you must always give more, you must
always give your best even though what you get is not proportional to what you give for something specific.
I understand that this may not be easy to understand, but not every step you take to climb a mountain is the
energy that you spend to get to the top .... Much of that energy, of that effort, is being transformed into so-
mething else, learning, and experience, having the opportunity to observe beautiful things, or simply taking
a little detour that does not take you to the top. But remember, everything is necessary, and it is not wrong
to give more than you think you can give, because, the more general universal law says that everything hap-
pens in order, and what happens must happen because there is always profit, always the universe, with every
action of each being increases its information or that something ineffable, and for this, we must always give
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more than what is required in each of our actions.

The little one, astonished, did not understand entirely what Helios was telling her with so much passion and
wisdom, and just asked who and why had established such an unbalanced law. Helios, with immeasurable
calm, replied: Perhaps it is the greatest god that a mortal can imagine, or perhaps it is the very essence that
gives sense to everything, even time and space depends on it. This god always grows after every human,
animal, vegetal, and microbial action. This god has been associated with the disorder, but the truth is that
because he always grows and grows, it generates order, life, art, is destruction and creation, is storm and
calm. Perhaps, even humans and you are not prepared to know it completely, but some day they will do it
and perhaps you are the first or who will give more of itself so that this god is not so misunderstood by all
beings that inhabit Gaia.

The little one, after such a praiseworthy and fascinating story, had a light in her eyes and an infinite deter-
mination to undertake a long journey, where, looking at the stars, she would like to meet companions who
could be as fascinated as she is to understand many mysteries that this universe and this misunderstood god
called entropy.

A couple of years later, one day when she woke up in an ocean of conviction where she was gently rocked
by waves of calm, realization, and tranquility, she felt a fire in her heart and only managed to ask with all the
strength of her soul: Stars! Please, tell me if there is an energy that we cannot observe, I want to know if there
is an energy that we still see with our eyes, but do not recognize. Why do I have this feeling that it is like ma-
gic, how can such wonderful things happen? I understand that everything is energy, but is everything energy
that we can see? Is it right to say that this energy does not exist if we cannot even prove that it does not exist?

Our little, answered a small group of stars, there are energies that you will never see, but that is always there
and will be there. There are phenomena, which you call magic, which mortals try to justify with intricate
relationships based on their toy theories, but which in themselves are all related since this energy is the
intermediary of all the processes of the universe. Remember, energy evokes energy, and remember that a
bird does not always fly because it can, but because it wants to, if you have the conviction you can understand
what that energy is and open your eyes to a dimension where you see that everything is connected by that
energy. Thus, you will know some of the principles of how this ineffable and intricate network of space,
time, and energy that you call the universe works.



Preface

How and why can disorder give way to order? This basic question has attracted the interest of scientists
from different disciplines. In order to answer it, various theories and models have been proposed. Self-
assembly is currently a field of great interest because of its numerous applications in physical chemistry,
biology, materials science and nanoscience. It is also fundamental to the understanding of the origin of life.
We understand the cell as a self-organised structure in which functional self-assembly takes place, which
could be the starting point for the design of artificial self-assembled structures and for tissue engineering. In
technology, self-assembly is used to produce nanostructures for nanotechnology development. It is common
to many dynamic, multi-component systems, from smart materials and self-healing structures to networked
sensors and computer networks.

A wide variety of self-assembly processes, such as gelation, crystallisation, active particles organisation,
magneto-hydrodynamic structure formation, protein synthesis among others, take place under non-equilibrium
conditions. Despite such a large casuistry, there is currently no general theory that provides a detailed expla-
nation of such processes. We only know results about the stability of such systems from dynamical systems
theory. We understand very little about the role of energy dissipation in the formation of ordered structures
from disordered components. But we do know that they are of vital importance for example in the functio-
nality of the cell. Such facts constitute a strong motivation for the study of out-of-equilibrium self-assembly.

To study non-equilibrium self-assembly systems, it is necessary to characterise the possible structures, des-
cribe their formation and transport mechanisms, and consider the energetic changes involved in the for-
mation processes. Since a wide variety of factors are involved in self-assembly processes, it is essential to
reduce the description by proposing models. We therefore aim to formulate a mesoscopic theory capable of
explaining the formation of self-assembled structures. The theory is based on non-equilibrium mesoscopic
thermodynamics, from which we will obtain the kinetics and thermodynamics of the processes.

The objectives of this thesis are summarized as follows:

To develop a general formalism to describe the non-equilibrium dynamics of self-assembly processes
based on non-equilibrium mesoscopic thermodynamics.

We will validate the formalism through experimental data for gelation and Liesegang pattern forma-
tion.

To analyse the behaviour of the entropy production in the study cases.

To formulate a thermodynamic criterion for the formation of self-assembled structures production of
entropy in the process.
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We will study the influence of external forces and structural parameters on self-assembly in order to
find optimal conditions for structure formation in biology and materials science.

The thesis is divided into three parts dealing with how to model out-of-equilibrium self-assembly in concrete
examples (Part I), the role of entropy production in the process of structure formation and maintenance (Part
II), and the thermodynamics and dynamics of self-assembled mesostructures under the action of external
forces (Part III).

The Introduction contains our review article on the emergence of non-equilibrium self-assembled structures.
In it, we propose a classification of the different non-equilibrium processes that give rise to self-organising
and self-assembling structures. We define the preliminary process concepts and discuss the types of inter-
actions, the hierarchical structures, the energy involved and the structure formation mechanisms that have
been proposed so far. The main topic of this part is the discussion of some models proposed to describe the
formation and maintenance of structures. We also raise the question of whether the behaviour of entropy
production could explain the emergence of self-assembling and self-organising structures.
In Part I, we address the modelling of two case studies: gelation and Liesegang band formation, as out-of-
equilibrium self-assembly processes. We propose a mechanism that gives rise to a set of equations descri-
bing the formation dynamics. This mechanism is related to the entropy production of the process, which
will allow us to further discuss the relationship between this quantity and the shape of the structures.

The main part of the thesis aims to answer the questions of why under the same conditions and precursors
some structures are more probable than others, and whether there is a criterion capable of determining the
type of structures that form in a non-equilibrium self-assembly process. In Part II, we shed light on these
questions by showing that the role of entropy production is key not only in the proposition of models but also
in the formulation of an effective potential to estimate the probability of structure emergence as a function
of a structural parameter.

Part III analyses the effect of external forces on the assembly and function of structures in biology and mate-
rials science. We show how initial and external conditions lead to different entropy production regimes that
induce and amplify symmetry breaking in self-assembled crystals. We explore the transition between diffe-
rent regimes in tissues, from healthy to cancerous, by considering the tissue as a self-assembled structure.
We relate the structural evolution of enzymes to the search for the optimal activation energy that minimi-
ses/maximises the work lost in an enzymatic process. We analyse the breakage of a set of organised fibres in
which energy dissipation dictates the critical deformations of the whole structure. Finally, we consider how
the organisation and distribution of surfactant in a droplet affects the motion of the droplet under an external
temperature gradient.

In the Conclusions, we highlight our main findings of the work and present perspectives in multidisciplinary
areas.

The following is a list of the articles that have been published in international peer-reviewed journals that
have resulted from the thesis:

Arango-Restrepo, A., Rubi, J. M., & Barragán, D. (2018). Kinetics and energetics of chemical reac-
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Arango-Restrepo, A., Barragán, D., & Rubi, J. M. (2018). Nonequilibrium self-assembly induced
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Arango-Restrepo, A., Barragán, D., & Rubi, J. M. (2019). Self-assembling outside equilibrium: emer-
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Abstract

A set of disordered interacting building blocks may form ordered structures via self-assembly. External
intervention in the system through the addition of chemical species or the application of forces leads to
different self-assembly scenarios with the appearance of new structures. For instance, the formation of mi-
crotubules, gels, virus capsids, cells and living beings among others takes place by self-assembly under
non-equilibrium conditions. A general evolution criterion able to determine the type of structures formed
in a non-equilibrium self-assembly process is lacking. Under equilibrium conditions, we know that struc-
tures emerge at minimum free energy values. Experiments, however, have shown that when self-assembly
takes place outside equilibrium the structures do not appear at free energy minima but rather at optimal
values of some structural parameters. We show how the architecture of self-assembled structures can be
determined from the knowledge of the energy and matter dissipation inherent to its formation. When the
amount of dissipation, quantified by the total entropy produced in the process, is represented in terms of
parameters characterising the shape of the assembled structures its extremes correspond to structures found
in experimental situations such as gelation and Liesegang ring formation. From the connection between the
entropy produced and the type of structures formed, we formulate a selection criterion that shows why a
set of disordered units can give rise to a certain self-assembled structure. The criterion establishes that the
minima of a non-equilibrium free energy depend on structural parameters and on the entropy produced. The
criterion is able to predict the formation and configuration of structures such as Liesegang rings and patterns
in magnetic colloids and could constitute a powerful tool to understand the synthesis of advanced materials,
enantiomers, and nanoparticles. From the knowledge of the intimate mechanisms leading to the formation
of structures and the thermodynamic criteria for the emergence of self-assembled structures, we might make
possible the implementation of re-configurable and bio-inspired materials as well as give a more straightfor-
ward perspective to the understanding of the emergence of life.

Key words: Condensed Matter, Dissipation, Entropy Production, Mesoscopic Structures, Non-Equilibrium
Thermodynamics, Self-Assembly, Self-Organisation, Symmetry-breaking.
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INTRODUCTION



1. Self-assembling outside equilibrium:

emergence of structures mediated by

dissipation

A collection of disordered building blocks interacting with each other can form ordered structures through
a process of self-assembly. These structures can be modified by the addition of a chemical species or the
application of external forces. For example, the formation of microtubules, gels, virus capsids and cells takes
place by self-assembly under non-equilibrium conditions. A general evolutionary criterion for why nature
selects some non-equilibrium structures and not others is lacking. However, progress has been made in un-
derstanding the mechanisms of non-equilibrium self-assembly (NESA) by formulating models to analyse
particular situations. The main concepts, mechanisms and models proposed for the study of non-equilibrium
self-assembly systems and their applications in different disciplines are reviewed, and the role of dissipation
in the emergence and maintenance of structures is analysed. This chapter aims to lay the foundations for the
development of models and experimental studies of NESA systems.

This introduction is based on the review article published in the Journal of Physical Chemistry Chemical
Physics, 21, 17475-17493, (2019). Ref. [1]
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1.1. Thermodynamics for self-organised systems

How can we explain the emergence of order in nature? What is the mechanism by which homogeneous
systems can form ordered structures? Researchers such as Ilya Prigogine [2] and Adrian Bejan [3, 4] have
already pointed out that the transition from an ordered to a disordered state is irreversible and therefore
entails a production of entropy.

Turing’s seminal work on the formation of spatio-temporal patterns [5, 6], together with the works of Belou-
zov and Zhabotynski on pattern formation in chemical reacting systems [7] and those of Lorenz on climate
unpredictability [8, 9, 10], shown that structures, far from being static and completely predictable, where
adaptable, i.e., dynamically stable under large fluctuations. These phenomena are called self-organisation,
which is not only observed in nature but also in human society. If, according to thermodynamics, the ulti-
mate goal of the universe is the increase of entropy and its irreversible production, the best way to achieve
this could be through the self-organisation of its parts by complex dissipative processes.

How could thermodynamics contribute to explaining the self-organisation of systems? Self-assembly pro-
cesses are essential in the formation of self-organised structures that arise under non-equilibrium conditions
with consequent energy dissipation. Understanding the relationship between structure formation and energy
dissipation is therefore of vital importance for the understanding of the mechanisms of self-assembly. This
is the main objective of this thesis. We will propose a model that explains why certain structures appear with
higher probability and why others that could in principle occur are never observed.

1.2. From equilibrium to non-equilibrium self-assembly

Self-assembly (SA) is the process through which a disordered set of constituents interact with one another to
form organized structures [11]. The constituents, the building blocks (BB), are the smallest discrete entities
required to build the structure. They can be as small as atoms and as large as planets [12]. The nature of the
BB as to their chemical composition, geometry, mass and charge is crucial to determine the type of emerging
structures and the processes leading to them [13]. Contrarily, pattern formation in continuous media such
as Benard cells [14], chemical waves [15] and Turing structures [5] results from the existence of a dynamic
instability where the nature of the BB is not essential to determine the organization process.

When self-assembly takes place outside equilibrium, the system can adapt its organization mode in response
to external stimuli, thus it can self-heal its structures when wounded and even self-replicate [16]. Contra-
rily, equilibrium SA has a limited adaptability [17] and cannot show multiple length scale structures [18].
Non-equilibrium self-assembly (NESA) (illustrated in Fig.1-1) leads to the transient formation of an active
material [19] in which properties such as lifetime, stiffness and self-regeneration capability are determined
by the assembly pathway [20], reaction kinetics and fuel levels rather than by equilibrium compositions
[21]. Active materials built from NESA processes show a nonlinear dynamic behavior and constitute a key
step in the development of synthetic self-organization in out-of-equilibrium systems [22]. Prominent exam-
ples include GTP-fueled microtubule assembly[23, 24] and ATP-driven actin assembly[25]. Nevertheless,
while synthetic counterparts may in principle exist, such complex responses have not been observed [26]
because of the lack of feedback mechanisms [27] that increase the strength of the correlations, as occurs in
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self-organized criticality [28].

Fig. 1-1.: General scheme of a non-equilibrium self-assembly process. The system is initially in a disor-
dered state in which the building blocks (blue particles) are deactivated. After addition of fuel,
the components become activated and form stationary structures (golden cubes) in which the as-
sembling and dissasembling of the blocks balance each other out. When fuel addition ceases, the
structures may reach a kinetically trapped or metastable state represented by conical structures
of golden particles. These structures may in general persist for long periods or may, due to small
perturbations, again return to the initial state.

Currently, there is a great deal of interest in the control of NESA structures such as hydrogels for medical
applications [29, 30, 31, 32, 33, 34, 35, 36, 37] and in the synthesis of self-assembled particles for tech-
nological applications [38, 39, 40] as well. In material science, there is a high interest in the design and
control of structures to yield mesoparticles of a well-defined size [41]. Some efforts have been devoted to
develop novel synthesis methods based on the bottom-up approach to produce organic nanomaterials with
well-defined shapes for potential medical applications under non-equilibrium conditions [42, 43].

Non-equilibrium self-assembly is accompanied by energy dissipation and entropy production [26]. The
process leads to the formation of stationary, kinetically trapped or even equilibrium structures. Due to the
non-equilibrium nature of the process, in general there is no thermodynamic potential having minima at
the states in which structures are formed. How energy dissipation may explain the emergence of ordered
structures from a set of disordered components and how the formation of the structures is governed by the
laws of thermodynamics [44, 45] remains an unanswered question [44]. The lack of a general framework
for the description of self-assembled structures under non-equilibrium conditions has promoted the develop-
ment of computational approaches. These approaches, however, are not always easy to implement since the
number of particles needed to explain the formation of the structures must be extraordinarily large [46, 47].
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A practical performance may be carried out by means of coarse-grained particles [47] and implicit solvent
models [48, 38] such as phase-field approaches [49, 45], coarse-grained molecular dynamics [50], mesosco-
pic dynamics [51, 52, 53], Langevin dynamics [54, 55, 56] and kinetic Monte Carlo [38, 57, 51, 52, 58, 59].
Additionally, kinetic models based on balance equations [60, 61, 62, 63, 64, 65, 66, 67, 68, 69], hydrody-
namic equations [44, 70, 71], and mesoscopic non-equilibrium thermodynamic formalisms [72, 73, 53]
brings ways to understand the dynamics of the formation of NESA structures. On the other hand, ther-
modynamic approaches based on information [74, 44, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85] and Gibbs
[2, 72, 86, 87, 88, 89, 90, 53] entropies have been proposed to characterize and understand the NESA pro-
cesses and the assembled structures.

The amount of energy dissipated in the assembly process plays an important role in the characterization of
the final state of the emerging structure and in its resulting properties. Under this perspective, we review
the main concepts, mechanisms and models proposed to study non-equilibrium self-assembly systems and
their applications in different disciplines and to analyze the role played by dissipation in the emergence
and maintenance of the structures. This chapter intends to set up the basis for the development of models
and experimental studies of NESA systems. Some key concepts used throughout the manuscript are: An
assembled structure is understood as an arrangement of BB into a material object that integrates a hetero-
geneous system; SA is the organization of discrete elements into patterns or structures; Equilibrium SA is
a process leading to the formation of stable structures through quasi-equilibrium steps; NESA is a process
leading to the formation of stable, metastable, kinetically-trapped and stationary structures mediated by dis-
sipation, being the knowledge of the nonequilibrium intermediate structures and their kinetics crucial in the
understanding of the process; NESA processes are the previous steps in the formation of SO structures; SO
is the formation of highly hierarchical structures induced by the existence of a network of feedback loops;
By adding a network of feedback loops to NESA processes we may obtain SO structures. Finally, pattern
formation in continuous media without aggregation of components is a kind of SO but not of SA.

The chapter is organized as follows. In section 2, we define and discuss NESA and SO as a processes lea-
ding to the formation of ordered structures, as well as their relation. In Section 3, we focus on the concept of
structure and present some examples of kinds of NESA. In section 4 we discuss mechanism, processes and
energetics of NESA systems. In section 5, we discuss the most common models to describe the dynamics
and/or the thermodynamics of the assembly processes. In section 6, we highlight the importance of distin-
guishing different non-equilibrium structures in ordered states. In section 7, we point out an open question
related to a general non-equilibrium potential. Finally, in Section 8 we present the main conclusions and
perspectives about NESA and propose some open problems which could be of interest to more deeply un-
derstand NESA systems.

1.3. Processes generating non-equilibrium structures

To identify the mechanisms governing the formation of structures constitutes the starting point in the for-
mulation of robust computational, kinetic and thermodynamic models able to explain SA processes.
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Fig. 1-2.: Structure formation processes. Equilibrium and non-equilibrium structures are formed through
self-assembling processes whereas self-organizing processes only lead to non-equilibrium structu-
res. Non-equilibrium self-assembly processes may give rise to self-organization if feedback loops
are added to the system. The resulting structures are heterogeneous, composed of building blocks,
or homogeneous emerging in continuous media. These structures dissipate only energy or energy
and matter. Examples are given in the dashed squares.

Self-assembly processes yield non-equilibrium and equilibrium structures, depending on if energy and mat-
ter are supplied to the system or not, whereas self-organization processes always lead to non-equilibrium
structures. In Fig.1-2, we give examples of structure formation via both types of processes.

1.3.1. Nonequilibrium self-assembly and self-organization

Two are the processes leading to the formation of nonequilibrium structures: NESA processes in which
structures emerge by sequential addition of their elementary constituents, and spatio-temporal instabilities
leading to SO whose origin may be direct self-catalysis, indirect self-catalysis (positive feedback) and end-
product inhibition (negative feedback) [91]. In this subsection, we will mention some characteristics of these
processes.

SO is understood as the appearance of spatio-temporal ordering that manifest itself through the formation
of non-equilibrium spatio-temporal structures or patterns. [92, 93, 94, 95]. The most elementary steps in
the evolution of living beings are based on self-organization [96, 2, 97, 98, 99, 100]. These processes are
frequently observed in flocking birds, swimming bacteria, microtubules assemblies as a major constituent
of the cellular cytoskeleton [24, 23] and in actin filament networks [17]. Galaxies and structures composing
them can also be viewed as SO structures dissipating matter and energy [101, 102, 103, 104, 105]. Chemical
gardens are self-organized structures in which many different chemical species can form structures having
a great disparity of scales, ranging from nanometers to meters [106].

Additionally, self-organization is frequently observed in hydrodynamic systems with the formation of pat-
terns resulting from the existence of instabilities such as those occurring in thermal convection in pure fluids
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and binary mixtures, Taylor-Couette flow, parametric-wave instabilities[14], solidification fronts [60], nonli-
near optics[14], oscillatory chemical reactions [107, 108] and plankton colonies [109] to mention just a few.
Self-organization also takes place in many diverse soft-condensed-matter systems such as lipid membranes
or vesicles, Langmuir and Langmuir-Blodgett films, thin liquid films on solid surfaces and adsorbate layers
in metals [110] and in electrode-electrolyte interfaces [111]. SO also takes place when a system having
a large number of degrees of freedom evolves towards a state that exhibits spatial and/or temporal scale-
invariance. This type of SO has been referred to as self-organized criticality [28].

On the other hand, nonequilibrium self-assembly processes have been analyzed when the system is subjec-
ted to external fields and templates, as in directed assembly [112] and when molecular building blocks are
engineered, as in controlled self-assembly[113]. The process has also been studied at supramolecular scales
[114, 115, 116, 117] and in the presence of dissipation [44].

SA processes under nonequilibrium conditions has been subdivided into two categories: dissipative and me-
tastable [18, 26]. Dissipative SA [11] is the organization of a system due to a continuous input of energy
from the environment. Metastable SA is the organization of a system which dissipates energy around a lo-
cal equilibrium or around a kinetically trapped state [26]. Both processes are ubiquitous in biology, driven
by irreversible chemical reactions and leading to the formation of structures unavailable under equilibrium
conditions [56]. Disassembly (DA) refers to the reverse of SA, the dismantling of the original crystalline,
liquid crystalline or amorphous state of the material prior to self-assembly [117].

In Fig. 1-3, we show some representative SO and NESA structures. Figs.1-3(a) and (b) are NESA structures,
while Figs.1-3(c) and (d) are SO structures.

1.3.2. From non-equilibrium self-assembly to self-organization

NESA structures may evolve towards adaptable, spatio-temporally controlled and self-healing structures but
their formation cannot explain the inherent complexity of natural systems such as a biological cell [22]. In
the cell, self-assembled structures are organized in hierarchical levels in which different kinds of structures
interact and affect the formation and maintenance of other structures. This higher degree of organization is
referred to as self-organization [118]. The concept of SO is clearly illustrated by the diversity of the archi-
tectures observed in cytoskeletal microtubule networks [24, 23].

We can interpret NESA processes as the first step in the formation of a self-organized system. In fact, NESA
is a specific case of SO in which fundamental and discrete entities make up structures. The coupling of the
relevant variables of NESA processes may give rise to the appearance of feedback loops which increase
the complexity of the structure and endows it with a hierarchical nature, thus leading to a self-organized
state,as shown in Fig.1-2. This fact brings advantages and opportunities because properties of biological
self-organized structures, such as the spatial and temporal control over the assembly, highly adaptability,
and self-healing can also be reached using NESA man-made counterparts [26]. NESA and chemical sys-
tems that use chemical reaction networks and transport processes to achieve various types of oscillatory
behaviors illustrate the way to go from NESA to SO [119, 44].
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Fig. 1-3.: Self-organized and non-equilibrium self-assembled structures. a) Microtubule, assembled from
tubulin dimers. b) Gel, assembled from fibers or microtubules. c) Plant cells, assembled from
microtubules assemblies. d) Leaf, assembled from plant cells.

1.4. Non-equilibrium self-assembled structures

1.4.1. Interactions and building blocks

The BB have specific active zones where covalent non-covalent interactions may take place. The location
of the active zones determines the final shape of the resulting structures such as fibers, branched fibers,
cubes, spheres, sheets, rings, icosahedra, square pyramids, tetrahedra and twisted and staircase structures
[120]. For instance, in the formation of linear fibers (polymers based on chromophoric azobenzene [121] or
dibenzoyl-(l)-cystine, DBC [122]), the BB have two spatially opposed assembly centers. In the formation of
micro-tubules (polymers based on tubuline) [24] and non-linear fibers [123], the BB have two assembly cen-
ters not spatially opposed. In the case of light-induced self-assembly structures from BB of nano-particles
coated with photo-switchable molecules [124], particles have more than two assembly centers. Monomers
having two or more functional groups, i.e., BB having more than two assembly centers, trigger the for-
mation of branched polymers and a competition between ordered self-assembly and non-linear random
polymerization[125]. A special case of BB are patchy particles, such as Janus particles [126, 127] which
can be synthesized by using different techniques [128].
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1.4.2. Hierarchical nature of the interactions

The transition from an initial disordered state to a final structure [129, 22] takes place progressively, procee-
ding through intermediates steps. The appearance of these structures depends on their precursors [22], on
the strength of the interactions [130] and on the sequentiality of the assembly processes [13]. Hierarchical
order of the structures results from the different interactions taking place in every stage of the assembling
process. We differentiate the simple structures formed from the assembly of BB from those which result
from the assembly of the simpler structures that can be viewed as precursors.

For instance, during the SA process we identify first-, second- and higher-order structures depending on
the nature of the interactions and material precursors. First-order structures result from activated precursors
which interact strongly by means of covalent interactions giving rise to matter dissipation, high magnetic
forces or hydrogen bonds with energy dissipation [121], triggering an ordered assembly called sequential
or non-vectorial assembly[13]. Second-order structures result from previously activated first-order structu-
res which interact more weakly than the fundamental activated BB, triggering a non-sequential or vectorial
assembly [13]. Higher-order structures may assemble from lower-order structures due to van der Waals and
other weak forces [131]. An example of how the presence of hierarchical interactions may give rise to the
formation of hierarchical structures is gelation [122, 132].

1.4.3. Examples of self-assembly under non-equilibrium conditions

Application of an external force or a matter input may trigger the self-assembly process giving rise to the
formation of non-equilibrium self-assembled structures in closed and open systems. The emerging structu-
res in open systems are stationary structures shown in Fig.1-4 while those emerging in closed systems are
metastable or stable structures as Fig.1-5 indicates.

Fig. 1-4.: Scheme of NESA in open systems. a) A system composed of deactivated BB (blue particles). b) A
constant input of matter and/or energy activates the BB (yellow particles). c) Structures assemble.
d) A system composed of stationary structures and instantaneous presence of disassembled and
deactivated BB. Dotted lines indicate particle trajectories.
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Fig. 1-5.: Scheme of NESA in closed systems. a) A system composed of deactivated BB (blue particles).
b) Addition of activator (black stars) yields activated BB (yellow particles). c) Assembly of acti-
vated BB triggers the formation of equilibrium structures, or d) metastable structures. Metastable
structures may reach another energetically more stable state, but before they must pass through
transition states e) in which some BB are disassembled and deactivated. f) If there is enough acti-
vator, the system could reach another metastable configuration. In the absence of more activator,
the BB disassemble and deactivate, the system thus adopts the equilibrium configuration a) unless
more activator is added.

Typical cases in which NESA structures are observed are the following:

Bottom-up chemical fueled assembly

The bottom-up approach is used to synthesized NESA structures from well defined small units and chemi-
cal fuel. Processes such as gelation and reactive-crystallization are examples where the small units suffer
sequential transformation to finally yield kinetically trapped or metastable structures [18], for instance virus
capsids [133, 134, 135, 136, 137]. Furthermore, polymerization is a key process to identify NESA structures
such as those observed in the polymerization of vinyl monomers that contain an enzymatic activated subs-
trate, triggering an SA of colloidal nanostructures [138], diblock semiflourinaded n-alkanes aggregation and
gels[139], and assembly of micellar aggregates [140].Another prominent example of chemical-fueled SA
is active gels [141] such as bio-filaments, associated to motor proteins, and the cytoskeleton of living cells
[142, 143, 144, 145].
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Transient assembly in reaction-diffusion processes

Transient assembly of active materials fueled by a chemical reaction [21] combines reaction-diffusion and
assembly processes in which lifetime, stiffness and self-regeneration capabilities of the self-assembly of
synthetic molecules is determined by the interconversion rate between inactive and active monomers and
the amount of reactant [122]. One common characteristic of these reaction-diffusion assisted SA proces-
ses is that a reaction is not always required to maintain the nanostructures once they are formed. When
the reaction stops, order may remain [146]. Reaction-diffusion processes can be used to generate closely
monodisperse, often sophisticated SA nanostructures [146], as is the case of Liesegang patterns in which
reaction-diffusion-agglomeration take place [66, 60, 67, 147, 68, 148, 132].

Active particles assembly

Dynamical clustering and pattern formation of active particles which present induced self-phoresis and
chemorepulsion by surface effects [149, 150, 151] may give rise to NESA structures. Furthermore, active
particles tend to form different metastable structures with different shapes [152] or stationary structures
characterized by segregation coefficients [153]. Also, self-thermophoresis of Janus particles [126, 128, 127]
can lead to structure formation, as in the case of Au-capped colloidal particles [154]. In Addition to phoretic
forces, Marangoni stresses can also generate particle propulsion [155, 156, 157]. Finally, it has been shown
that self-propulsion may also promote synchronization of particles and dynamic clusters [158, 159].

Light-induced assembly

Light may induce reversible switching of a molecular system between aggregated and non-aggregated states,
leading to the emergence of NESA structures which at the macroscopic level manisfest a fully reversible sol-
gel phase. The aggregation and the photochemically induced NESA structures also lead to dynamic pattern
formation [123]. Another example of NESA induced by light are nanoparticles (NPs) decorated with ligands
combining photo-switchable dipoles and covalent cross-linkers, forming three-dimensional supra-structures
of various types and sizes. NPs covered with only a few photoactive ligands form metastable crystals that
may assemble and disassemble on demand by using light of different wavelengths [38]. Doted NPs may
also organize themselves into permanently cross-linked structures including robust supracrystals and sphe-
rical aggregates[124]. The simplest case is found in a system based on dithienylcyclopentene photochromic
which under light exposure gets excited, triggering the formation of extended aggregates in solution and
allowing the control of the media viscosity by light [160]. Another example of light-induced assembling is
photo-switchable catalysis controlled by reversible aggregation/dispersion of catalytic nanoparticles [161].
Reversible SA of NPs induced by light does not require that the particles be functionalized with light-
responsive ligands. Instead, one can use a photo-switchable medium that responds to the light modulating
the interparticle interactions [39].
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Self-assembly induced by magnetic fields

Magnetic colloidal dispersions suspended at the interface of a liquid constitute a rich terrain to explore the
fundamental mechanisms of out-of-equilibrium dynamics and self-assembly [58]. One of the first studies on
magneto-hydrodynamic SA systems was performed in [46] by using millimeter-sized objects rotating at a
liquid-air interface to observe a pattern in the distribution of the particles [46]. Other examples are magne-
tic droplets on superhydrophobic surfaces [162], lanes of colloidal particles under the influence of external
fields [163, 164], clusters of active colloids [165], swarms of self-propelled particles [166] and self-assembly
of superparamagnetic colloids [167], paramagnetic particles [168, 169] and ellipsoidal particles [170] under
the presence of a magnetic field. We can also mention in this context the formation of chain-like aggregates
from very small (10 nm diameter) maghemite nanoparticles and the subsequent aggregation of these chains
into complex-ordered super-structures upon evaporation of the solvent under an applied magnetic field [171].

Self-assembly on surfaces

NESA can be observed in surfaces such as self-cleaning super-hydrophobic surfaces [172]. The careful
placement of functional groups, such as Porphyrin molecules, that are able to participate in directed non-
covalent interactions will allow the rational design and construction of a wide range of supramolecular
architectures absorbed on surfaces (gold NPs surfaces) forming monomers, trimers, tetramers or extended
wire-like structures [173].

1.5. Non-equilibrium self-assembly mechanism and energetics

1.5.1. Mechanism

Three main steps are involved on the formation of NESA structures: activation[174, 22, 123, 160], assembly
and disassembly [16, 122, 132]. Activation of the BB provides the energy required to trigger the process.
BB and even intermediate structures can also be activated when concentration, temperature or size surpass
a certain threshold value and by means of phase-changes. BB and intermediate structures may also be ac-
tivated by chemical reactions, light [160] and rotating magnetic fields [46]. A mechanism for structures in
metastable and kinetically trapped states is discussed in [20].

Assembly and disassembly processes may take place sequentially (block-by-block) or non-sequentially as
in the case of non-oriented assembly [53, 16]. The type of process which may occur depends on the natu-
re and characteristics of the building blocks. While assembly may be reversible, disassembly is irreversible
[122] because the disactivated BB must be activated again to proceed with the formation of NESA structures
[44]. Studies on supramolecular polymers are important for the understanding of the assembly mechanism
where an intrinsic mechanism for supramolecular polymerization can be seen as a sequence of monomer
(BB) association and dissociation steps [175]. A theoretical formulation for the sequential assembly proces-
ses of monomeric units was presented in [176]. Alternatively, a mechanism considering competition under
thermodynamic control between self-assembly and nonlinear random polymerization was proposed in [125].
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Fig. 1-6.: NESA mechanism. Building blocks (blue squares) are activated (red squares) and assemble to
produce red cylinders. Red cylinders in turn may disassemble giving shorter red cylinders and
building blocks (blue squares). Eventually, the red cylinders could be activated (green cylinders
which are able to interact with other green cylinders) to form a more complex structure that in turn
may disassemble yielding multiple building blocks and smaller complex structures.

As mentioned in section 3.2, the existence of a hierarchy in the interactions allows the differentiation of the
kinds of hierarchical structures formed. Following the example of gelation [132], we illustrate in Fig.1-6 a
general mechanism considering two types of components (blue squares and red cylinders) and two kinds
of structures: red cylinders and overlapping green cylinders. The fundamental components denoted by blue
squares are activated becoming red squares that assemble to form red cylinders. These cylinders in turn are
activated yielding green cylinders which may interact among themselves to form more complex structures:
green overlapping cylinders. The structures may also disassemble to back into the original components.

1.5.2. Energetics

In kinetically trapped and metastable structures, the system may be confined around a local minimum of
the free energy landscape whose time evolution depends on the shape of the energy landscape around that
minimum[175, 11]. The formation of self-assembled structures in a stationary state requires the presence of
a constant influx of energy or matter e.g., chemical fuel or light and the removal of waste products to be
kept in a dissipative non-equilibrium state. The main differences between equilibrium and non-equilibrium
SA have been pointed out in [13] and in [16].

There is a growing evidence that the properties of NESA structures largely depend on the conditions under
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which SA takes place and that the process can end at different final basins of the free energy landscape [177].
Different local minima may coexist in the free energy landscape where, in some cases, self-assembled struc-
tures cannot be reached due to the presence of high potential barriers [178]. In NESA processes, the system
tends to minimize its free energy by forming structures thus increasing order and decreasing the entropy.
Due to the second law, entropy must then be produced during the process and released to the environment.
In equilibrium, structures tend to lie at the minima of the free energy. Outside equilibrium, this is not neces-
sarily so due to the lost of entropy due to dissipation.

Fig. 1-7.: Equilibrium free energy G and entropy S of NESA systems as a function of the reaction coordi-
nate γ . Final self-assembled structures are represented as overlapping (and aligned) green bars.
NESA structures correspond to states of local or global minimum of the entropy. a) Kinetically
trapped and metastable NESA structures. The free energy of the state is close to a local minimum.
b) Equilibrium NESA structure. Energetic instead of entropic effects dominate. c) Steady-state
NESA structure. They do not lie in a local or global minimum of the free energy of the system.
This is only observed when there is a constant input of matter and/or energy to the system.

In Fig.1-7, we sketch typical equilibrium free energy and entropy landscapes for the structure formation.
In Fig.1-7(a), the kinetically trapped NESA structure corresponds to the lowest value of the entropy of the
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possible structureswhich is close to a free energy local minimum. To reach this state, the system has to evolve
through different intermediate metastable states represented by red bars. The free energy barrier between
kinetically trapped and a metastable NESA structure is high. However, the structure could be reorganized
into another metastable structure which has a higher tendency to minimize the free energy of the system and
return to a disordered equilibrium state. Fig.1-7(b) shows that the NESA structure lies in a state of minimum
free energy with the lowest entropy. To reach this state, the system passes through different metastable states
represented by the red bars and a different configuration of overlapped green bars. In Fig.1-7(c), we represent
the stationary NESA structures which do not lie in a local minimum of the free energy but rather in the lowest
entropy of the system. Likewise, the system may evolve through different intermediate and metastable states
composed of intermediate structures such as the red bars and a different configuration of overlapping green
bars until a stationary NESA structure is reached.

1.6. Non-equilibrium self-assembly models

Reaction-diffusion equations proposed in [179, 180] and aggregation equations based on the law of mass
action [181] are basic in the formulation of models for the formation dynamics of NESA structures [182].
Diverse models have been proposed to describe the formation of non-equilibrium structures at multiple
length scales [13, 12], from atomistic to mesoscopic scales. Computational models perform atomistic des-
criptions whereas mean-field and coarse-grained models [183] have been used to overcome the inherent
complexity of atomistic models [47]. On the other hand, kinetic models are proposed to describe macros-
copic dynamics and even to connect microscopic and macroscopic dynamics. Additionally, thermodynamic
models have been used to characterize thermodynamically the emerging structures.

1.6.1. Computational models

Molecular dynamics and Montecarlo methods have been used to simulate the formation of NESA structu-
res. Multiscale methods combine coarse-grained and atomistic or Monte Carlo and molecular descriptions
[51, 52, 47]. Additionally, Langevin dynamics is frequently used to describe hydrodynamic and assembled
structures in the mesoscale [183].

Monte Carlo and molecular dynamics

One of the first attempts to understand the formation of structures through Monte Carlo (MC) simulations
was the study of the dynamics of diffusion-limited cluster-cluster aggregation [184] and reaction-limited
cluster-cluster aggregation [185, 186, 187].MC simulations have been performed, for example, to describe
assembled structures of truncated-conical shape forming cylindrically shaped nanofibers. These simulations
are very useful to study self-assembly at the nanoscale but not so much so for larger scales.

The form of the simulation potentials is crucial to implement such methods. A family of simple potentials
that give rise to the assembly of chain-like, random surfaces, tubular and hollow icosahedral structures
similar in many respects to viruses was proposed in [188, 189, 190]. For instance, one of the potentials used
to compute the dipole interactions Ud between a pair of particles has the form
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Ud = (⃗µi · µ⃗ j)/r3
i j−3(⃗µi · ri j)(⃗µi · ri j)/r5

i j (1-1)

where µ⃗i is the dipole moment of particle i while ri j is the distance between the particles i and j. Interactions
between elongated particles have been modelled by including quadrupolar contributions to the potentials
[59].

Contrary to conventional MC, Kinetic Monte Carlo (KMC) computes the transition probabilities from a set
of possible transition rates rather than from a set of possible configurations. Additionally, KMC algorithm
gives the correct time scale for the evolution of the system [191] and can be used as a tool to describe non-
equilibrium phenomena [192] in terms of long-time self-assembly dynamics, as performed in biochemical
reaction networks taking place in cell [193]. Scaling arguments and KMC simulations have been performed
to study the reversible formation of aggregates [194, 195]. The solution of the master equation by KMC
works in a similar way to Guillespi Algorithm [196]. The transition probabilities in the KMC scheme are
derived from a renormalized master equation of the diffusion process, having a similar form as the one
proposed in Glauber dynamics [197]. The recipe of the KMC simulation using Glauber dynamics is similar
to the Metropolis scheme [198] but with the transition probability for the change of state si into state s j, with
energies Ei and E j, given by

P(si→ s j) = [1+ exp((E j−Ei)/kBT )]−1 , (1-2)

This scheme was implemented for a system of nanoparticles interacting through Lennard-Jones pair poten-
tials that change their nature from repulsive to attractive depending on light exposure (activation) [38]. This
method does not allow the study at several length scales; however, it avoids the use of a stochastic noise
term therefore this method is particularly relevant for cases where the magnitude of the driving force is
comparable to the stochastic noise, such as in Brownian dynamics.

Langevin dynamics

By using Langevin dynamics, it has been shown that internal and external forces, such as electrostatic, local
temperature gradients, magnetic, electric or temperature fields, underlying non-equilibrium segregation can
be used to control the SA of particles that lack attractive interactions. It has also been demonstrated that the
segregated structures can range from compact clusters to elongated and string-like patterns [55]. To show
the formation of such structures one can use the potential of mean force

U (⃗r) = kBT ln
(

PF (⃗r)
P0(⃗r)

)
(1-3)

where PF (⃗r) is the particle distribution function in the presence of a force F⃗ acting on the particles and P0 is
the corresponding distribution at F⃗ = 0. In the absence of inertial effects, Brownian dynamics simulations
have been performed for a binary mixture of particles coated by weak acids and weak bases under externally
controlled pH oscillations [56] to explain the emerging structures. Brownian dynamics simulations of polar
microtubule ensembles driven by cross-linking motors have allowed the study of microscopic organization
and stresses[183].
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Langevin dynamics has also been implemented to analyze the random motion of active particles, self-
propelled objects susceptible to assemble to form structures of diverse shape [199, 200]. For instance, for
self-propelled particles moving with velocity v and rotating an angle φ , the corresponding stochastic diffe-
rential equations for translation and rotation are

d⃗x
dt

= vcosφ +
√

2Dξ⃗ (1-4)

dφ

dt
=
√

2Dφ ξφ (1-5)

Here x⃗ is the position vector, D the translational diffusion coefficient and Dφ the rotational diffusion coef-
ficient. The terms ξ⃗ and ξφ define independent white noise stochastic processes with zero mean and corre-
lation ⟨ξi(t)ξi(t ′)⟩ = δ (t− t ′) [201]. In Fig.1-8, we present a particular case in which Brownian dynamics
could be applied to describe the behavior of hemicylindrical like-plates covered with platinum on one sur-
face and that float at the surface of an aqueous solution of hydrogen peroxide, exhibiting ordered assembly
[149].

Fig. 1-8.: Self-propelled particles may self-assemble due to the presence of chemical reactions thus forming
pairs or even aggregates such as rotating asters[149].

1.6.2. Kinetic models

Kinetic models based on conservation equations have been proposed to avoid conventional computational
limitations found in classic Monte Carlo, Molecular Dynamics and Langevin methods, such as long compu-
tational time, limited length scales, use of noise term, among others. Conventional kinetic models cannot
give enough microscopic information about the NESA structures. But some of these models allow us to
establish a link between microscopic and macroscopic dynamics, as is the case of magneto-hydrodynamic,
reaction-diffusion and mesoscopic non-equilibrium thermodynamic (MNET) models.



18 1 Self-assembling outside equilibrium

Reaction-Diffusion models

The starting point of these models is a set of deterministic nonlinear partial differential equations [14, 61]
describing the time evolution of the systems exhibiting patterns and structures. Anomalous diffusion mo-
delled by diffusion-like equations containing fractional derivatives has also been used to explain pattern
formation such as Turing or Liesegang structures that appear in reaction-diffusion systems [202]. Additio-
nally, there are found reaction-diffusion models describing the emergence of Liesegang patterns composed
of NESA structures [41, 132].

Reaction-diffusion processes yield Liesegang [60, 64, 132] and Turing [203, 204, 205, 206, 207, 5, 75] pat-
terns. In the case of Liesegang patterns, several models have been proposed to consider different growth/precipitation
kinetics [66, 208, 148, 209, 210, 211, 63, 212, 64, 213]. A key element in these models is the kinetic expres-
sion for solids nucleation, growth and/or precipitation, which is a step function depending on the precursor
concentration. For instance, in [132] the growing rate of the solid particles Rs, composing the Liesegang
patterns, is divided into two steps and is represented by the Heaviside function:

Rs =

{
k(T )CoC2

s if Co <Clim

k(T )CoC2
s + k(T )CeCo(Cs−Clim) if Co ≥Clim

(1-6)

where kT is a kinetic constant function of the local temperature T , Ce is the electrolyte concentration, Co the
solid nuclei concentration, Cs the concentration of solid particles and Clim the threshold concentration of the
solid nuclei which determines the growing mode. We also mention that Liesegang pattern formation was
studied by using the hyperbolic version of the reaction-diffusion equations [69].

Magneto-hydrodynamic models

Models defined through boundary value problems involving magneto-hydrodynamic equations for magnetic
colloidal dispersion have been used to describe non-equilibrium self-assembly under the influence of a
magnetic field. These models can also be applied to a variety of interfacial particle systems driven out of
equilibrium by external energy fluxes [58]. Numerical schemes and analytical methods are used to calculate
the energy dissipation rates in a prototypical magneto-hydrodynamic NESA system composed of metal
particles suspended on a liquid-air surface in which a rotating magnetic field is applied [46, 214]. This
method is based on the Navier-Stokes equation that considers multi-body interactions and includes the force
f exerted on the fluid due to the rotations of the magnetic particles

ρ

[
∂ u⃗
∂ t

+ u⃗ ·∇u⃗
]
=−∇p+µ∇

2⃗u+ f⃗ , (1-7)

Here ρ is the fluid density, µ the fluid viscosity, u⃗ the velocity field and f⃗ a local body force that transmits
the perturbation to the fluid caused by the rotation of the particles [215]. Using the Force Coupling Method,
f⃗ can be expressed as:

fi =
N

∑
n

F(n)
i ∆[x− y(n)]+G

′(n)
i j (1-8)
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where N is the number of particles, y(n) represents the position of the n-th particle, F(n) is the force that the
particle exerts on the fluid and ∆ is a density function that accounts for the finite size of the particle. This first
term on the right-hand corresponds to a force monopole while the second G

′(n)
i j is a force dipole term [215].

This method has been useful in finding the distribution of magnetic particles on the surface of a fluid un-
der a rotatory magnetic field and to understand the relation between energy dissipation and kind of structure.

Hydrodynamic equations were also used to study the organization of microtubules assemblies driven by
cross-linking motors [216, 72, 217, 218] which reproduce the hydrodynamic flows generated by polarity-
dependent active stresses and which relate local polar structure to flow structures and defect dynamics [183].

Kinetic master equations

Chemical-kinetic master equations have been used to describe the assembly and disassembly of protofila-
ments and microtubules built from α- and β tubulin BB [219, 220, 221, 222]. These models may account for
the microscopic structure and interaction between proto-filaments, where an important approach to describe
the assembly dynamics is that the growth of the structures is reaction-limited rather than diffusion-limited
[219]. This last fact was shown in vivo and in vitro conditions for microtubules assembly [223].

The steady mean velocity of growth given by these models can be written as:

r =
d

RN

(
1−

N

∏
j=1

w j

u j

)
(1-9)

where d is the size of the BB (α-, β -tubulin), N the number of protofilament composing the microbutule
and RN a factor that depends on the rates of attachment and deattachment to the protofilament j, u j and w j,
respectively. The ratio between these rates is given by

u j

w j
= exp [−(gv +gh +gi)/kBT ] (1-10)

Here gv is a bond energy related to head-to-tail binding, gh the energy of lateral interactions between proto-
filament and gi the free energy of the attachment of a BB to the protofilament.

Mesoscopic non-equilibrium thermodynamic models

Mesoscopic nonequilibrium thermodynamics (MNET) is used to obtain the nonlinear kinetics of nonequili-
brium systems in the presence of fluctuations [73, 224]. It provides kinetic equations of the Fokker-Planck
type, compatible with the second law of thermodynamics, which describe the evolution of the probability
density of the relevant quantities of the system. It has been used to analyze the kinetics of chemical and bio-
chemical reactions [225, 226, 227], transport processes such as ion translocation through protein channels
[228], electro-dynamic processes [229] and nucleation phenomenon [230, 231]. MNET can also be applied
to study cross-linked motor-filament and active gels at different length scales. The latter have only been
analyzed through linear non-equilibrium thermodynamics [232, 233, 234, 235].
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Fig. 1-9.: Illustration of a simple bi-stable potential φ for self-assembly modelling. In the initial state,
the building blocks are already activated but disordered. The final state corresponds to the self-
assembled structure.

Self-assembly processes can be viewed as activated processes which can be modelled by the crossing of a
free-energy barrier that separates the disordered state from the assembled state that corresponds to the local
minima of the barrier [73], as shown in Fig.1-9. To cross the barrier, the system needs to acquire energy in
order that the assembly of the building blocks may take place. If we consider the process at shorter time sca-
les, the state of the system progressively transforms by passing through successive structural configurations.
These different configurations can be characterized by a reaction coordinate γ . In this situation, one may
assume that the state of the system undergoes a diffusion process along the reaction coordinate crossing the
potential barrier. The local entropy production is [73]

σ(γ) =− 1
T

J(γ)
∂ µ

∂γ
(1-11)

where J is the diffusion current and µ the chemical potential. From the entropy production, one can derive
the linear law [73] between the current J and the thermodynamic force ∂ µ/∂γ

J =− L
T

∂ µ

∂γ
(1-12)

in which L is an Onsager coefficient and the chemical potential µ is given by

µ = kBT ln(p)+φ (1-13)

with φ the potential barrier shown in Fig.1-9. Using the expression of the current in the continuity equation
(∂ p/∂ t = −∂J/∂γ), we can obtain the Fokker-Planck equation describing the evolution in time of the
probability distribution p(γ, t)
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∂ p(γ, t)
∂ t

= D
(

∂ 2 p
∂γ2 +

p
kBT

∂φ

∂γ

)
(1-14)

in which the Onsager coefficient is given by L = Dp/kB with D the diffusivity along the potential barrier.

It is often the case that, at the time scales of interest, the system is mostly found in the states 1 and 2,
which correspond to the minima at γ1 and γ2, respectively as shown in Fig.1-9. The probability distribution
is sharply peaked at these values and almost zero everywhere else. This happens when the energy barrier is
much higher than the thermal energy and intra-well relaxation has already taken place. Under these condi-
tions and re-writing Eq.(1-12), the kinetic equation is:

J =−D
dz
dγ

(1-15)

in which the diffusion coefficient is D = L/zT , and the fugacity is z = exp(µ/kBT ). We now assume D as
a constant and integrate from 1 to 2, obtaining the effective kinetic equation

J̄ ≡
∫

γ2

γ1

Jdγ = D(z1− z2). (1-16)

in which the difference of fugacities is the driving force of the processes. This model has been applied
to thermodynamically analyze [129] and dynamically explain [132] the formation of gels from the self-
assembling of monomers. The entropy production of the process [224, 73] consisting of activation, assembly,
disassembly and rotation is

σ =− 1
T ∑

j
J j

∂ µ j

∂Γ j
, (1-17)

where Γ is the phase-space in which the processes takes place, j refers to the jth elementary process, Γ j

is the corresponding reaction coordinate of the jth elementary process and J j is the associated current. The
Fokker-Plank equation describing the dynamics of the NESA structure is

∂ p(Γ, t)
∂ t

= ∑
j

D j
∂

∂Γ j

[
∂ p j

∂Γ j
+

p j

kBT
∂φ j

∂Γ j

]
(1-18)

in which φ j is the potential barrier related to the jth process and D j is the diffusivity along the jth internal
coordinate.

1.6.3. Information entropy

Information entropies may provide a measure of the complexity of a physical system [236]. Information
entropies have been proposed to characterize the non-equilibrium structures. These entropies are computed
from the dynamics of the self-assembling process given by kinetic and computational models.

Kolmogorov-Sinai entropy

Through the Kolmogorov-Sinai entropy, one can obtain a relationship between the system dynamical en-
tropy SKS and the energy dissipated in a NESA system, thus connecting the microscopic dynamics with the
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energetics of NESA processes. SKS is computed from the Lyapunov exponents spectra λi that depend on a
set of state variables C describing the system. The dynamic entropy is then expressed as

SKS = ∑
i

λi(C, t). (1-19)

It has been found that for NESA states composed of clusters formed by light-activated particles [74], this
entropy is larger than for non-organized states [44].

Configuration entropy

Configuration entropy [237] H is a measure of the local fluctuations of some morphological variable [238].
It is computed from Shannon entropy and has been used to characterize Turing patterns [75, 76, 77]. Pattern
characterization requires the use of binary images that consider whether a pattern appears or not [237, 239].
Thus, in a pixel-by-pixel analysis on binary patterns, the configurational entropy is defined as

H =−Pw lnPw−Pb lnPb (1-20)

where Pb and Pw are the probabilities of finding a pattern (black) or not (white) a pattern in a given spot of
the system. It was found that steady state Turing patterns showing higher degree of order (direct spots) have
the lower Shannon entropy. These more ordered patterns are the ones that dissipate the minimum amount of
energy [75].

Assuming that the pixel-by-pixel analysis of binary patterns can be arranged into a data string, BiEntropy
[240] may be used to quantify order in pattern-forming systems. Computable information density [241] may
also estimate the degree of order of the pattern.

Maximum entropy production principle

The maximum entropy production (MEP) principle states that a flow system subject to various gradients will
tend towards a steady state of maximum dissipation determined by the thermodynamic entropy production σ

[78, 79, 82, 83, 84]. The MEP principle has been observed in the Earth’s climate system [80, 81, 85], thermal
(Benard) convection [242], electrical currents [243], crystalline solids [244], ecological systems[245] and
biochemical processes [246, 247]. MEP selects the highest allowable entropy production σ consistent with
the set of allowable bulk net fluxes J and bulk thermodynamic forces F in and between subdomains Γ of the
system

MEP≡ maxΩσ(F(Γ;Ω),J(Γ;Ω)) (1-21)

where the fluxes and forces depend on a set of subdomain-wide adjustable parameters Ω.
It has been stated that by increasing the number of internal states, the system begins to respond easily (i.e.,
make transitions between states) to variations of the environment. Each transition necessarily involves ge-
neration of entropy (transitional entropy) over and above that associated with maintaining a state [248]. In
this case a higher entropy production is expected for organized states than for non-organized ones. In this
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way, the organized states increase the ability of the system to interact with the surrounding environment and
exhibit goal-oriented behavior associated with transitional entropy production [248]. This behavior could
open the discussion about a general free energy which drives these kind of systems to specific states. For
instance, it was shown that SO in a voltage-driven nonequilibrium system, consisting of conducting beads
immersed in a viscous medium, gives rise to a dynamic tree structure that exhibits worm-like motion. The
complex motion of the beads driven by the applied field results in a time evolution of the tree structure
towards states of lower resistance or higher rates of entropy production with the purpose of receiving more
energy, and avoiding conditions that decrease the available energy [249].

Life and evolution is based on SO [96, 2, 97, 98, 99, 100] and of course in out-of-equilibirum SA of ce-
llular components [250]. The origin and evolution of life can be understood as resulting from the natural
thermodynamic imperative of increasing the entropy production of the Earth in its interaction with its solar
environment [251]. It could be concluded that a living being or complex ecosystem seen as a SO system
tends to change its structural and energetic configuration to become complex and survive for a determi-
ned set of conditions. This complexification leads to an increase of the hierarchy (hierarchogenesis) of the
structures [252, 253] and therefore also an increment of the entropy production of the SO system[254, 248].

1.6.4. Gibbs entropy-based models

Different approaches based on the formulation of the Gibbs entropy have been proposed to show the relation
between entropy production, quantifying dissipation, and the formation of non-equilibrium structures. Some
of these models are presented in this section.

Minimum entropy production principle

The Onsager variational principle of the least energy dissipation [255, 256] provides a useful framework to
obtain the nonlinear dynamics of processes taking place in soft condensed matter systems [72, 257, 258, 259]
such as phase separation in solutions, gel dynamics and molecular modeling for viscoelasticity nemato-
hydrodynamics and self-assembly under non-equilibrium conditions [132, 53] to mention just a few . These
dynamics describe the evolution of a state variables Xi as

dXi

dt
= ∑

j
L−1

i j
∂U
∂Xi

(1-22)

where U is a potential and Li j is the matrix of Onsager coefficients. Furthermore, keeping the linear rela-
tionships between fluxes and thermodynamic forces, as in Eq.(1-22), it was shown that systems exhibiting
spatiotemporal patterns and a certain degree of organization, minimize the entropy production rate in steady
states [2].

For instance, in surfaces where frictional processes take place, it was shown from the stability conditions,
that when the entropy production rate fulfill the condition δ 2σ ≥ 0[260], the system reaches a degree of
organization leading to the reduction of the friction and wear, i.e, to a minimum entropy production rate
state [86, 87]. This friction reduction has been observed as the result of the self-healing and self-cleaning of
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a surface [88] where the energetic efficiency increases [261].

Min/Max duality of the entropy production

The evolution of some systems may fulfill maximum or minimum principles. To understand this duality,
an analysis of fluxes and forces was performed by using Legendre transformations [89]. There a non-linear
relation flux-force was used to describe the motion of fluids and plasmas, where two types of organized
motion were observed. The total entropy production rate is maximized if the system follows a like-series
flow (Fs), and is minimized if the systems follow a like-parallel flow (Fp) configuration [262]. The entropy
production for this system fulfills the condition:(

∂σ

∂F

)
F=F∗s ,F∗p

= 0 (1-23)

(
∂ 2σ

∂F2

)
F=F∗s

< 0;
(

∂ 2σ

∂F2

)
F=F∗p

> 0 (1-24)

in which a star denotes the value of the parameter corresponding to the stable solutions. In this example,
we have patterns in continua media related to a different dynamical operation mode; however, it could be
interesting to find a corresponding example for NESA systems.

Non-extrema entropy production regimes

The existence of dynamic, energetic and structural operation modes explain the fact that NESA and SO pro-
cesses may display a high or a low entropy production. For instance, NESA, self-repairing, self-healing and
self-replicating processes require a big amount of energy and therefore exhibit a high entropy production.
In contrast, systems which are not subjected to a great diversity of external inputs may partially decouple
from the energy sources thus reaching a low entropy production [263, 90] which leads to an increase of the
energetic efficiency. For a nanowire self-assembly process in presence of external noise (artificially created
by an ultrasound source)[90], it is found that at small noise level the entropy production first reaches its
maximum value and subsequently slowly approaches a low entropy production state thus exhibiting an effi-
cient energetic operational mode. When increasing the noise level, nanowires progressively disassemble and
assemble which results in an increase of the entropy production showing that the dynamic operation mode
requires a large amount of energy to maintain the structure.
In systems with an oscillatory pH, a transition between NESA structures having different degrees of order
has been observed for a particular value of the oscillation frequency ω . The most ordered NESA structures
are favored by fast oscillations while other structures emerge at slow oscillations [264]. The most disordered
state emerges at the transition frequency ω∗, in which the entropy production reaches a maximum value and
thus fulfills the conditions (

dσ

dω

)
ω=ω∗

= 0;
(

d2σ

dω2 .

)
ω=ω∗

< 0 (1-25)
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1.7. Entropy production for different types of structures

Why a particular NESA structure and not others comes up under specified conditions is an important ques-
tion yet to be answered due to the lack of a nonequilibrium potential whose minima determines the structu-
res, as occurs in equilibrium [44]. Nevertheless, it is known that the amount of energy and matter dissipated
by the system reflected in the entropy production plays an important role in the selection of a NESA struc-
ture [11]. In this section, we will exemplify cases in which for similar or even the same conditions different
NESA structures are observed and we will show how the entropy production can provide information about
the type of structure formed.

