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Homoclinic and chaotic phenomena to L3 in the Restricted 3-Body
Problem

by Mar GIRALT MIRON

The Restricted 3-Body Problem models the motion of a body of negligible mass
under the gravitational influence of two massive bodies, called the primaries. If the
primaries perform circular motions and the massless body is coplanar with them, one
has the Restricted Planar Circular 3-Body Problem (RPC3BP). In synodic coordi-
nates, it is a two degrees of freedom autonomous Hamiltonian system with five critical
points, Lq,..,Ls, called the Lagrange points.

The Lagrange point L3 is a saddle-center critical point which is collinear with the
primaries and is located beyond the largest one. This thesis focuses on the study of
the one dimensional unstable and stable manifolds associated to L3 and the analysis
of different homoclinic and chaotic phenomena surrounding them. We assume that
the ratio between the masses of the primaries is small.

First, we obtain an asymptotic formula for the distance between the unstable
and stable manifolds of L3. When the ratio between the masses of the primaries is
small the eigenvalues associated with Lz have different scales, with the modulus of
the hyperbolic eigenvalues smaller than the elliptic ones. Due to this rapidly rotating
dynamics, the invariant manifolds of L3 are exponentially close to each other with
respect to the mass ratio and, therefore, the classical perturbative techniques (i.e. the
Poincaré-Melnikov method) cannot be applied. In fact, the formula for the distance
between the unstable and stable manifolds of L3 relies on a Stokes constant which
is given by the inner equation. This constant can not be computed analytically but
numerical evidences show that is different from zero. Then, one infers that there do
not exist 1-round homoclinic orbits, i.e. homoclinic connections that approach the
critical point only once.

The second result of the thesis concerns the existence of 2-round homoclinic orbits
to L3, i.e. connections that approach the critical point twice. More concretely, we
prove that there exist 2-round connections for a specific sequence of values of the
mass ratio parameters. We also obtain an asymptotic expression for this sequence.

In addition, we prove that there exists a set of Lyapunov periodic orbits whose
two dimensional unstable and stable manifolds intersect transversally. The family
of Lyapunov periodic orbits of L3 has Hamiltonian energy level exponentially close
to that of the critical point Ls. Then, by the Smale-Birkhoff homoclinic theorem,
this implies the existence of chaotic motions (Smale horseshoe) in a neighborhood
exponentially close to Lg and its invariant manifolds.

In addition, we also prove the existence of a generic unfolding of a quadratic
homoclinic tangency between the unstable and stable manifolds of a specific Lyapunov
periodic orbit, also with Hamiltonian energy level exponentially close to that of Ls.
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Fenomens homoclinics i caotics a Ls en el problema restringit dels 3
COSSO0s

per Mar GIRALT MIRON

El problema restringit dels 3 cossos modela el moviment d’un cos de massa neg-
ligible que es troba sota la influéncia gravitatoria de dos cossos massius anomenats
primaris. Si els primaris realitzen moviments circulars i el cos sense massa és coplanar
amb ells, es té el problema restringit planar i circular dels 3 cossos (RPC3BP). En
coordenades sinodiques, aquest és un sistema Hamiltonia autonom de dos graus de
llibertat i té cinc punts critics, L1,..,L5, anomenats punts de Lagrange.

El punt de Lagrange L3 és un punt critic de tipus centre-sella, colineal amb els
primaris i que es troba al canté oposat del primari petit respecte del gran. Aquesta
tesi estudia les varietats unidimensionals inestable i estable associades a L3 i anal-
itza alguns dels diferents fenomens homoclinics i caotics que les envolten. A més,
suposarem que la ratio entre les masses dels primaris és petita.

Primerament, obtenim una férmula asimptotica per a la distancia entre les vari-
etats inestable i estable de L3. Quan la ratio entre les masses dels primaris és petita,
els valors propis associats a L3 tenen escales diferents; és a dir, el modul dels val-
ors propis hiperbolics és més petit que el dels el-liptics. Degut a aquesta dinamica de
rotacio rapida, les varietats invariants de L3 es troben exponencialment properes I'una
de I’altre respecte a la ratio de masses i, per tant, les tecniques pertorbatives classiques
(és a dir, el metode de Poincaré-Melnikov) no apliquen. Es més, la férmula per a la
distancia entre les varietats inestable i estable de L3 ve donada per una constant
de Stokes obtinguda mitjancant ’anomenada equacié inner. Aquesta constant no es
pot calcular analiticament, tot i aixi, evidéncies numeriques mostren que és diferent
de zero. D’aquest resultat és pot inferir que no existeixen orbites homocliniques de
1 volta, és a dir, connexions homocliniques que s’apropen al punt critic només una
vegada.

El segon resultat de la tesi estudia ’existencia d’orbites homocliniques a L3 de 2
voltes, és a dir, connexions que s’acosten dues vegades al punt critic. Més concreta-
ment, demostrem que existeixen connexions de 2 voltes per a una successio especifica
de valors de la ratio de masses tendint a zero i obtenim una expressié asimptotica per
a aquesta successio.

Endemés, demostrem que existeix un conjunt d’orbites periodiques de Lyapunov
les varietats inestables i estables bidimensionals de les quals es tallen transversalment.
Aquest conjunt d’orbites periodiques de Lyapunov de L3 té un nivell d’energia Hamil-
tonia exponencialment proper al del punt critic L3. Per tant, segons el teorema ho-
moclinic de Smale-Birkhoff, aixo implica 'existéncia de moviments caotics (és a dir,
d’una ferradura de Smale) en un entorn exponencialment proper de Ls i les seves
varietats invariants.
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A més, també demostrem l’existéncia del desplegament genéric d’una tangencia
quadratica homoclinica entre les varietats inestable i estable associades a una orbita
periodica de Lyapunov concreta, també amb un nivell d’energia Hamiltonia exponen-
cialment proper al de Ls.
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Introduction

This introduction is devoted to present an overview of the problem and the main
results obtained in this thesis. The rest of the chapters are structured in three different
parts, Part I, II and III. Each part is independent of each other (and from this
introduction) and self-contained, therefore they can be read independently if desired.

