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Abstract

Spontaneous brain activity persists and transitions between brain
states, such as from wakefulness to sleep, from development to age-
ing, or it may transition to pathological states such as coma. Never-
theless, a consensual definition of brain state remains elusive, and the
best way of measuring its dynamical complexity is unknown. Here,
we propose whole-brain computational frameworks combined with
neuroimaging data to characterise brain states in health and disease.
We show that such states exhibit unique complex dynamics across
spacetime scales. Furthermore, we show that whole-brain models
can be fitted to such states to study in silico the capacity of brain
areas to promote a transition, e.g., from disease to health. Finally,
we show that perturbations of this model can measure the brain’s
reactivity in different conscious and unconscious states. In the long
term, these methods may open new ways for clinical interventions to
rebalance brain disorders.

Keywords— resting-state fMRI, dynamical complexity, turbulence,
whole-brain computational modelling, in silico perturbations, brain dy-
namics, brain states, ageing, meditation, sleep, disorders of consciousness
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Resum

L’activitat cerebral espontània persisteix i transiciona entre estats cere-
brals, com ara de la viǵılia al son, del desenvolupament a l’envelliment,
o pot transicionar a estats patològics com el coma. Tanmateix, una defi-
nició consensuada d’estat cerebral segueix sent esquiva, i es desconeix la
millor manera de mesurar la seva complexitat dinàmica. Aqúı, proposem
marcs computacionals de tot el cervell per caracteritzar estats cerebrals en
la salut i la malaltia. Mostrem que aquests estats presenten dinàmiques
complexes úniques a través d’escales espacio-temporals. Addicionalment,
ajustem models de tot el cervell als estats cerebrals per estudiar in silico la
capacitat de les àrees cerebrals per promoure una transició, per exemple,
de la malaltia a la salut. Finalment, mostrem que les pertorbacions d’a-
quest model poden mesurar la reactivitat del cervell en estats conscients i
inconscients. A llarg termini, aquests mètodes poden obrir noves vies per
reequilibrar els transtorns cerebrals.

Keywords— IRMf en estat de repòs, complexitat dinàmica, tur-
bulència, models computacionals a gran escala, pertorbacions in silico,
estats cerebrals, envelliment, meditació, son, trastorns de la consciència
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Chapter 1

INTRODUCTION

1.1 The resting state

In recent years, the so-called resting state has become a central focus
in the scientific community and has been mainly investigated with non-
invasive neuroimaging techniques to study human brain function. Prob-
ably, the first evidence that the brain at rest contains information about
its functional organisation was in the 1990s [Biswal et al., 1995]. The au-
thors examined the slow (< 0.1Hz) spontaneous fluctuations in the blood-
oxygenation-level-dependent (BOLD) signal of functional magnetic reso-
nance imaging (fMRI) to study how two structurally connected cortical
areas (i.e., the left and right brain areas of the motor cortex) function-
ally correlate when the brain does not perform any specific task. They
observed a functional connectivity (FC) pattern of brain activity that
seemed similar to the activation pattern when subjects executed a mo-
tor task, thus identifying the well-known sensorimotor network during the
resting state. This finding progressively shifted the neuroscience com-
munity from studying task-related fMRI experiments, where subjects re-
sponded to specific stimuli or tasks, to studying resting state fMRI exper-
iments, where subjects remain quiet inside the scanner without thinking
about anything in particular (i.e., the resting state). Since then, sev-
eral resting state fMRI studies have focused exclusively on the identifi-
cation and characterisation of resting state brain networks [Lowe et al.,
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1998, Greicius et al., 2003, Beckmann et al., 2005, Rogers et al., 2007, Fox
and Raichle, 2007, Damoiseaux et al., 2006, Deco et al., 2013]. Several
functional resting state networks have been identified, such as the default
mode network (DMN) and the visual, subcortical, cerebellum, executive
control (also called dorsal attention network [DAN]), ventral attention,
and auditory networks. Such networks have been shown to be spatially
consistent across subjects, and their spontaneous BOLD activity shows
a close correspondence between task conditions and rest (Figure 1.1)
[Damoiseaux et al., 2006, Smith et al., 2009]. One of the resting state net-
works receiving the closest attention has been the DMN. Brain areas of
the DMN show greater activity during the resting state than during task
performance [Raichle et al., 2001] and its activity is anti-correlated with
activity in the DAN [Fox et al., 2005, Sridharan et al., 2008], reflecting a
brain mechanism controlling the shift between internally- and externally-
directed cognition [Clare Kelly et al., 2008, Sherman et al., 2014].

For clinical applications, resting state fMRI has been particularly use-
ful for measuring brain activity in patients who cannot perform a task
or are unable to communicate, such as patients in a minimally conscious
state (MCS), in an unresponsive wakefulness state (UWS), or with locked-
in syndrome [Laureys et al., 2004, Owen et al., 2006, Fernández-Espejo
and Owen, 2013, Panda et al., 2021b]. Furthermore, several studies have
applied resting state fMRI to study brain disorders such as depression,
schizophrenia, stroke, or Parkinson’s disease, among others [Drysdale et al.,
2016, Adhikari et al., 2017, Saenger et al., 2017, Puig et al., 2018, Yu et al.,
2019, Mayneris-Perxachs et al., 2022] (for clinical reviews, see [Rosazza
and Minati, 2011, Fox and Greicius, 2010]).

In addition, studies that have combined resting state fMRI and dif-
fusion tensor imaging (DTI) have tried to reveal the brain’s structure-
function relationship. Human brain structural connectivity (SC) has been
mainly measured using DTI, a non-invasive neuroimaging technique that
makes it possible to track brain white matter fibers by measuring the ran-
dom diffusion-driven motion of water molecules [Le Bihan, 2003, Sporns
et al., 2005]. In particular, it has been shown that direct white matter
pathways exist between brain areas of the resting state networks and that
FC correlates with the underlying SC, indicating that resting state net-
works emerge from the underlying anatomical connectivity [Koch et al.,
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Figure 1.1: ICA maps showing a close correspondence between tasks and rest.
These ICA maps from resting state fMRI data in healthy subjects show a close
correspondence between rest and task conditions. Components 1, 2, and 3 corre-
spond to visual networks. Component 4 clearly shows the default mode network.
Component 5 corresponds to the cerebellum. Component 6 corresponds to the
sensorimotor network. Component 7 shows the auditory network. Component 8
corresponds to the executive control network. Components 9 and 10 show the
left and right frontoparietal networks. Figure adapted from [Smith et al., 2009].

2002, Van Den Heuvel et al., 2009, Hagmann et al., 2008, Greicius et al.,
2009, Deco et al., 2011]. However, FC has also been observed between
brain areas where there are no white matter connections, which suggests
that those functional correlations are mediated by indirect structural con-
nections, such as, for example, a third brain area [Damoiseaux et al.,
2006, Deco et al., 2011, Van Den Heuvel et al., 2009, Honey et al., 2009].
Consequently, even though resting state networks can depend on the un-
derlying structural connectivity, the brain activity cannot be understood
only in these terms, and the missing link in those studies has been to
consider the underlying brain dynamics [Deco et al., 2013].
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1.2 Whole-brain dynamics

Traditionally, FC has been estimated as a correlation coefficient over an
entire scan (i.e., static or grand average FC). Nevertheless, collapsing the
temporal fluctuations through correlations has led to an oversimplified
description of functional brain networks [Zalesky et al., 2014, Allen et al.,
2014]. In response to this limitation, recent investigations have focused
on studying the temporal evolution of spontaneous fluctuations, showing
that brain activity is not static over time but rather shows highly complex
temporal dynamics [Honey et al., 2009, Deco et al., 2013, Hutchison et al.,
2013, Calhoun et al., 2014, Ponce-Alvarez et al., 2015]. These studies have
evidenced that the spatio-temporal structure is essential for understanding
the fundamental features of brain networks.

Several methods have been developed for studying how brain net-
works reconfigure across time. Model-free (also known as data-driven)
and model-based frameworks are two conceptual and complementary tools
for studying brain dynamics (for reviews, see: [Hutchison et al., 2013,
Popovych et al., 2019, Lurie et al., 2020, Bolton et al., 2020]). On the one
hand, model-free frameworks refer to those methods that measure brain
dynamics changes empirically, that is, from the observed signal data. One
of the most common is the sliding-window approach, where the FC is
measured at continuous time points within a given window, and sequen-
tially the procedure is repeated by shifting the window until the end of
the scan duration. The result is a succession of FC patterns at differ-
ent time points, displaying how the anatomical organisation fluctuates
across time. Similarly, the phase synchronisation approach measures the
instantaneous phase between pairs of brain areas at each time point by es-
timating the Hilbert transform [Glerean et al., 2012, Ponce-Alvarez et al.,
2015]. Both techniques (sliding window and Hilbert transform) can be
used to apply the k-means clustering approach to identify spatiotemporal
patterns across subjects [Allen et al., 2014, Cabral et al., 2017, Deco et al.,
2019, Kringelbach and Deco, 2020]. Furthermore, in neuroscience, it has
been highly useful to implement tools from physics to describe large-scale
brain activity. For example, metastability has been used to measure how
the synchronisation between different brain areas fluctuates across time
and can be calculated as the standard deviation of the global Kuramoto

4



order parameter across time in neuroimaging data [Deco and Kringelbach,
2016, Deco et al., 2017a]. This measure obtains the global level of syn-
chronisation of the total oscillating signals of brain areas and is given by
the following equation:

R(t) =
1

N

∣∣∣∣∣
n∑

k=1

eiφk(t)

∣∣∣∣∣ (1.1)

where φk(t) is the phase of each filtered signal in brain area k. Con-
sequently, if the n phases are uniformly distributed, then R = 0 (full
desynchronisation), whereas if all phases are equal, R = 1 (full synchroni-
sation).

Recently, however, the concept of metastability has been extended to
study not only the global level of synchronisation of the brain but also
its local level across spacetime scales. Notably, the local Kuramoto or-
der parameter, defined as the local level of system synchronisation across
spacetime, offers a precise characterisation of the level of turbulence and
the spatiotemporal characteristics of the brain [Deco and Kringelbach,
2020, Deco et al., 2021a]. That is, metastability measures the variability
across time of the global level of synchronisation of the system, whereas
turbulence measures the local level of synchronisation. Such local synchro-
nisation between brain areas has been related to the rotational vortices
described in fluid dynamics, and the size of these vortices determines the
spatial scales where the information processing is evaluated, i.e., in the
so-called vortex space. In fluid dynamics, turbulence provides the optimal
transmission of energy and information in a system [Frisch, 1995, Kol-
mogorov, 1941a, Kolmogorov, 1941b, Kuramoto, 1984], whilst in neuro-
science, turbulence has shown to play an essential role in facilitating the
efficient transmission of information in the brain [Deco and Kringelbach,
2020, Deco et al., 2021b]. This framework is explained in detail in Chapter
2.

On the other hand, the model-based approach refers to methods that
model the underlying dynamics from the empirical data in order to find a
mechanistic explanation of brain dynamics. Such computational models
are fundamental for studying the relation between the underlying anatomy
and whole-brain dynamics. Several approximations of realistic brain mod-
els have been employed to model local dynamics, from spiking networks
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to mean-field models [Ghosh et al., 2008, Honey et al., 2009, Demirtaş
et al., 2017, Deco and Jirsa, 2012]. However, models of coupled non-linear
oscillators can capture with higher precision the fundamental features of
mesoscopic brain dynamics, e.g., the interplay between local and global
brain dynamics. Oscillators have been modelled to study synchronisation
in many physical and biological systems, from linear to non-linear oscilla-
tors [Deco et al., 2021b]. One of the main differences between linear and
non-linear oscillators is their response to perturbations. When a linear os-
cillator is perturbed, it oscillates with a different amplitude. In contrast,
the amplitude in a non-linear oscillator is self-regulated, meaning that
it decays with time, returning to the same region in phase space [Garćıa-
Morales and Krischer, 2012]. Non-linear oscillators can be described using
a universal mathematical model, the so-called Stuart–Landau equation,
an ordinary differential equation of a complex order parameter. In neuro-
science, the whole-brain model with Stuart-Landau (also known as Hopf)
oscillators has been used to model the mesoscopic dynamics of brain ar-
eas. This model describes the dynamics of each brain area by a Hopf
bifurcation allowing for studying the transition from noisy to oscillatory
dynamics [Deco et al., 2017a]. The interactions between Hopf oscillators
have allowed researchers to fit and reproduce several aspects of empirical
neuroimaging data such as FC, FC dynamics, metastability, and even tur-
bulence [Deco and Kringelbach, 2017, Deco and Kringelbach, 2020, Deco
et al., 2021b]. This model is explained in more detail in Chapter 2.

1.3 Brain states in health and disease

Spontaneous brain activity persists in different conscious and unconscious
brain states such as psychedelic [Cruzat et al., 2022, Carhart-Harris et al.,
2016], meditation [Escrichs et al., 2019, De Filippi et al., 2022], sleep [Jobst
et al., 2017, Deco et al., 2019], or disorders of consciousness states [Soler-
Toscano et al., 2022, López-González et al., 2021, Panda et al., 2021a].
Furthermore, such activity transitions among healthy brain states, as in
the different sleep stages, from development to ageing, or it can transition
to pathological states such as coma [Goldman et al., 2019]. Characterising
the underlying dynamics of brain states and their transitions can provide
a better understanding of brain function and cognition in both health
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and disease. Nonetheless, there is no consensual and precise definition of
brain state, and the best way of measuring its dynamical complexity using
neuroimaging remains unknown [Kringelbach and Deco, 2020, Escrichs
et al., 2022a, Tagliazucchi et al., 2016, Deco et al., 2015, Tononi et al.,
1994].

The definition of brain state remains elusive probably because brain
dynamics are more complex to understand than previously thought [Deco
et al., 2017b]. Earlier descriptions of brain states have been limited to
estimating the grand average FC without capturing the underlying dy-
namics [Carhart-Harris et al., 2016, Tagliazucchi et al., 2016, Kringelbach
and Deco, 2020]. Recent definitions suggest capturing the dynamic nature
of brain states, e.g., by measuring the broadness of communication across
the whole-brain network [Deco et al., 2017b, Deco and Kringelbach, 2017],
or by clustering the most similar global spatiotemporal patterns across all
subjects [Deco et al., 2019, Cabral et al., 2017]. However, it has been pro-
posed that to characterise brain states, it could be helpful to consider not
only the underlying dynamics but also the responses elicited by external
perturbations [Goldman et al., 2019, Massimini et al., 2005].

Massimini and colleagues proposed a theoretical measure for assessing
dynamical complexity by investigating transcranial magnetic stimulation
(TMS) perturbation-elicited brain activity changes during different brain
states [Casali et al., 2013, Massimini et al., 2005, Ferrarelli et al., 2010].
The authors presented a theoretical index called the perturbational com-
plexity index (PCI) that measured the brain’s response after a direct TMS
perturbation. The PCI made it possible to discriminate between different
conscious and unconscious brain states (wakefulness, sleep, anaesthesia,
and patients recovering from a coma) without requiring the subjects to
perform any specific task. In this way, the level of consciousness was mea-
sured based on the complexity of cortical interactions, independently of
the capacity of the subjects to react to external stimuli.

Another way to study the brain responses evoked by external pertur-
bations is via in silico stimulation protocols. Such protocols are based on
causal whole-brain computational models, which are helpful for studying
how different brain states react to artificial perturbations [Deco et al.,
2018, Perl et al., 2021b, Perl et al., 2021a] as well as forcing transitions
between them [Kringelbach and Deco, 2020]. Various strategies have been
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used to manipulate the perturbations, such as shifting the local dynamics
of brain areas in the opposite direction [Deco et al., 2019, Escrichs et al.,
2022b], by applying non-sustained perturbations [Deco et al., 2018, Perl
et al., 2021a] or by perturbing with an external periodic force [Perl et al.,
2021b, Escrichs et al., 2022a]. This mechanistic framework has proven ef-
fective in dissociating between brain states in health and disease, such as
sleep, disorders of consciousness, or pharmacologically induced loss of con-
sciousness. Altogether, this approach allows studying how different brain
states respond to artificial stimulations through an exhaustive exploration
of all possible local brain areas and, importantly, is not restricted by ethical
limitations of in vivo stimulations in humans [Clausen, 2010, Kringelbach
et al., 2007, Deco et al., 2018].

At present, however, the challenge remains to develop a dynamical
framework that can establish the balance between different brain complex-
ity levels needed to distinguish between conscious and unconscious brain
states in health and disease. A consensual definition of brain states would
help design mechanistic frameworks for characterising them in terms of
dynamical complexity and underlying causal mechanisms, and in turn, it
could offer novel ways for translational clinical interventions to rebalance
brain disorders.
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Chapter 2

HYPOTHESIS AND
OBJECTIVES

This thesis leverages recent neuroimaging and theoretical neuroscience ad-
vances to extend our understanding of the complex brain dynamics under-
lying brain states. In particular, we propose, test, and expand different
model-free and model-based frameworks in order to characterise, define
and simulate brain states in health and disease from empirical neuroimag-
ing data (resting state fMRI and DTI). The general hypothesis is that
these frameworks will allow us to extract specific local, global, spatial,
and temporal features, as well as causal mechanistic explanations of the
brain dynamics underlying such features, and even rebalance the dynam-
ics of brain disorders from a theoretical point of view.

Specific objectives

1. To study dynamical complexity levels from resting state fMRI data
using model-free frameworks in expert meditators and healthy con-
trols during meditation and rest (Article 1) and during healthy age-
ing (Article 2).

2. To test a probabilistic framework for describing the spatiotemporal
dynamics of whole-brain activity in the healthy ageing human brain.
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This probabilistic strategy will typify substates as probability dis-
tributions of all participants’ common and persistent brain states.
This allows for recurrent substates to be detected and characterised
in terms of probability of occurrence and frequency (Article 2).

3. To investigate the effect of exhaustive in silico stimulations on whole-
brain dynamics in the healthy human brain (Article 3). We tested
the hypothesis that causal whole-brain modelling combined with in
silico perturbations could predict optimal stimulation targets to re-
balance the underlying brain dynamics in older subjects. In partic-
ular, we were interested in forcing transitions from the brain states
of older participants to the brain states of middle-aged participants.

4. To test and extend a unifying turbulent dynamics framework for ac-
curately describing and characterising different brain states in health
and disease (Article 4). We hypothesised that combining model-free
and model-based frameworks would allow us to extract specific fea-
tures of turbulent dynamics underlying conscious and unconscious
states.
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Chapter 3

METHODS

When I meet God, I am going to ask him two questions:
why relativity? and why turbulence? I really believe he
will have an answer for the first.

Werner Heisenberg

The following section introduces the novel model-free and model-based
frameworks implemented and tested in the current thesis to study the dy-
namical complexity and the underlying causal mechanisms in different
brain states using resting state fMRI data. In particular, the medita-
tion dataset comprised experienced meditators and healthy controls during
meditation and the resting state. The healthy ageing dataset comprised
two groups scanned during the resting state, the middle-aged and older
groups. The sleep dataset included healthy subjects during deep sleep and
the resting state. Finally, the disorders of consciousness (DoC) dataset in-
cluded healthy participants and DoC patients diagnosed in a minimally
conscious state (MCS) or unresponsive wakefulness state (UWS) (see Ap-
pendix for detailed information on the resting state fMRI datasets).
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3.1 Model-free frameworks

3.1.1 Intrinsic ignition

We tested and quantified the intrinsic ignition framework using resting
state fMRI data in Article 1 and Article 2. In particular, in Article 1 we
analysed a dataset comprised of healthy controls and expert meditators
during the resting state and meditation. Furthermore, in Article 2 we
analysed a dataset consisting of middle-aged and older subjects. In this
article, the framework was assessed across the whole-brain functional net-
work and independently within eight well-known resting state networks.

The intrinsic ignition framework characterises the dynamical complex-
ity of different brain states by measuring how the level of integration
evolves at a time window when a brain area triggers an event (Figure
3.1). An ignition event is captured when the signal of a brain area crosses
a fixed threshold [Tagliazucchi et al., 2012]. The phase for each brain area
is measured by computing first the Hilbert transform, and then the phase
lock matrix Pjk(t), which describes the state of phase synchronisation be-
tween regions j and k at time t as follows:

Pjk(t) = e−3|φj(t)−φk(t)| (3.1)

where the difference between φj(t) and φk(t) is the obtained phase
between brain areas j and k at time t. The integration is defined by
measuring the length of the largest connected component in the binarised
symmetric matrix Pjk(t). The integration represents the broadness of
communication across the network for each event evoked. Finally, repeat-
ing the process for all events crossing the threshold in each brain area, the
mean and the standard deviation of the integration across the network are
calculated.

3.1.2 PMS

In Article 2, we assessed the probabilistic metastable substates (PMS)
framework in a large resting state fMRI dataset of healthy human adults
to identify recurrent dynamic functional connectivity patterns (here re-
ferred to as metastable substates). The PMS fully typifies substates as
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stochastic subdivisions of regular and persistent brain states. This allows
recurrent substates to be detected and characterised in terms of proba-
bility of occurrence and frequency. The fundamental idea of the PMS is
to cluster global spatiotemporal patterns, which allows its statistics to be
characterised (Figure 3.1).

In brief, the average BOLD time series of each brain area is Hilbert-
transformed to yield the phase evolution of the regional signals. Then,
the phase coherence for each pair of brain areas at any given time t is
computed as the cosine of the phase differences as:

dFC(n, p, t) = cos (θ(n, t)− θ(p, t)) (3.2)

This process yields a 3D matrix of NxNxT size, where N is the num-
ber of brain areas in the used parcellation, and T indicates the number
of volumes acquired across time. Then, the large number of NxN dy-
namic connectivity matrices are clustered to estimate metastable states.
However, reducing the dimensionality of the coherence matrices improves
the signal-to-noise ratio and the reliability of any clustering or classifica-
tion process to describe the states. The method extracts the first (Nx1)
eigenvector, i.e., V 1, of each NxN coherence matrix, from which a dis-
crete number of reduced dynamic patterns can be detected by applying
clustering across time points and subjects. Due to the symmetry of the
dynamic matrices, each leading eigenvector can be used in turn to esti-
mate the corresponding dynamic matrix. The k-cluster centroids define
the metastable substates, each with a probability of occurrence and fre-
quency. This probability description is a biomarker of brain states.

3.1.3 Turbulence

We extended the concept of metastability to study not only global spatial
synchronisation but also local spatial synchronisation of brain states by
using elements of turbulence theory. The turbulence measure is a gener-
alisation of the concept of metastability. That is, metastability is defined
as the variability across time of the global level of synchronisation of the
whole system, commonly known as the global Kuramoto order parameter
of a dynamical system. Here, however, we studied the local Kuramoto
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Figure 3.1: Intrinsic ignition and PMS frameworks. Both model-free frame-
works are based on the phase synchronisation of BOLD signals. The BOLD time
series are extracted for each brain area of the parcellation [left panel (A)], and
the phase space of the BOLD signal is computed using the Hilbert transform [left
panel (B)]. The phase dynamics can be represented in the complex plane as eiφn

(bold black line), the real part as cosφ (dotted black line), and the imaginary
part as sinφ (dotted black line). The purple arrows represent the Hilbert phases
at each TR. The middle panel shows the intrinsic ignition framework. Events
are captured by applying a threshold method [Tagliazucchi et al., 2012] (green
area). For each ignition event evoked, the activity in the rest of the network
(red stippled area) is measured in the time window [(A), grey area]. A binarised
phase lock matrix is obtained from the time window (B). The integration is ob-
tained from this phase lock matrix by calculating the largest subcomponent (i.e.,
by applying the global integration measure (C) [Deco et al., 2017a, Deco et al.,
2015]). The process is repeated for each event and brain area until the end of the
scan. Then, the mean ignition and node metastability (as standard deviation)
are measured for each brain area. The right panel shows the representation of
the LEiDA framework. This method characterises differences between groups in
dynamic functional connectivity patterns or metastable substates. The BOLD
phases of all brain areas are represented in the complex plane (A). The right
panel shows the phase coherence matrix between each pair of brain areas. The
leading eigenvector V1(t) from this matrix is extracted (B). A k-means clustering
algorithm is applied to obtain the metastable substates from all the leading eigen-
vectors across time points, number of subjects, and groups (C). Figure adapted
from [Escrichs et al., 2021].

14



order parameter in different brain states, defined as the local level of syn-
chronisation across spacetime (Figure 3.2).

The amplitude turbulence, Rλ (x̄, t), is defined as the modulus of the
local Kuramoto order parameter for a given brain area as a function of
time:

Rλ (x̄, t) e
iϑλ(x̄,t) = k

∫ ∞

−∞
dx̄′Gλ

(
x̄− x̄′

)
eiφ(x̄

′,t) (3.3)

where Gλ is the local weighting kernel Gλ (x̄) = e−λ|x̄|, λ is the spa-
tial scaling, φ (x̄, t) are the phases of the empirical data computed by the
Hilbert transform, and k is the normalisation factor [

∫∞
−∞ dx̄′Gλ (x̄− x̄′)−1].

Thus, Rλ defines local levels of synchronisation as a function of space, x̄,
and time, t, at a given scale, λ. This measurement captures what we call
brain vortex space, Rλ, over time. Finally, the level of amplitude turbu-
lence is defined as the standard deviation across spacetime of the local
Kuramoto order parameter (R):

D =
√

⟨R2
λ⟩(n,t) − ⟨Rλ⟩2(n,t) (3.4)

where the brackets <>(n,t) represent average values across space and time.

Information cascade flow and information cascade

In addition, we defined the information cascade flow (IF), which indicates
how the information travels from a given spatial scale λ to a lower scale in
consecutive time steps. This measure estimates the information transfer
across scales and is computed as the time correlation between the local
Kuramoto order parameter at two consecutive scales and times:

IF (λ) = ⟨corrt(Rλ(x̄, t+∆t), Rλ−∆λ(x̄, t))⟩x̄ (3.5)

where the brackets <>x̄ denotes averages across time and space, t+∆t
corresponds to a time step, and ∆λ is a scale step.

Then, we calculated the information cascade by averaging the infor-
mation cascade flow across all scales λ to capture the overall information
processing behaviour.
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Figure 3.2: Turbulence framework. A) In fluids, turbulence is one of the most
common dynamical regimes where the mixing movement governs. The energy
cascade, i.e., how the energy travels across scales while dissipating, and the statis-
tical properties defined as power laws on the energy levels and structure functions,
determine the turbulent behaviour of the fluid (left panel). Recently, using fMRI
data, it has been demonstrated that the brain exhibits turbulence-like dynamics
(right panel) [Deco and Kringelbach, 2020]. B) The analogy between turbulence
and brain activity can be determined by the local Kuramoto order parameter (R)
at different scales (λ). From this parameter, different brain information measures
can be assessed. Namely, the amplitude turbulence, calculated as the standard
deviation of the modulus of the local Kuramoto order parameter; the informa-
tion transfer, calculated as the correlation of local synchronisation across space
at a given scale; the information cascade flow, calculated as the correlation of
the local Kuramoto order parameter across scales; and the information cascade,
calculated as the average across scales of the information cascade flow. Figure
adapted from [Escrichs et al., 2022a].
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Information transfer correlation

The spatial information transfer indicates how the information travels
across space at a specific scale, λ. This measurement is computed as the
slope of a linear fitting in the log-log scale of the time correlation between
the local Kuramoto order parameter of two brain areas at the same scale
as a function of its Euclidean distance (r) within the inertial subrange:

log
(
corrt

(
Rλ

n, R
λ
p

)
(r)

)
= Aλ ∗ log (r) +Bλ (3.6)

where Aλ and Bλ are the fitting parameters for each scale (λ), and r
is the spatial distance in the brain. The negative slope (Aλ) stands for
the transfer in the spatial direction r of the information in terms of time
correlation of the local level of synchronisation. In this respect, when the
slope is steeper, the information travels over shorter distances, while a flat-
ter slope indicates that the information is transferred over longer distances.

In Article 4, we assessed the turbulence framework in different brain
states (resting state, meditation, deep sleep, minimally conscious states
and unresponsive wakefulness state) using resting state fMRI data.

3.2 Model-based frameworks

All models are wrong, but some are useful.

George E. P. Box

3.2.1 The Hopf model

We used the Hopf model to simulate the empirical PMS explained in the
previous section and apply in silico perturbations to the model in order
to force transitions between brain states of different age groups (Article
3). We also used this model to measure the reactivity of information
encoding capabilities of the brain in different conscious (rest, meditation)
and unconscious (sleep, MCS, UWS) brain states (Article 4).
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The Hopf whole-brain model is based on the integration of structure
and dynamics (Figure 3.3). The model consists of n anatomically in-
terconnected brain areas based on the parcellation used, coupled with the
underlying SC. The local dynamics of each brain area are described using
the normal form of a supercritical Hopf bifurcation, which makes it possi-
ble to emulate the dynamics for each brain area from noisy to oscillatory
dynamics defined as follows:

dxn
dt

= [an − x2n − y2n]xn − ωnyn + βηn(t)

dyn
dt

= [an − x2n − y2n]yn + ωnxn + βηn(t)

(3.7)

where ηn(t) is a term to add Gaussian noise with a fixed standard
deviation β = 0.02. This normal form has a supercritical bifurcation at
an = 0, such that for an > 0 the system is at a stable limit cycle oscillation
with frequency fn = ωn/2π, and for an < 0 the local dynamics are in a
stable point (i.e., noisy state). The intrinsic frequency ωn of each brain
area is obtained from the empirical data.