1.7.1. Polymorphs in magneto-hydrodynamics systems

Polymorphic NESA structures illustrated in Fig.1-10 have been found in magneto-hydrodynamic systems
[46, 214, 71]. Two distinct stationary NESA structures may emerge for the same values of the system
parameters, producing both low and high energy dissipation states in which the probability P of observing
these structures behaves in terms of the entropy production rate σ as [71]

P(σ)∼ exp(−kσ), (1-26)

where k is a fitting constant. These results show that while nature prefers to form less dissipative (more
energetically efficient) assemblies, it also chooses more wasteful structures[71].

Fig. 1-10.: Polymorphs in magneto-hydrodynamic systems. For a system composed of 10 magnetic particles
under the influence of a rotating magnetic field, two polymorph structures are observed: a) with
2 central particles and b) with 3 central particles [214, 71].

The relation between distinct structures and entropy production was analyzed in [65, 60] and in[264] con-
cluding that a general principle governing the formation of NESA structures is needed.
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1.7.2. Pattern formation in reaction-diffusion systems

In reaction-diffusion systems exhibiting pattern formation, the entropy production is lower for chaotic (ape-
riodic) patterns than for periodic patterns. The dimensionless reaction-diffusion number Nrd ≡

√
m1m2/D1D2k2

characterizes the structures formed [65, 60] and depends on the mass m and diffusivity D of the components
and on the kinetic constant k.

Fig. 1-11.: Patterns in reaction-diffusion systems. a) and b) correspond to Belousov-Zhabotinsky patterns
with different periodic structures. Adapted from commons.wikimedia.org with license CC-BY-
2.0. c) Liesegang patterns composed of particles with a predictable and progressive variable size.
Adapted from commons.wikimedia.org with license CC-BY-SA-3.0.

Figs.1-11(a)-(b) show two different patterns having different values of the reaction-diffusion number. Low
values of Nrd correspond to periodic patterns while high Nrd values are typical of periodic patterns. The
entropy production is not necessarily a monotonic function of Nrd [65, 60], due to the relation between
structure and dissipation.

In Liesegang patterns, particle size distribution was measured over the constituent bands, as illustrated in
Fig.1-11(c). The pattern evolves toward fewer but larger particles as we go through the bands from top
to bottom, as is observed upon time aging during an Ostwald ripening evolution [265]. In the bottom-up
approach, the building blocks self-assemble into spatially well separated domains with controllable and pre-
dictable particle sizes [41]. It was found that the entropy production as a function of the ratio between the
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size change and precursor concentration change behaves non-monotonically [132, 266].

1.7.3. Fiber and microtubule assembly

Understanding how microtubules adopt specific spatial arrangements is a central issue to explain some cellu-
lar processes and properties. For instance, structures built from microtubules called spindles are responsible
for chromosome segregation [267]. Furthermore, microtubules shape the cytoplasm, nucleus and organelles,
and constitute the principal structural element of flagella and cilia [24].

Fig. 1-12.: Microtubule assembly illustration. Microtubule-based structures: a) network, b) aster, c) vortex.

Hierarchical and spontaneous assembly of microtubules triggers the formation of molecular motors [268]
having different shapes such as asters, vortices and networks of interconnected poles [142], as illustrated
in Fig. 1-12. These assembled structures show collective and self-organized behavior. Brownian dynamics
and entropy production-based models show how local structures such as asters and vortices yield spatial
patterns [183]. In microtubule-based structures, parameters determining the generation of these structures
have been identified [142]. These parameters could be linked to the entropy production [53] of the system, as
in the case of the synthetic counterparts [122]. These synthetic structures are obtained through the transient
self-assembly of organic molecules driven by the consumption of a chemical fuel [21, 122]. In this case, the
entropy production results from fiber orientation, gel formation and even gel porosity [53].
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Actin filaments and filaments of myosin motors self-assemble into bundles with contractile elements that
transmit forces to cellular length scales [269]. In these structures, the bundle length takes optimal values for
an efficient transmission of the contractile force at which the entropy production may reach extreme values.

1.7.4. Planetary organization

It has been shown that entropy production gives information [270] as to the organization of the different
components of cosmological systems [101, 102, 103, 104, 105]. For instance, a planetary system is in general
unstable unless the planets’ orbits are synchronized and their dynamics is periodic. When periods between
the radially adjacent planets are synchronized, the mean orbital distance is found to follow a geometric and
general progression, the same as observed in our solar system. In principle, however, there is no a priori
reason of why all planets show synchronous behavior in the organized state [104]. As in the magneto-
hydrodynamic system, entropy production could shed some light on this particular distribution [44].
Planetary rings, especially Saturn’s rings, are structures whose formation is still not well understood [271].
The explanation of why different types of rings can be observed is an open question [272] probably related
to Liesegang rings [44]. In Fig.1-13 we illustrate a NESA (Saturn’s rings) planetary system.

Fig. 1-13.: NESA planetary systems. Saturn’s rings, in this case, the BB are rocks. Notice the similarity with
Liesegang patterns shown in Fig1-11 (C).

1.8. Searching for a general non-equilibrium principle

The search for a non-equilibrium free energy potential able to predict the formation of non-equilibrium struc-
tures, in the same way as free energy does for equilibrium systems, is an open problem in the physics of
systems outside equilibrium [134, 135, 136, 137]. For instance, microtubules and microtubules-based struc-
tures are dynamically assembled under non-equilibrium conditions and their free energy is not necessarily a
minimum. These structures, however, may result from the optimization of kinetic or structural parameters to
improve their functional response [24, 267, 142]. Specifically, it is found that the ratio between two kinetic
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parameters describing the assembly of an active gel dictates the form of the final structure and as a conse-
quence the functionality of the gel [273]. The entropy produced in the response of the gel could then set the
basis to construct a non-equilibrium potential able to determine the optimal value of the kinetic parameters
ratio.

Which parameters governs the formation of structures is a key question in order to understand the mul-
tiplicity of NESA structures observed. Nevertheless, the reason behind the multiplicity may lie in that
every particular structure is formed depending on the dissipative nature of NESA intermediate structures
[274, 275, 249]. In this section, we briefly discuss the possible existence of a function or potential which
may shed some light about the relation between entropy production and structure formation.

Some first attempts to formalize a nonequilibrium potential were made in [276] and in [277, 278]. Although
these potentials predict stationary states of nonequilibirum systems under some conditions, they do not show
the emergence of ordered structures. On the other hand, the constructal theory may explain the formation of
some structures [3]. This theory states that nature does not necessarily maximize or minimize entropy pro-
duction, but maximizes the fluxes coming and passing through the system, thus facilitating the maintenance
of the structure and the efficiency of the processes. However, it seems that large incoming fluxes (large en-
tropy production) or large unused energy (low entropy production) depend on the external conditions and
requirements of the system to maintain a specific structure [263, 90]. Therefore from our point of view, it is
not enough to consider the maximization of the fluxes passing through the system as stated in the constructal
theory. Additionally, as to the energetic efficiency in NESA and SO systems, at least we can state that there
does not exist a correlation between the efficiency of living systems and the entropy production rate. This
is because kinetic aspects are also relevant for establishing optimal functioning. This can be seen through
examples such as molecular motors, circadian cycles and sensory adaptation, whose performance in some
regimes is indeed spoiled by increasing the entropy production [279].

As we reviewed in the last two sections, minima and maximum principles of entropy production are fulfilled
in different systems, but it is not possible to establish a general extrema entropy production principle. We
realize that although entropy production seems to be an important quantity [89, 280] it does not enable one
to predict the evolution of organized systems. Therefore, we visualize that there may be a principle which
depends on the entropy production which unveil the emergence of ordered structures. The possibility of an
underlying variational principle for a general free energy is highlighted in [44, 74]. Additionally, as men-
tioned by several authors [21, 26, 281, 19, 103], one of the keys of SO is the complex network of feedback
loops in the system. Here, considering the control theory of dynamic systems, there should be a goal variable
which is expected to be constant in order to maintain the system in some desired behavior [282]. Another
option emerges with the optimal control theory [283, 284] in which entropy production is used to compute
a like-Hamiltonian of the non-conservative system and thus minimize it as a function of a control variable
[285].

We are still wondering as to which is the main variable and which is its value. We ponder the possibility that
this variable may be a general nonequilibrium potential or if this desired behavior is related to an extrema
principle. Maybe this potential or extrema principle could be related to the entropy production as a function
of a structural parameter for different external conditions imposed over the system and respond in the dyna-
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mic, energetic and structural mode of operation of the NESA or SO systems.

1.9. Conclusions and perspectives: Dissipation and thermodynamic

criteria?

Non-equilibrium self-assembly is ubiquitous in physico-chemical and biological systems and is manifested
at different scales ranging from molecular to cosmological. The formation of microtubules, gels, cells and
living beings among many others take place by self-assembly under non equilibrium conditions.

Despite many efforts devoted to the study of the phenomenon, a general evolution criterion able to unders-
tand why nature selects some structures and not others is lacking. This difficulty is inherent to the none-
quilibrium nature of the process for which equilibrium thermodynamic potentials such as the free energy
when used far from equilibrium cannot associate their minima to the structures formed. This is observed
for example in the formation of microtubules and microtubule-based structures for which the free energy
does not necessarily correspond to a minimum. These structures appear, however, at certain values of some
kinetic and architectural parameters at which the system responds coherently.

Despite this limitation, progress in the understanding of the NESA mechanisms has been made thanks to
the formulation of models to study particular situations. Computational and kinetics models are useful to
describe the formation dynamics of NESA structures. Computational models unveil information about their
architecture. These models are, however, restricted to the description of microscopic systems with few com-
ponents therefore being unable to describe more complex systems with different hierarchical structures.
Kinetic models account for the kinetics of systems with different hierarchical structures but most of them
are unable to reproduce the form of the structures.

The formation of NESA structures entails matter and/or energy dissipation generated in activation, assembly
and disassembly processes. During these processes intermediate metastable structures may emerge. The en-
tropy production rate is an important quantity to describe the emergence of the structures and to determine
their shape. Mesoscopic non-equilibrium thermodynamic models consider the entropy production as a star-
ting point to reproduce the dynamics and micro-architecture of NESA structures [73, 53].

Some of the results obtained from thermodynamic models suggest a connection between the entropy produc-
tion rate and NESA structures. Nevertheless, there is up to now no general consensus for the characterization
of NESA systems from the entropy production. The possibility of the existence of a variational principle in-
volving a general free energy able to reproduce the structures was discussed in [44, 74, 83]. The formation
of NESA structures could be driven by an end-directed evolution criterion [281].

It is imperative that a general model of a general and a thermodynamic principle be proposed in order to
allow the evaluation of different kinds of structures as a function of structural parameters as well as the fun-
ctional properties of the resulting systems. Proposed models and thermodyamic principle may be checked
in systems and processes in which experimental data are available. Some of these systems are: magneto-



hydrodynamic system [71, 214, 46], Liesegang patterns [41], gels [160, 123, 122, 21, 124], microtubules
assemblies [23, 24, 268, 183, 142]and planetary assemblies [270, 104].

The question of why different structures may emerge for similar initial conditions of the system is of great
importance to establish a general evolution criterion. In magneto-hydrodynamic systems, a given initial
condition may give rise to the formation of different structures [71] (see Fig.1-10). In these systems, a
relationship between the probability of the appearance of a structure with the entropy production was expe-
rimentally found. To find different cases which show a similar feature constitutes a major current challenge.

The knowledge of the intimate mechanisms leading to the formation of structures will make the implementa-
tion of adaptive and reconfigurable materials possible with applications to sensors, tunable optical elements,
microdevices [44], self-erasing inks and patterns, self-healing supramolecular gels and catalysts with tuna-
ble lifetime and activity [26] among others. It could also be useful to provide a deeper understanding of the
emergence of life [286].

We hope that this chapter may offer a reference to link several current concepts and to help in the de-
velopment of new models and experimental studies able to reveal hidden relations in organized systems
dissipating matter and energy.
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[159] Jean-Baptiste Delfau, Cristóbal López, and Emilio Hernández-Garcı́a. Active cluster crystals. New
J. Phys., 19(9):095001, 2017.

[160] Linda N Lucas, Jan van Esch, Richard M Kellogg, and Ben L Feringa. Photocontrolled self-assembly
of molecular switches. Chem. Commun., (8):759–760, 2001.

[161] Yanhu Wei, Dow Chemical, Shuangbing Han, Dow Corning, and Shuangbing Han. Photoswitchable
Catalysis Mediated by Dynamic Aggregation of Nanoparticles. J. Am. Chem. Soc., 132:11018–11020,
2010.

[162] Jaakko VI Timonen, Mika Latikka, Ludwik Leibler, Robin HA Ras, and Olli Ikkala. Switcha-
ble static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science,
341(6143):253–257, 2013.

[163] Mirjam E Leunissen, Christina G Christova, Antti-Pekka Hynninen, C Patrick Royall, Andrew I
Campbell, Arnout Imhof, Marjolein Dijkstra, Rene Van Roij, and Alfons Van Blaaderen. Ionic co-
lloidal crystals of oppositely charged particles. Nature, 437(7056):235, 2005.

[164] Dirk Helbing, Illés J Farkas, and Tamás Vicsek. Freezing by heating in a driven mesoscopic system.
Phys. Rev. Lett., 84(6):1240, 2000.
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PART I. Non-Equilibrium Self-Assembly

Processes



2. Understanding gelation as a non-equilibrium

self-assembly process

Gel formation is described by a non-equilibrium self-assembly mechanism which considers the presence of
precursors. Assuming that non-equilibrium structures appear and are maintained by entropy production, we
developed a mesoscopic non-equilibrium thermodynamic model that describes the dynamic assembly of the
structures. In the model, the evolution of the structures from the initially inactivated building blocks to the
final agglomerates is governed by kinetic equations of the Fokker-Planck type. From these equations, we get
the probability densities which enable one to know measurable quantities such as the concentrations of the
different components and the dynamic structure factor obtained in light-scattering experiments. Our results
obtained are in very good agreement with the experiments. The model proposed can in general be used to
analyze the kinetics of formation of non-equilibrium self-assembly structures usually found in biomedicine
and advanced materials.

This chapter was published in the Journal of Physical Chemistry B, 122, 4937-4945, (2018). Ref.[1]
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2.1. Introduction: Non-equilibrium self-assembly (NESA)

Non-equilibrium self-assembled (NESA) structures [2, 3] are thermodynamic systems sustained by a con-
tinuous dissipation [4] of matter and/or energy [5] and they are composed of fundamental building blocks
[6, 2]. NESA structures dissipate matter and energy until they reach states which can either be stationary
(dissipative self-assembled structures [3]) or metastable (kinetically trapped self-assembled structures[6])
[7, 8]. NESA structures may constitute precursors of self-assembled equilibrium structures as occurs in the
formation of Liesegang patterns [9, 10]. The concept of NESA structure enables us to analyze the overall
self-assembly process instead of subdividing it into different steps in which dissipative, kinetically trapped
and equilibrium structures may emerge [7], thereby simplifying the description.

As dynamic systems, NESA structures are versatile and exhibit some features peculiar to biological forms
such as adaptability, hierarchical organization, self-replication, compartmentalization [11, 6], and even self-
organization [12, 13, 14, 15] in the case that the process is controlled by a complex network of feedback
loops [16, 8]. Examples of NESA structures in biological systems are microtubules [17], molecular mo-
tors [15], membranes and cells [8], to mention just a few. Moreover, self-assembled structures are used to
design new materials, such as nanoparticles, polymeric materials and monolayers [18, 19, 20, 21, 22, 23].
Gelation and crystallization are typical processes involving NESA structures in non-living systems [9]. The
self-assembly of these structures must be driven either by light [20, 21, 22], chemical fuel [24, 25, 16] or
magnetic fields [3, 26] since building blocks must be activated (their energy must be increased) in order to
trigger the assembly process [6, 8]. Formation of intermediate NESA structures are key to the characteriza-
tion of the micro-architecture of the final structure [9, 27, 28, 2, 7].

How energy dissipation may explain the emergence of ordered structures from a set of disordered compo-
nents [2] remains an unanswered question. In the lack of a general framework for the description of NESA
structures, computational approaches have been proposed. These approaches, however, are not easy to im-
plement since the number of particles needed to explain the mesoscale behavior must be extraordinarily
large [26, 29]. A practical performance may be carried out by means of numerical schemes based on conti-
nuum, coarse-grained particle [29] and implicit solvent models [30, 23] such as phase-field approaches [31],
coarse-grained molecular dynamics[32], Brownian dynamics methods [33] and scaling theory with kinetic
Monte Carlo [23]. These methods allows for the simulation of larger systems for longer times but they do
not in general directly quantify the dissipation or the entropy production and cannot describe the internal
micro-architecture of the structures. In the case of a magneto-hydrodynamic system exhibiting NESA struc-
tures, however, the viscous dissipation function and the entropy production follow from the solution of the
Navier-Stokes equations for the fluid motion [3].

It is known that the assembly rates are of high importance to determine NESA structures [6]. The formu-
lation of kinetic models could contribute to the knowledge of the pathways leading to the formation of the
structures [7, 34]. Despite the fact that one has a broad knowledge on functionality, synthesis, and characte-
rization of many NESA structures, the formation kinetics of these structures and how it is subjected to the
laws of thermodynamics is still an open question [35, 2].

In this chapter, we present a mechanism and theory to explain the formation of NESA structures, exemplified
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in a gelation process for which experimental data have been reported [16]. The theory, based on mesosco-
pic non-equilibrium thermodynamics [36, 37], provides values for the dissipation inherent to irreversible
processes taking place at the mesoscale and formulates kinetic equations of the Fokker-Planck type for the
probability of finding particular NESA structure architectures, such as agglomerated fibers forming a gel,
branched structures and polyhedral forms to mention some examples. Specifically, we want to find the pro-
bability distribution of the spatial orientation of the fibers composing the gel (the case in this present study)
as a function of time which defines the internal micro-architecture of the gel. To this purpose, we propose
three fundamental NESA processes which are described by means of a mesoscale entropy production [36]
resulting from the dissipation inherent to the emergence of ordered structures.

2.2. NESA structures: Mechanism

NESA processes are dynamic processes that entail dissipation [2]. To trigger the formation of complex
structures, the intervention of an activator able to activate the building blocks (BB) is necessary [8, 6].
These BB own multiple characteristics which give rise to different structures with different complexity.
These structures may be classified as a function of the processes and forces acting in the formation of
them, in which fundamental processes are proposed to understand deeply the whole NESA phenomena as a
function of the intermediates structures. Through this section we illustrate the energetics and fundamental
processes of NESA structures in the context of the gelation process.

2.2.1. Building blocks characteristics

The BB have specific active zones where covalent or non-covalent interactions may take place. The location
of the active zones determines the final shape of the structures, i.e. fibers, branched fibers, cubes, spheres,
etc. For instance, in the formation of linear fibers (polymers based on chromophoric azobenzene [38] or
dibenzoyl-(l)-cystine, DBC [16]), the BB have two spatially opposed assembly centers. In the formation
of micro-tubules (polymers based on tubuline) [17] and non-linear fibers [21], the BB blocks have two
assembly centers not spatially opposed. Light-induced self-assembly structures from BB of nano-particles
coated with photo-switchable molecules [22] have more than two assembly centers. Monomers having two
or more functional groups, triggers in BB owing more than two assembly centers, giving rise to the for-
mation of branched polymers and to a competition between ordered self-assembly and non-linear random
polymerization[39].

2.2.2. Hierarchy of the structures

The transition from the BB to the complex final structures [40, 8] takes place progressively, proceeding th-
rough NESA intermediates structures which may be first, second and higher-order structures, as is exempli-
fied in Figure 2-1. The appearance of these structures depends on their precursors [8], on the internal strength
of the interactions [41] and on how the assembly process proceeds (sequentially or non-sequentially) [28].
First-order structures are composed of fundamental activated BB which are expected to interact strongly by
means of covalent interactions (in the case of matter dissipation), high magnetic forces or hydrogen bonds
[38] (in the case of only energy dissipation), triggering an ordered assembly called sequential assembly
(non-vectorial [28]). Second-order structures result from previously activated first-order structures which
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Fig. 2-1.: NESA process energetics for gelation: Unactivated building blocks (in blue) having an energy EB

become activated (in red) with an energy EA1 . Self-assembly of activated blocks yields first-order
structures (in red). Assembly of first-order structures gives rise second-order structures (in green),
both intermediates having energy Eint . The aggregation process precedes the most stable structure
emergence, the gel, with an energy Egel .The energy profile is completed with dis-assembly steps
and BB deactivation.

interact more weekly than the fundamental activated BB thus triggering their non-sequential assembly (vec-
torial [28]). Higher order structures may assemble from lower order structures due to van der Waals forces
and other weak forces [42].

2.2.3. Fundamental NESA processes

The previously mentioned structural elements are involved in three basic processes: activation, self-assembly
(SA) and disassembly (DA). These processes for each kind of structure are represented in Figure 2-2. Acti-
vation of the BB plays a main role because it provides the energy required to trigger the assembly process
(see Figure 2-1). It may also be a sequential process. The first, second and higher-order structures become
activated when concentration, temperature or size surpass certain thresholds and by means of phase-changes
and processes promoting secondary interactions among the structures. While SA may be reversible, DA is
irreversible [16] because the disactivated BB must be activated again to proceed with the formation of NESA
structures [2].

2.2.4. Mechanism for gelation

Figure 2-2 shows a scheme for the NESA mechanism for the assembly of a gel structure. The scheme shows
the mechanism composed of several steps exemplified by the proposed gelation process: BB activation,
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Fig. 2-2.: Sketch of the NESA process. The first-order structure is built from activated building blocks
(red blocks), which are obtained from fundamental building blocks (blue blocks) by means
of the first-order activation. The An structure (red cylinder) emerges from the self-assembly:
CH4An−1 +A <=> An, with n= 2, ...,N, N being the maximum size of the structures. The second-
order structure (green cylinders), denoted by Gn, is formed by a second-order activation process:
CH4An <=> Gn. The agglomeration (or non-ordered self-assembly of second-order structures)
is quite similar to the Smoluchowski coagulation process scheme: CH4Gm−n +Gn <=> Gm, with
n = 2, ...,⌊m/2⌋ because n > ⌊m/2⌋ takes into account again all possible combinations to form the
n-th second-order structure. First-order structure disassembly: CH4An−> An−1 +B+2H++2W
may also occur, where W is a residue and H+ the hydrogen-ion. As long as first-order struc-
ture disassembly is sequential, proceeding one-by-one, second-order structure disassembly:
CH4Gn−> Gn−y + yB+2yH++2yW is not sequential, as it admits the production of y disac-
tivated fundamental blocks, with y = 1, ...,n−1. Dissasembly is an irreversible process since the
BB need to be activated again before new self-assembling takes places.

sequential assembly and disassembly of first-order structures, first-order structure activation (second-order
structure emergence) and second-order structure assembly-disassembly. Intermediate structures may appear
regardless of the type of self-assembly process, as shown in Figure 2-1. Notice that we propose two activa-
tion of different nature: BB activation by covalent interactions and first-order structure activation by van der
Waals forces once first-order structures reach certain length, concentration, area, etc.

2.2.5. Gelation experiment

As an application of the proposed mechanism, we analyze the formation of a fibrous network (gel) that uses
a chemical fuel as an activator, to compare our results with the experiments presented by Boekhoven et.al
[16]. In the experiments, the fundamental BB is N,N-dibenzoyl-(L)-cystine (DBC), the activator is Methyl
Iodide (MeI), the activated block is DBC−Me2, the intermediate activated building block is DBC−Me,
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the first-order structures are the linear fibers formed from DBC by sequential reaction and the second-order
structure is the gel formed by agglomeration of linear fibers. Disassembly takes place because of hydrolysis
which produces H+; so in order to control the pH level, OH− is added [16].
In the experiments, there is no continuous feeding, i.e. the system is closed and the activator is added at two
different times which gives rise to the existence of two stages in the whole process. The first takes place at
the beginning of the process at t = 0h when there is an initial amount of activator up to t = 400h when the
activator is totally consumed. The second stage takes place at t = 400h when the activator is added again
until it is consumed completely at t = 900h.
The semi-continuous feeding of activator promotes the assembly of intermediate dissipative structures [16,
8, 40, 6] but not the assembly of steady-state dissipative structures. The experiments show the presence of
two maxima in the concentration of agglomerated fibers. These maxima are found when the assembly and
disassembly rates are equal and when the assembled BB reach the lowest possible energy in the process.
Therefore, the maxima in agglomeration correspond to metastable structures (see Figure 2-1).
In the experiments, energy dissipation is inherent to the BB activation by means of a chemical activator
(chemical fuel) which triggers assembly and disassembly process dissipating more energy. The process
takes place under isothermal conditions and pH is regulated through the addition of OH−. In Figure 2-1, it
is shown the energy changes accompanying each step in the process appears as a function of the number of
assembled blocks. As shown, a NESA process brings about a decrease in energy from the activated BB to
the complex structure. Depending on the experimental conditions, each structural element involved in the
process may disassemble thus yielding unactivated blocks.

2.3. NESA structures: Model

In this section, we model the kinetics of NESA processes by means of diffusion through a potential barrier
along a reaction coordinate which can be identified from the knowledge of the internal architecture of the
structures. The model is based on mesoscopic non-equilibrium thermodynamics [36, 37] and is then com-
patible with the thermodynamic laws. Computation of the entropy production in the space of the reaction
coordinates leads to the expression of the currents (fluxes or rates) which used in the probability conserva-
tion law yield the kinetic equations for the first and second-order structures. These equations, of the Fokker-
Planck (FP) type, are coupled through boundary conditions, thus describing the NESA structures dynamics.
We apply our model to study the kinetics of a gelation process and to explain experimental results obtained
in a bidimensional case in which hydrodynamic effects can be neglected [16].
Figure 2-3 presents the reaction coordinates and rates intervening in each step of the gelation process, from
pre-activated states (BB) to first- and second-order order structures.

2.3.1. First-order structures

To describe the first-order structures composed of n BB, denoted An, we assume that the system is homo-
geneous and that the BB have two spatially opposed assembly centers (active zones) which give rise to the
formation of linear structures oriented at an angle (θn) measured with respect to an axis perpendicular to
the fiber. The first-order structures composed of n BB can be described in terms of the probability density
pn(ΓΓΓn, t)/N, where N is the maximum number of assembled blocks. Here ΓΓΓn = (γn,γ

′
n,λn,θn) represents a
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Fig. 2-3.: Reaction coordinates and rates in the proposed model. Zone aaa refers to the activation process
taking place through the reaction coordinates α1 and α2 to produce activated BB (red block A1)
from non-activated BB (blue block). The fluxes through each coordinate are J′1 and J′2 respectively.
Zone III shows those quantities for processes involving first-order structure composed of n BB (red
cylinder An). This structure could assemble to yield An+1 and disassemble giving rise to An−1.
It can also rotate or become activated to generate a second-order structure Gn (green cylinder).
These processes take place through the reaction coordinates γn, γ ′n, θn and λn being the correspon-
ding fluxes J(γ)n ,J(γ

′)
n , J(θ)n and J(λ )n . Zone IIIIII shows the reaction coordinates γn,m, γ ′n,y and λn and

the corresponding fluxes J(γm)
n ,J

(γ ′y)
n and J(λ )n involved in the formation of second-order structures

composed of n BB. These structures can also assemble, disassemble or become deactivated yiel-
ding a first-order structure composed of n BB.

phase space point which includes the assembly (γn) and disassembly (γ ′n) reaction coordinates, the second-
order activation coordinate (λn) and the rotation angle of the linear structure (θn). Since first-order structures
are assembled and disassembled sequentially, block after block, γn and γ ′n are scalars. First-order structure
activation is carried out in one step, therefore λn is a scalar as well.

The evolution over time of the probability density of the structure An is described by the probability conser-
vation law:

∂ pn(ΓΓΓn, t)
∂ t

=−∇ΓΓΓn · JJJn(ΓΓΓn, t) (2-1)

where JJJn(ΓΓΓn, t) ≡ [J(γ)n ,J(γ
′)

n ,J(λ )n ,J(θ)n ] is a current in ΓΓΓn-space. In Figure 2-3, we see how the structure
An may transform into An+1, An−1 or may become activated yielding Gn, driven by the currents J(γ)n ,J(γ

′)
n
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and J(λ )n , respectively. The evolution of the system can then be assimilated to a diffusion process in ΓΓΓn-
space. Since a single An structure cannot simultaneously follow two trajectories in phase space [43], the ith

component of the current J(i)n , only depends on its conjugated variable: J(i)n = J(i)n (Γ
(i)
n , t).

The local equilibrium existence in the ΓΓΓn-space enables us to use the Gibbs relation [36]:

δSn =−
1
T

∫
ΓΓΓn

µnδ pndΓΓΓn, (2-2)

Taking the derivative with respect to time in Eq.(2-2), using the continuity equation (Eq.(2-1)) and integra-
ting by parts we obtain the entropy production rate corresponding to the formation of first-order structures
[36, 37].

σn =−
1
T

4

∑
i=1

∫
Γ
(i)
n

J(i)n
∂ µ

(i)
n

∂Γ
(i)
n

dΓ
(i)
n , (2-3)

It consists of contributions of the diffusion currents J(i)n and the chemical potential µ i
n(Γ

(i)
n , t) involved in the

ith process. Coupling linearly the currents JJJ(i)n with its conjugated thermodynamic force ∂ µ
(i)
n

∂Γ
(i)
n

leads to the
linear laws

J(i)n =−L(ii)
n

T
∂ µ

(i)
n

∂Γ
(i)
n

, (2-4)

where, L(ii)
n are Onsager coefficients. Using the fact that these coefficients are proportional to p(i)n ≡ pn(Γ

(i)
n , t)

[44], we have L(ii)
n = Di

R p(i)n , where Di is a diffusivity along the ith coordinate and R is the constant of gases.
For i = 1, Eq.(2-4) gives the sequential self-assembly flux, for i = 2 the disassembly flux, for i = 3 the
second-order activation flux and for i = 4 the rotational flux of the structures, as shown in Figure 2-3.

The chemical potential for the NESA process defined in the ΓΓΓn-space is given by

µ
(i)
n (Γ

(i)
n , t) = RT ln(ψ(i)

n p(i)n )+φ
(i)
n (Γ

(i)
n ). (2-5)

Here the probability density p(i)n depends only on Γ
(i)
n . φ

(i)
n (Γ

(i)
n ) is the potential barrier and ψ

(i)
n an activity

coefficient. The diffusivity through the θn coordinate and the rotational flux are computed from the internal
energy of rotation taken from [45]. The diffusion and the energy of rotation are functions of the length of
the linear structure n (see Annex D).

Introducing the chemical potential (Eq.(2-5)) in the current given by Eq.(2-4), and using the continuity
equation (Eq.(2-1)), we obtain the Fokker-Planck equation for first-order structures,

∂ pn(ΓΓΓn, t)
∂ t

=
4

∑
i=1

Di
∂

∂Γ
(i)
n

[
∂ p(i)n

∂Γ
(i)
n

+ p(i)n
∂ lnψ

(i)
n

∂Γ
(i)
n

+
p(i)n

kBT
∂φ

(i)
n

∂Γ
(i)
n

]
(2-6)

where n = 1, ...,N−1. For γN−1 = 1, the structure is composed of N BB, the maximum number of BB that
can be assembled.
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2.3.2. Second-order structures

Second-order structures composed of n building blocks are described in terms of the probability density
qn(γγγn,γγγ

′
n, t)/N, whose evolution is governed by a kinetic equation similar to Eq.(2-6). Due to the fact that

assembly and disassembly of second-order structures are non-sequential processes in which a second-order
structure composed of n BB can be induced to assembly N−n different structures, and can be disassembly
in n ways, the corresponding reaction coordinates for assembly and disassembly are vectors: γγγn ∈RN−n, and
γγγ ′n ∈ Rn. Notice that this kind of structures are not characterized by an orientation because the agglomerate
does not have a characteristic axis and therefore the rotation is much more limited than in the case of
first-order structures. Further, the activation coordinate is not considered because there are not higher order
structures. Proceeding as we did in the case of the first-order structures, but considering the vectorial nature,
we obtain the FPE for the second-order structures

∂qn(ΓΓΓ
′
n, t)

∂ t
=−

2

∑
i=1

Ds,i
∂

∂Γ
′(i)
n

·

[
∂q(i)n

∂Γ
′(i)
n

+q(i)n
∂ lnψ

′(i)
n

∂Γ
′(i)
n

+
q(i)n

kBT
∂φ
′(i)
n

∂Γ
′(i)
n

]
(2-7)

Here ΓΓΓ
′
n ≡ [γγγn,γγγ

′
n] and Ds,i is the diffusivity along the ith coordinate of the ΓΓΓ

′
n-space. The flux in the ΓΓΓ

′
n space

is denoted as JJJn(ΓΓΓ
′
n, t)≡ [JJJ(γγγ)n ,JJJ(γγγ

′)
n ]. We consider that φ ′n,i and ψ ′n,i are the potential barrier and the activity

coefficient for the second-order structures.

2.3.3. Activated building blocks

Building block activation is carried out in two steps, from DBC to DBC−Me and from DBC−Me to
DBC−ME2. The activation process takes place along the αb coordinate where b = 1,2 corresponds to the
bth activation, in which for α1 = 0 represents the state for DBC, α1 = 1 the DBC−Me and α2 = 1 the
DBC−Me2. Let p

′
b(αb, t) be the probability density to find the bth activated state at αb and time t. The FP

equation for the pre-activated states is given by

∂ p
′
b(αb, t)
∂ t

=−Dact
∂

∂αb

[
∂ p

′
b

∂αb
+ p

′
b

∂ lnψb

∂αb
+

p
′
b

kBT
∂φb

∂αb

]
(2-8)

Here Dact acts as a diffusivity along the activation coordinate which does not depend on b and ψb and φb are
the activity coefficient and the potential barrier involved in the activation process. The fluxes are denoted by
J′b, with J′b(1, t) the flux at state b induced by the activator to bring forth the activated state b+1.

2.3.4. Boundary conditions

In the proposed model, the boundary conditions (BC) of the FP equations are crucial to explain the formation
of the different structures emerging in the gelation process. Inner BC couple first-order structures: An to An+1

and outer BC couple first-order structures to second-order ones.

BC for pre-activated states

The outer BC at α1 = 0 considers the deactivated BB produced in disassembly processes:
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∂ p′1
∂α1

∣∣∣∣
α1=0

=
N

∑
n=1

J(γ
′)

n (1, t)+
N

∑
n=1

n

∑
y=1

yJ
(γ ′y)
n (1, t) (2-9)

in which J
(γ ′y)
n at γ ′y = 1 represents the flux of disassembled second-order structures composed of n− y BB

and the flux of y deactivated BB produced in the disassembly. J(γ
′)

n (1, t) is the flux of first-order structures
composed of n−1 BB produced by the disassembly of first-order structures composed of n BB.
On the other hand, since activated BB are consumed at each step of first-order self-assembly, the BC for
p′2(1, t) is

∂ p′2
∂α2

∣∣∣∣
α2=1

=−
N−1

∑
n=1

J(γ)n (0, t) (2-10)

Inner BC for the activation step between α1 and α2 are

−∂ p′1
∂α1

∣∣∣∣
α1=1

=
∂ p′2
∂α2

∣∣∣∣
α2=0

= J′1(1, t) (2-11)

in which the change of the probability density of DBC−Me is equal to minus the change of the probability
density of the state DBC−Me that interacts with the activator to produce the activated BB (DBC−Me2).

BC for first-order structures

First-order structures are coupled to the pre-activated states by means of the outer BC in which the BB
available for assembling is the starting point to obtain the first-order structures composed of two BB:

∂ p1

∂Γ
(γ)
1

∣∣∣∣
ΓΓΓ1=000

= J′2(1, t) (2-12)

The FP equations for first-order structures are coupled through the inner BC in which assembly and disas-
sembly processes have a main role. Considering the different couplings, the BC for the first-order structures
at ΓΓΓn = 000 are:

∂ pn

∂Γ
(γ)
n

∣∣∣∣
ΓΓΓn=000

=
∂ pn

∂Γ
(γ ′)
n

∣∣∣∣
ΓΓΓn=000

=
∂ pn

∂Γ
(λ )
n

∣∣∣∣
ΓΓΓn=000

=
∂ pn

∂Γ
(θ)
n

∣∣∣∣
ΓΓΓn=000

= J(γ)n−1(1, t)+ J(γ
′)

n+1(1, t)+ J(θ)n (π, t)

(2-13)

The BC at Γ
(i)
n = 1 are given by :

∂ pn

∂Γ
(γ)
n

∣∣∣∣
Γ
(γ)
n =1

=−J(γ)n (1, t) (2-14)

∂ pn

∂Γ
(λ )
n

∣∣∣∣
Γ
(λ )
n =1

=−J(λ )n (1, t) (2-15)

∂ pn

∂Γ
(θ)
n

∣∣∣∣
Γ
(θ)
n =π

=−J(θ)n (π, t) (2-16)
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The formation kinetics of first and second-order structures are coupled through the λn reaction coordinate
since it is through this coordinate that the first-order structure yields a second-order structure. The current
J(λ )n corresponds to the rate at which first-order structures disappear to form second-order structures and is
equal to the rate of formation of second-order structures at λ = 1. One has

∂ pn

∂Γ
(γ ′)
n

∣∣∣∣
Γ
(γ ′)
n =1

=−J(γ
′)

n (1, t) (2-17)

For first-order structures with n = N− 1, at γn = 1, the flux J(γ)n vanishes because the assembly of another
block to the structure is not possible.

BC for second-order structures

The BC at ΓΓΓ
′
n must be specified for each component of the second-order assembly coordinate (γγγn) and the

second-order disassembly coordinate (γγγ ′′′n). They depend mainly on the assembly and disassembly fluxes
producing second-order structures composed of n BB and also on the activation flux of first-order structures
(J(λ )n ):

∂qn

∂Γ
′(γ1)
n

∣∣∣∣
ΓΓΓ
′
n=000

= ...=
∂qn

∂Γ
′(γm)
n
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ΓΓΓ
′
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= ...=
∂qn

∂Γ
′(γ⌊n/2⌋)
n

∣∣∣∣
ΓΓΓ
′
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=

∂qn

∂Γ
′(γ ′N)
n

∣∣∣∣
ΓΓΓ
′
n=000

= ...=
∂qn

∂Γ
′(γ ′y)
n

∣∣∣∣
ΓΓΓ
′
n=000

= ...=
∂qn

∂Γ
′(γ ′n+1)
n

∣∣∣∣
ΓΓΓ
′
n=000

=

J(λ )n (1, t)+
⌊n/2⌋

∑
m=1

J(γn)
m (1, t)+

N

∑
y=n+1

J(γ
′
n)

y (1, t)

(2-18)

The BC at Γ
′(i j)
n = 1 are given by:

∂qn

∂Γ
′(γm)
n

∣∣∣∣
Γ
(γm)
n =1

=−J(γm)
n (1, t) (2-19)

∂qn

∂Γ
(γ ′y)
n

∣∣∣∣
Γ
(γ ′y)
n =1

=−J
(γ ′y)
n (1, t) (2-20)

Table 2-1 summarizes the main features of the kinetic model proposed to describe the gelation process.

Tab. 2-1.: Summary of the kinetic model
bth pre-acticated state First-order structure (n BB) Second-order structure (n BB)

Reaction coordinates αb ΓΓΓn ≡ [γn,γ
′
n,λn,θn] ΓΓΓ

′
n ≡ [γγγn,γγγ

′
n]

Rates J′b J(γ)n ,J(γ
′)

n ,J(λ )n ,J(θ)n JJJ(γγγ)n , JJJ(γγγ
′′′)

n

Potentials φb(αb) φ
(γ)
n ,φ (γ ′)

n ,φ (λ )
n ,φ (θ)

n φ
′(γγγ)
n (γγγ),φ ′(γγγ

′)
n (γγγ ′)

Parameters Dact D1,D2,D3 Ds,1,Ds,2
FP Equation Eq. 2-8 Eq. 2-6 Eq. 2-7
Main inner B.C. Eq. 2-11 Eq. 2-13 Eq. 2-18
Main outer B.C. Eqs. 2-9, 2-10 Eqs. 2-14-2-16 Eqs. 2-19, 2-20
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2.4. Methods: mesoscopic thermodynamics and internal variables

Integrating over the γn, γ ′n, λn coordinates and over γγγn,γγγ ′n, and αb, i.e. performing a coarse graining of
the description that reduces the coordinates to only the orientation, we obtain the probabilities which are
proportional to the concentrations of the components when the system is sufficiently dilute. The resulting
probabilities are: p

′
b(t) corresponding to the BB blocks in their pre-activate states, pn(θn, t) corresponding to

the first-order structures and qn(t) corresponding to the second-order structure. We then have: pn(t)∝ C(1)
n (t)

(first-order structure concentration), qn(t)∝ C(2)
n (t) (second-order structure concentration) and p

′
0(t)∝ CDBC

(DBC concentration), p
′
1(t) ∝ CDBC−Me (DBC−Me concentration) and p′2(t) ∝ CDBC−Me2 (DBC−Me2 con-

centration). Considering the initial conditions:

p
′
0(0) = 1, (2-21)

and
p
′
1(0) = p

′
2(0) = pn(θn,0) = qn(0) = 0, ∀θn, ∀n > 1, (2-22)

the initial concentration of DBC (CDBC(0) = 100mM) is the constant of proportionality between the proba-
bilities and the concentrations of each structure. For instance for first-order structures, the concentration is:
C(1)

n (t) = CDBC(0)
∫

θn
pn(θn, t)dθn. For the activated states, the measurable concentrations are: CDBC(t) =

CDBC(0)p
′
0(t), CDBC−Me(t) =CDBC(0)p

′
1(t) and CDBC−Me2(t) =CDBC(0)p′2(0).

To solve the kinetic equations (2-6)-(2-8), we need to know the diffusivities along the reaction coordinates
involved in the activation, assembly, and disassembly processes. These values are related to the kinetic cons-
tants of the reactions [44]. The estimation of these quantities is performed by minimizing the error between
the results of the model and the experimental data restricted to physical limits of the diffusivities for each
process. The estimated values are shown in the Annex D. The numerically estimated diffusivity for self-
assembly is higher than for disassembly which means that the self-assembly reaction rate is higher than that
for the disassembly enabling the existence of NESA structures. We have found that the diffusivity for first
order processes is larger than that for second order processes. This result can be explained from the fact that
first- order structures are simpler and their formation needs of less energy, moreover they are more unstable.
The rotational diffusivity for first-order structures D4 has been computed from Eq.(9.17) of [45] in which
D4 is multiplied by a factor that depends on the surrounding structures (see the Annex D). These parameters
are estimated under the experimental conditions considered in [16]. With respect to the parameters Dact , D1

and Ds,1, we expect that they depend on temperature [16], similarly to D4. Moreover, we presume that D2

and Ds,2 increase if the pH decreases because hydrolysis is favored at lower pH values [16]. To prove these
behaviors, further experiments and modeling should be carried out at different values of pH and temperature.

Details on how to model the potential barriers, including the standard chemical potentials included in the
barriers, are given in the Annex D. Furthermore, we can compute the OH− added from the fluxes (Eq.(2-4),
following the mechanism described in Figure 2-2. Finally, considering that the maximum number of BB
that can integrate a structure is N = 56, we obtain the numerical solution of the kinetic equations by using
a finite-volume method programmed in MATLAB ®. The solution of the kinetic equations for larger values
of N does not entail a significantly better comparison with the experimental results and is computationally
more costly.



2.5 Results and discussion 59

2.5. Results and discussion

In Figure 2-4, we compare the results of our model with the experimental gelation data [16] in which an
activator is added to the system at t = 0 and at t = 400 hours. It is observed the presence of two stages, from
t = 0 to t = 400 hours and from t = 400 to t = 900 hours.
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Fig. 2-4.: Concentration and Dynamic Light Scattering (DLS) results vs. time [h]. Experimental data taken
from [16] are represented by hollow circles and dashed lines, whereas solid lines correspond to the
results of our model. (a) DBC concentration [mM]. (b) DBC−Me and DBC−Me2 concentration
[mM]. (c) Quantitative measurement of aggregation by DLS in counts per second. (d) OH− added
[mmol].

In the first stage, Figure 2-4(a) shows how the number of deactivated BB (DBC) decreases up to reaching a
concentration around 87mM at t = 95h and subsequently increases until its initial concentration of 100mM
at t = 399h. Figure 2-4(b) shows how the first activated state of the BB (DBCMe) has a maximum in
concentration (10,2mM) at t = 95h coinciding with the time at which the minimum of DBC is found. The
experimental data for DBCMe show a minimum concentration at t = 100h. This is because in our numerical
results, the activated BB (DBC−Me2) emerges smoothly contrary to what happens in the experiments where
DBC−Me2 emerges sharply at t = 95h.
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Figure 2-4(c) shows the numerical results reproducing the Dynamic Light Scattering (DLS) measurements
(taken from [16]) which considers the dynamics of all the intermediate structures in the system and their
size (more information about the DLS can be found in the Annex D). Numerical results present two maxima
(almost imperceptible) at t = 140h and t = 145h, contrary to experimental results where the maxima take
place at t = 127h and t = 170h. The presence of two maxima instead of only one is due to the fact that
disassembly rates are quite different for big and small structures since the latter have less stable assembled
blocks with a higher chemical potential. As a consequence, at certain times there is a pronounced disas-
sembly of the smaller structures but not of the bigger ones. This fact is detected in the DLS experiments by
the presence of the local minimum between the two maxima. The presence of the maxima means that bigger
structures appear considerably later in relationship to a maximum concentration of activated BB since se-
veral intermediates small-size structures emerge sequentially, as we assumed. The small difference between
the maxima in the numerical results is possible because a value for the maximum length of the fibers lower
than the one of the experiments was used which considerably reduces the amount of possible intermediate
structures thus leading to a small difference in the disassembly rates. Figure 2-4(c) shows how our numerical
results reproduce the behavior of the gelation mechanism.

Notice that first and second stages exhibit different dynamics due to the accumulation of the secondary
product (MeOH) which affects the equilibrium and kinetics of the activation process. The maxima and
minima values for the concentration predicted by our model take place 10h earlier than the ones observed
experimentally, as shown in Figure 2-4(a) and Figure 2-4(b). This small shift only represents an error of
1% in the prediction and could probably be due to the inaccuracy of the value of the activity coefficient of
MeOH at relatively high concentrations.

In Figure 2-4(c), we show how the numerical results agree with the tendency related to the emergence of
bigger self-assembled structures measured in the DLS. This confirms that the proposed model efficiently
considers those intermediate self-assembled structures which come up in the real system in a sequential and
non-sequential way. The figure shows a good agreement of our results with the experiments, with an error of
less than 3% in Figure 2-4(a) and of about 8% in Figure 2-4(c). The errors become smaller when increasing
N in the numerical solutions because in this case we take more intermediate structures into consideration.
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Fig. 2-5.: Colormap for the time evolution of the probability distribution of the spatial orientation of first-
order self-assembled structures. At t = 400h the gelation process is re-initiated.
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The evolution over time of the probability distribution of the spatial orientation of the most probable linear
fibers is shown in the colormap of Figure 2-5. After adding the activator at 400 hours, gelation is re-initiated
with a dramatic change in the most probable orientation of linear fibers, from 90 to 30 degrees. This change
is caused by the complete hydrolysis (disassembly) of the gel.
Deactivation of the BB drives the system to its equilibrium state which occurs at t ≈ 400h. Further addition
of activator makes the assembly process begin again from a random configuration yielding a different more
likely orientation of the fibers.
Figure 2-5 allows us to understand the meso-architecture of the NESA structure. Thus, for instance, by kno-
wing the probability distribution of each kind of structure, it is possible to relate it to porosity, an important
structural property of gels. This result constitutes the starting point to study microscopic configurations of
NESA structures.

(a) 100 hours (b) 200 hours

(c) 300 hours (d) 500 hours

(e) 600 hours (f) 700 hours

(g) 800 hours (h) 900 hours

Fig. 2-6.: Snapshots of the gelation process taken every 100 hours. Green bars represent the aggregated
fibers whereas the red bars indicate the non-aggregated fibers.

In Figure 2-6, we show snapshots of the gelation process obtained at different times. We observe that at times
between 100 and 200 hours, and around 700 hours, the size and number of the structures composing the gel
reaches a maximum value which corresponds to the maxima of the DLS measurements shown in Figure



2-4(c). Green bars represent the agglomerated fibers (second-order structures) and red bars correspond the
first-order structures (non-aggregated fibers). Red points represent some activated BB and small first-order
structures. For more information about the snapshots, see the Annex D.

2.6. Conclusions: The dynamic evolution of mesoscopic NESA

structures

The results obtained indicate not only that the proposed model reproduces the main features of gelation ex-
periments with great accuracy (see Figure 2-4) but also contributes to new insights in the dynamic evolution
of NESA structures. The model we have proposed enables us to rationalize how a transient organization in
the system involving intermediate aggregation states precedes the appearance of a more complex structure:
the gel (see Figure 2-6). Further, the model allows for the description of the evolution of the internal archi-
tecture of the structures at the meso-scale (see Figure 2-5).

Currently, there is a great deal of interest in the control of hydrogel structures (their micro-architecture and
porosity) for medical applications [46, 47, 48, 49, 50, 51] as well as in the synthesis of self-assembled parti-
cles for technological purposes [23, 52, 53]. The approach presented in this chapter -mechanism, formalism
and mathematical model- can be used to contribute to a better understanding of these processes (control of
hydrogels and synthesis of advanced materials) because they start from basic components (BB) and share a
common origin: activation, self-assembly, and disassembly.

Finally, our formalism enables us to understand deeply the kinetics of the self-assembly processes by means
of a robust mathematical model which can be solved by using a simple numerical scheme. Our model could
be extended to take into account the effect of external fields and gradients.
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3. Nonequilibrium self-assembly induced

Liesegang rings in a non-isothermal system

We propose a model to show the formation of Liesegang rings under non-isothermal conditions. The mo-
del formulates reaction-diffusion equations for all components intervening in the process together with an
evolution equation for the temperature. The reactive parts in these equations follow from the analysis of
the non-equilibrium self-assembly (NESA) process undergone by the meso-particles which make up the
patterns. The solution of these equations enables us to know the concentration of each component, the sphe-
rical structures diameter, and the system’s temperature as a function of time and radial position. The values
found for the structures diameter and the rings position are in agreement with the experiments. The results
for the system’s temperature with peaks at the rings positions suggest that heat accumulates at these posi-
tions as a consequence of the dissipation inherent to the NESA process. Our model enables us to rationalize
how from non-homogeneous initial conditions a transient self-organization process involving formation of
self-assembled structures may produce macroscopic patterns. It can, in general, be used to analyze pattern
formation due to diffusion-reaction-precipitation processes with potential applications in the design of ad-
vanced materials.

This chapter was published in the Journal of Physical Chemistry Chemical Physics, 20, 4699-4707 , (2018).
Ref.[1]
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3.1. Introduction: Spatio-temporal patterns

Pattern formation and self-organising phenomena are ubiquitous in biology [2, 3, 4], chemistry [5], physics
[6], and materials science [7]. A representative example of such phenomena is the periodic precipitation pat-
tern discovered by R. E. Liesegang in 1896 [8, 9], known as Liesegang patterns, which consist of a number
of concentric rings (in 2D) or bands (in 1D) resulting from the diffusion of ionic co-precipitate and periodic
precipitation of an insoluble solid in a gel medium [10].

Different physico-chemical processes such as supersaturation, nucleation, particle growth, electro-migration
and temperature effects are involved in the formation of these patterns [11]. The presence of these processes
gives rise to the appearance of various types of structures such as the well-known bands with revert spacing
[12], bands with secondary structures [13], fractals [14], spirals [15], and 3D helices [16]. In the last years,
patterned systems have been used in modern micro- and nanotechnology [17, 18]. Their control and engi-
neering constitute a crucial task for applications to those areas [19].

Precipitating systems own two necessary conditions for self-organization: to be out of equilibrium and to
evolve according to a nonlinear kinetics [20]. These systems may develop intermediate dissipative struc-
tures before the emergence of the final spatial pattern [21]. Recently, synthesis based on nucleation and
particle growth in a reaction-diffusion system taking place in a gel matrix has been recognized as an impor-
tant method to produce self-assembled structures under non-equilibrium conditions [22, 23, 24, 25]. This
synthesis brings about the formation of Liesegang patterns which are composed of mono-disperse nano and
micro-structures whose size varies predictably from ring to ring [26, 27, 28]. These structures built up from
fundamental components called building blocks (BB). Under far-from-equilibrium conditions in which the
system is driven by a supersaturation gradient, solid forms may emerge [23]. The non-equilibrium nature of
this process is highlighted by the occurrence of polymorphism and the appearance of both stable and me-
tastable structures [29, 30, 31]. In the synthesis, two electrolytes act as fundamental components that trigger
the self-assembly process, forming stable non-equilibrium self-assembly (NESA) structures. This method
in which meso-structures of different sizes are obtained is known as bottom-up self-assembly [18].

In general, NESA structures [32, 33] which arise spontaneously from a set of disordered components may
induce the appearance of spatio-temporal patterns which originate from the periodicity inherent to the ki-
netics of the process [18]. NESA structures dissipate matter and energy until they reach a stationary state
(dissipative self-assembled structure [32]), a metastable state (non-dissipative self-assembled structure kine-
tically trapped [34]) or a stable states (non-dissipative equilibrium self-assembled structure) [23])[35, 36].
Thus NESA structures can be considered precursors of the self-organized structures being less complex than
the self-organized ones because the lack of complex networks of feedback loops in the system [37, 36].

Upon bringing about variations of the environmental parameters, it is possible to obtain meso-particles with
a well-defined size [26, 38] or surfaces with nano-patterns [39], thus providing a promising method for
the formation of versatile self-assembled structures that can be used for practical applications in material
science. For instance, the patterns’ spatial features can be controlled externally by an external electric field
[12, 40]. Pattern design can be controlled by temperature, ionic force and light intensity [39], gel quality
and concentration [41] and charged and modified nano-particles [42].
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For several decades, equilibrium thermodynamics has been used to account for the formation of stable
self-assembled structures that may exhibit high complexity; however, the dynamical properties are poorly
explained [23, 18, 33, 36]. Many of these self-organized structures, usually found in nature, present dynamic
and adaptive properties and are therefore observed under far-from-equilibrium conditions [43, 18, 33, 36].
To elucidate the nature of the self-assembly mechanisms operating under these conditions it is of primary
importance to characterize NESA structures. As mentioned above, we understand that the structures are
built up from fundamental components, BB, and are sustained by mass and energy dissipation processes.
[44, 45]. Whether the type of structure is stable or metastable depends on the parameters of the system and
of the surroundings [36]. Understanding the nature of the dissipative processes involved in the assembly of
BB is a key issue in the design of new materials [46, 47, 48, 49, 50, 51] for useful applications in medicine
[52, 53], catalysis [54] and energy storage [18].

Liesegang patterns have been exhaustively studied because of their theoretical importance in chemistry [55]
and potential applications to material science [39]. A classical explanation of the mechanism that triggers
their formation is the existence of a chemical instability in an autocatalytic reaction followed by spatial dif-
fusion and periodical precipitation of one of the components [56]. To discover the mechanisms leading to the
formation of Liesegang patterns, several models have been proposed. Some of them are based on: the DL-
VO theory of stability of colloids [57], the Ostwald supersaturation model [58, 59], the reaction-diffusion
equations coupled to dynamical competitive particle growth [60] and the Muller-Polezhaev model which
incorporates supersaturation, nucleation, and kinetics of particle growth, and even dissolution coupled to
diffusion [61, 40, 62]. There are also models based on the existence of solubility thresholds derived from
the nano-particle charge-neutrality condition [42].

Most of these models are formulated mathematically by means of parabolic reaction-diffusion equations
[20, 63, 12, 64] and by hyperbolic partial differential equation [21]. Some reaction-diffusion models may
provide expressions for the entropy production which can be used to analyze the different structures for-
med and may evaluate the thermodynamic consistency of models and transitions between the structures.
[21, 45, 65, 66].

Although the existence of Liesegang patterns has been known for more than hundred years, there is still
no consensus about what is the underlying mechanism that gives rise to their formation [67, 20]. Current
mechanisms consider the spatial diffusion-reaction-nucleation of the species involved in isothermal systems
as the only key process triggering the pattern formation. However, systems that develop Liesegang patterns
have been identified as self-organized systems. Differently, from the classical explanation, the emergence of
NESA structures is a key factor for the appearance of the patterns. Thus, the role played by the BB in the
emergence of the structures in non-isothermal systems is important to better understand the formation of the
patterns.

In this chapter, we propose a new mechanism for the non-equilibrium self-assembly of mesoscopic structu-
res which gives rise to the formation of Liesegang patterns from fundamental building blocks. We develop
a mathematical model from the mesoscale to describe the two-dimensional Liesegang pattern formation
under non-isothermal conditions. Specifically, the model proposed gives information about the size of the
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structures, the spatial distribution of the patterns, the particle concentration of the structures and the spatial
distribution of the temperature. The model provides an expression of the entropy production rate and equi-
valently of the power dissipated in the formation of the patterns.

The chapter is organized as follows. In Section 2, we describe the NESA mechanism leading to the forma-
tion of Liesegang patterns. In section 3, we present the dynamical model for the evolution of a structure
composed of BB which consists of a set of kinetic equations able to explain the non-periodical agglomera-
tion of the structures that precede the appearance of the rings. We also analyze the energy balance which
reveals the non-isothermal nature of the process. In Section 4, we present the numerical solutions for the
concentrations, position and size of the structures in each ring of the pattern and their temperature. Finally,
in Section 5, we present our main conclusions.