1 Statement of the problem

Throughout history, the study of the motion of celestial objects has been of wide sci-
entific interest. The desire to understand the motions of the Sun, Moon, planets and
visible stars has been an important problem for different cultures and thinkers through
time. Celestial Mechanics is the branch of astronomy dedicated to the analysis of the
movement of objects in outer space. Notably, some of the greatest mathematicians of
the last centuries, like Newton, Lagrange, Laplace and Poincaré, have devoted their
life to the study of this discipline.

The origin of modern analytic Celestial Mechanics has its roots in the law of
universal gravitation formulated by Isaac Newton in 1678. Indeed, considering no
additional forces like drag forces, celestial motions are mainly governed by the at-
traction forces generated by the masses of the objects considered. A model for this
system is the N-body problem, which aims to predict the individual motions of a
group of N bodies interacting with each other gravitationally.

1.1 The N-Body Problem

The N-body problem considers N point masses m; for : = 1,.., N, moving under the
influence of mutual gravitational attraction. Let us denote by r; € R3 the position
vector of the i-th body and G the universal gravitational constant. Then, Newton’s
gravitational law indicates that the force exerted by mass m; to mass m; is

r,—r;

[[rj — i

By Newton’s second law and considering all the possible interactions, we obtain the
equations of motion of the N-body problem

N
d2I‘i r, —r; .
mi— = E Gmimj;———, 1=1,..,N,
. [[rj — x4
=1 j i
i

where t is the time of the system. This second order differential system of equations

can be written using the Hamiltonian formulation. Indeed, denoting the momenta as

pi =m; Cgf € R3, the Hamilton’s equation of the motion becomes

dr; OHpy dp; _ OHn

E_ 8pi’ dt N 8I'Z' ’

i=1,..,N,
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with Hamiltonian

N
_ Z Ipil® Gmim,

- rj — 1l

HN(rly--;r]\th--va) H
1<i<j<N "7

Notice that the N-body problem is a system of 6N first-order differential equations.

For N = 2, the 2-Body Problem is integrable, that is it can be solved by means
of first integrals. On the contrary, for N > 3, the N-Body Problem has no general
closed-form solution and one should expect it has chaotic behaviors. In particular,
the 3-Body Problem has been of deep interest in the last centuries and a major source
of development in the fields of analysis and dynamical systems.

At the end of the nineteenth century Henri Poincaré published pioneering works
on the qualitative study of non-linear dynamical systems, with special focus in the
3-Body Problem (see | | for an overview). In these works, Poincaré developed
geometric and topological methods to understand the complex behaviors that non-
linear systems could exhibit. Such methods have become the foundation for a major
part of the modern qualitative theory of dynamical systems. From then, it has been
established that one of the fundamental problems is to understand how the invariant
manifolds of the different invariant objects (fixed points, periodic orbits, invariant
tori) structure the global dynamics.

1.2 Stability of the Solar System

One of the oldest questions in dynamical systems concerns the stability of the Solar
System. The most used model is the N-Body Problem in the planetary regime; that
is, one massive body (the Sun) and N — 1 small bodies (the planets) performing
approximated ellipses. In his early works, Poincaré already established the problem
of stability to be one of the central questions of the 3-Body Problem.

In the last century this question has been a focus on the study of dynamical
systems. In particular, one of the fundamental questions has been to understand the
measure and “distribution” of the wandering! and non-wandering sets. Indeed, in
[ |, Michael Herman finishes its survey on important open questions in dynamical
systems with two questions in the N- Body Problem, one in the general regime and
the other in the planetary one. Roughly speaking, these questions are: “Are the
non-wandering sets of the N-Body Problem nowhere dense?” and “In the planetary
setting, is it possible to find wandering domains close to the orbits of the planets?”.

Thanks to Arnol’d-Herman-Féjoz KAM Theorem, we know that many of the con-
figurations in the planetary regime are stable, that is, the phase space has abundance
of invariant tori, see | : : : : |. However, in the phase
space the gaps left by the invariant tori leave room for instability. For instance,
one could expect the appearance of instabilities close to mean-motion resonances,
see | ].

The aim of this thesis is to study some of the instability and homoclinic phenomena
arising in a specific mean-motion resonance of a particular case of the 3-Body Problem:
the Restricted Planar Circular 3-Body Problem (RPC3BP).

LA point is wandering if some neighborhood of it, when propagated by the flow of the differential
equation, never comes back to intersect itself.
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FIGURE 1: Representation of the position plane of the Restricted
Planar Circular 3-Body Problem (RPC3BP).

1.3 The Restricted Planar Circular 3-Body Problem

The 3-Body Problem is a very complex system consisting in 18 first-order differential
equations. Therefore, it is convenient to consider a simplified model; the Restricted
3-Body Problem which considers one of the bodies (say the third) to have negligible
mass. That is, it is assumed that the two massive bodies, which we call the primaries,
are not influenced by the massless body and, as a result, their motions are given by
solutions of a 2-Body Problem (i.e. governed by the classical Kepler laws). On
the contrary, the motion of the third body is affected by the movement of the two
primaries, in the style of the 3-Body Problem. This model is of practical interest
in the case of spacecrafts or small asteroids under the gravitational influence of two
massive bodies, like a double star or a star-planet system.

