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Preface 

The work presented in this dissertation has been carried out at the Institute of 

Chemical Research of Catalonia (ICIQ) during a period from October 2018 to October 

2022 under the supervision of Professor Ruben Martin. The thesis contains five chapters: 

a general introduction, three research chapters, and the last chapter with a general 

conclusion of all the research work. Each research chapter includes a brief introduction 

and the aim of the respective topic, followed by a discussion of the experimental results, 

mechanistic experiments, conclusions, and experimental sections. Relevant references 

and their numbering are organized independently by chapters. 

 

The first chapter is a general introduction to the background and development of C−C 

bond activation. In particular, it is focused on the functionalization of molecules by 

radical-promoted C−C bond cleavage. Another topic introduced and discussed is the 

development of transition-metal-catalyzed 1,2-carboboration.  

 

The second chapter, “Dual Catalytic Strategy for Forging sp2−sp3 and sp3−sp3 

Architectures via b-Scission of Aliphatic Alcohol Derivatives”, describes sp3-arylation 

and sp3-alkylation from abundant aliphatic alcohols as alkyl synthons by combining 

light-induced b-scission of alkoxy radicals with Ni catalysts. The reaction displays 

excellent compatibility of functional groups and a wide substrate scope under mild 

conditions. The synthetic utility could be further showcased in the context of the late-

stage functionalization of advanced intermediates. The results of this chapter have been 

published in J. Am. Chem. Soc. 2020, 142, 20594–20599, in collaboration with Xin-

Yang Lv and Dr. Craig S. Day. 

 

The third chapter, “Trifluoromethylation of Carbonyl and Olefin Derivatives by 

C(sp3)−C Bond Cleavage”, describes the conversion of structurally diverse feedstocks 

containing ketones, aldehydes, or alkenes to the corresponding trifluoromethylated 

analogues by inert sp3 C−C cleavage. The reaction proceeds under visible-light 

mediated copper-catalyzed or promoted conditions, which offers an operationally 

simple and scalable protocol to aliphatic trifluoromethylated products. Particularly, the 

successful construction of this conversion platform offers the possibility to be used as 

a vehicle to access libraries of trifluoromethylated compounds of interest in drug 
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discovery programs. The results of this chapter have been accepted in Angew. Chem. 

Int. Ed., in collaboration with Dr. Riccardo S. Mega, Jinhong Chen and Dr. Craig S. 

Day. 

 

The fourth chapter, “Nickel-Catalyzed Regio- and Stereoselective Alkylboration of 

Allenes”, describes efforts towards the development of a nickel-catalyzed regio- and 

stereoselective three-component coupling reactions between allenes, ambiphilic a-
haloboranes, and a diboron reagent to afford Z-multi-substituted alkenylboronates. This 

protocol would offer a new blueprint for preparing densely functionalized, yet 

synthetically versatile, 1,3-(sp2, sp3)-bisorganometallics compounds from simple and 

readily accessible precursors. The optimization of the conditions has been completed 

and is discussed in this chapter, and the scope of the protocol is expanded to various 

substrates has been shown. Further refinements and studies of this strategy are being 

implemented. The results of this chapter have not yet been published. 
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Abstract 

With the increasing demand for sp3 architectures in drug development, new methods 

to construct sp3-carbon linkages have attracted significant attention from medicinal 

chemists. Metal-catalyzed cross-coupling reactions have offered innovative solutions 

to synthesize structurally diverse sp3-carbon scaffolds, and increasing interest in the 

catalytic cleavage of abundant C−C bonds has emerged as a promising area for 

remodeling skeletal frameworks. Other approaches to build up sp3 architectures have 

been pursued within the context of multicomponent reactions, which can 

simultaneously introduce different residues across some unsaturated systems, which 

have become a powerful tool for the formation of a new sp3 C–C bond. 

In line with the Martin group’s interest in activating inert bonds and Ni-catalyzed 

1,2-difunctionalization reactions, my doctoral studies have focused on exploring 

methodologies for sp3 C–C bond formation via C−C bond cleavage and Ni-catalyzed 

1,2-carboboration. 

The initial research chapter focuses on the development of a dual catalytic strategy 

for forging sp2−sp3 and sp3−sp3 architectures via b-scission of aliphatic alcohol 

derivatives. Conditions were developed involving b-scission of aliphatic alcohol 

derivatives with a range of aryl- and alkyl halides under nickel catalysis and mild 

photocatalytic conditions. Employing naturally abundant and commercially available 

aliphatic alcohols as building blocks, this methodology successfully offers an 

unconventional manifold for enabling sp3-arylation and sp3-alkylation events with 

excellent chemoselectivity and a broad application profile. The applicability of this 

reaction was further expanded within the context of late-stage functionalization of 

saccharide derivatives and advanced intermediates. In particular, sp3-carbon synthons 

derived from b-scission of alkoxyl radicals hold great synthetic potential as a general 

and flexible C−C bond-forming protocol. 
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Scheme 1. Dual catalytic strategy for forging sp2−sp3 and sp3−sp3 architectures via b-

scission of aliphatic alcohol derivatives. 

The next research chapter is in line with our initial findings in C−C bond cleavage 

events. Following our interest in such a topic, we then developed an efficient protocol 

for the conversion of structurally diverse feedstocks containing ketones, aldehydes, or 

alkenes to the corresponding trifluoromethylated analogues by aromatization-driven sp3 

C–C cleavage. This technology offers an unconventional manifold for enabling 

trifluoromethylation events with excellent chemoselectivity and a broad application 

profile under mild conditions. Notably, we provide multiple transformation platforms 

to undergo trifluoromethylation, which might provide access to a library of 

trifluoromethylated compounds in drug discovery, and would be of considerable value 

to the chemical industry and academia.  

 
Scheme 2. Trifluoromethylation of structurally diverse feedstocks by C(sp3)–C bond 

cleavage. 

Prompted by a recent disclosure from our group that dealt with a catalytic 1,1-

difunctionalization of unactivated olefins en route to sp3 bis-organometallic B, B(Si)-

reagents, we aimed to expand our studies toward the 1,2-alkylboration of unsaturated 

systems with sp3 mono-organometallic reagents, which is discussed in the last research 

chapter. We anticipated that through 1,2- alkylboration of allenes, we could access 

multisubstituted 1,3-(sp2, sp3)-bisorganometallic alkenes. However, forming a new sp3 

C–C bond while controlling the chemo-, regio- and stereoselective alkylboration of 

allenes is highly challenging due to competing side reactions. After considerable 

optimization, reaction conditions with high selectivity have been obtained and further 

studies are ongoing to expand the substrate scope and synthetic applications. 
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Scheme 3. Nickel-catalyzed regio- and stereoselective alkylboration of allenes with 

a-haloboranes. 

In conclusion, we have developed new methods for the synthesis of sp3 architectures 

via C−C bond cleavage and Ni-catalyzed 1,2-carboboration strategies. All the above 

transformations are characterized by their broad scope, mild conditions and exquisite 

site-selectivity, thus offering a complementary new blueprint for preparing densely 

functionalized, yet synthetically versatile, sp3 C−C bonds from simple and readily 

accessible precursors. 
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1.1 General Introduction 

The development of new catalytic methods to increase the complexity of organic 

molecular structures has been one of the central goals of organic synthesis. In recent 

years, medicinal chemists have noted that compounds with a higher fraction of sp3-

carbon atoms improve significantly physicochemical and pharmacokinetic profiles in 

clinical candidates, thus challenging chemists to come up with new catalytic techniques 

aiming at forging sp3-architectures.1 Beyond any reasonable doubt, transition-metal-

catalyzed cross-coupling reactions have offered innovative solutions for the 

construction of sp3–sp3 linkages.2 These reactions provide substantial advantages when 

compared to standard SN1 or SN2 substitution processes of alkyl electrophiles, such as 

improved selectivity and milder reaction conditions3 (Scheme 1.1, pathway a & 

pathway b). 

 

Scheme 1.1 Forging sp3 architectures via metal-catalyzed cross-coupling reactions. 

The importance of transition-metal-catalyzed reactions was recognized by the 2010 

Nobel Prize in Chemistry,4 which was awarded to Prof. Richard F. Heck, Ei-ichi 

Negishi and Akira Suzuki for their pioneering contributions in Pd-catalyzed cross-

coupling reactions for the formation of C−C bonds. Despite the advances realized, the 

coupling of sp3-hybridized carbon fragments still remains challenging due to (a) the 

low coordination of sp3 centers to transition metals,5 (b) the slow oxidative addition of 

sp3 electrophiles to low-valent catalysts and (c) the lower propensity for triggering sp3–

sp3 bond-reductive elimination at metal centers, thus leaving ample room for side 

reactions via competitive homocoupling, b-hydride elimination or hydrogen atom 

transfer events (Scheme 1.2).6 In most instances, the means to enable sp3 C−C bond-

formation requires the utilization of alkyl organometallics,7 organic halides,8 or 
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C−O/C−N electrophiles,9,10 which have seen broad adoption in the cross-coupling arena 

(Scheme 1.1, pathway a & b). Although considerable progress has been made in the 

area of sp3 C−H functionalization (Scheme 1.1, pathway c),11 transition-metal-

catalyzed C−C bond cleavage12 has comparatively received much less attention 

(Scheme 1.1, pathway d). Given the prevalence of sp3 C–C bonds in organic molecules, 

the ability to forge new sp3architectures from the latter might offer flexibility in 

synthetic design for both academic and industrial laboratories. 

 

Scheme 1.2 The issues of the coupling of sp3-hybridized carbon fragments. 

On the other hand, multicomponent reactions hold great promise for rapidly and 

reliably build up sp3 architectures by forming C−C and/or C−X bonds across π-

systems13 such as alkenes, alkynes, allenes or dienes. Among these endeavors, 

borylative 1,2-difunctionalization is rapidly emerging as a powerful method to 

simultaneously introduce sp3 C−C bonds and C(sp2/sp3)−B bonds that can later on be 

functionalized by conventional cross-coupling reactions giving the flexibility that 

organoboranes offer for downstream applications (Scheme 1.3).14,15,16 . 

 

Scheme 1.3 Transition-metal-catalyzed 1,2-carboboration reactions. 
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applications of these techniques can be found in the valorization of petroleum-derived 

products,18 lignocellulose, or the degradation/recycling of industrially-relevant 

polymers.19 Given the prevalence of C–C linkages in organic molecules, the ability to 

utilize these scaffolds as a manifold for molecular diversity might offer new innovative 

solutions for forging sp3 architectures without relying on prefunctionalized reagents.20 

Although considerable progress has been made in the area of C–H functionalization, 

there are significantly fewer methodologies that enable catalytic C−C bond 

activation.21,22 A clear distinction between the two can be seen by comparing their bond 

dissociation energies: BDE (C−H) ≈ 100−110 kcal/mol vs BDE (C−C) ≈ 105 

kcal/mol.23 Although these values suggest C–C bonds to be weaker than C–H bonds,  

there are kinetic considerations when activating C−C bonds as these are generally more 

sterically hindered than C−H bonds and therefore harder to activate.24 Indeed, C–C 

bonds are less polarized and have less favorable orbital directionality than C–H bonds 

when they interact with a transition metal.12b, 25 In addition, the C−H bond is oriented 

perpendicular to the metal orbital, and the hydrogen orbital's spherical shape allows for 

significant overlap with the metal orbital (Scheme 1.4, top).24 Moreover, the highly 

oriented s-bond orbitals of the C−C bond are not able to overlap well with the d-orbitals 
of the transition metal unless the C−C bond is distorted by the influence of the transition 

metal (Scheme 1.4, bottom). Lastly, the transition-metal catalyst should distinguish 

between minor differences in sterics or electronics among various C−C bonds.26 Indeed, 

direct C–C bond activation of unstrained compounds normally requires directing 

groups to facilitate the functionalization via proximity effects,17a thus reinforcing the 

notion that the site-selective functionalization of C–C bonds still represents a 

considerable challenge and a worthwhile endeavor for chemical invention. 
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Scheme 1.4 a) Interaction of metal orbitals with a C−H bond, b) Interaction of metal 

orbitals with a C−C bond. 

Most relevant C−C bond cleavage reactions occurs frequently in the petroleum 

industry during the steam cracking of crude oil at high temperatures and pressures18b 

(Scheme 1.5, top).27 The first reaction of C−C bond cleavage can be traced back to the 

1950s, where Eschenmoser and Frey disclosed the archetypal C−C fragmentation 

reaction (Scheme 1.5, bottom).28 

 

Scheme 1.5 Historical C−C bond-functionalization reactions. 
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(Scheme 1.6): (a) direct oxidative addition to low valent ruthenium, rhodium, palladium 

and iridium complexes,12a, 17a,g, 26b, 32 a process typically driven by strain release, 

chelation assistance or decarbonylation events; (b) b-carbon elimination by formation 
of a strong C−X bond;17c, 21 (c) retro-allylation33 that results in the formation of allyl 

metal species via six-membered transition states. However, the above-mentioned 

pathways usually have some limitations such as the need to introduce chelating or 

coordinating groups, relatively harsh reaction conditions and/or low selectivity profiles. 

 

Scheme 1.6 Transition-metal-catalyzed strategies for C−C bond cleavage. 

Radical-type reactions rank among the most promising ways to enable C–C bond-

functionalization. This area has gained considerable momentum giving the multiple 

number of techniques that allows to harness the potential of open-shell intermediates. 

In addition, radical-mediated C−C bond cleavage34 reactions often occur under mild 

conditions, offering a technique that might rapidly and reliably assemble complex 

structures in late-stage diversification (Scheme 1.7). 

 

Scheme 1.7 Radical mediated strategies for the activation of C–C bonds. 
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rings, using strain-release as a driving force. In 1955, Tipper reported the first example 

about the oxidative addition of C–C bonds to Pt complexes, resulting in the formation 

of a platinum cyclobutane adduct (Scheme 1.8, top),35 the formation of compensate the 

thermodynamic disadvantage of C−C bond activation by affording stable ring expanded 

metallacyclic complexes (Scheme 1.8, bottom).36 

 

Scheme 1.8 Small ring system used in C−C bond activation models and common sites 

for metal insertion. 

Activation of cyclopropene,37 alkylidenecyclopropane38 and allylcyclopropane17g 

possessing rather high strain energies of 39 ~ 55 kcal/ mol36b is relatively easy to 

achieve, offering a great potential for the synthesis of more complex molecules. For 

example, Tang and coworkers summarized a series of transition-metal-catalyzed 

cycloaddition reactions that selectively functionalize C−C bonds in vinylcyclopropanes 

(VCP).39 These VCPs can undergo oxidative addition to produce metallacycle I or II, 

which then undergo some cycloaddition reactions (Scheme 1.9, top).40 In 1995, Wender 

reported a Rh(I)-catalyzed intramolecular [5 + 2] cycloadditions of VCPs with alkynes 

(Scheme 1.9, bottom),41 which disclosed a conceptually novel approach for the 

synthesis of fused 5,7-bicyclic cycloheptadienes. 
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Scheme 1.9 C−C Bond cleavage of VCPs. 

The C−C bonds adjacent to highly strained ketones are typically highly reactive as 

stable acyl-metal bonds can be generated by strain release. Indeed, numerous strategies 

have been designed along these lines42 by using strained cyclopropenones,36a, 43 

cyclobutanones,44 cyclobutenones,45 or cyclobutenediones46 (Scheme 1.10, top). For 

example, Zhao reported an interesting ring expansion that combines two different 

strained molecules where cyclobutanones and three-membered azaheterocycles are 

coupled to form structurally different N-heterocycles (Scheme 1.10, bottom).47 

  

Scheme 1.10 Transition-metal-catalyzed ring opening of cyclo-ketones. 
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methodologies. The latter originates from the presence of multiple, yet electronically 

identical, C–C bonds present in simple cyclopropanes (Scheme 1.11, A). The instability 

of the resulting metallocyclobutanes could be alleviated in a subsequent reaction in the 

presence of CO en route to stable metallocyclopentanones.49, 50 Additionally, Rh(I) 

catalysts could be inserted into the a-C−C bond of cyclobutanone (Scheme 1.11, B).51 
Later on, Sophie Rousseaux and John Bower highlighted the importance of directed 

metal insertion for C−C bond activation in heterosubstituted cyclopropanes such as 

cyclopropanols and cyclopropylamines containing directing groups (Scheme 1.11, C).52 

 

Scheme 1.11 Metal-catalyzed activation of non-activated cyclopropanes. 

In contrast to the wealth of strategies to promote C–C activation in small rings, the 

functionalization of unstrained C−C single bonds has received much less 
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of unstrained tertiary benzyl alcohols that utilize Pd catalysts and aryl bromides, 

resulting in the corresponding biaryl motifs (Scheme 1.12, bottom).56, 25 

 

Scheme 1.12 Transition-metal-catalyzed b-carbon elimination of unstrained alcohols. 

Transition metal-catalyzed C−CX bond cleavage (CX = CN, CO, COO) also offers 

innovative opportunities within the realm of C–C bond-functionalization.57, 58, 59 A 

number of metals such as Pd,60 Ni,58a Rh,61 Cu,62 among others,63 have been used to 

activate C−CN bonds. Two pathways are commonly accepted for enabling C−CN bond 

activation: (a) oxidative addition to low-valent transition metals;58a, 60 ,61 (b) silyl 

isocyanide deinsertion with Fe or Rh complexes (Scheme 1.13, top).64 On the other 

hand, the presence of carbonyl groups such as aldehydes or acid chlorides might 

facilitate the establishment of decarbonylative reactions, thus offering "traceless 
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alkyl

alkyl O M

b

a
cleavage of a

cleavage of b

alkyl M alkyl

O

M

+

+ alkyl

O

alkyl
favored

M-π interaction

 β-carbon elimination of metal alkoxides:

In 2001, Miura:

OH

R2
R2

R1
+

Br

Pd(OAC)2 (5 mol%)
PPh3 (15 mol%)

Cs2CO3 (2.0 equiv)

R2 = Me, Ph

o-xylene, 145 oC R1

unfavored

21 examples
7-77% yield



 

27 
 

  

Scheme 1.13 Two major mechanisms for C−CX (CX = CN, CO, COO) bond 

activation. 

Retroallylation and deallylation reactions of allylic compounds have also been 

explored in the context of C−C bond cleavage as a means to generate stereo-defined 

allyl metal compounds via six-membered chair-like transition states33, 65 (Scheme 1.14, 

top).66, 67 Alternatively, deallylation constitutes a type of C−C s-bond cleavage that 

involves the generation of carbanions by oxidative addition to low-valent metals68 or 

via addition/elimination cascade69 (Scheme 1.14, bottom). In this vein, Keisuke Nogi 

and Hideki Yorimitsu summarized the prospect of retro-allylation and deallylation via 

C−C bond cleavage.65 
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Scheme 1.14 Retro-allylation and deallylation of allylic compounds. 

1.2.2 Radical-Mediated C−C Bond Cleavage  

An innovative solution in modern chemistry is free radical chemistry which offers an 

alternative pathway to traditional two electron processes.70 As free radical species can 

be generated under mild conditions, selective C−C bond cleavage by free radical 

processes has also emerged as an attractive strategy for construction of new C−C and 

C-heteroatom bonds.71 Radical-mediated C−C bond cleavage is commonly driven by 

interaction of metal complexes or organic dyes with organic substrates via single 

electron transfer (SET) events which induces the formation of open-shell species. These 

processes often have unique selectivity, operate under mild reaction conditions, and 

excellent functional group tolerance. Typically, formation of alkyl radicals via C−C 

bond cleavage is usually triggered by N-, O-, or C-centered radical intermediates71 
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various C−N bond formation reactions (Scheme 1.15).72 Recently, the C−C bond 

cleavage mediated by nitrogen-centered radicals under mild conditions has attracted a 

lot of attention in the synthetic community, offering a new pathway to generate open-
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shell intermediates by extruding an unsaturated imine or nitrile surrogate. 

 

Scheme 1.15 C−C bonds cleavage from nitrogen-centered radicals (NCRs). 

Iminyl radicals typically require addition of oxime derivatives to promote homolysis, 

because of their weak N−O bond (BDE = 50 kcal/mol).73 Homolysis of the N−O bond 

producing iminyl radicals have been primarily accomplished through SET reduction or 

SET oxidation.72f In the 1990s, Zard reported that stannyl radicals initiates the 

formation of iminyl radicals (I) through homolysis of N−S bonds in sulphenylimines 

(Scheme 1.16, top).74 However, this reaction requires the use of toxic reagents such as 

Bu3SnH/AIBN, which may act as hydrogen atom donors resulting in undesirable 

pathways, hence preventing the desired functionalization. This drawback was addressed 

later on with a method based on O-carboxymethyl oxime derivatives (1.16c),75 which 

was a modification of the Barton's decarboxylation. The authors demonstrated that 

iminyl radicals can be produced by photolytic homolysis, with the resulting alkyl 

radical generated after b-fragmentation trapped by an electrophilic olefin (1.16d). 
Subsequently, Zard discovered other methods to reduce oxime acetates (1.16e) by 

utilizing Ni powder (Scheme 1.16).76 
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Scheme 1.16 Groundbreaking studies for the generation of iminyl radicals. 

Prompted by the studies of Zard, there has been a significant increase in the use of 

transition metals such as Fe, Cu, Ir and Ni to reduce oxime esters and to generate iminyl 

radicals.77 Comparing with the two-electron oxidative process of precious metals, these 

transition-metal-catalyzed fragmentation processes mainly undergo SET pathway to 

afford the targeted radical intermediates (Scheme 1.17). 
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Scheme 1.17 Transition-metal-catalyzed homolysis of N−O bond by SET. 

In recent years, photoredox catalysis have emerged as a powerful tool for rapidly and 

reliably generate open-shell intermediates, 78,79 including the formation of nitrogen-

centered radicals.72e Xiao and others discovered a number of transformations based on 

photoinduced reductive fragmentation of O-acyl oxime derivatives.80 For example, in 

2018, the authors reported that oxime esters undergo visible light-driven iminyl radical-

mediated C−C bond cleavage leading to a radical addition cascade reaction with various 

unsaturated systems (Scheme 1.18).80a 
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Scheme 1.18 Visible light-driven iminyl radical-mediated C−C bond cleavage. 

Prompted by Zard's early discoveries,75 Leonori reported an approach using 

carboxylic acids containing oximes as precursors to generate iminyl radicals. Upon an 

oxidative SET mechanism, carboxylates undergo bis-b-cleavage releasing carbon 

dioxide and acetone (Scheme 1.19).81 Subsequently, Leonori combined visible-light 

photo-oxidation and nickel catalysis to achieve cross-coupling of aryl/alkyl bromides 

or alkynes and to further expand the functionalization of unactivated sp3-hybridized 

carbons (Scheme 1.20)82, demonstrating the potential of this dual-catalytic system for 

the formation of C−C bonds. 
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Scheme 1.19 Visible light-induced ring-opening functionalization of a-imino-oxy 

acids. 

 

Scheme 1.20 Dual photoredox/nickel-catalyzed ring-opening arylations, vinylations, 

and alkylations of a-imino-oxy acids. 
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For example, amine radicals might be converted into carbon-centered radicals through 

irreversible C−C bond cleavage,83 thus setting the basis for designing future reactions. 

Recently, a series of strategies have been designed for enabling C–C bond-

functionalization via in situ generated on secondary amine-derived radical cations.84 

While these species might react with electron-rich fractions such as alkenes, alkynes 

and aromatic rings forming C(sp2/sp3)−N bonds (Scheme 1.21, top), Zeng reported that 

aminium radical cations produced from cyclopropylamine or cyclobutylamine 

substrates undergo irreversible ring opening induced by photocatalytic SET oxidation, 

enabling intermolecular [n + 2] (n=3, 4) cyclization reactions with alkenes, alkynes 

(Scheme 1.21, bottom).85 In 2020, Waser reported a ring-opening method to accomplish 

oxidative difunctionalization of N-cyclopropyl and N-cyclobutyl amides using 

Selectfluor as fluorine source and benzophenone as photocatalyst (Scheme 1.21, 

bottom).86 

 
Scheme 1.21 Secondary aminium radical cation-mediated C−C bond cleavage. 
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susceptible to dearomatization, thus offering a thermodynamic driving force for 

effecting C–C bond-cleavage.87 The most representative and well-known are the alkyl-

substituted Hantzsch esters (4-Alkyl-1,4-dihydropyridines (DHPs)), which are easy to 

prepare from various aldehydes.88 Mechanistic studies suggest that DHP can undergo 
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generates an amine radical, followed by C−C bond cleavage at the 4-position of the 

dihydropyridine ring,89 or (b) in the absence of a photocatalyst, the excited alkyl-DHP 

is a powerful reductant ([Ered* (Bn-DHP */ Bn-DHP+)] = 2.0 V vs. Ag/Ag+ in CH3CN), 

capable of reducing other reagents via single electron transfer pathway while 

undergoing homolytic cleavage to generate the targeted C(sp3)-centered radicals.90 

In 2014, Tang disclosed the first example of using alkyl-substituted Hantzsch esters 

as alkylating reagents.90 Subsequently, Nishibayashi,91 Yu,92 Molander,93 Melchiorre,94 

and others95 have contributed to the adoption of Hantzsch esters as a source of alkyl 

radicals under photoredox catalysis (Scheme 1.22). Notably, the Molander group has 

made important efforts to develop dual Ni/photoredox catalytic cross-coupling 

reactions by using 4-alkyl-1,4-dihydropyridines as nucleophilic coupling partners, and 

photoinduced metal-catalyzed cross-coupling reactions (Scheme 1.23).92, 93, 94, 96 

 

Scheme 1.22 Radical addition reactions of DHPs as alkyl radical precursors. 

 

Scheme 1.23 Dual metal/photo-redox catalytic cross-coupling reactions of DHPs as 

alkyl radical precursors. 
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In recent years, a series of disclosures have been reported for the generation of open-

shell intermediates via the intermediacy of pro-aromatic compounds87 (Scheme 1.24). 

Examples include (A) 2-substituted benzothiazolines which can be used as reagents for 

reductive radical acylation, alkylation, alkenylation, and alkynylation of electron-poor 

alkenes.97 (B) Dihydropyrazole intermediates, prepared in situ from a ketone, a 1,3-

diene and substituted hydrazine, which subsequently undergo C–C bond cleavage to 

form alkyl radical species.98 (C) 2,2-Disubstituted dihydroquinazolinones, which can 

be easily prepared from ketones and ortho-carbamoylaniline in one step.99 Based on 

this strategy, our group developed a nickel-catalyzed arylation and alkylation using 

these pro-aromatic precursors as adaptative C(sp3) handles.99b (D) Guangbin Dong’s 

discovery on pro-aromatic intermediates (D-PAI) derived from ketones have also been 

reported in the context of Cu-mediated olefination and deuteration.100 

 

Scheme 1.24 Different decarbonylative reagents via dearomatic C−C bond cleavage. 
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coupling enabled by the formation of 4-alkyl-1,4-dihydropyridazine, which can be 

obtained by the Hetero-Diels−Alder reaction of alkene and tetrazine (Scheme 1.25).101 
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Ni0 (Ln) (I), which reacts with the aryl bromide D to form the aryl-NiII(Ln)-Br 

intermediate (II) by oxidative addition. 

 

Scheme 1.25 Dealkenylative Ni-catalyzed cross-coupling enabled by 4-alkyl-1,4-

dihydropyridazine and photoexcitation. 
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peroxides,106 hypohalites,107 sulfenates,108 N-alkoxypyridine-2-thiones,109 and N-

alkoxyphthalimides for enabling such a transformation.110 The second method is 

selective and direct homolysis of O–H bonds. 

 

Scheme 1.26 Different ways to generate alkoxy radicals. 

In 1961, Barton devised a strategy for producing alkoxy radicals by using weak O–

NO bonding precursors (BDE O–NO = 37 Kcal/mol-1). The proposed mechanism is 

based on photolytic homolysis of nitrite to nitric oxide and b-fragmentation of an 

alkoxy radical A (Scheme 1.27, top).111 After cyclization, the tertiary alkyl radical B 

captures nitric oxide to produce the nitroso aldehyde C. Suarez's group devised a 

method for deconstructing steroidal lactols using iodobenzene diacetate (IBDA) and 

iodine a few years later (Scheme 1.27, bottom).112 Suarez's reagent (DIB) can form 
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Scheme 1.27 Early discovery of alkoxy radicals generated. 

In 2017, Chen reported a novel approach to promote an allylation/alkenylation of N-

alkoxyphthalimides derived from aliphatic alcohols via b-scission of alkoxy radicals 
under photoinduced single electron transfer of donor-acceptor complexes (EDA) 

(Sheme 1.28).110c Formation of the EDA complex between Hantzsch ester and N-

alkoxyphthalimide was critical, setting the basis for a single electron transfer that results 

in alkoxy radical intermediate prior to b-scission. 
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Scheme 1.28 b-scission of alkoxyl radials generated from EDA complex. 

In 2019, Chen disclosed an alternate pathway consisting of the formation of 

alkoxybenziodoxolones (BI–OR) using 1-acetoxy-1,2-benziodoxol-3(1H)-one (BI–

OAc).114 Under photoredox conditions, reduction of BI–OR leads to the formation of 

an alkoxy radical that sets the basis for a b-scission prior to reaction with a heterocycle 
via Minisci-type process (Scheme 1.29). 
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Scheme 1.29 Alkoxy radicals generated from BI–OR under photoredox catalysis. 

Giving the high bond dissociation energy of O–H bonds, chemists have designed 

strategies for easily generating alkoxy radicals.115 In 1960, Schaafsma discovered that 

CuII- and FeIII- can facilitate one-electron oxidation of cyclopropanol, resulting in a 

ring-opened alkyl radical intermediate.116 In 1972, Rocek discovered that MnIII, VV, and 

CeIV are suitable for one-electron oxidation of cyclobutanols.117 In the following 

decades, a series of strategies have combined the utilization of sub-stoichiometric 

amounts of AgI, MnIII, or CuI and oxidants to promote the homolysis of cycloalkanols 

and produce alkoxy radicals (Scheme 1.30, bottom).118 Under oxidative conditions, Mn–

X species are converted to the corresponding Mn+2–X species, setting the scene for a 

single-electron transfer (SET) prior to formation of an alkoxy radical (Scheme 1.30, 

top).102b 
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Scheme 1.30 Homolysis of O–H bonds by metals. 

Recently, PCET became a competitive pathway for generating alkoxy radicals under 

visible-light excitation via in situ generation of hydrogen bonding complexes between 

alcohols and bases.102d, 102e Baciocchi reported the presence of PCET events between 

hydroxyl groups of alcohols and adjacent aromatic radical cations.119 In 2016, Knowles 

reported the first proton-coupled electron transfer (PCET) activation of unstrained 

cycloalkanols under mild reaction conditions to achieve the hydrogenation of a broad 

scope of natural alcohol derivatives (Scheme 1.31).120 Furthermore, Knowles described 

that PCET might lead to homolytic activation of O–H bonds in secondary cycloalkanols. 

They disclosed a catalytic amount of tetrabutylphosphonium dimethyl phosphate can 

be used to directly activate O–H bonds of free alcohols by PCET and avoid the use of 

substrate-based aromatic groups (Scheme 1.32).121 
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Scheme 1.31 Proton-coupled electron transfer (PCET) activation of un-strained 

cycloalkanols. 

 

Scheme 1.32 Deconstruction/hydrogenation of secondary cyclic alcohols by PCET. 

Alternative methods for the generation of open-shell intermediates have been 

described via photoinduced ligand-to-metal charge transfer (LMCT) which undergoes 

a formal reduction of the metal, causing a directly selective homolysis of a metal-ligand 

bond, only allowing the coordinated R–OMn (M = Ce, Fe) bond to be oxidized and 

avoiding an over-oxidation (Scheme 1.33).122-125. For example, in 2019 Zuo described 
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(Scheme 1.34).126 Recently, Zeng found that readily available iron catalysts [Fe(Ot-

Bu)3 or Fe(acac)3/t-BuONa] can allow the generation of alkoxy radicals by LMCT of 

iron alkoxide to achieve the amination of cyclic alcohols as well (Scheme 1.35, 

right).127 Hu also reported an iron-catalyzed deconstructive hydrogenation of 

cycloalkanols via LMCT (Scheme 1.35, left).128 

 

Scheme 1.33 LMCT as a platform to generate alkoxy radicals. 

 

Scheme 1.34 C–C bond cleavage by using a CeIII photocatalyst. 
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Scheme 1.35 alkoxy radical generation from cycloalkanols via LMCT of Fe–OR. 

Zuo later on reported a synergistic nickel-catalyzed cross-coupling via 

dehydroxymethylarylation (Scheme 1.36).129 The authors used the specific modulation 

of benzoate ligands to optimize experiments by an automated high-throughput 

experimental platform to achieve a wide range of transformations of alcohols and aryl 

halides. The authors proposed that a ceriumIII benzoate complex(I) undergoes 

photoinduced electron transfer with DPA to produce a photoactive CeIV alcohol salt 

species (II). The homogeneous cleavage of the Ce–O bond via LMCT leads to the 
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of DPA and the excitation of the latter play a critical role in the reaction. 
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Scheme 1.36 Nickel-catalyzed dehydroxymethylarylation via LMCT. 

Radical-mediated decarboxylation functionalization studies have been explored for 
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materials (Scheme 1.37). Traditionally, this reactions operate by (a) ligation of the metal 

center followed by heterolytic cleavage with release of CO2, resulting in a formation of 

a carbanion or metal-stabilized carbanion (pathway I);130 (b) single electron oxidation 

prior to decarboxylation (pathway II)131e,f or by hydrogen atom transfer (HAT) 

(pathway III)132 resulting in the extrusion of CO2 and the formation of carbon 

radicals.131 Traditional decarboxylation procedures need high temperatures or powerful 

oxidants, while transition-metal-catalyzed or photocatalyzed direct radical 

decarboxylation from alkyl carboxylic acids can release CO2 to afford alkyl radicals 

under mild conditions. Doyle, MacMillan, and colleagues disclosed a seminal 

In 2021, Zuo:

OH +

CeCl3 (10 mol%), L-1 (35 mol%)
Ni(dMebpy)(H2O)Cl2 (1mol%)

DPA (1 mol%), Na3PO4
MeCN/DMSO, blueLED

selected examples

proposed mechanism

[CeIIIXn]

OH

O
O

HH

Ce

-H+

O CeIII

O CeIV
*

SET

hv

LMCT

Br
R

Ni

O O K

L-1

Me
Me

Me

MeMe

Me
Ph

Ph

86%

N
O

R

Ph
74%

N
Boc

N SMe
66%

N
Boc

66%
N

Boc

N
Boc

66%

O

O Ph
56%

Ph O

Ph51%

[DPA]*

hv

[DPA]

[DPA]

SET

LnNi0
Ar Br

LnNiIIBr
Ar

LnNiIIIBr
Ar

LnNiIBr
I

II

III

VI

VII

VIII

IV

V

X

Ar

IX



 

47 
 

metallaphotoredox scenario for directed decarboxylation of a-amino acids with aryl 
halides;133 (c) Decarboxylation could also be initiated via SET manifolds from 

carboxylic acid derivatives (pathway VI). Examples can be found in the work of 

Baran,134 Overman,135 and others136 by transforming the carboxylic acid into the 

relatively stable N-(acyloxy)phthalimides prior to reduction in the presence of a Ni 

catalyst134 or excited photocatalyst.131e,f 

 

Scheme 1.37 Radical-mediated decarboxylative functionalization. 

In addition to the methods described above, radical migration-mediated C−C bond 

cleavage137 (Scheme 1.38, left) or strain-release-driven C−C bond cleavage of [1.1.1] 

propellane derivatives138 (Scheme 1.38, right) have also been developed, but these 

protocols are outside the scope of this introduction. 

 

Scheme 1.38 Radical-mediated migration and strain-relief-driven strategies for C−C 
bond cleavage. 
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Carboboration forges a new C(sp2/sp3)−C bond and a new C(sp2/sp3)−B bond by 

simultaneously inserting a boron and carbon moiety across an unsaturated system. 

These kinds of reactions can proceed with different transition metals such as copper,140, 
142, 143 palladium,143, 144 and nickel145 and offer the possibility of establishing regio- and 

stereoselective 1,2-carboboration events. In particular, the utilization of alkenes,140c, 140e, 

140f alkynes,146 dienes or147 allenes148 with more than 20 different electrophiles offers 

the rapid and reliable assembly of chemical libraries (Scheme 1.39). Among them, 1,2-

carboboration reactions of alkenes have emerged as a tool for constructing complex 

molecules from simple and available olefin feedstocks. In particular, the final C(sp3)−B 

bonds can be used as linchpins for further transformations, thus enabling a series of 

C(sp3)−C bond-forming reactions (Scheme 1.40).141 Among the different protocols that 

are currently available, the utilization of copper-catalyzed 1,2-borylalkylation rank 

among the most versatile and powerful technique to forge C−C and C−B bonds in a 

simultaneous, yet site-selective, manner. 

 

Scheme 1.39 Transition-metal-catalyzed 1,2-carboboration of π-systems. 

 

Scheme 1.40 Carbofunctionalization based on 1,2-carboboration. 
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1.3.1 Cu-Catalyzed 1,2-Alkylboration Reactions  

Recently, our improved knowledge in ligand design has allowed the utilization of 

modular phosphines and N-heterocyclic carbenes (NHC) in the context of Cu-catalyzed 

reactions to forge C(sp3)–C linkages. These ligands have shown to be particularly 

important to stabilize alkyl-Cu intermediates and thus circumvent side reactions, while 

also greatly expanding the possibilities for bond-forming reactions. Among these, Cu-

catalyzed alkylboration of unsaturated bonds with alkyl halides has received significant 

attention.148 Specifically, organocopper intermediates139b, 149 can be obtained in situ by 

addition of Cu-B(OR)2 species to alkynes, alkenes or allenes. The mechanism of these 

reactions is proposed to operate via the formation of a copper alkoxide (A) that react 

with a diboron reagent en route to a borylcopper species (B) (Scheme 1.41). Then, 

migratory insertion with the unsaturated C–C bond forms an organocopper intermediate 

(C) which reacts with an alkyl halide by SET or SN2 to afford the alkylboration product 

and a copper halide (D) that regenerates the catalytically active species A in the 

presence of an alkoxide base. 

 

Scheme 1.41 Cu-catalyzed alkylboration of π-systems. 
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implemented a one-pot methylation/Suzuki-Miyaura coupling, allowing rapid access to 

highly functionalized alkenes. 

 

Scheme 1.42 Intermolecular alkylboration of alkynes using Xantphos ligand. 

In 2014, Cazin reported a comparable approach that used IMesCuCl as catalyst and 

alkyl halides as electrophiles to achieve alkylborylation of internal alkynes (Scheme 

1.43).150 The use of the N-heterocyclic carbene ligand allowed the reaction to be carried 

out in air with a 2 mol% low catalyst loading. 

 

Scheme 1.43 Alkylboration of alkynes using IMes ligand. 
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Cy-Xantphos results in internal borylated products. On the contrary, the less bulky 

Xantphos ligand promote migratory insertion with the alkene substituents away from 

the Bpin group, resulting in terminal borylated products. 

 

Scheme 1.44 Ligand-controlled regioselective Alkylboration of alkenes. 
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Scheme 1.45 Intramolecular alkylboration of alkenes or allenes. 

In addition to traditional alkylation reagents, strategies for generating 

diastereoselective cyclobutanes, cyclopentanes and cyclohexanes using 

methanesulfonates or phosphate-based retention groups in intramolecular alkylboration 

have also been reported.140b, 154 Nevertheless, both intermolecular and intramolecular 

1,2-carboboration of π-systems reactions remain a great challenge for transition metal-

catalyzed 1,2-alkylboronization to construct sp3 carbon-centered molecules. 
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form a Ni(I)−B complex, which promotes syn-migratory insertion into a double bond 

to form alkyl−Ni(I) species. A final reductive elimination with an appropriate 

electrophile results in the targeted C–C bond via the intermediacy of alkyl−Ni(III) 

species (Scheme 1.46). Unlike Cu catalysts, the transient alkyl-Ni intermediates 

produced after migratory insertion of nickel-boron species into double bonds might be 

susceptible for b-hydride elimination and migratory insertion, setting the basis for 

establishing a new rationale for obtaining otherwise inaccessible compounds.157  

 

Scheme 1.46 Nickel-catalyzed 1,2-carboboration of alkenes. 

In 2017, Brown reported the first Ni-catalyzed three-component 1,2-arylboration 

reaction of unactivated alkenes. (Scheme 1.47).145 A wide range of 1,2-disubstituted 

alkenes which included cyclic alkenes could be employed with excellent yields. The 

main alkyl−Ni(I) intermediate is proposed to be more resistant to b-hydride elimination 
than an alkyl−Pd (II) species. As a result, a directing group was not required to mitigate 

b-hydride elimination. 

 

Scheme 1.47 Ni-catalyzed 1,2-arylboration reaction of unactivated alkenes. 
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various trisubstituted alkenes (Scheme 1.48).158 The authors suggested that DMA acts 

as a weakly coordinating ligand, stabilizing the alkylnickel(I) intermediate and 

inhibiting b-hydride elimination. Interestingly, the utilization of 1,2-disubstituted 
olefins results in a solvent-dependent regiodivergent and diastereoselective 

arylboration without directing groups (Scheme 1.49 top). The authors proposed that the 

utilization of DMA results in the formation of a [Ni]-Bpin (Scheme 1.49 bottom). The 

phenyl-[Ni]-complex is formed by oxidative addition of ArBr followed by reductive 

elimination to form the product. In the case of reactions using toluene, migratory 

insertion is thought to occur from ArNiIIBr complex which determines the 

regioselectivity. Then the benzyl-[Ni]-complex undergoes transmetalation with B2pin2, 

which is followed by reductive elimination to form the desired product. 

 

Scheme 1.48 Ni-catalyzed arylboration of various trisubstituted alkenes. 
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Scheme 1.49 Solvent-dependent regiodivergent and diastereoselective arylboration. 

In 2019, Yin reported a Ni-catalyzed 1,2-arylboration of vinyl arenes with a variety 

of aryl halides as suitable electrophiles (Scheme 1.50, top).159 Given that nickel 

catalysis has been used to form C(sp3)-C(sp3) bonds by reductive elimination of dialkyl-

[Ni] complexes, Brown tried to use benzyl chlorides as a source of sp3-architectures 

and succeeded in achieving the stereoselective controlled benzylboration of unactivated 

alkenes (Scheme 1.50, bottom).160  

 

Scheme 1.50 Other Nickel-catalyzed methods for 1,2-carboboration of alkenes. 

In 2016, Nakao discovered a novel catalytic system (Scheme 1.51) using a Ni/Cu 

cooperative catalysis to achieve the 1,2-arylboration of vinyl arenes161 with aryl 

chlorides and tosylates, which were never used before in carboboration reactions. 

 

Scheme 1.51 Ni/Cu cooperative catalyzed 1,2-arylboration of vinyl arenes. 
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Scheme 1.52 Ni-catalyzed arylboration of conjugated dienes. 

Taken together, the available nickel-catalyzed 1,2-carboborylation portfolio of π-

systems is mainly limited to the use of electrophilic reagents such as aryl halides and 

benzylic halides. In addition, the development of nickel-catalyzed 1,2 alkylborylation 

as a platform to build up more complicated sp3 architectures remained challenging at 

the beginning of this doctoral thesis. 

1.4 General Aim of This Thesis 
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will be pursued: 

 

★ To study the merger of nickel and photoredox catalysis as a vehicle to enable the 

cross-coupling reaction of aliphatic alcohols and organic halides via sp3 C–C cleavage. 

★ To explore a general and efficient protocol for the C(sp3)-trifluoromethylation of 

aliphatic carbonyl or alkene precursors via inert sp3 C–C bond cleavage.  

★ To develop a nickel catalyzed 1,2-alkylboration of allenes as a tool to synthesize a 
variety of alkenes which will be powerful intermediates for further functionalization.  
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Dual Catalytic Strategy for Forging sp2−sp3 and sp3−

sp3 Architectures via b-Scission of Aliphatic Alcohol 

Derivatives 
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2.1 General Introduction 

Transition-metal-catalyzed cross-coupling reactions have offered a series of 

innovative strategies to forge C–C bonds in the field of synthetic organic chemistry.1 

Not surprisingly, these techniques have received considerable echo in both academic 

and industrial laboratories. Conventional transition-metal-catalyzed C–C bond-forming 

reactions rely on the combination of an electrophile and a nucleophilic reagent, 

typically stoichiometric organometallic reagents such as Grignard or organozinc 

reagents.2 Unfortunately, the latter are oftentimes particularly sensitive, require a 

previous synthetic procedure for their preparation and in most instances specialized 

techniques are mandatory for their execution, thus limiting the application profile that 

these platforms miht have for building up sp3 carbon architectures.3 In recent years, 

cross-electrophile coupling reactions have become a powerful alternative to 

nucleophilic regimes, and have attracted considerable attention due to the ready 

availability of electrophilic partners and the exceptional mild conditions that are used 

for forging sp3 architectures.3, 4-6 Among different transition metals, Ni catalysts have 

offered interesting solutions in the field of cross-electrophile reactions and reductive 

coupling events.3-7 The populatiry of Ni is partially ascribed to its low electronegativity 

and reduction potentials, making it particularly suited for promoting facile oxidative 

addition and single-electron transfer processes, giving access to multiple oxidation 

states and therefore ample opportunities to forge sp3 architectures via multiple catalytic 

manifolds.7-10 Despite the advances realized, these most of these transformations 

require prefunctionalizion at the targeted sp3 site, and therefore considerable attention 

should be devoted to the development of techniques that harness the potential of sp3 

C−H11 or C−C linkages12 as adaptive nucleophilic handles.  

2.1.1 sp3 C−C Bond Formation via Ni-Catalyzed Reductive Coupling 

Despite the considerable progress in Pd-catalyzed cross-coupling reactions, the 

means to forge sp3 architectures in these endeavors have been hindered,13 at least at 

some extent, by the propensity of alkyl-Pd complexes towards parasitic b-hydride 

elimination pathways.13a,b, 14 These observations prompted the utilization of Ni catalysts 

for these purposes due to its low tendency for promoting b-hydride elimination(Scheme 

2.1).7, 15, 16 In addition to a series of elegant disclosures that demonstrated the ability of 
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classical nucleophilic/electrophilic regimes for forging sp3 architectures, we have 

witnessed tremendous progress in the area of Ni-catalyzed reductive couplings17 that 

make use of simple, yet readily available, starting materials such as carboxylic acids, 

amines, alcohols or unactivated olefins, thus offering innovative pathways for rapidly 

and reliably access molecular complexity, even in the context of late-stage 

functionalization. 

 

Scheme 2.1 General characteristics of nickel catalysts. 

Initial progress in the field of Ni-catalyzed cross-electrophile couplings was focused 

on the utilization of metallic reductants such as Mn or Zn, providing the source of 

electrons that is required to effect turnover when coupling two different electrophiles.2c, 
3, 7 In 2010, Weix developed a Ni/Mn C(sp2)−C(sp3) selective cross-coupling of aryl 

iodides with alkyl iodides (Scheme 2.2, top).6 Both a bipyridyl and a phosphine ligand 

were used to produce high cross-selectivities. The authors ruled out the intermediacy 

of organomanganese reagents by the successful utilization of TDAE in lieu of Mn;18 

careful, however, must be taken when generalizing this as the utilization of a different 

reductant doesn´t necessarily rule out whether the presence of Mn causes a mechanistic 

stiwtch. Still, the authors suggested a mechanism (Scheme 2.2, bottom) consisting of 

oxidative addition to Ni0 complex (I) and interception of the corresponding Ni(II) with 

an alkyl radical en route to a NiIII intermediate (III). A final reductive elimination 

delivers the product and generates a NiI halide complex (IV) that can subsequently react 

with the alkyl halide to promote the formation of the alkyl radical VI and a NiII (V) that 

ultimately is reduced to the propagatinc Ni0 (I). 
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Scheme 2.2 Ni-catalyzed reductive cross-coupling of aryl halides with alkyl halides. 

Following the seminal work of Weix, many research groups provided a series of 

alternative procedures within the area of nickel-catalyzed reductive cross-coupling 

reactions.4b Indeed, a variety of different sp3 electrophiles19 have been used with success, 

including epoxides,20 aziridines,21 alkyl sulfones,22 phosphates,23 N-

hydroxyphthalimide (NHPI) esters,24 Katritzky salts9,10 or oxalates25 among others 

(Scheme 2.3).19  
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Scheme 2.3 Typical C(sp3) electrophiles for the reductive cross-coupling. 

In 2016, Baran26 and Weix24 independently reported the formation of sp3 C−C bonds 

via Ni-catalyzed decarboxylative cross-coupling events (Scheme 2.4). The authors 

utilized alkyl carboxylic acids as convenient, stable and available "workhorse" building 

blocks for alkyl fragments via the formation of NHPI esters that are susceptible to 

single-electron transfer en route to alkyl radical intermediates. Baran disclosed Ni-

catalyzed decarboxylative cross-coupling of arylzinc reagents and NHPI esters 

(Scheme 2.4, left), whereas Weix and co-workers made use of NHPI esters with Zn as 

reductant (Scheme 2.4, right). Later on, the scope of these transformations was 

expanded to alkynylation,27 acylation28 and enantioselective vinylation.29 

 

Scheme 2.4 Ni-catalyzed decarboxylative coupling of NHPI esters. 

Historically, transition-metal-catalyzed cross-coupling reactions to forge 

C(sp3)−C(sp3) bonds30 can be traced back to the early work of Kharasch in the 1950s.31 

Indeed, the vast majority of approaches to tackle this problem involved the reductive 
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homocoupling of alkyl halides.32 It was not until 2011 that Gong reported the first 

nickel-catalyzed cross-reduction coupling of two different alkyl halides (Scheme 2.5, 

top left).33 They found that high selectivity and high yields could be obtained by using 

excess amounts of primary alkyl bromide with Zn as the reductant. In addition, the 

authors found that replacing Zn by B2Pin2 improved the chemoselectivity (Scheme 2.5, 

top right).34 The authors noted that the formation of Ni-Bpin complexes may be the key 

factor to differentiate the coupled alkyl partners and produce cross-coupling products 

with greater selectivity. In addition, control experiments ruled out the intermediacy of 

organoboron reagents. In the Ni/B2Pin2 system, the reaction was proposed to first 

undergo SET of NiI-Bpin (VI) to the alkyl halide, followed by radical recombination to 

form an alkyl-NiIII intermediate (VII) and reductive elimination to deliver the targeted 

product(Scheme 2.5, bottom). 
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Scheme 2.5 C(sp3)−C(sp3) bond formation via Ni-catalyzed reductive coupling with 

either Zn or B2pin2 as reductants. 

2.1.2 sp3 C−C Bond Formation by Nickel/Photoredox Cross-Coupling 

Photoredox catalysis have offered new opportunities in synthetic organic endeavors 

to promote reactions via distinctive mechanistic manifolds.35 In the absence of 

stoichiometric strong oxidants or high-energy light irradiation, the utilization of 

photoinduced SET and ET increases the possibilities for establishing high-valence and 

excited-state catalysis. In addition, the combination of nickel and photoredox dual 
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catalysis has shown to be a flexible platform for the creation of novel, highly realizable 

synthetic methods due to the proclivity of photoredox manifolds to generate open-shell 

intermediates and the flexibility for bond-formation associated to the field of Ni 

catalysts.5d,36 

As shown in Scheme 2.6, a canonical nickel/photoredox dual catalytic system is 

initiated by oxidative addition of an aryl electrophile to Ni0. Subsequently, interception 

of the in situ generated NiII intermediate(II) with an alkyl radical obtained via a 

photoinduced event37 leads to the targeted product via reductive elimination and a 

NiILnX intermediate (IV) that is subjected to a final single-electron transfer to recover 

back the propagating Ni0 speies.38 The corresponding alkyl radicals can be obtained 

from a series of different precursors including simple carboxylic acids,39 electrophilic 

C(sp3) reagents,40, 41 organoboron reagents,42 organosilanes43 or aldehydes41 among 

many others.41 In addition, alkyl radicals can also be obtained via hydrogen atom 

transfer (HAT) processes or C−C bond cleavage. Additionally, amines and silanes are 

commonly used as reductants to quench the excited state of the photocatalys in 

nickel/photoredox dual catalytic systems instead of the common heterogeneous 

reductants (eg, Zn, Mn) in traditional reductive coupling reactions.5d, 35c, 35d, 44  
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Scheme 2.6 General Ni/photoredox dual catalytic cycle. 

In 2014, Molander described a nickel/photoredox catalyzed cross-coupling using 

alkylboronate nucleophiles.45 The report details the use of benzyl trifluoroborate salts 

as benzyl radical precursors in combination with aryl bromides for C(sp2)−C(sp3) bond-

formation (Scheme 2.7, top), thus circumventing the traditionally sluggish 

transmetallation step of boronic acids in Suzuki-Miyaura couplings. Subsequently, 

Molander further explored the use of a series of alkyl bis(catecholate) silicates as radical 

precursors for reaction with aryl bromides under nickel/photocatalyst conditions 

(Scheme 2.7, bottom).46 
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Scheme 2.7 Dual catalyzed C(sp2)−C(sp3) cross-coupling using alkyl trifluoroborates 

or alkyl bis(catechol) silicates. 

In 2016, MacMillan disclosed a metallaphotoredox scenario for the reductive cross-

coupling of aryl bromides and alkyl bromides without the use of metal reductants 

(Scheme 2.8).47 The reaction proceeded via the intermediacy of bromine radicals that 

can abstract the hydrogen atom of tris(trimethylsilyl)silane to create a stable silyl 

radical intermediate by HAT. Subsequently, an alkyl radical is generated via halogen 

atom abstraction (XAT) which generate a NiIII intermediate (III) prior to reductive 

elimination. Turnover is achieved by final single-electron transfer to the NiI species 

(IV), thus recovering back the propagating Ni0Ln (I). It is worth noting that Lei 

independently reported an otherwise similar endeavor by using Et3N as reducing agent, 

both quenching the excited-state of the photocatalyst and serving as a XAT reagent to 

promote the formation of alkyl radicals (Scheme 2.9).48 
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Scheme 2.8 Silyl-radical-mediated cross-electrophile coupling. 

 

Scheme 2.9 Nickel catalyzed reductive coupling with EtN3 as XAT reagent. 

In addition, Katritzky salts10 were identified as nucleophilic handles in 

metallaphotoredox catalysis (Scheme 2.10).49 Mechanistically, Katritzky salts are 

susceptible to single-electron transfer from the excited state of the photocatalyst or 

Ni0Ln complexes to form the corresponding alkyl radical intermediate. 
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Scheme 2.10 Ni/photoredox-catalyzed cross-coupling with Katritzky salts. 

In 2016, Molander50 and Doyle51 independently reported that metallaphotoredox 

scenarios could be initiated by hydrogen atom abstraction (HAT) with simple ethereal 

solvents via the intermediacy of either bromine or chlorine radicals. Alternative HAT 

agents such as pyrrolidine derivatives.52 and polyoxometalate photocatalyst 

tetrabutylammonium decatungstate (TBADT)53 have been recently described. In 

addition, our research group also contributed to this field by proposing the utilization 

of simple, yet modular, diaryl ketones as triplet photocatalysts in lieu of the commonly 

utilized Ir or Ru photocatalysts with the advantage of avoiding the need for additional 

HAT reagents54 (Scheme 2.11).55 
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Scheme 2.11 Alkyl-aryl dual cross-coupling mediated by HAT. 

MacMillan and Doyle reported that abundant carboxylic acids are suitable candidates 

for generating alkyl radicals within a metallaphotoredox event in the context of sp2–sp3 

bond-forming reactions (Scheme. 2.12, top).56 Later on, the authors further expanded 

this technique to accommodate alkyl bromides as electrophilic partners (Scheme. 2.12, 

bottom).57 
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Scheme 2.12 Ni/photoredox-catalyzed sp3 C−C decarboxylation cross-coupling. 

The utilization of C–C bond-cleavage as a manifold for generating alkyl radicals 

within the context of metallaphotoredox catalysis was demonstrated by Molander when 

utilizing alkyl-substituted Hantzsch esters (4-Alkyl-1,4-dihydropyridines (DHPs)59 in 

combination with aryl halides60 (Scheme 2.13, right) or acyl halides in situ61 (Scheme 

2.13, left). Specifically, an oxidative SET sets the basis for C–C bond-cleavage to 

release alkyl radicals, with aromatization being the thermodynamic driving force that 

ultimately generates simple pyridine derivatives.59 
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Scheme 2.13 Ni/photoredox-catalyzed cross-coupling with alkyl DHP derived from 

saccharide analogues. 

2.1.3 Nickel-Catalyzed Cross-Coupling Using Aliphatic Alcohols as 

sp3-Carbon Handles 

Aliphatic alcohols rank among the most widespread and naturally abundant organic 

compounds 62 (Scheme 2.14, top). Although aliphatic alcohols have been used as a 

vehicle to produce oxygen-centered nucleophiles under basic conditions,63 their 

utilization as sp3 carbon handles is not commonly practiced as one might initially 

anticipate and certainly less common than the utilization of carboxylic acids and alkyl 

halides (Scheme 2.14, bottom).64,65 
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Scheme 2.14 Aliphatic alcohol motifs as sp3-counterparts. 

One of the fundamental challenges involved in the utilization of aliphatic alcohols as 

sp3 nucleophilic handles is the high bond dissociation energy to undergo sp3 C–OH 

cleavage (BDE) ≈ 96 kcal/mol).66 However, this challenge has been alleviated by the 

conversion of alcohols into their activated congeners such as esters,25b sulfonates,22 

phosphates,67 and ethers,68 making these susceptible for activation via oxidative 

addition with transition metals or via single-electron transfer when utilizing xanthates,69 

phosphites,65c and oxalates70 (Scheme. 2.15).  

 

Scheme 2.15 The mode of C(sp3)−O bond cleavage. 
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halides71 (Scheme 2.16). The authors proposed a mechanism consisting of nucleophilic 

OHO

HO
OH

OH

OH

β-D-Galactopyranose

N
Ar

OH

O
Ar = p-FC6H4

Vytorin®

O

OH

tetrahydrofurfuryl 
alcohol

feedstocksbiological relevance

Ph

OH

 Aliphatic alcohol motifs as sp3-counterparts

No. of commercial alkyl sources vs No. of cross coupling reactions

2x106 1x106

R I

R Br

R Cl

R COOH

R OH

1x105

limited strategies for alcohols

Me OH

Me OH

Methanol

Ethanol

R

RR
OH

96 kcal/mol

high energetic barrier

SETOH

OR [M]
[M] OR

[RP]

[RP]:

OR = O

O

X O S
O Ar

O O P
O OR’

OR’

O S
O

SR’
O

O

O

OH
O P
X Ar

Ar

C–O bond activation
Transition metal active the  C–O bond

oxidative addition

Homolytic activation of C–O bond

R



 

100 
 

cobalt(I) species that are interfaced with a Ni-catalyzed endeavor in the presence of Mn 

as the terminal reductant. 

 

Scheme 2.16 Dual Ni/Co catalyzed reductive cross-coupling with alkyl 

toluenesulfonate. 

Inspired by the pioneering work of Barton72 when utilizing xanthates or oxalates as 

radical precursors, MacMillan and Overman reported a a technique that harness the 

potential of oxalates as nucleophilic handles for C(sp3)–C(sp2) bond-forming reactions 

by utilizing a photoredox scenario.73 Upon single-electron oxidation, oxalates generate 

two molecules of CO2 and alkyl radicals that can be intercepted with an appropriate 

electron acceptor (Scheme 2.17). In addition, Molander employed benzyl xanthates as 

radical precursors74 in a formal deoxygenative C(sp3)-arylation protocol (Scheme 2.18). 

In 2021, Diao described a cross-coupling technique to generate sp3 C-aryl and 
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dihydropyridine (DHP) as the activating group followed by C–O bond homolytic 

cleavage to produce glycosyl radicals (Scheme 2.19). 

 

Scheme 2.17 Dual-catalytic cross-coupling reactions using oxalates as radical 

precursors. 

 

Scheme 2.18 Dual-catalytic cross-coupling reactions using xanthates as radical 

precursors. 

 

Scheme 2.19 Dual-catalytic cross-coupling reactions using DHP as radical precursors. 
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In 2021, MacMillan developed a strategy for the direct deoxygenative cross-coupling 

of sp3-hybridized alcohols (Scheme 2.20).76 The authors made use of a N-heterocyclic 

carbene salt to activate the aliphatic alcohol prior to single-electron transfer en route to 

the corresponding alkyl radical that can finally be interfaced within the context of a Ni-

catalyzed endeavor. 

 

Scheme 2.20 Alcohol deoxygenative cross-coupling via NHC-mediated C–O bond 

homolytic cleavage. 

An alternative route to using aliphatic alcohols as nucleophilic sp3 handles is to 
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corresponding b-scission.78g  

b-scission of cyclic alkoxy radicals is controlled by strain release, with a favorable 

reaction for particularly strained cyclopropyl rings (Scheme 2.21). Secondly, the 

thermodynamic stability of the alkyl radicals generated by b-scission largely dictates 

the chemoselectivity, and the C–C bond energy is affected by the different substituents 

adjacent to the b-position of the alcohol.79 

 

Scheme 2.21 The mode of C(sp3)−C(sp3) bond cleavage via alkoxyl radical. 
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Challenge:
➤ high energetic barrier to cleavage
➤ driving force of C—C bond cleavage
➤  via  HAT competing pathway

 C–C Bond Cleavage via Alkoxyl Radical

105 kcal/mol

O H
C C

R
R

R

O

R R
β-scission

Selective Assessment

Strain Release Effect

O

Ea (Kcal mol-1)

O O O

Reactivity: > > >

2.8 7.7 15.4 20.7

Rate Constants and Activation Energies
H3C

CH2CH3

O
CH2CH3CH3

k(s-1) = 2.2 x 102 k(s-1) = 1.4 x 102

Ea (Kcal mol-1) = 14.9 Ea (Kcal mol-1) = 11.7

CH(CH3)2O

CH3 CH3

CH3CH4 H3C CH CH3

1 : 50

+



 

104 
 

 

Scheme 2.22 Ni/photo catalyzed ring-opening arylation from cyclic benzyl alcohols. 
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2.2 General Aim of the Project 

We wondered whether we could harness the potential of aliphatic alcohols – readily 

available precursors that are particularly prevalent in a myriad of biologically-relevant 

molecules – as adaptive sp3 nucleophilic handles for forging sp3 architectures via b-
scission events. Specifically, we aimed at designing a generic platform for that could 

be applied across a wide number of alcohols and organic halides, thus becoming a 

powerful strategy for medicinal chemists when attempting late-stage diversification in 

clinical candidates. Taking into consideration the work of Baran and Chen on the 

utilization of NHPI esters, we anticipated that the ease at which these precursors 

generate alkyl radicals might be interfaced with a Ni-catalyzed event for generating an 

array of sp3 C–C bond-forming reactions (Scheme 2.23). 

 

Scheme 2.23 Aliphatic alcohol motifs as adaptive sp3 nucleophilic handles. 
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2.3 Dual Catalytic Strategy for Forging sp3 C–C Architectures 

via β-Scission of Aliphatic Alcohol Derivatives 

2.3.1 Optimization of the Reaction Conditions 

We chose 2-phenethoxyisoindoline-1,3-dione (1t) as starting precursor, as b-scission 
would generate a stable benzyl radical prior to the targeted C–C bond-forming reaction 

(Scheme 2.24). We found that the utilization of 1-bromo-4-(trifluoromethyl) benzene 

(2a), Ir(ppy)2(dtbpy)PF6 as photocatalyst, NiBr2·DME as nickel source, dtbpy as ligand, 

Hantzsch Ester (HE) as reductant, and TBAB in DMA under blue LEDs irradiation 

delivered 20% of 3t. Under these conditions, a large amount of trifluoromethylbenzene 

and significant amounts of 4,4'-bis(trifluoromethyl)-1,1'-biphenyl were observed in the 

crude mixtures. It is worth noting, however, that the utilization of TMEDA or (iPr)2NEt 

as reductants did not lead to the targeted products, thus reinforcing the notion that HE 

might not merely be a reductant. 

 

Scheme 2.24 Initial test for reactivity. 

Our optimization began by evaluating the reaction of 1a – readily available from 

simple tetrahydrofurfuryl alcohol – with 4-trifluoromethylbromobenzene 2a (Table 2.1). 

When utilizing polar aprotic solvents such as DMA, NMP and DMF, good yields were 

obtained, likely due to their ability to coordinate metal centers. While THF also 

performed relatively well, the utilization of aprotic solvents that are favorable for 

radical-type reactions82 such as acetonitrile, and acetone gave lower yields. Similarly, 

non-polar solvents such as toluene led to poor yields.  

O N

O

O Ir(ppy)2(dtbpy)PF6 (1 mol%)    
NiBr2·DME (10 mol%)   

dtbpy (15 mol%)
+

Br

CF3
CF3

HE (2.0 equiv) 
TBAB (1.0 equiv)

DMA (0.25 M), blue LEDs

0.1 mmol
1.0 equiv

1.5 equiv isolated yield 20%
2a 1t 3t
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Conditions: a 2a (0.10 mmol), 1a (0.15 mmol), NiBr2·diglyme (10 mol%), dtbpy (15 mol%), 
Ir(ppy)2(dtbpy)PF6 (2 mol%), HE (0.15 mmol), K2CO3 (0.10 mmol), in solvent (0.25 M) at 40 °C under 
irradiation of blue LEDs with a fan for 18 hours. b 19F NMR yields using 1-fluoro-3-nitrobenzene as 
internal standard. HE = Diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate. 

Table 2.1 Screening of solvents.a 

Next, we focused our attention on the utilization of photoredox catalysts with 

different redox potentials such as [Ir(ppy)2(dtbbpy)]PF6 (E1/2[IrII/IrIII] = -1.51 V vs. SCE 

in MeCN), Ir(dFCF3ppy)2(dtbpy)PF6 (E1/2[IrII/IrIII] = -1.37 V vs. SCE in MeCN), 

[Ru(bpy)3]Cl2 (E1/2[RuI/RuII] = -1.36 V vs. SCE in MeCN), 4-CzIPN E1/2[PC-1/PC] = -

1.24 V vs. SCE in MeCN) and MesAcrClO4 (E1/2[PC-1/PC] = -0.57 V vs. SCE in MeCN). 

As shown in Table 2.2, the utilization of iridium-based photocatalysts gave rise to 3a in 

excellent yields. Similar yields were obtained with 4-CzIPN, so this photocatalyst was 

used in subsequent optimization due to its availability. Note, however, that a non-

negligible 63% yield was found in the absence of photocatalyst (entry 6), indirectly 

pointing at the possibility that the Hantzsch ester (HE) might generate an electron 

donor-acceptor (EDA) complex with 1a. 

 

2a 1a

O O N

O

O

Ir(ppy)2(dtbpy)PF6  (2 mol%)    
NiBr2·diglyme (10 mol%)   

dtbpy (15 mol%)
+

Br

CF3

O
CF3

3a

HE (1.5 equiv) 
K2CO3 (1.0 equiv)

Solvent (0.25 M), blue LEDs, 40 oC

Entry Solvent 3a Yield (%)b

1
2
3
4
5
6
7
8
9

10

DMA
DMF
NMP

DMSO
THF

CH3CN
Acetone
PhMe

NMP (0.5M)
NMP (0.15M)

54
73
87
8

61
6
5
3

76
85

Entry 3a Yield (%)b

1
2
3
4
5
6

[Ir(ppy)2(dtbpy)]PF6
Ir(dFCF3ppy)2(dtbpy)PF6

[Ru(bpy)3]Cl2
4-CzIPN

MesAcrClO4
no PC

87
84
51
84
54
63

2a 1a

O O N

O

O

PC  (2 mol%)    
NiBr2·diglyme (10 mol%)   

dtbpy (15 mol%)
+

Br

CF3

O
CF3

3a

HE (1.5 equiv) 
K2CO3 (1.0 equiv)

NMP (0.25 M), blue LEDs, 40 oC

PC
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Conditions: a 2a (0.10 mmol), 1a (0.15 mmol), NiBr2·diglyme (10 mol%), dtbpy (15 mol%), PC (2 
mol%), HE (0.15 mmol), K2CO3 (0.10 mmol), in NMP (0.25 M) at 40 °C under irradiation of blue LEDs 
with a fan for 18 hours. b 19F NMR yields using 1-fluoro-3-nitrobenzene as internal standard.  

Table 2.2 Screening of photocatalysts.a 

Interestingly, a significant decrease in yield was found when utilizing (iPr)2NEt or 

Et3N instead of HE, whereas no reaction was observed for TMEDA (Table 2.3). This 

result indicates a non-effective quenching of the photoexcited state or the lack of EDA 

complex with the substrate. It is worth noting that the utilization of other substituted 

HE did not have a significant effect on reactivity (entry 5). 

 

Conditions: a 2a (0.10 mmol), 1a (0.15 mmol), NiBr2·diglyme (10 mol%), dtbpy (15 mol%), 4-CzIPN 
(2 mol%), reductant (0.15 mmol), K2CO3 (0.10 mmol), in NMP (0.25 M) at 40 °C under irradiation of 
blue LEDs with a fan for 18 hours. b 19F NMR yields using 1-fluoro-3-nitrobenzene as internal standard. 
c 4-Ph-HE = Diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate. 

Table 2.3 Screening of reductants.a 

Next, we turned our attention to studying the influence of the nickel pre-catalysts 

(Table 2.4). NiBr2·diglyme still proved to be optimal, as other nickel catalysts such as 

NiCl2·DME, Ni(COD)2 and NiI2 led to moderate yields (entries 3-4, entry 6). 

Decreasing and increasing the loading of NiBr2·diglyme didn’t promote the yield 

(entries 9-10). As expected, no product was generated in the absence of nickel 

precatalysts (entry 11). 

Entry 3a Yield (%)b

1
2
3
4
5
6

HE
TMEDA
(iPr)2NEt

Et3N
4-Ph-HEc 

no HE

84
0
6

42
80
0

Reductant

2a 1a

O O N

O

O

4-CzIPN (2 mol%)    
NiBr2·diglyme (10 mol%)   

dtbpy (15 mol%)
+

Br

CF3

O
CF3

3a

Reductant (1.5 equiv) 
K2CO3 (1.0 equiv)

NMP (0.25 M), blue LEDs, 40 oC
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Conditions: a 2a (0.10 mmol), 1a (0.15 mmol), Ni cat. (10 mol%), dtbpy (15 mol%), 4-CzIPN (2 mol%), 
HE (0.15 mmol), K2CO3 (0.10 mmol), in NMP (0.25 M) at 40 °C under irradiation of blue LEDs with a 
fan for 18 hours. b 19F NMR yields using 1-fluoro-3-nitrobenzene as internal standard.  

Table 2.4 Screening of nickel pre-catalysts.a 

Taking into consideration that the ligands might modulate the properties of the metal 

atom, we set out to investigate their effect on the reaction outcome (Table 2.5). Among 

all ligands examined, we found that 4,4′-dibutyl-bipyridine (dtbpy) afforded the best 

results (entry 1) when compared to similar bipyridyl backbones containing different 

electron properties (entries 1-5). Bipyridines possessing a 6-methyl group inhibited the 

reaction (entry 4, entry 7) whereas the utilization of 1,10-phenanthroline ligands (L8) 

resulted in lower yields. In addition, tridentate ligands such as L6 or phosphorus ligands 

delivered traces, if any, of the targeted 3a.  

 

Entry 3a Yield (%)b

1
2
3
4
5
6
7
8
9

10
11

NiBr2·diglyme
NiBr2·glyme
NiCl2·DME
Ni(COD)2

NiBr2
NiI2

Ni(acac)2
NiBr2(TBAB)4

NiBr2·diglyme (5 mol%)
NiBr2·diglyme (15 mol%)

no Ni cat.

84
75
58
51
67
46
0

40
61
78
0

Ni cat.

2a 1a

O O N

O

O

4-CzIPN (2 mol%)    
Ni cat. (10 mol%)   
dtbpy (15 mol%)

+
Br

CF3

O
CF3

3a

HE (1.5 equiv) 
K2CO3 (1.0 equiv)

NMP (0.25 M), blue LEDs, 40 oC

Entry 3a Yield (%)b

1
2
3
4
5
6
7
8
9

10

dtbpy (L1)
L2
L3
L4
L5
L6
L7
L8

PPh3
No Ligand

84
74
8
2

61
16
5

37
0
0

Ligand

2a 1a

O O N

O

O

4-CzIPN (2 mol%)    
NiBr2·diglyme (10 mol%)   
Ligand (15 mol%)

+
Br

CF3

O
CF3

3a

HE (1.5 equiv) 
K2CO3 (1.0 equiv)

NMP (0.25 M), blue LEDs, 40 oC

N N

R2 R2

R1 R1

L1 (R1= H; R2= t-Bu)
L2 (R1= H; R2= OMe)
L3 (R1=H; R2=COOMe)
L4 (R1= Me; R2= OMe)

N N
L5

MeMe

N
N N

L6

N N

MeO OMe

Me L7

tBu

tBu tBu

N N

Me

Me

Me

Me

L8
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Conditions: a 2a (0.10 mmol), 1a (0.15 mmol), NiBr2·diglyme (10 mol%), Ligand (15 mol%), 4-CzIPN 
(2 mol%), HE (0.15 mmol), K2CO3 (0.10 mmol), in NMP (0.25 M) at 40 °C under irradiation of blue 
LEDs with a fan for 18 hours. b 19F NMR yields using 1-fluoro-3-nitrobenzene as internal standard.  

Table 2.5 Screening of ligands.a 

Next, we assessed the role exerted by the base (Table 2.6). As shown, the utilization 

of carbonate bases provided better results that stronger KOtBu. We hypothesized that 

the carbonate base interacts with HE, facilitating the formation of EDA complexes prior 

to homolytic cleavage. This observation was supported by UV-visible absorption 

experiments. 

 
Conditions: a 2a (0.10 mmol), 1a (0.15 mmol), NiBr2·diglyme (10 mol%), dtbpy (15 mol%), 4-CzIPN 
(2 mol%), HE (0.15 mmol), base (0.10 mmol), in NMP (0.25 M) at 40 °C under irradiation of blue LEDs 
with a fan for 18 hours. b 19F NMR yields using 1-fluoro-3-nitrobenzene as internal standard. 

Table 2.6 Screening of bases.a 

Finally, we turned our attention to study the influence of the reaction temperature. 

As shown in table 2.7, the reaction was better performed at 40 ºC (entry 1) whereas no 

product formation was observed in the absence of light irradiation (entry 5).  

 

Entry 3a Yield (%)b

1
2
3
4
5
6
7

K2CO3
Na2CO3
Cs2CO3
K3PO4

K2HPO4
KOtBu

No base

84
82
83
72
57
51
70

Base

2a 1a

O O N

O

O

4-CzIPN (2 mol%)    
NiBr2·diglyme (10 mol%)   

 dtbpy (15 mol%)
+

Br

CF3

O
CF3

3a

HE (1.5 equiv) 
Base (1.0 equiv)

NMP (0.25 M), blue LEDs, 40 oC

Entry 3a Yield (%)b

1
2
3
4
5

40 oC
35 oC
25 oC
10 oC

no light, 40 oC

84
78
69
43
0

Temperature

2a 1a

O O N

O

O

4-CzIPN (2 mol% )    
NiBr2·diglyme (10 mol%)   

dtbpy (15 mol%)
+

Br

CF3

O
CF3

3a

HE (1.5 equiv)
K2CO3 (1.0 equiv)

NMP (0.25 M), blue LEDs
Temperature
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Conditions: a 2a (0.10 mmol), 1a (0.15 mmol), NiBr2·diglyme (10 mol%), dtbpy (15 mol%), 4-CzIPN 
(2 mol%), HE (0.15 mmol), K2CO3 (0.10 mmol), in NMP (0.25 M) under irradiation of blue LEDs with 
a fan for 18 hours. b 19F NMR yields using 1-fluoro-3-nitrobenzene as internal standard. 

Table 2.7 Screening of reaction temperature.a 

2.3.2 Substrate Scope 

2.3.2.1 Scope of Alcohol derived N-alkoxyphthalimides 

With the optimal reaction conditions in hand, we began to explore the scope of the 

N-alkoxyphthalimides derived from aliphatic alcohols (Scheme 2.25). As shown, N-

alkoxyphthalimides from linear primary, secondary and tertiary alcohols were all 

accommodated under our optimized reaction conditions (3a-3w). Different functional 

groups adjacent to the reactive hydroxyl groups such as allyl (3k), NHBoc (3h), ether 

(3i), and sulfur-containing groups (3j) were also tolerated. Importantly, alkenes 

remained intact and did not undergo isomerization (3e). Gratifyingly, cyclic alcohols 

with various ring sizes, such as those with spirocyclic or bridged motifs, could be used 

as substrates to generate aliphatic carbonyl compounds through ring-opening arylation 

(3e, 3l-3q). The tolerance with carbonyl groups is not surprising given that 

formaldehyde, acetaldehyde, benzaldehyde and acetone are all obtained from the b-

scission of alkoxy radicals. Notably, b-scission occurred preferentially at the more 
substituted carbon, an indication that the reaction is dictated by the stability of the 

resulting open shell intermediate.70 
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Conditions: a aryl halide (1.0 equiv, 0.20 mmol), N-phthalimide ethers 1 (1.5 equiv, 0.30 mmol), 
NiBr2·diglyme (10 mol%), dtbpy (15 mol%), 4-CzIPN (2 mol%), HE (1.5 equiv, 0.30 mmol), K2CO3 
(1.0 equiv, 0.20 mmol) in NMP (0.25 M) at 40 ºC for 18 h; Isolated yields, average of at least two 
independent runs. b Using HE (2.0 equiv), N-phthalimide ethers 1(2.0 equiv). 

Scheme 2.25 Scope of alcohol derived N-alkoxyphthalimides. 

Substrates containing more reactive benzylic sites could be employed in our protocol 

without photocatalyst 4-CzIPN (Scheme 2.6, 3r-3w). In these cases, it is necessary to 

increase the amount of HE and add TBAB as additive. Both electron-deficient and 

electron-rich substrates (1r, 1s), including the utilization of furan and thiophene (3v, 
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3w), are suitable substrates in this reaction. 

 

Conditions: a aryl halide (0.20 mmol), N-phthalimide ethers 1 (0.30 mmol), NiBr2·diglyme (10 

mol%), dtbpy (15 mol%), HE (0.50 mmol), TBAB (0.10 mmol) in NMP (0.25 M) at 40 ºC for 18 h; 

Isolated yields, average of at least two independent runs. b Using 4-Ph-HE (2.50 equiv).  

Scheme 2.26 Scope of phenethyl-alcohol derived N-alkoxyphthalimides. 

2.3.2.2 Scope of Aryl Bromides and Alkyl Bromides 

Next, we turned our attention to the scope of the aryl bromides (Scheme 2.27). The 

targeted sp3-arylated products were achieved in good yields regardless of the electronic 

and steric environment of the aryl bromides, even in the presence of ortho-substituents 

(4q). It is noteworthy that electron-deficient aryl bromides usually provide better yields. 

In addition, the method tolerated the presence of boronic esters (4e) and aryl halides 

(4h, 4i, 4n, 4q), thus offering opportunities for further functionalization via cross-

coupling reactions. In addition, the protocol accommodated the presence of ketones 

(4p), nitriles (4n), sulfonamides (4m, 4r), amides (4g, 4s), esters (3c, 4s), aldehydes 

(4o) or heterocycles containing sulfur, oxygen, or even nitrogen atoms (4g, 4k, 4l, 4r). 

In addition, we were able to apply our protocol to advanced synthetic intermediates 

such as celecoxib derivative (4r) and (D)–phenylglycine (4s), demonstrating the 

potential of this method in medicinal chemistry settings. 

OPhth
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Conditions: a aryl halide (0.20 mmol), N-phthalimide ethers 1a or 1d (0.30 mmol), NiBr2·diglyme (10 
mol%), dtbpy (15 mol%), 4-CzIPN (2 mol%), HE (0.3 mmol), K2CO3 (0.2 mmol) in NMP (0.25 M) at 
40 ºC for 18 h; Isolated yields, average of at least two independent runs. 

Scheme 2.27 Scope of aryl bromides.a  

Next, we focused our attention on the utilization of unactivated alkyl halides as 

counterparts in order to forge sp3–sp3 architectures. We anticipated that this 

transformation would be more problematic than utilizing aryl halides, as (a) Ni-alkyl 

species undergo facile b-hydride elimination and are significantly less stable than their 
corresponding Ni-aryl counterparts and (b) the recombination of electron-rich alkyl 

radicals with more electron-rich Ni-alkyl species might be considered a mismatch case 

scenario, leaving ample room for parasitic side-reactions. Gratifyingly, this 

transformation could be achieved by using NiCl2·6H2O/L6 in DMF in combination 

with Mg(OEt)2 as additive. The successful utilization of L1 is tentatively attributed to 

the ability of tridentate ligands to stabilize the corresponding Ni-alkyl species while 

preventing decomposition pathways arising from b-hydride elimination. A wide variety 

of unactivated primary and secondary alkyl bromides possessing different functional 

groups such as nitriles (5c), alkenes (5d), free alcohols (5e, 5i), aryl chlorides (5f), silyl 

groups (5g), esters (5h), and carbamates (5J, 5k) could all be coupled under our 

optimized conditions (Scheme 2.28). 
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Conditons: a 1a (0.40 mmol), alkyl bromide (0.20 mmol), NiCl2·6H2O (10 mol%), L6 (15 mol%), HE 

(0.40 mmol), K2CO3 (0.20 mmol), Mg(OEt)2 (0.20 mmol) in DMF (0.125 M) at 40 ºC for 20 h; Isolated 

yields, average of two independent runs. 