In order to model the whole-brain dynamics, the underlying SC is
added to couple the local dynamics of brain areas n with p and is rep-
resented by the coupling term Cnp. Thus, the whole-brain dynamics are
defined by the following set of coupled equations:

dxn
dt

= [an − x2n − y2n]xn − ωnyn +G
N∑
p=1

Cnp(xp − xn) + βηn(t)

dyn
dt

= [an − x2n − y2n]yn + ωnxn +G
N∑
p=1

Cnp(yp − yn) + βηn(t)

(3.8)

The variable xn reproduces the BOLD signal of each brain area. The
global coupling factor G is scaled equally for each brain area for simplicity
and corresponds to the control parameter of the model. This parameter
makes it possible to obtain the dynamical optimal working point of the
model (i.e., where the simulations best fit the empirical neuroimaging
data).
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Figure 3.3: The Hopf model. The whole-brain computational model is built
based on empirical functional and structural data between the total brain areas of
a given brain parcellation. The local dynamics of each brain area are represented
by a Hopf bifurcation equation, which describes the transitions between noise and
oscillation. The local bifurcation parameter, a, can shows three different dynam-
ical regimes: noise or stable fixed point (a < 0), fluctuating subcritical regime
(a ≈ 0) and oscillatory supercritical regime (a > 0). The lower panel shows
the representation of the global coupling parameter G. This parameter repre-
sents the conductivity of the structural connections across the network. A lower
coupling G denotes subcritical behaviour, indicating decreased brain dynamics,
whilst a higher coupling G indicates an enhanced transmission of information
among brain areas.
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3.2.2 PMS simulation

The PMS explained in section 3.1.2 can be simulated using the Hopf model.
We used this approach in order to force transitions from a given brain
state to another. In brief, the local dynamics of each brain area were
described using the normal form of a Hopf bifurcation, and the bifurcation
parameters of each oscillator, a, were set on the edge of the bifurcation
point. The coupling parameter, G, was optimised to fit the whole-brain
model to the PMS. In particular, the centroids of the empirical PMS were
used to construct the model based on the probability of the empirical
centres. Finally, the empirical and simulated PMS were compared using
the symmetrised KL distance as follows:

KL (Pemp, Psim) = 0.5

(∑
i

Pemp (i) ln

(
Pemp (i)

Psim (i)

)
+

∑
i

Psim (i) ln

(
Psim (i)

Pemp (i)

)) (3.9)

where Pemp(i) are the empirical and Psim(i) the simulated probabilities
of the extracted brain states i. The optimal simulated PMS is obtained
where the KL distance between the empirical and simulated PMS is min-
imal (i.e., the optimal working point of the model). Then, we applied
in silico perturbations (explained in the next section) in order to force a
transition between the PMS of different groups.

3.2.3 In silico perturbations

We used the Hopf model to apply two types of perturbations. In Article
3, we applied in silico perturbations in order to force transitions between
brain states of different age groups. In contrast, in Article 4, we applied in
silico perturbations to assess the susceptibility and information encoding
capability measures. Such measures allowed us to obtain the brain’s re-
activity to external perturbations and were assessed in different conscious
(rest, meditation) and unconscious (sleep, MCS, UWS) brain states.
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Forcing transitions between brain states

The perturbation consists of systematically perturbing each brain area of
the model using two different protocols (noise and synchronisation). The
perturbations are based on shifting the local bifurcation parameter (a)
of the optimised PMS model. In particular, the noise protocol shifts the
parameter (a) by applying negative values (i.e., in the range [-0.1: 0] in
steps of 0.01), whereas the synchronisation protocol shifts the parameter
by applying positive values (i.e., in the range [0: 0.1] in steps of 0.01).
Finally, in order to obtain those brain areas promoting the best transition,
the KL distance (explained in section 3.2.2) between the target PMS and
perturbed PMS is calculated. The best transition is that in which the KL
distance is minimal.

Susceptibility and information encoding capability

The susceptibility measure of the whole-brain model defines the brain’s
sensitivity to react to external stimulations. In contrast to susceptibility,
the information capability measure captures how the external stimulations
are encoded in whole-brain dynamics. Both measures are estimated on the
brain vortex space, Rλ, i.e., evaluated by calculating the modulus of the
local Kuramoto order parameter (explained in section 3.1.1).

To measure the susceptibility, the Hopf model was perturbed by
randomly changing the local bifurcation parameter, an, in the range [-0.02:
0]. The sensitivity of the perturbations on the spatiotemporal dynamics
was calculated by measuring the modulus of the local Kuramoto order
parameter as:

D =
〈〈〈

R̃(m)
n (t)

〉
t
− ⟨R(m)

n (t)
〉
t

〉
trials

〉
s

(3.10)

where R̃
(m)
n (t) corresponds to the perturbed case, R

(m)
n (t) to the un-

perturbed case, and ⟨ ⟩t, ⟨ ⟩trials, and ⟨ ⟩s to the average across time,
trials, and space, respectively.

The information capability, I, was defined as the standard devi-

ation across trials of the difference between the perturbed R̃
(m)
n (t) and
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unperturbed R
(m)
n (t) mean of the modulus of the local Kuramoto order

parameter across time t, averaged across all brain areas n as:

I = ⟨⟨
(
⟨R̃(m)

n (t)⟩t − ⟨R(m)
n (t)⟩t

)2
⟩trials−

⟨
(
⟨R̃(m)

n (t)⟩t − ⟨R(m)
n (t)⟩t

)2
⟩trials⟩s

(3.11)

where the brackets ⟨ ⟩t, ⟨ ⟩trials, and ⟨ ⟩s denote the averages de-
fined as above.
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Over the past 2,500 years, contemplative traditions have explored the nature of the

mind using meditation. More recently, neuroimaging research on meditation has revealed

differences in brain function and structure in meditators. Nevertheless, the underlying

neural mechanisms are still unclear. In order to understand how meditation shapes

global activity through the brain, we investigated the spatiotemporal dynamics across

the whole-brain functional network using the Intrinsic Ignition Framework. Recent

neuroimaging studies have demonstrated that different states of consciousness differ

in their underlying dynamical complexity, i.e., how the broadness of communication is

elicited and distributed through the brain over time and space. In this work, controls

and experienced meditators were scanned using functional magnetic resonance imaging

(fMRI) during resting-state and meditation (focused attention on breathing). Our results

evidenced that the dynamical complexity underlying meditation shows less complexity

than during resting-state in the meditator group but not in the control group. Furthermore,

we report that during resting-state, the brain activity of experienced meditators showed

higher metastability (i.e., a wider dynamical regime over time) than the one observed in

the control group. Overall, these results indicate that the meditation state operates in a

different dynamical regime compared to the resting-state.

Keywords: ignition, whole-brain, meditation, resting-state, fMRI, integration, dynamical complexity

1. INTRODUCTION

During the last 2,500 years, contemplative traditions have explored the nature of the mind through
self-discipline and self-observation.Meditation per se is not a philosophy or a religious practice, but
a method of mental training which enables to cultivate a variety of human abilities, ranging from
developing a clearer mind and enhancing attention to cultivating altruistic love and compassion
toward other beings (Ricard et al., 2014).

In the last decade, MRI studies exploring the neural correlates of meditation have revealed
important insights into how this mental training changes brain function and structure (Brewer
et al., 2011; Kilpatrick et al., 2011; Froeliger et al., 2012; Hasenkamp et al., 2012; Taylor et al., 2013;
Garrison et al., 2014; Marchand, 2014; Tang et al., 2015; Panda et al., 2016; Kyeong et al., 2017;
Mooneyham et al., 2017; Marusak et al., 2018). Yet, little is known about howmeditation influences
the capability to transmit information across the whole-brain functional network.
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Recently, it has been proposed that a brain state can be
defined by measuring how the broadness of communication
is elicited and distributed through the brain over time, i.e.,
by characterizing its underlying dynamical complexity (Deco
et al., 2017). Investigating the propagation of the neural activity
by measuring their dynamical implications (Hutchison et al.,
2013) across the whole-brain network may help to explain
the fundamental principles of the underlying mechanisms of
different brain states (Deco et al., 2011, 2015; Sporns, 2013;
Allen et al., 2014). Theoretical methods have been successfully
applied to characterize different states of consciousness such as
wakefulness, sleep, anesthesia or psychedelic states (Tagliazucchi
and Laufs, 2014; Tagliazucchi et al., 2014; Atasoy et al., 2017,
2018; Deco et al., 2017; Jobst et al., 2017).

Here, we investigate the brain’s macro-scale mechanisms
underlying meditation as well as meditation-induced long-term
changes in resting-state using the Intrinsic Ignition Framework
(Deco and Kringelbach, 2017; Deco et al., 2017). This data-
driven method allows to study the spatiotemporal dynamics
across the whole-brain functional network by measuring the
effect of naturally occurring local activation events on whole-
brain integration.

2. METHODS

2.1. Participants
A total of forty participants were recruited for this experiment.
Half of the participants were experienced meditators (mean
(SD) age = 39.8 (10.29); education years = 13.6; mean (SD)
hours meditation experience = 9526.9 (8619.8); 7 females) and
were recruited from Vipassana communities of Barcelona. All of
them had a minimum of 1,000 h of meditation experience and
confirmed that they maintained daily practice (>1 hour/day).
The other half were well-matched control participants with no
prior meditation experience (mean (SD) age = 39.75 (10.13);
education years= 13.8; 7 females). Participants reported no
history of neurological disorder, provided written informed
consent, and were compensated for their participation. The study
was approved by the Ethics Committee of the Bellvitge Hospital
in accordance with the Helsinki Declaration on ethical research.

2.2. Resting-State and Meditation fMRI
A total of 450 brain volumes in each condition were analyzed
(≈15 min). During rest, participants were asked to look at a
fixation cross on the screen, remain as motionless as possible,
not to think about anything in particular as well as not to fall
asleep. After resting acquisition, all participants were engaged
in meditation. Meditators were asked to practice anapanasati
meditation (focused attention on breathing). In this type of
meditation, subjects try to concentrate all their attention on
natural breathing, and when they realize that the mind wanders,
they need to recognize it and come back to natural breathing
without judgment. Controls were instructed in meditation before
being scanned following the instructions as taught by S.N.
Goenka (Hart, 1987), who was a Vipassana meditation teacher.
Controls confirmed that they understood the procedure after
the simulation.

2.3. MRI Data Acquisition
MRI images were acquired on a 3T TIM TRIO scanner (Siemens,
Erlangen, Germany) using 32-channel receiver coil. The high-
resolution T1-weighted images were acquired with 208 slices in
the sagittal plane, repetition time (TR) = 1,970ms, echo time (TE)
= 2.34ms, TI = 1,050ms, flip angle = 9°, field of view (FOV) = 256
mm, voxel size 1× 1× 1mm. Resting-state andmeditation fMRI
were performed by a single shot gradient-echo EPI sequence (TR
= 2,000 ms; TE = 29 ms; FOV = 240 mm; in-plane resolution 3
mm; 32 transversal slices with thickness = 4mm; flip angle = 80°).

2.4. Preprocessing
Preprocessing was computed using the Data Processing Assistant
for Resting-State fMRI (DPARSF) (Chao-Gan and Yu-Feng,
2010). Preprocessing included: manually reorienting T1 and
EPI images; discarding the first 10 volumes due to magnetic
field inhomogeneities; slice-timing correction; realignment for
head motion correction; T1 co-registration to functional image;
European regularization segmentation; removal of spurious
variance through linear regression: six parameters from the head
motion correction, the global mean signal, the white matter
signal, and the cerebrospinal fluid signal, CompCor; removal of
the linear trend in the time-series; spatial normalization to the
Montreal Neurological Institute (MNI); spatial smoothing with 6
mm FWHM Gaussian Kernel; and band-pass temporal filtering
(0.01-0.25Hz) (Biswal et al., 1995; Lowe et al., 1998). Finally, we
extracted the time-series according to a resting-state atlas of 268
nodes, which ensures the functional homogeneity within each
node (Shen et al., 2013).

One meditator was removed due to incidental findings in the
MRI session. In addition, 3 controls during meditation and 1
control during rest were excluded due to a head rotation >2 mm
or 2°. Moreover, the frame-wise displacement (FD) (Jenkinson
et al., 2002) was calculated due to its consideration of voxel-wise
differences in motion in its derivation (Yan et al., 2013). Subjects
with head motion >2 standard deviations above the group
average and movement in more than 25% of time points were
excluded from the analysis. FD correction led to the exclusion of
1 control during meditation. Therefore, the final sample of the
study included: 19 controls during rest and 16 controls during
meditation, 19 meditators during rest and 19 meditators during
meditation. After exclusion, no significant differences in terms of
age, educational level and gender were observed between groups.

2.5. Intrinsic Ignition Framework
The Intrinsic Ignition Framework (Deco and Kringelbach, 2017)
measures the degree of elicited whole-brain integration of
spontaneously occurring events across time. Figure 1 describes
the algorithm to obtain the intrinsic integration across events
of each brain area. First, the time-series are filtered within the
narrowband 0.04–0.07 Hz to avoid artifacts (Glerean et al., 2012).
Then, for each brain area, driving events are captured for each
timepoint and fixed as a binary signal by transforming the filtered
time-series into z-scores, zi(t). A threshold θ is imposed given
by the sum of the mean and the standard deviation of the
signal in each brain area, such that the binary sequence σ (t)
= 1 if zi(t) > θ and is crossing the threshold from below and
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FIGURE 1 | Measuring intrinsic ignition. (A) Events were captured applying a

threshold method Tagliazucchi et al. (2012) (see green area). For each event

elicited (gray area), the activity in the rest of the network was measured in the

time-window of 4TR (see red area). (B) A binarized matrix was obtained

representing the synchronized events in each time window (i.e., when two

brain areas have triggered an event) (C) Applying the global integration

measure Deco et al. (2015), we obtained the largest subcomponent. By

repeating the process for each driving event, we calculated the mean and the

variability of the Intrinsic-Driven Integration for each brain area across the

whole-brain network. Adapted from Deco and Kringelbach (2017).

σ (t) = 0 otherwise (Tagliazucchi et al., 2012). If a brain area has
triggered an event (Figure 1A green line) then the integration
in the rest of the network is measured within the set time
window of 4TR (Figure 1A gray time window). A binary matrix
is constructed (Figure 1B) representing the synchronized events
in each timepoint (i.e., when two brain areas have triggered
an event). Afterwards, the global integration measure (Deco
et al., 2015) is defined as the largest component in the binarized
connectivity matrix, given by the length of the connected
component considered as an adjacency matrix (Figure 1C).
Finally, the Intrinsic-Driven Mean Integration (IDMI) is defined

as the averaged integration across events, and the variability as
the standard deviation of the Intrinsic-Driven Integration. We
would like to remark the similitude of our quantitative measure
of ignition and the avalanche framework (see, for example, Beggs
and Plenz, 2003).

2.6. Surrogate Analysis
To ensure that the observed results were not obtained by chance,
we applied a surrogate data testing method. Specifically, we
randomly permuted the original timeseries across time and
measured the ignition in each spontaneous event on the shuffled
data. After repeating the process 50 times, we tested whether
the empirical ignition values were significantly higher than the
surrogates’ ignition values.

2.7. Statistical Analyses
Here, we compared the IDMI and the variability values for each
group (controls and meditators) between conditions (resting
and meditation), and we examined if there were differences
between groups in the same condition (resting and meditation).
Furthermore, we validated our results by comparing the real
conditions vs. the randomized ignition data. To do so, we used
a Monte-Carlo permutation method. We randomly shuffled
the labels between conditions to obtain two new simulated
conditions (10,000 permutations). Then, we evaluated howmany
times the difference between the simulated conditions was
higher than the difference between the real conditions. This
is, we computed the p-value of the null hypothesis that the
two random distributions show higher difference than the real
conditions. Additionally, we applied the Bonferroni correction
for multiple comparisons.

3. RESULTS

3.1. Intrinsic-Driven Mean Integration
(IDMI)
Figure 2A shows the IDMI for each group and brain state,
while Figure 2C shows the IDMI for each group and each brain
area. The IDMI captures the spatial diversity as differences in
average intrinsic ignition profiles across the different nodes.
The brain activity of meditators during resting-state showed the
highest values of the IDMI compared to the control group (p
< 0.001, Monte-Carlo simulations after Bonferroni correction).
Furthermore, this value decreased significantly when meditators
were engaged in meditation (p< 0.001, Monte-Carlo simulations
after Bonferroni correction). In contrast, controls did not show
any differences between resting-state and meditation conditions.

3.2. Variability of Intrinsic-Driven
Integration
Next, we calculated the variability of the Intrinsic-Driven
Integration in both states (resting-state and meditation) for
each group (controls and meditators). Figure 2B shows the
variability for each group and brain state. The variability
describes the heterogeneity of each brain area, which is
closely connected to its local metastability (Deco and
Kringelbach, 2017). Thus, it describes how the local activity
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FIGURE 2 | (A) Mean of the Intrinsic-Driven Integration (IDMI) for each group during resting-state and meditation state. The IDMI was higher in meditators than in

controls during resting-state and lower in meditators during meditation. No significant differences were observed in controls between conditions. Furthermore, we

show the box plot from the surrogate IDMI data (on the bottom in green). The randomized data were significantly smaller than the original time-series, showing the

robust statistical comparisons. (B) Both controls and meditators showed higher local metastability across the whole-brain during resting-state compared to

meditation. However, the effect was significantly larger for meditators. Furthermore, the metastability in resting-state was significantly higher for experienced

meditators than for controls. P-values are based on Monte-Carlo simulation after Bonferroni correction, *p ≤ 0.025, ***p ≤ 0.0005 and n.s represents not significant.

(C) IDMI across events for each group during resting-state and meditation for 268 brain regions.

in each brain area changes across time. High levels of
metastability in a node represent a more dynamic function
over time, while lower levels represent greater stability.
The brain activity of controls and experienced meditators
showed higher functional variability (i.e., metastability) in
resting-state than in meditation. Nevertheless, the effect was
significantly larger for meditators (p < 0.001, Monte-Carlo
simulations after Bonferroni correction) than for controls
(p = 0.022, Monte-Carlo simulations after the Bonferroni
correction). Furthermore, the metastability in resting-state
was significantly larger for experienced meditators than
for controls (p < 0.001, Monte-Carlo simulations after the
Bonferroni correction).

4. DISCUSSION

A growing scientific interest lies in the characterization of the
meditation state. Hasenkamp and colleagues (Hasenkamp et al.,
2012) captured the interactions between four cognitive phases
during meditation, but disregarded the dynamical properties that
contain relevant spatiotemporal information. Mooneyham and
colleagues applied a dynamical functional connectivity approach
dissociating mental states during a meditation scan. The authors
reported that after a 6 weeks intervention mindfulness program,
subjects spent more time in the state of focused attention and
less time in the state of mind-wandering (Mooneyham et al.,

2017). In addition, a study that applied graph theoretical analysis
(Jao et al., 2016) characterized the degree of the hierarchical
organization during meditation. This study revealed that the
nodes that had the highest integration degree during rest had
the lowest integration degree during meditation, and vice versa.
Our work extends these findings by exploring the brain activity
during meditation by characterizing the dynamical complexity
in terms of how local information is broadcasted across the
whole-brain.

Here, we have characterized the dynamical complexity
underlying resting-state and meditation in healthy controls
and experienced meditators as evidenced by the level of
intrinsic ignition. Specifically, in meditators but not in
controls, we observed a significant increase of intrinsic ignition
during resting-state compared to meditation (Figure 2A). In
addition, during resting-state, meditators showed the maximal
variability of intrinsic ignition (i.e., metastability) across
the whole network, revealing a state of maximum network
switching (Figure 2B).

Our results showing an increase of intrinsic ignition during

rest compared to meditation are consistent with recent studies

on information propagation across the brain. Irrmischer and
colleagues found a shift from more complex brain dynamics

during rest to a state of reduced information propagation during
meditation, importantly, only in meditators (Irrmischer et al.,
2018). Furthermore, Gard and colleagues demonstrated using
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graph theory that yoga and meditation practitioners showed
greater network integration than controls during rest (Gard et al.,
2014). In addition, the increase of metastability in meditators
during resting-state is congruent with the increase of the
temporal complexity of oscillations during rest in meditators
as observed in the previously mentioned study (Irrmischer
et al., 2018). Moreover, studies applying a dynamical functional
connectivity approach found that individuals with high trait
mindfulness transitioned more frequently between brain states at
rest (Lim et al., 2018; Marusak et al., 2018).

To sum up, these results demonstrate that experienced
meditators can voluntarily alter their whole-brain dynamics
when engaged in a meditative state. Furthermore, expertise
in meditation leads to increased ignition and metastability
at rest. This means that expert meditators are able
to regulate the level of exploration of the dynamical
repertoire, restricting it during meditation, and enhancing it
during rest.
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Abstract

Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic
resonance imaging studies have found significant age-related alterations in functional connectivity across various
networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics
of resting-state brain activity across the whole-brain functional network can provide a better characterization of
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age-related changes. Here, we employed two data-driven whole-brain approaches based on the phase synchronization of
blood-oxygen-level-dependent signals to analyze resting-state fMRI data from 620 subjects divided into two groups
(middle-age group (n = 310); age range, 50–64 years versus older group (n = 310); age range, 65–91 years). Applying the
intrinsic-ignition framework to assess the effect of spontaneous local activation events on local–global integration, we
found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower
metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to
access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional
whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient
global communication in the brain.

Key words: aging, metastability, rich-club, resting-state fMRI, whole-brain dynamics

Introduction

Normal aging is associated with changes in the structure and
function of the brain that could lead to cognitive decline and
worse quality of life (Li et al. 2015). Studying the mechanisms
of brain aging may identify interventions to prevent or slow
age-related deterioration and improve our understanding of the
mechanisms involved in neurodegenerative diseases (Ferreira
and Busatto 2013). In recent years, noninvasive resting-state
functional magnetic resonance imaging (fMRI) paradigms from
spontaneous blood-oxygen-level-dependent (BOLD) signals
have proven useful in studying age-related changes in brain
function (Ystad et al. 2011). Resting-state fMRI shows coherent
spontaneous low-frequency fluctuations across brain regions
and the organization of these regions into different functional
networks (Zuo et al. 2010). Studies of functional connectivity
have suggested age-related alterations in different resting-
state networks (Wang et al. 2010; Ferreira and Busatto 2013;
Grady et al. 2016), even in cognitively preserved older adults
(Damoiseaux et al. 2008; Onoda et al. 2012). Other studies (Li
et al. 2015; Grady et al. 2016; Fjell et al. 2017) have suggested that
overactivation in functional connectivity across resting-state
networks may be related to compensatory mechanisms.

Although functional connectivity studies have demonstrated
reliable age-related changes, it remains unclear how brain net-
works cooperate to handle aging-associated declines, especially
considering the effects of averaging on measurements of func-
tional connectivity during rest (Hutchison et al. 2013). In this
line, growing evidence indicates that functional connectivity
among brain networks is not static over time; rather, differ-
ent brain regions connect and disconnect from one another in
highly complex temporal dynamics (Deco et al. 2011; Hutchi-
son et al. 2013; Sporns 2013; Zalesky et al. 2014; Ponce-Alvarez
et al. 2015). In other words, even in the resting state, brain
networks fluctuate in response to different contexts or stimuli.
Capturing statistical properties of fMRI data beyond classical
static functional connectivity can facilitate the interpretation
of brain functioning during the resting scan from new perspec-
tives. This approach assumes that mental operations arise from
neural communication involving coherent and flexible oscilla-
tory activity between functional groups of neurons (Hutchison
et al. 2013; Deco and Kringelbach 2016). The term metastability
(Deco and Kringelbach 2016) refers to the temporal variability
of the functional connectivity that arises from the underly-
ing structural connectivity (the human connectome) (Sporns
et al. 2005). Optimal brain function is thought to occur within a
range of metastable patterns that reflects a balance between the
synchronization and adaptive reconfiguration of the functional

connections among the different regions that make up the
structural network (Cabral et al. 2011).

Dynamic (time-varying) functional connectivity has been
explored across the lifespan (Nomi et al. 2017), across different
states of consciousness (Deco et al. 2017b; Escrichs et al. 2019;
Lord et al. 2019), in patients with brain disorders (Puig et al.
2018), and during healthy aging (Tian et al. 2018; Nobukawa et al.
2019). One study that evaluated resting-state fMRI data from
250 subjects to examine patterns of resting-state functional
connectivity over time found that dynamic connectivity
patterns are consistent across groups (Abrol et al. 2016). Another
study (Yin et al. 2016) found that age-related changes in the
functional flexibility of the brain differ in different regions of
the cerebral cortex. A recent study in 188 cognitively healthy
elderly individuals (Lou et al. 2019) found that frequency-specific
brain network diversity decreased with increasing age at both
the whole-brain and regional levels. Thus, exploring dynamic
functional connectivity promises to enrich our knowledge of the
functional organization of the brain, but little is known about
changes in dynamic functional connectivity during aging.

In this work, we explored age-related changes in dynamic
functional connectivity across the whole-brain network,
applying two recently developed data-driven methods based
on the phase synchronization of resting-state fMRI BOLD
signals to a large dataset from healthy human adults. We
studied two aspects of whole-brain functional connectivity in
middle-aged subjects versus older subjects: 1) the effects of
spontaneously occurring local activation events on local–global
integration through the intrinsic-ignition framework (Deco and
Kringelbach 2017; Deco et al. 2017b) and 2) recurrent dynamic
functional connectivity patterns across time (here, referred to
as metastable substates), their duration, and their probability
of occurrence through Leading Eigenvector Dynamics Analysis
(LEiDA) (Cabral et al. 2017).

Materials and Methods
Subjects

The study population was drawn from the 1030 subjects aged
≥50 years who participated in the population-based Aging Ima-
geomics Study (Puig et al. 2020) from whom data were collected
between November 2018 and June 2019. We excluded subjects for
whom the full brain imaging dataset was unavailable: those who
did not undergo the complete brain imaging protocol including
fMRI (n = 23), those with MRI acquisition errors (n = 192), and
those with uncorrectable motion artifacts (n = 92; see the Pre-
processing section below). Thus, the inclusion criteria were met
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Table 1 Demographic and clinical characteristics

Overall sample
(n=620)

Middle-age group
(<65 years) (n=310)

Older group
(≥ 65 years) (n=310)

p value

Sex (female), n (%) 307 (49.5) 169 (54.5) 138 (44.5) 0.016a

Age, mean (SD) 65.9 (7.2) 60.2 (3.7) 71.8 (4.5) NA
Age groups, n (%) NA

50–64 310
65–91 310

Education level∗, n (%) <0.001a

No schooling 18 (2.9) 2 (0.7) 16 (5.2)
Primary (ISCED 1) 324 (52.8) 133 (43.3) 191 (62.2)
Secondary (ISCED 2) 90 (14.7) 55 (17.9) 35 (11.4)
Professional (ISCED 3–4) 107 (17.4) 67 (21.8) 40 (13.0)
University (ISCED 5–8) 75 (12.2) 50 (16.3) 25 (8.1)

Body mass index∗∗, n (%) <0.001a

<18.5 kg/m2 5 (0.8) 5 (1.6) 0 (0.0)
18.5 kg/m2–24.9 kg/m2 156 (25.2) 96 (31.2) 60 (19.4)
25.0 kg/m2–29.9 kg/m2 279 (45.1) 118 (38.3) 161 (51.9)
≥ 30 kg/m2 178 (28.8) 89 (28.9) 89 (28.7)

Physical activity groups (IPAQ), n (%)† 0.129a

High 303 (51.5) 136 (47.2) 167 (55.7)
Moderate 248 (42.2) 130 (45.1) 118 (39.3)
Low 37 (6.3) 22 (7.6) 15 (5.0)

Weight (kg), mean (SD) 75.6 (14.1) 75.1 (15.5) 76.1 (12.5) 0.338b

Height (cm), mean (SD) 164 (9.0) 164 (9.1) 163 (9.1) 0.198b

Systolic arterial pressure (mmHg), mean (SD) 138.8 (19.4) 135.1 (19.2) 142.6 (18.8) <0.001b

Diastolic arterial pressure (mmHg), mean (SD) 84.1 (10.6) 85.0 (10.1) 83.1 (11.0) 0.034b

Hypertension, n (%)# 289 (46.9) 120 (38.8) 169 (55.0) <0.001a

Diabetes mellitus, n (%)# 139 (22.5) 47 (15.2) 92 (29.9) <0.001a

Dyslipidemia, n (%)# 181 (29.4) 79 (25.5) 102 (33.3) 0.039a

Notes: ∗6 missing values
∗∗2 missing values
†32 missing values
#4 missing values, IPAQ: International Physical Activity Questionnaire
aChi-square test
bStudent’s t-test

by 723 subjects [310 aged < 65 years (middle-aged group) and
413 aged ≥65 years (older group)]. We established the cutoff
age between groups based on the definition of “elderly” people
as those aged ≥65 years (WHO 2016; United Nations 2020). To
homogenize the size of the samples in the two groups, we
randomly selected 310 subjects from those aged ≥65 years.
The middle-aged group comprised 310 subjects aged < 65 years
(mean age, 60.2 ± 3.7 y), and the older group comprised 310
subjects aged ≥65 years (mean age, 71.8 ± 4.5 y). Table 1 reports
details about subjects’ social and physical status. The ethics
committee at the Dr Josep Trueta University Hospital super-
vising the study approved the study protocol, and all subjects
provided written informed consent.