Under the force of gravity, the motion of 2 bodies is given by planar conic sections
(circles, ellipses, parabolas or hyperbolas on a plane). The setting known as the
Restricted Planar Circular 3-Body Problem (RPC3BP), see Figure 1, is when the
primaries perform circular motions and the third body is coplanar with them.

Let us name the two primaries S (star) and P (planet) and the third body A
(asteroid). Normalizing their masses, we can assume that mg =1 — p and mp = p,
with p € (O, %], and my = 0. In addition, we scale the units so that the gravity
constant becomes G = 1. Let rg,rp,rs € R? denote the position of the three bodies
as a function of time in the plane of motion. Since the primaries follow circular orbits
one can assume that

rs(t) = p(cost,sint)?, rp(t) = (u — 1)(cost,sint)’.
Then, by Newton’s law of universal gravitation, the massless body satisfies

d’ra rqg —rg(t) ry —rp(t)
a2 —(1—p 3 H 3
[ra—rs(t)] [ra—rp(t)]|

(1)

Notice that the problem has been reduced to a system of 4 non-autonomous first-order
differential equations.
The classic approach is to consider a rotating framework that fixes the position
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of the primaries in time, usually referred to as a synodic framework, see | | for
example. One of the advantages of this new setting is that (1) becomes independent
of time. Indeed, let us impose that the primaries are fixed at positions qg = (u,0)7
and qp = (1 — 1,0)” and denote by (q,p) € R? x R? the position and momenta, of
the third body given by the change of coordinates

[ cost sint . _ ( cost sint) dra
9=\ _sint cost) ™ P=\_sint cost) at

Then, the RPC3BP becomes

dq 0 1

dp (O 1> q— (14,0) q— (x—1,0)
— = p—(1—p) —p :
dt -10 la—(w0)* " lla—(u—1,0)]

This is a 2-degrees of freedom autonomous Hamiltonian system with respect to the
Hamiltonian

) Y A0 I A N ¢ ) I H
hla,pip) = =5 —a (—1 0>p la—(0) lla—(x—1,0)] ¥

Notice that this Hamiltonian is analytic away from q = (¢,0) and q = (x — 1,0),
which correspond to collision with the primaries S and P, respectively.

(2)

1.4 The Lagrange points

By analyzing the system of equations given by Hamiltonian A in (3), one can obtain
the equilibrium points of the RPC3BP in synodic coordinates. We remark that, in
a non-rotating framework, the equilibrium points will correspond to periodic orbits
with the same period as the two primaries, i.e. in 1: 1 resonance.

For p = 0, the system has a circle of critical points (q,p) = (q1,¢2,p1,p2) With
lall = 1 and (p1,p2) = (—q2,q1). By contrast, for u > 0, it is a classical result that
h has five equilibrium points: Li, Lo, L3, Ly and Ls, called Lagrange points (see
for instance | ]). A representation of the location of the points can be found in
Figure 2.

The Lagrange points L4 and Lj lie on the vertex of an equilibrium triangle between
them and the two primaries. In inertial (non-rotating) coordinates, L4 moves ahead of
the primary P and Ls behind. For g > 0 small, they are of center-center type, i.e. the
linearization of (2) around them has two pairs of purely imaginary eigenvalues. Due
to its stability, it is common to find objects orbiting around these points (for instance
the Trojan and Greek Asteroids associated to the pair Sun-Jupiter, see | ;

; D)-

The Lagrange points, L1, Ly and L3 are collinear with the primaries and are all
of center-saddle type. That is, the linearization of (2) around them has a pair of real
eigenvalues (saddle) and a pair of purely imaginary ones (center). This inherits three
different behaviors near the equilibrium points: an expanding and contracting ones,
given by the saddle, and a rotating one, given by the center.

The Ly and Lo equilibrium points are situated at each side of the primary P. Due
to its interest in astrodynamics, a lot of attention has been paid to the study of their
invariant manifolds (see | ; ; D-
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FIGURE 2: Projection onto the g-plane of the equilibrium points for
the RPC3BP on rotating coordinates.

In this work, we focus on the study of the Lagrange point Ls. The Ls point
is located opposite to the small primary P with respect to the massive primary
S. Due to its situation and its non-stable behavior, it has received somewhat less
attention. However, the associated invariant manifolds (more precisely its center-
stable and center-unstable invariant manifolds) play an important role in structuring
the dynamics of the RPC3BP. For example, one can see that they act as boundaries of

effective stability of the stability domains around L4 and Ls (see | ; D.
Moreover, the invariant manifolds of L3 play also a fundamental role in creating
transfer orbits from the small primary to L3 in the RPC3BP (see | ; )
or between primaries in the Bicircular 4-Body Problem (see | ; D).

Over the past years, one of the main focus of the study of the dynamics “close” to
L3 and its invariant manifolds has been the so called “horseshoe-shaped orbits”, first
considered in | ]. These are quasi-periodic orbits that encompass the critical
points L4, Ls and Ls and the interest on them arise when modeling the motion of
co-orbital satellites, the most famous being Saturn’s satellites Janus and Epimetheus,
and near Earth asteroids. Recently, in | ], the authors have proved the existence
of 2-dimensional elliptic invariant tori on which the trajectories mimic the motions
followed by Janus and Epimetheus (see also | ; ; ; ; ;

; ; D

Rather than looking at stable motions “close to” Ls as | |, the goal of
this thesis is rather different: its objective is to study the chaotic and homoclinic
phenomena around L3 and its invariant manifolds.