Scheme 2.28 Scope of alkyl bromides.a 

2.3.2.3 Functionalization of Saccharides via b-Scission 

In order to assess the potential applicability of this reaction, we turned our attention 

to the utilization of our protocol for densely functionalized saccharides (Scheme 2.29). 

Gratifyingly, various saccharide derivatives of mannofuranose, glactopyranose, and 

ribofuranoside (7, 9, 11) could all be functionalized with equal ease. In contrast to 

existing approaches that focus on the functionalization of C–O bonds, our strategy 

provides an entry point for enabling a C–C bond cleavage of saccharides followed by a 

further C–C bond-forming event. We believe these results might offer an opportunity 

for medicinal chemists in the context of late-stage diversification of advanced 

intermediates. 
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Scheme 2.29 Functionalization of saccharides via b-scission. 

2.3.2.4 Unsuccessful Substrates 

Unfortunately, there were still some substrates that did not give the desired reactivity, 

or resulted in low yields of the targeted products (2.30a-2.30m) (Scheme 2.30, top). 

Nevertheless, we could gather important information when utilizing these substrates, 

such as (a) substituents adjacent to the alkoxy group can have a significant impact on 

the b-scission; (b) although substrates possessing an oxygen (2.30d, 2.30e, 2.30f, 2.30l, 

2.30m) or nitrogen atom (2.30g, 2.30h) adjacent to the alkoxy group might result in a 

more stable alkyl radical, these compounds resulted in the formation of aldehydes via 

a-hydrogen elimination of the alkoxyl radical (2.30f, 2.30m); (c) competing HAT 
processes with the solvent comes into play when electron-deficient alkoxy radicals are 

formed (2.30d, 2.30e, 2.30g, 2.30j). However, this HAT process also showed us the 

possibility that this technology might provide the basis for the establishment of a C–H 

functionalization event.  

A series of aryl bromides were not suitable substrates in our b-scission event (2.30n-

2.30w) (Scheme 2.30, bottom). For example, heteroaryl bromides (2.30n, 2.30v, 2.30w) 

possessing nitrogens with a lone pair likely failed due to competitive binding of the 

nitrogen atom to the Ni catalyst. In addition, very electron-rich aryl halides or 

polybrominated compounds provided low yields of the targeted products (2.30o-q).  
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Scheme 2.30 Unsuccessful substrates. 

2.3.3 Mechanistic Studies 

2.3.3.1 UV/Vis Absorption Spectra 

To support our initial hypothesis that an electron donor-acceptor complex was 

formed by the interaction of N-alkoxyphthalimide and Hantzsch ester, we compared the 

UV/Vis absorption spectra between HE and 1a (Figure 2.1). As shown, the spectra for 

both HE and 1a have absorption tails that extend to 450 nm. The addition of K2CO3 

resulted in a significant bathochromic shift attributed to the formation of the HE-anion 

that ultimately leads to the formation of the EDA complex. Furthermore, an association 

constant (KEDA) of 2.8 M-1 was determined indicating significant formation of the 

corresponding EDA-complex (See mechanistic experiments for detail). 

Unsuccessful N-alkoxyphthalimides

OPhth OPhth

Me

2.30a, trace 2.30b, 39%

Me

2.30c, 14%

OPhth O O

OPhth

2.30d, 14%

O O

Me Me

PhthO OtBu

O

O

O

OPhth
2.30e, 0%

2.30f, 0%

NC
OPhth

Ph

2.30j, 0%

N

O

O
OPhth NHBoc

OPhth

2.30g, 0% 2.30h, 0%

N

N

O
Me

Me
O

N

N
Me

OPhth

2.30i, 0%
Me

OO
O

PhthO

H
H

Me

2.30k, 18%

O N

OPhth

N

O

OTBSO

O N

OBn

N

O

OPhthO

2.30l, 0% 2.30m, 0%

NBr
F F

F
Br

O
Br

2.30o, messy

Br

S

Br

Br

O
O

MeO2C

Br

2.30s, 17%  2.30t, 34% 2.30u, trace

2.30r, 21%

Br Br

N CN

Br

N Br

NC

Br

Unsuccessful aryl bromides

2.30n, 23% 2.30p, messy 2.30q, 27%

2.30v, 0% 2.30w, 0%



 

118 
 

 

Figure 2.1. UV/Vis Spectra the interaction between Hantzsch ester and N-

alkoxyphthalimide 1a in NMP. 

2.3.3.2 Radical Clock Experiments 

The radical fragmentation generated during the reaction was further supported by 

radical clock experiments with N-alkoxyphthalimide 12 that forms the ring-closed 

coupling products 13 and 14 on the basis of a 5-exo-trig or 6-endo-dig cyclization from 

an in situ generated oxygen-centered radical intermediate II (Scheme 2.31, top). 

Furthermore, under standard catalytic conditions with added spin-trapping reagent 

TEMPO, loss of catalytic activity was observed with significant starting material 

remaining (86%) and the formation of 7% yield of cyclohexyl-TEMPO adduct (Scheme 

2.31, bottom). Additionally, 83% of benzaldehyde was found when 1c was reacted with 

methyl 4-bromobenzoate (Scheme 2.32), suggesting the intervention of species III 

prior to b-scission en route to alkyl radical intermediates. 
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Scheme 2.31 Radical trapping experiments with radical probes. 

 

Scheme 2.32 Indirect evidence for a carbon b-scission. 

2.3.3.3 Stoichiometric Experiments of Oxidative Addition Complex Ni I 

Stoichiometric experiments with the isolated oxidative addition complex 

(dtbbpy)Ni(Aryl)(Br) I and 1a revealed that photocatalyst 4-CzIPN was not required to 

generate 3a and that it could only be generated in the presence of HE (Scheme 2.33). 

These findings are consistent with our initial findings that a photocatalyst was not 

entirely required (Table 2.2. Entry 6), and that an EDA complex might be formed upon 

exposure of HE and 1a. Importantly, however, the addition of 4-CzIPN improved the 

yield of these stochiometric experiments, suggesting that its presence assists in the 

generation of the alkyl radical and fragmentation of the EDA complex. Consistent with 

I being an on-cycle intermediate, its utilization in catalytic amounds led to 3a in 72% 

yield. In addition, stochiometric Ni-I had a significant impact on the absorption of EDA 

complexes between HE and 1a (See mechanistic experiments for detail). 
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Scheme 2.33 Stoichiometric experiments of oxidative addition complex Ni-I. 

2.3.3.4 Mechanistic Proposal 

Taken together, we propose that an electron donor-acceptor complex (I) between 

Hantzsch esters and N-alkoxyphthalimides is initially formed, which undergoes visible-

light-induced electron transfer to give a N-alkoxyphthalimide radical anion (II) and 

HE•+. Collapse of II to eliminate phthalimide gives the alkoxyl radical (III) which then 

undergoes b-scission to afford the aldehyde by-product and alkyl radical (IV). The 

latter can be intercepted by a NiII-aryl/alkyl bromide intermediate (V), which upon 

reductive elimination from aryl-NiIII-alkyl species (VI) affords the desired cross-

coupling product and NiI (VII). At the same time, the ground-state of 4-CzIPN is 

promoted to the excited state of 4-CzIPN* which oxidizes the HE, thus forming the 

reduced photocatalyst that ultimately promotes a SET reduction to recover back the 

propagating Ni0 intermediates (VIII) within the catalytic cycle (Scheme 2.34). 
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Scheme 2.34 Proposed mechanism of the reaction. 

2.4 Extended Research and Future outlook 

During the final stages of the project, we concluded that the formation of donor-

acceptor (EDA) complexes could be applied to other reaction systems by using N-

alkoxyphthalimides as electron acceptors. A close look into the literature data revealed 

that borylation reactions can be carried out under metal catalyst-free conditions by 

photoinduced electron transfer (PET) reactions using electron donor-acceptor (EDA) 

complexes formed between substrates and B2(cat)2. Therefore, we speculated that N-

alkoxyphthalimides can form EDA complexes with B2(cat)2 to initiate fragmentation 

borylation under similar conditions. We started our study by investigating the reaction 

of 1c with B2(cat)2, observing decent reactivity (Scheme 2.35, top). Unfortunately, 

during the process of this study, the Aggarwal group reported a similar method, and 

therefore this reaction was no longer pursued in our group (Scheme 2.35, bottom).83 In 

the future, we will explore the possibility of enabling cascade-type reactions of 1,5-
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hydrogen shifts78g as vehicles for triggering remote functionalization at distal positions 

within an alkyl side-chain. 

 

Scheme 2.35 Extended research on fragmentation borylation. 

2.5 Conclusion 

In summary, we have developed a catalytic manifold that utilizes dual nickel and 

photoredox catalysis as a vehicle to promote C–C bond-cleavage via b-scission events. 
The reaction operates under mild conditions, showcases excellent functional group 

compatibility and a wide substrate scope, including the utilization of saccharide 

derivatives. The methodology was amenable to a variety of linear, cyclic, and bridged 

alcohols which constitute a significant step forward in the functionalization of aliphatic 

alcohols in the context of medicinally chemistry programs. 
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2.7 Experimental Section 

2.7.1 General Considerations 

Analytical methods. 1H and 13C NMR spectra were recorded on Bruker 300 MHz, 

Bruker 400 MHz and Bruker 500 MHz at 20 °C. All 1H NMR spectra are reported in 

parts per million (ppm) downfield of TMS and were calibrated using the residual 

solvent peak of CHCl3 (7.26 ppm), unless otherwise indicated. All 13C NMR spectra 

are reported in ppm relative to TMS, were calibrated using the signal of residual CHCl3 

(77.16 ppm), 19F NMR was obtained with 1H decoupling unless otherwise indicated. 

Coupling constants, J are reported in Hertz. Melting points were measured using open 

glass capillaries in a Büchi B540 apparatus. Infrared spectra (FT-IR) measurements 

were carried out on a Bruker Optics FT-IR Alpha spectrometer equipped with a DTGS 

detector, KBr beamsplitter at 4 cm-1 resolution using a one bounce ATR accessory with 

diamond windows. Mass spectra were recorded on a Waters LCT Premier spectrometer 

or in a MicroTOF Focus, Bruker Daltonics spectrometer. UV/Vis absorption spectra 

were recorded using a Agilent Technologies Cary 300 UV/Vis spectrophotometer and 

UV-1800PC spectrophotometer in quartz cuvettes with a path length of 1.0 cm. Bulk 

electrolysis was conducted on a PARSTAT 2273 potentiometer using a 3-electrode cell 

configuration at room temperature, The same electrodes were used as for CV 

experiments, namely a glassy carbon working electrode, platinum flag counter 

electrode and Ag/AgCl (KCl sat.) reference electrode.  Flash chromatography was 

performed with EM Science silica gel 60 (230-400 mesh). Thin layer chromatography 

was used to monitor reaction progress and analysed fractions from column 

chromatography. To this purpose TLC Silica gel 60 F254 aluminium sheets from Merck 

were used and visualization was achieved using UV irradiation and/or staining with 

Potassium Permanganate or Cerium Molybdate solution. The yields reported refer to 

isolated yields and represent an average of at least two independent runs. The 

procedures described in this section are representative. Thus, the yields may differ 

slightly from those given in the tables of the manuscript. 

Reagents. Commercially available materials were used as received without further 

purification. NiBr2·diglyme (97% purity) were purchased from Aldrich. 4,4’-Di-tert-

butyl-2,2’-bipyridine (97% purity) was purchased from Aldrich. Hantzsch ester (97% 
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purity) was purchased from Fluorochem. Anhydrous K2CO3 was purchased from 

Aldrich (99% purity). Tetrabutylammonium bromide was dried at 120 °C under 

reduced pressure, purchased from Aldrich. Anhydrous 1-Methyl-2-pyrrolidinone 

(NMP, 99.5% purity) was purchased from Across.  

Arylation reactions were performed with 451 nm LEDs (OSRAM Oslon® SSL 80 

royal- blue LEDs), which were installed at the bottom of a custom-made 8 flat-bottom 

Schlenk tubes holder (the distance between the flat-bottom Schlenk tube and the light 

source was measured to be ~7 mm), equipped with a fun cooling system (the thermostat 

was set at 35-40 °C) and a magnetic stirrer (~ 900 rpm).  

 

2.7.2 Synthesis of Starting Materials 

Synthesis of Hantzsch Ester Analogues  

 
Diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (4-Ph-HE) 

In accordance to the reported procedure[1], ethyl-3-aminocrotonate (1.0 equiv) and 

ethylene glycol (2.5 M) were added to a flask under nitrogen atmospheres. Next, ethyl 

acetoacetate (1.0 equiv) was added followed by the corresponding aldehyde (1.0 equiv) 

and tetrabutylammonium hydrogen sulfate (12 mol%). The resultant solution was 

heated at 80 °C for 4 hours, then cooled and diluted with ethyl acetate. The solution 

was added to a solution of brine and separated using ethyl acetate (3 x 50 mL). The 

organic layers were combined, dried (MgSO4) and concentrated. The crude material 

N
H

Me Me

COOEtEtOOC
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was purified by flash column chromatography to furnish the desired product. 1H NMR 

(400 MHz, CDCl3) δ 7.29–7.27 (m, 2H), 7.22-7.18 (m, 2H), 7.14-7.09 (m, 1H), 5.61 

(s, 1H), 4.98 (s, 1H), 4.08 (q, J = 8.2 Hz, 4H), 2.32 (s, 6H), 1.21 (t, J = 7.7 Hz, 6H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 167.6, 147.7, 143.7, 128.0, 127.8, 126.0, 104.2, 

59.7, 39.6, 19.6, 14.2 ppm. Spectral data was in agreement with the literature[1]. 

Synthesis of Organic Halides 

 
5-(4-bromophenyl)-1-(4-(pyrrolidin-1-ylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-

pyrazole (2d) To a mixture of 4-(5-(4-bromophenyl)-3-(trifluoromethyl)-1H-pyrazol-

1-yl)benzenesulfonamide (2.0 mmol) and butane-1,4-diol (3.0 mmol) in toluene (3 mL) 

was added Tf2O (20 mol%). The mixture was then sealed and stirred at 120 °C until the 

reaction was completed as judged by TLC. After quenching with sat. aq. NaHCO3, the 

reaction mixture was extracted three times with EtOAc, dried over Na2SO4, and 

concentrated in vacuo. The residue was purified by flash chromatography with Hexane 

/ EtOAc (3:1) as the eluent to give the product as a white solid. (650 mg, 65 % yield). 
19F NMR (376 MHz, CDCl3) δ -62.18 ppm. 1H NMR (400 MHz, CDCl3) δ 7.84 (d, J 

= 8.7 Hz, 2H), 7.49 (dd, J = 15.8, 8.7 Hz, 4H), 7.09 (d, J = 8.6 Hz, 2H), 6.78 (s, 1H), 

3.26 – 3.20 (m, 4H), 1.81 – 1.74 (m, 4H) ppm. 13C NMR (101 MHz, CDCl3) δ 144.3 

(q, J = 38.8 Hz), 144.0, 142.1, 137.2, 132.4, 130.3, 128.6, 127.5, 125.7, 124.2, 121.0 

(q, J = 269.1 Hz), 106.6 (d, J = 1.9 Hz), 48.1, 25.3 ppm. IR (neat): 3181, 3087, 2973, 

2876, 1593, 1492, 1469, 1446, 1401, 1345, 1269, 1231, 1156, 1135, 1091, 1013, 973, 

912, 837, 806, 769, 751, 712, 624, 580, 532, 491, 449. Mp: 128 °C. HRMS calcd. for 

(C20H17BrF3N3NaO2S) [M+Na]+: 522.0075, found 522.0069. 

 

1-(4-bromobutoxy)-4-chlorobenzene (2e) To a solution of 4-chlorophenol (1.0 g, 7.8 

mmol, 1.0 equiv) in acetone (40 mL, 0.2 M) were added K2CO3 (2.2 g, 16.0 mmol, 2.0 

equiv) and 1,4-dibromobutane (1.9 mL, 16.0 mmol, 2.0 equiv). The resulting solution 

was heated at reflux for 12 h, then cooled to room temperature, filtered through celite, 

eluted with acetone and concentrated under reduced pressure. The residue was purified 
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by flash chromatography with Hexane / EtOAc (50:1)to afford the product as a liquid 

(1.59 g, 78% yield). 1H NMR (400 MHz, CDCl3) δ 7.25 – 7.20 (m, 2H), 6.85 – 6.78 

(m, 2H), 3.96 (t, J = 6.1 Hz, 2H), 3.48 (t, J = 6.6 Hz, 2H), 2.10 – 2.02 (m, 2H), 1.98 – 

1.90 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 157.6, 129.4, 125.7, 115.8, 67.3, 

33.5, 29.5, 28.0 ppm. Spectral data was in agreement with the literature[2]. 

Synthesis of N-Alkoxyphthalimides 

Method A  

 
To a solution of the corresponding aliphatic alcohol (10.0 mmol), PPh3 (3.15 g, 12.0 

mmol), and N-hydroxyphthalimide (1.96 g, 12.0 mmol) in THF (30 mL) was added 

diisopropyl azodicarboxylate (2.4 mL, 12.0 mmol) over 10 min at room temperature. 

The resulting mixture was stirred for 3-24 h, taken up in EtOAc (20 mL), and washed 

with saturated NaHCO3 (3 x 20 mL) and brine (2 x 30 mL). The organic layers were 

dried over anhydrous Na2SO4, concentrated in vacuo, and subjected to flash 

chromatography to afford the targeted N-alkoxyphthalimides.  

Method B  

 
Following a literature procedure,[3] to a solution of the corresponding tertiary alcohol 

(20 mmol) and N-hydroxyphthalimide (6.53 g, 40 mmol) in 70 mL wet DCM, BF3·Et2O 

(13.5 mL, 50 mmol) was added dropwise by syringe at 0 oC. The reaction mixture was 

stirred for 1.5-2.0 h at room temperature. To the resulting mixture, DCM (10 mL) and 

saturated Na2CO3 solution in H2O (50 mL) was added. The aqueous layer was extracted 

with DCM (20 mL x 3), the combined organic layers were dried over anhydrous Na2SO4, 

concentrated in vacuo, and subjected to flash chromatography to afford the targeted N-

alkoxyphthalimides.  

Note: Further purification of the product can be performed by recrystallization in 

DCM/hexanes or Et2O/hexanes if necessary.  
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2-((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) Following Method A, 

the utilization of (tetrahydrofuran-2-yl)methanol (1.00 g, 9.8 mmol) afforded the title 

compound as a white solid (1.79 g, 74% yield) by using Hexane/EtOAc (4:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.83 (dd, J = 5.4, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.0 Hz, 

2H), 4.32 – 4.23 (m, 2H), 4.17 (dd, J = 10.1, 4.0 Hz, 1H), 3.89 – 3.84 (m, 1H), 3.80 – 

3.76 (m, 1H), 2.12 – 2.06 (m, 1H), 1.98 – 1.85 (m, 2H), 1.81 – 1.74 (m, 1H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 163.5, 134.5, 129.1, 123.6, 80.0, 76.4, 68.7, 28.3, 25.5 ppm. 

Spectral data was in agreement with the literature[4]. 

 

2-(cyclopentyl(phenyl)methoxy)isoindoline-1,3-dione (1b) Following Method A, the 

utilization of cyclopentyl(phenyl)methanol (0.44 g, 3.0 mmol) afforded the title 

compound as a white solid (0.72 g, 74% yield) by using Hexane/EtOAc (5:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.70 – 7.61 (m, 4H), 7.47 – 7.37 (m, 2H), 7.32 – 7.21 

(m, 3H), 5.09 (d, J = 9.8 Hz, 1H), 2.64 – 2.41 (m, 1H), 2.13 (m, 1H), 1.91 (m, 1H), 1.83 

– 1.70 (m, 1H), 1.63 (m, 2H), 1.48 (m, 1H), 1.37 (m, 1H), 1.10 (m, 1H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 163.8, 138.3, 134.2, 128.99, 128.97, 128.6, 128.2, 123.3, 93.8, 

44.6, 30.38, 29.9, 25.8, 25.2 ppm. IR (neat): 3032, 2957, 2869, 1790, 1727, 1610, 1467, 

1454, 1372, 1186, 1130, 1081, 1130, 1081, 1014, 973, 908, 875, 784, 758, 730, 697, 

648, 599, 518. Mp: 57 °C. HRMS calcd. for (C20H19NNaO3) [M+Na]+: 344.1263, 

found 344.1256. 

 

2-(cyclohexyl(phenyl)methoxy)isoindoline-1,3-dione (1c) Following Method A, the 

utilization of cyclohexyl(phenyl)methanol (0.80 g, 4.0mmol) afforded the title 

compound as a white solid (1.08 g, 80 % yield) by using Hexane/EtOAc (5:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.69-7.62 (m, 4H), 7.41 – 7.38 (m, 2H), 7.31 – 7.26 (m, 

3H), 5.09 (d, J = 8.7 Hz, 1H), 2.36 – 2.34 (m, 1H), 2.05 – 1.98 (m, 1H), 1.86 – 1.79 (m, 

1H), 1.66 – 1.64 (m, 2H), 1.38 – 1.26 (m, 3H), 1.24 – 1.16 (m, 2H), 0.89 – 0.88 (m, 1H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 163.8, 137.4, 134.2, 129.0, 128.8, 128.7, 128.1, 

123.3, 93.6, 42.4, 29.9, 29.1, 26.4, 25.9, 25.7 ppm. Spectral data was in agreement with 

the literature[5]. 
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2-((2-cyclohexylpropan-2-yl)oxy)isoindoline-1,3-dione (1d) Following Method B, 

the utilization of 2-cyclohexylpropan-2-ol (1.00 g, 7.0 mmol) afforded the title 

compound as a white solid (0.46 g, 23% yield) by using Hexane/EtOAc (7:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.83 (dd, J = 5.5, 3.0 Hz, 2H), 7.75 (dd, J = 5.5, 3.0 Hz, 

2H), 2.05 – 2.02 (m, 2H), 1.82 (dt, J = 12.6, 3.0 Hz, 2H), 1.72 – 1.64 (m, 2H), 1.32 – 

1.09 (m, 11H) ppm. 13C NMR (101 MHz, CDCl3) δ 166.1, 134.5, 129.5, 123.5, 91.4, 

46.9, 28.0, 26.8, 26.6, 22.9 ppm. IR (neat): 2989, 2935, 2854, 1788, 1728, 1465, 1369, 

1346, 1317, 1260, 1186, 1142, 1101, 1076, 1029, 968, 875, 86, 699, 636, 521. Mp: 

68 °C. HRMS calcd. for (C17H21NNaO3) [M+Na]+: 310.1419, found 310.1416. 

 
2-(((1R,6S,7R)-bicyclo[4.2.0]oct-2-en-7-yl)oxy)isoindoline-1,3-dione (1e) 

Following Method A, the utilization of (±)-Bicylo[4.2.0]oct-2-en-7-ol (1.00 g, 8.0 mmol) 

afforded the title compound as a white solid (1.84 g, 85% yield) by using 

Hexane/EtOAc (5:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.83 (dd, J = 5.5, 3.0 

Hz, 2H), 7.74 (dd, J = 5.4, 3.1 Hz, 2H), 5.82 – 5.68 (m, 2H), 4.66 (q, J = 7.4 Hz, 1H), 

2.94 (tt, J = 7.6, 3.6 Hz, 1H), 2.63 (t, J = 9.3 Hz, 1H), 2.50 (m, 1H), 2.13 – 2.01 (m, 

3H), 1.74 (m, 1H), 1.45 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.1, 134.6, 

130.0, 129.1, 127.1, 123.6, 82.2, 40.0, 34.9, 24.2, 21.4, 20.9 ppm. IR (neat): 3020, 

2919, 2839, 1784, 1735, 1609, 1466, 1358, 1243, 1158, 1082, 1012, 985, 955, 877, 792, 

702, 519. Mp: 87 °C. HRMS calcd. for (C16H15NNaO3) [M+Na]+: 292.0950, found 

292.0945. 

 

tert-butyl-4-(((1,3-dioxoisoindolin-2-yl)oxy)(phenyl)methyl)piperidine-1-

carboxylate (1f) Following Method A, the utilization of tert-butyl 4-

(hydroxy(phenyl)methyl)piperidine-1-carboxylate (1.00 g, 3.4 mmol) afforded the title 
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compound as a white solid (0.83 g, 56% yield) by using Hexane/EtOAc (4:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.71 – 7.60 (m, 4H), 7.45 – 7.37 (m, 2H), 7.30 (m, 3H), 

5.08 (d, J = 8.9 Hz, 1H), 4.19 (d, J = 13.2 Hz, 1H), 4.03 (d, J = 12.4 Hz, 1H), 2.77 (t, J 

= 12.1 Hz, 1H), 2.64 (t, J = 11.3 Hz, 1H), 2.31 (d, J = 13.5 Hz, 1H), 2.14 (m, 1H), 1.45 

(s, 9H), 1.35 – 1.07 (m, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 163.7, 154.9, 136.7, 

134.4, 129.2, 128.9, 128.6, 128.3, 123.4, 92.7, 79.5, 43.57 (d, J = 16.2 Hz), 41.1, 29.2, 

28.6, 28.3 ppm. IR (neat): 2959, 2923, 1792, 1730, 1674, 1468, 1451, 1423, 1364, 

1229, 1164, 1125, 1065, 977, 924, 876, 762, 700, 519. Mp: 192 °C. HRMS calcd. for 

(C25H28N2NaO5) [M+Na]+: 459.1896, found 459.1890. 

 
2-(phenyl(tetrahydro-2H-pyran-4-yl)methoxy)isoindoline-1,3-dione (1g) 

Following Method A, the utilization of phenyl(tetrahydro-2H-pyran-4-yl)methanol (1.0 

g, 5.2 mmol) afforded the title compound as a white solid (1.16 g, 66% yield) by using 

Hexane/EtOAc (4:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.70 – 7.48 (m, 4H), 

7.39 – 7.29 (m, 2H), 7.28 – 7.18 (m, 3H), 5.09 (d, J = 8.7 Hz, 1H), 4.06 (dd, J = 11.5, 

3.4 Hz, 1H), 3.88 (ddd, J = 11.4, 4.2, 1.7 Hz, 1H), 3.44 (td, J = 12.0, 2.1 Hz, 1H), 3.33 

(td, J = 11.8, 2.3 Hz, 1H), 2.28 – 2.20 (m, 2H), 1.81 (m, 1H), 1.36 – 1.25 (m, 1H), 1.14-

1.08 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 163.7, 136.6, 134.3, 129.2, 128.9, 

128.6, 128.3, 123.4, 92.9, 67.66, 67.60, 40.1, 30.2, 29.1 ppm. IR (neat): 3280, 2953, 

2856, 1783, 1721, 1469, 1456, 1374, 1244, 1184, 1149, 1126, 1095, 1015, 991, 974, 

872, 786, 753, 694, 518. Mp: 138 °C. HRMS calcd. for (C20H19NNaO4) [M+Na]+: 

360.1212, found 360.1206. 

 

tert-butyl (S)-2-(((1,3-dioxoisoindolin-2-yl)oxy)methyl)pyrrolidine-1-carboxylate  

(1h) Following Method A, the utilization of tert-butyl (S)-2-

(hydroxymethyl)pyrrolidine-1-carboxylate (0.42 g, 2.0 mmol) afforded the title 

compound as a white solid (0.43 g, 62% yield) by using Hexane/EtOAc (2:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 8.83 – 7.66 (m, 4H), 4.39 – 4.23 (dd, J= 8.3, 35.8 Hz, 

1H), 4.14 – 4.06 (br, 1H), 4.05 – 3.90 (dt, J= 35.8, 8.3 Hz, 1H), 3.40 – 3.25 (m, 2H), 
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2.31 – 2.22 (m, 1H), 2.13 – 1.79 (m, 3H), 1.37 (s, 9H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 163.4, 154.3, 134.6, 128.9, 123.5, 79.8, 78.30, 54.9, 55.2, 47.0, 46.4, 29.0, 

28.4, 22.9 21.8 ppm. Spectral data was in agreement with the literature[6] 

 
2-(2-phenoxy-1-phenylethoxy)isoindoline-1,3-dione (1i) Following Method A, the 

utilization of 2-phenoxy-1-phenylethan-1-ol (1.00 g, 4.7 mmol) afforded the title 

compound as a white solid (1.37 g, 82% yield) by using Hexane/EtOAc (5:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.42 – 7.40 (m, 2H), 7.35 – 7.33 (m, 2H), 7.30 – 7.20 

(m, 2H), 7.11 – 702 (m, 3H), 6.96 – 6.84 (m, 2H), 6.59 (t, J = 7.4 Hz, 1H), 6.50-6.41 

(m, 2H), 5.46 – 5.44 (m, 1H), 4.28 (dd, J = 10.9, 7.4 Hz, 1H), 3.96 (dd, J = 10.9, 3.7 

Hz, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 163.7, 158.3, 135.1, 134.5, 129.7, 129.6, 

129.0, 128.7, 128.2, 123.6, 121.4, 114.8, 86.7, 70.4 ppm. IR (neat): 3065, 2919, 1794, 

1730, 1598, 1495, 1454, 1376, 1291, 1226, 1191, 1171, 1126, 1080, 1039, 1014, 974, 

907, 877, 848, 767, 724, 701, 649, 590, 520. Mp: 121 °C. HRMS calcd. for 

(C22H17NNaO4) [M+Na]+: 382.1055, found 382.1050. 

 
2-(1-phenyl-2-(phenylthio)ethoxy)isoindoline-1,3-dione (1j) Following Method A, 

the utilization of 1-phenyl-2-(phenylthio)ethan-1-ol (1.15 g, 5.0 mmol) afforded the 

title compound as a white solid (1.70 g, 90% yield) by using Hexane/EtOAc (5:1) as 

eluent. 1H NMR (400 MHz, CDCl3) δ 7.48 (dd, J = 5.5, 3.0 Hz, 2H), 7.43 (dd, J = 5.6, 

3.0 Hz, 2H), 7.21 (dd, J = 6.6, 3.0 Hz, 2H), 7.13 – 7.05 (m, 5H), 7.05 – 6.98 (m, 2H), 

6.97 – 6.91 (m, 1H), 5.29 – 5.08 (m, 1H), 3.46 (dd, J = 13.7, 6.3 Hz, 1H), 3.17 (dd, J = 

13.7, 7.5 Hz, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 163.6, 136.5, 135.3, 134.5, 

130.3, 129.6, 129.1, 128.9, 128.5, 128.3, 126.7, 123.5, 87.5, 38.5 ppm. IR (neat): 3060, 

2930, 1789, 1730, 1586, 1481, 1466, 1455, 1439, 1425, 1375, 1355, 1221, 1188, 961, 

921, 778, 733, 696, 626, 518. Mp: 99 °C. HRMS calcd. for (C22H17NNaO3S) 

[M+Na]+: 398.0827, found 398.0827. 
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(E)-2-((1,4-diphenylbut-3-en-1-yl)oxy)isoindoline-1,3-dione (1k) Following Method 

A, the utilization of (E)-1,4-diphenylbut-3-en-1-ol (1.0 g, 4.5 mmol) afforded the title 

compound as a white solid (1.56 g, 95% yield) by using Hexane/EtOAc (5:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.73 (dd, J = 5.6, 3.0 Hz, 2H), 7.70 – 7.64 (m, 2H), 

7.51 (dd, J = 7.8, 1.7 Hz, 2H), 7.41 – 7.22 (m, 7H), 7.24 – 7.10 (m, 1H), 6.50 (d, J = 

15.9 Hz, 1H), 6.18 (dt, J = 15.8, 7.1 Hz, 1H), 5.47 (t, J = 7.0 Hz, 1H), 3.10 (m, 1H), 

2.98 – 2.69 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 163.8, 137.8, 137.4, 134.4, 

133.1, 129.3, 128.9, 128.6, 128.5, 128.2, 127.3, 126.3, 124.7, 123.5, 88.6, 38.7 ppm. 

IR (neat): 3059, 3028, 2935, 1788, 1725, 1608, 1494, 1466, 1455, 1367, 1244, 1186, 

1117, 1080, 1014, 971, 875, 761, 695, 571, 517. Mp: 61 °C. HRMS calcd. for 

(C24H19NNaO3) [M+Na]+: 392.1263, found 392.1257. 

 
2-(Cyclopentyloxy)isoindoline-1,3-dione (1l) Following Method A, the utilization of 

cyclopentanol (0.86 g, 10.0 mmol) afforded the title compound as a white solid (1.90 g, 

82% yield) by using Hexane/EtOAc (4:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 

7.82 (dd, J = 5.5, 3.0 Hz, 2H), 7.74 (dd, J = 5.5, 3.0 Hz, 2H), 4.94 – 4.88 (m, 1H), 2.02 

– 1.90 (m, 4H), 1.79 – 1.72 (m, 2H), 1.64 – 1.59 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 164.5, 134.5, 129.2, 123.6, 90.5, 31.7, 23.7 ppm. Spectral data was in 

agreement with the literature[4]. 

 

2-((2-methylcyclopentyl)oxy)isoindoline-1,3-dione (1m) Following Method A, 2-

methylcyclopentan-1-ol (0.30 g, 3.0 mmol) afforded the title compound as a white solid 

(0.50 g, 68% yield) by using Hexane/EtOAc (4:1) as eluent. 1H NMR (400 MHz, 

CDCl3) δ 7.82 (dd, J = 5.5, 3.6 Hz, 2H), 7.73 (dd, J = 5.4, 3.4 Hz, 2H), 4.63 (dt, J = 

4.6, 2.4 Hz, 0.75H), 4.45 (dt, J = 5.9, 3.1 Hz, 0.25H), 2.16 – 1.50 (m, 7H), 1.26 (d, J = 

O

Me

N

O

O
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7.0 Hz, 2.3H), 1.01 (d, J = 7.1 Hz, 0.8H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.4, 

134.5, 134.4, 129.2, 123.5, 123.4, 96.3, 92.2, 39.3, 38.8, 32.2, 31.1, 30.5, 22.6, 22.1, 

18.8, 13.6 ppm. IR (neat): 2959, 2876, 1781, 1725, 1607, 1464, 1371, 1184, 1158, 1123, 

1080, 1012, 970, 877, 782, 696, 517. Mp: 60 °C. HRMS calcd. for (C14H15NNaO3) 

[M+Na]+: 268.0950, found 268.0944. 

 

2-((1-methylcyclopentyl)oxy)isoindoline-1,3-dione (1n) Following Method B, the 

utilization of 1-methylcyclopentan-1-ol (1.00 g, 10.0 mmol) afforded the title 

compound as a white solid (1.30 g, 54% yield) by using Hexane/EtOAc (4:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.8 – 7.8 (m, 2H), 7.7 – 7.7 (m, 2H), 2.15 – 1.98 (m, 

4H), 1.72 – 1.55 (m, 4H), 1.46 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 166.0, 

134.5, 129.5, 123.5, 98.0, 38.1, 24.6, 24.4 ppm. Spectral data was in agreement with 

the literature[7]. 

 
tert-butyl 6-((1,3-dioxoisoindolin-2-yl)oxy)-2-azaspiro[3.3]heptane-2-carboxylate  

(1o) Following Method A, the utilization of tert-butyl 6-hydroxy-2-

azaspiro[3.3]heptane-2-carboxylate (1.00 g, 4.5 mmol) afforded the title compound as 

a white solid (0.68 g, 40% yield) by using Hexane/EtOAc (3:1) as eluent. 1H NMR 

(400 MHz, CDCl3) δ 7.84 (dd, J = 5.6, 3.0 Hz, 2H), 7.78 – 7.74 (dd, J = 5.6, 3.0 Hz, 

2H), 4.72 (t, J = 6.7 Hz, 1H), 3.98 (s, 2H), 3.88 (s, 2H), 2.65 – 2.47 (m, 4H), 1.43 (s, 

9H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.0, 156.2, 134.7, 129.0, 123.7, 79.6, 60.9 

(d, J = 48.5 Hz), 39.8, 30.4, 28.5 ppm. IR (neat): 2968, 2937, 2876, 1790, 1729, 1683, 

1469, 1451, 1397, 1363, 1319, 1256, 1174, 1137, 1110, 1078, 1029, 961, 928, 876, 775, 

711, 693, 520. Mp: 149 °C. HRMS calcd. for (C19H22N2NaO5) [M+Na]+: 381.1426, 

found 381.1421. 

 

2-(bicyclo[4.2.0]octa-1,3,5-trien-7-yloxy)isoindoline-1,3-dione (1p) Following 

General Procedure A, the utilization of bicyclo[4.2.0]octa-1,3,5-trien-7-ol (0.48 g, 4.0 

mmol) afforded the title compound as a white solid (0.45 g, 42% yield) by using 

O N

O

O

Me
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Hexane/EtOAc (5:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.60 (dd, J = 5.5, 3.1 

Hz, 2H), 7.50 (dd, J = 5.5, 3.1 Hz, 2H), 7.12 – 7.05 (m, 2H), 7.03 – 6.97 (m, 1H), 6.90 

(d, J = 7.3 Hz, 1H), 5.55 (t, J = 3.2 Hz, 1H), 3.36 (d, J = 3.2 Hz, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 164.3, 142.6, 142.5, 134.6, 130.7, 129.1, 127.6, 124.1, 123.7, 

123.3, 83.4, 38.9 ppm. IR (neat): 1790, 1726, 1462, 1374, 1183, 1125, 1076, 1027, 980, 

962, 876, 748, 698. Mp: 141 °C. HRMS calcd. for (C16H11NNaO3) [M+Na]+: 

288.0637, found 288.0630. 

 

2-((2-methylbicyclo[2.2.1]heptan-2-yl)oxy)isoindoline-1,3-dione (1q) Following 

Method A, the utilization of 2-methylbicyclo[2.2.1]heptan-2-ol (1.20 g, 9.5 mmol) 

afforded the title compound as a white solid (1.44 g, 56% yield) by using 

Hexane/EtOAc (5:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 8.00 – 7.96 (m, 2H), 

7.90 (m, 2H), 2.55 (d, J = 4.1 Hz, 1H), 2.52 – 2.43 (m, 2H), 2.29 – 2.17 (m, 1H), 1.75 

– 1.37 (m, 8H), 1.26 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 166.1, 134.5, 129.5, 

123.5, 96.3, 46.5, 45.1, 37.8, 36.9, 28.1, 24.1, 21.7 ppm. IR (neat): 2955, 2869, 1785, 

1735, 1610, 1466, 1437, 1351, 1312, 1185, 1108, 1079, 1068, 962, 875, 790, 704, 519. 

Mp: 89 °C. HRMS calcd. for (C16H17NNaO3) [M+Na]+: 294.1106, found 294.1101. 

 

2-((1-(4-methoxyphenyl)propan-2-yl)oxy)isoindoline-1,3-dione (1r) Following 

Method A, the utilization of 1-(4-methoxyphenyl)propan-2-ol (1.20 g, 7.0 mmol) 

afforded the title compound as a white solid (1.20 g, 55% yield) by using 

Hexane/EtOAc (4:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.82 (dd, J = 5.4, 3.1 

Hz, 2H), 7.74 (dd, J = 5.5, 3.1 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 6.81 (d, J = 8.7 Hz, 

2H), 4.63 (dq, J = 6.0, 1.5 Hz, 1H), 3.76 (s, 3H), 3.16 (dd, J = 13.9, 5.6 Hz, 1H), 2.83 

(dd, J = 13.9, 7.8 Hz, 1H), 1.31 (d, J = 6.2 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) 

δ 164.4, 158.4, 134.5, 130.4, 129.3, 129.1, 123.6, 113.9, 84.9, 55.3, 40.6, 18.4 ppm. IR 

(neat): 3035, 2994, 2933, 2838, 1725, 1509, 1465, 1385, 1354, 1245, 1177, 1147, 1115, 

1082, 1042, 1015, 975, 878, 800, 759, 600, 519. Mp: 83 °C. HRMS calcd. for 
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(C19H17NNaO4) [M+Na]+: 334.1055, found 334.1050. 

 
2-((1-(3-(trifluoromethyl)phenyl)propan-2-yl)oxy)isoindoline-1,3-dione (1s) Following Method A, 

the utilization of 1-(3-(trifluoromethyl)phenyl)propan-2-ol (1.63 g, 8.0 mmol) afforded the title 

compound as a white solid (2.13 g, 76% yield) by using Hexane/EtOAc (5:1) as eluent. 19F NMR (376 

MHz, CDCl3) δ -62.68 ppm. 1H NMR (400 MHz, CDCl3) δ 7.80 (dd, J = 5.5, 3.0 Hz, 2H), 7.73 (dd, J 

= 5.5, 3.0 Hz, 2H), 7.59 – 7.35 (m, 4H), 4.69 (q, J = 6.4 Hz, 1H), 3.23 (dd, J = 14.3, 6.3 Hz, 1H), 2.99 

(dd, J = 14.3, 6.7 Hz, 1H), 1.34 (d, J = 6.3 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ 164.3, 138.2, 

134.9, 134.6, 132.9, 130.8 (q, JC,F = 32.0 Hz).128.9, 126.1 (q, JC,F = 3.8 Hz)., 124.1, 123.6, 123.5 (q, JC,F 

= 3.8 Hz), 84.1, 41.2, 18.5 ppm. IR (neat): 2981, 1786, 1740, 1727, 1609, 1466, 1453, 1344, 1203, 1107, 

1068, 976, 904, 877, 796, 699, 665, 520. Mp: 89 °C. HRMS calcd. for (C18H14F3NNaO3) [M+Na]+: 

372.0823, found 372.0818. 

 

2-phenethoxyisoindoline-1,3-dione (1t) Following Method A, the utilization of 2-

phenylethan-1-ol (1.00 g, 8.2 mmol) afforded the title compound as a white solid (1.60 

g, 87% yield) by using Hexane/EtOAc (5:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 

7.83 (dd, J = 5.5, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.1 Hz, 2H), 7.30 (d, J = 4.6 Hz, 4H), 

7.24 – 7.19 (m, 1H), 4.44 (t, J = 7.4 Hz, 2H), 3.16 (t, J = 7.4 Hz, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 163.7, 136.9, 134.6, 129.1, 129.0, 128.7, 126.8, 123.7, 78.7, 34.8 

ppm. Spectral data was in agreement with the literature[8] 

 
2-((1-phenylpentan-2-yl)oxy)isoindoline-1,3-dione (1u) Following Method A, the 

utilization of 1-phenylpentan-2-ol (0.49 g, 3.0 mmol) afforded the title compound as a 

white solid (0.73 g, 79% yield) by using Hexane/EtOAc (5:1) as eluent. 1H NMR (400 

MHz, CDCl3) δ 7.80 (dd, J = 5.5, 3.0 Hz, 2H), 7.72 (dd, J = 5.4, 3.1 Hz, 2H), 7.23 (d, 

J = 4.8 Hz, 4H), 7.18 – 7.11 (m, 1H), 4.62 – 4.47 (m, 1H), 3.11 (dd, J = 14.2, 5.9 Hz, 
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1H), 2.96 (dd, J = 14.2, 7.1 Hz, 1H), 1.74 – 1.49 (m, 4H), 1.04 – 0.81 (m, 3H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 164.4, 137.5, 134.5, 129.3, 129.1, 128.5, 126.4, 123.5, 88.3, 

39.7, 34.6, 18.6, 14.1 ppm. IR (neat): 2961, 2936, 2875, 1786, 1722, 1600, 1495, 1467, 

1455, 1369, 1291, 1184, 1144, 1120, 1081, 975, 940, 877, 756, 696, 619, 517. Mp: 

45 °C. HRMS calcd. for (C19H19NNaO3) [M+Na]+: 332.1263, found 332.1257. 

 

2-((1-(furan-2-yl)propan-2-yl)oxy)isoindoline-1,3-dione (1v) Following Method A, 

the utilization of 1-(furan-2-yl)propan-2-ol (0,76 g, 6.0 mmol) afforded the title 

compound as a white solid (1.20 g, 73% yield) by using Hexane/EtOAc (5:1) as eluent. 
1H NMR (400 MHz, CDCl3) δ 7.83 (dd, J = 5.5, 3.0 Hz, 2H), 7.74 (dd, J = 5.4, 3.1 Hz, 

2H), 7.34 – 7.08 (m, 1H), 6.26 (dd, J = 3.1, 1.9 Hz, 1H), 6.24 – 6.14 (m, 1H), 4.69 (dt, 

J = 7.3, 6.3 Hz, 1H), 3.22 (dd, J = 15.2, 5.6 Hz, 1H), 2.95 (dd, J = 15.2, 7.4 Hz, 1H), 

1.38 (d, J = 6.3 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.3, 151.3, 141.6, 

134.6, 129.1, 123.6, 110.4, 107.3, 82.7, 34.0, 18.8 ppm. IR (neat): 3033, 2998, 1786, 

1728, 1615, 1468, 1390, 1158, 1125, 997, 951, 905, 878, 850, 828, 784, 695, 519. Mp: 

45 °C. HRMS calcd. for (C15H13NNaO4) [M+Na]+: 294.0742, found 294.0737. 

 

2-(2-(thiophen-2-yl)ethoxy)isoindoline-1,3-dione (1w) Following Method A, the 

utilization of 2-(thiophen-2-yl)ethan-1-ol (1.03 g, 8.0 mmol) afforded the title 

compound as a light yellow solid (1.5 g, 69% yield) by using Hexane/EtOAc (5:1) as 

eluent. 1H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 5.5, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 

3.1 Hz, 2H), 7.15 (dd, J = 5.1, 1.2 Hz, 1H), 7.04 – 6.84 (m, 2H), 4.45 (t, J = 7.2 Hz, 

2H), 3.36 (td, J = 7.2, 0.8 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 163.7, 138.8, 

134.6, 129.0, 127.1, 125.9, 124.2, 123.7, 78.3, 29.1 ppm. IR (neat): 3100, 2969, 2895, 

2857, 1784, 1723, 1610, 1466, 1399, 1376, 1239, 1185, 1157, 1080, 1017, 997, 951, 

905, 878, 850, 828, 784, 695, 519. Mp: 51 °C. HRMS calcd. for (C14H11NNaO3S) 

[M+Na]+: 296.0357, found 296.0352. 
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2-(((3aS,4S,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)oxy)isoindoline-1,3-dione (6) 

Following General Procedure A, (3aS,4S,6R,6aS)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-

yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-ol (1.00 g, 3.6 mmol) afforded the 

title compound as a white solid (1.00 g, 68% yield) by using Hexane/EtOAc (2:1) as 

eluent. 1H NMR (400 MHz, CDCl3) δ 7.80 (dd, J = 5.4, 3.1 Hz, 2H), 7.72 (dd, J = 5.5, 

3.1 Hz, 2H), 5.38 (d, J = 4.6 Hz, 1H), 5.00 – 4.78 (m, 3H), 4.16 (dd, J = 9.1, 6.1 Hz, 

1H), 4.00 (m, 2H), 1.61 (s, 3H), 1.42 (s, 3H), 1.40(s, 3H), 1.38 (s, 3H) ppm. 13C NMR 

(101 MHz, CDCl3) δ163.1, 134.4, 129.0, 123.5, 115.6, 109.5, 104.9, 80.7, 80.2, 78.6, 

73.4, 67.0, 27.3, 25.6, 25.3, 25.3 ppm. Spectral data was in agreement with the 

literature[9]. 

 
(2R,3S,4S,5R,6S)-2-(acetoxymethyl)-6-((1,3-dioxoisoindolin-2-yl)oxy)tetrahydro-

2H-pyran-3,4,5-triyl triacetate (8) Following the general procedure, but adding 36 

mL of 1 M NaOH (water) to a solution of 1.85 g of 1-bromo-2,3,4,6-tetra-O-acetyl-β-

D-galactopyranose (4.5 mmol), 3.68 g N-hydroxyphthalimide (22.6 mmol) and 1.52 g 

tetrabutylammonium hydrogensulfate (4.5 mmol) in 36 mL of CH2Cl2. The reaction 

was stirred for 4 h at room temperature, and then 40 mL of CH2Cl2 was added to the 

reaction mixture. Then, the organic phase was washed 6 times with water and twice 

with brine (20 mL each), then dried with Na2SO4, and the mixture was concentrated in 

vacuum, affording the title compound as a white solid (0.99 g, 45% yield) by using 

Hexane/EtOAc (1:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.86 (dd, J = 5.5, 3.1 

Hz, 2H), 7.78 (dd, J = 5.5, 3.1 Hz, 2H), 5.31 – 5.28 (m, 2H), 5.26 – 5.21 (m, 1H), 5.13 

– 5.09 (m, 1H), 4.33 (dd, J = 12.4, 4.9 Hz, 1H), 4.14 (dd, J = 12.3, 2.7 Hz, 1H), 3.77 

(m, 1H), 2.19 (s, 3H), 2.10 – 1.99 (m, 9H) ppm. 13C NMR (101 MHz, CDCl3) δ 13C 

NMR (126 MHz, CDCl3) δ 170.7, 170.2, 169.6, 169.4, 162.7, 134.9, 128.9, 123.9, 105.2, 

72.6, 72.5, 69.7, 68.3, 61.9, 20.8, 20.8, 20.7, 20.6 ppm. Spectral data was in agreement 
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with the literature[10]. 

 
2-(((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-

yl)methoxy)isoindoline-1,3-dione (10) Following Method A, the utilization of 

((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-

yl)methanol (1.20 g, 5.9 mmol) afforded the title compound as a white solid (1.37 g, 

67% yield) by using Hexane/EtOAc (2:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 

7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.1 Hz, 2H), 4.98 (s, 1H), 4.92 (dd, J 

= 6.0, 1.0 Hz, 1H), 4.62 (d, J = 5.9 Hz, 1H), 4.55 (ddd, J = 7.5, 6.1, 1.1 Hz, 1H), 4.28 

(dd, J = 9.7, 6.2 Hz, 1H), 4.16 (dd, J = 9.6, 7.8 Hz, 1H), 3.33 (s, 3H), 1.49 (s, 3H), 1.34 

(s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 163.6, 134.9, 129.2, 123.9, 113.0, 109.8, 

85.3, 83.6, 82.3, 78.7, 55.4, 26.7, 25.3, 22.2 ppm. IR (neat): 2984, 2938, 1791, 1729, 

1468, 1373, 1239, 1187, 1160, 1089, 1048, 1019, 996, 967, 868, 786, 700, 517. Mp: 

35 °C. HRMS calcd. for (C17H19NNaO7) [M+Na]+: 372.1059, found 372.1054. 

2.7.3 General Procedure of Ni-Catalyzed Reductive Coupling 

Ni-Catalyzed Reductive Coupling with Aryl Bromides 

General procedure A: An oven-dried 8 mL screw-cap test tube containing a stirring bar 

was charged with 4-CzIPN (3.2 mg, 2 mol%), 4,4’-Di-tert-butyl-2,2’-bipyridine (8.0 

mg, 15 mol%), Hantzsch ester (HE) (1.5-2.0 equiv) and N-alkoxyphthalimides (1.5 - 

2.0 equiv). The test tube was introduced in an argon-filled glovebox where 

NiBr2·diglyme (7.0 mg, 10 mol% ) and K2CO3 (28.0 mg, 1.0 equiv) were subsequently 

added followed by addition of NMP (0.8 mL, 0.25 M). Then the tube was brought out, 

and aryl bromide (0.20 mmol) (if aryl bromide is liquid, it can be added to the reaction 

mixture last; if solid, it should be weight out in the glovebox) was added to the reaction 

mixture. PTFE tape was used to ensure the tightness of the reaction system, and then 

the tube was stirred at 35-40 °C under irradiation of blue LEDs with a fan for 18-24 h. 

After the reaction was finished, the reaction mixture was extracted with ethyl 

acetate/Et2O and water/brine (3 times). Then, the organic layers were combined, dried 

over MgSO4 and concentrated under vacuum. The product was purified by flash 
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chromatography column on silica gel. 

General procedure B: An oven-dried 8 mL screw-cap test tube containing a stirring bar 

was charged with 4,4’-Di-tert-butyl-2,2’-bipyridine (8.0 mg, 15 mol%), Hantzsch ester 

(HE) (126.7 mg, 2.5 equiv) and N-alkoxyphthalimides (0.30 mmol, 1.5 equiv). The test 

tube was introduced in an argon-filled glovebox where NiBr2·diglyme (7.0 mg, 10 

mol%) and TBAB (32.2 mg, 0.5 equiv) were subsequently added followed by addition 

of NMP (0.8 mL, 0.25 M). Then the tube was brought out, and aryl bromide (0.20 mmol) 

(if aryl bromide is liquid, it can be added to the reaction mixture last; if solid, it should 

be weight out in the glovebox) was added to the reaction mixture. PTFE tape was used 

to ensure the tightness of the reaction system, and then the tube was stirred at 35-40 °C 

under irradiation of blue LEDs with a fan for 18-24 h. After the reaction was finished, 

the reaction mixture was extracted with ethyl acetate/Et2O and water/brine (3 times). 

Then, the organic layers were combined, dried over MgSO4 and concentrated under 

vacuum. The product was purified by flash chromatography column on silica gel. 

Ni-Catalyzed Reductive Coupling with Unactivated Alkyl Bromides 

General procedure C: An oven-dried 8 mL screw-cap test tube containing a stirring bar 

was charged with 4-CzIPN (3.2 mg, 2 mol%), NiCl2·6H2O (4.8 mg, 10 mol% ), 4,4''-

di-tert-butyl-4'-(4-(tert-butyl)phenyl)-2,2':6',2''-terpyridine (14.3 mg, 15 mol%), 

Hantzsch ester (HE) (101.3 mg, 2.0 equiv) and N-alkoxyphthalimides (0.40 mmol, 2.0 

equiv). The test tube was introduced in an argon-filled glovebox where K2CO3 (28.0 

mg, 1.0 equiv)and Mg(OEt)2 (23.0 mg, 1.0 equiv)  were subsequently added followed 

by addition of DMF (1.6 mL, 0.125 M). Then the tube was brought out, and alkyl 

bromide (0.20 mmol) (if aryl bromide is liquid, it can be added to the reaction mixture 

last; if solid, it should be weight out in the glovebox) was added to the reaction mixture. 

PTFE tape was used to ensure the tightness of the reaction system, and then the tube 

was stirred at 35-40 °C under irradiation of blue LEDs with a fan for 18-24 h. After the 

reaction was finished, the reaction mixture was extracted with ethyl acetate/Et2O and 

water/brine (3 times). Then, the organic layers were combined, dried over MgSO4 and 

concentrated under vacuum. The product was purified by flash chromatography column 

on silica gel. 

 

2-(4-(trifluoromethyl)phenyl)tetrahydrofuran (3a) Following General Procedure A, 

1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) and 2-

((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) (74.1 mg, 0.30 mmol) were 
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used, affording the title compound as a colourless liquid (33.3 mg, 77% yield) by using 

Hexane/EtOAc (100:1) as eluent. 19F NMR (376 MHz, CDCl3) δ -62.50 ppm. 1H NMR 

(500 MHz, CDCl3) δ 7.59 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 4.94 (t, J = 7.5 

Hz, 1H), 4.10 (dt, J = 8.0, 7.0 Hz, 1H), 3.96 (dt, J = 8.0, 7.0 Hz, 1H), 2.39 – 2.33 (m, 

1H), 2.03 – 1.98 (m, 2H), 1.80 – 1.73 (m, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 

147.9, 129.3 (q, JC,F = 32.3 Hz), 125.8, 125.3 (q, JC,F = 3.8 Hz), 124.4 (q, JC,F = 272.3 

Hz), 80.0, 68.9, 34.8, 26.0 ppm. Spectral data was in agreement with the literature[11].  

 
Methyl 4-cyclopentylbenzoate (3b) Following General Procedure A, Methyl 4-

bromobenzoate (2b) (42.8 mg, 0.20 mmol) and 2-

(cyclopentyl(phenyl)methoxy)isoindoline-1,3-dione (1b) (96.3 mg, 0.30 mmol) were 

used, affording the title compound as a colourless liquid (21.6 mg, 53% yield) by using 

Hexane/EtOAc (50:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.5 Hz, 

2H), 7.29 (d, J = 8.5 Hz, 2H), 3.89 (s, 3H), 3.04 (q, J = 8.5 H, 1H), 2.08 (m, 2H), 1.82 

– 1.59 (m, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.1, 152.1, 129.5, 127.6, 127.0, 

51.8, 45.9, 34.4, 25.5 ppm. Spectral data was in agreement with the literature[12].   

 
Methyl 4-cyclohexylbenzoate (3c) Following General Procedure A, Methyl 4-

bromobenzoate (2b) (42.8 mg, 0.20 mmol) and 2-

(cyclohexyl(phenyl)methoxy)isoindoline-1,3-dione (1c) (100.5 mg, 0.30 mmol) were 

used, affording the title compound as a colourless liquid (37.0 mg, 85% yield) by using 

Hexane/EtOAc (50:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 8.0 Hz, 

2H), 7.28 (d, J = 8.0 Hz, 2H), 3.90 (s, 3H), 2.58-2.54 (m, 1H), 1.87 (m, 4H), 1.77 (d, J 

= 12.5 Hz, 1 H), 1.48 – 1.31 (m, 4H), 1.29 – 1.25 (m, 1H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 167.3, 153.6, 129.8, 127.9, 127.0, 52.0, 44.8, 34.3, 26.9, 26.2 ppm. Spectral 

data was in agreement with the literature[13].  

 
1-cyclohexyl-4-(trifluoromethyl)benzene (3d) Following General Procedure A, 1-

bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) and 2-((2-

cyclohexylpropan-2-yl)oxy)isoindoline-1,3-dione (1d) (86.1 mg, 0.30 mmol) were 

used, affording the title compound as a colourless liquid (30.1 mg, 66% yield) by using 
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Hexane/EtOAc (100:1) as eluent. 19F NMR (376 MHz, CDCl3) δ -62.37 ppm. 1H NMR 

(400 MHz, CDCl3) δ 7.56 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 2.65 – 2.48 (m, 

1H), 1.91 – 1.76 (m, 5H), 1.51 – 1.23 (m, 5H) ppm. 13C NMR (126 MHz, CDCl3) δ 

152.1, 128.2 (q, JC,F = 32.0 Hz), 127.2, 125.3 (q, JC,F = 3.8 Hz), 124.5 (q, JC,F = 269.9 

Hz), 44.6, 34.3, 26.8, 26.1 ppm. Spectral data was in agreement with the literature[14].  

 

2-(4'-(trifluoromethyl)-1,2,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)acetaldehyde (3e) 

Following General Procedure A, 1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 

0.20 mmol) and 2-(bicyclo[4.2.0]oct-2-en-7-yloxy)isoindoline-1,3-dione (1e) (80.7 mg, 

0.30 mmol) were used, affording the title compound as a liquid (40.2 mg, 75% yield, 

7:1 regioisomeric ratio, with 1.3:1 dr for the major isomer) by using Hexane/EtOAc 

(20:1) as eluent, with the regioselectivities being determined by NMR analysis. 19F 

NMR (376 MHz, CDCl3) δ -62.47, -62.50 ppm. 1H NMR (400 MHz, CDCl3) δ 9.64 

(d, J = 1.6 Hz, 0.09Hminor), 9.63 (dd, J = 2.6, 1.3 Hz, 0.62Hmajor), 7.60 – 7.48 (m, 

2Hmajor+minor), 7.31 (d, J = 8.0 Hz, 2Hmajor+minor), 5.83 (m, 0.79Hmajor), 5.71 (m, 

0.23Hminor), 5.68 – 5.63 (m, 0.68Hmajor1+major2), 5.54 (m, 0.12Hminor1+minor2), 2.99 – 2.77 

(m, 1Hmajor+minor), 2.55 (m, 1Hmajor+minor), 2.38 (m, 1Hmajor+minor), 2.27 (m, 1Hmajor+minor), 

2.23 – 2.03 (m, 2Hmajor+minor), 1.86 (m, 2Hmajor+minor) ppm 13C NMR (101 MHz, CDCl3) 

δ 204.0, 202.0, 149.4, 129.9, 129.5, 129.4, 129.4, 129.2, 128.9, 128.6, 128.4, 128.3, 

128.3, 128.2, 127.7, 125.6, 125.9 (q, JC,F = 3.7 Hz), 123.4, 50.9, 48.0, 46.5, 46.3, 40.9, 

38.7, 38.2, 37.1, 36.1, 30.7, 25.8, 25.7, 23.7, 21.2 ppm. IR (neat): 3025, 2924, 2726, 

1722, 1619, 1421, 1322, 1161, 1109, 1067, 1017, 837, 719, 685, 605. HRMS calcd. 

for (C15H15F3NaO) [M+Na]+: 291.0973, found 291.0968. 

 
tert-butyl 4-(4-(trifluoromethyl)phenyl)piperidine-1-carboxylate (3f) Following 

General Procedure A, 1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) 

and tert-butyl 4-(((1,3-dioxoisoindolin-2-yl)oxy)(phenyl)methyl)piperidine-1-

carboxylate (1f) (114.1 mg, 0.30 mmol) were used, affording the title compound as a 

liquid (46.8 mg, 71% yield) by using Hexane/EtOAc (20:1) as eluent. 19F NMR (376 
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MHz, CDCl3) δ -62.48 ppm. 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.2 Hz, 2H), 

7.31 (d, J = 8.1 Hz, 2H), 4.26 (d, J = 13.1 Hz, 2H), 2.81 (t, J = 13.9 Hz, 2H), 2.71 (tt, J 

= 12.2, 3.5 Hz, 1H), 1.82 (d, J = 13.3 Hz, 2H), 1.66 – 1.58 (m, 2H), 1.48 (s, 9H) ppm. 
13C NMR (101 MHz, CDCl3) δ 154.9, 149.8 (q, JC,F = 1.4 Hz), 128.8 (q, JC,F = 32.4 

Hz), 127.2, 125.5 (q, JC,F = 4.0 Hz), 124.3 (q, JC,F = 271.8 Hz), 79.7, 44.3 (br), 42.7, 

33.0, 28.6 ppm. Spectral data was in agreement with the literature[15].  

 

4-(4-(trifluoromethyl)phenyl)tetrahydro-2H-pyran (3g) Following General 

Procedure A, 1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) and 2-

(phenyl(tetrahydro-2H-pyran-4-yl)methoxy)isoindoline-1,3-dione (1g) (101.1 mg, 

0.30 mmol) were used, affording the title compound as a liquid (35.9 mg, 78% yield) 

by using Hexane/EtOAc (20:1) as eluent. 19F NMR (376 MHz, CDCl3) δ -62.47 ppm. 
1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.9 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.16 

– 4.04 (m, 2H), 3.54 (td, J = 11.6, 2.5 Hz, 2H), 2.83 (tt, J = 11.6, 4.3 Hz, 1H), 1.92 – 

1.72 (m, 4H) ppm. 13C NMR (101 MHz, CDCl3) δ 149.9, 128.8 (q, JC,F = 31.5 Hz), 

127.2, 125.6 (q, JC,F = 3.8 Hz), 124.4 (q, JC,F = 272.2 Hz), 68.3, 41.6, 33.7 ppm. Spectral 

data was in agreement with the literature[16]. 

 

tert-butyl 2-(4-(trifluoromethyl)phenyl)pyrrolidine-1-carboxylate (3h) Following 

General Procedure A, 1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol), 

Hantzsch ester (HE) (101.3 mg, 0.40 mmol) and tert-butyl 2-(((1,3-dioxoisoindolin-2-

yl)oxy)methyl)pyrrolidine-1-carboxylate (1h) (138.5 mg, 0.40 mmol) were used, 

affording the title compound as a liquid (47.3 mg, 75% yield) by using Hexane/EtOAc 

(20:1) as eluent. mixture of rotamers (1.7:1).19F NMR (376 MHz, CDCl3) δ -62.39, -

62.46 ppm. 1H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 

Hz, 2H), 5.01 – 4.75 (m, 1H), 3.69 – 3.47 (m, 2H), 2.42 – 2.25 (m, 1H), 1.95 – 1.74 (m, 

3H), 1.45 (s, 3H), 1.18 (m, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 154.5, 149.4, 

148.3, 129.0 (q, JC,F = 32.3 Hz, s), 125.9, 125.7, 124.3 (q, JC,F = 340.2 Hz, s), 115.6, 

79.6, 61.1, 60.6, 47.5, 47.2, 36.0, 34.8, 28.5, 28.2, 23.6, 23.3 ppm. Spectral data was in 

agreement with the literature[17]. 
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1-(phenoxymethyl)-4-(trifluoromethyl)benzene (3i) Following General Procedure A, 

1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) and 2-(2-phenoxy-1-

phenylethoxy)isoindoline-1,3-dione (1i) (107.7 mg, 0.03 mmol) were used, affording 

the title compound as a liquid (45.9 mg, 91% yield) by using Hexane/EtOAc (100:1) as 

eluent. 19F NMR (376 MHz, CDCl3) δ -62.63 ppm. 1H NMR (500 MHz, CDCl3) δ 

7.63 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 7.30 (t, J = 8.0 Hz, 2H), 6.94 – 7.01 

(m, 3H), 5.11 (s, 2H) ppm. 13C NMR (126 MHz, CDCl3) δ 158.5, 141.3, 130.2 (q, JC,F 

= 32 Hz), 129.7, 127.4, 125.5 (q, JC,F = 4 Hz), 124.2 (q, JC,F = 272 Hz), 120.2, 114.9, 

69.1 ppm. Spectral data was in agreement with the literature[18].  

 

Phenyl(4-(trifluoromethyl)benzyl)sulfane (3j) Following General Procedure A, 1-

bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) and 2-(1-phenyl-2-

(phenylthio)ethoxy)isoindoline-1,3-dione (1j) (112.5 mg, 0.30 mmol) were used, 

affording the title compound as a liquid (32.2 mg, 60% yield) by using Hexane/EtOAc 

(100:1) as eluent. 19F NMR (376 MHz, CDCl3) δ -62.56 ppm. 1H NMR (500 MHz, 

CDCl3) δ  7.55–7.53 (m, 2H), 7.40 – 7.37 (m, 2H), 7.33 – 7.21 (m, 5H), 4.14 (s, 2H) 

ppm. 13C NMR (126 MHz, CDCl3) δ 141.9, 135.4, 130.5, 129.5 (q, JC,F = 32 Hz), 

129.1, 129.0, 127.0, 125.5 (q, JC,F = 4 Hz), 124.2 (q, JC,F = 271 Hz), 38.9 ppm. 

Spectral data was in agreement with the literature[19]. 

 

(E)-2-((1,4-diphenylbut-3-en-1-yl)oxy)isoindoline-1,3-dione (3k) Following 

General Procedure A, 1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol), 

Hantzsch ester (HE) (101.3 mg, 0.40 mmol) and 1-cinnamyl-4-

(trifluoromethyl)benzene (1k) (147.6 mg, 0.40 mmol) were used, affording the title 

compound as a liquid (29.4 mg, 56% yield) by using Hexane/EtOAc (20:1) as eluent. 
19F NMR (376 MHz, CDCl3) δ -62.41 ppm. 1H NMR (400 MHz, CDCl3) δ 7.54 (d, J 

= 8.0 Hz, 2H), 7.36 – 7.18 (m, 7H), 6.46 (d, J =16.0 Hz, 1H), 6.30 (dt, J =16.0, 6.8 Hz, 

1H), 3.58 (d, J =6.8 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 144.4, 137.2, 132.0, 

129.1, 128.8 (q, JC,F =32.1 Hz), 128.7, 128.0, 127.5, 126.3, 125.5 (q, JC,F =3.8 Hz), 
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124.5(q, JC,F = 271.6 Hz), 39.2 ppm. Spectral data was in agreement with the 

literature[20]. 

 
5-(4-(trifluoromethyl)phenyl)pentana (3l) Following General Procedure A, 1-bromo-

4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) and 2-

(cyclopentyloxy)isoindoline-1,3-dione (1l) (69.3 mg, 0.30 mmol) were used, affording 

the title compound as a liquid (18.9 mg, 41% yield) by using Hexane/EtOAc (20:1) as 

eluent. 19F NMR (376 MHz, CDCl3) δ -62.50 ppm. 1H NMR (400 MHz, CDCl3) δ 

9.76 (s, 1H), 7.53 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.70 (m, 2H), 2.56 – 

2.41 (m, 2H), 1.71 – 1.64 (m, 4H) ppm. 13C NMR (101 MHz, CDCl3) δ 202.2, 146.1, 

128.8, 128.4 (q, JC,F = 32.3 Hz), 125.4 (q, JC,F = 3.8 Hz), 124.4 (q, JC,F = 271.8 Hz), 

43.7, 35.6, 30.6, 21.7 ppm. IR (neat): 2940, 2865, 1734, 1618, 1418, 1325, 1163, 1120, 

1067, 1019. HRMS calcd. for (C12H12F3O) [M-H]-: 229.0840, found 229,0602. 

 
5-(4-acetylphenyl)hexanal (3m) Following General Procedure A, 1-(4-

bromophenyl)ethan-1-one (2c) (39.6 mg, 0.20 mmol), Hantzsch ester (HE) (101.3 mg, 

0.40 mmol) and 2-((2-methylcyclopentyl)oxy)isoindoline-1,3-dione (1m) (98.0 mg, 

0.40 mmol) were used, affording the title compound as a liquid (24.4 mg, 60% yield, 

12:1 regioisomeric ratio) by using Hexane/EtOAc (20:1) as eluent, with the 

regioselectivities being determined by NMR analysis 1H NMR (400 MHz, CDCl3) δ 

9.69 (q, J = 1.4 Hz, 0.8Hmajor), 9.59 (dd, J = 2.1, 1.0 Hz, 0.07Hminor), 7.89 – 7.87 (m, 

2Hmajor+minor), 7.26 (d, J = 8.1 Hz, 2Hmajor+minor), 2.76 (q, J = 7.0 Hz, 0.93Hmajor), 2.69 

(d, J = 7.3 Hz, 0.09Hminor), 2.57 (s, 3Hmajor+minor), 2.41 – 2.35 (m, 2Hmajor+minor), 1.66 – 

1.53 (m, 3Hmajor+minor), 1.52 – 1.43 (m, 1Hmajor+minor), 1.26 (dd, J = 7.0, 0.9 Hz, 3Hmajor), 

1.09 (dd, J = 7.1, 1.0 Hz, 0.26Hminor) ppm. 13C NMR (101 MHz, CDCl3) δ 204.8, 202.3, 

197.8, 152.8, 147.8, 135.5, 135.3, 46.2, 43.8, 40.1, 37.5, 35.9, 30.0, 28.4, 26.6, 22.1, 

20.2, 13.4 ppm. IR (neat): 2938, 2863, 1737, 1715, 1618, 1417, 1360, 1322, 1160, 

1110, 1066, 1018, 846, 819, 733, 592.  HRMS calcd. for (C14H18NaO2) [M+Na]+: 

241,1204, found 241,1199. 
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6-(4-(trifluoromethyl)phenyl)hexan-2-one (3n) Following General Procedure A, 1-

bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) and 2-((1-

methylcyclopentyl)oxy)isoindoline-1,3-dione (1n) (73.5 mg, 0.30 mmol) were used, 

affording the title compound as a liquid (37.6 mg, 77% yield) by using Hexane/EtOAc 

(20:1) as eluent. 19F NMR (376 MHz, CDCl3) δ -62.39 ppm. 1H NMR (500 MHz, 

CDCl3) δ 7.52 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 

2.45 (t, J = 6.7 Hz, 2H), 2.12 (s, 3H), 1.65 – 1.59 (m, 4H) ppm. 13C NMR (126 MHz, 

CDCl3) δ 208.8, 146.4, 128.8, 128.3 (q, JC,F = 32.3 Hz).125.3 (q, JC,F = 3.8 Hz), 124.5 

(q, JC,F = 271.8 Hz), 43.5, 35.7, 30.7, 30.0, 23.4 ppm. IR (neat): 2938, 2863, 1736, 

1714, 1617, 1417, 1359, 1322, 1160, 1109, 1065, 1018, 845, 819, 732, 591. HRMS 

calcd. for (C13H15F3NaO) [M+Na]+: 267.0973, found 267.0967. 

 

tert-butyl 3-(2-oxoethyl)-3-(4-(trifluoromethyl)benzyl)azetidine-1-carboxylate (3o) 

Following General Procedure A, 1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 

0.20 mmol) and tert-butyl 6-((1,3-dioxoisoindolin-2-yl)oxy)-2-azaspiro[3.3]heptane-2-

carboxylate (1o) (107.4 mg, 0.30 mmol) were used, affording the title compound as a 

liquid (52.1 mg, 73% yield) by using Hexane/EtOAc (2:1) as eluent.19F NMR (376 

MHz, CDCl3) δ -62.64 ppm. 1H NMR (400 MHz, CDCl3) δ 1H NMR (500 MHz, 

Chloroform-d) δ 9.76 (s, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 3.96 

(d, J = 8.8 Hz, 2H), 3.71 (d, J = 8.8 Hz, 2H), 3.12 (s, 2H), 2.70 (s, 2H), 1.43 (s, 9H) 

ppm. 13C NMR (126 MHz, CDCl3) δ 200.1, 156.4, 141.5, 129.9, 129.4 (q, JC,F = 32.6 

Hz), 125.7 (q, JC,F = 3.8 Hz), 124.2 (d, JC,F = 271.9 Hz), 79.9, 59.3, 52.8, 49.8, 42.3, 

35.5, 28.4 ppm. IR (neat): 3023, 2918, 2837, 1720, 1610, 1435, 1417, 1312, 1277, 

1180, 1104, 1019, 851, 770, 706, 665. HRMS calcd. for (C18H22F3NNaO3) [M+Na]+: 

380.1449, found 380.1450. 

 

2-(4-(trifluoromethyl)benzyl)benzaldehyde (3p) Following General Procedure A, 1-

bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol), Hantzsch ester (HE) 

(101.3 mg, 0.40 mmol) and 2-(bicyclo[4.2.0]octa-1,3,5-trien-7-yloxy)isoindoline-1,3-

dione (1p) (106.0 mg, 0.40 mmol) were used, affording the title compound as a liquid 
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(27.0 mg, 51% yield) by using Hexane/EtOAc (20:1) as eluent. 19F NMR (376 MHz, 

CDCl3) δ -62.52 ppm. 1H NMR (500 MHz, CDCl3) δ 10.16 (s, 1H), 7.85 (dd, J = 

7.8Hz, J = 1.2Hz,1H),7.58−7.45 (m, 4H), 7.26 (d, J = 7.2 Hz, 3H), 4.50 (s, 2H) ppm. 
13C NMR (126 MHz, CDCl3) δ 192.7, 144.5, 141.7, 134.1, 134.0, 133.8, 131.9, 129.2, 

127.5, 128.7 (q, JC,F = 32.4 Hz). 125.56 (q, JC,F = 3.8 Hz), 124.38 (q, JC,F = 271.9 Hz), 

38.0 ppm. Spectral data was in agreement with the literature[21]. 

 

1-(3-(4-acetylphenyl)cyclopentyl)propan-2-one (major isomer) and 1-(3-(4-

acetylbenzyl)cyclopentyl)ethan-1-one (minor isomer) (3q) Following General 

Procedure A, 1-(4-bromophenyl)ethan-1-one (2c) (39.6 mg, 0.20 mmol) and 2-((2-

methylbicyclo[2.2.1]heptan-2-yl)oxy)isoindoline-1,3-dione (1q) (81.3 mg, 0.30 mmol) 

were used, affording the title compound as a liquid (40.0 mg, 82% yield, 3.4:1 

regioisomeric ratio, and 1:1 dr for the major isomer) by using Hexane/EtOAc (10:1) as 

eluent, with regioselectivities being determined by NMR analysis. 1H NMR (400 MHz, 

CDCl3) δ 7.87 (m, 2Hmajor+minor), 7.29 (m, 1.54Hmajor), 7.25 (m, 0.45Hminor), 3.23 – 3.07 

(m, 0.76Hmajor), 3.03 – 2.95 (m, 0.09Hminor), 2.96 – 2.87 (m, 0.12Hminor), 2.69 – 2.64 (m, 

0.5Hmajor), 2.57 – 2.54 (m, 5Hmajor+minor), 2.46-2.44 (m, 0.5Hmajor), 2.30 – 2.27 (m, 

0.5Hmajor), 2.17 – 1.92 (m, 5.5Hmajor+minor), 1.97-1.91 (m, 1.5Hmajor+minor), 1.45 – 1.36 

(m, 0.5 Hmajor), 1.32 – 1.20 (m, 1Hmajor+minor) ppm. 13C NMR (101 MHz, CDCl3) δ 

210.6, 208.5, 197.8, 152.3, 151.8, 147.5, 147.3, 135.2, 135.2, 129.0, 129.0, 128.6, 128.6, 

128.6, 127.3, 127.3, 51.9, 51.1, 50.5, 50.1, 45.7, 44.5, 42.4, 41.8, 41.6, 41.6, 41.1, 40.1, 

35.6, 35.3, 34.9, 34.8, 34.2, 33.3, 33.0, 32.8, 32.0, 31.93, 30.3, 30.2, 29.3, 28.3, 27.5, 

26.6 ppm. IR (neat): 2945, 2867, 1711, 1679, 1605, 1415, 1358, 1269, 1183. HRMS 

calcd. for (C16H20O2) [M+Na]+: 267.1361, found 267.1356.  

 
Methyl 4-(4-methoxybenzyl)benzoate (3r) Following General Procedure B, Methyl 

4-bromobenzoate (2b) (42.6 mg, 0.20 mmol) and 2-((4-

methoxybenzyl)oxy)isoindoline-1,3-dione (1r) ( 93.3 mg, 0.30 mmol) were used, 

affording the title compound as a liquid (48.6 mg, 95% yield) by using Hexane/EtOAc 

(5:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 

major 
(1:1 dr)
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8.5 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 3.98 (s, 2H), 3.90 (s, 

3H), 3.79 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.1, 158.2, 147.0, 132.2, 

129.9, 129.8, 128.8, 128.0, 114.0, 55.2, 51.9, 41.04 ppm. Spectral data was in 

agreement with the literature[22]. 

 
Methyl 4-(3-(trifluoromethyl)benzyl)benzoate (3s) Following General Procedure B, 

Methyl 4-bromobenzoate (2b) (42.6 mg, 0.20 mmol) and 2-((3-

(trifluoromethyl)benzyl)oxy)isoindoline-1,3-dione (1s) (104.7 mg, 0.30 mmol) were 

used, affording the title compound as a liquid (55.3 mg, 94% yield) by using 

Hexane/EtOAc (20:1) as eluent. 19F NMR (376 MHz, CDCl3) δ -62.69 ppm. 1H NMR 

(400 MHz, CDCl3) δ 7.98 (d, J = 8.4 Hz, 2H), 7.49 (d br, J = 7.7 Hz, 1H), 7.44 (s br, 

1H), 7.41 (t br, J = 8.0 Hz, 1H), 7.34 (d br, J = 7.6 Hz, 1H), 7.25 (d, J = 8.4 Hz, 2H), 

4.09 (s, 2H), 3.91 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.0, 145.4, 141.1, 

132.3 (q, JC,F = 1.2 Hz), 131.1 (q, JC,F = 32.1 Hz), 130.1, 129.2, 129.0, 128.6, 125.7 (q, 

JC,F = 4.0 Hz), 124.2 (q, JC,F = 273 Hz), 123.4 (q, JC,F = 3.8 Hz), 52.2, 41.7 ppm. Spectral 

data was in agreement with the literature[23]. 

 
Methyl 4-benzylbenzoate (3t) Following General Procedure B, Methyl 4-

bromobenzoate (2b) (42.6 mg, 0.20 mmol), 2-(benzyloxy)isoindoline-1,3-dione (1t) 

(80.1 mg, 0.30 mmol) and Diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-

dicarboxylate (1t) (164.6 mg, 0.50 mmol) were used, affording the title compound as a 

liquid (36.6 mg, 81% yield) by using Hexane/EtOAc (20:1) as eluent. Following 

General Procedure B, Methyl 4-bromobenzoate (2b) (42.6 mg, 0.20 mmol) and 2-((1-

phenylpentyl)oxy)isoindoline-1,3-dione (1u) (92.7 mg, 0.30 mmol) were used, 

affording the title compound as a colorless oil (43.9 mg, 97% yield) by using 

Hexane/EtOAc (20:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.2 Hz, 

2H), 7.30 (t, J = 7.4 Hz, 2H), 7.27 – 7.20 (m, 3H), 7.18 (d, J = 7.3 Hz, 2H), 4.03 (s, 

2H), 3.90 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.2, 146.6, 140.2, 129.9, 

129.0, 128.7, 128.2, 126.5, 52.1, 42.0. ppm. Spectral data was in agreement with the 

literature[24]. 
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Methyl 4-(furan-2-ylmethyl)benzoate (3v) Following General Procedure B, Methyl 

4-bromobenzoate (2b) (42.6 mg, 0.20 mmol) and 2-((1-(furan-2-yl)propan-2-

yl)oxy)isoindoline-1,3-dione (1v) (81.3 mg, 0.30 mmol) were used, affording the title 

compound as a colourless oil (34.1 mg, 79% yield) by using Hexane/EtOAc (20:1) as 

eluent. 1H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 8.2 Hz, 2H), 7.35 – 7.32 (m, 1H), 

7.30 (d, J = 8.2 Hz, 2H), 6.31 – 6.29 (m, 1H), 6.03 (d, J = 2.7 Hz, 1H), 4.02 (s, 2H), 

3.90 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.1, 153.7, 143.6, 141.9, 130.0, 

128.8, 128.6, 110.5, 106.8, 52.2, 34.6 ppm. Spectral data was in agreement with the 

literature[25]. 