3.2. Mechanism: bottom-up self-assembly of Liesegang rings

In some reaction-diffusion processes taking place in a gelatin matrix (to avoid convection effects), periodi-
cal precipitation of a suspension of insoluble solids gives rise to the appearance of Liesegang patterns, as
illustrated in Fig.3-1. The pattern formation mechanism runs as follows. When the membrane separating
both electrolytes (represented by the cylinder surface) is removed, the activator (E) diffuses in the gelatin
matrix and reacts with the fundamental component (B) to produce a more energetic component. The product
of the reaction interacts strongly with itself producing a small and soluble component. This component is
thermodynamically unstable so it tends to separate from the solution forming a non-soluble component (nu-
clei). When the concentration of the non-soluble component reaches a threshold value, agglomeration starts
producing clusters that precipitate or remain suspended in the gel. Since as a consequence of the agglome-
ration, the nuclei concentration decreases, precipitation ceases and the nuclei grow again until they reach a
critical size. Thus the whole process starts again until one of the electrolytes is completely consumed.

3.2.1. Classical mechanism based only on chemical processes

In the system studied [26], potassium dichromate (K2Cr2O7) (inner salt) and silver nitrate (AgNO3) (outer
salt) are the soluble salts that trigger the formation of the non-soluble salt: silver chromate (Ag2CrO4). The
classical chemical mechanism considers the dissolution of the salts in the aqueous media, the hydrolysis of
the cations, and the production of insoluble salts:
AgNO3(aq) −−⇀↽−− Ag+ +NO –

3(aq)

K2Cr2O7(aq) −−⇀↽−− 2K+ +Cr2O 2 –
7(aq)

Cr2O 2 –
7(aq) +H2O−−⇀↽−− 2CrO 2 –

4(aq) +2H+

CrO 2 –
4(aq) +2Ag+ −−⇀↽−− Ag2CrO4(s)

Cr2O 2 –
7(aq) +2Ag+ −−⇀↽−− Ag2Cr2O7(s)
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Fig. 3-1.: Illustration of the experimental setup and sketch of the spatial patterns consisting of quasi-periodic
precipitation rings. Electrolyte E diffuses into the matrix and interacts with electrolyte B to trigger
the bottom-up self-assembly of meso-structures leading to the Liesegang patterns. Structures size
increases as a function of the radial position. Adapted from commons.wikimedia.org with license
CC-BY-SA-3.0.

Here the equilibrium between dichromate Cr2O2−
7(aq) and chromate CrO2−

4(aq) is displaced favoring the for-

mation of CrO2−
4(aq) due to the NaOH added. Considering the analytical value of the chromate/dichromate

equilibrium constant close to 10−15 [68], with an initial dichromate concentration of 0,010M [26] at a given
pH of 8, it is possible to determine that the fraction of dichromate in equilibrium is less than 0,01%.
This classic mechanism does not consider the formation of intermediate components between the chro-
mate/silver ions and the silver chromate solid. The existence of intermediates is related to the presence
aqueous silver chromate, to small interaction between this aqueous component and to nucleation and stabi-
lized growth of the non-soluble silver chromate by silver ions.

3.2.2. Mechanism for the formation of NESA structures composing the Liesegang
rings

NESA processes involve two fundamental ingredients: activation that enables the self-assembly of the fun-
damental components [37] and the presence of two opposed forces [33] that trigger the assembly and disas-
sembly mechanisms. Further, NESA processes originate different types of hierarchical structures that differ
in their geometry, micro-architecture or whether precursors are present or not. In the studied system [26],
we identify two kinds of structures: first and second order structures and two sub-processes: activation and
self-assembly causing the structure formation. We do not consider dis-assembly because we assume that
there is not re-dissolution of the solids.

Specifically, in the experiments [26] that we want to reproduce, the outer electrolyte is silver ion (Ag+),
the inner electrolyte is chromate (CrO2−

4 ), and the solid product is silver chromate (Ag2CrO4). We denote
Ag+ by E (the activator), CrO2−

4 by B (the disactivated building block), Ag2CrO4(aq) by A (the activa-
ted building block), (Ag2CrO4)n(aq) by An (first order structure), (Ag2CrO4)n(s) by G (second order buil-
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ding block) and lAg+((Ag2CrO4)n(s))m by Gm (second order structure). The different steps in the NESA
mechanism are: first-order activation (process 1, chemical reaction), first-order self-assembly (process 2,
physical interaction/pre-nucleation), second-order activation (process 3, phase change), and second-order
self-assembly (process 4, aggregation). They can be expressed as:

(1) 2E+B−−⇀↽−− A

(2) nA−−⇀↽−− An

(3) An −−⇀↽−− G

(4) mG+ lE−−→ Gm

Notice that in the formation of first-order structures, we have not considered more intermediate steps in
which the activated building blocks may add up sequentially to form structures made up by a number of
blocks smaller than n. This approximation is also made for the formation of the second-order structures.
However, m depends on the concentration of the E component.

3.3. The model

The model we propose is based on the mesoscopic nonequilibrium thermodynamic formalism in which the
kinetics of activation processes follow from the entropy production and is then subjected to the second law
[69]. The different states of the system can be parametrized by a reaction coordinate ΓΓΓ and their probability
is given by p(ΓΓΓ, t) where ΓΓΓ≡ [rrr,γγγ] is a vector of a phase space which may in general depend on position rrr.

3.3.1. Mass balance

The state of the ith component in the system at time t is described by the probability distribution pi(ΓΓΓ, t). The
distribution is defined in an ensemble of systems in a landscape large enough to carried out a thermodynamic
analysis. The continuity equation for the probability in the ΓΓΓ-space is given by,

∂ pi(ΓΓΓ, t)
∂ t

=−∇ΓΓΓ · JJJi(ΓΓΓ, t), (3-1)

where JJJi is a flux for the ith component defined in ΓΓΓ-space. Assuming uncoupling processes among the
sub-spaces describing the NESA processes (γ j), the continuity equation is now rewritten as:

∂ pi(ΓΓΓ, t)
∂ t

=−∇rrr · JJJ(r
rr)

i (rrr, t)−
4

∑
j=1

∂

∂γ j
J(γγγ)i, j (rrr,γ j, t), (3-2)

Here the spatial diffusive flux, JJJ(rrr)i , only depends on the spatial coordinate and time. The flux for the ith

component in the jth process ( j = 1, ...,4), J(γγγ)i, j depends on the spatial coordinate (rrr), the internal coordinate
of the jth process and on time.
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Carrying out a coarse-graining approach to eliminate the γγγ-coordinate, we obtain the continuity equation in
terms of position and time,

∂ pi(rrr, t)
∂ t

=−∇rrr · JJJ(r
rr)

i (rrr, t)−
4

∑
j=1

[
J(γγγ)i, j (rrr,1, t)− J(γγγ)i, j (rrr,0, t)

]
, (3-3)

Here J(γγγ)i, j (rrr,0, t) is the flux of the component i consumed in the jth process, while J(γγγ)i, j (rrr,1, t) is the flux of
the component i produced in the jth process.
In the absence of interactions, the concentration Ci can be related to the probability through Ci =C0 pi, where
C0 is the initial concentration of the reactive. The spatial diffusive flux can be expressed as JJJ(d)i = C0JJJγγγ

i, j,

and the reaction rate per component as ṙi, j(rrr, t) =C0

[
J(γγγ)i, j (rrr,1, t)− J(γγγ)i, j (rrr,0, t)

]
. Thus multiplying Eq.(3-3)

by C0 and using the previous relations, we obtain the mass-balance equation for the concentration of the ith

component

∂Ci(r, t)
∂ t

=−∇rrr · J(d)i (rrr, t)−
4

∑
j=1

ṙi, j(rrr, t). (3-4)

Considering an homogeneous gel matrix used to avoid convective effects and angular difussion, we obtain
the balance equation for the components intervening in the NESA process for the formation of macroscopic
patterns

∂Ci(r, t)
∂ t

=−1
r

∂

∂ r
rJ(d)i (r, t)−

4

∑
j=1

ṙi, j(r, t), (3-5)

The diffusive flux is given by J(d)i (r, t) =−De f f
∂Ci
∂ r where De f f is an effective diffusion coefficient.

The expressions for the rates ṙi, j are computed in the quasi-stationary regime [70] in which they only depend
on position and time. They include Arrhenius factors (k j(T ) = k̂ j exp(Ea/RT )) [69, 71]. The rates can
describe processes (or reactions) which do not fulfill the law of mass action because of the presence of
activity coefficients in the original kinetic expressions. The obtained rates for the NESA for the formation
of the structures composing the Liesegang patterns are given by:

R1 = k+1 (T )CBC2
E − k−1 (T )CA, (3-6)

R2 = k+2 (T )C
2
A− k−2 (T )CAn , (3-7)

R3 = k+3 (T )C
2
An
− k−3 (T )CG (3-8)

R4 =

{
k4(T )CGC2

Gm
if CG <Clim

k4(T )CGC2
Gm

+ k4(T )CECG(CG−Clim) if CG ≥Clim
(3-9)

The first-order activation rate given in (Eq. 3-6) is a kinetic expression of first order in the building block
concentration (CB) and second order in the activator (CC). Since we are not considering the formation of
intermediate structures with a number of blocks less than n, we approach the first-order self-assembly rate
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(Eq. 3-7), as a kinetic of second order in the activated building block concentration (CA). The second-order
activation rate (Eq. 3-8) is a first-order kinetic expression in the first-order structure concentration (CAn). In
the process, the solid nuclei may emerge even in the regions between bands (more information about the
presence of these particles is given in the Annex D).

With respect to the aggregation process rate in (Eq. 3-9), there exists a threshold value for the precursor con-
centration (CG), auto-catalytic effects and stabilizing effects due to an excess of the activator (the electrolyte
E). Below the threshold concentration, an auto-catalytic effect of the second-order structure is expected since
the structure tends to minimize the surface area to become more stable interacting with itself; the precursor
(G) can be viewed as a building block of the second-order structure. Therefore, under the threshold concen-
tration, we find a second-order kinetics for the second-order structure concentration (CGm) and a first-order
one for the precursor (CG). For a precursor concentration (CG) higher than the threshold value, we obtain
the same kinetic contribution as the one obtained below that limit. An additional contribution comes up due
to the stabilization effect related to the excess of electrolyte. The electrolyte (E) contributes to first-order
in the kinetics and the precursor (G) has a second-order contribution since the agglomeration involves two
components. Finally, from Eqs. 3-6-3-9, we can write the ṙi, j fluxes using the stoichiometry of the processes
1-4 ( see Annex D).

Notice that the probability (concentration) is not conserved because the fluxes are not zero at the boundaries
of the γγγ coordinates, i.e the total concentration is not constant. However, the concentration of the building
blocks (CBB) is conserved and can be expressed as:

CBB =CB +CA +nCAn +nCG +mnCGm (3-10)

3.3.2. Energy Balance

As the rates depend on temperature and the processes (chemical reactions, nucleation, phase change and
agglomeration) are exothermic or endothermic, we must consider the energy conservation equation

∂e(r, t)
∂ t

=−1
r

∂

∂ r
rJe(r, t), (3-11)

with Je the energy flux fulfilling the relation Je =−ke f f
∂T (r,t)

∂ r , where ke f f is an effective thermal conductivity
and T the temperature. In a diluted reactive media with sufficiently small changes in temperature, the energy
e(r, t) per volume unit can be written as e(r, t)≈∑iCihi, where the molar specific enthalpy hi is the sum of the
standard formation enthalpy (h0

i ) and the enthalpy related to the heat capacity (cP,i), hi ≈ h0
i +cP,i(T −Tre f ),

with Tre f a reference temperature. Using the last relation for the energy flux, the enthalpy, Eq.3-3 and the
process rates (ṙi, j), we can rewrite the energy conservation Eq. 3-11 in the form

∑
i

CicP,i
∂T (r, t)

∂ t
=−1

r
∂

∂ r
rJe(r, t)+∑

i
hi

1
r

∂

∂ r
rJd,i(r, t)−

4

∑
j=1

∆h jR j, (3-12)

where ∆h j is the reaction heat of the process. The first term on the right-hand side of Eq.3-12 is related to
heat diffusion, the second takes into account the energy flux due to concentration gradients and the last term
comes from the heat generated (or consumed) in exothermic (or endothermic) processes.
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3.3.3. Initial Conditions

The equations of the model, the evolution equations for the concentrations of the different components
Eq.3-3 and for the temperature Eq. 3-12, must be solved with homogeneous Neumann boundary conditions
in r ∈ [0 L] (isolated system) and initial conditions given by

CE(r,0) =

{
CE,0 if r ≤ rlim

0 if r < rlim
(3-13)

CB(r,0) =

{
C0 if r > rlim

0 if r ≤ rlim
(3-14)

Cw,0 = 1000C0,∀r (3-15)

Ci(0,r) = 0, for i = A,An,G,Gm∀r (3-16)

where Cw is the water concentration and rlim is the initial position of the membrane separating both elec-
trolytes. The initial condition for the temperature is T (0,r) = T0 ∀r, with T0 = 298,15 K.

3.3.4. Structure size

As previously mentioned, the excess in the electrolyte concentration stabilizes the second-order structure
that is considered spherical. Then we assume that a low concentration in the electrolyte causes growth of
the structure in order to diminish its surface while a high electrolyte concentration neutralizes the growth
of the structure. Therefore, the structure diameter d is a function of the electrolyte concentration CE(r, t).
We assume that the change in the structure growth relative to the change in the activator concentration CE is
inversely proportional to the electrolyte concentration,

∆d
∆CE

∝−1/CE (3-17)

Taking the limit of very small changes in which the fraction in Eq.3-17 becomes a derivative, and integrating
from the limit where the membrane was placed (rlim) until r, we obtain the relation between the structure
diameter and the electrolyte concentration CE :

d(r, t) = d0 +ω ln(CE(rlim,0)/CE(r, t)), ∀r > rlim, (3-18)

where ω is a constant that accounts for the dispersion in the size of the structures. For very small values of
ω , the structures in each pattern (ring) have a common size d0. Notice that the diameter is also a function
of time because growth is affected by the electrolyte concentration which depends on space and time. This
fact also contributes to the dispersion in the diameter distribution.

The number of building blocks (m) making up the second-order structure (Gm) follows from comparing the



3.3 The model 75

mass of the structure with the mass of a block. This is given by

m = ε
3 4ρGmπ(d/2)3/3

MG
(3-19)

Here ε is the packing factor, considered of the order of 0.6, MG is the mass of a building block and ρGm is
the molar density of the structure .

3.3.5. Physical properties

The values of thermal conductivity, heat capacity and density are similar to those for water and aqueous
solution at 37,5oC. Table 3-1 shows the spatial diffusivity for each component in the aqueous-gel medium
used for the numerical solution. Diffusivities are assumed to be constant because the small changes in the
temperature. Diffusivities are in the range of 1x10−9m2/s-4x10−8m2/s.

Tab. 3-1.: Estimated values for diffusivities [m2/s] for each component
DCx1010 DBx1010 DAx1010 DAnx1010 DGx1010 DGmx1010

400 100 100 10 10 0

The standard reaction heat, the estimated activation energy, the forward kinetic constant and the change of
the standard chemical potential for each process used for the numerical solution are presented in Table 3-2:

Tab. 3-2.: Estimated values for all set of physicochemical parameters
process 1 process 2 process 3 process 4

k̂+j /100 1[m9/mol2s] 1[m6/mols] 1[m6/mols] 2,2∗1011[m9/mol2s]
∆h0

j/RT −7,6 −384 −0,1 −7,6∗104

Ea, j/RT 20 2 2 10
∆µ0

j /RT 5 140 0 14000

with the inverse process constant (k̂−j ) defined as: k̂−j = exp(−∆µ0
j /RT ). In Table 3-2, the values of the

kinetic constants considers the fact that the collision frequency for reactantsı̈n the process 4 (effective
çrash”between nuclei) must be higher than the frequencies of the other processes because the big size and
low concentration of the reactants. The estimated values for the reaction heat and standard free energy chan-
ge of the process are computed from the formation enthalpy and standard free energy of the compounds,
respectively. Finally, the values of activation energies are estimated according to the covalent-ionic nature
of processes. Thus, the activation energy of process 1 (activation) owns the highest value because there are
covalent bonds formation, whilst the physical processes (2,3 and 4) are generally quickly with reaction rates
governed by the ions diffusion, in which the activation energy tends to be small.

The parameters included in Table 3-1 and Table 3-2 control the form of the final patterns, the average size
of the structures and the size distribution. The relations among diffusivities, between diffusivities and kine-
tic constants have an impact on the ring separation and position of the first ring. Specifically, the relation
between the salts diffusivity and their activation kinetic constants is key to predict the form of the final pat-
terns. Furthermore, the Ag+ diffusivity and the kinetic constants for processes 1 and 4 significantly affects
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the average size and the size distribution of the structures due to the activator distribution in the system.
High diffusivity and small kinetic constants favor the formation of structures with a uniform size, but under
these conditions the number of structures could probably decrease because the lack of enough activated BB
to trigger the self-assembly in specific zones, creating a diffuse zone of precipitates/agglomerates. Additio-
nally, the reaction heat and activation energies affect directly the temperature profile and indirectly the rates
of the processes. In the next section, we compare the isothermal case in which the reaction heat is negligible
with the non-isothermal case treated with our model and show how temperature variations affect the final
patterns, size and size distribution of the structures.

3.3.6. Entropy production rate

The entropy production rate per unit of volume (σs) results from the diffusion and reaction processes. Acc-
cording to mesoscopic non-equilibrium thermodynamics [69], it is given by

σs =
1
T

[
De f f

(
∂Ci

∂ r

)2

+∑
j

R2
4/k+j (T )

]
(3-20)

The entropy production coming from the heat conduction process (σv) is given by [72]

σv =
κe f f

T 2

(
∂T
∂ r

)2

(3-21)

with κe f f an effective thermal conductivity of the system. Thus, the total entropy production rate per unit of
volume (σ ) is

σ = σs +σv. (3-22)

3.4. Results and Discussion

We have numerically solved Eq.(3-5) for each component and Eq.(3-12) by means of a finite-volume method
written in MATLAB ®. In Fig. 3-2, we represent the ring distribution obtained from our model at time tp for
which the second-order structure formation rate tends to zero (R4→ 0). This time is smaller than the time
needed to reach a homogeneous temperature; a homogeneous concentration is not achieved because there is
not re-dissolution. In Fig. 3-2, we show the numerical results obtained for the concentration that reproduce
the experimental micro-graph (Fig.3-1).

To obtain the numerical solution, we also estimated the relevant parameters of our model. For the second-
order structure diameter given in Eq.(3-18), we found ω = 16,5nm and d0 = 200nm. We also estimated the
stoichiometric coefficients n and l, finding n = 140 and l = 1400. For the kinetic constants, we found that k+4
must be (m0n)2 times larger than k+1 (Table 3-2). This relation follows from the fact that the second-order
structure concentration (CGm) is, at least m0n times smaller than the disactivated building block concentration
(CB). The rates R1 and R4 are of the same order, otherwise the balance between activation and self-assembly
rate would be broken and only a diffuse zone (patternless) could be observed. We found that the value for
the threshold concentration (Clim) is around 0,01CB,0. Finally to reproduce the spatial patterns, the activator
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Fig. 3-2.: Model results. Ring distribution obtained from our model at time tp. The darker colour corresponds
to the highest concentration of precipitated structures while the lighter color indicates absence of
structure. Rings are numbered in blue starting from the first visible one outside the diffusive zone,
as in [26].

(C) diffusivity must be four times larger than the disactivated building block (B) diffusivity.

In Fig. 3-3, we compare the results of our model with experimental data. Fig. 3-3(a) shows a non-periodical
ring distribution in which the separation between the rings increases with the distance from the membrane.
This figure also shows the behaviour of the structure diameter, in which this quantity and its standard de-
viation as a function of position tends to increase. This is because both quantities are inversely proportional
to CE which decreases with position due to the fact that it is progressively consumed (see Annex D). The
numerical results for the ring distribution and structure’s diameter show a very good agreement with the
experiments [26] with an error related to ring position of 6,4%, and error related to structures’ diameter of
4,9%. This fact supports the assumptions made about the model: an absence of convection, constant physi-
cal properties of the medium, and a NESA kinetics that induces the formation of the structures composing
the patterns. The small discrepancies of the results obtained in bands 5−7 are probably due to the presence
of inhomogeneities in the gel matrix around these rings which have not been considered in the model.

Fig. 3-3(b) shows the results found from the isothermal model which does not consider the energy balance
given in Eq. 3-12 and uses the same physical parameters (diffusivities and kinetic constants) as the ones con-
sidered in the proposed model, against experimental data. Fig. 3-3(b) shows that the isothermal model does
not reproduce the experiments accurately since it predicts the appearance of fewer rings in the system (red
numbers), specifically 8 rings instead of 9 (the experimental data are numbered in blue). For the first 8 rings,
the error related to ring positions is 10,1% and the error in the structures’ diameter is 6,3%. These errors are
approximately 60% and 30% bigger than the error found for the non-isothermal model, for ring positions
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Fig. 3-3.: (a) Model results and experimental data for the structure diameter at the ring positions (numbered
in blue from 1-9). The error in the estimated position is 6,4%, and the error in the estimated
structure’s diameter is 4,9%. (b) Isothermal-model results and experimental data for the structure
diameter at the ring positions (numbered in red from 1-8). The error in the estimated position
is 10,1%, and the error in the estimated structure’s diameter is 6,3%. Grey squares denote the
experimental data taken from [26]; black squares stand for our results. The dashed line connects
the results obtained for the different rings.

and structure’s diameter respectively. Notice that the separation between consecutive rings increases more
for the isothermal-model (Fig. 3-3(b)) than for the non-isothermal model Fig. 3-3(a). This is so because in
the non-isothermal model an increment of the temperature leads to an enhancement of the reaction rates,
causing that the agglomerates reach quickly the threshold concentration to trigger the structure formation.

Notice that if the diffusivity of the activator (Ag+) is lower, close to the diffusivity value of the disactivated
BB precursor (CrO2−

4 ), the separation between the bands decreases, and the isothermal model may repro-
duce the number of rings observed experimentally. Nevertheless, if the difference between diffusivities is
small the diffuse zone (zone with non-soluble solids before the first ring shown [26] ) becomes considerably
smaller, contrary to what is observed in the experiments [26]. Furthermore, we could expect that the diffu-
sivity of both components differs considerably because of its difference in charge and size. Therefore, the
isothermal (Fig. 3-3(b)) and the non-isothermal (Fig. 3-3(a)) model results show that temperature differen-
ces in the system may affect significantly the formation of the rings.
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Fig. 3-4.: Temperature [K] vs. position [µm] at time tp. Position zero (r∗) corresponds to the point where the
membrane was placed (r = rlim). Temperature peaks coincide with ring positions numbered from
1-9.

Our model also allows us to compute temperature variations in the system. Although they are found to
be small, of about 2oC, temperature gradients are large due to the smallness of the system, approximately
400K/m. These gradients may give rise to changes in the rates and to structural changes in the gel that
induce inhomogeneities [73].

In Fig. 3-4, we show the temperature profile for times larger than tp, at which agglomeration has ceased.
Temperature shows a patchy behaviour with maxima located at the ring positions because it is at these
positions where heat generation by non-adiabatic processes (chemical reactions, phase change, agglomera-
tion) becomes more intense and heat accumulates before diffusing. The maxima decrease as the distance
from the membrane dividing both electrolytes because at these positions, the concentrations and rates and
consequently the kinetic activity and the resulting heat generation, have diminished.

3.5. Conclusions: From molecules to macroscopic patterns via

dissipation

In this chapter, we have proposed a model to explain the formation of Liesegang patterns. The model in-
volves two fundamental processes which trigger the formation of the structures: building block activation
and self-assembly. We have not considered disassembly processes because in the case we study, redisolu-
tion of the structures is not significant. The model proposes that NESA processes yield different types of
hierarchical structures that differ in their precursors and micro-architecture. We have identified two types
of structures: first and second-order structures which correspond to the soluble nuclei (or the solid nuclei
precursor) and to the solid agglomerate. The entropy production rate (Eq. 3-22) can be used for a thermody-
namic description of the pattern formation.

The results obtained show not only that the proposed model reproduces the main characteristics of Liese-
gang rings with high accuracy (see Fig. 3-2, and Fig. 3-3), but also provides new insights into the dynamical



evolution of NESA structures. Our model enables us to rationalize how from non-homogeneous initial con-
ditions, a transient organization process involving the formation of self-assembled structures may give rise
to macroscopic spatial patterns. Moreover, our model shows a patchy behaviour for the temperature (see
Fig. 3-4) with maxima at the ring positions because of the heat released by the NESA processes at these
positions, especially in the case of a phase transition (process 3)[74] and crystal growth (process 4) [75].

Although we have discussed in particular the case of Liesegang pattern formation brought about by NESA
process, our model could also be applied to describe NESA processes producing mesoparticles and other
spatial patterns. For instance, the redisolution of solids in Liesegang patterns which leads to the formation of
different patterns such as lenses[10] or spots[76], may be understood as a NESA systems in which activation
of BB and assembly and disassembly processes may take place.

Currently in material science, there is a high interest in the design and control of structures to yield meso-
particles at a well-defined size [26]. Conversely, the control of the size of gold nanoparticles allows for then
regulation of the catalytic activity of a reactive system [54]. Recently, optical sensors, known as plasmonic
nanosensors, based on metal nano-particle arrays and single nanoparticles have shown a high potential as
analytical tools in chemistry [77], where more stable and uniform nano-particles (in shape and size) may
improve the sensing. Additionally, efforts have been made to develop novel synthesis methods based on
the bottom-up approach to produce organic nanomaterials with well-defined shapes for potential medical
applications [52, 53]. Pattern features and particle size modifications can be controlled by electric fields
and thermal gradients. The approach presented in this chapter describing how activation, self-assembly and
disassembly process may transform BB into precursors and subsequently into self-assembled structures can
contribute to a better understanding of pattern formation processes in natural and synthetic systems.
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PART II. Non-equilibrium self-assembly

from dissipation



4. Modelling non-equilibrium self-assembly from

dissipation

Non-equilibrium self-assembly is ubiquitous in physico-chemical and biological systems, and manifests
itself at different scales, ranging from the molecular to the cosmological. The formation of microtubules,
gels, cells and living beings among many others takes place through self-assembly under nonequilibrium
conditions. We propose a general thermodynamic non-equilibrium model to understand the formation of
assembled structures such as gels and Liesegang patterns and at the same time able to describe the kinetics
and the energetics of the structure formation process. The model is supported for a global mechanism to ob-
tain self-assembled structures from building blocks via activation, deactivation, assembly, and disassembly
processes. It is proposed that the resulting structures can be characterised by a structural parameter. Our
model may contribute to a better understanding of non-equilibrium self-assembly processes and give deeper
insight as to how to obtain a specific structural architecture to materials, such as hydrogels which are of
great importance in the design of advanced devices and novel materials.

This chapter was published in the Journal of Molecular Physics, 118, e1761036, (2020). Ref.[1]
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4.1. Introduction: Self-assembly process

Self-assembly (SA) is the process through which a disordered set of constituents interact with one another
to form organised structures [2]. These constituents, the building blocks (BB), are the smallest discrete en-
tities required in order to build a structure and they can be as small as atoms or as large as planets [3].
Understanding the molecular nature of the BB as to their chemical identity, geometry and charge is crucial
to determine the architecture of emerging structures and the nature of the processes involved in the synthesis
of materials[4].

Self-assembly leads to the formation of stationary, kinetically trapped or even to equilibrium structures. As
a non equilibrium process, self-assembly carries with it entropy production and thus energy dissipation[5].
How energy dissipation may account for the emergence of ordered structures from a set of disordered com-
ponents, and how the formation of the structures is governed by the laws of thermodynamics [6, 7] remains
a question yet to be answered.

Currently, there is a great deal of interest in the understanding and manipulation of non-equilibrium self-
assembly (NESA) structures such as hydrogels for medical applications [8, 9, 10, 11, 12, 13, 14, 15, 16]
and self-assembled particles for technological applications [17, 18, 19]. In material science, there is consi-
derable interest in obtaining structures with a given nano-, meso-, and micro-architecture in gel media [20].
Therefore, the structural architecture of the gel, as well as its porosity and its capacity of re-configuration
under the action of external forces, are key to determining the type of emerging structures [21, 22].

The lack of a general thermodynamic framework for the description of self-assembled structures under
non-equilibrium conditions has promoted the development of computational approaches. These approaches,
however, are not always easy to implement since the number of particles needed to explain the formation
of the structures is usually very large [23, 24, 25, 26, 27]. Kinetic models based on balance equations [28],
hydrodynamic equations [29], and mesoscopic non-equilibrium thermodynamic formalism [30, 31, 32] pro-
vide ways to understand the dynamics of the formation of NESA structures. Thermodynamic approaches
based on information and Gibbs entropies have also been proposed to characterise and understand NESA
processes and their resulting assembled structures [33, 34, 35, 36].

In this chapter, we propose a general formalism to compute the entropy production at meso-scale, and to
prove that self-assembled structures emerge at particular values of this quantity. We show that the formation
kinetics of self-assembled materials can be described through the evolution of a structural parameter able to
characterise the intermediate states of the process. This proposal may contribute to a better understanding
of the kinetics of NESA processes, and may be useful to design specific structural architectures such as in
hydrogels important in the synthesis of advanced materials mediated by Liesegang banding.
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4.2. Methods: Mechanism and model

4.2.1. Mechanism

The formation of physico-chemical and biological non-equilibrium self-assembled structures involves ac-
tivation [37, 38, 39], assembly and disassembly processes [40, 41, 42]. Molecular activation of the BB
through a chemical substance provides the energy necessary to trigger the self-assembly process. BB and
intermediate structures can also become activated when concentration, temperature or size of the structure
surpass a certain threshold value, by phase-changes, by light [39] or by applying a rotating magnetic field
[23].

Structure formation kinetics can be modelled by the evolution in time of a reaction Γ-coordinate from the
initially disordered state to the final assembled structure. The sequence of intermediate structures parame-
trized by the Γ-coordinate form a unique trajectory leading to the final structure. The architecture of the
structures can be characterised by a set of structural parameters η such as sphericity, radius of gyration, ma-
ximum length, porosity, average orientation and inter-connectivity among others. The entropy production,
and therefore the energy dissipation, are both functions of the independent parameters η and Γ [43]. Further-
more, in our thermodynamic formalism, the relation between structural parameter and entropy production
is bijective.
Fig.4-1 shows a sketch of the gelation and Liesegang banding mechanisms. In the rows, we represent initial
(Fig.4-1(a)), intermediate (Fig.4-1(b)) and final (Fig.4-1(c)) states. The columns show two possible final
states of both processes. Gelation is triggered by chemical activation of the BB which is followed by the
formation of single fibers. These fibers are subsequently activated by van der Waals interactions bringing
about a fiber aggregate, the gel. For Liesegang banding, the process begins with the formation of nucleus
which aggregates to form the solid particles of variable size integrating the Liesegang bands. A thorough
description of both processes can be found in [32] and [42].

For gelation (see first and second columns in Fig. 4-1) the structural parameter N is the maximum length
of the fibers composing the gel. In Fig.4-1(b), we observe that for N = N1 intermediate fibers are longer
than those for N = N2. Fig.4-1(c) shows that a more interconnected and low-porosity gel emerges when the
value of the structural parameter is N1. For Liesegang banding, the structural parameter ω accounts for the
homogeneity in the size of solid particles composing the different rings. In Fig.4-1(b), we observe how at
ω = ω1, the variation in size of the structures is more significant than at ω = ω2. We can thereby see in
Fig.4-1(c) that rings are more homogeneous at ω2 than at ω1.

4.2.2. Thermodynamic model

Entropy production in NESA processes

The formation of NESA structures is a dissipative process that consumes energy and matter. The entropy
production rate is a measure of the amount of energy dissipated and may give information about the kinetics
of the process and the type of structures formed.

We consider that the state of the system is characterised by the probability distribution p(Γ, t;η) and that at
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Fig. 4-1.: Sketch of the formation of NESA structures. The values of the structural parameters N1 and N2
correspond to two different maximum lengths of the fibers giving rise to different porosities of
the gel while ω1 and ω2 account for the homogeneity of the sizes of the structures composing the
different Liesegang rings. The process follows a unique spatio-temporal trajectory with different
intermediate structures. a) Deactivated (blue) and activated (red) BB. b) Intermediate structures:
fibers (red cylinders), agglomerated fibers (green fibers), nuclei (red BB agglomerated), solid par-
ticle (green agglomerated nuclei). c) Final NESA structures: two typical gel structures and two
typical Liesegang ring configurations.

time t the system has a configuration Γ [44, 31] for a given value of the parameter η . The final structural
architecture can be determined from the knowledge of the entropy production of the assembly process in
terms of the structural parameter η . Entropy variations in the process δS are given by

δS(t;η) =− 1
T

∫
Γ

µ(Γ, t;η)δ p(Γ, t;η)dΓ (4-1)

with µ the chemical potential of the system. To compute the entropy production rate σ associated to the
formation of a structure, we take the time derivative of Eq.(4-1) and use the probability conservation law
∂ p
∂ t =−∇Γ · J⃗ in which J⃗ is the probability current defined in the space of the reaction Γ-coordinate. We then
obtain

σ(t;η) =− 1
T

∫
Γ

J⃗(Γ, t;η) ·∇Γµ(Γ, t;η)dΓ (4-2)

where we have used the fact that the current at the surface of the Γ−coordinate vanishes. Considering that the
components of the reaction coordinate are independent and normalised to one [45], the entropy production
rate is found to be
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σ(t;η) =− 1
T ∑

j

∫ 1

0
J j(Γ j, t;η)

∂ µ j(Γ j, t;η)

∂Γ j
dΓ j (4-3)

If we now neglect cross-couplings between currents and their conjugate chemical potential derivatives [32]
because it is not possible, for instance, that a building block be assembled and disassembled simultaneously
in the same structure, we obtain the current J j in terms of its conjugated thermodynamic force

J j(Γ j, t;η) =−
L j

T

(
∂ µ j(Γ j, t;η)

∂Γ j

)
Γi̸= j

(4-4)

where L j = D j p/R is an Onsager coefficient, with D j a diffusion coefficient in process j. This expression
can be used in the continuity equation to obtain the mass balance for each constituent of the system.

Kinetic equations

We consider that the state of the ith constituent in the system at time t is described by the probability
distribution pi(rrr,ΓΓΓi, t), where rrr is the position vector and k the number of uncoupled processes involved in
the formation of the structures (Γi, j). The continuity equation is expressed as

∂ pi(rrr,ΓΓΓi, t;η)

∂ t
=−∇rrr · JJJ(r

rr)
i (rrr, t)−

k

∑
j=1

∂

∂Γi, j
Ji, j(rrr,Γi, j, t;η), (4-5)

where JJJ(rrr)i is the diffusion current and Ji, j the flux of the ith constituent in the jth process. Performing a
coarse-graining description that eliminates the ΓΓΓi-coordinate [42], we then obtain the continuity equation in
terms of position and time

∂ pi(rrr, t;η)

∂ t
=−∇rrr · JJJ(r

rr)
i (rrr, t)−∑

j=1
υi j ṙ j(rrr, t;η). (4-6)

Here ṙ j is the rate of the NESA process j involving the constituent i and υ is a stoichiometric coefficient.
At this point, we highlight the fact that the processes along the coordinates Γi take place through energetic
barriers. The shape of these depends on the standard chemical potential of the states, the activation energy
of each sub-process and on the nature of the intermediate states (metastable and unstable) of the particular
NESA process [46, 42].

When the activation energies are sufficiently high, the sub-processes along the Γi coordinates are quasi-
stationary, i.e. the rate does not depend on the reaction coordinate [45]. In this case, we can obtain the
expression for the rate in terms of the fugacity difference ∆ jZ between the initial and the final states,

ṙ j(t;η) =
D j∫ 1

0 exp(−φ(Γ j)/RT )))dΓ j
∆ jZ(t;η) (4-7)

in which Z= exp(µ/RT ) is the fugacity and φ(Γ j) the potential barrier. The rate can also be written as ∆ jZ≈
exp(µ0

r /RT )cr− exp(µ0
p/RT )cp, with cr and cp the reactant and product concentrations [47] in accordance

with the law of mass action.
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4.3. Results and Discussions

In this section, we will apply our non-equilibrium self-assembly model to two particular situations: gelation
and Liesegang banding processes [41, 20]. The model is based on the analysis of the dissipation in the pro-
cess and in the fact that structures emerge at particular values of the entropy production.

In Fig. 4-2, we show how the entropy and the energy of the structures vary along the self-assembly pro-
cess studied. For gelation, Fig. 4-2(a), we observe that the most interconnected and then the less porous gel
emerges at high values of the entropy produced and low values of the entropy and energy. For Liesegang
banding, Fig. 4-2 (b), the most uniform (same thickness) Liesegang bands appear at high values of the en-
tropy produced but, unlike gelation, at high values of energy and entropy.

a)

b)

Fig. 4-2.: Sketch for energetics of NESA structures for three typical formation pathways of the structural
parameter η . Black points represent the values of the specific energy (e) and entropy (s) of the
structure for a given value of the total entropy produced (Σ) in the formation process. Dashed
lines illustrate the possible trajectories followed by the system in the formation of each structure
reaching a specific e−s planes for 3 values of the total entropy produced. Each plane characterises:
a) gel architecture having different inter-connectivity and porosity; b) Liesegang rings for different
structure size distributions.

For gelation, we have solved Eq.4-6 by considering Eq.4-7 and while neglecting the spatial diffusion term for
all the possible constituents of the system. To calculate the concentrations ci (or probabilities pi) and from
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these thereby obtain the specific energy e(N), specific entropy s(N) and entropy production σ(N), we have
solved the resulting system of differential equations numerically. The specific entropy has been computed
from the expression s(N) =−R∑

N
i pi(N) ln pi(N), with R the gas constant while the specific energy has been

obtained from e(N) = ∑
N
i pi(N)µ0

i +Pv(N) where the specific volume of the system v(N) depends on the
degree of inter-connectivity of the fibers and with µ0

i as the standard chemical potential of the constituent
i.The inter-connectivity of gel fibers is closely related to porosity which depends on concentration and on
the size and average orientation of the fibers [32]. The total entropy produced in gelation (Σg) is the integral
over time of the entropy production rate σ(N):

Σg(N) =
∫

∞

0
σ(t;N)dt (4-8)

For Liesegang banding, we use Eq.4-6 (and Eq.4-7) for each component to describe the reaction-diffusion
phenomena taking place in the formation of the rings. To calculate the concentrations ci or probabilities
pi, we have numerically solved the corresponding system of differential equations, and thereby obtai-
ning the specific energy defined as e(ω) ≈ ∑i pi(ω)h0

i + 4πγrp(ω)2 and the specific entropy defined as
s(ω) = −R∑i pi(ω) ln pi(ω), where h0

i is the standard specific enthalpy and rp the average particle radius
integrating the rings (depending on the structural parameter ω , rp(ω)). We have also computed the total
entropy produced, in Liesegang processes (ΣL(ω)):

ΣL(ω) =
∫

∞

0

∫
rrr
σ(rrr, t;N)drrrdt (4-9)

In Fig. 4-3, we present the total entropy produced, computed from Eq.(4-8) and Eq.(4-9), as a function of the
structural parameters. The dashed line shows a tendency of the numerical results (black dots) obtained from
Eq.(4-6) for each constituent. To better visualise the self-assembly process, we include insets for two values
of the structural parameter, N2 and N1. It is observed that the intricate micro-structure of the gel emerges at
high values of the structural parameter. In Fig. 4-3(b), the continuous line represents the numerical results
obtained from Eq.(4-6). The insets illustrate the form of the structures for two values of ω1 and ω2. At low
values of ω more homogeneous bands appear that have the same thickness. The gray filled circle represents
an experimental result obtained in Ref.[20].

Gelation and Liesegang banding can take place simultaneously as has been shown for example in the case
in which the gel is deformed by the action of mechanical stresses while Liesegang patterns form in the gel
[48]. Currently, there is a great deal of interest in the control of micro-architecture and porosity of hydrogel
structures for medical applications [8, 9, 10, 11, 12, 13], and to the synthesis of self-assembled particles
for technological purposes [17, 18, 19]. In Liesegang ring formation, the BB and intermediate structures
diffuse, react and agglomerate in a gel medium wherein the nature and the architecture play a key role in
formation kinetics. Gelation thus determines the formation of Liesegang rings and their shape. How to mo-
del the movement of the constituents, intermediate structures, and other components through the gel under
the action of a driven force such as a chemical potential difference, a temperature gradient or an electric
field still remains an open problem. The model has to integrate the architecture of the gel with that of the
formed structures to describe the motion of the components through the gel medium.

The model presented here accounts for the transformation of BB into precursors and subsequently into
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Fig. 4-3.: Total entropy Σ produced as a function of the structural parameter. a) Σ in gelation computed from
Eq.4-3. Black dots stand for numerical results for the system of differential equations, resulting
from considering Eq.4-6 for each constituent.Dashed line gives the tendency of the numerical
results. Each dot represents a result for a value of N. Insets i) and ii) illustrate the intermediate
and gel structure for N2 and N1 respectively. b) Σ in Liesegang ring formation computed from
Eq.4-3. The continuous black line represents our numerical results for the system of differential
equations describing the dynamic evolution of the concentration of the constituents in the system
(Eq.4-6). This line is elaborated by solving the model for several values of ω . The grey filled circle
is the estimated experimental result for the structural parameter obtained in Ref. [20].

self-assembled structures can contribute to a better understanding of the self-assembly kinetics in natural
and synthetic systems frequently found in biology and biomedicine as well as in advanced materials. The
connection found between the entropy produced and the type of structures formed may provide an answer
to the important question of why a set of disordered units may give rise to a determined self-assembled
structure.
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min Käsdorf, Andreas R Bausch, Peter Müller-Buschbaum, Oliver Lieleg, and Job Boekhoven. Non-
equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun., 8:15895,
2017.

[14] Yiming Wang, Robin M de Kruijff, Matija Lovrak, Xuhong Guo, Rienk Eelkema, and Jan H van Esch.
Access to metastable gel states using seeded self-assembly of low molecular weight gelators. Angew.
Chem. Int. Ed., 2018.

[15] Alison M Douglas, Alexandros A Fragkopoulos, Michelle K Gaines, L Andrew Lyon, Alberto
Fernandez-Nieves, and Thomas H Barker. Dynamic assembly of ultrasoft colloidal networks enables
cell invasion within restrictive fibrillar polymers. Proc. Natl. Acad. Sci., 114(5):885–890, 2017.

[16] Jeffrey C Gaulding, Michael H Smith, John S Hyatt, Alberto Fernandez-Nieves, and L Andrew Lyon.
Reversible inter-and intra-microgel cross-linking using disulfides. Macromolecules, 45(1):39–45,
2011.

[17] Prateek K. Jha, Vladimir Kuzovkov, Bartosz A. Grzybowski, and Monica Olvera de la Cruz. Dynamic
self-assembly of photo-switchable nanoparticles. Soft Matter, 8(1):227–234, 2012.

[18] P. K. Kundu, D. Samanta, R. Leizrowice, B. Margulis, H. Zhao, M Börner, T Udayabhaskararao, Deba-
sish Manna, and Rafal Klajn. Light-Controlled Self-Assembly of Non-Photoresponsive Nanoparticles.
Nat. Chem., 7(8):646–652, 2015.

[19] Keitaro Sou, Li Yan Chan, and Chi-lik Ken Lee. Photo-Switchable and Self-Erasable Fluorescent
Nanoprobe. J. Photochem. Photobiol. A. chem., 332:25–31, 2016.
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5. The role of energy and matter dissipation in

determining the architecture of self-assembled

structures

We show how the architecture of self-assembled structures can be determined from the knowledge of the
energy and matter dissipation inherent to its formation. When the amount of dissipation quantified by the
total entropy produced in the process is represented in terms of parameters which describe the shape of
the assembled structures, its extremes correspond to structures found in experimental situations such as in
gelation and Liesegang ring formation. It is found that only a small amount of extra energy is needed to
yield smooth changes in the form of the assembled structures. The connection found between the entropy
produced and the type of structures formed may constitute a selection criterion which shows why a set of
disordered units may gives rise to a determined self-assembled structure.

This chapter was published in the Journal of Physical Chemistry B, 123, 5902-5908, (2019). Ref.[1]
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5.1. Introduction: Structural parameters and trajectories

There is currently growing evidence that the type of non-equilibrium self-assembled (NESA) structures for-
med largely depends on the conditions under which the process takes place and that the final state of the
system seems to correspond to basins of the free energy landscape [2, 3, 4, 5]. Nevertheless, NESA proces-
ses dissipate matter and energy [6, 7, 8, 9, 10] and tend to minimize the free energy by forming structures
thus increasing order and consequently decreasing entropy. Due to the second law, entropy must then be
produced and released to the environment. In equilibrium processes, the formed structures lie at the minima
of the free energy. Outside equilibrium, this is not necessarily so due to the existence of dissipation. For
instance, microtubules and microtubule-based structures are dynamically assembled under non-equilibrium
conditions and their free energy is not necessarily a minimum. These structures, however, may result from
the optimization of kinetic or structural parameters [11, 12, 13]. Specifically, it is found that the ratio bet-
ween two kinetic parameters describing the assembly of an active gel dictates the form of the final structure
and as a consequence the functionality of the gel [14]. The entropy produced in the response of the active
gel could give us information about the optimal value of the ratio of the kinetic parameter.

What is the amount of energy dissipated in the formation of a non-equilibrium self-assembled (NESA)
structure from a set of disordered elements? And how is the formation of these structures governed by
the laws of thermodynamics? In the lack of a non-equilibrium potential that can constitute a structure se-
lection mechanism, as occurs in equilibrium [8], we wonder why under specified conditions a determined
structure appears and not another. A satisfactory answer to these important questions has not yet been found.

Some studies have shown that in the transition between disordered to ordered states where self-assembled
structures may emerge, the entropy production rate reaches a maximum value (as occurs in ecosystems or in
enzymatic kinetics) [15, 16, 17, 18], a minimum value (as happens in the formation of spatiotemporal struc-
tures or self-healing surfaces) [19, 20, 21, 22] or even both extremes (as observed in flux-driven systems)
[23, 24]. In all these situations, the extreme values are obtained by considering that fluxes and thermody-
namic forces are the relevant variables of the system. The use of only fluxes and forces, however, does not
provide a complete characterization of the assembled structures in which the architecture is a key factor for
the knowledge of the structural properties. A parameter must then be proposed to characterize the architec-
ture of the structures and to quantify the energy dissipated in their assembly. In the case of self-assembled
polymorphic structures [10], it was found that the amount of energy and matter dissipated may play an im-
portant role in its formation.

In this chapter, we show that self-assembled structures emerge when the total entropy produced as a function
of a structural parameter accounting for the geometry of the structures reaches extreme values. We illustrate
this fact in two particular self-assembly processes: gelation and Liesegang ring banding. It is found that only
a small amount of extra energy is needed to yield smooth changes in the form of the assembled structures.
The chapter is organized as follows. In section 2, we present a general expression for the entropy production.
In section 3, we obtain the entropy production rate of gelation and Liesegang ring banding processes as a
function of their corresponding structural parameters. In section 4, we establish the relation between the
type of structure and the dissipation in the processes mentioned. Finally, in section 5 present our main
conclusions.
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5.2. Theory

5.2.1. Entropy produced in NESA processes

The formation of NESA structures consumes energy and matter. The entropy production rate is a measure
of the amount of energy dissipated and, as we will show in this chapter, may give information about the type
of NESA structures formed.

Self-assembly has been described as an activated process taking place along reaction coordinates Γ [7]
parametrizing the transformation from the disordered to the assembled state. The state of the system is
described by means of the probability P(Γ, t) such that activation occurs at time t and at a determined
value of Γ of the reaction coordinates [25, 26]. Although Γ characterizes the degree of advancement of
the activated process, it cannot account for the final architecture of the structure which depends on the
free energy landscape. To describe the final form of the structure we introduce the structural parameter η .
Variations of the Gibbs entropy in the process δS are then given by

δS(t;η) =− 1
T

∫
Γ

µ(Γ, t;η)δP(Γ, t;η)dΓ (5-1)

with µ the chemical potential and where we have neglected irreversible changes in the solvent. The entropy
depends on the conformations of the assembled structures whose architecture is characterized by a set of the
structural parameters η such as sphericity, radius of gyration, maximum length, porosity, average compo-
nent orientation or component interconnectivity among others.

To compute the entropy production rate σ associated to the formation of a structure, we take the time
derivative of eq.(5-1) and use the probability conservation law ∂P

∂ t = −∇Γ · J⃗Γ in which J⃗Γ is the flux in the
space of the internal coordinates Γ. We then obtain

σ(t;η) =− 1
T

∫
Γ

J⃗Γ(Γ, t;η) ·∇Γµ(Γ, t;η)dΓ (5-2)

in which we have used the fact that the fluxes at the surface of the Γ space vanish.

Considering that the reaction coordinates are independent and normalized to one, Γ [27], the entropy pro-
duction rate can thus be expressed as

σ(t;η) =− 1
T ∑

j

∫ 1

0
J j(Γ j, t;η)

∂ µ j(Γ j, t;η)

∂Γ j
dΓ j (5-3)

Neglecting cross effects since there are disjoint processes [7], i.e, it is not that a new building block assem-
bled and disassembled simultaneously to the same structure, and from the entropy production expression
we obtain the flux J j in terms of its conjugated thermodynamic force, the corresponding chemical potential
gradient

J j(Γ j, t;η) =−
L j

T
∂ µ j(Γ j, t;η)

∂Γ j
(5-4)

where L j = D jP/R is an Onsager coefficient, with D j a diffusion coefficient. For high activation energies,



100 5 Role of energy and matter dissipation in NESA structures

the process is quasi-stationary, i.e. the flux does not depend on the reaction coordinate [27]. In this case we
can obtain the expression for the flux in terms of the fugacity difference ∆ jZ between the initial and the final
states,

J j(t;η) =
D j∫ 1

0 exp(−φ(Γ j)/RT )))dΓ j
∆ jZ(t;η) (5-5)

in which Z= exp(µ/RT ) is the fugacity and φ(Γ j) the potential barrier in the Γ j coordinate. This expression
for the flux, also written as ∆ jZ≈ exp(µ0

r /RT )Cr−exp(µ0
p/RT )Cp, with Cr and Cp the reactant and product

concentrations [28], is in accordance with the law of mass action. Using the flux J j we obtain the more
compact expression

σ(t;η) = R∑
j

k j(∆ jZ(t;η))2 (5-6)

where k j is the kinetic constant of the process in units of s−1.

If in addition, heat and mass transfer take place in the system, the entropy production rate in terms of the
forces is given by

σ (⃗r, t;η) =
λ

T 2 [∇T ]2 +∑
k

Dk

[
∇

(
µk(η)

T

)]2

+R∑
j

k j(∆ jZ(η))2 (5-7)

Here λ is the thermal conductivity and Dk the diffusion coefficient of the specie k.

The total entropy produced in the process Σ depending on the structural parameter is given by

Σ(η) =
∫

τ

0

∫
r⃗
σ (⃗r, t;η)d⃗rdt (5-8)

where τ is a characteristic time of the process. The work done on the system to form the structures is the
lost work Wl(η) = T Σ(η) which can be computed from the total entropy produced. The knowledge of this
quantity is basic to compute the energetic performance.

Fig.5-1 shows a typical form of the Σ landscape as a function of the sphericity defined as

ηsph =
lalblc

max(la, lb, lc)3 (5-9)

which characterizes the shape of the formed structure and where (la, lb, lc) are the lengths of the three main
axes of the structure. In general, structures emerge at different values of the total entropy produced. We
expect that Bi-dimensional structures emerge at low values of η and Σ while more complex structures
appear at higher values of these quantities because these last ones require more processes to be assembled.

5.2.2. Entropy production in the study cases

In this Section, we will use eq.(5-7) to obtain the expressions of the entropy production rate in gelation and
Liesegang ring banding as a function of the structural parameters.
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Fig. 5-1.: Sketch of the entropy production Σ landscape of NESA structures as a function of the structural
parameter η which in this case corresponds to the sphericity of the structure defined in eq. (5-9).
Two-dimensional structures emerge at low values of Σ and η whereas three-dimensional structures
assembled from 2-D structures which require more steps in their formation appear at higher values
of Σ and η .

Gelation

As a first example, we will compute the entropy production associated to the formation of a fibrous network
(gel) that uses a chemical fuel as an activator in an isothermal media [29]. In the process, the fuel activa-
tes the building blocks (BB) which assemble into fibers subsequently forming an agglomerate, the gel. As
shown in Fig. 5-2, the whole process consists of activation, assembly and disassembly of BB, fibers and
agglomerates which constitute zeroth- first- and second order structures, respectively [7]. In the process, an
amount of activator is added at t = 0 hr and t = 400 hr. This semi-continuous feeding of activator promotes
the assembly of intermediate dissipative structures [29, 9, 5] but not the assembly of stationary structures.
The experiments show the presence of two maxima in the concentration of agglomerated fibers that appear
when the assembly and disassembly rates are equal and when the assembled BB reach the lowest possible
energy which correspond to the case of the largest fibers.

A model to describe the gelation kinetics was proposed in ref.[7]. In Fig.5-2, we present a sketch of the
gelation mechanism showing the involved structures and the processes taking place (assembly, disassembly,
activation and rotation).

The model describes the kinetics of the different steps of the process as diffusion in a potential barrier along
reaction coordinates [26, 25]. The coordinates can be identified from the knowledge of the internal architec-
ture of the structures. The form of the potential barrier depends on the number of BB composing the fibers
(n) and of the maximum amount of BB that can be assembled in a fiber(N).

From the scheme presented in Fig.5-2, we write the entropy production for the gelation process σg as:

σg(t;N) =
2

∑
i=1

σ0,i +
N

∑
n=2

4

∑
i=1

σ
(n)
1,i +

∞

∑
n=2

[
∞

∑
m=2

σ
(n,m)
2,1 +

n−1

∑
y=1

σ
(n,n−y)
2,2

]
(5-10)
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Fig. 5-2.: Gelation sketch. Zeroth-order structures B (BB represented by blue blocks) are activated (A1) in
two steps with the corresponding entropy productions σ0,1 and σ0,2. First-order structures: fibers
represented by red cylinders, composed of n BB (An) may interact with an activated BB beco-
ming a fiber with n + 1 BB (An+1), release a disassemble BB yielding a fiber with n− 1 BB
(An−1) and rotate or become activated giving rise to a second-order structure with n BB (Gn). The
corresponding entropy productions of these processes are: σ

(n)
1,1 ,σ (n)

1,2 ,σ (n)
1,3 and σ

(n)
1,4 , respectively.

Second-order structures: the agglomerated fibers represented by overlapping green cylinders, can
be formed by adding a second-order structure with m−n BB (Gm−n) to Gn to produce an agglo-
merate with m BB (Gm). The structure may also disassemble giving rise to Gn−y. The entropy
productions are σ

(n,m)
2,1 and σ

(n,n−y)
2,2 , respectively, with m = 2,3, .... and y = 1,2, ...,n−1.

Using eq.(5-6), we can write the entropy production as a function of the fugacities of the structures which
can be obtained from the probabilities obtained from the Fokker-Planck equation (eq. (2-6))

σg(t;N)/R =
2

∑
i=1

k0,i(∆iZ)
2 +

N

∑
n=2

4

∑
i=1

k1,i(∆iZ(n,N))2 +
∞

∑
n=2

[
∞

∑
m=2

k2,m(∆mZ(n,N))2 +
n−1

∑
y=1

k2,y(∆yZ(n,N))2

]
(5-11)

in which the kinetic constants depend on the shape of the potential barrier of each activated process.

Liesegang ring formation

A representative example of pattern formation and self-organization is the periodic precipitation pattern dis-
covered by R. E. Liesegang in 1896 [30, 31], known as Liesegang patterns. These consist of a number of
concentric rings (in 2D) or bands (in 1D) resulting from the diffusion of an ionic co-precipitate and periodic
precipitation of an insoluble solid in a gel medium [32], as illustrated in Fig. 5-3.
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Fig. 5-3.: Liesegang rings composed of NESA structures. The size of the structures increases as the radius
of the ring increases. Adapted from commons.wikimedia.org with license CC-BY-SA-3.0.

Processes such as reaction-diffusion, supersaturation, nucleation, particle growth, electro-migration and
temperature effects are involved in the formation of these patterns [33]. Synthesis based on nucleation and
particle growth in a reaction-diffusion system taking place in a gel matrix has been recognized as an impor-
tant method to produce self-assembled structures under non-equilibrium conditions [34, 35]. This synthesis
brings about the formation of Liesegang patterns which are composed of mono-disperse nano and micro-
structures whose size varies predictably from ring to ring [36]. The non-equilibrium nature of this process is
highlighted by the occurrence of polymorphism and the appearance of both stable and metastable structures
[37, 38]. In the synthesis, two electrolytes act as fundamental components that trigger the self-assembly
process, forming stable assembled structures from NESA structures. This method in which meso-structures
of different sizes are obtained is known as bottom-up self-assembly [39].

A mechanism for the formation of Liesegang patterns from fundamental BB, based on NESA mechanism
and mesoscopic thermodynamics [25, 26], was proposed in ref. [6]. The different steps in the mechanism
are: activation of the fundamental constituent (BB), pre-nucleation of the aqueous activated BB, nuclea-
tion, and aggregation/growth of the solid nucleus. The model provides information about the size of the
structures, the spatial distribution of the patterns, the particle concentration of the structures and the spatial
distribution of the temperature.

The knowledge of the structure size composing the rings is crucial to describe the dynamics of the process
and to relate the structural parameter to the entropy production. In the proposed mechanism, an excess
of electrolyte concentration stabilizes the final structure that is considered spherical. It is assumed that a
low concentration in the electrolyte causes growth of the structure in order to diminish its surface while a
high electrolyte concentration neutralizes its growth [6]. Additionally, we suppose that the ratio between
the variations of the diameter of the structure and the electrolyte concentration is directly proportional to a
sensibility parameter ω in the form:

∆d
∆CE

=−ω/CE (5-12)
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Then, the structure diameter d is a function of the electrolyte concentration CE(r, t) and is given by

d(r, t) = d0 +ω ln(CE(rlim,0)/CE(r, t)), ∀r > rlim, (5-13)

where d0 is the diameter of the structures in a uniform distribution and rlim indicates the position of the inner
boundary. Ji, because the number of building blocks (m) required to the formation of the NESA structures
depends on the structure’s size. This quantity is given by

m = ε
3 4ρsπ(d/2)3/3

Ms
(5-14)

with ε the packing factor, approximately 0.6, M0 the mass of a building block and ρs the molar density of
the structure. 1/ω will play the role of the structural parameter. Small values of this parameter correspond
to a large dispersion of sizes while higher values indicate uniform size distribution.