1.5 Perturbative approach

In this work, we will consider the perturbative case of the RPC3BP. This means
that we assume the mass ratio parameter p > 0 to be small, which implies that the
primary S is much bigger than the primary P. This instance is consistent with a
star-planet system, for example the Sun-Earth system. In this setting we can split
the Hamiltonian A (see (3)) in an unperturbed Hamiltonian plus a perturbation:

h(a, p; 1) = ho(q, p) + phi(q; i), (4)
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where

Ip|” 0 1 1
ho(a,p) = - —a' [, P ol

R S ¢ ey O 0
lal  lla— (w0 lla—(x—1,0)|

The Hamiltonian hg corresponds to a 2-Body Problem between the primary S and the
massless body. Therefore, hg is integrable and follows the classical Kepler problem.
Moreover, the perturbation ph; can be considered a small perturbation as long as
the body is far from collision with the primaries.

phi(q; p)

The critical point L3 (see [ | for the details) satisfies that, as p — 0,
)
(qa p) = (d,uv 07 07 d,u)a Wlth d,u = 1 + E:u + O(MS) (5)

The eigenvalues of the linearization with respect to the Lagrange point Ls can be
also expressed perturbatively, u — 0, as follows

. _ /21 3
Specr, = {£peig(ft), Fiweig(p)}, with { peig () \/?5"‘0(#2)7 (©)
weig(p) = 1+ Lp+ O(u?).

Since the ratio between the eigenvalues is O( /1), the system posseses two time scales
which translates to rapidly rotating dynamics coupled with a slow hyperbolic behavior
around the critical point L3. This setting is known as an a priori stable setting, since
the hyperbolicity of the equilibrium point is created by the O(u) perturbation and
cannot be detected in the unperturbed system (notice that peig(0) = 0). Indeed, if
one takes the limit g — 0 in (4) one obtains the classical integrable Kepler problem in
the elliptic regime (i.e. negative energy), where no hyperbolicity is present. However,
when p > 0, L3 possesses one dimensional unstable and stable manifolds.

Let us recall that, on an inertial system of coordinates, the Lagrange points corre-
spond to periodic orbits on a 1 : 1 resonance with the primaries. Then, being far from
collision, the dynamics close to the Lagrange point L3 and its invariant manifolds for
small p are rather similar to that of other mean motion resonances which play an
important role in creating instabilities in the Solar system, see | ].

This thesis studies some of the instabilities found in the mean-motion 1 : 1 reso-
nance region of Lz in the RPC3BP.

1.6 Chaotic dynamics

Poincaré, while trying to integrate the 3-Body Problem, realized that one of the
obstructions for integration was given by the existence of transverse intersections
between the unstable and stable manifolds of periodic orbits, see [ |. These
transverse intersections create a complex tangle between the unstable and stable
manifolds which fold and stretch more and more when approaching the periodic orbit
(see Figure 3). A dynamical system exhibiting this type of behavior is now said to
display chaotic dynamics.

The complexity of this homoclinic (or heteroclinic) tangle was analyzed by Stephen
Smale, see [ ; |. In these works, Smale introduced the horseshoe map (see
[ | for instance) which became a core example of a dynamical system exhibiting
chaotic motions. Since then, one of the classical methods to prove the existence of
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Ficure 3: Illustration of the homoclinic tangle occurring at a hy-
perbolic saddle point for a discrete dynamical system. Source | ,
Figure 5.2.7].

chaotic dynamics has been the Smale-Birkhoff homoclinic theorem (see | ] or
[ ; | for a modern exposition).

Smale-Birkhoff homoclinic Theorem. Let f: U C R® — R" be a diffeomorphism
with an hyperbolic point P and a transverse homoclinic point Q. Then, on a small
neighborhood of P one can build an Smale’s horseshoe map. That is, there exists
an invariant set X C U homeomorphic to {0,1}” such that f|x is conjugated to the
shift map

o:{0,1}% = {0,1}%

(wWr)kez = (Wr+1)kez.
As a consequence, f exhibits chaotic behavior.

For many physically relevant models, to prove the existence of chaotic motions is
usually a remarkably difficult problem. In particular, this is the case of many Celestial
Mechanics models. Most of the known results have been found in a priori unstable
settings, i.e. nearly integrable regimes where there is an unperturbed problem which
already presents some form of “hyperbolicity”. This is the case in the vicinity of
collision orbits (see for example [ ; : : ]) or close to parabolic
orbits (which allows to construct chaotic/oscillatory motions), see | ; ; ;

; ; ; ; |. There are also several results in
regimes far from integrable which rely on computer assisted proofs | ; ;

; ]. The problem tackled in this work is different since we are considering
an a priort stable setting, that is the unperturbed system has no hyperbolicity.

Motivated by the Smale-Birkhoff homoclinic Theorem, this thesis proves the ex-
istence of transverse homoclinic orbits in a tubular neighborhood of the unstable and
stable manifolds of L3 contained in the 1 : 1 resonance region.

1.7 The homoclinic phenomena in a bifurcation scenario

Let us recall that the (weak) hyperbolicity of the Lagrange point Lj is created by
the O(p) perturbation. Indeed, for ;1 = 0, the equilibrium point Lz degenerates and
the spectrum of its linear part consists in a pair of purely imaginary and a double
0 eigenvalues, (see (6)). This bifurcation scenario is known as the 0%iw resonance or
Hamiltonian Hopf-Zero bifurcation.

Most of the studies in homoclinic phenomena around a saddle-center equilibrium
are focused on the non-degenerate case, namely the equilibrium point is hyperbolic,
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see | : : : ; ]. However, for the resonance 0%iw cases,
the results are more rare. In | |, the authors study this singularity combining nu-
merical and analytic techniques. The reversible case is considered in | ; ]
where the author proves the existence of transverse homoclinic orbits for every pe-
riodic orbit exponentially close to the origin, except the origin itself. In | ],
the authors show the existence of homoclinic connections with several loops for every
periodic orbit close to the equilibrium point.