 
Methyl 4-(thiophen-2-ylmethyl)benzoate (3w) Following General Procedure B, 

Methyl 4-bromobenzoate (2b) (42.6 mg, 0.20 mmol) and 2-(2-(thiophen-2-

yl)ethoxy)isoindoline-1,3-dione (1w) (81.9 mg, 0.30 mmol) were used, affording the 

title compound as a liquid (29.2 mg, 63% yield) by using Hexane/EtOAc (20:1) as 

eluent. 1H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 8.4 Hz, 2H), 7.39 – 7.28 (m, 2H), 

7.17 (dd, J = 5.2, 1.2 Hz, 1H), 6.94 (dd, J = 5.1, 3.4 Hz, 1H), 6.81 (dt, J = 3.4, 1.0 Hz, 

1H), 4.21 (s, 2H), 3.90 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.1, 145.7, 

142.8, 130.0, 128.7, 128.6, 127.0, 125.6, 124.4, 52.1, 36.1 ppm. IR (neat): 2951, 1710, 

1610, 1435, 1415, 1176, 1106, 1020, 698. HRMS calcd. for (C13H12NaO2S) [M+Na]+: 

255,0456, found 255,0457. 

 
(R)-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)((4R,5S)-2,2-dimethyl-5-(4-

(trifluoromethyl)phenyl)-1,3-dioxolan-4-yl)methyl formate (7) Following General 

Procedure A, 1-bromo-4-(trifluoromethyl)benzene (2a) (44.8 mg, 0.20 mmol) and (6) 

(121.5 mg, 0.30 mmol) were used, affording the title compound as a liquid (61.4 mg, 

76% yield) by using Hexane/EtOA (20:1) as eluent; dr > 20:1. Two-dimensional nuclear 

magnetic resonance spectroscopy (2D NMR) was used to determine the major 

diastereoisomer. 19F NMR (376 MHz, CDCl3) δ -62.75 ppm. 1H NMR (400 MHz, 
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CDCl3) δ 8.32 (s, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.1 Hz, 2H), 5.25 (dt, J = 

5.9, 1.3 Hz, 1H), 4.75 (d, J = 8.7 Hz, 1H), 4.26 (q, J = 6.0 Hz, 1H), 4.06 – 3.96 (m, 2H), 

3.91 (dd, J = 8.9, 5.9 Hz, 1H), 1.58 (s, 3H), 1.50 (s, 3H), 1.30 (s, 3H), 1.28 (s, 3H) ppm. 
13C NMR (101 MHz, CDCl3) δ 160.4, 141.4, 130.8 (q, JC,F = 32.5 Hz), 126.9, 125.8 

(q, JC,F = 3.7 Hz), 124.1 (q, JC,F = 272.2 Hz), 110.4, 109.6, 81.7, 77.9, 75.2, 68.6, 65.9, 

27.2, 26.8, 26.5, 25.3 ppm. IR (neat): 2990, 2936, 1729, 1373, 1326, 1220, 1167, 1127, 

1069, 1017, 835. HRMS calcd. for (C19H23F3NaO6) [M+Na]+: 427.1344, found 

427.1339.  

 
(2S,3S,4S)-1-(4-acetylphenyl)-4-(formyloxy)pentane-1,2,3,5-tetrayl tetraacetate 

(9) Following General Procedure A, 1-(4-bromophenyl)ethan-1-one (2c) (39.6 mg, 0.20 

mmol) and (8) (148.0 mg, 0.30 mmol) were used, affording the title compound as a 

liquid (69.0 mg, 74% yield, 1:1 diastereomeric ratio) by using Hexane/EtOAc (1:1) as 

eluent. Diastereoisomer-1: 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 0.9 Hz, 1H), 

7.91 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 5.67 (d, J = 9.4 Hz, 1H), 5.63 (dd, J 

= 8.7, 2.1 Hz, 1H), 5.56 (dd, J = 9.4, 2.1 Hz, 1H), 5.25 (m, 1H), 4.27 (dd, J = 12.6, 2.7 

Hz, 1H), 4.13 (dd, J = 12.7, 5.8 Hz, 1H), 2.58 (s, 3H), 2.15 (s, 3H), 2.08 (s, 3H), 2.06 

(s, 3H), 1.81 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 197.5, 170.6, 169.7, 169.4, 

169.1, 159.6, 141.4, 137.5, 128.5, 128.0, 71.4, 70.7, 67.9, 67.6, 61.9, 26.7, 21.0, 20.7, 

20.7, 20.4 ppm. IR (neat): 2938, 2863, 1737, 1715, 1618, 1417, 1360, 1322, 1160, 

1110, 1066, 1018, 846, 819, 733, 592. HRMS calcd. for (C22H26NaO11) [M+Na]+: 

489,1373, found 489,1367. 

Diastereoisomer-2: 1H NMR (400 MHz, CDCl3) δ 7.96 (s, J = 1.0 Hz, 1H), 7.94 (d, J 

= 8.4 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 5.90 (d, J = 6.9 Hz, 1H), 5.58 (dd, J = 7.0, 3.8 

Hz, 1H), 5.22 (tdd, J = 6.5, 3.2, 1.0 Hz, 1H), 5.13 (dd, J = 6.5, 3.8 Hz, 1H), 4.29 (dd, J 

= 12.5, 3.2 Hz, 1H), 4.03 (dd, J = 12.5, 6.5 Hz, 1H), 2.58 (s, 3H), 2.12 (s, 3H), 2.08 (s, 

3H), 2.03 (s, 3H), 2.00 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 197.4, 170.5, 

169.7, 169.7, 169.5, 159.5, 140.6, 137.7, 128.8, 127.7, 73.5, 71.2, 68.8, 68.6, 61.6, 26.7, 

20.9, 20.7, 20.7, 20.5 ppm. 
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1-(4-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-

4-yl)phenyl)ethan-1-one (11) Following General Procedure A, 1-(4-

bromophenyl)ethan-1-one (2c) (39.6 mg, 0.20 mmol) and (10) (139.7 mg, 0.40 mmol) 

were used, affording the title compound as a liquid (26.9 mg, 46% yield) by using 

Hexane/EtOAc (3:1) as eluent; dr > 20:1. Two-dimensional nuclear magnetic resonance 

spectroscopy (2D NMR) was used to determine the major diastereoisomer. 1H NMR 

(400 MHz, CDCl3) δ 7.94 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 5.27 (d, J = 2.2 

Hz, 1H), 5.15 (s, 1H), 4.85 (dd, J = 6.0, 2.2 Hz, 1H), 4.65 (dt, J = 5.9, 0.7 Hz, 1H), 3.39 

(s, 3H), 2.59 (s, 3H), 1.58 (d, J = 0.7 Hz, 3H), 1.35 (d, J = 0.7 Hz, 3H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 197.8, 146.0, 136.5, 128.6, 126.4, 113.2, 110.3, 88.7, 85.8, 55.7, 

26.9, 26.7, 25.3 ppm. IR (neat): 2990, 2962, 2929, 2848, 1679, 1606, 1573, 1456, 1415, 

1379, 1359, 1266, 1200, 1159, 1115, 1078, 1055, 1032, 1001, 963, 938, 878, 860, 824, 

762, 714, 589, 570, 522. HRMS calcd. for (C16H20NaO5) [M+Na]+: 315.1208, found 

315.1203.  

 

1-cyclohexyl-4-methoxybenzene (4a) Following General Procedure A, 1-bromo-4-

methoxybenzene (37.2 mg, 0.20 mmol) and 2-((2-cyclohexylpropan-2-

yl)oxy)isoindoline-1,3-dione (1d) (114.9 mg, 0.40 mmol), HE (101.3 mg, 0.40 mmol) 

were used, affording the title compound as a colourless liquid (17.8 mg, 47% yield) by 

using Hexane/EtOAc (50:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.13 (d, J = 8.7 

Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 3.78 (s, 3H) 2.50 – 2.39 (m, 1H), 1.92 – 1.78 (m, 4H), 

1.78 – 1.68 (m, 1H),1.44 – 1.32 (m, 4H),1.29 – 1.22 (m, 1H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 157.8, 140.5,127.8, 113.9, 55.5, 43.9, 34.9, 27.2, 26.4 ppm. Spectral data was 

in agreement with the literature[26]. 

 
1-cyclohexyl-4-(trifluoromethoxy)benzene (4b) Following General Procedure A, 1-

bromo-4-(trifluoromethoxy)benzene (48.0 mg, 0.20 mmol) and 2-((2-

cyclohexylpropan-2-yl)oxy)isoindoline-1,3-dione (1d) (114.9 mg, 0.40 mmol), HE 
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(101.3 mg, 0.40 mmol) were used, affording the title compound as a colourless liquid 

(25.5 mg, 52% yield) by using Hexane/EtOAc (100:1) as eluent. 19F NMR (376 MHz, 

CDCl3) δ -58.00. 1H NMR (400 MHz, CDCl3) δ 7.20 (d, J = 8.8 Hz, 2H), 7.11 (d, J = 

8.6 Hz, 2H), 2.50 (tt, J = 8.6, 3.2 Hz, 1H), 1.91 – 1.79 (m, 4H), 1.79 – 1.70 (m, 1H), 

1.45 – 1.32 (m, 4H), 1.30 – 1.20 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 147,3, 

146.8, 127.9, 120.8, 120.5 (q, JC,F = 256.3 Hz), 43.9, 34.4, 26.8, 26.0. ppm. Spectral 

data was in agreement with the literature[27]. 

 
(4-cyclohexylphenyl)(methyl)sulfane (4c) Following General Procedure A, (4-

bromophenyl)(methyl)sulfane (40.4 mg, 0.20 mmol) and 2-((2-cyclohexylpropan-2-

yl)oxy)isoindoline-1,3-dione (1d) (114.9 mg, 0.40 mmol), HE (101.3 mg, 0.40 mmol) 

were used, affording the title compound as a colourless liquid (30.3 mg, 74% yield) by 

using Hexane/EtOAc (50:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.20 (d, J = 8.3 

Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H), 2.47 (s, 4H), 1.84 (s, 4H), 1.77 – 1.69 (m, 1H), 1.45 

– 1.31 (m, 4H), 1.27 – 1.20 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 145.5, 135.2, 

127.6, 127.4, 44.2, 34.6, 27.0, 26.3, 16.5 ppm. Spectral data was in agreement with the 

literature[28].  

 
1-cyclohexyl-4-methylbenzene (4d) Following General Procedure A, 1-bromo-4-

methylbenzene (34.0 mg, 0.20 mmol) and 2-((2-cyclohexylpropan-2-

yl)oxy)isoindoline-1,3-dione (1d) (114.9 mg, 0.40 mmol), HE (101.3 mg, 0.40 mmol) 

were used, affording the title compound as a colourless liquid (18.1 mg, 52% yield) by 

using Hexane/EtOAc (100:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.14 (s, 4H), 

2.49 (tt, J = 11.3, 3.6 Hz, 1H), 2.35 (s, 3H), 1.94 – 1.82 (m, 4H), 1.81 – 1.74 (m, 1H), 

1.49 – 1.36 (m, 4H), 1.33 – 1.25 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 145.3, 

135.3, 129.1, 126.8, 44.3, 34.7, 27.1, 26.3, 21.1. ppm. Spectral data was in agreement 

with the literature[29].  

 
Methyl 4-cyclohexylbenzoate (3c) Following General Procedure A, Methyl 4-

bromobenzoate (2b) (42.8 mg, 0.20 mmol) and 2-((2-cyclohexylpropan-2-

SMe
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yl)oxy)isoindoline-1,3-dione (1d) (114.9 mg, 0.40 mmol) were used, affording the title 

compound as a colourless liquid (35.0 mg, 81% yield) by using Hexane/EtOAc (50:1) 

as eluent. 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 

2H), 3.90 (s, 3H), 2.58 – 2.54 (m, 1H), 1.87 (m, 4H), 1.77 (d, J = 12.5 Hz, 1 H), 1.48 – 

1.31 (m, 4H), 1.29-1.25 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.3, 153.6, 

129.8, 127.9, 127.0, 52.0, 44.8, 34.3, 26.9, 26.2 ppm. Spectral data was in agreement 

with the literature[13].  

 
4,4,5,5-tetramethyl-2-(4-(tetrahydrofuran-2-yl)phenyl)-1,3,2-dioxaborolane (4e) 

Following General Procedure A, 2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (56.4 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (34.5 mg, 63% 

yield) by using Hexane/EtOAc (15:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.78 

(d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 4.92 (t, J = 6.9 Hz, 1H), 4.13-4.06 (m, 

1H), 3.98-3.90 (m, 1H), 2.38- 2.27 (m, 1H), 2.04-1.94 (m, 2H), 1.84-1.72 (m, 1H), 1.34 

(s, 12 H) ppm. 13C NMR (101 MHz, CDCl3) δ 146.9, 134.9, 124.9, 83.8, 80.7, 68.8, 

34.8, 26.0, 24.9 ppm. Spectral data was in agreement with the literature[30].  

 
2-(4-((trifluoromethyl)thio)phenyl)tetrahydrofuran (4f) Following General 

Procedure A, (4-bromophenyl)(trifluoromethyl)sulfane (51.2 mg, 0.20 mmol) and 2-

((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) (98.9 mg, 0.40 mmol), HE 

(101.3 mg, 0.40 mmol) were used, affording the title compound as a colourless liquid 

(31.3 mg, 63% yield) by using Hexane/EtOAc (20:1) as eluent. 19F NMR (376 MHz, 

CDCl3) δ -43.00 ppm. 1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.2 Hz, 2H), 7.38 

(d, J = 8.0 Hz, 2H), 4.92 (t, J = 7.2 Hz, 1H), 4.10 (dt, J = 8.1, 6.9 Hz, 1H), 3.96 (dt, J = 

8.2, 6.9 Hz, 1H), 2.45 – 2.26 (m, 1H), 2.18 – 1.96 (m, 2H), 1.78 (dq, J = 12.2, 7.7 Hz, 

1H) ppm. 13C NMR (101 MHz, CDCl3) δ 147.0, 136.4, 129.79 (q, JC,F = 308.1 Hz), 

126.8, 122.8, 80.1, 69.0, 34.8, 26.1 ppm. IR (neat): 1492, 1402, 1109, 1083, 1062, 

1015, 923, 828, 756, 570, 530. HRMS calcd. for (C11H11F3KOS) [M+K]+: 287.0120, 

found 287.0320. 
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N-(4-(tetrahydrofuran-2-yl)phenyl)acetamide (4g) Following General Procedure A,  

N-(4-bromophenyl)acetamide (42.6 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (21.0 mg, 51% 

yield) by using Hexane/EtOAc (1:1) as eluent. 1H NMR (500 MHz, CDCl3) δ 7.49 (s, 

1H), 7.44 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 4.84 (t, J = 7.1 Hz, 1H), 4.07 (q, 

J = 7.3, 6.8 Hz, 1H), 3.91 (q, J = 7.6 Hz, 1H), 2.28 (m, 1H), 2.13 (s, 3H), 2.07 – 1.91 

(m, 2H), 1.77 (m, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 168.5, 139.4, 137.0, 126.4, 

120.0, 80.5, 68.7, 34.6, 26.1, 24.5 ppm. Spectral data was in agreement with the 

literature[30]. 

 
2-(3-chloro-5-methoxyphenyl)tetrahydrofuran (4h) Following General Procedure A, 

1-bromo-3-chloro-5-methoxybenzene (44.0 mg, 0.20 mmol) and 2-((tetrahydrofuran-

2-yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (27.6 mg, 65% 

yield) by using Hexane/EtOAc (15:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 6.93 – 

6.87 (m, 1H), 6.82 – 6.72 (m, 2H), 4.83 (t, J = 7.1 Hz, 1H), 4.08 (dt, J = 8.1, 6.8 Hz, 

1H), 3.93 (dt, J = 8.2, 6.9 Hz, 1H), 3.79 (s, 3H), 2.37 – 2.24 (m, 1H), 2.06 – 1.89 (m, 

2H), 1.82 – 1.69 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 160.4, 146.9, 134.9, 

118.2, 112.9, 109.9, 80.0, 68.9, 55.6, 34.7, 26.0 ppm. IR (neat): 2943, 2869, 1599, 

1576, 1458, 1428, 1348 1270, 1190, 1152, 1093, 1048, 925, 845, 689. HRMS calcd. 

for (C11H13ClNaO2) [M+Na]+: 235.0502, found 235.0496. 

 
2-(3-fluorophenyl)tetrahydrofuran (4i) Following General Procedure A, 1-bromo-3-

fluorobenzene (34.8 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (21.3 mg, 64% 
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yield) by using Hexane/EtOAc (30:1) as eluent. 19F NMR (376 MHz, CDCl3) δ -113.47 

ppm. 1H NMR (400 MHz, CDCl3) δ 7.32 - 7.24 (m, 1H), 7.11 - 7.01 (m, 2H), 6.96 - 

6.89 (m, 1H), 4.89 (t, J = 7.1 Hz, 1H), 4.14 - 4.03 (m, 1H), 3.99 - 3.88 (m, 1H), 2.40 - 

2.23 (m, 1H), 2.08 - 1.94 (m, 2H), 1.85 - 1.71 (m, 1H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 163.2 (d, JC,F = 245.3 Hz), 146.5 (d, JC,F = 6.7 Hz), 129.9 (d, JC,F = 8.3 Hz), 

121.2 (d, JC,F = 2.9 Hz), 113.9 (d, JC,F = 21.1 Hz), 112.6 (d, JC,F = 22.1 Hz), 80.1, 68.9, 

34.7, 26.0 ppm. Spectral data was in agreement with the literature[31].  

 

2-(benzo[b]thiophen-3-yl)tetrahydrofuran (4j) Following General Procedure A, 3-

bromobenzo[b]thiophene (42.4 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (17.2 mg, 42% 

yield) by using Hexane/EtOAc (15:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.86 – 

7.84 (m, 1H), 7.81 – 7.79 (m, 1H), 7.38 – 7.34 (m, 3H), 5.27 – 5.25 (m, 1H), 4.13 (dt, 

J = 8.1, 6.5 Hz, 1H), 3.96 (dt, J = 8.3, 6.9 Hz, 1H), 2.48 – 2.38 (m, 1H), 2.09 – 2.00 (m, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 141.2, 138.3, 137.6, 124.3, 124.0, 123.0, 

122.3, 121.3, 76.8, 68.4, 32.3, 26.0 ppm. IR (neat): 3057, 2972, 2868, 1527, 1459, 

1428, 1368, 1314, 1256, 1183, 1139, 1064, 1019, 907, 838, 758, 729, 646, 423. HRMS 

calcd. for (C12H12NaOS) [M+Na]+: 227.0507, found 227.0501. 

 
4-(tetrahydrofuran-2-yl)dibenzo[b,d]furan (4k) Following General Procedure A,  

4-bromodibenzo[b,d]furan (49.2 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (30.5 mg, 64% 

yield) by using Hexane/EtOAc (15:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.95 

(d, J = 7.6 Hz, 1H), 7.86 (dd, J = 7.7, 1.1 Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.53 (d, J 

= 7.5 Hz, 1H), 7.46 (td, J = 8.4, 7.9, 1.3 Hz, 1H), 7.37 – 7.31 (m, 2H), 5.48 (t, J = 6.9 

Hz, 1H), 4.28 – 4.17 (m, 1H), 4.15 – 3.97 (m, 1H), 2.65 – 2.48 (m, 1H), 2.21 – 1.95 (m, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 156.2, 153.2, 127.8, 127.1, 124.4, 124.2, 

123.9, 122.8, 122.8, 120.7, 119.4, 111.8, 76.3, 68.9, 33.4, 26.3 ppm. IR (neat): 3056, 
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2973, 2870, 1587, 1494, 1473, 1451, 1421, 1344, 1320, 1265, 1242, 1184, 1150, 1050, 

908, 842, 796, 748, 722, 615, 562. HRMS calcd. for (C16H14NaO2) [M+Na]+: 

261.0891, found 261.0887. 

 
2-(4-(tetrahydrofuran-2-yl)phenyl)-1,3,4-oxadiazole (4l) Following General 

Procedure A, 2-(4-bromophenyl)-1,3,4-oxadiazole (44.8 mg, 0.20 mmol) and 2-

((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE 

(101.3 mg, 0.40 mmol) were used, affording the title compound as a colourless liquid 

(31 mg, 72% yield) by using Hexane/EtOAc (3:1) as eluent. 1H NMR (500 MHz, 

CDCl3) δ 8.45 (s, 1H), 8.04 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 4.96 (t, J = 

7.2 Hz, 1H), 4.23 – 4.02 (m, 1H), 3.97 (q, J = 7.0 Hz, 1H), 2.38 (dt, J = 13.3, 6.7 Hz, 

1H), 2.02 (m, 2H), 1.79 (dq, J = 12.3, 7.8 Hz, 1H) ppm. 13C NMR (126 MHz, CDCl3) 

δ 164.8, 152.6, 148.2, 127.2, 126.3, 122.3, 80.2, 69.0, 34.8, 26.1 ppm. IR (neat): 3126, 

2978, 2871, 2245, 1733, 1617, 1587, 1557, 1515, 1497, 1460, 1418, 1105, 1062, 1017, 

955, 911, 843, 728, 539. HRMS calcd. for (C12H13N2O2) [M+H]+: 217.0977, found 

217.0977. 

 
4-((4-(tetrahydrofuran-2-yl)phenyl)sulfonyl)morpholine (4m) Following General 

Procedure A, 4-((4-bromophenyl)sulfonyl)morpholine (61.0 mg, 0.20 mmol) and 2-

((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE 

(101.3 mg, 0.40 mmol) were used, affording the title compound as a solid (48.8 mg, 

82% yield) by using Hexane/EtOAc (3:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 

7.81 – 7.64 (m, 2H), 7.51 (d, J = 8.2 Hz, 2H), 4.96 (t, J = 7.2 Hz, 1H), 4.21 – 4.03 (m, 

1H), 3.97 (q, J = 7.0 Hz, 1H), 3.86 – 3.67 (m, 4H), 3.11 – 2.90 (m, 4H), 2.40 (m, 1H), 

2.03 (m, 2H), 1.77 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 149.5, 133.7, 128.1, 

126.3, 79.9, 69.1, 66.2, 46.1, 34.8, 26.1 ppm. IR (neat): 2978, 2850, 1720, 1596, 1449, 

1406, 1344, 1293, 1260, 1160, 1111, 1092, 1063, 1016, 938, 839, 727, 611, 585, 541, 

503. Mp: 62 °C. HRMS calcd. for (C14H19NNaO4S) [M+Na]+: 320,0932, found 

320,0927. 
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2-(2-fluorophenyl)tetrahydrofuran (4n) Following General Procedure A, 1-bromo-2-

fluorobenzene (34.8 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (17.2 mg, 52% 

yield) by using Hexane/EtOAc (20:1) as eluent. 19F NMR (376 MHz, CDCl3) δ -113.14 

ppm. 1H NMR (400 MHz, CDCl3) δ 7.46 (td, J = 7.6, 1.4 Hz, 1H), 7.22 (m, 1H), 7.12 

(td, J = 7.5, 0.9 Hz, 1H), 7.01 (m, 1H), 5.15 (t, J = 7.1 Hz, 1H), 4.17 – 4.06 (m, 1H), 

4.00 – 3.90 (m, 1H), 2.50 – 2.34 (m, 1H), 2.00 (q, J = 6.8 Hz, 2H), 1.79 (m, 1H) ppm. 
13C NMR (101 MHz, CDCl3) δ 159.9 (d, JC,F = 245.5 Hz), 130.9 (d, JC,F = 13.4 Hz), 

128.5 (d, JC,F = 8.1 Hz), 126.9 (d, JC,F = 4.7 Hz), 124.1 (d, JC,F = 3.5 Hz), 115.1 (d, JC,F 

= 21.3 Hz), 75.1 (d, JC,F = 2.7 Hz), 68.7, 33.6 (d, JC,F = 1.3 Hz), 26.0 ppm. Spectral data 

was in agreement with the literature[32]. 

 
2-fluoro-4-(tetrahydrofuran-2-yl)benzonitrile (4o) Following General Procedure A,  

4-bromo-2-fluorobenzonitrile (39.8 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (20.8 mg, 54% 

yield) by using Hexane/EtOAc (15:1) as eluent. 19F NMR (471 MHz, CDCl3) δ -109.47 

ppm. 1H NMR (500 MHz, CDCl3) δ 7.60 (dd, J = 6.1, 2.2 Hz, 1H), 7.54 (m, 1H), 7.16 

(t, J = 8.7 Hz, 1H), 4.86 (t, J = 7.2 Hz, 1H), 4.20 – 4.00 (m, 1H), 4.02 – 3.84 (m, 1H), 

2.35 (td, J = 12.8, 6.9 Hz, 1H), 2.10 – 1.87 (m, 2H), 1.82 – 1.66 (m, 1H) ppm. 13C NMR 

(126 MHz, CDCl3) δ 163.3, 161.2, 141.0, 132.4, 132.3, 130.5, 116.4, 116.3, 114.1, 

101.3, 101.2, 79.1, 69.0, 34.8, 26.0 ppm. IR (neat): 3384, 3075, 2979, 2876, 2236, 

1614, 1498, 1460, 1414, 1349, 1267, 1112, 1060, 910, 832, 730, 648, 627, 492. HRMS 

calcd. for (C11H10FNNaO) [M+Na]+: 214.0644, found 214.0639. 

 
2-methoxy-4-(tetrahydrofuran-2-yl)benzaldehyde (4p) Following General 

Procedure A, 4-bromo-2-methoxybenzaldehyde (42.8 mg, 0.20 mmol) and 2-
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((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE 

(101.3 mg, 0.40 mmol) were used, affording the title compound as a colourless liquid 

(19.5 mg, 58% yield) by using Hexane/EtOAc ( 5:1) as eluent. 1H NMR (400 MHz, 

CDCl3) δ 10.40 (s, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.00 (s, 1H), 6.93 (d, J = 7.9 Hz, 1H), 

4.91 (t, J = 7.2 Hz, 1H), 4.08 (d, J = 7.0 Hz, 1H), 4.01 – 3.86 (m, 4H), 2.37 (m, 1H), 

2.00 (m, 2H), 1.83 – 1.71 (m, 1H) ppm. 13C NMR (75 MHz, CDCl3) δ 189.7, 162.2, 

152.8, 128.8, 123.8, 117.9, 108.4, 80.3, 69.0, 55.7, 34.7, 26.0. ppm. IR (neat): 2943, 

2865, 1736, 1670, 1574, 1493, 1461, 1415, 1395, 1361, 1249, 1196, 1157, 1113, 1062, 

1028, 925, 868, 809. HRMS calcd. for (C12H14NaO3) [M+Na]+: 229.0841, found 

229.0835. 

 
1-(3-(tetrahydrofuran-2-yl)phenyl)ethan-1-one (4q) Following General Procedure A, 

1-(3-bromophenyl)ethan-1-one (40.0 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 

mmol) were used, affording the title compound as a colourless liquid (26.6 mg, 70% 

yield) by using Hexane/EtOAc (10:1 – 5:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 

7.92 (s, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.56 (s, 1H), 7.43 (t, J = 7.6 Hz, 1H), 4.94 (t, J = 

7.2 Hz, 1H), 4.18 – 4.07 (m, 1H), 3.96 (q, J = 7.0 Hz, 1H), 2.60 (d, J = 3.8 Hz, 3H), 

2.37 (m, 1H), 2.03 (m, 2H), 1.79 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 199.5, 

144.3, 137.3, 130.5, 128.7, 127.3, 125.5, 80.3, 68.9, 34.8, 26.8, 26.1 ppm. IR (neat): 

2976, 2872, 2250, 1692, 1603, 1586, 1435, 1359, 1259, 1196, 1059, 906, 797, 727, 694, 

647, 589. HRMS calcd. for (C12H15O2) [M+H]+: 191.1072, found 191.1067. 

 

1-(4-(pyrrolidin-1-ylsulfonyl)phenyl)-5-(4-(tetrahydrofuran-2-yl)phenyl)-3-

(trifluoromethyl)-1H-pyrazole (4r) Following General Procedure A, 5-(4-

bromophenyl)-1-(4-(pyrrolidin-1-ylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazole 

(99.8 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) 

(98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 mmol) were used, affording the title 
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compound as a solid (73.6 mg, 75% yield) by using Hexane/EtOAc (10:1 to 2:1 ) as 

eluent. 19F NMR (376 MHz, CDCl3) δ -62,16 ppm. 1H NMR (400 MHz, CDCl3) δ 

7.81 (d, J = 8.5 Hz, 2H), 7.49 (s, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 

6.76 (s, 1H), 4.88 (t, J = 7.2 Hz, 1H), 4.24 – 4.00 (m, 1H), 4.03 – 3.86 (m, 1H), 3.22 (t, 

J = 6.7 Hz, 4H), 2.35 (m, 1H), 2.14 – 1.97 (m, 2H), 1.89 – 1.71 (m, 5H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 145.4, 145.1, 144.2 (q, JC,F = 38.6 Hz), 142.5, 136.9, 128.8, 128.5, 

127.3, 126.4, 125.7, 121.1 (d, JC,F = 269.2 Hz), 106.4, 106.4, 80.20, 68.9, 48.0, 34.7, 

26.1, 25.3 ppm. IR (neat): 2980, 2877, 2250, 1735, 1595, 1497, 1471, 1346, 1235, 

1160, 113, 1096, 1060, 976, 907, 843, 770, 726, 621, 583. Mp: 45 °C. HRMS calcd. 

for (C24H24F3N3NaO3S) [M+Na]+: 514.1388, found 514.1383. 

 
Methyl (R)-2-phenyl-2-(4-(tetrahydrofuran-2-yl)benzamido)acetate (4s) 

Following General Procedure A,  Methyl (R)-2-(4-bromobenzamido)-2-phenylacetate 

(69.4 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) 

(98.8 mg, 0.40 mmol), HE (101.3 mg, 0.40 mmol) were used, affording the title 

compound as a colourless liquid (30.5 mg, 45% yield, 1:1 dr) by using Hexane/EtOAc 

(2:1) as eluent.1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 8.4 Hz, 2H), 7.44-7.24 (m, 

8H), 5.77 (d, J = 6.9 Hz, 1H), 4.90 (t, J = 7.2 Hz, 1H), 4.10-4.03 (m, 1H), 3.95-3.88 (m, 

1H), 3.73 (s, 3H), 2.37-2.27 (m, 1H), 2.02-1.92 (m, 2H), 1.78-1.66 (m, 1H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 171.1, 166.4, 147.9, 136.7, 132.4, 129.1, 128.6, 127.4, 

127.3, 125.7, 80.2, 68.9, 56.9, 52.9, 34.8, 26.0 ppm. Spectral data was in agreement 

with the literature[30].  

 
2-dodecyltetrahydrofuran (5a) Following General Procedure C, 1-bromododecane  

(49.6 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) 

(98.8 mg, 0.40 mmol) were used, affording the title compound as a colourless liquid 

(25.0 mg, 52% yield) by using Hexane/EtOAc (30:1) as eluent. 1H NMR (300 MHz, 

CDCl3) δ 3.89 – 3.62 (m, 3H), 2.02 – 1.76 (m, 3H), 1.55 – 1.14 (m, 24H), 0.87 (t, J = 

6.4 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ 79.6, 67.7, 35.9, 32.0, 31.5, 29.9, 29.8, 

29.7, 29.7, 29.7, 29.5, 26.5, 25.8, 22.8, 14.2 ppm. Spectral data was in agreement with 

the literature[30].  
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2-(4-phenylbutyl)tetrahydrofuran (5b) Following General Procedure C, (4-

bromobutyl)benzene (42.4 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol) were used, affording the 

title compound as a colourless liquid (20.6 mg, 51% yield) by using Hexane/EtOAc 

(30:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.48 – 7.41 (m, 2H), 7.37 – 7.30 (m, 

3H), 4.08 – 4.78 (m, 3H), 2.83 – 2.76 (m, 2H), 2.19 – 1.97 (m, 3H), 1.88 – 1.74 (m, 

3H), 1.69 – 1.50 (m, 4H) ppm. 13C NMR (101 MHz, CDCl3) δ 142.8, 128.5, 128.3, 

125.7, 79.4, 67.3, 36.0, 35.72, 31.7, 31.5, 26.6, 25.8 ppm. Spectral data was in 

agreement with the literature[30].  

 

7-(tetrahydrofuran-2-yl)heptanenitrile (5c) Following General Procedure C,  7-

bromoheptanenitrile (37.8 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol) were used, affording the 

title compound as a colourless liquid (19.9 mg, 55% yield) by using Hexane/EtOAc 

(30:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 3.89 – 3.63 (m, 3H), 2.33 (t, J = 7.1 

Hz, 2H), 2.04 – 1.79 (m, 3H), 1.72 – 1.60 (m, 2H), 1.59 – 1.31 (m, 7H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 119.9, 79.1, 67.7, 35.4, 31.5, 28.8, 25.8, 25.7, 25.4, 17.1 ppm. 

Spectral data was in agreement with the literature[30].  

 
2-(undec-10-en-1-yl)tetrahydrofuran (5d) Following General Procedure C, 11-

bromoundec-1-ene (46.4 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol) were used, affording the 

title compound as a colourless liquid (22.4 mg, 50% yield) by using Hexane/EtOAc 

(30:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 5.87 – 5.73 (m, 1H), 5.01 – 4.88 (m, 

2H), 3.88-3.65 (m, 3H), 2.06 – 1.81 (m, 5H), 1.47 – 1.26 (m, 17H) ppm. 13C NMR (101 

MHz, CDCl3) δ 139.4, 114.2, 79.6, 67.1, 35.9, 33.95, 31.5, 29.9, 29.7, 29.7, 29.6, 29.3, 

29.1, 26.6, 25.8 ppm. Spectral data was in agreement with the literature[30].  

 
11-(tetrahydrofuran-2-yl)undecan-1-ol (5e) Following General Procedure C,  11-
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bromoundecan-1-ol (50.0 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol) were used, affording the 

title compound as a colourless liquid (23.9 mg, 49% yield) by using Hexane/EtOAc 

(3:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 3.87 – 3.63 (m, 3H), 3.59 (t, J = 6.6 Hz, 

2H), 1.99 – 1.78 (m, 3H), 1.64 – 1.52 (m, 5H) 1.37 – 1.26(m, 17H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 79.6, 67.7, 63.1, 35.8, 32.9, 31.5, 29.9, 29.7, 29.7, 29.6, 26.5, 

25.9, 25.8 ppm. Spectral data was in agreement with the literature[30].  

 

2-(4-(4-chlorophenoxy)butyl)tetrahydrofuran (5f) Following General Procedure C,  

1-(4-bromobutoxy)-4-chlorobenzene (52.4 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol) were used, affording the 

title compound as a colourless liquid (28.5 mg, 56% yield) by using Hexane/EtOAc 

(3:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.22 – 7.18 (m, 2H), 6.82 – 6.78 (m, 

2H), 3.92 (t, J = 6.0 Hz, 2H), 3.88 – 3.78 (m, 2H), 3.74 – 3.68 (m, 1H), 1.99 – 1.76 (m, 

5H), 1.65 – 1.42 (m, 5H) ppm. 13C NMR (101 MHz, CDCl3) δ 157.8, 129.3, 125.4, 

115.8, 79.3, 68.2, 67.7, 35.5, 31.5, 29.3, 25.8, 23.0 ppm. IR (neat): 2941, 2864, 1597, 

1580, 1491, 1472, 1389, 1285, 1241, 1169, 1091, 1037, 1005, 909, 823, 731, 666, 508. 

HRMS calcd. for (C14H19ClNaO2) [M+Na]+: 277.0971, found 277.0969. 

 
tert-butyldimethyl((11-(tetrahydrofuran-2-yl)undecyl)oxy)silane (5g) Following 

General Procedure C, ((11-bromoundecyl)oxy)(tert-butyl)dimethylsilane (72.8 mg, 

0.20 mmol) and 2-((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (2a) (98.8 mg, 

0.40 mmol) were used, affording the title compound as a colourless liquid (30.6 mg, 

43% yield) by using Hexane/EtOAc (3:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 

3.88 – 3.82 (m, 1H), 3.78 – 3.67 (m, 2H), 3.58 (t, J = 6.6 Hz, 2H), 1.97 – 1.81 (m, 3H), 

1.52 – 1.36 (m, 21H), 0.89 (s, 9H), 0.04 (s, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 

79.6, 67.7, 63.5, 35.9, 33.0, 31.5, 29.9, 29.8, 29.8, 29.6, 26.5, 26.1, 25.9, 25.9, 18.5, -

5.1 ppm. Spectral data was in agreement with the literature[30]. 

 
Methyl 12-(tetrahydrofuran-2-yl)dodecanoate (5h) Following General Procedure C,  

Methyl 12-bromododecanoate (58.4 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol) were used, affording the 

O COOEt
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title compound as a colourless liquid (28.9 mg, 51% yield) by using Hexane/EtOAc 

(3:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 4.11 (q, J = 7.1 Hz, 2H), 3.93 – 3.64 (m, 

3H), 2.27 (t, J = 7.6 Hz, 2H), 2.05 – 1.79 (m, 3H), 1.71 – 1.49 (m, 3H), 1.43 – 1.38 (m, 

3H), 1.34 – 1.20 (m, 12H) ppm. 13C NMR (101 MHz, CDCl3) δ 174.0, 79.5, 67.7, 60.2, 

35.8, 34.5, 31.5, 29.7, 29.5, 29.3, 29.2, 26.5, 25.8, 25.1, 14.3 ppm. IR (neat): 2927, 

2855, 1735, 1463, 132, 1178, 1097, 1035, 918, 732. HRMS calcd. for (C15H28NaO3) 

[M+Na]+: 279.1936, found 279.1931. 

 

(5S,8R,9S,10S,13S,14S)-10,13-dimethyl-3-(tetrahydrofuran-2-yl)hexadecahydro-

1H-cyclopenta[a]phenanthren-17-ol (5i) Following General Procedure C,  

(3R,5S,8R,9S,10S,13S,14S)-3-bromo-10,13-dimethylhexadecahydro-1H-

cyclopenta[a]phenanthren-17-ol (70.8 mg, 0.20 mmol) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol) were used, affording the 

title compound as a colourless liquid (88.6 mg, 64% yield, 1:1 diastereomeric ratio) by 

using Hexane/EtOAc (5:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 3.81 (q, J = 7.1, 

6.6 Hz, 1H), 3.69 (q, J = 7.6 Hz, 1H), 3.60 (t, J = 8.6 Hz, 1H), 3.48 (q, J = 7.6 Hz, 1H), 

2.09 – 1.98 (m, 1H), 1.94 – 1.33 (m, 15H), 1.32 – 1.14 (m, 5H), 1.09 – 0.99 (m, 3H), 

0.97 – 0.81 (m, 3H), 0.76 (s, 3H), 0.71 (s, 3H), 0.64 (td, J = 12.2, 4.1 Hz, 1H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 84.18, 84.15, 82.11, 82.10, 67.83, 54.88, 51.25, 46.53, 

46.39, 43.44, 43.42, 43.12, 43.12, 38.39, 38.29, 36.96, 36.94, 36.27, 36.22, 35.74, 32.31, 

31.83, 31.53, 30.66, 30.64, 29.31, 29.25, 29.05, 28.91, 25.97, 25.96, 25.53, 24.74, 23.51, 

20.72, 12.46, 12.45, 11.27 ppm. IR (neat): 3253, 2921, 2850,1713, 1446, 1322, 1121, 

1051, 953, 917, 867, 731. Mp: 137 °C. HRMS calcd. for (C23H38NaO2) [M+Na]+: 

369.2770, found 369.2764. 

 
Benzyl 4-(tetrahydrofuran-2-yl)piperidine-1-carboxylate (5j) Following General 

Procedure C, Benzyl 4-bromopiperidine-1-carboxylate (59.4 mg, 0.20 mmol) and 2-

((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (1a) (98.8 mg, 0.40 mmol) were 
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used, affording the title compound as a colourless liquid (27.8 mg, 48% yield) by using 

Hexane/EtOAc (3:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.28 (m, 5H), 

5.12 (s, 2H), 4.21 (s, 2H), 3.81 (dt, J = 8.1, 6.7 Hz, 1H), 3.76 – 3.65 (m, 1H), 3.52 (q, J 

= 7.4 Hz, 1H), 2.75 (s, 2H), 2.18 – 1.76 (m, 4H), 1.68 – 1.43 (m, 3H), 1.21 (m, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 13C NMR (101 MHz, CDCl3) δ 155.3, 137.0, 

128.5, 128.0, 127.9, 82.9, 67.9, 67.0, 44.08, 44.02, 41.4, 29.1, 28.2, 25.8 ppm. IR (neat): 

2945, 2857, 1693, 1428, 1356, 1278, 1221, 1181, 1061, 1022, 920, 731, 697. HRMS 

calcd. for (C17H23NNaO3) [M+Na]+: 312.1576, found 312.1570 

 
Tert-butyl 4-(tetrahydrofuran-2-yl)piperidine-1-carboxylate (5k) Following 

General Procedure C, Tert-butyl 4-bromopiperidine-1-carboxylate (52.6 mg, 0.20 

mmol) and 2-((tetrahydrofuran-2-yl)methoxy)isoindoline-1,3-dione (2a) (98.8 mg, 

0.40 mmol) were used, affording the title compound as a colourless liquid (18.4 mg, 

36% yield) by using Hexane/EtOAc (3:1) as eluent. 1H NMR (500 MHz, CDCl3) δ 

4.12 (d, J = 13.2 Hz, 1H), 3.82 (dt, J = 8.1, 6.8 Hz, 0.5H), 3.77 – 3.66 (m, 0.5H), 3.59 

– 3.42 (m, 0.5H), 2.79 – 2.53 (m, 1H), 2.10 – 1.73 (m, 2H), 1.45 (s, 6H), 1.31 – 1.09 

(m, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 155.0, 83.1, 79.3, 67.9, 43.7(br), 41.6, 

29.2, 29.1, 28.6, 28.3, 25.9 ppm. IR (neat): 2974, 2931, 2857, 2246, 1679, 1422, 1365, 

1279, 1234, 1166, 1101, 1064, 977, 920, 868, 769, 729, 646. 

2.7.4 Mechanistic Experiments 

Radical clock experiments  

 

2-(4-(trifluoromethyl)benzyl)tetrahydrofuran (13) An oven-dried 8 mL screw-cap 

test tube containing a stirring bar was charged with 4-CzIPN (3.2 mg, 2 mol%), 4,4’-

Di-tert-butyl-2,2’-bipyridine (8.0 mg, 15 mol%), Hantzsch ester (HE) (1.5 equiv) and 

2-(pent-4-en-1-yloxy)isoindoline-1,3-dione (12) (69.3 mg, 0.30 mmol). The test tube 

O N

O

O

+
Br

F3C

O

CF3

Isoated yield = 68%

O

F3C
+

14:1

4-CzIPN (2 mol%)    
NiBr2 diglyme (10 mol%)  

dtbbpy (15 mol%)

12 2a

HE (1.5 eq)  
K2CO3 (1.0 eq)
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was introduced in an argon-filled glovebox where NiBr2·diglyme (7.0 mg, 10 mol% ) 

and K2CO3 (28.0 mg, 1.0 equiv) were subsequently added followed by addition of NMP 

(0.8 mL, 0.25 M). Then the tube was brought out, and 1-bromo-4-

(trifluoromethyl)benzene (2a, 44.8 mg, 0.20 mmol). PTFE tape was used to ensure the 

tightness of the reaction system, and then the tube was stirred at 40 °C under irradiation 

of blue LEDs with a fan for 18-24 h. After this time, the reaction mixture was extracted 

with ethyl acetate and water/brine (3 times). Then, the organic layers were combined, 

dried over MgSO4 and concentrated under vacuum. The product was purified by flash 

chromatography column on silica gel, affording the title compound as a colourless 

liquid (31.3 mg, 68% yield) by using Hexane/EtOAc (30:1) as eluent. The mixture 

included the 5-exo-trig adduct (13) and 6-endo-trig adduct (14) in a 14.3:1 ratio. 19F 

NMR (376 MHz, CDCl3) δ -62.48, -62.55 ppm. 1H NMR (500 MHz, CDCl3) δ 7.54 

(d, J = 8.1 Hz, 2.1H), 7.35 (d, J = 8.0 Hz, 2.16H), 4.08 (p, J = 6.9 Hz, 1H), 4.02 – 3.95 

(m, 0.15H), 3.93 – 3.84 (m, 1.0H), 3.79 – 3.68 (m, 1.0H), 3.49 – 3.37 (m, 0.07H), 2.92 

(dd, J = 13.7, 7.0 Hz, 1.11H), 2.84 (dd, J = 13.7, 5.6 Hz, 1H), 2.10 – 2.04 (m, 0.04H), 

2.02 – 1.92 (m, 1H), 1.88 (m, 2H), 1.80 – 1.71 (m, 0.21H), 1.65 – 1.48 (m, 1H). ppm. 
13C NMR (126 MHz, CDCl3) δ 143.36, 143.35, 129.68, 129.66, 128.67 (q, JC,F = 32.3 

Hz), 127.87, 125.55 (d, JC,F = 4.1 Hz), 125.34 (q, JC,F = 3.8 Hz), 125.34 (q, JC,F = 3.8 

Hz), 124.50 (q, JC,F = 271.8 Hz), 79.61, 73.43, 68.33, 68.16, 68.15, 42.94, 41.84, 31.23, 

31.22, 31.22, 30.39, 25.99, 25.76, 25.75, 25.73 ppm. IR (neat): 2946, 2865, 1619, 1418, 

1322, 1160, 1113, 1064, 1019, 846. HRMS calcd. for (C12H12F3O) [M-H]+: 229.0840, 

found 229.08436. HRMS calcd. for (C12H14F3O) [M+H]+: 231.0997, found 231.0979. 

Radical inhibition experiment  

 

An oven-dried 8 mL screw-cap test tube containing a stirring bar was charged with 4-

CzIPN (1.6 mg, 2 mol%), 4,4’-Di-tert-butyl-2,2’-bipyridine (4.0 mg, 15 mol%), 

Hantzsch ester (HE) (38.0 mg, 1.5 equiv), TEMPO (46.9 mg, 0.3 mmol, 3.0 equiv)  

and 2-(cyclohexyl(phenyl)methoxy)isoindoline-1,3-dione (1c) (50.3 mg, 1.5 equiv). 
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The test tube was introduced in an argon-filled glovebox where NiBr2·diglyme (3.5 mg, 

10 mol%) and K2CO3 (14.0 mg, 1.0 equiv) in NMP were subsequently added followed 

by addition of NMP (0.4 mL, 0.25 M). Then the tube was brought out, and 1-bromo-4-

(trifluoromethyl)benzene (2a, 22.4 mg, 0.10 mmol) was added to the reaction mixture. 

PTFE tape was used to ensure the tightness of the reaction system, and then the tube 

was stirred at around 40 °C under irradiation of blue LEDs with a fan for 18 hours. 

After this time, the reaction mixture was analyzed by GC-mass and the corresponding 

TEMPO- adduct was detected by GC mass spectroscopy. Conversion and the yield of 

TEMPO- adduct were calculated using GC-Fid with dodecane (17.0 mg, 0.10 mmol) 

as internal standard.  

 

Figure S1. GC-mass spectra of radical inhibition reaction mixtures. 

These results can be interpreted on the basis of the known behavior of TEMPO as an 

electron donor in EDA complexes[33-35]. Specifically, it has been speculated that 

TEMPO can affect the interaction between HE and alkoxyphthalimide. 

Benzaldehyde quantitative detection experiment 
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An oven-dried 8 mL screw-cap test tube containing a stirring bar was charged with 4-

CzIPN (1.6 mg, 2 mol%), 4,4’-Di-tert-butyl-2,2’-bipyridine (4.0 mg, 15 mol%), 

Hantzsch ester (HE) (38.0 mg, 1.5 equiv) and 2-

(cyclohexyl(phenyl)methoxy)isoindoline-1,3-dione (1c) (50.3 mg, 1.5 equiv). The test 

tube was introduced in an argon-filled glovebox where NiBr2·diglyme (3.5 mg, 10 

mol%) and K2CO3 (14.0 mg, 1.0 equiv) in NMP were subsequently added followed by 

addition of NMP (0.4 mL, 0.25 M). Then the tube was brought out, and Methyl 4-

bromobenzoate (2b) (21.3 mg, 0.10 mmol) was added to the reaction mixture. PTFE 

tape was used to ensure the tightness of the reaction system, and then the tube was 

stirred at around 40 °C under irradiation of blue LEDs with a fan for 12 hours. The 

yields of 3c and benzaldehyde were calculated using GC-Fid with dodecane (17.0 mg, 

0.10 mmol) as internal standard.  

Oxidative Addition complex  

 
In a nitrogen filled glove box, a 100 mL round bottom flask containing a stirring bar 

was charged with Ni(COD)2 (276 mg, 1.0 mmol, 1.0 equiv), 4,4'-di-tert-butyl-2,2'-

bipyridine (268 mg, 1.0 mmol, 1.0 equiv) and dry THF (10 mL) giving a dark purple 

mixture which was stirred for 12 hours at 25 oC. 1-bromo-4-(trifluoromethyl)benzene 

(2.8 mL, 20 mmol, 10.0 equiv) was added and stirred for additional 2.5 h. Dry pentane 

(60 mL) was added to the deep red colored mixture and filtered. The resulting 

precipitate was washed with pentane (3 x 10 mL) and dried under vacum to afford Ni(II) 

complex (Ni-I) as a brown solid the (504 mg, 45 % yield). The complex was stored in 

a nitrogen filled glove box at -35 oC. 1H NMR (400 MHz, CD2Cl2) δ 9.22 (s, 1H), 

7.85-7.75 (m, 4H), 7.51 (br, 1H), 7.19-7.09 (m, 4H), 1.34 (s, 18H). 19F NMR (376 MHz, 

CD2Cl2) δ -62.02. spectral data was in agreement with the literature[36]. 

Stoichiometric reactions with Ni-I 

O N

O

O

Br

MeOOC

4-CzIPN (2 mol%)    
NiBr2 diglyme (10 mol%)  

dtbbpy (15 mol%)

Ph

GC yield = 83%

COOMe

GC yield = 85%

+

1c2b

O

H

Benzaldehyde

+

3c

HE (1.5 eq)
K2CO3 (1.0 eq)

NMP (0.25 M), Blue LED, 40 oC

N

N

tBu

tBu

Ni(COD)2 (1.0 equiv)
THF, rt, overnight

N

N

tBu

tBu

Ni(COD) +

Br

CF3

THF, rt, 2.5h

N

N

tBu

tBu

Ni Br

CF3
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An oven-dried 8 mL screw-cap test tube containing a stirring bar was charged with 4-

CzIPN (x mol%), Hantzsch ester (HE) (y equiv) and 2-((tetrahydrofuran-2-

yl)methoxy)isoindoline-1,3-dione (1a) (49.4 mg, 2.0 equiv). The test tube was 

introduced in an argon-filled glovebox where Ni-I (55.0 mg, 0.10 mmol, 1.0 equiv) and 

K2CO3 (14.0 mg, 1.0 equiv) in NMP were subsequently added followed by addition of 

NMP (0.4 mL, 0.25 M). Then the tube was brought out, PTFE tape was used to ensure 

the tightness of the reaction system, and then the tube was stirred at around 40 °C under 

irradiation of blue LEDs with a fan for 18 hours. After this time, 3-fluoronitrobenzene 

(10.00 μL, 0.10 mmol) as internal standard was added to the reaction mixture. Yields 

were determined by comparing the integration of the 19F NMR resonance of 2-(4-

(trifluoromethyl)phenyl)tetrahydrofuran (-62.6 ppm) with that of 3-fluoronitrobenzene 

(-119.0 ppm). 

Catalytic competence of Ni-I 

 
An oven-dried 8 mL screw-cap test tube containing a stirring bar was charged with 4-

CzIPN (1.6 mg, 2 mol%), Hantzsch ester (HE) (50.7 mg, 2.0 equiv), 4,4'-di-tert-butyl-

2,2'-bipyridine (1,3 mg, 5 mol%) and 2-((tetrahydrofuran-2-yl)methoxy)isoindoline-

1,3-dione (2a) (49.4 mg, 2.0 equiv). The test tube was introduced in an argon-filled 

glovebox where Ni-I (5.5 mg, 10 mmol%) and K2CO3 (14.0 mg, 1.0 equiv) in NMP 

were subsequently added followed by addition of NMP (0.4 mL, 0.25 M). Then the tube 

was brought out, and 1-bromo-4-(trifluoromethyl)benzene (1a, 22.4 mg, 0.10 mmol) 

was added to the reaction mixture. PTFE tape was used to ensure the tightness of the 

reaction system, and then the tube was stirred at around 40 °C under irradiation of blue 

LEDs with a fan for 18 hours. After this time, 3-fluoronitrobenzene (10.00 μL, 0.10 

mmol) as internal standard was added to the reaction mixture. Yields were determined 

4-CzIPN (x mol%)    
HE (y eq),Ni

F3C

Br

N N

tButBu

O
O

CF3

1. x= 2, y = 2.0
2. x= 0, y = 2.0
3. x= 2, y = 0

19F NMR yield

O N

O

O

+

17%
10%
  0%

1aNi-I

K2CO3 (1.0 eq)
NMP (0.25 M), Blue LED, 40 oC

4-CzIPN (2 mol%)
   dtbpy (5 mol%)

1a2a

F3C

Ni-I (10 mol%)

O+
O

CF3

19F NMR yield 72%

O N

O

O

Br

HE (2.0 eq) 
K2CO3 (1.0 eq)

NMP (0.25 M), Blue LED, 40 oC
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by comparing the integration of the 19F NMR resonance of 2-(4-

(trifluoromethyl)phenyl)tetrahydrofuran (-62.6 ppm) with that of 3-Fluotonitrobenzene 

(-119.0 ppm). 

UV/Vis Absorption Spectra  

The UV/Vis absorption spectra of NMP solutions of Hantzsch ester (0.023 M), N-

alkoxyphthalimide 1a (0.05 M), a mixture of HE (0.023 M) and 1a (0.023 M), a mixture 

of HE (0.023 M) and phthalimide (0.023 M) and a mixture of HE (0.023 M), 1a (0.023 

M) and K2CO3 (0.023 M) were recorded in 1 cm path quartz cuvettes using a UV-

1800PC spectrophotometer. As shown, the spectra for both HE and 1a have absorption 

tails that extend to 450 nm. The addition of K2CO3 results in a significant bathochromic 

shift attributed to the formation of the HE-anion that ultimate leads to the formation of 

the EDA complex.  

 

Figure S2. The interaction between Hantzsch ester and N-alkoxyphthalimide 1a in 

NMP. 

Determination of the Association Constant (KEDA)  

The association constant of the EDA complex formed between N-alkoxyphthalimide 

derivative 1a and Hantzsch ester was determined by spectroscopic means in NMP 

employing the Benesi-Hildebrand methodology[37]. We measured the absorption of 

solutions with constant concentration of N-alkoxyphthalimides 1a and HE (0.02 M) at 

440 nm, and added an excess of Hantzsch ester to increase the donor/acceptor ratios. 

All the absorption spectra were recorded in 1 cm path quartz cuvettes using a UV-

1800PC spectrophotometer. A straight line was obtained when the reciprocal of the 
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absorbance (A) was plotted against the reciprocal of the concentration of the partner in 

excess (Table S2). The association constant (KEDA) was calculated by dividing the 

intercept by the slope: 2.9 M-1 for the N-alkoxyphthalimide 1a/Hantzsch ester. 

 

Figure S3. UV-vis. data from varying the concentration of Hantzsch ester in the 

presence of 1a. 

[HE] (M) 1/[HE] (M-1) AbsEDA 1/(AbsEDA-A0) 

0.02 50 0.117 8.547 

0.03 33.3 0.168 5.952 

0.05 20 0.264 3.787 

0.06 16.7 0.314 3.185 

0.07 14.3 0.369 2.710 

Table S2: Data obtained by UV/vis absorption spectra for EDA complexes in NMP. 
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Figure S4. Hildebrand-Benesi plots for the EDA complexes generated in NMP upon 

association of the N-alkoxyphthalimide 1a and Hantzsch ester.  

Influence of Ni-I on the absorption of EDA complexes 

The UV/Vis absorption spectra of NMP solutions of Ni-I (0.02 M), a mixture of HE 

(0.02 M) and 1a (0.02 M) and a mixture of HE (0.02 M), Ni(II)complex (0.02 M) and 

1a (0.02 M) were recorded in 1 cm path quartz cuvettes using a Agilent Technologies 

Cary 300 UV/Vis spectrophotometer. As shown in Figure S5, Ni-I has a significant 

impact on the absorption of EDA complexes between HE and 1a. 

 

Figure S5. The interaction between Ni(II)complex and EDA complexes in NMP.  

Cyclic voltammetry data  

Cyclic voltammetry was performed on a CH Instruments Electrochemical Analyzer. A 

0.01 M NMP solution of the N-alkoxyphthalimide 1a was prepared with 0.1 M 
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tetrabutylammonium hexafluorophosphate as the supporting electrolyte and the 

solution was sparged with N2 for 10 minutes. The cyclic voltammogram was obtained 

using a glassy carbon working electrode, platinum flag counter electrode and Ag/AgCl 

(KCl sat.) reference electrode. Data was collected with a scan rate of 25 mV/s. A 

ferrocene solution was used as an internal standard to determine the precise potential 

scale[38]. 

 

Ep (1a) = -1.12 V vs. Ag/ AgCl in NMP, Ep (1a) = -1.74 V vs. Fc/ Fc+ in NMP 

Figure S6. Cyclic voltammogram of N-alkoxyphthalimide derivative 1a. 

2.7.5 X-Ray Crystallography Data  

X-ray diffraction of Ni-I  

Ep (1a) = -1.12 V 
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Figure S8. ORTEP Diagram (dtbbpy)Ni(p-trifluoromethylphenyl)(Br) Ni-I. 

CCSD deposition number 2038983 

Table S3. Crystallographic Data. 
 Ni-I 

Formula C28.50H32Br F3N2Ni 

Formula weight 598.18 

T (K) 100(2) 

Wavelength (Å) 0.71073 

Crystal system triclinic 

Space group P -1 

a (Å) 9.3470(6) 

b (Å) 12.1428(8) 

c (Å) 13.0223(7) 

a (deg) 100.693(5) 

b (deg) 96.050(5) 

g (deg) 108.457(6) 

V (Å3) 1356.12(15) 

Z 2 

Density (calc.) (Mg/m3) 1.465 

µ (mm-1) 2.229 

F(000) 614 

Crystal size (mm3) 0.100 x 0.050 x 0.050 

Theta range for data collection 2.334 to 29.694 
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(deg) 

Index ranges -10<=h<=12, 

-16<=k<=16, 

-17<=l<=17 

Reflections collected 14644 

Independent reflections 14644[R(int) = ?] 

Completeness to theta 90.4% 

29.694° 

Absorption correction Multi-scan 

Max. and min. transmission 1.00 and 0.87 

Refinement method Full-matrix least-squares 

on F2 

Data / restraints / parameters 14644/ 97/ 376 

Goodness-of-fit on F2 1.025 

Final R indices [I>2sigma(I)] R1 = 0.0767, wR2 = 

0.2000 

R indices (all data) R1 = 0.1009, wR2 = 

0.2129 

Largest diff. peak and hole 1.875 and 

0.794 e.Å-3 

 

Table S4. Bond lengths [Å] and angles [°] for Ni-I. 

_____________________________________________________ 

Bond lengths---- 

C1     N1     1.340(7)         

C1     C2     1.388(8)         

Ni1    C19    1.879(5)         

Ni1    N1     1.914(5)         

Ni1    N2     1.971(5)         

Ni1    Br1    2.2876(9)        

N1     C5     1.359(7)         

C2     C3     1.392(8)         

N2     C6     1.346(7)         

N2     C10    1.347(7)         
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F1     C25    1.34(3)          

F2     C25    1.22(2)          

F3     C25    1.452(18)        

F1'    C25    1.33(4)          

F2'    C25    1.437(17)        

F3'    C25    1.273(15)        

C3     C4     1.407(7)         

C3     C11    1.514(8)         

C4     C5     1.380(7)         

C5     C6     1.473(7)         

C6     C7     1.397(7)         

C7     C8     1.396(7)         

C8     C9     1.388(8)         

C8     C15    1.520(8)         

C9     C10    1.384(8)         

C11    C14    1.531(9)         

C11    C12    1.537(8)         

C11    C13    1.540(8)         

C15    C16    1.528(9)         

C15    C17    1.535(8)         

C15    C18    1.541(9)         

C19    C24    1.374(9)         

C19    C20    1.384(9)         

C20    C21    1.384(9)         

C21    C22    1.355(10)        

C22    C23    1.380(10)        

C22    C25    1.494(8)         

C23    C24    1.388(9)         

C1A    C2A    1.3900           

C1A    C6A    1.3900           

C1A    C7A    1.510(7)         

C2A    C3A    1.3900           

C3A    C4A    1.3900           

C4A    C5A    1.3900           
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C5A    C6A    1.3900           

 

Angles---------- 

N1     C1     C2     123.0(5)                  

C19    Ni1    N1     93.9(2)                   

C19    Ni1    N2     176.1(2)                  

N1     Ni1    N2     82.48(19)                 

C19    Ni1    Br1    86.62(16)                 

N1     Ni1    Br1    178.00(16)                

N2     Ni1    Br1    96.99(14)                 

C1     N1     C5     117.7(5)                  

C1     N1     Ni1    127.1(4)                  

C5     N1     Ni1    115.2(3)                  

C1     C2     C3     120.4(5)                  

C6     N2     C10    117.6(5)                  

C6     N2     Ni1    114.3(4)                  

C10    N2     Ni1    128.0(4)                  

C2     C3     C4     115.9(5)                  

C2     C3     C11    123.6(5)                  

C4     C3     C11    120.5(5)                  

C5     C4     C3     121.1(5)                  

N1     C5     C4     121.8(5)                  

N1     C5     C6     114.1(5)                  

C4     C5     C6     124.0(5)                  

N2     C6     C7     122.4(5)                  

N2     C6     C5     113.3(5)                  

C7     C6     C5     124.3(5)                  

C8     C7     C6     120.3(5)                  

C9     C8     C7     116.2(5)                  

C9     C8     C15    120.1(5)                  

C7     C8     C15    123.7(5)                  

C10    C9     C8     121.0(5)                  

N2     C10    C9     122.5(5)                  

C3     C11    C14    108.0(5)                  
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C3     C11    C12    111.5(5)                  

C14    C11    C12    108.8(5)                  

C3     C11    C13    109.6(5)                  

C14    C11    C13    110.6(5)                  

C12    C11    C13    108.5(5)                  

C8     C15    C16    109.3(5)                  

C8     C15    C17    112.8(5)                  

C16    C15    C17    109.1(5)                  

C8     C15    C18    108.7(5)                  

C16    C15    C18    108.9(5)                  

C17    C15    C18    107.9(5)                  

C24    C19    C20    116.6(5)                  

C24    C19    Ni1    121.7(5)                  

C20    C19    Ni1    121.7(4)                  

C21    C20    C19    123.0(6)                  

C22    C21    C20    119.3(6)                  

C21    C22    C23    119.2(6)                  

C21    C22    C25    120.2(6)                  

C23    C22    C25    120.6(6)                  

C22    C23    C24    120.9(6)                  

C19    C24    C23    120.9(6)                  

F3'    C25    F1'    110(2)                    

F2     C25    F1     113(2)                    

F3'    C25    F2'    102.5(10)                 

F1'    C25    F2'    100.8(17)                 

F2     C25    F3     104.3(11)                 

F1     C25    F3     99.8(17)                  

F2     C25    C22    119.4(11)                 

F3'    C25    C22    115.8(9)                  

F1'    C25    C22    118(3)                    

F1     C25    C22    109(3)                    

F2'    C25    C22    107.8(9)                  

F3     C25    C22    108.9(9)                  

C2A    C1A    C6A    120.0                     



 

186 
 

C2A    C1A    C7A    120.6(10)                 

C6A    C1A    C7A    119.4(10)                 

C1A    C2A    C3A    120.0                     

C4A    C3A    C2A    120.0                     

C3A    C4A    C5A    120.0                     

C6A    C5A    C4A    120.0                     

C5A    C6A    C1A    120.0                     

------------------------------------------------------- 

Table S5. Torsion angles [°] for Ni-I. 
________________________________________________________________ 

C2     C1     N1     C5     -2.4(10)                                    

C2     C1     N1     Ni1    175.1(5)                                    

N1     C1     C2     C3     0.4(11)                                     

C1     C2     C3     C4     1.2(9)                                      

C1     C2     C3     C11    -178.7(6)                                   

C2     C3     C4     C5     -1.0(8)                                     

C11    C3     C4     C5     178.9(5)                                    

C1     N1     C5     C4     2.6(8)                                      

Ni1    N1     C5     C4     -175.2(4)                                   

C1     N1     C5     C6     -175.7(5)                                   

Ni1    N1     C5     C6     6.6(6)                                      

C3     C4     C5     N1     -0.9(8)                                     

C3     C4     C5     C6     177.1(5)                                    

C10    N2     C6     C7     -1.7(9)                                     

Ni1    N2     C6     C7     176.0(4)                                    

C10    N2     C6     C5     177.9(5)                                    

Ni1    N2     C6     C5     -4.4(6)                                     

N1     C5     C6     N2     -1.3(7)                                     

C4     C5     C6     N2     -179.5(5)                                   

N1     C5     C6     C7     178.3(5)                                    

C4     C5     C6     C7     0.1(9)                                      

N2     C6     C7     C8     1.2(9)                                      

C5     C6     C7     C8     -178.4(5)                                   

C6     C7     C8     C9     -0.9(8)                                     
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C6     C7     C8     C15    -179.7(5)                                   

C7     C8     C9     C10    1.3(9)                                      

C15    C8     C9     C10    -179.9(6)                                   

C6     N2     C10    C9     2.1(9)                                      

Ni1    N2     C10    C9     -175.3(5)                                   

C8     C9     C10    N2     -1.9(10)                                    

C2     C3     C11    C14    116.9(7)                                    

C4     C3     C11    C14    -63.0(7)                                    

C2     C3     C11    C12    -2.5(9)                                     

C4     C3     C11    C12    177.5(5)                                    

C2     C3     C11    C13    -122.6(6)                                   

C4     C3     C11    C13    57.5(7)                                     

C9     C8     C15    C16    57.4(7)                                     

C7     C8     C15    C16    -123.8(6)                                   

C9     C8     C15    C17    178.9(6)                                    

C7     C8     C15    C17    -2.3(8)                                     

C9     C8     C15    C18    -61.4(7)                                    

C7     C8     C15    C18    117.4(6)                                    

N1     Ni1    C19    C24    -88.1(6)                                    

Br1    Ni1    C19    C24    89.9(5)                                     

N1     Ni1    C19    C20    90.3(6)                                     

Br1    Ni1    C19    C20    -91.7(5)                                    

C24    C19    C20    C21    2.2(11)                                     

Ni1    C19    C20    C21    -176.3(6)                                   

C19    C20    C21    C22    -1.0(12)                                    

C20    C21    C22    C23    -0.4(11)                                    

C20    C21    C22    C25    179.0(7)                                    

C21    C22    C23    C24    0.5(11)                                     

C25    C22    C23    C24    -179.0(7)                                   

C20    C19    C24    C23    -2.1(11)                                    

Ni1    C19    C24    C23    176.4(6)                                    

C22    C23    C24    C19    0.8(12)                                     

C21    C22    C25    F2     48.4(14)                                    

C23    C22    C25    F2     -132.1(13)                                  
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C21    C22    C25    F3'    140.7(10)                                   

C23    C22    C25    F3'    -39.9(12)                                   

C21    C22    C25    F1'    -86.4(16)                                   

C23    C22    C25    F1'    93.1(16)                                    

C21    C22    C25    F1     -83.8(15)                                   

C23    C22    C25    F1     95.6(15)                                    

C21    C22    C25    F2'    26.6(11)                                    

C23    C22    C25    F2'    -154.0(10)                                  

C21    C22    C25    F3     168.0(9)                                    

C23    C22    C25    F3     -12.6(11)                                   

C6A    C1A    C2A    C3A    0.0                                         

C7A    C1A    C2A    C3A    -178.3(15)                                  

C1A    C2A    C3A    C4A    0.0                                         

C2A    C3A    C4A    C5A    0.0                                         

C3A    C4A    C5A    C6A    0.0                                         

C4A    C5A    C6A    C1A    0.0                                         

C2A    C1A    C6A    C5A    0.0                                         

C7A    C1A    C6A    C5A    178.3(15)                                   

----------------------------------------------------------------- 

Symetry operations 

________________________________________________________________ 

1  'x, y, z' 

2  '-x, -y, -z' 
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2.7.7 NMR Spectra  

 
1H NMR spectrum (400 MHz, CDCl3) of Ph-HE 

 

 
13C NMR spectrum (101 MHz, CDCl3) of Ph-HE 
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19F NMR spectrum (375 MHz, CDCl3) of 2d 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 2d 
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13C NMR spectrum (101 MHz, CDCl3) of 2d 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 2e 
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13C NMR spectrum (101 MHz, CDCl3) of 2e 

 

1H NMR spectrum (400 MHz, CDCl3) of 1a 
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13C NMR spectrum (101 MHz, CDCl3) of 1a 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 1b 

 



 

196 
 

 
13C NMR spectrum (101 MHz, CDCl3) of 1b 

 

1H NMR spectrum (400 MHz, CDCl3) of 1c 
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13C NMR spectrum (101 MHz, CDCl3) of 1c 

 

1H NMR spectrum (400 MHz, CDCl3) of 1d 
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13C NMR spectrum (101 MHz, CDCl3) of 1d 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 1e 
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13C NMR spectrum (101 MHz, CDCl3) of 1e 

 

1H NMR spectrum (400 MHz, CDCl3) of 1f 
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13C NMR spectrum (101 MHz, CDCl3) of 1f 
 

 
1H NMR spectrum (400 MHz, CDCl3) of 1g 
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13C NMR spectrum (101 MHz, CDCl3) of 1g 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 1h 
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13C NMR spectrum (101 MHz, CDCl3) of 1h 

 

1H NMR spectrum (400 MHz, CDCl3) of 1i 
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13C NMR spectrum (101 MHz, CDCl3) of 1i 
 

1H NMR spectrum (400 MHz, CDCl3) of 1j 
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13C NMR spectrum (101 MHz, CDCl3) of 1j 
 

 
1H NMR spectrum (400 MHz, CDCl3) of 1k 
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13C NMR spectrum (101 MHz, CDCl3) of 1k 

 

1H NMR spectrum (400 MHz, CDCl3) of 1l 
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13C NMR spectrum (101 MHz, CDCl3) of 1l 

 

1H NMR spectrum (400 MHz, CDCl3) of 1m 
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13C NMR spectrum (101 MHz, CDCl3) of 1m 
 

 
1H NMR spectrum (400 MHz, CDCl3) of 1n 
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13C NMR spectrum (101 MHz, CDCl3) of 1n 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 1o 
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13C NMR spectrum (101 MHz, CDCl3) of 1o 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 1p 
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13C NMR spectrum (101 MHz, CDCl3) of 1p 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 1q 
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13C NMR spectrum (101 MHz, CDCl3) of 1q 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 1r 
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13C NMR spectrum (101 MHz, CDCl3) of 1r 

 

19F NMR spectrum (375 MHz, CDCl3) of 1s 
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1H NMR spectrum (400 MHz, CDCl3) of 1s 

 
13C NMR spectrum (75 MHz, CDCl3) of 1s 
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1H NMR spectrum (400 MHz, CDCl3) of 1t 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 1t 
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1H NMR spectrum (400 MHz, CDCl3) of 1u 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 1u 
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1H NMR spectrum (400 MHz, CDCl3) of 1v 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 1v 
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1H NMR spectrum (400 MHz, CDCl3) of 1w 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 1w 
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1H NMR spectrum (400 MHz, CDCl3) of 6 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 6 
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1H NMR spectrum (400 MHz, CDCl3) of 8 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 8 
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1H NMR spectrum (400 MHz, CDCl3) of 10 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 10 
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19F NMR spectrum (375 MHz, CDCl3) of 3a 

 

1H NMR spectrum (500 MHz, CDCl3) of 3a 
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13C NMR spectrum (126 MHz, CDCl3) of 3a 
 

 
1H NMR spectrum (400 MHz, CDCl3) of 3b 

 



 

223 
 

 
13C NMR spectrum (101 MHz, CDCl3) of 3b 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 3c 

 



 

224 
 

 
13C NMR spectrum (101 MHz, CDCl3) of 3c 

 

 
19F NMR spectrum (375 MHz, CDCl3) of 3d 
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1H NMR spectrum (400 MHz, CDCl3) of 3d 

 

 
13C NMR spectrum (126 MHz, CDCl3) of 3d 
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19F NMR spectrum (376 MHz, CDCl3) of 3e 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 3e 
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13C NMR spectrum (101 MHz, CDCl3) of 3e 

 

 

19F NMR spectrum (375 MHz, CDCl3) of 3f 
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1H NMR spectrum (400 MHz, CDCl3) of 3f 

 

13C NMR spectrum (101 MHz, CDCl3) of 3f 
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19F NMR spectrum (375 MHz, CDCl3) of 3g 

 

 

1H NMR spectrum (400 MHz, CDCl3) of 3g 
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13C NMR spectrum (101 MHz, CDCl3) of 3g 

 

 
19F NMR spectrum (375 MHz, CDCl3) of 3h 
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1H NMR spectrum (400 MHz, CDCl3) of 3h 

 
13C NMR spectrum (101 MHz, CDCl3) of 3h 
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19F NMR spectrum (375 MHz, CDCl3) of 3i 

 

 
1H NMR spectrum (500 MHz, CDCl3) of 3i 
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13C NMR spectrum (126 MHz, CDCl3) of 3i 
 

 

19F NMR spectrum (375 MHz, CDCl3) of 3j 
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1H NMR spectrum (500 MHz, CDCl3) of 3i 

 

 
13C NMR spectrum (126 MHz, CDCl3) of 3j 
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19F NMR spectrum (375 MHz, CDCl3) of 3k 

 

 
1H NMR spectrum (500 MHz, CDCl3) of 3k 
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13C NMR spectrum (126 MHz, CDCl3) of 3k 

 

 
19F NMR spectrum (375 MHz, CDCl3) of 3l 
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1H NMR spectrum (400 MHz, CDCl3) of 3l 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 3l 
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1H NMR spectrum (400 MHz, CDCl3) of 3m 

 

 

13C NMR spectrum (101 MHz, CDCl3) of 3m 
 

Me

Me

O
major

O

MeO

O

Me
minor

Me

Me

O

MeO

O

Me
minor

r.r. = 12:1

O



 

239 
 

 

19F NMR spectrum (375 MHz, CDCl3) of 3n 
 

 
1H NMR spectrum (500 MHz, CDCl3) of 3n 
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13C NMR spectrum (126 MHz, CDCl3) of 3n 

 

 

19F NMR spectrum (375 MHz, CDCl3) of 3o 
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1H NMR spectrum (400 MHz, CDCl3) of 3o 

 
 

 

13C NMR spectrum (101 MHz, CDCl3) of 3o 
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19F NMR spectrum (375 MHz, CDCl3) of 3p 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 3p 
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13C NMR spectrum (101 MHz, CDCl3) of 3p 

 

 

1H NMR spectrum (400 MHz, CDCl3) of 3q 
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13C NMR spectrum (101 MHz, CDCl3) of 3q 

 

 

 HMBC spectrum ( CDCl3) of 3q 
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HMBC spectrum ( CDCl3) of 3q 
 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 3r 
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13C NMR spectrum (101 MHz, CDCl3) of 3r 
 

 
19F NMR spectrum (375 MHz, CDCl3) of 3s 
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1H NMR spectrum (400 MHz, CDCl3) of 3s 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 3s 
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1H NMR spectrum (400 MHz, CDCl3) of 3t 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 3t 
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1H NMR spectrum (400 MHz, CDCl3) of 3v 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 3v 
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1H NMR spectrum (400 MHz, CDCl3) of 3w 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 3w 
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19F NMR spectrum (375 MHz, CDCl3) of 7 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 7  

 



 

252 
 

 
13C NMR spectrum (101 MHz, CDCl3) of 7 

 

 
HMQC spectrum(CDCl3) of 7 
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COSY spectrum (CDCl3) of 7 

 

COSY spectrum (CDCl3) of 7 
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NOE spectrum (CDCl3) of 7 

 

 

1H NMR spectrum (400 MHz, CDCl3) of 9-1 
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13C NMR spectrum (101 MHz, CDCl3) of 9-1 

 

 

HMQC spectrum (CDCl3) of 9-1 
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COSY spectrum (CDCl3) of 9-1 

 

COSY spectrum (CDCl3) of 9-1 
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NOE spectrum (CDCl3) of 9-1 

 

 

1H NMR spectrum (400 MHz, CDCl3) of 9-2 
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13C NMR spectrum (101 MHz, CDCl3) of 9-2 

 

 

HMQC spectrum (CDCl3) of 9-2 
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COSY spectrum (CDCl3) of 9-2 

 

COSY spectrum (CDCl3) of 9-2 
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NOE spectrum (CDCl3) of 9-2 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 11 
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13C NMR spectrum (101 MHz, CDCl3) of 11 

 

 
HMQC spectrum (CDCl3) of 11 
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COSY spectrum (CDCl3) of 11 

 
COSY spectrum (CDCl3) of 11 
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NOE spectrum (CDCl3) of 11 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 4a 
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13C NMR spectrum (101 MHz, CDCl3) of 4a 

 

 

19F NMR spectrum (375 MHz, CDCl3) of 4b 
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1H NMR spectrum (400 MHz, CDCl3) of 4b 

 
13C NMR spectrum (101 MHz, CDCl3) of 4b 
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1H NMR spectrum (400 MHz, CDCl3) of 4c 

 
13C NMR spectrum (101 MHz, CDCl3) of 4c 
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1H NMR spectrum (400 MHz, CDCl3) of 4d 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 4d 
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1H NMR spectrum (400 MHz, CDCl3) of 4e 

 
13C NMR spectrum (101 MHz, CDCl3) of 4e 
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19F NMR spectrum (375 MHz, CDCl3) of 4f 

 
1H NMR spectrum (400 MHz, CDCl3) of 4f 
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13C NMR spectrum (101 MHz, CDCl3) of 4f 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 4g 
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13C NMR spectrum (101 MHz, CDCl3) of 4g 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 4h 
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13C NMR spectrum (101 MHz, CDCl3) of 4h 

 

 
19F NMR spectrum (375 MHz, CDCl3) of 4i 
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1H NMR spectrum (400 MHz, CDCl3) of 4i 

 
13C NMR spectrum (101 MHz, CDCl3) of 4i 
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1H NMR spectrum (400 MHz, CDCl3) of 4j 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 4j 
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1H NMR spectrum (400 MHz, CDCl3) of 4k 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 4k 
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1H NMR spectrum (500 MHz, CDCl3) of 4l 

 

 
13C NMR spectrum (126 MHz, CDCl3) of 4l 
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1H NMR spectrum (400 MHz, CDCl3) of 4m 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 4m 
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19F NMR spectrum (376 MHz, CDCl3) of 4n 
 

 
1H NMR spectrum (400 MHz, CDCl3) of 4n 
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13C NMR spectrum (101 MHz, CDCl3) of 4n 

 

 
19F NMR spectrum (471 MHz, CDCl3) of 4o 

 



 

280 
 

 
1H NMR spectrum (500 MHz, CDCl3) of 4o 

 

 
13C NMR spectrum (126 MHz, CDCl3) of 4o 
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1H NMR spectrum (400 MHz, CDCl3) of 4p 

 

 
13C NMR spectrum (75 MHz, CDCl3) of 4p 
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1H NMR spectrum (400 MHz, CDCl3) of 4q 

 

 
13C NMR spectrum (101 MHz, CDCl3) of 4q 
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19F NMR spectrum (376 MHz, CDCl3) of 4r 
 

 
1H NMR spectrum (400 MHz, CDCl3) of 3r 
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13C NMR spectrum (101 MHz, CDCl3) of 4r 

 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 4s 
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13C NMR spectrum (101 MHz, CDCl3) of 4s 

 

1H NMR spectrum (300 MHz, CDCl3) of 5a 
 



 

286 
 

 
13C NMR spectrum (75 MHz, CDCl3) of 5a 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 5b 
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13C NMR spectrum (101 MHz, CDCl3) of 5b 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 5c 
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13C NMR spectrum (101 MHz, CDCl3) of 5c 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 5d 
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13C NMR spectrum (101 MHz, CDCl3) of 5d 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 5e 
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13C NMR spectrum (101 MHz, CDCl3) of 5e 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 5f 
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13C NMR spectrum (101 MHz, CDCl3) of 5f 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 5g 
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13C NMR spectrum (101 MHz, CDCl3) of 5g 

 

1H NMR spectrum (400 MHz, CDCl3) of 5h 
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13C NMR spectrum (101 MHz, CDCl3) of 5h 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 5i 
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13C NMR spectrum (101 MHz, CDCl3) of 5i 

 

1H NMR spectrum (400 MHz, CDCl3) of 5j 
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13C NMR spectrum (101 MHz, CDCl3) of 5j 

 

 
1H NMR spectrum (400 MHz, CDCl3) of 5k 
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13C NMR spectrum (101 MHz, CDCl3) of 5k 

 

 
19F NMR spectrum (376 MHz, CDCl3) of 13 and 14 
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1H NMR spectrum (500 MHz, CDCl3) of 13 and 14 

 

 
13C NMR spectrum (126 MHz, CDCl3) of 13 and 14 
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19F NMR spectrum (376 MHz, CD2Cl2) of Ni-I 

 

1H NMR spectrum (400 MHz, CD2Cl2) of Ni-I 
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Chapter 3 

Trifluoromethylation of Carbonyl and Olefin Derivatives 
by C(sp3)–C Bond Cleavage 
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3.1 General Introduction 

Due to the recent development of numerous synthetic methods in organic fluorine 
chemistry, organic compounds containing fluorine functional group were widely studied 
and incorporated into pharmaceuticals, agrochemicals, and functional materials.1 In 
particular, the trifluoromethyl group (CF3) possesses unique properties as a strong electron-
withdrawing effect (Scheme 3.1, top left) and could increase the lipophilicity of a drug 
candidate upon incorporation.2 The stable C−F bond can also significantly change the 
acidity and the dipole moment (Scheme 3.1, top right),3 therefore increasing the polarity 
of the molecule.2, 3 Furthermore, fluorine-containing groups were applied to tune 
permeability, lipophilicity and metabolic stability of drug molecules (Scheme 3.1),1 
therefore attracting attention from the medicinal chemists. Currently, related CF3-drug 
molecules such as Avagacestat (Alzheimer’s disease), Dexlansoprazole (proton pump 
inhibitor), and Efavirenz (anti-HIV), have shown good bioactivity (Scheme 3.1, bottom).4 

 

Scheme 3.1 Properties of the trifluoromethyl group.  