To compute the entropy production rate of the process, we use eq.(5-7) and consider a 2D radial geometry
in a diluted media where four NESA sub-processes take place. We then obtain:

σL(r, t;ω) =
κ

T 2

(
∂T
∂ r

)2

+∑
k

Dk

T

(
∂Ck

∂ r

)2

+
1
T

4

∑
i=1

J2
i (ω)/k+ (5-15)

with k+i the forward kinetic constant of the ith sub-process. The entropy production then follows by solving
eq.(3-5) of the appendix for each component and eq.(3-12) for the temperature.

5.3. Results and Discussion

In this Section, we will proceed to analyze the behavior of the entropy production and its implications in the
formation of self-assembled structures in two particular cases: gelation and Liesegang ring formation.

5.3.1. Analysis of the entropy production in gelation

The knowledge of the entropy production rate enables us to differentiate the various steps taking place in a
gelation process. This quantity can be obtained from the kinetics of the process by numerically solving the
Fokker-Plank equations describing the temporal evolution of the concentrations of the different structures.
From these concentrations we can obtain the corresponding fugacity of the structures. Details about the for-
mulation of these equations have been given in ref. [7]. In the Appendix, we summarize the main steps of
the kinetics of the process. By using these results in eq.(5-11), we compute the entropy production rate for
the gelation process shown in Fig.5-4. Growth of fibers and their subsequent agglomeration is the dominant
process in the zones 1 seen in Fig. 5-4(a) and (b) while in the zones 2 disassembly dominates producing mo-
re entropy than in the assembly stage. In Fig.5-4, we also observe that in the second stage of the experiment
(after 400 hr) the curve has a different form. This is because the assembly process is re-initiated at different
initial conditions. We find that by increasing N, the form of both peaks of zones 1 and 2 is different. This is
due to the fact that there is a greater diversity of structures and a more efficient assembly of the fibers since
the difference between the heights of the peaks of both zones is higher. Peaks at N = 54 are higher than at
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N = 29, consequently the total entropy produced is larger in the former case.
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Fig. 5-4.: Entropy production rate σ∗ = σ/C0R [1/s] in gelation computed for two different values of N,
with R as the universal constant of gases and C0 the initial concentration of deactivated BB. The
first stage of the experiment takes place for times between 0 and 400 hr. Zones 1 and 2 correspond
to times between 0 and 110 hr and between 110 and 400 hr, respectively. The second stage of the
experiment occurs at times between 400 and 900 hr. a) σ∗ for N = 29. b) σ∗ for N = 54.

In Fig.5-5(a), we represent the total entropy produced Σ obtained from eq.(5-8). Dots represent the nume-
rical results that are connected by the dashed line. We observe that at low values of N it increases linearly
whereas a nonlinear dependence appears at higher values of N. Consequently, at low values of N the total
entropy produced per maximum number of BB assembled is approximately constant. At larger values of N,
the linear behavior breaks down and Σ does not increase significantly. This fact is more clearly illustrated in
Fig.5-5(b) which represents the derivative of Σ with respect to N. For a very large value of N, the derivative
tends to zero meaning that the growth of long fibers has a low energetic cost.
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Fig. 5-5.: a) Total entropy produced Σ as a function of N. b) Derivative of Σ with respect N in the gelation
process. Black dots represent our numerical results from the model presented in ref. [7], connected
by the dashed line. The insets i), ii) and iii) illustrate the gel structure for N = 29, N = 54 and
N = 120, respectively.

Since typical values of the maximum number of assembled BB in a fiber are N ≈ 104 [29], we thus conclude
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that the structures are characterized by a maximum value of the total entropy produced as a function of N.
Moreover, the architecture is such that a slight alteration on the assembled structure leads to a minimum
change on the energetic cost.

The value of the maximum number of BB per fiber N characterizes the type of self-assembled structures.
The insets i), ii) and iii) in Fig.5-5 represent assembled gel structures for N = 29, N = 54 and N = 120.
Notice that larger values of N yield more interconnected aggregated fibers. In the case of gelation, N does
not depend on external conditions but only on the nature of the BB. From the result dΣ/dN ≥ 0, we then
conclude that an increase of N, implying an increase of Σ, favors the agglomeration of the fibers thus yiel-
ding more hierarchical structures.

5.3.2. Analysis of entropy production in Liesegang ring formation

We have numerically solved the system of partial differential equations presented in [6] to obtain the evolu-
tion in space and time of the temperature and concentration of the components. Details on the formulation
of these equations are presented in the Appendix. From these results, and by using the entropy production
rate given in eq.(5-15), we compute the total entropy produced as a function of the structural parameter 1/ω .
Results for Σ and dΣ/d(1/ω) are shown in Fig.5-6 where the grey filled circle corresponds to experimental
results presented in ref.[36].
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Fig. 5-6.: a) Total entropy produced Σ as a function of the structural parameter 1/ω . b) Derivative of Σ with
respect to 1/ω in Liesegang ring banding. Continuous black line represents our numerical results
from the model presented in ref.[6]. The grey filled circle is the experimental result obtained in
ref.[36]. Insets i), ii), iii), iv) and v) illustrate the Liesegang rings for 1/ω equal to 0,040, 0,058
(global minimum), 0,066 (local maximum), 0,1 (local minimum) and 0,2 respectively.

Fig. 5-6(a) shows that the entropy produced is a non-monotonous function of 1/ω . It shows two minima and
one maximum value and a linear behavior starting at 1/ω > 0,1. This last behavior differs from that obser-
ved at lower values of 1/ω and shows the existence of a transition towards more homogeneous Liesegang
rings with a constant variation of the energetic cost in relation to the parameter 1/ω , as is clearly observed
in Fig.5-6(b). The non-monotonous behavior found for 1/ω < 0,1 is a consequence of the fluctuation in the



number of rings formed. The number of rings increases because the amount of mass needed to form a ring
decreases as a function of 1/ω , but the spatial distance between rings increases impairing the emergence of
new rings. This feedback generates fluctuations in the number of rings for 1/ω < 0,1. In Fig.5-6(a), the grey
filled circle found in the experiments is very close to the global minimum of the total entropy produced for
and intermediate value of 1/ω . This fact shows that the system evolves towards a structure which minimizes
the lost work in its formation. The structure thus adopts an architecture such that the work lost in changing
the configuration is almost negligible.

The insets in Fig.5-6(a) show the Liesegang patterns obtained for a specific values of 1/ω representing the
structure’s size distribution. Darker rings correspond to structures with higher average sizes. Notice that lar-
ger 1/ω yields a more homogeneous size distribution along the rings. The structural parameter 1/ω depends
on the nature of each component of the system and on external and initial conditions. In this process, there
is no clear increment in the hierarchical order of the structures; for this reason, the total entropy produced
does not necessarily increase as a function of the structural parameter. This behavior is the opposite of the
case of gelation where the entropy production is maximum due to the increase of the hierarchical order of
the structures.

5.4. Conclusions: Extreme values of dissipation and increment of the

order

We have shown that the knowledge of the entropy generated in a non-equilibrium self-assembly process
determines the architecture of structures formed when they can be characterized by a structural parameter.
We have analyzed this feature in two particular situations: a gelation process and the formation of Liese-
gang rings. We have shown that the structures observed in these systems are found at extreme values of the
entropy produced when represented as a function of the structural parameter. Gel structures correspond to
maximum values of the total entropy produced while for Liesegang rings, the entropy produced is a mini-
mum.

We have found that processes leading to a marked increment in the hierarchical order of the structures are
characterized by the highest possible value of lost work as a function of the structural parameter. For instan-
ce, gelation processes dissipate the maximum amount of available free energy to increase the hierarchical
order. On the other hand, Liesegang ring banding which does not show a significant increment in the hierar-
chical order, the energetic cost is minimized.

The connection found between the entropy produced in an self-assembly process and the type of emer-
ging structures shed light on the thermodynamic basis of self-assembling and on the existence of a non-
equilibrium thermodynamic principle able to analyze the evolution of systems towards complexity.
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6. A Criterion for the Formation of

Nonequilibrium Self-Assembled Structures

Is there a criterion able to determine the type of structures formed in a non-equilibrium self-assembly pro-
cess? This important question has a clear answer when the process takes place under equilibrium conditions:
structures emerge at minimum values of the free energy. Experiments, however, have shown that when self-
assembly takes place outside equilibrium they do not appear at those free energy minima but rather at
optimal values of structural parameters. On the basis of these observations, we propose a selection criterion
for which structures come up at the minima of a non-equilibrium free energy that takes into account the
energy needed to change their configuration. The criterion is able to predict the formation and configuration
of structures such as Liesegang rings and patterns in magnetic colloids and could constitute a powerful tool
to understand the synthesis of advanced materials, enantiomers, and nanoparticles.

This chapter was published in the Journal of Physical Chemistry B, 125, 1838-1845, (2021). Ref.[1]
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6.1. Introduction: Variational principles and non-equilibrium

potentials

Being able to understand and to control the formation of self-assembled structures from a disorderly set of
building blocks (BB) is a basic issue in the implementation of adaptive and reconfigurable materials [2], in
the synthesis of hydrogels [3], the design of engineered tissues [4], the use of nano-particles in medicine
[5], and the production of enantiopure drugs [6], to mention just a few. This knowledge could also provide
a deeper insight into the origin of life [7].

The search for a general criterion to predict the evolution of dissipative systems has been the subject of
numerous investigations over the years. As early as 1931, Onsager proposed a variational principle in terms
of a potential, the dissipation function [8]. Years later, Graham analyzed the question of why there exist sys-
tems far from thermodynamic equilibrium whose stationary states may be described by a non-equilibrium
potential which can be interpreted as a natural generalization of thermodynamic functions [9]. Subsequently,
Prigogine formulated his minimum entropy production principle as a criterion to explain self-organization
processes [10]. In the same line as Graham, Maes found a potential for non-equilibrium steady-states as
a function of the energy dissipated in the process which is not necessarily a minimum [11]. On the con-
trary, Dewar proposed his maximum entropy production principle (from Shannon entropy) to describe self-
organization processes [12]. More recently, Doi showed that from Onsager’s principle one can derive nonli-
near evolution equations [13]. All these criteria account for the emergence of non-equilibrium steady-states
and the appearance of self-organization in terms of state variables but they do not predict the formation of
self-assembled structures characterized by structural parameters, as observed in the experiments.

In equilibrium self-assembly, structures emerge at minimum values of the free energy ∆Grev, the energy nee-
ded to form a structure in the absence of dissipation. The probability of finding the structure is thus given by
the canonical distribution: peq ∝ exp(−∆Grev/kBT ), with kB the Boltzmann constant and T the temperature.
This criterion predicts the appearance of structures in equilibrium but is no longer valid when self-assembly
takes place outside equilibrium. Experiments show that a great diversity of structures arise at specific values
of structural parameters characterizing the structures. For instance, hydrogels appear at optimal values of the
maximum size of the fibers forming them [14, 15]. Crystallized structures emerge at particular values of the
sphericity [16] or of the density [17] while chiral molecules and proteins do it at typical values of the orien-
tation of a functional group [18, 19, 20]. The parameters characterizing the formation of microtubule-based
structures are the average distance between structures and the ratio between kinetic constants [21, 22, 23].
Some other examples to which we will pay more attention later are Liesegang banding, where the parameter
is the distance between bands [24, 25], and magneto-hydrodynamic assemblies that can be characterized by
the number of particles located at a central region of the structure [26]. These results foster the search for an
effective potential able to predict the formation of structures under non-equilibrium conditions in the same
way as free energy does in equilibrium processes. Based on the form of this potential, we will propose a
criterion for the formation of nonequilibrium self-assembled structures.

The chapter is organized as follows. In ”Non-equilibrium self-assembly kinetics”, we formulate the kinetics
of the process and obtain the probability of the formation of a structure. In Çriterion for the formation
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of structures”, we propose the selection criterion and illustrate its use for crystallization. In Results and
discussions”, we apply our formalism to the cases of Liesegang rings and pattern formation in magnetic
colloids. In the last Section, we present our main conclusions.

6.2. Methods

6.2.1. Non-equilibrium self-assembly kinetics

We consider the formation of multiple forms Bi (i = 1, ...,M) of a structure B (polymorphs) from a precursor
A via nonequilibrium self-assembly processes taking place at constant temperature, volume and pressure:

A←−→ Bi

Experiments show that polymorphs emerge at certain values ηi of a parameter that characterises the formed
structures [15, 17, 19, 20, 21, 25, 26]. The process, illustrated in Fig.6-1(a), can be modelled by the evolution
of the state of the system in a potential Φ(γ,η), with γ and η reaction coordinates (normalized to one), as
shown in Fig.6-1(b). In the energy landscape, the wells, separated by potential barriers, identify different
compounds involved in the processes. The precursor A corresponds to the state γ = 0 and the polymorphs
Bi to γ = 1, for all values of η .

Probability conservation along the path leading to Bi implies that ρ fulfills the continuity equation

∂ρ(γ,ηi, t)
∂ t

=−∂Ji

∂γ
(6-1)

where Ji is the probability current. The energy per unit of volume ρe along the trajectory is

∂ρe
∂ t

=−∂Je,i

∂γ
(6-2)

where Je,i is the energy current. The irreversible entropy change in the formation of the ith polymorph is
given by

δirrs(ηi, t) =−
1
T

∫ 1

0
(µδρ−δρe)

ηi
dγ (6-3)

with µ the chemical potential. Taking the time derivative of Eq.(6-3), using Eqs.(6-1)-(6-2) and the form of
the energy current: Je,i = −Ji∂Ec/∂γ [27], where Ec is the energy that the system needs to overcome the
barrier in η in order to change the configuration of a polymorph, with −∂Ec/∂γ its associated force F , the
entropy production rate for the formation of the ith polymorph is

σ(ηi, t) =−
1
T

∫ 1

0

(
−µ

∂Ji

∂γ
− JiF

)
ηi

dγ. (6-4)

In the case of a single polymorph, Ec vanishes, therefore the entropy production rate reduces to that of a
single chemical reaction [28].
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a)

b)

Fig. 6-1.: Kinetics of the polymorph formation process in the space of reaction coordinates. a) Formation of
three possible structures (B1,B2,B3) from the precursor A. b) Potential barrier Φ as a function of
the reaction coordinates γ and η . The continuous black line represents the potential for γ = 1, Ψ,
at the end of the process when polymorphs are formed. The dashed black lines are the trajectories
leading from the precursor to the polymorphs parametrized by the coordinate γ .
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Integrating this expression by parts, we obtain the local entropy production rate

σ(γ,ηi, t) =−
1
T

Ji

(
∂ µe f f

∂γ

)
ηi

(6-5)

where µe f f = µ +Ec is an effective chemical potential which considers the formation of multiple poly-
morphs. The total entropy produced in the formation of a structure at time t is

Σ(ηi, t) =
∫ t

0

∫ 1

0
σ(γ,ηi, t

′
)dγdt

′
(6-6)

The Goudy-Stodola theorem, relates the energy dissipated Ed with the entropy produced Σ as: Ed = T Σ

[29]. The formation of structures from building blocks is an irreversible process that includes activation,
mass diffusion and heat conduction. All these processes and not only heat exchange from the reservoir pro-
duce entropy.

The chemical potential µ along the trajectory is the sum of ideal and excess parts: µ = µ id +µex. The ideal
chemical potential is: µ id = µ0 + kBT lnρ with µ0 the standard chemical potential along the trajectory. The
excess chemical potential is: µex = kBT ln f +Ed with f the activity coefficient and Ed the energy dissipated
per mol used to overcome the potential barrier. The effective chemical potential can be re-written as

µe f f = kBT lnρ +Φ (6-7)

with Φ an effective potential barrier that takes into account the non-ideal nature of the process

Φ = Φrev +T Σ+Ec, (6-8)

where we have used the relation Ed = T Σ which corresponds to the energy needed to overcome the potential
barrier in γ that is dissipated in the process. The reversible part of the potential, Φrev = µ0 + kBT ln f , is the
equilibrium free energy per mol. From the local entropy production rate (Eq.(6-5)), we obtain the expression
of the current [30]

Ji(γ,ηi, t) =−
Dγ

kBT
ρ

∂ µe f f

∂γ
(6-9)

where Dγ is the diffusivity in γ-space which can also be written as

Ji(γ,ηi, t) =−Dγe−βΦ ∂eβ µe f f

∂γ
(6-10)

with β = (kBT )−1. In order to study the kinetics of the formation of the structures, we perform a coarse-
graining of the description eliminating the γ coordinate so that the probability distribution is given by
p(ηi, t) =

∫ 1
0 ρ(γ,ηi, t)dγ . The continuity equation for the probability p is obtained by integrating Eq.(6-

1) in γ

d p(ηi, t)
dt

=−Ji(ηi, t) (6-11)
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while the kinetic equation for the precursor A is

d p0(t)
dt

=
M

∑
i=1

Ji(ηi, t) (6-12)

where ∑i p(ηi, t)+ p0(t) = 1 to fulfill probability conservation in (γ,η)- space. Assuming that the process
is quasi-stationary [30], fast enough so that the current does not depend on γ , and integrating Eq.(6-10) in γ ,
we obtain the quasi-stationary flux as a combination of two (forward and backward) Arrhenius factors

Ji(ηi, t) =
Dγ∫ 1

0 eβΦdγ

(
eβ µe f f (1,ηi,t)− eβ µe f f (0,ηi,t)

)
(6-13)

This expression, consistent with the law of mass action, shows that the current is a nonlinear function of the
chemical potential difference (affinity). We then conclude that that the theory presented, within the frame-
work of mesoscopic non-equilibrium thermodynamics [28], is not restricted to the linear domain proper of
non-equilibrium thermodynamics [27].

Eqs.(6-11) and (6-13) describe the kinetics of the formation of polymorph Bi. The stationary probability is
thus given by

p(η) = p(η0)e−β∆Ψ(η) (6-14)

with ∆Ψ = Ψ−Ψ0, where Ψ(ηi, t)≡Φ(1,ηi, t) and Ψ0 ≡Φ(0,η , t).
In the case of formation of two polymorphs, B1 and B2, characterized by the coordinates η1 and η2, the
relation between the stationary probabilities is

p(η1)

p(η2)
= exp(−β (∆Ψ(η1)−∆Ψ(η2))) (6-15)

This relation explains the experimental feature that outside equilibrium some structures may emerge with a
higher probability which has been observed in the formation of enantiomers [18] and magneto-hydrodynamic
patterns [26]. In equilibrium, the probabilities coincide since the potential reaches the same value for all va-
lues of η .

6.2.2. Criterion for the Formation of Structures

Studies carried out in ecological, enzymatic and gelation processes show that ordered states and self-
assembled structures emerge when the energy dissipation reaches a maximum value as a function of input
fluxes, kinetic constants and fiber sizes [31, 32, 33]. On the contrary, in the formation of spatio-temporal
structures, self-healing surfaces, Liesegang rings and magneto-hydrodynamic assemblies, the energy dissi-
pation shows a minimum as a function of stationary fluxes, external perturbation, scale factors, and central
particles[10, 34, 33, 26]. The fact that systems evolves making efficient use of available resources [35, 36],
enables us to assume that an extreme value of the energy dissipated, at which T ∂Σ/∂η |

η∗ = 0, is the sig-
nature of an optimal design of the structures. Smooth changes in the configuration of the structures can thus
be induced by a small amount of energy dissipated [33].

Since Ec is the energy needed to overcome the barrier in η to change the configuration of a polymorph,
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close to η∗ we have Ec = T |Σ(η)−Σ(η∗)| which corresponds to the energy needed to reach the optimal
configuration. Expansion of Σ(η) around η∗ gives

Σ(η)≈ Σ(η∗, t)+ 1
2

(
∂ 2Σ

∂η2

)
η∗

(η−η∗)2 (6-16)

and
∂Σ

∂η
≈
(

∂ 2Σ

∂η2

)
η∗

(η−η∗) (6-17)

Combining both relations and substituting the resulting expression for Σ(η) into Ec close to η∗, we obtain

Ec ≈
T
2

(
∂Σ

∂η

)2
/∣∣∣∣∣

(
∂ 2Σ

∂η2

)
η∗

∣∣∣∣∣ (6-18)

this expression is analogous to the conformational temperature for systems of interacting particles in quasi-
equilibrium [37].

The emergence of the structures leads to energy changes summarized in the effective potential (Eq.(6-8)).
By using Eq.(6-8) and Eq.(6-18), the change in the effective potential is given by

∆Ψ≈ ∆Ψrev +T Σ+
T
2

(Σ′)2

|Σ′′(η∗)|
(6-19)

This result can now be used in Eq.(6-14) to obtain the probability to find a structure which explains why
structures appear at specific values of the parameter η and not necessarily at the minima of the equilibrium
free energy. Our criterion then states that the most likely structure emerges at the minimum of the effective
potential change ∆Ψ.

An identical expression of the potential follows from the optimization process of the energy required to form
a structure in which the presence of dissipation is introduced as a constraint to the kinetics. Details of this
optimization process are presented in the Annex D.

An example of application of the criterion established is crystallization. Crystal structures, represented in
Fig.6-2, are characterized by sphericity η which is a measure of how different its form is from that of a
sphere. It is defined as the ratio between the surface area of a sphere whose volume V is the same as the
volume of the formed structure and the surface area of the structure A, i.e., η ≡ π1/3(6V )2/3/A [38]. Non-
spherical crystals and non-racemic mixtures of chiral non-spherical crystals [18] having different values of
the sphericity are observed in a crystallization process when the metastable phase moves under the influence
of a shear stress [16, 28]. Characterization of the agglomerates and crystals only in terms of their number
of constituents cannot account for the formation of different polymorphs which can be distinguished from
each other by their different sphericities.

In Fig.6-2(a), we illustrate the evolution of the shape of a crystal, through different polymorphs, in terms of
the sphericity. In Fig.6-2(b), we represent the probability distribution of the structures fulfilling Eq.(6-14)
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Fig. 6-2.: Sketch of : a) A typical form of the potential energy landscape Ψ(η , t) showing the existence of
different polymorphs (yellow structures), varying from 2-D disks (η → 0) to spheres (η → 1).
Dashed lines show the trajectories that the shape of a structure performs in η-space. The potential
increases in time due to its dependence on the entropy produced at time t, see Eq.(6-19). b) The
long-term probability as a function of the structural parameter p(η). The probability is higher
when the potential is lower, see Eq.(6-14). This typical behavior has been found in the cases of
Liesegang rings and pattern formation in suspensions of colloidal magnetic particles.

which corresponds to the stationary solution of Eq.(6-11). In the figure, we illustrate that the formation of
disks (0 < η < 1/5) appearing at high values of Ψ is less likely than that of spheres (η → 1) for which
the potential is smaller. Finally, we highlight that structural parameters characterizing the structures must
be distinguished from order parameters which measure the degree of order of systems undergoing phase
transitions [39, 40].



118 6 A Criterion for the Formation of NESA structures

6.3. Results and Discussion

6.3.1. Liesegang rings

A representative example of pattern formation and self-organization in NESA processes is the periodic pre-
cipitation pattern discovered by R. E. Liesegang in 1896 [41, 42]. This consists of a number of concentric
rings (in 2D) or bands (in 1D) resulting from the diffusion of an ionic co-precipitate and the periodic pre-
cipitation of an insoluble solid in a gel medium [43], as illustrated in Fig.6-3(a)-(d). The process gives rise
to the formation of polymorphic stable or metastable structures [44, 45]. It is induced by the existence of
heterogeneous initial conditions in which the main ion, the inner ion, is located at the center of the system
(for a 2D system) and is separated from the outer ion by means of a membrane. At t = 0, the membrane is
taken out and the diffusion-reaction-precipitation phenomenon is triggered. A more detailed explanation of
the phenomenon and the values of the relevant physico-chemical parameters are given in Ref.[24].

Fig. 6-3.: Polymorphs of Liesegang rings and potential ∆Ψ as a function of particle size variation. (a)-(d)
Liesegang rings are characterized by ηa, ηb, ηc and ηd . Low values of η , such as ηd , correspond
to high variations of the particle size from ring to ring while at higher η ′s, ηa, those variations are
smaller.(e) Effective potential ∆Ψ (Eq.(6-19)), dissipated energy T Σ, reversible free energy change
∆Grev (both from Ref. [33]) and configurational energy ∆Ec (Eq.(6-18)). The global minimum of
∆Ψ does not coincide with the minimum of ∆Grev but appears at ηc which represents the same
structure as that found in the experiments [25].
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The structural parameter η is, in this case, the variation of the particle size from ring-to-ring which af-
fects the chemical potential and the stoichiometry of the process and thus modifies the reaction rates
and the energy dissipation. In our study, we have solved the model for different values of η . In this ca-
se, the potential follows from ∆Ψrev ≡ ∆Grev (free energy change per mol) and Σ which can be obtained
from the formation dynamics of the Liesegang rings by solving numerically the system of partial differen-
tial equations for each component of the system (see Appendices). The reversible free energy change is:
n∆Grev(η) = ∑i ni(η)h0

i + 4nsπγrp(ω)2−RT ∑i ni(η) lnni(η)/nT [24], where h0
i is the standard specific

enthalpy, ni the number of moles of component i− th, n the total number of moles and rp the average par-
ticle radius conforming the rings which depend on the variation in particle size from ring to ring. The total
entropy produced per mol is: Σ(η) =

∫
∞

0
∫

r σ(r, t;η)drdt, where r is the radial coordinate and σ the entropy
production rate per mol of the BB.

In Fig.6-3(e), we show how the potential varies with the structural parameter. We observe that the global
minimum of ∆Ψ does not coincides with the global minimum of ∆Grev due to the presence of dissipation.
The value of η that minimizes ∆Ψ, denoted by ηc agrees with that of the structural parameter obtained in
the experiments [25]. The values of the parameter at which one observes sharp, slight and no variation of
the average particle size from ring to ring are denoted by ηd , ηb and ηa, respectively.

Fig. 6-4.: Steady-state polymorphs observed in experiments with colloidal magnetic particles [26]. Circles
denote the regions where central particles are located. (a) For N = 10, one observes two structures
with number of central particles Nc: N(1)

c = 2 and N(2)
c = 3. (b) For N = 12, the numbers of central

particles are N(1)
c = 3 and N(2)

c = 4.
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6.3.2. Patterns in magnetic colloids

In this second case, we consider a set of small magnetic particles suspended on a liquid-air interface under
the influence of a magnetic field generated by a rotating magnet [46]. The movement of the particles per-
turbs the fluid’s state of rest giving rise to the formation of a hydrodynamic pattern which in turn induces
the assembly of the particles that orbit around the axis of the magnet (Fig.6-4). The energy supplied by the
rotating magnet is dissipated in the fluid due to its viscous nature.

We will apply our formalism to compute the probability of predicting the type of structures emerging in the
magneto-hydrodynamic system described. Experiments [26] were performed at different values of the Rey-
nolds number Re and at two different numbers of particles N. One observes the existence of two polymorphs
that differ in the number of particles Nc in the central region of the system (see Fig.6-4). Both Re and Nc

characterize the structures. The experiments [26] show the existence of only two possible values of Nc.
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Fig. 6-5.: Potential and probability for different numbers of particles, particles in the central region and
Reynolds numbers. Experimental data are represented by filled symbols and simulation results by
hollow symbols[26]. Dashed lines stand for predictions of our model. In (a) and (b), we represent
the difference between the potentials of both polymorphs, Ψ = ΨNc(2)−ΨNc(1) . Figures (c) and (d)
show the probability for each polymorph.

Since the change of the free energy for both configurations and different Re is equal because composition and
fluid-particle interaction do not depend on these variables, by using Eq.(6-19) with ∆Ψrev = 0, the potential



for each polymorph ΨNc as a function of Re is

ΨNc(Re) = T ΣNc(Re)+
T
2

(
Σ′Nc

(Re)
)2

Σ′′Nc
(Re∗)

(6-20)

with T ΣNc(Re) the energy dissipated in each configuration due to viscous effects [26] and Re∗ the Reynolds
number that maximizes dissipation. The probability of finding a structure characterized by a value of Nc as
a function of Re is given by

pNc(Re) = k0 exp
(
−ΨNc(Re)

kBT

)
. (6-21)

where k0 is a normalization constant obtained from the condition : ∑Nc pNc(Re) = 1. In Figs.6-5(c) and (d),
we show the probability for structures with N = 10 and N = 12 particles as a function of the Reynolds num-
ber. As follows from the figure, our results show very good agreement with experiments [26] with errors of
4,7% and 5,8%, respectively.

In the figure, we observe that in the cases of 10 and 12 particles, the configurations corresponding to the
polymorph with N(2)

c are the most dissipative and thus the less likely, as follows from Eq.(6-20). For high
values of Re, dissipation increases and is similar for both polymorphs, thus making the probability of obser-
ving them also similar.

6.4. Conclusions: The criterion and the dissipation

In summary, we have proposed a criterion that accounts for the formation of self-assembled structures under
nonequilibrium conditions. It establishes that the structures emerge at the minima of an effective potential
(eq.(6-19)) that takes into account the energy needed to change their configuration, with a probability given
by eq.(6-14). The selection criterion is based on experimental observations in which self-assembled struc-
tures emerge at particular values of some structural parameters that characterize the structures and not at
the minima of the free energy, as occurs when the process takes place under equilibrium conditions. It has
been validated in two cases of current interest: Liesegang patterns and pattern formation in suspensions of
colloidal magnetic particles. In both cases, we find that the most likely polymorphs found in the experiments
are precisely those which minimize the potential proposed.

The framework presented could systematically be used to predict the formation of polymorphs which are
crucial to identify transient states in protein-folding, to understand why certain organic enantiomers are pre-
dominant [47], to improve the computer-aided drug-design [48], and, in general, to analyze the synthesis of
crystals, hydrogels, reconfigurable materials, man-made tissues and nanoparticles.
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PART III. Meso-Structures and

Non-Equilibrium Processes



7. Non-equilibrium self-assembly and energy

dissipation induces chiral symmetry breaking

Crystallisation has been understood as an out-of-equilibrium self-assembly process that produces entropy.
This is a special chapter in which we present our own experiments showing that energy dissipation plays
an important role not only in the assembly process but also in the function of the assembled structures, in
particular a function related to optical activity, crucial for understanding self-organisation and the origin of
life. In this chapter, we want to quantify the effect of different initial conditions and external forces on the
excess of crystalline enantiomers (by measuring the chiral symmetry breaking in the system).

Spontaneous mirror symmetry breaking is observed in a wide variety of systems on very different scales ran-
ging from subatomic to cosmological. Systems exhibiting the formation of optical enantiomers have been
studied to understand how they emerge, however, the mechanism and kinetics proposed do not explain why
are they formed. We conducted experiments on the formation of salt crystals under non-equilibrium condi-
tions, measuring for the first time the optical rotation angle of enantiomeric crystals in solution as a function
of time during their formation. The enantiomer excess found is explained by the differences in the energies
of the intermediate states of the enantiomers which have to be equal to the irreversible energy dissipated per
salt mole in the processes. The non-equilibrium thermodynamics analysis proposed allows us to unveil why
the existence of enantiomeric excesses in some salt crystals and amino acids might constitute a powerful
tool to understand the emergence and amplification of the symmetry breaking taking place in molecules,
proteins and crystals.

This chapter is based on a paper in preparation.
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7.1. Introduction: Chiral symmetry-breaking

The fact that two or more theoretically equi-probable resulting states are not obtained in the expected pro-
portions is known as chiral symmetry breaking which may occur on a wide variety of scales, being obser-
ved in elementary particles, simple organic molecules, amino acids, DNA, RNA, proteins and salt crystals
[1, 2, 3, 4]. As the resulting states have the same energy, a thermodynamic treatment based on the study
of quasi-equilibrium processes cannot explain the symmetry breaking in a system. In order to understand
the phenomenon and investigate its potential intensification, several kinetic models have been proposed [4].
Such models with its corresponding simplifications run the risk of leading to incomplete, if not simply erro-
neous, interpretations of system thermodynamics [5].

Experiments have shown that the action of external factors such as polarised light [6], shearing [7, 8], tem-
perature gradients [9] and in general external forces can give rise to a disproportion in the concentrations
of the isomers (enantiomers) or even hinder their formation [1, 10]. Studying the role played by the presen-
ce of external forces in the thermodynamics and kinetics of enantiomer formation under non-equilibrium
conditions is therefore of vital importance for understanding the mechanism of chiral symmetry breaking.
The basic research we propose may have a technological impact in for example the production of efficient
and safe medicines [10, 11, 12], the use of liquid crystals in biosensors and microlasers,[12], the control of
self-assembly for the production of advanced materials [13] and in providing a deeper understanding of the
emergence of life [14, 3].

Energy dissipation (from entropy production) takes place on all levels and it may shade light to understand
why symmetry is broken to enable the emergence of homochiral structures (enantiomers), as the precursors
of self-assembled and -organised structures. The emergence of biological self-organised structures comes
from the directed and selective self-assembly of homochiral constituents in which energy dissipation and
autocatalytic networks must be present [15, 16, 17, 18, 19, 5]. At the mesoscopic scale, it is well known that
the formation of self-assembled structures entails dissipation [16, 17, 20, 21] whereas, at molecular scale,
the emergence of enantiomers from chiral molecules requires symmetry breaking [22].

The mirror images of a chiral compound: Levorotatory (L) and Dextrorotatory (D) optical enantiomers, ha-
ve the same energy but opposite optical rotation angles for polarized light. The crystallisation process of
NaClO3 has been the subject of much interest in recent years [4, 10, 2]. Experiments consisting of evapora-
ting the solvent to obtain NaClO3 crystals [7], performed by stirring the sample, showed the existence of a
disproportion in the concentrations of both enantiomeric crystals of NaClO3. When these experiments were
performed without stirring, the concentrations of both enantiomers were found to be similar. Evaporation ex-
periments also showed a dispropotion of enantiomers in the absence of stirring but at low supersaturation of
salt [10]. These experiments clearly showed symmetry breaking in enantiomer formation when the process
takes place outside of equilibrium. However, previous works aim to measure the enantiomeric excess only
at the final of the crystallisation process, losing the information of the transient state and therefore lacking
in relating the magnitude of the forces (temperature gradients, over-saturation) and the enantiomeric excess
as a function of time. On the other hand, when considering the transient measurements, samples are taken,
thus isolating the crystals and losing the connection with the forces present in the system [4, 10]. Therefore,
it is important to consider the transient dynamics of the crystallization process and measure the populations
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Fig. 7-1.: Cartoon of the chiral symmetry breaking from an achiral compound A (grey circles), which trans-
forms into the chiral compounds D and L (blue and golden puzzle pieces respectively) leading to
the formation of D and L crystals (blue and golden puzzles respectively).

in situ to be able to understand the role of the energy dissipation in chiral symmetry breaking.

In Fig.7-1 we present a cartoon of the chiral symmetry breaking in which chiral structures, such as crystals,
are built. From an achiral compound A, can be obtained chiral blocks or pieces D and L, in 1:1 propor-
tion (non-dissipative processes) or in disproportion (symmetry breaking in dissipative processes) showing
enantiomeric excess. Chiral blocks assemble sequentially or by agglomeration to form chiral structures, like
puzzle pieces make up a puzzle or as solid compounds make up a crystal.

In this chapter, we show, by means of a non-equilibrium thermodynamic model, that the energy required to
break the symmetry, and therefore leading to an enantiomeric crystal excess observed from the experiments,
must be equal to the energy released in each stage of the crystallisation process. This energy increases the
free energy barrier of one of the enantiomeric crystals and, consequently, decreases the formation rate of
the enantiomer, thus explaining the enantiomeric excess. In the experiments performed, we have measured
for the first time the enantiomeric excess of NaClO3 along the crystallisation process of this substance, for
different non-equilibrium conditions. The non-equilibrium thermodynamics model proposed provides the
value of the energy dissipation responsible of the increase of the energy barrier and, therefore, of the enan-
tiomeric excess percentage. We have found that the enantiomeric excess becomes more important when the
actuating forces, temperature and fugacity differences, increase and therefore when energy dissipation, mea-
sured in terms of the entropy production rate, is larger. This result clearly shows the important role played
by dissipation in the enantiomer formation process.

7.2. Dissipation at chiral symmetry breaking

Under equilibrium conditions, the formation process of L and D enantiomers leads to equivalent final po-
pulations since their free energies are identical. This is not the case when the process takes place outside of
equilibrium, with the consequent dissipation of energy, where an excess of one enantiomer over the other
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is observed. This excess has been attributed to a disparity in the activation energies of the two enantiomers
[2, 23, 4] which causes different formation rates. In order to explain the reason of such a disparity, we analy-
sed the formation of NaClO3 enantiomeric crystals. By measuring the optical rotation angle of the solution
throughout the crystallization process and modelling the different kinetic mechanisms that take place, we
show that the occurrence of an enantiomeric excess originates from the energy released in each step of the
crystallisation. This energy is absorbed by the intermediary state of one of the enantiomers thus increasing
the free-energy barrier and reducing its formation rate. Such intermediary reaches a more energetic excited
state, and therefore more unstable since around the compound there are inhomogeneities (gradients) and
other unstable intermediaries that induce a variation in the energy levels of the intermediary. It is important
to notice that the first excited intermediary, of one enantiomer, contributes to inducing the transition to the
excited intermediary state of the same enantiomer. Which enantiomer intermediary is initially excited is a
process of stochastic nature in agreement with previous works [7].

Fig. 7-2.: Enantiomer formation process. The circles zoom up a small portion of the system of 10nm (a,b,c)
and 0,1mm (d) in size. The system is initially an under-saturated mixture (∆z < 0) of salt, denoted
by grey dots, and glycerine a). The heat transfer to the surroundings causes the temperature of the
system to decrease leading to stage b) characterised by an increase in the interaction between the
salt compound (black dashed lines) thus reaching saturation (∆z = 0). For ∆z > 0, small nuclei of
both enantiomers are formed (L- and D-nuclei represented by gold and blue dots respectively) in
the process of phase-change in which one of the enantiomers is dominant, as represented in stage
c). Finally, crystal emergence takes place leading the system to a state of chemical and thermal
equilibrium d) in which ∆z = 0 and ∆T = 0, with an enantiomeric excess.

In Fig.7-2, we illustrate the different stages of the crystallization process in which the two driving forces,
temperature difference ∆T between the system and its surrounding and fugacity difference ∆z between the
solid and liquid phases reach different values. Initially ( Fig.7-2(a)), the system is an under-saturated mix-
ture of salt and glycerine, with ∆z < 0 and a maximum value of ∆T . When the mixture comes into contact
with its surroundings, it cools down to saturation point at which ∆z = 0 while the salt in the aqueous phase
forms small clusters that maximise ∆z ( Fig.7-2(b)). Thus, a fraction of the aqueous salt undergoes a pha-
se change that favours the formation of nuclei of one enantiomer over the other, reaching a state in which
∆z > 0 and ∆T > 0 ( Fig.7-2(c)). Once the nuclei of the first enantiomer are formed, crystals emerge and
grow and eventually redissolve bringing the system to a final state characterised by a non-racemic mixture
of enantiomeric crystals in which ∆z = 0 and ∆T = 0 ( Fig.7-2(d)).

To analyse the kinetics and energetics of the enantiomer formation process, we will consider that the trans-
formation of an achiral compound A, the aqueous component, into L- or D-enantiomeric crystals takes
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Fig. 7-3.: Free-energy landscapes in the formation of D (a) and L (b) enantiomers as a function of the
reaction coordinates γL and γD. When the process takes place in equilibrium, where ∆z = 0 and
∆is = 0, the formation of both enantiomers from the achiral compound A takes place through the
same state A prime. In this case, the barriers are represented by the continuous blue lines. Outside
equilibrium, for ∆z > 0 and ∆is > 0, the energy T ∆isD released in the formation of enantiomer
D contributes to increase the barrier of enantiomer L by an amount ∆Ea = T ∆isT (with ∆isT the
total energy dissipated per salt mole) which reduces the formation rate of the L compound and
breaks the symmetry. In this case, the landscape corresponds to the dashed red lines. The energy
dissipated in the formation of a L-enantiomer is T ∆isL whereas for a D-enantiomer is T ∆isD. This
illustration corresponds to a crystallisation process in which the first excited intermediary corres-
ponded to one of the L-enantiomer and so, the whole process is conditioned to the excitement only
of L-intermediaries.

place across a standard free energy potential barrier, as illustrated in Fig.7-3(a). In non-dissipative quasi-
equilibrium processes, in which ∆z ≈ 0, the state on top of the barrier A

′
is common to both enantiomers,

as the blue lines of Fig.7-3 show. Since there is no irreversible change of the entropy, ∆is = 0, the entropy
change per mole is simply the reversible change ∆rs. The formation of both enantiomers thus takes place
along the same free-energy barrier which results in a racemic (1:1) mixture [7].

Outside equilibrium (Fig. 7-3), when ∆z ̸= 0 and ∆T ̸= 0, the entropy change per salt mole is ∆s = ∆rs+∆is,
where the irreversible part contains contributions of both enantiomers: ∆is = ∆isL +∆isD. The energy dis-
sipated in the formation of the D enantiomer is thus T ∆isD (Fig. 7-3(a)) whereas that for the L enantiomer
is T ∆isL(Fig. 7-3(b)). The figures illustrates the fact that the formation process of both enantiomers takes
place across two different free energy barriers that have different transition states (A

′
and A∗) whose energy

difference is ∆Ea = T ∆isT , with ∆isT the total entropy produced per mole. This disparity in barrier height
leads to different enantiomer formation rates, which explains the excess of one enantiomer over the other
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[2, 23, 4].

The total entropy produced consists of the entropy produced in the formation of the enantiomers ∆is and
those corresponding to the remaining irreversible processes taking place in the system such as heat transfer,
crystal emergence, crystal growth, precipitation and diffusion. In the Theory Section, we compute the en-
tropy production rate σ of all irreversible processes and from it the total entropy production given through
the expression: ∆isT =

∫
σdt/N, where N = NL +ND is the number of moles of solid salt, and NL and ND

the number of moles of salt composing L- and D nuclei and crystals.

The model we propose (see Theory Section) computes the number of moles NL and ND and from them the
enantiomeric excess defined as

%e.e.=
|NL−ND|

N
100% (7-1)

and the optical rotation angle
α = α0(NL(h)−ND(h))/N0 (7-2)

with α0 = 50o a reference angle, N0 the initial amount of salt molecules and h the height of the test tube at
which measurements were taken. Comparison of the model results with measurements of the rotation angle
will be performed in the Results Section.

7.3. Experimental set up

A critical decision was to choose glycerol as the solvent, as we needed high dielectric and thermal pro-
perties, low evaporation, high viscosity and a refractive index close to that of crystals to avoid high light
scattering. The initial step of the experiment was to mix given amounts of salt and solvent in our test tube (a
cylindrical quartz cuvette with an inner diameter of 20 mm) and then heat from the bottom of the mixture to
ensure complete dissolution at a constant temperature. The absence of optical activity was verified once the
maximum temperature was reached. Once the salt has dissolved and only the homogeneous phase is present
and the temperature is constant, we started the experiment by turning off the heater and letting the system
cool down. We started measuring the optical activity and the temperature of the system until a steady state
was reached and no considerable changes in optical activity were recorded. The height at which the measu-
rements were made varied according to the initial salt/solvent ratio and the cooling conditions to avoid high
scattering or low optical activity. In the enhanced cooling cases and for ws/wg = 0,36 in natural cooling, the
measurement height was h = H/3, where H is the height of the test tube. For the remainig natural cooling
cases, the height was h = H/4.

The polarimeter used is a home-built Mueller matrix polarimeter that incorporates four photoelastic modu-
lators (4-PEM polarimeter) which allowed us to determine with high sensitivity the time-varying enantiome-
ric excess of the NaClO3 solution. The instrument, described in detail in [24], was operated in transmission
using a 405 nm laser diode (5W) as the light source. As the photoelastic modulators operate at high frequency
(∼ 50 kHz), this instrument can measure the 16 Mueller matrix elements of the sample simultaneously and
at fast acquisition rates. In our experiments, a Mueller matrix was measured every ∼ 1s during the several
hours that each of the experiments lasted. A scheme of our experimental setup is shown in Fig. 7-4.



132 7 Chiral symmetry-breaking induced by energy dissipation

Fig. 7-4.: Experiment set up. Devices and equipment: Power supply, laser, polarization state generator (beam
generator), thermocouple, test tube, heater, polarization state analyzer (sensor), detector and com-
puter. The power supply provides the energy to the laser and the polarization state generator and
polarization state analyzer so that there is a fine control of the transformation of polarization of
light after passing through the solution in the test tube. All polarization data is transferred and sto-
red in a computer. To manually measure the average temperature of the solution, a thermocouple
is used which is placed over the laser beam to avoid interference.

The solution was contained in a cylindrical fused quartz cell with a path length of 20 mm. When the salt was
completely dissolved a clear solution was observed and the measured Mueller matrix was the 4×4 identity
matrix, indicating that there was no optical rotation (or any other optical effect) . However, as the salt began
to precipitate the solution became progressively hazy, until at some point Tyndall scattering became evident.
Scattering could also be identified from the Mueller matrix measured by the appearance of depolarisation,
as the scattered photons tend to randomise their polarisation.

The measured Mueller matrices were analysed using the differential [25] formalism, which is well suited for
the study of polarized light transmitted in turbid media. This method assumes that the polarisation properties
of the medium have a uniform distribution along the optical path. The Mueller differential formalism can be
introduced through the equation

dM
dz

= mM, (7-3)

where the so-called differential matrix m relates the Mueller matrix of the homogeneous anisotropic medium
to its spatial derivative along the direction of light propagation (z). A generally depolarizing Mueller matrix,
satisfying Eq. (7-3) is M = emd = eL, where d is the optical pathlength and L = lnM the accumulated
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differential Mueller matrix. The optical rotation of this depolarizing medium is then determined as:

α[◦] =
180(l12− l21)

4π
, (7-4)

where li j are the elements of L. Apart from optical rotation and depolarization, no other polarimetric effect
(e.g. linear birefringence) were observed in the samples.

7.4. Model: kinetics and energetics of enantiomeric crystal formation

The model we propose describes the kinetics and energetics of enantiomeric crystal formation process which
involves the solvent (glycerol) whose concentration remains practically constant, the dissolved salt and the
solid salt in L- and D-configurations.

7.4.1. Salt phase change

In the first stage of the process, the dissolved salt form small nuclei that are the precursors of solid salt L-
and D-nuclei. This process takes place along a reaction coordinate γ and is illustrated in Fig.7-3(b). The
molar fraction of the salt that remains in aqueous state x evolves in time according to the reaction-diffusion
equation

∂x
∂ t

=−ṙL− ṙD +D
∂ 2x
∂y2 (7-5)

where y is the coordinate along the axis of the test tube, D the diffusion coefficient, and ṙL and ṙD the phase
change rates from dissolved salt to solid salt in L- and D- configurations, respectively.

The emergence rates of the nuclei precursors of the crystals, ṙL and ṙD, are proportional to the fugacity
difference between solid and liquid phases or oversaturation forces ∆zL and ∆zD. The L-rate is given by

ṙL = ke−
Ea,L
kBT ∆zL (7-6)

where k is a kinetic constant, and Ea,L = E0
a,L +∆Ea the activation energy with E0

a,L the activation energy of
a quasi-equilibrium process. The forces depend on the free energy of the salt in aqueous and solid states,
as well as on the molar fractions of the salt in both states and configurations. The L-oversaturation force is
given by

∆zL = e
µA

kBT − e
µL

kBT (7-7)

where the chemical potentials are µA = µ0
A + kBT lnx f and µL = µ0

L + kBT lnxL fL, with f and fL being fu-
gacity coefficients accounting for the non-ideality of the salt-solvent mixture, and xL is the molar fraction of
the salt in L-configuration.

For high salt concentrations, f is linear in x and must be zero for x < xs, with xs the saturation molar fraction,
since under this condition there is no phase change. The activity coefficient is thus given by f = f0Θ(x−xs),
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with f0 a constant, which implies that the oversaturation force behaves as ∆zL ∝ x2 and therefore so do ṙL

and ṙD. This behaviour is typical of an autocatalytic process, such as THE O A? IN the crystal formation
process [7, 2]. To define fL, we use the Gibbs-Duhem equation

xdµA + xLdµL + xDdµD = 0 (7-8)

in which xD is the molar fraction of the salt in D-configuration. The molar fractions fulfil the relation
x+ xL + xD = x0, with x0 the initial molar fraction of the aqueous phase.

The solid phase is composed of the small nuclei and the L- and D-crystals. The corresponding reaction-
diffusion equation for the molar fraction of salt conforming the solid L-nuclei is given by

∂xL

∂ t
= ṙL− ṙ(c)L +D

∂ 2xL

∂y2 (7-9)

where ṙ(c)L is the rate at which L-nuclei transforms into L-crystals. An analogous equation holds for the
evolution of xD. The energy dissipation rate of the phase change is according to non-equilibrium thermody-
namics given by [26, 27]

T σph(y, t) =−(ṙL∆zL + ṙD∆zD) (7-10)

where we have neglected the contribution of diffusion since it is much smaller than that of the phase change.

7.4.2. Crystallisation kinetics

Self-assembly of solid nuclei leads to the formation of L- and D-crystals which may also dissolve and
precipitate because their density is different from that of the solvent. Whether precipitation occurs or not
depends on the size of the crystal aL and on the molar fraction of salt molecules nL making up L-crystals.
The mass flux of such molecules is J(c)L = −D∂nL/∂y− kp∆ρcga3

LnL, where the drift term is due to the
buoyancy force [28], with kp a precipitation constant [29], ∆ρc the difference between the molar density of
the crystal and the solvent, and g the gravity force. The corresponding balance equation is thus

∂nL

∂ t
= ṙ(c)L +

∂

∂y

(
D

∂nL

∂y
+ kpa3

LnL

)
(7-11)

The number of molecules forming a L-crystal is NL = N0nL, with N0 the initial number of salt molecules.
An analogous equation holds for ND.

To find the crystal formation rate ṙ(c)L , we will describe the process in terms of the probability p(l, t) of
finding a crystal of size l at time t [30] which obeys the conservation law

∂ p
∂ t

=−∂J
∂ l

(7-12)

where J is the crystallization current in l-space [30]

J =− Dl

kBT
p

∂ µ

∂ l
(7-13)
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with Dl a diffusivity in l-space and µ = kBT ln f (c)p/( f (c)p)eq+φ the chemical potential, with φ the energy
required to form a crystal of size l and f (c) a fugacity coefficient. This energy consists of volume and surface
contributions and is given by φ =−(∆µ0/vp)l3 +Γl2, where vp is the specific volume of the crystal and Γ

the specific surface energy per unit of area[30]. The crystal growth rate at l = a0, with a0 the nuclei size,
has to be equal to the rate at which crystals emerge, i.e., ṙ(c)L = J(a0). By knowing the amount of salt xL

necessary to make up L-crystals, and the actual amount of salt in the L-crystals nL, we can obtain J(a0).
Thus, by evaluating Eq.(7-13) at l = a0 we obtain the rate of crystal formation

ṙ(c)L =−kla0

kBT
∂φ

∂ l

∣∣∣∣
l=a0

∆cz (7-14)

in which the fugacity difference between the L-crystal and the L-nuclei is ∆cz = x2
L+xLnL−a0n2

L/aL, where
the first term x2

L accounts for crystal emergence from auto-catalysis or agglomeration of the nuclei whereas
the second xLnL results from absorption of nuclei on the crystals and the third corresponds to the inverse
process in which smaller sizes favour the re-dissolution of the crystals in the solvent [2]. The rate of crystal
formation ṙ(c)D can be computed in a similar way.

By multiplying Eq. 7-12 by l and integrating in l, we obtain the evolution equation of the average L-crystal
size aL[30]

daL

dt
=−

Dll2
0

kBT

(
∂φL

∂aL

)
nL (7-15)

with φL = φ(aL), and aL =
∫

∞

a0
l pdl. An analogous evolution equation can be written for D-crystals.

The entropy production rate of the crystal growth process σg is expressed as a sum of products between
fluxes (J) and forces ( ∂ µ

∂ l ) [28]. The resulting expression of the entropy production rate considering the
growing process of both enantiomeric crystals is

T σg(y, t) =−
∫

∞

l0
J(lL)

∂ µ(lL)
∂ lL

dlL−
∫

∞

l0
J(lD)

∂ µ(lD)
∂ lD

dlD (7-16)

Analogously, the entropy production rate due to precipitation is

T σp(y, t) =−J(c)L

(
∂nL

∂y
+∆ρcga3

LnL

)
− J(c)D

(
∂nD

∂y
+∆ρca3

DgnD

)
(7-17)

7.4.3. Heat transfer

The heat that the system exchanges with the environment which is at constant temperature Ts causes the
temperature varies according to the equation

c0cp
∂T
∂ t

=
2U
d

(Ts−T )+κ
∂ 2T
∂y2 (7-18)

where cp is the specific heat of the mixture at constant pressure, U the convective heat transfer coefficient,
c0 the total molar concentration, d the test tube diameter, and κ the thermal conductivity. The corresponding
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Fig. 7-5.: Time-dependent energy dissipation rate of the different irreversible processes occurring in crystal
formation. The dissipation associated with phase change contributes most to the total dissipation
while that due to heat exchange is significant in the initial states of the process.The dissipation for
the other processes is much smaller than the above by orders of magnitude.

entropy production is [28]

σT (y, t) =
κ

T 2

(
∂T
∂y

)2

(7-19)

The different contributions to the energy dissipation rate in the crystallisation process obtained from Eqs.7-
10,7-16,7-17,7-19 are represented in Fig. 7-5. We observe that heat transfer and nuclei formation are the
most dissipative processes and that the supersaturation gradient is the main driving force for crystal forma-
tion [31, 32, 33], as it causes the most dissipation. This conclusion is reached in all the cases studied.

7.5. Results and discussion

In the NaClO3 crystallisation experiments, we measured the optical rotation angle of the solution throughout
the process, for two cooling protocols and different salt concentration values, i.e. for different values of
the over-saturation force with the purpose of exploring different values of the energy dissipation. The salt-
solvent concentration ratio values considered, in grams of solute per grams of solvent, were: ws/wg = 0,235,
ws/wg = 0,32, and ws/wg = 0,36, in the case of natural cooling, when the boundaries of the system are in
contact only with the surrounding air, and ws/wg = 0,235, ws/wg = 0,30, and ws/wg = 0,36, for enhanced
cooling, when the boundaries are in contact with water which has a higher cooling rate. These values have
been chosen so that, under the conditions in which the experiments are carried out, we warranty that a frac-
tion of the salt will be in solid phase when the temperature reaches room temperature. This is fulfil since the
equilibrium solubility at room temperature in glycerine (the solvent) is (ws/wg)s = 0,23 [34].
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We have solved numerically Eqs. 7-5, 7-9, 7-11, 7-15 and 7-18 by using the finite-difference method in
MATLAB®. In this way, we obtain the molar fractions of dissolved salt x, of salt of L- and D-nuclei xL and
xD, of salt in L- and D-crystals nL and nD, and the average size of L- and D-crystals aL and aD, as well as
the temperature T , all these quantities as a function of position and time. We thus define NL = N0nL and
ND = N0nD which are used to compute the enantiomeric excess and optical rotation angle, as shown in Eqs.
7-1-7-2. The evolution equations of the molar fractions contain the expression of the free-energy barrier
∆Ea through the rates. The behaviour of these quantities is thus affected by dissipation. From Eqs.7-10,7-
16,7-17,7-19, we then compute the entropy production rate σ as the sum of the entropy production rates of
phase-change, growth, precipitation and heat exchange. Temperature and average crystal size are found in
AppendixE as well as the physical-chemical values used.
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Fig. 7-6.: Optical rotation angle of the solution. a) Case of natural cooling with air. b) Case of enhanced
cooling with air and water. Dotted lines represent experimental data whereas continuous lines
stand for model results. The right y-axes show the results for the salt/solvent ratio ws/wg = 0,235
whereas the left y-axes correspond to the cases ws/wg > 0,235.

Fig.7-6 depicts the evolution over time of the optical rotation angle obtained from the model and the experi-
ments which indicates that in the 50% of the cases analysed L-crystals are predominant (in accordance with
the random dominance of enantiomeric excess [7]), as three out of six cooling conditions give a negative
value of the optical rotation angle. Fig.7-6(a) shows that for ws/wg = 0,235 the angle reaches a maximum
value and then decreases due to the precipitation of crystals that went out of the measurement range of the
laser beam. For the remaining values of ws/wg, the magnitude of the angle increases as the phase changes
and crystal growth occurs. We see that the optical rotation angle takes higher values as ws/wg increases. In
Fig. 7-6(b), we observe that in the case ws/wg = 0,30 the angle reaches a minimum value due to crystal
precipitation. For ws/wg = 0,235, the angles are one to two orders of magnitude smaller than those obtained
for the other salt-solvent concentration ratios.

In Fig.7-7, we represent the energy dissipation rate of: i) heat transfer with the environment due to a tempe-
rature difference; ii) solid nuclei formation driven by the over-saturation force; iii) crystal growth caused by
surface and volume energy differences. For both cooling protocols, a peak appears in the early stages, when
the supersaturation strength reaches a maximum value. For ws/wg = 0,235, the maximum contribution to
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Fig. 7-7.: Time-dependent energy dissipation rate for: a) natural cooling, and b) enhanced cooling.

the peak comes from heat transfer as the number of nuclei is still low. Fig.7-7(a) shows the presence of two
peaks and one minimum whereas in Fig.7-7(b) there is only one peak for each salt/solvent concentration
ratio. We also observe that for enhanced cooling the peaks are slightly higher than those for natural cooling
which is a consequence of the fact that in the former case the energy barrier is higher and consequently
the barrier crossing rate diminishes which leads to an increase of the enantiomer population difference, as
shown in Fig.7-8.