By contrast, this thesis deals with the existence of one dimensional homoclinic
connections for the equilibrium point and the existence of transverse homoclinic orbits
associated to periodic orbits (exponentially) close to the equilibrium point. In the case
of the (non-Hamiltonian) Hopf-zero singularity, we remark the similar work | ].
Also, in [ ], the authors use similar techniques to analyze breather solutions
for the nonlinear Klein-Gordon partial differential equation.

2 Main results

Since Ljs is a center-saddle critical point, it possesses 1-dimensional unstable and
stable manifolds and a 2-dimensional center manifold. We denote as W"(L3) and
W#(L3) the unstable and stable manifolds, respectively.

The first result obtained in this thesis analyzes the distance between the unstable
and stable manifolds of Ls, see Section 2.1. The second result concerns the existence
of 2-round homoclinic orbits to L3, i.e. 1-dimensional homoclinic connections that
approach the equilibrium point twice, see Section 2.2. The third and last result of
the thesis studies the existence of chaotic motions in a neighborhood close to Lg and
its invariant manifolds by means of the existence of transversal homoclinic orbits, see
Section 2.3.

2.1 Distance between the invariant manifolds of L3

The aim of this section is to give an asymptotic formula for the distance between the
invariant manifolds W"(Ls3) and W#*(L3), for small values of the parameter p, in an
appropriate transverse section.

The invariant manifolds W (Ls3) and W9(L3) have two branches each, see Figure 4.
We denote by W% (L3) and W™ (L3) the pair that circumvents Ls whereas the ones
that circumvent Ls are denoted by W™~ (Ls) and W7 (Ls). These branches are
symmetric. Indeed, one can see that the Hamiltonian system associated to h(q, p; 1)
in (4) is reversible with respect to the involution

¥(a,p) = ¥(q1, 92, p1,p2) = (q1, —q2, —P1,D2)- (7)

Therefore, by (5), L3 = (d,,0,0,d,) belongs to the symmetry axis of ¥ and the +
branches of the invariant manifolds of L3 are symmetric to the — with a reverse time.
Thus, to compute the distance between the manifolds, one can restrict the study to
the first ones, W™t (L3) and W™ (L3).

We perform the classical symplectic polar change of coordinates

_ (cosb _ R cos 9 _g sin 0
4= " \sing )’ p= sin 0 r \—cosf)/’
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FIGURE 4: Projection onto the g-plane of the unstable (red) and stable
(green) manifolds of Ls, for p = 0.0028.

where R is the radial linear momentum and G is the angular momentum. We consider
as well the 3-dimensional section

E:{(T,H,R,G)GRXTXRZ:r>1,0:g} (8)

and denote by (r}, 5, R}, G}) and (1], 5, R}, G3) the first crossing of the invariant
manifolds with this section (see Figure 4). The next theorem measures the distance
between these points for 0 < pu < 1. Its proof can be found in Parts I and II of the
thesis; see Section 3.2 for the details in the strategy followed.

Theorem A. (Distance between the unstable and stable manifolds of L3).
There exists g > 0 such that, for p € (0, po),

S

_ 1
10, B2 G2 — (0%, B2, G2 | = VA phe [\@\ e ()] ,
log 11|
where:

o The constant A > 0 is given by the real-valued integral

V2-1 9
2 x
A= dx ~ 0.177744. 9
/0 1—x\/3($+1)(1—4x—4x2)x )

o The constant © € C is the Stokes constant associated to the inner equation
analyzed in Theorem 1.2.7 in Part L.

In Theorem A, due to the rapidly rotating dynamics of the system (see (6)), the
distance between the stable and unstable manifolds of L3 is exponentially small with
respect to /p. This is usually known as a beyond all orders phenomenon, since the
difference between the manifolds cannot be detected by expanding the manifolds in
series of powers of . Due to this phenomenon, the classical Melnikov Method (see
for instance [ |) cannot be applied to obtain Theorem A.
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FIGURE 5: Projection onto the g-plane for examples of 2-round ho-
moclinic connection to Ls. (Left) p = 0.012144, (right) u = 0.004192.

Due to the symmetry in (7), an analogous result to Theorem A holds for the
opposite branches W™~ (Ls) and W%~ (Ls3). Moreover, a more general result can be
proved for sections X(0,) = {r > 1, 6§ = 0, }, see Remark II.1.2.

Notice that, since the unstable and stable manifolds of L3 are 1-dimensional and
the system is autonomous, the manifolds either coincide in the section ¥ or not, but
there is no possible transverse intersection between them. Therefore, it is not possible
to apply the Smale-Birkhoff homoclinic Theorem and the breakdown of the invariant
manifolds of L3 does not lead to the existence of chaotic orbits.

The validity of Theorem A as an asymptotic formula relies in proving that © # 0.
Unfortunately, there is not an analytic proof of this fact. However, by numerical
computation one obtains O] ~ 1.63, see Remark 1.2.8 in Part I. The corresponding
code can be found at [ |. As a result, we consider the following ansatz.

Ansatz A. The constant © given in Theorem A satisfies that © # 0.

We expect that, by means of a computer assisted proof, it would be possible
in the future to obtain rigorous estimates and verify © # 0, following the strategy
in [ ].

2.2 Homoclinic phenomena to L3

Theorem A and Ansatz A imply that the invariant manifolds of Lg do not meet the
first time they cross section . Certainly this do not prevent the existence of multi-
round homoclinic connections. This section is devoted to study the existence of such
homoclinic connections for certain values of the mass parameter p.

To state it, we first classify the homoclinic orbits by how many “rounds” they
take before returning to Ls. In particular, we say that an homoclinic connection
to L3 is k-round if, on a p-neighborhood of this critical point, the closure of the
homoclinic orbit has k connected components, (see Figure 5 for examples of 2-round
connections).