In recent years, efficient and elegant transition metal-catalyzed trifluoromethylation 
reactions to forge C(sp3)−CF3 bonds have been developed.5 Due to the large lattice energy 
between metal and fluorine atoms and the special nature of trifluoromethyl group, the 
related trifluoromethyl metal-active species is unstable and is prone to a-F elimination 
(Scheme 3.2).6 In addition, due to the acidity of fluoroform (pKa = 28),7 the installation of 
aliphatic trifluoromethyl groups via the SN2 route is also problematic because of the 
instability of the CF3 anion which rapidly decomposes to fluoride anion and 
difluorocarbenes due to negative charge-lone pair repulsion.8 Therefore, the efficient 
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synthesis of these compounds including alkyl-trifluoromethyl motifs [C(sp3)−CF3] remains 
an important challenge. 

 

Scheme 3.2 a-F elimination of CF3 anions or metal-bound CF3. 

3.1.1 Radical Trifluoromethylation to Forge C(sp3)−CF3 Bonds  

In contrast to the numerous strategies to assemble trifluoromethylated arenes via 
C(sp2)−CF3 bond formation,5a, 5b, 9 synthetic methods to build up aliphatic C(sp3)−CF3 
bonds are still limited due to sp3 hybridized carbon centers are prone to chemoselectivity 
problems of protonation and b-H elimination.5 Current synthetic methods can be grouped 
into four different classes (Scheme 3.3): (i) Trifluoromethylation of carbon-centered 
electrophiles with [CF3–] reagents (nucleophilic trifluoromethylation),5a, 10 (ii) 
Trifluoromethylation of carbon-centered nucleophiles with [CF3+] reagents (electrophilic 
trifluoromethylation),11 (iii) Difunctionalization of unsaturated bonds such as alkenes via 
CF3 radical addition,12 (iv) Trifluoromethylation of carbon-centered radicals.12a, 13 The 
mild generation of radical intermediates applying (metalla)photoredox chemistry has 
driven the development of new methods to form C(sp3)−CF3 bonds via radical 
trifluoromethylation reactions.5e This enables traditionally unreactive substrates to undergo 
trifluoromethylation accompanied by unique chemoselectivity and excellent functional 
group compatibility. In recent years, radical trifluoromethylation has been the latest 
research trend in the formation of C(sp3)−CF3 bonds.5,12,13 
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Scheme 3.3 Classical approaches of trifluoromethylation. 

Back in the 1970s, Metal-free radical cross-coupling reactions between trifluoromethyl 
radicals and alkyl radicals were initially investigated and discovered by Renaud,14 de 
Meijere et al.15 (Scheme 3.4). They found that given the mismatch between the two 
transient radicals, this type of reaction usually provided the desired product in very low 
yields. It was not until more than 30 years later that more efficient and versatile methods 
of radical trifluoromethylation were discovered,5,12,13 driven by the development of new 
trifluoromethylation reagents,11a, 16 particularly preparable isolated metal−CF3 reagents. 
9e,9g, 17 

 

Scheme 3.4 Cross-coupling between alkyl radical and CF3 radical. 

In 2012, the Fu group reported the successful trifluoromethylation of primary and 
secondary alkylboronic acids.18 Herein, Ruppert's reagent (TMS−CF3)19 was used as the 
trifluoromethylation source in the presence of Ag+ as stoichiometric oxidant and CuI as the 
catalyst. 
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Scheme 3.5 Cu-catalyzed trifuoromethylation of primary and secondary alkylboronic 

acids. 

The related breakthrough study was reported by Li's group in 2017,20 they discovered 
the copper-mediated trifluoromethylation of alkyl bromides using stoichiometric reagent 
(bpy)Cu(CF3)3 as trifluoromethylation source in the presence of K2S2O8, Et3SiH and 
aqueous acetone (Scheme 3.6). A plausible mechanism proposes the initial reduction of 
K2S2O8 via SET producing a sulphate radical anion (·-SO4), which could abstract a 
hydrogen atom from Et3SiH to produce an -silicon-centeredl radical (Me3Si·).  These 
radical intermediates are known to undergo halogen atom transfer (XAT) processes to 
generate the related alkyl radical from the corresponding bromide. Simultaneously, the 
CuII-CF3 intermediate is formed upon reduction of (bpy)Cu(CF3)3, which finally will form 
the trifluoromethylated product via cross-coupling.  The regenerated CuI species will be 
reoxidized by S2O82- initiating again the HAT/XAT-process. Although copper-catalyzed 
nucleophilic trifluoromethylation has been previously reported for alkyl halides, these 
strategies were limited to highly reactive substrates as benzylic or allylic positions. 
However, Li's copper-mediated trifluoromethylation of alkyl halides showcased a broad 
substrate scope and wide functional group compatibility with high yields under mild 
conditions. This lays the foundation for the development of new methods to form 
C(sp3)−CF3 bonds via radical trifluoromethylation process. 
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Scheme 3.6 Cu-mediated trifluoromethylation of alkyl bromides with (bpy)Cu(CF3)3. 

In 2018, Gong and his colleagues reported a Cu/Ni-cocatalyzed reductive coupling of 
alkyl iodides with Togni’s reagent II (Scheme 3.7).21 Copper(I) chloride (CuCl) and 
NiCl2·glyme were employed as catalysts and B2(nep)2 (bis(nepentylglycolato)diboron) as 
the terminating reductant. The authors proposed that the interaction of CuI-Bnep 
intermediates (A) with alkyl iodides to produce alkyl radicals and I-CuII-Bnep species (B). 
Following this, the alkyl I-CuIII-B(nep) intermediate (C) is rapidly formed and to produce 
R-CuI intermediate (D) upon reductive elimination. Finally, reaction of R-CuI with Togni 
reagent II produced the trifluoromethylated product and regenerates CuI (V). 
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Scheme 3.7 Dual Ni/Cu-catalyzed reductive coupling of alkyl iodides with Togni’s 

reagent II. 

In 2019, the MacMillan group developed the dual copper/photo-redox catalyzed 
trifluoromethylation of alkyl bromides employing the electrophilic trifluoromethylation 
reagent [(Mes)2S+CF3-OTf].22 Herein, tris(trimethylsilyl)silanol ((TMS)3SiOH) served as 
XAT catalyst via oxidative SET of the excited IridiumIII complex (. The so generated alkyl 
radicals recombine with LnX-CuII-CF3 to give alkyl-CuIII-CF3 intermediates similar to 
those reported previously (Scheme 3.8). 
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Scheme 3.8 The dual copper/photoredox-catalyzed trifluoromethylation of alkyl 

bromides employing a sulfonium reagent. 

Aliphatic alcohols are highly abundant and were recently developed as alkyl radical 
precursors upon activationand allowing to particitpate in trifluoromethylation strategies. In 
2021, the Cook group presented the deoxytrifluoromethylation of aliphatic alcohols using 
O-alkyl thiocarbonates as mode of activation. Under blue LED irradiation and in the 
presence of (bpy)-Cu(CF3)3, (TMS)3SiH and Na2S2O8 (Scheme 3.9),23 photolysis of 
(bpy)Cu(CF3)3 results in the generation of CF3 radicals and (bpy)Cu(CF3)2. The reaction 
of the silyl radical formed by (TMS)3SiH and O-alkyl thiocarbonate initiates the generation 
of the corresponding alkyl radicals, which can be trapped by (bpy)CuII(CF3)2 to produce 
alkyl-CF3 products. Recently, The MacMillan group has applied the concept of in situ 
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activation of free alcohols via benzoxazolium salts (N-heterocyclic carbene precursors) to 
the platform about copper metallaphotoredox catalyzed deoxytrifluoromethylation 
(Scheme 3.10).24 The mild conditions and excellent chemoselectivity of this method make 
it suitable for a wide range of primary, secondary and tertiary alcohol substrates and even 
complex drug molecules such as monosaccharides and nucleosides. Regarding the 
mechanism, they proposed that the aliphatic alcohol firstly condenses with NHC-1 to 
produce NHC-alcohol adduct (4) in situ. The photocatalyst 
[Ir(dF(OMe)ppy)2( 5,5'(CF3)bpy)PF6] (1) produces a highly oxidative excited state 2 under 
light excitation. NHC-alcohol adduct 4 undergoes deprotonation and quenches 2 via single 
electron transfer (SET) to provide radical intermediate 5, which can undergo C−O bond 
cleavage to provide alkyl radical 6 and by-product 7. At the same time, CuI captures the 
CF3 radicals generated from the reduction of the electrophilic CF3 source 8 by 3. the formed 
CuII-CF3 species 19 is able to trap the alkyl radicals 6 and give the alkyl-CuIII-CF3 
intermediate 11, which next produces the desired aliphatic trifluoromethylated product 13 
via reductive elimination. 

  

Scheme 3.9 Cu-mediated trifluoromethylation of alcohols via thiocarbonates. 
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Scheme 3.10 Cu-catalyzed trifluoromethylation of alcohols via in situ activation of NHC. 

Chen's group reported that alkoxy radicals generated from cycloalkanols can achieve 
selectively b C−C bond cleavage/trifluoromethylation (Scheme 3.11).25 They used 
cycloalkanols as substrates to generate the corresponding alkoxy radicals via the PECT 
pathway. the alkyl radicals generated from b-scission of alkoxy radicals can be trapped by 
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LnCuII-CF3 intermediate to give the final product.  

 

Scheme 3.11 Cu-catalyzed b C−C bond cleavage/trifluoromethylation of cycloalkanols. 

Carboxylic acids as a highly stable, of low cost and naturally abundant feedstock 
chemicals, which can be applied in the dual catalytic platform to effectively achieve the 
decarboxylative C(sp3)−CF3 bond formation. The groups of Li and MacMillan have 
reported two different approaches for the decarboxylative trifluoromethylation of aliphatic 
carboxylic acids.26 Firstly, Li and coworkers described the conversion of aliphatic acids to 
the corresponding alkyl-CF3 in aqueous acetonitrile solution using AgNO3 as catalyst, 
K2S2O8 as oxidant, (bpy)Cu(CF3)3 as CF3 source, and ZnMe2 as activator (Scheme 3.12, 
top).26a They proposed that the single electron oxidation of alkyl carboxylic acids by 
Ag2+can result in alkyl radicals, which could be trapped by LnCuII(CF3)2 to form alkyl-
CuIII(CF3)2 intermediates, and then alkyl-CuIII(CF3)2 intermediates would undergo 
reductive elimination to produce the product (Scheme 3.12, bottom). Subsequently, the 
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MacMillan group developed an elegant method for metal photoredox-catalyzed 
decarboxylative trifluoromethylation (Scheme 3.13).26b In contrast to previous work on 
trifluoromethylation using stoichiometric metal reagents ([CuCF3] as a CF3 source), they 
used Togni’s reagent I as CF3 source to successfully demonstrate the broad functional group 
tolerance of the reaction and its potential for late-stage diversification of complex 
molecules employing catalytic amounts of copper catalysis under visible light conditions. 

 

Scheme 3.12 Ag catalyzed decarboxylated trifluoromethylation. 

 

Scheme 3.13 Photoredox-catalyzed decarboxylative trifluoromethylation cross-coupling. 

Trifluoromethylation methods via C(sp3)−H activation display one of the most atom-
economical and step-efficient strategy, therefore has attracted much attention from 
chemists. In preliminary studies, the copper-mediated benzyl C(sp3)−H 

COOH

AgNO3 (cat.)
(bpy)Cu(CF3)3
ZnMe2 K2S2O8

MeCN/H2O, 40 oCcarboxylic acids
selected examples

proposed mechanism

Br CF3
8

CF3
3

PhthN CF3
8

N3
TsN

CF3

81% 86% 78% 88%

(bpy)Cu(CF3)3
+

ZnMe2

[Me(CF3)3CuIII]- [(CF3)2CuI]- + MeCF3

AgIAgII

[O]

(CF3)2CuII CF3CuI

In 2017, LI:

CF3

COOH CF3

Ir(dFCF3)ppy(CF3bpy) PF6 (1 mol%)
CuCN (20 mol%), bathophen (30 mol%)

BTMG (0.5 equiv)
EtOAc, H2O, blue LEDscarboxylic acids

selected examples

BnO
Me

CF3

81% 86% 45%

I
O

CF3

+

CF3

OMe
CF3

NHBoc

MeO

CF3

82%

Me

Me

Me

HO OH

H H

H

from nutriacholic acid

CF3

CF3

O

O

from Isoxepac

CF3
5

Me
4

from oleic acis
79% 71% 52%

In 2018, MacMillan:

CF3COOH

N
Boc

CF3

70%

O

CF3

from frnbufen
32%



 

311 
 

trifluoromethylation have been independently reported by the groups of Cook, Liu and Li 
(Scheme 3.14).27 Liu's group used ZnMe as a reductant to reduce(bpy)CuIII(CF3)3 to trigger 
the generation of (bpy)CuII(CF3)2 and trifluoromethyl radicals,27b while Cook's group 
discovered the homolysis nature of (bpy)CuIII(CF3)3 under photoexcitation to generate 
(bpy)CuII(CF3)2 intermidiates.27a In contrast to the two previously methods, the Li group 
designed a catalytic amount of copper to promote the benzyl trifluoromethylation and 
employ NFSI or Selectfluor to oxidize CuI while acting as a HAT reagent to activate 
benzylic C−H bonds.27c However, the cores of the three different reaction conditions all 
undergo the combination of alkyl radicals with LnCuIICF3X to generate the R-CuIII-CF3 
intermediate, which subsequently give the benzylic C(sp3)−CF3 product by reductive 
elimination. 

 

Scheme 3.14 Benzylic C−H bond trifluoromethylation. 

In 2021, both the Cook group and Hong's group have discovered valuable methods for 
the trifluoromethylation of highly unactivated C(sp3)−H bonds of alkanes (Scheme 3.15).28 
However, these reactions require a large excesses of the substrate (alkane) employing a 
copper-CF3 reagent as the limiting reagent. Herein, Hong's group utilized highly reactive 
CF3 radicals as HAT reagents to functionalize the inert C(sp3)−H bond (Scheme 3.15, 
bottom).28b According to DFT studies, the reaction undergoes a radical-polar crossover 
pathway instand of reductive elimination pathway due to the strong oxidation potential of 
Oxone (Ep = +1.81V). 
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Scheme 3.15 Aliphatic C(sp3)−H bond trifluoromethylation. 

In 2020, MacMillan and his colleagues reported an elegant method for the direct 
trifluoromethylation of aliphatic and benzylic C(sp3)−H bonds employing decatungstate 
(Na4W10O32) and copper(II) chloride CuIICl2 (Scheme 3.16).29 Herein, b-
trifluoromethylated amines could be obtained applying primary or secondary amines under 
slightly acidic conditions in the presence of Togni’s reagent II and ultraviolet irradiation 
(390 nm). This method demonstrated high efficiency and a broad substrate scope including 
the late-stage diversification of several natural products and drug molecules. Mechanistic 
studies showed that the excited state of Na4W10O32 acts as an HAT-catalyst and the in situ 
generated CuII-CF3 species is involved in the formation of the crucial C(sp3)−CF3 bond. 
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Scheme 3.16 W/Cu-cocatalysedC(sp3)−H bond trifluoromethylation. 

In 2018, Li's group reported the first remote C(sp3)−H bond activation of 
trifluoromethylation through the use of Cu(OTf)2 as a catalyst and Zn(CF3)2 as a source of 
trifluoromethyl, involving 1,5-hydrogen atom transfer from the N-fluoro-substituted 
carboxamides (or sulfonamides) (Scheme 3.17).30 They hypothesised that the key 
intermediate CuI-CF3 (III)could be transferred to the N-fluoroamine substrate (V) via a 
single electron transfer to produce the CuII-CF3 intermediate (IV) and the corresponding 
N-radical (VI). VI followed by 1.5-HAT to give the alkyl radical VII. The subsequent 
transfer of the CF3 group from the CuII-CF3 intermediate (IV) to provided remote C(sp3)−H 
trifluoromethylation product (VIII) and the generation of CuIX (II) salts to complete the 
catalytic cycle. 
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Scheme 3.17 Remote C(sp3)−H bond activation of trifluoromethylation. 

A site-specific allylic C−H bond activation via an efficient copper-catalyzed 
trifluoromethylation reaction has been achieved by Wang's group (Scheme 3.18).31 They 
built a diverse range of allyl trifluoromethylation compounds using CuCl as the catalyst, a 
hypervalent iodine(III) reagent as the oxidant and CF3 source, and simple olefins as 
substrates. They suggested allyl radical or allyl cation intermediates generated from 
alkenes can be attacked by the nucleophilic CuI-CF3 species to give the desired product, 
but the details of the C−CF3 bond-forming step are not clear. 
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Scheme 3.18 Direct allylic C−H bond activation of trifluoromethylation. 

A large amount of Cu-promoted C(sp3)−trifluoromethylation reactions have been 
reported in recent years suggesting the reductive elimination of R-CuIII-CF3 intermediates 
to form C(sp3)−CF3 bond as the key step. Although the reductive elimination for the 
C(sp2)−CF3 bond formation has been explored for PdII, PdIV, NiIII and AuIII complexes,9e, 

9g 32 the formation of C(sp3)−CF3 bonds via reductive elimination from any transition metal 
complex with a well-defined structure is still unknown. Finally, Liu's group reported the 
synthesis of [alkyl-CuIII(CF3)3] complexes and it has been demonstrated that these high-
valent organocopper (III) species can undergo reductive elimination following first-order 
kinetics to form the corresponding alkyl-CF3 compounds (Scheme 3.19).33 Mechanistically, 
this transformation is following a concerted transition state [CuI(CF)3]2- with an activation 
barrier of ΔH⧧ = 20 kcal/mol calculated by DFT. 

 

Scheme 3.19 Forming C(sp3)−CF3 bonds via reductive elimination of [CuIII] complexes. 
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is a common and powerful functionalization tool to access C(sp3)−CF3 bonds.35 
Conventional approaches for the trifluoromethylation of carbonyl compounds fall into two 
main categories (Scheme 3.21): (i) Nucleophilic trifluoromethylation of carbonyl 
compounds via 1,2-addition allow for the preparation of CF3-substituted alcohols.10, 35a (ii) 
Enolates derived from ketones react with either an electrophilic CF3 or a radical CF3 source 
to form the a-CF3-substituted carbonyl compounds (Scheme 3.21, top).11,35 In the case of 
alkenes, (i) hydrotrifluoromethylation reactions of alkenes.12 (ii) difunctionalization, CF3 
radicals are added to the terminal position of the alkene allowing for subsequent 
functionalization of the internal carbon employing copper-catalyzed cross-coupling or 
radical cross-coupling (Scheme 3.21, bottom).12  

  

Scheme 3.20 Structurally diverse unsaturated compounds. 

   

Scheme 3.21 Traditional methods of introducing CF3 groups onto unsaturated moieties. 

For many years, nucleophilic trifluoromethylation has been the most convenient strategy 
for the incorporation of trifluoromethyl groups into unsaturated organic molecules 
containing carbonyl groups. as Already in 1988, Olah's group reported a very efficient 
nucleophilic trifluoromethylation of carbonyl compounds using the Ruppert-Prakash 
reagent (TMSCF3) initiated by TBAF (Scheme 3.22).36 TMSCF3 is more stable than 
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[metal]-CF3 reagents, since its usually require an initiator for activation thus ensuring the 
activity and effectiveness of CF3 anions and avoiding CF3 anions fastly undergo a-
elimination of the fluoride.  

 

Scheme 3.22 Nucleophilic trifluoromethylation of carbonyl compounds by TMSCF3. 

Since then, a series of studies on the nucleophilic trifluoromethylation of aldehydes and 
activated ketones employing TMSCF3 have been reported. Notably, the different types of 
initiators such as alkoxides, N-oxides, phosphines and acetates have shown efficient 
reactivity to activate TMSCF3 in situ.37 In recent years, Shreeve and Kim et al. have also 
developed a new class of ionic liquids as reaction media for nucleophilic 
trifluoromethylation reactions.38 In addition, the field of asymmetric nucleophilic 
trifluoromethylation of carbonyl groups has also been extensively studied.39 

The introduction of CF3 groups by activating the C(sp3)−H bond at the a-position of 
carbonyl compounds including ketones, aldehydes, esters and amides was intensively 
studied to build C(sp3)−trifluoromethylated motifs.40 However, due to the negative 
polarization of the CF3 group, the typical SN2 approach via deprotonation/formation of 

the enolates from carbonyl compounds and then trapping to electrophilic reagents is 
usually not applicable to trifluoromethylation.41 Take trifluoroiodomethane reagent as an 
example, the strong electron withdrawing effect of CF3 results in the electron density 
around iodine being more dense toward the more electronegative (Scheme 3.23, top).42 To 
circumvent the use of these reagents, some novel electrophilic trifluoromethylation agents 
were designed to convert enolates (or enolate equivalents) into a-trifluoromethylated 
carbonyl groups. In 1998, Shreve and coworkers reported the electrophilic 
trifluoromethylation of enolates using dibenzothiophere trifluoromethylsulfonium triflate 
(Umemoto’s reagent) as CF3+ reagent avoiding the reversal of polarization (Scheme 3.23, 
bottom).43  
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Scheme 3.23 a-Trifluoromethylation of carbonyl compounds by electrophilic 

trifluoromethylation reagents. 

Although these new electrophilic trifluoromethyl reagents11a,16d have made progress 
allowing for a-trifluoromethylation of carbonyl compounds,40 the applicability of the 
reactions remain limited to activated substrates. In 2011, MacMillan and colleagues 
described a simple method for preparing a-trifluoromethyl carbonyl compounds from 
methylsilyl enol derivatives and CF3I employing photoredox-catalysis (Scheme 3.24).44 
Proposing, the electrophilic trifluoromethyl radical is generated via SET from the reductive 
photocatalyst [Ru(bpy)3]+. Following this, the CF3 adds into the silyl enol ether I to provide 
a highly stabilized α-methanosiloxy radical II. Final oxidation mediated by [Ru(bpy)3]*2+ 
(E1/2red = 0.79 V vs. SCE in MeCN)45 forms silyloxocarbenium III which rapidly 
hydrolyzes to deliver the desired a-CF3 carbonyl product. 
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Scheme 3.24 Photoredox-catalyzed a-trifluoromethylation of carbonyl group by CF3I. 

Alkenes display another prominent class of abundant organic compounds, available 
from petrochemical feedstocks being widely present in natural products and 
pharmaceutical molecules.34c, 34d The application of radical CF3 sources have attracted 
chemists to add into unsaturated double bonds forming C(sp3)−CF3 bonds.12 Thereby, CF3 
radical has electrophilic nature with a low-lying singly occupied molecular orbital (SOMO) 
and therefore can react faster with electron-rich alkenes with high-lying highest occupied 
molecular orbitals (HOMOs).46 

In the late 1980s, the electrochemical hydrotrifluoromethylation of olefins have been 
started to study.47 However, hydrotrifluoromethylation of unactivated olefins by 
electrochemical oxidation has remained underexplored due to the disadvantages of low 
chemoselectivity and harsh reaction conditions.48 Based on the development of 
photocatalytic reactions, a series of hydrotrifluoromethylation reactions of olefins via 
photocatalytic oxidation have been successively reported.49 For example, in 2013, the 
Nicewicz group developed a metal-free photoredox process that successfully achieved 
hydrotrifluoromethylation of unactivated mono-, di- and tri-substituted olefins (Scheme 
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3.25).50 They hypothesised that TFE acts as a co-solvent while the a C−H bond of TFE 
also acts as a hydrogen atom source, methyl thiosalicylate can provide a hydrogen atom 
and facilitate the regeneration of TFE. 

 

Scheme 3.25 Hydrotrifluoromethylation of alkenes via an organic photoredox system 

For the establishment of allylic trifluoromethylations, both the use of 
"prefunctionalized" starting materials containing double bonds (such as allylstannanes or 
allyl halides) and non-activated terminal double bonds were successfully applied to forge 
allylic C(sp3)−CF3 bonds.51 A related series of studies was reported independently by the 
group of Buchwald,52 Liu53 and Qing54 et.al (Scheme 3.26, top). relying on the copper-
catalyzed trifluoromethylation of olefins by using Togni’s and Umemoto’s reagent as 
electrophilic trifluoromethylation reagents. They suggested that radicals or cationic species 
generated after the addition of CF3 to the terminal double bond serve as intermediates, but 
the precise mechanism of these transformations has not yet been clarified. Particularly, 
Qing's group reported preliminary studies on catalytic trifluoromethylation to form allylic 
C(sp3)−CF3 bonds by Cu-catalyzed oxidative C(sp3)−H activation (Scheme 3.26, 
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bottom).54  

 

Scheme 3.26 Forging allyl C(sp3)−CF3 bonds via trifluoromethylation of double bonds. 

At the same time, the trifluoromethylative difunctionalization of alkenes has attracted 
increasing interest. Typically, CF3 radicals were added to electron rich olefins to generate 
alkyl radicals, which can be oxidized to the corresponding carbocations and finally trapped 
by intramolecular or intermolecular nucleophiles such as aliphatic alcohols or amines 
(Scheme 3.27).12f For example, Akita and Koike et.al. used fac-[Ir(ppy)3] as the 
photocatalyst to achieve a three-component oxygen-trifluoromethylation of alkenes.55 
Based on their previous work, they subsequently reported the acylamino-
trifluoromethylation of styrene derivatives relying on a Ritter-type reaction.56 
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Scheme 3.27 Difunctionalized trifluoromethylation of alkenes.  

Recently, the Molander group reported an outstanding strategy to achieve direct and 
metal-free alkene difunctionalization to install C(sp3)−CF3 and nitrogen-based functional 
groups (Scheme 3.28).57 This approach provides an efficient alternative to the conventional 
approach of simultaneously accessing C(sp3)−CF3 and C(sp3)−[N] motifs based on a wide 
range of easily accessible alkene feedstocks under mild as well as scalable conditions. They 
suggested that selective radical cross-coupling between oxime (1) and alkene (6) is 
kinetically feasible based on persistent radical effects. Mechanistically, energy transfer 
between the photocatalyst (Benzopheone) and the oxime (1) could allow 1 to undergo rapid 
fragmentation/decarboxylation due to the low energy barrier when the N−O bond in the 
excited triplet state 1 is broken. The subsequent CF3 radical reacts with the alkene to 
generate an alkyl radical intermediate (7), and 7 undergoes radical cross-coupling with 1 
or 4 to produce the final product (8). 
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Scheme 3.28 Metal-free catalytic imino-trifluoromethylation of alkenes. 

Until now, approaches to introduce CF3 into unsaturated moieties have mainly focused 
on addition reactions, the strategy of directly using unsaturated compounds as a source of 
sp3-hybridized carbon intermediates to form C−CF3 bonds remains incomplete. Therefore, 
we hope to achieve fast and efficient trifluoromethylation reactions by using a wide range 
of unsaturated compounds as sp3 alkyl synthons. 

3.2 General Aim of the Project 

Based on the current state of research, unsaturated compounds such as ketones aldehydes 
and alkenes display a challenging substrate class for C(sp3)−CF3 bond formation, thereby 
an appealing opportunity to develop novel synthetic disconnections to incorporate 
trifluoromethyl groups into organic molecules. Simultaneously, the creation of new 
trifluoromethylation blueprints via C(sp3)−C cleavage from unsaturated compounds may 
hold promise for accelerating access to important C(sp3)−CF3 architectures from the path 
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to drug discovery. Prompted by our interest in activating strong C(sp3)−C bonds and by the 
prevalence of carbonyl compounds and unactivated olefins in biologically-relevant 
molecules, we wondered whether we could reverse the innate reactivity of these building 
blocks with CF3 sections by promoting a C(sp3)−CF3 bond-formation via C(sp3)−C 
cleavage instead. If successful, the merger of these disciplines would offer a new technique 
to rapidly build C(sp3)−CF3 architectures from a simple unsaturated motif with the 
advantage of producing useful chemicals for downstream applications. 

Our trifluoromethylation study will merge two different strategies, decarbonylative and 
dealkenylative, for the generation of radicals and their application in Cu-mediated 
trifluoromethylation reactions. The generation of alkyl radicals from carbonyl compounds 
via the formation of dihydroquinazoline radical precursors, was demonstrated by the Zhu 
group and our group (see Chapter 1, Scheme 1.24). On the other hand, the Luo group 
demonstrated the generation of radicals from alkenes enabled by reaction with tetrazine 
and photoexcitation to conduct a nickel-catalyzed arylation (Chapter 1, Scheme 1.25). We 
designed that the conversion of a carbonyl compound or an olefin into a proaromatic 
precursor (I) might set the basis for enabling a homolytic cleavage of the adjacent a-C–C 
bond via photoinduced single-electron transfer (Scheme 3.29). The subsequent open-shell 
alkyl radical might then be interfaced with [Cu]–CF3 species, thus leading to the targeted 
products via reductive elimination from alkyl-CuIII-CF3 intermediate. 

 

Scheme 3.29 Alkyl trifluoromethylation from unsaturated moieties. 
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3.3 Trifluoromethylation of Carbonyl and Unactivated Olefin 

Derivatives via sp3 C–C Bond Cleavage 

3.3.1 Optimization of the Reaction Conditions 

We began our investigation by exploring the generation of alkyl radicals from ketones 
via the formation of dihydroquinazoline radical precursors A, which could undergo radical 
or nickel-catalyzed cross-coupling reactions (see Chapter 1, Scheme 1.24). Proaromatic 
precursor A was easily obtained in a single step operation from the condensation between 
ketone and 2-aminobenzamide (Scheme 3.30, a). In addition, the other reason to use this 
kind of activate precursors A is as reported work that A can even be accessed from the 
corresponding cyclohexanamine and 2-aminobenzamide under Ruthenium-catalyzed 
conditions, which would open a new platform to give an alternative deaminative 
trifluoromethylation (Scheme 3.30, b).58 

  

Scheme 3.30 Methods to prepare dihydroquinazoline radical precursors A 

Initially, we started to screen the different solvents, as depicted in Table 3.1. When 
utilizing polar aprotic solvents, including DMA, DMF, NMP, DMSO, DCE, EA or acetone, 
moderate yields could be obtained (entry 1-7, 43-78% yield). Acetonitrile furnished the 
product in 29% yield but other nitrile-containing solvents only provided traces of 3. Also 
etheral solvents and non-polar solvents (entry 11-12) are less efficient for the copper-
catalyzed trifluoromethylation reaction. When screening different solvents, the 19F-NMR 
spectra of the crude reaction conducted in DMF or acetonitrile showed evidence for the 
trifluoromethylation of the solvent due to the HAT effect of CF3 radicals. The highest yields 
of 78% were obtained when employing acetone as the solvent. In addition, we found that 
the reaction proceeded better under dilute concentrations (0.025M), which is consistent 
with the previously reported copper-catalyzed trifluoromethylation: Herein, a significant 
concentration effect on the stability of [Cu-CF3] intermediates was proposed.59 
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Conditions: a A1 (0.05 mmol), 2 (0.1 mmol), CuCl2 (20 mol%), Phen (30 mol%), 4-CzIPN (3 mol%), BTMG 
(0.05 mmol), in solvent (0.025 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F NMR yields 
using (trifluoromethyl)benzene as internal standard. BTMG = 2-tert-Butyl-1,1,3,3-tetramethylguanidine.  

Table 3.1 Screening of solvents.a 

Afterwards, we examined the impact of various electrophilic trifluoromethylation 
reagents: Togni’s reagent I (2) (Ep[2•−] = −1.91 V vs SCE in MeCN) is the most suitable 
for this reaction (Table 3.2, entry 1). More oxidizing CF3-sources such as Umemoto reagent 
(Ep = −0.32 V vs SCE in MeCN, entry 2)26b and Togni’s reagent II (Ep= −0.79 V vs SCE in 
MeCN, entry 3)26b were not effective, probably as a result of the undesired reduction by 
the reduced 4-CzIPN photocatalyst (E1/2[PC-1/PC] = -1.24 V vs. SCE in MeCN).60 
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Conditions: a A1 (0.05 mmol), “CF3” (0.1 mmol), CuCl2 (20 mol%), Phen (30 mol%), 4-CzIPN (3 mol%), 
BTMG (0.05 mmol), in Acetone (0.025 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F NMR 
yields using (trifluoromethyl)benzene as internal standard. BTMG = 2-tert-Butyl-1,1,3,3-
tetramethylguanidine.  

Table 3.2 Screening of “CF3” reagents.a 

Considering the influence of the ligand on the reactivity, we began to screen different 
ligands (Table 3.3). Bipyridines, phenanthrolines, and other N,N-bidentate ligands were 
used to study the reactivity of various [LnCu-CF3] intermediates. 1,10-Phenanthroline (L1) 
turned out to be the best phen-type ligand, but employment of L1 monohydrate or 
bathocuproine (L2) led to slightly lower yields (entry 2-3, 70-72% yield). neocuproine 
possessing 6,6’-methyl groups inhibit the reaction (L3). Compared with the planar phen-
type ligand, the bipyridine (L4), tridentate nitrogen ligand (L5) or di(pyridin-2-
yl)methanone (L6) showed lower yields. Specially, without Ligand can also give medium 
yields of product.  

N
H

NH

O

BTMG (1.0 equiv)
Acetone (0.025 M)

 451 nm, 40 oC

Me NBoc N
Boc

CF3

+

3

4-CzIPN (3 mol%)
CuCl2 (20 mol%)
Phen (30 mol%)

A1

Entry “CF3” reagent 3 Yield (%)b

1
2
3
4

2
2-1
2-2
2-3

78
0
0
0

“CF3” reagent

I
O

MeMe

CF3
2

Ep = −1.91 V

I
O

CF3

2-1
Ep = −0.79 V

O

S
CF3

BF4 S
CF3OTf

2-2
Ep = −0.32 V

2-3
Ep = −0.52 V



 

328 
 

 
Conditions: a A1 (0.05 mmol), 2 (0.1 mmol), CuCl2 (20 mol%), Ligand (30 mol%), 4-CzIPN (3 mol%), 
BTMG (0.05 mmol), in Acetone (0.025 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F NMR 
yields using (trifluoromethyl)benzene as internal standard. BTMG = 2-tert-Butyl-1,1,3,3-
tetramethylguanidine.  

Table 3.3 Screening of ligands.a 

Further evaluation then revealed that using 4CzIPN as a photocatalyst led to higher 
yields (table 3.4, entry 1) and lower yields were obtained when the reaction was conducted 
using other photocatalysts such as Ir(dFFppy)2(dtbpy)PF6 and [Ru(bpy)3]Cl2 (entry 2-6, up 
to 68% yield). Concludingly, the reaction could not be initiated in the absence of a 
photocatalyst (entry 7). 

  
Conditions: a A1 (0.05 mmol), 2 (0.1 mmol), CuCl2 (20 mol%), Phen (30 mol%), PC (3 mol%), BTMG (0.05 
mmol), in Acetone (0.025 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F NMR yields using 
(trifluoromethyl)benzene as internal standard. BTMG = 2-tert-Butyl-1,1,3,3-tetramethylguanidine. 

Table 3.4 Screening of different photocatalysts.a 

To further improve the yield, we turned our attention to test the influence of other 
reaction parameters as the copper precatalysts (Table 2.4). Herein, copper(II) chloride 
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provided the best result (entry 1, 78%), while other inorganic copper salts as catalysts such 
as CuCl or CuBr2 only gave moderate yields (entry 2-3, 53-58%). To increase the solubility 
of the copper catalyst, Cu(CH3CN)2PF4 and Cu(OTf)2 were investigated, which gave 
similar yields as CuCl2 (entry 4-5, 67-71%). Variation of the catalyst loading had a drastic 
influence in decreasing the yield by 14-16% (entry 9-10). No product is formed in the 
absence of the copper precatalyst, which is consistent with previous reports - Direct radical 
coupling between alkyl radicals and trifluoromethyl radicals is very difficult due to the 
high transition state energy barrier to be crossed when the two transient radicals are 
combining. 

 
Conditions: a A1 (0.05 mmol), 2 (0.1 mmol), Copper precatalyst (20 mol%), Phen (30 mol%), 4-CzIPN (3 
mol%), BTMG (0.05 mmol), in Acetone (0.025 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 
19F NMR yields using (trifluoromethyl)benzene as internal standard. BTMG = 2-tert-Butyl-1,1,3,3-
tetramethylguanidine. 

Table 3.5 Screening of copper precatalysts.a 

Next, we examined the role of bases for the decarbonylative trifluoromethylation 
reaction. A screen of different bases including inorganic and organic bases is presented.  
On the one hand, we found using KH2PO4 and KF as an additive in DMF led to product 3 
formation in 62% yield (Table 3.7, entry 1), and product 12 formation in 83% yield 
(Scheme 3.31). However, by scaling up the reaction (0.05 mol to 0.20 mmol, Scheme 3.29), 
the yield of 3 significantly dropped by 14%. Presumanly, this was caused by the low 
solubility of the reagents resulting in diminished light transmission of the reaction mixture. 
On the one hand, we started to re-examine the organic bases (Table 3.7). Fortunately, we 
obtained the expected yields when using BTMG and needing to be under acetone 
conditions. Noteworthy, Hünig’s base (DIPEA) only led to traces of the product (Table 3.7, 
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53
58
35
71
67
62
38
62
64
0

[Cu] cat.
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Entry 3). Proposingly, this is a result of undesired quenching of the photoexcited state of 
the photocatalyst (4CzIPN* Ered = +1.35 V vs SCE), whereas DIPEA (Eox = + 0.86 V vs 
SCE)61 is a better quencher than the substrate A1(A1 Eox = +1.21 V vs SCE). Without 
adding a base, the yield of the product decreased to 28% (Table 3.7, entry 9). 

 
Conditions: a A1 (0.05 mmol), 2 (0.1 mmol), CuCl2 (20 mol%), Phen (30 mol%), 4-CzIPN (3 mol%), 
KH2PO4 (0.05 mmol), KF (0.05 mmol) in solvent (0.025 M) at 40 °C under irradiation of blue LEDs for 16 
hours. b 19F NMR yields using (trifluoromethyl)benzene as internal standard.  

Table 3.6 Screening of solvents based on KH2PO4 as base and KF as additive.a 

 

Scheme 3.31 Decrease yield scaling up the amount of substrate. 

N
H

NH

O

I
O

MeMe

CF3

Me NBoc N
Boc

CF3

2

+

3A1

Entry 3 Yield (%)b

1
2
3
4
5
6
7
8
9

10
11
12

DMF
DEF
NMP

DMSO
DCE
DMA

Acetone
CH3CN
tBu-CN
iPr2O
PhCF3

DMF, No KF

62
20
33
39
30
54
45
29
12
0
0

46

Solvent

KH2PO4 (1.0 equiv)
KF (1.0 equiv)

Solvent (0.025 M)
451 nm, 40 oC

4-CzIPN (3 mol%)
CuCl2 (20 mol%)

Bathphen (30 mol%)

N
H

NH

O

I
O

MeMe

CF3

KH2PO4 (1.0 equiv)
KF (1.0 equiv)

DMF (0.025 M), 451 nm, 40 oC

Me
X X

CF3

2

+

4-CzIPN (3 mol%)
CuCl2 (20 mol%)

Bathphen (30 mol%)

A
X=CH2, 0.05 mmol

0.20 mmol
12, 83% 19F NMR yield
12, 71% 19F NMR yield

X=NBoc, 0.05 mmol
0.20 mmol

3, 62% 19F NMR yield
3, 48% 19F NMR yield



 

331 
 

 
Conditions: a A1 (0.05 mmol), 2 (0.1 mmol), CuCl2 (20 mol%), Phen (30 mol%), 4-CzIPN (3 mol%), base 
(0.05 mmol), in Acetone (0.025 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F NMR yields 
using (trifluoromethyl)benzene as internal standard. BTMG = 2-tert-Butyl-1,1,3,3-tetramethylguanidine. 

Table 3.7 Screening of bases.a 

With theses optimized conditions in hand, the scope was extended to aliphatic ketones 
via in situ generated, unstable primary radicals that are notoriously challenging in C(sp3)–
CF3bond functionalization reactions. However, only lower yields of 33 were obtained 
(table 3.8, entry 1, 42%). Further optimization studies finally revealed (table 3.8 entry2-
15), that stoichiometric amounts of (bpy)Cu(CF3)3 as trifluoromethylating source 
significantly improved the reaction outcome. Furthermore, a combination of 
(bpy)Cu(CF3)3, Togni’s reagent I (2), BTMG, substrate (A31), and 4-CzIPN under blue 
light irradiation in DMF at 40 °C provided trifluoromethylated target 33 in 67% isolated 
yield (entry 2). Other solvents as are tolerated (entries 5-8), albeit providing 33 in lower 
yield (up to 56%). Togni’s reagent I (2) plays an important role in this reaction, potentially 
facilitating the regeneration of Cu(CF3)3(bpy) or LnCuIICF3X intermediates. On the other 
hand, Togni’s reagent I could act as a role of oxidant, which was further studied by the 
addition of other oxidants (entries 9-11). Howeber, the reaction proceeded but delivered 
the desired product in lower yields (22-28 %). Next, we examined the role of BTMG by 
replacing it with inorganic base NaHCO3 or by omitting it (entry 12-13) which againled to 
diminished yields (15-18%). This indicated is the crucial role of BTMG for the success of 
the reaction, in which the base presumably promotes the release of the corresponding CF3 
radicals by interaction with Togni’s reagent I (2) (See Mechanism experiments for details). 
In addition, the reaction proceeded well in the absence of the photocatalyst but not without 
light (entry 14-15), which is also consistent with the previous work in the literature that 

N
H

NH

O

I
O

MeMe

CF3

Base (1.0 equiv)
Acetone (0.025 M)

 451 nm, 40 oC

Me NBoc N
Boc

CF3

2

+

3

4-CzIPN (3 mol%)
CuCl2 (20 mol%)
Phen (30 mol%)

A1

Entry 3 Yield (%)b

1
2
3
4
5
6
7
8
9

BTMG
TMG

DIPEA
Et3N

Pyridine
K2HPO4
K2CO3
K3PO4

No base

78
44

trace
7

28
20
29
19
28

Base
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Cu(CF3)3(bpy) could undergo homolysis under light excitation to provide the reactive 
bpyCuII-(CF3)2 intermediate.  

 
Conditions: a A31 (0.05 mmol), Cu(CF3)3bpy (0.05 mmol), Togni’s reagent I (2) (0.075 mmol), 4-CzIPN (3 
mol%), BTMG (0.05 mmol), in DMF (0.02 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F 
NMR yields using (trifluoromethyl)benzene as internal standard. c Isolated yield. BTMG = 2-tert-Butyl-
1,1,3,3-tetramethylguanidine. 

Table 3.8 Optimization of the reaction conditions with Cu(CF3)3(bpy) by using primary 

radical precursor A31.a 

Encouraged by the successful results of trifluoromethylation performed by aliphatic 
ketones via sp3 C–C bond cleavage, we wondered whether copper mediated transfer of CF3 
groups to alkyl radicals from ketones could be extended to other activated precursor which 
could generate the active open-shell carbon via aromatization-promoted processes. Firstly, 
Hantzsch esters were investigated which would allow for the decarbonylative coupling of 
aldehydes. Based on the beforementioned optimization studies on ketone-derived 
precursors, we rapidly observed productive reactivity (Table 3.9). Careful screening of 
different solvents (entry 2-5), bases (entry 6-8), copper salts (entry 9-10) and ligands (entry 
11-13) indicated the ideal reaction conditions for the coupling of B1 with 2: CuCl2 
(20 mol%), BTMG (1.0 equiv), Togni’s reagent I (2, 2.0 equiv), and 4-CzIPN (3 mol%) 
under blue light irradiation in ethyl acetate at 40 °C to provide triflouromehthyl-
cyclohexane 12 in 65% yield.  

N
H

NH

O

BTMG (1.0 equiv)
DMF (0.02 M), 451 nm, 40 oC

Ph
+

33

4-CzIPN (3 mol%)
Togni’s reagent I (1.5 equiv)

Cu(CF3)3bpy
14

F3C
14

A31

Entry 3 Yield (%)b

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

20 mol% CuCl2 and 30 mol% Phen
 instead of Cu(CF3)3bpy

none
No Togni’s reagent
No Cu(CF3)3bpy

DMA instead of DMF
Acetone instead of DMF

DCE instead of DMF
CH3CN instead of DMF

Togni’s reagent II instead of Togni’s reagent I 
PhI(OAc)2 instead of Togni’s reagent I 

K2S2O8 instead of Togni’s reagent I
NaHCO3 instead of BTMG

No BTMG
No 4-CzIPN

No light (40 °C)

42

71 (67)c
48
0

56
34
37
46
22
25
28
15
18
66
0

Deviation from standard conditions
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Conditions: a B1 (0.05 mmol), 2 (0.1 mmol), CuCl2 (20 mol%), BathPhen (30 mol%), 4-CzIPN (3 mol%), 
BTMG (0.05 mmol), in EA (0.025 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F NMR yields 
using (trifluoromethyl)benzene as internal standard. BTMG = 2-tert-Butyl-1,1,3,3-tetramethylguanidine. 

Table 3.9 Optimization studies using Hantzsch ester B1 as radical precursor.a 

However, when changing to substrate B2, lower yields of 26% of 3 were obtained as 
illustrated in Table 3.10. Assuming that solubility of the substrates plays a crucial role, 
different solvents were examined (entry 2-6), which improved the yield to 48% employing 
acetonitrile as the solvent. 

 
Conditions: a B2 (0.05 mmol), 2 (0.1 mmol), CuCl2 (20 mol%), BathPhen (30 mol%), 4-CzIPN (3 mol%), 
BTMG (0.05 mmol), in solvent (0.025 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F NMR 

BTMG(1.0 equiv)
EA (0.025 M), 451 nm, 40 oC

4-CzIPN (3 mol%)
CuCl2 (20 mol%)

Bathphen (30 mol%)

N
H

Me Me

CO2EtEtO2C

B1

I
O

MeMe

CF3

CF3

2

+

12

Entry 12 Yield (%)b

1
2
3
4
5
6
7
8
9

10
11
12
13
14

none
CH3CN instead of EA

Acetone instead of DMF
DMF instead of DMF
DCE instead of DMF

NaHCO3 instead of BTMG
KH2PO4 instead of BTMG

No BTMG
CuBr2 instead of CuCl2

Cu(CH3CN)2PF4 instead of CuCl2
dtbpy instead of BathPhen
terbpy instead of BathPhen

No ligand
No light (40 °C)

65
34
58
57
64
58
60
61
11
50
56
14
16
0

Deviation from standard conditions

BTMG(1.0 equiv)
EA (0.025 M), 451 nm, 40 oC

4-CzIPN (3 mol%)
CuCl2 (20 mol%)

Bathphen (30 mol%)

N
H

Me Me

CO2EtEtO2C

Boc
N

B2

I
O

MeMe

CF3
N
Boc

CF3

2

+

3

Entry 3 Yield (%)b

1
2
3
4
5
6

none
CH3CN instead of EA
Acetone instead of EA
DMF instead of DMF
DCE instead of EA
DMA instead of EA

26
48
47
29
41
12

Deviation from standard conditions
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yields using (trifluoromethyl)benzene as internal standard. BTMG = 2-tert-Butyl-1,1,3,3-
tetramethylguanidine. 

Table 3.10 Screening of solvents by using B2 as the substrate.a 

Further improvements were achieved by using stoichiometric amounts of Grushin’s 
reagent (Cu(CF3)3(bpy)) as the trifluoromethylating reagent (Table 3.11). After screening 
of different solvents (entry 2-9), oxidants (entry 10-15), bases (entry 16-19) and 
photocatalysts (entry 20-21), we found the optimal featuring Cu(CF3)3(bpy) (1.0 equiv), 
K2S2O8 (1.5 equiv), NaHCO3 (2.0 equiv) and 4-CzIPN (3 mol%) under blue LED irradiation 
in MeCN at 40 ºC can provide 80% yield of the target product 3. Notably, K2S2O8 was 
added as an oxidant, which potentially facilitates the oxidation of either Hantzsch ester B2 
or Cu(I) to Cu(II) species.27b, 62 In the absence of of oxidant (entry 15), base (entry 19) or 
photocatalyst (entry 21), the yield of 3 decreased significantly.  

 
Conditions: a B2 (0.05 mmol), Cu(CF3)3bpy (0.05 mmol), K2S2O8 (0.075 mmol), 4-CzIPN (3 mol%), 
NaHCO3 (0.1 mmol), in CH3CN (0.02 M) at 40 °C under irradiation of blue LEDs for 16 hours. b 19F NMR 
yields using (trifluoromethyl)benzene as internal standard. c Isolated yield. 

Table 3.11 Optimization of the trifluoromethylation of using B2 using stoichiometric 

N
H

Me Me

CO2EtEtO2C

Boc
N

B2

N
Boc

CF3

3

NaHCO3(2.0 equiv)
CH3CN (0.02 M), 451 nm, 40 oC

+

4-CzIPN (3 mol%)
K2S2O8 (1.5 equiv)

Cu(CF3)3bpy

Entry 3 Yield (%)b

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

none
EA instead of CH3CN

 DMF instead of CH3CN
DMA instead of CH3CN
DCE instead of CH3CN

Acetone instead of CH3CN
DMSO instead of CH3CN

1,4-Dioxane instead of CH3CN
CH3CN (0.05M)

Na2S2O8 instead of K2S2O8
OXONE instead of K2S2O8

Togni’s reagent I (2) instead of K2S2O8
Togni’s reagent II (2-1) instead of K2S2O8

TBPB instead of K2S2O8
No K2S2O8

BTMG instead of NaHCO3
KH2PO4 instead of NaHCO3
NaOAc instead of NaHCO3

No NaHCO3
Ru(bpy)PF6 instead of 4-CzIPN

No 4-CzIPN
No light (40 °C)

80(71)c
55
18
43
68
70
68
24
66
75
78
4

40
26
35
66
69
54
64
78
37
0

Deviation from standard conditions
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amounts of Cu(CF3)3(bpy).a 

Finally, we turned our attention to apply trifluoromethylation techniques to convert 
aliphatic alkenes following a dealkenylative trifluoromethylation pathway. This approach 
was based on Luo work demonstrating the generation of alkyl radicals from alkenes 
enabled by the activation with tetrazine and photoexcitation to conduct a nickel-catalyzed 
arylation. Considering the structural similarity of alkyl-1,4-dihydropyridazine precursors 
C and Hantzsch esters (B), and their C–C bond cleavage mechanism following SET or 
photoexcitation pathways, 1,4-dihydropyridazine (C) could be emphasized as radical 
precursors for Cu-mediated trifluoromethylation reactions. For this purpose, previous 
reactions conditions were applied to convert proaromatic precursor C1’ into its 
trifluoromethylated product 12 (Scheme 3.32, top). Unfortunately, no desired reactivity 
was observed when employing conditions I, II or II. Referring to the results reported by 
Luo's group, the maximum absorption of the alkyl-1,4-dihydropyridazine precursors is 
around at 365 nm, and they more likely undergo homolysis from excitation state C1’ 
(ΔG = −32.7 kcal/mol) instead of the mesolytic cleavage from radical cation [C1’]+•. To 
address this, the wavelength of irradiation was changed to 370 nm. In addition, these 
conditions would also allow for the release of trifluoromethyl radicals from Cu(CF3)3(bpy) 
to obtain CuII(CF3)2(bpy) intermediate upon light irradiation. To our delight, the desired 
C(sp3)–CF3 backbone 12 was obtiained in 31% yield emplyong Cu(CF3)3(bpy) (1.0 equiv), 
K2S2O8 (1.5 equiv) and NaHCO3 (2.0 equiv) in acetone (Scheme 3.32, bottom). 

 

Scheme 3.32 Reactivity tests using 1,4-dihydropyridazine (C) as radical precursors. 

Next, further optimization studies were conducted investigating different solvents (Table 

NH
N

CO2Me

CO2Me
Conditions I or II or III

451 nm, 40 oC

CF3

4CzIPN (3 mol%)
CuCl2 (20 mol%
Phen (30 mol%)

Togni’s reagent I (2)
BTMG (1.0 equiv)
Acetone (0.025 M)

Condition I Condition II Condition III

4CzIPN (3 mol%)
CuCl2 (20 mol%

BathPhen (30 mol%)
Togni’s reagent I (2)
KH2PO4 (2.0 equiv)

KF (2.0 equiv)
DMF (0.02 M)

4CzIPN (2 mol%)
Cu(CF3)3bpy (1.0 equiv)

K2S2O8 (1.5 equiv)
NaHCO3 (2.0 equiv)

MeCN (0.02 M)

SM remain,
12, 0% 19F NMR yield

C1’

NH
N

CO2Me

CO2Me
Cu(CF3)3bpy (1.0 equiv)

K2S2O8 (1.5 equiv)

NaHCO3 (2.0 equiv)
Acetone (0.02 M)

370 nmC1’ 12
31% 19F NMR yield

CF3
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3.12, entry 1-7), whereby acetone was identified as the best solvent gave relatively high 
yield. However, in the process of screening different bases and different oxidants, we found 
that base and oxidant are not necessarily needed for product formation (Table 3.12, entry 
8 and entry 14), but he reaction could not proceed without light excitation. (Note: These 
optimization studies were conducted in assistance of Dr. Riccardo S. Mega) 

 
Conditions: a C1’ (0.05 mmol), Cu(CF3)3bpy (0.05 mmol), K2S2O8 (0.075 mmol), NaHCO3 (0.1 mmol), in 
Acetone (0.02 M) at 35 °C under irradiation of 370 nm for 16 hours. b 19F NMR yields using 
(trifluoromethyl)benzene as internal standard. 

Table 3.12 Optimized conditions by using C1’ and Cu(CF3)3(bpy).a 

When increasing the amount of radical precursor to 1.5 equivalents, the yield of 12 
was improved to 45% (Table 3.13, entry 2). Further tuning of the reactivity (activation 
energy of carbon-carbon bond cleavage in the excited substrate) of the proaromatic 
precursor revealed better results when the R group was changed from hydrogen atom to a 
methyl group (Tabel 3.13, entry 3). In contrast, the phenyl substituted derivative provided 
the desired product 12 in only 29% yield. 

 

+ Cu(CF3)3bpy
NHN

CO2Me

MeO2C
K2S2O8 (1.5 equiv)
NaHCO3 (2.0 equiv)

Acetone (0.02 M)
370 nm

CF3

C1’ 12

Entry 12 Yield (%)b

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

none
EA instead of Acetone

 DMF instead of Acetone
DMA instead of Acetone
DCE instead of Acetone
NMP instead of Acetone

DMSO instead of Acetone
No NaHCO3

K3PO4 instead of NaHCO3
DIPEA instead of NaHCO3
Na2S2O8 instead of K2S2O8
OXONE instead of K2S2O8

(NH4)2S2O8 instead of K2S2O8
No K2S2O8

No light (40 °C)

34
32
12
14
23
13
0

33
20
27
35
34
12
34
0

Deviation from standard conditions

+ Cu(CF3)3bpy
NHN

CO2Me

MeO2C

370 nm CF3

12C, x equiv

R
1.0 equiv

Acetone (0.02 M)

Entry 12 Yield (%)b

1
2
3
4

R = H, x = 1.0 equiv
R = H, x = 1.5 equiv

R = Me, x = 1.5 equiv
R =Ph, x = 1.0 equiv

34
45
57
29

Deviation from standard conditions
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Conditions: a C (0.05-0.10 mmol) and Cu(CF3)3bpy (0.05 mmol) in Acetone (0.02 M) at 35 °C under 
irradiation of 370 nm for 16 hours. b 19F NMR yields using (trifluoromethyl)benzene as internal standard. 

Table 3.13 Optimized conditions by changing C and stoichiometry.a 

3.3.2 Substrate Scope 

3.3.2.1 Scope of Trifluoromethylation of Alkyl ketones 

With optimized conditions in hand, we evaluated the scope of the C(sp3)−CF3 bond-
forming reaction. As shown in Scheme 3.33, a wide range of differentially substituted 
secondary alkyl ketone derivatives were readily converted to their corresponding 
trifluoromethylated products (3-17) in good to excellent yields. Sensitive functional groups 
such as alcohol (8), protected amines (3-5), phthalimide (14) and nitrogen-containing 
heterocycles (15) were well tolerated, highlighting the chemoselectivity of this protocol.  

  
Conditions: a A: Ketone (1.05 equiv), aminobenzamide (1.0 equiv), I2 (5 mol%) in DMF (0.67 M) at 80 °C, 
see supporting information for characterization data of A. b A (0.20 mmol), 2 (0.40 mmol), CuCl2 (20 mol %), 
4-CzIPN (3 mol %), under blue LED irradiation, R = Me. c Using: L1 (30 mol %), BTMG (1.0 equiv), in 
acetone (0.025 M). d Yields are reported on the basis of 19F NMR analysis using PhCF3 as internal standard; 
Isolated yields are in parentheses, thus showing how the volatility of some products affects the yield loss. e 

R = Ph. f Using L2 (30 mol%), KH2PO4 (2.0 equiv), KF (2.0 equiv) in DMF (0.02 M). 

Scheme 3.33 Scope of trifluoromethylation of secondary alkyl ketones. 

Next, we investigated benzylic CF3-bond formation and the desired trifluoromethylated 
products were successfully prepared (18-26) (Scheme 3.34). An array of aryl halides (18-

3-17(R = Me, Ph)
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CF3
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N

CF3
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N

N

NMe

Me 15, (57%)

CF3

8, 60% (57%)
 1.6:1 d.r.

HO

CF3

7, 71% (61%)
3.3:1 d.r.

CF3

14, (65%)
 3.6:1 d.r.

CF3

Me

6, 48% (45%)e

Me
3

N

O

O
n

R1

10, 70%

CF3

F
F

Cl 17, (76%)
 10:1 d.r.

CF3
[x-ray]

CF3

9, (87%)
 1.2:1 d.r.

BzO 11, n = 1, 36%f

12, n = 2, 83%
13, n = 3, 58%f

3, R1 = Boc, 78% (75%)
4, R1 = Ts, 60% (56%) 

5, R1 = Bz, 58% ( 52%)

secondary sp3 trifluoromethylationb,c,d

“CF3”
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20), electron-rich arenes (21, 23, 25) electron-deficient arenes (24), boronic esters (22) and 
sulfur-containing heterocycles (26) were all tolerated under the reaction conditions 
delivering the products in 50-86% yield. In addition, the tertiary alkyl ketones (27, 28) 
were also successfully converted to trifluoromethylated products in excellent yields. 
Noteworthy, minor modifications of the reaction conditions were made to improve the 
yields in certain cases. For example, for some specific substrates (11, 13, 28), KF was 
added to inhibit F-elimination from Cu−CF3.33  

 
Conditions: a A: Ketone (1.05 equiv), aminobenzamide (1.0 equiv), I2 (5 mol%) in DMF (0.67 M) at 80 °C, 
see supporting information for characterization data of A. b A (0.20 mmol), 2 (0.40 mmol), CuCl2 (20 mol %), 
4-CzIPN (3 mol %), under blue LED irradiation, R = Me. c Yields are reported on the basis of 19F NMR 
analysis using PhCF3 as internal standard; Isolated yields are in parentheses, thus showing how the volatility 
of some products affects the yield loss. d Using di(pyridin-2-yl)methanone (30 mol%), KH2PO4 (2.0 equiv) 
in DMF (0.02 M), eUsing L2 (30 mol%), BTMG (1.0 equiv) in DMF (0.02 M). f Using L2 (30 mol%), 
KH2PO4 (2.0 equiv), KF (2.0 equiv) in DMF (0.02 M).  

Scheme 3.34 Scope of benzylic CF3-bond formation. 

However, when we turned our attention to primary alkyl ketones, we found that the 
current reaction conditions only giving lower yields for this fragmentation mode 
representing a significant barrier in C−C bond cleavage reactions. To address this challenge, 
we conducted further optimization studies (Table 3.8), in which we found that using 
stoichiometric (bpy)Cu(CF3)3 as a trifluoromethylating source significantly improved the 
reaction outcome. We attributed the lower yields of primary substrates to the increased 
promiscuity of high energy primary radicals which must rapidly react with a 
trifluoromethylating reagent before undergoing undesired side reactions as HAT or radical 
disproportionation. A combination of substrate, (bpy)Cu(CF3)3, Togni’s reagent I (2), 
BTMG, and 4-CzIPN in DMF at 40 °C under blue light irradiation finally provided the 
trifluoromethlyated product. Critical for success was the use of both, 2 and BTMG, 
probably by facilitating the regeneration of Cu(CF3)3(bpy) and Cu(CF3)2(bpy). Next, we 

“CF3”
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19, R2 = Cl, 84% (74%)  
20, R2 = Br,  60% (50%)
21, R2 = OAc, 75%
22, R2 = Bpin, 76% (64%)
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24, 83%
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23, 79% (75%)
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CF3
O

OF
F
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tertiary sp3 trifluoromethylationb,c
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explored the scope of primary alkyl substrates (Scheme 3.35, 29-37). Good yields (51-78%) 
were obtained across the scope, with broad functional group compatibility. Particularly, 
the efficacy of the reaction is not affected by steric hindrance (29) or some functional 
groups such as alkene (34), amide (30, 35, 39), thioether (36, 38) and chloride (37), 
Although it might be predicted from the outset that the presence of tertiary sp3 alkyl or 
allylic C−H sites would be unfavorable for the reaction because of competitive HAT at 
such activated positions, no significant loss in product formation was observed (29, 32, 38, 
39). 

 
Conditions: a A: Ketone (1.05 equiv), aminobenzamide (1.0 equiv), I2 (5 mol%) in DMF (0.67 M) at 80 °C, 
see supporting information for characterization data of A. b A (0.20 mmol), Cu(CF3)3bpy (0.20 mmol), 4-
CzIPN (3 mol %) under blue LED irradiation, R = Ph. c Yields are reported on the basis of 19F NMR analysis 
using PhCF3 as internal standard; Isolated yields are in parentheses, thus showing how the volatility of some 
products affects the yield loss. d Using 2 (0.30 mmol), BTMG (1.0 equiv) in DMF (0.02 M). eA (0.20 mmol), 
Cu(CF3)3bpy (0.20 mmol), 4-CzIPN (3 mol %) under blue LED irradiation, R = Ph. f Using K2S2O8 (1.5 
equiv), KH2PO4 (2.0 equiv) in CH3CN (0.025 M). g R = Me. 

Scheme 3.35 Scope of trifluoromethylation of primary alkyl ketones. 

3.3.2.2 Scope of Trifluoromethylation of Alkyl aldehydes  

By attempting to expand the substrate scope to aldehydes, we began evaluating the 
trifluoromethylation using (bpy)Cu(CF3)3, a base and an oxidant under photocatalytic 
conditions employing Hantzsch ester (B), which could be easily accessed by condensation 
from the corresponding aldehyde. As shown in Scheme 3.36, a range of aldehydes leading 
to intermediary cyclic secondary radicals (12, 3, 17), unactivated primary radicals (41) and 
even unstrained secondary radicals (40, 44, 45) successfully participated in the desired 
reaction. Remarkable, this strategy also provides a mild pathway to construct 
trifluoroacetamide substrates (42, 43). 
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Conditions: a B: Aldehyde (1.0 equiv), Bu4NHSO4 (12 mol%), ethyl 3-aminocrotonate (1.0 equiv), ethyl 
acetoacetate (1.0 equiv) in ethylene glycol (2.5 M) at 80 °C; see supporting information for characterization 
of data of B. b B (0.20 -0.30 mmol), Cu(CF3)3bpy (0.20 mmol), K2S2O8 (0.30 mmol), 4-CzIPN (3 mol %), 
NaHCO3 (0.40 mmol) in CH3CN (0.02 M) at 40 °C under blue LED irradiation. c Yields are reported on the 
basis of 19F NMR analysis using PhCF3 as internal standard; Isolated yields are in parentheses, thus showing 
how the volatility of some products affects the yield loss. 

Scheme 3.36 Scope of decarbonylative trifluoromethylation of aldehydes. 

3.3.2.3 Scope of Trifluoromethylation of Alkyl alkenes  

Furthermore, we applied our strategy to the trifluoromethylation event at a sp3-sites in 
the allylic position via formal release of isopropene (R = Me, Scheme 3.37), which stands 
in sharp contrast to previous methodologies that incorporate the trifluoromethyl moiety 
across the sp2-moiety. By applying this technology, the CF3 fragment could be included at 
either benzylic moieties (46-49) with 43-70% yields, unactivated secondary (22, 3, 19) 
with 36-70% yields or primary alkyl sites with 51% yield (41). 

 
Conditions: a C: Alkene (1.0 equiv), dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (1.05 equiv) in DCM (0.2 
M); see supporting information for characterization of data of C. b C (0.20 - 0.30 mmol), Cu(CF3)3bpy (0.2 
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mmol) at 35 °C under irradiation of 370 nm, R = Me. c Yields are reported on the basis of 19F NMR analysis 
using PhCF3 as internal standard; Isolated yields are in parentheses since volatility of some products 
diminished the isolated yield. d C (0.30 mmol), Cu(CF3)3bpy (0.2 mmol), 2 (0.5 equiv) and BTMG (0.5 equiv). 
e R = H. 

Scheme 3.37 Scope of trifluoromethylation of alkenes. 

3.3.2.4 Late-stage trifluoromethylation of natural products and medicinal agents  

Finally, we focused on ketones, aldehydes and alkenes stemming from a variety of 
highly functionalized natural products and medicinal agents to further demonstrate the 
efficiency of our strategy (Scheme 3.38). Generally, we found that the developed reaction 
conditions could tolerate a wide range of functional groups and heterocyclic motifs, 
enabling the installation of the CF3 group on densely functionalized molecules with ease 
and in good yields. Advanced synthetic intermediates possessing ketones (50, 56, 60), free 
alcohols (52), amides (51, 55, 58, 59, 61, 65), halides (53, 56, 58, 63, 65) or amines (58, 
63), which are vulnerable to single-electron oxidation, and free hydroxyl groups underwent 
chemoselective trifluoromethylation. Moreover, a range of nitrogen- and oxygen-
containing heterocycles (51, 53, 55, 57-59, 61, 63, 66), could be employed as substrates, 
thus holding promise for the implementation of this technology in medicinal chemistry 
programs. Particularly noteworthy are examples bearing benzylic and allylic sites (50, 51, 
54, 56-58, 61, 63-65), which are highly susceptible to C–H trifluoromethylation but also 
these targets showed high chemoselectivity for the desired trifluoromethylation. Moreover, 
internal alkenes (54) and α,β-unsaturated ketones (58, 62, 66), that might a priori intercept 
the in situ generated open-shell intermediate generated from the sp3 C–C bond-cleavage of 
the proaromatic precursors or CF3 radicals, remained intact, again highlighting the 
chemoselectivity profile of this reaction. All these examples showcased the versatility and 
applicability that this technique has unmasking valuable C(sp3)–CF3 architectures from 
unsaturated moieties. 
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a Isolated yields. b A (0.20 mmol), Cu(CF3)3bpy (0.20 mmol), 2 (0.30 mmol), 4-CzIPN (3 mol %), BTMG 

(0.20 mmol) in DMF (0.02 M); B (0.30 mmol), Cu(CF3)3bpy (0.20 mmol), K2S2O8 (0.45 mmol), 4-CzIPN 

(3 mol %), NaHCO3 (0.60 mmol) in CH3CN (0.02 M); C (0.30 mmol), Cu(CF3)3bpy (0.20 mmol) at 

35 °C under 370 nm irradiation. See supporting information for characterization of A-C. 

Scheme 3.38 Late-stage trifluoromethylation of advanced synthetic intermediates. 

3.3.2.5 Synthetic Applicability 

To further illustrate the combined value of our protocol, 19, 12, and 48 can all be 

used to forge C(sp3)–CF3 structures from the corresponding ketones (67), aldehydes 

(68), and olefins (69) in a one-pot fashion without the need to isolate the pre-aromatic 

precursors A17, B1, and C7 (Scheme 3.39).  

 
Conditions: a path a: using 67 (1.05 equiv), aminobenzamide (1.0 equiv), I2 (5 mol%) in DMF (0.67 M) 

at 80 °C; path b: using 68 (1.0 equiv), Bu4NHSO4 (12 mol%), ethyl 3-aminocrotonate (1.0 equiv), ethyl 

acetoacetate (1.0 equiv) in ethylene glycol (2.5 M) at 80 °C; path c: using 69 (1.0 equiv), dimethyl 

1,2,4,5-tetrazine-3,6-dicarboxylate (1.05 equiv) in DCM (0.2 M). 

Scheme 3.39 One-pot trifluoromethylation without isolation of proaromatic 

precursors. 
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trifluoromethylation delivered the doubly polyfluorinated product 72 in 53 % yield by 

two steps. 

 

Scheme 3.40 sequential trifluoromethylation events via sp3 C–C cleavage. 

3.3.2.6 Unsuccessful Substrates 

Unfortunately, some substrates did not participate in the desired trifluoromethylation 

reaction or only showed low reactivity (Scheme 3.41). Ketone-derived radical 

precursors bearing a Weinreb amide (3.41a) or carboxylic acid (3.41b) were not well 
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stabilized due to the α-position of oxygen or nitrogen (3.41q, 3.41r). 

 

Scheme 3.41 Unsuccessful substrates. 

3.3.3 Mechanistic Proposal 
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proposal, dihydroquinazoline radical precursor were studied to examine the reaction 

pathway for C(sp3)–CF3 bond-formation. 

3.3.3.1 Deprotonation of A1 with BTMG by 1H NMR 

To find out whether A1 is deprotonated or undergoes hydrogen bonding with 2-tert-

butyl-1,1,3,3-tetramethylguanidine (BTMG), we monitored the chemical shift of A1 

upon reaction with BTMG by using trimethoxybenzene (TMB) as internal standard. A1 

(4.2 mg, 0.01 mmol) and TMB (2.5 mg) were added to a 3 mL vial and dissolved in 1 

mL MeCN-d3. This solution was then transferred to an NMR tube, and the chemical 

shifts were measured. To this solution, BTMG (2.9 µL, 2 equiv) was added and 

measured by 1H NMR. Subsequently, BTMG (14.3 µL, 10 equiv) was added and the 

mixture was analyzed again by 1H NMR. Conclusion; Chemical shift of A1 moves 

slightly downfield, with additional line broadening supporting a weak interaction 

between BTMG and substrate (Figure 1). 

 

Figure 1. 1H spectra (MeCN-d3, 400 MHz) of the A1 (blue) and BTMG (internal 

standard = TMB (green)). 
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3.3.3.2 Photocatalyst Quenching with substrate and BTMG  

A series of experiments were conducted to test whether there exists quenching of the 

photocatalyst with the reaction components. (a-b) To a quartz cuvette containing 4-

CzIPN (10 µM) in MeCN was added increasing concentrations of A1 solution and the 

emission spectra was recorded. (Figure 2) (c-d) To a quartz cuvette containing 4-CzIPN 

(10 µM) in MeCN was added increasing concentrations of BTMG solution and the 

emission spectra was recorded. (Figure 2) (e-f) To a quartz cuvette containing 4-CzIPN 

(10 µM) in MeCN was added increasing concentrations of 1:1 ratio of BTMG and A1 

solution and the emission spectra was recorded. (Figure 2) (g-h) To a quartz cuvette 

containing 4-CzIPN (10 µM) in MeCN was added increasing concentrations of Togni’s 

reagent and the emission spectra was recorded. (Figure 2). Conclusion; A1 and BTMG 

have similar quenching ability.  
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Figure 2. Quenching experiments of individual reaction components of substrate A1, 

BTMG, and Togni’s reagent along with the combined quenching of BTMG and 

substrate. 

Experimental results from chemical shift of 1H NMR experiments between the 

substrate A1 and BTMG, as well as from photocatalyst quenching experiments, suggest 

an electron transfer-deprotonated process between substrate and photocatalyst rather 

than a PECT process. 
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state 4-CzIPN* (E1/2([4CzIPN]*/ [4CzIPN])= +1.35 V vs SCE in MeCN) could oxidize 

the activated precursor A1 (Eox = +1.21 V vs SCE) to generate the tentive alkyl radical 

via SET. Furthermore, the Cu(I) species (Ep = -2.12 V vs SCE in MeCN) could get 

reduced by Togni’s reagent I (2) (Ep = -2.17 V vs SCE in MeCN) but not by the 

photocatalyst 4-CzIPN (E1/2(4CzIPN)/ [4CzIPN]•−)= -1.24 V vs SCE in MeCN).  

 

Figure 3. Cyclic voltammogram of A1 (red trace) and BTMG (black trace). 

Voltammograms were taken using a glassy carbon working electrode in a 0.1 M 

[nBu4N][PF6] supporting electrolyte MeCN solution with a 100 mV/s scan rate and 0.01 

M of sample referenced to Fc (+0.38 V vs SCE, external). Scans were started at the 

open-circuit potential; the first cycle is shown here. Ep values for BTMG oxidation are 

+ 1.15 V vs SCE and A1 are + 1.21 V vs SCE.  
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Figure 4. Cyclic voltammogram of Togni’s reagent I. Voltammograms were taken using 

a glassy carbon working electrode in a 0.1 M [nBu4N][PF6] supporting electrolyte 

MeCN solution with a 100 mV/s scan rate and 0.01 M of sample referenced to Fc (+0.38 

V vs SCE, external). Scans were started at the open-circuit potential and scanned in the 

cathode direction first; the first cycle is shown here. Ep values for Togni’s reagent I are 

-2.17 V vs SCE for reduction and + 2.02 V vs SCE for oxidation.  

 

Figure 5. Cyclic voltammogram of (bpy)CuCl2 with Togni’s reagent I overlaid. 
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Voltammograms were taken using a glassy carbon working electrode in a 0.1 M 

[nBu4N][PF6] supporting electrolyte MeCN solution with a 100 mV/s scan rate and 0.01 

M of sample referenced to Fc (+ 0.38 V vs SCE, external). Scans were started at the 

open-circuit potential and scanned in the anode direction first; the first cycle is shown 

here. The new reduction peak at -2.12 V vs SCE is consistent with Cu(I) oxidizing 

Togni’s reagent I where the catalytic electrochemical reduction of Cu(II) to Cu(I) occurs 

along with chemical oxidation of Cu(I) to Cu(II) by Togni’s reagent I. 

3.3.3.4 Interactions of BTMG with Togni’s reagent I by UV-Vis 

The UV-Vis absorption spectra of DCM solutions of BTMG (0.05 M), DCM 

solutions of Togni’s reagent (0.05 M), DCM solutions of a mixture of BTMG (0.023 M) 

and Togni’s reagent (0.023 M) three were recorded in 1 cm path quartz cuvettes using 

an Agilent Technologies Cary 300 UV-Vis spectrophotometer. As Figure 6 shown, the 

spectra for both BTMG and Togni’s reagent have absorption tails that extend to 450 nm. 

 

Figure 6. The interaction between BTMG and Togni’s reagent I in DCM. 

To find out whether an interaction between the BTMG and Togni’s reagent I occurs, 

the change in UV-Vis absorption of Togni’s reagent I was monitored during the addition 

of BTMG (a). To a quartz cuvette containing Togni’s reagent I (0.777 mM) in MeCN 

was added Togni’s reagent I (from 0.2 to 10 equiv) (Figure 7). Conclusion; the shift in 

UV-Vis spectra of Togni’s reagent I upon adding BTMG reagent supports an interaction 
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between BTMG and Togni’s reagent I. 

 

Figure 7. Monitoring UV-Vis of Togni’s reagent with addition of BTMG. (a) The UV-

Vis spectra of substrate (0.78 mM), and the titration of BTMG to Togni’s reagent. Pink 

trace is only BTMG (7.8 mM) (b) Plotted change in absorption intensity at 275 nm vs 

concentration.  

3.3.3.5 Interactions of BTMG with Togni’s reagent I by 1H NMR 

To further test whether an interaction between the BTMG and Togni’s reagent I 

occurs, we monitor a reaction between these species by 1H NMR. Solutions containing 

equal molar concentrations of the BTMG (0.1 M in CDCl3) and Togni’s reagent I (0.1 

M in CDCl3) were prepared and mixed to cover Togni’s reagent I / BTMG ratio from 

0%, 10%, 20% to 100% BTMG (in Figure 8). Conclusion; Chemical shift of Togni’s 

reagent moves slightly upfield, supporting an interaction between these species. 
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Figure 8. 1H spectra (CDCl3, 400 MHz) of BTMG and Togni’s reagent I. Top: full 

spectra, increasing equivalents of BTMG. Bottom: zoomed in region depicting shift in 

signals of Togni’s reagent I (2x Me) and BTMG (t-Bu). 

3.3.3.6 Interactions of BTMG with Togni’s reagent I by EPR Spectrum 

Line I (blank): An oven-dried 20 mL Schlenk tube containing a stir bar was charged 

with PBN (PBN = N-tert-Butyl-α-phenylnitrone) (17.7 mg, 0.1 mmol) and DMF (1.0 

mL), then the tube was stirred at 40 °C for 16 h. The Schlenk tube was introduced in an 

argon-filled glovebox, the reaction mixture was transferred to EPR tube. The sample 

was brought out from glovebox and was recorded by EMX Micro EPR spectrometer 

immediately. 
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Line II: An oven-dried 20 mL Schlenk tube containing a stir bar was charged with 

PBN (17.7 mg, 0.1 mmol), Togni’s reagent (16.5 mg, 0.05 mmol) and DMF (1.0 mL), 

then the tube was stirred at 40 °C under irradiation of blue LEDs 450 nm for 16 h. The 

Schlenk tube was introduced in an argon-filled glovebox, the reaction mixture was 

transferred to EPR tube. The sample was brought out from glovebox and was recorded 

by EMX Micro EPR spectrometer immediately. Conclusion: Togni’s reagent undergoes 

spontaneous homolysis to form radicals that react with PBN.  

Line III: An oven-dried 20 mL Schlenk tube containing a stir bar was charged with 

PBN (17.7mg, 0.1 mmol), Togni’s reagent (16.5 mg, 0.05 mmol) BTMG (0.05 mmol) 

and DMF (1.0 mL), then the tube was stirred at 40 °C under irradiation of blue LEDs 

450 nm for 16 h. The Schlenk tube was introduced in an argon-filled glovebox, the 

reaction mixture was transferred to EPR tube. The sample was brought out from 

glovebox and was recorded by EMX Micro EPR spectrometer immediately. Conclusion: 

the increase in signal intensity compared to Line II supports BTMG assists in the 

homolysis of Togni’s reagent. 

Line IV: An oven-dried 20 mL Schlenk tube containing a stir bar was charged with 

PBN (17.7mg, 0.1 mmol), Togni’s reagent (16.5 mg, 0.05 mmol) BTMG (0.05 mmol) 

and DMF (1.0 mL), then the tube was stirred at 40 °C for 16 h. The Schlenk tube was 

introduced in an argon-filled glovebox, the reaction mixture was transferred to EPR 

tube. The sample was brought out from glovebox and was recorded by EMX Micro 

EPR spectrometer immediately. Conclusion: the EPR signal observed without 

irradiation supports that Togni’s reagent can undergo thermal homolysis at 40 °C. 
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Figure 9. EPR spectrum. 

UV-Vis, NMR and EPR data revealed an interaction between BTMG and Togni’s 

reagent, thus likely promoting the release of the corresponding CF3 radicals. 

3.3.3.7 Proposed Catalytic Cycle 

Based on these mechanistic studies, a plausible reaction pathway is proposed in 

Scheme 3.42. Herein, photoexcitation of 4-CzIPN would generate a highly oxidizing 

excited state 4-CzIPN*, which could oxidize the activated precursor (A) to intermediate 

(I) following a SET process. Aromatization as a thermodynamic driving force triggers 

a site-selective fragmentation to expel the alkyl radical (III) from the radical cation (II) 

after a deprotonation step. At this point, we hypothesize that a single-electron transfer 

would occur between LnCuIX and Togni’s reagent I (2) to form LnCuIICF3 (VI) and 

related O-centered radical (VII). LnCuIICF3 (VI) would trap the alkyl radical (III) to 

deliver a high-valent alkyl-CuIIICF3 complex, which affords the alkyl-CF3 product via 

C(sp3)–CF3 bond-forming reductive elimination and regenerates the Cu(I) catalyst. 

Simultaneously, SET between 4-CzIPN•- and O-radical species (VII) would regenerate 

photocatalyst 4-CzIPN to close the catalytic cycle. 
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Scheme 3.42 Mechanistic proposal. 