Image Acquisition

Images were acquired on a mobile 1.5 T scanner (Vantage
Elan, Toshiba Medical Systems at the beginning of the study;
now Canon Medical Systems) with an 8-channel phased-array
head coil with foam padding to restrict head motion and
noise-canceling headphones. Brain MRI studies included the
acquisition of a high-resolution axial T1-weighted sequence
(number of slices = 112; repetition time (TR) = 8 ms; echo time
(TE) = 4.5 ms; flip angle = 15◦; field of view (FOV) = 235 × 235 mm;
and voxel size = 1.3 × 1.3 × 2.5 mm) for structural imaging and

a gradient echo-planar imaging (EPI) sequence (TR = 2500 ms;
TE = 40 ms; flip angle = 83◦; FOV = 230 × 230 mm; and voxel
size = 3.5 × 3.5 × 5 mm without gap) with 122 continuous
functional volumes acquired axially for 5 min for resting-
state fMRI. Subjects were asked to relax, remain as motion-
less as possible, remain awake, and keep their eyes closed
to minimize stimuli, including visuals (Patriat et al. 2013;
Agcaoglu et al. 2019).

Image Preprocessing

T1-weighted and EPI images were automatically oriented
using Conn (Whitfield-Gabrieli and Nieto-Castanon 2012).
For preprocessing, we used the Data Processing Assistant
for Resting-State fMRI (DPARSF) toolbox [(Chao-Gan and
Yu-Feng 2010), www.rfmri.org/DPARSF], based on Statistical
Parametric Mapping (SPM12) (http://www.fil.ion.ucl.ac.uk/spm).
Preprocessing included: 1) discarding the first 5 volumes from
each scan to allow for signal stabilization; 2) slice-timing
correction; 3) realignment for head motion correction across
different volumes; 4) co-registration of the functional image
to the T1-weighted image; 5) normalization by using T1 image
unified segmentation; 6) nuisance covariates regression: six
parameters from the head motion correction, the white matter
signal, and the cerebrospinal fluid signal using CompCor
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Figure 1. Methods. We applied two data-driven whole-brain methods based on phase synchronization of the BOLD signals. (1) For each of the 214 brain areas, we
extracted the BOLD time series and computed the phase space of the BOLD signal. (1A) Specifically, we obtained the time series for each brain area using a resting-

state atlas (Shen et al. 2013). (1B) Then, we measured the phase space of the BOLD signal by using the Hilbert transform for each brain area. The BOLD signal (red) was
band-pass filtered between 0.04 and 0.07 Hz (blue) and converted with the Hilbert transform into an analytical signal represented by its instantaneous amplitude A(t)
and its phase ϕ (with real and imaginary components). The phase dynamics can be represented in the complex plane as eiϕ (black bold line), the real part as cosϕ (black
dotted line), and the imaginary part as sinϕ (black dotted line). The purple arrows represent the Hilbert phases at each TR. (2) Measuring intrinsic ignition. (2A) Events

were captured by applying a threshold method (Tagliazucchi et al. 2012) (see green area). For each event evoked, the activity in the rest of the network (see red stippled
area) was measured in the 4TR time window (gray area). (2B) A binarized phase lock matrix was obtained from the time window. (2C) From this phase lock matrix, we
obtained the integration by calculating the largest subcomponent (i.e., by applying the global integration measure (Deco et al. 2017b, 2015)). Repeating the process for
each driving event, we obtained the ignition and metastability of the intrinsic-driven integration for each brain area across the whole-brain network. (3) Finally, we

applied the LEiDA to characterize differences between groups in dynamic functional connectivity patterns or metastable substates. (3A) The left panel shows the BOLD
phases in all 214 brain areas represented in the complex plane. The right panel shows the phase coherence matrix between each pair of brain areas. (3B) The leading
eigenvector V1(t) from this matrix was extracted. (3C) We applied a k-means clustering algorithm to detect the metastable substates from all the leading eigenvectors,
across timepoints, number of subjects, and groups. Figure adapted from (Deco and Kringelbach 2017; Escrichs et al. 2019; Deco et al. 2019a).

(Behzad et al. 2007); 7) removal of the linear trend in the time
series; 8) spatial normalization to the Montreal Neurological
Institute standard space; 9) spatial smoothing with 6-mm full
width at half-maximum Gaussian kernel; and 10) band-pass
temporal filtering (0.01–0.20 Hz). Then, the time series were
extracted using a resting-state atlas of 214 brain areas (without
the cerebellum), which ensures the functional homogeneity
within each brain subunit. The atlas allows parcellating the
whole-brain functional network (Shen et al. 2013), as well as
parcellating the brain across eight large-scale brain networks
(Finn et al. 2015).

We excluded a total of 92 subjects (39 subjects <65 years
and 53 subjects ≥65 years) for head rotation or movement (67
for head rotation 2 mm or 2◦ and 25 for frame-wise displace-
ment (Jenkinson et al. 2002; Yan et al. 2013), defined as head
motion >2 standard deviations above the group average in >25%
timepoints).

Phase Synchronization

We computed the instantaneous phase of the BOLD signals
between each pair of brain areas at each timepoint. First, to avoid
artifacts, we band-pass filtered the BOLD time series within the
narrowband (0.04–0.07 Hz) (Glerean et al. 2012) (Fig. 1.1A). Then,
we obtained the analytic signal, a(t), of the filtered time series
of each brain area by computing the Hilbert transform (HT).

The analytic signal represents a narrowband signal in the time
domain as a rotating vector, calculated as {a(t) = A(t).cos(ϕ(t))},
where A(t) is the time-varying amplitude with carrier frequency
expressed by the time-varying phase ϕ(t). The amplitude is
determined by the modulus and the phase is determined by the
argument of the complex signal,z(t),{z(t) = a(t)+i.HT [a(t)]}, where
HT [a(t)] is the Hilbert transform of the analytical signal, a(t), and
i is the imaginary unit (Glerean et al. 2012; Ponce-Alvarez et al.
2015; Deco et al. 2019a). Figure 1.1B shows the representation of
the Hilbert BOLD phase for a brain area over time in the complex
plane.

Intrinsic-Ignition Framework

To measure the effect of spontaneous local activation events
on whole-brain integration, we applied the intrinsic-ignition
framework (Deco and Kringelbach 2017) using the phase space
of the signals. This framework has been successfully applied in
different resting-state fMRI studies (Deco et al. 2017b; Escrichs
et al. 2019; Padilla et al. 2019; Alonso-Martínez et al. 2020).
This approach characterizes the spatiotemporal propagation of
information by measuring the degree of integration among
spontaneous occurring events across the brain over time.
Figure 1.2 represents the algorithm used to obtain the ignition
value of each brain area evoked by an event within a set
time window. Specifically, we averaged across the events the
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integration evoked at each time t with the time window set at
4TR. A binary event is defined by transforming the time series
into z-scores, zi(t), and fixing a threshold, θ, given by the sum of
the mean and the standard deviation of the signal in each brain
area, such that the binary sequence σ(t) = 1 if zi(t) > θ and crosses
the threshold from below, and σ(t) = 0 otherwise (Fig. 1.2A)
(Tagliazucchi et al. 2012; Deco et al. 2017b). Different threshold
choices show robustness in a reasonable range because the
binarization procedure derives from the “Poincaré section” (a
method that makes it possible to reduce the dimensionality of
a dynamic system) (Tagliazucchi et al. 2012; Deco et al. 2019b).
First, we obtained the instantaneous phase in all brain areas
as explained in the Phase Synchronization section above and
Figure 1.1. Then, we calculated the phase lock matrix Pjk(t),
which describes the state of pair-wise phase synchronization
at time t between regions j and k as:

Pjk(t) = e
−3

∣∣∣ϕj(t)−ϕk(t)
∣∣∣ (1)

where ϕj(t) and ϕk(t) correspond to the obtained phase of the
brain areas j and k at time t. Then, the integration is defined
by measuring the length of largest connected component in
the binarized symmetric phase lock matrix Pjk(t) (Fig. 1.2B). That
is, given the fixed threshold θ, the matrix is binarized such
that (0 if |Pjk| < θ, 1 otherwise), and the integration value is
computed as the length of the connected component considered
as an adjacent graph (i.e., the largest subcomponent) (Fig. 1.2C).
The largest subcomponent represents the broadness of com-
munication across the network for each driving event (Deco
et al. 2015). Finally, repeating the process for each event in each
brain area, the framework returns the mean integration and the
standard deviation across the network. The mean integration
is called ignition and it represents the spatial diversity; the
standard deviation is called metastability, and it represents the
variability over time for each brain area. Greater metastabil-
ity in a brain area means that its activity changes more fre-
quently across time within the network. The framework was
computed across the whole-brain functional network (214 brain
areas), as well as independently for eight resting-state net-
works: the frontoparietal, medial frontal, default-mode, subcor-
tical, motor, visual I, visual II, and visual-association networks
(Finn et al. 2015).

Leading Eigenvector Dynamics Analysis

To identify differences between groups in recurrent patterns
of time-varying connectivity (dynamic functional connectivity)
or ‘metastable-substates’ across all subjects, we used Leading
Eigenvector Dynamics Analysis (LEiDA) (Cabral et al. 2017), a k-
means clustering analysis based on the phase synchronization
of BOLD signals. First, we computed a dynamic phase coher-
ence connectivity matrix (Deco and Kringelbach 2016) with size
N × N × T, where N = 214 (total number of brain areas), and T = 117
(total number of timepoints), using the Hilbert transform as
explained above in the Phase Synchronization section. Then, we
calculated the BOLD phase coherence matrix (Fig. 1.3A) at time t
between each pair of brain areas n and p by computing the cosine
of the phase difference as:

dFC
(
n, p, t

) = cos
(
θ (n, t) − θ

(
p, t

))
(2)

Given that the HT expresses any signal in the polar coordi-
nate system (i.e., a(t) = A(t)· cos(ϕ(t))), when the cosine function

is applied, two brain areas n and p with similar angles at a given
time t will show a phase coherence near 1 (i.e., cos(0◦) = 1),
whereas two brain areas that are orthogonal at a given time
t will show a phase coherence near zero (i.e., cos(90◦) = 0)
(Cabral et al. 2017; Deco et al. 2019b). Second, to characterize
the dynamic functional connectivity patterns across all subjects
and timepoints, we obtained a leading eigenvector V1(t) for each
dFC(t) at time t by capturing the dominant functional connectiv-
ity pattern rather than the whole set of matrices. This approach
allows reducing the dimensionality of the data considerably
because it only considers a single V1(t) for each dynamic func-
tional connectivity matrix. The V1(t) is an N × 1 vector capturing
the principal orientation of the BOLD phase (showing positive
or negative values) for each of the 214 brain areas (Fig. 1.3B).
Finally, we applied a k-means clustering algorithm using a range
from k = 2 to 7 clusters to detect metastable substates or dynamic
functional connectivity states from all the leading eigenvec-
tors V1(t) across timepoints, subjects, and groups: 117 time-
points × 310 subjects × 2 groups = 72,540 V1(t). We obtained k
cluster centroids, each one as an N × 1 vector, which represent
recurrent metastable substates across all subjects. The cluster-
ing configuration that best represented the resting-state data of
all 620 subjects and distinguished between the two groups was
detected at k = 3 (Fig. 1.3C). We rendered the resulting cluster
centroids onto a surface cortex using Surf Ice (https://www.ni
trc.org/projects/surfice/). A complete description of the method
can be found in Cabral et al. (2017).

Statistical Analysis

Statistical analyses were done with software MATLAB version
R2017a (MathWorks, Natick, MA, USA). We applied a Monte Carlo
permutation method to test the results of the Intrinsic-Ignition
Framework (ignition and metastability) and to test the results
of the LEiDA method (probability of occurrence and duration
of each metastable substate). More specifically, we randomly
shuffled the labels for each pair of conditions to be tested
and created two new simulated conditions (10,000 iterations).
Then, we measured how many times the difference between
the new simulated conditions was greater than the difference
between the real conditions; in other words, we calculated the
P-value of the null hypothesis that the two random distributions
show a greater difference than the real conditions. Furthermore,
we applied the False Discovery Rate (FDR) method (Hochberg
and Benjamini 1990) to correct for multiple comparisons when
we tested the differences between groups in the eight resting-
state networks and the three metastable substates. Finally, for
participants’ demographic and health characteristics, qualita-
tive variables are expressed as absolute and relative frequencies
and quantitative variables as measures of central tendency and
dispersion. For bivariate comparisons of these variables between
age groups, we used the chi-square test and Student’s t-test.

Results
Intrinsic Ignition

We computed the intrinsic-ignition framework across the
whole-brain functional network and found that the mean
ignition was higher in the older group than in the middle-age
group (P < 0.001) (Fig. 2a). In the middle-age group, the regions
with the highest intrinsic ignition belong to the visual networks
(right middle occipital gyrus, lingual gyri, right middle temporal
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Figure 2. Intrinsic ignition framework. (a) Ignition measure. The boxplot shows the mean integration (ignition) for each group (middle-age group and older group).
The ignition was higher in the older group (in blue) than in the middle-age group (in red) (P < 0.001). The second graph shows ignition plotted across brain areas.

Rendered brains represent the 20 regions with the highest ignition for each group (middle age in red and older group in blue). (b) Metastability measure. By contrast,
the middle-age group showed higher metastability across the whole-brain compared to the older group (P < 0.001). P-values are based on Monte–Carlo permutation
tests, ∗∗∗ represents P < 0.001.

gyrus, fusiform gyri, left calcarine fissure and surrounding
cortex), subcortical network (right insula, left hippocampus
and parahippocampal gyrus), frontoparietal network (inferior
temporal gyri), motor network (superior temporal gyri), and
medial-frontal network (left precentral gyrus, left middle frontal
gyrus). By contrast, in the older group, the regions showing the
highest intrinsic ignition areas belong to the visual networks
(right middle occipital gyrus, right middle temporal gyrus, left
fusiform gyrus, lingual gyri, calcarine fissure and surrounding
cortex in both hemispheres, right cuneus), medial frontal
network (left inferior frontal gyrus, middle temporal gyri,
superior frontal gyri), frontoparietal network (inferior temporal
gyri, right middle frontal gyrus), and subcortical (left insula, left
thalamus). Table 2 shows the 20 brain areas with the highest
intrinsic-ignition capability for each group.

Metastability was lower in the older group than in the
middle-age group (P < 0.001) (Fig. 2b). In the middle-age group,
the brain areas with the highest metastability belong mainly to
the default-mode network (parahippocampal gyri, fusiform gyri,
left middle occipital gyrus), visual networks (inferior temporal
gyri, inferior occipital gyri, left lingual gyrus, fusiform gyri),
medial frontal network (left middle temporal gyrus), frontopari-
etal network (inferior temporal gyrus in both hemispheres),
motor network (right precentral gyrus, right postcentral gyrus),
and subcortical (left hippocampus). By contrast, in the older
group, the brain areas with the highest metastability belong
mainly to the motor network (inferior temporal gyri, left
insula, bilateral Rolandic opercula, right superior temporal
gyrus), subcortical network (right median cingulate gyrus, left
parahippocampal gyrus, right insula), default-mode network
(left superior frontal gyrus, left anterior cingulate and paracin-
gulate gyri, left rectus gyrus), medial frontal network (inferior
frontal gyrus), visual association network (fusiform gyri), and
frontoparietal network (right precentral gyrus, right inferior
temporal gyrus). Table 3 shows the 20 brain areas with the
highest metastability for each group.

Moreover, we computed the intrinsic ignition and metasta-
bility independently for each resting-state network. Figure 3
shows the absolute difference between the middle-age and
older groups in the intrinsic-ignition values for each brain
area in each network. Compared to the middle-age group,
the older group had significantly increased intrinsic ignition
in the frontoparietal network (FDR-corrected, P < 0.001) and
medial frontal network (FDR-corrected, P < 0.001). By contrast,
the middle-age group had greater intrinsic ignition in the motor
network (FDR-corrected, P < 0.001). There were no significant
differences between groups in intrinsic ignition in the default-
mode, subcortical, visual I, visual II, or visual-association
networks. Figure 4 shows the absolute difference between
the middle-age and older groups in metastability values for
each brain area in each network. Compared to the middle-age
group, the older group had significantly increased metastability
in the frontoparietal network (FDR-corrected, P < 0.01) and
medial frontal network (FDR-corrected, P < 0.01). By contrast,
the middle-age group had greater metastability in the default-
mode (FDR-corrected, P < 0.05), subcortical (FDR-corrected,
P < 0.001), motor (FDR-corrected, P < 0.001), visual association
(FDR-corrected, P < 0.05), and visual I networks (FDR-corrected,
P < 0.001). Only the visual II network did not differ significantly
between groups.

LEiDA
Clustering across all subjects and timepoints identified three
metastable substates. Figure 5a compares the probability of
occurrence of each metastable substate between groups, and
Figure 5b compares the duration of these substates between
groups. Figure 5c shows the three metastable substates rendered
onto a surface cortex. The metastable substate that had the
highest probability of occurrence (the first metastable substate)
closely overlaps with the state of global BOLD coherence
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Table 2 Intrinsic ignition capability. The table shows the 20 brain areas with the highest intrinsic-ignition capability for each group. The first
column shows the ignition capability of each brain area. The second column indicates the brain area in the resting-state parcellation. The third
column corresponds to the overlap between the area of the resting-state atlas with the areas of the AAL structural parcellation. The fourth
column shows the resting-state network to which the area belongs

Middle-age group Senior Group

Ignition rs-fMRI

atlas

Corresponding AAL-regions Network ignition rs-fMRI

atlas

Corresponding

AAL-regions

Network

0.80099 74 34% Middle occipital gyrus,

right

Visual

association

0.80161 74 34% Middle occipital

gyrus, right

Visual

association

32% Middle temporal gyrus,

right

32% Middle temporal

gyrus, right

0.80053 185 88% Lingual gyrus, left Visual 0.80133 181 40% Fusiform gyrus, left Visual_I

31% Lingual gyrus, left

0.80034 79 78% Lingual gyrus, right Visual 0.80118 173 63% Inferior temporal

gyrus, left

Frontoparietal

0.80028 72 51% Lingual gyrus, right Visual 0.80109 185 88% Lingual gyrus, left Visual_I

33% Fusiform gyrus, right

0.80021 181 40% Fusiform gyrus, left Visual 0.80104 70 70% Inferior temporal

gyrus, right

Frontoparietal

31% Lingual gyrus, left

0.80010 205 43% Parahippocampal gyrus,

left

Subcortical 0.80095 14 85% Middle frontal

gyrus, right

Frontoparietal

24% Hippocampus, left

0.80009 69 51% Inferior temporal gyrus,

right

Visual

association

0.80077 53 45% Temporal pole:

superior, right

Medialfrontal

47% Middle temporal gyrus,

right

34% Temporal pole:

middle temporal, right

0.80006 70 70% Inferior temporal gyrus,

right

Frontoparietal 0.80060 69 51% Inferior temporal

gyrus, right

Visual

association

47% Middle temporal

gyrus, right

0.80003 61 50% Superior temporal

gyrus, right

Motor 0.80058 187 38% Lingual gyrus, left Visual_II

28% Rolandic operculum,

right

20% Calcarine fissure

and surrounding cortex,

left

0.79997 189 67% Calcarine fissure and

surrounding cortex, left

Visual_I 0.80056 127 46% Inferior frontal

gyrus, orbital part, left

Medialfrontal

36% Insula, left

0.79995 173 63% Inferior temporal gyrus,

left

Frontoparietal 0.80053 166 82% Middle temporal

gyrus, left

Medialfrontal

0.79991 183 41% Middle temporal gyrus,

left

Visual

association

0.80053 180 49% Inferior occipital

gyrus, left

Visual

association

35% Middle occipital gyrus,

left

33% Fusiform gyrus, left

0.79987 36 52% Insula, right Subcortical 0.80051 189 67% Calcarine fissure

and surrounding cortex,

left

Visual_I

36% Inferior frontal gyrus,

orbital, right

0.79980 149 66% Superior parietal gyrus,

left

Visual

association

0.80049 80 39% Calcarine fissure

and surrounding cortex,

right

Visual_I

27% Cuneus, right

0.79979 123 84% Middle frontal gyrus, left Medialfrontal 0.80043 76 48% Lingual gyrus, right Visual_II

17% Fusiform gyrus,

right

0.79976 139 81% Precentral gyrus, left Medialfrontal 0.80042 12 52% Superior frontal

gyrus, dorsolateral, right

Medialfrontal

41% Superior frontal

gyrus, medial, right

0.79973 179 57% Lingual gyrus, left Visual_I 0.80041 179 57% Lingual gyrus, left Visual_I

21% Calcarine fissure and

surrounding cortex, left

21% Calcarine fissure

and surrounding cortex,

left

0.79971 53 45% Temporal pole: superior,

right

Medialfrontal 0.80039 212 46% Thalamus, left Subcortical

34% Temporal pole: middle

temporal, right

1% Lingual gyrus, left

0.79964 162 54% Temporal pole: superior

temporal gyrus, left

Motor 0.80037 183 41% Middle temporal

gyrus, left

Visual

association

27% Superior temporal

gyrus, left

35% Middle occipital

gyrus, left

0.79964 63 52% Superior temporal

gyrus, right

Motor 0.80030 79 78% Lingual gyrus, right Visual_I

48% Middle temporal gyrus,

right
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Table 3 Metastability. The table shows the 20 brain areas with the highest metastability for each group (middle-age group and older group). The
first column shows the metastability value of each brain area. The second column indicates the brain area in the resting-state parcellation.
The third column corresponds to the overlap between the areas of the resting-state atlas with the areas of the AAL structural parcellation. The
fourth column shows the resting-state network to which the area belongs

Middle-age group Senior group

Metastability rs-fMRI

atlas

Corresponding AAL-regions Network Metastability rs-fMRI

atlas

Corresponding AAL-regions Network

0.02982 96 60% Parahippocampal gyrus,

right

Default mode 0.02949 169 46% Inferior temporal gyrus, left Motor

28% Fusiform gyrus, right 41% Fusiform gyrus, left

0.02980 59 55% Fusiform gyrus, right Visual

association

0.02934 15 56% Median cingulate and

paracingulate gyri, right

Subcortical

41% Inferior temporal gyrus,

right

26% Anterior cingulate and

paracingulate gyri, right

0.02976 187 38% Lingual gyrus, left Visual_II 0.02931 206 55% Fusiform gyrus, left Subcortical

20% Calcarine fissure and

surrounding cortex

32% Parahippocampal gyrus, left

0.02971 161 57% Temporal pole: middle

temporal gyrus, left

Medialfrontal 0.02926 108 33% Anterior cingulate and

paracingulate gyri, left

Default mode

25% Middle temporal gyrus,

left

23% Rectus gyrus, left

0.02969 70 70% Inferior temporal gyrus,

right

Frontoparietal 0.02917 109 51% Inferior frontal gyrus, orbital

part, left

Subcortical

31% Superior frontal gyrus, orbital

part, left

0.02967 71 48% Fusiform gyrus, right Visual

association

0.02914 16 45% Inferior frontal gyrus,

triangular part, right

Medialfrontal

29% Inferior temporal gyrus,

right

28% Inferior frontal gyrus, orbital,

right

0.02966 180 49% Inferior occipital gyrus,

left

Visual

association

0.02913 88 42% Median cingulate and

paracingulate gyri, right

Subcortical

33% Fusiform gyrus, left

0.02964 188 25% Inferior occipital gyrus,

left

Visual_II 0.02913 57 67% Inferior temporal gyrus, right Medialfrontal

23% Lingual gyrus, left

0.02963 172 71% Fusiform gyrus, left Visual_I 0.02910 18 59% Inferior frontal gyrus, orbital,

right

Subcortical

20% Insula, right

0.02962 27 81% Precentral gyrus, right Motor 0.02910 112 54% Superior frontal gyrus, medial

orbital, left

Default mode

31% Anterior cingulate and

paracingulate gyri, left

0.02960 45 47% Supramarginal gyrus,

right

Motor 0.02908 174 58% Fusiform gyrus, left Visual

association

35% Postcentral gyrus, right 36% Inferior temporal gyrus, left

0.02956 206 55% Fusiform gyrus, left Subcortical 0.02904 142 59% Insula, left Motor

32% Parahippocampal gyrus,

left

23% Rolandic operculum, left

0.02956 177 73% Middle occipital gyrus,

left

Default mode 0.02902 175 65% Inferior temporal gyrus, left Visual

association

0.02954 53 45% Temporal pole: superior,

right

Medialfrontal 0.02901 111 62% Rectus gyrus, left Medialfrontal

34% Temporal pole: middle

temporal, right

0.02951 81 59% Inferior occipital gyrus,

right

Visual_II 0.02898 122 44% Superior frontal gyrus,

medial, left

Medialfrontal

23% Lingual gyrus, right 43% Superior frontal gyrus,

dorsolateral, left

0.02949 204 46% Hippocampus, left Subcortical 0.02898 46 53% Superior temporal gyrus, right Motor

19% Inferior temporal gyrus,

left

37% Supramarginal gyrus, right

0.02945 175 65% Inferior temporal gyrus,

left

Visual

association

0.02897 71 48% Fusiform gyrus, right Visual

association29% Inferior temporal gyrus, right

0.02944 173 63% Inferior temporal gyrus,

left

Frontoparietal 0.02897 61 50% Superior temporal gyrus, right Motor

28% Rolandic operculum, right

0.02944 97 67% Parahippocampal gyrus,

right

Motor 0.02894 31 52% Precentral gyrus, right Frontoparietal

22% Inferior frontal gyrus,

opercular part, right

0.02942 203 55% Hippocampus, left Subcortical 0.02893 55 67% Inferior temporal gyrus, right Frontoparietal

13% Parahippocampal gyrus,

left
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Figure 3. Differences in ignition across resting-state networks. The plots show the differences between groups in each significant resting-state network; rendered

brains represent the absolute difference in ignition values for each brain area in each network between the middle-age and older groups (the greatest difference is
marked in yellow). Compared to the middle-age group, intrinsic ignition was significantly higher in the older group in the frontoparietal network (FDR-corrected,
P < 0.001) and medial frontal network (FDR-corrected, P < 0.001). By contrast, intrinsic ignition was significantly higher in the middle-age group in the motor network

(FDR-corrected, P < 0.001). The default-mode, subcortical, visual I, visual II, and visual association networks were not significantly different between groups.

(Cabral et al. 2017). The probability of this substate occurring
was higher in the older group [0.476 ± 0.008 (mean ± standard
error) vs. 0.453 ± 0.008 in the middle-age group, FDR-corrected
P = 0.03], and this substate also lasted longer in the older age
group [32.465±0.957 s vs. 30.265±0.791 s in the middle-age group,
P = 0.04], although the difference in duration was no longer
significant after FDR correction. The second metastable substate
is especially interesting because it closely overlaps with the so-
called rich club (Hagmann et al. 2008; van den Heuvel and Sporns
2011; van den Heuvel et al. 2012; Sporns 2013). In particular, this
substate involved the following areas in both hemispheres: the
superior frontal cortex, precuneus, insula, and subcortical areas,
such as the caudate, putamen, hippocampus, and thalamus (see
Fig. 5d and Table 4). The networks most frequently involved in
this metastable substate were the subcortical network, visual
network, motor network, default-mode network, and medial
frontal network. The probability of this substate occurring was
greater in the middle-age group [0.288 ± 0.007 vs. 0.269 ± 0.006
in the older group, FDR-corrected P = 0.026], and this substate
also lasted longer in the middle-age group [16.399 ± 0.605s vs.
14.853 ± 0.414 s in the older group, FDR-corrected P = 0.01).
The third metastable substate was not significantly different
between groups in its probability of occurrence (P = 0.35) or
duration (P = 0.39).

Intrinsic Ignition Within the Significant Metastable
Substate (Functional-Rich Club)

Finally, we computed the intrinsic-ignition framework within
the significant metastable substate overlapping with the rich
club. In brief, we obtained the brain areas showing positive

values in the BOLD phases from the leading eigenvector (Fig. 5d).
Then, we computed the intrinsic ignition and metastability
within the metastable substate. Figure 5e shows the boxplots for
the comparisons. Compared to the older group, the middle-age
group had significantly higher intrinsic ignition (P = 0.0093) and
metastability (P = 0.0426) within the substate.