According to this definition, Theorem A and Ansatz A imply the following.

Corollary A. (1-round homoclinic connections). Assume Ansatz A. There ex-
ists o > 0 such that, for p € (0, po), there do not exist 1-round homoclinic connec-
tions to Ls.

E. Barrabés, J.M. Mondelo and M. Ollé in | ] analyze the existence of multi-
round homoclinic connections to Lg in the RPC3BP. In particular, they conjectured
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FIGURE 6: Projection onto the g-plane of the family of Lyapunov
periodic orbits II3 (purple) for p = 0.0028.

the existence of 2-round homoclinic orbits for a sequence of mass ratios {jin},cy
satisfying pu, — 0 as n — oo and supported their claim with numeric computations.
In the following result, we prove this conjecture.

Theorem B. (2-round homoclinic connections). Assume Ansatz A and consider
peig(1) given in (6) and A > 0 given in Theorem A. Then, there exists a sequence
{tintn>nN, with Ny big enough, of the form

A 1
= — A (1+o<)>, forns 1,
N Peig (0) logn

such that, the Hamiltonian system (3) has a 2-round homoclinic connection to the
equilibrium point L between W™t (L3) and W5~ (Ls).

Theorem B is proved in Part III, see Section 3.3 for the details in the strategy
followed. Using the same tools, one can obtain an analogous result for the homoclinic
connections between W™~ (Ls) and W**(Ls).

Remark B. (Multi-round homoclinic connections). In | ], the authors
also conjectured the existence of k-round homoclinic connections for k > 2 for different
sequences of the mass parameter . We believe that our strategy can be also applied
for proving the existence of k-round homoclinic symmetric connections.

2.3 Chaotic phenomena associated to L3

Let us recall that do not exist transverse intersections between the stable and unstable
manifolds of Ls. In order to look for chaotic dynamics by means of the Smale-Birkhoff
homoclinic Theorem, we study the unstable and stable manifolds of nearby periodic
orbits.

The Lyapunov Center Theorem (see for instance | ]) is a classical result that
ensures the existence of a family of periodic orbits emanating from a saddle-center
equilibrium point. Moreover, close to the equilibrium point, the periodic orbits are
hyperbolic and have 2-dimensional unstable and stable manifolds.

Proposition C. (Lyapunov periodic orbits to Ls3). There exist pg, 0o > 0 small
enough such that, for u € (0, po), the Hamiltonian system with Hamiltonian (3) has
a family of hyperbolic periodic orbits

I3 = {P37Q periodic orbit : h(P3,) = 0> + h(L3), o € (0, Qo)} ,
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FIGURE 7: Projection onto the g-plane of the unstable (red) and
stable (green) manifolds of the Lyapunov periodic orbit Ps , (purple),
for p = 0.003.

which depend regularly on o € (0, 00) and satisfy that dist(P3 4, L3) — 0 as o — 0 in
the sense of Hausdorff distance.

We denote by W"(Ps,) and W*(P3,) the 2-dimensional unstable and stable in-
variant manifolds of the Lyapunov periodic orbit P3,. Analogously to the Lj case,
the invariant manifolds have two branches each which we denote by W™ (P ,) and
W+ (Ps,) the ones that circumvent Lz and, by W™~ (Ps ,) and W™~ (Ps,), the ones
that surround Ly (see Figure 7). By the Smale-Birkhoff homoclinic theorem, proving
the existence of transverse intersections between W1 (Ps ,) and W™ (Ps ,) implies
the existence of chaotic motions on a neighborhood of L3 and its invariant manifolds.
More specifically, we prove the following result.

Theorem C. (Chaotic motions). Let the constants A > 0 and © be as given in
Theorem A and gy in Proposition C. Assume Ansatz A. Then, there exist g > 0 and

Junctions omin, Omax : (0, o) — [0, eo] of the form

V2 1 A [ 1
Omin = —|O|use V& 1+O< >:|>
(10 = L2l uogm
2 1 A |: 1
Omax = —|O|uze V¥ 2+O< ):|a
(1) = —-18]n Tog 1

such that, for u € (0, uo) and @ € (Omin (1), Omax ()], the invariant manifolds W™+ (Ps ,)
and WS (P ,) intersect transversally.

In particular, there exists a tubular neighborhood around the invariant manifolds
WHY(Ls) and WS(L3) with the boundary at the energy level h = h(L3) + O(uge_%)
where one can construct a Smale’s horseshoe map for a suitable Poincaré map induced
by the flow of the Hamiltonian h in (3).

Theorem C is proved in Part III, see Section 3.3 for the details in the strategy
followed. Notice that, due to the symmetry in (7), an analogous result holds for
the transverse intersections of branches W™~ (P;,) and W%~ (Ps,). Moreover, by
restricting p one can take pmax () bigger.
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FIGURE 8: Representation in R? of the perturbative setting of the
splitting of separatrices phenomenon of a periodic orbit, with pertur-
bative parameter €.

Following the same ideas behind Theorem C, one can see that, besides transver-
sal intersections, one can find a quadratic homoclinic tangency at the energy level
0 = Omin(pt). The following theorem is proved together with Theorem C in Part III.

Theorem D. (Quadratic homoclinic tangency). Assume Ansatz A and denote
by fo the flow of the Hamiltonian system given in (3) restricted to the energy level
h = 0* + h(L3). Let go,p0 > 0 and omin(p) : (0,10) — [0, 00] be as given in Theo-
rem C. Then, for a fized p and o close to omin(pt), the flow f, unfolds generically an
homoclinic quadratic tangency between W'™* (P, - )) and W (Ps ).