3.4 Extended Research and Future outlook  

Trifluoromethylthioether groups (SCF3) display an important structural motif with 

high electronegativity and lipophilicity (Hansch parameter πR=1.43),63 which in turn 

could improve the metabolic stability and transmembrane permeability of drug 

candidates.64 To extend our methodology from trifluoromehtylarion to C(sp3)–SCF3 

bond formation, dihydroquinazolinone precusors (A) were employed as radical 

precursors. This would present a complementary strategy to literature-know procedures 

relying on the decarbonylative coupling of ketones to construct C(sp3)–SCF3 bonds. 

Initial studies demonstrated that dihydroquinazolinone precusors (A) were able to 

undergo oxidative fragmentation under photo-redox conditions, and the resulting alkyl 

radicals were shown to successfully react with N-(trifluoromethylthio)-phthalimide to 

form the desired product under transition metal-free conditions (Scheme 3.43) 

Optimization studies and exploration of the substrate scope are currently under 

investigation and will be reported in due course.  
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In addition, Various C–C bond cleavages by de-aromatization – an important 

thermodynamic driving force from the formation of N-heterocycles – will remain a 

powerful tool for achieving a range of different transformations. In particular, the two 

kind of radical precursors invoving dihydroquinazolinone precusors (A) and 1,4-

dihydropyridazines precursors (C), which still have the potential to develop.  

 

Scheme 3.43 Extended research.  

3.5 Conclusion 

In summary, we have developed an efficient protocol for the conversion of 

structurally diverse feedstocks containing ketones, aldehydes, and alkenes to the 

corresponding trifluoromethylated analogues by inert C(sp3)–C bond cleavage. This 

technology offers an unconventional manifold enabling trifluoromethylation events 

with excellent and diverse chemoselectivity under mild reaction conditions. The 

applicability and functional group tolerance was further demonstrated by the late-stage 

functionalization of natural products and drug molecules. We believe that this process 

will complement current trifluoromethylation methods and would be of considerable 

value to chemical industry and academia.  
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3.7 Experimental Section 

3.7.1 General Considerations 

Analytical methods: 1H and 13C NMR spectra were recorded on Bruker 300 MHz, 

Bruker 400 MHz and Bruker 500 MHz at 20 °C. Chemical shifts (d) are given in parts 

per million (ppm) and referenced to CDCl3 (1H: 7.26 ppm, 13C: 77.17 ppm), unless 

otherwise stated. 19F NMR was obtained with 1H decoupling unless otherwise stated. 

Coupling constants (J) are given in Hertz (Hz). Melting points were measured in 

degrees Celsius (°C) using open glass capillaries in a Büchi B540 apparatus. Infra-red 

spectra (FT-IR) measurements were carried out on a Bruker Optics FT-IR Alpha 

spectrometer equipped with a DTGS detector, KBr beamsplitter at 4 cm-1 resolution 

using a one bounce ATR accessory with diamond windows. Selected absorption 

maxima (nmax) are reported in wavenumbers (cm-1). High-resolution mass spectra 

(HRMS) were recorded on a Waters LCT Premier spectrometer or in a MicroTOF Focus, 

Bruker Daltonics spectrometer. UV-Vis absorption spectra were recorded using a 

Agilent Technologies Cary 300 UV-Vis spectrophotometer in quartz cuvettes with a 

path length of 1.0 cm. Bulk electrolysis was conducted on a PARSTAT 2273 

potentiometer using a 3-electrode cell configuration at room temperature, the same 

electrodes were used for cyclic voltammetry (CV) experiments, namely a glassy carbon 

working electrode, platinum flag counter electrode and Ag/AgCl (KCl sat.) reference 

electrode. Flash column chromatography was performed with EM Science silica gel 60 

(230-400 mesh). Analytical thin-layer chromatography (TLC) was performed using 

aluminium-backed silica plates (Merck, silica gel 60 F254). Compounds were visualized 
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under UV light and/or staining with aqueous basic potassium permanganate (KMnO4) 

or cerium molybdate solution. The yields reported refer to isolated yields and represent 

an average of at least two independent runs. The procedures described in this section 

are representative. Thus, the yields may differ slightly from those given in the tables of 

the manuscript. 

Reagents: Commercially available materials were used as received without further 

purification.  Anhydrous copper(II) chloride (97% purity) was purchased from Alfa 

Aesar. Phenanthroline (99% purity) was purchased from Aldrich. Togni’s reagent I (98% 

purity) was purchased from CF Plus Chemicals. 2-tert-Butyl-1,1,3,3-

tetramethylguanidine (BTMG) was purchased from Aldrich (98% purity). Anhydrous 

N,N-dimethylformamide (DMF, 99.5% purity) was purchased from Acros. Anhydrous 

acetone (99.5% purity) was purchased from Acros. Anhydrous acetonitrile (99.5% 

purity) was purchased from Acros. 

Trifluoromethylation reactions from ketones and aldehydes were performed with 451 

nm blue LEDs (OSRAM Oslon® SSL 80 royal-blue LEDs) installed at the bottom of a 

custom-made photoreactor, which was designed to hold 8 flat-bottom Schlenk tubes 

(the distance between the flat-bottom Schlenk tube and the light source was measured 

to be ~7 mm). The photoreactor was equipped with a liquid cooling system (the 

thermostat was set at 40 °C) and a magnetic stirrer (~700 rpm). 

 

Trifluoromethylations from alkenes were performed with 2´370nm Kessil lamps 

(PR160L-370 nm, 40 W) without cooling (35 °C), and a magnetic stirrer (~700 rpm). 
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3.7.2 Synthesis of Starting Materials 

Synthesis of Cu(CF3)3(bpy) 

 

Cu(CF3)3(bpy) was prepared following a modified literature procedure.[1] To a dry 250 

mL round-bottom flask were added copper (I) iodide (10 mmol), 2,2’-bipyridine (10 

mmol), silver (I) fluoride (40 mmol) in an argon-filled glove box. DMF (13 mL) was 

added outside of glove box, and stirred for 30 min. TMSCF3 (65 mmol) was slowly 

added (10 mL/h) under argon flow. The resulting mixture was stirred for 18 h at room 

temperature. The resulting mixture was filtered through a pad of Celite®, eluted with 

acetone, and concentrated under reduced pressure. Methanol was added (200 mL) to 

the resulting residue, and recrystallized at –20 °C overnight, filtered, washed with cold 

methanol and dried under vacuum to afford pure Cu(CF3)3(bpy) as a yellow solid. 

Spectroscopic data for Cu(CF3)3(bpy) match those previously reported in the literature.1 

19F NMR (376 MHz, Acetone-d6) δ -24.83 (t, J = 9.3 Hz), -37.82 (q, J = 9.1 Hz) ppm. 
1H NMR (400 MHz, Acetone-d6) δ 9.28 (d, J = 5.2 Hz, 2H), 8.85 (d, J = 8.1 Hz, 2H), 

8.43 (td, J = 7.9, 1.6 Hz, 2H), 7.96 (ddd, J = 7.7, 5.2, 1.1 Hz, 2H) ppm.  

 

Synthesis of Radical Precursors (A) from Ketones 

Method A  

N

N
Cu
CF3

CF3
CF3
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Following a literature procedure,[2] a dry flask was charged with 2-aminobenzamide 

(1.00 equiv), ketone (1.05 equiv), I2 (5 mol%) and DMF (0.67 M). The reaction mixture 

was stirred at 70-80 °C for 12-16 h. After completion of the reaction, the reaction 

mixture was cooled to room temperature. Water was added to the mixture, and the solid 

was collected by filtration. The crude products were washed with water and purified by 

recrystallization from Et2O and hexane. 

 
tert-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-

carboxylate (A1) Following Method A, the utilization of tert-butyl 4-acetylpiperidine-

1-carboxylate (1.14 g, 5.0 mmol) afforded the title compound as a white solid (1.43 g, 

83% yield). 1H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 7.8, 1.6 Hz, 1H), 7.37 – 7.21 

(m, 1H), 6.86 (s, 1H), 6.82 – 6.74 (m, 1H), 6.58 (dd, J = 8.1, 1.0 Hz, 1H), 4.22 – 4.18 

(m, 3H), 2.62 – 2.56 (m, 2H), 2.01 – 1.68 (m, 3H), 1.46 (s, 3H), 1.43 (s, 9H), 1.32-1.25 

(m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.3, 154.7, 145.7, 134.2, 128.3, 118.5, 

114.4, 114.3, 79.7, 71.6, 46.7, 28.5, 26.5, 26.2. IR (neat): 3300, 3173, 2951, 2863, 1687, 

1632, 1610, 1581, 1483, 1317, 1239, 1162, 1067, 1029, 941, 865, 805, 756, 580, 527 

cm–1. Mp: 191 °C. HRMS calcd. for (C19H27N3NaO3) [M+Na]+: 368.1950, found 

368.1943. 

 
2-methyl-2-(1-tosylpiperidin-4-yl)-2,3-dihydroquinazolin-4(1H)-one (A2) 

Following Method A, the utilization of 1-(1-tosylpiperidin-4-yl)ethan-1-one (0.92 g, 

3.3 mmol) afforded the title compound as a white solid (0.96 g, 69% yield). 1H NMR 

(400 MHz, CDCl3) δ 7.80 (dd, J = 7.8, 1.7 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.33 – 7.28 

(m, 2H), 7.26 (m, 2H), 6.78 (d, J = 6.8 Hz, 1H), 6.63 – 6.50 (m, 1H), 6.31(s, 1H), 4.22 

– 4.15 (m, 1H), 3.85 (d, J = 13.4 Hz, 2H), 2.41 (s, 3H), 2.23 – 2.06 (m, 2H), 1.95 – 1.85 

(m, 1H), 1.78 (dd, J = 12.5, 2.9 Hz, 1H), 1.53-1.47 (m, 2H), 1.43 (s, 3H) ppm. 13C 

NMR (126 MHz, DMF-d7) δ 164.1, 148.2, 144.7, 134.3, 134.0, 130.8, 128.8, 128.3, 

NH2

NH2

O
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117.3, 115.2, 115.1, 72.1, 47.7, 47.6, 46.8, 26.9, 26.6, 25.5, 21.6 ppm. IR (neat): 3362, 

3278, 2963, 2929, 2847, 2166, 1654, 1630, 1609, 1588, 1484, 1333, 1150, 937, 816, 

761, 727, 711, 651, 591, 548 cm–1. Mp: 234 °C. HRMS calcd. for (C21H25N3NaO3S) 

[M+Na]+: 422.1514, found 422.1510. 

 
2-(1-benzoylpiperidin-4-yl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A3) 

Following Method A, the utilization of 1-(1-benzoylpiperidin-4-yl)ethan-1-one (331 

mg, 1.43 mmol) afforded the title compound as a pale yellow solid after column 

chromatography (5% MeOH/EtOAc) (112 mg, 24% yield). 1H NMR (300 MHz, DMF-

d7) δ 7.91 – 7.77 (m, 1H), 7.68 (dd, J = 7.7, 1.7 Hz, 1H), 7.60 – 7.36 (m, 5H), 7.24 (m, 

1H), 6.84 – 6.76 (m, 1H), 6.70 (s, 1H), 6.64 (ddd, J = 8.0, 7.2, 1.1 Hz, 1H), 4.70 (br, 

1H), 3.74 (br, 1H), 2.96 (br, 1H), 2.74 (br, 1H), 2.10 – 1.96 (m, 2H), 1.87 (s, 2H), 1.49 

– 1.45 (m, 4H) ppm. 13C NMR (75 MHz, DMF-d7) δ 170.2, 164.2, 148.4, 138.0, 134.4, 

130.4, 129.4, 128.3, 127.9, 117.3, 115.2, 115.1, 72.3, 47.8, 25.9 ppm. IR (neat): 3280, 

2927, 1609, 1485, 1435, 1371, 1313, 1277, 1151, 1121, 1006, 752, 705 cm–1. Mp: 

140 °C. HRMS calcd. for (C21H23N3NaO2) [M+Na]+: 372.1688, found 372.1684. 

 
2-phenyl-2-(1-phenylpropan-2-yl)-2,3-dihydroquinazolin-4(1H)-one (A4) 

Following Method A, the utilization of 2-methyl-1,3-diphenylpropan-1-one (1.44 g, 6.4 

mmol) afforded the title compound as a white solid (1.20 g, 55% yield). 1H NMR (400 

MHz, CD2Cl2) δ 7.85 – 7.80 (m, 1H), 7.45-7.48 (m, 2H), 7.38 – 7.10 (m, 9H), 6.88 – 

6.71 (m, 2H), 5.33 – 5.29 (s, 1H), 5.03 (s, 1H), 3.20 (dd, J = 34.5, 11.6 Hz, 1H), 2.55 – 

2.25 (m, 2H), 0.83 (dd, J = 9.5, 6.3 Hz, 3H) ppm. 13C NMR (101 MHz, CD2Cl2) δ 

146.8, 145.5/145.2, 141.2, 141.0, 134.4, 134.3, 129.6, 129.5, 128.89/128.84, 128.7, 

128.6, 128.53/128.50, 128.1, 127.9, 126.4, 126.3, 126.1, 126.0, 119.06/119.00, 

115.18/115.16, 46.3, 37.96/37.93, 13.59/13.50 ppm. IR (neat): 3302, 3023, 2180, 1721, 

1649, 1610, 1483, 1447, 1373, 1251, 1149, 1030, 751, 697, 557 cm–1. Mp: 135 °C. 

HRMS calcd. for (C23H22N2NaO) [M+Na]+: 365.1630, found 365.1621. 
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2-(4-butylcyclohexyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A5) Following 

Method A, the utilization of 1-(4-butylcyclohexyl)ethan-1-one (0.38 g, 2.1 mmol) 

afforded the title compound as a white solid (0.38 g, 60% yield), as a mixture of two 

isomers (3:7 ratio). 1H NMR (400 MHz, CDCl3) δ 7.85 (dd, J = 7.8, 1.9 Hz, 1H), 7.41 

– 7.06 (m, 1H), 6.77 (td, J = 7.6, 1.2 Hz, 1H), 6.69 – 6.52 (m, 1H), 6.02 (s, 1H), 4.43 – 

3.83 (m, 1H), 1.85 – 1.78 (m, 1H), 1.71 – 1.51 (m, 5H), 1.44 – 1.41 (m, 4H), 1.35 – 

1.05 (m, 9H), 0.89 (t, J = 7.3 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.1, 

146.0, 134.0, 128.4, 118.4, 118.3, 114.3, 114.3, 72.3, 72.2, 48.2, 48.1, 37.5, 36.8, 32.9, 

32.1, 30.5, 30.2, 29.9, 29.8, 29.2, 27.0, 26.8, 25.6, 25.5, 23.1, 23.0, 21.5, 21.3, 14.3, 

14.2 ppm. IR (neat): 3312, 3183, 2919, 2867, 1631, 1609, 1570, 1506, 1484, 1449, 

1399, 1328, 1275, 1150, 803, 754 cm–1. Mp: 175 °C. HRMS calcd. for (C19H28N2NaO) 

[M+Na]+: 323.2099, found 323.2098. 

 
2-(4-hydroxycyclohexyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A6) 

Following Method A, the utilization of 1-(4-hydroxycyclohexyl)ethan-1-one (0.43g, 

3.0 mmol) afforded the title compound as a white solid (0.26 g, 33% yield), as a mixture 

of two isomers (cis : trans = 1:1). 1H NMR (500 MHz, DMF-d7) δ 7.72 (s, 1H), 7.66 

(dd, J = 7.7, 1.7 Hz, 1H), 7.22 (m, 1H), 6.79 (dd, J = 8.3, 1.3 Hz, 1H), 6.70 – 6.49 (m, 

2H), 4.25 (d, J = 3.1 Hz, 1H), 3.88 (q, J = 2.9 Hz, 1H), 1.91 – 1.55 (m, 7H), 1.44 (s, 

3H), 1.42 – 1.22 (m, 2H) ppm. 13C NMR (126 MHz, DMF-d7) δ 164.2, 148.6, 134.2, 

128.3, 117.0, 115.4, 115.0, 72.8, 65.0, 49.1, 34.0, 33.9, 25.5, 21.8, 21.4 ppm. IR (neat): 

3440, 3289, 2933, 2204, 1606, 1517, 1484, 1392, 1279, 1188, 1147, 898, 817, 749, 582 

cm–1. Mp: 226 °C. HRMS calcd. for (C15H20N2NaO2) [M+Na]+: 283.1422, found 

283.1418. 

 
4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)cyclohexyl benzoate (A7) 

Following Method A, the utilization of 4-acetylcyclohexyl benzoate (1.46 g, 5.9 mmol) 
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afforded the title compound as a white solid (1.20 g, 56% yield), as a mixture of two 

isomers (cis : trans = 1:1). 1H NMR (400 MHz, CDCl3) δ 8.14 – 7.97 (m, 2H), 7.89 

(dd, J = 7.8, 1.7 Hz, 1H), 7.68 – 7.55 (m, 1H), 7.52 – 7.42 (m, 2H), 7.38 – 7.13 (m, 1H), 

6.86 – 6.76 (m, 1H), 6.63 (dd, J = 8.1, 1.1 Hz, 1H), 6.43 (s, 1H), 5.29 (s, 1H), 4.46 – 

4.07 (m, 1H), 2.28 – 2.08 (m, 2H), 1.97 – 1.75 (m, 3H), 1.68 – 1.39 (m, 7H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 165.7, 164.0, 145.7, 134.0, 132.9, 130.7, 129.4, 128.4, 

128.3, 118.4, 114.5, 114.2, 71.9, 69.1, 47.0, 29.9, 21.6, 21.3 ppm. IR (neat): 3292, 3173, 

2941, 1714, 1640, 1614, 1525, 1488, 1449, 1398, 1229, 1312, 1272, 1173, 1106, 1069, 

923, 752, 707 cm–1. Mp: 182 °C. HRMS calcd. for (C22H24N2NaO3) [M+Na]+: 

387.1685, found 387.1679. 

 
2-(4,4-difluorocyclohexyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A8) 

Following Method A, the utilization of 1-(4,4-difluorocyclohexyl)ethan-1-one (1.00 g, 

9.8 mmol) afforded the title compound as a white solid (1.79 g, 74% yield). 19F NMR 

(376 MHz, DMF-d7) δ -91.60 (d, J = 232.3 Hz), -102.62 (m) ppm. 1H NMR (500 MHz, 

DMF-d7) δ 7.32 – 6.95 (m, 2H), 6.67 (m, 1H), 6.21 (dd, J = 8.2, 1.4 Hz, 1H), 6.19 – 

6.15 (m, 1H), 6.07 (m, 1H), 1.52 – 1.26 (m, 7H), 0.91 (s, 5H) ppm. 13C NMR (126 

MHz, DMF-d7) δ 164.1, 148.3, 134.3, 128.3, 117.3, 115.1, 115.0, 72.2 (d, J = 2.8 Hz), 

47.4, 34.5 (d, J = 9.2 Hz), 34.2 (d, J = 9.2 Hz), 34.07 (d, J = 8.7 Hz), 25.9, 24.5 (d, J = 

10.1 Hz), 24.1 (d, J = 10.1 Hz) ppm. IR (neat): 3313, 3170, 2967, 1532, 1608, 1579, 

1505, 1483, 1449, 1379, 1360, 1324, 1268, 1197, 1152, 1126, 1106, 1028, 966, 931, 

803, 754, 582, 491 cm–1. Mp: 215 °C. HRMS calcd. for (C15H18F2N2NaO) [M+Na]+: 

303.1285, found 303.1288. 

 
2-cyclopentyl-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A9) Following Method 

A, the utilization of 1-cyclopentylethan-1-one (0.50 g, 4.5 mmol) afforded the title 

compound as a white solid (0.80 g, 78% yield). 1H NMR (400 MHz, CDCl3) δ 7.85 

(dd, J = 7.8, 1.8 Hz, 1H), 7.42 – 7.21 (m, 1H), 6.78 (t, J = 7.5, 1.1 Hz, 1H), 6.58 (dd, J 

= 8.1, 1.1 Hz, 1H), 6.03 (s, 1H), 4.11 (s, 1H), 2.50 – 2.20 (m, 1H), 1.90 – 1.30 (m, 11H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 164.2, 146.1, 134.0, 128.4, 118.4, 114.5, 114.3, 
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71.9, 50.8, 27.3, 27.2, 26.7, 26.0, 25.8 ppm. IR (neat): 3308, 3108, 2952, 2867, 1632, 

1608, 1579, 1502, 1483, 1453, 1420, 1326, 1272, 1150, 801, 755 cm–1. Mp: 185 °C. 

HRMS calcd. for (C14H18N2NaO) [M+Na]+:253.1317, found 253.1310. 

 
2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A10) Following Method 

A, the utilization of 1-cyclohexylethan-1-one (0.63 g, 5.0 mmol) afforded the title 

compound as a white solid (0.83 g, 68% yield). 1H NMR (400 MHz, CDCl3) δ 7.85 (d, 

J = 6.1 Hz, 1H), 7.36 – 7.16 (m, 1H), 6.78 (t, J = 7.0 Hz, 1H), 6.57 (d, J = 7.5 Hz, 1H), 

5.85 (s, 1H), 4.15 (s, 1H), 2.02 – 1.64 (m, 6H), 1.44 (s, 3H), 1.28 – 0.99 (m, 5H) ppm. 
13C NMR (126 MHz, CDCl3) δ 164.0, 145.9, 134.1, 128.4, 118.4, 114.4, 114.3, 72.2, 

48.0, 31.0, 27.2, 27.0, 26.3, 26.2, 25.4 ppm. IR (neat): 3329, 3175, 2929, 2851, 1631, 

1606, 1577, 1504, 1482, 1447, 1397, 1328, 1273, 1149, 1132, 1026, 802, 750, 572 cm–

1. Mp: 210 °C.HRMS calcd. for (C15H20N2NaO) [M+Na]+:267.1473, found 267.1469. 

 
2-cycloheptyl-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A11) Following Method 

A, the utilization of 1-cycloheptylethan-1-one (1.50 g, 10.7 mmol) afforded the title 

compound as a white solid (1.60 g, 54% yield). 1H NMR (400 MHz, CDCl3) δ 7.85 

(dd, J = 7.8, 1.7 Hz, 1H), 7.42 – 7.17 (m, 1H), 6.80-6.78 (m, 1H), 6.58 (dd, J = 8.1, 1.1 

Hz, 1H), 6.23 (s, 1H), 4.25 (s, 1H), 2.15 – 1.64 (m, 5H), 1.64 – 1.07 (m, 11H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 164.1, 145.9, 134.0, 128.4, 118.4, 114.7, 114.4, 73.0, 48.7, 

28.8, 28.3, 28.1, 28.0, 27.4, 27.2, 24.8 ppm. IR (neat): 3310, 3180, 2917, 2851, 1631, 

1609, 1518, 1484, 1455, 1397, 1279, 1150, 800, 750 cm–1. Mp: 192 °C. HRMS calcd. 

for (C16H22N2NaO) [M+Na]+: 281.1630, found 281.1625. 

 
2-((4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-

yl)cyclohexyl)methyl)isoindoline-1,3-dione (A12) Following Method A, the 

utilization of 2-((4-acetylcyclohexyl)methyl)isoindoline-1,3-dione (0.90 g, 3.1 mmol) 
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afforded the title compound as a white solid (0.80 g, 65% yield) as a mixture of two 

isomers (cis : trans = 1:1.8). 1H NMR (400 MHz, CD2Cl2) δ 7.88 – 7.65 (m, 5H), 7.36 

– 7.16 (m, 1H), 7.00 – 6.86 (m, 1H), 6.81 – 6.49 (m, 2H), 4.50 (br, 1H), 3.80 – 3.39 (m, 

2H), 2.26 – 1.27 (m, 11H), 1.21 – 0.86 (m, 2H) ppm. 13C NMR (101 MHz, CD2Cl2) δ 

168.4, 163.9, 163.8, 146.2, 146.1, 133.9, 133.8, 133.7, 133.7, 132.1, 132.0, 127.9, 127.8, 

122.9, 122.9, 117.8, 117.7, 114.4, 114.3, 114.2, 114.1, 71.9, 71.8, 47.7, 47.6, 43.6, 39.2, 

36.9, 31.3, 30.3, 30.2, 27.5, 27.4, 26.1, 25.9, 25.0, 24.8, 21.4, 21.0 ppm. IR (neat): 

3369, 2931, 1770, 1702, 1658, 1610, 1511, 1485, 1395, 1243, 1151, 1068, 945, 755, 

721, 530 cm–1. Mp: 150 °C. HRMS calcd. for (C24H25N3NaO3) [M+Na]+: 426.1794, 

found 426.1785. 

 
2-(1-(4,6-dimethylpyrimidin-2-yl)piperidin-4-yl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A13) Following Method A, the utilization of 1-(1-(4,6-

dimethylpyrimidin-2-yl)piperidin-4-yl)ethan-1-one (576 mg, 2.47 mmol) afforded the 

title compound as a white solid (320 mg, 39% yield). 1H NMR (300 MHz, DMF-d7) δ 

7.83 – 7.78 (m, 1H), 7.67 (dd, J = 7.7, 1.7 Hz, 1H), 7.27 – 7.16 (m, 1H), 6.77 (dd, J = 

8.2, 1.1 Hz, 1H), 6.73 – 6.57 (m, 2H), 6.36 (s, 1H), 5.11 – 4.87 (m, 2H), 2.77 – 2.50 (m, 

2H), 2.23 (s, 6H), 2.09 – 1.82 (m, 3H), 1.51 – 1.32 (m, 5H) ppm. 13C NMR (126 MHz, 

DMF-d7) δ 168.0, 164.2, 162.4, 148.5, 134.3, 128.3, 117.2, 115.2, 114.9, 109.1, 72.4, 

48.7, 44.6, 44.6, 27.4, 27.1, 26.1, 24.4 ppm. IR (neat): 3319, 2990, 2925, 2848, 1642, 

1659, 1519, 1476, 1371, 1336, 1309, 1259, 1145, 1109, 754, 697, 574 cm–1. Mp: 250 °C. 

HRMS calcd. for (C20H26N5O) [M+H]+: 352.2137, found 352.2133. 

 

2-methyl-2-(tetrahydro-2H-pyran-4-yl)-2,3-dihydroquinazolin-4(1H)-one (A14) 

Following Method A, the utilization of 1-(tetrahydro-2H-pyran-4-yl)ethan-1-one (1.28 

g, 10.0 mmol) afforded the title compound as a white solid (1.24 g, 50% yield). 1H 

NMR (400 MHz, CDCl3) δ 7.85 (dd, J = 7.7, 1.7 Hz, 1H), 7.44 – 7.21 (m, 1H), 6.79 

(m, 1H), 6.70 – 6.43 (m, 2H), 4.20 (s, 1H), 4.05-3.99 (m, 2H), 3.35-3.26 (m, 2H), 2.01 

– 1.83 (m, 1H), 1.76 – 1.67 (m, 1H), 1.67 – 1.60 (m, 1H), 1.58 – 1.45 (m, 5H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 164.2, 145.7, 134.2, 128.4, 118.6, 114.5, 114.3, 71.6, 67.8, 
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67.8, 45.6, 27.1, 27.0, 25.2 ppm. IR (neat): 3333, 3173, 2968, 2839, 2204, 1632, 1606, 

1578, 1504, 1482, 1390, 1326, 1271, 1174, 1149, 1113, 1095, 1070, 852, 803, 753, 580 

cm–1. Mp: 202 °C. HRMS calcd. for (C14H18N2NaO2) [M+Na]+: 269.1266, found 

269.1259. 

 

(S)-2-((1s,4R)-4-(4-chlorophenyl)cyclohexyl)-2-methyl-2,3-dihydroquinazolin-

4(1H)-one (A15) Following Method A, the utilization of 1-((1s,4s)-4-(4-

chlorophenyl)cyclohexyl)ethan-1-one (1.40 g, 5.9 mmol) afforded the title compound 

as a white solid (1.29 g, 62% yield). 1H NMR (400 MHz, CDCl3) δ 7.87 (dd, J = 7.8, 

1.7 Hz, 1H), 7.41 – 7.19 (m, 3H), 7.17 – 7.02 (m, 2H), 6.80 (t, J = 7.5, 1H), 6.60 (dd, J 

= 8.1, 1.1 Hz, 1H), 6.14 (s, 1H), 4.35 – 3.99 (m, 1H), 2.55 – 2.36 (m, 1H), 2.06 (d, J = 

12.7 Hz, 1H), 1.97 (d, J = 4.2 Hz, 3H), 1.88 – 1.69 (m, 1H), 1.50 (s, 3H), 1.46 – 1.21 

(m, 4H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.1, 145.9, 145.2, 134.2, 131.8, 128.6, 

128.4, 128.2, 118.5, 114.5, 114.3, 72.1, 47.6, 43.6, 33.8, 33.8, 27.2, 27.0, 25.6 ppm. IR 

(neat): 3332, 3194, 2919, 1652, 1633, 1606, 1520, 1488, 1453, 1399, 1339, 1279, 1146, 

1090, 1009, 820, 753, 530 cm–1. Mp: 205 °C. HRMS calcd. for (C21H23ClN2NaO) 

[M+Na]+: 377.1397, found 377.1395. 

 
2-(4-fluorobenzyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A16) Following 

Method A, the utilization of 1-(4-fluorophenyl)propan-2-one (0.76 g, 5.0 mmol) 

afforded the title compound as a white solid (1.00 g, 74% yield). 19F NMR (376 MHz, 

CDCl3) δ -115.34 (m).1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 7.7 Hz, 1H), 7.39 – 

7.32 (m, 1H), 7.16 – 7.06 (m, 2H), 7.01 (t, J = 8.7 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 

6.63 (d, J = 8.6 Hz, 1H), 6.29 (s, 1H), 4.20 (s, 1H), 3.14 (d, J = 13.3 Hz, 1H), 2.95 (d, 

J = 13.3 Hz, 1H), 1.45 (s, 3H) ppm. 13C NMR (126 MHz, DMF-d7) δ 164.4, 162.72 

(d, J = 241.8 Hz),148.3, 134.3, 134.1 (d, J = 3.2 Hz), 133.7 (d, J = 7.8 Hz), 128.3, 117.5, 

115.5, 115.4, 115.3 (d, J = 12.4 Hz), 70.8, 47.1, 28.3 ppm. IR (neat): 3319, 3189, 2974, 

1626, 1509, 1485, 1418, 1387, 1335, 1276, 1221, 1175, 1156, 1100, 827, 801, 760, 582, 

464 cm–1. Mp: 178 °C. HRMS calcd. for (C16H15FN2NaO) [M+Na]+: 293.1066, found 
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293.1061. 

 

2-(4-chlorobenzyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A17) Following 

Method A, the utilization of 1-(4-chlorophenyl)propan-2-one (0.84 g, 5.0 mmol) 

afforded the title compound as a white solid (0.93 g, 65% yield). 1H NMR (400 MHz, 

CDCl3) δ 7.90 (dd, J = 7.8, 1.6 Hz, 1H), 7.37-7.32 (m, 1H), 7.31 – 7.25 (m, 3H), 7.12 

– 6.99 (m, 2H), 6.85 (m, 1H), 6.69 – 6.58 (m, 1H), 4.31 (s, 1H), 3.17 (d, J = 13.3 Hz, 

1H), 2.94 (d, J = 13.3 Hz, 1H), 1.47 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.6, 

145.6, 134.3, 134.2, 133.2, 131.8, 128.7, 128.5, 119.0, 115.1, 114.7, 69.5, 46.6, 26.9 

ppm. IR (neat): 3302, 3177, 2971, 1600, 1484, 1428, 1384, 1333, 1273, 1155, 1085, 

1017, 840, 801, 759, 681, 463 cm–1. Mp: 157 °C. HRMS calcd. for (C16H15ClN2NaO) 

[M+Na]+: 309.0771, found 309.0768. 

 

2-(4-bromobenzyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A18) Following 

Method A, the utilization of 1-(4-bromophenyl)propan-2-one (1.06 g, 5.0 mmol) 

afforded the title compound as a white solid (1.25 g, 76% yield). 1H NMR (400 MHz, 

CD2Cl2) δ 7.82 (dd, J = 7.8, 1.6 Hz, 1H), 7.52 – 7.41 (m, 2H), 7.35-7.33 (m, 1H), 7.15 

– 7.00 (m, 2H), 6.91 – 6.81 (m, 1H), 6.65 (d, J = 8.3 Hz, 1H), 6.17 (s, 1H), 4.32 (s, 1H), 

3.10 (d, J = 13.2 Hz, 1H), 2.94 (d, J = 13.2 Hz, 1H), 1.43 (s, 3H) ppm. 13C NMR (101 

MHz, CD2Cl2) δ 164.0, 146.0, 135.2, 134.5, 132.6, 131.9, 128.5, 121.4, 119.1, 115.3, 

115.1, 69.8, 47.0, 27.1 ppm. IR (neat): 3260, 3171, 3043, 2919, 1651, 1613, 1520, 

1484, 1434, 1407, 1383, 1298, 1153, 1094, 1069, 1031, 1009, 859, 761, 724, 662, 607, 

522, 478 cm–1. Mp: 85 °C. HRMS calcd. for (C16H16BrN2O) [M+H]+: 331.0446, found 

331.0441. 
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4-((2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)methyl)phenyl acetate (A19) 

Following Method A, the utilization of 4-(2-oxopropyl)phenyl acetate (0.96 g, 5.0 

mmol) afforded the title compound as a white solid (0.90 g, 58% yield). 1H NMR (400 

MHz, CDCl3) δ 7.92 (dd, J = 7.8, 1.8 Hz, 1H), 7.34 (m, 1H), 7.14 (s, 2H), 7.04 (d, J = 

8.6 Hz, 2H), 6.85 (t, J = 7.0 Hz, 1H), 6.67 – 6.54 (m, 2H), 4.28 (s, 1H), 3.19 (d, J = 

13.3 Hz, 1H), 2.94 (d, J = 13.2 Hz, 1H), 2.30 (s, 3H), 1.46 (s, 3H) ppm. 13C NMR (101 

MHz, CDCl3) δ 169.6, 164.4, 149.9, 145.7, 134.4, 133.2, 131.5, 128.6, 121.8, 119.0, 

115.0, 114.8, 69.6, 46.7, 26.9, 21.2 ppm. IR (neat): 3281, 3178, 3052, 2923, 1751, 

1649, 1611, 1505, 1484, 1420, 1368, 1274, 1192, 1151, 1017, 914, 859, 749, 663, 575 

cm–1. Mp: 45 °C. HRMS calcd. for (C18H18N2NaO3) [M+Na]+: 333.1215, found 

333.1210. 

 
2-methyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-2,3-

dihydroquinazolin-4(1H)-one (A20) Following Method A, the utilization of 1-(4-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propan-2-one (1.40 g, 5.4 mmol) 

afforded the title compound as a white solid (0.92 g, 45% yield). 1H NMR (500 MHz, 

DMF-d7) δ 7.86 (s, 1H), 7.69 (dd, J = 7.7, 1.6 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.35 – 

7.22 (m, 3H), 6.84 – 6.77 (m, 2H), 6.67 (ddd, J = 8.0, 7.2, 1.1 Hz, 1H), 3.12 (d, J = 13.0 

Hz, 1H), 3.04 (d, J = 13.0 Hz, 1H), 1.49 (s, 3H), 1.33 (s, 12H) ppm. 13C NMR (126 

MHz, DMF-d7) δ 163.3, 147.2, 140.4, 134.1, 133.3, 130.4, 127.4, 116.6, 114.5, 114.4, 

83.7, 69.7, 46.9, 26.9, 24.6, 24.4, 24.2 ppm. IR (neat): 3345, 3184, 2978, 1637, 1611, 

1516, 1487, 1388, 1354, 1323, 1272, 1141, 1086, 1023, 961, 858, 826, 799, 759, 666, 

582 cm–1. Mp: 170 °C. HRMS calcd. for (C22H27BN2NaO3) [M+Na]+: 401.2012, found 

401.2011. 
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2-(2-methoxybenzyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A21) Following 

Method A, the utilization of 1-(2-methoxyphenyl)propan-2-one (0.86 g, 5.2 mmol) 

afforded the title compound as a white solid (1.12 g, 80% yield). 1H NMR (500 MHz, 

DMF-d7) δ 7.86 (d, J = 7.8 Hz, 1H), 7.24 (s, 1H), 7.11 (dd, J = 7.4, 1.7 Hz, 2H), 6.96 

(dd, J = 8.2, 1.1 Hz, 1H), 6.85 (m, 1H), 6.79 (dd, J = 8.1, 1.1 Hz, 2H), 6.70 – 6.56 (m, 

2H), 3.79 (s, 3H), 3.20 – 3.02 (m, 2H), 1.47 (s, 3H) ppm. 13C NMR (126 MHz, DMF-

d7) δ 164.4, 159.3, 148.5, 134.1, 133.4, 128.9, 128.2, 125.9, 120.9, 117.4, 115.8, 115.6, 

111.6, 71.3, 56.0, 41.4, 27.9 ppm. IR (neat): 3394, 3172, 3043, 2972, 1660, 1613, 1484, 

1460, 1417, 1388, 1325, 1289, 1270, 1248, 1155, 1129, 1079, 1026, 816, 769, 752, 578, 

518 cm–1. Mp: 158 °C. HRMS calcd. for (C17H18N2NaO2) [M+Na]+: 305.1266, found 

305.1263. 

 

2-methyl-2-(3-(trifluoromethyl)benzyl)-2,3-dihydroquinazolin-4(1H)-one (A22) 

Following Method A, the utilization of 1-(3-(trifluoromethyl)phenyl)propan-2-one 

(0.81 g, 4.8 mmol) afforded the title compound as a white solid (1.10 g, 72% yield). 19F 

NMR (376 MHz, CDCl3) δ -62.73 ppm. 1H NMR (400 MHz, CDCl3) δ 7.89 (dd, J = 

7.8, 1.7 Hz, 1H), 7.57 – 7.30 (m, 6H), 6.90 – 6.78 (m, 1H), 6.62 (dd, J = 8.1, 1.5 Hz, 

1H), 4.37 – 4.09 (m, 1H), 3.29 (d, J = 13.2 Hz, 1H), 2.99 (d, J = 13.2 Hz, 1H), 1.50 (s, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.7, 145.5, 136.8, 134.5, 133.9, 130.9 (q, 

J = 31.8 Hz), 129.0, 128.5, 127.2 (q, J = 4.0 Hz), 124.1 (q, J = 272.2 Hz), 124.0 (q, J = 

4.0 Hz), 119.1, 115.1, 114.7, 69.4, 47.1, 27.0 ppm. IR (neat): 3255, 3177, 3039, 1613, 

1524, 1488, 1452, 1437, 1387, 1330, 1278, 1205, 1116, 1073, 926, 854, 797, 749, 705, 

531, 475 cm–1. Mp: 123 °C. HRMS calcd. for (C17H15F3N2NaO) [M+Na]+: 343.1034, 

found 343.1029. 

 

2-methyl-2-(naphthalen-2-ylmethyl)-2,3-dihydroquinazolin-4(1H)-one (A23) 

Following Method A, the utilization of 1-(naphthalen-2-yl)propan-2-one (0.55 g, 3.0 

mmol) afforded the title compound as a white solid (0.76 g, 84% yield). 1H NMR (400 

MHz, CDCl3) δ 7.95 (dd, J = 7.7, 1.7 Hz, 1H), 7.86 – 7.76 (m, 3H), 7.61 – 7.57 (m, 

1H), 7.52 – 7.45 (m, 2H), 7.38 (m, 1H), 7.28 (d, J = 1.8 Hz, 1H), 6.88 (m, 1.1 Hz, 1H), 
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6.80 (s, 1H), 6.65 (dd, J = 8.1, 1.2 Hz, 1H), 4.43 – 4.15 (s, 1H), 3.38 (d, J = 13.1 Hz, 

1H), 3.11 (d, J = 13.2 Hz, 1H), 1.50 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.4, 

145.8, 134.3, 133.4, 133.2, 132.5, 129.3, 128.6, 128.2, 127.7, 126.4, 126.1, 119.0, 115.2, 

114.8, 69.8, 47.42, 27.0 ppm. IR (neat): 3291, 3173, 3052, 1629, 1508, 1484, 1392, 

1327, 1261, 1159, 1086, 815, 760, 670, 579, 473 cm–1. Mp: 132 °C. HRMS calcd. for 

(C20H18N2NaO) [M+Na]+:325.1317, found 325.1311. 

 
2-(benzo[b]thiophen-3-ylmethyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A24) 

Following Method A, the utilization of 1-(benzo[b]thiophen-3-yl)propan-2-one (0.88 g, 

4.6 mmol) afforded the title compound as a white solid (1.00 g, 77% yield). 1H NMR 

(500 MHz, DMF-d7) δ 7.99 – 7.96 (m, 1H), 7.91 (s, 1H), 7.90 – 7.84 (m, 1H), 7.68 (dd, 

J = 7.7, 1.6 Hz, 1H), 7.46 (s, 1H), 7.43 – 7.34 (m, 2H), 7.23 (m, 1H), 6.83 (d, J = 1.7 

Hz, 1H), 6.72 (dd, J = 8.1, 1.0 Hz, 1H), 6.65 (m, 1H), 3.43 – 3.31 (m, 2H), 1.56 (s, 3H) 

ppm. 13C NMR (126 MHz, DMF-d7) δ 163.3, 147.1, 140.0, 139.9, 133.2, 131.6, 127.2, 

125.7, 124.0, 123.9, 122.6, 122.4, 116.5, 114.4, 70.1, 39.3, 27.5 ppm. IR (neat): 3287, 

3171, 2991, 1609, 1523, 1481, 1422, 1383, 1335, 1275, 1148, 748, 732 cm–1. Mp: 

177 °C. HRMS calcd. for (C18H17N2OS) [M+H]+: 309.1062, found 309.1056. 

 

2-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropyl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A25) Following Method A, the utilization of 1-(1-(2,2-

difluorobenzo[d][1,3]dioxol-5-yl)cyclopropyl)ethan-1-one (1.09 g, 4.5 mmol) afforded 

the title compound as a white solid (0.68 g, 42% yield). 19F NMR (376 MHz, CDCl3) 

δ -50.06 (s) ppm. 1H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 7.7, 1.7 Hz, 1H), 7.33 

(m, 1H), 7.18 – 7.04 (m, 2H), 6.98 (d, J = 8.1 Hz, 1H), 6.87 – 6.69 (m, 2H), 6.54 (dd, J 

= 8.1, 1.1 Hz, 1H), 4.15 (s, 1H), 1.55 (s, 3H), 1.17 – 1.07 (m, 1H), 1.02 – 0.91 (m, 1H), 

0.72-0.71 (m, 2H) ppm. 13C NMR (126 MHz, CDCl3) δ 164.5, 145.7, 143.5, 143.0, 

137.9, 134.4, 131.7 (t, J = 255.5 Hz), 128.3, 127.4, 118.7, 114.9, 114.0, 113.2, 109.1, 

70.5, 35.9, 27.9, 11.3, 8.2 ppm. IR (neat): 3286, 3184, 1634, 1532, 1490, 1434, 1388, 

1344, 1237, 1152, 1127, 1069, 1030, 914, 796, 776, 750, 704, 633 cm–1. Mp: 168 °C. 
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HRMS calcd. for (C19H17F2N2O3) [M+H]+: 359.1207, found 359.1204. 

 
2-(1-(4-methoxyphenyl)cyclopropyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one 

(A26) Following Method A, the utilization of 1-(1-(4-

methoxyphenyl)cyclopropyl)ethan-1-one (0.75 g, 3.9 mmol) afforded the title 

compound as a white solid (0.61 g, 51% yield). 1H NMR (400 MHz, CDCl3) δ 7.85 

(dd, J = 7.7, 1.7 Hz, 1H), 7.38 – 7.24 (m, 3H), 6.92 – 6.75 (m, 3H), 6.63 – 6.50 (m, 1H), 

6.33 (s, 1H), 4.17 (s, 1H), 3.80 (s, 3H), 1.53 (s, 3H), 1.07 – 1.04 (m, 1H), 0.89 – 0.82 

(m, 1H), 0.73 – 0.67 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.5, 158.9, 146.1, 

134.3, 133.5, 133.1, 128.3, 118.4, 114.9, 114.1, 113.8, 70.7, 55.4, 35.0, 28.2, 10.8, 7.7 

ppm. IR (neat): 3267, 3002, 1610, 1511, 1488, 1538, 1379, 1289, 1247, 1174, 1152, 

1134, 1085, 1023, 834, 789, 763, 740, 607, 552 cm–1. Mp: 158 °C. HRMS calcd. for 

(C19H20N2NaO2) [M+Na]+: 331.1422, found 331.1427. 

 
2-(((1S,3s)-adamantan-1-yl)methyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one 

(A27) Following Method A, the utilization of 2-((1S,3s)-adamantan-1-yl)-1-

phenylethan-1-one (1.00 g, 3.93 mmol) afforded the title compound as a white solid 

(0.32 g, 22% yield). 1H NMR (400 MHz, CD2Cl2) δ 7.74 (dd, J = 7.8, 1.6 Hz, 1H), 

7.70 – 7.65 (m, 1H), 7.50 – 7.39 (m, 2H), 7.27 (td, J = 7.5, 1.3 Hz, 3H), 7.23 – 7.16 (m, 

1H), 6.80 – 6.69 (m, 2H), 5.21 – 5.06 (m, 1H), 1.99 – 1.77 (m, 5H), 1.77 – 1.43 (m, 

12H) ppm. 13C NMR (101 MHz, CD2Cl2) δ 164.9, 147.5, 146.3, 134.2, 128.7, 128.4, 

127.8, 125.6, 118.8, 115.9, 115.1, 74.5, 56.3, 44.0, 37.1, 34.8, 29.2 ppm. IR (neat): 

3307, 3052, 2902, 2848, 1728, 1652, 1612, 1484, 1447, 1373, 1264, 1191, 1154, 1045, 

733, 699 cm–1. Mp: 40 °C. HRMS calcd. for (C25H28N2NaO) [M+Na]+: 395.2099, 

found 395.2090. 
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yl)methyl)piperidine-1-carboxylate (A28) Following Method A, the utilization of 

tert-butyl 4-(2-oxo-2-phenylethyl)piperidine-1-carboxylate (1.78 g, 5.9 mmol) 

afforded the title compound as a white solid (1.07 g, 44% yield). 1H NMR (400 MHz, 

CDCl3) δ 7.80 (m, 2H), 7.51 – 7.40 (m, 2H), 7.33 – 7.12 (m, 4H), 6.76 (m, 1H), 6.70 

(d, J = 8.1 Hz, 1H), 4.87 (s, 1H), 3.96 (s, 2H), 2.81 – 2.47 (m, 2H), 2.01 – 1.74 (m, 4H), 

1.64 (d, J = 13.2 Hz, 1H), 1.42 (s, 9H), 1.27 – 1.10 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 165.4, 154.8, 145.8, 134.2, 128.7, 128.5, 128.0, 125.1, 119.2, 115.6, 114.9, 

79.4, 73.8, 49.4, 33.7, 33.3, 32.1, 28.5 ppm. IR (neat): 3304, 2913, 1653, 1612, 1482, 

1431, 1365, 1231, 1148, 753, 731, 698 cm–1. Mp: 250 °C. HRMS calcd. for 

(C25H31N3NaO3) [M+Na]+: 444.2263, found 444.2258. 

 
4-(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)butyl benzoate (A29) 

Following Method A, the utilization of 5-oxo-5-phenylpentyl benzoate (1.50 g, 5.3 

mmol) afforded the title compound as a white solid (1.33 g, 63% yield). 1H NMR (400 

MHz, CDCl3) δ 8.05 – 7.94 (m, 2H), 7.81 (dd, J = 7.8, 1.6 Hz, 1H), 7.54 (dd, J = 7.1, 

1.1 Hz, 1H), 7.49 – 7.35 (m, 4H), 7.34 – 7.20 (m, 5H), 6.76-6.75 (m, 1H), 6.68 (dd, J 

= 8.1, 1.0 Hz, 1H), 4.85 (s, 1H), 4.30 (dt, J = 8.7, 6.3 Hz, 2H), 2.26 – 2.08 (m, 2H), 

1.96 – 1.75 (m, 2H), 1.69 – 1.50 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 166.7, 

164.9, 145.7, 144.7, 133.9, 132.9, 130.1, 129.5, 128.61, 128.4, 128.3, 127.9, 125.1, 

119.0, 115.5, 114.8, 73.3, 64.1, 42.0, 28.5, 20.3 ppm. IR (neat): 3374, 3168, 3058, 2920, 

1698, 1660, 1612, 1482, 1281, 1124, 1072, 806, 757, 719, 552 cm–1. Mp: 185 °C. 

HRMS calcd. for (C25H24N2NaO3) [M+Na]+: 423.1685, found 423.1680. 

 
2-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-

one (A30) Following Method A, the utilization of 3-(2,3-dihydrobenzofuran-5-yl)-1-

phenylpropan-1-one (1.08 g, 4.3 mmol) afforded the title compound as a white solid 

(1.18 g, 73% yield). 1H NMR (400 MHz, DMF-d7) δ 8.82 (d, J = 8.2 Hz, 1H), 7.76 (s, 

1H), 7.74 – 7.57 (m, 3H), 7.48 – 7.15 (m, 4H), 7.12 (d, J = 1.9 Hz, 1H), 7.06 – 6.87 (m, 

2H), 6.75 – 6.43 (m, 2H), 4.50 (t, J = 8.7 Hz, 2H), 3.16 (t, J = 8.7 Hz, 2H), 2.99 – 2.84 

(m, 2H), 2.21 (t, J = 11.4, 2H) ppm. 13C NMR (101 MHz, DMF-d7) δ 165.7, 165.6, 
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159.4, 149.3, 149.0, 134.9, 134.3, 129.1, 128.6, 128.5, 128.2, 126.6, 126.0, 117.9, 116.6, 

115.7, 109.6, 74.4, 71.9, 46.5 ppm. IR (neat): 3366, 3159, 2885, 1737, 1657, 1609, 

1483, 1446, 1372, 1239, 1190, 1154, 808, 753, 698 cm–1. Mp: 130 °C. HRMS calcd. 

for (C24H22N2NaO2) [M+Na]+: 393.1579, found 393.1571. 

 

2-octadecyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (A31). Following Method A, 

the utilization of 1-phenylnonadecan-1-one (1.79 g, 5.0 mmol) afforded the title 

compound as a white solid (1.30 g, 58% yield). 1H NMR (500 MHz, CDCl3) δ 7.94 – 

7.84 (m, 1H), 7.83 (dd, J = 7.7, 1.7 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.34 – 7.21 (m, 3H), 

7.21 (d, J = 6.1 Hz, 1H), 6.77-6.73 (m, 2H), 5.03 (d, J = 1.6 Hz, 1H), 2.08 – 1.92 (m, 

2H), 1.59 – 1.17 (m, 32H), 0.89 (t, J = 7.0 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) 

δ 165.4, 146.2, 145.3, 133.9, 128.5, 128.4, 127.7, 125.4, 118.8, 115.8, 114.9, 73.5, 43.0, 

32.0, 29.8, 29.7, 29.7, 29.6, 29.5, 29.4, 23.9, 22.8, 14.2 ppm. IR (neat): 3416, 3318, 

2017, 2846, 1651, 1614, 1505, 1484, 1465, 1366, 1152, 759, 700, 548 cm–1. Mp: 85 °C. 

HRMS calcd. for (C32H48N2NaO) [M+Na]+: 499.3664, found 499.3659. 

 
(Z)-2-(hexadec-8-en-1-yl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (A32). 

Following Method A, the utilization of (Z)-1-phenyloctadec-9-en-1-one (2.32 g, 6.8 

mmol) afforded the title compound as a liquid (1.79 g, 57% yield). 1H NMR (500 MHz, 

CDCl3) δ 7.80 (dd, J = 7.8, 1.6 Hz, 1H), 7.51 – 7.35 (m, 3H), 7.34 – 7.15 (m, 4H), 6.91 

– 6.56 (m, 2H), 5.31 (d, J = 5.9 Hz, 2H), 2.25 – 1.90 (m, 6H), 1.54 – 1.16 (m, 23H), 

0.86 (t, J = 6.9 Hz, 3H) ppm. 13C NMR (126 MHz, CDCl3) δ 165.0, 145.9, 144.9, 

133.9, 129.9, 129.7, 128.4, 128.3, 127.7, 125.2, 118.8, 115.6, 114.8, 73.4, 42.7, 31.8, 

29.7, 29.6, 29.5, 29.4, 29.3, 29.3, 29.1, 27.2, 27.1, 23.7, 22.6, 14.0 ppm. IR (neat): 

3305, 2923, 2852, 1725, 1653, 1613, 1485, 1447, 1374, 1251 1151, 1046, 752, 698 cm–

1. HRMS calcd. for (C31H44N2NaO) [M+Na]+: 483.3351, found 483.3346 

 
2-(6-morpholino-6-oxohexyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (A33) 
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Following Method A, the utilization of 1-morpholino-7-phenylheptane-1,7-dione (1.38 

g, 4.7 mmol) afforded the title compound as a white solid (1.07 g, 56% yield). 1H NMR 

(500 MHz, DMF-d7) δ 8.54 (s, 1H), 7.69 – 7.63 (m, 2H), 7.59 (dd, J = 7.8, 1.6 Hz, 1H), 

7.55 (d, J = 1.8 Hz, 1H), 7.38 – 7.27 (m, 2H), 7.26 – 7.17 (m, 2H), 6.93 (dd, J = 8.3, 

1.0 Hz, 1H), 6.59 (t, J = 6.9 Hz, 1H), 3.61 – 3.57 (m, 4H), 3.53 – 3.40 (m, 4H), 2.34 (t, 

J = 7.4 Hz, 2H), 2.08 – 1.88 (m, 2H), 1.72 – 1.50 (m, 4H), 1.35 (q, J = 7.5 Hz, 2H) ppm. 
13C NMR (126 MHz, DMF-d7) δ 172.1, 165.4, 149.4, 149.0, 134.2, 129.0, 128.4, 128.1, 

126.7, 117.8, 116.6, 115.6, 74.5, 67.6, 55.8, 46.8, 43.8, 42.7, 33.3, 25.9, 24.9 ppm. IR 

(neat): 3318, 3247, 2949, 2850, 1645, 1611, 1515, 1485, 1445, 1361, 1270, 1118, 1028, 

755, 732, 698 cm–1. Mp: 112 °C. HRMS calcd. for (C24H29N3NaO3) [M+Na]+: 

430.2107, found 430.2098. 

 

4-(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)butyl 3-

(methylthio)propanoate (A34) Following Method A, the utilization of 5-oxo-5-

phenylpentyl 3-(methylthio)propanoate (1.17 g, 4.2 mmol) afforded the title compound 

as a liquid (1.38 g, 81% yield). 1H NMR (500 MHz, CDCl3) δ 8.78 (s, 1H), 7.87 (dd, 

J = 7.8, 1.6 Hz, 1H), 7.54(d, J = 7.7 Hz, 2H), 7.34 – 7.19 (m, 4H), 6.87 (dd, J = 8.2, 1.0 

Hz, 1H), 6.80 – 6.71 (m, 1H), 5.68 (s, 1H), 4.07 (m, 2H), 2.74 (t, J = 7.2 Hz, 2H), 2.57 

(t, J = 7.2 Hz, 2H), 2.11 – 2.06 (m, 5H), 1.81 – 1.50 (m, 4H) ppm. 13C NMR (126 MHz, 

CDCl3) δ 172.0, 165.8, 146.4, 145.5, 133.8, 128.2, 128.0, 127.4, 125.1, 118.2, 115.1, 

114.7, 73.2, 64.1, 42.1, 34.1, 28.9, 28.1, 20.2, 15.2 ppm. IR (neat): 3293, 2917, 1717, 

1646, 1611, 1484, 1447, 1380, 1248, 1149, 1030, 909, 753, 730, 699 cm–1. HRMS 

calcd. for (C22H26N2NaO3S) [M+Na]+:421.1562, found 421.1554. 

 

4-(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)butyl 5-chloropentanoate 

(A35) Following Method A, the utilization of 5-oxo-5-phenylpentyl 5-chloropentanoate 

(0.91 g, 3.1 mmol) afforded the title compound as a colorless solid (0.86 g, 67% yield). 
1H NMR (500 MHz, CDCl3) δ 8.56 (s, 1H), 7.82 (dd, J = 7.8, 1.6 Hz, 1H), 7.53 – 7.46 

(m, 2H), 7.34 – 7.13 (m, 4H), 6.88 – 6.71 (m, 2H), 5.29 (s, 1H), 4.16 – 3.96 (m, 2H), 

3.56 – 3.47 (m, 2H), 2.25 (t, J = 6.9 Hz, 2H), 2.17 – 1.99 (m, 2H), 1.81 – 1.67 (m, 4H), 
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1.69 – 1.51 (m, 4H) ppm. 13C NMR (75 MHz, CDCl3) δ 173.4, 165.8, 146.3, 145.5, 

134.0, 128.5, 128.3, 127.7, 125.2, 118.6, 115.4, 114.8, 73.4, 63.9, 44.5, 42.2, 33.3, 31.8, 

28.4, 22.2, 20.4 ppm. IR (neat): 3355, 3177, 3043, 2952, 1710, 1658, 1610, 1510, 1483, 

1445, 1375, 1305, 1265, 1150, 1065, 1032, 998, 905, 828, 772, 754, 701, 642, 552 cm–

1. Mp: 94 °C. HRMS calcd. for (C23H27ClN2NaO3) [M+Na]+: 437.1608, found 

437.1602. 

 
2-phenyl-2-((phenylthio)methyl)-2,3-dihydroquinazolin-4(1H)-one (A36) 

Following Method A, the utilization of 1-phenyl-2-(phenylthio)ethan-1-one (1.14 g, 5.0 

mmol) afforded the title compound as a white solid (1.30 g, 75% yield). 1H NMR (400 

MHz, CDCl3) δ 7.84 (dd, J = 7.8, 1.6 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.39 – 7.13 (m, 

9H), 7.04 (s, 1H), 6.81 (ddd, J = 8.1, 7.3, 1.0 Hz, 1H), 6.54 (dd, J = 8.1, 1.0 Hz, 1H), 

5.14 (d, J = 1.7 Hz, 1H), 3.71 (d, J = 3.6 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) 

δ 163.8, 145.1, 141.8, 135.0, 134.0, 130.6, 129.1, 128.7, 128.6, 128.3, 127.0, 125.9, 

119.4, 115.3, 115.3, 73.3, 45.7 ppm. IR (neat): 3325, 3061, 2922, 2245, 2184, 2098, 

1665, 1613, 1507 1474, 1448, 1418, 1370, 1181, 1153, 750, 734, 688, 573 cm–1. Mp: 

153 °C. HRMS calcd. for (C21H18N2NaOS) [M+Na]+: 369.1038, found 369.1035. 

 
2-((2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)methyl)isoindoline-1,3-

dione (A37) Following Method A, the utilization of 2-(2-oxopropyl)isoindoline-1,3-

dione (2.03 g, 10.0 mmol) afforded the title compound as a yellow solid (2.86 g, 89% 

yield). 1H NMR (400 MHz, CDCl3) δ 7.83 (dd, J = 5.5, 3.0 Hz, 2H), 7.79 (dd, J = 7.8, 

1.6 Hz, 1H), 7.71 (dd, J = 5.5, 3.0 Hz, 2H), 7.26 – 7.21 (m, 1H), 6.73 (t, J = 7.0 Hz, 

1H), 6.62 (d, J = 7.6 Hz, 1H), 6.10 (s, 1H), 4.5 (s, 1H), 3.94 (d, J = 2.2 Hz, 2H), 1.61 

(s, 3H) ppm. 13C NMR (126 MHz, DMF-d7) δ 169.2, 164.0, 148.1, 135.2, 134.2, 133.3, 

128.3, 123.9, 117.9, 115.9, 115.6, 70.9, 46.5, 27.3 ppm. IR (neat): 3372, 3336, 1767, 

1700, 1662, 1613, 1516, 1484, 1425, 1390, 1324, 1150, 1077, 934, 761, 727, 713, 697, 

571, 531 cm–1. Mp: 228 °C. HRMS calcd. for (C18H15N3NaO3) [M+Na]+: 344.1011, 

found 344.1014. 
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2-methyl-2-((11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)methyl)-2,3-

dihydroquinazolin-4(1H)-one (A38) Following Method A, the utilization of 2-(2-

oxopropyl)dibenzo[b,e]oxepin-11(6H)-one (1.35 g, 5.0 mmol) afforded the title 

compound as a white solid (0.83 g, 43% yield). 1H NMR (500 MHz, DMF-d7) δ 8.06 

– 7.99 (m, 1H), 7.89 (d, J = 1.8 Hz, 1H), 7.84 (dd, J = 7.7, 1.4 Hz, 1H), 7.68 (dd, J = 

7.4, 1.4 Hz, 1H), 7.63 – 7.54 (m, 3H), 7.46 (dd, J = 8.4, 2.4 Hz, 1H), 7.23 (m, 1H), 6.98 

(d, J = 8.4 Hz, 1H), 6.82 (d, J = 1.8 Hz, 1H), 6.76 (dd, J = 8.2, 1.0 Hz, 1H), 6.59 (ddd, 

J = 7.9, 7.2, 1.1 Hz, 1H), 5.29 (s, 2H), 3.14 (d, J = 13.4 Hz, 1H), 3.05 (d, J = 13.4 Hz, 

1H), 1.54 (s, 3H) ppm. 13C NMR (126 MHz, DMF-d7) δ 191.3, 164.4, 161.1, 148.4, 

141.5, 139.1, 137.4, 134.7, 134.2, 134.0, 131.7, 130.2, 130.0, 129.3, 128.2, 125.8, 121.0, 

117.4, 115.5, 115.3, 74.1, 70.9, 47.2, 28.5 ppm. IR (neat): 3378, 3168, 2970, 2183, 

1972, 1663, 1643, 1611, 1514, 1486, 1414, 1391, 1302, 1201, 1154, 1139, 1012, 827, 

755, 640 cm–1. Mp: 196 °C. HRMS calcd. for (C24H20N2NaO3) [M+Na]+: 407.1372, 

found 407.1366. 

 
4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)cyclohexyl 2-(1-(4-

chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (A39) Following 

Method A, the utilization of 4-acetylcyclohexyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-

methyl-1H-indol-3-yl)acetate (1.60 g, 3.3 mmol) afforded the title compound as a white 

solid (0.64 g, 32% yield), as a mixture of two isomers (cis : trans = 1:2.4). 1H NMR 

(400 MHz, CD2Cl2) δ 7.75 (dd, J = 7.8, 1.6 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.50 – 7.42 

(m, 2H), 7.27 – 7.16 (m, 2H), 7.04 – 6.89 (m, 2H), 6.77 – 6.54 (m, 3H), 4.65 – 4.59 (m, 

1H), 3.80 (d, J = 3.2 Hz, 3H), 3.64 (d, J = 17.6 Hz, 2H), 3.63-3.62 (m, 2H), 2.33 (s, 

2H), 2.05 – 1.52 (m, 5H), 1.51 – 1.16 (m, 7H) ppm. 13C NMR (101 MHz, CD2Cl2) δ 

170.1, 169.9, 168.2, 168.1, 164.08/164.03, 156.0, 155.9, 146.1, 146.0, 138.99/138.93, 

135.7, 134.0, 133.79/133.77, 131.07/131.06, 130.8, 130.7, 129.05/129.02, 127.7, 

117.78/117.76, 114.9, 114.3, 114.25/114.22, 114.1, 113.1, 112.8, 111.4, 111.0, 101.6, 
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101.2, 73.4, 71.6, 71.5, 69.3, 55.5, 46.8/46.7, 31.2, 31.1, 30.6, 30.4, 29.69/29.62, 25.0, 

24.9, 24.6, 24.4, 21.2, 20.8, 13.1 ppm. IR (neat): 3320, 2933, 2035, 1981, 1726, 1652, 

1611, 1477, 1356, 1221, 1145, 1088, 1066, 1035, 1014, 925, 832, 752 cm–1. Mp: 126 °C. 

HRMS calcd. for (C34H34ClN3NaO5) [M+Na]+: 622.2085, found 622.2079. 

 
2-((3R)-3-((3R,5S,7R,8R,9S,10S,13R,14S)-3,7-dihydroxy-10,13-

dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)butyl)-2-phenyl-

2,3-dihydroquinazolin-4(1H)-one (A40) Following Method A, the utilization of (4R)-

4-((3R,5S,7R,8R,9S,10S,13R,14S)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-

cyclopenta[a]phenanthren-17-yl)-1-phenylpentan-1-one (0.38 g, 0.84 mmol) afforded 

the title compound as a white solid (0.41 g, 86% yield). 1H NMR (400 MHz, CD2Cl2) 

δ 8.25 (d, J = 13.1 Hz, 1H), 7.75 (ddd, J = 8.0, 3.3, 1.5 Hz, 1H), 7.50 (dt, J = 7.5, 2.5 

Hz, 2H), 7.30 – 7.20 (m, 4H), 6.81 (d, J = 8.0 Hz, 1H), 6.70 (td, J = 7.4, 5.3 Hz, 1H), 

5.55 (d, J = 7.1 Hz, 1H), 3.77 (s, 1H), 3.41 (s, 1H), 2.91 – 2.84 (m, 1H), 2.26 – 2.04 (m, 

3H), 1.95 – 0.81 (m, 30H), 0.60 – 0.56 (m, 3H) ppm. 13C NMR (101 MHz, CD2Cl2) δ 

165.6, 165.5, 146.6, 146.6, 146.1, 146.0, 133.9, 128.3, 128.1, 127.5, 125.4, 115.4, 115.4, 

114.9, 73.7, 73.7, 71.8, 55.8, 55.6, 50.3, 50.3, 42.5, 42.5, 41.7, 39.8, 39.4, 35.5, 35.5, 

35.4, 345.0, 34.6, 32.8, 30.8, 29.7, 28.1, 23.6, 22.6, 20.6, 18.6, 18.5, 11.5, 11.5 ppm. IR 

(neat): 3295, 2923, 2863, 1652, 1612, 1485, 1447, 1374, 1264, 1151, 1076, 977, 753, 

699 cm–1. Mp: 170 °C. HRMS calcd. for (C37H50N2NaO3) [M+Na]+: 593.3719, found 

593.3714. 

 
4-(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)butyl 4-(5-(2-fluorophenyl)-

1,2,4-oxadiazol-3-yl)benzoate (A41) Following Method A, the utilization of 5-oxo-5-

phenylpentyl 4-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoate (1.00 g, 2.2 mmol) 

afforded the title compound as a white solid (0.87 g, 71% yield). 1H NMR (400 MHz, 

CD2Cl2) δ 8.75 (td, J = 1.7, 0.6 Hz, 1H), 8.36 – 8.29 (m, 2H), 8.22 (ddd, J = 7.9, 7.1, 

1.8 Hz, 1H), 8.11 (ddd, J = 7.8, 1.8, 1.2 Hz, 1H), 7.76 (d, J = 1.6 Hz, 1H), 7.67 – 7.59 
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(m, 1H), 7.57 – 7.46 (m, 3H), 7.40 – 7.14 (m, 7H), 6.78 (dt, J = 7.9, 0.8 Hz, 1H), 6.71 

(ddd, J = 8.2, 7.2, 1.0 Hz, 1H), 4.43 – 4.23 (m, 2H), 2.20 – 2.02 (m, 2H), 1.87 – 1.58 

(m, 4H) ppm. 13C NMR (101 MHz, CD2Cl2) δ 173.5 (d, J = 4.3 Hz), 168.4, 166.1, 

165.7, 162.4, 159.8, 146.7, 146.1, 135.3 (d, J = 8.7 Hz), 134.2, 132.5, 131.9, 131.6, 

131.3, 129.5, 128.8, 128.7, 128.4, 128.0, 127.5, 125.2 (d, J = 3.7 Hz), 118.9, 117.6, 

117.4, 115.9, 115.3, 112.9 (d, J = 11.4 Hz), 73.8, 65.2, 54.2, 42.6, 28.8, 20.8 ppm. IR 

(neat): 3321, 3055, 2954, 2177, 2004, 1718, 1650, 1612, 1554, 1483, 1367, 1255, 1147, 

1105, 824, 747, 721, 698 cm–1. Mp: 97 °C. HRMS calcd. for (C33H27FN4NaO4) 

[M+Na]+: 585.1914, found 585.1909. 

 
4-(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)butyl (E)-6-(4-acetoxy-6-

methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enoate 

(A42) Following Method A, the utilization of 5-oxo-5-phenylpentyl (E)-6-(4-acetoxy-

6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enoate 

(550 mg, 1.05 mmol) afforded the title compound as a white solid (320 mg, 48% yield). 
1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 7.75 (d, J = 6.2 Hz, 1H), 7.44 (d, J = 7.0 

Hz, 2H), 7.20 (t, J = 7.5 Hz, 3H), 7.14 (d, J = 7.2 Hz, 1H), 6.73 (d, J = 7.3 Hz, 1H), 

6.67 (t, J = 7.0 Hz, 1H), 5.51 (s, 1H), 5.07 (s, 3H), 3.93 (d, J = 5.4 Hz, 2H), 3.74 (s, 

3H), 3.33 (d, J = 7.0 Hz, 2H), 2.36 (s, 3H), 2.30 (d, J = 7.6 Hz, 2H), 2.24 (d, J = 7.6 Hz, 

2H), 2.16 (s, 3H), 2.05 – 1.94 (m, 2H), 1.74 (s, 3H), 1.52 (m, 4H) ppm. 13C NMR (101 

MHz, CDCl3) δ 173.2, 169.0, 168.5, 165.7, 162.7, 146.5, 146.3, 145.8, 145.6, 134.5, 

133.9, 129.2, 128.3, 128.1, 127.5, 125.3, 123.1, 122.2, 118.3, 115.3, 114.8, 113.3, 73.3, 

68.4, 63.9, 61.2, 42.2, 34.4, 32.7, 28.3, 23.5, 20.5, 20.3, 16.2, 11.7 ppm. IR (neat): 

3359, 3199, 3100, 2933, 1756, 1655, 1611, 1509, 1484, 1447, 1358, 1316, 1269, 1185, 

1168, 1128, 1069, 1030, 1008, 976, 889, 756, 730, 700, 556, 539 cm–1. Mp: 73 °C. 

HRMS calcd. for (C37H40N2NaO8) [M+Na]+: 663,2682, found 663,2677. 
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dihydro-1H-purine-2,6-dione (A43) Following Method A, the utilization of 

Pentoxifylline (1.39 g, 5.0 mmol) afforded the title compound as a white solid (1.17 g, 

59% yield). 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 6.2 Hz, 1H), 7.49 (s, 1H), 7.23 

(t, J = 6.9 Hz, 1H), 6.74 (t, J = 7.0 Hz, 1H), 6.57 (d, J = 8.1 Hz, 1H), 6.40 (s, 1H), 4.14 

– 4.04 (m, 1H), 4.02 (s, 3H), 4.02 – 3.95 (m, 1H), 3.57 (s, 3H), 1.82 – 1.75 (m, 2H), 

1.67 – 1.63(m, 2H), 1.63 (s, 3H), 1.60 – 1.49 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 164.4, 155.8, 151.7, 149.0, 146.2, 141.8, 133.9, 128.3, 118.4, 114.6, 114.5, 

107.7, 69.9, 40.6, 40.1, 33.8, 29.9, 29.0, 27.2, 20.4 ppm. IR (neat): 3299, 2944, 2871, 

1697, 644, 1613, 1549, 1513, 485, 1358, 1324, 1283, 1233, 1186, 115, 196,1035, 748, 

701, 611, 458 cm–1. Mp: 87 °C. HRMS calcd. for (C20H24N6NaO3) [M+Na]+: 419,1808, 

found 419,1802. 

 
4-(2,2,2-trifluoroethyl)phenyl 5-(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-

yl)pentanoate (A44) Following Method A, the utilization of 4-(2,2,2-

trifluoroethyl)phenyl 6-oxo-6-phenylhexanoate (182.0 mg, 0.50 mmol) afforded the 

title compound as a white solid (188.3 mg, 78% yield). 19F NMR (376 MHz, CD2Cl2) 

δ -66.52 (t, J = 10.9 Hz) ppm. 1H NMR (400 MHz, CD2Cl2) δ 7.84 (s, 1H), 7.79 – 7.75 

(m, 1H), 7.51 – 7.42 (m, 2H), 7.35 – 7.20 (m, 6H), 7.06 – 6.95 (m, 2H), 6.75 (d, J = 7.8 

Hz, 2H), 5.08 (s, 1H), 3.39 (q, J = 10.9 Hz, 2H), 2.54 (t, J = 7.3 Hz, 2H), 2.15 – 2.05 

(m, 2H), 1.79-1.71 (m, 2H), 1.68 – 1.48 (m, 2H) ppm. 13C NMR (101 MHz, CD2Cl2) 

δ 171.8, 165.0, 150.6, 146.1, 145.4, 133.9, 131.1, 128.5, 128.0, 127.7 (q, J = 3.0 Hz), 

125.8 (q, J = 276.6 Hz), 127.6, 127.2, 125.3, 121.9, 118.7, 115.6, 114.9, 73.4, 42.3, 39.4 

(q, J = 29.8 Hz), 33.9, 24.5, 23.4 ppm. IR (neat): 3295, 2923, 2863, 1652, 1612, 1485, 

1447, 1374, 1264, 1151, 1076, 977, 753, 699 cm–1. Mp: 121 °C. HRMS calcd. for 

(C27H25F3N2NaO3) [M+Na]+: 505.1715, found 505.1720. 
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Following a literature procedure,[3] to a solution of aldehyde (1.0 equiv), ethyl 3-

aminocrotonate (1.0 equiv), and ethyl acetoacetate (1.0 equiv) in ethylene glycol (2.5 

M) was added Bu4NHSO4 (12 mol%) in one portion. The vial was sealed and heated at 

80 °C for 4 h. After consumption of the aldehyde, the reaction was cooled to r.t., diluted 

aq. NaCl and extracted into EtOAc. The combined organic phases were dried over 

anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude residue was then 

purified by column chromatography. 

 
DMAP (15 mol%) was added to a stirred reaction mixture of diethyl 4-(1-(4-

hydroxyphenyl)propan-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1.0 

equiv), carboxylic acid (1.0 equiv), and DCC (1.3 equiv) in dry DCM (0.5 M) at room 

temperature. The reaction mixture was filtered after 4 h (TLC control), the precipitate 

was rinsed with DCM. The combined filtrates were evaporated to dryness. The crude 

mixture was purified by flash column chromatography on silica gel to give desired 

product. 

 
Diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (B1) 

Following the procedure described, the utilization of cyclohexanecarbaldehyde (1.12 g, 

10.0 mmol) afforded the title compound as a white solid (2.17 g, 65% yield). 1H NMR 

(400 MHz, CDCl3) δ 5.57 (s, 1H), 4.38 – 4.08 (m, 4H), 3.92 (d, J = 5.7 Hz, 1H), 2.30 

(s, 6H), 1.84 – 1.48 (m, 5H), 1.29 (t, J = 7.1 Hz, 6H), 1.23 – 1.16 (m, 1H), 1.13 – 1.04 

(m, 3H), 0.93 (t, J = 11.7 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 168.8, 144.5, 

102.1, 59.7, 45.9, 38.5, 28.9, 26.8, 26.7, 19.5, 14.5 ppm. Spectral data was in agreement 

with the literature[4]. 
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Diethyl 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)-2,6-dimethyl-1,4-

dihydropyridine-3,5-dicarboxylate (B2) Following the procedure described, the 

utilization of tert-butyl 4-formylpiperidine-1-carboxylate (2.13 g, 10.0 mmol) afforded 

the title compound as a white solid (2.49 g, 57% yield). 1H NMR (400 MHz, CDCl3) 

δ 5.89 (s, 1H), 4.17 (m, 4H), 4.06 – 3.91 (m, 2H), 2.50 (t, J = 12.0 Hz, 2H), 2.30 (s, 

6H), 1.48 – 1.31(m, 13H), 1.29 (t, J = 7.1 Hz, 6H), 1.12 (dd, J = 12.4, 4.3 Hz, 2H) ppm. 
13C NMR (101 MHz, CDCl3) δ 168.2, 154.8, 145.1, 101.0, 79.1, 59.6, 43.9, 37.5, 28.4, 

19.4, 14.3 ppm. Spectral data was in agreement with the literature[5]. 

 
Diethyl 4-(4-(4-chlorophenyl)cyclohexyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-

dicarboxylate (B3) Following the procedure described, the utilization of 4-(4-

chlorophenyl)cyclohexane-1-carbaldehyde (racemic) (1.11 g, 5.0 mmol) afforded the 

title compound as a white solid (1.44 g, 65% yield) by using Hexane/EtOAc (5:1) as 

eluent. 1H NMR (400 MHz, CDCl3) δ 7.21 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.5 Hz, 

2H), 5.57 (s, 1H), 4.34 – 4.10 (m, 4H), 4.00 (d, J = 5.4 Hz, 1H), 2.32 (s, 6H), 1.89 – 

1.79 (m, 2H), 1.77 – 1.62 (m, 2H), 1.44 – 1.23 (m, 9H), 1.14 (td, J = 12.5, 3.1 Hz, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 168.7, 146.4, 144.7, 131.4, 128.4, 128.2, 101.9, 

59.8, 45.3, 44.0, 38.3, 34.4, 28.9, 19.6, 14.5 ppm. Spectral data was in agreement with 

the literature[6].  

 
Diethyl 4-(heptan-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (B4) 

Following the procedure described, the utilization of 2-ethylhexanal (1.28 g, 10.0 mmol) 

afforded the title compound as a white solid (2.14 g, 61% yield) by using 

Hexane/EtOAc (5:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 5.56 (s, 1H), 4.24 – 4.00 

(m, 5H), 2.27 (d, J = 2.2 Hz, 6H), 1.33 – 1.05 (m, 15H), 0.85 (t, J = 6.9 Hz, 6H) ppm. 
13C NMR (101 MHz, CDCl3) δ 168.7, 144.4, 144.3, 102.3, 102.1, 59.5, 48.0, 35.0, 

29.5, 28.3, 23.1, 21.7, 19.3, 19.3, 14.2, 14.1, 11.8 ppm. Spectral data was in agreement 
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with the literature[3]. 

 
Diethyl 2,6-dimethyl-4-undecyl-1,4-dihydropyridine-3,5-dicarboxylate (B5) 

Following a literature procedure, the utilization of dodecanal (1.84 g, 10.0 mmol) 

afforded the title compound as a white solid (2.48 g, 61% yield) by using 

Hexane/EtOAc (8:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 5.50 (s, 1H), 4.29 – 4.07 

(m, 4H), 3.92 (t, J = 5.8 Hz, 1H), 2.28 (s, 6H), 1.41 – 1.18 (m, 26H), 0.98 – 0.81 (m, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 168.2, 144.6, 103.6, 59.7, 37.0, 33.0, 32.0, 

30.1, 29.9, 29.8, 29.8, 29.7, 29.5, 25.0, 22.8, 19.6, 14.5, 14.2 ppm. Spectral data was in 

agreement with the literature[7]. 

 

Diethyl 2,6-dimethyl-4-(morpholine-4-carbonyl)-1,4-dihydropyridine-3,5- 

dicarboxylate (B6) Following a literature procedure,[10] the utilization of morpholine 

(150 μL, 1.7 mmol, 1.2 equiv) afforded the title compound as a pale yellow solid (0.15 

g, 40% yield). 1H NMR (400 MHz, CDCl3) δ 7.57 (s, 1H), 5.01 (s, 1H), 4.26 – 4.09 

(m, 4H), 3.99 – 3.90 (m, 2H), 3.75 (t, J = 4.7 Hz, 2H), 3.67 – 3.56 (m, 4H), 2.23 (s, 6H), 

1.28 (t, J = 7.1 Hz, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 174.5, 167.6, 147.6, 99.0, 

67.4, 67.0, 60.0, 47.5, 42.8, 36.5, 19.6, 14.7 ppm. Spectral data was in agreement with 

the literature[8]. 

 
Diethyl 4-{[(2S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]carbamoyl}-2,6- dimethyl 

-1,4-dihydropyridine-3,5-dicarboxylate (B7) Following a literature procedure,[8] the 

utilization of L-Phenylalanine methyl ester hydrochloride (1.29 g, 6.0 mmol, 2 equiv) 

afforded the title compound as a pale yellow solid (1.23 g, 90% yield) by using 

Hexane/EtOAc (1:2) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.27 (s, 1H), 7.25 – 7.20 
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(m, 2H), 7.14 – 7.03 (m, 3H), 4.83 – 4.74 (m, 1H), 4.63 (s, 1H), 4.21 – 4.00 (m, 4H), 

3.66 (s, 3H), 3.08 (m, 2H), 2.20 (dd, J = 4.7, 1.4 Hz, 6H), 1.20 (t, J = 7.1, 6H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 174.0, 171.9, 167.5, 167.4, 147.4, 147.3, 136.3, 129.4, 

128.5, 127.0, 98.0, 97.9, 60.2, 60.2, 53.6, 52.2, 41.3, 38.1, 19.3, 19.1, 14.4, 14.3 ppm. 

Spectral data was in agreement with the literature[8]. 