Discussion
Interest in characterizing resting-state functional patterns dur-
ing aging is growing. Understanding the underlying dynamics
across the whole-brain functional network may help us better
understand age-related changes. In this line, various methods
have been developed to capture statistical properties of resting-
state fMRI data beyond classical static functional connectiv-
ity, providing a new perspective to interpret brain functioning
during the resting scan. To investigate the underlying whole-
brain dynamics, we applied two data-driven whole-brain meth-
ods based on phase coherence synchronization (Cabral et al.
2017; Deco and Kringelbach 2017) to compare intrinsic ignition,
metastability, and metastable substates between middle-aged
and older subjects from a large sample of healthy human adults.
To characterize the spatiotemporal propagation of information,
we used the Intrinsic-Ignition Framework to measure the degree
of integration of spontaneously occurring events across the
whole-brain during rest. Ignition values across the whole-brain
functional network were higher in older subjects than in middle-
aged subjects, but older subjects also had less metastability.
Applying Leading Eigenvector Dynamics Analysis (LEiDA), we
found differences between groups in the probability of occur-
rence and duration of a metastable substate involving rich-club
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Figure 4. Differences in metastability across resting-state networks. The plots show the differences between groups in each significant resting-state network, whereas
rendered brains represent the absolute difference (middle-age and older) between metastability values for each brain area in each network (in yellow the highest
difference). The older group showed significantly increased metastability compared to the middle-age group in the frontoparietal network (FDR-corrected, P < 0.01)
and medial frontal network (FDR-corrected, P < 0.01), whereas the middle-age group showed increased metastability in the default-mode network (FDR-corrected,

P < 0.05), subcortical network (FDR-corrected, P < 0.001), motor network (FDR-corrected, P < 0.001), visual association network (FDR-corrected, P < 0.05), and visual I
network (FDR-corrected, P < 0.001).

brain areas, as well as in the probability of occurrence of a
substate that is related to the global coherence state.

Interestingly, the older group had higher intrinsic ignition
across the whole-brain functional network (Fig. 2a); the brain
areas with the highest intrinsic-ignition values were mainly
distributed across the visual networks, frontoparietal network,
and medial frontal network (Fig. 2a and Table 2). The mean
intrinsic-ignition value reflects spatial diversity and the
broadness of communication across the whole network. These
results are in line with previous studies investigating the
effects of aging in resting-state networks. Geerligs et al. (2015)
reported increased connectivity in older adults between the
visual network and somatomotor network as well as between
the visual network and cingulo-opercular network. Betzel et al.
(2014) found increased functional connectivity between the
dorsal attention network and the salience/ventral attention
networks in older adults. Similarly, Spreng et al. (2016) found
increased between-network functional connectivity across the

default-mode network and dorsal attention networks during
both task and rest conditions. We conclude that increased
functional connectivity between resting-state networks has a
significant impact across the whole-brain functional network
as evidenced by the level of intrinsic ignition.

Simple or classical methods do not capture the variability
over time (metastability) across the whole-brain network.
Here, we explored the spatiotemporal processes that occur
across the whole brain during aging. Our results show that
metastability was higher in the middle-age group (Fig. 2b and
Table 3). This finding is particularly interesting because middle-
age adults showed lower intrinsic ignition across the whole-
brain functional network compared to older adults, but the
underlying dynamics of the middle-age adults seem to be more
complex across time. These results are in line with theories on
brain dynamics, which suggest that metastability, characterized
by a flexible and rapid dynamic repertoire of brain states, is
the optimal state of neural activity at rest (Tognoli and Kelso
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Figure 5. Metastable substates obtained by clustering. We identified three metastable substates that occurred frequently across all subjects during rest. The states are
shown from higher to lower probability of occurrence. (a) Differences in probability and (b) differences in duration of each metastable substate between the middle-age
(in red) group and the older group (in blue) during the resting-state scan. (c) Metastable substates rendered on the cortex with Surfice. The first metastable substate had

the highest probability of occurrence. This state was more likely to occur in subjects in the older group (mean, 0:476 ± 0:008 (s.e.) versus 0:453 ± 0:008 in the middle-age
group, FDR-corrected P = 0.03); the duration of this state was also higher in the older group (32:465 ± 0:957 s versus 30:265 ± 0:791 in the middle-age group, P = 0.04,
uncorrected). The second metastable substate is especially interesting because it overlaps with the rich club. The probability of this state occurring was higher in the
middle-age group (mean 0:288 ± 0:007 (s.e.) versus 0:269 ± 0:006 in the older group, FDR-corrected P = 0.026); the duration of this state was also higher in the middle-age

group (mean 16:399 ± 0:605 s versus 14:853 ± 0:414 s in the older group, FDR-corrected P = 0.01). The third metastable substate was not significantly difference between
groups in its probability of occurrence (P = 0.35) or duration (P = 0.39). (d) Relevant metastable substate overlapping with rich-club regions in both hemispheres (the
superior frontal cortex, precuneus, insula, and subcortical areas such as the caudate, putamen, hippocampus, and thalamus). (e) Ignition and metastability within the
significant metastable substate. The boxplots show the mean integration (ignition) and metastability for each group (middle-age group and older group) within the

significant metastable substate. Both ignition (P = 0.0093) and metastability (P = 0.0426) were higher in in the middle-age group (in red) than in the older group (in blue).
P-values are based on Monte–Carlo permutation tests, ∗ represents P < 0.05 and ∗∗ represents P < 0.01.
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Table 4 Cluster centroids of the significant metastable substate. The table shows the 20 brain areas with the highest BOLD phase of the
significant metastable substate

BOLD phase rs-fMRI atlas Corresponding AAL-regions Network

0.03165 37 34% Insula, right/22% lenticular nucleus, putamen, right Motor
0.03151 201 42% Hippocampus, left/5% thalamus, left Subcortical
0.02814 144 34% Insula, left/18% superior temporal gyrus, left Motor
0.02683 211 84% Lenticular nucleus, putamen, left Subcortical
0.02653 103 84% Lenticular nucleus, putamen, right Subcortical
0.02534 87 44% Calcarine fissure and surrounding cortex, right/6%

lingual gyrus, right
Visual_I

0.02502 65 64% Middle temporal gyrus, right Medial
frontal

0.02415 108 33% Anterior cingulate and paracingulate gyri, left/23% rectus
gyrus, left

Default
mode

0.02271 102 57% Caudate nucleus, right/11% olfactory cortex, right Subcortical
0.02262 143 81% Insula, left Subcortical
0.02246 212 46% Thalamus, left/1% lingual gyrus, left Subcortical
0.02191 165 62% Middle temporal gyrus, left Motor
0.02145 93 50% Hippocampus right/9% parahippocampal right Subcortical
0.02133 190 59% Calcarine fissure and surrounding cortex/7% lingual

gyrus, left
Visual_I

0.02053 50 87% Middle temporal gyrus, right Default
mode

0.02036 105 36% Thalamus, right/9% lingual gyrus, right Subcortical
0.01982 98 49% Lingual gyrus, right/23% precuneus, right Visual_I
0.01935 209 28% Caudate nucleus, left/15% olfactory cortex, left Subcortical
0.01870 82 76% Calcarine fissure and surrounding cortex, right Visual_I
0.01771 54 58% Middle temporal gyrus, right/32% superior temporal

gyrus, right
Medial
frontal

2014; Córdova-Palomera et al. 2017; Deco et al. 2017b). Greater
metastability reflects more complex brain dynamics (i.e., more
flexible switching across time), whereas lower metastability
suggests a more stable system (Deco and Kringelbach 2017;
Jobst et al. 2017; Deco et al. 2017a). Decreased metastability has
been related to cognitive and behavioral decline in Alzheimer’s
disease (Córdova-Palomera et al. 2017), as well as to reduced
cognitive ability and damage to structural connectivity in
traumatic brain injury (Hellyer et al. 2015). Our findings of lower
metastability across the whole-brain network in the older group
reflect reductions in brain flexibility and complexity during
aging. Thus, this temporal dynamic measure could potentially
serve as a biomarker in aging and brain damage. Our findings
are in line with previous studies on the effects of aging on brain
functional dynamics. For example, the decreased metastability
in the older group in our study echoes recent studies that
suggest deficient network modulation in the elderly (Turner
and Spreng 2015; Damoiseaux 2017). Xia et al. (2019) found
that the number of transitions between different metastable
substates decreased with age, leading them to conclude that
resting mind states may shift faster in young people than in
older people. Similarly, variability across large-scale networks
decreases linearly with aging over the lifespan (Nomi et al. 2017)
and in healthy elderly subjects (Lou et al. 2019). Moreover, our
findings that areas in the temporal and occipital regions were
the most important for the broadcasting of information in the
middle-age group (Fig. 2b and Table 3) is consistent with the
results of recent time-varying resting-state fMRI studies (Nomi
et al. 2017; Kumral et al. 2019). Similarly, our findings that the
frontal and temporal areas were more relevant in the older group
(Fig. 2b and Table 3) are consistent with the results of a recent

EEG study that found an enhanced brain dynamics of phase
synchronization in the alpha-band frequency, predominantly
in frontal areas (Nobukawa et al. 2019), which the authors
suggest could reflect a general change in functional connectivity
dynamics during aging. Moreover, overactivation in prefrontal
brain areas has been previously observed in older adults during
fMRI tasks, giving rise to different theories (Cabeza 2002; Davis
et al. 2008; Reuter-Lorenz and Cappell 2008).

We also explored intrinsic ignition and metastability across
large-scale networks, computing the intrinsic-ignition frame-
work within eight resting-state networks. In the older group,
the frontoparietal and medial frontal networks showed higher
ignition and metastability (Figs. 3 and 4). These findings are in
line with those reported by Lou et al. (2019), who found that the
frontal and temporal lobes show a more dynamic pattern with
increasing age. A recent meta-analysis pointed out that age-
related changes in activation commonly affect the frontoparietal
and default-mode networks (Li et al. 2015). The frontoparietal
network serves as a flexible hub and plays a vital role in adaptive
control and implementation of different responses to demands
during tasks (Cole et al. 2013). The frontoparietal network is
also involved in selecting relevant information from the envi-
ronment (Ptak 2012). The default-mode and frontoparietal net-
works are also thought to be critical in controlling global brain
dynamics (Hellyer et al. 2014). Although greater frontal brain
activity in older subjects has been interpreted as a compen-
satory cortical response to delay cognitive decline (Cabeza et al.
2018), recent evidence suggests that increased frontal activity is
actually more related to reduced efficiency or specificity than to
compensation. Applying a model-based multivariate analysis,
Morcom and Henson (2018) found that increased frontal brain
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activity was less predictive of the cognitive outcome. Neverthe-
less, why this frontal overactivation occurs in aging remains
unclear.

In the present study, metastability within the default-mode,
subcortical, and visual-association networks was higher in the
middle-age group (Fig. 4). In a recent study in a large cohort of
young subjects, Lee et al. (2019) reported higher metastability
in lower-order resting-state networks, such as the visual net-
work and auditory network, which are involved in specialized,
mostly externally driven functions. These networks’ greater
metastability might reflect a greater capacity to change their
functional configuration in response to diverse, rapidly chang-
ing external inputs (Power et al. 2011). By contrast, higher-
order networks such as the default-mode and central execu-
tive networks are mostly involved in internal and goal-directed
processing (Raichle et al. 2001; Raichle and Snyder 2007), so it
would make sense for their functional configurations to last
longer. Moreover, the previously mentioned study also found
that metastability was strongly associated with various indi-
cators of higher-order cognitive ability and physical well-being
(Lee et al. 2019).

One of the most noteworthy results in our study was the
identification of a metastable substate overlapping the so-called
the ‘rich club’ of densely interconnected nodes (Hagmann et al.
2008; van den Heuvel and Sporns 2011; van den Heuvel et al.
2012; Sporns 2013; Deco et al. 2017a). This substate involved
the superior frontal cortex, precuneus, insula, and subcortical
areas (caudate, putamen, hippocampus, and thalamus) in both
hemispheres. It is thought that the rich club might also act as
a gatekeeper that coordinates interactions with lower-degree
regions and the emergence of different functional network con-
figurations (van den Heuvel and Sporns 2011). We found that
the metastable substate corresponding to the rich club was less
likely to occur in the older group and that when it did occur, it
did so for shorter periods of time. Furthermore, we computed the
Intrinsic-Ignition Framework within the significant metastable
substate and found that both ignition and metastability were
significantly lower in the older group than in the middle-age
group, demonstrating that in addition to decreased overall igni-
tion capacity and metastability, older subjects have a lower
probability of accessing the rich club and spending time in
this state. Moreover, the higher ignition and metastability in
medial frontal and frontoparietal networks in the older group
could be due to the disruption among rich-club nodes rather
than to a compensatory shift from posterior to anterior brain
activity. Rich-club nodes mediate communication among func-
tional systems. Thus, one possibility could be that older subjects
spend more time in frontal networks because these nodes have
become less efficient with aging, reducing their brain’s ability to
switch among functional systems. Damoiseaux (2017) suggested
that less-efficient rich-club network might be responsible for
the differences in brain dynamics observed in older subjects.
Our findings are in line with the hypothesis that the rich club
connects different functional modules in the brain that partially
overlap with different resting-state networks (Biswal et al. 1995;
van den Heuvel and Sporns 2011). Our findings regarding the
lower probability of occurrence and shorter duration of this
substate in the older group might be due to alterations in the
intrinsic dynamics of this particular metastable substate or
in any of the brain areas involved. Rich-club regions play a
key role in integrating information across the brain network;
consequently, damage to a brain area belonging to the rich
club can affect global communication and have repercussions

in multiple cognitive domains (van den Heuvel and Hulshoff Pol
2010; Baggio et al. 2015; Deco and Kringelbach 2017). Finally, our
results are consistent with the observation that the efficiency
of the rich-club network increases during brain development in
early life and decreases late in life in a manner that yields an
inverted-U when plotted along the lifespan (Cao et al. 2014; Zhao
et al. 2015; Damoiseaux 2017).

Our LEiDA analysis also found that the first metastable sub-
state, which has been related to the global signal in fMRI studies,
had a higher probability of occurrence and longer duration in
the older group (Fig. 3), although this last comparison was no
longer significant after correction for multiple comparisons. Like
in previous resting-state fMRI studies applying LEiDA (Cabral
et al. 2017; Figueroa et al. 2019; Lord et al. 2019), this anti-
correlated state of global BOLD phase coherence (i.e., all BOLD
phases showing negative values in the leading eigenvector) was
the most prevalent. Although the significance of the global
signal remains controversial, growing evidence suggests that
it could contain valuable neurophysiological information and
should not therefore be treated as a nuisance term (Saad et al.
2012; Liu et al. 2017). In a study with simultaneous fMRI and
EEG acquisition during rest, Wong et al. (2013) found that
increased EEG vigilance induced with caffeine was associated
with decreased global signal amplitude and increased anti-
correlation between the default-mode network and the task-
positive network. Moreover, the global signal amplitude
seems to increase during early sleep stages (Fukunaga et al.
2006). However, the role of the global BOLD phase coher-
ence state remains unclear and needs further investigation
(Cabral et al. 2017).

This study has several limitations. Although this cross-
sectional study analyzed data from a large sample of healthy
human adults, it would be very instructive to explore the age-
related changes in neuroimaging in the same subjects in a
longitudinal study. Data-driven methods alone are insufficient
to understand the mechanisms underlying the process of aging
or explain the causes of the dynamic changes observed. On the
other hand, brain models simulating time series have advanced
our understanding of the relationship between structure and
function in the brain and the potential repercussions of
disrupted connectivity from injury or disease; moreover, in
silico simulations open the possibility of discovering potential
stimulation targets to shift patients’ global brain dynamics
toward a healthier state (Deco and Kringelbach 2014; Deco et al.
2019a). Here, we used a resting-state brain atlas that ensures
functional homogeneity within nodes and that is consistent at
the group level (Shen et al. 2013). However, the results in studies
of brain networks can vary depending on the parcellation used
(Wang et al. 2009; Zalesky et al. 2010). Moreover, we used a
1.5 T scanner with TR = 2.5; using a higher magnetic field (e.g.,
3 T or 7 T) and a lower TR would increase sensitivity and
resolution and thus might provide better information about
functional brain networks. We did not correlate our findings
with age or measures of cognitive function; one line for future
studies could focus on assessing the behavioral relevance of
intrinsic ignition and metastability through the aging process.
Finally, although age is strongly associated with changes in
functional connectivity, more studies are needed to further
characterize brain functional connectivity in older adults and
resolve inconsistent results due to methodological differences
among studies.

In conclusion, applying two novel data-driven approaches to
examine whole-brain dynamic changes, this work provides new
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insights into age-related brain changes. Our findings suggest
that, compared to middle-aged subjects, older subjects show
higher ignition but lower metastability across the whole-brain
network, as well as reduced access to a dynamic functional
connectivity pattern that is key for communication in the brain.
These findings support the hypothesis that cognitive processing
methods differ between middle-aged and older adults. Taken
together, these findings suggest that functional whole-brain
dynamics are altered in aging, probably due to an imbalance
in a metastable subsate that involves brain areas of the so-
called rich club. Further investigations will surely improve our
understanding of brain changes during aging.
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Kumral D, Şansal F, Cesnaite E, Mahjoory K, Al E, Gaebler M,
Nikulin V, Villringer A. 2019. BOLD and EEG signal variabil-
ity at rest differently relate to aging in the human brain.
Neuroimage. 207:116373.

Lee WH, Moser DA, Ing A, Doucet GE, Frangou S. 2019. Behavioral
and health correlates of resting-state metastability in the
human connectome project. Brain Topogr. 32:80–86.

Li HJ, Hou XH, Liu HH, Yue CL, Lu GM, Zuo XN. 2015. Putting
age-related task activation into large-scale brain networks: a
meta-analysis of 114 fMRI studies on healthy aging. Neurosci
Biobehav Rev. 57:156–174.

Liu TT, Nalci A, Falahpour M. 2017. The global signal in fMRI:
nuisance or information? Neuroimage. 150:213–229.

Lord LD, Expert P, Atasoy S, Roseman L, Rapuano K, Lambiotte R,
Nutt DJ, Deco G, Carhart-Harris RL, Kringelbach ML et al. 2019.
Dynamical exploration of the repertoire of brain networks at
rest is modulated by psilocybin. Neuroimage. 199:127–142.

Lou W, Wang D, Wong A, Chu WC, Mok VC, Shi L. 2019.
Frequency-specific age-related decreased brain network
diversity in cognitively healthy elderly: a whole-brain data-
driven analysis. Hum Brain Mapp. 40:340–351.

Martínez SA, Marsman JBC, Kringelbach ML, Deco G, ter Horst GJ.
2020. Reduced spatiotemporal brain dynamics are associated
with increased depressive symptoms after a relationship
breakup. NeuroImage Clin. 27:102299.

Morcom AM, Henson RN. 2018. Increased prefrontal activity
with aging reflects non-specific neural responses rather than
compensation. J Neurosci. 38:7303–7313.

Nobukawa S, Kikuchi M, Takahashi T. 2019. Changes in func-
tional connectivity dynamics with aging: a dynamical phase
synchronization approach. Neuroimage. 188:357–368.

Nomi JS, Bolt TS, Ezie CEC, Uddin LQ, Heller AS. 2017. Moment-to-
moment BOLD signal variability reflects regional changes in
neural flexibility across the lifespan. J Neurosci. 37:5539–5548.

Onoda K, Ishihara M, Yamaguchi S. 2012. Decreased functional
connectivity by aging is associated with cognitive decline. J
Cogn Neurosci. 24:2186–2198.

Padilla N, Saenger V, van Hartevelt TJ, Fernandes HM, Lennarts-
son F, Andersson JLR, Kringelbach ML, Deco G, Aden U.
2019. Breakdown of whole-brain dynamics in preterm-born
children. Cereb Cortex. 30:1159–1170.

Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME,
Prabhakaran V, Birn RM. 2013. The effect of resting condition
on resting-state fMRI reliability and consistency: a compar-
ison between resting with eyes open, closed, and fixated.
Neuroimage. 78:463–473.

Ponce-Alvarez A, Deco G, Hagmann P, Romani GL, Mantini D, Cor-
betta M. 2015. Resting-state temporal synchronization net-
works emerge from connectivity topology and heterogeneity.
PLoS Comput Biol. 11:e1004100.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church
JA, Vogel AC, Laumann TO, Miezin FM, Schlaggar BL et al.
2011. Functional network Organization of the Human Brain.
Neuron. 72:665–678.



Whole-Brain Dynamics in Aging Escrichs et al. 2481

Ptak R. 2012. The frontoparietal attention network of the human
brain. Neuroscientist. 18:502–515.

Puig J, Biarnes C, Pedraza S, Vilanova JC, Pamplona R, Fernández-
Real JM, Brugada R, Ramos R, Coll-de-Tuero G, Calvo-Perxas L
et al. 2020. The aging imageomics study: rationale, design, and
baseline characteristics of the study population. Mech Ageing
Dev. 189:111257.

Puig J, Blasco G, Alberich-Bayarri A, Schlaug G, Deco G, Biarnes C,
Navas-Martí M, Rivero M, Gich J, Figueras J et al. 2018. Resting-
state functional connectivity magnetic resonance imaging
and outcome after acute stroke. Stroke. 49:2353–2360.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,
Shulman GL. 2001. A default mode of brain function. Proc Natl
Acad Sci U S A. 98:676–682.

Raichle ME, Snyder AZ. 2007. A default mode of brain function: a
brief history of an evolving idea. Neuroimage. 37:1083–1090.

Reuter-Lorenz PA, Cappell KA. 2008. Neurocognitive aging and
the compensation hypothesis. Curr Dir Psychol Sci. 17:177–182.

Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW.
2012. Trouble at rest: how correlation patterns and group
differences become distorted after global signal regression.
Brain Connect. 2:25–32.

Shen X, Tokoglu F, Papademetris X, Constable RT. 2013. Group-
wise whole-brain parcellation from resting-state fMRI data
for network node identification. Neuroimage. 82:403–415.

Sporns O. 2013. Network attributes for segregation and integra-
tion in the human brain. Curr Opin Neurobiol. 23:162–171.

Sporns O, Tononi G, Kötter R, O’Neill M, Young M. 2005. The
human connectome: a structural description of the human
brain. PLoS Comput Biol. 1:e42.

Spreng RN, Stevens WD, Viviano JD, Schacter DL. 2016. Attenu-
ated anticorrelation between the default and dorsal attention
networks with aging: evidence from task and rest. Neurobiol
Aging. 45:149–160.

Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. 2012. Criti-
cality in large-scale brain FMRI dynamics unveiled by a novel
point process analysis. Front Physiol. 3:15.

Tian L, Li Q, Wang C, Yu J. 2018. Changes in dynamic functional
connections with aging. Neuroimage. 172:31–39.

Tognoli E, Kelso JA. 2014. The metastable brain. Neuron. 81:35–48.
Turner GR, Spreng RN. 2015. Prefrontal engagement and reduced

default network suppression co-occur and are dynami-
cally coupled in older adults: the default-executive coupling
hypothesis of aging. J Cogn Neurosci. 27:2462–2476.

United Nations, Department of Economic and Social Affairs,
Population Division. 2020. World Population Ageing 2019
(ST/ESA/SER.A/444).

van den Heuvel MP, Hulshoff Pol HE. 2010. Exploring the brain
network: a review on resting-state fMRI functional connec-
tivity. Eur Neuropsychopharmacol. 20:519–534.

van den Heuvel MP, Kahn RS, Goñi J, Sporns O. 2012. High-cost,
high-capacity backbone for global brain communication. Proc
Natl Acad Sci U S A. 109:11372–11377.

van den Heuvel MP, Sporns O. 2011. Rich-club organization of the
human connectome. J Neurosci. 31:15775–15786.

Wang J, Wang L, Zang Y et al. 2009. Parcellation-dependent small-
world brain functional networks: a resting-state fMRI study.
Hum Brain Mapp. 30:1511–1523.

Wang L, LaViolette P, O’Keefe K, Putcha D, Bakkour A, Van Dijk
KR, Pihlajamäki M, Dickerson BC, Sperling RA. 2010. Intrinsic
connectivity between the hippocampus and posteromedial
cortex predicts memory performance in cognitively intact
older individuals. Neuroimage. 51:910–917.

Whitfield-Gabrieli S, Nieto-Castanon A. 2012. Conn: a functional
connectivity toolbox for correlated and Anticorrelated brain
networks. Brain Connect. 2:125–141.

WHO. 2016. Proposed working definition of an older person in Africa
for the MDSProject. World Heal Organ. https://www.who.int/
healthinfo/survey/ageingdefnol.

Wong CW, Olafsson V, Tal O, Liu TT. 2013. The amplitude of the
resting-state fMRI global signal is related to EEG vigilance
measures. Neuroimage. 83:983–990.

Xia Y, Chen Q, Shi L, Li M, Gong W, Chen H, Qiu J. 2019. Tracking
the dynamic functional connectivity structure of the human
brain across the adult lifespan. Hum Brain Mapp. 40:717–728.

Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP. 2013. Stan-
dardizing the intrinsic brain: towards robust measurement
of inter-individual variation in 1000 functional connectomes.
Neuroimage. 80:246–262.

Yin D, Liu W, Zeljic K, Wang Z, Lv Q, Fan M, Cheng W, Wang Z.
2016. Dissociable changes of frontal and parietal cortices in
inherent functional flexibility across the human life span. J
Neurosci. 36:10060–10074.

Ystad M, Hodneland E, Adolfsdottir S, Haász J, Lundervold AJ,
Eichele T, Lundervold A. 2011. Cortico-striatal connectivity
and cognition in normal aging: a combined DTI and resting
state fMRI study. Neuroimage. 55:24–31.

Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C,
Bullmore ET. 2010. Whole-brain anatomical networks: does
the choice of nodes matter? Neuroimage. 50:970–983.

Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M. 2014.
Time-resolved resting-state brain networks. Proc Natl Acad Sci
U S A. 111:10341–10346.

Zhao T, Cao M, Niu H, Zuo XN, Evans A, He Y, Dong Q, Shu N.
2015. Age related changes in the topological organization of
the white matter structural connectome across the human
lifespan. Hum Brain Mapp. 36:3777–3792.

Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF,
Castellanos FX, Biswal BB, Milham MP. 2010. The oscillating
brain: complex and reliable. Neuroimage. 49:1432–1445.



4.3 Article 3

Title: The effect of external stimulation on functional networks in the
aging healthy human brain.

Authors: Escrichs, A., Sanz Perl, Y., Mart́ınez-Molina, N., Biarnes, C.,
Garre-Olmo, J., Fernández-Real, J. M., Ramos, R., Mart́ı, R., Pamplona, R.,
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Abstract

Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse
cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive
functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on
causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics. Furthermore, this strategy
could serve to identify neurophysiological biomarkers differentiating between age groups through an exhaustive exploration of the
global effect of all possible local perturbations. Here, we used a resting-state fMRI dataset divided into middle-aged (N =310, <65
years) and older adults (N =310, ≥65) to characterize brain states in each group as a probabilistic metastable substate (PMS) space.
We showed that the older group exhibited a reduced capability to access a metastable substate that overlaps with the rich club.
Then, we fitted the PMS to a whole-brain model and applied in silico stimulations in each node to force transitions from the brain
states of the older- to the middle-aged group. We found that the precuneus was the best stimulation target. Overall, these findings
could have important implications for designing neurostimulation interventions for reversing the effects of aging on whole-brain
dynamics.

Key words: aging; computational modeling; resting-state fMRI; brain states; in silico perturbations.

Introduction
Normal aging causes changes in the brain that can lead
to cognitive decline, thereby affecting the quality of
life and autonomy of the elderly and their caregivers
(Barnes 2011; Li et al. 2015). Longitudinal studies
in healthy older adults have shown an association
between altered functional connectivity in resting-state

and decreased cognitive functions (Persson et al. 2014;
Fjell et al. 2017), thus suggesting that the resting-
state could be an indicator of age-related cognitive
decline. In addition, various neuroimaging studies
have described that aging affects several resting-state
networks (Wang et al. 2010; Ferreira and Busatto, 2013;
Betzel et al. 2014; Grady et al. 2016; Spreng et al. 2016)
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and the rich-club organization of the human brain (Cao
et al. 2014; Zhao et al. 2015; Damoiseaux 2017; Escrichs
et al. 2021a). However, a question that remains to be
addressed is whether these effects could be reversed
or alleviated with external stimulation protocols that
promote transitions from the brain states of the older
toward those observed in younger adults.

The study of causal structure-function inferences
has enhanced the understanding of the mechanisms
underlying human brain dynamics, both through direct
neurostimulation techniques (Casali et al. 2013; Ozdemir
et al. 2020) and by in silico stimulation protocols (Muldoon
et al. 2016; Deco et al. 2018, 2019; Bolton et al. 2020;
Kringelbach and Deco 2020). Noninvasive neurostim-
ulation techniques such as transcranial electrical
stimulation (tES) and transcranial magnetic stimulation
(TMS) combined with neuroimaging have provided novel
insights into the underlying mechanisms of stimulation-
induced effects along with its impact on large-scale func-
tional brain networks (Bestmann and Feredoes 2013).
These approaches have emerged as potential treatments
for neurological and neurodegenerative disorders (Fox
et al. 2014; Kunze et al. 2016) as well as for improving
cognitive function in healthy individuals (Clark and
Parasuraman 2014). Nevertheless, experimental and
ethical constraints limit the exploration of efficient
practices that could be improved by the inclusion of
whole-brain computational approaches along with in
silico perturbations. In particular, dynamical models
of brain activity have been fitted to different brain
states to systematically apply in silico perturbations
that promote transitions between brain states and,
consequently, predict optimal neurostimulation targets
(Muldoon et al. 2016; Deco et al. 2019; Ipiña et al.
2020). This strategy allows exploring dynamical brain
responses elicited by controlled perturbative proto-
cols, which are not constrained by ethical limitations
(Deco et al. 2017).