0 2 4 6 8 10

time [s] 10
4

0

5

10

15

20

%
e
.e

.

w
s
/w

g
=0.235

w
s
/w

g
=0.32

w
s
/w

g
=0.36

0 1 2 3 4 5

time [s] 10
4

0

5

10

15

20

%
e
.e

.

w
s
/w

g
=0.235

w
s
/w

g
=0.30

w
s
/w

g
=0.36

Fig. 7-8.: Enantiomeric excess percentage as a function of time for: a) natural cooling, and b) enhanced
cooling.

In Fig.7-8, we plot the enantiomeric excess percentage as a function of time. In Fig.7-8(a), we observe the
occurrence of maxima at times similar to those at which the energy dissipation rate is minimal, reported
in Fig.7-7(a). Fig.7-8 (b) shows that the maxima of the enantiomeric excess disappear when cooling is en-
hanced which is a consequence of the lack of a minimum in the energy dissipation rate in Fig.7-7(b). The
minimum values of T σ are found when the dissipation due to phase change decreases and heat exchange
becomes the most dissipative process, as can be observed in Fig.7-5. Thus, as the energy barrier of one of
the enantiomers increases, the rate of phase change decreases which promotes a higher e.e.



The figure also shows that the enantiomeric excess increases with ws/wg. This is due to the fact that the
oversaturation force increases thus leading to a higher energy dissipation rate, as shown in Fig.(7-7). Mo-
reover, for both cooling protocols, the percentage of enantiomeric excess reaches a constant value although
some crystal growth and redissolution still occurs. The final e.e. percentage value is higher in the case of
enhanced cooling, as the energy dissipation rate is initially higher. Therefore, the early excess of one of the
enantiomers, with a lower redissolution rate, causes the enantiomeric crystals to persist over time.

Chiral symmetry breaking in NaClO3 crystal formation is a consequence of the absorbed dissipated energy
as a free-energy that increases the free-energy barrier of one of the enantiomers, leading to uneven rates of
emergence of the L- and D- enantiomeric crystals and thus to an excess of one of the enantiomers. Our mo-
del describes the dynamical behaviour of the fraction of enantiomeric crystals from which we can estimate
the optical rotation angle of the system with very good agreement with our measurements of this quantity as
a function of time. The model also allows us to estimate the energy dissipated in the process as well as the
enantiomeric excess.

By means of the experiments and the proposed model, we found that the required energy (energy change in
one of the enantiomeric intermediates) to induce the measured enantiomeric excess is equal to the energy
dissipated per solid salt mole. From our results, we identified not only that one of the intermediates must
absorb the dissipated energy as free energy, but also that we could consider the connection between physical
chemistry and quantum chemistry out of equilibrium by calculating the allowed amount of energy absorbed
by the intermediate as well as the value of the fugacity coefficients as a function of the dissipated energy. For
future work, it might be interesting to explore the possibility that the non-ideal interactions of the compo-
nents affecting the kinetics, due to variations in fugacity from non-equilibrium conditions, are related to the
energy levels of the molecules and thus to quantum effects, meaning that non-equilibrium thermodynamics
could shed a light on connecting quantum phenomena with mesoscopic dynamics.
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[1] Thomas Buhse, José-Manuel Cruz, MarÃa E. Noble-Terán, David Hochberg, Josep M. Ribó, Joaquim
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8. Enhancing carrier flux for efficient drug

delivery in cancer tissues

In this chapter we consider the non-equilibrium phenomena that take place in a tissue due to the action of
external forces. We have understood the tissue as a self-organised structure that has a dynamical response
under the action of ultrasound and nanoparticles carrying medicaments. The model and the results presented
here are the starting point for analysing a tissue as a self-organised structure dissipating energy as we will
show in the next chapter.

Ultrasound focused toward tumours in the presence of circulating microbubbles improves the delivery of
drug-loaded nanoparticles and therapeutic outcomes, however, the efficacy varies among the different pro-
perties and conditions of the tumours. Therefore, there is a need to optimise the ultrasound parameters
and determine the properties of the tumour tissue, important for the successful delivery of nanoparticles.
Here, we propose a mesoscopic model considering the presence of entropic forces to explain the ultrasound-
enhanced transport of nanoparticles across the capillary wall and through the interstitium of tumours. The
nanoparticles move through channels of variable shape whose irregularities can be assimilated to barriers of
entropic nature that the nanoparticles must overcome to reach their targets. The model assumes that focused
ultrasound and circulating microbubbles cause the capillary wall to oscillate thereby changing the width of
transcapillary and interstitial channels. Our analysis provides values for the penetration distances of nano-
particles into the interstitium that are in agreement with experimental results. We found that the penetration
increased significantly with increasing acoustic intensity as well as tissue elasticity, which means softer
and more deformable tissue (Young modulus lower than 50kPa). Whereas porosity of the tissue and pulse
repetition frequency of the ultrasound had less impact on the penetration length. We also considered that
nanoparticles can be absorbed into cells and to extracellular matrix constituents, finding that the penetration
length is increased when there is a low absorbance coefficient of the nanoparticles compared to their diffu-
sion coefficient (close to 0,2). The model can be used to predict which tumour types in terms of elasticity
will successfully deliver nanoparticles into the interstitium. It can also be used to predict the penetration
distance into the interstitium of nanoparticles with various sizes and the ultrasound intensity needed for the
efficient distribution of the nanoparticles.

This chapter was published in Biophysical Journal, 120(23), 5255-5266, (2021). Ref.[1]
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8.1. Introduction

A major problem of using nanoparticles (NP’s) in cancer treatment is their low and heterogenous uptake
in tumour cells. A meta-analysis reported that only 0,7% of injected NP’s accumulated in the tumours [2].
NP’s that are injected intravenously encounter several barriers on their way to the cancer cells in the tumour.
Tumour vasculature is characterized by a chaotic morphology with shunts, looped vessels and disorganized
interconnections which lead to a heterogenous spatial distribution [3]. The abnormal tumour vessels also
result in hyperpermeable tumour vessels which together with the lack of functional lymphatic capillaries
have resulted in the concept of the enhanced permeability and retention effect [4]. This effect is hetero-
genous both within tumours and among tumour types [5], and recently Sindhwani et al [6] revealed that
transcellular extravasation occurred more frequently than paracellular through gaps. The NP’s successfully
extravasating across the capillary wall, need to penetrate through the interstitial space between the tumour
and the stromal cells. This interstitium consists of a network of collagen fibers embedded in a hydrophilic
gel of glycosaminoglycans.The high interstitial fluid pressure in tumours, which can be as high as the mi-
crovascular pressure, eliminates the transcapillary pressure gradient as well as pressure gradients within the
tumour, thus diffusion becomes the major transport mechanism [7, 8]. However, diffusion of NP’s is an ex-
tremely slow process. Furthermore, the cells and collagen network form steric hindrance and the negatively
charged gel of glycosaminoglycans interact with NP’s and might absorb them [9].

Research on the impact of the collagen network on glycosaminoglycans [10] has reported that collagen
limit macromolecules transport. An increase in the amount of collagen resulted in increased stiffness and
resistance to diffusion through the extracellular matrix. Higher amounts of glycosaminoglycan were found
to reduce the hydraulic conductivity which determines the interstitial flow through the pore network in the
extracellular matrix, while the hydraulic conductivity is less influenced by the amount of collagen [11, 12].
The steric exclusion of NP’s in the interstitium can be quantified by the available volume fraction, which
is reported to be heterogenous within the tumour and among tumours [13]. Altogether, these impediments
for the successful delivery of drug-loaded NP’s, which have been reviewed by Rakesh Jain’s group [14],
suggest that administration of NP’s should be combined with another treatment to improves transport.

Ultrasound (US) focused toward the tumour in the presence of intravascular microbubbles has been shown
preclinically [15, 16, 17, 18] as well as in clinical trials [19] to improve the delivery and therapeutic outco-
me of drug-loaded NP’s and small molecular drugs. Application of US triggers acoustic radiation, acoustic
streaming and cavitation which this last one is the dominant process. At low acoustic pressures, microbubble
oscillations are isotropic and mostly linear and are referred to as stable cavitation. Increasing the acoustic
pressure, will result in non-linear oscillations and the microbubbles will collapse in a violent process called
inertial cavitation. The oscillations of microbubbles result in microstreaming in the surrounding fluid and
in shear stress on the boundaries in the proximity of the microbubbles [20, 21]. Oscillating microbubbles in
contact with the capillary wall have been studied by high speed imaging and it has been reported that they
induce oscillations in the capillary [22, 23] thereby changing its radius and introducing gaps between the en-
dothelial cells. Furthermore, when the microbubbles undergo inertial cavitation, jet streams are formed that
can generate pores in the plasma membrane of endothelial cells, and induce formation of gaps between the
endothelial cells [24, 20]. It is not clear, however, how the action of the oscillating microbubbles improves
the transport of NP’s through the interstitium. A correlation between enhanced drug uptake and disruption of
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collagen fibers in tumours in mice exposed to US and microbubbles has been reported [25]. Hancock et al.
[26] found that high-intensity US (with no microbubbles) increased the penetration of NP’s through the in-
terstitium in calf mice muscle, and gaps between the muscle fibers were observed. They suggested that these
gaps were due to shear strain induced by acoustic radiation force [26]. Transmission electron microscopy
of murine brain tissue demonstrated that the electrostatically charged extracellular space interconnecting
cells, were enlarged after exposure to US and microbubbles, especially in the perivascular regions and to a
less extent within the parenchyma, and diffusion of NP’s was increased [27]. Furthermore, MRI analyses
of brain tissue revealed increased interstitial flow velocity and improved the transport of NP’s in the brain
parenchyma [28]. The behavior of microbubbles and their role in drug delivery have been extensively des-
cribed in three recent review articles [29, 30, 31].

To optimize US-mediated delivery of NP’s and drugs, it is essential to understand the underlying mecha-
nisms and determine which parameters are most critical for the successful delivery of therapeutic agents.
Successful delivery of NP’s depends on very many parameters such as the US exposure parameters (fre-
quency, acoustic power, pulse length, pulse repetition frequency and overall exposure time), properties of
the NP’s (size, charge, shape, surface coating, material) and tissue properties (porosity, elasticity, viscosity).
Experimentally, it is not possible to control all these parameters and determine their impact. Experimentally
it is not possible to control all these parameters and determine the impact of the individual parameters. Thus,
mathematical models and simulations of penetration of NP’s into the tumour interstitium combined with ex-
perimental verification are an important approach.

The aim of the present work is to establish a model to predict which US parameters and tissue properties are
most important to enhance transport for successful delivery of NP’s across the capillary wall and through
the interstitium.The study focuses on the transport of NP’s because the time scale on which delivery occurs
is much shorter than the response time of the cells to the drug and of the collective phenomena that can
take place in a set of cells. The model considers that variations in the microstructure of the cancer tissue,
produced by US, which lead to changes in the space accessible to the NP’s, generate entropic forces. These
forces drive the NP’s through the tissue to the cancer cells where drugs are delivered. The model takes into
account the parameters of the US and the properties of the cancer tissue to establish optimal scenarios for
improving the efficacy of cancer therapies.

8.2. Methods

Entropic barriers

The movement of NP’s towards the cancer cells takes place through pores in the tumour interstitium, which
can be viewed as channels (see Fig.8-1(a)-(b)). Constrictions hampering the motion of the NP’s are mode-
lled by potential barriers to be overcome to proceed (see Fig.8-1(c)). These barriers which originate from
variations in the space available to the particles along their trajectories and therefore from entropy variations
are given by φ = kBT ln(Ah(r)/A0) where Ah is the cross-sectional area of the channel which quantifies its
tortuosity, A0 a reference area, kB Boltzmann’s constant and T the temperature [32].

The presence of the barriers gives rise to a force F =−∂φ/∂ r (continuous line in Fig.8-1, (c)-(d)respectively)
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a) b)

c) d)

Fig. 8-1.: Sketch of an entropic barrier and its associated force acting on the NP’s along a channel of length
L. a) The presence of a constriction prevents the NP’s from advancing through a channel. b)
Application of US widens the channel allowing the NP to advance towards the targets. c) Entropic
potential φ [33] before (continuous line) and after (dashed line) application of US. d) Associated
force F =−∂φ/∂ r which changes from negative to positive after application of US.

acting on the NP’s that may help them to reach a target. Fig. 8-1 (b) shows how application of US deforms a
channel, lowering the barrier (dashed line in Fig.8-1, (c)) and changing the sign of the induced force (dashed
line in Fig.8-1, (d)), from negative (when nanoparticles approach a constriction) to positive (when they move
towards an overture).

The presence of oscillations in the barrier and other oscillating forces may trigger the phenomenon known
as entropic stochastic resonance which for a given frequency the transport of particles may be improved
[34]. For this reason, in the model, we propose in the next subsection the pulse repetition frequency f in the
time scale of the oscillation of the channels.

8.2.1. Model

In the model, we describe the flux of NP’s in a small volume element exposed to focused US. Figure 8-2(a)
depicts the network of capillaries in cancerous tissue. The volume of interest is represented as a yellow
cylinder centered around a part of a capillary surrounded by cancerous tissue. Figure 8-2(b) shows a close-
up of that volume containing the capillary, the capillary wall made up of endothelial cells and the cancer
cells. In Fig.8-2(c), we show a cross-section of the cylinder with the interstitial space between cancer cells
forming channels through which NP’s may flow. We model NP’s transport through the capillary wall and
the interstitium in a time scale of the order of seconds since the pulse repetition frequency f varies between
0,1 and 0,5 Hz. The experiments show that for these frequencies NP’s, transport takes places between 15
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a)
b)

c)

Fig. 8-2.: Illustration of the studied system. (a) Capillaries are shown in red colour while our volume of
interest, the yellow cylinder, is centred on a part of the capillary. Blood flow, carrying NP’s and
microbubbles, takes place in the z-direction in the capillary while the movement of the NP’s th-
rough the capillary wall to the surrounding cells occurs in the radial direction r. (b) 3D view: Inner
red cylinder represents the blood vessel, the concentric magenta cylinder-like corresponds to the
blood vessel wall composed of endothelial cells and a 2D collagen network, and the set of color
brown spheres-like represents the cancer cells which together with the collagen network, as well
as the glycosaminoglycans, compose the interstitium and cancer cells system. (c) Frontal view of
the system: NP move through the blue-colored channels.

and 30 seconds [35].

System I: Capillary wall

Fig.8-3 illustrates the shape of a symmetric channel through the capillary wall whose width varies with po-
sition and time due to the effect of the US. The width hI(r, t) is modelled by the sinusoidal function given in
Eq.8-12. The flux of NP in the radial direction is denoted by J.

In the capillary wall, NP’s may proceed through the free space between the endothelial cells, or through the
interior of them. Particles moving along the channels experience an entropic force that results from varia-
tions of the channel shape induced by US. The essential driving force is thus the chemical potential gradient
which incorporates the effect of the entropic force [36, 33, 37, 38, 39, 32, 40, 41]. In Appendix B can be
found more information about entropic barriers and transport through interstices.

Following [33, 40], we analyse the motion of NP’s along r and y (see Fig.8-3), from r = R to r = R+RI ,
where RI is the thickness of the capillary wall, a constant, and R the capillary radius given in Eq.8-10. The
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Fig. 8-3.: Blood vessel wall: Endothelial cells and collagen. The thickness of the wall is given by RI whi-
le the proposed channel width hI (Eq.8-12) is given by the dashed black line (proposed in the
Methods as a function of the US pulse repetition frequency, Eq.8-10). The black continuous line
illustrates the symmetric channel in the basal case (without US). Blue zones illustrate the free
space for the movement of the NP’s while the brown zone corresponds to the space occupied by
the endothelial cells and the collagen network of the basal membrane.

molar balance of NP’s in a channel is given by(
∂x
∂ t

+
x
VI

∂VI

∂ t

)
+ v

∂x
∂ r

=−∂JI

∂ r
−

∂Jy

∂y
(8-1)

where we have assumed that the fluid is incompressible (with a constant density). Here x is the molar frac-
tion of the NP’s and JI their flux, both depending on r and time t. absorption of the NP’s on the wall of the
channels takes place in y- direction, and Jy is the absorption flux. The volume of the system VI , a function
of hI , may change because the blood vessel volume varies while RI is assumed to be constant. The velocity
of NP’s v generated by the first US pulse is constant along the channel but may depend on the basal radius
of the capillary, R0, and on the acoustic intensity.

The boundary conditions for the flux of NP’s are JI(R,y, t) = J0(t) and JI(R+RI,y, t) = JII(R+RI,y, t),
where JII(R+RI,y, t) is the flux into the interstitium and cancer cells, defined in next subsection. For the
absorption process, we consider Jy(r,0, t) = 0 and Jy(r,hI, t) = JI,a, where JI,a is the flux of NP’s absorbed
onto the capillary wall.

The diffusion flux JI is given by [40]

JI(r, t) =− D
kBT

x
∂ µ I

∂ r
(8-2)

Here D(r, t) is a diffusion coefficient which depends on position and time due to the tortuosity and periodic
motion of the channels. It is given by D = D0/[1+( ∂hI

∂ r )
2]1/2 [37], with D0 the diffusion coefficient of the

NP’s not affected by constrictions. The form of this coefficient is crucial to validate the one-dimensional
treatment of the process described by Eqs.(8-1)-(8-2) [33] . In the presence of the entropic barriers, the
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chemical potential is given by

µ
I(r, t) = kBT lnx(r, t)+φ(r, t) (8-3)

where φ = kBT ln
(

π(hI(r,t)−RNP)
2

πR2
I

)
[42], since Ah = π(hI(r, t)−RNP)

2 with RNP the radius of a NP and A0 =

πR2
I . The form of this potential shows that the tortuosity of the channels gives rise to a non-ideal behaviour

where π(hI(r,t)−RNP)
2

πR2
I

plays the role of an activity coefficient.

System II: Interstitium and cancer cells

NP’s move through the channels of the interstitium (see Fig.8-2(b)-(c)) which delimit channels and are
absorbed into the cancer cells where drugs are finally delivered. To simplify our analysis, we assume that the
channels are approximately symmetric with respect to their main transport axis and do not bifurcate which is
a consequence of the nature of the matrix structure and of a sufficiently high US pulse intensity resulting in a
dominant transport in the radial direction. Fig.8-4 shows a sketch of a channel in the interstitium surrounded
by cells. The channels have width hII (for more details see Methods, Eq.8-15).

Fig. 8-4.: Channel in the instertitium surrounded by cells. The maximum length of the subsystem is given
by RII . The proposed channel width hII (Eq.8-15) is given by the white continuous line. Each
dark brown object represents cancer cells. The arrangement of the cells is idealised as a belt
of sequential and ordered cells forming a symmetric channel, where the maximum number of
sequential cells in the radial direction is M.

The molar balance of NP’s includes diffusion and absorption and is given by(
∂x
∂ t

+
x

VII

∂VII

∂ t

)
+ v

∂x
∂ r

=−∂JII

∂ r
− ∂Ja

∂y
(8-4)

Here Ja is the absorption flux and JII is the flux in r direction. Boundary conditions are: Ja(r,0, t) = 0,
Ja(r,hII, t) = Jc(r, t), with Jc the absorbed molar flux into the cells, JI(R+RI,y, t) = JII(R+RI,y, t). We as-
sume that the molar fraction of NP’s far from the capillary is zero. The boundary conditions make Eq.(8-1)
and Eq.(8-4) coupled.

The corresponding flux is given by an equation similar to Eq.(8-2) where the local diffusion coefficient has
the same form as the one for system I: D(r, t) = D0/(1+( ∂hII

∂ r )2)1/2 [33] . The chemical potential is in this
case
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µ
II(r, t) = kBT lnx(r, t)+ kBT ln

(
hII(r, t)−RNP

RI

)2

(8-5)

where the second term on the right-hand side represents the contribution of the entropic barrier resulting
from variations of the cross-sectional area of the channels. The absorption flux in Eq.(8-4) is proportional to
the mole fraction gradient

Ja(r, t) =−D
∂x
∂y

. (8-6)

The molar balance in the cells is given by
∂xc

∂ t
= Jc + Jd (8-7)

where xc is the mole fraction of the NP’s in the cells and Jd(r, t) the drug delivery flux. The absorption flux
is proportional to the difference of mole fractions of the NP’s in the channel and in the cells

Jc(r, t) =−Da
xc− x

hII(r, t)
(8-8)

where Da is an absorption coefficient. Finally, to obtain the drug delivery rate, we view the delivery process
as a first-order reaction in which the NP’s are decomposed into NP’s and drugs. Therefore, the drug delivery
fluxJd is given by

Jd(r, t) =−kxc (8-9)

where k is a kinetic constant.

8.2.2. Ultrasound-induced changes of the tissue microstructure

To complete the model, we need to know the capillary radius R, the capillary wall channel width hI and
the width of the channel in the interstitium hII . To assess how the entropic forces contribute to the total
force which also includes the chemical potential gradient, we need to estimate the minimum opening of the
channels.

US pulses and the circulating microbubbles induce variations in R over time [20]. The frequency of the US
is thousand times higher than the pulse repetition frequency f which implies that R(t) depends basically on
f . The variation of the capillary radius is assumed to be of the form

R(t) = A|sin( f t)|+R0 (8-10)

where R0 is the basal radius of the blood vessel.
During exposure to US, the pulse repetition frequency considered varies between 0,1 and 0,5 Hz. We have
estimated the amplitude A from the energy given to the system by the US pulses. The amount of energy
needed to expand the capillary a distance A is Ee = keA2/2 where ke is the elastic constant of the medium
which is a function of the Young modulus Y ≡ keL0/A, where L0 is the basal length of the system and A is
the area where the force is applied [43]. We next assume that the energy given by US is proportional to MI:
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EUS =C0 MI where the constant C0 = 10−14J can be estimated from experiments [35]. By equating Ee with
EUS, we thus find

A =

√
2C0MI

ke
(8-11)

Typical values of MI in the experiments are 0.2, 0.4 and 0.8 and the elastic constant used in the model is in
the range 10−4[N/m]≤ ke ≤ 10−3[N/m], corresponding to 1[kPa]≤ Y ≤ 120[kPa] [44, 45].

The width of the channel in the capillary wall system (see Fig.8-3) as a function of time and position is
modelled by

hI = AI

(
sin
(

π
r

RI
− π

2

)
+1
)
|sin( f t)|+H0,I (8-12)

with AI an amplitude and H0,I the radius of the channel at the side facing the capillary. We consider that H0,I

increases with R when the blood vessel wall expands and assume that H0,I has the form

H0,I(t) = h0

(
R(t)
R0

)α

(8-13)

with h0 the radius of the inlet aperture in the capillary in the basal state, and where the exponent α fall
within the interval 2− 3, where the lower limit indicates that the aperture is proportional to the capillary
area whereas in the upper limit it is proportional to the capillary volume.

The amplitude AI is expressed as a function of the medium porosity φ through the relation φ ≡ 1
πR3

I

∫ RI
0 πh2

I dr
where the reference volume containing one channel is a cylinder of radius and length RI . One obtains:

AI =
√

(2/3)φR2
I − (2/9)h2

0− (2/3)h0. (8-14)

Channels in the interstitium (see Fig.8-4) have radius hII . The impact of the US in the channels in the
interstitium decreases with the distance from the power source (the capillary)[46]. The proposed width of
the interstitial channel is thus assumed to be of the form:

hII = AII

(
sin
(

2lπr
RII
− π

2

)
+1
)(

1+
|sin( f t)|RII

RII + r

)
+H0,II (8-15)

with AII the amplitude and H0,II the minimum radius of the interstitial space. We assume that the minimum
amplitude depends on R through H0, while in the basal state it takes the average value of the interstitium
width [44], therefore H0,II = βh0 +H0, with β a coefficient which must be between 5 to 10.

The amplitude AII was computed by using the porosity of the interstitium of the carcinogenic tissue φ ∗ =
1

πR2
I RII

∫ RII
0 πh2

IIdr, where the reference volume containing one channel is a cylinder of radius RI and length
RII . The amplitude is then

AII =
√
(2/3)φ ∗RIIRI (8-16)

which has been obtained by considering that φ ∗RIIRI ≫ h0.
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8.2.3. Experimental testing

The flux of NP’s through the capillary wall and in the interstitium was compared with the experimental
results reported in [35]. Transport of NP’s was imaged in real-time during US exposure using intravital
multiphoton microscopy. Tumours were growing in dorsal window chambers in athymic mice. The US
transducer was placed in a water-filled cone 45o relative to the image plane to minimise reflections from the
window chamber and reduce standing waves. The US transducer was aligned with the objective to expose
the tissue in the field of view to US. Microbubbles and NP’s were injected intravenously immediately before
the US was turned on. The characteristics of US exposure were: US frequency of 1 MHz, MI= 0,2, 0,4,
0,8, pulse repetition frequency f = 0,1 and 0,5 Hz, pulse length of 10 ms, and total US exposure time of
5 minutes. The behaviour of fluorescence-labeled NP’s was recorded continuously during the US exposure
and where the penetration of the NP’s took place in a time range of 15 to 30 seconds from the initial
extravasation.

8.2.4. Solution procedure

Once we specified the value of the tissue parameters and therefore the shape of the channels, we solved the
coupled Eqs. (8-1) and (8-4) for the molar fraction of the NP’s by using the finite differences method in
MATLAB 2017b. The existence of a stable and unique solution was guaranteed by considering space and
time steps such that: ∆t < ∆r2, with ∆r = 5×10−8m. The penetration length was computed as ∆L = r∗−R0,
where r∗ is such that x(r∗) = x0×10−6, a very small and virtually undetectable value experimentally, with
x0 the initial molar fraction of NP’s.

8.3. Results

The model provides the essential kinetics of NP’s transport across the capillary wall and through the inters-
titum, estimating how far the NP’s can reach to act on the malignant cells, depending on the characteristics
of the US, the properties of the tissue and the nature of the NP’s.

8.3.1. Validation of the model

We have compared the penetration length ∆L obtained from our model with the experimental results from
[35]. This quantity is defined as the maximum distance that the NP’s can reach measured from the capi-
llary. To obtain it, we solve numerically the coupled Eqs. (8-1) and (8-4) and calculate the distance at which
the molar fraction vanishes. The comparison is performed for different values of the mechanical index MI1

used to indicate stable or inertial cavitation [48]. Other input data of the model, cf. Materials and Methods
Section, are the geometry of the microstructure of the capillary wall and the interstitium, as well as the
physico-chemical properties of the medium and of NP’s. Their values and the literature sources are presen-
ted in Table 8-1.

Results for ∆L are shown in Fig.8-5 for different values of MI which can be tuned by varying the capillary
radius and the initial velocity. In the figure, one can observe the presence of noise in the experimental data

1MI= ∆Pneg/ f 0,5
US [47] where the negative pressure ∆Pneg, given in kPa, is the pressure difference inside and outside a bubble.
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Tab. 8-1.: Structural and physico-chemical parameters of the model
Parameter Maximum Minimum Default
NP diffusivity, D0[µm2/s] [49] 6 5,7 6
NP radius, RNP[nm][35] - - 80
Vessel basal radius, R0[µm][50] 25 4 10
Inlet aperture(∗), h0[nm][50] 90 50 80
Porosity, φ 0,5 1×10−4 5×10−2

Young Modulus, Y [kPa][45] 120 1 11
Cell diameter, l[µm][35] − − 10

(*) Inlet aperture in the capillary wall [50]. Note: values for RI and RII are 10µm and 200µm, respectively.
Mechanical index (MI) and pulse repetition frequency f (US parameters) range from 0 to 0,8 and from 0,1 Hz to
0,5 Hz, respectively.

which can be attributed to different possible values for the capillary basal radius R0 and velocity v. The basal
capillary radius and the initial particle velocity vary with the microstructure geometry ranging from 4µm
to 20µm and up to 30µm/s, respectively [35]. Default values for the tuned parameters appear on the right
column of Table 8-1.

The relative importance of the different contributions to the flux equations was analysed in terms of the
Péclet number, which describes the ratio between advective and diffusive transport: Pe ≡ vl/D, with l the
cell diameter introduced in Table 8-1, and the dimensionless number Σ ≡ 2γ1/2/δ accounting for entropic
barrier effects, with δ ≡ h0/R0 and γ ≡ máx(dh/dr) [40]. In some experimental situations such as in flow
through tissues [11] and biological membranes [51], the fluid velocity v is very small. According to previous
results for similar systems [52, 14], the velocity can only be up to 100µm/s. In our case, at initial times Pe
≈ 100 and Σ ≈ 10 while the Reynolds number is Re ≈ 10−4. Therefore, convection is negligible while the
entropic barrier effect is up to one order of magnitude more than the effect of diffusion.

In Fig. 8-5, we observe that increasing MI leads to larger penetration lengths of the NP’s. These values of
MI correspond to significant variations of the cross-sectional area of the channels. The penetration length
was analysed with respect to the basal capillary radius and the initial velocity of the nanoparticles. The
penetration length seemed to be longest when NPs extravasted from capillaries with intermediate radii. A
positive correlation was found between penetration length and initial velocity. The values of these quantities
lead us to identify the following regimes:
i) A pure diffusion regime, observed in most of the curves of Fig.8-5(a) where ∆L grows slowly until it
reaches a maximum value. This maximum (steady-state) value is mainly characterised by the average cross-
sectional area. In this regime, the velocity v and the entropic effect are negligible (Pe≤ 0,1).
ii) A biased diffusion regime [38] observed in Fig.8-5(b), in which ∆L keeps growing faster than in the pure
diffusion case reaching quickly a maximum value. In this case, the effect of diffusion is enhanced by the
entropic force while the inertial contribution relates to the existence of an initial velocity v of the NP can be
present without being dominant (Pe≤ 1).
iii) A regime in which the initial convection combines with biased diffusion. This case is observed in Fig.8-
5(c) where the initial inertial effect is evidenced by the pronounced linear increase of ∆L caused by the first
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Fig. 8-5.: Penetration length of the NP’s ∆L [µm] as a function of time around a mice capillary. Each line
represents the extravasation of one or a set of NP’s. Model results, obtained for geometric parame-
ters and default values given in Table 8-1, correspond to continuous lines whereas experimental
data correspond to dashed lines [35] for mechanical indices MI = 0.2, (a) 0,4 (b) and 0.8 (c). The
basal radius of the capillaries are represented by different colours and for which is estimated the
initial velocity from the model; (a) black lines: R0 = 8 µm and v0 = 6,19 µm/s, grey lines: R0 = 13
µm and v0 = 0, and blue lines: R0 = 20 µm and v0 = 0; (b) Black lines: R0 = 4 µm and v0 = 4,75
µm/s, red lines: R0 = 6,5 mum and v0 = 8,6 µm/s, blue line: R0 = 11,5 µm and v0 = 6 µm/s,
green lines: R0 = 12,5 µm and v0 = 6,9 µm/s; (c) Black lines:R0 = 4 µm and v0 = 14 µm/s, green
and yellow lines correspond to R0 = 7 µm with v0 = 15,7 and v0 = 8,125 µm/s respectively, blue
and red lines correspond to R0 = 7,5 µm with v0 = 11,4 and v0 = 20,5 µm/s respectively, ma-
genta lines: R0 = 9 µm and v0 = 5 µm/s. For all the model results, the pulse repetition frequency
( f ) is kept constant at a value of 0,1 Hz as in the experiments. Highest error percentage between
experimental and theoretical curves is around 3,25%.

US pulse that triggers extravasation across the capillaries. In this case, ∆L does not change considerably
after this initial period (of about two seconds) in which convection dominates (Pe≈ 100).
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8.3.2. Model predictions

The model provides values of the penetration length of the NP’s and can be used to analyse how sensitive it
is to US settings (Fig.8-6), medium properties (Fig.8-7) and transport properties of the NP’s (Fig.8-8). This
allows the identification of optimal scenarios for more efficient drug delivery.

Fig.8-6 shows that the penetration length increases almost linearly with MI, whereas such a monotonic
behaviour is not observed in terms of the pulse repetition frequency, f [35]. It is also found that variations
of f has a little impact on ∆L while this quantity is highly sensitive to variations of MI. For the range of MIs
considered, the resulting variation in the amplitude of the capillary radius R (cf. Eq.8-11) goes from 1 to 4
µm.
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Fig. 8-6.: Dependence of the penetration length (in µm) on the Mechanical Index (MI) and pulse repetition
frequency f in s−1. For this range of MI values, the amplitude of the oscillations of the capillary
radius R (Eq.8-11) varies from 1 to 4 µm. The parameters MI and f are involved in hI and hII ,
as shown in the Methods. Default values for porosity, elastic constant, capillary radius, minimum
aperture, and diffusivities used to obtain the results are given in Table 8-1. The velocity is 10µm/s.

Fig. 8-7 shows the role of the tissue elasticity which depends on the Young modulus. Penetration of NP’s is
more efficient when the medium is easily deformable, i.e., with a small elastic constant ke that facilitates the
widening of the capillaries. The results obtained also show that the average width of channels may increase
up to 45%. The role of porosity is of minor importance, compared to that of elasticity.

Fig. 8-8 shows the role of absorption of NP’s into cells and to constituents in the interstitium. We observe
that ∆L becomes larger at small values of the ratio between absorption and diffusion coefficients in which
case only a few NP’s are absorbed.
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MI= 0,4, and f = 0,5s−1.

8.4. Discussion

The model considers that the oscillating microbubbles cause the capillary wall to oscillate, thereby changing
the width of both transcapillary and interstitial channels, thus inducing the emergence of entropic forces. A
basic feature that our model describes is that by applying US with a MI in the range 0,2−0,8, the radius of
the capillary changed from 4 to 45% with respect to the basal radius. This is supported by high-speed ima-
ging of oscillating microbubbles which demonstrated that capillaries expand their radius up to 40% during
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microbubble expansion [22, 23, 46].

The model included two US parameters, MI and pulse repetition frequency, as presented in Fig.8-6. The
pulse repetition frequency in the range of 0,1 to 0,5 Hz had little impact on the penetration of NP’s. In a
clinical situation, the time between the US pulses should be longer than the perfusion time of microbubbles
to allow new microbubbles to enter the US target volume [53]. However, the model does not take into ac-
count the blood flow and perfusion time of microbubbles and we assume always available microbubbles in
the capillary which may give more sensitivity to f in the predictions for ∆L.

Using our model and introducing the Peclet number, we revealed different transport mechanisms for the
three MIs applied. At MI= 0,2, the NP’s are driven by a purely diffusive process, whereas at MI= 0,4 the
diffusion is biased. The highest acoustic intensity applied, MI= 0,8, caused instantaneous convection. Pre-
vious studies have shown that the acoustic radiation force does not move NP’s directly by Stokes drag, but
through acoustic streaming [54, 55], and can cause NP’s to be displaced up to 100 µm from the capillary
wall [55]. The average maximum penetration of NP’s with a radius of 80 nm using MI= 0,8, was approxi-
mately 60 µm, thus reaching a substantial part of the tumour cells as the intercapillary distance is reported
to vary between 100-300 µm, depending on tumour type [56, 57] and NP’s can penetrate in both directions
from the capillary. US at MI= 0,8 and microbubbles are shown to displace smaller NP’s deeper into the in-
terstitium [58]. The model can be used to predict which MI is needed to deliver NP’s of different sizes to all
tumour cells. The acoustic intensity applied should deliver NP’s efficiently, and avoid severe tissue damage
and haemorrhage, thus it is important to know the optimal MI, not exposing the tumours to unnecessary
acoustic intensities.

As observed in our analysis, Fig.8-7, elasticity is an important parameter to consider in future studies. Shear
wave elasticity imaging of pancreatic tumours in mice reported an inverse correlation between shear modu-
lus and uptake of a small molecular fluorescent drug [59], demonstrating the importance of tissue elasticity
for successful drug delivery. This might be particularly important for pancreatic tumours, very stiff tumours,
due to extensive desmoplasia. The microenvironment and mechanical properties of pancreatic tumours, as
well as other tumours, also depends on solid stress and the high interstitial fluid pressure [60]. Solid stress
depends on tumour stiffness, activated cancer fibroblasts and the amount of collagen and hyaluronan [14].
Recently US and microbubbles were reported to reduce solid stress and solid stress deformation, but not
Young modulus, in two xenografts with low and high Young modulus, respectively, and the reduced solid
stress correlated with improved delivery of NP’s [61].

Elasticity was found to have a larger impact than tissue porosity on NP’s transport. Tissue elasticity depends
on collagen and negatively charged glycosaminoglycans and hyaluronan which will attach cations and wa-
ter, causing swelling of the tissue [14]. Softer tissue being more easily deformed was found to increase
penetration of NP’s further into the interstitium than stiffer tissue, thus proposing changes in the extracellu-
lar matrix and tissue elasticity might be a strategy for improving the delivery of NP’s. US and oscillating
microbubbles have been reported to change tumour stiffness as published by Bezer et al. [62] where was
reported that the deformation of gel phantoms and the displacement of the gel decreased as the gel stiffness
increased.



Porosities ranging from 0,5 to 10−5 had a very small impact on the penetration of NP’s, suggesting that the
width of the channels is larger than the diameter of the NP’s. Although the overall porosity is low, the width
of the individual channels in our model is sufficient for NP’s to move. Ultrasound and microbubbles cause
the width of the channels to change periodically, which might push NP’s forward. Although we found that
the impact of the porosity in the transport is small, it has been proposed that increasing the available volume
in tumour tissue, for instance by changing the structure of the extracellular matrix, the delivery of drugs can
be improved [63].

The model includes the absorptive flux and predicts the impact of NP’s absorbing to the extracellular matrix
constituents and to cells, as evidenced in Fig.8-8 as a function of the diffusion coefficient as well as the ratio
between diffusion and absorption coefficients. Absorption reduces the available NP’s and our model showed
that the ratio between the absorptive coefficient Da and the diffusion coefficient D need to be small to ob-
tain a deep penetration of NP’s into the interstitium, while increasing the diffusion coefficient increased the
penetration distance. In accordance with our results, previous findings elucidate that NP’s can be absorbed
to the surface of cells in the tumour and to extracellular matrix constituents primarily through electrostatic
interactions [9]. Notice that NP’s adhering to cell surfaces can also trigger cellular uptake.

The model is set in the mesoscale which describes accurately the experimental results and the resulting
analysis are in agreement with previous works while we set the first step to consider entropic forces to
predict the penetration of NP’s into the interstitium. The model can be extended to consider effects after US-
exposure. There is an interesting paper combining modelling and intravital microscopy to image penetration
of drugs in brain metastasis exposed to US and microbubbles, where an increment in the penetration of drugs
into the brain metastasis was demonstrated. By integrating the experimental results with a pharmacokinetic
model of drug transport, Arvantis et al. found that US and microbubbles increased the hydraulic conductivity
rather than the diffusion coefficient [64]. The next step in our model might be to also include how hydraulic
conductivity impacts the delivery of NP’s as well a longer time scale to consider more interesting phenomena
as for instance the re-organisation of the media while the medicament acts on the carcinogenic tissue.

8.5. Conclusions

The role of the tumour-tissue microstructure in the drug transport during US treatment is key to understand
how to improve US-mediated drug delivery. The model proposed can be used to study how drug delivery va-
ries among different tumours and also to predict which type of cancer can benefit from ultrasound-mediated
delivery of therapeutic agents. We found in our model predictions that tumour tissues exhibiting high elas-
ticity might be the most favoured for drug transport mediated by ultrasound. Whereas a low ratio between
absorption and diffusion coefficient of NP’s seems to enhance the transport of NP’s in the tumour. We also
conclude that pulse repetition frequency as well as porosity does not affect considerable the NP’s transport.
The model could also bring information about the value of the parameters (MI, f , the initial molar fraction
of NP’s) that optimise resources and minimise the damage to the patient.
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9. Energy dissipation unveils the transition from

healthy to carcinogenic tissues

This chapter studies the energetic response of a tissue characterised by the Young modulus under the action
of a chemical and mechanical external forces.

Tissues are self-organised structures that self-assembled from basic building blocks, having a wide and
efficient dynamic response under external stimuli to keep their function. Tumours can also be seen as self-
organised or self-assembled structures that have a high rate of self-replication and high robustness under
the action of external forces/stimuli as a change in the diet (substrates concentration changes), chemothe-
rapy, radiotherapy, ozone-therapy, ultrasound among others. By solving the question of what is the value
and the behaviour of the energy dissipated for different types (micro-structures) of carcinogenic tissue (pan-
creatic adenocarcinoma), we may unveil thermodynamic criteria for the structural configuration of such
self-organised systems. Therefore, we present a non-equilibrium thermodynamic analysis of the energy dis-
sipated in the pancreatic adenocarcinoma under the effect of a mechanical external force and a chemical
external force. We compute the energy dissipated in tissue as a function of a set of parameters that define the
micro-structure (elasticity and porosity), from healthy to rigid pancreatic adenocarcinoma. We found that
healthy tissues tend to minimise the energy dissipated (being energetically efficient) while average pancrea-
tic adenocarcinoma tend to maximise the energy dissipated (having a robust and quick mechanical response).
As a consequence, we estimate from our criteria that healthy tissues are 1000 times more probable than ave-
rage carcinogenic tissues, which is in accordance with the statistics of the world health organisation (WHO).

This chapter is based on a manuscript in preparation.
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9.1. Introduction: Probability and thermodynamics of cancer

According to the World Health Organization, in 2020, about 10 million people suffered complications from
cancer (i.e., 0.13% of the world population) [1]. Statistical projections show that by 2030 this percentage
could be twice[2]. It is therefore critical to consider new approaches to understand the emergence and sus-
tainability of carcinogenic tissues to reveal the most probable properties and thus apply the most suitable
treatment [3]. Understanding the proportion of the emergence of the different cancer stages may bring us
hints of how cancer evolves from a thermodynamics perspective [4, 5, 6, 7, 8, 9, 10, 11].

Since not only genetics and biochemistry have been shedding a light on the problem of cancer but also
physical sciences, mainly in the transition from healthy to cancer states [6], thermodynamics might unveil
the rules and principles on cancer emergence and growth from the protein-protein to the cell-cell interaction
level [7] [8, 9]. Furthermore, from early studies, it was concluded that a formal physical theory on cancer is
required, with particular emphasis on thermodynamics [10]. Entropy production rate has been an important
non-equilibrium quantity to explain theoretically different phenomena in carcinogenic tissues along with
different scales which might bring information about strategies to improve current treatments or even new
treatments [5, 4, 11, 12].

Self-organised (SO) and self-assembled (SA) structures under non-equilibrium conditions are known by ha-
ving an advanced dynamical response under external stimuli [13, 14]. As mentioned by Erwin Schrodinger
in What is life? [15], life exists due to the ordering of its fundamental components at expense of the dissipa-
tion of energy to the surroundings, or as stated by Illya Prigogine, due to the energy dissipation coming from
the non-equilibrium phenomena taking place in the system (living being) [16]. The dissipation came from
the existence of gradients triggering in fluxes of heat, mass as well as chemical reactions. The formation
of SO structures has been analysed theoretically and experimentally showing that their configuration coin-
cides with processes maximising or minimising the total energy dissipated [17, 18, 19, 20], being cancer
a clear example [21]. Therefore, structures in a minimum energy dissipation regimen are associated with
thermodynamically efficient SA/SO structures while structures in a maximum energy dissipation regimen
are associated with an efficient dynamical response under external stimuli, both cases are highly important
and observed in biological, physical, and chemical systems [22].

Carcinogenic tissues can be understood as the result of a set of cells with highly self-replication rates and
able to modify group (structure) parameters to survive [23]. In cancer treatments, these tissues are exposed
to external forces to disassemble the structure by getting rid of the fundamental blocks (cancer cells)[24].
These treatments trigger non-equilibrium condition for which the SO structure (carcinogenic tissue) reacts
and dissipate energy [25, 26] as a function of the mechanical properties of the tissue. Values of these mecha-
nical properties bring us information bout the stage of cancer, as well as the invasive potentials [27, 28]. The
idea that changes in cellular and extra-cellular mechanical properties can promote the growth of cancer has
been studied [29], in which the connection between the mechanics and biochemical aspects is a powerful
tool to develop therapies and diagnosis [30].

We can attempt, from a thermodynamic framework, to relate this invasive potential with the energy dissipa-
ted in a given stage of cancer (values of the mechanical parameters), as a non-equilibrium phase transitions
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[6]. Nevertheless, tissues are systems under non-equilibrium conditions and we must emphasise that only
the use of the classical Gibbs free energy does not bring enough information about the probability to observe
a state (mechanical property value).

In this study, we analyse the case of carcinogenic tissues (pancreatic adenocarcinoma) to unveil why carci-
nogenic structures have adapted mechanically, with certain porosity and elasticity, using a non-equilibrium
thermodynamic approach. From a previously proposed model, we compute the total energy dissipated for
different possible carcinogenic structures under the action of a mechanical and chemical external force wor-
king as a cancer treatment. From our results, we relate the most dissipating configurations with reported data
on pancreatic adenocarcinoma. These results then are useful to estimate model parameters by knowing that
carcinogenic tissues are configured to maximise energy dissipation. Furthermore, we can justify why some
mechanical property values are not found in nature since their probability, computed from the thermody-
namic criterion, is extremely small. Finally, from the present work, we can understand more the energetic
reason why carcinogenic tissues, in different cancer stages, adopts given values of porosity and elasticity,
key properties to consider in treatments. The criterion might open a possibility to compute the probability
of cancer stage transitions from historical data of individual organs and mechanical properties.

9.2. Methods

9.2.1. Energy dissipation

The action of the external forces and the response of the tissue triggers the emergence of phenomena dissi-
pating energy. Through the entropy production rate we are able to quantify such dissipation.

The entropy production rate (σ ) results from the forces acting over the TAs and over the tissue. Diffusion of
the NPs under the action of the mechanical external force as well as the adsorption and deactivation of the
NPs are the phenomena producing entropy. Additionally, the stretching-deformation of the tissue is a process
leading to a considerable entropy production. According to non-equilibrium thermodynamics [31, 32], the
resulting entropy production rate from the NPs movement is given by

σc(r, t;η) =− 1
T

[
J

∂ µ

∂ r
+ Jc∆x(r, t)+ Jdxc(r, t)

]
(9-1)

where η is a vector containing the porosity and Young modulus of the tissue.

To compute the entropy production from the stretching-deformation, we assume that the external mecha-
nical force is written as F = C0∆Psinωt. From linear non-equilibrium thermodynamics [31], the flux or
velocity of stretching is Jm = −κF , being κ the permitivity of the stretching process which we define as
κ = Λ−1

√
Y/ρ/λ with Λ the attenuation coefficient in J/m3, λ the characteristic length (cell diameter) and

ρ the tissue density. Therefore, the entropy production rate from the stretching-deformation is given by:

σm(r, t;η) = κC2
0(∆Psinωt)2 (9-2)

The entropy production rate due to the external chemical and mechanical force is the sum of both contribu-
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tions σ = σc +σm. The total entropy produced as a function of the porosity and Young modulus is written
as:

Σ(η) =
∫

∞

0

∫
∞

0
σ(r, t;η)drdt (9-3)

in which the total energy dissipated is defined as Ed(η) = T Σ(η).

9.2.2. Non-equilibrium criteria

In the case of self-assembled and self-organised structures, a criterion has been proposed [33] to understand
the ”why.of the emergence and maintenance of such structures under non-equilibrium conditions as well as
to explain the probability of observation does not necessarily follow classical equilibrium thermodynamics
probabilities.

The thermodynamic information of a self-assembled or self-organised structure can be summarised in the
effective potential defined from the energy dissipated during the response process for a given pair of values
of elasticity and porosity

∆Ψ≈ ∆Ψrev +T Σ+
T
2

(∂Y Σ)2

|∂YY Σ(Y ∗,φ ∗)|
+

T
2

(
∂φ Σ

)2

|∂φφ Σ(Y ∗,φ ∗)|
(9-4)

in which ∆Ψrev ≡ ∆Grev, i.e., to the free energy change at equilibrium conditions. The values Y ∗ and φ ∗

correspond to the ones where ∇Σ = 0. In the case of healthy and carcinogenic tissues, characterised by both
elasticity and porosity represented by the vector η1 and η2 respectively, the ratio between the probabilities
is

p(η1)

p(η2)
= exp(−β (∆Ψ(η1)−∆Ψ(η2))) (9-5)

9.2.3. Current and transition probability

From the solution p(η) we can estimate the dimensionless probability current of one state at a given η1

going to the state (or configuration) η2. It is defined as:

Jη1→η2 =−

(
∂ p
∂η

∣∣∣∣
η1

+
p(η1)

nkBT
∂∆Ψ

∂η

∣∣∣∣
η1

)
(9-6)

This current brings information about the evolution of the states under small perturbations. Thus we can
know, from a given state, how favoured the transition to another state is. Negative fluxes indicate a non-
favoured transition whereas high positive fluxes show a favoured process where most of the possible events
tend to the change of state, the transition. Furthermore, from the derivative of the flux, we know from
conservation equation [33] that a derivative equal to zero (maximum or minimum of the current) means a
dynamically stable state and therefore a point where the change of probability density is also null, i.e., there
is no transition. Additionally, a region with a negative derivative indicates accumulation or, in other words,
a region where the states converge whereas a positive value means that the probability is in constant change
and the transition is favoured.
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Current is also useful to define and delimit the different stages in the evolution of a tissue as a function of
mechanical properties, in this case, YoungâC™s modulus. In the definition, we consider that a stable region
is delimited by a clear change in the sign of the flux from negative to positive since at that point there is a
divergence of fluxes and a transition should be unlikely. The opposite is not true, a change from positive to
negative means convergence. That point might be defined as kinetically trapped but not necessarily delimits
a stage. Limits of the stages must be given by critical points in the current and its derivative since at these
points there is a change in the energetics and thermodynamics of the response of the system under external
perturbations.
We can estimate the transition probability from a simple analysis. First, we compute the average fluxes along
two stages

⟨J⟩si→si+1 =
∫ Yi+1

Yi

J(Y )dY (9-7)

next, we consider four conditions for the transition probability as a function of the average flux:
i) for an average flux equal to zero, the transition probability should be 0.5 since on average the events
happening toward are equal to the event happening backwards. ii) for average flux much greater than 0, the
transition tend to 1. iii) for average flux much lower than 0, the transition tend to 0. iv) Transition should
depend also on the average value of the derivative of the flux along the stages.
The function fulfilling these requirements is an hyperbolic tangent:

Psi→si+1 =
1
2
(
1+ tanh(Ci⟨J⟩si→si+1)

)
(9-8)

with C a constant depending on the average derivative of the current at the ith stage. Finally, the conditional
probability of being in the stage i (for i > 1) is:

Pc
i =

j=i

∏
j=2

Ps j−1→s j (9-9)

where the probability of staying at the initial stage is

Pc
1 = 1−Ps1→s2 (9-10)

9.3. Results

To obtain the results we use the model and results of the previous chapter and we solve Eqs.9-2-9-10 for
different values of the Young modulus and porosity. From Fig.9-1 we observe that the average pancreatic
adenocarcinoma maximize (locally) the energy dissipation while healthy tissues minimize it in accordance
with experimental results (Carcinogenic and Healthy tissue dashed regions). Carcinogenic tissues then dis-
sipate as much energy as possible as a response under external stimuli (attack) to keep their configuration
(nature). This is in accordance with cancer dynamics in which self-replication and self-healing are the main
phenomena taking place to avoid states very close to the thermodynamic equilibrium (death). Contrary,
healthy tissues have a smooth response under the external force due to external stimuli is not sensed as an
attack, and the biological function is not compromised. This, in accordance with the efficient use of energy
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in healthy organisms.
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Fig. 9-1.: The energy dissipated in mJ per gram of tissue under the effect of an external force as a function
of Young’s modulus and porosity. Values from our model are given by the colourmap. Healthy
tissue and Carcinogenic Tissue regions correspond to pancreatic adenocarcinoma experimental
data [34, 35].
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Fig. 9-2.: Probability density as a function of Young’s modulus and porosity. Values from our model are
given by the colourmap. Green points correspond to pancreatic adenocarcinoma experimental
data [34, 35] whereas the continuous black line corresponds to the tendency for the experimental
data.

In Fig.9-2 we observe that there are limits for which is extremely rare to find a structure having low porosity
or high youngâC™s modulus. Different experimental measures (green points) follow a tendency (black line)
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Fig. 9-3.: Ψ (black line) and ρ (grey line) as a function of Y . Blue and red point corresponds to the value
of Y for the average healthy and carcinogenic tissues respectively. Right axis shows the values for
the probability density ρ .

such that the probability estimation from the model tends to enclose the experimental data in the expected
region. Regarding the healthy tissues, they are four orders of magnitude more probable to find than an ave-
rage pancreatic adenocarcinoma. Rigid carcinogenic tissues seem to be a configuration that all carcinogenic
tissues tend to reach due to is a likely probable configuration.

From the experimental trend of elasticity and porosity (Fig.9-2), we can obtain the dissipated energy Ed , the
effective potential Psi and the probability density rho using our model (see previous chapter) and thermody-
namic criterion as a function of elasticity, see Fig.9-3. It illustrates that the average pancreatic adenocarci-
noma and healthy tissue are at the extreme point of the effective potential. The relative probability shows
that, for example, of all possible configurations of pancreatic adenocarcinoma (as a function of porosity),
the probability of observing healthy tissue is 1000 times greater than the probability of observing pancreatic
adenocarcinoma. However, it should be noted that this is a probability density as a function of elasticity, not
total probability. From the probability density, we can calculate the probability of being in a stage (defined
from two values of Y ), however, this probability considers the stages as independent entities but we know
that they are related and one stage depends on the previous one. To actually calculate the probability of being
in a given stage, we must calculate the conditional probability of the transition probability to jump from one
stage to the next.

In Fig.9-4, we present the probability current and its derivative with respect to Young’s modulus. The cyan
region corresponds to the healthy tissue measurements (healthy stage) while the blue region corresponds
to the transition from healthy to fibrous tissue which we call the initial fibrosis stage. The green region
represents the fibrous tissue data (fibrosis stage), while the white regions correspond to extremely im-
probable Young’s modulus values in a pancreas. In the red region, we find the carcinogenic stage which
represents the majority of cancer measurements, while the magenta region represents the advanced carcino-
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Fig. 9-4.: Probability current J and its derivative ∂J/∂Y as a function of Yong modulus Y . Cian, blue,
green, red and magenta region corresponds to healthy, initial fibrosis, fibrosis, carcinogenic and
advanced carcinogenic stages. White regions represent unlikely configurations (values of Y ) for
the pancreas. Blue and red points represent the average healthy and carcinogenic tissues.

genic stage. We note that the healthy and fibrosis stage correspond to ∂J/∂Y = 0, i.e. a dynamically stable
point/state. Around the transition from the healthy stage to initial fibrosis, there is a change in the sign of
the J-probability current (from negative to positive), where we expect a low probability of jumping from
one stage to the other. The fibrosis and transition stages have a positive current, which means that the transit
through these stages is short, high probability of transition and favours the cancer stage once the jump from
healthy to initial fibrosis is made. Furthermore, in the cancer stage we find a convergence as the current
sign changes from positive to negative, which means that there is a configuration to which the system will
tend once the initial barrier is overcome (from healthy to fibrosis in this case). Finally, the transition from
cancer to advanced cancer tends to be slow as the current tends to zero, probably because the flux tends
to be positive and where the advanced and rigid cancer stage appears to be dynamically stable because the
derivative is approximately zero.

It is from this information that we can calculate the transition probability and, therefore, the corresponding
conditional probability. In Fig.9-5 we show the transition probability (left side) and the conditional stage
probability (right side). We observe a very low probability of jumping from a healthy stage to initial fibrosis
(as expected from the current probability analysis). The transition probabilities tend to be 1 for all other cases
(except when jumping from cancer to transitional stage), i.e., once healthy tissue reaches an initial fibrosis
stage, the spontaneous process will be to reach a cancerous stage. Let us keep in mind that the energetic
analysis is based on mechanical and chemical forces acting on a tissue, so the increase in stiffness (Young’s
modulus) seems to be favored once a critical point (initial fibrosis) is reached. The conditional probability
results emphasize the fact that beyond fibrosis stages, the probability of observation is low, around 25 in
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10000. Specifically, we found that the probability of observing pancreatic tissue in the cancer stage is about
1/1000, which is according to the data provided by WHO.

9.4. Discussion: From thermodynamics to treatments

Considering that healthy tissues and pancreatic adenocarcinoma are found in the minimum and maximum
energy dissipated configurations, we use the model to estimate the tissue configuration as a function of two
structural parameters (α accounting for the sensitivity of the change of the minimum radius of the capillary
as a function of the external force and the fenestrian radius, the minimum radius of the capillary). This crite-
rion is then useful to define parameters that can not be easily measurable and to validate theoretical models
as we show here (See Methods). It also may be used to characterise different stages of cancer as a function
of structural parameters.

We can justify the existence of pancreatic adenocarcinoma from a thermodynamical point of view. We re-
produce the probability of observing average pancreatic adenocarcinoma from our criterion. We understand
the tissue as a self-organised system that evolves in an inner space, in this case, given by the porosity and
elasticity, in which we have recognised the different stages of a tissue as a function of structural properties
and we related the probability of observation with the energy dissipated under the effect of an external force
or perturbation to perform a non-equilibrium thermodynamical analysis.

This thermodynamic perspective when analysing the pancreatic adenocarcinoma as a self-organised struc-
ture allows us to understand from a general formalism the different possible stages of cancer and, therefore,
contributes to understanding how cancer evolves. Cancer could be understood as a self-organised structure



in an organism looking for higher robustness and adaptability in shorter times. They can deal with external
inputs and release as much energy as possible, in an irreversible way, to then reach a pseudo-steady state
where no energy (mechanical or chemical) from the external source is stored to avoid changes in the key
parameters of the structure, i.e. cancer dissipates to do not lose its adaptable nature.