 
Diethyl 4-(1-(4-(tert-butyl)phenyl)propan-2-yl)-2,6-dimethyl-1,4-dihydropyridine-

3,5-dicarboxylate (B8) Following the procedure described, the utilization of 3-(4-(tert-

butyl)phenyl)-2-methylpropanal (1.02 g, 5.0 mmol) afforded the title compound as a 

light yellow oil (1.28 g, 60% yield) by using Hexane/EtOAc (15:1) as eluent. 1H NMR 

(400 MHz, CDCl3) δ 7.24 (d, J = 8.2 Hz, 2H), 7.01 (d, J = 8.2 Hz, 2H), 5.60 (s, 1H), 

4.21 – 4.09 (m, 5H), 2.76 (dd, J = 13.3, 3.6 Hz, 1H), 2.55 (d, J = 6.2 Hz, 1H), 2.31 (d, 

J = 1.6 Hz, 6H), 1.77 – 1.67 (m, 1H), 1.33 – 1.26 (m, 15H), 0.65 (d, J = 6.8 Hz, 3H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 168.8, 168.5, 148.2, 144.9, 144.8, 139.1, 128.7, 

125.0, 102.1, 101.6, 59.8, 43.2, 38.8, 34.4, 31.5, 19.6, 19.5, 14.7, 14.59, 14.52 ppm. 

Spectral data was in agreement with the literature[9]. 

 
Diethyl 4-(1-(benzo[d][1,3]dioxol-5-yl)propan-2-yl)-2,6-dimethyl-1,4- 

dihydropyridine-3,5-dicarboxylate (B9) Following the procedure described, the 

utilization of 3-(benzo[d][1,3]dioxol-5-yl)-2-methylpropanal (0.96 g, 5.0 mmol) 

afforded the title compound as a white solid (1.10 g, 50% yield) by using 

Hexane/EtOAc (4:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 6.67 (d, J = 7.9 Hz, 1H), 

6.57 (d, J = 1.6 Hz, 1H), 6.52 (dd, J = 7.9, 1.7 Hz, 1H), 5.89 (q, J = 1.5 Hz, 2H), 5.59 

(s, 1H), 4.37 – 4.11 (m, 4H), 4.10 (d, J = 4.8 Hz, 1H), 2.71 (dd, J = 13.3, 3.5 Hz, 1H), 

2.32 (d, J = 1.3 Hz, 6H), 2.09 – 1.97 (m, 1H), 1.67 (d, J = 4.2 Hz, 1H), 1.30 (d, J = 9.0, 

6H), 0.63 (d, J = 6.8 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 168.7, 168.5, 147.4, 

145.4, 144.8, 144.8, 136.1, 121.8, 109.4, 107.9, 102.1, 101.6, 100.7, 59.8, 43.4, 39.1, 

38.8, 19.6, 19.6, 14.5, 14.5 ppm. Spectral data was in agreement with the literature[9].  
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Diethyl 4-(1-(4-((2-(4-(4-chlorobenzoyl)phenoxy)-2-

methylpropanoyl)oxy)phenyl)propan-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-

dicarboxylate (B10) Following the procedure described, the utilization of Fenofibric 

acid (318 mg, 1.0 mmol, 1.0 equiv) afforded the title compound as a white solid (270 

mg, 39% yield) by using Hexane/EtOAc (2:1) as eluent. 1H NMR (400 MHz, CDCl3) 

δ 7.77 (d, J = 9.0 Hz, 2H), 7.74 – 7.69 (m, 2H), 7.45 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 

8.6 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 5.57 (s, 1H), 4.27 – 4.10 

(m, 5H), 2.76 (dd, J = 13.6, 3.7 Hz, 1H), 2.30 (s, 6H), 2.17 – 2.06 (m, 1H), 1.81 (s, 6H), 

1.75 – 1.66 (m, 1H).1.29 (q, J = 8.5 Hz, 3H), 1.29 (q, J = 5.7 Hz, 3H), 0.62 (d, J = 6.8 

Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 194.4, 172.7, 168.7, 168.5, 159.7, 148.3, 

145.1, 140.4, 138.6, 136.4, 132.2, 131.3, 130.7, 130.1, 128.7, 120.6, 117.4, 101.8, 101.4, 

79.6, 59.8, 43.2, 38.8, 25.6, 19.6, 19.5, 14.7, 14.6, 14.5 ppm. IR (neat): 2983, 2934, 

1755, 1720, 1655, 1597, 1505, 1486, 1465, 1444, 1418, 1386, 1370, 1283, 1250, 1207, 

1193, 1169, 1105, 1091, 1044, 1015, 971, 927, 914, 875, 853, 839, 763, 652, 477 cm–1. 

Mp: 40 °C. HRMS calcd. for (C39H42ClNNaO8) [M+Na]+: 710,2497, found 710,2491. 

(Note: this compound is unstable and needs to be used immediately in the next step.) 

 

Diethyl 4-(1-(4-((4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[2,4'-bibenzo[d]imidazol]-

3'-yl)methyl)-[1,1'-biphenyl]-2-carbonyl)oxy)phenyl)propan-2-yl)-2,6-dimethyl-

1,4-dihydropyridine-3,5-dicarboxylate (B11) Following the procedure described, the 

utilization of Telmisartan (515 mg, 1.0 mmol, 1.0 equiv) afforded the title compound 

as a white solid (620 mg, 70% yield) by using Hexane/EtOAc (1:2) as eluent. 1H NMR 

(400 MHz, CDCl3) δ 8.00 (d, J = 7.8 Hz, 1H), 7.81 – 7.74 (m, 1H), 7.56 (m, 1H), 7.50 

– 7.42 (m, 3H), 7.33 (dd, J = 8.3, 2.2 Hz, 3H), 7.28 (m, 3H), 7.11 (d, J = 8.5 Hz, 2H), 

6.96 (d, J = 8.6 Hz, 2H), 6.73 (d, J = 8.6 Hz, 2H), 5.95 (s, 1H), 5.42 (s, 2H), 4.27 – 4.11 
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(m, 4H), 4.10 (d, J = 4.8 Hz, 1H), 3.68 (s, 3H), 2.96 – 2.85 (m, 2H), 2.76 (s, 3H), 2.77 

– 2.67 (m, 1H), 2.28 (d, J = 2.9 Hz, 6H), 1.91 – 1.77 (m, 4H), 1.29 (dt, J = 8.7, 7.1 Hz, 

6H), 1.01 (t, J = 7.3 Hz, 3H), 0.60 (d, J = 6.9 Hz, 3H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 168.6, 168.5, 166.7, 156.4, 154.3, 148.4, 145.6, 145.6, 143.1, 142.3, 142.1, 

141.0, 139.9, 136.4, 134.8, 134.8, 131.8, 130.9, 130.4, 129.9, 129.7, 129.5, 129.2, 127.5, 

126.0, 123.9, 123.5, 122.6, 122.4, 120.6, 119.1, 109.6, 108.9, 101.1, 100.8, 59.5, 46.9, 

43.0, 38.5, 31.7, 29.7, 29.2, 24.9, 21.7, 19.0, 18.9, 16.9, 14.6, 14.4, 14.38, 14.0 ppm. 

IR (neat): 2868, 2808, 2796, 2150, 2122, 1628, 1530, 1408, 1321, 1237, 1018, 928, 

876, 812, 758, 704, 451 cm–1. Mp: 45 °C. HRMS calcd. for (C55H58N5O6) [M+H]+: 

884,4387, found 884,4382. (Note: this compound is unstable and needs to be used 

immediately in the next step.) 

 

Diethyl 4-(1-(4-((7-(4-acetylpiperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-

dihydroquinoline-3-carbonyl)oxy)phenyl)propan-2-yl)-2,6-dimethyl-1,4-

dihydropyridine-3,5-dicarboxylate (B12) Following the procedure described, the 

utilization of Ciprofloxacin (373 mg, 1.0 mmol, 1.0 equiv) afforded the title compound 

as a white solid (330 mg, 44% yield) by using CHCl3/THF (1:1) as eluent. 1H NMR 

(400 MHz, CDCl3) δ 8.57 (s, 1H), 7.93 (d, J = 16.1 Hz, 1H), 7.25 (s, 1H), 7.14 – 6.97 

(m, 4H), 4.25 – 4.05 (m, 5H), 3.78 (d, J = 5.6 Hz, 2H), 3.63 (d, J = 5.5 Hz, 2H), 3.50 – 

3.43 (m, 1H), 3.25 (t, J = 5.3 Hz, 2H), 3.19 (t, J = 5.2 Hz, 2H), 2.77 – 2.72 (m, 1H), 

2.29 (s, 6H), 2.14 – 2.06 (m, 5H), 1.73 – 1.62 (m, 1H), 1.34 – 1.22 (m, 8H), 1.16 – 1.14 

(m, 2H), 0.60 (d, J = 6.9 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 172.9, 169.2, 

168.8, 168.7, 163.6, 153.5 (d, J = 249.2 Hz), 148.8, 148.6, 145.6, 144.2 (d, J = 10.6 

Hz), 139.7, 138.0, 129.8, 121.4, 113.2 (d, J = 16.8 Hz), 109.3, 105.5, 101.3, 101.1, 59.6, 

49.6, 46.2, 43.2, 41.2, 38.7, 34.9, 21.4, 19.3, 14.9, 14.5, 14.5, 8.3 ppm. IR (neat): 3218, 

2980, 2931, 2867, 1738, 1721, 1622, 1546, 1491, 1475, 1443, 1385, 130, 1348, 1330, 

1315, 1283, 1248, 1228, 1209, 1167, 1105, 1071, 1043, 999, 912, 889, 872, 837, 797, 

773, 728, 645, 622 cm–1. Mp: 146 °C. HRMS calcd. for (C41H48FN4O8) [M+H]+: 

743,3456, found 743,3451. (Note: this compound is unstable and needs to be used 

immediately in the next step.) 
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Synthesis of Radical Precursors (C) from Alkenes 

 

Following a literature procedure,[10] the alkene (1.0 equiv) and dimethyl 1,2,4,5-

tetrazine-3,6-dicarboxylate (1.05 equiv) were combined in DCM (0.2 M). The solution 

was stirred at room temperature (for mono-substituted alkenes) or heated to 50 °C to 

maintain reflux (for 1,1-disubstituted or electron-deficient alkenes), and the reaction 

was monitored by TLC. The color of the solution changed from red to yellow. After 

complete consumption of starting materials, the solvent was removed under vacuum. 

The resulting crude was purified by column chromatography. 

 
Methyl 6-acetoxy-4-cyclohexyl-4-methyl-1,4-dihydropyridazine-3-carboxylate 

(C1) Following the procedure described, the utilization of prop-1-en-2-ylcyclohexane 

(124.0 mg, 1.0 mmol) afforded the title compound as a liquid (276.0 mg, 94% yield) by 

using Hexane/EtOAc (4:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.99 (s, 1H), 5.55 

(d, J = 2.2 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 1.96 (tt, J = 12.3, 3.2 Hz, 1H), 1.79 – 

1.64 (m, 3H), 1.62 – 1.50 (m, 2H), 1.39 (s, 3H), 1.24 – 1.12 (m, 2H), 1.09 – 0.89 (m, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.6, 161.7, 136.6, 127.1, 114.6, 52.5, 52.1, 

46.1, 39.9, 30.4, 26.6, 26.5, 26.4, 26.4, 24.5 ppm. Spectral data was in agreement with 

the literature.[10] 

 

Methyl 6-acetoxy-4-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-methyl-1,4-

dihydropyridazine-3-carboxylate (C2) Following the procedure described, the 

utilization of tert-butyl 4-(prop-1-en-2-yl)piperidine-1-carboxylate (180.0 mg, 0.8 

mmol) afforded the title compound as a liquid (284.0 mg, 90% yield) by using 
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Hexane/EtOAc (1:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H), 5.51 (d, J 

= 2.3 Hz, 1H), 4.23 – 4.05 (m, 2H), 3.83 (s, 3H), 3.80 (s, 3H), 2.63 (t, J = 12.2 Hz, 2H), 

2.32 – 2.13 (m, 1H), 1.63 (d, J = 15.6 Hz, 1H), 1.45 (s, 4H), 1.43 (s, 9H), 1.30 – 1.16 

(m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.4, 161.4, 154.7, 135.6, 127.5, 113.4, 

79.4, 52.6, 52.2, 44.6, 43.8, 39.4, 29.3, 28.4, 26.4, 23.8 ppm. IR (neat): 3349, 2951, 

1687, 1578, 1434, 1365, 1346, 1324, 1277, 1244, 1162, 1109, 1065, 1028, 958, 865, 

817, 765, 730 cm–1. Mp: 70 °C. HRMS calcd. for (C19H29N3NaO6) [M+Na]+: 418.1954, 

found 418.1947. 

 
Methyl 6-acetoxy-4-(4-(benzoyloxy)cyclohexyl)-4-methyl-1,4-dihydropyridazine-

3-carboxylate (C3) Following the procedure described, the utilization of 4-(prop-1-en-

2-yl)cyclohexyl benzoate (260.0 mg, 1.0 mmol) afforded the title compound as a liquid 

(292.0 mg, 71% yield) by using Hexane/EtOAc (1:1) as eluent. Mixture of two isomers 

(cis : trans = 1:3). 1H NMR (400 MHz, CDCl3) δ 8.05 – 7.97 (m, 3H), 7.61 – 7.49 (m, 

1H), 7.16 – 7.37 (m, 2H), 5.68 (d, J = 2.3 Hz, 0.75H), 5.58 (d, J = 2.2 Hz, 0.25H), 5.26 

(s, 0.75H), 4.87 – 4.80 (m, 0.25H), 3.86 – 3.84 (m, 3H), 3.82 (s, 3H), 2.24 – 2.00 (m, 

3H), 1.68 – 1.44 (m, 9H) ppm. 13C NMR (101 MHz, CDCl3) δ 166.1, 165.6, 164.5, 

161.5, 136.2, 136.1, 132.7, 131.0, 130.7, 129.6, 129.5, 128.3, 128.3, 127.4, 127.3, 114.1, 

113.6, 73.6, 69.5, 52.6, 52.6, 52.2, 44.9, 39.8, 39.3, 31.5, 31.4, 29.9, 29.8, 28.2, 26.9, 

26.5, 24.4, 22.4, 18.7 ppm. IR (neat): 3356, 2948, 1708, 1580, 1436, 1347, 1322, 1269, 

1215, 1191, 1100, 1069, 1915, 959, 911, 816, 765, 710 cm–1. Mp: 56 °C. HRMS calcd. 

for (C22H26N2NaO6) [M+Na]+: 437.1689, found 437.1683. 

 
Dimethyl 4-benzyl-1,4-dihydropyridazine-3,6-dicarboxylate (C4) Following the 

procedure described, the utilization of allylbenzene (88.6 mg, 0.75 mmol) afforded the 

title compound as an oil (170 mg, 79% yield) by using Hexane/EtOAc (3:1) as eluent. 
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1H NMR (500 MHz, CDCl3) δ 8.31 (s, 1H), 7.31 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 

7.14 (d, J = 7.2 Hz, 2H), 5.82 (dd, J = 6.3, 2.4 Hz, 1H), 3.92 (dt, J = 8.7, 5.9 Hz, 1H), 

3.83 (s, 3H), 3.78 (s, 3H), 2.73 (dd, J = 13.0, 5.5 Hz, 1H), 2.64 (dd, J = 13.0, 8.7 Hz, 

1H) ppm. 13C NMR (126 MHz, CDCl3) 164.7, 161.8, 137.0, 133.5, 129.7, 129.6, 128.5, 

126.7, 109.9, 52.7, 52.6, 39.7, 34.0 ppm. IR (neat): 3352, 3027, 2953, 2853, 1707, 

1589, 1438, 1346, 1273, 1195, 1113, 958, 813, 745, 700 cm–1. HRMS calcd. for 

(C15H16N2NaO4) [M+Na]+: 311.1002, found 311.1002. 

 
Dimethyl 4-benzyl-4-methyl-1,4-dihydropyridazine-3,6-dicarboxylate (C5) 

Following the procedure described, the utilization of (2-methylallyl)benzene (79.3 mg, 

0.6 mmol) afforded the title compound as a gum (145 mg, 80% yield) by using 

Hexane/EtOAc (3:1) as eluent. 1H NMR (500 MHz, CDCl3) δ 7.84 (s, 1H), 7.25 – 7.13 

(m, 3H), 7.07 (d, J = 7.2 Hz, 2H), 5.52 (s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.35 (d, J = 

13.4 Hz, 1H), 2.68 (d, J = 13.4 Hz, 1H), 1.53 (s, 3H) ppm. 13C NMR (126 MHz, CDCl3) 

δ 164.7, 161.6, 137.2, 135.7, 130.5, 128.2, 127.1, 126.6, 116.5, 52.7, 52.3, 46.8, 38.0, 

28.4 ppm. IR (neat): 3361, 3028, 2953, 2849, 1709, 1579, 1435, 1345, 1273, 1194, 

1102, 958, 914, 815, 763, 740, 702 cm–1. HRMS calcd. for (C16H18N2NaO4) [M+Na]+: 

325.1159, found 325.1150. 

 
Dimethyl 4-(4-(benzoyloxy)benzyl)-4-methyl-1,4-dihydropyridazine-3,6-

dicarboxylate (C6) Following the procedure described, the utilization of 4-(2-

methylallyl)phenyl benzoate (151.4 mg, 0.6 mmol) afforded the title compound as a 

gum (183 mg, 72% yield) by using Hexane/Acetone (4:1) as eluent. 1H NMR (500 

MHz, CDCl3) δ 8.24 – 8.14 (m, 2H), 7.85 (d, J = 2.2 Hz, 1H), 7.67 – 7.60 (m, 1H), 

7.54 – 7.47 (m, 2H), 7.14 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 5.54 (d, J = 2.2 

Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.37 (d, J = 13.5 Hz, 1H), 2.73 (d, J = 13.5 Hz, 1H), 

1.55 (s, 3H) ppm. 13C NMR (126 MHz, CDCl3) δ 165.3, 164.7, 161.6, 149.8, 135.6, 

134.9, 133.7, 131.5, 130.3, 129.8, 128.7, 127.3, 121.4, 116.2, 52.8, 52.4, 46.2, 38.0, 
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28.3 ppm. IR (neat): 3376, 2953, 2853, 1731, 1578, 1507, 1437, 1347, 1267, 1199, 

1106, 1064, 1024, 765, 709 cm–1. HRMS calcd. for (C23H22N2NaO6) [M+Na]+: 

445.1370, found 445.1375. 

 
Dimethyl 4-(3,4-dimethoxybenzyl)-1,4-dihydropyridazine-3,6-dicarboxylate (C7) 

Following the procedure described, the utilization of 4-allyl-1,2-dimethoxybenzene 

(178.2 mg, 1.0 mmol) afforded the title compound as an off-white solid (329 mg, 94% 

yield) by using Hexane/Acetone (4:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 8.28 

(d, J = 2.3 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.69 (d, J = 2.0 Hz, 1H), 6.67 – 6.64 (m, 

1H), 5.82 (dd, J = 6.3, 2.4 Hz, 1H), 3.93 – 3.87 (m, 1H), 3.86 (s, 3H), 3.86 (s, 3H), 3.83 

(s, 3H), 3.80 (s, 3H), 2.69 (dd, J = 13.1, 5.6 Hz, 1H), 2.58 (dd, J = 13.1, 8.7 Hz, 1H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 164.9, 161.9, 148.9, 147.9, 133.7, 129.6, 129.5, 

121.7, 112.8, 111.3, 110.1, 56.0, 56.0, 52.8, 52.7, 39.2, 34.2 ppm. IR (neat): 3356, 2999, 

2953, 2839, 1721, 1590, 1515, 1439, 1346, 1274, 1195, 1157, 1114, 1028, 761 cm–1. 

Mp: 105.5 °C. HRMS calcd. for (C17H20N2NaO6) [M+Na]+: 371.1214, found 371.1222. 

 

 

Dimethyl 4-(4-(((R)-2-methoxy-2-oxo-1-phenylethyl)carbamoyl)benzyl)-1,4-

dihydropyridazine-3,6-dicarboxylate (C8) Following the procedure described, the 

utilization of Methyl (R)-2-(4-allylbenzamido)-2-phenylacetate (290 mg, 0.94 mmol) 

afforded the title compound as an off-white solid (400 mg, 89% yield) by using 

Hexane/EA (1:2) as eluent. 1H NMR (400 MHz, CDCl3) δ 8.32 (s, 1H), 7.75 (d, J = 

7.7 Hz, 2H), 7.44 (d, J = 7.2 Hz, 2H), 7.42 – 7.31 (m, 3H), 7.22 (d, J = 8.1 Hz, 2H), 

7.13 (d, J = 6.8 Hz, 1H), 5.77 (d, J = 6.9 Hz, 1H), 5.73 (m, 1H), 3.98 – 3.88 (m, 1H), 

3.82 (s, 3H), 3.80 (s, 3H), 3.77 (s, 3H), 2.79 (dd, J = 12.8, 5.5 Hz, 1H), 2.68 (dd, J = 

13.0, 8.9 Hz, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 171.7, 166.5, 164.7, 161.7, 

161.7, 141.4, 136.7, 133.0, 132.0, 129.8, 129.2, 128.7, 127.5, 127.4, 109.1, 56.9, 53.1, 

52.8, 52.7, 39.5, 33.8 ppm. IR (neat): 3347, 3032, 3006, 2953, 1720, 1650, 1611, 1588, 
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1572, 1526, 1494, 1455, 1436, 1344, 1273, 1255, 1193, 1170, 1112, 1031, 1018, 991, 

955, 816, 754, 728, 698, 647, 590, 542 cm–1. Mp: 56 °C. HRMS calcd. for (C25H26N3O7) 

[M+H]+: 480,1771, found 480,1765. 

 

Dimethyl 4-decyl-4-methyl-1,4-dihydropyridazine-3,6-dicarboxylate (C9) 

Following the procedure described, the utilization of 2-methyldodec-1-ene (188.0 mg, 

1.0 mmol) afforded the title compound as a liquid (313.0 mg, 89% yield) by using 

Hexane/EtOAc (1:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.99 – 7.92 (m, 1H), 

5.48 (d, J = 2.3 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 1.38 (s, 3H), 1.24 – 1.23 (m, 18H), 

0.87 (t, J = 6.9 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.5, 161.8, 136.3, 

127.2, 117.4, 52.6, 52.2, 41.4, 36.6, 32.0, 30.1, 29.7, 29.7, 29.6, 29.4, 28.8, 26.8, 22.8, 

14.2. ppm. IR (neat): 3364, 2923, 2853, 1713, 1579, 1435, 1343, 1279, 1197, 1101, 

960, 816, 761, 735 cm–1. HRMS calcd. for (C19H32N2NaO4) [M+Na]+: 375.2260, found 

375.2254. 

 

Dimethyl 4-(2-((4-(nicotinamido)butanoyl)oxy)benzyl)-1,4-dihydropyridazine-

3,6-dicarboxylate (C10) Following the procedure described, the utilization of 2-

allylphenyl 4-(nicotinamido)butanoate (324 mg, 1.0 mmol) afforded the title compound 

as an off-white solid (410 mg, 83% yield) by using Hexane/Acetone (1:1) as eluent. 1H 

NMR (400 MHz, CDCl3) δ 9.04 (d, J = 1.5 Hz, 1H), 8.69 (dd, J = 4.8, 1.7 Hz, 1H), 

8.36 (d, J = 2.6 Hz, 1H), 8.16 – 8.14 (m, 1H), 7.39 – 7.33 (m, 1H), 7.29 – 7.23 (m, 1H), 

7.17 – 7.09 (m, 3H), 7.04 (dd, J = 8.0, 1.3 Hz, 1H), 5.70 (dd, J = 6.3, 2.4 Hz, 1H), 3.90 

– 3.85 (m, 1H), 3.82 (s, 3H), 3.71 (s, 3H), 3.69 – 3.58 (m, 2H), 2.87 – 2.79 (m, 2H), 

2.75 (dd, J = 12.9, 5.3 Hz, 1H), 2.45 (dd, J = 13.0, 9.4 Hz, 1H), 2.12 (t, J = 6.7 Hz, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 172.6, 165.9, 165.0, 161.8, 152.2, 149.4, 148.2, 

135.3, 133.2, 132.1, 130.4, 129.7, 128.7, 128.2, 126.1, 123.6, 122.6, 109.6, 52.8, 52.7, 

39.7, 34.1, 32.4, 31.6, 24.2 ppm. IR (neat): 3359, 3219, 3059, 3035, 2951, 1752, 1750, 

1649, 1591, 1540, 1488, 1475, 1438, 1418, 1348, 1275, 1254, 1216, 1195, 1186, 1116, 

1094, 1027, 954, 913, 813, 755, 728, 706, 646, 620, 566 cm–1. Mp: 58 °C. HRMS 
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calcd. for (C25H27N4O7) [M+H]+ 495,1880:, found 495,1874. 

 
Dimethyl 4-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-3-yl)methyl)-1,4-dihydropyridazine-

3,6-dicarboxylate (C11) Following the procedure described, the utilization of 

(8R,9S,13S,14S)-3-allyl-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-

cyclopenta[a]phenanthren-17-one (294mg, 1.0 mmol) afforded the title compound as 

an off-white solid (406 mg, 88% yield) by using Hexane/EA (1:1) as eluent. 1H NMR 

(400 MHz, CDCl3) δ 8.31 (t, J = 2.9 Hz, 1H), 7.20 (d, J = 5.6 Hz, 1H), 6.94 (d, J = 7.9 

Hz, 1H), 6.89 (s, 1H), 5.58 – 5.56 (m, 1H), 3.92 – 3.84 (m, 1H), 3.84 (d, J = 1.3 Hz, 

3H), 3.80 (d, J = 3.1 Hz, 3H), 2.92 – 2.84 (m, 2H), 2.68 (dd, J = 13.0, 5.2 Hz, 1H), 2.61 

– 2.46 (m, 2H), 2.45 – 2.37 (m, 1H), 2.30 (d, J = 10.3 Hz, 1H), 2.21 – 1.91 (m, 4H), 

1.66 – 1.62 (m, 1H), 1.56 – 1.44 (m, 5H), 0.91 (s, 3H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 220.9, 164.8, 161.9, 138.1, 136.6, 134.5, 133.8, 133.7, 130.2, 130.1, 129.5, 

127.1, 127.0, 125.5, 110.2, 52.7, 52.6, 50.7, 48.1, 44.5, 39.2, 39.17, 38.4, 38.3, 36.0, 

34.0, 31.8, 29.5, 29.4, 26.7, 26.67, 25.9, 21.7, 14.0 ppm. IR (neat): 3357, 2929, 2859, 

1751, 1654, 1590, 1499, 1437, 1342, 1273, 1255, 1194, 1167, 1111, 1084, 1053, 1007,  

cm–1. Mp: 65 °C. HRMS calcd. for (C27H33N2O5) [M+H]+: 465,2389, found 465,2384. 

 
Dimethyl 4-((11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-6,11-dihydro-5H-

benzo[5,6]cyclohepta[1,2-b]pyridin-8-yl)methyl)-1,4-dihydropyridazine-3,6-

dicarboxylate (C12) Following the procedure described, the utilization of ethyl 4-(8-

allyl-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-

carboxylate (97 mg, 0.25 mmol) afforded the title compound as an off-white solid (86.5 

mg, 62% yield) by using Hexane/EA (4:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 

8.38 (d, J = 4.8 Hz, 1H), 8.32 (d, J = 5.4 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.13 – 7.04 (m, 

2H), 6.99 – 6.89 (m, 2H), 5.84 – 5.82 (m, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.91 – 3.72 (m, 

6H), 3.70 – 3.59 (m, 3H), 3.35 (dtt, J = 13.6, 9.1, 4.6 Hz, 2H), 3.21 – 3.07 (m, 2H), 2.81 
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(dddd, J = 14.7, 12.6, 8.8, 5.5 Hz, 2H), 2.68 – 2.53 (m, 2H), 2.50 – 2.43 (m, 1H), 2.40 

– 2.24 (m, 3H), 1.24 (t, J = 7.1 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.7 (d, 

J = 2.6 Hz), 161.8 (d, J = 3.3 Hz), 157.8 (d, J = 11.3 Hz), 146.6, 137.7 (d, J = 7.0 Hz), 

137.5, 136.8, 136.7, 136.2 (d, J = 2.9 Hz), 135.1, 133.9 (d, J = 8.0 Hz), 133.5 (d, J = 

5.9 Hz), 130.3 (d, J = 10.2 Hz), 129.7, 129.4, 127.3, 127.2, 122.2 (d, J = 1.8 Hz), 109.9, 

61.4, 52.7, 52.4 (d, J = 5.5 Hz), 44.9 (d, J = 6.2 Hz), 39.3, 33.9 (d, J = 12.8 Hz), 32.0, 

31.9 (d, J = 2.9 Hz), 31.7, 30.8, 30.6, 14.8 ppm. IR (neat): 3328, 2980, 2951, 2917, 

2854, 2248, 2184, 1722, 1690, 1584, 1435, 1385, 1373, 1346, 1273, 1226, 1194, 1169, 

1109, 1060, 1026, 996, 960, 817, 762, 727, 646, 541 cm–1. Mp: 81 °C. HRMS calcd. 

for (C31H34N4NaO6) [M+Na]+: 581,2376, found 581,2371. 

 
Dimethyl 4-((8R,8aS)-8,8a-dimethyl-6-oxo-1,2,3,4,6,7,8,8a-octahydronaphthalen-

2-yl)-4-methyl-1,4-dihydropyridazine-3,6-dicarboxylate (C13) Following the 

procedure described, the utilization of (+)-nootkatone (174.4 mg, 0.8 mmol) afforded 

the title compound as a liquid (257.0 mg, 83% yield, 1:1 diastereomeric ratio) by using 

Hexane/EtOAc (2:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 8.5 Hz, 1H), 

5.73 (d, J = 5.9 Hz, 1H), 5.51 (dd, J = 7.7, 2.3 Hz, 1H), 3.84 – 3.82 (m, 6H), 2.63 – 2.36 

(m, 3H), 2.31 – 2.17 (m, 2H), 1.91 (d, J = 13.0 Hz, 2H), 1.79 – 1.70 (m, 1H), 1.62 (s, 

1H), 1.48 (d, J = 6.5 Hz, 3H), 1.27 – 1.17 (m, 1H), 1.11 – 1.02 (m, 3H), 1.01 – 0.83 (m, 

5H) ppm. 13C NMR (101 MHz, CDCl3) δ 199.5, 199.4, 170.06, 170.05, 164. 5, 164.4, 

161.4, 161.3, 136.2, 135.8, 127.6, 127.6, 124.6, 124.6, 113.0, 112.6, 52.6, 52.2, 42.8, 

42.0, 41.9, 41.3, 40.9, 40.5, 40.3, 39.4, 39.3, 39.1, 36.3, 32.7, 32.7, 30.1, 26.9, 26.8, 

24.5, 16.8, 16.7, 15.01, 14.95 ppm. Spectral data was in agreement with the literature.[10] 

 
Dimethyl 4-((4-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)amino)quinazolin-6-

yl)methyl)-1,4-dihydropyridazine-3,6-dicarboxylate (C14) Following the procedure 
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described, the utilization of 6-allyl-N-(3-chloro-4-((3-

fluorobenzyl)oxy)phenyl)quinazolin-4-amine (419 mg, 1.0 mmol) afforded the title 

compound as an off-white solid (433 mg, 74% yield) by using Hexane/EA (1:1) as 

eluent. 1H NMR (400 MHz, DMF) δ 10.59 (d, J = 2.5 Hz, 1H), 9.91 (s, 1H), 8.64 (s, 

1H), 8.36 (d, J = 1.9 Hz, 1H), 8.23 (d, J = 2.6 Hz, 1H), 7.92 (dd, J = 9.0, 2.6 Hz, 1H), 

7.77 (d, J = 8.5 Hz, 1H), 7.72 (dd, J = 8.5, 1.8 Hz, 1H), 7.52 (td, J = 8.0, 5.8 Hz, 1H), 

7.46 – 7.38 (m, 2H), 7.35 (d, J = 9.1 Hz, 1H), 7.23 – 7.18 (m, 1H), 5.81 (dd, J = 6.2, 

2.4 Hz, 1H), 5.34 (s, 2H), 4.17 – 3.98 (m, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 2.90 – 2.79 

(m, 2H) ppm. 13C NMR (101 MHz, DMF) δ 166.1, 163.9 (d, J = 243.6 Hz), 162.6, 

158.8, 155.2, 151.2, 150.2, 141.3 (d, J = 7.7 Hz), 137.0, 135.8, 135.1, 132.2, 131.6 (d, 

J = 8.4 Hz), 131.5, 129.1, 125.0, 124.5 (d, J = 2.9 Hz), 123.8, 123.0, 122.7, 116.3, 115.7 

(d, J = 21.3 Hz), 115.4, 115.2 (d, J = 22.4 Hz), 109.3, 70.9 (d, J = 2.2 Hz), 53.1, 52.6, 

34.4 ppm. IR (neat): 3347, 3330, 3020, 2952, 2900, 2846, 2805, 2702, 1725, 1716, 

1628, 1593, 1496, 1455, 1438, 1418, 1391, 1272, 1221, 1201, 1111, 1061, 1013, 

949,932, 917, 853, 832, 816, 795, 776, 680, 570, 508, 441 cm–1. Mp: 200 °C. HRMS 

calcd. for (C30H26ClFN5O5) [M+H]+: 590,1606, found 590,1601. 

 

Dimethyl 4-(4-((2-(4-isobutylphenyl)propanoyl)oxy)butyl)-4-methyl-1,4-

dihydropyridazine-3,6-dicarboxylate (C15) Following the procedure described, the 

utilization of 5-methylhex-5-en-1-yl 2-(4-isobutylphenyl)propanoate (302 mg, 1.0 

mmol) afforded the title compound as a liquid (418 mg, 89% yield) by using Hexane/EA 

(10:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.99 (s, 1H), 7.17 (d, J = 8.1 Hz, 2H), 

7.07 (d, J = 8.0 Hz, 2H), 5.45 (d, J = 2.3 Hz, 1H), 4.07 – 3.79 (m, 2H), 3.83 (s, 3H), 

3.79 (d, J = 1.8 Hz, 3H), 3.66 (q, J = 7.2 Hz, 1H), 2.43 (d, J = 7.2 Hz, 2H), 2.19 (td, J 

= 11.0, 2.6 Hz, 1H), 1.83 (dt, J = 13.6, 6.9 Hz, 1H), 1.64 – 1.51 (m, 2H), 1.46 (d, J = 

7.2 Hz, 3H), 1.36 (s, 3H), 1.30 – 1.13 (m, 3H), 0.90 (s, 3H), 0.88 (s, 3H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 174.8, 174.8, 164.5, 161.6, 140.6, 137.9, 135.8, 129.4, 

127.3, 127.2, 116.8, 64.5, 64.5, 52.6, 52.2, 45.3, 45.1, 40.9, 40.8, 36.5, 30.3, 28.8, 28.7, 

23.1, 23.0, 22.5, 18.6, 18.6 ppm. IR (neat): 3359, 2953, 2930, 2867, 1713, 1664, 1578, 

1512, 1458, 1436, 1376, 1342, 1278, 1244, 1199, 1164, 1095, 959, 848, 815, 762, 736 

cm–1. HRMS calcd. for (C26H36N2NaO6) [M+H]+: 495,2471, found 495,2466. 
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Dimethyl 4-(4-((2-(4-(2-(4-chlorobenzamido)ethyl)phenoxy)-2-

methylpropanoyl)oxy)butyl)-4-methyl-1,4-dihydropyridazine-3,6-dicarboxylate 

(C16) Following the procedure described, the utilization of 5-methylhex-5-en-1-yl 2-

(4-(2-(4-chlorobenzamido)ethyl)phenoxy)-2-methylpropanoate (457 mg, 1.0 mmol) 

afforded the title compound as a white solid (584 mg, 93% yield) by using Hexane/EA 

(1:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H), 7.61 (d, J = 8.5 Hz, 2H), 

7.35 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 8.6 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 6.26 (t, J = 

5.4 Hz, 1H), 5.42 (d, J = 2.2 Hz, 1H), 4.18 – 4.08 (m, 2H), 3.80 (s, 3H), 3.76 (s, 3H), 

3.64 (q, J = 6.9 Hz, 2H), 2.84 (t, J = 6.9 Hz, 2H), 2.26 – 2.15 (m, 1H), 1.64 – 1.60 (m, 

2H), 1.54 (d, J = 1.8 Hz, 6H), 1.35 (s, 3H), 1.30 – 1.13 (m, 3H) ppm. 13C NMR (101 

MHz, CDCl3) δ 174.3, 166.5, 164.5, 161.6, 154.2, 137.7, 135.7, 133.2, 132.6, 129.5, 

128.9, 128.4, 127.4, 119.7, 116.7, 79.3, 65.1, 52.6, 52.2, 41.4, 40.9, 36.5, 34.8, 28.8, 

28.7, 25.5, 25.4, 23.0 ppm. IR (neat): 3340, 2992, 2951, 2862, 1715, 1641, 1611, 1596, 

1541, 1508, 1486, 1436, 1380, 1365, 1343, 1278, 1234, 1197, 1176, 1137, 1014, 956, 

911, 846, 815, 759, 729, 524 cm–1. Mp: 43 °C. HRMS calcd. for (C32H39ClN3O8) 

[M+H]+: 628,2426, found 628,2420. 

 
Dimethyl 4-methyl-4-(4-((3-methyl-4-oxo-2-phenyl-4H-chromene-8-

carbonyl)oxy)butyl)-1,4-dihydropyridazine-3,6-dicarboxylate (C17) Following the 

procedure described, the utilization of 5-methylhex-5-en-1-yl 3-methyl-4-oxo-2-

phenyl-4H-chromene-8-carboxylate (376 mg, 1.0 mmol) afforded the title compound 

as a white solid (504 mg, 92% yield) by using Hexane/EA (2:1) as eluent. 1H NMR 

(400 MHz, CDCl3) δ 8.45 (dd, J = 8.0, 1.8 Hz, 1H), 8.23 (dd, J = 7.5, 1.8 Hz, 1H), 7.97 

(d, J = 2.3 Hz, 1H), 7.82 – 7.74 (m, 2H), 7.55 – 7.49 (m, 3H), 7.43 (t, J = 7.7 Hz, 1H), 

5.41 (d, J = 2.3 Hz, 1H), 4.31 (t, J = 6.8 Hz, 2H), 3.78 (s, 3H), 3.74 (s, 3H), 2.23 (s, 

3H), 1.81 – 1.68 (m, 3H), 1.38 – 1.33 (m, 4H), 1.28 – 1.18 (m, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 178.4, 164.5, 164.4, 161.6, 161.2, 154.6, 136.2, 135.7, 133.2, 
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130.8, 130.6, 129.5, 128.5, 127.4, 124.1, 123.4, 120.9, 117.7, 116.7, 65.3 52.6, 52.2, 

40.8, 36.5, 28.8, 28.7, 23.1, 11.9 ppm. IR (neat): 3353, 3020, 2860, 1708, 1624, 1602, 

1574, 1478, 1436, 1392, 1373, 1343, 1278, 1197, 1179, 1126, 1096, 1068, 1039, 1023, 

958, 916, 853, 815, 758, 730, 698, 644, 542, 471, 443 cm–1. Mp: 48 °C. HRMS calcd. 

for (C30H30N2NaO8) [M+Na]+: 569,1900, found 569,1894. 

 
Dimethyl 4-methyl-4-(4-((6-oxo-6-phenylhexanoyl)oxy)benzyl)-1,4-

dihydropyridazine-3,6-dicarboxylate (C18) Following the procedure described, the 

utilization of 4-(2-methylallyl)phenyl 6-oxo-6-phenylhexanoate (477.0 mg, 1.42 mmol) 

afforded the title compound as a liquid (608.0 mg, 85% yield) by using Hexane/EtOAc 

(1:1) as eluent. 1H NMR (400 MHz, CDCl3) δ 7.95 (dd, J = 8.4, 1.3 Hz, 2H), 7.87 (d, 

J = 2.0 Hz, 1H), 7.58 – 7.50 (m, 1H), 7.48 – 7.40 (m, 2H), 7.10 – 7.03 (m, 2H), 6.97 – 

6.91 (m, 2H), 5.50 (d, J = 2.3 Hz, 1H), 3.80 (s, 6H), 3.32 (d, J = 13.5 Hz, 1H), 3.03 (t, 

J = 6.8 Hz, 2H), 2.68 (d, J = 13.5 Hz, 1H), 2.59 (t, J = 7.0 Hz, 2H), 1.97 – 1.75 (m, 4H), 

1.51 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 199.8, 171.9, 164.6, 161.4, 149.4, 

136.9, 135.5, 134.6, 133.1, 131.3, 128.7, 128.1, 127.1, 121.1, 116.1, 52.6, 52.2, 46.0, 

38.1, 37.8, 34.3, 28.2, 24.6, 23.6 ppm. IR (neat): 3366, 2953, 1713, 1684, 1579, 1506, 

1436, 1345, 1274, 1196, 1166, 1126, 1104, 909, 727, 690, 648 cm–1. HRMS calcd. for 

(C28H30N2NaO7) [M+Na]+: 529.1951, found 529.1945. 
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3.7.3 General Procedures for Trifluoromethylation 

General procedure A: An oven-dried 20 mL Schlenk tube containing a stir bar was 

charged with 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline 

(10.8 mg, 30 mol%), proaromatic precursor (0.2 mmol, 1.0 equiv) and Togni’s reagent 

I (132.0 mg, 2.0 equiv). The Schlenk tube was connected to a vacuum line where it was 

evacuated and back-filled with Ar at least three times. Acetone (8.0 mL) was then added 

followed by BTMG (34.0 µL, 1.0 equiv) under argon atmosphere. The reaction mixture 

was sonicated, then placed in a temperature-controlled photoreactor maintained at 

40 °C and stirred for 16-24 h under continuous light irradiation from blue LEDs (λ = 

451 nm). The reaction mixture was diluted with Et2O, and then quenched with aqueous 

NaCl. (Trifluoromethyl)benzene (internal standard, 0.2 mmol) was added to the 

reaction mixture for calculating the 19F NMR yield. The reaction mixture was extracted 

into Et2O (3x). The organic phase was dried with anhydrous Na2SO4, filtered, and 

concentrated. The residue was purified by flash column chromatography on silica gel.  

 

General procedure B: An oven-dried 20 mL Schlenk tube containing a stir bar was 

charged with 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 

proaromatic precursor (0.2 mmol, 1.0 equiv) and Togni’s reagent I (99.2 mg, 1.5 equiv). 

The Schlenk tube was connected to a vacuum line where it was evacuated and back-

filled with Ar at least three times. DMF (10.0 mL) was added followed by BTMG (34 

µL, 1.0 equiv) under argon atmosphere. The reaction mixture was sonicated, then 

placed in a temperature-controlled photoreactor maintained at 40 °C and stirred for 16-

24 h under continuous light irradiation from blue LEDs (λ = 451 nm). The reaction 

mixture was diluted with Et2O, and then quenched with aqueous NaCl. 

(Trifluoromethyl)benzene (internal standard, 0.2 mmol) was added to the reaction 

mixture for calculating the 19F NMR yield. The reaction mixture was extracted into 

Et2O (3x). The organic phase was dried with anhydrous Na2SO4, filtered, and 

concentrated. The residue was purified by flash column chromatography on silica gel. 

 

General procedure C: An oven-dried 20 mL Schlenk tube containing a stir bar was 

charged with 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 

proaromatic precursor (0.2 mmol, 1.0 – 1.5 equiv), K2S2O8 (81.2 mg, 1.5 equiv) and 

NaHCO3 (33.2 mg, 2.0 equiv). The Schlenk tube was connected to a vacuum line where 
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it was evacuated and back-filled with Ar at least three times. CH3CN (8.0 mL) was 

added under argon atmosphere. The reaction mixture was sonicated, then placed in a 

temperature-controlled photoreactor maintained at 40 °C and stirred for 16-24 h under 

continuous light irradiation from blue LEDs (λ = 451 nm). The reaction mixture was 

diluted with Et2O, and then quenched with aqueous NaCl. (Trifluoromethyl)benzene 

(internal standard, 0.2 mmol) was added to the reaction mixture for calculating the 19F 

NMR yield. The reaction mixture was extracted into Et2O (3x). The organic phase was 

dried with anhydrous Na2SO4, filtered, and concentrated. The residue was purified by 

flash column chromatography on silica gel. 

 

General procedure D: An oven-dried 20 mL reaction tube containing a stir bar was 

charged with Cu(CF3)3bpy (85.2 mg, 1.0 equiv), Substrate (0.2 mmol, 1.0 – 1.5 equiv). 

The reaction tube was connected to a vacuum line where it was evacuated and back-

filled with Ar at least three times. Acetone (4.0 mL) was added under argon atmosphere. 

The reaction mixture was stirred for 18 h under continuous light irradiation from 370 

nm Kessil LED lamps. The reaction was diluted with Et2O, and then quenched with 

aqueous NaCl. (Trifluoromethyl)benzene (internal standard, 0.2 mmol) or 1-fluoro-3-

nitrobenzene (internal standard, 0.2 mmol) was added to the reaction mixture for 

calculating the 19F NMR yield. The reaction mixture was extracted into Et2O (3x). The 

organic phase was dried with anhydrous Na2SO4, filtered, and carefully concentrated. 

The residue was purified by flash column chromatography on silica gel.   
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Product Characterization 

  

 
tert-butyl 4-(trifluoromethyl)piperidine-1-carboxylate (3) Prepared following 

general procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), 

Phenanthroline (10.8 mg, 30 mol%), tert-butyl 4-(2-methyl-4-oxo-1,2,3,4-

tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (A1) (69.0 mg, 0.2 mmol, 1.0 

equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 8.0 mL 
of Acetone. Product was obtained as a colorless solid (38.1 mg, 75% yield) by using 

Hexane/EtOAc (10:1) as eluent. (78% 19F NMR yield against internal standard). 19F 

NMR (376 MHz, CDCl3) δ -74.04 (d, J = 8.5 Hz) ppm. 1H NMR (400 MHz, CDCl3) 

δ 4.26 – 4.08 (m, 2H), 2.67 (t, J = 12.2 Hz, 1H), 2.20 – 2.10 (m, 1H), 1.90 – 1.74 (m, 

2H), 1.44 (s, 11H) ppm. 13C NMR (101 MHz, CDCl3) δ 154.5, 127.1 (q, J = 278.2 Hz), 

79.8, 42.6 (br), 40.5 (q, J =27.5 Hz), 28.3, 24.4 ppm. Spectral data was in agreement 

with the literature[11]. 

Prepared following general procedure C using 4-CzIPN (4.8 mg, 3 mol%), 

Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), diethyl 4-(1-(tert-

butoxycarbonyl)piperidin-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate 

(B2) (87.3 mg, 0.2 mmol, 1.0 equiv), K2S2O8 (81.2 mg, 1.5 equiv) and NaHCO3 (33.2 

mg, 2.0 equiv) and 8.0 mL of CH3CN. Product was obtained as a colorless solid (38.1 

mg, 72% yield) by using Hexane/EtOAc (10:1) as eluent. (80% 19F NMR yield against 

internal standard). 

Prepared following general procedure D using Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 

equiv), dimethyl 4-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-methyl-1,4-

dihydropyridazine-3,6-dicarboxylate (C2) (118.6 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL 

of Acetone. Product was obtained as a colorless solid (18.0 mg, 36% yield) by using 

Hexane/EtOAc (10:1) as eluent. (42% 19F NMR yield against internal standard). 

 

1-tosyl-4-(trifluoromethyl)piperidine (4) Prepared following general procedure A 

using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline (10.8 mg, 

30 mol%), 2-methyl-2-(1-tosylpiperidin-4-yl)-2,3-dihydroquinazolin-4(1H)-one (A2) 

(79.8 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 
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2.0 equiv) and 8.0 mL of Acetone. Product was obtained as a colorless solid (34.5 mg, 

56% yield) by using Hexane/EtOAc (10:1) as eluent. (60% 19F NMR yield against 

internal standard). 19F NMR (376 MHz, CDCl3) δ -73.85 (d, J = 7.8 Hz) ppm. 1H NMR 

(400 MHz, CDCl3) δ 7.63 (d, J = 8.3 Hz, 2H), 7.42 – 7.28 (m, 2H), 4.01 – 3.61 (m, 

2H), 2.43 (s, 3H), 2.24 (t, J = 12.2, 2H), 2.00 – 1.81 (m, 3H), 1.76 – 1.57 (m, 2H) ppm. 
13C NMR (101 MHz, CDCl3) δ 143.9, 133.0, 129.9, 127.8, 126.9 (q, J = 278.1 Hz), 

45.1, 39.8 (q, J = 27.8 Hz), 24.1 (q, J = 2.1 Hz), 21.6 ppm. Spectral data was in 

agreement with the literature.[12] 

 
phenyl(4-(trifluoromethyl)piperidin-1-yl)methanone (5) Prepared following general 

procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), 

Phenanthroline (10.8 mg, 30 mol%), 2-(1-benzoylpiperidin-4-yl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A3) (69.8 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 

equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 8.0 mL of Acetone. Product was 

obtained as a colorless liquid (26.7 mg, 52% yield) by using Hexane/EtOAc (50:1) as 

eluent. (58% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) 

δ -73.93 (d, J = 8.1 Hz) ppm. 1H NMR (500 MHz, CDCl3) δ 7.43 – 7.39 (m, 5H), 4.84 

(br, 1H), 3.89 (br, 1H), 2.89 (br, 2H), 2.31 (m, 1H), 1.78 (m, 4H) ppm. 13C NMR (101 

MHz, CDCl3) δ 170.6, 135.8, 129.9, 128.7, 127.0 (q, J = 276.0 Hz), 125.6, 46.6, 40.8 

(q, J = 27.4 HZ), 25.1 ppm. Spectral data was in agreement with the literature.[13] 

 
(3,3,3-trifluoro-2-methylpropyl)benzene (6) Prepared following general procedure A 

using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline (10.8 mg, 

30 mol%), 2-phenyl-2-(1-phenylpropan-2-yl)-2,3-dihydroquinazolin-4(1H)-one (A4) 

(68.4 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 
2.0 equiv) and 8.0 mL of Acetone. Product was obtained as a colorless liquid (17.7 mg, 

45% yield) by using Pentane as eluent. (48% 19F NMR yield against internal standard). 
19F NMR (376 MHz, CD2Cl2) δ -73.81 (d, J = 8.1 Hz) ppm. 1H NMR (400 MHz, 

CD2Cl2) δ 77.33 – 7.30 (m, 2H), 7.25 (d, J = 6.9 Hz, 1H), 7.18 (dd, J = 7.8, 1.4 Hz, 

2H), 3.09 (m, 1H), 2.47– 2.44 (m, 2H), 1.00 (d, J = 6.8 Hz, 3H) ppm. 13C NMR (126 

MHz, CDCl3) δ 138.3, 129.2, 128.7, 128.3 (q, J = 279.5 Hz), 126.8, 40.2 (q, J = 26.1 

Hz), 35.8 (q, J = 2.8 Hz), 12.2 (q, J = 2.8 Hz) ppm. Spectral data was in agreement with 
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the literature.[14] 

 

1-butyl-4-(trifluoromethyl)cyclohexane (7) Prepared following general procedure A 

using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline (10.8 mg, 

30 mol%), 2-(4-butylcyclohexyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A5) 

(60.0 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 
2.0 equiv) and 8.0 mL of Acetone. Product was obtained as a colorless liquid (25.6 mg, 

61% yield) by using Hexane as eluent. (71% 19F NMR yield against internal standard). 

Mixture of two isomers (cis : trans = 1:3.3). 19F NMR (376 MHz, CDCl3) δ -72.46 (d, 

J = 9.8 Hz), -73.97 (d, J = 8.5 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 2.08 – 1.80 (m, 

4H), 1.66 – 1.46 (m, 2H), 1.38 – 1.14 (m, 8H), 0.97 – 0.82 (m, 5H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 128.1 (q, J = 277.1 Hz), 127.9 (q, J = 277.1 Hz), 42.1 (q, J = 26.2 

Hz), 40.9 (q, J = 25.6 Hz), 36.9, 36.7, 32.9, 31.6, 29.8, 29.1, 28.4, 25.1, 25.0, 25.0, 25.0, 

22.92, 22.87, 20.6, 20.5, 14.08, 14.05 ppm. Spectral data was in agreement with the 

literature.[12]  

 
4-(trifluoromethyl)cyclohexan-1-ol (8) Prepared following general procedure A using 

4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline (10.8 mg, 30 

mol%), 2-(4-hydroxycyclohexyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A6) 

(52.0 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 

2.0 equiv) and 8.0 mL of Acetone. Product was obtained as a colorless liquid (19.0 mg, 

57% yield) by using Hexane/EtOAc (3:1) as eluent. (60% 19F NMR yield against 

internal standard). Mixture of two isomers (cis : trans = 1:1.6). cis-diastereomer: 19F 

NMR (376 MHz, CDCl3) δ -73.73 (d, J = 8.5 Hz) ppm. 1H NMR (400 MHz, CDCl3) 

δ 4.07 (m, 1H), 2.10 – 1.96 (m, 1H), 1.92 – 1.82 (m, 2H), 1.80 – 1.65 (m, 4H), 1.53 (m, 

2H), 1.39 (br, 1H) ppm. 13C NMR (126 MHz, CDCl3) δ 127.8 (q, J = 278.6 Hz), 65.0, 

41.3 (q, J = 26.6 Hz), 31.3, 18.9 (d, J = 2.8 Hz) ppm. trans-diastereomer: 19F NMR 

(376 MHz, CDCl3) δ -73.52 (d, J = 7.8 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 3.70 

– 3.28 (m, 1H), 2.20 – 1.87 (m, 6H), 1.48 – 1.10 (m, 4H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 127.6 (q, J = 278.5 Hz), 69.7, 40.9 (q, J = 26.7 Hz), 33.8, 23.3 (q, J = 2.6 Hz) 

ppm. Spectral data was in agreement with the literature.[15]  
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4-(trifluoromethyl)cyclohexyl benzoate (9) Prepared following general procedure A 

using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline (10.8 mg, 

30 mol%), 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)cyclohexyl benzoate 

(A7) (72.8 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I 

(132.0 mg, 2.0 equiv) and 8.0 mL of Acetone. Product was obtained as a colorless liquid 

(47.8 mg, 87% yield) by using Hexane/EtOAc (10:1) as eluent. (83% 19F NMR yield 

against internal standard). Mixture of two isomers (cis : trans = 1:1.2). 19F NMR (376 

MHz, CDCl3) δ -73.42 (d, J = 7.9 Hz), -73.92 (d, J = 8.3 Hz) ppm. 1H NMR (400 MHz, 

CDCl3) δ 8.07 – 8.03 (m, 2H), 7.62 – 7.52 (m, 1H), 7.45 (ddd, J = 9.3, 8.2, 6.9 Hz, 2H), 

5.36 – 4.87 (m, 1H), 2.31 – 1.99 (m, 4H), 1.93 – 1.46 (m, 5H) ppm. 13C NMR (101 

MHz, CDCl3) δ 166.0, 165.8, 133.1, 133.0, 130.7, 130.6, 129.69, 129.65, 128.5, 128.4, 

127.7 (q, J = 278.4 Hz), 127.6 (q, J = 278.5 Hz), 72.4, 68.6, 41.3, 41.2 (q, J = 27.1 Hz), 

41.1 (q, J = 27.1 Hz), 30.3, 28.7, 23.4 (q, J = 2.7 Hz), 19.9 (q, J = 2.8 Hz) ppm. IR 

(neat): 2952, 1714, 1601, 1584, 1451, 1396, 1359, 1329, 1314, 1281, 1202, 1179, 1135, 

1110, 1086, 1070 1025, 998, 923, 880, 711, 649 cm–1. HRMS calcd. for (C14H14F3O2) 

[M-H]+: 271.0946, found 271.0931. 

Prepared following general procedure D, using Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 

equiv), dimethyl 4-(4-(benzoyloxy)cyclohexyl)-4-methyl-1,4-dihydropyridazine-3,6-

dicarboxylate (C3) (124.3 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL of Acetone. Product 

was obtained as a colorless liquid (26.6 mg, 49% yield) by using Hexane/EtOAc (10:1) 

as eluent. (45% 19F NMR yield against internal standard). Mixture of two isomers (cis : 

trans = 1:1.5). 

 
1,1-difluoro-4-(trifluoromethyl)cyclohexane (10) Prepared following general 

procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), 

Phenanthroline (10.8 mg, 30 mol%), 2-(4,4-difluorocyclohexyl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A8) (56.0 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 

equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 8.0 mL of Acetone. Product could 

not be isolated due to its volatility, 1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) 

was added as an internal standard for 19F NMR analysis. (66% yield – average of two 

trials: 62% yield and 69% yield). 19F NMR (376 MHz, Acetone) δ -73.98 (d, J = 8.5 
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Hz), -93.20 (d, J = 237.5 Hz), -103.55 (d, J = 239.8 Hz) ppm. Spectral data was in 

agreement with literature.[13] 

 
(Trifluoromethyl)cyclopentane (11) Prepared following general procedure A using 4-

CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Bathphenanthroline (20.0 mg, 30 

mol%), 2-cyclopentyl-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A9) (46.0 mg, 0.2 

mmol, 1.0 equiv), KH2PO4 (0.4 mmol, 2.0 equiv), KF (0.4 mmol, 2.0 equiv), Togni’s 

reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product could not be isolated due 

to its volatility, 1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) was added as an 

internal standard for 19F NMR analysis. (35% yield – average of two trials: 36% yield 

and 34% yield). 19F NMR (376 MHz, Acetone) δ -71.99 (d, J = 9.8 Hz) ppm. Data in 

agreement with published values.[16]  

 
(Trifluoromethyl)cyclohexane (12) Prepared following general procedure A using 4-

CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline (10.8 mg, 30 

mol%), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A10) (48.8 mg, 0.2 

mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) 
and 8.0 mL of Acetone. Product could not be isolated due to its volatility, 1,1,1-

trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) was added as an internal standard for 
19F NMR analysis. (83% yield – average of two trials: 82% yield and 83% yield). 19F 

NMR (376 MHz, Acetone) δ -74.82 (d, J = 9.0 Hz) ppm. Data in agreement with 

published values.[17] 

Prepared following general procedure C, using 4-CzIPN (4.8 mg, 3 mol%), 

Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), diethyl 4-cyclohexyl-2,6-dimethyl-1,4-

dihydropyridine-3,5-dicarboxylate (B1) (67.0 mg, 0.2 mmol, 1.0 equiv), K2S2O8 (81.2 

mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of CH3CN. Product could 

not be isolated due to its volatility, 1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) 
was added as an internal standard for 19F NMR analysis. (85% yield – average of two 

trials: 85% yield and 84% yield). 19F NMR (376 MHz, CD3CN) δ -74.94 (d, J = 8.8 

Hz) ppm. 

Prepared following general procedure D, using Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 

equiv), dimethyl 4-cyclohexyl-4-methyl-1,4-dihydropyridazine-3,6-dicarboxylate (C1) 

(88.2 mg, 0.3 mmol, 1.5 equiv), Togni’s reagent I (33.0 mg, 0.5 equiv) and BTMG (16.8 
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mg, 0.5 equiv) and 8.0 mL of Acetone. Product could not be isolated due to its volatility, 

1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) was added as an internal standard 

for 19F NMR analysis. (70% yield – average of two trials: 71% yield and 70% yield). 
19F NMR (376 MHz, CD3CN) δ -74.77 (d, J = 8.8 Hz) ppm.  

 
(trifluoromethyl)cycloheptane (13) Prepared following general procedure A using 4-

CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Bathphenanthroline (20.0 mg, 30 

mol%), 2-cycloheptyl-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A11) (51.6 mg, 0.2 

mmol, 1.0 equiv), KH2PO4 (0.4 mmol, 2.0 equiv), KF (0.4 mmol, 2.0 equiv), Togni’s 

reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product could not be isolated due 

to its volatility, 1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) was added as an 

internal standard for 19F NMR analysis. (58% yield – average of two trials: 58% yield 

and 57% yield). 19F NMR (376 MHz, Acetone) δ -74.06 (d, J = 6.3 Hz) ppm. Data in 

agreement with published values.[16]  

 
2-((4-(trifluoromethyl)cyclohexyl)methyl)isoindoline-1,3-dione (14) Prepared 

following general procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 

mol%), Phenanthroline (10.8 mg, 30 mol%), 2-((4-(2-methyl-4-oxo-1,2,3,4-

tetrahydroquinazolin-2-yl)cyclohexyl)methyl)isoindoline-1,3-dione (A12) (80.6 mg, 

0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) 

and 8.0 mL of Acetone. Product was obtained as a colorless liquid (40.3 mg, 65% yield) 

by using Hexane/DCM (1:5) as eluent. (65% 19F NMR yield against internal standard). 

Mixture of two isomers (cis : trans = 1:3.3). 19F NMR (376 MHz, CDCl3) δ -71.86 – -

72.18 (br), -73.89 (d, J = 8.0 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 8.03 – 7.75 (m, 

2H), 7.78 – 7.54 (m, 2H), 3.61 (dd, J = 55.0, 7.3 Hz, 2H), 2.21 – 1.45 (m, 7H), 1.37 – 

0.97 (m, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 168.5, 168.4, 133.9, 132.0, 131.9, 

127.9 (q, J = 277.7 Hz), 127.6 (q, J = 277.2 Hz), 123.2, 43.5, 40.2, 41.6 (q, J = 26.7 

Hz), 40.4 (q, J = 26.2 Hz), 36.4, 32.3, 29.0, 26.1, 24.3 (q, J = 2.7 Hz), 20.5 (q, J = 2.7 

Hz) ppm. Spectral data was in agreement with the literature.[12] 
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4,6-dimethyl-2-(4-(trifluoromethyl)piperidin-1-yl)pyrimidine (15) Prepared 

following general procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 

mol%), Phenanthroline (10.8 mg, 30 mol%), 2-(1-(4,6-dimethylpyrimidin-2-

yl)piperidin-4-yl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A13) (70.2 mg, 0.2 

mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) 
and 8.0 mL of Acetone. Product was obtained as a colorless liquid (29.8 mg, 57% yield) 

by using Hexane/EtOAc (15:1) as eluent. (57% 19F NMR yield against internal 

standard). 19F NMR (376 MHz, CDCl3) δ -73.96 (d, J = 8.4 Hz) ppm. 1H NMR (400 

MHz, CDCl3) δ 6.27 (s, 1H), 4.98 (d, J = 15.0 Hz, 2H), 2.78 (td, J = 13.0, 2.7 Hz, 2H), 

2.29 – 2.27 (m, 7H), 2.00 – 1.86 (m, 2H), 1.68 – 1.43 (m, 2H) ppm. 13C NMR (101 

MHz, CDCl3) δ 167.2, 161.7, 127.5 (q, J = 278.3 Hz), 109.2, 42.8, 41.1 (q, J = 27.2 

Hz), 24.5 (q, J = 2.6 Hz), 24.2 ppm. IR (neat): 3009, 2948, 2866, 1570, 1492, 1436, 

1377, 1335, 1279, 1250, 1166, 1145, 1093, 1008, 819, 786, 698, 687 cm–1. HRMS 

calcd. for (C12H17F3N3) [M+H]+: 260.1375, found 260.1369. 

 
4-(trifluoromethyl)tetrahydro-2H-pyran (16) Prepared following general procedure 

A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline (10.8 

mg, 30 mol%), 2-methyl-2-(tetrahydro-2H-pyran-4-yl)-2,3-dihydroquinazolin-4(1H)-

one (A14) (49.2 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s reagent 

I (132.0 mg, 2.0 equiv) and 8.0 mL of Acetone. Product could not be isolated due to its 

volatility, 1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) was added as an internal 

standard for 19F NMR analysis. (80% yield – average of two entries: 79% yield and 81% 

yield). 19F NMR (376 MHz, Acetone) δ -75.36 (d, J = 8.5 Hz) ppm. Data in agreement 

with published values.[13]  

 
1-chloro-4-((1s,4s)-4-(trifluoromethyl)cyclohexyl)benzene (17) Prepared following 

general procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), 

Phenanthroline (10.8 mg, 30 mol%), (S)-2-((1s,4R)-4-(4-chlorophenyl)cyclohexyl)-2-

methyl-2,3-dihydroquinazolin-4(1H)-one (A15) (70.8 mg, 0.2 mmol, 1.0 equiv), 

BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 8.0 mL of 

Acetone. Product was obtained as a colorless solid (39.8 mg, 76% yield) by using 

Hexane as eluent. (70% 19F NMR yield against internal standard). Mixture of two 

isomers (cis : trans = 1:10). 19F NMR (376 MHz, CDCl3) δ -68.61(br), -73.86 (d, J = 
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8.0 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.34 – 7.25 (m, 2H), 7.21 – 7.08 (m, 2H), 

2.74 – 2.44 (m, 1H), 2.21 – 1.88 (m, 5H), 1.60 – 1.32 (m, 4H) ppm. 13C NMR (101 

MHz, CDCl3) δ 144.9, 132.0, 128.7, 128.5 (q, J = 13.2 Hz), 128.2, 43.0, 41.6 (q, J = 

26.6 Hz), 32.6, 29.0, 25.3 (q, J = 2.6 Hz), 23.2 ppm. IR (neat): 2943, 2871, 1493, 1454, 

1392, 1336, 1260, 1234, 1169, 1134, 1117, 1091, 1076, 1028, 1019, 995, 971, 903, 823 

cm–1. Mp: 40 °C. HRMS calcd. for (C13H14ClF3) [M].+: 262.0736, found 262.0734. 

Prepared following general procedure C, using 4-CzIPN (4.8 mg, 3 mol%), 

Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), diethyl 2-(4-chlorophenyl)-5-(2,6-

dimethyl-1,4-dihydropyridin-4-yl)cyclohexane-1,3-dicarboxylate (B3) (89.0 mg, 0.2 

mmol, 1.0 equiv), K2S2O8 (81.2 mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 

8.0 mL of CH3CN. Product was obtained as a colorless solid (27.2 mg, 52% yield) by 

using Hexane as eluent. (57% 19F NMR yield against internal standard). Mixture of two 

isomers (cis : trans = 1:6).  

 

1-fluoro-4-(2,2,2-trifluoroethyl)benzene (18) Prepared following general procedure 

A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), di(pyridin-2-

yl)methanone (11.0 mg, 30 mol%), 2-(4-fluorobenzyl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A16) (54.0 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 

mmol, 2.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product 

could not be isolated due to its volatility, 1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 
equiv) was added as an internal standard for 19F NMR analysis. (86% yield – average 

of two trials: 85% yield and 86% yield). 19F NMR (376 MHz, CDCl3) δ -66.40 (t, J = 

10.7 Hz), -114.05 – -114.48 (m) ppm. Spectral data was in agreement with the 

literature[18]. 

 

1-chloro-4-(2,2,2-trifluoroethyl)benzene (19) Prepared following general procedure 

A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), di(pyridin-2-

yl)methanone (11.0 mg, 30 mol%), 2-(4-chlorobenzyl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A17) (57.2 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 

mmol, 2.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product 
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was obtained as a colorless liquid (28.9 mg, 74% yield) by using Pentane as eluent. (84% 
19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -66.16 (t, J 

= 10.8 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.36 – 7.32 (m, 2H), 7.25 – 7.21 (m, 

2H), 3.34 (q, J = 10.7 Hz, 2H) ppm. 13C NMR (126 MHz, CDCl3) δ 134.4, 131.6, 

129.1, 128.73 (q, J = 2.9 Hz), 125.6 (q, J = 276.7 Hz), 39.8 (q, J = 30.0 Hz) ppm. 

Spectral data was in agreement with the literature.[18] 

 

1-bromo-4-(2,2,2-trifluoroethyl)benzene (20) Prepared following general procedure 

A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), di(pyridin-2-

yl)methanone (11.0 mg, 30 mol%), 2-(4-bromobenzyl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A18) (66.0 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 

mmol, 2.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product 

was obtained as a colorless liquid (23.6 mg, 50% yield) by using Pentane as eluent. (60% 
19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -62.90 (s), -

66.02 (t, J = 10.6 Hz)) ppm. 1H NMR (400 MHz, CDCl3) δ 7.56 – 7.42 (m, 2H), 7.22 

– 7.07 (m, 2H), 3.33 (q, J = 10.7 Hz, 2H) ppm. 13C NMR (126 MHz, CDCl3) δ 132.0, 

131.9, 129.2 (q, J = 3.1 Hz), 125.6 (q, J = 274.8 Hz), 39.8 (q, J = 29.6 Hz) ppm. Spectral 

data was in agreement with the literature.[19] 

 

4-(2,2,2-trifluoroethyl)phenyl acetate (21) Prepared following general procedure A 

using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), di(pyridin-2-yl)methanone 

(11.0 mg, 30 mol%), 4-((2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-

yl)methyl)phenyl acetate (A19) (62.0 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 mmol, 

2.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product was 

obtained as a colorless liquid (33.0 mg, 75% yield) by using Hexane/EtOAc (8:1) as 

eluent. (70% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) 

δ -66.12 (t, J = 10.7 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.35 – 7.27 (m, 2H), 7.09 

(d, J = 8.6 Hz, 2H), 3.36 (q, J = 10.8 Hz, 2H), 2.29 (s, 3H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 169.4, 150.5, 131.3, 127.7 (q, J = 2.9 Hz), 125.6 (q, J = 276.9 Hz), 121.9, 

39.6 (q, J = 29.9 Hz), 21.1 ppm. Spectral data was in agreement with the literature.[1] 
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4,4,5,5-tetramethyl-2-(4-(2,2,2-trifluoroethyl)phenyl)-1,3,2-dioxaborolane (22) 

Prepared following general procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 

mg, 20 mol%), di(pyridin-2-yl)methanone (11.0 mg, 30 mol%), 2-methyl-2-(4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-2,3-dihydroquinazolin-4(1H)-one (A20) 

(75.7 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 mmol, 2.0 equiv), Togni’s reagent I (132.0 

mg, 2.0 equiv) and 10.0 mL of DMF. Product was obtained as a colorless solid (36.6 

mg, 64% yield) by using Hexane/EtOAc (20:1) as eluent. (76% 19F NMR yield against 

internal standard). 19F NMR (376 MHz, CDCl3) δ -65.80 (t, J = 10.9 Hz) ppm. 1H 

NMR (400 MHz, CDCl3) δ 7.83 – 7.79 (m, 2H), 7.36 – 7.28 (m, 2H), 3.38 (q, J = 10.8 

Hz, 2H), 1.35 (s, 12H) ppm. 13C NMR (101 MHz, CDCl3) δ 135.2, 133.3 (q, J = 2.8 

Hz), 129.7, 125.8 (q, J = 276.6 Hz), 125.7, 84.1, 40.5 (q, J = 29.8 Hz), 25.0 ppm. 

Spectral data was in agreement with the literature.[14] 

 
1-methoxy-2-(2,2,2-trifluoroethyl)benzene (23) Prepared following general 

procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), di(pyridin-2-

yl)methanone (11.0 mg, 30 mol%), 2-(2-methoxybenzyl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A21) (56.4 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 

mmol, 2.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product 

was obtained as a colorless liquid (28.4 mg, 75% yield) by using Hexane/EtOAc (20:1) 

as eluent. (79% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) 

δ -65.62 (t, J = 10.9 Hz) ppm. 1H NMR (500 MHz, CDCl3) δ 7.36 – 7.22 (m, 2H), 7.06 

– 6.85 (m, 2H), 3.85 (s, 3H), 3.47 (q, J = 11.0 Hz, 2H) ppm. 13C NMR (126 MHz, 

CDCl3) δ 158.1, 131.8, 129.6, 126.2 (q, J = 277.6 Hz), 120.6, 119.0 (q, J = 2.8 Hz), 

111.0, 55.7, 33.5 (q, J = 30.3 Hz) ppm. Spectral data was in agreement with the 

literature.[14] 

 
1-(2,2,2-trifluoroethyl)-3-(trifluoromethyl)benzene (24) Prepared following general 

procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), di(pyridin-2-

yl)methanone (11.0 mg, 30 mol%), 2-methyl-2-(3-(trifluoromethyl)benzyl)-2,3-
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dihydroquinazolin-4(1H)-one (A22) (64.0 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 

mmol, 2.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product 

could not be isolated due to its volatility, 1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 
equiv) was added as an internal standard for 19F NMR analysis. (82% yield – average 

of two trials: 84% yield and 80% yield). 19F NMR (376 MHz, CDCl3) δ -62.90, -66.03 

(t, J = 10.6 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.66 – 7.47 (m, 4H), 3.44 (q, J = 

10.6 Hz, 2H) ppm. Spectral data was in agreement with the literature. [14] 

 
2-(2,2,2-trifluoroethyl)naphthalene (25) Prepared following general procedure A 

using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), di(pyridin-2-yl)methanone 

(11.0 mg, 30 mol%), 2-methyl-2-(naphthalen-2-ylmethyl)-2,3-dihydroquinazolin-

4(1H)-one (A23) (60.4 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 mmol, 2.0 equiv), 

Togni’s reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product was obtained as 

a white solid (30.8 mg, 73% yield) by using Hexane as eluent. (75% 19F NMR yield 

against internal standard). 19F NMR (376 MHz, CDCl3) δ -65.70 (t, J = 10.9 Hz) ppm. 
1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 9.7 Hz, 3H), 7.79 (s, 1H), 7.58 – 7.52 (m, 

2H), 7.48 – 7.39 (m, 1H), 3.55 (q, J = 10.8 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) 

δ 133.4, 133.0, 129.6, 128.5, 127.9, 127.7, 126.6, 126.5, 125.9 (q, J = 277.1 Hz), 40.5 

(q, J = 29.7 Hz) ppm. Spectral data was in agreement with the literature.[14] 

 
3-(2,2,2-trifluoroethyl)benzo[b]thiophene (26) Prepared following general procedure 

A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), di(pyridin-2-

yl)methanone (11.0 mg, 30 mol%), 2-(benzo[b]thiophen-3-ylmethyl)-2-methyl-2,3-

dihydroquinazolin-4(1H)-one (A24) (61.6 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 

mmol, 2.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product 

was obtained as a colorless solid (33.7 mg, 78% yield) by using Hexane/EtOAc (50:1) 

as eluent. (80% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) 

δ -65.20 (t, J = 10.6 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.96 – 7.84 (m, 1H), 7.83 

– 7.70 (m, 1H), 7.54 – 7.32 (m, 3H), 3.66 (qd, J = 10.6, 0.8 Hz, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 140.2, 138.6, 126.8, 125.7 (q, J = 29.7 Hz), 124.8, 124.7 (q, J = 

3.0 Hz), 124.6, 123.0, 121.6, 33.3 (q, J = 31.3 Hz) ppm. Spectral data was in agreement 

with the literature.[14] 
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2,2-difluoro-5-(1-(trifluoromethyl)cyclopropyl)benzo[d][1,3]dioxole (27) Prepared 

following general procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 

mol%), Bathphenanthroline (20.0 mg, 30 mol%), 2-(1-(2,2-

difluorobenzo[d][1,3]dioxol-5-yl)cyclopropyl)-2-methyl-2,3-dihydroquinazolin-

4(1H)-one (A25) (71.6 mg, 0.2 mmol, 1.0 equiv), BTMG (34 µL, 1.0 equiv), Togni’s 
reagent I (132.0 mg, 2.0 equiv) and 10.0 mL of DMF. Product was obtained as a 

colorless liquid (37.8 mg, 71% yield) by using Hexane as eluent. (75% 19F NMR yield 

against internal standard). 19F NMR (376 MHz, CDCl3) δ -50.00 (s, 2F), -70.51 (s, 3F) 

ppm. 1H NMR (400 MHz, CDCl3) δ 7.19 (d, J = 8.1 Hz, 2H), 7.05 – 6.96 (m, 1H), 

1.42 – 1.33 (m, 2H), 1.08 – 0.96 (m, 2H).13C NMR (101 MHz, CDCl3) δ 143.8, 143.6, 

132.3, 131.8 (t, J = 255.7 Hz), 127.0, 126.2 (q, J = 273.5 Hz), 112.7, 109.3, 28.3 (q, J 

= 33.9 Hz), 10.2 (q, J = 2.3 Hz) ppm. Spectral data was in agreement with the 

literature.[14] 

 
1-methoxy-4-(1-(trifluoromethyl)cyclopropyl)benzene (28) Prepared following 

general procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), 

Bathphenanthroline (20.0 mg, 30 mol%), 2-(1-(4-methoxyphenyl)cyclopropyl)-2-

methyl-2,3-dihydroquinazolin-4(1H)-one (A26) (61.6 mg, 0.2 mmol, 1.0 equiv), 

KH2PO4 (0.4 mmol, 2.0 equiv), KF (0.4 mmol, 2.0 equiv), Togni’s reagent I (132.0 mg, 

2.0 equiv) and 10.0 mL of DMF. Product was obtained as a colorless liquid (34.7 mg, 

80% yield) by using Hexane/EtOAc (20:1) as eluent. (83% 19F NMR yield against 

internal standard). 19F NMR (376 MHz, CDCl3) δ -70.51(s) ppm. 1H NMR (400 MHz, 

CDCl3) δ 7.44 – 7.35 (m, 2H), 6.91 – 6.85 (m, 2H), 3.81 (s, 3H), 1.40 – 1.27 (m, 2H), 

1.01 – 0.98 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 159.6, 132.6, 128.3, 126.6 

(q, J = 273.3 Hz), 113.8, 55.4, 27.5 (q, J = 33.5 Hz), 9.9 (q, J = 2.3 Hz) ppm. Spectral 

data was in agreement with the literature.[14] 
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(1R,3s)-1-(2,2,2-trifluoroethyl)adamantane (29) Prepared following general 

procedure B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 2-

(((1S,3s)-adamantan-1-yl)methyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (A27) 

(74.5 mg, 0.2 mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 

1.0 equiv) and 10.0 mL of DMF. Product was obtained as a white solid (32.3 mg, 74% 

yield) by using Hexane as eluent. (76% 19F NMR yield against internal standard). 19F 

NMR (376 MHz, CDCl3) δ -58.87 (t, J = 12.3 Hz) ppm. 1H NMR (500 MHz, CDCl3) 

δ 1.98 (br s, 3H), 1.88 (q, J = 12.4 Hz, 2H), 1.75 – 1.62 (m, 12H) ppm. 13C NMR (126 

MHz, CDCl3) δ 127.3 (q, J = 279.3 Hz), 46.9 (q, J = 25.5 Hz), 42.3, 36.7, 28.5 ppm. 

Spectral data was in agreement with the literature.[14] 

 
tert-butyl 4-(2,2,2-trifluoroethyl)piperidine-1-carboxylate (30) Prepared following 

general procedure B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 

equiv), tert-butyl 4-((4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-

yl)methyl)piperidine-1-carboxylate (A28) (84.2 mg, 0.2 mmol, 1.0 equiv), Togni’s 

reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) and 10.0 mL of DMF. Product 
was obtained as a colorless oil (40.1 mg, 75% yield) by using Hexane/EtOAc (8:1) as 

eluent. (78% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) 

δ -63.41 (t, J = 11.3 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 4.14 – 3.97 (m, 2H), 2.82 

– 2.62 (m, 2H), 2.02 (qd, J = 11.3, 6.6 Hz, 2H), 1.87 – 1.68 (m, 3H), 1.44 (s, 9H), 1.21 

(m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 154.8, 126.9 (q, J = 277.3 Hz), 79.6, 

43.6, 40.2 (q, J = 27.4 Hz), 32.0, 30.7 (q, J = 2.5 Hz), 28.5 ppm. Spectral data was in 

agreement with the literature.[14] 

 
5,5,5-trifluoropentyl benzoate (31) Prepared following general procedure B using 4-

CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 4-(4-oxo-2-phenyl-

1,2,3,4-tetrahydroquinazolin-2-yl)butyl benzoate (A29) (80.0 mg, 0.2 mmol, 1.0 equiv), 

Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) and 10.0 mL of DMF. 

Product was obtained as a colorless liquid (34.9 mg, 71% yield) by using 

Hexane/EtOAc (20:1) as eluent. (71% 19F NMR yield against internal standard). 19F 

NMR (376 MHz, CDCl3) δ -66.48 (t, J = 10.8 Hz) ppm. 1H NMR (400 MHz, CDCl3) 

δ 8.08 – 8.00 (m, 2H), 7.64 – 7.54 (m, 1H), 7.45 (d, J = 8.2, 2H), 4.35 (t, J = 6.3 Hz, 
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2H), 2.24 – 2.09 (m, 2H), 1.90 – 1.81 (m, 2H), 1.79 – 1.67 (m, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 166.6, 133.1, 130.2, 129.6, 128.5, 127.1 (q, J = 276.3 Hz), 64.2, 

33.5 (q, J = 28.7 Hz), 27.9, 18.9 (q, J = 3.0 Hz) ppm. Spectral data was in agreement 

with the literature.[12] 

 
5-(3,3,3-trifluoropropyl)-2,3-dihydrobenzofuran (32) Prepared following general 

procedure B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 2-

(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one 

(A30) (74.0 mg, 0.2 mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG 

(34 µL, 1.0 equiv) and 10.0 mL of DMF. Product was obtained as a colorless liquid 
(26.0 mg, 60% yield) by using Hexane/EtOAc (20:1) as eluent. (65% 19F NMR yield 

against internal standard). 19F NMR (376 MHz, CDCl3) δ -66.73 (t, J = 10.7 Hz) ppm. 
1H NMR (400 MHz, CDCl3) δ 7.04 (d, J = 2.0 Hz, 1H), 6.93 (dd, J = 8.1, 2.0 Hz, 1H), 

6.73 (d, J = 8.1 Hz, 1H), 4.57 (t, J = 8.7 Hz, 2H), 3.20 (t, J = 8.7 Hz, 2H), 2.93 – 2.76 

(m, 2H), 2.47 – 2.24 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.8, 136.9, 133.6, 

133.4, 132.7 (q, J = 276.7 Hz), 130.7, 115.2, 77.1, 42.1 (q, J = 27.9 Hz), 35.6, 33.5 (q, 

J = 3.3 Hz) ppm. IR (neat): 2923, 1612, 1492, 1458, 1436, 1385, 1304, 1248, 1214, 

1120, 1103, 1082, 1034, 970, 940, 896, 846, 659, 548 cm–1. Mp: 66 °C. HRMS calcd. 

for (C11H12F3O) [M+H]+: 217.0840, found 217.0837. 