In this context, we postulate that causal whole-brain
modeling along with in silico stimulations can promote
the transition between brain states of different age
groups characterized by their dynamical behavior where
the external stimulation represents the perturbation
needed to induce that transition. The first step to finding
support for this interpretation is to define the brain
states associated with aging through their underlying
dynamical behavior, thus providing a quantitative
characterization. The probability metastable substates
(PMS) space emerges as an optimal space to describe
this dynamical behavior as the time evolution of a
set of metastable states obtained within the Leading
Eigenvector Dynamical Analysis (LEiDA) (Cabral et al.
2017; Deco et al. 2019; Kringelbach and Deco 2020).
The LEiDA framework has allowed discerning brain
states in depression (Figueroa et al. 2019), different
states of consciousness (Deco et al. 2019; Lord et al.
2019; Kringelbach and Deco 2020; Kringelbach and Deco,
2020), and healthy aging (Cabral et al. 2017). The second
step to support our hypothesis involves the transition

from the older subjects’ PMS representation to the
youngest one induced by in silico perturbations. This
can be done through whole-brain models, which link
the underlying anatomical connectivity with functional
dynamics obtained from neuroimaging data, in which
the external stimulation of all brain areas can be
systematically explored via in silico perturbations by
adjusting the parameters of the model (Deco et al. 2018,
2019; Kringelbach and Deco 2020). In other words, the
empirical LEiDA approach obtains the PMS of each group,
whereas the model-based in silico approach allows us to
simulate the PMS space of the older group and artificially
perturb each brain area to induce transitions towards the
PMS of the middle-age group. This mechanistic approach
allows for an effective way of perturbing the model by
simply changing the bifurcation parameter in a given
brain area.

We have recently shown (Escrichs et al. 2021a) sig-
nificant differences in the PMS space between older-
and middle-aged healthy adults. Going radically beyond
our previous work, which provided important model-
free information on the differences given by the dynam-
ics, here we used a causal whole-brain model to pro-
vide mechanistic information on how to reverse age-
induced changes in dynamics. We hypothesized that a
physiological differentiation of the neuronal substrate
underlying the older- and middle-aged groups could be
obtained by assessing, through external stimulations, the
capability of each brain region to promote a transition
from the brain states characterizing the older group
towards the brain states characterizing the middle-aged
group. Beyond the differentiation, this approach would
also allow the selection of optimal stimulation targets to
rebalance the underlying brain dynamics in the elderly
towards more healthy states. In particular, we fit the PMS
of the older group by using a causal mechanistic whole-
brain model (Deco et al. 2019; Kringelbach and Deco 2020)
and study exhaustively in silico , i.e. region by region, how
to force a transition from the brain states associated with
the older group to the brain states of the middle-aged
group.

Materials and methods
Participants
Neuroimaging data were obtained from the Aging
Imageomics Study (Puig et al. 2020) and comprised 620
healthy adults divided into two groups. The middle-aged
group comprised 310 subjects aged < 65 years (mean
age, 60.2±3.7 years), and the older group comprised 310
subjects aged >= 65 years (mean age, 71.8±4.5 years). We
set the cut-off age based on the definition of the elderly
as those people aged 65 and above (WHO 2016; United
Nations, 2019). The experimental protocol was approved
by the Ethics Committee of the Dr Josep Trueta University
Hospital. Written informed consent was obtained
from all participants. A complete description of the
neuroimaging data can be consulted in Puig et al. (2020)
and Escrichs et al. (2021a).
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Resting-state acquisition and preprocessing
Imaging was performed on a mobile 1.5T scanner (Van-
tage Elan, Toshiba Medical Systems) with an 8-channel
phased-array head coil with foam padding and head-
phones to restrict head motion and scanner noise. The
high-resolution T1-weighted images were acquired with
112 slices in the axial plane (repetition time [TR] = 8
ms; echo time [TE] = 4.5 ms; flip angle = 15◦; field of
view (FOV) = 235 mm; and voxel size = 1.3 × 1.3 ×
2.5 mm). Resting-state functional magnetic resonance
imaging (fMRI) scans were acquired axially for 5 min
using a gradient Echo-planar imaging (EPI) sequence (122
volumes; TR = 2500 ms; TE = 40 ms; flip angle = 83◦;
FOV = 230 mm; voxel size = 3.5 × 3.5 × 5 mm; no gap).
Participants were asked to remain motionless as possible
and close their eyes.

T1 and EPI images were automatically oriented using
Conn (Whitfield-Gabrieli and Nieto-Castanon 2012).
Processing Assistant for Resting-State fMRI (DPARSF)
[(Chao-Gan and Yu-Feng 2010), www.rfmri.org/DPARSF],
which is based on Statistical Parametric Mapping
(SPM12) (http://www.fil.ion.ucl.ac.uk/spm) was used to
preprocess the fMRI data. Preprocessing steps included:
discarding the first 5 volumes from each scan to allow for
signal stabilization; slice-timing correction; realignment
for head motion correction across different volumes;
T1 co-registration to the functional image; European
regularisation segmentation; removal of spurious vari-
ance through linear regression: 6 parameters from
the head motion correction, the white matter signal,
and the cerebrospinal fluid signal using CompCor
(Behzadi et al. 2007); removal of the linear trend; spatial
normalization to the Montreal Neurological Institute
standard space; spatial smoothing with 6-mm Full
Width at Half Maximum Gaussian Kernel; and band-
pass temporal filtering (0.01–0.020 Hz). Finally, the time
series for each subject were extracted using a resting-
state atlas of 214 nodes (Shen et al. 2013).

Difussion Tensor Imaging acquisition
and preprocessing
For the whole-brain model, we used an average structural
connectivity matrix (SC) from a sample of 38 unrelated
healthy subjects previously described in De Filippi et al.
(2021). MRI images were acquired on a 3T whole-body
Siemens TRIO scanner (Hospital Clínic, Barcelona) using
a dual spin-echo difussion tensor imaging (DTI) sequence
(TR = 680ms; TE = 92ms; FOV = 236mm; 60 contiguous
axial slices; isotropic voxel size 2×2×2 mm; no gap, and
118 × 118 matrix sizes). Diffusion was obtained with 64
optimal noncollinear diffusion directions using a single
b value = 1500s/mm2 interleaved with 9 nondiffusion b0
images. A frequency-selective fat saturation pulse was
used to avoid chemical shift misregistration artifacts.

The whole-brain SC matrix was computed follow-
ing the procedure applied in previous studies (Gong
et al. 2009; Cao et al. 2013; Muthuraman et al. 2016;

López-González et al. 2021). For each subject, a 214×214
SC was computed using the processing pipeline of the
FMRIB’s Diffusion Toolbox (FDT) in FMRIB’s Software
Library www.fmrib.ox.ac.uk/fsl. Nonbrain tissues were
extracted with Brain Extraction Tool (Smith, 2002), eddy
current distortions and head motion were corrected
using eddy correct (Andersson and Sotiropoulos 2016),
and the gradient matrix was reoriented to correct for sub-
ject motion (Leemans and Jones, 2009). Crossing fibres
were modeled using BEDPOSTX, and the probability of
multi-fibre orientations was computed to improve the
sensitivity of nondominant fibre populations (Behrens
et al. 2003, 2007). The probabilistic tractography analysis
was performed for each participant in native diffusion
space using PROBTRACKX. The connectivity probability
SCnp between brain areas n and p was calculated as
the total proportion of sampled fibres in all voxels in
brain area n that reach any voxel in brain area p. The
SCnp matrix was then symmetrized by computing their
transpose matrix SCpn and averaging both matrices.
Finally, averaging the resulting matrices across all
participants, a whole-brain SC matrix was obtained,
representing a template of healthy adults.

Leading Eigenvector Dynamics Analysis
We characterized the empirical brain states by applying
the LEiDA (Cabral et al. 2017; Deco et al. 2019; Kringel-
bach and Deco 2020). This analysis was described in
our previous study using the same resting-state fMRI
dataset (Escrichs et al. 2021a). For each participant, we fil-
tered the time series within the narrowband 0.04–0.07 Hz
(Glerean et al. 2012) and computed the Hilbert transform
to obtain the phase of the BOLD signals in every time-
point for all brain areas of the resting-state parcellation
(Fig. 1A). Then, we computed a dynamic phase coherence
connectivity matrix with size NxNxT, where N=214 is the
total brain areas, and T=117 the total time-points. The
BOLD phase coherence matrix or dynamic functional
connectivity (dFC) (Fig. 1B) in each time t between each
pair of brain areas n and p was estimated by computing
the cosine of the phase difference as:

dFC(n, p, t) = cos (θ(n, t) − θ(p, t)) (1)

Given that the Hilbert Transform expresses any signal
in the polar coordinate system (i.e. xa(t) = A(t)·cos (ϕ(t))),
applying the cosine function to brain areas n and p
with similar angles at a given time t will show a phase
coherence close to 1 (i.e. cos(0◦)=1), whereas brain areas
showing orthogonality will show a phase coherence
near zero (i.e. cos(90◦) = 0) (Deco et al. 2019). Second,
to characterize the dFC patterns across all subjects and
time-points, we obtained a leading eigenvector V1(t)
for each dFC(t) at time t by capturing the dominant
functional connectivity pattern rather than the whole
matrices. This approach allows to reduce dimensionality
on the data considerably given that only considers a
V1(t) for each dynamic FC matrix. The V1(t) is a Nx1
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Fig. 1. PMS space, optimizing the model for whole-brain activity and in silico stimulations. (A) We extracted the time series using a resting-state atlas
of 214 nodes and measured the Hilbert transform for each brain area. The panel shows a complex plane representing the BOLD phases for a given
brain area across time. (B) Leading Eigenvector Dynamic Analysis (LEiDA) to identify dynamic functional connectivity patterns across all subjects [i.e.
probabilistic metastable substates (PMS)]. The left panel shows the BOLD phases in all 214 brain areas described in the complex plane. The right panel
shows the phase coherence matrix between each pair of brain areas in all time points. The vector shows the leading eigenvector V1(t), capturing the
principal orientation of the BOLD phase (showing positive or negative values) for each of the 214 brain areas. (C) Whole-brain PMS model. A whole-brain
dynamical model was fitted for the PMS of the older group based on the effective connectivity. (D) Stimulations in silico . Each brain area of the whole-
brain model was systematically perturbed via in silico stimulations through two different protocols (noise and synchronization). The noise protocol shifts
the local bifurcation parameter of each brain area to negative values, whereas the synchronization protocol shifts it to positive. Figure A and B adapted
from (Deco et al. 2018; Escrichs et al. 2021a).

vector capturing the principal orientation of the BOLD
phase (showing positive or negative values) for each
of the 214 brain areas (Fig. 1B, lower panel). Next, we
applied a k-means clustering algorithm ranged from k
= 2 to k = 7 clusters to detect metastable substates or
dynamic FC states from all the leading eigenvectors V1(t)
across time-points, number of subjects, and groups to
identify recurrent dynamic FC patterns across subjects.
The total of leading eigenvectors were 117 time-points
× 310 subjects × 2 groups = 72 540 V1(t). We obtained k
cluster centroids, each one as an Nx1 vector representing
recurrent metastable substates across all participants.
The resulting k-cluster centroids define the metastable
substates among which the brain dynamics are switching
across time, and the probability of occurrence of each
substate determines the PMS of the brain.

Whole-brain computational model
The whole-brain BOLD activity was simulated using
the so-called Hopf computational model, linking the
anatomy and function. The model consisted of 214
dynamical cortical and subcortical brain areas coupled
with the SC matrix. The local dynamics of each brain

area was described by the normal form of a supercritical
Hopf bifurcation, which emulates the dynamics for each
brain area from noisy to oscillatory dynamics as follows:

dxn

dt
= [an − x2

n − y2
n]xn − ωnyn + G

N∑

p=1

Cnp(xp − xn) + βηn(t)

dyn

dt
= [an − x2

n − y2
n]yn + ωnxn + G

N∑

p=1

Cnp(yp − yn) + βηn(t)

(2)

where ηn(t) is additive Gaussian noise with standard
deviation β = 0.02, and Cnp is the SC that couples the
local dynamics of brain area n with p and was normalized
to a maximum value of C = 0.2. This normal form
has a supercritical bifurcation at an = 0, such that for
an > 0 the system is in a stable limit cycle oscillation
with frequency fn = ωn/2π , whereas for an < 0 the
local dynamics are in a stable point (i.e. noisy state).
The frequency ωn of each brain area was estimated from
the data that were given by the applied narrowband
(i.e. 0.04 − 0.07Hz). The variables xn emulate the BOLD
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signal of each node j. The global coupling factor G (scaled
equally for each brain area) is the control parameter
that allows adjusting the model to obtain the optimal
dynamical working point where the simulations maxi-
mally fit the empirical data. We simulated the PMS as
a function of the global coupling parameter G through
the underlying SC matrix. We improved the fitting of the
whole-brain model through the inclusion of the effec-
tive connectivity (EC) (Fig. 1C), where the anatomical
connectivity was updated by the synaptic weights that
take into account the empirical functional connectivity.
The effective connections were computed by measur-
ing the distance between the empirical FCphases_emp

ij and

the model FCphases_mod
ij grand-averaged phase coherence

matrices, and adjusted each structural connection ij sep-
arately using a gradient-descent approach. The model
initially started computing with the SC matrix obtained
from DTI and was run repeatedly with the updated EC
matrix until the fit converged toward a stable value using
the following procedure:

Cij = Cij + ε
(
FCphases_emp

ij − FCphases_mod
ij

)
(3)

where ε = 0.01, and the grand average phase coherence
matrices were defined as:

FCij =
〈
cos

(
ϕj(t) − ϕi(t)

)〉
(4)

where ϕ(t) corresponds to the BOLD signal phase
(obtained by the Hilbert transform) of the brain areas j
and i at time t, and the brackets correspond to the average
across time.

Perturbation of the whole-brain model
The perturbation of the whole-brain model consisted
of systematically perturbing the 214 brain areas of the
model using two different protocols (noise and synchro-
nization). The perturbations were based on shifting the
local bifurcation parameter (a) of the optimized model
(Fig. 1D). The noise (synchronization) protocol applies
negative (positive) intensities to the local parameter from
0 to −0.3 (0.1).

Comparing empirical and simulated probability
metastable space states
The empirical and simulated brain states were compared
by using a symmetrized KL distance between the simu-
lated and empirical probabilities as:

KL(Pemp, Psim) = 0.5
( ∑

i Pemp(i) ln
(

Pemp(i)
Psim(i)

)

+ ∑
i Psim(i) ln

(
Psim(i)
Pemp(i)

))
(5)

where Pemp(i) are the empirical and Psim(i) the simu-
lated probabilities on the same empirical extracted brain

states i. The optimal simulated PMS is defined by the
minimum KL distance between the empirical and sim-
ulated PMS.

Results
Leading Eigenvector Dynamics Analysis
As a proof-of-concept, we show the minimum number of
clusters (k) that statistically differed between groups. In
particular, the clustering configuration that best repre-
sented the resting-state data across all participants and
distinguished between both groups was detected at k=3.
In Figure 2A, we display the cluster centroid vectors onto
the surface cortex. Interestingly, the regions of the sec-
ond metastable substate showing positive values overlap
with the brain’s rich-club organization of the human
brain (i.e. precuneus, insula, and subcortical areas, such
as the caudate, putamen, hippocampus, and thalamus)
(Hagmann et al. 2008; Sporns, 2013; van den Heuvel and
Sporns, 2011) as found in our previous empirical study
(Escrichs et al. 2021a). The probability of occurrence for
the PMS of each group is shown in Fig. 2B, left panel.
Specifically, the probability of the first metastable sub-
state occurrence was higher in the older group than in
the middle-age group [0.476 ± 0.008 (mean ± SE) vs. 0.453
± 0.008 False discovery rate (FDR)-corrected, P=0.03]. By
contrast, the second metastable substate’s probability
was higher in the middle-age group [0.288 ± 0.007 vs.
0.269 ± 0.006 in the older group, False discovery rate
(FDR) P= 0.026].

Finally, we correlated the PMS values of the relevant
metastable substate (i.e. rich club) with age. We found a
negative correlation showing that the capability to access
this state decreases while the age increases [r(618) =
−.08r, P = 0.04]. However, even though the correlation is
significant, the slope value is marginal. This result indi-
cates the effectiveness of our method to find significant
differences at the group level but not at the subject level.

Fit whole-brain computational model to the brain
states of the older group
For the older group, we constructed a dynamical model
of 214 nonlinear oscillators representing the macroscopic
dynamical behavior of each brain area of interest (Fig. 2B,
middle panel). These oscillators are coupled by a SC
matrix among brain areas giving rise to collective dynam-
ics. The local dynamics of each brain area was described
by the normal form of a supercritical Hopf bifurcation,
and the bifurcation parameters of each oscillator (a) were
set in the edge of the bifurcation point, i.e. the optimal
point to represent the metastability of brain states (Deco
et al. 2017). The coupling strength parameter (G) was
optimized to fit the whole-brain model to the PMS of
the older group. In particular, we used the centroids
of the empirical PMS of the older group and built the
model based on the probability of the empirical centers.
Then, we estimated the distance between the model and
the empirical phase coherence matrices and adjusted
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Fig. 2. Empirical PMS and whole-brain model fitting. (A) The clustering configuration that best represented our resting-state fMRI data across subjects
was found for 3 states. Rendered brains show the states onto the cortex. State 1 shows negative values in all regions of the leading eigenvector. Regions
showing positive values in state 2 overlap with the rich club network (precuneus, insula, caudate, putamen, hippocampus, and thalamus). State 3 was not
statistically different between groups. Color bars represent the principal orientation of the BOLD phase from the leading eigenvector (showing positive o
negative values). (B) The left panel shows each state and group’s mean probability of occurrence, while error bars represent the 95% confidence interval.
The probability of occurrence in the first state was higher in the older group. By contrast, the probability of occurrence in the second state was higher
in the middle-age group. The whole-brain model was fitted to the empirical PMS of the older group (middle panel). The right panel shows the resulting
model (electric blue), remarkably similar to their empirical version (blue). P-values are based on Monte-Carlo permutation tests, ∗ represents P<0.05.

each structural connection separately using a gradient-
descent algorithm. The model was run repeatedly with
the updated EC until convergence to a stable point. We
tested the differences between the empirical and the
simulated probabilities by computing the symmetrized
Kullback–Leibler (KL) distance (see Material and meth-
ods). The optimal working point of the model was found
at G=0.02, i.e. where the model fits the empirical PMS
data of the older group. The generated model reached
an excellent fit between the empirical and the simulated
probabilities (Fig. 2B, right panel).

In silico stimulations to force transitions between
brain states
We applied two different stimulation protocols (i.e. noise
and synchronization) in order to force transitions from
the PMS of the older group to the PMS of the middle-aged
group. In Figure 3A, we show the schematic procedure
to force transitions between brain states. Specifically,
we started from the simulated PMS that presented the
highest similarity to the empirical PMS of the older group
and perturbed the model to force the transition to the
empirical PMS of the middle-age group. The stimulation
protocols were based on systematically shifting the local

bifurcation parameter (a) of the optimized whole-brain
model. The noise protocol applies negative intensities to
the local parameter, whereas the synchronization applies
positive intensities. The strength of the perturbation is
linked to the shifting of the local bifurcation parameter.
Concretely, we systematically perturbed each of the 214
brain areas of the whole-brain model and compared the
distributions with the empirical PMS of the middle-age
group. The optimal perturbation is that yields that the
first brain state decreases, the second increases and the
third brain state remains similar (Fig. 3A, right panel).

Our results show that the KL distances between the
empirical PMS of the middle-aged group and the per-
turbed model were minimal in some brain areas for the
noise protocol, and thus a good transition between brain
states was obtained (Fig. 3B, left panel). The potential
brain areas to achieve a good transition between brain
states were the precuneus and lingual gyrus, bilateral
middle temporal gyrus, bilateral calcarine sulcus,
bilateral inferior gyrus orbitofrontal part, left superior
temporal gyrus, left insula, bilateral putamen, bilateral
thalamus, and right caudate (Fig. 3B, middle panel). In
contrast, the KL distances were higher in the
synchronization protocol for all perturbation strengths
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Fig. 3. Noise and synchronization stimulation protocols. (A) Forcing transitions from the model of the older group (electric blue) to the empirical PMS of
the middle-age group (red). The whole-brain model was perturbed at the optimal working point using two different protocols (noise and synchronization),
which shifted the local bifurcation parameter to negative and positive values, respectively (middle panel). The optimal perturbation is that which
achieves the first state decreases, the second state increases, and the third state remains similar (right panel). (B) The left matrix shows the KL-distance
value after applying the noise protocol’s perturbation intensity (from softer to stronger) in each brain area. This protocol presented the best effectiveness
since KL distances were minimal in some brain areas. The brain rendered onto the cortex shows that the optimal brain areas to induce the transitions
were the precuneus and lingual gyrus, bilateral middle temporal gyrus, bilateral calcarine sulcus, bilateral inferior gyrus orbitofrontal part, left superior
temporal gyrus, left insula, bilateral putamen, bilateral thalamus, and right caudate. The color scale represents the KL distance between the PMS of
the middle-age group and the perturbed model using the noise protocol. The right matrix shows that the synchronization protocol presented poor
effectiveness given that KL distances were longer than in the noise protocol.

and perturbed brain areas (Fig. 3B, right panel).
This result indicates the unsuitability of the synchro-
nization protocol to force the transition.

Finally, in Figure 4 we display the PMS comparison
between empirical, modeled, and perturbation condi-
tions. We show the best transition and the worst tran-
sition after the perturbation. It is noticeable that after
perturbing the precuneus, the probabilities of the empir-
ical PMS of the middle-aged group and perturbed model
of the older group are almost the same for the three
metastable substates considered (the KL distance was
minimal). By contrast, the worst target was the post-
central gyrus, since the probabilities of the states barely
changed after the perturbation. These results suggest
that the right precuneus is the brain area that induces
the best effective transition between brain states.

Discussion
In this work, we used empirical and computational
approaches to study the causal dynamical mechanisms
allowing the transition between brain states of different
age groups. Our empirical approach identified that the

older group has a lower probability of accessing a state
that overlaps with the rich club. Then, we investigated
the effect of perturbing all brain areas to induce optimal
transitions from the states of the older aged group to
the states of the middle-aged group by using causal
whole-brain modeling and in silico perturbations. These
results illustrated that forcing a shift in the intrinsic local
dynamics of the right precuneus and other brain areas
belonging to the rich club (insula, putamen, caudate, and
thalamus) is suitable for inducing those transitions. Cru-
cially, our model-based in silico approach provides causal
evidence that external stimulations in specific local
brain areas can reshape whole-brain dynamics in the
aging brain. Importantly, this could provide new insights
into the differential sensitivity of each brain area to in
silico perturbations as a specific model-based biomarker
relating local activity with global brain dynamics.

Understanding the underlying brain changes occur-
ring during normal aging can contribute to develop
ing treatments to reverse cognitive impairment. In this
regard, Noninvasive neurostimulation therapies stand
as a promising intervention for brain disorders (Clark
and Parasuraman 2014; Kunze et al. 2016). Nevertheless,
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Fig. 4. PMS comparison between empirical, modeled, and perturbation conditions. (A) Comparison between the probability of occurrence of the
empirical and modeled PMS of the older group. (B) We show the best and worst transitions after the perturbation. These results clearly show an optimal
transition from the perturbed model towards the PMS of the middle-aged group after changing the bifurcation parameter of the right precuneus with
the noise protocol. In particular, this perturbation decreased the probability of occurrence of the first state, increased the probability of the second, and
kept the probability of the third similar. By contrast, the postcentral gyrus shows a non-optimal transition since the states’ probabilities barely changed
after the perturbation.

there are two different but related limitations for the
application of such treatments. The first refers to the
lack of a consensual definition of a brain state capable
of being quantitatively characterized that differentiates
the activity of an older from a younger brain. The second
issue concerns the limitations to exploring the vast
space of possible interventions due to experimental and
ethical constraints (Deco et al. 2017). Here, we addressed
these 2 issues by applying whole-brain computational
models, which allowed us to systematically explore
brain responses elicited by in silico perturbations of
fMRI empirical data of healthy older and middle-aged
subjects.

We tested the hypothesis that causal modeling could
predict optimal stimulation targets to rebalance the
underlying brain dynamics in the elderly. Interestingly,
we show that this approach can predict optimal targets
to force transitions between brain states of different
ages. Previous experimental studies investigated the
effects of localized external perturbations during states
of reduced awareness in humans (Angelakis et al.
2014; Thibaut et al. 2014; Zhang et al. 2019) and mild
cognitive impairment (Hampstead et al. 2017). However,
the systematic exploration via perturbations of all brain
areas of the human brain can only be performed through
computational models that simulate the underlying
brain activity (Spiegler et al. 2016). In this direction,
recent works have implemented whole-brain models and
in silico perturbations to explore the elicited responses
from external stimulations in different brain states
such as sleep, anesthesia, disorders of consciousness
and even in altered states such as meditation or the
psychedelic state (Deco et al. 2019; Ipiña et al. 2020;

Kringelbach et al. 2020; Sanz Perl et al. 2021;
Escrichs et al. 2021b).

Our empirical approach using LEiDA identified PMS
differences between older and middle-age groups. In
particular, we found differences in a state that closely
overlaps with the so-called rich club (Hagmann et al.
2008; van den Heuvel and Sporns, 2011; Sporns, 2013),
that in turn, the rich club overlaps with the Default
mode network (DMN) (van den Heuvel and Sporns, 2011;
Damoiseaux 2017). Our results reveal that, compared
with middle-aged subjects, older subjects showed a
lower probability of occurrence of this state that can
be interpreted as an alteration in the intrinsic dynamics
within the rich-club or damage in any of their brain areas
involved (Escrichs et al. 2021a). In line with this finding,
recent studies have suggested that the alterations in
brain dynamics observed in the elderly could be due to a
deficiency in the rich-club organization (Cao et al. 2014;
Zhao et al. 2015; Damoiseaux 2017). This framework
demonstrates that the brain spatiotemporal dynamic,
summarized in the PMS, provides crucial information
to characterize different aged groups. Furthermore, this
result could be related to Northoff and colleagues’
proposal about spatiotemporal neuroscience and the
common currency between brain and mind (Northoff
et al. 2020).

Our model-based in silico approach allowed us to test
the effectiveness of 2 different stimulation protocols
named noise and synchronization. The noise protocol
reduces the value of the bifurcation parameter of the
stimulated node resulting in noise outweighing oscil-
latory behavior, whereas the synchronization protocol
yields the opposite effect. The fact that the noise protocol
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leads to better results means that the local bifurcation
parameters must be mostly below or at the edge of
bifurcation, thus favoring the local dynamics in the most
susceptible regime. Furthermore, this result could be
related to brain overactivation that has been largely
documented in the elderly. Particularly, older adults
show overactivation in frontal brain areas (Davis et al.
2008; Reuter-Lorenz and Cappell, 2008; Cabeza et al.
2018; Yao and Hsieh 2021), and among resting-state
networks (Betzel et al. 2014; Geerligs et al. 2015; Spreng
et al. 2016; Escrichs et al. 2021a). Thus, one possible
mechanism could be that noise stimulation decreases
these functional overactivations.

Interestingly, the results show that the brain area that
promoted the best transition between brain states was
the precuneus. The precuneus plays a central functional
role in the DMN (Utevsky et al. 2014) and is involved
in complex functions like memory, perception, mental
imagery, and responses to pain (Cavanna and Trimble
2006). Furthermore, we found that the other brain areas
that promoted an excellent transition are part of the
so-called rich club (i.e. the precuneus, insula, putamen,
caudate, and thalamus) (van den Heuvel and Sporns,
2011; Van Den Heuvel et al. 2012). Evidence suggests that
a disruption in one of these regions can affect network
efficiency and global brain function (van den Heuvel and
Sporns, 2011).

Lastly, we would like to acknowledge some limitations
in the study. One inherent limitation is related to using
a cross-sectional approach that, by definition, cannot
measure individual changes in brain dynamics. The
image acquisition protocol with TR also limits this work
= 2.5s in a 1.5T scanner. A protocol with increased
spatial and temporal resolution could allow a more accu-
rate representation of the underlying brain dynamics.
Furthermore, we did not correlate our empirical PMS
results with behavioral or cognitive measures. Future
studies could explore the relationship between cognitive
assessments with brain dynamics for more clinical
relevance. Another limitation concerns the parcellation
used, which was based on an atlas of 214 nodes. Using
brain atlases with a large number of nodes could produce
results with better local sensitivity.

Overall, the model-based in silico approach provides
causal evidence that external stimulations in specific
local brain areas can reshape whole-brain dynamics
in aging. From a clinical standpoint, the methods
and results presented here suggest optimal targets
for neurostimulation techniques to induce transitions
toward a healthy regime. This framework could improve
the diagnosis, prognosis, and therapeutic responsiveness
of aging effects in healthy adults and other conditions
such as neuropsychiatry diseases and disorders of
consciousness.
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Fundamentally different brain states such as sleep, wakeful-
ness, or coma all emerge from the complex dynamics of self-
organised brain activity. Nevertheless, an unanswered

question in modern neuroscience is how best to characterise the
underlying human brain states acquired with neuroimaging1,2.
Many challenges remain unsolved, and most importantly, there is
a need to arrive at an agreed definition of brain states2–9. The
most important feature of such a definition would help to create a
mechanistic framework for characterising brain states in terms of
the underlying causal mechanisms and dynamical complexity. An
elegant way of assessing dynamical complexity was proposed by
Massimini and colleagues who investigated the perturbation-
elicited changes in global brain activity during brain states,
including wakefulness, sleep, anaesthesia, and post-coma
states10–12. They have proposed the perturbational complexity
index (PCI), which captures the significant differences in brain-
wide spatiotemporal propagation of external stimulation, distin-
guishing between different brain states10. Beyond basic neu-
roscience, a better definition and description of a brain state could
offer novel avenues for translational therapeutic interventions to
rebalance disrupted brain states in disease.