Carcinogenic tissues seem to be a highly dissipative structure and for that reason using treatments to increa-
se dissipation is not the best strategy. Future treatments should consider external agents that interact with
the carcinogenic tissue inducing low energy dissipation such as chemical drugs that do not show high free
energy changes, i.e., chemical reactions close to the equilibrium and low drug concentrations. This comment
is, of course, from a purely thermodynamical point of view and from our study case in pancreatic adenocar-
cinoma.

The probability current is an important variable not only to calculate theoretically the transition probability
(without simulations), but also to define the stages or regimes of self-assembled and self-organized structu-
res. From the current probability and from the thermodynamic point of view, we could predict the evolution
of a cancer (from the initial stage) using a model and patient data (Young’s Modulus of healthy and unhealthy
affected tissue). Therefore, a predictive model could be used in the future to give more accurate estimates of
the evolution of a cancer. This would be an important tool to know not only the level of cancer intensity but
also the level of treatment required.

From a more complete model, we can capture much better the behaviour of the energy dissipated and thus
a more detailed and precise analysis of the stages probabilities, structure evolution and future treatments
outlook. Future work might be done while considering different metabolic routes when analysing dissipa-
tion to corroborate our findings.
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10. A Thermodynamic Framework for Stretching

Processes in Fibre Materials

In this chapter, we study the dynamical response of a set of organised fibbers exposed to a constant external
force. We can deal with such a structure as an assembled structure in which its dynamical response and
critical points are characterised by the energy dissipation in the elongation-breaking process.

A fibre breakage process involves heat exchange with the medium and energy dissipation in form of heat,
sound and light, among others. A purely mechanical treatment is therefore in general not enough to provide
a complete description of the process. We have proposed a thermodynamic framework which allow us to
identify new alarming signals before the breaking of the whole set of fibres. The occurrence of a maximum
of the reversible heat, a minimum of the derivative of the dissipated energy or a minimum in the stretching
velocity as a function of the stretch can prevent us from an imminent breakage of the fibres which depends
on the nature of the fibres material and on the load applied. The proposed conceptual framework can be
used to analyse how dissipation and thermal fluctuations affect the stretching process of fibres in systems as
diverse as single-molecules, textile and muscular fibres and composite materials.

This chapter was published in Frontiers in Physics, 9, (2021). Ref.[1]
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10.1. Introduction

When external load/stretch is applied on a fibre materials composed of elements with different strength
threshold, weaker elements fail first. As the surviving elements have to support the load, stress (load per
element) increases and that can trigger more element-failure. With continuous loading/stretching, at some
point the system collapses completely, i.e, external load/stretch is above the strength of the whole system at
that point. Such a system-collapse is known as “catastrophic failure” for that system.

There are several physics-based approaches [2, 3, 4] that can model such a scenario. Fibre bundle model
(FBM) is one of those models and FBM has become a useful tool for studying fracture and failure [5, 6, 7]
of composite materials under different loading conditions. The simplicity of the model allows to achieve
analytic solutions [6, 8] to an extent that is not possible in any of the fracture models studied so far. For
these reasons, FBM is widely used as a model of breakdown that extends beyond disordered solids. In fact,
fibre bundle model was first introduced by a textile engineer [5]. Later, physicists took interest in it, mainly
to explore the failure dynamics and avalanche phenomena in this model [9, 10, 11]. Furthermore, it has
been used as a model for other geophysical phenomena, such as snow avalanche [12], landslides [13, 14],
biological materials [15] or even earthquakes [16].

Although stretching processes in FBM have been analysed extensively [2, 3, 4, 5, 6, 7], mainly by physics
community, a concrete thermodynamic description for the stretching process is still lacking in this field.
In the efforts to unveil the stretching-failure phenomena, thermodynamics seems to be an important tool
because it allows incorporating variables such as temperature, entropy, reversible heat, entropy production
rate, and energy dissipation to thus unify stretching-failure dynamics and energy analysis. Especially where
surface effects, heat release and sound emission, due to energy dissipation, are present when dealing with
the stretching-failure of fibrous materials.

In this manuscript, we intend to develop a thermodynamic framework to analyse not only the energetics
of the stretching-failure phenomena but also the dynamics by means of non-equilibrium thermodynamics
formalism at all scales, from a single molecule to a macro-structure. We believe that our thermodynamic
framework could carry over to other problem areas, eventually also outside the physical sciences such as
molecular biology and nanotechnology.

We arrange the article as follows: After the Introduction (section 1) we give a short background of studies on
stretching of FBM in section 2. In several subsections of section 2, we discuss strength and stability in FBM,
energy variations during stretching, and warning signs of catastrophic failure. In section 3 we introduce a
proper thermodynamic framework of the stretching process and analyse the mesoscopic regime and small-
fluctuation regime. All the simulation results are presented in section 4 including dynamics and energetics,
Fokker-Plank approach, and role of fluctuations on the stretching process. We make some conclusions at the
end (section 5).
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10.2. Background: Stretching of a Fibre Bundle

In 1926, F. T. Peirce introduced the fibre Bundle Model [5] to study the strength of cotton yarns in con-
nection with textile engineering. Some static behaviour of such a bundle (with equal load sharing by all the
surviving fibres, following a failure) was discussed by Daniels in 1945 [17] and the model was brought to
the attention of physicists in 1989 by Sornette [18].

In this model, a large number of parallel Hookean springs or fibres are clamped between two horizontal
platforms; the upper one (rigid) helps hanging the bundle while the load hangs from the lower one. The
springs or fibres are assumed to have different breaking strengths. Once the load per fibre exceeds a fibre’s
own threshold, it fails and can not carry load any more. The load/stress it carried is now transferred to the
surviving fibres. If the lower platform deforms under loading, fibres closer to the just-failed fibre will absorb
more of the load compared to those further away and this is called local-load-sharing (LLS) scheme [19].
On the other hand, if the lower platform is rigid, the load is equally distributed to all the surviving fibres.
This is called the equal-load-sharing (ELS) scheme. Intermediate range load redistribution are also studied
(see e.g., [20]).

10.2.1. Strength and Stability in FBM

Let us consider a fibre bundle model having N parallel fibres placed between two stiff bars (Fig.10-1). Under
a external force, the system responds linearly with a elastic force. The dimensionless elastic force Fe for a
given dimensionless stretch value x (ranging from 0 to 1) is Fe = κx, where κ is the dimensionless spring
constant κ = keLm/F with ke as the elastic constant of the material, Lm the maximum stretching length and
F the external force (applied load). If the stretch x exceeds this threshold, the fibre fails irreversibly. In the
equal-load-sharing (ELS) model, the bars are stiff and the applied load F is shared equally by the intact
fibres.

Fibre strength distribution

The strength thresholds of the fibres are drawn from a probability density p(x). The corresponding cumula-
tive probability is given by

P(x) =
∫ x

0
p(y)dy. (10-1)

from which we can obtain the number of non broken fibres as a function of the average deformation of the
set of fibres x:

n(x) = N(1−P(x)) (10-2)

The fraction of broken fibres, or damage, is then given by m(x) = 1− n(x)/N. For a uniform distribution
one has p(x) = 1, P(x) = x and n(x) = N(1− x).
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Fig. 10-1.: Illustration of the system. Under the application of a constant external force F , the set of fibres
stretch a length x, however, due to they have different strength thresholds, some of them break
(yellow fibres) resulting in the increment of load for the non-broken fibres (grey fibres)

The critical/failure strength

The bundle exhibits an elastic force
Fe(x) = N(1−P(x))κx. (10-3)

The normalised elastic force (Fe/N) versus the average stretch x is represented in Figure 10-2 for a uniform
probability distribution.

The elastic force-maximum is the strength of the bundle and the corresponding stretch value (xc) is the cri-
tical stretch beyond which the bundle collapses. Two distinct regimes of the system can be recognised: one
stable, for 0 < x≤ xc, and another unstable, for x > xc.

The critical stretch value follows from the condition dFe/dx = 0.In the case of a uniform threshold distribu-
tion, using the corresponding values of p(xc) and P(xc) we obtain xc = 1/2.

10.2.2. Energies in FBM during stretching

When N is large, one can express the elastic Ee and the breaking Eb energies in terms of the stretch x as

Ee(x) =
Nκ

2
x2 (1−P(x)) (10-4)
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Fig. 10-2.: Force and energy against stretch x for a uniform distribution of the fibre strengths in the bundle,
i.e, for p(x) = 1.

and
Eb(x) =

Nκ

2

∫ x

0
dy
[
p(y)y2] (10-5)

For a uniform distribution within the range (0,1), setting p(x) = 1 and P(x) = x in Eqns. (10-4), (10-5), we
get Ee(x) = Nκ

2 x2(1−x) and Eb(x) = Nκ

6 x3. Clearly, breaking energy increases steadily with the stretch but
elastic energy reaches a maximum (see Fig.10-2).

10.2.3. The warning signal of a catastrophic failure

The elastic energy reaches a maximum values which falls in the unstable region of Fig. 10-2, after the
critical value of the extension. Its knowledge is thus not useful to predict the catastrophic failure point
of the system. However, the maximum value xmax of dEe/dx appears before xc (see Fig. 10-2). To obtain
the relation between xmax and xc we take the derivative of dEe/dx, with respect x, in which for a uniform
distribution, the solution of d2Ee(x)/dx2 = 0 gives

xmax =
2
3

xc (10-6)

The rate of change of the elastic energy thus shows a peak before the failure comes [21].
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10.3. Thermodynamics of Stretching processes

The stretching-failure of fibres/materials are seen at a small scale, for example during stretching of mole-
cules in biological objects [22]. Similar stretching-failure phenomena are also observed on a much bigger
scale, like in the case of bridges made of long cables [23]. The observation in Ref. [21] that elastic energy
variation could be a useful indicator of upcoming stretching-induced failure motivates us to construct a pro-
per thermodynamics framework for such stretching-failure phenomenon. For this purpose, we are going to
introduce some new concepts like thermal bath, irreversible energy dissipation, entropy production, etc.,
and we believe that such a framework will help to explore some new features of stretching-failure behaviour
in general. In this Section, we will compute the energy dissipated and the heat released in the stretching
process and show that dissipation provides a warning signal of the failure.

10.3.1. Energetics

Due to the load F , the system experiences an external work W which affects the elastic and breaking energies
and the entropy S as well. Energy conservation can thus be formulated as

W = ∆Ee +∆Eb +T ∆S. (10-7)

where T ∆S is the heat released Qr in the process and ∆Ed the energy dissipated, with T the temperature. All
the terms in this equations are measured in units of FLmN. The elastic energy of the fibres as a function of
the elongation results from the elastic energy per fibre times the number of unbroken fibres (Eq.10-2):

∆Ee(x) =
n(x)
N

ϕ(x) (10-8)

where ϕ(x) = κ

2 x2. The breaking energy results from the elastic energy which transforms into kinetic and
surface energy. An infinitesimal change of this energy is related to the infinitesimal change of the damage
through dEb(x) = ϕ(x)dm(x). Therefore, its total change is:

∆Eb(x) =
∫ x

0
ϕ(z)

(
∂m(z)

∂ z

)
dz. (10-9)

The work done by the external force is the sum of the work done on each fibre:

W (x) =
1

FN

n(x)

∑
i=1

wi(x)≈
1

FN

∫ n

0
w(x)dn

′
, (10-10)

where the work per fibre w is:

wi(x) =−
∫ x

0

F
n(y)

dy. (10-11)

Changes in the entropy in the stretching process are expressed as

∆S = ∆rS+∆iS (10-12)
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where ∆rS is the entropy supplied to the system by its surroundings and ∆iS the entropy produced in the
process. The second law of thermodynamics states that ∆iS ≥ 0, where the zero value holds for reversible
stretching (at quasi-equilibrium). The entropy supplied can be positive or negative; the sign depends on the
interaction of the system with its surroundings [24]. For a closed system that may exchange heat with the
surroundings it is given by the Carnot-Clausius expression

∆rS =
Qr

T
, (10-13)

where Qr is the reversible or compensated heat, supplied for the surroundings and T the temperature of the
environment. The irreversible change of the entropy, or the total entropy produced, at average elongation x
is given by

∆iS =
∫ t

0

n(x)
N

σdt
′

(10-14)

where σ is the entropy production rate. The Goudy-Stodola theorem relates the total energy dissipated ∆Ed

to the entropy produced ∆iS[25]:
∆Ed = T ∆iS (10-15)

At this point, it is important to distinguish between reversible heat Qr and dissipated energy Ed . The former
is the energy in form of heat supplied from or towards the surroundings in order to keep the temperature of
the system constant. This quantity can be measured, for instance, by using a calorimeter. The latter is the
free energy lost that can be transferred as heat, sound, or light, to mention just a few forms of energy. The
energy dissipated is thus not necessarily related to a measurable heat flux or to a measurable temperature
change in the neighbourhood of the system. This is the reason why reversible heat is frequently referred on
the literature as measurable heat [24].

10.3.2. Mesoscopic non-equilibrium thermodynamics

When the fibres are immersed in a heat bath, their length can fluctuate. The effect of these fluctuations is
negligible when the energy of the fibres is much greater than the thermal energy kBT which is the limit of
validity of a purely mechanical treatment. For smaller system energies, the fluctuations become increasingly
important. This is the case, for example, in the stretching of DNA [26]. Here, we analyse the dynamics of the
elongation fluctuations and compute the entropy production rate and the energy dissipated in the process.

The probability density ρ(x, t) to find a fibre with length x at dimensionless time t fulfils the continuity
equation

∂ρ(x, t)
∂ t

=−∂J(x, t)
∂x

(10-16)

ensuing from probability conservation. In this equation, J is the probability current which vanishes at the
boundaries (x = 0 and x = 1). The entropy production rate σ of the stretching process follows from mesos-
copic non-equilibrium thermodynamics [27]:

σ(t) =− 1
T

∫ 1

0
J(x, t)

∂ µ(x, t)
∂x

dx (10-17)
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By coupling linearly the flux J and its conjugated thermodynamic force (chemical potential gradient ∂ µ/∂x),
we obtain the dimensionless current

J(x, t) =−ρ(x, t)
∂ µ(x, t)

∂x
(10-18)

which corresponds to Fick’s diffusion law written in dimensionless form where t = t
′
D/L2

m is the dimen-
sionless time and D the diffusivity [27]. The chemical potential is related to the free energy of the system
through µ(x, t) =

(
∂G
∂n

)
T,P

which in turns is given by

∆G = ∆H−T ∆rS =
∫ n

0

∫ x

0

1
n(y)

dydn−n(x)
ϕ(x)

N
+

kBT
FLm

n(x) lnρ(x) (10-19)

with H the enthalpy to which the elongation work and the elastic (potential) energy contribute. From now
on, we will use the dimensionless force per fibre f = FLm/kBT . Taking the derivative of the Gibbs free
energy with respect to the number of non-broken fibres n and considering Eq.10-2, we obtain the chemical
potential

µ(x, t) =
∫ x

0

1
n(y)

dy−ϕ(x)+
1
f

lnρ. (10-20)

For large values of f , the entropic contribution is very small. Notice that the signs of the enthalpic terms
have been changed because the external work is done in the direction of the movement while the elastic
force has the opposed direction.

Substituting Eq.(10-20) in Eq.(10-18) and the resulting flux in Eq.(10-16), we obtain the Fokker-Planck
equation describing the evolution of the probability distribution

∂ρ(x, t)
∂ t

=
∂

∂x

(
N

ρ(x, t)
n(x)

−ρ(x, t)
∂ϕ(x)

∂x
+

1
f

∂ρ(x, t)
∂x

)
(10-21)

The average elongation of the fibres corresponds to the first moment of the probability density ρ , solution
of this equation:

x(t) =
∫ 1

0
xρ(x, t)dx (10-22)

Taking the time derivative of Eq.(10-22) and using the conservation law (Eq.(10-16)), we obtain

ẋ(t) =
∫ 1

0
J(x, t)dx (10-23)

from which we can interpret J as the local stretching velocity.

10.3.3. Small fluctuations regime

When fluctuations are very small, the variance of the probability distribution takes very small values and
therefore we could approximate ρ(x, t) by a delta function centred on x: δ (x− x(t)). By combining Eq.(10-
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18) and Eq.(10-20) and substituting ρ(x, t) by the delta function, we obtain

J(x, t) = δ (x− x(t))
(

1
f
+

N
n(x)
−κx

)
(10-24)

where we have used the definition of ϕ . Integrating now Eq.(10-24) in x, we obtain the stretching velocity

ẋ(t) =
1
f
+

N
n(x)
−κx (10-25)

where the first term on the right side is the entropic contribution, the second results from the presence of the
load and the third is due to the elastic force which opposes to the elongation of the fibres. For very small
fluctuations, the entropy production rate Eq.(10-17) is: σ(t) = ẋ2. Using this result into Eq.10-14, and the
equality ẋ = dx/dt, we obtain the irreversible entropy change

∆iS(x) =
∫ x

0

n(x)
N

ẋdx (10-26)

10.4. Results and Discussion

In this Section, we obtain analytic expressions and numerical results for the dynamics and energetics of the
stretching process assuming a uniform distribution of the strength thresholds of the fibres, P(x) = x. In order
to simplify the notation, from now on x will stand for the average value x.

10.4.1. Dynamics and energetics for small fluctuations

Dynamics

The average stretching velocity for a uniform distribution is obtained from Eq.(10-25) which is now written
as

ẋ(t) =
1
f
+

1
1− x

−κx (10-27)

Its derivative with respect to the elongation given by

dẋ(t)
dx

=
1

(1− x)2 −κ (10-28)

has a minimum around x = 1−
√

1/κ , for κ ≥ 1, indicating that for large enough values of κ , the stretching
velocity exhibits a non-monotonic behaviour. By integrating Eq.(10-27), we obtain the expression relating t
and x:

t =− 1
2κ

ln(1−κx(1− x))− 1√
(4−κ)κ

[
tan−1

(√
κ(1−2x)√

4−κ

)
− tan−1

( √
κ√

4−κ

)]
, (10-29)

For κ ≥ 4, this equation diverges or is imaginary which indicates that the process is not possible. From this
relation, we can anticipate the asymptotic form of x through the behaviour of the inverse tangent.
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Energetics

From the dynamic of the process, we can compute the work, the energies and the heat involved. The work
follows from Eq.(10-10) and Eq.(10-11):

W =−x(lnx−1), (10-30)

The breaking energy, computed from Eq.(10-9) is:

∆Eb =
κ

6
x3 (10-31)

As expected, the breaking energy increases as the elongation increases. From Eq.(10-8), the elastic energy
change is:

∆Ee =
κ

2
(1− x)x2, (10-32)

and its derivative
d∆Ee

dx
=

κ

2
x(2−3x) (10-33)

From these expressions, we observe that the maximum of ∆Ee is located at x = 2/3 whereas the maximum
of d∆Ee

dx is found at x = 1/3. Through these values, we can analyse the different stages of the process. At
x = 1/3, the system loses its capacity to store energy and the process enters a metastable regime. At x = xc,
the capacity to respond effectively to the action of the external load decreases and the process enters an
unstable state. Finally, at x = 2/3, the system cannot store more energy in form of elastic energy and falls
into an imminent failure regime.

On the other hand, the energy dissipated (Eq.(10-15)) is:

∆Ed ≈
x
f

(
1− x

2

)
+ x− κ

12
(4−3x)x3 (10-34)

which decreases when κ increases because at a large elastic constant more elastic energy can be stored to
be subsequently transformed into kinetic energy after the breaking of the fibres. The first derivative of the
energy dissipated, given by:

d∆Ed

dx
≈ 1

f
(1− x)+1−κ(1− x)x2 (10-35)

must be positive, according to the second law which imposes that 0≤ κ ≤ 13/2, for f ≫ 1. Combining this
restriction with that inherent to Eq.(10-29), we conclude that the stretching process is feasible for 0≤ κ ≤ 4.
Analysing the derivative of the dissipated energy, we find that it has a minimum at x≈ 2/3, located close to
the maximum of the elastic energy. The dissipated energy may thus give us information about the transition
to the imminent failure regime.

Finally, the reversible heat Qr is obtained by using Eq.(10-7):

Qr =W −∆Ed−∆Ee−∆Eb (10-36)
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Its derivative with respect to the elongation

dQr

dx
=− lnx− 1

f
(1− x)−1−κx(1− x)2. (10-37)

shows that the maximum of Qr depends on κ and is given by:

x∗ ≈ (368−54κ +4κ
2)/1000 (10-38)

From this expression, one can see that for κ ≥ 3/4 the maximum of Qr lies before the maximum of the
derivative of the elastic energy. This result indicates that by measuring the maximum of the reversible heat
(the point at which the process becomes exothermic dQr/dx < 0), we can know beforehand what is the state
at which the system reaches the metastable regime. For 0≤ κ ≤ 3/4, the maximum lies in between x = 1/3
and x = 0,368, i.e. in the metastable region.

Another way to find alarming signals is to calculate the intersection point of the curves d∆Ee/dx and
dQr/dx, x∗, which can be obtained from Eq.10-37 and Eq.10-33, for f ≫ 1:

x∗ ≈ (368−118κ +24κ
2−2κ

3)/1000, (10-39)

For 1/3 ≤ κ ≤ 4, this point is located at the metastable regime. Thus, by measuring the heat released and
computing the elastic energy, we can estimate the value of elongation just before the system enters the me-
tastable region. Finally, from Eq.(10-28) we see that the minimum of the stretching velocity is located before
the maximum of the change of the elastic energy (x = 1/3), for 1 ≤ κ ≤ 9/4 whereas for 9/4 ≤ x ≤ 4 it is
situated in the metastable regime, before the process reaches the unstable stage.

10.4.2. Fokker-Planck approach

To analyse the dynamic and the energetics of the process in the case in which fluctuations are not neces-
sarily small, we will use the Fokker-Planck equation (Eq.(10-21)) from which we can obtain the average
elongation of the fibres and the energy dissipated. We have solved this equation by implementing the fini-
te difference method in the software MATLAB 2017b. The results for ρ , represented in Fig.10-3, show a
Gaussian-like behaviour. We can observe that as the process progresses the solution displaces to the right.
In the inset, we represent the variance for f ≫ 1, which increases linearly with the elongation of the fibres.
The small value of the variance indicates that the assumption of small fluctuations is justified in this case.

By using Eq.(10-22) and Eq.(10-2), we compute the average elongation and the number of non-broken fibres
which are represented in Fig.10-4. Both quantities exhibit a quasi-linear behaviour and an asymptotic beha-
viour close to the breaking point. This comes from the fact that by decreasing the number of non-broken
fibres, the force exerted per fibre increases thus triggering an accumulative effect, typical of catastrophic
events. The inset of the figure shows a non-monotonic behaviour of the damage rate evidencing the com-
petition between the elastic and external forces in the stretching process in which finally the load force per
fibre becomes much higher and the rate increases exponentially.
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Fig. 10-3.: Probability density as a function of the elongation y at different times, for κ = 2. Gaussian-like
solutions displace to the right because of the action of the external force. The inset shows the
variance of the probability distribution as a function of the average elongation of the set of fibres
x. The variance increases linearly, then non-linearly and finally it decays to zero.

The stretching velocity ẋ follows from the dynamics of x. By taking the derivative of ẋ with respect to x, we
obtain the change of the stretching velocity as a function of the average elongation. In Fig.10-5, we show
the behaviour of both quantities for κ = 2. We observe the existence of a minimum of the stretching velocity
around x = 0,29 which appears before the system reaches the maximum change of the elastic energy (the
transition towards the metastable regime ).

From the dynamics of the process, we can calculate the energy dissipated by using Eq.(10-17) and Eqs.(10-
14)-(10-15). Fig.10-6 shows the energetics of the process. As predicted from the analytical results, we
observe a maximum of the elastic energy and of the reversible heat. Furthermore, the maximum of Qr is
located around x = 0,366, independently of the values of κ . Additionally, the net reversible heat at the end
of the process (Qr(x = 1)) is zero which shows that the stretching process is endothermic at small deforma-
tions and exothermic at larger deformations. The irreversible heat released results in measurable changes in
the temperature of the environment.

The derivatives of the different energies with respect to x are represented in Fig.10-7. Before the imminent
failure regime, the behaviour of the temporal derivatives coincides with that of the spatial derivatives due to
the fact that in this regime x is linear in time, as follows from Eq.(10-29). The results obtained confirm that
the derivative of the elastic energy has a maximum at x = 1/3 and its primitive a maximum at x = 2/3 while
the derivative of the breaking energy always grows. They also confirm that both derivatives take the same
value at x = 1/2. The derivative of the reversible heat always decreases which indicates that the net flux of
reversible heat is much higher at the beginning of the process. The curve of this derivative intersects that of
the derivative of the elastic energy around x = 1/5, for κ = 2, while for lower values of κ the intersection
point moves to the right, being κ = 1/2 the highest value of κ at which the crossing takes place before the
process reaches the metastable regime.
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Fig. 10-4.: Average elongation of the set of fibres x (continuous line) and fraction of non-broken fibres n/N
(dashed line) as a function of time t, for κ = 2. The inset represents the rate of damage to the
fibre bundle which exhibits a non-monotonic behaviour thus evidencing the competition between
elastic and external forces in the stretching process.
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Fig. 10-5.: Stretching velocity ẋ (left grid, black continuous line) and absolute value of dẋ/dx (right grid,
grey continuous line) as a function of the average elongation x, for κ = 2 represented in in
logarithmic scale.

From Fig.10-7, we also confirm the fact that the derivative of the dissipated energy is always positive, in
accordance with the second law of thermodynamics. Interestingly, the minimum of this derivative is found
around x = 1/2 (independently of the value of κ) which the same value at which the derivatives of the elastic
and breaking energy coincide.
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Fig. 10-6.: Energetics as the stretching progress, for κ = 2. The work done W (dotted black line) is compu-
ted from Eq.10-10, the elastic energy ∆Ee (continuous black line) is computed from Eq.10-8, the
breaking energy ∆Eb (dashed black line) is computed from Eq.10-9, the dissipated energy ∆Ed
(dashed grey line) is computed from Eq.10-14 and Eq.10-17, and the reversible heat Qr (con-
tinuous grey line) is computed from Eq.10-7 and Eq.10-12. Metastable regime threshold (light
blue line) is located at x = 1/3, unstable regime threshold (blue line) is located at x = 1/2 while
the imminent failure threshold (red line) is located at x = 2/3.
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Fig. 10-7.: Derivatives for the energies of the stretching process as a function of the average elongation x,
for κ = 2. d∆Ee/dx: continuous black line; d∆Eb/dx: dashed black lines; d∆Ed/dx: dashed grey
line; and dQr/dx: continuous grey line. Metastable regime transition: light blue line at x = 1/3;
unstable regime transition: blue line at x = 1/2; and imminent failure regime transition: red line
at x = 2/3.

10.4.3. Role of the fluctuations in the stretching process

The role that fluctuations play in the process can be estimated by comparing the value of the relevant quan-
tities when we use the small fluctuations approach or when we adopt a Fokker-Planck description for the
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same value of κ . Fig. 10-8 shows the change of the stretching velocity with position. In particular, for κ = 2
the location of the minimum of this quantity computed from both approaches is the same, meaning that clo-
se to the minimum the system is practically insensitive to the presence of fluctuations. However, for small
elongations the velocities are slightly different while at the imminent failure regime they differ considerably
due to the presence of fluctuations.
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Fig. 10-8.: Results for the stretching velocity ẋ as a function of the average elongation x before the imminent
failure regime, for κ = 2. The inset shows ẋ in the imminent failure regime. The continuous grey
line is obtained by assuming small fluctuations while the dashed black line shows the behaviour
of that quantity for larger fluctuations obtained from the numerical solution of the Fokker-Planck
equation.

As shown in Fig.10-9, energy dissipation and reversible heat are affected by fluctuations at all stages of the
process. The dissipated energy is overestimated in the approach of small fluctuations whereas the reversible
net heat (Qr(x = 1)) is very sensitive to fluctuations, as concluded from the fact that this quantity is different
in both approaches.

Figs.10-8-10-9 show that the small fluctuations approach adequately describes the dynamics but not the
energetics. The high accuracy in the dynamics is due to the almost Gaussian nature of the probability with a
sufficiently small variance which is represented in Fig.10-3. The observed disparity in the reversible heat and
energy dissipated lies in the approximation used. Additionally, the small deviation of the stretching velocity
are accumulated thus affecting the energy dissipated in the case of small fluctuation. Differences between
both approaches become even more patent at smaller values of κ and f when the effect of the fluctuations
is less important.
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Fig. 10-9.: Dissipated energy and reversible heat as a function of the average elongation x, for κ = 2. Results
for ∆Ed and Qr obtained when fluctuations are small are represented, respectively, by dotted and
continuous grey lines. The same quantities for larger fluctuations, computed from the Fokker-
Planck equation, correspond to the dotted and dashed black lines, respectively.

10.5. Conclusions

We have proposed a thermodynamic framework that analyses the role played by dissipation in a fibre stret-
ching process, describes its different stages and obtains new alarming signals before the whole set of fibres
break. Our thermodynamic framework has identified relevant regimes (metastable, unstable and imminent-
failure) as well as provided new transition indicators in terms of stretching velocity variation and entropy
production rate which is an important quantity to measure the energy-efficiency of processes [28]. Specifi-
cally, we have shown that the maximum of the reversible heat may emerge before the process enters into
the unstable regime. For some values of κ and small fluctuations, this maximum is located in the stable
regime. In the same line, we found that the minimum of the entropy production rate is located around the
transition to the unstable regime, and that for small fluctuations, this minimum defines the starting of the
imminent failure regime for all values of κ . We have also proved that when the heat release flux is equal to
the entropy production rate, in this intersection, the system is close to the transition towards the metastable
regime. Similarly, we found that the minimum of the stretching velocity is always located in the stable zone
but the exact location strongly depends on the value of κ .

Under this approach, a more general analysis of the stretching process as a function of κ = keLm/F could
be performed to investigate the effect of the relation between force and elastic constant on the dynamics.
Additionally, for a small system with a low number of fibres, the approach can be applied to investigate
biological stretching-failure processes such as fibre muscle elongations and biochemical stretching as in
DNA chains. Finally, as the stretching process releases heat and dissipates energy, we can have considerable
temperature changes which can influence the individual failure of elements [29, 30, 31]. Further work is
therefore needed on this issue.
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11. Enzymatic evolution driven by entropy

production

An enzyme is a complex self-organised structure that has been evolving to specialise and increase its effi-
ciency. The questions we ask are: thermodynamic or kinetic efficiency? are there limits in the kinetic and
thermodynamic efficiency?.

We show that the structural evolution of enzymes is largely influenced by the entropy produced in the enzy-
matic process. We have computed this quantity for the case in which the process has unstable and metastable
intermediate states. By assuming that the kinetics takes place along a potential barrier, we have found that
the behaviour of the total entropy produced is a non-monotonic function of the intermediate state energy.
By diminishing the number of metastable intermediate states, the total entropy produced decreases and con-
sequently the enzyme kinetics and the thermodynamic efficiency are enhanced. Minimising locally the total
entropy produced for an enzymatic process with metastable intermediate states, the kinetics and the ther-
modynamic efficiency are raised. In contrast, in the absence of metastable intermediate states, a maximum
of the entropy produced results in an improvement of the kinetic performance although the thermodyna-
mic efficiency diminishes. Our results show that the enzymatic evolution proceeds not only to enhance the
kinetics but also to optimise the total entropy produced.

11.1. Introduction: Kinetics and thermodynamics of enzymatic

processes

Enzymes are the devices responsible for all the energy conversions in the cell. They are very elaborately
adapted for this function and as catalysts they have the capacity to accelerate the rate of biochemical reac-
tions [1]. It has been shown that enzyme performance depends on their structure, reactivity, catalytic effi-
ciency and activation energy. However the thermodynamic efficiency of the enzyme activity is related to the
kinetic performance is currently an open problem.

The description of enzymatic mechanisms demands the use of a very intricate standard free-energy landsca-
pe containing multiple minima and transition states [2]. However, there is experimental evidence [3] showing
that enzymatic processes take place along just one path (see Fig.11-1). For instance, processes mediated by
adenylate kinase (AdK) arise along only one possible path having multiple intermediate conformations that
may facilitate a rapid transition [4]. It has been argued that relatively small free-energy differences between
conformations could improve the fine control of transitions by environmental perturbations and signaling
[5]. Additionally, a recent study of the enzyme mechanisms has shown that on average each reaction under-
goes 4.3 steps and involves 2.7 intermediates [6].
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Fig. 11-1.: Potential barrier for a general enzymatic process: Free energy landscape for a complete enzy-
matic process; substrate binding E +S ⇌ ES, catalysis ES ⇌ EP, product release EP ⇌ E +P.
Dashed line corresponds to a non-enzymatic process S ⇌ P. The catalysis takes place in the ca-
talytic step in which we can find the transition states. The intermediate states that can be unstable
(ES‡,ES‡

1 and ES‡
2) or metastable (ES†).

The catalytic nature of the enzyme has been related to an electrostatic stabilization of the transition state du-
ring the enzymatic process, as shown in the catalysis zone in Fig.11-1. This electrostatic effect can be seen
as a combination of the reduction in both the energy of the transition state and in the reorganization energy
[7]. The active sites are pre-organized in a geometry which minimizes conformational reorganization and
maintains an optimal stabilization for the transition state in each step during catalysis [8, 9]. For instance,
theoretical results for serine esterases show that these perform multiple steps minimizing the conformatio-
nal rearrangements to avoid energetic conflicts following a ”minimally frustrated”path or a minimum energy
path.[10, 7].

How proteins and enzymes evolve remains as an open question [11]. Average enzymes exhibit moderate
catalytic efficiencies [12] because maximal rates may not evolve in cases that can be associated with weaker
selection pressures [13]. Also, it seems likely that the catalytic efficiency of some enzymes toward their
natural substrates could be increased in many cases by natural or laboratory evolution [12]. Evolutionary
pressures play a key role in shaping enzyme parameters (related to potential barrier); that is, maximal rates
have not evolved in cases where a particular enzymatic rate is not expected to be under stringent selection
[12]. Initially, it is proposed that enzymes have evolved firstly to optimize the speed of the actual breaking-
bonding chemical processes, optimizing the potential barrier for the diffusion through transition states to
finally tune the rates [7, 14]. However, evolutionary pressures have their limits and cannot enhance the ki-
netics of an enzyme at its optimum or ad infinitum [12].

Enzyme evolution seems to be globally driven by physiological conditions to improve reaction rates by
means of changes in the structure to stabilize the transition states thus decreasing activation energies and
modifying the number of metastable intermediates. However, most of the enzymes are far from optimal
kinetic conditions not only due to evolutionary aspects and physical-chemical constraints because of ther-
modynamic restrictions. There is no clear evidence of the fact that improving reaction rates leads to an
improvement of thermodynamic efficiency of catalytic processes. As far as we know, enzymes must be sta-
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ble in order to conserve their structure and locally unstable in order to function. Therefore, there is a debate
about which trajectory an enzyme should take to evolve structurally and why these trajectories are taken. In
that sense, thermodynamically, the evolution of the enzyme could be conditioned to decrease or increase the
entropy produced in the catalytic step of the process.

Our purpose in this chapter is to analyze the transition between enzyme-subtract and enzyme-product states
(the catalytic step of the enzymatic process of Fig.11-1). As the enzyme activity takes place at the me-
soscopic level [15], the enzymatic processes is modeled by a diffusion through a potential barrier whose
intermediate states are parametrized by means of a reaction coordinate, in which the shape of the po-
tential barrier is related to the structural changes of the enzyme [16]. Therefore, we use the Mesoscopic
Non-Equilibrium Thermodynamics (MNET) [17, 8] formalism to quantify the entropy produced in the
transit/diffusion through the potential barrier and thus obtain the reaction rates defined in the space of the
reaction coordinate[17]. By modelling the potential barrier with and without local minima, we compute the
entropy production. Here, we present how the enzyme evolution could be directed towards an optimization
of the total entropy produced as a function of the activation energy restricted to the relaxation time.

11.2. Methods

MNET provides a general framework for the study of small-scale far from equilibrium systems which unify
thermodynamic and kinetics aspects [17, 8, 18]. Activated processes such as chemical reactions, adsorption
[19], electro-chemistry [20], unzipping RNA [21], active transport [15] and biochemical cycles [22] that
take place in physico-chemical and biological systems, can be viewed as processes that proceed along an
internal coordinate that parameterizes the different molecular configurations. Considering that the catalytic
efficiency of enzymes depends on their structures [23], we will adopt a molecular perspective to analyze the
process through the MNET formalism. Moreover, we will consider that the rearrangement of the enzyme
active site in a process determines the activation energy and the reaction rate [24].

11.2.1. Conservation equation and entropy production

In the process, an enzyme-substrate complex transforms into an enzyme-product complex in a homogeneous
close system under isothermal conditions. The transformation takes place along the reaction coordinate γ

defined from 0 to 1. The evolution of the probability density to find the complex in the state γ at time t is
governed by the continuity equation:

∂ p(γ, t;Ea)

∂ t
=− ∂

∂γ
J(γ, t;Ea) (11-1)

Here, J is the current along the reaction coordinate and Ea the activation energy. Assuming local equilibrium
along the γ-coordinate, we use the Gibbs relation and the continuity equation (Eq.(11-1)) to obtain the
entropy production of the enzymatic process at the mesoscale [17]:

σ(γ, t;Ea) =−
1
T

J(γ, t;Ea)
∂ µ(γ, t;Ea)

∂γ
, (11-2)
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where µ the chemical potential. From the entropy production (Eq.(11-2)), we can write the linear law for
the current, given by

J(γ, t;Ea) =−
L(γ, t)

T
∂ µ(γ, t;Ea)

∂γ
, (11-3)

whith L an Onsager coefficient which is in general a function of the state of the enzyme and the time. Using
the fact that the Onsager coefficient is in very good approximation proportional to p(γ, t;Ea), we introduce
the constant diffusion coefficient D through the expression:

L(γ, t;Ea) =
D

kB
p(γ, t;Ea). (11-4)

The chemical potential along the γ-coordinate is given by

µ(γ, t;Ea) = kBT ln p(γ, t;Ea)+φ(γ;Ea) (11-5)

where φ is the potential barrier of enthalpic nature through which the diffusion process takes place along
the γ-coordinate. This barrier is a function of the activation energy and is intimately related to the enzyme
structure. By inserting the expression of the current (Eq.(11-3)) into the continuity equation (Eq.(11-1)), we
obtain the Fokker-Plank type kinetic equation:

∂ p(γ, t;Ea)

∂ t
= D

[
∂ 2 p(γ, t;Ea)

∂γ2 +
1

kBT
∂

∂γ

(
p(γ, t;Ea)

∂φ(γ;Ea)

∂γ

)]
(11-6)

By solving this equation, we can compute the entropy production rate and from this, the total entropy
produced in the process

∆SP(Ea) =
∫ tR

0

∫ 1

0
σ(γ, t;Ea)dγdt (11-7)

where tR is the relaxation time of the process. To study the thermodynamic efficiency, in the following sec-
tions we will analyze the lost work defined as WL = T ∆SP(Ea).

The diffusivity through the potential barrier D is the only kinetic parameter of the model. This parameter
depends neither on the activation energy nor on the shape of the potential barrier and it will be used to cons-
truct a dimensionless time: τ = tD . As we will show in the results section, for the fastest processes (with
activation energy ∝ 1kBT ) the dimensionless time is around 1. Considering the time reported in [25], the
diffusivity could take a reference value of 1014s−1.

11.2.2. Modeling potential barriers

Enzymes can be modified artificially by changing the potential barrier landscape of the enzymatic process.
For instance, although triose phosphate isomerase is considered an advanced and perfect enzyme, its struc-
ture was modified by changing the activation energy of the enzymatic process thus altering the reaction rate.
These modifications of the energy landscape having an impact on the kinetics of the process could be the
next step in the kinetic evolution of the enzyme[26]. In this section, we present particular forms of the ener-
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getic barriers and in the results section we analyze the lost work as a function of the parameters shaping the
barrier. In Appendix A canbe found more details about the proposal of the barriers and how to define them.

Two particular forms of the barriers are shown in Fig. 11-2(a) and their modifications are depicted in Fig.11-
2(b)-(d). Barriers with an unstable intermediate are shown in Fig.11-2(b) for different activation energies.
Barriers with a metastable intermediate are shown in Figs 11-2(c)-(d) for different intermediate energies
and transition-state energies. These barriers will be used in our numerical calculations to study enzymatic
reactions taking place in a closed system. Notice that in Figs. 11-2(c)-(d) the difference between the maxi-
ma (∆Ea = EES†

1
−EES†

2
) which is related to the activation energy is fixed. The proposed potential barriers

are bistable and tristable functions modelled by polynomials. They must fulfill some thermodynamics con-
ditions. For instance, at γ = 0 and γ = 1 the values of the potential coincide with the standard chemical
potential of the ES and EP states. Moreover, barriers representing a process with only unstable states there
is only one maximum corresponding to the transition state. For those with a metastable intermediate state
there are two maxima and one minimum representing the transition state and the metastable state. Finally,
the macroscopic equilibrium relations must be fulfilled.
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Fig. 11-2.: Potential barrier φ(γ) as a function of the reaction coordinate γ for metastable and unstable in-
termediates. Potential barrier for: (a) an unstable intermediate state (gray line) and a metastable
intermediate state (black line) in an enzymatic process ES−−⇀↽−−EP.(b) an enzymatic process with
unstable intermediate state for three activation energies due to modifications or mutations. (c) a
metastable intermediate state for three intermediate energies due to modifications or mutations,
for ∆Ea fixed.(d) a metastable intermediate state for fixed intermediate energy but different acti-
vation energies due to modifications or mutations, for ∆Ea fixed.

Enzymes might mutate to enhance their functions. We have recognized two kind of barriers in which enzy-
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matic processes takes place. The way potential barriers are modified, shown in Fig. 11-2, may mimic the
enzyme mutation process. Fig.11-3 exemplifies a scenario where the enzyme through mutations could chan-
ge the energy of the intermediate states in the catalytic process. The proposed mutation factor ζ depends on
the activation energy and on the changes of the potential barrier with the energy of the intermediate states.
An energy landscape (in terms of the barriers) as a function of the mutation factor (characterizing possible
mutation paths) and the reaction coordinate is given by,

φ(γ,ζ ) =


φ1(γ) in Fig.11-2(b) if 0≥ ζ < 0,35

φ2(γ) in Fig.11-2(c) if 0,35≥ ζ < 0,6

φ3(γ) in Fig.11-2(d) if 0,6≥ ζ ≤ 1,

(11-8)

The mutation factor helps us exemplify a hypothetical landscape of barriers in an enzymatic process. Notice
that there are more possible ways to change the energy of the intermediate and transition states and there-
fore the shape of the potential barrier. Nevertheless, here we illustrate some representative cases as a first
approximation.
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Fig. 11-3.: Potential barrier φ(γ) as a function of the reaction coordinate γ and of the mutation factor ζ .
Sketch of a generic potential barrier representing different possible energetic configurations of
the enzymes related to their structural configuration and parametrized by ζ .

Why nature uses mutations to increase or decrease the energy of intermediate states (or the activation ener-
gies) is as of yet unanswered. We hypothesize that not only kinetics but also energetic issues are involved in
enzymatic mutations. Under this perspective, the lost work related to the more energetic states in an enzy-
matic process (transition states), is key to understanding how evolution could enhance enzyme kinetics.
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11.3. Results and Discussion

The entropy production rate calculated by using the potential barrier shown by the gray line in Fig. 11-2(a)
is plotted as a function of dimensionless time in Fig. 11-4. The curves correspond to different values of the
activation energy. The relaxation times tRi are indicated by arrows, and are proportional to the activation po-
tential energy (φ ∗−φ(0)/kBT ). A decrease of the activation potential energy, however, leads to an increase
of the enzymatic reaction rates and to an increment of the initial entropy production. In this sense, an even-
tual kinetic principle that predicts infinite rates will also predict an infinite entropy production, which seems
to be meaningless. Since the dynamics of the enzyme can be characterized by the entropy generation and
the relaxation time, the total entropy produced is in general a non-trivial function of the activation energy
and can give us information about which are the most efficient configurations of the enzyme.
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Fig. 11-4.: Entropy production σ(Ea) as a function of the dimensionless time (tD) for different activation
energies, for processes with unstable intermediates. The dimensionless time axis is presented in
logarithmic scale.

Integrating the entropy production over γ and over time for the cases shown in Fig. 11-4, we find that lost
work always decreases for increments of the activation potential energy and of the relaxation time of the
process (Fig. 11-5, black dashed line). One could then infer that for a given process a maximization of the
lost work (or a minimization of the thermodynamic efficiency) results in an enhancement of the kinetics and
a minimization of the relaxation time. This case will be considered as the reference scenario. Nevertheless,
a more complex behavior of enzymatic processes with metastable intermediate states can be found in two
ways.

First, by changing the shape of the potential barrier, as shown in Fig. 11-2(c), and by computing the lost
work for different values of the activation potential energy of the metastable state (ES), in which ∆Ea is
fixed, we obtained the lost work shown by the gray dashed line in Fig. 11-5. Lost work exhibits a local mi-
nimum (in this case around 5kBT ) and when it approaches this value, it starts to decrease until it converges
with the value found in the reference scenario (a process with only unstable intermediates). This could be
plausible because for high intermediate energy, the condition to overcome the barrier is similar to that of
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Fig. 11-5.: (a) Lost work as a function of the activation potential energy for enzymatic process. (b) Lost
work as a function of the relaxation time of the process. Integration over time for each data
(Ea/kBT = 1;2;3;4) shown in Fig.11-4 gives us lost work as a function of the activation energy
(or relaxation time) for a process only with unstable intermediate states (black dashed line), as
shown in Fig.11-2(b). Lost work for a process with metastable intermediates states: intermediate
state energy is fixed (black continuous line) forming a deep well in the potential barrier for
∆Ea fixed, as shown in Fig.11-2(d); intermediate state energy increases proportional to the first
activation energy (gray dashed line), for ∆Ea fixed, as shown in Fig.11-2(c).
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the case shown in Fig.11-2(b) for high intermediate energies. Moreover, the relaxation times are similar to
those of the reference scenario because the energies of transition states and the metastable intermediate are
alike. Therefore, the process cannot be divided into two subprocesses, as in the case shown in Fig. 11-2(d),
giving rise to a slowing down of the kinetics.

In a second way, by changing the shape of the potential barrier, as shown in Fig. 11-2(d) for different energy
values of the transition states (ES‡

1 and ES‡
2), we obtained the lost work shown by the black continuous line

in Fig. 11-5. In Fig. 11-5(a), there is a local minimum (in this case around 7kBT ) and from this value the
lost work increases. Notice that for higher values of the activation potential, the height of the two peaks
(transition states energies) and the depth of the well in the potential barrier increases. In this case, the pro-
bability density around the metastable state at the beginning of the process is low and consequently goes up
considerably, increasing the rate of jumps over the second wall of the potential barrier. This increases the
relaxation time and gives rise to the appearance of two stages in the enzymatic process, contrary to what
happens at low values of the transition states as shown in Fig. 11-2(c). Therefore, depending on the value of
the activation potential, we can observe one-stage or two-stages processes. The minimum observed in Fig.
11-5 reveals the presence of a transition between both types of processes.

From Fig.11-5 we conclude that in the most efficient processes taking place in a system with a metastable
intermediate state, the energy is similar to that of the transition states to avoid deep wells in the potential
barrier. One can thus expect that if the enzymatic process involves a metastable intermediate state (as in
Fig. 11-2(c)(d)), the enzyme could evolve towards structures such that the intermediate state involved have
an energy similar to that of the transition states in order to decrease the presence of subprocesses that may
impair the thermodynamic and kinetic efficiencies.

Additionally from Fig.11-5 we conclude that a given process with metastable intermediate does not necessa-
rily maximize the lost work to enhance the kinetics. It is found that in the surrounding of the local minimum,
kinetics and energetics of the process could be simultaneously improved. Therefore, by decreasing lost work
we obtain an enhancement of the kinetics. One can thus expect that if the enzymatic process involves a me-
tastable intermediate, the enzyme could evolve towards a structural configuration such that the process has
an activation potential energy that ensures a local minimum in lost work.

Notice that the lost work for an enzymatic process with a metastable intermediate (Fig. 11-2(c)-(d)) is larger
than for a process with unstable intermediates (Fig. 11-2(b)). This is because of the presence of two (or mo-
re) sub-processes involved to overcome the potential barrier. Therefore, an additional scenario could exist in
which the enzyme may evolve towards a more efficient structural configuration. Thus enzymes catalyzing
processes with metastable intermediates could increase the energy of these intermediates and shift the po-
tential barrier to the ones shown in Fig. 11-2(b), thereby avoiding sub-processes. In this scenario, once the
enzymatic processes avoids the metastable intermediate state, the enzyme may evolve towards a configura-
tion in which the activation energy decreases in order to maximize the lost work, as indicated in Fig. 11-5.



11.4. Conclusions

In this chapter, we have shown how enzyme evolution is conditioned to an optimization of the total entropy
produced as a function of the activation energy. We have found that the shape of the potential barrier deter-
mines the thermodynamic efficiency of the activated processes because lost work depends on the nature of
the intermediate state.

An increase of the reaction rate and of the thermodynamic efficiency can be induced by decreasing the num-
ber of intermediates states or by decreasing the energetic difference between intermediate and transition
states. This conclusion is in accordance with the observation that some enzymes minimized the number and
height of the peaks of the energetic barriers between consecutive conformations [10]. Moreover, our con-
clusion is in accordance with a minimum energetic path concept (”minimally frustrated”path)[7].

In the framework of the transition state theory, the efficiency of an enzyme has been related to the number
of conformational changes that it must undergo to return to its original state. From this perspective, if the
energy related to the conformation changes is minimized, higher reaction rates could be obtained [27]. In
the context of the present work, however, if the energy related to conformational changes is minimized,
lost work is minimized as well since it entails a decrease of the energetic barriers, thus avoiding metastable
intermediates. Therefore, the energy related to conformational changes is not minimized to improve the ki-
netics (as claimed in the literature [27]) but rather to optimize the thermodynamic performance of enzymatic
process.

Our results support the idea that enzymatic process have on average 2.7 intermediates per reaction [6] and
not just one or even no intermediate at all. This is because the structural configuration of the enzyme is
determined by a local minimum in lost work of the enzymatic process as a function of the activation poten-
tial energy. In this scenario, an enhancement of the kinetics around the minimum leads to a decrease of the
lost work and consequently to an improvement of the thermodynamic efficiency, thus favoring the enzyme’s
structural stability and the catalytic activity.

The fact that central metabolism enzymes are more efficient than secondary metabolism enzymes could be
explained from a thermodynamic point of view. This is because the evolutionary pressures [12, 28] may be
related to a high probability of modifications in the enzyme structure which could changes the activation
energies. This forces these enzymes to evolve either towards a local minimum of lost work thus enhancing
their kinetic and thermodynamic efficiency, or towards a maximum of lost work to improve only their kine-
tics.

The model presented here might be used to analyze the effect of temperature and pH (considered as the
mutation factors) over kinetics through the modification of the shape of the potential barrier upon variations
of those quantities.
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12. Role of interfacial entropy in the particle-size

dependence of thermophoretic mobility

Surfactants are organised in different ways on the surface of particles and droplets, affecting thermodynamic
state variables as well as transport properties. In this chapter, we analyse how the organisation and distri-
bution of surfactant molecules affect the response of a droplet under an external force (temperature gradient).

We show that changes in the surface tension of a particle due to the presence of non-ionic surfactants and
impurities, which alter the interfacial entropy, have an impact on the value of the thermophoretic mobility.
We have found the existence of different behaviors of this quantity in terms of particle size which can be
summarized through a power law. For particles which are small enough, the thermophoretic mobility is a
constant whereas for larger particles it is linear in the particle radius. These results show the important role
of the interfacial entropic effects on the behavior of the thermophoretic mobility.

This chapter was published in the Physical Review Letters, 125, 045901, (2020). Ref.[1]
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12.1. Introduction: Thermophoresis

Particles movement induced by temperature gradients [2] known as the Soret effect has been the subject of
many experimental and theoretical studies in recent years [3, 4, 5, 6] due to its importance in areas as diver-
se as soft condensed matter, biophysics, microgravity and nanoscience. Thermophoresis may for example
be used for the control of colloids and macromolecules[7] and to implement effective particle separation
methods [8] and focusing techniques [9]. Studies on thermophoresis have also shown their importance in
the deposition of micro- and nano-particles [10] in laminar [11] and turbulent [12] pipe flows, removing and
collecting aerosol particles [13] and in biotechnological applications [14, 15].

Crucial to the study of the motion of the particles is the knowledge of the thermophoretic mobility DT ,
the proportionality factor between the thermophoretic velocity v⃗T and the temperature gradient ∇T : v⃗T =

−DT ∇T , and whether it depends on the particle size or not. There is no general consensus on this question
[16]. Experiments performed with polystyrene solid particles of sizes between 40nm and 2µm in Tris buffer
solution, show a linear dependence of the thermophoretic mobility on the particle radius a [17] whereas
others made with n-alkane liquid particles in water/surfactant ranging from 5 to 16nm support the fact that
the mobility does not depend on the particle radius [18, 19]. An experiment carried out with latex particles
in a solution containing tetrabutylammonium perchlorate with particle radius ranging from 100 to 400nm
[20], supported by simulation results of rigid particles with radius in the interval 36 to 154nm [21] shows
a decreasing behavior of the thermophoretic mobility as a function of the particle radius. These different
behaviors of DT may be due to the fact that more than just a single driving force determines the thermopho-
retic force in experimental systems, each with a different size dependence. The thermophoretic force may
result from the temperature response of the core-material of the particles relative to that of the solvent, the
possible presence of electrical double layers and from the distribution of surfactant and fluid molecules at
the interface which affects the interfacial entropy. To analyze the origin and the role of the interfacial entro-
pic effects in thermophoresis is the main objective of this Letter.

The thermophoretic velocity can be obtained from hydrodynamics by computing the force exerted by the
solvent on a particle moving with a given velocity in the presence of a temperature gradient. [22, 23, 24, 25].
The force contains a thermophoretic contribution proportional to the temperature gradient [26]. A general
expression valid when the particle is a drop, a bubble or a solid particle with a monolayer of adsorbed sol-
vent [27, 28, 29] (see Appendix C) was given in [24]: F⃗ = −µ−1⃗u+DT µ−1∇T where µ is the mobility.
Under the hydrodynamic approach, DT is proportional to the derivative of the surface tension with respect
to the temperature γT ≡ dγ/dT and to the particle radius (a) and is a function of the viscosities and thermal
conductivities of the inner and outer fluids.

In our analysis, we show how the distribution of the non-ionic solvent and surfactant molecules adsorbed at
the interface may depend on the size of the particle. Since this distribution affects the interfacial entropy, it
may bring about a dependence of the surface tension and consequently of the γT factor on particle size. We
thus find that for sufficiently large particles, the ratio between the numbers of fluid and surfactant molecules
on the particle surface does not depend on the radius (a). Therefore, γT does not depend on a and so the
thermophoretic mobility is a linear function of a. On the contrary, for small particles that ratio may depend
on the radius of the particle due to entropic effects which lead to a different behaviour of γT as a function of a.
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12.2. Surface tension derivative

To show how the distribution of fluid and surfactant molecules at the interface affects the thermophoretic
velocity, we will consider the stationary movement of a drop immersed in a fluid subjected to a temperature
gradient. Both the fluid inside the drop and the surrounding fluid are assumed to be multicomponent, incom-
pressible and Newtonian. Quantities inside and outside the drop and at the interface will be denoted by the
sub-indexes i, o and s, respectively.

To compute γT , we use the Gibbs-Duhem relations for the inner (i) and outer (o) fluids and the interface (s)
to obtain:

−Adγ = S(s)dT +N(s)
1 dµ

(s)
1 +N(s)

2 dµ
(s)
2 (12-1)

−V (β )d p(β ) = S(β )dT +N(β )
1 dµ

(β )
1 +N(β )

2 dµ
(β )
2 (12-2)

The fluids in each subsystem have two components indicated by sub-indexes 1 and 2. In Eq.(12-2), β = i,o.
Moreover, A is the surface area of the particle, N the number of molecules, µ the chemical potential, V the
volume and S the entropy.

We consider equipotential systems for which dµ
(β )
1 = −dµ

(β )
2 and rewrite the number of molecules of the

j-component as N(β )
j = N(β )x(β )j , with x(β )j the molar fraction in the sub-system β . Moreover, we assume

that the radius of the particle is constant and use d(p(i)− p(o)) = 2d(γ/a) obtained from the Young-Laplace
equation for a constant particle radius. These assumptions together with equilibrium conditions (dµ

(i)
j =

dµ
(s)
j = dµ

(o)
j ), leads to

γT =−ρa

[
s(s)−δx(s)

(
∆(ρs)

∆(δ (ρx))

)]
1+ 2

a
δx(s)

∆(δ (ρx))ρa
(12-3)

Here ρa ≡ N/A is the interfacial density, s(s) the interfacial entropy per mol, δy(β ) ≡ y(β )1 − y(β )2 in which y
could be a thermodynamic variable (x,s,ρ among others), ∆(ρs)≡ (ρs)i− (ρs)o, with ρ the molar density,
and ∆(δρx)≡ (δ (ρx))i− (δ (ρx))o. Defining s∗ ≡ s(s)−δx(s)

(
∆(ρs)

∆(δ (ρx))

)
as the surface entropy considering

the difference in the changes of the chemical potential of the components with temperature and introducing
a Tolman-like length [30] δ = δx(s)

∆(δ (ρx))ρa, we obtain

γT =−ρa
s∗(

1+ 2δ

a

) (12-4)

From this expression, we conclude that when the size and number of surfactant molecules increases, the
number of configurations available for the molecules of the fluid decreases and therefore the interfacial
entropy decreases and so does γT . For a one-component system (xβ = 1) forming two phases (bubble in
liquid/drop in vapor), for which δx(s) = 1 and ∆(δ (ρx)) = ρ i−ρo, i.e, δ = ρa/(ρ

i−ρo), the length δ con-
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verges to the Tolman’s length [30].