 

1,1,1-trifluorononadecane (33) Prepared following general procedure B using 4-

CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 2-octadecyl-2-phenyl-

2,3-dihydroquinazolin-4(1H)-one (A31) (95.2 mg, 0.2 mmol, 1.0 equiv), Togni’s 

reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) and 10.0 mL of DMF. Product 

was obtained as a colorless liquid (43.3 mg, 67% yield) by using Hexane as eluent. (71% 
19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -66.61 (t, J 

= 11.0 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 2.12 – 1.98 (m, 2H), 1.55 (qd, J = 6.8, 

4.0 Hz, 2H), 1.38 – 1.27 (m, 30H), 0.89 (t, J = 6.8 Hz, 3H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 127.5 (q, J = 276.2 Hz), 33.9 (q, J = 28.3 Hz), 32.1, 29.9, 29.88, 29.86, 29.81, 

29.7, 29.5, 29.3, 28.9, 22.8, 22.0 (q, J = 2.7 Hz), 14.2 ppm. IR (neat): 2022, 2853, 1466, 

1254, 1140 cm–1. GCMS calcd. for (C19H37F3) [M]·+: 322,2847, found 322,2. 
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(Z)-1,1,1-trifluorooctadec-9-ene (34) Prepared following general procedure B using 

4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), (Z)-2-(hexadec-8-en-1-

yl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (A32) (92.0 mg, 0.2 mmol, 1.0 equiv), 

Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) and 10.0 mL of DMF. 

Product was obtained as a colorless liquid (35.8 mg, 58% yield) by using Hexane as 

eluent. (68% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) 

δ -66.57 (t, J = 10.9 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 5.35 (qd, J = 4.3, 2.6 Hz, 

2H), 2.34 – 1.94 (m, 6H), 1.67 – 1.48 (m, 2H), 1.46 – 1.27 (m, 20H), 0.95 – 0.75 (m, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 130.1, 129.6, 127.3 (q, J = 276.3 Hz), 33.7 

(q, J = 28.3 Hz), 31.9, 29.7, 29.6, 29.5, 29.3, 29.1, 28.9, 28.6, 27.2, 27.1, 22.6, 21.8 (q, 

J = 2.9 Hz), 14.0 ppm. Spectral data was in agreement with the literature.[14] 

 
7,7,7-trifluoro-1-morpholinoheptan-1-one (35) Prepared following general 

procedure B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy(85.2 mg, 1.0 equiv), 2-(6-

morpholino-6-oxohexyl)-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (A33) (8.4 mg, 

0.2 mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) 
and 10.0 mL of DMF. Product was obtained as a colorless liquid (25.7 mg, 51% yield) 

by using Hexane/EtOAc (1:2) as eluent. (48% 19F NMR yield against internal standard). 
19F NMR (376 MHz, CDCl3) δ -66.49 (t, J = 11.0 Hz) ppm. 1H NMR (400 MHz, 

CDCl3) δ 3.66 – 3.56 (m, 6H), 3.43 (t, J = 4.8 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 2.13 – 

1.98 (m, 2H), 1.69 – 1.50 (m, 4H), 1.47 – 1.35 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 171.2, 127.1 (q, J = 276.3 Hz), 66.9, 66.6, 45.9, 41.8, 33.5 (q, J = 28.4 Hz), 

32.5, 28.4, 24.6, 21.7 (q, J = 2.9 Hz) ppm. IR (neat): 2948, 2859, 1614, 1432, 1390, 

1253, 1114, 1068, 1029, 921, 849, 731, 654, 571 cm–1. HRMS calcd. for (C11H19F3NO2) 

[M+H]+: 254.1368, found 254.1362. 

 
5,5,5-trifluoropentyl 3-(methylthio)propanoate (36) Prepared following general 

procedure B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 4-

(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)butyl 3-(methylthio)propanoate 
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(A34) (79.6 mg, 0.2 mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG 

(34 µL, 1.0 equiv) and 10.0 mL of DMF. Product was obtained as a colorless liquid 

(37.2 mg, 76% yield) by using Hexane/EtOAc (8:1) as eluent. (74% 19F NMR yield 

against internal standard). 19F NMR (376 MHz, CDCl3) δ -66.55 (t, J = 10.8 Hz) ppm. 
1H NMR (400 MHz, CDCl3) δ 4.12 (t, J = 6.2 Hz, 2H), 2.76 (d, J = 7.8 Hz, 2H), 2.62 

(t, J = 7.3, Hz, 2H), 2.14 – 2.07 (m, 5H), 1.77 – 1.56 (m, 4H) ppm. 13C NMR (101 

MHz, CDCl3) δ 172.0, 127.1 (q, J = 276.3 Hz), 63.9, 34.4, 33.4 (q, J = 28.6 Hz), 29.2, 

27.7, 18.7 (q, J = 3.1 Hz), 15.5 ppm. IR (neat): 2921, 1733, 1439, 1392, 1337, 1249, 

1135, 1073, 1038, 653 cm–1. HRMS calcd. for (C9H15F3NaO2S) [M+Na]+: 267.0643, 

found 267.0637. 

 
5,5,5-trifluoropentyl 5-chloropentanoate (37) Prepared following general procedure 

B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 4-(4-oxo-2-

phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)butyl 5-chloropentanoate (A35) (82.8 mg, 

0.2 mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) 

and 10.0 mL of DMF. Product was obtained as a colorless liquid (32.9 mg, 63% yield) 

by using Hexane/EtOAc (8:1) as eluent. (71% 19F NMR yield against internal standard). 
19F NMR (376 MHz, CDCl3) δ -66.57 (t, J = 10.8 Hz) ppm. 1H NMR (400 MHz, 

CDCl3) δ 4.09 (t, J = 6.2 Hz, 2H), 3.53 (t, J = 6.2 Hz, 2H), 2.42 – 2.29 (m, 2H), 2.21 – 

1.99 (m, 2H), 1.92 – 1.53 (m, 8H) ppm. 13C NMR (101 MHz, CDCl3) δ 173.1, 126.9 

(q, J = 276.3 Hz), 63.5, 44.3, 33.31, 33.30 (q, J = 28.7 Hz), 31.8, 27.6, 22.2, 18.6 (q, J 

= 3.1 Hz) ppm. IR (neat): 2960, 1732, 1461, 1393, 1254, 1136, 1074, 1038, 912, 733, 

652 cm–1. HRMS calcd. for (C10H16ClF3NaO2) [M+Na]+: 283.0689, found 283.0688. 

 
Phenyl(2,2,2-trifluoroethyl)sulfane (38) Prepared following general procedure C 

using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy(85.2 mg, 1.0 equiv), 2-phenyl-2-

((phenylthio)methyl)-2,3-dihydroquinazolin-4(1H)-one (A36) (69.2 mg, 0.2 mmol, 1.0 

equiv), K2S2O8 (81.2 mg, 1.5 equiv) and KH2PO4 (54.4 mg, 2.0 equiv) and 8.0 mL of 

CH3CN. Product was obtained as a yellow liquid (23.9 mg, 62% yield) by using Pentane 

as eluent. (74% 19F NMR yield against internal standard). 19F NMR (376 MHz, CD2Cl2) 

δ -66.88 (t, J = 9.7 Hz) ppm. 1H NMR (400 MHz, CD2Cl2) δ 7.53 – 7.48 (m, 2H), 7.37 

– 7.30 (m, 3H), 3.45 (q, J = 9.7 Hz, 2H) ppm. 13C NMR (101 MHz, CD2Cl2) δ 133.9, 

132.0, 129.4, 128.2, 125.5 (q, J = 276.5 Hz), 38.3 (q, J = 32.7 Hz) ppm. Spectral data 
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was in agreement with the literature.[20] 

 
2-(2,2,2-trifluoroethyl)isoindoline-1,3-dione (39) Prepared following general 

procedure C using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 2-

((2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)methyl)isoindoline-1,3-dione 

(A37) (64.2 mg, 0.2 mmol, 1.0 equiv), K2S2O8 (81.2 mg, 1.5 equiv) and KH2PO4 (54.4 

mg, 2.0 equiv) and 8.0 mL of CH3CN. Product was obtained as a yellow solid (35.6 mg, 

78% yield) by using Hexane/EtOAc (5:1) as eluent. (81% 19F NMR yield against 

internal standard). 19F NMR (376 MHz, CDCl3) δ -70.63 (t, J = 8.6 Hz) ppm. 1H NMR 

(400 MHz, CDCl3) δ 7.90 (dd, J = 5.5, 3.1 Hz, 2H), 7.77 (dd, J = 5.5, 3.1 Hz, 2H), 4.30 

(q, J = 8.6 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 166.8, 134.7, 131.6, 124.0, 

123.3 (q, J = 280.0 Hz), 39.0 (q, J = 36.5 Hz) ppm. Spectral data was in agreement with 

the literature.[12]  

 
3-(trifluoromethyl)heptane (40) Prepared following general procedure C using 4-

CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), Diethyl 4-

(heptan-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (B4) (70.2 mg, 0.3 

mmol, 1.5 equiv), K2S2O8 (81.2 mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 

8.0 mL of CH3CN. Product could not be isolated due to its volatility, 1,1,1-

trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) was added as an internal standard for 
19F NMR analysis. (48% yield – average of two trials: 48% yield and 47% yield). 19F 

NMR (376 MHz, Acetone) δ -70.57 (d, J = 9.9 Hz) ppm. 

 
1,1,1-trifluorododecane (41) Prepared following general procedure C using 4-CzIPN 

(4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), diethyl 2,6-dimethyl-

4-undecyl-1,4-dihydropyridine-3,5-dicarboxylate (B5) (122.1 mg, 0.3 mmol, 1.5 

equiv), K2S2O8 (81.2 mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of 

CH3CN. Product was obtained as a liquid (23.2 mg, 52% yield) by using Pentane as 

eluent. (58% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) 

δ -66.55 (t, J = 11.0 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 2.14 – 1.98 (m, 2H), 1.66 

– 1.49 (m, 2H), 1.41 – 1.20 (m, 16H), 0.88 (t, J = 6.7 Hz, 3H) ppm. 13C NMR (101 

MHz, CDCl3) δ 127.4 (q, J = 276.2 Hz), 33.9 (q, J = 28.2 Hz), 32.0, 29.73, 29.71, 29.5, 
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29.4, 29.3, 28.8, 22.8, 22.0 (q, J = 2.9 Hz), 14.2 ppm. Spectral data was in agreement 

with the literature.[21] 

Prepared following general procedure D using Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 

equiv), methyl 6-acetoxy-4-decyl-4-methyl-1,4-dihydropyridazine-3-carboxylate (C9) 

(105.6 mg, 0.3 mmol, 1.5 equiv), Togni’s reagent I (33.0 mg, 0.5 equiv) and BTMG 

(16.8 mg, 0.5 equiv) and 8.0 mL of Acetone. Product was obtained as a liquid (23.0 mg, 

51% yield) by using pentane as eluent. (59% 19F NMR yield against internal standard). 

 

2,2,2-trifluoro-1-morpholinoethan-1-one (42) Prepared following general procedure 

C using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), 

diethyl 2,6-dimethyl-4-(morpholine-4-carbonyl)-1,4-dihydropyridine-3,5-

dicarboxylate (B6) (73.2 mg, 0.2 mmol, 1.0 equiv), K2S2O8 (81.2 mg, 1.5 equiv) and 

NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of CH3CN. Product was obtained as a 

colorless oil (19.8 mg, 54% yield) by using Hexane/EtOAc (2:1) as eluent. (62% 19F 

NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -69.12 (s) ppm. 
1H NMR (400 MHz, CDCl3) δ 3.77 – 3.65 (m, 6H), 3.61 (t, J = 4.7 Hz, 2H) ppm. 13C 

NMR (126 MHz, CDCl3) δ 155.6 (q, J = 35.8 Hz), 116.4 (q, J = 287.9 Hz), 66.5 (d, J 

= 4.1 Hz), 46.4 (d, J = 3.3 Hz), 43.6 ppm. Spectral data was in agreement with the 

literature.[22] 

 
Methyl (2,2,2-trifluoroacetyl)-L-phenylalaninate (43) Prepared following general 

procedure C using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 

equiv), diethyl 4-{[(2S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]carbamoyl}-2,6- 

dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (B7) (137.4 mg, 0.3 mmol, 1.5 equiv), 

K2S2O8 (81.2 mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of CH3CN. 

Product was obtained as a colorless liquid (31.7 mg, 58% yield) by using 

Hexane/EtOAc (5:1) as eluent. (59% 19F NMR yield against internal standard). 19F 

NMR (376 MHz, CDCl3) δ -76.06 (s) ppm. 1H NMR (400 MHz, CDCl3) δ 7.36 – 7.26 

(m, 3H), 7.14 – 7.04 (m, 2H), 6.75 (s, 1H), 4.88 (dt, J = 7.8, 5.5 Hz, 1H), 3.79 (s, 3H), 

3.21 (qd, J = 14.0, 5.6 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 170.5, 156.6 (q, 

J = 37.7 Hz), 134.6, 129.3, 128.9, 127.7, 115.6 (q, J = 287.6 Hz), 53.6, 52.9, 37.4 ppm. 
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Spectral data was in agreement with the literature.[23] 

 

1-(tert-butyl)-4-(3,3,3-trifluoro-2-methylpropyl)benzene (44) Prepared following 

general procedure C using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 0.2mmol, 

1.0 equiv), diethyl 4-(1-(4-(tert-butyl)phenyl)propan-2-yl)-2,6-dimethyl-1,4-

dihydropyridine-3,5-dicarboxylate (B8) (85.5 mg, 0.3 mmol, 1.5 equiv), K2S2O8 (81.2 

mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of CH3CN. Product was 

obtained as a liquid (30.7 mg, 63% yield) by using Hexane as eluent. (64% 19F NMR 

yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -73.60 (d, J = 8.0 Hz) 

ppm. 1H NMR (400 MHz, CDCl3) δ 7.44 – 7.29 (m, 2H), 7.16 – 6.94 (m, 2H), 3.12 – 

3.05 (m, 1H), 2.71 – 2.34 (m, 2H), 1.32 (s, 9H), 1.03 (d, J = 6.4 Hz, 3H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 149.6, 135.2, 128.9, 128.4 (q, J = 279.5 Hz), 125.6, 40.1 (q, J = 

26.0 Hz), 35.2 (q, J = 2.8 Hz), 34.5, 31.5, 12.3 (q, J = 2.8 Hz) ppm. IR (neat): 2964, 

2870, 1514, 1465, 1376, 1265, 1167, 1121, 1093, 1012, 854, 838, 809, 642, 577, 548 

cm–1. HRMS calcd. for (C14H18F3) [M-H]+: 243.1361, found 243.1354.  

 

5-(3,3,3-trifluoro-2-methylpropyl)benzo[d][1,3]dioxole (45) Prepared following 

general procedure C using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 0.2mmol, 

1.0 equiv), diethyl 4-(1-(benzo[d][1,3]dioxol-5-yl)propan-2-yl)-2,6-dimethyl-1,4-

dihydropyridine-3,5-dicarboxylate (B9) (124.5 mg, 0.3 mmol, 1.5 equiv), K2S2O8 (81.2 

mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of CH3CN. Product was 

obtained as a liquid (37.1 mg, 80% yield) by using Hexane/EtOAc (50:1) as eluent. (84% 
19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -73.51 (d, J 

= 8.2 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 7.9 Hz, 1H), 6.68 – 6.54 

(m, 2H), 5.94 (s, 2H), 3.04 – 3.01 (m, 1H), 2.60 – 2.30 (m, 2H), 1.05 (d, J = 6.8 Hz, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 147.9, 146.4, 131.9, 128.2 (q, J = 279.6 Hz), 

122.2, 109.4, 108.4, 101.1, 40.3 (q, J = 25.9 Hz), 35.5 (q, J = 2.8 Hz), 12.1 (q, J = 2.8 

Hz) ppm. IR (neat): 2892, 1504, 1491, 1467, 1443, 1377, 1247, 1168, 1120, 1093, 

1038, 1011, 930, 860, 810, 792, 673, 617, 506, 424 cm–1. HRMS calcd. for (C11H12F3O2) 

[M+H]+: 233.0789, found 233.0782. 
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(2,2,2-trifluoroethyl)benzene (46) Prepared following general procedure D using 

Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), dimethyl 4-benzyl-1,4-

dihydropyridazine-3,6-dicarboxylate (C4) (86.5 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL 

of Acetone. Product could not be isolated due to its volatility, 1-fluoro-3-nitrobenzene 

(20 µL, 0.19 mmol, 0.94 equiv) was added as an internal standard for 19F NMR analysis. 
(70% yield – average of two trials: 70% yield and 69% yield). 19F NMR (376 MHz, 

Acetone) δ -66.66 (t, J = 11.3 Hz) ppm. 

(2,2,2-trifluoroethyl)benzene (46) Prepared following general procedure D using 

Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), dimethyl 4-benzyl-4-methyl-1,4-

dihydropyridazine-3,6-dicarboxylate (C5) (60.5 mg, 0.2 mmol, 1.0 equiv), and 4.0 mL 

of Acetone. Product could not be isolated due to its volatility, 1-fluoro-3-nitrobenzene 

(20 µL, 0.19 mmol, 0.94 equiv) was added as an internal standard for 19F NMR analysis. 

(70% yield – average of two trials: 69% yield and 71% yield). 19F NMR (376 MHz, 

Acetone) δ -66.6 (d, J = 11.3 Hz) ppm. 

 
4-(2,2,2-trifluoroethyl)phenyl benzoate (47) Prepared following general procedure D 

using Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), dimethyl 4-(4-

(benzoyloxy)benzyl)-4-methyl-1,4-dihydropyridazine-3,6-dicarboxylate (C6) (84.5 

mg, 0.2 mmol, 1.0 equiv), and 4.0 mL of Acetone. Product was obtained as a white 

solid (36.5 mg, 0.13 mmol, 65% yield) by using 3% acetone/hexane as eluent. (66% 
19F NMR yield against internal standard). 19F NMR (471 MHz, CDCl3) δ -65.98 (t, J 

= 10.9 Hz) ppm. 1H NMR (500 MHz, CDCl3) δ 8.21 (d, J = 7.0 Hz, 2H), 7.68 – 7.62 

(m, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 

3.40 (q, J = 10.7 Hz, 2H) ppm. 13C NMR (126 MHz, CDCl3) δ 165.2, 151.0, 133.9, 

131.5, 130.4, 129.5, 128.8, 127.9 (q, J = 2.8 Hz), 125.8 (q, J = 276.8 Hz), 122.2, 39.8 

(q, J = 30.1 Hz) ppm. IR (neat): 3068, 2958, 2924, 2855, 1738, 1718, 1600, 1510, 1453, 

1366, 1252, 1201, 1136, 1110, 1078, 1059, 1024, 911, 711, 649, 527 cm–1. Mp: 89.7 °C. 

HRMS calcd. for (C15H11F3NaO2) [M+Na]+: 303.0603, found 303.0590. 

 

1,2-dimethoxy-4-(2,2,2-trifluoroethyl)benzene (48) Prepared following general 

procedure D using Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), dimethyl 4-(3,4-

dimethoxybenzyl)-1,4-dihydropyridazine-3,6-dicarboxylate (C7) (104.5 mg, 0.3 mmol, 
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1.5 equiv), and 4.0 mL of Acetone. Product was obtained as a colorless oil (27.0 mg, 

0.12 mmol, 61% yield) by using 5% acetone/hexane as eluent. (66% 19F NMR yield 

against internal standard). 19F NMR (471 MHz, CDCl3) δ -66.20 (t, J = 11.0 Hz) ppm. 
1H NMR (500 MHz, CDCl3) δ 6.84 (s, 2H), 6.79 (s, 1H), 3.88 (s, 3H), 3.88 (s, 3H), 

3.30 (q, J = 10.8 Hz, 2H) ppm. 13C NMR (126 MHz, CDCl3) δ 149.1, 149.1, 126.0 (q, 

J = 276.7 Hz), 122.7, 122.6 (q, J = 3.1 Hz), 113.3, 111.3, 56.0, 56.0, 39.9 (q, J = 29.6 

Hz) ppm. IR (neat): 2942, 2839, 1593, 1517, 1466, 1422, 1362, 1258, 1237, 1131, 

1082, 1027, 908, 808, 751, 673 cm–1. HRMS calcd. for (C10H11F3NaO2) [M+Na]+: 

243.0603, found 243.0596. 

 
Methyl (R)-2-phenyl-2-(4-(2,2,2-trifluoroethyl)benzamido)acetate (49) Prepared 

following general procedure D using Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), 

Dimethyl 4-(4-(((R)-2-methoxy-2-oxo-1-phenylethyl)carbamoyl)benzyl)-1,4-

dihydropyridazine-3,6-dicarboxylate (C8) (143.7 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL 

of Acetone. Product was obtained as a white soild (30.3 mg, 43% yield) by using 

Hexane/EtOAc (2:1) as eluent. (43% 19F NMR yield against internal standard). 19F 

NMR (376 MHz, CDCl3) δ -65.76 (t, J = 10.9 Hz) ppm. 1H NMR (400 MHz, CDCl3) 

δ 7.82 (d, J = 8.5 Hz, 2H), 7.47 – 7.42 (m, 2H), 7.41 – 7.33 (m, 5H), 7.16 (d, J = 6.7 

Hz, 1H), 5.77 (d, J = 6.9 Hz, 1H), 3.77 (s, 3H), 3.42 (q, J = 10.6 Hz, 2H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 171.6, 166.1, 136.6, 134.2 (q, J = 3.1 Hz), 133.6, 130.6, 

129.2, 128.8, 127.7, 127.5, 125.6 (q, J = 277.0 Hz), 56.9, 53.1, 40.2 (q, J = 30.0 Hz) 

ppm. IR (neat): 3315, 2957, 1742, 1642, 1616, 1575, 1529, 1507, 1498, 1454, 1437, 

1361, 1209, 1094, 1023, 989, 943, 829, 766, 729, 696, 667, 631, 553, 471 cm–1. Mp: 

114 °C. HRMS calcd. for (C18H17F3NO3) [M+H]+: 352,1161, found 352,1158. 

 
2-(2,2,2-trifluoroethyl)dibenzo[b,e]oxepin-11(6H)-one (50) Prepared following 

general procedure A using 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), 

di(pyridin-2-yl)methanone (11.0 mg, 30 mol%), 2-methyl-2-((11-oxo-6,11-

dihydrodibenzo[b,e]oxepin-2-yl)methyl)-2,3-dihydroquinazolin-4(1H)-one (A38) 

(76.8 mg, 0.2 mmol, 1.0 equiv), KH2PO4 (0.4 mmol, 2.0 equiv), Togni’s reagent I (132.0 

mg, 2.0 equiv) and 10.0 mL of DMF. Product was obtained as a white solid (43.6 mg, 
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75% yield) by using Hexane/EtOAc (10:1) as eluent. (79% 19F NMR yield against 

internal standard). 19F NMR (376 MHz, CDCl3) δ -66.17 (s) ppm. 1H NMR (400 MHz, 

CDCl3) δ 8.17 (d, J = 2.4 Hz, 1H), 7.89 (dd, J = 7.7, 1.4 Hz, 1H), 7.55 (td, J = 7.4, 1.4 

Hz, 1H), 7.47 (td, J = 7.6, 1.3 Hz, 1H), 7.41 (dd, J = 8.6, 2.4 Hz, 1H), 7.35 (dd, J = 7.5, 

1.3 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 5.18 (s, 2H), 3.38 (q, J = 10.7 Hz, 2H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 190.9, 161.3, 140.5, 136.7, 135.5, 133.8, 133.1, 129.7, 

129.5, 128.0, 125.4, 125.8 (q, J = 277.1 Hz), 124.0 (q, J = 2.9 Hz), 121.5, 73.8, 39.5 (q, 

J = 30.1 Hz) ppm. Spectral data was in agreement with the literature.[12] 

 
4-(trifluoromethyl)cyclohexyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-

indol-3-yl)acetate (51) Prepared following general procedure A using 4-CzIPN (4.8 

mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline (10.8 mg, 30 mol%), 4-(2-

methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)cyclohexyl 2-(1-(4-chlorobenzoyl)-5-

methoxy-2-methyl-1H-indol-3-yl)acetate (A39) (119.9 mg, 0.2 mmol, 1.0 equiv), 

BTMG (34 µL, 1.0 equiv), Togni’s reagent I (132.0 mg, 2.0 equiv) and 8.0 mL of 

Acetone. Product was obtained as a yellow liquid (45.7 mg, 45% yield) by using 

Hexane/EtOAc (6:1) as eluent. (45% 19F NMR yield against internal standard). Mixture 

of two isomers (cis : trans = 1:1). trans-diastereomer: 19F NMR (376 MHz, CDCl3) 

δ -73.61 (d, J = 8.0 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.6 Hz, 2H), 

7.47 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 2.5 Hz, 1H), 6.87 (d, J = 9.0 Hz, 1H), 6.67 (dd, J 

= 9.0, 2.5 Hz, 1H), 4.70 (d, J = 4.4 Hz, 1H), 3.83 (s, 3H), 3.64 (s, 2H), 2.38 (s, 3H), 

2.16 – 1.90 (m, 5H), 1.53 – 1.29 (m, 4H) ppm. 13C NMR (101 MHz, CDCl3) δ 170.3, 

168.4, 156.1, 139.4, 136.0, 134.0, 131.3, 130.9, 130.7, 129.2, 127.5 (q, J = 278.7 Hz), 

115.0, 112.7, 111.7, 101.5, 72.6, 55.8, 40.9 (q, J = 27.0 Hz), 30.7, 30.1, 23.3 (q, J = 2.5 

Hz), 13.5 ppm. cis-diastereomer (assign by X-ray): 19F NMR (376 MHz, CDCl3) δ -

73.99 (d, J = 8.5 Hz) ppm. 1H NMR (500 MHz, CDCl3) δ 7.78 – 7.57 (m, 2H), 7.46 

(d, J = 8.5 Hz, 2H), 6.97 (d, J = 2.5 Hz, 1H), 6.84 (d, J = 9.0 Hz, 1H), 6.66 (dd, J = 9.0, 

2.6 Hz, 1H), 5.05 (t, J = 2.9 Hz, 1H), 3.82 (s, 3H), 3.68 (s, 2H), 2.42 (s, 3H), 2.07 – 

1.86 (m, 3H), 1.69 (dd, J = 12.0, 3.8 Hz, 2H), 1.57 – 1.35 (m, 4H) ppm. 13C NMR (126 

MHz, CDCl3) δ 170.2, 168.3, 156.2, 139.4, 135.9, 134.0, 131.2, 130.9, 130.6, 129.2, 
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127.5 (q, J = 278.6 Hz), 115.1, 112.8, 111.8, 101.3, 68.7, 55.7, 41.0 (q, J = 26.8 Hz), 

30.9, 28.5, 19.5 (q, J = 2.7 Hz), 13.3 ppm. IR (neat): 2946, 2872, 1672, 1592, 1470, 

1456, 1355, 1169, 1124, 1086, 1002, 912, 856, 825, 725, 688, 635, 599, 481 cm–1. Mp: 

132 °C. HRMS calcd. for (C26H25ClF3NNaO4) [M+Na]+: 530.1322, found 530.1314. 

 
(3R,5S,7R,8R,9S,10S,13R,14S)-10,13-dimethyl-17-((R)-5,5,5-trifluoropentan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,7-diol (52) Prepared following 

general procedure B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 

equiv), 2-((3R)-3-((3R,5S,7R,8R,9S,10S,13R,14S)-3,7-dihydroxy-10,13-

dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)butyl)-2-phenyl-2,3-

dihydroquinazolin-4(1H)-one (A40) (114.01 mg, 0.2 mmol, 1.0 equiv), Togni’s reagent 

I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) and 10.0 mL of DMF. Product was 
obtained as a colorless oil (51.0 mg, 61% yield) by using Hexane/EtOAc (1:2) as eluent. 

(63% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) -66.47 

(t, J = 10.9 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 3.84 (q, J = 3.0 Hz, 1H), 3.45 

(ddd, J = 11.1, 6.6, 4.4 Hz, 1H), 2.20 (td, J = 13.1, 11.3 Hz, 1H), 2.13 – 2.04 (m, 1H), 

2.01 – 1.77 (m, 7H), 1.75 – 1.59 (m, 5H), 1.55 – 1.09 (m, 14H), 0.96 – 0.87 (m, 6H), 

0.66 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 127.6 (q, J = 276.2 Hz), 71.9, 68.4, 

55.4, 50.4, 42.6, 41.4, 39.8, 39.6, 39.4, 35.3, 35.0, 34.7, 34.6, 32.8, 30.6, 30.4 (q, J = 

28.1 Hz), 28.0, 27.6 (q, J = 2.6 Hz), 23.6, 22.7, 20.5, 18.2, 11.7 ppm. IR (neat): 3379, 

2927, 2865, 1447, 1378, 1254,1141, 1077, 1001, 978, 906, 733 cm–1. Mp: 74 °C. 

HRMS calcd. for (C24H39F3NaO2) [M+Na]+: 439.2800, found 439.2794. 

 
5,5,5-trifluoropentyl 3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoate (53) 

Prepared following general procedure B using 4-CzIPN (4.8 mg, 3 mol%), 

Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 4-(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-

yl)butyl 4-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)benzoate (A41) (112.4 mg, 0.2 

mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) 

and 10.0 mL of DMF. Product was obtained as a white solid (47.3 mg, 58% yield) by 

using Hexane/EtOAc (5:1) as eluent. (61% 19F NMR yield against internal standard). 
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19F NMR (376 MHz, CDCl3) δ -66.42 (t, J = 10.8 Hz, 3F), -108.29 (ddd, J = 11.2, 6.7, 

4.8 Hz, 1F) ppm. 1H NMR (400 MHz, CDCl3) δ 8.83 (td, J = 1.8, 0.6 Hz, 1H), 8.39 

(dt, J = 7.8, 1.5 Hz, 1H), 8.29 – 8.15 (m, 2H), 7.66 – 7.57 (m, 2H), 7.45 – 7.27 (m, 2H), 

4.41 (t, J = 6.4 Hz, 2H), 2.27 – 2.09 (m, 2H), 1.90 (dt, J = 8.7, 6.5 Hz, 2H), 1.83 – 1.68 

(m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 173.2 (d, J = 4.4 Hz), 168.2, 165.9, 160.9 

(d, J = 260.6 Hz), 134.9 (d, J = 8.6 Hz), 132.3, 132.0, 131.2, 131.1, 129.2, 128.8, 127.4, 

127.1 (q, J = 276.3 Hz), 124.9 (d, J = 3.7 Hz), 117.3 (d, J = 20.9 Hz), 112.8 (d, J = 11.4 

Hz), 64.6, 33.5 (q, J = 28.7 Hz), 28.0, 18.9 (q, J = 3.1 Hz) ppm. IR (neat): 2964, 1714, 

1620, 1598, 1556, 1470, 1418, 1390, 1296, 1253, 1218, 1136, 1106, 1037, 925, 882, 

824, 783, 769, 747, 670, 651, 545 cm–1. Mp: 82 °C. HRMS calcd. for (C20H17F4N2O3) 

[M+H]+: 409.1175, found 409.1170. 

 
5,5,5-trifluoropentyl (E)-6-(4-acetoxy-6-methoxy-7-methyl-3-oxo-1,3-

dihydroisobenzofuran-5-yl)-4-methylhex-4-enoate (54) Prepared following general 

procedure B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 4-

(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)butyl (E)-6-(4-acetoxy-6-methoxy-

7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enoate (A42) (128.0 

mg, 0.2 mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 
equiv) and 10.0 mL of DMF. Product was obtained as a liquid (40.7 mg, 42% yield) by 

using Hexane/EtOAc (4:1) as eluent. (46% 19F NMR yield against internal standard). 
19F NMR (376 MHz, CDCl3) δ -66.11 (t, J = 10.9 Hz) ppm. 1H NMR (400 MHz, 

CDCl3) δ 5.13 (s, 2H), 5.10 (t, J = 6.9 Hz, 1H), 4.04 (t, J = 6.2 Hz, 2H), 3.78 (s, 3H), 

3.34 (d, J = 7.0 Hz, 2H), 2.43 – 2.35 (m, 5H), 2.29 – 2.25 (m, 2H), 2.21 (s, 3H), 2.14 – 

2.02 (m, 2H), 1.77 (s, 3H), 1.72 – 1.55 (m, 4H) ppm. 13C NMR (101 MHz, CDCl3) δ 

173.2, 169.0, 168.4, 162.8, 146.3, 146.0, 134.6, 129.2, 127.1 (q, J = 276.2 Hz), 123.1, 

122.3, 113.6, 68.5, 63.6, 61.3, 34.5, 33.4 (q, J = 28.6 Hz), 32.9, 27.7, 23.6, 20.6, 18.7 

(q, J = 3.3 Hz), 16.3, 11.9 ppm. IR (neat): 2950, 1760, 1732, 1617, 1470, 1390, 1358, 

1317, 1293, 1255, 1186, 1127, 1068, 1032, 1008, 967, 950, 921, 888, 733, 651, 539 cm–

1. HRMS calcd. for (C24H29F3NaO7) [M+Na]+: 509,1763, found 509,1766. 
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3,7-dimethyl-1-(5,5,5-trifluoropentyl)-3,7-dihydro-1H-purine-2,6-dione (55) 

Prepared following general procedure B using 4-CzIPN (4.8 mg, 3 mol%), 

Cu(CF3)3bpy (85.2 mg, 1.0 equiv), 3,7-dimethyl-1-(4-(2-methyl-4-oxo-1,2,3,4-

tetrahydroquinazolin-2-yl)butyl)-3,7-dihydro-1H-purine-2,6-dione (A43) (79.2 mg, 0.2 

mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 equiv), BTMG (34 µL, 1.0 equiv) 
and 10.0 mL of DMF. Product was obtained as a liquid (15.8 mg, 26% yield) by using 

Hexane/EtOAc (1:3) as eluent. (25% 19F NMR yield against internal standard). 19F 

NMR (376 MHz, CDCl3) δ -66.50 (t, J = 10.9 Hz) ppm. 1H NMR (400 MHz, CDCl3) 

7.50 (s, 1H), 4.07 – 3.98 (m, 2H), 3.98 (s, 3H), 3.57 (s, 3H), 2.26 – 2.06 (m, 2H), 1.78 

– 1.70 (m, 2H), 1.68 – 1.57 (m, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 155.4, 151.6, 

148.9, 141.6, 127.2 (q, J = 276.3 Hz), 107.8, 40.7, 33.7, 33.6 (q, J = 86.0 Hz), 29.8, 

27.2, 19.5 (q, J = 2.9 Hz) ppm. Spectral data was in agreement with the literature.[24] 

 
4-(3,3,3-trifluoro-2-methylpropyl)phenyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-

methylpropanoate (56) Prepared following general procedure C using 4-CzIPN (4.8 

mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), Diethyl 4-(1-(4-((2-(4-(4-

chlorobenzoyl)phenoxy)-2-methylpropanoyl)oxy)phenyl)propan-2-yl)-2,6-dimethyl-

1,4-dihydropyridine-3,5-dicarboxylate (B10) (206.2 mg, 0.3 mmol, 1.5 equiv), K2S2O8 

(81.2 mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of CH3CN. Product 

was obtained as a liquid (68.7 mg, 68% yield) by using Hexane/EA (4:1) as eluent. (68% 
19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -73.48 (d, J 

= 8.6 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 9.0 Hz, 2H), 7.72 (d, J = 

8.8 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 7.17 (d, J = 8.6 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H), 

6.94 (d, J = 8.7 Hz, 2H), 3.10 – 3.06 (m, 1H), 2.53 – 2.33 (m, 2H), 1.83 (s, 6H), 1.01 

(d, J = 6.6 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 194.3, 172.6, 159.6, 149.2, 

138.6, 136.4, 136.3, 132.3, 131.3, 130.8, 130.3, 128.7, 121.4, 128.2 (q, J = 265.6 Hz), 

117.4, 79.6, 40.1 (q, J = 26.2 Hz) , 35.2 (q, J = 2.9 Hz), 25.6, 12.2 (q, J = 2.9 Hz) ppm. 
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IR (neat): 2997, 2939, 1757, 1656, 1560, 1506, 1466, 1386, 1304, 1268, 1252, 1194, 

1169, 1124, 1091, 1014, 928, 853, 763 cm–1. HRMS calcd. for (C27H25ClF3O4) [M+H]+: 

505,1393, found 505,1388. 

 
4-(3,3,3-trifluoro-2-methylpropyl)phenyl 4'-((1,7'-dimethyl-2'-propyl-1H,3'H-

[2,4'-bibenzo[d]imidazol]-3'-yl)methyl)-[1,1'-biphenyl]-2-carboxylate (57) 

Prepared following general procedure C using 4-CzIPN (4.8 mg, 3 mol%), 

Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), Diethyl 4-(1-(4-((4'-((1,7'-dimethyl-2'-

propyl-1H,3'H-[2,4'-bibenzo[d]imidazol]-3'-yl)methyl)-[1,1'-biphenyl]-2-

carbonyl)oxy)phenyl)propan-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-

dicarboxylate (B11) (264.9 mg, 0.3 mmol, 1.5 equiv), K2S2O8 (81.2 mg, 1.5 equiv) and 

NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of CH3CN. Product was obtained as a white 

solid (81.2 mg, 58% yield) by using Hexane/EA (3:1) as eluent. (56% 19F NMR yield 

against internal standard). 19F NMR (376 MHz, CDCl3) δ -73.47 (d, J = 8.0 Hz) ppm. 
1H NMR (400 MHz, CDCl3) δ 8.01 (d, J = 6.3 Hz, 1H), 7.85 – 7.77 (m, 1H), 7.59 (t, 

J = 7.6 Hz, 1H), 7.54 – 7.42 (m, 3H), 7.39 – 7.26 (m, 6H), 7.13 (d, J = 8.4 Hz, 2H), 

7.03 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 5.44 (s, 2H), 3.72 (s, 3H), 3.03 – 2.96 

(m, 1H), 2.93 – 2.89 (m, 2H), 2.77 (s, 3H), 2.42 – 2.26 (m, 2H), 1.93 – 1.78 (m, 2H), 

1.02 (t, J = 7.4 Hz, 3H), 0.94 (d, J = 6.4 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 

166.7, 156.6, 154.6, 149.4, 143.4, 142.5, 141.2, 136.7, 135.8, 135.2, 135.1, 132.2, 131.2, 

130.6, 130.1, 129.9, 129.7, 129.4, 128.2 (q, J = 279.9 Hz), 127.7, 126.2, 124.0, 122.7, 

122.6, 121.5, 119.6, 109.7, 109.1, 47.2, 40.07 (q, J = 26.0 Hz), 35.1, 31.9, 29.9, 21.9, 

17.0, 14.2, 12.17 (q, J = 2.9 Hz) ppm. IR (neat): 3063, 3032, 2933, 2872,  1740, 1597, 

1507, 1479, 145 , 1421, 1404, 1381, 1334, 1320, 1237, 1196, 1166, 1126, 1112, 1090, 

1065, 1039, 1013, 875, 851, 760, 744 cm–1. Mp: 108 °C. HRMS calcd. for 

(C43H40F3N4O2) [M+H]+: 701,3103, found 701,3098 
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4-(3,3,3-trifluoro-2-methylpropyl)phenyl 7-(4-acetylpiperazin-1-yl)-1-

cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (58) Prepared 

following general procedure C using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 

mg, 0.2mmol, 1.0 equiv), Diethyl 4-(1-(4-((7-(4-acetylpiperazin-1-yl)-1-cyclopropyl-

6-fluoro-4-oxo-1,4-dihydroquinoline-3-carbonyl)oxy)phenyl)propan-2-yl)-2,6-

dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (B12) (222.7 mg, 0.3 mmol, 1.5 

equiv), K2S2O8 (81.2 mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv) and 8.0 mL of 

CH3CN. Product was obtained as a white solid (69.4 mg, 62% yield) by using 

Hexane/EA (3:1) as eluent. (71% 19F NMR yield against internal standard). 19F NMR 

(282 MHz, CDCl3) δ -73.45 (d, J = 8.7 Hz, 3F), -123.36(m, 1F) ppm. 1H NMR (400 

MHz, CDCl3) δ 8.59 (s, 1H), 7.95 (d, J = 12.3 Hz, 1H), 7.28 (d, J = 7.1 Hz, 1H), 7.21 

– 7.11 (m, 4H), 3.90 – 3.68 (m, 2H), 3.70 – 3.60 (m, 2H), 3.48 (dt, J = 7.0, 3.3 Hz, 1H), 

3.27 (t, J = 5.0 Hz, 2H), 3.22 (d, J = 4.6 Hz, 2H), 3.15 – 3.03 (m, 1H), 2.58 – 2.33 (m, 

2H), 2.14 (s, 3H), 1.32 (d, J = 7.2 Hz, 2H), 1.20 – 1.12 (m, 2H), 1.02 (d, J = 6.5 Hz, 

3H) ppm. 13C NMR (101 MHz, CDCl3) δ 172.9, 169.2, 163.7, 153.5 (d, J = 249.1 Hz), 

149.6, 148.9, 144.3 (d, J = 10.6 Hz), 138.0, 135.5, 129.9, 128.2 (q, J = 279.5 Hz), 122.1, 

113.4 (d, J = 23.1 Hz), 109.2, 105.5, 50.5, 49.7, 49.6, 46.3, 41.2, 40.1 (q, J = 26.0 Hz), 

35.2 (q, J = 2.6 Hz), 34.9, 21.4, 12.2 (q, J = 2.9 Hz), 8.3 ppm. IR (neat): 2998, 2922, 

2866, 2241, 1738, 1712, 1650, 1585, 1494, 1440, 1388, 1351, 1331, 1314, 1248, 1197, 

1154, 1124, 1088, 1070, 1010, 998, 979, 941, 911, 890, 872, 726, 645, 589, 571, 525, 

494 cm–1. Mp: 186 °C. HRMS calcd. for (C29H30F4N3O4) [M+H]+: 560,2172, found 

560,2167.  

 

2-(2,2,2-trifluoroethyl)phenyl 4-(nicotinamido)butanoate (59) Prepared following 

general procedure D using Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), Dimethyl 4-

(2-((4-(nicotinamido)butanoyl)oxy)benzyl)-1,4-dihydropyridazine-3,6-dicarboxylate 

(C10) (148.2 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL of Acetone. Product was obtained 

as a white solid (24.3 mg, 33% yield) by using acetone/hexane (1:2) as eluent. (33% 
19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -65.43 (t, J 

= 10.9 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 9.12 (s, 1H), 8.71 (s, 1H), 8.20 (d, J = 

8.1 Hz, 1H), 7.43 (s, 1H), 7.39 – 7.30 (m, 2H), 7.23 (t, J = 7.3, 1H), 7.13 (d, J = 7.1 Hz, 

1H), 7.03 (s, 1H), 3.61 (q, J = 6.7 Hz, 2H), 3.37 (q, J = 10.7 Hz, 2H), 2.74 (t, J = 7.0 
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Hz, 2H), 2.12 – 2.05 (pm, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 171.8, 165.7, 

151.9, 149.5, 147.8, 135.6, 132.2, 130.4, 129.6, 126.4, 125.6 (q, J = 277.0 Hz), 123.8, 

122.9, 122.3 (q, J = 2.9 Hz), 39.6, 34.6 (q, J = 30.7 Hz), 31.8, 24.5 ppm. IR (neat): 

3316, 2931, 1747, 1665, 1635, 1592, 1493, 1473, 1450, 1416, 1369, 1326, 1312, 1305, 

1265, 1243, 1220, 1177, 1142, 1113, 1091, 1065, 1028, 1016, 919, 906, 884, 860, 848, 

831, 822, 773, 755, 706, 678, 656, 621, 603, 520 cm–1. Mp: 102 °C. HRMS calcd. for 

(C18H18F3N2O3) [M+H]+: 367,1270, found 367,1262. 

 
(8R,9S,13S,14S)-13-methyl-3-(2,2,2-trifluoroethyl)-6,7,8,9,11,12,13,14,15,16-

decahydro-17H-cyclopenta[a]phenanthren-17-one (60) Prepared following general 

procedure D using Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 equiv), Dimethyl 4-

(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl)methyl)-1,4-dihydropyridazine-3,6-dicarboxylate 

(C11) (139.2 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL of Acetone. Product was obtained 

as a white solid (38.4 mg, 59% yield) by using hexane/EA (8:1) as eluent. (57% 19F 

NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -66.06 (q, J = 

10.9 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 5.8 

Hz, 1H), 7.03 (s, 1H), 3.31 (q, J = 10.9 Hz, 2H), 2.93 (dd, J = 8.9, 4.2 Hz, 2H), 2.58 – 

2.47 (m, 1H), 2.47 – 2.37 (m, 1H), 2.31 (td, J = 10.9, 5.0 Hz, 1H), 2.22 – 1.93 (m, 4H), 

1.71 – 1.41 (m, 6H), 0.92 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 220.9, 139.8, 

137.03, 130.9, 127.7 (q, J = 2.9 Hz), 127.6, 126.0 (q, J = 276.6 Hz), 125.8, 50.6, 48.1, 

44.4, 39.9 (q, J = 29.6 Hz), 38.2, 35.9, 31.7, 29.4, 26.5, 25.8, 21.7, 13.9 ppm. Spectral 

data was in agreement with the literature.[25] 

 
Ethyl 4-(8-(2,2,2-trifluoroethyl)-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-

b]pyridin-11-ylidene)piperidine-1-carboxylateone (61) Prepared following general 

procedure D using Cu(CF3)3bpy (55.4 mg, 0.13 mmol, 1.0 equiv), Dimethyl 4-((11-(1-

(ethoxycarbonyl)piperidin-4-ylidene)-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-
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b]pyridin-8-yl)methyl)-1,4-dihydropyridazine-3,6-dicarboxylate (C12) (72.4 mg, 0.13 

mmol, 1.0 equiv), and 2.6 mL of Acetone. Product was obtained as a white solid (20.0 

mg, 37% yield) by using hexane/DCM/EA (2:1:1) as eluent. (37% 19F NMR yield 

against internal standard). 19F NMR (376 MHz, CDCl3) δ -65.46 (t, J = 10.9 Hz) ppm. 
1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 4.8 Hz, 1H), 7.45 (d, J = 5.9 Hz, 1H), 7.18 

(d, J = 8.3 Hz, 1H), 7.13 – 7.06 (m, 3H), 4.13 (q, J = 7.1 Hz, 2H), 3.81 (s, 2H), 3.50 – 

3.35 (m, 2H), 3.30 (q, J = 10.9 Hz, 2H), 3.21 – 3.09 (m, 2H), 2.89 – 2.79 (m, 2H), 2.52 

– 2.49 (m, 1H), 2.41 – 2.26 (m, 3H), 1.24 (t, J = 7.1 Hz, 4H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 157.3, 155.5, 146.6, 138.9, 138.0, 137.5, 137.2, 134.7, 133.6, 130.8, 129.6, 

129.2 (q, J = 2.5 Hz), 127.8, 125.7 (q, J = 276.6 Hz), 122.2, 61.3, 39.9 (q, J = 29.8 Hz), 

39.7, 39.4, 31.8, 31.6, 30.7, 30.5, 14.6 ppm. Spectral data was in agreement with the 

literature.[26] 

 
(4R,4aS,6R)-4,4a-dimethyl-6-(trifluoromethyl)-4,4a,5,6,7,8-

hexahydronaphthalen-2(3H)-one (62) Prepared following general procedure D using 

Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), Dimethyl (R)-4-((2S,8R,8aS)-8,8a-

dimethyl-6-oxo-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)-4-methyl-1,4-

dihydropyridazine-3,6-dicarboxylate (C13) (77.6 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL 

of Acetone. Product was obtained as a liquid (23.1 mg, 31% yield) by using Hexane as 

eluent. (30% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) 

δ -72.79 (d, J = 8.8 Hz), -73.61 (d, J = 8.0 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 

5.79 (d, J = 1.4 Hz, 1H), 2.52 – 2.39 (m, 3H), 2.30 – 2.24 (m, 2H), 2.15 – 1.99 (m, 3H), 

1.51 – 1.37 (m, 1H), 1.31 – 1.18 (m, 1H), 1.10 (s, 3H), 0.99 (d, J = 6.8 Hz, 3H) ppm. 
13C NMR (101 MHz, CDCl3) δ 198.9, 167.3, 127.5 (q, J = 278.6 Hz), 126.1, 42.1, 40.4, 

38.6, 38.2 (q, J = 27.0 Hz), 36.9 (q, J = 2.3 Hz), 31.2, 25.1, 16.7, 15.0 ppm. IR (neat): 

2958, 1666, 1621, 1465, 1396, 1322, 1305, 1286, 1261, 1221, 1202, 1155, 1090, 1039, 

943, 906, 874, 656 cm–1. HRMS calcd. for (C13H17F3NaO) [M+Na]+: 269.1129, found 

269.1124. 
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Me
Me
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N-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-6-(2,2,2-trifluoroethyl)quinazolin-4-

amine (63) Prepared following general procedure D using Cu(CF3)3bpy (85.2 mg, 

0.2mmol, 1.0 equiv), Dimethyl 4-((4-((3-chloro-4-((3-

fluorobenzyl)oxy)phenyl)amino)quinazolin-6-yl)methyl)-1,4-dihydropyridazine-3,6-

dicarboxylate (C14) (176.7 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL of Acetone. Product 

was obtained as a white solid (22.1 mg, 24% yield) by using Hexane/EA (2:1) and then  

Hexane/acetone/MeOH (2:1:5%) as eluent. (25% 19F NMR yield against internal 

standard). 19F NMR (376 MHz, CDCl3) δ -66.19 (t, J = 10.6 Hz, 3F), -113.50 –113.56 

(m, 1F) ppm. 1H NMR (400 MHz, CDCl3) δ 8.70 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 

7.83 (d, J = 2.6 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.9 Hz, 1H), 7.35 (q, J = 

7.2 Hz, 1H), 7.23 – 7.19 (m, 3H), 7.08 – 6.89 (m, 2H), 5.19 – 5.09 (m, 2H), 3.56 (q, J 

= 10.6 Hz, 2H) ppm. 13C NMR (101 MHz, CD2Cl2) δ 163.4 (d, J = 245.5 Hz), 157.8, 

155.5, 151.5, 150.1, 139.7 (d, J = 7.3 Hz), 135.1, 132.7, 130.7 (d, J = 8.1 Hz), 129.7, 

129.2 (q, J = 3.3 Hz), 126.1 (q, J = 277.0 Hz), 125.1, 123.6, 123.1 (d, J = 2.9 Hz), 122.7, 

122.3, 115.4, 115.2, 114.6, 114.4 (d, J = 22.3 Hz), 70.8 (d, J = 2.2 Hz), 40.54 (q, J = 

29.8 Hz) ppm. IR (neat): 1636, 1605, 1575, 1530, 1497, 1450, 1424, 1393, 1358, 1327, 

1294, 1265, 1223, 1204, 1188, 1139, 1089, 1072, 1061, 1030, 927, 903, 888, 858, 823, 

808, 771, 681, 568, 516, 442 cm–1. Mp: 189 °C. HRMS calcd. for (C23H17ClF4N3O) 

[M+H]+: 462,0996, found 462,0991. 

 
5,5,5-trifluoropentyl 2-(4-isobutylphenyl)propanoate (64) Prepared following 

general procedure D using Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), Dimethyl 4-

(4-((2-(4-isobutylphenyl)propanoyl)oxy)butyl)-4-methyl-1,4-dihydropyridazine-3,6-

dicarboxylate (C15) (141.6 mg, 0.3 mmol, 1.5 equiv), and 4.0 mL of Acetone. Product 

was obtained as a liquid (28.7 mg, 44% yield) by using Hexane/EA (15:1) as eluent. 

(45% 19F NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -66.57 

(t, J = 10.9 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.19 (d, J = 8.0 Hz, 2H), 7.09 (d, 

J = 8.3 Hz, 2H), 4.27 – 3.89 (m, 2H), 3.69 (q, J = 7.1 Hz, 1H), 2.44 (d, J = 7.2 Hz, 2H), 
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2.13 – 1.85 (m, 2H), 1.89 – 1.78 (m, 1H), 1.73 – 1.59 (m, 2H), 1.53 – 1.48 (m, 5H), 

0.89 (d, J = 6.6 Hz, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ 174.9, 140.8, 137.8, 

129.5, 127.2, 127.1 (q, J = 276.2 Hz), 63.9, 45.3, 45.2, 33.4 (q, J = 28.8 Hz), 30.3, 27.7, 

22.5, 18.7 (q, J = 3.3 Hz), 18.4 ppm. IR (neat): 2956, 2871, 1733, 1513, 1462, 1441, 

1386, 1367, 1333, 1321, 1289, 1254, 1220, 1200, 1142, 1072, 1039 cm–1. HRMS calcd. 

for (C18H25F3NaO2) [M+Na]+: 353,1704, found 353,1699. 

 
5,5,5-trifluoropentyl 2-(4-(2-(4-chlorobenzamido)ethyl)phenoxy)-2-

methylpropanoate (65) Prepared following general procedure D using Cu(CF3)3bpy 

(85.2 mg, 0.2mmol, 1.0 equiv), Dimethyl 4-(4-((2-(4-(2-(4-

chlorobenzamido)ethyl)phenoxy)-2-methylpropanoyl)oxy)butyl)-4-methyl-1,4-

dihydropyridazine-3,6-dicarboxylate (C16) (188.2 mg, 0.3 mmol, 1.5 equiv), and 4.0 

mL of Acetone. Product was obtained as a white solid (32.1 mg, 33% yield) by using 

Hexane/Acetone (3:1) as eluent. (35% 19F NMR yield against internal standard). 19F 

NMR (376 MHz, CDCl3) δ -66.57 (t, J = 10.9 Hz) ppm. 1H NMR (400 MHz, CDCl3) 

δ 7.61 (d, J = 8.6 Hz, 2H), 7.37 (d, J = 8.6 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 6.78 (d, J 

= 8.6 Hz, 2H), 6.10 (s, 1H), 4.17 (t, J = 6.2 Hz, 2H), 3.65 (q, J = 6.8 Hz, 2H), 2.85 (t, J 

= 6.9 Hz, 2H), 1.71 – 1.66 (m, 2H), 1.80 – 1.65 (m, 2H), 1.59 (s, 6H), 1.56 – 1.43 (m, 

2H) ppm. 13C NMR (101 MHz, CDCl3) δ 174.4, 166.5, 154.3, 137.8, 133.2, 132.5, 

129.6, 128.9, 128.4, 127.0 (q, J = 829.2 Hz), 119.3, 79.2, 64.7, 41.3, 34.9, 33.3 (q, J = 

28.5 Hz), 27.6, 25.5, 18.7 (q, J = 3.3 Hz) ppm. IR (neat): 3273, 2946, 2927, 1729, 1633, 

1616, 1591, 1510, 1487, 1467, 1391, 1381, 1365, 11316, 1287, 1250, 1234, 1181, 1130, 

1089, 1072, 1040, 1013, 980, 956, 934, 847, 836, 819, 751, 720, 680, 524 cm–1. Mp: 

187 °C. HRMS calcd. for (C24H28ClF3NO4) [M+H]+: 486,1659, found 486,1653. 

 
5,5,5-trifluoropentyl 3-methyl-4-oxo-2-phenyl-4H-chromene-8-carboxylate (66) 

Prepared following general procedure D using Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 

equiv), Dimethyl 4-methyl-4-(4-((3-methyl-4-oxo-2-phenyl-4H-chromene-8-

carbonyl)oxy)butyl)-1,4-dihydropyridazine-3,6-dicarboxylate (C17) (163.9 mg, 0.3 

mmol, 1.5 equiv), and 4.0 mL of Acetone. Product was obtained as a white solid (27.5 

Cl

O

N
H

O

MeMe

O

O

F3C

O

O
Me

Ph

OO

F3C



 

439 
 

mg, 34% yield) by using Hexane/EA (8:1) as eluent. (34% 19F NMR yield against 

internal standard). 19F NMR (376 MHz, CDCl3) δ -66.39 (t, J = 10.9 Hz) ppm. 1H 

NMR (400 MHz, CDCl3) 8.47 (dd, J = 7.9, 1.8 Hz, 1H), 8.26 (dd, J = 7.6, 1.8 Hz, 1H), 

7.85 – 7.69 (m, 2H), 7.54 – 7.52 (m, 3H), 7.45 (t, J = 7.7 Hz, 1H), 4.36 (t, J = 6.4 Hz, 

2H), 2.22 (s, 3H), 2.07 – 1.93 (m, 2H), 1.85 – 1.74 (m, 2H), 1.65 – 1.53 (m, 2H) ppm. 
13C NMR (101 MHz, CDCl3) δ 178.4, 164.6, 161.2, 154.6, 136.3, 133.2, 131.1, 130.6, 

129.4, 128.6, 127.0 (q, J = 276.6 Hz), 124.2, 123.5, 120.7, 117.9, 64.8, 33.4 (q, J = 28.9 

Hz), 27.8, 18.8 (q, J = 3.3 Hz), 11.8 ppm. IR (neat): 2964, 2925, 2896, 2856, 1709, 

1637, 1623, 1599, 1582, 1496, 1479, 1469, 1436, 1395, 1366, 1331, 1288, 1270, 1251, 

1236, 1216, 1184, 1135, 1091, 1067, 1039, 1024, 924, 898, 856, 837, 829, 814, 776, 

756, 732, 698, 661, 487, 467 cm–1. Mp: 105 °C. HRMS calcd. for (C22H20F3O4) 

[M+H]+: 405,1314, found 405,1308. 

 
4-(2,2,2-trifluoroethyl)phenyl 6-oxo-6-phenylhexanoate (71) Prepared following 

general procedure D using Cu(CF3)3bpy (85.2 mg, 0.2mmol, 1.0 equiv), dimethyl 4-

methyl-4-(4-((6-oxo-6-phenylhexanoyl)oxy)benzyl)-1,4-dihydropyridazine-3,6-

dicarboxylate (C18) (101.2 mg, 0.2 mmol, 1.0 equiv), and 4.0 mL of Acetone. Product 

was obtained as a liquid (49.9 mg, 68% yield) by using Hexane as eluent. (66% 19F 

NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -66.07 (t, J = 

10.8 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 7.1 Hz, 2H), 7.61 – 7.52 (m, 

1H), 7.46 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 7.15 – 7.05 (m, 2H), 3.35 (q, J 

= 10.8 Hz, 2H), 3.05 (t, J = 6.7 Hz, 2H), 2.63 (t, J = 6.9 Hz, 2H), 2.01 – 1.80 (m, 4H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 199.7, 171.8, 150.6, 136.9, 133.1, 131.3, 128.7, 

128.1, 127.7 (q, J = 2.9 Hz), 125.7 (q, J = 276.7 Hz), 121.9, 39.6 (q, J = 29.9 Hz), 38.1, 

34.2, 24.6, 23.6 ppm. IR (neat): 3043, 2940, 1760, 1747, 1668, 1598, 1581, 1509, 1350, 

1412, 1362, 1251, 1210, 1167, 1127, 1107, 1074, 975, 906, 831, 730, 685, 650, 573, 

525 cm–1. HRMS calcd. for (C20H19F3NaO3) [M+Na]+: 387.1184, found 387.1187. 

 

4-(2,2,2-trifluoroethyl)phenyl 6,6,6-trifluorohexanoate (72) Prepared following 

general procedure B using 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy (85.2 mg, 1.0 
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equiv), 4-(2,2,2-trifluoroethyl)phenyl 5-(4-oxo-2-phenyl-1,2,3,4-tetrahydroquinazolin-

2-yl)pentanoate (A44) (96.4 mg, 0.2 mmol, 1.0 equiv), Togni’s reagent I (99.2 mg, 1.5 

equiv), BTMG (34 µL, 1.0 equiv) and 10.0 mL of DMF. Product was obtained as a 
colorless oil (44.9 mg, 68% yield) by using Hexane/EtOAc (5:1) as eluent. (68% 19F 

NMR yield against internal standard). 19F NMR (376 MHz, CDCl3) δ -66.14 (t, J = 

10.8 Hz), -66.46 (t, J = 10.8 Hz) ppm. 1H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.4 

Hz, 2H), 7.12 – 7.02 (m, 2H), 3.36 (q, J = 10.8 Hz, 2H), 2.61 (t, J = 7.3 Hz, 2H), 2.15 

(ddd, J = 10.8, 7.9, 5.4 Hz, 2H), 1.84 (dt, J = 15.0, 7.3 Hz, 2H), 1.75 – 1.65 (m, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 171.5, 150.6, 131.4, 127.9 (q, J = 2.9 Hz), 126.45 

(q, J = 138.9 Hz), 126.45 (q, J = 414.2 Hz), 121.9, 39.7 (q, J = 30.0 Hz), 33.9, 33.6 (q, 

J = 28.7 Hz), 24.0, 21.6 (q, J = 3.0 Hz) ppm. IR (neat): 2951, 1757, 1510, 1362, 1255, 

1208, 1128, 1075, 1029, 909, 832, 651, 522 cm–1. HRMS calcd. for (C14H14F6NaO2) 

[M+Na]+: 351.0796, found 351.0795. 
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One-Pot Trifluoromethylation without Isolation of Proaromatic Precursors 

 
tert-butyl 4-(trifluoromethyl)piperidine-1-carboxylate (3) 

An oven-dried 8 mL screw-cap test tube was charged with a stir bar, 2- aminobenzamide 

(25.8 mg, 0.19 mmol), tert-butyl 4-acetylpiperidine-1-carboxylate (45.4 mg, 0.2 mmol), 

diphenyl phosphate (5.0 mg, 0.02 mmol) and DCE (0.4 mL). The reaction mixture was 

stirred at 70 °C for 24 hours. The reaction mixture was concentrated in vacuo to give 

the crude intermediate. An oven-dried 20 mL Schlenk tube containing a stir bar was 

charged with 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline 

(10.8 mg, 30 mol%), tert-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-

yl)piperidine-1-carboxylate (A1) (crude intermediate from last step) and Togni’s 

reagent I (132.0 mg, 2.0 equiv). The Schlenk tube was connected to a vacuum line 

where it was evacuated and back-filled under Ar three times. Acetone (8.0 mL) was 

then added followed by BTMG (34.0 µL, 1.0 equiv) under argon atmosphere. The 
reaction mixture was sonicated, then placed in a temperature-controlled photoreactor 

maintained at 40 °C and stirred for 18 h under continuous light irradiation from blue 

LEDs (λ = 451 nm). The reaction mixture was diluted with Et2O, and then quenched 

with aqueous NaCl. The reaction mixture was extracted into Et2O (3x). The organic 

phase was dried with anhydrous Na2SO4, filtered, and carefully concentrated. Product 

was obtained as a colorless solid (38.1 mg, 43% yield) by using Hexane/EtOAc (10:1) 

as eluent. (50% 19F NMR yield against internal standard).  

 

4-(trifluoromethyl)tetrahydro-2H-pyran (16) 

An oven-dried 8 mL screw-cap test tube was charged with a stir bar, 2- aminobenzamide 

(25.8 mg, 0.19 mmol), 1-(tetrahydro-2H-pyran-4-yl)ethan-1-one (25.2 mg, 0.2 mmol), 

diphenyl phosphate (5.0 mg, 0.02 mmol) and DCE (0.4 mL). The reaction mixture was 

stirred at 70 °C for 24 hours. The reaction mixture was concentrated in vacuo to give 

the crude intermediate. An oven-dried 20 mL Schlenk tube containing a stirring bar was 

charged with 4-CzIPN (4.8 mg, 3 mol%), CuCl2 (5.6 mg, 20 mol%), Phenanthroline 

(10.8 mg, 30 mol%), 2-methyl-2-(tetrahydro-2H-pyran-4-yl)-2,3-dihydroquinazolin-

4(1H)-one (A14) (crude intermediate from last step) and Togni’s reagent I (132.0 mg, 
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2.0 equiv). The Schlenk tube was connected to a vacuum line where it was evacuated 

and back-filled under Ar three times. Acetone (8.0 mL) was then added followed by 

BTMG (34.0 µL, 1.0 equiv) under argon atmosphere. The reaction mixture was 
sonicated, then placed in a temperature-controlled photoreactor maintained at 40 °C 

and stirred for 18 h under continuous light irradiation from blue LEDs (λ = 451 nm). 

The reaction mixture was diluted with Et2O, and then quenched with aqueous NaCl. 

The reaction mixture was extracted into Et2O (3x). The organic phase was dried with 

anhydrous Na2SO4, filtered, and carefully concentrated. Product could not be isolated 

due to its volatility, 1,1,1-trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) was added as 
an internal standard for 19F NMR analysis (48% yield). 

1-chloro-4-(2,2,2-trifluoroethyl)benzene (19)  

 
Following a literature procedure,[27] to a mixture of 2-aminobenzonitrile (0.20 mmol, 

23.6 mg) and 1-(4-chlorophenyl)propan-2-one (0.5 mmol) in dry tBuOH, KOtBu (2.0 

equiv) was added under Ar atmosphere. The mixture was stirred in a flame-dried sealed 

tube for 1 h and the progress of reaction was monitored by TLC. After completion, the 

mixture was diluted with aq. KHSO4 solution and extracted into EtOAc (3x). The 

solvent was removed in vacuo to give the crude intermediate. An oven-dried 20 mL 

Schlenk tube containing a stir bar was charged with 4-CzIPN (4.8 mg, 3 mol%), CuCl2 

(5.6 mg, 20 mol%), di(pyridin-2-yl)methanone (11.0 mg, 30 mol%), 2-(4-

chlorobenzyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (A17) (crude intermediate 

from last step), KH2PO4 (0.4 mmol, 2.0 equiv) and Togni’s reagent I (132.0 mg, 2.0 

equiv). The Schlenk tube was connected to a vacuum line where it was evacuated and 

back-filled under Ar three times. DMF (10.0 mL) was added under argon atmosphere. 

The Schlenk tube was closed at the atmospheric pressure of Ar and placed in 

temperature-controlled photoreactor maintained at 40 °C and stirred for 18 h under 

continuous light irradiation from blue LEDs (λ = 451 nm). The reaction mixture was 

diluted with Et2O, and then quenched with aqueous NaCl. 1,1,1-trifluorotoluene (24.4 

µL, 0.2 mmol, 1.0 equiv) was added as an internal standard for 19F NMR analysis (58% 

yield). 

(trifluoromethyl)cyclohexane (12) 
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To a solution of cyclohexanecarbaldehyde (1.2 equiv), ethyl 3-aminocrotonate (1.0 

equiv) and ethyl acetoacetate (1.0 equiv) in ethylene glycol (2.5 M) was added 

Bu4NHSO4 (12 mol%) in one portion. The vial was sealed and heated at 80 °C for 4 h. 

The mixture was then diluted with water and extracted into EtOAc (3x). The solvent 

was removed in vacuo to give the crude intermediate. An oven-dried 20 mL Schlenk 

tube containing a stir bar was charged with 4-CzIPN (4.8 mg, 3 mol%), Cu(CF3)3bpy 

(85.2 mg, 0.2 mmol, 1.0 equiv), diethyl 4-cyclohexyl-2,6-dimethyl-1,4-

dihydropyridine-3,5-dicarboxylate (B1) (crude intermediate from last step) (1.0 equiv), 

K2S2O8 (81.2 mg, 1.5 equiv) and NaHCO3 (33.2 mg, 2.0 equiv). The Schlenk tube was 

connected to a vacuum line where it was evacuated and back-filled with Ar at least three 

times. CH3CN (8.0 mL) was added under argon atmosphere. The Schlenk tube was 

closed at the atmospheric pressure of Ar and placed at a temperature-controlled 

photoreactor maintained at 40 °C and stirred for 16 h under continuous light irradiation 

from blue LEDs (λ = 451 nm). The reaction was diluted with Et2O, and then quenched 

by aqueous NaCl. Product could not be isolated due to its volatility, 1,1,1-

trifluorotoluene (24.4 µL, 0.2 mmol, 1.0 equiv) was added as an internal standard for 

19F NMR analysis. (64% yield). 

1,2-dimethoxy-4-(2,2,2-trifluoroethyl)benzene (48) 

 

To an oven-dried vial containing a stir bar was added dimethyl 1,2,4,5-tetrazine-3,6-

dicarboxylate (59 mg, 0.3 mmol, 1.5 equiv) in CH2Cl2 (1.5 mL) under Ar. 4-Allyl-1,2-

dimethoxybenzene (53.5 mg, 0.3 mmol, 1.5 equiv) was then added (N2 gas release was 

observed) and the reaction mixture was stirred at r.t. for 2 h (red to yellow color change 

observed). The solvent was removed in vacuo. Cu(CF3)3bpy (85.2 mg, 0.2 mmol, 1.0 

equiv) and anhydrous acetone (4 mL) were then added under Ar. The reaction mixture 

was irradiated under 370 nm LEDs for 18 h. The reaction mixture was then diluted with 

Et2O and quenched with aqueous NaCl. 1-Fluoro-3-nitrobenzene (20 µL) was added as 
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an internal standard for 19F NMR analysis (51% yield). The organics were separated 

and the aqueous extracted 3x into Et2O. The organics were washed with aqueous NaCl, 

dried (Na2SO4), and concentrated in vacuo. The crude product was purified by column 

chromatography (5% acetone/hexane) to give 1,2-dimethoxy-4-(2,2,2-

trifluoroethyl)benzene (48) as a colorless oil (20 mg, 0.09 mmol, 45% yield). 
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3.7.4 Mechanistic Experiments 

3.7.4.1 Homolysis of (bpy)Cu(CF3)3 by UV-Vis and 19F NMR  

To investigate the homolysis of (bpy)Cu(CF3)3, the irradiation of (bpy)Cu(CF3)3 was 

performed in MeCN in a cuvette, and monitored by UV-Vis and 19F NMR. In a 3 mL 

vial, (bpy)Cu(CF3)3 (8.9 mg, 0.02 mmol) was dissolved in 3 mL MeCN and transferred 

to a sealable quartz cuvette and UV-Vis spectrum recorded. The sealed cuvette was then 

irradiated (λ = 450 nm) for 30 minutes in which a new signal in the UV-Vis spectra was 

observed at λmax = 685 nm which is similar to Cu(II) complex (bpy)CuCl2 (Figure S1. 

a, purple trace).  

 

Figure S1. Probing products of (bpy)Cu(CF3)3 homolysis by UV-Vis. 

To this solution, a stock solution of trifluorotoluene (1 equiv, internal standard) in 

MeCN-d3 was added and transferred to an NMR tube in which quantitative 19F{1H} 

NMR established full conversion of (bpy)Cu(CF3)3 and formation of organic products 

3,3,3-trifluoropropanenitrile (63% yield) and fluoroform (41% yield). Conclusion; 

Irradiation of (bpy)Cu(CF3)3 at λ = 450 nm initiates homolysis of the Cu-CF3 bond to 

form CF3 radicals and Cu(II) complexes. These CF3 radicals can then undergo HAT 

with a hydrogen acceptor to form HCF3 and another radical intermediate.  
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Figure S2. Probing products of (bpy)Cu(CF3)3 homolysis by UV-Vis and 19F NMR 

spectroscopy. 
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3.7.5 X-Ray Crystallography Data 

X-Ray Data 

X-ray diffraction of 17 

 

Figure S3. ORTEP Diagram of CCDC-2173015. 

Table S1. Crystal data and structure refinement for CCDC-2173015. 

_____________________________________________________________________ 

Empirical formula  C13 H14 Cl F3  

Formula weight  262.69 

Temperature  100(2)K 

Wavelength    0.71073 ≈ 

Crystal system  monoclinic 

Space group  C c 

Unit cell dimensions a =  13.9995(11)≈ a=  90∞. 

 b =  10.0787(8)≈ b = 123.638(2)∞. 

 c =  10.3743(9)≈ g =  90∞. 

Volume 1218.68(17) ≈3 

Z 4 

Density (calculated) 1.432 Mg/m3 

Absorption coefficient 0.325 mm-1 

F(000)  544 

Crystal size  0.300 x 0.300 x 0.200 mm3 

Theta range for data collection 2.672 to 32.571∞. 

Index ranges -21<=h<=17,0<=k<=15,0<=l<=15 

Reflections collected  3896 
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Independent reflections 3896[R(int) = ?] 

Completeness to theta =32.571∞  97.3%  

Absorption correction  Multi-scan 

Max. and min. transmission 0.74 and 0.70 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters  3896/ 2/ 155 

Goodness-of-fit on F2  1.099 

Final R indices [I>2sigma(I)]  R1 = 0.0230, wR2 = 0.0633 

R indices (all data)  R1 = 0.0239, wR2 = 0.0645 

Flack parameter  x =0.11(2) 

Largest diff. peak and hole  0.323 and -0.184 e.≈-3 
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Table S2. Bond lengths [≈] and angles [∞]  

_____________________________________________________ 

Bond lengths---- 

F1     C7     1.3454(19)       

Cl1    C11    1.7335(14)       

F2     C7     1.3428(18)       

F3     C7     1.3373(19)       

C1     C7     1.503(2)         

C1     C2     1.5261(19)       

C1     C6     1.5279(19)       

C1     H1     1.0000           

C2     C3     1.5256(19)       

C2     H2A    0.9900           

C2     H2B    0.9900           

C3     C4     1.5280(18)       

C3     H3A    0.9900           

C3     H3B    0.9900           

C4     C8     1.5096(17)       

C4     C5     1.5277(18)       

C4     H4     1.0000           

C5     C6     1.5273(19)       

C5     H5A    0.9900           

C5     H5B    0.9900           

C6     H6A    0.9900           

C6     H6B    0.9900           

C8     C13    1.3922(17)       

C8     C9     1.4003(18)       

C9     C10    1.3916(19)       

C9     H9     0.9500           

C10    C11    1.3871(19)       

C10    H10    0.9500           

C11    C12    1.3849(19)       

C12    C13    1.3904(19)       

C12    H12    0.9500           
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C13    H13    0.9500           

 

Angles---------- 

C7     C1     C2     111.51(11)                

C7     C1     C6     111.12(11)                

C2     C1     C6     110.87(11)                

C7     C1     H1     107.7                     

C2     C1     H1     107.7                     

C6     C1     H1     107.7                     

C3     C2     C1     110.46(11)                

C3     C2     H2A    109.6                     

C1     C2     H2A    109.6                     

C3     C2     H2B    109.6                     

C1     C2     H2B    109.6                     

H2A    C2     H2B    108.1                     

C2     C3     C4     111.77(11)                

C2     C3     H3A    109.3                     

C4     C3     H3A    109.3                     

C2     C3     H3B    109.3                     

C4     C3     H3B    109.3                     

H3A    C3     H3B    107.9                     

C8     C4     C5     110.88(10)                

C8     C4     C3     112.76(10)                

C5     C4     C3     110.17(11)                

C8     C4     H4     107.6                     

C5     C4     H4     107.6                     

C3     C4     H4     107.6                     

C6     C5     C4     112.01(11)                

C6     C5     H5A    109.2                     

C4     C5     H5A    109.2                     

C6     C5     H5B    109.2                     

C4     C5     H5B    109.2                     

H5A    C5     H5B    107.9                     

C5     C6     C1     110.45(11)                
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C5     C6     H6A    109.6                     

C1     C6     H6A    109.6                     

C5     C6     H6B    109.6                     

C1     C6     H6B    109.6                     

H6A    C6     H6B    108.1                     

F3     C7     F2     106.36(13)                

F3     C7     F1     105.76(13)                

F2     C7     F1     106.06(13)                

F3     C7     C1     112.81(13)                

F2     C7     C1     113.10(11)                

F1     C7     C1     112.18(12)                

C13    C8     C9     118.07(12)                

C13    C8     C4     120.24(11)                

C9     C8     C4     121.67(11)                

C10    C9     C8     121.14(12)                

C10    C9     H9     119.4                     

C8     C9     H9     119.4                     

C11    C10    C9     119.08(13)                

C11    C10    H10    120.5                     

C9     C10    H10    120.5                     

C12    C11    C10    121.17(13)                

C12    C11    Cl1    118.92(11)                

C10    C11    Cl1    119.91(11)                

C11    C12    C13    118.91(12)                

C11    C12    H12    120.5                     

C13    C12    H12    120.5                     

C12    C13    C8     121.62(12)                

C12    C13    H13    119.2                     

C8     C13    H13    119.2                     

------------------------------------------------------- 
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Table S3. Torsion angles [∞]  

________________________________________________________________ 

C7     C1     C2     C3     178.57(11)                                  

C6     C1     C2     C3     -57.04(14)                                  

C1     C2     C3     C4     56.77(14)                                   

C2     C3     C4     C8     -179.86(10)                                 

C2     C3     C4     C5     -55.41(13)                                  

C8     C4     C5     C6     -179.34(11)                                 

C3     C4     C5     C6     55.12(15)                                   

C4     C5     C6     C1     -56.06(15)                                  

C7     C1     C6     C5     -178.78(11)                                 

C2     C1     C6     C5     56.62(15)                                   

C2     C1     C7     F3     -177.05(12)                                 

C6     C1     C7     F3     58.71(15)                                   

C2     C1     C7     F2     62.18(16)                                   

C6     C1     C7     F2     -62.06(16)                                  

C2     C1     C7     F1     -57.73(15)                                  

C6     C1     C7     F1     178.03(12)                                  

C5     C4     C8     C13    111.54(13)                                  

C3     C4     C8     C13    -124.39(12)                                 

C5     C4     C8     C9     -66.51(15)                                  

C3     C4     C8     C9     57.56(15)                                   

C13    C8     C9     C10    0.38(19)                                    

C4     C8     C9     C10    178.47(11)                                  

C8     C9     C10    C11    0.0(2)                                      

C9     C10    C11    C12    -0.70(19)                                   

C9     C10    C11    Cl1    179.55(10)                                  

C10    C11    C12    C13    0.92(19)                                    

Cl1    C11    C12    C13    -179.34(9)                                  

C11    C12    C13    C8     -0.48(19)                                   

C9     C8     C13    C12    -0.16(18)                                   

C4     C8     C13    C12    -178.28(11)                                 

----------------------------------------------------------------- 
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Symmetry operations 

________________________________________________________________ 

1  'x, y, z' 

2  'x, -y, z+1/2' 

3  'x+1/2, y+1/2, z' 

4  'x+1/2, -y+1/2, z+1/2' 
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X-ray diffraction of cis-51 

 
Figure S4. ORTEP Diagram of CCDC-2173016. 

Table S4. Crystal data and structure refinement for CCDC-2173016. 
_____________________________________________________________________ 

Empirical formula  C26 H25 Cl F3 N O4  

Formula weight  507.92 

Temperature  100(2)K 

Wavelength    0.71073 Å 

Crystal system  triclinic 

Space group  P -1 

Unit cell dimensions a =  8.73970(10)Å a=  110.9730(10)°. 

 b =  11.80470(10)Å b = 96.3070(10)°. 

 c =  12.8546(2)Å g =  105.1810(10)°. 

Volume 1164.23(3) Å3 

Z 2 

Density (calculated) 1.449 Mg/m3 

Absorption coefficient 0.223 mm-1 

F(000)  528 

Crystal size  0.500 x 0.400 x 0.400 mm3 

Theta range for data collection 2.479 to 34.442°. 