In a recent review, Goldman and colleagues1 showed that at
both macroscopic and microscopic scales, unconscious brain
states are dominated by synchronous activity13–17, while con-
scious states are characterised by asynchronous dynamics15,18,19.
Equally, they propose that brain signals in unconscious and
conscious states vary in their algorithmic complexity20, entropy21

and dimensionality22. The authors were inspired by the elegant
mathematical framework of statistical physics, which provides the
tools for uncovering structures of microscopic interactions
underlying macroscopic properties. They propose that different
brain states may emerge from the interactions between popula-
tions of neurons, similar to how different states of matter like
solids and liquids emerge from interactions between populations
of molecules. In other words, unconscious states are more like a
solid-state, with high synchrony and low complexity, while con-
scious states are more like liquids, with asynchronous activity and
high complexity.

This dichotomy is very useful for capturing the fundamental
difference between conscious and unconscious states, especially
for the microstates, where for example, deep sleep is characterised
by slow waves23. However, the transition between scales is more
subtle and crucially depends on the complex percolation across
the whole brain of the synchronous and asynchronous micro-
states, which gives rise to mixed complex dynamical states24. The
challenge remains to find a unifying dynamical approach, which
can establish the balance between different levels of synchrony
and complexity needed to distinguish between brain states.

Here, we show that different brain states are always under-
pinned by spatiotemporal dynamics, but the mixing across scales
gives rise to dissociable dynamical characteristics, beyond simply
synchronous and asynchronous signatures. We investigate this
using two complementary model-free and model-based
frameworks.

For the model-free framework, we profited from the advances
in turbulence theory in physics25–28. In physical systems, starting
with fluid dynamics25–27, turbulence has been shown to provide
the optimal transmission of energy, and at the core of this
transmission are the scale-free mixing properties of turbulence.
Mathematically, it can be shown that energy is essentially
information29,30. The essence of turbulence is the efficient
transmission of energy/information in fluid dynamics, which was
shown by Kolmogorov to be captured by elegant scale-free sta-
tistical power laws26,27. This shows that rather than using fine-
grained Navier-Stokes equations of the billions of molecules in
fluid dynamics31, the extremely high dimensional system of fluid

dynamics can be described in a much simpler, lower-
dimensional space.

Beyond this fluid dynamics approach to turbulence, Kuramoto
showed that coupled oscillators can be used to capture turbulence in
many other systems, suggesting that coupled oscillators could sustain
optimal information transmission28. Specifically, within the frame-
work of coupled oscillators, turbulence can be characterised as the
variability across space and time of the local level of synchronisation
of the coupled oscillators. In fact, this characterisation is a general-
isation of the concept of metastability32–36, which in neuroscience
has been measured as the variability across time of the global level of
synchronisation of the whole system, commonly known as the
global Kuramoto order parameter of a dynamical system.

Here, however, as in previous papers, we describe that the
human brain operates in a turbulent regime37,38, in the sense of
Kuramoto38, which confers important information processing
advantages, including significantly enhancing the functional role
of the anatomically rare long-range connections39. We focus on
Kuramoto’s related concept of a local order parameter, defined as
the local level of synchronisation in the system40. The variability
of this local measure across spacetime turns out to be a sensitive
and precise description of the level of turbulence. Importantly, the
level of local synchronisation can be thought of as analogous to
the rotational vortices found in fluid dynamics, where the size of
these vortices in ‘vortex space’ defines the different scales of
information processing.

In turbulence many researchers operate in such a ‘vortex space’
rather than the signal space29,41, which is the strategy that we also
use here, noting that this is the first application of the strategy of
measuring information transfer in the brain.

For the model-based framework, it has been shown that
emergent collective macroscopic behaviour of brain models only
depends weakly on individual neuron behaviour42. Here we used
whole-brain modelling based on the integration of anatomy and
dynamics, which can be used to accurately fit and reproduce
many aspects of empirical neuroimaging data43–46, and specifi-
cally to capture the brain turbulent dynamics38,47. Over the years,
there have been many different whole-brain models with varying
degree of biophysical realism, from spiking networks to mean-
field to oscillatory Hopf whole-brain model43,48–52. However, it
has been shown that rather than modelling the complex spiking
neuronal and mean field dynamics, very high precision fitting can
be achieved by using coupled oscillators, allowing for the capture
of the most important features of mesoscopic brain dynamics49.

Importantly, using a Hopf whole-brain model allows for in
silico exhaustive perturbation of the model that can be used to
assess many aspects, including the susceptibility and information
encoding capability. These two measures have been defined in
previous works to successfully demonstrate that the susceptibility
is enhanced due to long-range connections in the brain39 and the
information encoding capability is maximal when the brain
operates in turbulent regime38. In other words, the model-free
approach measures the naturally occurring information trans-
mission flow, while the model-based approach allows us to
measure the reactivity of the brain to external perturbations.

Furthermore, it has been shown that simply varying the global
coupling in the Hopf whole-brain model produces excellent fits
not only to normal resting state data but also to other brain states
such as psychedelics45, coma, anaesthesia53 and sleep45. The most
parsimonious explanation for this ability to fit multiple brain
states is that the turbulence-generating Hopf model varies as
function of the global coupling37–39. This would provide a causal
mechanistic explanation of why turbulence is a sensitive and
specific marker of the underlying brain state.

Overall, we hypothesised that the model-free and model-based
complementary frameworks will allow us to differentiate between
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different brain states. We found turbulent dynamics (in the sense
of Kuramoto28) in all the different brain states but, crucially,
using the model-free framework, we were able to characterise the
different information transmission across spacetime scales in
resting state, meditation, deep sleep and post-coma states. Fur-
thermore, the model-based framework showed that different
information encoding capabilities39 characterise different brain
states. Thus, according to our hypothesis, the complementary
methods are able to not only significantly distinguish between
different brain states but also offer a unifying dynamical frame-
work for mechanistically describing the underlying fundamental
principles.

Results
We used model-free and model-based frameworks to explore
information transmission flow in whole-brain dynamics across
different brain states. Specifically, we compared brain measures
on three independent resting-state fMRI datasets. The meditation
dataset comprised experienced Vipassana meditators (N= 19)
during both focused attention meditation (M) and resting state
(R). The sleep dataset comprised healthy subjects during deep
sleep, i.e., stage 3 (DS, N= 13) and resting state (R, N= 13)
states. Finally, the disorders of consciousness (DOC) dataset were
acquired in two independent research sites (Liège and Paris),
comprised of healthy volunteers (RCNT: N= 49) and DOC
patients diagnosed in a minimally conscious state (RMCS: N= 66)
or an unresponsive wakefulness state (RUWS: N= 39).

First, we applied the model-free approach to measuring
information transmission flow across spacetime scales based on
the recent finding demonstrating turbulence in human brain

dynamics (Fig. 1a)38. This analysis was based on the local Kur-
amoto order parameter that describes the local level of synchro-
nisation of a brain area, n, as a function of space, �x, and time, t, at
a given scale, λ. The scale of the local synchronisation is defined
by the parameter λ, which determines the size of the spatial
distances where the synchronisation is evaluated, where high
values of λ stand for short distances, and vice versa (Fig. 1b). In
particular, we computed for each dataset the amplitude turbu-
lence defined by Kuramoto as the space and time variability of the
local level of synchronisation28,40,54 (referred here as Kuramoto
amplitude turbulence), and three measures quantifying the
information transmission in terms of scale, space and time cor-
relation of the local level of synchronisation that we defined as
transfer correlation, information cascade flow, and information
cascade (Fig. 1 and see more details in Methods and ref. 39).

Second, we applied the model-based approach based on the
sensitivity of these models to react to external in silico pertur-
bations (Fig. 1c and Methods). For each brain state, we con-
structed a whole-brain dynamical model based on the normal
form of a supercritical Hopf bifurcation coupled with the dMRI
structural connectivity and the exponential distance rule (EDR).
Finally, to evaluate how each model fitted reacts to external sti-
muli, we applied in silico perturbations by quantifying the sus-
ceptibility and information encoding capability measures.

Model-free framework. We computed the information trans-
mission flow measures on the three datasets in terms of Kur-
amoto amplitude turbulence and transfer correlation within the
0.008–0.08 Hz frequency range (see Methods). First, we explored
the level of Kuramoto amplitude turbulence over different λ

Fig. 1 Overview of framework. a Turbulence in fluids is one the most common dynamical regime where the mixing motion governs (left panel). The energy
cascade, i.e., how the energy travels across scale while dissipated and the statistical properties defined as power laws on the energy levels and structure
functions (bottom panel) determine the turbulent behaviour of the fluid. The analogy between brain activity and Turbulence has been recently
demonstrated using resting state data from a large dataset of 1,003 healthy human participants. b Model-free approach. The turbulent behaviour of brain
activity is reflected in the similarity between the local level of synchronisation, determined by the local Kuramoto order parameter (R) at different scales
(λ), and vortex with different spatial scales in fluid dynamics. The spatial scale (r) of the vortex is inversely related with the exponential decay of the local
Kuramoto order parameter (λ). The turbulence regime also endows the brain with an efficient information cascade measured as the correlation of the local
level of synchronisation across scales (Information Cascade Flow). The average across scales of the information cascade flow is defined as the Information
cascade. The Transfer Correlation quantified as the correlation of local synchronisation across space at different scales also characterises the brain’s
information processing. c In the Hopf whole-brain model, the dynamics of each brain area are described through a Stuart Landau non-linear oscillator. The
system of local oscillators is connected through the anatomical connectivity to simulate the global dynamics, capable of reproducing statistical observables
from fMRI data. We used as structural connectivity the long-range connections (LR) from human diffusion MRI measurements on top of an exponential
distance rule (EDR) to fit the empirical functional connectivity as a function of the Euclidean distance (following the relation between the Kolmogorov’s
second-order structure-function and the traditional FC). Using whole-brain modelling allows obtaining measures that rise from the in silico perturbative
approach. We simulated external stimuli and evaluated the model’s reaction for each brain state by quantifying the susceptibility and information capability
measures.
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values, i.e., from 0.01 (~100mm) to 0.30 (~3 mm), in steps of
0.03. This measure was defined as the standard deviation across
time (t) and space (brain areas, n) of the local Kuramoto order
parameter. We found that the meditation state increases Kur-
amoto amplitude turbulence levels in higher spatial scales, i.e.,
short distances in the brain, compared to the resting state. On the
other hand, the deep sleep state shows lower Kuramoto amplitude
turbulence levels than the resting state across all the spatial scales.
Finally, the Kuramoto amplitude turbulence levels decrease for
DOC patients (RMCS and RUWS) compared to healthy controls
during resting state in lower lambda values, i.e., long distances,
but increases in higher lambda scales; differentiating, also,
between the RUWS and RMCS groups. The results of Kuramoto

amplitude turbulence levels in each state are displayed in Fig. 2a.
We included in the supplemental material seven videos (Sup-
plementary Videos 1 to 7) of the full spatiotemporal evolution of
Kuramoto amplitude turbulence in one hemisphere across time of
the full resting state of a single participant for each brain state
within each dataset. Furthermore, to summarise the behaviour of
the time and space information transmission measures at dif-
ferent scales, we quantified the Kuramoto amplitude turbulence
changes at each λ across brain states. We computed a linear fit to
the mean Kuramoto amplitude turbulence of brain states at each
λ and obtained the slopes of the corresponding lines, which
stands for Kuramoto amplitude turbulence across brain states at a
specific scale. Figure 2b shows the relationship between these

Fig. 2 Model-free framework reveals significant differences in Kuramoto amplitude turbulence and transfer correlation in different brain states. a The
plots show the level of Kuramoto amplitude turbulence at different spatial scales, from λ= 0.01 (100mm) to λ= 0. 3 (3 mm) in steps of 0.03, and show
the comparison between brain states for λ= 0.01, λ= 0.12 and λ= 0.3. The meditation state showed significant increases in Kuramoto
amplitude turbulence compared to the resting state only on higher scales. The DS shows significantly lower Kuramoto amplitude turbulence than the
resting state across all spatial scales. By contrast, the Kuramoto amplitude turbulence showed significant decreases in RMCS and RUWS states in lower
lambda scales but significant increases in higher scales compared to RCNT. b The plots were computed as the linear fit of the mean level of Kuramoto
amplitude turbulence at each scale for the three brain states for the DOC dataset (i.e., RCNT, RMCS, and RUWS) and two brain states for sleep and meditation
datasets (i.e., W, DS, and R, M, respectively). The plots display the obtained slopes as a function of the scale. In particular, DOC showed negative slopes at
lower scales and increased with the scales up to positive slopes. The sleep dataset presented negative slopes at lower scales, increased up to λ = 0.12, and
a negative slope value was kept almost constant. The meditation dataset also increased with scale but presented less variability than the other datasets.
Dashed vertical lines indicate the scales displayed in A and the horizontal red dashed line highlights the zero slope. c We computed the transfer correlation
(|Aλ|), which measures how the information travels across space at different spatial scales, i.e., we show the results as a constant k - |Aλ|, with k= 3 |Aλ|.
The meditation state presents no significant differences on any scale compared to the resting state. In contrast, the transfer correlation significantly
decreased for DS and RMCS, RUWS states compared to the resting state across all scales. d We performed the same computation as in panel B for the
transfer correlation measure. In this case, DOC and sleep datasets presented a similar slope-scale relationship, whereas the meditation dataset presented
less variability across scales. In the figure, P-values were assessed using the Wilcoxon rank-sum test and corrected for multiple comparisons, *P < 0.05,
**P < 0.01 and ***P < 0.001.
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slopes and scales for each dataset. The meditation dataset presents
similar behaviour but is less sensitive to this measure, i.e., lower
variability of the slope values across scales. By contrast, the sleep
dataset shows a monotonical increase of slope values from
negative values at low scales up to λ= 0.12, where it remains
almost constant for higher scales. Finally, DOC states present the
same behaviour: the slopes monotonically increase from negative
values at low λ scales towards positive values at high λ. This
positive slopes at high λ can be associated with an increase in the
short-range information transmission with a lack of a global
broadcasting due to the long-range transmission diminution
(negative slopes at low λ). It is noticeable that with this quanti-
fication it is possible to differentiate between datasets that involve
a reduction of consciousness, i.e., despite that sleep and DOC
patients present a reduction of the information processing in
many scales, the behaviour across scales captures differences
between sleep and DOC states.

Secondly, we explored how the information is transferred
across space in terms of the time correlation between the level of
local synchronisation at each scale (see Methods). This measure
indicates how the information travels across space at a given
spatial scale, λ. We found that the transfer correlation in the
meditation state did not significantly differ across any scale
compared to the resting state. By contrast, this measure
significantly decreases for deep sleep and DOC states across all
λ scales compared to the resting state, and interestingly,
differentiating the RMCS and RUWS groups across all scales
(Fig. 2c). Furthermore, to summarise the behaviour of transfer
correlation at different scales, we quantified the changes at each λ
across brain states. Conversely, the evolution of the slopes across
scales for the transfer correlation presents the same behaviour
across all datasets (Fig. 2d).

We measured how the information travels across scales by
defining the information cascade flow, as the predictability in
terms of time correlation of a given level of local synchronisation

at scale λ from the level of local synchronisation at scale λ–Δλ, in
consecutive time steps, t and t+ Δt (where Δλ and Δt are the
discretisation of scale and time, respectively). This is important,
given that the brain is organised as a hierarchy where information
flows from bottom to top in a recurrent reciprocal manner, i.e.
segregated sensory information is processed first and iteratively
more refined and integrated, while a global workspace at the top
of the hierarchy integrates information. We found that the
meditation state did not significantly changes compared to the
resting state, whereas for deep sleep and DOC, the information
cascade flow decreases across all scales compared to the resting
state (Fig. 3a).

Finally, to summarise the information transmission’s whole
behaviour across scales, we defined the information cascade as the
information cascade flow average across all λ scales. We found
that the information cascade in the meditation state presents no
significant differences compared to the resting state. In contrast,
the deep sleep and DOC states present less transfer correlation
across the scales than the resting state, moreover, the information
cascade clearly differentiate between RCNT and RUWS states
(Fig. 3b).

To assess the regional heterogeneity of the synchronisation
time variability at a given scale, we defined the node-level
metastability as the standard deviation over time of the local
Kuramoto order parameter for each brain state in each dataset.
This measure indicates how changes the level of local synchro-
nisation across time. We quantified this difference by computing
the Kolmogorov-Smirnov distance (KSD) between the distribu-
tions of node-level metastability, where larger values mean more
different distributions (see Methods). We found that the KSD for
all datasets monotonically decreases between brain states across
scales, whereas the value of λ increases. In other words, the KSD
is maximal for lower values of λ, i.e., long distances in the brain.
In particular, for DOC states, the higher KSD is found between
RCNT and RUWS states (Fig. 4a). Furthermore, we show the

Fig. 3 Model-free framework showed differences in information cascade flow and information cascade in different brain states. a The information
cascade flow across scales is the predictability given by the level of synchronisation at a specific scale (λ) from the previous scale λ−Δλ (where Δλ = 0.03
is the discretisation of scale). The meditation state presents no differences across the scales compared to the resting state, the information cascade flow
significantly decreases for DS and RMCS, RUWS states compared to the resting across all scales. b The information cascade, defined as the average
information cascade flow, differentiates RMCS, RUWS, and DS states from the resting state, while the meditation state presents no differences. P-values were
assessed using the Wilcoxon rank-sum test and corrected for multiple comparisons, *P < 0.05, **P < 0.01 and ***P < 0.001.
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absolute difference between the node-level metastability between
brain states in each dataset at λ= 0.12 rendered onto the brain
cortex (Fig. 4b).

Then, we identified the resting state networks to which they
mainly belong and quantified the number of nodes per network
by selecting the nodes for each comparison of the top 15%
quantile. We found that differences between meditation and
resting state are mainly in the limbic and default-mode networks.
In contrast, the highest differences between deep sleep and resting
state are observed in the nodes of the visual- and default-mode-
networks. Finally, the highest differences in local synchronisation
are found between controls during resting state and DOC patients
(RMCS and RUWS) in the somatomotor-, salience-, control-, and
default-mode- networks. Conversely, the highest differences
between RMCS and RUWS are observed in nodes associated with
visual-, somatomotor- and default mode- networks.

Model-based framework. For each brain state, we built a Hopf
whole-brain model of coupled dynamical oscillators in an ana-
tomical brain architecture coupling the exponential distance rule
(EDR) and the dMRI matrix fitted to the empirical functional
data (see more details in Methods). In particular, we exhaustively
varied G from 0 to 7 in 0.1 steps and for each G value we repeated
100 simulations for each brain state with the same TR and time
duration as the empirical data. Then, we computed the fitting of

the functional connectivity as the Euclidean distance between the
empirical and simulated functional connectivity (FC) as a func-
tion of distance (r) within the inertial subrange (see Methods).
The optimal working point of each model is determined as the
minimum of the fitting level (vertical lines in Fig. 5a). We used
the respective minima of each condition as the basis of the fol-
lowing perturbative in silico investigations. The G values obtained
for meditation, deep sleep, and DOC are lower than those
obtained for the resting state. This result can be interpreted as
reducing the coupling between areas to represent the global brain
dynamics.

Furthermore, we study how the system reacts to external
perturbations by perturbing each model at its optimal working
point and computing the model-based measures. Specifically, we
defined the susceptibility as the ability of a system to be
perturbed, and we estimated by measuring the perturbed and
non-perturbed modulus of the local Kuramoto order parameter
(eRλs

�x; tð Þ and Rλs
�x; tð Þ, respectively). The perturbation consisted

of applying an external periodical force equally for all brain
regions. This stimulus was represented as an external additive
periodic forcing term, given by Fj = F0j cos(ω0 t) + iF0j sin(ω0t)
with F0j= 5 × 10−4, in the corresponding real and imaginary part
of the node j equation (Eqs. 10 and 11 see Methods), with
frequency ω0 equal to the average across node of the empirical
node frequency (Fig. 1c). Finally, we computed the susceptibility

Fig. 4 Local node-level metastability was significantly different between brain states and revealed distinct signatures of network involvement. We
computed the node-level metastability as the standard deviation across time of the local Kuramoto order parameter (see Methods). a We performed the
KSD between distributions of the node-level of metastability of each brain state within each dataset for each scale. The KSD for all datasets monotonically
decreases, whereas the value of λ increases for all comparisons. b Render brains represent the absolute difference of the node-level metastability between
each brain state for scale λ = 0.12, indicated with vertical dashed lines in panel A. We selected the top 15% quantile of absolute differences between
conditions, identified the resting state networks to which they belong and quantified the number of nodes per network. c Radar plots represent the number
of nodes on the top 15% quantile of the absolute difference by each comparison and resting-state network (CON: control; DMN: default mode; TP:
temporal-parietal; VIS; visual; SOM: somatomotor; ATT: attentional; SAL: salience; LIM: limbic). The networks showing the highest differences between
resting and meditation states were the limbic and default-mode networks. The comparison between deep sleep and resting state shows that nodes of the
visual- and default-mode- networks present the highest difference. Finally, the comparison between RCNT and DOC patients (RMCS and RUWS) shows that
the somatomotor-, salience-, control-, and default-mode- networks present the highest differences, whereas, specifically in the comparison between RMCS

and RUWS nodes associated with the somatomotor- and control- networks present the highest differences. P-values were assessed using the
Kolmogorov–Smirnov test and corrected for multiple comparisons, *P < 0.001.
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as the difference between the perturbed and non-perturbed cases
averaged across time, trials, and space. Note that we here define
susceptibility as the ability of the system to be externally
perturbed, in the same sense found in electromagnetism, where
the ‘magnetic susceptibility’ is determined as the magnetisation of
the material as the result of an external field. This general
framework was adapted for coupled oscillators by Hiroaki Daido,
who defines the susceptibility of a large population of coupled
oscillators as the variation of the Kuramoto order parameter
under external perturbation55. This measure was previously used
to demonstrate that the long-range connections enhance the
brain responsiveness to external stimulus39 and also increases is
turbulent regime38. Here we found that the susceptibility
decreases for meditation, deep sleep, and DOC compared to the
resting state (Fig. 5b).

Similarly, we computed the information encoding capability
(as an extension of the susceptibility) to study how external
perturbations are encoded in brain dynamics. This measure was
defined as the standard deviation across trials of the difference
between the perturbed and unperturbed mean of the modulus of
the local Kuramoto order parameter across time, averaged across
space. We found that, compared to the resting state, the
information encoding capability also decreases for meditation,
deep sleep, and DOC (Fig. 5c). To investigate the link between
Information encoding capability and complexity well-establish
measure, we computed the normalised Lempel-Ziv complexity56

(LZC) as is described in Casali et al.10 for each brain state within
each data set when it is externally perturbed. We found that the
LZC behaves similarly to the Information encoding capability
measure but is less sensitive to discriminate between them (see
Supplementary Fig. 1).

We replicated the results by randomly changing the bifurcation
parameter of each brain area, an, within the range [−0.02:0] (see
Methods). As shown in Supplementary Fig. 2, we found that the
response is the same for both perturbative approaches.

Overall, both perturbative measures show that the capability to
react to in silico perturbations decreases for meditation, deep
sleep, and DOC compared to the resting state.

Discussion
We were able to significantly distinguish between different brain
states based on a unifying framework for defining and measuring
the spatiotemporal variability of local synchronisation and
information transfer across scales. This research is based on
Kuramoto’s important research for extending the concept of
turbulence in the context of coupled oscillators28 (for other fra-
meworks used to study turbulence, see25–27,29). Using Kuramoto’s
insight, we have previously shown turbulence-like dynamics in
the healthy human brain37–39. Here we extended these results by
using model-free and model-based frameworks to demonstrate
that different brain states exhibit different levels of such
turbulent-like dynamics and information transfer across scales. In
turbulence, such local level of synchronisation across spatial
scales is usually called ‘vortex space’. Our model-free framework
was able to show the role of information cascade in ‘vortex space’
as a distinguishing feature between brain states (resting state,
meditation, deep sleep, RMCS, and RUWS) as measured by fMRI
neuroimaging. As such our results demonstrated that these brain
states exhibit significant differences in information cascade across
different scales at both the spatial and temporal domains. Equally,
our model-based approach fitted a whole-brain model to the

Fig. 5 Model-based framework revealed significant perturbative differences for different brain states. a We show the evolution of the error of the
whole-brain model FC fitting to the empirical fMRI data as a function of the global coupling strength, G. The error of the FC fitting was given by the square
root of the difference between the simulated and empirical FC matrix. The optimal working point of the model was defined as the minimum value of the FC
fitting, i.e., where the model shows maximal similarity to the empirical fMRI data. b We show the results of the susceptibility measure, which estimates
how these models react to external periodical force perturbations. In all datasets, the resting state was the most susceptible to be perturbed. c We show
the information encoding capability of the whole-brain models, which captures how different external stimulations are encoded in the dynamics. Similar to
the susceptibility measure, the resting state was more susceptible to react to the perturbations. Susceptibility and information capability measures
differentiated each brain state and between RMCS and RUWS groups. These results show that each brain state encodes the whole-brain dynamics with a
particular complexity. P-values were assessed using the Wilcoxon rank-sum test and corrected for multiple comparisons; ***P < 0.001.
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empirical data, which allowed us to exhaustively perturb the
system to demonstrate differences in susceptibility and informa-
tion encoding capabilities between different brain states. The
results showed that when inducing a shift in the intrinsic local
dynamics of brain areas, the brain responds to the external per-
turbations less sensitively as the conscious awareness diminishes.

This framework captures the differences in percolation
between scales across the whole brain of the different levels of
synchrony and complexity associated with different brain states.
At the mesoscopic level, the result of this percolation and mixing
across scales is always reflected in the brain dynamics determined
by the spatiotemporal variability of local synchronisation.

Overall, the proposed unifying framework reconciles the bal-
ance between different levels of synchrony and complexity of
large population of coupled oscillators for describing and differ-
entiating between brain states. Importantly, both model-free and
model-based measures successfully differentiate the minimally
conscious state (RMCS) and unresponsive wakefulness syndrome
(RUWS) groups.

Previously, it has been shown that the information processing
associated with rare long-range (LR) connections is significantly
enhanced in the resting state of healthy awake participants39.
When reducing the level of spatiotemporal variability of local
synchronisation, in what we call the turbulent regime, for a model
with LR connections, this resulted in a reduced level of long-range
information transmission. While we were not explicitly testing a
model with and without LR connections, we found that the
evolution of Kuramoto amplitude turbulence and information
cascade at different spatial scales is significantly different between
different brain states. In fact, Fig. 2a and b show that compared to
a group of healthy controls, the DOC groups exhibited lower
levels of turbulence at higher spatial scales (i.e., lower λ and larger
distances) but higher levels of turbulence at lower spatial scales.
This dramatic reduction of long-range information transmission
in RUWS and RMCS patients (see relevant boxplot for λ= 0.01 in
Fig. 2a) could be a defining feature of the reduction of conscious
awareness in these patients. This results are consistent with EEG
evidence showing that noncommunicative patients have lower
global information sharing57, and decreased brain
complexity58,59. This also aligns with the global neuronal work-
space theory that postulates that the long-distance connexions
globally broadcast the information for different processor brain-
wide and this lack of spatially bounded information processing is
associated with conscious access60.

In healthy participants, deep sleep was characterised by lower
Kuramoto amplitude turbulence across all spatial scales,
demonstrating a reduction in information processing over both
short and long distances61,62. In contrast, in highly trained
meditators, the meditation state presented higher Kuramoto
amplitude turbulence only at lower spatial scales (large λ and
short distances), suggesting that meditation is a state showing an
alteration rather than a reduction of consciousness. Overall, the
results demonstrate that each brain state exhibits different tur-
bulent dynamic patterns across spatial scales, allowing us to
characterise the brain states based on fluctuations of their
underlying information processing. Interestingly, this also
allowed us to differentiate between deep sleep and DOC states,
thus unveiling specific and unique features of turbulent dynamics
underlying low-level states of consciousness, going beyond a
simple dichotomy of synchrony and asynchrony.

The results also gave new insights into information processing
across scales changes with brain state. Working in ‘vortex space’,
we quantified three different measures of information transfer,
information cascade flow and information cascade for each brain
state. Figure 2c and d show that information transfer increased
significantly with the spatial scale between normal resting state

and the level of awareness in the other brain states (meditation,
deep sleep and DOC). This result clearly demonstrates that the
measure of information transfer indexes conscious awareness.
Interestingly, while this measure increases with the distance
between resting and meditation, this difference is not statistically
significant. This suggests that meditation is more similar to the
resting state but that there are important significant differences
which can be revealed by the other information transmission
measures.

The information cascade flow monotonically decreased with
shorter distances (the increase in spatial scale λ) for all brain
states (shown in Fig. 3a). This measure also discriminated
between conditions within each dataset, i.e., showing lower values
for DOC patients than control participants and in the deep sleep
stage compared to the resting state in the same participants. The
information cascade (i.e., the average of the information flow
across scales) was lower in low-levels states of awareness (deep
sleep, RMCS and RUWS) than in normal resting state (shown in
Fig. 3b). Overall, this demonstrates that the information trans-
mission is altered with conscious access and that this is captured
with the global information processing measures of information
transmission, information cascade flow and information cascade.