We use the definition of generic unfolding given in | | for area preserving
diffeomorphisms (see Part III for more details). Theorem D should lead to prove
the existence of a Newhouse domain. We do not enter in details in this thesis, but
one should expect that the unfolding of the quadratic tangency would lead to the
existence of infinitely many elliptic islands and of Smale’s horseshoes of maximal
Hausdorff dimension.

3 Strategy of the proofs of the main results

In this section we review the techniques and strategies used to prove the main results
presented in Section 2: Theorems A, B, C and D.

3.1 Exponentially small splitting of separatrices

The work found in this thesis it is rooted on the ideas and techniques developed in
the last century to deal with the splitting of separatrices phenomenon. This phe-
nomenon was discovered by H. Poincaré and described in his celebrated memoir “Sur
le probléme des trois corps et les équations de la dynamique”, see | |, which
became a turning point in the study of the 3-Body Problem.

Let us consider a perturbative problem such that, in the unperturbed case, there
exists an hyperbolic invariant object with an unstable and stable invariant manifolds
that coincide forming an homoclinic connection or separatriz. The splitting of sepa-
ratrices phenomenon occurs when, in the perturbed case, the homoclinic connection
is destroyed and the unstable and stable manifolds “split” (see Figure 8).

In | |, Poincaré developed a perturbative method to measure the size of the
splitting. Seventy years later it was rediscovered by V.I Arnold and V. K. Melnikov,
see | ; |, and is now the standard theory to analyze the breakdown of

homoclinic and heteroclinic connections, known as the Poincaré-Melnikov Theory (see
[ | for a modern exposition). By means of this theory, one obtains an asymptotic
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formula for the distance between the unstable and stable manifolds. The leading term
is given by the so-called Melnikov function. Studying this asymptotic formula, one
obtains information about the possible intersections between the manifolds.

However, as Poincaré already realized, this theory cannot be applied to singular
problems where the distance between manifolds is exponentially small, as in The-
orem A. Indeed, the breakdown of homoclinic connections to L3 fits into what is
usually referred to as exponentially small splitting of separatrices problems. It is,
what is usually called, a beyond all orders phenomenon.

The first obtention of an asymptotic formula for an exponentially small splitting
of separatrices did not appear until the 1980’s with the pioneering work by V. F.
Lazutkin for the standard map | ; . Even if Lazutkin’s work was not
complete (the complete proof was achieved by V. G. Gelfreich in | ]), the ideas
he developed have been very influential and have been the basis of many of the works
in the field (and in particular of this work). Other methods to deal with exponentially
small splitting of separatrices are Treschev’s continuous averaging (see [ ]) or
“direct” series methods (see | ).

Usually, the exponentially small splitting of separatrices problems are classified
as regular or singular.

In the regular cases, even if Poincaré-Melnikov theory cannot be straightforwardly
applied, the Melnikov function gives the leading term for the distance between the
perturbed invariant manifolds. That is, Melnikov theory provides the first order
for the distance but leads to too rough estimates for the higher order terms. After
Lazutkin’s ideas, there were some studies on upper bounds of the splitting of the
invariant manifolds, see | ; ; ]. Concerning asymptotic formulas,
the first results were for rapidly forced periodic perturbations of 1-degree of freedom
Hamiltonian systems, see | : ; : ; ; ; |, for
close to the identity area preserving maps, see | ], and for Hamlltoman systems
with two or more degrees of freedom which have hyperbolic tori with fast quasiperiodic
dynamics | ]. In particular, | | provides the first prove of exponentially
small splitting of separatrices in a Celestial Mechanics problem and later [ ;

) ]'

In the singular cases, the exponentially small first order for the distance between
the invariant manifolds is no longer given by the Melnikov function. Instead, one
has to consider an auxiliary equation, usually called inner equation, which does not
depend on the perturbative parameter and provides the first order for the distance.
The model studied by Lazutkin in [ ] falls under the singular case. In | ],
the author studied the inner equation of certain second order equations periodically
perturbed. In [ ; ], resurgence theory was applied to rigorously study the
inner equation of certain examples. Some other results on inner equations can be
found on | ; ; -

There are few works providing proofs in the singular cases, see for example | ;

]. In | | the splitting of separatrices for a perturbed pendulum is stud-
ied. The most general result of splitting of separatrices in both regular and singular
cases is given in | ; ; ] for Hamiltonian systems with a periodic
perturbation in time. In [ |, the Hamiltonian-Hopf bifurcation is studied both
numerically and analytically. In | ; ; ; ] the authors per-
formed a detailed analysis of the breakdown of the invariant manifolds of the Hopf-zero
singularity in a non-Hamiltonian setting.

Due to the extreme sensitivity of the exponentially small splitting of separatrices
phenomenon on the features of each particular model, most of the available results
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apply under quite restrictive hypothesis and, therefore, cannot be applied to analyze
the invariant manifolds of L.

We highlight the work by J. Font i Arjé who, in his PhD thesis in 1993, see
[ |, performed a numerical study of the breakdown of the manifolds of L3 before
the majority of the current analytic techniques to deal with the exponentially small
splitting of separatrices phenomenon were established.

3.2 Strategy for the proof of Theorem A

Let us recall that, for the limit problem A in (3) with u = 0, the five Lagrange point
disappear into a circle of (degenerate) critical points. As a consequence, the one-
dimensional invariant manifolds of L3 disappear when p = 0 and there do not exist a
separatrix for the unperturbed problem. For this reason, the first step of the proof of
Theorem A (see Step A in the list below) is to perform a singular change of coordinates
to obtain a “new first order” Hamiltonian with a center-saddle equilibrium point
(close to L3) with stable and unstable manifolds that coincide along a separatrix. To
perform the change of coordinates we use the Poincaré planar elements (see [ )]
plus a singular (with respect to u) scaling. The 1: 1 averaged Hamiltonian has been
also studied to obtain “good” approximations for the global dynamics in the 1 : 1
resonant zone, see for example | ; | and the references therein.