The analysis of how surface tension depends on the radius of the particle was performed in [30] for only
one component by assuming that ρa and the temperature are constant. In general, however, we could expect
a non-uniform distribution of the solvent molecules with the particle size in the interfacial region, mainly in
small enough droplets. We can thus express the interface density as

ρa = ρ
(∞)
a Ω(a) (12-5)

where ρ
(∞)
a ≡ N(∞)/A is the surface density at a sufficiently large particle radius and Ω(a) is a function

accounting for finite-size effects in the surface density that we have to determine.

Considering an ideal interface for which s∗ = s∗1x(s)1 + s∗2x(s)2 and large enough particles, we then obtain

γ
∞
T =−s∗ρ(∞)

a = x(s)1 γ
(∞)
T,1 + x(s)2 γ

(∞)
T,2 (12-6)

in which γ
(∞)
T,1 and γ

(∞)
T,2 are usually reported in the literature for pure liquids and large systems [31]. Finally,

the general expression for γT in an ideal system in which the size of the particle does not change with the
temperature, is given by:

γT = Ω(a)
γ
(∞)
T(

1+2 δ

a

) (12-7)

When this expression is integrated in temperature, one obtains a generalization of Tolman’s formula for the
surface tension valid for multicomponent systems and by taking finite-size effects into account [30].

For a non-ideal interface, the surface tension derivative with respect to the temperature for large systems is
in this case given by

γ̂
(∞)
T = γ

(∞)
T + f (x(s)j ,T ) (12-8)

where the term f is a non-ideal surface entropy that may in general depend on the interfacial molar fractions
and temperature. It considers the changes in the surface entropy caused by surfactants or impurities adsorbed
on the interface.

For a non-constant particle radius and by performing an analogous procedure to the one above, we can then
arrive at general expression for γT in which is non-ideal interactions are also considered:

γT =
Ω(a)(

1+2 δ

a

) (γ̂
(∞)
T +

2δ

3a
γkv

)
(12-9)

where kv =
1
vo

dvo
dT is the thermal compressibility coefficient.
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Fig. 12-1.: (a) Fluid (gray) and surfactant (black) molecule distribution in the interface of a spherical particle
of radius a. (b) Distribution of fluid and surfactant molecules in a spot of the interface.

12.3. The role of the interfacial distribution

To compute Ω(a), we first find the number N of fluid molecules at the interface whose available space is
affected by the presence of impurities and surfactants (see Fig. 12-1). The area of the particle surface occu-
pied by the N fluid molecules is Nπr2

0/φ , where r0 is the radius of a molecule and φ the packing factor of
the interface. Values of φ fall in the interval 0,34≤ φ ≤ 0,5 [32]. For a liquid interface like ours, we chose
the lowest value, φ ≈ 0,34. Analogously, the surface area occupied by the surfactant molecules is N

′
πr2

s/φ

where N
′
is their number and rs their radius. The surface area covered by both fluid and surfactant molecules

is then M = (π/φ)Nr2
0(1+(rs/r0)

2N
′
/N), where the ratio between surfactant and fluid molecules depends

on the surface molar fraction of surfactant in the interface (x(s)3 ), N
′
/N = x(s)3 /(1− x(s)3 ).

To obtain the number of solvent molecules on the surface, we use the constraint M < 4πa2 in the previous
expression of the area covered by fluid and surfactant molecules M. The value of N is then given by the floor
function

N =

⌊
(4φ)(a/r0)

2

(1+g(a))

⌋
(12-10)

where the quantity g(a)≡ (rs/r0)
2N

′
/N compares the areas of the particle surface covered by fluid molecu-

les and surfactant.

In Fig.12-2(a), we plot the total number of molecules on the interface (Nt ≡ N +N
′
) for the cases N

′
/N

constant and N
′
/N linear in a. Both behaviors lead to a constant DT and to a DT linear in a. Curves intersect

at a value of the particle radius a0, below which the total number of particles is higher for the case N
′
/N ∼ a

than when N
′
/N ∼ const. Contrarily, above a0 only the opposite is true. Fig. 12-2(b) shows that the area not

covered by particles ψ is larger in the first case at values of the radius a < 13nm. A linear dependence of
N
′
/N on a and equivalently a linear dependence of g(a) on a is thus entropically more favorable for a≤ a0

where a0 is a threshold radius at which the ratio between the number of molecules of surfactant and the fluid



12.3 The role of the interfacial distribution 209

4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

N
t

a)

N
'
/N  cte

N
'
/N  a

4 6 8 10 12 14 16 18 20

a [nm]

0

0.05

0.1

0.15

0.2

0.25

0.3b)

Fig. 12-2.: (a) Total number of molecules on the surface Nt = N + N
′

for different particle radii a[nm].
(b) fraction of the particle-free area ψ ≡ 1−M/4πa2. The black dashed line corresponds to
a constant value of N

′
/N and the gray continuous line to a linear dependence of N

′
/N on the

particle radii a. Both behaviors lead to a constant DT and to a DT linear in a.

in the interface becomes constant. Notice that the factor g(a) can be expressed as

g(a) = g(a0) [Θ(a−a0)+(a/a0)Θ(a0−a)] (12-11)

where

g(a0) =

(
rs

r0

)2(N′

N

)
(a0)

(12-12)

For a monolayer composed by only fluid molecules, the number of molecules on the interface is appro-
ximately N(∞) = πφ(a/r0)

2. Therefore, by considering Eq.(12-5), for which Ω(a) = N/N(∞) and using
Eq.(12-10), the finite-size effects in the surface density can thus be evaluated through the relation

Ω(a) =
1

πφ(a/r0)2

⌊
4φ(a/r0)

2

1+g(a)

⌋
(12-13)

Using the representation of the floor function in Fourier series [33], we approximate the surface density
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as Ω(a) ≈ 4/π(1+ g(a))− 1/N∞ +∑k sin(8N(∞)/1+ g(a))/πkN(∞). For N(∞) ≫ 1, we can approximate
Ω ≈ 4/π(1+ g(a)). This behaviour explicitly shows how the presence of surfactant molecules on the sur-
face mediated by steric and excluded volume effects affects the distribution of fluid molecules and thus the
surface tension.

5 10 15 20 25 30 35

a [nm]

0.2

0.4

0.6

0.8

1

/
*

Fig. 12-3.: Function Ω/Ω∗ versus particle radius a where Ω∗ denotes the maximum value of Ω. Continuous
black, dark gray, gray and light gray lines correspond to rs/r0 = 12,6,3,1,5 respectively, whereas
the dashed black line is the result for x(s)3 = 0. As a reference, The dashed gray line decreasing
as 1/a serves as a reference.

In Fig.12-3, we show the behavior of Ω(a) for a monolayer interface with r0 = 0,32nm and threshold radii
a0 = 32nm for different values of the ratio rs/r0. To illustrate the behavior of this function, we use the ap-
proximation x(s)3 ≈Φ(rs/r0) where Φ is the volume fraction of the surfactant in the solution, with Φ≈ 0,029
[19]. From the figure, we observe the power law behaviour Ω∼ 1/aα with 0 < α < 1. In particular, Ω∼ 1/a
for rs/r0 = 12 and the curve exhibits sharp behavior due to the discrete nature of N inherent to the floor fun-
ction of Eq.(12-10). By decreasing rs/r0, Ω tends to a constant.

12.4. Study case

To further verify the validity of our model, we will consider the case of a non-electrolytic system of n-
alkane-water with a non-ionic surfactant studied in [34, 19] and compare the results of our model with the
experimental data [19]. We will assume that the molecular radius, surfactant fraction and behavior with
the temperature is the same for each n-alkane [19]. Moreover, based on the experimental result that the
thermophoretic mobility is proportional to the temperature [35, 36], we will assume that the function f
accounting for the non-ideal behavior of the interface is linear in the temperature. In order to consider the
surface entropy change by adsorption of surfactant molecules, f must also be proportional to the surface
area covered by the surfactant, g(a). To account for changes in the direction of the thermophoretic velocity
reported in [19] at a certain transition temperature Tt , we write f (T ) = k f g(a)(T −Tt) where k f is a fitting
parameter.
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Fig. 12-4.: Surface tension versus temperature for different hydrocarbons (n-octane C8, equi-molar mixture
of n-octane/n-decane C8/C10, n-decane C10, n-dodecane C12 and n-butadecane C14) components
in a surfactant water system. The continuous lines represent model results and geometric forms
show experimental data. C∗8 corresponds to the case N/A constant.

To obtain the surface tension, we integrate Eq. (12-9) in the temperature for rs = 12r0 and a0 = 16nm
and use k f to fit the experimental data [19, 37]. The values of k f for each n-alkane fall between 2,5 to
5,4 [mJ/m2K2]. Fig. 12-4 shows the behavior of γ as a function of T , evidencing an accurate matching
of model results and experimental data for each n-alkane. The dashed black curve gives the surface tension
for a constant value of N/A [30] which does not reproduce the experimental data for n-octane. This feature
supports our contention that N/A must be a function of particle size.

The thermophoretic mobility can be obtained from hydrodynamics [24] and is proportional to γT in the form

DT =−2aγT

η0

1
(2+λi/λo)(2+3ηi/ηo)

(12-14)

where ηi,o and λi,o are the viscosities and thermal conductivities of the inner i and outer o fluids. Our analy-
sis of γT then leads us to know how the thermophoretic mobility behaves in accordance with the size of
the particle.This expression does not consider the thermodynamic properties of the core material that may
have an impact on the total mobility, as happens in the case of Janus particles that exhibit an internal mass
gradient [38, 39].

In Fig. 12-5(a), we show the behavior of γT as a function of the particle size for the family of the n-alkanes
studied in [19], evaluated at T = 27oC. Since the n-alkanes have similar physico-chemical properties, we plot
γT for the family of n-alkanes, inferring the behavior: γT ∝ 1/a. In the figure, we also compare the results
obtained from our model with experiments [19]. The thermophoretic mobility as a function of the particle
size is shown in Fig. 12-5(b). We observe that it varies smoothly around the constant value 3,54µm2/Ks, as
commented in Refs. [19, 18]. These variations could be a consequence of the small size of the particles [40]
in whose case a continuous variation of their surface area is not necessarily followed by a constant change
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of their covered area, as illustrated in Fib 2(b).

In this range of particle sizes, one can question the validity of a purely thermodynamic treatment due to
a greater importance of fluctuations at those scales [41] and to the possible existence of a strong coupling
between particle and bath that may modify the thermal response of the particle [42]. To estimate what is the
impact of these factors on the thermophoresis phenomenon is currently an unsolved problem.

By using Eq.(12-14) and considering the behavior of Ω shown in Fig.12-3 and Eq.(12-9), we infer the po-
wer law for the thermophoretic mobility DT ∝ a1−α in which the exponent α depends on how the surfactant
molecules are distributed on the particle surface. The value α = 0 corresponds to a size-independent distri-
bution which results in a linear behavior of DT with the particle radius, similar to the one observed in Ref.
[17] for charged particles. Interfacial entropic effects could in this case contribute to the thermal response of
the particle. It has been indicated that this linear behavior is not reproduced by means of a pure hydrodyna-
mic treatment for charged particles [43]. When α = 1 the fraction of covered area by the surfactant on the



interface increases linearly with the radius and consequently DT does not depend on the size of the particle,
as observed experimentally in [18, 19]. In the case in which α > 1, DT decreases with the particle radius, as
observed in the experiments presented in [21, 20]. Finally, for long enough polymers it has been observed
that DT does not depend on their length [44]. This result can be explained from our theory if we model the
unrolled polymer as a set of bonded spheres having the same radius. Since the radius is small we conclude
that the effective DT is a constant.

12.5. Conclusions

In summary, we have shown that the presence of fluid and surfactant molecules adsorbed on the particle
surface modifies the interfacial entropy and in turn the surface tension. This feature has an impact on the
thermophoretic mobility which in general fulfills a power law in the particle radius. We have found the
tendency that for particles which are small enough the thermophoretic mobility is a constant whereas for
larger particles it is linear in the radius. Our results show how and under what conditions interfacial entropic
effects play a relevant role in the behavior of thermophoretic mobility.
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Conclusions and Perspectives

Conclusions

In part I, we have presented a kinetic and thermodynamic description of non-equilibrium self-assembly pro-
cesses that explains the formation of structures and their functionalities occurring at different scales. It is
based on the formulation of Fokker Planck equations for the probability distribution as a function of reaction
coordinates and structural parameters characterising the processes and the structures. The solution of such
equations provides the dynamic evolution of the structures as well as the entropy produced in the process.

We have studied in particular the formation of gels and Liesegang patterns, as well as structures formed
by magnetic colloids and enantiomeric crystals that provide insight into the formation of e.g. microtubules,
cells, tissues, nanoparticles, synthetic vesicles and tissues among others. The main results obtained are the
following:

By considering the different steps of the self-assembly process: activation, assembly and disassembly,
we have reproduced the experimental results for the gelation dynamics [1] ( Figure 2-4) and the
Liesegang rings formation as well as their final spatial distribution [2] (Figs. 3-2 and 3-3).

We rationalise how a transient organisation in the system, involving intermediate aggregation states,
precedes the appearance of a more complex structure: the gel (Figure 2-6). Moreover, we showed how
from non-homogeneous initial conditions, a transient organisation process involving the formation
of self-assembled structures, give rise to macroscopic spatial patterns: macroscopic Liesegang rings
(Fig. 3-2).

We obtained the evolution of the internal architecture of the structures at the meso-scale (Figure 2-5,
for the probability density of the orientation of the fibbers) as well as the patchy behaviour for the
temperature (Fig. 3-4) when the structures emerge.

Our formalism accounts for the kinetics of self-assembly processes by means of a mathematical model
that can be solved numerically. It could be extended to account for the effect of external fields and
gradients. Although we have applied it to specific cases, it could also be applied to NESA processes
that produce mesoparticles and other spatial patterns.

In part II, we have shown that the knowledge of the entropy generated in a non-equilibrium self-assembly
process determines the architecture of the structures when they can be characterised by a structural parame-
ter. This feature was analysed in two particular cases: gelation and formation of Liesegang rings.
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We have shown that the structures observed in these systems emerge at extreme values of the entropy
produced when represented as a function of the structural parameter. Gel structures correspond to
maximum values of the total entropy produced while Liesegang rings to minimum values.

We have found that processes leading to a higher hierarchical order of the structures are characterised
by the greatest possible value of lost work as a function of the structural parameter. For instance,
gelation processes dissipate the maximum amount of available free energy to increase the hierarchical
order. On the contrary, for Liesegang ring banding which does not entails a significant increment of
the hierarchical order, the energetic cost is minimum.

We have proposed a criterion that accounts for the formation and selection of self-assembled structures
under nonequilibrium conditions. It establishes that the structures emerge at the minima of an effective
potential (eq.(6-19)) that takes into account the energy needed to change their configurations, with a
probability given by eq.(6-14). The criterion has been validated in two cases: Liesegang patterns
and pattern formation in suspensions of colloidal magnetic particles. In both cases, we find that the
most likely polymorphs found in the experiments are precisely those which minimize the potential
proposed.

In part III, we have analysed the response of various self-organised systems to external forces. The main
conclusions are the following:

We found that the energy required to induce crystal symmetry breaking, quantified by the measured
enantiomeric excess, is equal to the energy dissipated per solid salt mole. Furthermore, we concluded
that one of the intermediate states absorbs the dissipated energy as free energy in accordance to our
experiments.

We have shown that healthy and carcinogenic tissues are characterised by particular values of structu-
ral parameters: Young modulus and porosity, which minimise and maximise, respectively, the energy
dissipated by the tissue when exposed to mechanical and chemical external forces.

The analysis of pancreatic adenocarcinoma as a self-organised structure has allowed PRECISAR to
understand in a general formalism the different possible stages of the cancer and therefore its evolu-
tion.

We have proposed a thermodynamic framework that analyses the role of dissipation in a fibre stret-
ching process, describing its different stages and obtaining new alarm signals before the fibre bundle
breaks. We have shown the existence of metastable, unstable and imminent-failure regimes and pro-
vided new transition indicators in terms of stretching velocity variation and entropy production rate
which is an important quantity to measure the energy-efficiency of the processes.

We have shown how enzyme evolution is conditioned to an optimization of the total entropy produced
as a function of the activation energy. We have found that the shape of the potential barrier determines
the thermodynamic efficiency of the activated processes because lost work depends on the nature of



218 12 Conclusions and Perspectives

the intermediate state.

The distribution and organisation of surfactant molecules on the surface of a droplet, which depends
on the droplet size, dictates the value of the interfacial entropy. We showed how and under what
conditions interfacial entropic effects play a relevant role in the behavior of thermophoretic mobility.

Our findings support the existence of an effective potential that describes the formation of non-equilibrium
self-assembled structures from a dynamic and thermodynamic perspective.

Perspectives

The conceptual framework presented can in general be used to describe the kinetics of non-equilibrium self-
assembly processes. The results obtained offer the following perspectives:

Synthesis and study of the mechanical properties of the gels . The proposed gelation model could be
used to study the mechanical properties of the gel under external stress as a function of a structural
parameter. It could also be used to estimate the optimal conditions for the control of the assembly of
hydrogels with possible medical applications as mentioned in Ref. [3, 4, 5, 6, 7, 8].

Particle synthesis. We could explore the controlled synthesis of nanoparticles of defined size as a
function of initial conditions and external gradients, a useful topic in the synthesis of drug-carrying
nanoparticles. [9, 10].

Prediction of structures. The proposed self-assembly criterion could be used to predict the formation
of polymorphs, which are crucial for identifying transient states in protein folding, in order to un-
derstand why certain organic enantiomers are predominant [11]. The results could improve computer-
aided drug design [12], and be used to analyse the synthesis of crystals, hydrogels, reconfigurable
materials, artificial tissues and nanoparticles.

Symmetry-Breaking amplified by shear rates. We could analyse the influence of hydrodynamic ef-
fects in the crystals formation, enantiomeric excess and energy dissipation. To this purpose we could
perform experiments in presence of stirring.

Estimation of the fugacity under non-equilibrium conditions. From the crystallization model proposed
we could compute the fugacity coefficients to investigate the importance of non-ideal effects coming
from the non-equilibrium nature of the process.

Non-equilibrium thermodynamics analysis of cancer progression based on metabolic pathways. An
energetic analysis could shed light on the effect of the concentration of different molecules on cancer
progression in order to propose food-based treatments based on bioenergetics.

Configuration of Saturn’s rings. Planetary rings are structures whose formation is not yet well understood[13].
The explanation of why different types of rings can be observed is an open question whose answer



could be related to the formation of spatio-temporal patterns [14]. We could use our approach to un-
derstand the formation and stability of Saturn’s rings by considering them as a out-of-equilibrium
self-assembled structure.

Dissipation in the fibber bundled model. From the fibber bundle model proposed, we could analyse
not only the energy coming into play but also the dynamics at all scales, from single molecule to ma-
crostructure, under non-isothermal conditions. Our thermodynamic framework could be transferred
to other problem areas of catastrophic events, eventually also outside the physical sciences, such as
molecular biology and nanotechnology.

Self-assembly of Janus particles. We could use our formalism to study the different structures formed
through self-assembly of Janus particles and to analyse the role played by dissipation.

We hope that the results obtained in this thesis can constitute a reference framework for the development
of new models and experimental studies capable of revealing new properties of self-organised systems that
dissipate matter and energy.
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A. Appendix: Kinetics and energetics of chemical

reactions through intermediate states

We analyze the kinetics and the energetics of chemical reactions passing through an intermediate state. Two
approaches are adopted. The first one is a mesoscopic description in which the state of the reaction undergoes
a diffusion process in a tristable potential along a reaction coordinate which parametrizes different molecu-
lar configurations in the reaction pathway. The second consists of a two-level system model. We show that
the reaction flux and the energy dissipated (lost work) depend significantly on the mean life of the interme-
diate state. It is found that the values of these quantities obtained through both approaches differ especially
at early stages, in the presence of high chemical potential differences for low energies of the intermediate
state. The analysis presented unifies kinetics and energetics of chemical reactions steps and can be applied to
explain the mechanism of enzymatic and organic reactions, RNA and protein folding and sorption processes.

This Appendix was published in the Journal of Physica A: Statistical Mechanics and its Applications, 509,
86-96, (2018). Ref.[1]
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A.1. Introduction

The activation pathway of many activated processes [2, 3, 4] exhibits the presence of multiple intermediate
states [5, 6, 7, 8]. These states reveal the existence of metastable molecular structures [9, 10] some of which
are very short-lived and can hardly be detected by the experiments whereas others may persist for longer
times [11, 12, 13]. Intermediate states are present in processes such as chemisorption [14], protein folding
[15, 16, 17], RNA folding [18], organic reactions [6, 19] and enzymatic kinetics [20, 21, 22, 23, 24] to
mention just a few.

The existence of intermediate states may significantly affect the activation kinetics. In desorption from che-
misorbed layers [14], the presence of weakly-bound intermediate states, promoted by the existence of a
second layer, determines the desorption kinetics [25] which depend on the activation energies and on the
presence of multiple binding states [26]. In protein folding processes, as in the folding of the 71-residue
(mainly α-helical FF domain from human HYPA/FBP11), intermediate states are observed, being even mo-
re stable than the denatured ones [8], i.e, in a denaturation processes, the intermediate states are more stables
than the initial unfolded state. Multiple intermediate conformational states arise in enzymatic reactions such
as the one taking takes place in adenylate kinase (AdK) in which the energy barriers separating the open
and closed states of the enzyme are low enough to facilitate rapid transitions among the intermediate states.
[27, 11].

Intermediate conformations in the activation pathway can be detected by the energy dissipated in the form
of heat which can be measured by calorimetric techniques such the differential scanning calorimetry [28],
successfully used to identify protein conformations changes in second order transitions [29, 30]. The heat
dissipated is related to the entropy production rate whose global value results from local contributions along
the reaction pathway which depend on the form of the free-energy landscape built by the presence of such
states. Obtaining the entropy production by means of non-equilibrium thermodynamic methods is then of
primary importance to evaluate structural changes in the system [31, 32, 33].

The traditional way to analyze the kinetics of chemical and biochemical processes is based on the law of
mass action (LMA) [34, 35] which assumes that the relative change of a substance in the reaction is propor-
tional to the time elapsed and to the amount of substances. The LMA proposes a description of the kinetics
of the reaction but it does not account for the dissipation inherent to the process. It was proposed that dissi-
pation could be obtained from non-equilibrium thermodynamics [36] (NET). This theory, however, provides
linear laws between fluxes and forces and can only describe the reaction close to equilibrium, at low values
of the affinity, in which case reaction rate and affinity are proportional to each other. This is the reason why
kinetics and dissipation have been treated in the past independently.

The possibility of a systematic use of the method of NET to describe the nonlinear reaction kinetics was
discussed in [2], for a single unimolecular reaction. In the mesoscopic non-equilibrium thermodynamics
(MNET) theory [37, 38], the chemical reaction is viewed as a diffusion process in a free-energy potential
[39] through a reaction coordinate which parametrizes the different molecular configurations along the ac-
tivation pathway. The coarse-graining description, based on the probabilities defined in Eq. (7)-(9), leads to
the LMA [2]. This approach is simpler but its accuracy must be carefully analyzed. This will be one of the
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objectives of the Appendix.

The formulation of MNET theory extends the applicability of thermodynamic concepts deep into mesosco-
pic and irreversible regimes showing how the probabilistic interpretation of thermodynamics together with
probability conservation laws can be used to obtain Fokker-Planck equations for the relevant degrees of free-
dom. It may also describe the interplay of chemical reactions with other transport processes such as mass
diffusion or heat transport [40]. In this way one can describe nonlinear processes such as chemisorption [41],
nucleation [4, 42, 43], thermal emission [44], evaporation and condensation [45], electro-chemistry [46], un-
zipping RNA [47], active transport [48] and biochemical cycles [24] taking place in physico-chemical and
living systems.

Our purpose in this Appendix is to analyze how the presence of intermediate states in the reaction pathway
may affect the kinetics and the energetics of the process. Since the form of the potential barrier is unknown
[48, 49, 47, 24, 40], we propose a method to shape the potential barrier by imposing thermodynamic res-
trictions. The form of the barrier is used in the Fokker-Planck equation to obtain the probability distribution
from which we compute the average reaction flux and the entropy production. The results obtained by means
of this mesoscopic approach will be compared with those resulting from the quasi-stationary approach used
in the derivation of the law of mass action. We will also compute the lost work for both approaches to un-
derstand the role played by dissipation in the kinetics of the process.

The Appendix is organised as follows. In Section 2, we briefly review the mesoscopic nonequilibrium ther-
modynamics approach [2, 38, 37]. Section 3 is devoted to introducing a model of the potential barrier based
on thermodynamic restrictions. In Section 4, we compare the average values of the current and of the energy
dissipated in the process for both approaches and set up conditions under which the quasi-stationary ap-
proach may be valid. Finally, in the last section, we summarize our main results.

A.2. Mesoscopic non-equilibrium thermodynamic approach

To analyse the chemical kinetics in the presence of intermediate states, we will consider the case of two
consecutive reversible first-order chemical reactions

A
k +

1−−⇀↽−−
k −1

B
k +

2−−⇀↽−−
k −2

C

in which a reactant A transforms into the product C passing through an intermediate state B which can
be either unstable or metastable. Here k+1 and k−1 are the forward and backward kinetic constants for the
first reaction respectively and k+2 and k−2 the kinetic constants for the second reaction. We assume that the
reactions take place in an homogeneous, isothermal and closed system. An example of this reaction sche-
me is a biochemical reaction in which an enzymatic complex enzyme-substrate (A) produces the complex
enzyme-product (C) in the presence of an intermediate state (B) [50].
We assume that the reactions take place along the dimensionless reaction coordinate γ defined from 0 to 1
which parametrizes the states of the reactions. We assign to these states the probability density p(γ, t). Its
conservation is formulated locally through the continuity equation
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∂ p(γ, t)
∂ t

=− ∂

∂γ
J(γ, t) (A-1)

where J is the probability current. The expression of the current follows by considering local equilibrium in
the space of the reaction-coordinate. This assumption, that can be justified when there is a great disparity
between the relaxation times of particle velocities and of conformational changes of the reaction complex,
allows us to compute the entropy production proper of a diffusion process through a potential barrier [37, 38]

σ(γ, t) =− 1
T

J(γ, t)
∂ µ(γ, t)

∂γ
, (A-2)

Here µ is the chemical potential and T is the temperature. From this expression, we can infer the linear law
for the current

J(γ, t) =−L(γ, t)
T

∂ µ(γ, t)
∂γ

, (A-3)

where L is an Onsager coefficient which is in general a function of the γ-coordinate. Using the fact that the
coefficient is in first approximation proportional to p(γ, t) and introducing the constant diffusion coefficient
D , measured in s−1, one has

L(γ, t) =
D

kB
p(γ, t). (A-4)

The chemical potential along the γ-coordinate in a non-ideal system is given by

µ(γ, t) = kBT lnψ(γ)p(γ, t)+φ(γ) (A-5)

Here φ is the potential barrier of enthalpic nature and ψ an activity coefficient characterizing the non-ideal
behavior. For an ideal system ψ(γ) = 1, inserting the expression of the current (Eq.(A-3)) into Eq.(A-1), we
obtain the Fokker-Plank equation

∂ p(γ, t)
∂ t

= D

[
∂ 2 p(γ, t)

∂γ2 +
1

kBT
∂

∂γ

(
p(γ, t)

∂φ(γ)

∂γ

)]
, (A-6)

whose solution is subjected to the initial condition p(0,0) = δ (0) and to Neumann boundary conditions.
In a coarse-graining description, we define the macroscopic probability for each component from the pro-
bability density p obtained from Eq. (A-6):

PA(t) =
∫

γAB

0
p(γ, t)dγ, (A-7)

PB(t) =
∫

γBC

γAB

p(γ, t)dγ (A-8)

PC(t) =
∫ 1

γBC

p(γ, t)dγ (A-9)

The integration limit γAB represents the state at which A completely becomes B while γBC stands for the state
at which B completely becomes C.
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A.3. Modelling the potential barriers

To obtain the solution of the Fokker-Planck equation, we need to know the form of the potential barrier. We
will analyze two particular cases of potential barriers one with an unstable intermediate and another with
a metastable intermediate. For the case of unstable intermediate state B, the kinetics reduces to that of a
two-state system, A and C and can then be described by a bistable potential. On the contrary, if the state B is
metastable we have to consider the transitions to and from this state and the potential must be tristable.

A.3.1. Bistable potential

We first consider the reaction

A
k+−−⇀↽−−
k−

C

The potential barrier for this case is modeled by a bistable potential whose minima located at γ = 0 and
γ = 1 correspond to the reactants and products and the maximum at γ∗ is the transition state (B). The form
of the barrier must fulfill some thermodynamic requirements. Stability of the initial and final states of the
reaction imposes two conditions on the first derivative of the potential. Three more conditions come from the
values of the standard chemical potentials and the activation energy at γ = 0, γ = 1 and γ = γ∗, respectively.
Moreover, since the potential barrier is related to the equilibrium probability distribution, the values of the
coordinate such that γ < γ∗ denote the state A and those for which γ ≥ γ∗ correspond to the state C.
For the potential barrier, we thus propose a fifth-order polynomial with two minima and a maximum in the
interval [0,1]. The polynomial includes six parameters whose values follow from the seven thermodynamic
restrictions which as a matter of fact reduce to six since the location of the transition state is unknown. The
potential barrier is then given by

φ(γ) =
5

∑
i=0

ciγ
i (A-10)

where the constrains are

φ(0) = µ
0
A; φ(1) = µ

0
C; φ(γ∗) = máx(φ(γ))−µ

0
A = ε;

dφ(γ)

dγ

∣∣∣
γ=0

=
dφ(γ)

dγ

∣∣∣
γ=1

=
dφ(γ)

dγ

∣∣∣
γ=γ∗

= 0;

exp((µ0
A−µ

0
C)/RT ) =

PC,eq

PA,eq
=

∫ 1
γ∗ exp(−φ(γ)/RT )dγ∫ γ∗

0 exp(−φ(γ)/RT )dγ

This system of equations enables one to determine γ∗, and ci, i = 0,1, ..,5. For instance, for (µ0
A−µ0

C)/RT =

1 and ε/RT = 5, we obtain the potential barrier shown in Figure.D-1.

A.3.2. Tristable potential

We now consider the situation in which the reaction takes place through an intermediate component and
corresponds to the one given in the previous section. The potential barrier is now modelled by a tristable
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Fig. A-1.: Bistable potential φ(γ)/kBT modelling a process with an unstable intermediate.

potential whose minima are located at γ = 0, γ = 1 and γ∗ which corresponds to the reactant (A), product (C)
and intermediate (B), respectively. Further, the potential barrier is described by two maxima at γAB and γBC

which represent the transition states between A, B and C respectively. The form of the barrier is subjected
to thermodynamics constraints. Stability at A, B and C imposes three conditions on the first derivative of
the potential. Five more restrictions come from the values of the standard chemical potentials at γ = 0 for
A, γ = 1 for C, at γ = γ∗ for B and transition state energy at γ = γAB and γ = γBC. Moreover, since the
potential barrier is related to the equilibrium probability distribution, values of γ ∈ [0, γAB] denote state A,
γ ∈ [γAB, ,γBC] correspond to state B and γ ∈ [γBC, 1] to state C.

For the potential barrier, we thus propose a stepwise function composed of two fifth-order polynomials
which are continuous at γ = γ∗ and whose derivative exists at γ = γ∗. Each polynomial includes six para-
meters whose values follow from the seven thermodynamic restrictions which as a matter of fact reduce to
six since as in the case of the bistable potential the location of the transition state is unknown. The potential
barrier is then given by

φ(γ) =

{
φ−(γ) 0≤ γ ≤ γ∗

φ+(γ) γ∗ ≤ γ ≤ 1

where the constrains for φ−(γ) are:

φ
−(0) = µ

0
A; φ

−(γ∗) = µ
0
B; φ

−(γAB) = µ
0
A + ε

−;

dφ−(γ)

dγ

∣∣∣
γ=0

=
dφ−(γ)

dγ

∣∣∣
γ=γAB

=
dφ−(γ)

dγ

∣∣∣
γ=γ∗

= 0;

exp((µ0
A−µ

0
B)/RT ) =

PB,eq

PA,eq
=

∫
γ∗

γAB
exp(−φ−(γ)/RT )dγ +

∫ γBC
γ∗ exp(−φ+(γ)/RT )dγ∫ γAB

0 exp(−φ−(γ)/RT )dγ

and those for φ+(γ) are:
φ(γ∗) = µ

0
B; φ(1) = µ

0
C; φ(γBC) = µ

0
B + ε

+;
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dφ+(γ)

dγ

∣∣∣
γ=1

=
dφ+(γ)

dγ

∣∣∣
γ=γBC

=
dφ+(γ)

dγ

∣∣∣
γ=γ∗

= 0;

exp((µ0
A−µ

0
C)/RT ) =

PC,eq

PA,eq
=

∫ 1
γBC

exp(−φ+(γ)/RT )dγ∫ γAB
0 exp(−φ−(γ)/RT )dγ

For instance, for (µ0
A − µ0

C)/RT = 1, µ0
B/RT = 4, ε−/RT = 7 and ε+/RT = 2, we obtain the tristable

potential barrier shown in Figure A-2.
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Fig. A-2.: Tristable potential φ(γ)/kBT modelling a process with a metastable intermediate.

A.3.3. Multistable potential barrier

Complex reaction schemes, non-elementary reactions and non-unimolecular reactions can be expressed as
superposition of simultaneous and sequential first-order reactions. We consider the case of a chemical reac-
tion scheme composed of Y consecutive first-order processes, in which in the yth process, the component A(x)

transforms into component A(x+z−1). The process is modelled by a potential barrier with z stable and metas-
table states with x = 1, ....Z−1 and z = x+1, ...,Z, being Z the maximum number of stable and metastable
states involved in the reaction mechanism. The yth process is

A(x) k+x−−⇀↽−−
k−x

A(x+1) k+x+1−−−⇀↽−−−
k−x+1

...
k+x+z−2−−−−⇀↽−−−−
k−x+z−2

A(x+z−1)

The cases of bistable and tristable processes studied previously correspond to Y = 1, x = 1 and z = 2 (bis-
table) and z = 3 (tristable). Now, considering that the yth process is parametrized by the γy coordinate, the
yth potential barrier (φy(γy)) is a piecewise function composed of z− 1 pieces. Therefore, the multistable
potential barrier for the yth sequential process is given by

φy(γy) =
{

φ
( j)
y (γy) i f γy, j−1 ≤ γy ≤ γy, j ∀ j | j = 1, ...,zy−1. γy,0 = 0 ∧ γy,zy−1 = 1

Here, γy, j is the position of the jth state of the sequential process.



228 A Kinetics and energetics of intermediate states

A.4. Quasi-stationary approach

A.4.1. Fluxes

When the potential barrier is high enough, the reaction reaches a quasi-stationary state in which J may
depend on time but is practically constant along the reaction coordinate γ . This case was analyzed in detail
in [2] for unimolecular reactions, showing that the reaction flux is given by the LMA which follows by
integrating Eq. (A-3) over γ . If the process contains more than two stable or metastable states, this integration
must be performed in the two zones of the potential barrier. One obtains

J(t) =

 JAB(t) = −D∫ γ∗
0 exp(φ(γ)/RT )dγ

[exp(µ(γ∗)/RT )− exp(µ(0)/RT )] , 0≤ γ ≤ γ∗

JBC(t) = −D∫ 1
γ∗ exp(φ(γ)/RT )dγ

[exp(µ(1)/RT )− exp(µ(γ∗)/RT )] , γ∗ < γ ≤ 1
(A-11)

The fluxes for both reactions can be rewritten in terms of probabilities and reaction rates as

JAB(t) = k+1 PA− k−1 PB, (A-12)

JBC(t) = k+2 PB− k+2 PC, (A-13)

where the reaction constants depend on the potential barrier and D

k+1 =
D∫ γ∗

0 exp(φ(γ)/RT )dγ
exp(µ0

A/RT )

k−1 =
D∫ γ∗

0 exp(φ(γ)/RT )dγ
exp(µ0

B/RT )

k+2 =
D∫ 1

γ∗ exp(φ(γ)/RT )dγ
exp(µ0

B/RT )

k−2 =
D∫ 1

γ∗ exp(φ(γ)/RT )dγ
exp(µ0

C/RT )

We have considered that in first approximation the diffusivity coefficient is constant along the reaction
coordinate and has then a common value for both reactions. This approximation is valid when the potential
is sufficiently smooth as frequently occurs in many reactions. The probability conservation laws of the
components A, B, and C are

dPqs,A

dt
=−JAB(t), (A-14)

dPqs,B

dt
= JAB(t)− JBC(t), (A-15)

dPqs,C

dt
= JBC(t), (A-16)

If the quasi-stationary approach successfully describes the reactive process, the probabilities Pqs in Eqs. (A-
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14),(A-15) and (A-16) should converge to the probabilities in Eqs. (A-7),(A-8) and (A-9) that can be found
by solving the Fokker-Planck equation.

To define the entropy production rate in the quasi-stationary approach (σqs) for the coupled reactions, notice
that in Eq. (A-11) the driving force is the fugacity difference (∆exp(µ/RT )). Therefore, in this approach the
entropy production rate is written in terms of flux-force pairs [36]. Rewriting the force as a function of the
flux using Eqs. (A-12), (A-13), we obtain the expression for σqs(t),

σqs(t) =
R
D

[
JAB(t)2

∫
γ∗

0
exp(φ(γ)/RT )dγ + JBC(t)2

∫ 1

γ∗
exp(φ(γ)/RT )dγ

]
(A-17)

A.4.2. Testing the quasi-stationary approximation

Once the potential is built up, we can analyze the validity of the quasi-stationary approximation for processes
having a unstable or a metastable intermediate state B by computing the probabilities and the lost work as a
function of the intermediate state EB.

To evaluate the error made when using the quasi-stationary approximation, we introduce the distance δ (EB)

in the probability space through the expression

δ (EB)
2 =

1
tR

∫ tR

0
(P(t;EB)−Pqs(t;EB))

2dt (A-18)

from which we may construct a variance or a norm. Here tR is the relaxation time of the process defined
as the time at which the probability in the quasi-stationary approach reaches the 99,95% of the equilibrium
value

Pqs,C(tR;EB)

Peq
qs,C(tR;EB)

= 0,9995. (A-19)

In the case of a metastable intermediate case, P ≡ [PA,PB,PC] and Pqs ≡ [Pqs,A,Pqs,B,Pqs,C]. When the inter-
mediate state is unstable, P≡ [PA,PC], and Pqs ≡ [Pqs,A,Pqs,C].

A.4.3. Lost work

The reaction kinetics entails dissipation that can be quantified by means of the lost work related to the
entropy production [36]. This quantity can give us information about the energetic efficiency of the process
and the consistency of the kinetic models proposed. The lost work computed from the mesoscopic approach
is defined as

WL(EB) = T
∫

∞

0

∫ 1

0
σ(γ, t)dγdt (A-20)

whereas the lost work corresponding to the quasi-stationary approach is

W (qs)
L (EB) = T

∫ 1

0
σqs(t)dγ (A-21)

These two quantities can be computed from the knowledge of the probability distributions.



230 A Kinetics and energetics of intermediate states

A.5. Results

A.5.1. Mesoscopic approach
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Metastable Intermediate: (b) p(γ,t)
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Fig. A-3.: Results obtained from the mesoscopic approach as a function of the dimensionless time tD .
(a) probability density, (c) flux, and (e) entropy production rate, as a function of the reaction
coordinate and time for a process with an unstable intermediate. (b) probability density, (d) flux,
and (f) entropy production rate, as a function of the reaction coordinate and time for a process
with a metastable intermediate. In the potential barriers is used µ0

A−µ0
C = 4kBT . For the unstable

case, EB = 10kBT . For the metastable case, EB = 5kBT , ε− = 7kBT , and ε+ = 5kBT .

We have numerically solved the Fokker-Planck equation (Eq. (A-6)) by means of a finite-volume method
written in MATLAB®[51] to obtain the probability density and from it the reaction flux and the entropy pro-
duction rate for processes with unstable and stable intermediate states. The results are presented in Fig. A-3,
as a function of the dimensionless time τ = tD . The difference between the standard chemical potentials for
component A and C is 4kBT , the value of the energy of the intermediate is 10kBT for the bistable case, for
the tristable case is 5kBT and the transition state energies are 12kBT and 10kBT , respectively.

The relatively low values used for the potential barrier parameters illustrate particular situations in which the
quasi-stationary approach is less accurate because of a low energetic potential. These low energetic barriers
are frequently found in processes such as conformational movements of organic compounds and proteins,
ion exchange (in zeolites), intermolecular interactions and hydrogen bonds[52, 53, 54, 55, 56] and in some
physico-chemical processes [57, 58, 59, 55, 56].
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The Figs. A-3 (a) and (b) show the temporal evolution of the probability density in the cases of unstable
and mestastable intermediates, respectively. We can observe how the density of states decreases with time
near γ = 0 and increases at γ = 1, as could be expected. In Figure A-3(b), at early stages there is an slight
increment of the density of the state around γ = 0,45 due to the existence of the metastable intermediate.
This increase could be more visible if the metastable state had a lower energy.

The Figs. A-3(c) and (d) show the evolution over time of the flux for both cases. We can observe how the
fluxes decrease with time. Fig. A-3(c) shows a constant flux for a specific time and reaction coordinate in
between γ = 0,15 and γ = 0,85. Nevertheless, this flux is not quasi-stationary because it depends on γ for
dimensionless times tD smaller than 20. Fig. A-3(d) shows a similar behavior with the presence of two dif-
ferent zones. This confirms the fact that in the quasi-stationary approach there are two fluxes describing the
process. Again the flux is not completely constant in γ and differs from the one obtained in the mesoscopic
approach.

Fig. A-3(e) and (f) present the temporal evolution of the entropy production rate for both cases. We can
observe how the entropy production rate decreases over time until it vanishes in thermodynamic equilibrium.
Fig. A-3(e) shows a displacement of the maximum over time because the probability distribution changes
around this region, not because the flux is constant in this region. The maximum is always located at the
right side of the unstable state B which is found at γ = 0,41. The entropy production is higher at γ values
such that the first derivative of φ(γ) is negative and its second derivative is also negative. Fig. A-3(f) shows
maxima of the entropy production, the first around γ = 0,3 and the second around γ = 0,78, corresponding
to both subprocesses, A to B and B to C. Notice that the entropy production of the second subprocess does
not appear at very early stages due to the fact that the flux in this zone vanishes. Further, as in Fig. A-3(e),
the entropy production is larger at γ values such that the first derivative of φ(γ) is negative and its second
derivative is also negative.

A.5.2. Accuracy of the quasi-stationary approach

To compare the results obtained by means of both approaches, we have solved Eqs.(A-14-A-16) and (A-
6) for different values of (EB) and used Eqs. (A-7-A-9) to compute the coarse-graining probabilities and
Eq.(A-18) to compute the error.

As it is shown in Figs. A-3(c) and (d), the fluxes depend on γ especially at early times of the process. This
fact causes significant deviations of the quasi-stationary approach from the mesoscopic description, as be-
comes manifest in Fig. A-4(a). These differences are more pronounced at low energies of the intermediate
state. For instance, in the case of an unstable intermediate the deviation is higher than 100% for early stages.

In Fig. A-4(b), we show the computed average deviation for processes with unstable and metastable interme-
diate states as a function of its energy. We can see that the average deviation decreases when one increments
the energy of the intermediate state because when increasing the energy barriers, the process slows down
and the flux becomes homogeneous in γ .
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Fig. A-4.: Deviation and average deviation as a function of the intermediate energy. (a) |P(t;EB)−Pqs(t;EB)|
as a function of tD and EB. (b) δ (EB) as a function of EB. Black empty circles represent the
average deviation computed in the case of an unstable intermediate whereas grey circles stand for
the case of a metastable intermediate. In the potential barrier, we have taken µ0

A−µ0
C = kBT . For

the metastable case, we have considered ε− = EB +2kBT , and ε+ = EB + kBT .

Notice that the average deviation is smaller than 1% for intermediate states with energy larger than 6,5kBT
and 8,5kBT . The deviation is smaller than 10% if the energy of the intermediate state is higher than 3kBT and
5,5kBT . For these energies, however, we find instantaneous deviations δ (t;EB) of around 100% and 60%.
Even for the unstable case shown in Fig. A-4(a), for an energy around 8kBT the instantaneous deviation
between both approaches for early stages is of 20%. This confirms the fact that the largest difference between
both approaches takes place at early stages of the processes.

A.5.3. Lost work

In Fig. A-5, we compare the lost work computed from Eqs. (A-20) and (A-21) for processes having unsta-
ble and metastable intermediate states. For both approaches, we obtain that the lost work decreases as the
energy of the intermediate state EB increases. Considering that µ0

A−µ0
C = kBT and using the initial condition

p(0,0) = δ (0), we found that in the quasi-stationary approach the lost work converges to kBT . For these
processes (with unstable and metastable intermediate) the available free energy is completely dissipated in
the process. To the contrary, in the mesocopic approach the lost work tends to exp((µ0

A−µ0
C))/kBT ) which

is higher than the available energy. Therefore the system takes energy from the thermal fluctuations of the
environment to cross the potential barrier thus explaining the higher dissipation observed in this case.

The quasi-stationary approach underestimates the value of the lost work. The origin of this discrepancy lies
in the different nature of the kinetics of both approaches. In the mesoscopic approach, the state of the system
undergoes by a diffusion process whereas the quasi-stationary approach is obtained by a coarse-graining of
the diffusion kinetics that only considers the initial and final states thus ignoring the possibility of different
paths connecting both states. This fact leads to an underestimation of the flux computed from the quasi-
stationary approach, especially at early times of the process (see Fig. A-4) which implies a decrease of the
entropy production and of the lost work. The lost work computed from the mesoscopic approach is larger
than the one computed from the quasi-stationary approach for different values of ∆µ0 = µ0

A− µ0
C. The dif-

ference is, at least ekBT :
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Fig. A-5.: The lost work WL as a function of the intermediate energy EB. The continuous line stands for the
mesoscopic approach and the dashed lines for the quasi-stationary approach. The lost work for a
process with an unstable intermediate is represented by a black line and that for a process with a
metastable intermediate is represented by a gray line. To more clearly illustrate the behaviour, we
have plotted the lost work for the mesoscopic approach as WL/exp((µ0

A−µ0
C)/kBT ).

WL(∆µ
0)≥W (qs)

L (∆µ
0)+ ekBT (A-22)

This quantity has been computed analytically by using the quasi-stationary approach. In the mesoscopic ap-
proach, the lost work has been estimated as the sum of two contributions corresponding to the transit along
the left and right hand sides of the barrier.

In Fig. A-5, we observe that for the mesoscopic approach with a metastable intermediate state (grey con-
tinuous line), the lost work is not a monotonous function of EB since it exhibits a local minimum around
EB = 6,5kBT . The minimum does not appear in the case of the quasi-stationary approach. The existence of
the minimum is the signature of an increase of the thermodynamic and kinetic efficiencies of the process.

From this figure, one observes that when increasing the energy of the intermediate state, a reaction with an
unstable intermediate and a sequential process with a metastable intermediate dissipate the same amount of
energy.

A.6. Conclusions

In this Appendix, we have analyzed the relevance that the presence of intermediate states in the activation
pathway has on reaction kinetics and on energy dissipation.The main results obtained are the following:

The probability density for the case of a metastable intermediate presents a slight accumulation around the
gamma value where the metastable state is located (see Fig. A-3(b)). The fluxes and the entropy production



show a non-monotonic behavior along the reaction coordinate γ (see Fig. A-3(d),(f)) while for the case of
an unstable intermediate we found a monotonic behavior in γ and t (see Fig. A-3(c),(e)).

Our results show that at early stages the reaction flux strongly depends on the reaction coordinate (see Fig.
A-3(c) and (d)) contrary to the assumption of the quasi-stationary approximation made to derive the LMA
in which it is only a function of time [60]). When the height of the barrier increases the average deviation
defined in Eq. A-18 decreases (see Fig. A-4(b)) and the quasi-stationary approximation becomes valid [2].

The lost work computed from the mesoscopic (Eq. A-2) and quasi-stationary (Eq. A-17) approaches are dif-
ferent. Their values obtained for processes with unstable and metastable states converge for high energies of
the intermediate state. However, we have found that in both approaches this quantity depends on ∆µ0 and it
differs in a factor of approximately ekBT . Furthermore, in processes with a metastable intermediate, the lost
work computed from the mesoscopic approach shows a local minimum which runs contrary to its behavior
in the quasi-stationary approach. The presence of this minimum is related to an increase in the efficiency of
the process.

The results found for the reaction flux and the entropy production show that the presence of intermediate
states may play an important role in the kinetics and energetics of enzymatic and organic reactions, RNA and
protein folding and chemisorption processes. The mesoscopic approach presented thus provides a general
framework to study the chemical kinetics of these processes.
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B. Appendix: Entropic transport in a crowded

medium

To know how liquid matter moves through a crowded medium due to the action of a force constitutes cu-
rrently a problem of great practical importance, present in cases as diverse as the transport of particles
through a cell membrane and through a particulate porous medium. To calculate the mass flow through the
system, we present an approach that emulates the texture of the medium by using entropic barriers that par-
ticles must overcome in order to move. The model reproduces the scaling behavior of the velocity with the
force found in many systems in order to show how the scaling exponent depends on the micro-structure of
the medium. Our model offers a new perspective able to characterize the flow of matter through the medium,
and may be useful in studies of nano-fluids, oil recovery, soil drainage, tissue engineering and drug delivery.

This Appendix was published in the Journal of Chemical Physics, 153,034108, (2020). Ref.[1]
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B.1. Introduction

To know how liquid matter moves through the interstices of a crowded medium composed of a random
distribution of obstacles is a basic problem usually found in transport through cellular and synthetic mem-
branes and tissues, soils and in porous media in general [2, 3, 4, 5, 6, 7, 8]. What the mass flux through the
medium induced by an external driving force is, and how it depends on the micro-structure of the medium
are fundamental questions in many physico-chemical and biological processes as well as in technological
applications.

The flow through the medium exhibits a wide variety of behaviors to the application of a driving force.
Experiments performed with different liquid phases and crowded media such as in synthetic polymer mem-
branes, aquaporin-based cell membranes, tissues and particulate solid media [9, 10, 11], show that in general
the velocity of the fluid v scales as: v ∝ (∆P)α where ∆P is the imposed pressure difference and α a scaling
exponent. The linear case α = 1 corresponds to Darcy’s law [12]: v = k

η
∆P where k and η are the permea-

bility and viscosity respectively assumed constant whereas α ̸= 1 characterizes non-Darcy regimes [13].

Lattice Boltzmann simulations of a pore network [14] and non-equilibrium thermodynamics models [15, 16]
have been used to reproduce steady-state flows, and to show the existence of non-Darcy regimes. For crow-
ded media modeled by channels of a constant cross-sectional area, stochastic models have been proposed to
compute the velocity of tagged particles [17, 3]. Flow through a crowded medium has also been analyzed
under the perspective of random walks in which fluctuations are not of thermal origin but generated by the
randomness of the channel distribution [18, 19, 20]. Averages of the different quantities are thus calculated
over a statistical ensemble characterized by a probability distribution. It was shown in Refs. [18] that if
the porous medium is isotropic and homogeneous the probability is a Gaussian, and the resulting average
velocity is linear in the pressure drop, thus fulfilling Darcy’s law.

The complex micro-structure of crowded media results in an irregular landscape of empty spaces through
which particles may move leading to an inhomogeneous distribution of micro-states, and consequently to a
position-dependent entropy. These entropy variations induce entropic forces that may hamper (in the case
of constrictions in the pores) or promote (in the case of apertures) the motion of the particles [21, 22, 23].
It has been shown that the presence of these forces play an important role in diffusion through an ordered
distribution of solid particles mimicking a crowded medium [24, 25].

In this Appendix, we show that modeling local variations of the geometry of the medium by entropic barriers
enables us to know the impact of the micro-structure of the medium on the flow of matter through it induced
by a driving force. Our model allows us to reproduce the scaling behavior of the velocity in terms of the
force observed in the experiments performed in very different systems.

The Appendix is organized as follows. In Section II, we describe the crowded medium micro-structure and
present the entropic barriers model from which we can compute the velocity that in general fulfills a scaling
low in terms of the applied force. In Section III, we compare our results with experiments. Finally, in Section
IV, we present our main conclusions.



240 B Entropic transport

B.2. Model

B.2.1. Crowded medium micro-structure

Let us consider a cube-shaped piece of material of side R and length L whose internal structure can be mo-
deled by a set of N channels uniformly distributed, as shown in Fig.B-1(a), through which a suspension of
tagged particles may flow under the action of an applied force F .

The micro-structure of a crowded medium is usually given through statistical properties of the distribution
of lengths and widths of the pores or sizes of the particles constituting the medium. In Refs.[25, 24] the in-
terstices of a porous medium composed of solid spheres are modeled by periodic channels. This periodicity
results from the fact that the medium is composed of a large number of objects and voids which sequentially
alternate.

We will assume that the shape of the channel is modeled by a periodic function or by a random function
(see Fig.B-2). Periodicity requires that the radius of the n channel rn fulfills the relation: rn(x) = rn(x+ ln)
where ln is the period. To simplify our analysis of the particle transport, we have modeled the channels by
simple relationships between rn and ln, with ln randomly distributed. We will show that this choice reprodu-
ces different behaviors observed experimentally.

The volume occupied by the N channels is Vp = ∑
N
n=1Vn, with Vn = L/ln

∫ ln
0 πrn(x)2dx. We assume that the

length of the periods is randomly distributed. For sufficiently large numbers of channels, the volume can be
expressed as

Vp = N
∫ L

l0

L
ln

(∫ ln

0
πrn(x; ln)2dx

)
ρ(ln)dln (B-1)

where ρ(ln) is the period probability distribution and l0 the minimum period. To consider variations along
different length scales in the sizes of the objects, and of the free spaces constituting the crowded medium
and thus in the period ln, we suppose that the length of the periods follows a log-normal distribution [26]:

ρ(ln) =
1

lnσ
√

2π
exp

(
−
(

ln(ln/l)√
2σ

)2
)

(B-2)

where ln(l) is the mean and σ the standard deviation. The fluctuating area of the pores in a cross-section at
position x, A(x)≡ π ∑

N
n=1 r2

n(x), where rn is a sinusoidal function, is represented in Fig.B-1(b).

The expression for the volume Vp in terms of the dimensionless variables x̂≡ x/ln and r̂ ≡ rn/ln is

Vp = NL
∫ L

l0
l2
n

(∫ 1

0
π r̂(x̂)2dx̂

)
ρ(ln)dln (B-3)

Since r̂ does not depend on ln, the integrals can be solved separately to obtain

Vp = NLl2
ξ exp(2σ

2) (B-4)

for L ≫ l and l0 ≪ l, where ξ ≡ π r̂2 (with r̂2 ≡
∫ 1

0 r̂(x̂)2dx̂) is the average cross-sectional area of the
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Fig. B-1.: Microstructure of a crowded medium and its characterization by means of entropic barriers. a)
Cross sections at different positions. Continuous and dashed lines represent paths that intersect
and do not intersect, respectively. The average trajectory of a particle in parallel and unconnected
channels is represented by dashed lines while continuous lines represent the trajectory in con-
nected channels. b) Area occupied by the channels as a function of x. c) Shape of a channel and
its associated entropic barrier from position A to C ∆S(x) = kB ln(an/l2

n) with an ≡ πrn(x)2 the
cross-sectional area. The maximum height of the barrier takes place at B where the constriction is
more pronounced.
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Fig. B-2.: Micro-structure of the channels. (a) Conical: rn/ln = mx/ln + b. (b) Sinusoidal: rn/ln =
msin(2πx/ln)+ b. (c) Exponential: rn/ln = bexp(mx/ln). (d) Random. The structures are cha-
racterized by the parameters m and b. Negative values of m describe a shrink of the linear and
exponential channels

channel. By considering that on average
√

N channels can be aligned in a strip of length R and that the
separation among those channels is proportional to the lineal porosity (ε1/3), we have R =

√
Nlr̂ε−1/3 and

then: N = (R/l)2ε2/3/r̂2. Substituting this relation in Vp, considering the porosity ε ≡ Vp/R2L and solving
for ξ , we obtain an expression for the dimensionless cross-sectional area as a function of the medium
geometry

ξ = ε
1/3r̂2 exp(−2σ

2) (B-5)

where max(dr̂/dx̂)2 = γ , with γ ≪ 1 [27]. The expressions for ξ and γ are used to find the constants b y m
linking the shape of the channel with the crowded media architecture. For instance, for an exponential chan-
nel (Fig.B-2(c)) we have that: ξ = πb2(exp(2m)−1)/2m, and γ = (mb)2 exp(2m) for m > 0 or γ = (mb)2

for m < 0.

B.2.2. Kinetics

To analyze the transport of the fluid through the medium, we will adopt the stochastic approach proposed in
[18, 19] for which small volume elements of the fluid containing many molecules, or fluid particles, move
affected by the randomness of the medium. Transport of these particles is thus described by means of a
probability distribution which obeys a kinetic equation of the Fokker-Planck type. In the case of crowded
medium being isotropic and homogeneous, the probability is a Gaussian, similarly to the case of Brownian
motion in which randomness is due to thermal fluctuations.

We will first compute the velocity of the fluid particles through a single channel of non-constant cross-
sectional area and subsequently average the result over a random distribution of sizes of the channels. When
the corrugated channel is sufficiently narrow, the particle probability distribution equilibrates much faster in
the transverse directions than along the transport direction, reaching a local equilibrium distribution. One can
thus perform a coarse-graining description in which the motion is practically 1-d and the particles proceed
through entropic barriers resulting from the irregularities in the shape of the channel [21, 27] driven by an
external force [23]. The probability distribution p(x, t) obeys the Fick-Jacobs equation.