The framework also allowed us to identify local brain regions
involved in controlling the turbulent dynamics of different brain
states. In particular, we defined a ‘local node-level metastability’
measure as the regional level of the variability of local synchro-
nisation (see Methods). This measure was able to significantly
differentiate between different brain states at different spatial
scales. Yet, the node-level metastability for higher λ values, i.e.,
shorter distances in the brain, was less sensitive in discriminating
between brain states (Fig. 4a).

Importantly, this node-level of description allowed us to cap-
ture the different signatures of the whole-brain dynamics that
changed between brain states. As shown by the renderings in
Fig. 4b (at λ= 0.12) and quantified at the network level in Fig. 4c,
we found that brain regions belonging to the somatomotor, sal-
ience, control, and default-mode networks present the most cri-
tical differences in DOC states, with a more substantial decrease
in the RUWS than in the RMCS condition, corresponding to lower
levels of conscious awareness.

Specifically, we found the highest difference between RUWS and
RMCS in brain regions belonging to default mode-, visual- and
somatomotor- networks, which is consistent with previous stu-
dies in DOC patients63–66. We also found that changes in regions
in visual- and default-mode- networks indexed differences
between deep sleep and wakeful resting, consistent with other
studies of the human wake-sleep cycle67–69. In contrast, com-
paring meditation with resting state in expert meditators revealed
regions in limbic- and default-mode- networks, similar to other
findings in meditation70–74.

Please note that the current study is based on human brain
fMRI data. Thus, the time and spatial scales analysed here are
restricted to the order of millimetres and seconds (low fre-
quencies), respectively. Complementary to this approach, it
would be of considerable interest to extend this analysis at dif-
ferent scales by considering different neuroimaging recording
modalities capable of representing a much broader range of fre-
quencies, such as Electrocorticography (ECoG), magnetoence-
phalography/ electroencephalography (MEG/EEG) and circuit
level local field potentials.

Given the exciting results of directly perturbing the brain
revealed by the pioneering studies of Massimini and
colleagues10–12, we also wanted to explore the causal mechanistic
underpinnings of the differences between brain states and ensu-
ing reactivity to external perturbations. To this end, we modelled
the empirical fMRI data using Hopf whole-brain models38,45,51,68.
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The question of what level of abstraction to use in the whole-
brain model is the focus of much ongoing research. Over the
years, there have been many different whole-brain models with
varying degree of biophysical realism, from spiking networks to
mean-field to oscillatory Hopf models43,48–52. The conclusion
that we have drawn from this work is that currently, the Hopf
model creates the best fitting for fMRI BOLD data49 with a high
level of simplicity, which implies less computational cost but
being cautious on the biological interpretations given the level of
the abstraction of the model.

We found that the optimal working point of the Hopf whole-
brain models for all brain states shifted to a lower global coupling
factor compared to the resting state (see Fig. 5a). The global
coupling parameter, G, represents the conductivity of the fibre
densities among brain regions given by the underlying structural
connectivity, which is assumed, for simplicity, to be equal across
the brain49,75. Importantly, previous research showed that the
optimal values of G and a are related by a monotonic function, so
that fixing a before model fitting preserves the differences in the
coupling strength parameter between states45. Thus, a higher
coupling, G, allows the propagation of information among brain
areas indirectly connected, enhancing the transmission of infor-
mation across the whole network and vice versa53. Overall, this
drastic shift toward a lower coupling indicates sub-critical beha-
viour suggestive of a change in the dynamical complexity
underlying the brain state75.

In other words, simply varying the global coupling, G, in the
Hopf model have allowed us to obtain an excellent fit for different
brain states such as psychedelics76, DOC53,77, anaesthesia53 and
sleep45. One can of course add more parameters to the Hopf
model, such effective connectivity which creates an even better fit
to the empirical data78. One can also use more sophisticated
biophysical grounded models that provide a set of parameters
with a different biological interpretation that could provide new
insight into the differences between brain states. Nevertheless,
utilising Occam’s razor, we went for the minimal Hopf model that
can reproduce the differences in brain states.

Using the model-based framework, crucially, we were able to
perturb each brain model at its optimal working point to inves-
tigate the induced whole-brain dynamics changes caused by the
external in silico perturbations in order to obtain complementary
measures of information encoding in different brain states. Spe-
cifically, our external manipulation consisted of a shift towards
the bifurcation point of the intrinsic local dynamics of brain
areas. We found that the resting state showed significantly higher
susceptibility and information encoding capability than in the
pairwise comparison in each dataset, i.e., meditation, deep sleep
and DOC. The similar behaviour of both measures (susceptibility
and information encoding capability) can be related to the spe-
cific features of our perturbative approach. Differences in silico
protocols can be assessed to study how different brain states react
to external perturbations such as shifting the local dynamics in
the opposite direction, node by node perturbation78,79, non-
sustained perturbations47,80 or perturbing with external strength
dependent periodic force47,77. Notably, the perturbative approach
allows for the exploration of brain responses elicited by in silico
protocols which are not limited by ethical constraints of in vivo
stimulations81,82. Furthermore, the differential sensitivity of each
brain state of external perturbations could potentially serve as a
specific biomarker that reveals features of their dynamical
complexity.

Overall, we have presented a unifying framework that can
account for the differences between brain states. The key idea is
that the complex dynamics of a brain state result from the per-
colation across scales of previously demonstrated differences in
synchrony and complexity at the microscale. These dynamics

present differentiable turbulent dynamics, in terms of spatio-
temporal variability of local synchronisation, which our dual
model-free and model-based framework can reveal. The main
finding is that turbulent dynamics across different spatial scales
can distinguish between brain states. Furthermore, these differ-
ences are also found as differences in susceptibility and infor-
mation encoding capability as a result of the reactivity of different
external perturbations on the underlying brain state. Given the
sensitivity and specificity of the results, long-term, these might
help identify potential targets for patients to rebalance and regain
consciousness.

Methods
Participants
Meditation. A total of 19 experienced meditators with more than 1000 hours of
meditation experience were selected from a dataset previously described in Escrichs
et al. (2019)83. Meditators were recruited from Vipassana communities of Barce-
lona, Catalonia, Spain (7 females, mean ± SD, 39.8 ± 10.29 years, 9,526.9 ± 8,619.8
meditation experience). Participants were asked to practice focused attention on
breathing (i.e., anapanasati in language Pali). In this meditation technique, medi-
tators focus their attention on natural breathing, and when they realize that the
mind is wandering, they must refocus their attention back to natural breathing. All
participants reported no history of past neurological disorder and gave written
informed consent. The study was approved by the Ethics Committee of the Bell-
vitge University Hospital according to the Helsinki Declaration on ethical research.

Sleep. A total of 63 healthy subjects (36 females, mean ± SD, 23 ± 43.3 years) were
selected from a dataset previously described in Tagliazucchi and Laufs84. On the day
of the study, participants reported a wake-up time between 5:00 AM and 11:00 AM
and a sleep onset time between 10:00 PM and 2:00 AM for the night before the
experiment. Within half an hour of 7 PM, participants entered the scanner and were
asked to relax, close their eyes, and not fight the sleep onset. Their resting state
activity was measured for 52minutes with a simultaneous combination of EEG and
fMRI. According to the rules of the American Academy of Sleep Medicine85, the
scalp potentials measured with EEG determine the classification of sleep into four
stages (resting state, N1, N2 and N3 sleep). We selected 13 subjects who reached the
deep sleep stage (DS, i.e., N3) and contiguous time series of at least 198 volumes.
The local ethics committee approves the experimental protocol (Goethe-Universität
Frankfurt, Germany, protocol number: 305/07), and written informed consent was
asked to all participants before the experiment. The study was conducted according
to the Helsinki Declaration on ethical research.

Disorders of consciousness, Paris. A total of 77 patients who were hospitalised in
Paris Pitié-Salpêtrière, suffering from brain injuries, were included in this study.
Clinical assessment and trained clinicians carried out the clinical assessment and
Coma Recovery Scale-Revised (CRS-R) scoring to determine their state of con-
sciousness. Patients were diagnosed with UWS if they showed arousal (opening
their eyes) without any signs of awareness (never exhibiting non-reflex voluntary
movements). On the other hand, patients were in a RMCS if they exhibited some
behaviours that could be indicative of awareness, such as visual pursuit, orientation
to pain, or reproducible command following. We excluded subjects with T1
acquisition errors (n= 5), with high levels of motion detected (n= 7), registration
errors (n= 4), and large focal brain lesions (n= 4). We thus included 33 patients in
MCS (11 females, mean age ± SD, 47.25 ± 20.76 years), and 24 in UWS (10 females,
mean age ± SD, 39.25 ± 16.30 years) and 13 healthy controls (7 females, mean age ±
SD, 42.54 ± 13.64 years). This research was approved by the local ethics committee
Comité de Protection des Personnes Ile de France 1 (Paris, France) under the code
‘Recherche en soins courants’ (NEURODOC protocol, n° 2013-A01385-40). The
patient’s family gave their informed consent for the participation of their relative,
and all investigations were conducted according to the Declaration of Helsinki and
the French regulations.

Disorders of consciousness, Liège. A total of 35 healthy controls (14 females, mean
age ± SD, 40 ± 14 years) and 48 patients with disorders of consciousness (DOC)
were included in the study based on a dataset previously described in López-
González et al53. The diagnosis was made after at least 5 CRS-R by trained clin-
icians. The highest diagnosis of the level of consciousness was taken as the final
diagnosis, which was also confirmed with Positron Emission Tomography (PET)
(i.e., patients in MCS presented a relatively preserved metabolism in the fronto-
parietal network while patients with UWS had a bilateral hypometabolism in this
network). We thus included 33 patients in MCS (9 females, mean age ± SD, 45 ± 16
years), and 15 in UWS (6 females, mean age ± SD, 47 ± 16 years). The Ethics
Committee of the Faculty of Medicine of the University of Liege approved the
study protocol. The study was conducted according to the Helsinki Declaration on
ethical research. Written informed consent was obtained from controls and the
patients’ legal surrogates.
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MRI data acquisition
Meditation. MRI images were acquired on a 3 T Siemens Trio scanner (Siemens,
Erlangen, Germany) using a 32-channel receiver coil. The high-resolution T1-
weighted images were acquired with 208 contiguous sagittal slices; TR/TE= 1970
ms/ 2.34 ms; inversion time (IT)= 1050 ms; flip angle = 9°; FOV= 256 mm; and
isotropic voxel size 1 mm. Resting-state and meditation fMRI images were per-
formed by a single shot gradient-echo EPI sequence with a total of 450 volumes
(15 min); TR/TE= 2000 ms/29 ms; FOV= 240 mm; in-plane resolution 3 mm; 32
transversal slices with thickness = 4 mm; flip angle = 80°.

Sleep. MRI images were acquired on a 3-T Siemens Trio scanner (Erlangen, Ger-
many). EEG via a cap (modified BrainCapMR, Easycap, Herrsching, Germany) was
recorded continuously during fMRI acquisition (1505 volumes of T2-weighted
echo planar images, TR/TE= 2080 ms/30 ms, matrix 64 × 64, voxel size 3 × 3 × 2
mm3, distance factor 50%; FOV 192 mm2). An optimised polysomnographic
setting was employed (chin and tibial EMG, ECG, EOG recorded bipolarly
[sampling rate 5 kHz, low pass filter 1 kHz] with 30 EEG channels recorded with
FCz as the reference [sampling rate 5 kHz, low pass filter 250 Hz]. Pulse oxymetry
and respiration were recorded via sensors from the Trio [sampling rate 50 Hz]) and
MR scanner compatible devices (BrainAmp MR+ , BrainAmpExG; Brain Pro-
ducts, Gilching, Germany), facilitating sleep scoring during fMRI acquisition.

Disorders of consciousness, Paris. MRI images were acquired with two different
acquisition protocols. In the first protocol, MRI data of 26 patients and 13 healthy
controls were acquired on a 3T General Electric Signa System. T2*-weighted whole
brain resting state images were acquired with a gradient-echo EPI sequence using
axial orientation (200 volumes, 48 slices, slice thickness: 3 mm, TR/TE: 2400 ms/
30 ms, voxel size: 3.4375 × 3.4375 × 3.4375 mm, flip angle: 90°, FOV: 220 mm2). An
anatomical volume was also acquired using a T1-weighted MPRAGE sequence in
the same acquisition session (154 slices, slice thickness: 1.2 mm, TR/TE: 7.112 ms/
3.084 ms, voxel size: 1 × 1 × 1mm, flip angle: 15°).

In the second protocol, MRI data of 51 patients were acquired on a 3 T Siemens
Skyra System. T2*-weighted whole brain resting state images were recorded with a
gradient-echo EPI sequence using axial orientation (180 volumes, 62 slices, slice
thickness: 2.5 mm, TR/TE: 2000 ms/30 ms, voxel size: 2 × 2 × 2mm, flip angle: 90°,
FOV: 240 mm2, multiband factor: 2). An anatomical volume was acquired in the
same session using a T1-weighted MPRAGE sequence (208 slices, slice thickness:
1.2 mm, TR/TE: 1800 ms/2.35 ms, voxel size: 0.85 × 0.85 × 0.85 mm, flip angle: 8°).

Disorders of consciousness, Liège. MRI images were acquired on a Siemens 3 T Trio
scanner (Siemens Inc, Munich, Germany). MRI acquisition included a gradient
echo-planar imaging (EPI) sequence (32 transversal slices, 300 volumes, TR/
TE= 2000 ms/30 ms, flip angle = 78°, voxel size = 3x3x3 mm, FOV= 192 mm); a
structural T1 (120 transversal slices, TR= 2300 ms, voxel size = 1.0 × 1.0 × 1.2 mm,
flip angle = 9°, FOV= 256 mm).

Brain parcellation. We used the Schaefer parcellation with 1000 brain areas, based
on estimation from a large dataset (n= 1489)86, to extract the time series from
each subject. Furthermore, we estimated the Euclidean distances from the Schaefer
parcellation in MNI space.

Resting-state pre-processing
For meditation, Paris, Liège datasets. The pre-processing of resting-state data was
performed using FSL (http://fsl.fmrib.ox.ac.uk/fsl) as described in our previous
study53. In brief, resting-state fMRI was computed using MELODIC (Multivariate
Exploratory Linear Optimised Decomposition into Independent Components)87.
Steps included discarding the first five volumes, motion correction using MCFLIRT88,
Brain Extraction Tool (BET)89, spatial smoothing with 5mm FWHM Gaussian
Kernel, rigid-body registration, high pass filter cutoff = 100.0 s, and single-session
ICA with automatic dimensionality estimation. Then, lesion-driven artifacts (for
patients) and noise components were regressed out independently for each subject
using FIX (FMRIB’s ICA-based X-noiseifier)90. Finally, FSL tools were used to co-
register the images and extract the time-series between 1000 cortical brain areas for
each subject in MNI space from the Schaefer parcellation86.

For the sleep dataset. The pre-processing of resting-state data was performed using
FSL (http://fsl.fmrib.ox.ac.uk/fsl). In brief, steps included discarding the first five
volumes, motion correction using MCFLIRT88, BET89, spatial smoothing with
5 mm FWHM Gaussian Kernel, rigid-body registration, bandpass filtering between
0.01− 0.1 Hz. Finally, FSL tools were used to co-register the images and extract the
time-series between 1000 cortical brain areas for each subject in MNI space from
the Schaefer parcellation86. Previous publications based on this dataset can be
consulted for further details77.

Probabilistic Tractography analysis. We used the Human Connectome Project
(HCP) database that contains diffusion spectrum and T2-weighted neuroimaging
data from 32 participants as reported in Deco and Kringelbach38. A complete
description of the acquisition parameters for diffusion MRI (dMRI) is described in
detail on the HCP website91. The freely Lead-DBS software package (https://www.

lead-dbs.org/) provides the pre-processing described in detail in Horn et al.92. In
brief, the data were processed by using a q-sampling imaging algorithm imple-
mented in DSI studio (http://dsi-studio.labsolver.org). A white-matter mask was
computed by segmenting the T2-weighted images and co-registering the images to
the b0 image of the diffusion data using SPM12. For each HCP participant, 200,000
fibres were sampled within the white-matter mask. Fibres were transformed into
MNI space using Lead-DBS Horn and Blankenburg93. Finally, we used the stan-
dardised methods in Lead-DBS to extract the structural connectomes from the
Schaefer 1000 parcellation86.

Model-free framework
Kuramoto Local order parameter. The amplitude turbulence, Rλ �x; tð Þ, is defined as
the modulus of the Kuramoto local order parameter for a given brain area as a
function of time:

Rλð�x; tÞeiϑλ �x;tð Þ ¼ k
Z 1

�1
d�x0Gλ �x � �x0ð Þeiφ �x0 ;tð Þ ð1Þ

where Gλ is the local weighting kernel Gλ �xð Þ ¼ e�λ �xj j , λ is the spatial scaling and
φ �x; tð Þ are the phases of the spatiotemporal data and k is the normalisation factor

½R1
�1d�x0Gλð�x � �x0Þ��1

. The empirical instantaneous phases were computed
applying the Hilbert transform to the narrowband of 0.008–0.08 Hz filtered BOLD
signals individually. This frequency range was chosen because it has been shown
that when mapped to the grey matter, this band contains more reliable and
functionally relevant information compared to other frequency bands, and is less
affected by noise.94

Thus, Rλ defines local levels of synchronisation at a given scale, λ, as function of
space, �x, and time, t. This measure captures what we call brain vortex space, Rλ,
over time, inspired by the rotational vortices found in fluid dynamics, but of course
not identical.

Amplitude turbulence. The level of amplitude turbulence, Dλ, is defined as the
standard deviation across time and space of the modulus of local Kuramoto order
parameter (R):

Dλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rλ

2
� �

x;t � Rλ

� �2
x;t

q
ð2Þ

where the brackets hix;t denotes averages across time and space.

Information cascade flow and Information cascade. The information cascade flow
indicates how travels the information from a given scale (λ) to a lower scale (λ −
Δλ, where Δλ is a scale step) in consecutive time steps (t and t+ Δt). In this sense,
the information cascade flow measures the information transfer across scales
computed as the time correlation between the Kuramoto local order parameter in
two consecutive scales and times:

F λð Þ ¼ corrtðRλ �x; t þ Δtð Þ;Rλ�Δλ �x; tð ÞÞ� �
�x ð3Þ

where the brackets hix;t denotes averages across time and space. Then, the infor-
mation cascade is obtained by averaging the information cascade flow across scales
λ, which captures the whole behaviour of the information processing across scales
(Fig. 1a, middle panel).

Transfer Correlation. The spatial Transfer Correlation indicates how the infor-
mation travels across space at a specific scale, λ. This measurement is computed as
the slope of a linear fitting in the log-log scale of the time correlation between the
Kuramoto local order parameter of two brain areas at the same scale as a function
of its Euclidean distance (r) within the inertial subrange (Fig. 1a, right panel).

log corrt Rλ
n;R

λ
p

� �
rð Þ

� �
¼ Aλ � log rð Þ þ Bλ ð4Þ

Essentially, Aλ and Bλ are the fitting parameters for each scale (λ), where r is the
spatial distance in brain. The negative slope (Aλ) stands for the transfer in the
spatial direction r of the information in terms of time correlation of the local level
of synchronisation. In this sense, when the slope is steeper, the information travels
across shorter distances; while a flatter slope indicates that the information is
transferred across longer distances. Thus, we define the negative slope as the spatial
transfer correlation. Please note that in order to represent longer distances of
information transmission with higher positive values, we present the results panels
of Fig. 2c as a constant value minus |Aλ|.

Local node-level metastability. We define the ‘local node-level metastability’ as the
brain region variability of the local synchronisation, measured as the standard
deviation across time of the local Kuramoto order parameter:

NLM n; λð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rλ
n tð Þ2� �

t � Rλ
n tð Þ� �2

t

q
ð5Þ

where the brackets < >t represent average values across time points.
Here, we used the discrete version of the node-level Kuramoto order parameter,

with modulus R and phase ν, representing a spatial average of the complex phase
factor of the local oscillators weighted by the coupling computed in the following
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way:

Rλ
n tð Þeiνn ðtÞ ¼ ∑

p

Cλ
np

∑qC
λ
nq

" #
e
iφp tð Þ ð6Þ

where ϕp(t) are the phases of the spatiotemporal data and Cλ
nq is the local weighting

kernel between node n and p, and λ defines the spatial scaling:

Cnp ¼ e�λ r n;pð Þð Þ ð7Þ
where r(n, q) is the Euclidean distance between the brain areas n and p in
MNI space.

To compare the node-level metastability statistics, we collected the 1000 nodes
values for all participants in each condition and generated the distributions. Then,
we compared across states the distributions using the Kolmogorov-Smirnov
distance between them. The Kolmogorov–Smirnov distance quantifies the maximal
difference between the cumulative distribution functions of the two samples, where
larger values stand for more significant differences between both distributions.

Model-based framework. We constructed whole-brain dynamical models based
on the normal form of a supercritical Hopf bifurcation (also known as Stuart-
Landau)49. This type of bifurcation can change the qualitative nature of the
solutions from a limit cycle that yields self-sustained oscillations towards a stable
fixed point in phase space. This whole-brain computational model is characterised
by a series of model parameters that rules the global dynamical behaviour. One of
them is the multiplicative factor, G, representing the global conductivity of the
fibres scaling the structural connectivity between brain areas, which is assumed to
be equal across the brain49,75. The other relevant parameters are the local bifur-
cation parameter (aj), which rules the dynamical behaviour of each area between
noise-induced (a < 0), self-sustained oscillations (a > 0) or a critical behaviour
between both (a ~ 0) (Fig. 1c). We optimised the model parameters to better fit the
empirical functional connectivity as a function of the distance, r, within the inertial
subrange. The models consisted of 1000 cortical brain areas from the resting-state
atlas mentioned above. The underlying anatomical matrix Cnp was added to link
the brain structure and functional dynamics and was obtained by measuring the
exponential distance rule as defined in Eq. (7). The local dynamics of each brain
area was described by the normal form of a supercritical Hopf bifurcation, which
emulates the dynamics for each brain area from noisy to oscillatory dynamics as
follows:

dxn
dt

¼ anxn � x2n þ y2n
� �

xn � ωnyn þ νηn tð Þ ð8Þ

dyn
dt

¼ anyn � x2n þ y2n
� �

yn þ ωnxn þ νηn tð Þ ð9Þ

where ηn(t) is additive Gaussian noise with standard deviation ν = 0.01. This
normal form has a supercritical bifurcation at an = 0, such that for an > 0, the
system is in a stable limit cycle oscillation with frequency fn = ωn/2π, whereas for
an < 0, the local dynamics are in a stable point (i.e., noisy state). The frequency ωn

of each brain area was estimated from the empirical fMRI data as the peak of the
power spectrum.

Finally, the whole-brain dynamics was defined by the following set of coupled
equations:

dxn
dt

¼ anxn � x2n þ y2n
� �

xn � ωnyn þ G ∑
N

p¼1
Cnp xp tð Þ � xn

� �
þ νηn tð Þ ð10Þ

dyn
dt

¼ anyn � x2n þ y2n
� �

yn þ ωnxn þ G ∑
N

p¼1
Cnp ypðtÞ � yp

� �
þ νηn tð Þ ð11Þ

Where the global coupling factor G, scaled equally for each brain area, represents
the input received in region n from every other region p.

For the functional connectivity fitting the Kolmogorov’s structure-function of a
variable u was applied to the BOLD signal of the data. This measure is based on the
functional correlations between each pair of brain areas with equal Euclidean
distance and was defined as:

S rð Þ ¼ u �x þ rð Þ � u �xð Þð Þ2� �
x;t ¼ 2 FC 0ð Þ � FC rð Þ½ � ð12Þ

where FC(r) is the spatial correlations of two points separated by a Euclidean
distance r, which is given by:

FC rð Þ ¼ u �x þ rð Þu �xð Þ� �
�x;t ð13Þ

where the symbol hix;t refers to the average across the spatial location x of the brain
areas and time. Thus, the structure functions characterise the evolution of the
functional connectivity (FC) as a function of the Euclidean distance between
equally distant nodes, which is different from the usual definition of FC that
does not include distance. We then compute the fitting as the Euclidean distance
between simulated and empirical FC(r) within the inertial range as defined in Deco
et al.38.

The main implementation consists of an external perturbation represented as
an external additive periodical forcing term in the Hopf brain model for each brain
states as follows:

dxn
dt

¼ anxn � x2n þ y2n
� �

xn � ωnyn þ G ∑
N

p¼1
Cnp xp tð Þ � xn

� �
þ F0jcos ω0jt

� �
þ vηnðtÞ

ð14Þ

dyn
dt

¼ anyn � x2n þ y2n
� �

yn þ ωnxn þ G ∑
N

p¼1
Cnp yp tð Þ � yp

� �
þ F0jsin ω0jt

� �
þ vηnðtÞ

ð15Þ

where ω0 average empirical node frequency equal to all the nodes. The strength of
the external periodical force was fixed at F0j = 5 × 10−4 equally for all nodes based
on previous results presented in Perl et al.47.

In the alternative implementation we perturb the Hopf whole-brain model at
each brain state by randomly changing the local bifurcation parameter, an, in the
range [−0.02:0]. Note that this perturbation is carefully defined to keep the
dynamical scenario in the subcritical regime of each oscillator. For further detail in
this approach see Deco et al.78

The susceptibility measure of the whole-brain model was defined as the brain’s
sensitivity to react to external stimulations as it was defined in previous works38,39.
We computed the sensitivity of the perturbations on the spatiotemporal dynamics
extended the definition of previous work, which determines the susceptibility in a
system of coupled oscillators based on the response of the Kuramoto order
parameter55. The Hopf model was perturbed for each G by randomly changing the
local bifurcation parameter, an, in the range [−0.02: 0]. The sensitivity of the
perturbations on the spatiotemporal dynamics was calculated by measuring the
modulus of the local Kuramoto order parameter as:

χ ¼ ��	�eRλs
ð�x; tÞ�

t
� �

Rλs
ð�x; tÞ�

t


�
trials

�
�x

ð16Þ

where eRλs
�x; tð Þ corresponds to the perturbed case, the Rλs

�x; tð Þ to the unperturbed
case, and hit , hitrials and hix to the average across time, trials, and space, respectively.

The information encoding capability measures the ability of the system to
encode external inputs, and such is closer related to complexity measures such as
Lempel-Ziv (LZ) (used in Massimini seminal works10,12) or automatic complexity
evaluator (ACE), and synchrony coalition entropy (SCE) (used and defined
in95). The information capability, I, was defined as the standard deviation across
trials of the difference between the perturbed eRλs

ð�x; tÞ and unperturbed Rλs
�x; tð Þ

mean of the modulus of the local Kuramoto order parameter across time t,
averaged across all brain areas n as:

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��	�eRλs

	
�x; t
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t
� �
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trials

�
�x
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�
t
� �

Rλs
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�
t


�2
trials

�
�x

r
ð17Þ

where the brackets hit , hitrials and hix denote the averages defined as above.

Statistical analyses. We applied the Wilcoxon rank-sum method to test the
differences between conditions in Kuramoto amplitude turbulence, information
capacity, transfer correlation, and perturbative measures. For the node-level ana-
lysis, we applied the Kolmogorov–Smirnov test to compare between conditions.
Additionally, we applied the False Discovery Rate (FDR) at the 0.05 level of sig-
nificance to correct multiple comparisons96.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sleep and meditation time-series are publicly available on https://github.com/aescrichs/
brainstates-turbulence/releases. The disorders of consciousness datasets contain
information from a clinical population and are not publicly available due to constraints
imposed by the currently approved ethics protocol, however the data can be requested to
the Authors.

Code availability
All code written in support of this is publicly available on https://github.com/aescrichs/
brainstates-turbulence.
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Chapter 5

DISCUSSION

We have proposed and tested whole-brain computational frameworks for
characterising and distinguishing different brain states. Specifically, we
have used model-free and model-based approaches combined with resting
state fMRI and DTI neuroimaging techniques to demonstrate that dif-
ferent brain dynamics levels differentiate between brain states, whether
in health or disease. We have shown that different brain states can be
characterised by their underlying dynamical complexity. Furthermore, us-
ing tools from turbulence theory, we have demonstrated that turbulent
dynamics over different spatial scales differentiate between brain states.
Significantly, we were able to differentiate low-level states of conscious-
ness, specifically between deep sleep and DoC states. Such states revealed
distinct and unique features in their underlying turbulent brain dynamics.
Moreover, we show that a whole-brain model can be fitted to different
brain states and can be used to study in silico the sensitivity and capacity
of each brain area to promote a transition, e.g., from disease to health.
Finally, in silico perturbations of this model can be used to measure the
brain’s reactivity under different conscious and unconscious brain states.
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5.1 Brain states can be characterised by

their underlying dynamical complex-

ity

In Article 1, we applied a model-free approach (i.e., the intrinsic ignition
framework) to study dynamical complexity differences among meditators
and healthy controls during resting state and meditation using fMRI. We
found that the spatiotemporal dynamics across the whole-brain functional
network for the meditation state showed less complexity than during the
resting state in expert meditators but not in healthy controls. This result
aligns with recent meditation studies on information propagation across
the brain. For example, a study using electroencephalography (EEG) re-
vealed a transition from more complex brain dynamics at rest to a state of
reduced propagation of information during meditation, notably, only in ex-
pert meditators [Irrmischer et al., 2018]. Similarly, Toutain and colleagues
found that the evolution of the topological patterns in the functional net-
works of experienced meditators is more stable in the meditative state
than in the resting state [Toutain et al., 2020].