Index ranges -13<=h<=13,-18<=k<=18,-20<=l<=20 

Reflections collected  92449 

Independent reflections 9500[R(int) = 0.0392] 
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Completeness to theta =34.442°  96.7%  

Absorption correction  Multi-scan 

Max. and min. transmission 1.00 and 0.45 

Refinement method  Full-matrix least-squares on F2 

Data / restraints / parameters  9500/ 0/ 318 

Goodness-of-fit on F2  1.044 

Final R indices [I>2sigma(I)]  R1 = 0.0358, wR2 = 0.0975 

R indices (all data)  R1 = 0.0384, wR2 = 0.0990 

Largest diff. peak and hole  0.606 and -0.662 e.Å-3 
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Table S5. Bond lengths [Å] and angles [°]. 
_____________________________________________________ 

Bond lengths---- 

Cl1    C1     1.7322(8)        

F1     C26    1.3468(14)       

O1     C7     1.2164(9)        

N1     C7     1.4054(9)        

N1     C8     1.4060(9)        

N1     C15    1.4160(9)        

C1     C2     1.3869(11)       

C1     C6     1.3893(10)       

F2     C26    1.3462(11)       

O2     C11    1.3743(9)        

O2     C17    1.4226(11)       

C2     C3     1.3870(11)       

C2     H2     0.9500           

F3     C26    1.3453(12)       

O3     C19    1.2113(9)        

C3     C4     1.3950(10)       

C3     H3     0.9500           

O4     C19    1.3413(9)        

O4     C20    1.4605(9)        

C4     C5     1.3942(10)       

C4     C7     1.4895(10)       

C5     C6     1.3904(10)       

C5     H5     0.9500           

C6     H6     0.9500           

C8     C9     1.3967(10)       

C8     C13    1.4017(9)        

C9     C10    1.3873(10)       

C9     H9     0.9500           

C10    C11    1.4109(10)       

C10    H10    0.9500           

C11    C12    1.3885(10)       
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C12    C13    1.4013(10)       

C12    H12    0.9500           

C13    C14    1.4390(9)        

C14    C15    1.3688(9)        

C14    C18    1.5023(10)       

C15    C16    1.4943(10)       

C16    H16A   0.9800           

C16    H16B   0.9800           

C16    H16C   0.9800           

C17    H17A   0.9800           

C17    H17B   0.9800           

C17    H17C   0.9800           

C18    C19    1.5134(10)       

C18    H18A   0.9900           

C18    H18B   0.9900           

C20    C21    1.5196(13)       

C20    C25    1.5216(11)       

C20    H20    1.0000           

C21    C22    1.5268(17)       

C21    H21A   0.9900           

C21    H21B   0.9900           

C22    C23    1.5315(13)       

C22    H22A   0.9900           

C22    H22B   0.9900           

C23    C26    1.5044(13)       

C23    C24    1.5333(11)       

C23    H23    1.0000           

C24    C25    1.5267(10)       

C24    H24A   0.9900           

C24    H24B   0.9900           

C25    H25A   0.9900           

C25    H25B   0.9900           

 

Angles---------- 
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C7     N1     C8     123.95(6)                 

C7     N1     C15    127.53(6)                 

C8     N1     C15    108.49(6)                 

C2     C1     C6     121.64(7)                 

C2     C1     Cl1    118.45(6)                 

C6     C1     Cl1    119.91(6)                 

C11    O2     C17    116.52(6)                 

C1     C2     C3     119.28(7)                 

C1     C2     H2     120.4                     

C3     C2     H2     120.4                     

C2     C3     C4     120.17(7)                 

C2     C3     H3     119.9                     

C4     C3     H3     119.9                     

C19    O4     C20    117.28(6)                 

C5     C4     C3     119.61(7)                 

C5     C4     C7     120.79(6)                 

C3     C4     C7     119.36(6)                 

C6     C5     C4     120.73(6)                 

C6     C5     H5     119.6                     

C4     C5     H5     119.6                     

C1     C6     C5     118.52(7)                 

C1     C6     H6     120.7                     

C5     C6     H6     120.7                     

O1     C7     N1     121.24(7)                 

O1     C7     C4     122.05(7)                 

N1     C7     C4     116.58(6)                 

C9     C8     C13    121.65(6)                 

C9     C8     N1     130.74(6)                 

C13    C8     N1     107.40(6)                 

C10    C9     C8     117.17(6)                 

C10    C9     H9     121.4                     

C8     C9     H9     121.4                     

C9     C10    C11    121.57(7)                 

C9     C10    H10    119.2                     
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C11    C10    H10    119.2                     

O2     C11    C12    123.98(7)                 

O2     C11    C10    114.91(6)                 

C12    C11    C10    121.12(7)                 

C11    C12    C13    117.55(6)                 

C11    C12    H12    121.2                     

C13    C12    H12    121.2                     

C12    C13    C8     120.92(6)                 

C12    C13    C14    131.52(6)                 

C8     C13    C14    107.55(6)                 

C15    C14    C13    108.20(6)                 

C15    C14    C18    127.18(6)                 

C13    C14    C18    124.56(6)                 

C14    C15    N1     108.29(6)                 

C14    C15    C16    128.06(6)                 

N1     C15    C16    123.15(6)                 

C15    C16    H16A   109.5                     

C15    C16    H16B   109.5                     

H16A   C16    H16B   109.5                     

C15    C16    H16C   109.5                     

H16A   C16    H16C   109.5                     

H16B   C16    H16C   109.5                     

O2     C17    H17A   109.5                     

O2     C17    H17B   109.5                     

H17A   C17    H17B   109.5                     

O2     C17    H17C   109.5                     

H17A   C17    H17C   109.5                     

H17B   C17    H17C   109.5                     

C14    C18    C19    109.83(6)                 

C14    C18    H18A   109.7                     

C19    C18    H18A   109.7                     

C14    C18    H18B   109.7                     

C19    C18    H18B   109.7                     

H18A   C18    H18B   108.2                     
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O3     C19    O4     124.49(7)                 

O3     C19    C18    124.66(7)                 

O4     C19    C18    110.81(6)                 

O4     C20    C21    105.45(7)                 

O4     C20    C25    109.63(6)                 

C21    C20    C25    111.48(7)                 

O4     C20    H20    110.1                     

C21    C20    H20    110.1                     

C25    C20    H20    110.1                     

C20    C21    C22    111.97(7)                 

C20    C21    H21A   109.2                     

C22    C21    H21A   109.2                     

C20    C21    H21B   109.2                     

C22    C21    H21B   109.2                     

H21A   C21    H21B   107.9                     

C21    C22    C23    110.89(8)                 

C21    C22    H22A   109.5                     

C23    C22    H22A   109.5                     

C21    C22    H22B   109.5                     

C23    C22    H22B   109.5                     

H22A   C22    H22B   108.0                     

C26    C23    C22    110.73(8)                 

C26    C23    C24    109.79(7)                 

C22    C23    C24    111.32(6)                 

C26    C23    H23    108.3                     

C22    C23    H23    108.3                     

C24    C23    H23    108.3                     

C25    C24    C23    110.80(6)                 

C25    C24    H24A   109.5                     

C23    C24    H24A   109.5                     

C25    C24    H24B   109.5                     

C23    C24    H24B   109.5                     

H24A   C24    H24B   108.1                     

C20    C25    C24    112.27(6)                 
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C20    C25    H25A   109.1                     

C24    C25    H25A   109.1                     

C20    C25    H25B   109.1                     

C24    C25    H25B   109.1                     

H25A   C25    H25B   107.9                     

F3     C26    F2     106.43(8)                 

F3     C26    F1     106.35(8)                 

F2     C26    F1     105.12(10)                

F3     C26    C23    113.19(10)                

F2     C26    C23    112.31(8)                 

F1     C26    C23    112.84(8)                 

------------------------------------------------------- 
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Table S6. Torsion angles [°]. 
________________________________________________________________ 

C6     C1     C2     C3     0.08(13)                                    

Cl1    C1     C2     C3     179.00(7)                                   

C1     C2     C3     C4     1.89(13)                                    

C2     C3     C4     C5     -2.07(12)                                   

C2     C3     C4     C7     -176.52(7)                                  

C3     C4     C5     C6     0.27(11)                                    

C7     C4     C5     C6     174.64(7)                                   

C2     C1     C6     C5     -1.84(12)                                   

Cl1    C1     C6     C5     179.26(6)                                   

C4     C5     C6     C1     1.65(11)                                    

C8     N1     C7     O1     34.73(11)                                   

C15    N1     C7     O1     -142.95(8)                                  

C8     N1     C7     C4     -141.08(7)                                  

C15    N1     C7     C4     41.23(10)                                   

C5     C4     C7     O1     -137.35(8)                                  

C3     C4     C7     O1     37.03(11)                                   

C5     C4     C7     N1     38.43(10)                                   

C3     C4     C7     N1     -147.19(7)                                  

C7     N1     C8     C9     4.93(12)                                    

C15    N1     C8     C9     -177.01(7)                                  

C7     N1     C8     C13    179.63(6)                                   

C15    N1     C8     C13    -2.30(8)                                    

C13    C8     C9     C10    1.34(10)                                    

N1     C8     C9     C10    175.40(7)                                   

C8     C9     C10    C11    0.00(11)                                    

C17    O2     C11    C12    3.46(11)                                    

C17    O2     C11    C10    -176.86(7)                                  

C9     C10    C11    O2     179.11(7)                                   

C9     C10    C11    C12    -1.20(11)                                   

O2     C11    C12    C13    -179.33(7)                                  

C10    C11    C12    C13    1.01(11)                                    

C11    C12    C13    C8     0.31(10)                                    
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C11    C12    C13    C14    -179.02(7)                                  

C9     C8     C13    C12    -1.54(10)                                   

N1     C8     C13    C12    -176.82(6)                                  

C9     C8     C13    C14    177.94(6)                                   

N1     C8     C13    C14    2.66(8)                                     

C12    C13    C14    C15    177.35(7)                                   

C8     C13    C14    C15    -2.06(8)                                    

C12    C13    C14    C18    -5.39(12)                                   

C8     C13    C14    C18    175.21(6)                                   

C13    C14    C15    N1     0.63(8)                                     

C18    C14    C15    N1     -176.55(7)                                  

C13    C14    C15    C16    172.65(7)                                   

C18    C14    C15    C16    -4.53(12)                                   

C7     N1     C15    C14    179.01(7)                                   

C8     N1     C15    C14    1.03(8)                                     

C7     N1     C15    C16    6.51(11)                                    

C8     N1     C15    C16    -171.46(6)                                  

C15    C14    C18    C19    -93.45(9)                                   

C13    C14    C18    C19    89.81(8)                                    

C20    O4     C19    O3     0.96(10)                                    

C20    O4     C19    C18    -176.91(6)                                  

C14    C18    C19    O3     -80.17(9)                                   

C14    C18    C19    O4     97.69(7)                                    

C19    O4     C20    C21    -157.31(7)                                  

C19    O4     C20    C25    82.56(8)                                    

O4     C20    C21    C22    -64.70(8)                                   

C25    C20    C21    C22    54.20(10)                                   

C20    C21    C22    C23    -55.11(10)                                  

C21    C22    C23    C26    178.02(7)                                   

C21    C22    C23    C24    55.59(10)                                   

C26    C23    C24    C25    -178.17(7)                                  

C22    C23    C24    C25    -55.20(9)                                   

O4     C20    C25    C24    62.35(8)                                    

C21    C20    C25    C24    -54.03(9)                                   
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C23    C24    C25    C20    54.49(8)                                    

C22    C23    C26    F3     57.62(10)                                   

C24    C23    C26    F3     -179.06(8)                                  

C22    C23    C26    F2     -62.94(11)                                  

C24    C23    C26    F2     60.38(11)                                   

C22    C23    C26    F1     178.46(8)                                   

C24    C23    C26    F1     -58.22(10)                                  

----------------------------------------------------------------- 
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Symmetry operations 

________________________________________________________________ 

1  'x, y, z' 

2  '-x, -y, -z' 
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3.7.7 NMR Spectra 

 
19F NMR (376 MHz, Acetone-d6) of Cu(CF3)3(bpy) 

 
1H NMR (400 MHz, Acetone-d6) of Cu(CF3)3(bpy) 
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1H NMR spectrum (400 MHz, CDCl3) of A1 

 

13C NMR spectrum (101 MHz, CDCl3) of A1 
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1H NMR (400 MHz, CDCl3) of A2 

 
13C NMR (126 MHz, DMF-d7) of A2 
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1H NMR (300 MHz, DMF-d7) of A3 

 
13C NMR (75 MHz, DMF-d7) of A3  
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1H NMR (400 MHz, CD2Cl2) of A4 

 
13C NMR (101 MHz, CD2Cl2) of A4 
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 1H NMR (400 MHz, CDCl3) of A5 

 
13C NMR (101 MHz, CDCl3) of A5 
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1H NMR (500 MHz, DMF-d7) of A6 

 
13C NMR (126 MHz, DMF-d7) of A6 
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1H NMR (400 MHz, CDCl3) of A7 

 
13C NMR (101 MHz, CDCl3) of A7 
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19F NMR (376 MHz, DMF-d7) of A8 

 
1H NMR spectrum (500 MHz, DMF-d7) of A8 
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13C NMR spectrum (126 MHz, DMF-d7) of A8 

 
1H NMR spectrum (400 MHz, CDCl3) of A9 
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13C NMR spectrum (101 MHz, CDCl3) of A9 

 
1H NMR spectrum (400 MHz, CDCl3) of A10 
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13C NMR spectrum (126 MHz, CDCl3) of A10 

 
1H NMR spectrum (400 MHz, CDCl3) of A11 
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13C NMR spectrum (101 MHz, CDCl3) of A11 

 
1H NMR (400 MHz, CD2Cl2) of A12 



 

481 
 

 
13C NMR (101 MHz, CD2Cl2) of A12 

 
1H NMR (300 MHz, DMF-d7) of A13  
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13C NMR (126 MHz, DMF-d7) of A13 

 
1H NMR spectrum (400 MHz, CDCl3) of A14 
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13C NMR spectrum (500 MHz, CDCl3) of A14 

 
1H NMR (400 MHz, CDCl3) of A15 
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13C NMR (101 MHz, CDCl3) of A15 

 
19F NMR spectrum (400 MHz, CDCl3) of A16 
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1H NMR spectrum (400 MHz, CDCl3) of A16 

 

 
13C NMR spectrum (126 MHz, DMF-d7) of A16 
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1H NMR spectrum (400 MHz, CDCl3) of A17 

 
13C NMR spectrum (101 MHz, CDCl3) of A17 

 



 

487 
 

 
1H NMR spectrum (400 MHz, CD2Cl2) of A18 

 
13C NMR spectrum (101 MHz, CD2Cl2) of A18 
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1H NMR spectrum (400 MHz, CDCl3) of A19 

 
13C NMR spectrum (101 MHz, CDCl3) of A19 
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1H NMR (500 MHz, DMF-d7) of A20 

 
13C NMR spectrum (101 MHz, DMF-d7) of A20 
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1H NMR (500 MHz, DMF-d7) of A21 

 
13C NMR (126 MHz, DMF-d7) of A21 
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19F NMR (376 MHz, CDCl3) of A22 

 
1H NMR spectrum (400 MHz, CDCl3) of A22 
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13C NMR spectrum (101 MHz, CDCl3) of A22 

 
1H NMR spectrum (400 MHz, CDCl3) of A23 
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13C NMR spectrum (101 MHz, CDCl3) of A23 

 
1H NMR (500 MHz, DMF-d7) of A24 
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13C NMR (126 MHz, DMF-d7) of A24 

 
19F NMR (376 MHz, CDCl3) ofA25 
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1H NMR (400 MHz, CDCl3) of A25 

 
13C NMR (126 MHz, CDCl3) of A25 
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1H NMR (400 MHz, CDCl3) of A26 

 
13C NMR (101 MHz, CDCl3) of A26 
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1H NMR (400 MHz, CD2Cl2) of A27 

 
13C NMR (101 MHz, CD2Cl2) of A27 
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1H NMR (400 MHz, CDCl3) of A28 

 
13C NMR (101 MHz, CDCl3) of A28 
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1H NMR (400 MHz, CDCl3) of A29 

 
13C NMR (101 MHz, CDCl3) of A29 
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1H NMR (400 MHz, DMF-d7) of A30 

 
13C NMR (101 MHz, DMF-d7) of A30 



 

501 
 

 
1H NMR (500 MHz, CDCl3) of A31 

 
13C NMR (101 MHz, CDCl3) of A31 
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1H NMR (500 MHz, CDCl3) of A32 

 

13C NMR (126 MHz, CDCl3) of A32 
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1H NMR (500 MHz, DMF-d7) of A33 

 
13C NMR (126 MHz, DMF-d7) of A33 
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1H NMR (500 MHz, CDCl3) of A34 

 

13C NMR (126 MHz, CDCl3) of A34 
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1H NMR (500 MHz, CDCl3) of A35 

 
13C NMR (75 MHz, CDCl3) of A35 
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1H NMR (400 MHz, CDCl3) of A36 

 
13C NMR (101 MHz, CDCl3) of A36 
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1H NMR (400 MHz, CDCl3) of A37 

 
13C NMR (126 MHz, DMF-d7) of A37 
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1H NMR (500 MHz, DMF-d7) of A38 

 
13C NMR (126 MHz, DMF-d7) of A38 
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1H NMR (400 MHz, CD2Cl2) of A39 

 

13C NMR (101 MHz, CD2Cl2) of A39 
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1H NMR (400 MHz, CD2Cl2) of A40 

 
13C NMR (101 MHz, CD2Cl2) of A40 
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1H NMR (400 MHz, CD2Cl2) of A41 

 
13C NMR (101 MHz, CD2Cl2) of A41 
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1H NMR (400 MHz, CDCl3) of A42 

 
13C NMR (101 MHz, CDCl3) of A42 
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1H NMR (400 MHz, CDCl3) of A43 

 

 
13C NMR (101 MHz, CDCl3) of A43 
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19F NMR (376 MHz, CD2Cl2) of A44 

 
1H NMR (400 MHz, CD2Cl2) of A44 
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13C NMR (101 MHz, CD2Cl2) of A44 

 

1H NMR (400 MHz, CDCl3) of B1 
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13C NMR (101 MHz, CDCl3) of B1 

 
1H NMR (400 MHz, CDCl3) of B2 
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13C NMR (101 MHz, CDCl3) of B2 

\

 
1H NMR (400 MHz, CDCl3) of B3 
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13C NMR (101 MHz, CDCl3) of B3 

 

 
1H NMR (400 MHz, CDCl3) of B4 
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13C NMR (101 MHz, CDCl3) of B4 

 
1H NMR (400 MHz, CDCl3) of B5 
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13C NMR (101 MHz, CDCl3) of B5 

 
1H NMR (400 MHz, CDCl3) of B6 
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13C NMR (101 MHz, CDCl3) of B6 

 
1H NMR (400 MHz, CDCl3) of B7 



 

522 
 

 
13C NMR (101 MHz, CDCl3) of B7 

 
1H NMR (400 MHz, CDCl3) of B8 
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13C NMR (101 MHz, CDCl3) of B8 

 
1H NMR (400 MHz, CDCl3) of B9 
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13C NMR (101 MHz, CDCl3) of B9 

 

1H NMR (400 MHz, CDCl3) of B10 (note: the compound decompose)  
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13C NMR (101 MHz, CDCl3) of B10 

 

1H NMR (400 MHz, CDCl3) of B11 (note: the compound decompose)  
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13C NMR (101 MHz, CDCl3) of B11 

 

1H NMR (400 MHz, CDCl3) of B12 (note: the compound decompose)  
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13C NMR (101 MHz, CDCl3) of B12 

 
1H NMR (400 MHz, CDCl3) of C1 
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13C NMR (101 MHz, CDCl3) of C1 

 
1H NMR (400 MHz, CDCl3) of C2 
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13C NMR (101 MHz, CDCl3) of C2 

 

 
1H NMR (400 MHz, CDCl3) of C3 
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13C NMR (101 MHz, CDCl3) of C3 

 
1H NMR (500 MHz, CDCl3) of C4 
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13C NMR (126 MHz, CDCl3) of C4 

 
1H NMR (500 MHz, CDCl3) of C5 
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13C NMR (126 MHz, CDCl3) of C5 

 

 
1H NMR (500 MHz, CDCl3) of C6 
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13C NMR (126 MHz, CDCl3) of C6 

 
1H NMR (400 MHz, CDCl3) of C7 
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13C NMR (101 MHz, CDCl3) of C7 

 

1H NMR (400 MHz, CDCl3) of C8 
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13C NMR (101 MHz, CDCl3) of C8 

 
1H NMR (400 MHz, CDCl3) of C9 
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13C NMR (101 MHz, CDCl3) of C9 
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4.1 General Introduction 

Allenes have attracted the chemical society's continuous attention due to their unique 

chemical structure containing two cumulative π-bonds with sp2-hybridized carbons and 

a sp-hybridized central carbon, and the ability of the substituents to display diverse 

functional groups.2 Although allenes belong to the same class of unsaturated 

compounds as alkyne and alkene analogues, their unique orthogonal geometry allows 

them to exhibit a distinct reactivity. Allenes are more reactive than alkenes and alkynes, 

allowing for milder and more atom economical transformations and access to more 

complex chemical structures.3 In turn, the enhanced reactivity of this highly unsaturated 

functional group gives rise to regio-, stereo-, and enantioselective issues, which pose 

great challenges to the use of allenes in chemical research.4 

The manipulation of allenes through transition-metal catalyzed process plays an 

important role and have continually offered a series of powerful strategies to create a 

variety of sp2/sp3 C–C bonds.2c, 2d, 4 For example, metal borylation of orthogonal 

cumulative π-bonds generates allyl or vinyl metal intermediates (Scheme 4.1), which 

can subsequently react with a variety of electrophilic coupling partners.5 Introducing 

boron functional groups into unsaturated systems via transition metal-catalyzed 

carboboration has become a bright spot in synthetic chemistry.6,7  

  

Scheme 4.1 Metal borylation of allene with orthogonal cumulative π-bonds.  

4.1.1 Copper Catalyzed 1,2-Carboboration Reactions of Allenes 

Transition metal-catalyzed three-component coupling reactions among allenes, 

carbon-electrophilic reagents, and boron sources can provide access to a variety of 

alkenyl and allyl boronic esters due to the regional and steric divergence of carbon-

boration reactions of allenes.5, 6 Typically, the formation of [M]-[B] intermediates from 

trandition metals [M] and diboron reagents (i.e. B2pin2) leads to the insertion of mono- 

or di-substituted alkenes to generate the associated π-allyl-[M] or sp2 C-[M] species, 

C
H
H

[M] Bpin

Path B
[M]

Bpin

[M]Bpin

Path A
[M]

Bpin



 

653 
 

where the regioselectivity present is usually controlled by both substrate and ligand. 

Among them, the π-allyl-[M] generated in situ by 2,1-boryl metalation is a key 

intermediate for further reactivity with electrophiles to build sp3 C–C bonds and to 

prepare linear chain alkenyl boronic esters I or branched chain alkenyl boronic esters 

II (Scheme 4.2). On the other hand, the generation of sp2 C-[M] intermediates via the 

1,2-boron metalation of allenes allows for coupling reactions with the electrophilic 

reagents, which would be an effective complementary strategy to the synthesis of allyl 

boronic esters III. So far, despite a series of research works on electrophilic reagents 

for carboborylation of allene systems, the electrophilic trapping reagents for subsequent 

interception of sp2/sp3 C–[M] intermediates mostly focus on the conversion of proton 

sources, aldehydes, ketones, imines, Michael acceptors, allyl species, aryl halides, or a 

cyano group.8 the sp3-hybridized alkyl electrophiles combining with C(sp3)-[M] 

intermediates in the intermolecular carbonborylation of allenes are still unreported.9 

 

Scheme 4.2 Transition metal-catalyzed 1,2-carboboration of allenes.  

In particular, based on the fact that copper is a cheap, abundant and nontoxic metal, 

as well as the development of copper-derived nucleophilic intermediates, the pioneering 

use of organocuprates as coupling partners in organic synthesis has been widely 

reported (Scheme 4.3).10 Therefore, Cu-catalyzed 1,2-carboboration reactions of 

allenes is one of the most attractive strategies for the synthesis of organoboron 

derivatives.6, 8, 11  
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Scheme 4.3 Reported examples of copper-catalyzed 1,2-carboboration reactions of 

allenes. 

The first type of reactions to be introduced delivered linear alkenyl boronates via a 

copper-catalyzed 1,2-carboboration of allenes. In 2014, the Tsuji group reported the 

first borylative allyl-based coupling of allene using B2pin2 and allyl phosphate under 

copper-NHC catalysis (Scheme 4.4).6c This method successfully synthesized boron-

substituted 1,5-dienes with excellent stereoselectivity and regioselectivity, which were 

difficult to obtain by other strategies. Immediately afterwards, Hoveyda and colleagues 

reported a similar multicomponent catalytic process (Scheme 4.5),12 but they controlled 

chemoselectivity, site selectivity, and stereoselectivity while also achieving 

enantioselectivity by using chiral NHC ligands. This reactivity mode begins with a 

copper-boron addition to a monosubstituted alkene, and the resulting boron-substituted 

organocopper intermediates then engage in similar selective allylic substitutions. 
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Scheme 4.4 Borylative allyl-based coupling of allenes. 

   

Scheme 4.5 Enantioselective allyl-borylation of allenes.  

In the same year, Brown's group used [IMesCuCl] as a catalyst and aryl iodides as 

C(sp2)-electrophiles to achieve the carboborylation of allenes and the formation of vinyl 

boronic esters with well-defined stereoselectivity (Scheme 4.6).13 In this process, the 

coupling of the resulting allyl copper intermediate with aryl iodide occurs at the least 
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substituted position, which resulted in the highly selective formation of Z-alkenyl 

borates. 

 

Scheme 4.6 Carboborylation of allenes by aryl iodides as C(sp2)-electrophiles.  

On the other hand, the isomerized allyl copper (I) intermediate can react at its γ-

position by pro-metal rearrangement to produce branched alkenyl boronic esters II 

(Scheme 4.7).14 Subsequent coupling with electrophiles deliver highly functionalized 

asymmetric products. In this process, the co-establishment of stereoselectivity and 

enantioselectivity may arise from the co-interaction of the original allene backbone and 

the prochiral electrophile with the copper chiral ligand. 

 

Scheme 4.7 The preparation of prochiral- and branched-alkenyl boronates.  

The enantioselective coupling of aldehydes or ketones with mono-substituted allenes 

and B2pin2 was described by Hoveyda and coworkers (Scheme 4.8).14a Allyl copper (I) 

intermediate is trapped with an aldehyde or ketone to produce highly functionalized 

vinyl boronates, and ketones were added enantioselectively to access tertiary alcohols. 

Through a hypothesized six-membered transition state structure, where the substituent 

on the aldehyde is in a pseudoequatorial position, syn products are generated (Scheme 

4.8, bottom).  
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Scheme 4.8 Cu-catalyzed enantioselective and diastereoselective coupling of allenes 

with carbonyls. 

In 2016, Procter and co-workers reported a strategy using imines as electrophiles, 

Cu(I)-NHC-catalyzed enantioselective three-component coupling of allenes with 

excellent functional group tolerance, this reaction brought various allylic amines with 

adjacent stereocenters (Scheme 4.9).14b In addition, the coupling product can be further 

functionalized by oxidation to form branched b-amino ketones. Here, the branched 
alkenyl boronic esters produced may also proceed from the addition of allyl copper to 

imine through a preferred chair-like transition state, where the orientation of the 

substituent on the imine in a pseudoaxial position is simultaneously modulated by the 

chiral ligand.  

B2pin2
CuCl (5.0 mol%)C

R1

O

R2
+

L1 or L2 (5.0 mol%)
NaOtBu, THF

R1

BpinOHR2

transformed. in situ
typically >98% γ-selectivity

In 2013, Hoveyda:

selected examples

proposed mechanism

OH

OTBS

O

Me

83%, 98:2 dr

OH

OTBS

O

Me

64%, 98:2 dr

Me

OH

Me

O

Me

77%, 96:4 dr

α

Me

PPh2
S

PPh2
L1

PPh2
MeO

Cl

PPh2

Cl

MeO

L2

OH

Me

O

Me

Me OH

OTBS

O

Me

82%, 94:6 dr

γ

C
R1

O

R2
+

αγ
B2pin2,
LCuCl LCu

Bpin
CuL

Bpin

LCu
O

BpinR2

R1
R1

BpinOR2

CuL

NaOtBu

NaOtBu

LCu OtBu
R1

BpinOR2

Na
NaBO3desired 

product

OH

OTBS

O

Me

79%, 98:2 dr

Cl

OH

OTBS

O

Me

85%, 93:7 dr

Me

αγ



 

658 
 

 

Scheme 4.9 Cu-catalyzed enantioselective and diastereoselective coupling of allenes 

with imines. 

In recent years, several groups such as Fujihara,14g Tsuji,6g and Riant15 have 

independently reported elegant Cu-catalyzed three-component borylations reacting 

with different acylation reagents on 1,1-disubstituted alkenes, which provided an 

accessible way to form b-boronyl-b,ã-unsaturated ketones with chiral quaternary 

stereocenters (Scheme 4.10). Subsequently, Cu-catalyzed enantioselective boronylation 

of 1,1-disubstituted malondienes was also investigated. 

 

Scheme 4.10 Copper-catalyzed boroacylation of 1,1- disubstituted allenes.  

In 2016, Montgomery reported an example of diastereo- and regioselective copper-
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reaction, the initial borocupration of allene produced an allyl copper intermediate (2) 

which is subsequently cyanated to afford intermediate (5) capable of being borylated 

and protonated to give the trifunctionalized product (10).  

 

Scheme 4.11 Copper-catalyzed trifunctionalization of using allenes N-cyano-N-

phenyl-p-tosylbenzene sulfonamide as the electrophile. 

Although these methods described above demonstrate the impressive array of allene 

functionalization that can occur under copper catalysis through the formation of allyl 

copper intermediates in combination with different electrophilic reagents, these 

methods are still limited to the construction of sp3 hybridized carbon sites based on 

allene functionalizations, particularly with alkyl halides as electrophilic reagents.16 It 

was not until 2021 that the Hajime group reported the first copper catalyzed 

regioselective and stereoselective intermolecular three-component coupling reaction to 

synthesize spatially crowded allylboronates by using alkyl halides as electrophiles and 

gem-dialkylallenes as substrates (Scheme 4.12).17 It is a challenging reaction, which 

achieves high chemoselectivity of the boryl copper (I) intermediate for the carbo-

functionalization of allene rather than the alkyl-electrophiles, as well as regioselectivity 
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and stereoselectivity for alkylboration of allenes. Mechanistically, the in situ formation 

of the copper(I) alkoxide (1) from CuICl and KOtBu first undergoes a σ-bond 

metathesis with B2pin2 to form the boronic copper (I) intermediate (4). Coordination 

and borylcupration of allene (5) with intermediate (4) provides the alkenyl copper(I) 

species (6). The copper(I) center in intermediate (6) coordinates with the alkoxide to 

generate cuprate species (7). The nucleophilic cuprate species (7) undergoes SN2-type 

oxidative addition with alkyl iodines (8) to form the organocopper (III) intermediate 

(10). The final reductive elimination of the higher valent copper (III) species (10) 

produces the alkylborylation product (11), while the resulting reductive copper (I) 

alkoxide (1) completes the catalytic cycle. 

 

Scheme 4.12 Copper-catalyzed regioselective and stereoselective intermolecular 1,2-

alkylboronation to form allylboronates. 

4.1.2 Nickel-Catalyzed Alkylboration of Unsaturated C–C Bond 

In recent years, the study of nickel catalysis has shown new prospects in the field of 
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selectivity in the construction of more challenging bonds of sp3 hybridized carbon, 

making alkyl reagents suitable cross-coupling partners in nickel-catalyzed reactions.19  

In the reaction of nickel-catalyzed 1,2-alkylboration of unsaturated systems, the 

migration and insertion of nickel-boron species into π-bonds to form s-alkyl 

organometallic intermediates is a key step.20 Among them, interception of organonickel 

intermediates and inhibition of b-hydride elimination are the main challenges to achieve 

1,2-alkylboration of unsaturated C–C bonds. In particular, the construction of C(sp3)–

C(sp3) bonds using alkyl halides as electrophiles is still yet to be accomplished (Scheme 

4.13).21 Mechanistically, b-hydride elimination occurs more rapidly than the 

interception of organonickel intermediates by alkyl electrophiles, then rapid b-hydride 

elimination and migratory reinsertion will readily occur, resulting in the formation of a 

new stable nickel complex. Alkyl halides are then bonded to provide 1,1- or 1,n-

alkylboronated products.21a 

 

Scheme 4.13 Nickel-catalyzed alkylboration of unsaturated C–C bonds. 

In 2019, the Yin group reported the Ni-catalyzed three-component 1,1-alkylboration 

of unactivated alkenes with benzyl bromides (Scheme 4.14, top).22 The unusual 

selectivity of the 1,1-alkylboration reaction was found to be dependent on the use of a 

ligand based on the type of pyridylcarboxamide coordinated with nickel catalyst. 

Notably, the directing groups are not necessary for the strong regioselectivity of this 

work, because the final a-boron alkyl-nickel species generated after migration is more 
stable than the secondary alkyl-nickel species in situ, due to a Lewis acid-base 

interaction metal-boron that the unpaired electrons in the d-orbital of nickel could leave 

the domain to the empty p orbitals of the adjacent boron atom.21a This method generates 

secondary aliphatic boronic esters from unactivated terminal alkenes and benzyl 

bromides. Immediately after, our group followed the Yin group to develop a nickel 
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organometallics bearing both B and Si motifs with ambiphilic a-haloboranes (Scheme 
4.14, bottom).23 

 

Scheme 4.14 Nickel-catalyzed 1,1-alkylboration of alkenes. 

In 2021, Yin's group developed a modular platform for the synthesis of 2,4-

disubstituted heterocycles from readily available materials via nickel-catalyzed 

migrating alkylboronization in a high diastereoselectivity (Scheme 4.15, top).24 

Numerous stereospecific diversifications of the borylation product and a high 

functional group tolerance were described. When ligand L2 is used instead of L1, the 

excellent enantioselectivity is expressed along with the completion of the migrating 

alkylborylation (Scheme 4.15, bottom). According to preliminary mechanistic studies, 

reductive elimination from the organonickel intermediate, rather than a two-electron 

nucleophilic substitution pathway, is essential for the stereochemistry of the C–C bond 

formation process. 
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Scheme 4.15 Nickel-catalyzed 1,3-alkylboration of heterocyclic alkenes. 

Recently, Yin and his colleagues disclosed again a Ni-catalyzed three-component 

1,1-alkylboronation reaction to synthesize thermodynamically disfavored disubstituted 

cyclohexanes from readily available methylene cyclohexanes, B2pin2 and benzyl 

halides via a chain-walking manner (Scheme 4.16).25 Conventional cross-coupling 

methods normally tend to synthesise thermodynamically stable stereoisomeric 

cyclohexyl derivatives. However, this strategy modularizes the control of 

stereochemistry through the boron ester group adjacent to the cyclohexane for excellent 

kinetic stereocontrol. At the same time, the late-stage functionalization of complex 

bioactive compounds demonstrates the synthetic potential of this strategy. 
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Scheme 4.16 Nickel-catalyzed 1,1-alkylboration of methylene cyclohexanes. 

Although nickel-catalyzed 1, n (n = 1, 3) -regioselective alkylboronations of alkenes 

are well developed, their difunctionalization of unsaturated systems other than olefins 

remains relatively unstudied. In terms of the strategies developed to control the 

generation of stabilized organic nickel intermediates by substrate structure is the key to 

alkylboration with non-activated alkyl halides as electrophilic reagents. Taking 

advantage of this core and the property of nickel-catalyzed alkyl halides via single 

electron transfer under related ligand control, further development of new 

transformations is to be expected. 
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4.2 General Aim of the Project 

The strategy of transition metal-catalyzed difunctionalization to introduce boron 

functional groups into unsaturated systems has become a highlight of synthetic 

chemistry. In particular, metal boryl functionalization from orthogonal cumulative π-

bonds of allene to generate alkenyl borates has been developed as well. However, the 

use of alkyl halides as electrophilic reagents for the construction of sp3 hybridized 

carbon centers to forge polysubstituted alkenyl borates has yet to be developed, where 

polysubstituted alkenyl borates have the potential to continue to expand the conversion 

of sp2 C–B bonds to a variety of other functional groups. 

To create the regio- and stereoselective polysubstituted olefins is still a big challenge 

in the field of synthetic organic chemistry.26 To date, most approaches to building 

alkenylborates have focused on end-shaped alkenylborates, or E-alkenylborates. For 

example, 1) transition-metal-catalyzed cross-coupling from alkenyl halides, triflates or 

silanes to provide end-shaped alkenylboronates;27 2) hydroboration of alkynes is the 

common method for the synthesis of E-alkenylboronates.28,29 However, methods for the 

construction of Z-polysubstituted alkenyl borates have rarely been reported.30 

Metal-catalyzed cross-coupling reactions of sp3 mono-organometallic reagents have 

reached remarkable levels of sophistication as vehicles to rapidly build up sp3 

architectures31 Based on our group's interest in forging sp3 linkages with amphiphilic 

a-haloborane reagents, we wondered whether it was posible to build polysubstituted 
alkenylborates via 1,2-alkylborylation of allenes as a platform, and sp3 mono-

organometallics motifs can be simultaneously introduced into the alkenylboronates as 

a side chain to enrich the molecular structure (Scheme 4.17). 
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Scheme 4.17 Alkylboration of unsaturated moieties. 
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4.3 Nickel-Catalyzed Regio- and Stereoselective 1,2-

Alkylboration of Allenes  

4.3.1 Optimization of the Reaction Conditions 

4.3.1.1 Optimized conditions of α-haloborane reagents as electrophiles 

Inspired by our group’s work in the catalytic 1,1-alkylboronation of unactivated 

olefins leading to the preparation of sp3-bis-organometallic B, B(Si) reagents,23 we 

began our work by borrowing the catalytic mode and reaction conditions of previous 

studies. Initially, we investigated using the readily available propa-1,2-dien-1-

ylcyclohexane (1a) as the model substrate, the most common Bis(pinacolato)diboron 

(B2pin2) as a boron source, and the primary 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (2a) as an a-haloborane reagent, since 2a is readily available on a large 

scale through Matteson reaction. Using NiBr2·DME as a nickel pre-catalyst, we firstly 

examined a large number of different types of ligands, which play a crucial role in 

nickel-catalyzed cross-coupling reactions. As table 4.1 shown, the use of L1-L3 type 

bidentate nitrogen-ligands provided better results, while other types of ligands such as 

bipyridine ligands, Oxazoline ligands, PyrOx ligands and other diamine-based ligands 

were unsuccessful, obtaining no conversion of the starting material allene. No reactivity 

was obtained under reaction conditions with electron-rich phosphine ligands (L12) or 

without the addition of ligands. Notably, comparing the structures of the ligands L1, 

L2, and L4, N-(2-hydroxyethyl)-6-methylpicolinamide (L2) was identified as the best 

ligand for this reaction system. It can be seen that the methyl group at the 6-position 

and the hydroxyl functional group in the type of pyridylcarboamide ligand are very 

important. A gain in the stability of alkyl-Ni intermediates against b-hydride 

elimination could be a reasonable explanation for the requirement of ortho substituted-

ligands. The effect of steric hindrance of the substituents distorts the geometry and 

hinders the co-planar rearrangement between the metals and the s C–H bonds. From 
the result of ligand L4, it is presumed that the hydroxyl group would interact with the 

nickel center in a corresponding coordination. 
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Conditions: a 1a (0.10 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), NiBr2·DME (10 mol%), Ligand (15 
mol%), t-BuOLi (0.17 mmol, 1.7 equiv), 1,4-dioxane (0.2 mL), 30 oC, 15 h. b Yields were determined by 
GC FID, using 1-decane as the internal standard. 

Table 4.1 Screening of different types of ligands.a 

Subsequent investigation of the nickel pre-catalysts in combination with L2 showed 

that NiBr2·DME was optimal. Zero-valent nickel (Table 4.2, entry 4) didn’t give the 

desired product, which means the reaction was not initiated by Ni0. By separation 

analysis assay, we obtained a small amount of side products from the addition of two 

molecules of amphiphilic a-haloboranes (2a) to allene under this condition, which is 
speculated that alkyl borane radicals from 2a perform radical addition to allenes. Some 

of the divalent nickel pre-catalysts may also not exhibit the expected reactivity due to 

solubility.  
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Entry 3a Yield (%)b

1
2
3
4
5
6
7
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0
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0
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Conditions: a 1a (0.10 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), Ni cat. (10 mol%), L2 (15 mol%), 
tBuOLi (0.17 mmol, 1.7 equiv), 1,4-dioxane 0.2 mL), 30 oC, 15 h. b Yields were determined by GC FID, 
using 1-decane as the internal standard. 

Table 4.2 Screening of nickel pre-catalysts.a 

To assess the solubility of the nickel catalyst and other reagents, we replaced 1,4-

dioxane with other solvents (Table 4.3), but 1,4-dioxane still showed relatively good 

results. We further tried changing the concentration of the reaction system, although the 

solubility state of the inorganic base and B2pin2 dissolved improved under dilute 

conditions, the effect of reaction was still better under concentrated conditions, we 

proposed the high concentration is benefited to the step of transmetallation between 

B2pin2 and Ni(L). 

 
Conditions: a 1a (0.10 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), NiBr2·DME (10 mol%), L2 (15 
mol%), t-BuOLi (0.17 mmol, 1.7 equiv), solvent (0.2 mL), 30 oC, 15 h. b Yields were determined by GC 
FID, using 1-decane as the internal standard. 

Table 4.3 Screening of solvents.a 

Next, we focused on modifying and tuning the structure of pyridylcarboamide based- 

to further improve reaction yields (Table 4.4). Based on the structure of L2, we first 

modified the structure of the hydroxyethyl group on the amide chain, with a positive 

correlation when increasing the length of the carbon chain (L18). On the other hand, 

the modification of the the carbon chain structure on hydroxyethyl group was found to 

affect the yield (L16, L17, L24-L26). Delightfully, a subttle change in the electrical 

properties of the pyridine moiety (L19) afforded a 72% yield.  
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Conditions: a 1a (0.10 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), NiBr2·DME (10 mol%), Ligand (15 
mol%), t-BuOLi (0.17 mmol, 1.7 equiv), 1,4-dioxane (0.2 mL), 30 oC, 15 h. b Yields were determined by 
GC FID, using 1-decane as the internal standard. 

Table 4.4 Modification of the structure of pyridylcarboamide based-ligands.a 

The role of bases was evaluated, we explored different types of bases and different 

alkalinity (Table 4.5). Lithium ions could promote the reaction well, and the yield can 

get 72% with the addition of LiOtBu as a strong base and weak nucleophilicity. 

Considering the relationship between the basicity and the nucleophilicity of the base, 

in order to avoid the formation of by-products of the nucleophilic attack of the base on 

2a, a weakly nucleophilic base with strong hindrance is favorable. 
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Conditions: a 1a (0.10 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), NiBr2·DME (10 mol%), L2 (15 mol%), 
bases (0.17 mmol, 1.7 equiv), 1,4-dioxane (0.2 mL), 30 oC, 15 h. b Yields were determined by GC FID, 
using 1-decane as the internal standard. LHMDS = Lithium bis(trimethylsilyl)amide. 

Table 4.5 Screening of bases.a 

The further optimize this reaction, we started to test different additives (Table 4.6). 

We try to weaken the nucleophilic attack of base pair 2a and reduce the consumption 

of 2a. So next we mainly choose additives from two aspects. On the one hand, we 

introduced several halide salts which would activate 2a in situ and produce a-

haloborane with poor leaving group ability during SN2 process (entry1-5). On the other 

hand, we attempted to add a certain amount of polar protic solvents in an effort to affect 

the nucleophilicity of Lewis base through hydrogen-bonding interactions (entry 7-9). 

Unfortunately, the additives had an inhibitory effect on the reaction. 

 
Conditions: a 1a (0.10 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), NiBr2·DME (10 mol%), Ligand (15 
mol%), t-BuOLi (0.17 mmol, 1.7 equiv), Additive (0.1 mmol, 1.0 equiv), 1,4-dioxane (0.2 mL), 30 oC, 
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15 h. b Yields were determined by GC FID, using 1-decane as the internal standard. LHMDS = Lithium 
bis(trimethylsilyl)amide. 

Table 4.6 Screening of additives.a 

Finally, we examined the effect of nickel-ligand ratio. A small increase in yield up to 

78% was obtained when reducing the ligand (L19) loading (entry 2). Notably，as shown 

in entry 2 of table 4.7, allene 1a and a-haloborane 2a as model substrates under the 
final optimized conditions gave alkenylboronate 3a in 77% isolated yield with perfect 

regioselectivity and E/Z selectivity ( Z selectivity through NMR spectroscopic analysis 

of the isolated 3a was certified). 

 
Conditions: a 1a (0.10 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), NiBr2·DME (10 mol%), Ligand (15 
mol%), t-BuOLi (0.17 mmol, 1.7 equiv), Additive (0.1 mmol, 1.0 equiv), 1,4-dioxane (0.2 mL), 30 oC, 
15 h. b Yields were determined by GC FID, using 1-decane as the internal standard. c isolatd yield. 

Table 4.7 Screening of the ratio of Ni cat. to ligand.a 

4.3.1.2 Optimized conditions of alkyl iodides as electrophiles 

Encouraged by the previous results that we successfully established nickel-catalyzed 

alkylboration of allene with amphiphilic a-haloborane reagents, we speculated whether 
we could extend the haloalkylboranes to other electrophilic reagents with sp3 hybridized 

carbon center (Scheme 4.18), such as Katritzky salts, non-activated alkyl halides, and 

NHP esters derived from alkyl carboxylic acids, all of which are reported in the 

literature to have the potential for cross-coupling with organonickel metal centers via 

single electron transform (SET). We discoverd that the use of ubiquitous alkyl iodides 

provided the desired products. This result reflects the generality of our method, 

allowing modular alkylation using common alkyl halides, which in addition provides a 

new pathway - the formation of primary or secondary C(sp3)–C(sp3) bonds - especially 
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more challenging for secondary alkyl halides because of space congestion in the 

product and the general difficulty of cross-coupling of secondary alkyl halides. 

 

Scheme 4.18 Extend the haloalkylboranes to other sp3 C-electrophiles. 

Although we obtained reactivity in the nickel-catalyzed 1,2-alkylborylation of allene 

using alkyl iodide instead of a-haloborane, the promising yield of 32% was further 

optimized. At first, we focused on investigating different ligands based on the 

pyridylcarboamide structure. As shown in Table 4.8, L18 without electron rich 

functional group (t-Bu) provided better yields (53%) than L19.  
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Condition s: a 1a (0.10 mmol, 1.0 equiv), 4a (0.2 mmol, 2.0 equiv), NiBr2·DME (10 mol%), Ligand (15 
mol%), t-BuOLi (0.17 mmol, 1.7 equiv), 1,4-dioxane (0.4 mL), 30 oC, 15 h. b Yields were determined by 
GC FID, using 1-decane as the internal standard.  

Table 4.8 Screening of ligands using alkyl iodide as electrophile.a 

Next, we screened various nickel pre-catalysts (Table 4.9). Although NiBr2·DME 

was more effective, the generality of alkyl iodide to different nickel catalysts was seen 

to be broader compared to the previous results of screening nickel catalysts with a-
haloboranes as the electrophiles. 

 
Conditions: a 1a (0.10 mmol, 1.0 equiv), 4a (0.2 mmol, 2.0 equiv), Ni cat. (10 mol%), L18 (15 mol%), 
t-BuOLi (0.17 mmol, 1.7 equiv), 1,4-dioxane (0.4 mL), 30 oC, 15 h. b Yields were determined by GC 
FID, using 1-decane as the internal standard. 

Table 4.9 Screening of nickel pre-catalysts using alkyl iodide as electrophile.a 

We subsequently investigated other parameters of the reaction, such as bases or 

solvents. However, a series of experiments demonstrated that the reaction remained 

optimal under the conditions of t-BuOLi as base and 1,4-dioxane as solvent. We 

observed that the conversion of allenes remained in the range of 80-95% during the 

optimization of the reaction, and we did not observe any other products that could be 

determined by GC-MS or NMR analysis, except for the regioselectivity. Compared to 

the yield of the desired product, we suspect that the lost starting material allene may 

have been converted to polymeric compounds. Finally, we decided to focus on the 

screening of additives. as shown in the table 4.10, a large number of inorganic salts or 

organic compounds were tried as additives, but the results were not what we expected. 

Interestingly, when we added copper salts, a loss in regioselectivity and large amounts 
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of branched-products were obtained (Table 4.10, entry 13-14). Moreover, when we tried 

to accelerate the conversion of the desired pathway by increasing the amount of alkyl 

iodide, the regioselectivity of the reaction deteriorated despite a slight increase in yield 

(Scheme 4.19). 

 
Conditions: a 1a (0.10 mmol, 1.0 equiv), 4a (0.2 mmol, 2.0 equiv), NiBr2·DME (10 mol%), L18 (15 
mol%), t-BuOLi (0.17 mmol, 1.7 equiv), Additive (0.10 mmol, 1.0 equiv), 1,4-dioxane (0.4 mL), 30 oC, 
15 h. b Yields were determined by GC-FID, using 1-decane as the internal standard. c Yields of branch 
product were determined by GC analysis of the reaction mixture. 

Table 4.10 Screening of nickel pre-catalysts using alkyl iodide as electrophile.a 

 

Scheme 4.19 The regioselectivity of the reaction by changing amount of 4a. 
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4.3.2 Substrate Scope 

With the optimized reaction conditions in hand, we turned our attention to exploring 

the generality of reactivity. As shown by the results compiled in Scheme 4.20, on the 

one hand, we tried various allenes 1a-i，and we obtained desired products from allene 

1a-f with primary a-haloboranes (2a) accompanied by excellent E/Z and 

regioselectivity [(Z)-3a-e, Z/E > 98%]. We used NOESY experiments to confirm the 

stereochemistry of (Z) from a 1,2-alkylboronated product synthesized under reactive 

conditions. (see experiment for details). The reaction proceeds well when disubstituted 

allene (3f) was used. The electron-rich allenes (1j,1h) delivered poorer reactivity, and 

the detected results of the reaction systems were messy. the reaction could not proceed 

when the allene has bulky substituents (1i). Next, we plan to synthesize more alkyl 

allenes containing a variety of functional groups to show the functional group tolerance 

of our method. On the other hand, we investigated the scope and limitations of alkyl 

halides. The successful synthesis of 1,3-methylsilylboranes by catalytic 1,2-

difunctionalization of allene using readily available (bromomethyl)trimethylsilane 

provided a useful entry point to forge 1,3-bis- organometallic reagents (3j). 

Disappointingly, the use of secondary α-haloboranes failed under the reaction 

conditions (3k, 3l), obtaining a large number of by-products from base t-BuOLi 

nucleophilic attack on the secondary a-haloboranes. It is tempting to propose that 

simple primary or secondary alkyl iodides (5a, 5b) can behave as electrophiles, albeit 

in low yields. In the future, the left work of this project will be continued by another 

member of my group.  
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Conditions: a 1 (0.10 mmol, 1.0 equiv), 2 or 4 (0.2 mmol, 2.0 equiv), B2pin2 (0.20 mmol, 2.0 equiv), 
NiBr2·DME (10 mol%), L18 (15 mol%) or L19 (12 mol%), t-BuOLi (0.17 mmol, 1.7 equiv), 1,4-dioxane, 
30 oC, 15 h. b Isolated yields c The ratio of E/Z was determined by GC-MS and 1H NMR spectrum analysis.  

Scheme 4.20 Substrate scope. 

4.3.3 Mechanistic Proposal 

With the related results of mechanistic studies on the nickel-catalyzed 1,1-

alkylboration of non-activated alkenes by Yin's group and our group, we speculate that 

the reaction mechanism may be as follows (Scheme 4.21): (i) by initiating the NiI-Bpin 

species through metal transfer in the NiI species with B2pin2, (ii) NiI -Bpin under the 

effect of a special pyridylcarboamide-ligand may occur migratory insertion on the 

allene from the least hindered p-side, resulting in the formation of a new sp3 C-NiI 

intermediate stabilized by allyl position, which is not possible to go through the b-H 
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elimination. The desired 1,2-alkylborylated product is delivered upon allyl-NiI 

intermediate and a-haloborane.  

 

Scheme 4.21 Proposed mechanism. 

4.4 Conclusion 

Although the transformation of nickel-catalyzed 1,2-alkylboration of allene has been 

preliminarily realized, the applicability of the substrate scope is currently limited under 

our optimized conditions. Next we plan to expand the substrate scope while further 

conditions optimization will be conducted for the substrates with poor reactivity, 

especially the secondary a-haloboranes, which will provide a new pathway for the 

synthesis of 1,3-bis-metallic reagents if their efficient conversion can be achieved. In 

addition, further applicability of the transformation which boron groups are converted 

to hetero groups by cascade oxidation and Mitsunobu reaction, or to sp2/sp3-carbon 

chains by cross-coupling is to be expected. 

The exceptional reactivity and selectivity of this synthetic method is noteworthy, 

which may have been influenced by nitrogen-based ligands. Further studies on the 

synthetic application of this strategy and the specific reaction mechanism will be 

assessed in our laboratory. 
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4.6 Experimental Section 

4.6.1 General Considerations 

Reagents: Commercially available materials were used as received without further 

purification. (Bromomethyl)boronic acid pinacol ester, Bis(pinacolato)diboron (B2Pin2) 

and Bis[(1R,2R,3S,5R)-pinanediolato]diboron were purchased from Fluorochem. 

(Bromomethyl)trimethylsilane was purchased from TCI. t-BuOLi was purchased from 

Sigma-Aldrich. Anhydrous 1,4-dioxane (99.5% purity) was purchased from Acros. 

Analytical methods: 1H and 13C NMR spectra were recorded on Bruker 400 MHz 

and Bruker 500 MHz at 20 °C. All 1H NMR spectra are reported in parts per million 

(ppm) downfield of TMS and were calibrated using the residual solvent peak of CHCl3 

(7.26 ppm), unless otherwise indicated. All 13C NMR spectra are reported in ppm 

relative to TMS, were calibrated using the signal of residual CHCl3 (77.16 ppm) . Gas 

chromatographic analyses were performed on Hewlett- Packard 6890 gas 

chromatography instrument with FID detector. Flash chromatography was performed 

with EM Science silica gel 60 (230-400 mesh). Thin layer chromatography was used to 

monitor reaction progress and analyze fractions from column chromatography. To this 

purpose TLC Silica gel 60 F254 aluminium sheets from Merck were used and 

visualization was achieved using UV irradiation and/or staining with Cerium 

Molybdate solution. 

4.6.2 Synthesis of Ligands and Starting Materials  

The ligands L1-L4 (Table 4.1), L13-L17, L27-L28 (Table 4.4) were prepared 

previously by others in our group and the preparation steps and data characterisation 

are reported in the literature.1 

General Procedure for the Preparation of Ligands  

 

The ligands L18-L26 were prepared according to a procedure reported in literature.2 To 

a round-bottom flask containing a stirring bar was added the corresponding picolinic 

NR1

O

OH + HN
R2

R3

N-methylmorpholine
iso-butylchloroformate
DCM, 0 oC to rt, 16h NR1

O

N
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acid (10 mmol, 1.0 equiv), then dry DCM (40 mL) was added via syringe under inert 

atmosphere. Subsequently, N-methylmorpholine (15 mmol, 1.5 equiv) was added and 

the reaction mixture was cooled down to 0 °C. Subsequently, iso- butyl chloroformate 

was added dropwise (12 mmol, 1.2 equiv), and the mixture was stirred for further 20 

min. Then the corresponding amine (12 mmol, 1.2 equiv) dissolved in DCM (10 mL) 

and added via syringe. After the addition, the mixture was allowed to warm to room 

temperature and stirred for 16 h. Afterwards, the mixture was extracted with DCM (10 

mL), washed with water (10 mL), brine (10 mL), dried over MgSO4 and concentrated 

in vacuum. The residue was purified by silica gel flash chromatography.  

 

N-(3-hydroxypropyl)-6-methylpicolinamide (L18) Following the general procedure, 

using 6-methylpicolinic acid (1.15 g, 8.38 mmol) and 3-aminopropan-1-ol (0.77 mL, 

10.1 mmol). The product was purified by flash chromatography (Hexane/EtOAc =2:1) 

to afford the compound as a colorless oil, 1.18 g (73%). 1H NMR (400 MHz, CDCl3) δ 

8.34 (s, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.27 (d, J = 7.2 Hz, 1H), 

3.68 – 3.61 (m, 4H), 2.55 (s, 3H), 1.84 – 1.76 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 165.9, 157.3, 148.8, 137.7, 126.2, 119.5, 58.9, 35.7, 32.7, 24.3 ppm. 

 

4-(tert-butyl)-N-(3-hydroxypropyl)-6-methylpicolinamide (L19) Following the 

general procedure, using 4-(tert-butyl)-6-methylpicolinic acid (0.80 g, 4.14 mmol) and 

3-aminopropan-1-ol (0.33 mL, 4.9 mmol). The product was purified by flash 

chromatography (Hexane/EtOAc = 2:1) to afford the compound as a colorless oil, 0.81 

g (78%).1H NMR (400 MHz, CDCl3) δ 8.36 (s, 1H), 8.02 (d, J = 2.0 Hz, 1H), 7.26 (d, 

J = 2.3 Hz, 1H), 3.76 – 3.56 (m, 4H), 2.55 (s, 3H), 1.91 – 1.68 (m, 2H), 1.32 (s, 9H), 

0.91 (d, J = 6.7 Hz, 1H) ppm. 13C NMR (101 MHz, CDCl3) δ 166.4, 162.2, 157.2, 148.7, 

123.1, 116.9, 58.8, 35.6, 35.1, 32.8, 30.6, 24.5 ppm. 
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N-(3-hydroxypropyl)quinoline-2-carboxamide (L20) Following the general 

procedure, using quinoline-2-carboxylic acid (0.54 g, 3.10 mmol) and 3-aminopropan-

1-ol (0.28 g, 3.7 mmol). The product was purified by flash chromatography 

(Hexane/EtOAc =2:1) to afford the compound as a colorless oil, 0.46 g (65%). 1H NMR 

(400 MHz, CDCl3): δ  1H NMR (400 MHz, CDCl3) δ 8.52 (s, 1H), 8.36 – 8.27 (m, 

2H), 8.09 (m, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.2 

Hz, 1H), 3.71 (m, 4H), 1.87 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 165.8, 149.5, 

146.6, 137.7, 130.3, 129.7, 129.5, 128.1, 127.9, 119.0, 59.1, 36.0, 32.7 ppm. 

 

N-(3-hydroxypropyl)-5,6,7,8-tetrahydroquinoline-2-carboxamide (L21) Following 

the general procedure, using 5,6,7,8-tetrahydroquinoline-2-carboxylic acid (0.73 g, 

4.10 mmol) and 3-aminopropan-1-ol (0.33 mL, 4.9 mmol). The product was purified 

by flash chromatography (Hexane/EtOAc =2:1) to afford the compound as a colorless 

oil, 0.73 g (76%). 1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.91 (d, J = 7.8 Hz, 1H), 

7.50 (d, J = 7.9 Hz, 1H), 3.64 (dd, J = 7.2, 5.1 Hz, 4H), 3.54 (s, 1H), 2.90 (t, J = 6.5 

Hz, 2H), 2.82 (t, J = 6.4 Hz, 2H), 2.01 – 1.87 (m, 2H), 1.87 – 1.72 (m, 4H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 156.3, 146.5, 138.1, 136.0, 119.7, 58.8, 35.6, 32.9, 32.5, 

28.9, 23.0, 22.6 ppm. 

 

N-(3-hydroxypropyl)-6,7-dihydro-5H-cyclopenta[b]pyridine-2-carboxamide 

(L22) Following the general procedure, using 6,7-dihydro-5H-cyclopenta[b]pyridine-

2-carboxylic acid (0.67 g, 4.10 mmol) and 3-aminopropan-1-ol (0.33 mL, 4.9 mmol). 

The product was purified by flash chromatography (Hexane/EtOAc =2:1) to afford the 

compound as a colorless oil, 0.66 g (74%). 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 

10.7 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.62 (dd, J = 7.7, 1.3 Hz, 1H), 3.64 (td, J = 5.6, 

3.6 Hz, 4H), 2.99 (q, J = 7.9 Hz, 4H), 2.30 – 2.09 (m, 2H), 1.95 – 1.67 (m, 2H) ppm. 
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13C NMR (101 MHz, CDCl3) δ 166.3, 164.9, 147.7, 140.9, 133.1, 120.4, 58.8, 35.6, 

33.9, 32.8, 30.8, 23.4 ppm. 

 

4-(tert-butyl)-N-(4-hydroxybutyl)-6-methylpicolinamide (L23) Following the general procedure, 

using 6-methylpicolinic acid (0.56 g, 4.10 mmol) and 4-aminobutan-1-ol (0.44 g, 4.90 mmol). The 

product was purified by flash chromatography (Hexane/EtOAc =2:1) to afford the compound as a 

white solid, 0.71 g (83%). 1H NMR (400 MHz, CDCl3) δ 8.22 (s, 1H), 8.03 – 7.95 (m, 1H), 7.77 – 

7.64 (m, 1H), 7.27 (d, J = 6.5 Hz, 2H), 3.76 – 3.69 (m, 2H), 3.60 – 3.47 (s, 3H), 1.81 – 1.64 (m, 4H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 164.7, 157.2, 149.3, 137.6, 125.9, 119.44, 62.7, 39.2, 30.0, 

26.5, 24.3 ppm. 

 

N-(4-hydroxybutan-2-yl)-6-methylpicolinamide (L24) Following the general 

procedure, using 6-methylpicolinic acid (0.56 g, 4.10 mmol) and 3-aminobutan-1-ol 

(0.44 g, 4.90 mmol). The product was purified by flash chromatography 

(Hexane/EtOAc =2:1) to afford the compound as a colorless oil, 0.58 g (68%). 1H NMR 

(400 MHz, CDCl3) δ 7.99 (m, 2H), 7.73 (t, J = 7.7 Hz, 1H), 7.29 (dd, J = 7.7, 1.1 Hz, 

1H), 4.53 – 4.30 (m, 1H), 3.71 – 3.48 (m, 2H), 2.58 (s, 3H), 1.95 (dd, J = 14.1, 10.7 Hz, 

1H), 1.56 – 1.44 (m, 1H), 1.38 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 165.30, 

157.41, 148.69, 137.75, 126.27, 119.66, 58.89, 42.07, 40.66, 24.36, 21.42 ppm. 

 

N-(3-hydroxy-1-phenylpropyl)-6-methylpicolinamide (L25) Following the general 

procedure, using 6-methylpicolinic acid (0.56 g, 4.10 mmol) and 3-amino-3-

phenylpropan-1-ol (mL, mmol). The product was purified by flash chromatography 

(Hexane/EtOAc =1:1) to afford the compound as a white solid, 0.62  g (56%). 1H 
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NMR (400 MHz, CDCl3) δ 8.50 (d, J = 8.6 Hz, 1H), 8.01 (d, J = 7.5 Hz, 1H), 7.73 (td, 

J = 7.7, 2.9 Hz, 1H), 7.47 – 7.36 (m, 4H), 7.34 – 7.27 (m, 2H), 5.42 (ddd, J = 10.8, 9.0, 

4.1 Hz, 1H), 3.71 (m, 3H), 2.56 (s, 3H), 2.32 – 2.20 (m, 1H), 1.99 (m, 1H) ppm. No 

signal for OH-group has been observed. 13C NMR (101 MHz, CDCl3) δ 165.1, 157.4, 

148.6, 141.6, 137.7, 129.0, 127.8, 126.9, 126.4, 119.7, 58.9, 50.2, 39.3, 24.3 ppm. 

 

N-(3-hydroxy-2,2-dimethyl-2λ5-propyl)-6-methylpicolinamide (L26) Following the 

general procedure, using 4-(tert-butyl)-6-methylpicolinic acid (0.79 g, 4.10 mmol) and 

3-amino-2,2-dimethyl-2λ5-propan-1-ol (0.50 g, 4.90 mmol). The product was purified 

by flash chromatography (Hexane/EtOAc =2:1) to afford the compound as a yellow oil, 

0.44 g (48%). 1H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 8.07 – 7.97 (m, 1H), 7.27 (d, 

J = 1.9 Hz, 1H), 3.30 (d, J = 7.2 Hz, 2H), 3.18 (d, J = 7.2 Hz, 2H), 2.56 (s, 3H), 1.33 

(s, 9H), 0.95 (s, 6H) ppm.  13C NMR (101 MHz, CDCl3) δ 166.7, 157.3, 148.5, 123.2, 

117.1, 68.0, 46.3, 37.5, 35.1, 30.6, 24.5, 22.9 ppm. 

General procedure for the Preparation of Allenes3  

 

Alkyne (1.0 equiv), paraformaldehyde (2.5 equiv), copper iodide (0.5 equiv), 

dicyclohexylamine (1.8 equiv) and 1,4-dioxane (0.2 M) were added sequentially into 

an flask under a nitrogen atmosphere. The resulting mixture was stirred under reflux 

for 12 h. Water and diethyl ether was added and the aqueous solution was extracted 

with diethyl ether. The organic layer was then washed with brine and dried over 

anhydrous MgSO4. Evaporation and column chromatography on silica gel afforded 

allene as product. 

 
Buta-2,3-dien-1-ylcyclohexane (1b) Following the general procedure, using prop-2-

yn-1-ylcyclohexane (0.50 g, 4.1 mmol), the crude was purified by flash column 
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chromatography (hexane), to afford 1b (0.25 g, 44% yield) as a colorless liquid. 1H 

NMR (400 MHz, CDCl3) δ 5.16 – 4.96 (m, 1H), 4.62 (dt, J = 6.6, 2.9 Hz, 2H), 1.90 (tt, 

J = 7.5, 2.9 Hz, 2H), 1.79 – 1.56 (m, 5H), 1.36 – 1.11 (m, 4H), 1.03 – 0.71 (m, 2H) ppm. 
13C NMR (101 MHz, CDCl3) δ 209.1, 88.5, 73.9, 38.2, 36.5, 33.1, 26.7, 26.4 ppm. 

 
Hexa-4,5-dien-1-ylbenzene (1c) Following the general procedure, using pent-4-yn-1-

ylbenzene (0.59 g, 4.1 mmol), the crude was purified by flash column chromatography 

(hexane), to afford 1b (0.39 g, 60% yield) as a colorless liquid. 1NMR (400 MHz, 

CDCl3) δ 7.35 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 5.17 (m, 1H), 4.72 (m, 2H), 2.72 – 

2.67 (m, 2H), 2.18 – 2.02 (m, 2H), 1.85 – 1.73 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 208.8, 142.4, 128.6, 128.4, 125.8, 89.8, 75.0, 35.3, 30.9, 27.8 ppm. 

 
7-chlorohepta-1,2-diene (1d) Following the general procedure, using 6-chlorohex-1-

yne (0.48 g, 4.1 mmol), the crude was purified by flash column chromatography 

(hexane), to afford 1b (0.30 g, 57% yield) as a colorless liquid. 1NMR (400 MHz, 

CDCl3) δ 5.09 (m, 1H), 4.67 (dt, J = 6.6, 3.3 Hz, 2H), 3.54 (t, J = 6.7 Hz, 2H), 2.20 – 

1.95 (m, 2H), 1.89 – 1.74 (m, 2H), 1.64 – 1.51 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 208.72, 89.54, 75.13, 45.00, 32.09, 27.56, 26.37 ppm. 

 
Nona-1,2-diene (1e) Following the general procedure, using prop-2-yn-1-

ylcyclohexane (0.45 g, 4.1 mmol), the crude was purified by flash column 

chromatography (hexane), to afford 1b (0.27 g, 53% yield) as a colorless liquid. 1H 

NMR (400 MHz, CDCl3) δ 5.14 – 5.01 (m, 1H), 4.64 (dt, J = 6.6, 3.2 Hz, 2H), 1.99 (dq, 

J = 10.2, 3.4 Hz, 2H), 1.48 – 1.36 (m, 2H), 1.35 – 1.24 (m, 6H), 0.93 – 0.83 (m, 5H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 208.6, 90.2, 74.6, 31.8, 29.2, 28.9, 28.4, 22.8, 14.2 

ppm. 

4.6.3 General Procedure of Ni-Catalyzed 1,1-Alkylboration of Allenes 

with a-Haloboranes and B2Pin2 
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General procedure A: An oven-dried 8 mL screw-cap test tube containing a stirring bar 

was charged with NiBr2·DME (6.2 mg, 10 mol%), 4-(tert-butyl)-N-(3-hydroxypropyl)-

6-methylpicolinamide (L19, 6.0 mg, 12 mol%), B2Pin2 (86.3 mg, 0.34 mmol). 

Subsequently, the tube was put into the glove-box under N2 atmosphere, and t-BuOLi 

(0.34 mmol, 27.2 mg) was added in the glove-box. Then the tube was sealed with a 

Teflon-lined screw cap and taken outside from the glove-box. Afterwards, the 

corresponding allane (1, 0.20 mmol, 1.0 equiv), �-Bromo boronic acid pinacol ester (2, 

0. 4 mmol, 2.0 equiv) and 1,4-dioxane (0.4 mL) were added via syringe, independently. 

Then, the tube was stirred at 30 °C for 15 h. After the reaction was completed, the 

mixture was diluted with EtOAc, filtered through silica gel and concentrated under 

vacuum. The corresponding product 3a-3f and 3j were purified by flash column 

chromatography on silica gel.  

 
(Z)-2,2'-(4-cyclohexylbut-3-ene-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (3a): Following the general procedure A, using propa-1,2-dien-1-

ylcyclohexane (1a, 30 μL, 0.20 mmol), the crude was purified by flash column 

chromatography (pentane/EtOAc, gradient: 30 :1 to 15:1), to afford 3a (60.1 mg, 77% 

yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 6.00 (d, J = 9.2 Hz, 1H), 2.41 

(m, 1H), 2.23 – 2.14 (m, 2H), 1.73 – 1.55 (m, 6H), 1.23 (s, 24H), 1.14 – 1.01 (m, 4H), 

0.90 – 0.80 (m, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 150.3, 82.97, 82.93, 37.2, 

32.9, 26.2, 26.0, 25.01, 24.9, 24.9, 22.9 ppm. 

 
(Z)-2,2'-(5-cyclohexylpent-3-ene-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (3b): Following the general procedure A, using buta-2,3-dien-1-

ylcyclohexane (1b, 27.2 mg, 0.20 mmol), the crude was purified by flash column 

chromatography (pentane/EtOAc, gradient: 30 :1 to 15:1), to afford 3b (44.5 mg, 55% 

yield) as a colorless oil. 1NMR (400 MHz, CDCl3) δ 6.21 (t, J = 7.2 Hz, 1H), 2.22 – 

2.13 (m, 2H), 2.02 (t, J = 7.1 Hz, 2H), 1.75 – 1.57 (m, 6H), 1.31 (dd, J = 7.3, 3.8 Hz, 

+
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1H), 1.23 (s, 12H), 1.22 (s, 12H), 1.20 – 1.12 (m, 2H), 0.93 – 0.79 (m, 4H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 143.8, 82.9, 82.9, 38.0, 36.3, 33.5, 26.7, 26.5, 24.9, 24.9, 

22.8 ppm. 

 
(Z)-2,2'-(7-phenylhept-3-ene-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (3c): Following the general procedure A, using hexa-4,5-dien-1-

ylbenzene (1c, 31.6 mg, 0.20 mmol), the crude was purified by flash column 

chromatography (pentane/EtOAc, gradient: 30 :1 to 15:1), to afford 3c (70.0 mg, 82% 

yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.29 – 7.23 (m, 2H), 7.17 (dt, J 

= 8.2, 1.9 Hz, 3H), 6.24 (t, J = 7.1 Hz, 1H), 2.66 – 2.59 (m, 2H), 2.21 (dt, J = 10.5, 6.1 

Hz, 4H), 1.72 (m, 2H), 1.25 (s, 12H), 1.23 (s, 12H), 0.87 (dd, J = 9.2, 7.5 Hz, 2H) ppm.  
13C NMR (101 MHz, CDCl3) δ 144.5, 142.7, 128.5, 128.4, 125.7, 83.1, 82.9, 35.8, 30.9, 

28.2, 25.0, 24.9, 24.9, 22.9 ppm. 

 

(Z)-2,2'-(8-chlorooct-3-ene-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 

(3d): Following the general procedure A, using 7-chlorohepta-1,2-diene (1d, 26.0 mg, 

0.20 mmol), the crude was purified by flash column chromatography (pentane/EtOAc, 

gradient: 30 :1 to 15:1), to afford 3d (48.4 mg, 61% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 6.17 (t, J = 7.1 Hz, 1H), 3.52 (t, J = 6.7 Hz, 2H), 2.18 (q, J = 7.3 

Hz, 4H), 1.84 – 1.72 (m, 2H), 1.53 (tt, J = 9.9, 6.3 Hz, 2H), 1.24 (s, 12H), 1.23 (s, 12H), 

0.87 – 0.82 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 143.9, 83.1, 82.9, 45.1, 32.4, 

27.6, 26.6, 25.0, 24.9, 24.8, 22.8 ppm. 

 
(Z)-2,2'-(dec-3-ene-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3e): 

Following the general procedure A, using nona-1,2-diene (1e, 24.8 mg, 0.20 mmol), 

the crude was purified by flash column chromatography (pentane/EtOAc, gradient: 30 

:1 to 15:1), to afford 3e (53.3 mg, 68% yield) as a colorless oil. 1H NMR (400 MHz, 

CDCl3) δ 6.21 (t, J = 7.1 Hz, 1H), 2.24 – 2.16 (m, 2H), 2.14 (q, J = 7.1 Hz, 2H), 1.31 – 
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1.26 (m, 6H), 1.24 (s, 12H), 1.23 (s, 12H), 0.90 – 0.82 (m, 6H) ppm. 13C NMR (101 

MHz, CDCl3) δ 145.3, 83.0, 82.9, 31.9, 29.3, 28.5, 25.0, 24.9, 22.8, 22.7, 14.2 ppm. 

 
2,2'-(4-methylpent-3-ene-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 

(3f): Following the general procedure A, using 3-methylbuta-1,2-diene (1f, 13.6 mg, 

0.20 mmol), the crude was purified by flash column chromatography (pentane/EtOAc, 

gradient: 30 :1 to 15:1), to afford 3f (31.2 mg, 46% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 2.24 – 2.14 (m, 2H), 1.91 (d, J = 0.9 Hz, 3H), 1.73 (s, 3H), 1.26 

(s, 12H), 1.23 (s, 12H), 0.83 – 0.76 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 145.5, 

82. 9, 82.8, 25.2, 24.9, 24.9, 24.8, 20.9 ppm. 

 
(Z)-(4-cyclohexyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-

yl)trimethylsilane (3j): Following the general procedure A, using propa-1,2-dien-1-

ylcyclohexane (1a, 30 μL, 0.20 mmol) and (bromomethyl)trimethylsilane (2b, 66.8 mg, 

0.40 mmol), the crude was purified by flash column chromatography (pentane/EtOAc, 

gradient: 50 :1 to 25:1), to afford 3j (22.8 mg, 34% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 5.98 (d, J = 9.3 Hz, 1H), 2.39 – 2.26 (m, 1H), 2.12 – 2.03 (m, 2H), 

1.71 – 1.54 (m, 6H), 1.25 (s, 12H), 1.19 – 1.05 (m, 4H), 0.58 – 0.49 (m, 2H), 0.00 (s, 

9H) ppm. 13C NMR (101 MHz, CDCl3) δ 149.3, 83.0, 37.5, 32.9, 26.2, 26.1, 24.9, 22.8, 

18.5, -1.5 ppm. 

4.6.4 General Procedure of Ni-Catalyzed 1,1-Alkylboration of Allenes 

with Alkyl iodines and B2Pin2 

 

General procedure B: An oven-dried 8 mL screw-cap test tube containing a stirring bar 

was charged with NiBr2·DME (17.3 mg, 10 mol%), N-(3-hydroxypropyl)-6-

methylpicolinamide (L18, 5.8 mg, 15 mol%), B2Pin2 (86.3 mg, 0.34 mmol). 
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Subsequently, the tube was put into the glove-box under N2 atmosphere, and t-BuOLi 

(0.34 mmol, 27.0 mg) was added in the glove-box. Then the tube was sealed with a 

Teflon-lined screw cap and taken outside from the glove-box. Afterwards, the 

corresponding allene (1, 0.20 mmol, 1.0 equiv), alkyl iodine (4, 0.40 mmol, 2.0 equiv) 

and 1,4-dioxane (0.8 mL) were added via syringe, independently. Then, the tube was 

stirred at 30 °C for 15 h. After the reaction was completed, the mixture was diluted with 

EtOAc, filtered through silica gel and concentrated under vacuum. The corresponding 

product 5a-5b were purified by flash column chromatography on silica gel. 

 

(Z)-2-(1,3-dicyclohexylprop-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

(5a): Following the general procedure B, using propa-1,2-dien-1-ylcyclohexane (1a, 30 

μL, 0.20 mmol) and iodocyclohexane (4a, 60 μL, 0.40 mmol), the crude was purified 

by flash column chromatography (pentane/EtOAc, gradient: 50 :1 to 25:1), to afford 5a 

(36.9 mg, 55% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 6.09 (d, J = 9.6 

Hz, 1H), 2.36 – 2.28 (m, 1H), 2.02 (dd, J = 7.1, 1.1 Hz, 2H), 1.71 – 1.62 (m, 13H), 1.24 

(s, 12H), 1.17 – 1.06 (m, 8H) ppm. 13C NMR (101 MHz, CDCl3) δ 151.7, 83.1, 39.0, 

36.4, 33.5, 32.7, 26.8, 26.7, 26.3, 26.1, 24.8 ppm. 

 
(Z)-2-(1-cyclohexyl-7-phenylhept-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (5b): Following the general procedure B, using propa-1,2-dien-1-

ylcyclohexane (1a, 30 μL, 0.20 mmol) and (4-iodobutyl)benzene (4b, 70 μL, 0.40 

mmol), the crude was purified by flash column chromatography (pentane/EtOAc, 

gradient: 50 :1 to 25:1), to afford 5b (16.7 mg, 22% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 7.38 – 7.30 (m, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.15 (d, J = 9.4 Hz, 

1H), 2.71 – 2.63 (m, 2H), 2.48 – 2.35 (m, 1H), 2.19 (t, J = 6.9 Hz, 2H), 1.83 – 1.58 (m, 

8H), 1.45 – 1.40 (m, 4H), 1.32 (s, 12H), 1.25 – 1.12 (m, 4H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 151.3, 143.2, 128.6, 128.3, 125.6, 83.1, 37.6, 36.1, 32.9, 31.6, 30.6, 29.3, 28.7, 

26.2, 26.1, 24.9 ppm. 
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4.6.6 NMR Spectra 
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1H NMR (400 MHz, CDCl3) of L20 
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1H NMR (400 MHz, CDCl3) of L21 
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1H NMR (400 MHz, CDCl3) of L22 
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1H NMR (400 MHz, CDCl3) of L23 
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1H NMR (400 MHz, CDCl3) of L24 
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1H NMR (400 MHz, CDCl3) of L25 
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1H NMR (400 MHz, CDCl3) of L26 
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1H NMR (400 MHz, CDCl3) of 1b 

 
13C NMR (101 MHz, CDCl3) of 1b 
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1H NMR (400 MHz, CDCl3) of 1c 
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1H NMR (400 MHz, CDCl3) of 1d 
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1H NMR (400 MHz, CDCl3) of 1e 
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1H NMR (400 MHz, CDCl3) of 3a 
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1H NMR (400 MHz, CDCl3) of 3b 
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1H NMR (400 MHz, CDCl3) of 3c 
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1H NMR (400 MHz, CDCl3) of 3f 
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1H NMR (400 MHz, CDCl3) of 3j 
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1H NMR (400 MHz, CDCl3) of 5a 
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1H NMR (400 MHz, CDCl3) of 5b 
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Chapter 5  

General Conclusions  
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The organic synthesis strategy developed in this PhD thesis provide access to  

structurally diverse sp3-carbon scaffolds via transition metal-catalyzed cross-coupling 

reactions. The main achievements of the initial program are highlighted herein: 
  

Chapter 2: 

 

■ A nickel/photoredox dual catalytic strategy for forging sp2−sp3 and sp3−sp3 

architectures via b-scission of aliphatic alcohol derivatives have been developed. 

  

■ The method uses naturally abundant and commercially available aliphatic alcohols as 

building blocks and aryl and alkyl halides for successful sp3-arylation and sp3-

alkylation events under nickel-catalyzed mild photocatalytic conditions via b-

cleavage of alkoxy radicals as an unconventional manifold. 

  

■ The synthetic method demonstrates its excellent chemoselectivity and a wide range 

of applications. The applicability of the reaction has been extended in the context of 

late-stage functionalization of sugar derivatives and advanced intermediates. Notably, 

the sp3-carbon synthons obtained from various aliphatic alcohols by the more 

challenging pathway of b-cleavage of alkoxy radicals have great synthetic potential 
as a versatile and flexible protocol for C−C bond formation. 

  

■ Preliminary mechanistic studies were used to support the presence of oxygen-

centered radical intermediates and the subsequent b-scission of alkoxy radicals step. 
the formation of EDA complexes between Hantzsch esters (HE) and N-phthalimide 

ethers (OPhth) is key to generate alkoxy radicals under photoexcitation. 
 

Chapter 3: 
  

■ Trifluoromethylation of structurally diverse carbonyl (ketones, aldehydes) and olefin 

derivatives via sp3 C–C bond cleavage have been achieved. 

  

■ This technique increases the opportunity to move from organic molecules containing 

simple unsaturated motifs such as ketones, aldehydes, and alkenes to provide sp3 

hybridized carbon center properties through aromatization-driven C(sp3)–C cleavage. 
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■ This new platform enables trifluoromethylation events with excellent 

chemoselectivity under mild conditions. This method tolerates a wide range of 

functional groups such as amides, halides, a,b-unsaturated ketones, free alcohols or 

amines, heterocyclic motifs, sterically hindered substrates and substrates with highly 

sensitive C–H bonds. It is applicable to the late-stage modification of natural 

products and medicinal agents. Numerous synthetic examples have demonstrated the 

versatility and application profile of the scheme to reveal valuable C(sp3)-CF3 

architectures from unsaturated fractions. 

  

■ The mechanism initially suggests that the conversion of carbonyl compounds or 

olefins to the former proaromatic precursors may be achieved by photoinduced single 

electron transfer to achieve the homogeneous cleavage of adjacent a-C-C bonds and 
the generation of the related alkyl radicals, followed by the contact of the open-shell 

alkyl radicals with [Cu]-CF3 substances to produce the target products through the 

reductive elimination of the alkyl-CuIII-CF3 intermediates. 
  

Chapter 4: 

 

■ A regio-, stereo-selective 1,2-alkylboration of allenes via a nickel-catalyzed three-

component reaction using sp3 mono-organometallic reagents or alkyl iodides as 

electrophiles has been described.  

  

■ This strategy offers new vistas to access polysubstituted 1,3-(sp2, sp3)-

bisorganometallic alkenes with excellent chemo- and regio-selectivity under mild 

conditions. The high selectivity (chemo-, regio- and stereoselectivity) controlled by 

nitrogen-based ligands under nickel catalysis is noteworthy. Further refinements and 

studies of this strategy, synthetic applications and detailed reaction mechanism 

experiments are being implemented. 
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