∂ p(x, t)
∂ t

+ v
∂ p
∂x

=
∂

∂x

(
D

∂ p
∂x

+
Dp
kBT

∂G
∂x

)
(B-6)
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where v is the velocity of the fluid and D a local diffusion coefficient accounting for an effective diffu-
sion mediated by the presence of variations of the cross-sectional area of the channel through its local
slope. Its expression resulting from the coarse-graining description was given in [21]. In our case one has:
D(x) = D0

(
1+(dr̂/dx̂)2

)−1/2, with D0 the diffusion coefficient in absence of entropic barriers [28]. It has
been shown [21] that the introduction of a spatially-dependent diffusion coefficient D(x) in Eq. (6) im-
proves the results of the transport coefficient [21, 23]. The free energy is given by G = H − T S, where
H = M

2 v2 +
∫

Fdx is the enthalpy, with M the mass of the moving particles, and S the entropy which is
nonconstant (see Fig.B-1(c)) due to the irregularities in the shape of the channels: S(x̂) = kB ln(π r̂2(x̂)).
Variations of the entropy through the medium gives rise to the presence of entropic forces [21].

The Fick-Jacobs equation is strictly valid for sufficiently small slopes of the channels, γ ≪ 1. However, its
validity extends to higher values of γ with a very small error in the mobility of the particles with respect to
Brownian dynamics simulation results [27].

The relative importance of the different terms of Eq.(B-6) can be analyzed by expressing it in dimensionless
form. To this purpose, we introduce the Péclet number, Pe≡ vl/D, the dimensionless force f ≡ Fl/kBT , the
dimensionless number I ≡ l3ρv2/kBT , comparing kinetic energy with thermal energy and the dimensionless
number Σ ≡ 2γ1/2/δ accounting for entropic effects, with δ ≡ min(r̂). In many experimental situations
such as flow though porous media with low porosity [9, 10], tissues [29] and biological membranes [30]
among others, the velocity of the fluid is very small, of the order of 1−100nm/s, the characteristic lengths
vary from 0,1 to 100µm and D0 ≈ 10−11m2/s. We then conclude that Reynolds numbers are Re ≈ 10−7,
Pe ≈ 10−2, I ≈ 10−9, f ≈ 10 and Σ ≈ 20. Therefore, in these cases external and entropic forces dominate
over the remaining contributions to the kinetics which makes that Eq.(B-6) reduces to

∂ p(x, t)
∂ t

=
∂

∂x

(
D

∂ p
∂x

+
Dp
kBT

∂G
∂x

)
(B-7)

The average of the dimensionless velocity can be computed from the distribution of mean-first passage times
[23] or through the calculation of the particle diffusion current [27] of Eq.(B-7), arriving at the same result:

⟨ ˆ̇x⟩= 1− exp(− f )∫ 1
0 dx̂exp(−Ĝ(x̂))

∫ x̂+1
x̂ dẑD̂(ẑ)−1 exp(Ĝ(ẑ))

(B-8)

where ẑ≡ z/ln, and Ĝ(x̂) =− f x̂−T S(x̂) is the dimensionless free energy.

In Fig.B-3, we show how ⟨ ˙̂x⟩ behaves as a function of the force f for the exponential channel in Fig. B-2. A
linear behavior is observed for sufficiently small and high values of f whereas at intermediate values of the
force and small enough values of ξ , the behavior is nonlinear. To compute the average particle velocity in an
exponential channel, we use the relation rn/ln = bexp(mx/ln) in Eq.(B-8) and perform a series expansion
of D̂ for small values of |m|, obtaining:

⟨ ˆ̇x⟩ ≈ (1− exp(− f ))( f +2m)

(1− exp(−( f +2m)))
(B-9)

where |m| = (γ/2ξ )1/3. From this expression, we conclude that for high enough values of f , the linear



244 B Entropic transport

behavior is shifted to the right in the amount of 2|m|, as observed in the experiments of fluid flow through
sand and clay [9]. There exists a threshold value of the force f0 that separates two regimes, one in which the
velocity is practically zero (diffusion dominates) and other in which the force causes a significant increment
in the particle velocity (biased diffusion dominates), in agreement with the experiments performed in sand
and clay [31, 32].
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Fig. B-3.: Normalized dimensionless particle velocity ⟨ ˆ̇x⟩/⟨ ˆ̇x⟩max for the exponential channel of Fig. B-2 as
a function of the normalized external force f/ fmax for different values of ξ , with fmax = 2γ/ξ .
Continuous black, gray and dashed gray lines correspond to ξ equal to 1,0× 10−2, 2,1× 10−3,
4,2× 10−4, respectively. Black dashed and dotted lines denote the linear regime. In the non-
linear regime ⟨ ˆ̇x⟩ ∝ f α . For ξ = 2,1× 10−3 and ξ = 4,2× 10−4, we obtain α equal to 1,5 and
2, respectively. In the inset, we represent the differential mobility ∂ ⟨ ˆ̇x⟩/∂ f for ξ = 1,0× 10−2

(continuous black line) and for ξ = 4,2×10−4 (dashed gray line).

The total flux through a medium composed of parallel channels can be computed as in the case of an
electrical current passing through a set of parallel conductors subjected to a common potential difference.
The total flow Q is the sum over the N channels of the flow along each channel Qn = ξ l2

nvn. The average
velocity through the medium v= ≡ Q/Nξ l2 is then given by

v= ≡
1
N

N

∑
n=1

vn

(
ln
l

)2

(B-10)

where vn =
D0
ln
⟨ ˆ̇x⟩. In the case of intersecting channels, similar to a series circuit in which the inverse of the

total flow 1/Q is the sum over the N channels of the inverse of the flow through each channel 1/Qn, we
obtain the expression for the average velocity through the medium:
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1
v̸=

1
N
≡

N

∑
n=1

1
vn

(
l
ln

)2

(B-11)

By considering that the crowded medium is composed of a large number of channels whose periods are dis-
tributed according with the log-normal distribution (Eq.(B-2)), the average velocity of the particles flowing
through the medium is

v=,̸= ≡

∫ ∞

0

(
vn

(
ln
l

)2
)±1

ρ(ln)dln

±1

(B-12)

where the plus symbol in the exponent stands for unconnected channels and the minus for interconnected
channels. By performing the integral of this expression, one obtains

v=,̸= =
D0

l
⟨ ˆ̇x⟩exp(±σ

2/2) (B-13)

From this expression, we conclude that the average velocity in a medium constituted by unconnected chan-
nels increases with σ2 since a high disorder entails wider channels while just the opposite behavior occurs
for connected channels.

When the distribution of periods is a normal distribution, one gets: v≈ D0,e f f
l ⟨ ˆ̇x⟩

(
1+ σ

l

√
2
π

exp(−( l
σ
)2)
)±1

which increases or decreases more smoothly with σ than in the case of a log-normal distribution. We then
conclude that the period distribution related to the pore-size distribution, affects the magnitude of the velo-
city but not its behavior with the force, in accordance with Ref. [33].

The case of a homogeneous and isotropic random medium considered in [18] can be analyzed by means of
our model. For a fixed value of the period of the channels, the standard deviation σ vanishes and Eq.B-13
gives v =

D0,e f f
l ⟨ ˆ̇x). If in addition the cross-sectional area of the channel is constant, Eq. B-8 reduces to

⟨ ˆ̇x⟩ = 1− exp(− f )) which for f ≪ 1, leads to a Darcy-like behavior of the average velocity in terms of an
external pressure difference: v = k

η
∆P, with k = r2/6πa and a the effective radius of the particle, according

to Ref.[18]. Darcy’s behavior for the velocity can also be reproduced from our model at high values of ξ ,
i.e. high porosity and large standard deviation of the size distribution of the objects composing the medium
(fibers, proteins, solid particles, etc.). A linear behavior of the velocity in terms of temperature and chemical
potential gradients, considered as driving forces, has also been found in the flow through synthetic polymer
membranes [34], cell membranes composed by aquaporins [35] and in chemotaxis in solid particulate media
[36].

For a range of values of the force used in the experiments, model results obtained from Eq. (B-13) can also
be represented by the power law:

v( f ) ∝ f α (B-14)

where the exponent α follows by fitting the results of the velocity obtained from Eq. (B-13) with the power
law Eq. (B-14). Experimentally, α usually varies between 3/4 and 5/2. The exponent is mainly affected by
the parameter ξ which depends on the microstructure of the medium. The scaling law proposed is useful to
quantify deviations from the linear behavior given by Darcy’s law.
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B.3. Results

To test the validity of our model, we have applied it to the cases of: i) water and heavy oil flowing through
a solid particulate medium composed of sand and/or clay particles, ii) serum flow through hepatoma tissue
(carcinogenic tumor) and subcutaneous tissue, iii) ringer solution and paraffin oil flowing through a synovial
membrane, and iv) water flowing through a corneal membrane, where experimental results are available. In
all these cases the flow is induced by a pressure gradient that can be osmotic, intra-articular or imposed.
Comparison with experiments is made by tuning ξ , the average period l which is related to the average
size of the constituents making up the medium (solid particles in particulate medium, proteins in biological
membranes and interstices in tissues) and the standard deviation σ . Values of these parameters are given in
Table B-1 for both, unconnected and connected channels.

Tab. B-1.: Representative parameter values for the analyzed media∗

Medium α ξ ×10−6 l̸=[µm] l=[µm] σ2
̸= σ2

=
aSand 0.93 3.5 100 240 2.0 0.2
bClayA 1.40 33 55 130 1.7 1.1
bClayB 1.60 69 7.2 54.0 1.3 1.7
bSand 1.74 176 10 12.7 0.6 0.2
cHepatoma 0.85 11 7.5 1.01 2.5 1.7
cSubcutaneous 1.88 62 3.4 0.29 2.2 1.4
dsynovial 2.45 123 2.5 0.39 1.9 2.1
esynovial 0.75 11 8.4 1.02 1.9 1.9
bCorneaC 0.93 1100 0.4 0.03 0.6 2.0
bCorneaD 0.79 340 0.5 0.05 1.0 2.1

a Heavy oil in, b Water in, c Serum in,d Ringer solution in, e Paraffin oil in, A : Standard clay,B : Artificial clay, C,D : relative
hydration of the cornea 3,7 and 3,2, respectively. ̸= connected and = unconnected set of channels. ∗.

In the study cases, the force F acting on the tagged particles is given by the product between the pressure dif-
ference ∆P and the average cross-sectional area l2ξ . The dimensionless force f = Fl/kBT given previously
becomes

f =
l3ξ ∆P
kBT

(B-15)

with ∆P = L∇P. Here we can recognize the term l3∆P as the energy change at constant volume due to
pressure changes.

By considering periodic exponential channels, we compute from Eq.(B-8) the average velocity through a
single channel. We then substitute the result into Eq.(B-13) to obtain the average velocity across the medium
as a function of the force which is related to the pressure difference through Eq.(B-15).

In Figs. B-4 and B-5, we have represented the velocity as a function of ∇P obtained from our model for the
cases mentioned above and found a very good agreement with the experimental data. In the figures, we illus-
trate how our model reproduces the experimental behavior of the velocity by fitting the parameter ξ which
represents the average cross-sectional area of the channels. The average channel period l̸=,= and the standard
deviation σ ̸=,= of the channel period distribution are used to scale the velocity and the pressure gradient.
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Fig. B-4.: Normalized velocity v/vmax versus pressure gradient ∇P. Black and gray continuous lines co-
rrespond to the model results for heavy oil and water through sand, respectively. Black and gray
dashed lines represent the model results for water through standard and artificial clay. Filled cir-
cles, diamonds, squares and stars denote the experimental data obtained in Refs. [9, 10]. The va-
lues of the exponent α are 0,93, 1,4, 1,6 and 1,74, respectively. The maximum velocities reached
vmax are 2,5, 32, 600 and 700 nm/s, respectively.

For high enough experimental values of the applied force, the velocity fulfills the scaling law v ∝ (∆P)α

where the exponent α depends on the micro-structure of the medium (in accordance with Ref. [38]) through
ξ and therefore on the distribution of entropic barriers. The scaling law, and in particular the values of the
exponent α , summarizes the model results for the range of pressure gradients used in the experiments. In the
cases analyzed, we have found that α varies between 3/4 and 5/2. Notice that for low forces, the velocity
is constant and tends to zero because diffusion and capillary effects dominate the kinetics.

As concluded from Table B-1, α increases as ξ increases or equivalently when the height of the entropic
barriers diminishes thereby facilitating the transit of particles through the channels. Moreover, the exponent
increases as the average length of l decreases and the standard deviation of the distribution σ increases,
in the case of inter-connected channels, or decreases for unconnected channels. We can then conclude that
when the medium is modeled by a set of connected channels and consists of big constituents (large l) whose
sizes vary along several length scales (large σ ), the entropic barriers are high (low ξ ) enough to hamper the
motion of the particles. This behavior is also found for unconnected channels and big constituents whose
sizes do not vary significantly (small σ ).

In Table B-1, we can see the difference between the values of l and σ for unconnected and connected chan-
nels configurations. The average length of the unconnected channels l= is more sensitive to the nature of the
medium than the average length of the connected channels l ̸=. In the case of sand and clay media, l= and
σ2
̸= are larger than l ̸= and σ2

=, respectively. Just the opposite is true for tissues and biological membranes.
From the estimated values of σ= and σ̸= presented in Table B-1, we may conclude that sand and clay media
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Fig. B-5.: Velocity v versus pressure gradient ∇P through tissues and biological membranes. Continuous
lines correspond to the model results whereas symbols stand for experimental data. a) Serum flow
through hepatoma tissue (filled dark circles) and subcutaneous tissue (filled dark squares) [29].
The exponents are α = 0,85,1,88. b) Ringer solution (filled dark circles) and paraffin oil (filled
dark squares) flowing through a synovial membrane [37]. The values of α are 2,45 and 0,75.
The velocity of the ringer solution is scaled by a factor of 10. c) Water flowing through a corneal
membrane for a relative hydration of 3,7 (filled dark circles) and 3,2 (filled dark squares) [30]. In
this case, α = 0,93,0,79.

are mainly composed of connected channels, with l > 1µm in agreement with the experiments of Ref.[9],
while biological membranes are mainly made up of unconnected channels, with l < 1µm in agreement with
the experiments of Refs.[30, 29].

How sensitive the exponent α is to variations of ξ and thus to the heights of the barriers can be analyzed
from the data presented in Table B-1. For clay media (A and B) and corneal membranes (C and D) the ratio
of the corresponding values of ξ is approximately 3 which leads to a small difference among the exponents,
of about 0,2. To the contrary, for sand media (a and b), tissues(Hepatoma and Subcutaneous tissues), and
synovial membranes (d and e) that ratio is larger than 5 which results in differences of the exponent larger



than 0,8. Finally, by considering an exponential channel (Fig.B-2(c)), we find that: i) α < 1 corresponds to
m < 0, the case where the cross-sectional area of the channels decreases in the direction of the flow and then
suddenly increases; ii) α ≥ 1 corresponds to m > 0, the case in which the media consists of channels with
increasing cross-sectional area in the direction of the flow and with a sharp narrowing. Furthermore, a linear
relationship between velocity and applied force is observed in Figs.B-3-B-4-B-5 for low and high values of
the force, whereas at intermediate values of the force the velocity follows a power law characterized by the
α exponent.

B.4. Conclusions

In summary, we have proposed a model that analyzes how matter moves through a crowded medium upon
application of a driving force. The medium consists of a large number of periodic channels whose periods
are randomly distributed following a log-normal probability distribution, typical of systems with a great
multiplicity of length scales, as is the case of a crowded medium. The complexity of the medium is emu-
lated by means of entropic barriers that particles must surmount to proceed. This description significantly
simplifies the analysis of liquid matter transport through the medium. We have shown that the average velo-
city depends on the applied force through the power law: v ∝ f α , observed in many different experimental
situations. The exponent of the law is sensitive to the micro-structure of the medium.

The analysis presented could also be extended to the case in which the medium is composed of the two types
of channels discussed: connected and unconnected.

Our model constitutes a general proposal to describe the flux of matter through a crowded media generated
by an applied force that can be used in the study of synthetic and cellular membranes, tissues and porous
media [35, 11] driven by external forces such as pressure [6, 7, 9, 10], temperature [34] and chemical
potential gradients[36, 39, 40].
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C. Appendix: The Soret coefficient from the

Faxén theorem for a particle moving in a fluid

under a temperature gradient

We compute the Soret coefficient for a particle moving through a fluid subjected to a temperature gradient.
The viscosity and thermal conductivity of the particle are in general different from those of the solvent and
its surface tension may depend on temperature. We find that the Soret coefficient depends linearly on the
derivative of the surface tension with respect to temperature and decreases in accordance with the ratios bet-
ween viscosities and thermal conductivities of particle and solvent. Additionally, the Soret coefficient also
depends on a parameter which gives the ratio between Marangoni and shear stresses, a dependence which
results from the local stresses inducing a heat flux along the particle surface. Our results are compared to
those obtained by using the Stokes value for the mobility in the calculation of the Soret coefficient and in
the estimation of the radius of the particle. We show cases in which these differences may be important. The
new expression of the Soret coefficient can systematically be used for a more accurate study of thermopho-
resis.

This Appendix was published in the European Physical Journal E, 42, 55, (2019). Ref.[1]
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C.1. Introduction

The motion of particles driven by a temperature gradient [2] known as Soret effect has been subject of many
experimental and theoretical studies in recent years [3, 4, 5, 6] due to its importance in areas as diverse as
soft condensed matter, biophysics, microgravity and nanoscience [7, 8, 9, 10, 11, 12, 13, 14], where the
evaluation of the Soret coefficient is key in order to develop such applications [15].

The Soret coefficient can be obtained from hydrodynamics by computing the forces exerted on the moving
particle. The force exerted on a spherical solid particle of radius a that moves through an isothermal fluid
at rest with velocity u⃗ is given by the Stokes formula F⃗ = −µ

−1
0 u⃗, where µ0 = (6πaη0)

−1 is the mobility,
with η0 as the fluid viscosity. In the case in which the fluid itself moves with stationary velocity u⃗0(r),
the value of the force is given by the Faxén theorem which for a solid particle and constant temperature
is: F⃗ = −µ

−1
0 (⃗u− u⃗0) [16]. In the presence of a temperature gradient ∇T0, the force must contain a ther-

mophoretic contribution proportional to the gradient [17] which is usually added to the friction force leading
to F⃗ = −µ

−1
0 u⃗+DT,0µ

−1
0 ∇T0 where DT,0 is a thermophoretic mobility. A more general expression of the

Faxén theorem valid when the particle is not necessarily solid was given in [18]: F⃗ =−µ−1⃗u+DT µ−1∇T0

where the mobility is now µ instead of the Stokes value µ0 and the thermophoretic mobility is DT . Un-
der Faxén’s approach, both mobility and thermophoretic mobility depend on the ratios of the viscosities α

and thermal conductivities β between particle and solvent and on the derivative of the surface tension as
a function of the temperature γT as well. As we will see throughout the Appendix, considering the Stokes
mobility instead of the Faxén mobility leads in some cases to important differences in the estimation of the
radius and the Soret coefficient of the particle through measurements of the diffusivity.

Based on the hydrodynamic model, we will compute the mobility, the thermophoretic mobility and the Soret
coefficient of a particle as a function of the ratio of viscosities and thermal conductivities of a particle and
a solvent. We will also analyze the role played by a temperature-dependent surface tension in the motion of
the particle. These results will be used to estimate the differences between those coefficients when obtained
by using the Stokes and Faxén expressions for the mobility.

The Appendix is organized as follows. In Section 2, we formulate the Faxén theorem giving the expression
of the force exerted on a particle moving through a fluid subjected to a temperature gradient. From this,
we infer the expressions of the mobility, the thermophoretic mobility and the Soret coefficient which de-
pend on the viscosities and thermal conductivities of particle and solvent and on the heat generated at the
surface of the particle due to its motion. Section 3 is devoted to analyze the behavior of both mobilities
as a function of these quantities. In Section 4, we study the case of a solid particle as a limiting case of
our theory. In Section 5, we analyze the case of n-octane-water/surfactant to compute the deviation of the
diffusivity and the Soret coefficient from their values obtained by using the Stokes formula for the mobi-
lity. We also give the error percentage in the estimation of the particle radii and the Soret coefficient if the
Stokes instead the Faxén value of the mobility is used. Finally, in section 6 we present our main conclusions.
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C.2. Hydrodynamics of a particle in a temperature gradient

We consider the stationary movement of a solid or liquid particle of constant radius a immersed in a fluid
at rest subjected to a temperature gradient. Both fluid inside the particle and solvent are assumed to be
non-ionic, incompressible and Newtonian and have viscosities ηi and ηo and thermal conductivities λi and
λo respectively. The interface between both fluids has surface tension γ which in general may depend on
temperature and composition.

In the study of the dynamics of a particle immersed in a fluid, one is usually concerned with the calculation
of the force exerted by the fluid on the particle. The problem has been formulated and solved focusing on
different situations. A classical and vast literature on the subject exists [19, 20]. The knowledge of the force
acting on the particle in terms of the unperturbed hydrodynamic fields, as given by the Faxén theorem [16],
constitutes the starting point in the study of Brownian motion since it allows us to derive the Langevin equa-
tion as well as the fluctuation-dissipation theorem [21].

The nature of the interface affects the transport properties of the particle. Surface tension plays an important
role in particle motion. Even in the absence of an imposed temperature gradient, the heat generated at the
surface due to the local stresses induced by motion gives rise to a temperature difference between the front
and the back of the particle (see fig.C-1). The dependence of the interfacial tension on temperature gives
rise to thermocapillary effects [22, 23].

Fig. C-1.: Particle motion with velocity u⃗ induces local stresses at the interface which in turn cause a surface
energy excess es and an interfacial heat current js. The induced heat current is js ≡ (es− γ)∇s · u⃗
where ∇s = (1− n⃗⃗n) ·∇ is the surface gradient and es− γ ≈ γT T [24]. The heat flux thus has
a discontinuity at the interface related to the heat generation due to the thermocapillary effect.
Furthermore, velocity and temperature fields are coupled through the boundary condition (for
details see [18]). The ratio between viscosities and thermal conductivities of particle (ηi,λi) and
solvent (η0,λ0) plays an important role in the determination of the induced fields and therefore in
the transport coefficients [18].

The total force exerted on a Brownian particle was derived in [18] for the general case of applied tempe-
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rature and velocity gradients by solving the corresponding boundary value problem. Neglecting the solvent
velocity, the force is

F⃗ =
2πη0a

1+α +2E/3(2+β )
×[

2aγT

η0(2+β )
∇T0(0)−

(
α +2+

2E
2+β

)
u⃗
] (C-1)

where ∇T0(0) is the value of the temperature gradient in the absence of a particle computed at its centre.
Comparing this expression to the force F⃗ = −µ−1⃗u + DT µ−1∇T0, we then obtain the mobility and the
thermophoretic mobility:

µ =
1

4πaη0

(
1+α + 2

3
E

2+β

1+3α/2+ E
2+β

)
, (C-2)

DT =−aγT

η0

1

(2+β )
(

1+3α/2+ E
2+β

) (C-3)

where γT = ∂γ/∂T is usually a negative quantity, α =ηi/ηo is the ratio of viscosities and β = λi/λo the ratio
of conductivities of the particle and solvent. The case of a solid particle corresponds to α → ∞, however,
due to the presence of an absorbed layer, α may take very high but not infinite values, as we will show in
sect. B.4. The coefficient E quantifies the ratio of the Marangoni stress to the shear stress [25] and is given
by

E =
T γ2

T

λ0η0
. (C-4)

The effect of the induced heat flux may be significant for low viscous liquids or for fluid-particle surface
tension slightly dependent on the temperature. Since E ∝ γ2

T , for sufficiently small values of γT , surface
tension effects are negligible. Typical values of E range from 10−5 to 4 [23].

Considering the effect of α , β and E on the mobility, the diffusivity of the particle is given by D = kBT µ .
Without taking into account these effects, the diffusivity is given by the Stokes relation D0 = kBT µ0. Estima-
tions of the radius of the particle are usually done [26, 27, 28, 29, 30, 31] by measurements of the diffusivity
Dm, through the expression a0 = kBT/6πη0Dm. The value of the radius of the particle in our approach is
then

a =
kBT

4πη0Dm

(
1+α + 2

3
E

2+β

1+3α/2+ E
2+β

)
, (C-5)

This expression differs from the one obtained under the Stokes approach by a factor of
(

3+3α+ 2E
2+β

2+3α+ 2E
2+β

)
. The

error percentage in the estimation of a (εa) is then

εa =

(
2+3α +

2E
2+β

)−1

100% (C-6)
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For solvents of high viscosity, for γ approximately constant or for high values of β (metallic particles in
common solvents), E→ 0 and one obtains a simplified expression for a:

a≈ kBT
4πη0Dm

(
1+α

1+3α/2

)
. (C-7)

Taking into account the previous results, the Soret coefficient ST is then given by

ST =
DT

D
=− 4πγT a2

kBT (2+β )(1+α + 2
3

E
2+β

)
(C-8)

The Soret coefficient obtained when one considers µ0 instead of µ is

ST,0 =
DT

D0
=−

6πa2
0γT

kBT (2+β )
(

1+3α/2+ E
2+β

) (C-9)

ST differs from ST,0 by a factor of
(

2+3α+ 2E
2+β

3+3α+ 2E
2+β

)
which shows that they are approximately equal for suffi-

ciently large values of α and in the absence of surface tension effects (E → 0). The error percentage in the
estimation of ST (εST ) is

εST =

(
3+3α +

2E
2+β

)−1

100% (C-10)

From this expression and eq.(C-6), we see that the error percentage may be significant for low values of α ,
as happens for bubbles. The error is less sensitive to changes of β because the effect of β is conditioned to
values of E.

C.3. Mobility and thermophoretic mobility

In this Section, we will study the behavior of mobility and thermophoretic mobility as a function of the
parameters α , β and E by using eqs.(C-2), (C-3). We will compare the mobility from the Faxén theorem µ

(eq.(C-2)) and from the Stokes approach µ0, through the ratio µ/µ0.

In fig. C-2 (a), we show that by decreasing E and α , and increasing β , the ratio µ/µ0 increases. Alkane
drops with low viscosity, metallic particles with high conductivity or non-polar solvents with low surface
tension (weakly dependent on the temperature) are examples in which µ/µ0 is significantly high. When the
effect of Marangoni stresses is very small (E→ 0), the dependence of µ/µ0 on β is negligible.

We show in fig. C-2 (b) that a decrease in E, α and β leads to an increase of DT . Additionally, surface
tension very sensitive to temperature changes and solvents with low viscosity favor an enhancement of ther-
mophoretic mobility. We can thus expect very high values of DT for systems with nano-bubbles and low DT

for systems composed of metallic particles or systems with very low surface tension.

In fig. C-2, we observe that µ could deviate from µ0 up to 50% while DT could increase or decrease about
10 times depending on the values of the α , β and E parameters. Differences of the physical properties of
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Fig. C-2.: Mobilities as a function of the transport properties ratios. a) µ/µ0, b) D∗T ≡−DT/aγT for different
values of viscosity ratio α , thermal conductivity ratio β and for the effect of the induced heat E.

particle and surrounding fluid are thus crucial to determine the particle radius and the Soret coefficient.

C.4. The case of solid particles

In this Section, we compare our results obtained from the Faxén theorem with those presented in Ref.[32]
in which the steady Navier-Stokes and heat equations are solved by assuming the existence of a solid-like
nanolayer. Our expression of the thermophoretic mobility depends on the ratio between particle and fluid
viscosities (α) whereas in the solid-like nanolayer approach [32], this dependence is not considered.

In the hypothetical case of a solid particle without adsorbed components on the surface and negligible
surface tension, α → ∞ and E → 0, thus µ → µ0 and DT → 0. This case can be analyzed by means of the
Faxén approach if we consider a monolayer of absorbed solvent on the particle surface [33, 34] with an
effective viscosity.
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Fig. C-3.: Comparison between Faxén theorem results (continuous lines) and the solid-like nanolayer (dot-
ted line) approaches for a solid particle in water. a) Thermophoretic mobility and b) Soret coeffi-
cient. Particle radius a = 20 nm, T = 300,15K, γT = 10−4J/mK, ηo = 10−3Pa× s, E = 0,006.

In fig. C-3, we show the results for DT and ST obtained from both approaches. . For both cases, DT , as
well as ST , behave as 1/β for high β values which correspond to the case of metal nanoparticles in a fluid.
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For DT , the result given by the Faxén theorem matches with the solid-like nanolayer approach for α = 60
while for ST the ratio of viscosities must be approximately 160. The fact that this comparison requires two
different effective viscosities reveals the uncertainty of the solid-like nanolayer approach. Furthermore, this
approach cannot accurately predict the thermophoretic mobility and Soret coefficient for drops and bubbles
because when β ≈ 3,4 the solution diverges.

C.5. Study case

We have computed the mobilities and the Soret coefficient of a drop of n-octane in a solution of wa-
ter/surfactant as a function of the temperature at which drops are stable. Implicitly, the variations in the
temperature give rise to different values of α , β and E. Values for these coefficients are found to fall in the
intervals 0,43−0,71, 0,13−0,17 and 0−2,5 E−5, respectively. These values correspond to: ηo in between
0,47−1,31 mPa.s, ηi in 0,33−0,57 mPa.s, λo in 0,57−0,66 w/mK and λi in 0,089−0,1 w/mK. Physical
properties of drops and solvent have been inferred from those of pure substances by means of a mixing rule
[35, 36]. Values of γT have been taken from [37]. We compare our results with the ones obtained with the
Stokes approach.

For a n-octane drop, we show in fig. C-4 the mobilities as a function of the temperature. In fig. C-4(a),
we observe that both diffusivities differ because in D0 the effect of the induced heat and the ratio between
transport coefficients are not considered. In the figure, we also show the behavior of the thermophoretic
mobility DT computed from eq.(C-3). By using eq.(C-2) a slight non-linear increment of the diffusivity as
a function of the temperature caused by the effect of α and β is observed. As one can see, DT decreases
with temperature and becomes negative at T = 305,4 K due to the fact that here the surface tension has a
minimum and therefore the sign of its derivative changes [37]. The order of magnitude of DT agrees with
the experimental results presented in [26] for the interval 300K < T < 302K, and furthermore, the value of
DT for T = 300,15K approaches experimental results (black square in fig. C-4 (a)) with an error lower than
10%.

In fig. C-4(b), we show the behavior of the Soret coefficient as a function of the temperature obtained from
eq.(C-8) and from eq.(C-9). Although ST and ST,0 are in good agreement in order of magnitude, ST is closer
than ST,0 to the experimental data presented in [26] (black circle in fig. C-4 (b)). ST corresponds to a particle
radius a and ST,0 to a particle radius a0. There is, however, a mismatch between both approaches caused by
the effect of the ratios between viscosities and thermal conductivities of drops and solvent. In fig.C-4(c),
we show (from eq.(C-6) and eq.(C-10)) the error percentage in the estimation of the radii of the drop and
the Soret coefficient when using Stokes instead of Faxén approach. For the studied system, the errors are
significant, of the order of 20% and 30%, because of the difference between viscosities of the drop interface
and solvent/surfactant media.
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Fig. C-4.: Mobilities, Soret coefficient and error percentages as a function of temperature. a) Diffusivity
computed from Faxém theorem D (continuous black line), Diffusivity computed from Stokes
approach D (dashed black line), thermophoretic mobility DT (continuous gray line) and experi-
mental DT (the black square)[26]. b) Soret Coefficient computed from Faxén theorem (continuous
black line), Soret coefficient computed from Stokes approach (dashed black line) and experimen-
tal ST (the black circle) [26] evaluated to the estimated particle radius a. c) Error percentages in
the estimation of particle radii (black line) and Soret coefficient (gray line) by considering only
the Stokes approach.

C.6. Conclusions

Mobility, thermophoretic mobility and Soret coefficient are affected significantly by the ratio between the
viscosities and thermal conductivities of particle and solvent and by the heat generated at the surface of the
particle resulting from the local stresses induced by its motion. Mobilities are highly influenced by these ra-
tios especially for low values of the viscosity ratio (see fig.C-2), as happens in nano-bubbles. They decrease
when the heat induced at the surface, seen through the coefficient E, increases (see fig.C-2) as happens for
low viscosity and conductivity solvents such as simple alkanes and for temperatures close to the boiling
point [23]. When the particle has a very high thermal conductivity compared to that of the solvent, as occurs
in metal nanoparticles, the thermophoretic mobility and Soret coefficient decrease as 1/β (see fig.C-3).



The sign of the thermophoretic mobility and Soret coefficient is conditioned by the sign of the surface ten-
sion derivative with respect to the temperature γT , as shown in fig.C-4(a). For nano-drops of n-octane in
water/surfactant, we find error percentages in the estimation of particle radii and Soret coefficient larger
than 20% if the dependence of transport coefficients on α and β are omitted.

The results presented provide new and more accurate relationships for the estimation of the radius of the
particle and the Soret coefficient from measurements of particle diffusivity.
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[36] A. A.H. Pádua, J. M.N.A. Fareleira, J. C.G. Calado, and W. A. Wakeham. Density and viscosity
measurements of 2,2,4-trimethylpentane (isooctane) from 198 K to 348 K and up to 100 MPa. J.
Chem. Eng. Data, 41:1488–1494, 1996.

[37] T. Sottmann and R. Strey. Ultralow interfacial tensions in water-n-alkane-surfactant systems. J. Chem.
Phys, 106:8606, 1997.



D. Appendix: Part I and II

D.1. Understanding Gelation as a Non-Equilibrium Self-Assembly

Process

In this Appendix we give more details on the estimated diffusivities, the potential barriers used and on the
Dynamic Light Scattering and snapshots building. We first estimate the diffusivities along each reaction
coordinate. We show how to model a potential barrier as a function of the standard chemical potential and
the rotation potential of a rigid fiber in presence of other fibers. We model the standard chemical potential per
building block in a linear fiber to build the potential barrier of each process. We indicate how to reproduce
the DLS experimental results. Finally, we present the potential barrier for each fundamental process and
discuss briefly on the activity coefficient.

D.1.1. Diffusivities

The diffusivities used in the model have been estimated from available experimental data [1] by minimizing
the discrepancies (Eq. D-1) between experimental concentrations (C(exp)

i ) and model concentrations (Ci):

min(DDD) Error(DDD) =
∫ t=900h

t=0
∑

i=DBC,DBCMe,DBCMe2

∣∣∣Ci(t)−Ci(t)(exp)
∣∣∣dt (D-1)

with DDD = [Dact , D1, D2, D3, Ds,1, Ds,2]. To carry out the optimization process, a simple algorithm
based on iterations was written and performed in MATLAB ®. The values of the diffusivities, shown in the
table below, are those that minimize the error. They are used to obtain the model results presented in Fig. 2-4.

Tab. D-1.: Diffusivities for NESA process of gelation
Fundamental process Process diffusivity Diffusivity [s−1]

First-order activation Dact 3,125∗10−9

Second-order activation D3 2,78∗10−2

First-order self-assembly D1 1,74∗103

Second-order self-assembly Ds,1 1,09∗10−1

First-order disassembly D2 6,1∗10−1

Second-order disassembly Ds,2 2,12∗10−5

The rotational diffusivity for first-order structures D4 has been computed from Eq. (9.16) of [2] which is
valid for isotropic systems. The obtained value is 2,4s−1. Nevertheless, as gelation does not necessarily form
isotropic intermediates, we have used the diffusivity presented in Eq.(9.17) of [2] in which D4 is multiplied
by a factor that depends on the form of the surrounding structures. We have considered that this factor is a
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random number, between zero and one, since initially the BB have a random orientation which evolves over
time ending up in a preferred orientation that is very difficult to be determined.

D.1.2. The potential barrier

The potential barrier depends on the standard chemical potential of each structure and the activation energy
of each process. The potential barrier is assumed to be a bistable function where the activation energy
increases with the size of the fiber and decreases with the size of the agglomerates because of steric effects.
The minima of the potential located at γ = 0 and γ = 1 correspond to the reactants and products and the
maxima at γ∗ to the transition state.
The form of the barrier is subjected to thermodynamic restrictions. Stability of the initial and final states
of the reaction imposes two conditions on the first derivative of the potential. Three more restrictions come
from the values of the standard chemical potentials and the activation energy at γ = 0, γ = 1 and γ = γ∗,
respectively. Moreover, since the potential barrier is related to the equilibrium probability distribution, values
of γ < γ∗ denote the state A and γ ≥ γ∗ correspond to the state B.
For the potential barrier, we thus propose a fifth-order polynomial that have two minima and a maximum in
the interval [0,1]. The polynomial includes six parameters whose values follow from the seven thermodyna-
mic restrictions which as a matter of fact reduce to six since the location of the transition state is unknown.
The thermodynamic conditions include the knowledge of the standard chemical potential of each structure.
The potential barrier is then given by

φ(γ) =
5

∑
i=0

ciγ
i (D-2)

where the constrains are

φ(0) = µ
0
A; φ(1) = µ

0
B; φ(γ∗) = máx(φ(γ))−µ

0
A = ε

dφ(γ)

dγ

∣∣∣
γ=0

=
dφ(γ)

dγ

∣∣∣
γ=1

=
dφ(γ)

dγ

∣∣∣
γ=γ∗

= 0

exp((µ0
A−µ

0
B)/RT ) =

PB,eq

PA,eq
=

∫ 1
γ∗ exp(−φ(γ)/RT )dγ∫ γ∗

0 exp(−φ(γ)/RT )dγ

This system of equations enables one to determine γ∗ and ci, i= 0,1, ..,5. For instance, for (µ0
A−µ0

B)/RT = 1
and ε/RT = 5, we obtain the potential barrier shown in Figure A-1. The value of the maximum increases if
n increases in the assembly of linear fibers. Thus φn(γ

∗
n ) ∝ máx(φn(0),φn(1))+ kBT

√
(n).

Additionally, the potential energy of rotation for the structures is extracted from Eq.(10.23) of [2]

φn,4(θn) = kBT
∫

dθn

∫
dθ

′
pn(θn, t)P(θ

′
, t)β (θn,θ

′
) (D-3)

with v the number of structures per unit of volume. For rod-like polymers in two dimensions:

β (θn,θ
′
) = 2a3n2 v

2
(cos(θn)sin(θ

′
)− cos(θ

′
)sin(θn)) (D-4)

where in the present case a ≈ 10 nm which corresponds to the apparent length of the BB [3]. Finally,
the function P(θ

′
, t) takes into account the structures with orientation θ

′
which interact with the structure
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Fig. D-1.: Dimensionless potential barrier [φ(γ)/kBT ]

composed of n blocks oriented an angle θ :

P(θ
′
, t) = ∑

n

1
n

pn(θ
′
) (D-5)

D.1.3. Standard chemical potential per building block

Single and agglomerated fibers are composed of BB. These blocks assemble spontaneously because the
specific standard chemical potential per assembled block µ̂0

n decreases with the number of blocks (µ̂0
N < µ̂0

n ).
This potential can be estimated by using the relation [4]

xN

N
=

(
x1

xc

)N

(D-6)

where x1 and xN are the concentrations of non-assembled and assembled BB respectively at minimum x1

(critical point for large structures). For a given N, knowing x1 and xN (from experiments and the energy,
respectively) we can estimate xc, the critical concentration at equilibrium.
The increment of the standard chemical potential per BB (∆µ̂0) as a function of N is given by:

∆µ̂
0 =

RT
N

ln
(

NxN
1

xN

)
, (D-7)

This quantity is a monotonic function of N. Taking the first derivative of ∆µ̂0 with respect to N and using
Eq. (D-6), we obtain

d∆µ̂0

dN
=−RT

N

[
∆µ̂0

RT
− ln(x1)−1/N

]
≤ 0, x1 ≤ 1, (D-8)
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There is a value N = N∗≫ 1, such that ∆µ̂0

RT ≈ ln(x1) and d∆µ̂0

dN = 0, as a consequence ∆µ̂0 cannot decrease
indefinitely. From this result, we conclude that structures such that n > N∗ have the same standard chemical
potential. Therefore, structures having n assembled blocks, with n > N∗, have the same probability to be
formed.

D.1.4. Standard chemical potential

Let µ0
n be the standard chemical potential for linear fibbers and ∆µ0

n = µ0
n +µ0

1 −µ0
n+1 the standard driving

force for the assembly of a linear fibber, with n = 1, ...N. Some requirements must be fulfilled in order that
the standard chemical potential properly characterises the assembly of linear fibbers. First, µ0

n increases as
the size of the structure increases because the assembly must have a limit. Second, the standard chemical
potential per building block is related to the standard chemical potential of the structures. These conditions
can be expressed as:

1. dµ0
n/dn≥ 0, ∀n

2. d∆µ0
n/dn≤ 0, ∀n

3. ∆µ0
N−1 = 0

4. µ0
1 = µ̂0

1

5. µ0
N = Nµ̂0

N

A function fulfilling conditions 1 and 2 is:

µ
0
n = a0 +a1 exp(a2n). (D-9)

From conditions 3-5, we can compute a0, a1 and a3.
Now let µ0

g,m be the the standard chemical potential of the agglomerated fibers and ∆µ0
g,m = µ0

g,m + µ0
g,n−

µ0
g,m+n the standard driving force for fiber agglomeration, with m= 1, ...,M = 2N. As in the case of assembly

of the linear fibers, the agglomeration process must fulfill some conditions which are similar to the previous
ones except for the fact that the way in which µ0

g,m increases is different. The requirements are now:

1. dµ0
g,m/dm≥ 0, ∀m < N

2. dµ0
g,m/dm≤ 0, ∀m > N

3. dµ0
g,m/dm = 0, m = N

4. µ0
g,1 = µ̂0

1

5. µ0
g,N = Nµ̂0

N

The function satisfying the first 3 conditions is:

µ
0
m = (a3m2 +a4m+a5)m, (D-10)

where a3, a4 and a5 are found from conditions 3-5, as well. From the standard chemical potential for each
kind of structure, we can model the corresponding potential barrier.
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D.1.5. Snapshots of the gelation process

We have represented the position of each fiber shown in Fig.2-5 by a uniform random location. The number
of fibers is proportional to the concentration of activated building blocks (first order structures composed of
one block). The probability distribution for the orientation of the fibers is obtained by solving the Fokker-
Planck system equations (see Fig. 2-5).

D.1.6. Dynamic Light Scattering

To reproduce the Dynamic Light Scattering measurements, taken from [1], we use the fact that this quantity
depends on the size of the second-order structure. Thus, we obtain the DLS results by computing the auto-
correlation function of the average size for second-order structures obtained from the concentration of each
structure as a function of time, solution of the system equations.

D.1.7. Potential barriers for each process

From the standard chemical potential and the potential barriers, we build the potential barrier for each
process, as shown in Figure D-2. The .activation energyı̈n each step depends on the steric effects and ther-
modynamic constraint as explained in the potential barrier section.
Notice that as each BB has two assembly centers, the activation takes place sequentially because the BB are
symmetric. Therefore, the whole activation process is described by two reaction coordinates. In Figure D-3,
we show the specific potential barriers.

D.1.8. Activity coefficient

We found that the activity coefficient for activation processes ψb depends on the concentration of the residue
W which is MeOH, affecting significantly the first-order activation process. Thus ψb = C1/2

W because this
component may affect the equilibrium state in the activation process. Otherwise, the activity coefficients for
assembly and disassembly processes are approximately: ψn = φ ′n = 1.

D.2. Nonequilibrium self-assembly induced Liesegang rings in a

non-isothermal system

Abstract

we first present a scheme showing the formation of first-order structures. We express the fluxes ṙi, j as a
function of the rates R j and give details on the derivation of the temperature evolution equation. Further, the
pH and dichromate fraction is presented as a function of the dimensionless time and position, showing that
the dichromate fraction is insignificant for the system conditions. We also present two figures displaying the
position of the rings and the structure diameter, and a figure displaying the distribution of solid nuclei along
the system. Finally, we show that the structures diameter dispersion is inversely proportional to the activator
concentration CE , thus supporting the fact that this dispersion increases with position.
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Fig. D-2.: Potential barriers for NESA processes. (a) First-order SA: Assembly of linear fibers. We show a
process with ten steps, each one corresponding to the assembly of one BB. Each step is charac-
terized by a potential barrier in which the activation energy and the standard chemical potential
difference decreases with n. The effect of adding a BB is to increase the chemical potential in
order that the process be spontaneous. (b) Second-order SA: Agglomeration. We show a second-
order structure having 15,22 and 29 BB resulting from self-assembly of structures with 8,15 and
22 BB. In the last step, we found the highest activation energy expected because the size of the
structure is not only limited thermodynamically but also kinetically. (c) First-order DA: Hydroly-
sis of linear fibers. The process represents the disassembly in ten steps of a structure composed of
eleven BB. (d) Second-order DA: Aggregate hydrolysis. We show the second-order disassembly
process for a structure with 29 BB. The process has 3 steps each one characterized by a potential
barrier. The first step is not spontaneous, therefore we expect the appearance of metastable struc-
tures when some few BB become deactivated. However, if a large amount of BB are deactivated
the process becomes spontaneous.
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Fig. D-3.: Activation process for BB with two assembly centers. The effect of the activator is to increase
the chemical potential in order to render the process spontaneous. Further, the activation energy
increases with the number of activated assembly centers.

D.2.1. First-order structures formation

The mechanism for first-order self-assembly (process 2) is schematically expressed as:

A+A−−⇀↽−− A2
A2 +A−−⇀↽−− A3

.

.

.
An-1 +A−−⇀↽−− An

In first-order structures formation, we have specified the intermediate steps in which the activated building
blocks may add up sequentially to form structures composed of a number of blocks smaller than n, thus
evidencing the presence of two reactants in the assembly process. The global process is expressed as:

nA−−⇀↽−− An

D.2.2. Fluxes in terms of the rates

From the kinetics (Eq.(3-6)-Eq.(3-9)) and using the stoichiometry of processes 1-4 (first and second-order
activation and self-assembly), we can rewrite the fluxes ṙi, j used in the mass and energy-balances. The ṙi, j

flux gives the rate at which the component i is transformed in the jth process. Renaming components E, B,
A, An, G and Gm by 1-6, we obtain
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4

∑
j=1

ṙ1, j = 2R1 + lR4 (D-11)

4

∑
j=1

ṙ2, j = R1 (D-12)

4

∑
j=1

ṙ3, j =−R1 +nR2 (D-13)

4

∑
j=1

ṙ4, j =−R2 +R3 (D-14)

4

∑
j=1

ṙ5, j =−R3 +mR4 (D-15)

4

∑
j=1

ṙ6, j =−R4 (D-16)

D.2.3. Temperature equation

We first consider the diffusive energy flux Je =−ke f f
∂T (r,t)

∂ r , where ke f f is an effective thermal conductivity
and T the temperature.

In a diluted reactive media with small changes in temperature, the energy e(r, t) per unit of volume can be
written as e(r, t)≈ ∑iCihi. The change in the energy e(r, t) is given by:

de(r, t) = ∑
i

d(Cihi) = ∑
i

Cidhi +hidCi (D-17)

where the molar specific enthalpy hi is the sum of the standard formation enthalpy (h0
i ) and the enthalpy

related to the heat capacity (cP,i), hi ≈ h0
i + cP,i(T −Tre f ) with Tre f a reference temperature.

Dividing this equation by dt and inserting the mass conservation equation (Eq.(3-4)), we obtain

de(r, t)
dt

= ∑
i

Ci
dT
dt

+hi

(
− ∂

∂ r
rJd,i(r, t)−

4

∑
j=1

ṙi, j

)
(D-18)

This equation can also be expressed as

de(r, t)
dt

= ∑
i

Ci
dT
dt
−∑

i

∂

∂ r
rJd,i(r, t)−

4

∑
j=1

∑
i

hiṙi, j (D-19)

where ∑i hiṙi, j =−∆h jR j is the heat dissipation rate in the process. Therefore, the energy balance equation
is

de(r, t)
dt

= ∑
i

CidT −∑
i

h j
∂

∂ r
rJd,i(r, t)+

4

∑
j=1

∆h jR j (S11)
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Finally, inserting this expression (Eq.(S11)) into Eq.(3-11), we obtain the differential equation for the evo-
lution in time of the temperature (Eq.(3-12)).

D.2.4. pH and Dichromate fraction
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Fig. D-4.: pH against dimensionless time and position. pH values vary between 7.54 and 7.95 most of the
time. pH higher than 8.5 is found for the earlier times of the process.
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Fig. D-5.: Dichromate fraction vs. dimensionless time and position. Dichromate fraction is smaller than
0.022 in the whole system for every time.

D.2.5. Position of the Liesegang rings

D.2.6. Distribution of the Solid Nuclei along the system

It is possible to find solids in the region between rings. These solids correspond to the nuclei which are the
precursors of the structures composing the patterns. In the Supp. Figure D-8 is shown the concentration of
the solid nuclei in the system. The blue numbers represent the position of the rings. Notice that the minima
in the concentration of the solid nuclei correspond to the position in which emerges the rings.
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Fig. D-6.: Model results and experiments data for the ring position [µm] for each ring. The error percentage
is approximately of 6,9%. The dashed line connects the results obtained for the different rings.
Grey squares represent experimental data taken from [5] whereas the black ones correspond to
the results of the model.
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Fig. D-7.: Model results and experiments data for the structure diameter [nm] in each ring, with its standard
deviation. The dashed line connects the results obtained for the different rings. The error is of
approximately 6,7%. Grey squares denote the experimental data taken from [5]; black squares
stand for our results.

D.2.7. Diameter dispersion

A structure is formed when the agglomeration flux is positive (R4 > 0). Its diameter is given by

d(r, t) = d0 +ω ln(CE(rlim,0)/CE(r, t)), ∀r > rlim, |R4(r, t)> 0, (D-20)

In Fig.(D-7), we represent the average of the structure diameter

d(r) =
1

t f (r)

∫ tp

0
d(r, t)dt, (D-21)

where t f (r) is a time at which R4 is greater than zero, at r. The variance for d(r) is given by

σ
2
d (r) =

1
t f (r)

∫ tp

0
(d(r, t)−d(r))2 dt. (D-22)

But here is hard to find a clear relation between σd and CE . We assume that the standard deviation is
proportional to the error ∆d which is given by
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Fig. D-8.: Concentration of the solid nuclei as a function of the position. Blue number correspond to the
position of each ring.

∆d(r) =
∣∣∣∣ ∂d
∂CE

∣∣∣∣∆CE , (D-23)

Taking the derivative of d with respect to CE from Eq.(3-18), and assuming that the error of CE in a ring is
proportional to the ring width (∆rring), we have

∆d(r) =
ω

CE
∆rring. (D-24)

From the results of the model and the experimental data [5], we conclude that ∆rring slightly increases from
ring 1 to 5 and is almost constant from ring 6 to 9. Therefore, to know the value of the width of a ring is not
enough to explain the increments of the diameter standard deviation. Nevertheless, CE decreases in space
and time because it is consumed, then when increasing time and distance CE decreases which makes that
the diameter standard deviation increases with distance.

D.3. A Criterion for the Formation of Nonequilibrium Self-Assembled

Structures

An analogous method to obtain the potential by means of the optimization of the energy required to form a
structure is presented.

The energy needed to form a structure (∆E) for a given value of η is the sum of the energy change in the
absence of dissipation and the energy dissipated in its formation, ∆Ed = T Σ, where Σ is the entropy produced
[6]:

∆E(η , t) = ∆Erev(η , t)+∆Ed(η , t) (D-25)

The fact that nature evolves making efficient use of available resources [7, 8], enables us to assume that an
extreme value of the energy dissipated, at which ∂∆Ed/∂η |

η∗ = 0, is the signature of an optimal design of
the structure. Close to η∗, the condition fulfilled is thus:



(
d∆Ed(η)

dη

)2

≥ ψ(η) (D-26)

where ψ is a residual function measuring deviations from the optimal structure.

To minimize the energy ∆E subjected to the restriction given in Eq.(D-26), we use the method of Lagrange
multipliers. We then define the Lagrangian function

L = ∆E +λ

((
d∆Ed(η)

dη

)2

−ψ(η)

)
(D-27)

where λ is a Lagrange multiplier. Setting ∂L /∂η = 0, integrating over η and solving for λψ ≡ Ψ, we
obtain

∆Ψ(η) = ∆E(η)+λ

(
d∆Ed

dη

)2

(D-28)

where the Lagrange multiplier is given by

λ =−2
(

∂ 2∆Ed

∂η2

)−1
∣∣∣∣∣
η∗

(D-29)

One has λ > 0 since the derivative is computed around the maximum of Ed .

The potential obtained in Eq.(D-28) by means of the optimization method coincides with Eq. 6-19.
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E. Appendix Part III: Energy dissipation induces

and amplifies chiral symmetry breaking

E.1. Parameters

The characteristic dimensions of the system are presented in Table.E-1. The molecular radius of the salt is
also presented.

Dimensions d H h0 l0
Value [m] 2,5×10−2 4,1×10−2 1,3×10−2 6,57×10−10

Tab. E-1.: System dimensions.

The main transport coefficients are averaged for the temperature range between 20 and 120oC are shown in
Table.E-2

Trans. Coeff. a b κ U k kl Kp

Value 12,04[Pa.s] −0,1096[K−1] 0,0571[w/mK] 15[w/m2K] 10−2[s−1] 0,04−0,6[s−1] 41−82[m−1]

Tab. E-2.: Transport coefficients. The viscosity is defined as η = aexp(b(T −273,15))

The values of the physical-chemical properties are resumed in Table.E-3.

Physical properties Glycerine aqueous salt solid salt L solid salt D
Cp[J/molK] 249,96 104,6 104,6 104,6
µ0[kJ/mol] −− −262,67 −256,65 −256,65

Ea/kBTa −− −− ≥ 2 ≥ 2
δ [kg/m3] 1260 2540 2540 2540

PM[g/mol] 92 106,54 106,54 106,54

Tab. E-3.: Physical-chemical values.

Finally, the saturation of salt in a non-mixed medium is given by:

xs = cl +alθ
b
l (E-1)

with θ = (T −Ts)/T s the dimensionless temperature al = 1,956, bl = 2,558, cl = 0,144 while the difusivity
of the aqueous and solid salt molecules is:

D =
kBT

6πη l0
(E-2)
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E.2. Solid concentration

In Fig.E-1 we present the results for the estimated dimensionless total solid concentration of the salt. In all
cases, except for ws/wg = 0,30 under enhanced cooling, the solid concentration profiles have approxima-
tely a monotonic behaviour as typically found in damped and slightly under-damped systems or chemical
reactions near first-order kinetics. In the case of ws/wg = 0,30 under enhanced cooling, the dropping of
the solids concentration is explained by considering that through the measuring zone (height at which the
measuring laser points) there are no solids due to the precipitation of the solids. The final value of the di-
mensionless total solid concentration increases as ws/wg increases or the measuring height decreases due
to the concentration profile dropping exponentially as we go far from the bottom of the system. In Fig.E-1,
measured salt concentration is lower for the case ws/wg = 0,36 than ws/wg = 0,32 due to for ws/wg = 0,36
the measurement was carried out at a higher height and in which we must remember that solid salt concen-
tration decreases exponentially with the height. On the other hand, even if the model presents a high match
with experimental results, the model should be tested for different heights by carrying the experiments at
different heights and at the same concentration.
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Fig. E-1.: Dimensionless solid concentration as a function of time. a) Behaviour for natural cooling (cooling
with air), b) behaviour for enhanced cooling ( cooling with air and water). Pointed lines corres-
pond to experimental data whereas continuous lines to theoretical results. Right y-axes shows the
results for initial salt mass ws/wg.

E.3. Average size and temperature

In Figs. E-2 we present experimental data and model results for the case ws/wg = 0,235 under natural co-
oling conditions. The figure shows the cooling curve from which was estimated the global heat transfer
coefficient in which we obtained an error percentage lower than 5% between experimental data and model
results.

Fig. E-3 shows the dynamics for the growth of the crystals. This figure shows the average crystal size for
both enantiomers. It is observed an exponential growth and a like-asymptotic limit for the size of the crystals
since the time of the experiment is low compared with the diffusive time needed to grow a macroscopic
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crystal of the size of the system. This process can take years in glycerine since diffusivity in glycerine at lab
temperature is 1000 times higher than in water.
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Fig. E-3.: Average crystal size dynamics. The average length for cubic crystals for both enantiomers. The
light grey line corresponds to the Levogiro crystal whereas the black line to the Dextrogiro crystal.
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E.4. Total energy dissipated

Finally, Fig.E-4 shows the total energy dissipated in the process at time t. These theoretical results help to
understand and prove that: 1) As we increase the value of ws/wg, the energy dissipated increases but this
is not linear 2) The increments are different in both cases of cooling, in the case of enhanced cooling the
energy dissipated is lower when ws/wg = 0,36. 3) Enhanced cooling leads to a lower energy dissipation in
the crystal growing and emergence processes being related to higher enantiomeric excess compared to more
thermodynamically inefficient processes.
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Fig. E-4.: Total energy dissipated as a function of time. a) Behaviour for natural cooling, b) behaviour for
enhanced cooling

E.5. Activation energy change

We consider that the system only exchanges heat with the surroundings but not mass. We focus our analysis
on the transition from achiral to chiral compound. In this transition, we have an intermediate state that may
increase its free energy by absorbing a portion of the lost work coming from the entropy production. The
free energy change in the system during the transition is given by the energy change of the process (from
achiral to chiral) and the free energy change of the solvent (mainly by the decreasing of the internal energy
due to heat exchange with the surroundings):

∆GT = ∆G0
P +∆G0

S (E-3)

The free energy change from the chiral to intermediate state is:

∆GA−I = ∆H0
A−I−T ∆S0

A−I +EΣ (E-4)

in which EΣ is the absorbed energy coming from the entropy production. The free energy change from the
intermediate to the chiral state is:

∆GI−C = ∆H0
I−C−T ∆S0

I−C−T ΣP (E-5)
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in which ΣP is the entropy produced in the transition. The free energy change of the solvent during the
transition is:

∆GS = ∆H0
S −T ∆S0

S−T ΣS (E-6)

By adding these free energy changes, we obtain another relation for the free energy change of the system:

∆GT = ∆G0
P +∆G0

S +EΣ−T Σ (E-7)

where Σ = ΣP +ΣS. Comparing with Eq.E-3, we obtain that the total energy absorbed by the intermediate is

EΣ = T Σ (E-8)

Therefore the increment of the energy of the intermediary state per molecule is

∆E = T
Σ

N
(E-9)
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