In addition, we showed that meditators exhibited higher metastabil-
ity at rest than the control group, indicating that the underlying brain
dynamics are more complex in expert meditators than in controls when
they are not engaged in a specific task. This result is congruent with
the increased temporal complexity of oscillations during rest in medita-
tors reported using EEG [Irrmischer et al., 2018]. Moreover, it has been
shown that individuals with high trait mindfulness transitioned more fre-
quently between brain states at rest [Lim et al., 2018, Marusak et al., 2018].
These results are in line with brain dynamics theories, which suggest that
metastability (characterised by a flexible and fast dynamic repertoire of
brain states) is the optimal state of neural activity at rest [Tognoli and
Kelso, 2014].

Altogether, we demonstrated that the meditation state operates in
a different dynamical regime than the resting state. Furthermore, we
show that experienced meditators can alter whole-brain dynamics when
immersed in a meditative state and that expertise in meditation leads
to increased ignition and metastability at rest. These results indicate
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that expert meditators can modulate the brain’s dynamical repertoire,
restricting it during meditation and enhancing it during rest.

In Article 2, we used a large resting state fMRI dataset of healthy
participants to study the dynamical complexity in different age groups by
applying two model-free approaches (i.e., the intrinsic ignition and PMS
frameworks). First, we computed the intrinsic ignition framework to char-
acterise the spatiotemporal dynamics of each group across the whole-brain
network. We found that the older participants exhibited higher ignition
but lower metastability across the whole-brain functional network, indi-
cating that the brain network is more integrated, slower, and less flexible
in older participants than in middle-aged participants. These results are in
line with previous investigations reporting increased connectivity in older
adults between resting state networks [Geerligs et al., 2015, Betzel et al.,
2014, Spreng et al., 2016]. Here, though, we postulate that increased func-
tional connectivity between resting state networks in ageing significantly
impacts the whole-brain functional network, as evidenced by the level of
intrinsic ignition.

We also measured the intrinsic ignition and metastability within eight
well-known resting state networks (DMN, frontoparietal, medial frontal,
motor, subcortical and visual networks). We found that the older group
showed higher ignition and metastability in the frontoparietal and medial
frontal networks. This result is in line with previous studies revealing that
frontal and temporal lobes show a more dynamic pattern with increasing
age [Lou et al., 2019, Li et al., 2015]. Overactivation in prefrontal brain
areas has often been observed in older adults, giving rise to different the-
ories [Cabeza et al., 2018, Davis et al., 2008, Naik et al., 2017] such as, for
example, a compensatory mechanism to delay cognitive decline [Cabeza
et al., 2018]. However, recent evidence suggests that increased frontal
activity can be related to reduced efficiency more than to compensation
[Morcom and Henson, 2018]. Nevertheless, why this overactivation occurs
remains unknown.

Secondly, we applied the PMS framework and identified a metastable
substate overlapping with the so-called ‘rich club’ [Hagmann et al., 2008,
van den Heuvel and Sporns, 2011, van den Heuvel et al., 2012, Sporns,
2013]. We show that this metastable substate was less likely to occur
in the older group than in the middle-aged group and that when it did
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occur, it did so for shorter periods of time. The rich club mediates com-
munication and information transmission among functional networks, and
it is thought that it coordinates interactions with lower-degree regions as
well as the emergence of different functional resting state network con-
figurations [van den Heuvel and Sporns, 2011]. The lower probability of
occurrence and duration of this state in the older group could be due to
disruptions in its underlying dynamics or any of their brain areas. Rich
club regions play a crucial role in transmitting information across the
brain network. Consequently, a disruption in one of these key areas can
affect global communication across the functional network that could im-
pact cognitive domains [van den Heuvel and Sporns, 2011, Baggio et al.,
2015]. Our results are consistent with the previous findings showing that
the efficiency of the rich club architecture increases during development
and decreases with age, showing an inverted U when plotted across the
lifespan [Cao et al., 2014, Zhao et al., 2015, Damoiseaux, 2017].

Going radically beyond the characterisation of the empirical PMS,
which provides essential model-free information on the differences given
by the dynamics, in Article 3, we simulate the PMS of the older group with
a causal whole-brain model to provide mechanistic information on how to
reverse age-induced changes in brain dynamics. This result is explained
in section 5.3 of this chapter.

Finally, we combined the intrinsic ignition and PMS frameworks by
computing the ignition and metastability within the metastable substate
(i.e., rich club) and found that the older group showed lower values in ig-
nition and metastability than the middle-aged group. This demonstrated
that even if older subjects present overactivation in frontal areas and fron-
toparietal and medial frontal networks, they show reduced capacity, inte-
gration and metastability in a state which is crucial for efficient transmis-
sion of information in the brain. We hypothesise that overactivation found
in older subjects could be due to disruption among rich club nodes rather
than a compensatory mechanism, as previously reported in the literature.
Thus, one possibility could be that older subjects spend more time in
frontal networks because these nodes have become less efficient with age-
ing, reducing their brain’s ability to switch among functional networks.

Altogether, using model-free frameworks, we have extracted specific
local-global and spatiotemporal features from empirical resting state fMRI
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data. Furthermore, we have shown that different states can be charac-
terised by their underlying dynamical complexity, showing higher or lower
levels of complexity across the whole-brain network and within resting
state networks.

5.2 Different brain states show dissocia-

ble turbulent dynamics across space-

time scales

In Article 4, we measured the dynamics of information transmission across
spacetime scales using the turbulence model-free framework. This frame-
work allowed us to describe and characterise different brain states, whether
they are naturally occurring (sleep, awake), temporarily induced (medita-
tion) or caused by brain injuries (unresponsive wakefulness and minimally
consciousness states).

We demonstrated that the measure of turbulence is highly sensitive
for discerning between brain states. Specifically, in DoC patients (i.e.,
MCS and UWS), we observed lower levels of turbulence at lower spa-
tial scales λ (i.e., long distances in the brain) but higher levels of turbu-
lence at higher spatial scales (i.e., short distances in the brain) compared
to the resting state (Figure 5.1). Furthermore, the turbulence mea-
sure distinguished between MCS and UWS patients. These results are
consistent with EEG evidence showing that non-communicative patients
have lower global information sharing [King et al., 2013] and decreased
brain complexity [Casarotto et al., 2016, Bodart et al., 2017]. This also
aligns with the global neuronal workspace theory, which proposes that
long-distance connections globally broadcast the information for differ-
ent processors brain-wide, and this lack of spatially bounded information
processing is associated with conscious access [Dehaene and Changeux,
2011]. Here, we extended these findings by showing that DoC patients ex-
hibit higher turbulence levels over short distances in the brain. In healthy
participants, deep sleep was characterised by lower turbulence across all
spatial scales compared to the resting state; that is, it showed reduced
information processing over short and long distances [Tagliazucchi et al.,
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Figure 5.1: Evolution of turbulence on different brain states. The plots show the
level of turbulence at different spatial scales (λ = 0.01, λ = 0.12 and λ = 0.3).
The level of turbulence showed significant decreases in MCS and UWS states
at lower lambda scales but significant increases at higher scales compared to
controls. Deep sleep showed significantly lower turbulence levels than the resting
state across all spatial scales. By contrast, the meditation state showed significant
increases in turbulence compared to the resting state only at higher scales.

2013]. In contrast, the meditation state presented higher turbulence lev-
els only at lower spatial scales (short distances in the brain and higher λ
values) compared to the resting state.

One of the most noteworthy results of this study was that we observed
specific and unique features of turbulent dynamics underlying low-level
states of consciousness. Specifically, the measure of turbulence differenti-
ated between deep sleep and DoC states over shorter distances in the brain.
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In particular, the deep sleep state showed lower turbulence than the resting
state across all the spatial scales. In contrast, for DoC states, turbulence
decreased over long distances but increased over short distances.

Furthermore, working in the ‘vortex space’, we assessed three addi-
tional measures for each brain state: information transfer, information
cascade flow and information cascade (see Methods chapter). We found
that information transfer rose significantly with the spatial scale between
the resting state and the level of awareness in the other brain states (med-
itation, deep sleep, MCS and UWS). The information cascade flow mono-
tonically declined with short distances (the increase in the spatial scale λ)
for all brain states. This measure also discriminated between conditions,
i.e., showing lower values for DoC patients than for control participants
and in the deep sleep stage compared to the resting state in the same par-
ticipants. The information cascade (i.e., the average of the information
flow across scales) is lower in low-level states of awareness (deep sleep,
MCS and UWS) than in the normal resting state. This demonstrates that
the information transmission is altered with conscious access and that this
is captured with the global information processing measures of information
transmission, information cascade flow and information cascade.

Overall, using tools from turbulence theory applied to empirical fMRI
data, we have demonstrated that each brain state exhibits different turbu-
lent dynamic patterns across spatial scales, allowing us to characterise the
brain states from their underlying information processing fluctuations.

5.3 In silico perturbation protocols based

on causal whole-brain models

Previous studies using TMS combined with EEG have successfully shown
that different conscious and unconscious brain states react in a signifi-
cantly different way after perturbing the cerebral cortex [Massimini et al.,
2005, Ferrarelli et al., 2010, Casali et al., 2013]. However, given the ethi-
cal constraints of experimental neurostimulation in humans, in silico per-
turbation protocols based on causal whole-brain computational models
are essential to obtaining a mechanistic understanding of brain dynam-
ics. Thus, we sought to study how different brain states react to external
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artificial perturbations from a mechanistic point of view, which allows us
to systematically assess the induced whole-brain dynamics changes caused
by these perturbations. To this end, we modelled the empirical fMRI data
for different brain states using Hopf whole-brain models and then tested
two types of external perturbations (previously described in the Methods
chapter). On the one hand, in Article 3, we applied in silico perturbations
in order to predict optimal stimulation targets to force a transition from
the states of the older group to the states of the middle-aged group. On
the other hand, in Article 4, we used in silico perturbations to measure the
brain’s reactivity to external perturbations in conscious and unconscious
brain states.

Forcing a brain state transition

In Article 3, we used the Hopf model to provide mechanistic information
on how to reverse age-induced changes in brain dynamics. We aimed
to determine the causal mechanisms capable of explaining how to force
a transition between brain states of different age groups. This strategy
allowed us to address the fundamental question in modern neuroscience of
how the brain transitions between different states and, in addition, to find
optimal stimulation targets to rebalance the underlying brain dynamics in
the elderly towards more healthy states.

We fitted the brain states of the older group (i.e., the PMS) to the
Hopf model to study exhaustively in silico, i.e., region by region, how to
force a transition from the brain states associated with the older group
to the brain states of the middle-aged group. This theoretical frame-
work allowed us to force a transition using external stimulation, similar to
deep brain stimulation (DBS) or transcranial magnetic stimulation (TMS)
[Deco et al., 2019].

We tested two different stimulation protocols, namely synchronisation
and noise. The synchronisation protocol increases the value of the bifurca-
tion parameter of the stimulated node, resulting in oscillatory behaviour,
whereas the noise protocol yields the opposite effect. We found that the
noise protocol led to better results (Figure 5.2). This effect could be
related to brain overactivation in the elderly, widely reported in the liter-
ature. Notably, it has been shown that older adults exhibit overactivation
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Figure 5.2: Forcing transitions between brain states. A) Forcing transitions
from the model of the older group (electric blue) to the empirical PMS of the
middle-aged group (red). The whole-brain model was perturbed using two dif-
ferent protocols (noise and synchronisation), which shifted the local bifurcation
parameter of each brain area to negative and positive values, respectively (middle
panel). The optimal perturbation is that which causes the first state to decrease,
the second state to increase, and the third state to remain similar (right panel).
B) The left matrix shows the KL-distance value after applying the noise pro-
tocol’s perturbation intensity in each brain area (from softer to stronger). This
protocol presented the best usefulness since KL distances were minimal in some
brain areas. The brain rendered onto the cortex shows in blue the optimal brain
areas to induce the transitions. The colour scale represents the KL distance be-
tween the PMS of the middle-aged group and the perturbed model using the
noise protocol. The right matrix shows that the synchronisation protocol pre-
sented poor effectiveness given that KL distances were longer than in the noise
protocol.

in frontal brain areas and among resting state networks [Davis et al.,
2008, Reuter-Lorenz and Cappell, 2008, Betzel et al., 2014, Geerligs et al.,
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2015, Spreng et al., 2016, Cabeza et al., 2018, Escrichs et al., 2022b]. Thus,
one possible explanation could be that adding noise in specific brain areas
decreases these functional overactivations. Finally, we found that forcing a
shift in the intrinsic local dynamics of the right precuneus as well as other
brain areas belonging to the rich club (insula, putamen, caudate, and tha-
lamus) was suitable for forcing an optimal transition to the middle-aged
regime.

Overall, we provide causal evidence that external stimulations in spe-
cific local brain areas can reshape whole-brain dynamics in the normal
ageing process. This strategy can contribute to developing neurostimula-
tion treatments to reverse or slow down cognitive decline. Furthermore,
the differential sensitivity of each brain area to external perturbations
serves not only for the design of neurostimulation therapies but crucially
as a more specific model-biomarker relating local brain activity with global
brain dynamics.

Measuring the brain’s reactivity for different brain
states

In Article 4, we used the Hopf model to study the susceptibility and infor-
mation encoding capability measures to assess the reactivity of the brain
to external perturbations. We fitted a Hopf whole-brain model for each
brain state (wakefulness, meditation, deep sleep, MCS and UWS) and
found that the optimal working point of the models for all brain states
shifted to a lower global coupling parameter compared to the resting state
(Figure 5.3.A). The global coupling factor, G, represents the global con-
ductivity of the fibre densities among brain areas given by the underlying
structural connectivity matrix, which is here, for simplicity, scaled uni-
formly across the brain [Deco et al., 2017b, Deco et al., 2017a].

Then, we perturbed each brain model at its optimal working point
(i.e., the optimal model fitting G) to investigate the induced whole-brain
dynamics changes caused by the external perturbations. Specifically, the
perturbation consisted of shifting towards the bifurcation point of the
intrinsic local dynamics of all brain areas. We found that the resting
state showed significantly higher susceptibility and information encoding
capability than the other brain states studied, i.e., meditation, deep sleep
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Figure 5.3: Information encoding capabilities of brain states. A) The optimal
working point of the model was defined as the minimum value of the FC fitting,
i.e., where the model shows maximal similarity to the empirical fMRI data. B)
The susceptibility measure, which estimates how these models react to external
artificial perturbations, showed that the resting state was most susceptible to be-
ing perturbed. C) The information encoding measure of the whole-brain models
captures how different external stimulations are encoded in the dynamics. As in
the susceptibility measure, the resting state was most susceptible to reacting to
the perturbations. Both susceptibility and information encoding measures signif-
icantly differentiated between brain states. ⋆ ⋆ ⋆ represents P < 0.001.

and DoC (Figure 5.3.BC). Furthermore, both measures differentiated
between MCS and UWS groups. These results are in line with previous
studies showing that, compared to the resting state, the spatiotemporal
dynamics in meditative states [Escrichs et al., 2019, Toutain et al., 2020],
in DoC patients [Demertzi et al., 2019, López-González et al., 2021], and
during deep sleep [Jobst et al., 2017, Deco et al., 2018, Ipiña et al., 2020]
are reduced across the brain network.

Overall, we show that each brain state encodes the whole-brain dy-
namics with a particular complexity. Notably, the differential sensitivity
of each brain state to external artificial perturbations can serve as a spe-
cific model-biomarker revealing features of their dynamical complexity.
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5.4 Conclusion

Applying model-free and model-based approaches, the current thesis shows
that whole-brain dynamics are fundamental for describing and character-
ising different brain states in health and disease. We demonstrate that
different brain states show unique complex dynamics across spacetime
scales. Furthermore, we show that causal whole-brain models can repre-
sent brain states in health and disease, including levels of consciousness,
ageing, and neurological disorders. From a clinical standpoint, given the
sensitivity and specificity of the results, in the long term, these methods
may open new windows for developing efficient treatments for neurostim-
ulation interventions by identifying potential targets to revert the effects
of ageing or even to rebalance the level of consciousness in DoC patients.
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Chapter 6

APPENDIX

6.1 Datasets

6.1.1 Meditation

The meditator group was recruited from Vipassana centres of Barcelona,
Catalonia (7 females; mean age=39.8 years (SD = 10.29) and meditation
experience=9,526.9 hours (SD = 8, 619.8). Meditators maintained the
daily practice (>1 hour/day) and had more than 1,000 hours of medita-
tion experience. Healthy controls were well-matched participants for age,
gender, and education years, with no previous experience in meditation
(7 females; mean age= 39.75 years (SD=10.13); education=13.8 years).
All participants reported no history of past neurological disorder and gave
informed consent. The study was approved by the Ethics Committee of
the Bellvitge University Hospital according to the Helsinki Declaration.

MRI images were acquired on a 3T Siemens Trio scanner using a 32-
channel receiver coil. The T1-weighted images were acquired with 208
contiguous sagittal slices; TR/TE= 1970 ms/ 2.34 ms; inversion time (IT)
= 1050 ms; flip angle = 9°; FOV = 256 mm; and isotropic voxel size 1 mm.
Resting state and meditation fMRI images were performed by a single
shot gradient-echo EPI sequence with a total of 450 volumes (15 min);
TR/TE = 2000 ms/29 ms; FOV = 240 mm; in-plane resolution 3 mm;
32 transversal slices with thickness = 4 mm; flip angle = 80°. Diffusion
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MRI images were acquired using a dual spin-echo DTI sequence (TR/TE=
680ms/92ms; FOV = 236mm; 60 contiguous axial slices; isotropic voxel
size 2x2x2 mm; no gap, and 118 x118 matrix sizes). Diffusion was obtained
with 64 optimal non-collinear diffusion directions using a single b value =
1,500s/mm2 interleaved with 9 non-diffusion b0 images.

6.1.2 Disorders of consciousness

Liège

Thirty-five healthy controls and 48 patients with disorders of consciousness
(DoC) were included. The diagnosis was made after at least 5 CRS-R by
trained clinicians. The highest level of consciousness was taken as the final
diagnosis, which was also confirmed with Positron Emission Tomography
(PET). Patients in MCS presented a relatively preserved metabolism in
the frontoparietal network, whilst patients with UWS had a bilateral hy-
pometabolism in this network. Thus, we included 33 patients in MCS and
15 in UWS. The Ethics Committee of the Faculty of Medicine of the Uni-
versity of Liege approved the study protocol. Written informed consent
was obtained from patients’ legal surrogates and healthy participants.

MRI images were acquired on a Siemens 3T Trio scanner (Siemens
Inc, Munich, Germany). MRI acquisition included a gradient echo-planar
imaging (EPI) sequence (32 transversal slices, 300 volumes, TR = 2000
ms, TE=30 ms, flip angle = 78°, voxel size = 3x3x3 mm, FOV = 192 mm);
T1 (120 transversal slices, TR = 2300 ms, voxel size = 1.0x1.0x1.2 mm,
flip angle = 9°, FOV = 256 mm).

Paris

Thirteen healthy controls, 27 patients in the MCS, and 21 in UWS were in-
cluded in the final cohort. This research was approved by the local ethics
committee Comité de Protection des Personnes Ile de France 1 (Paris,
France) under the code ’Recherche en soins courants’ (NEURODOC pro-
tocol, n° 2013-A01385-40). The patient’s family gave informed consent for
the participation of their relative, and all investigations were conducted
according to the Declaration of Helsinki and the French regulations.
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MRI data were acquired on a 3T General Electric Signa System (Mil-
waukee, WI). T2*-weighted resting state images were acquired with a
gradient-echo EPI sequence using axial orientation (200 volumes, eight
slices, slice thickness: 3 mm, TR=2400 ms, TE=30 ms, voxel size: 3.4375
× 3.4375 × 3.4375 mm, flip angle: 90°, FOV: 192 mm2). In the same ac-
quisition session, an anatomical volume was acquired using a T1-weighted
MPRAGE sequence (236 slices, TR=7156 ms, TE=3.672 ms, voxel size:
0.4883 × 0.4883 × 0.4883 mm, flip angle: 15°).

6.1.3 Sleep

Sixty-three healthy subjects (36 females, mean ± SD age of 23 ± 43.3
years) were selected from a dataset previously described in [Tagliazucchi
and Laufs, 2014, Perl et al., 2021b]. Their resting state activity was mea-
sured during 52 minutes with a simultaneous combination of EEG and
fMRI. We selected 13 subjects who reached the deep sleep stage (N3) and
contiguous time series of at least 200 volumes. The experimental proto-
col was approved by the ethics committee (Goethe-Universität Frankfurt,
Germany, protocol number: 305/07), and written informed consent was
obtained for all participants before the study. The study was conducted
according to the Helsinki Declaration on ethical research.

MRI images were acquired on a 3 T Siemens Trio scanner (Erlangen,
Germany). EEG via a cap (modified BrainCapMR, Easycap, Herrsching,
Germany) was recorded continuously during fMRI acquisition (1505 vol-
umes of T2∗-weighted echo-planar images, TR/TE = 2080 ms/30 ms, ma-
trix 64×64, voxel size 3×3×2 mm3, distance factor 50%; FOV 192 mm2).
An optimised polysomnographic setting was employed (chin and tibial
EMG, ECG, EOG recorded bipolarly [sampling rate 5 kHz, low pass filter
1 kHz] with 30 EEG channels recorded with FCz as the reference [sampling
rate 5 kHz, low pass filter 250 Hz]. Pulse oxymetry and respiration were
recorded via sensors from the Trio [sampling rate 50 Hz]) and MR scanner
compatible devices (BrainAmp MR+, BrainAmpExG; Brain Products,
Gilching, Germany), facilitating sleep scoring during fMRI acquisition.
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6.1.4 Ageing

Neuroimaging data were obtained from the Aging Imageomics Study [Puig
et al., 2020] and comprised 620 healthy adults divided into two groups.
The middle-aged group consisted of 310 subjects aged < 65 years (mean
age, 60.2±3.7 years), and the older group consisted of 310 subjects aged
>= 65 years (mean age, 71.8±4.5 years). The study was approved by the
Ethics Committee of the Dr Josep Trueta University Hospital. Written in-
formed consent was obtained from all participants. A complete description
of the neuroimaging data can be consulted in [Puig et al., 2020, Escrichs
et al., 2021, Escrichs et al., 2022b].

Images were acquired on a mobile 1.5 T scanner (Vantage Elan, Toshiba
Medical Systems) with an 8-channel phased-array head coil. T1-weighted
sequence (number of slices=112, TR/TE=8 ms/4.5 ms, flip angle=15º,
FOV =235×235 mm and voxel size=1.3×1.3×2.5 mm) for structural imag-
ing and a gradient echo-planar imaging (EPI) sequence (TR=2500 ms;
TE=40 ms; flip angle=83°; FOV=230×230 mm; and voxel size=3.5×3.5×5
mm without gap) 122 volumes were acquired axially during five min for
resting state fMRI. Subjects were asked to relax, stay motionless and re-
main awake.

6.2 Restin state preprocessing

Meditation, Paris, Liège

The pre-processing of resting state fMRI datasets of Meditation, Paris and
Liège were performed using MELODIC (Multivariate Exploratory Linear
Optimized Decomposition into Independent Components) [Beckmann and
Smith, 2004], which is part of FSL (http://fsl.fmrib.ox.ac.uk/fsl).
Steps included discarding the first five volumes, motion correction us-
ing MCFLIRT [Jenkinson et al., 2002], BET (Brain Extraction Tool)
[Smith, 2002], spatial smoothing with 5 mm FWHM Gaussian Kernel,
rigid-body registration, high pass filter cutoff = 100.0 s, and single-session
ICA with automatic dimensionality estimation. Lesion-driven artefacts
(for patients) and noise components were regressed out independently for
each subject using FIX (FMRIB’s ICA-based X-noiseifier) [Griffanti et al.,
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2014]. FSL tools were used to co-register the images and extract the time
series between 1000 cortical brain areas for each subject in MNI space
from the Schaefer resting state parcellation [Schaefer et al., 2018].

Sleep

The preprocessing of resting state fMRI data was performed using FSL
(http://fsl.fmrib.ox.ac.uk/fsl). Steps included discarding the first
five volumes, motion correction using MCFLIRT [Jenkinson et al., 2002],
BET (Brain Extraction Tool) [Smith, 2002], spatial smoothing with 5
mm FWHM Gaussian Kernel, rigid-body registration, bandpass filtering
between 0.01 − 0.1 Hz. Finally, FSL tools were used to co-register the
images and extract the time series between 1000 cortical brain areas for
each subject in MNI space from the Schaefer resting state parcellation
[Schaefer et al., 2018].

Ageing

T1 and EPI images were automatically oriented using Conn [Whitfield-
Gabrieli and Nieto-Castanon, 2012]. Processing Assistant for Resting-
State fMRI (DPARSF) [Chao-Gan and Yu-Feng, 2010], which is based
on Statistical Parametric Mapping (SPM12), was used to preprocess the
resting state fMRI data. Preprocessing steps included: discarding the first
five volumes, slice-timing correction, realignment for head motion correc-
tion across volumes, T1 co-registration to the functional image, European
regularisation segmentation, removal of spurious variance through linear
regression: six parameters from the head motion correction, the white mat-
ter (WM) signal, and the cerebrospinal fluid signal (CSF) using CompCor
[Behzadi et al., 2007], removal of the linear trend, spatial normalisation
to MNI standard space, spatial smoothing with 6 mm FWHM Gaussian
Kernel, and band-pass temporal filtering (0.01-0.020 Hz). The time series
for each subject were extracted using a resting state atlas [Shen et al.,
2013].
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6.3 Difussion Tensor Imaging preprocess-

ing

Meditation

The whole-brain structural connectivity matrix (SC) was computed fol-
lowing the procedure applied in previous studies [Gong et al., 2009, Cao
et al., 2013, Muthuraman et al., 2016]. An SC was computed for each sub-
ject using the FMRIB’s Diffusion Toolbox (FDT). Steps: Brain Extraction
Tool (BET) [Smith, 2002], eddy current distortions and head motion were
corrected using eddy correct [Andersson and Sotiropoulos, 2016], and the
gradient matrix was reoriented to correct for subject motion [Leemans and
Jones, 2009]. Crossing fibres were modelled using BEDPOSTX, and the
probability of multi-fibre orientations was computed to improve the sen-
sitivity of non-dominant fibre populations [Behrens et al., 2003, Behrens
et al., 2007]. The probabilistic tractography analysis was performed for
each participant in the native diffusion space using PROBTRACKX. The
connectivity probability SCnp between brain areas n and p was calculated
as the total proportion of sampled fibres in all voxels in brain area n that
reach any voxel in brain area p. The SCnp matrix was then symmetrised
by computing their transpose matrix SCpn and averaging both matrices.
Finally, averaging the resulting matrices across all participants, a whole-
brain SC matrix was obtained, representing a template of healthy adults.

HCP

Diffusion spectrum and T2-weighted neuroimaging data for 32 participants
were obtained from the Human Connectome Project (HCP) database, as
described in Deco and Kringelbach [Deco and Kringelbach, 2020]. A com-
plete description of the acquisition parameters for diffusion MRI (dMRI)
is described in detail on the HCP website [Setsompop et al., 2013]. The
freely Lead-DBS software package (https://www.lead-dbs.org/) pro-
vides the pre-processing described in detail in [Horn et al., 2017]. The data
were processed using a q-sampling imaging algorithm implemented in DSI
studio (http://dsi-studio.labsolver.org). A white-matter mask was
calculated by segmenting the T2-weighted images and co-registering the
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images to the b0 diffusion data by using SMP12. For each HCP partici-
pant, 200,000 fibres were sampled within the white-matter mask. Fibres
were transformed into MNI space using Lead-DBS [Horn and Blanken-
burg, 2016], and standardised methods in Lead-DBS were used to extract
the structural connectomes from the Schaefer 1000 parcellation [Schaefer
et al., 2018].
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bach, M., Deco, G., Laufs, H., Sitt, J., Laureys, S., and Tagliazucchi,
E. (2021b). Perturbations in dynamical models of whole-brain activ-
ity dissociate between the level and stability of consciousness. PLoS
Comput. Biol., 17(7):26.

[Ponce-Alvarez et al., 2015] Ponce-Alvarez, A., Deco, G., Hagmann, P.,
Romani, G. L., Mantini, D., and Corbetta, M. (2015). Resting-State
Temporal Synchronization Networks Emerge from Connectivity Topol-
ogy and Heterogeneity. PLOS Comput. Biol., 11(2):e1004100.

[Popovych et al., 2019] Popovych, O. V., Manos, T., Hoffstaedter, F., and
Eickhoff, S. B. (2019). What can computational models contribute to
neuroimaging data analytics? Front. Syst. Neurosci., 12:68.

[Puig et al., 2020] Puig, J., Biarnes, C., Pedraza, S., Vilanova, J. C., Pam-
plona, R., Fernández-Real, J. M., Brugada, R., Ramos, R., Coll-de
Tuero, G., Calvo-Perxas, L., Serena, J., Ramió-Torrentà, L., Gich, J.,
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