The constant A in (9) is given by the height of the maximal strip of analyticity
of the time-parametrization of the unperturbed separatrix. Therefore, to obtain its
value, one has to compute the imaginary part of the singularities of the separatrix
which are closer to the real line (see Step B in the list below). On all the previous
mentioned works on splitting of separatrices, either the separatrix of the unperturbed
model has an analytic expression (see for example [ : : : :

]) or otherwise certain properties of its analytic continuation are given as as-
sumptions (see | : : : ). In this case, we do not have an
explicit expression for the time-parameterization of the separatrix and, to obtain its
complex singularities, we need to rely on techniques of analytical continuation to an-
alyze them (see Section 1.2.2). In particular, we describe the parametrization of the
separatrix in terms of a multivalued function involving a complex integral (see Theo-
rem 1.2.2 below). The value we obtain in (9) agrees with the numerical computations
of the distance between the invariant manifolds given in | ; ]-

The breakdown of invariant manifolds of L3 falls under the category of singular
exponentially splitting of separatrices. Therefore, the constant © in Theorem A is
not correctly given by the Melnikov function but by the analysis of the inner equation
of the system (see Steps C and D below). In particular, © corresponds to a Stokes
constant that depends on the full jet of the Hamiltonian and, as a result, it does not
have a closed formula.

To prove Theorem A, we follow similar strategies of those in | ; ].
We split the proof in two parts, which can be read independently. In the following
list, we present the main steps of our strategy.

In Part I, we complete the following steps:

A. We perform a change of coordinates which captures the slow-fast dynamics of
the system. The new Hamiltonian becomes a (fast) oscillator weakly coupled
to a 1-degree of freedom Hamiltonian with a saddle point and a separatrix
associated to it.

B. We analyze the analytical continuation of a time-parametrization of the sepa-
ratrix. In particular, we obtain its maximal strip of analyticity (centered at the
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real line). We also describe the character and location of the singularities at
the boundaries of this region.

C. We derive the inner equation, which gives the first order of the original system
close to the singularities of the separatrix described in Step B. This equation is
independent of the perturbative parameter p.

D. We study two special solutions of the inner equation which are approximations of
the perturbed invariant manifolds near the singularities. Moreover, we provide
an asymptotic formula for the difference between these two solutions of the
inner equation. We follow the approach presented in [ ].

In Part II we perform the remaining steps necessary to complete the proof of
Theorem A:

E We prove the existence of the analytic continuation of the parametrizations
of the invariant manifolds of Lg, W™ (L3) and W™ (L3), in an appropriate
complex domain called boomerang domain. This domain contains a segment of
the real line and intersects a sufficiently small neighborhood of the singularities
of the unperturbed separatrix.

F. By using complex matching techniques, we show that, close to the singularities
of the unperturbed separatrix, the solutions of the inner equation obtained in
Step D are “good approximations” of the parameterizations of the perturbed
invariant manifolds obtained in Step E.

G. We obtain an asymptotic formula for the difference between the perturbed in-
variant manifolds by proving that the dominant term comes from the difference
between the solutions of the inner equation.

3.3 Strategy for the proof of Theorems B, C and D

The proof of Theorems B, C and D rely on the the asymptotic formula for the distance
of the invariant manifolds of L3 obtained in Theorem A under Ansatz A, i.e. © # 0.
Their proofs can be found in Part III.

To prove the existence of 2-round homoclinic orbits between the branches W™ (L3)
and W™ (L3) of the invariant manifolds (i.e. Theorem B), we take advantage of the
fact that the Hamiltonian h is reversible with respect to the involution ¥(qy, g2, p1,p2) =
(q1,—q2, —p1,p2) (see (7)). Therefore, W™ (L3) and W~ (L3) are symmetric with
respect to the symmetry axis {go = 0,p; = 0} and, by symmetry, it is only necessary
to prove that there exists a sequence of the parameters p for which the invariant
manifold W™+ (L3) intersects the symmetry axis. To obtain this result, we need to
extend W™ (Ls) from section ¥ (as given in Theorem A) to a neighborhood of the
equilibrium point Ls.

To study the invariant manifolds near L3, we use a normal form result for Hamil-
tonian systems in a neighborhood of saddle-center critical points. Note that, the
classical normal form result by J. Moser in | ] is not enough for our purposes.
Indeed, we need to control that the radius of convergence of the normal form does
not goes to zero when y — 0. For that reason, we rely on a more quantitative normal
form obtained by T. Jézéquel, P. Bernard and E. Lombardi in | | that ensures
that the normalization does not blow up when y — 0.

To prove the existence of transverse intersections and quadratic tangencies be-
tween the 2-dimensional manifolds W"(P; ,) and W*(P; ,) (i.e Theorems C and D)
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FIGURE 9: Left: Projection onto the g-plane of the intersection of the

unstable and stable manifolds W™ (P ,) and WS (Ps ,) with section

3. Right: Representation in section 3 of the different possibilities
given in Corollary A and Theorems C and D.

we study their intersections with the section ¥ (see (8)) and compare them with the
results for the 1-dimensional manifolds of L3 obtained in Theorem A, see Figure 9.
Note that, since W"(L3) and W9(L3) are exponentially close to each other with re-
spect to /1, the energy levels where chaotic motions are found are also exponentially
close to the energy level of Lg.
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Abstract

The Restricted 3-Body Problem models the motion of a body of negligible mass under
the gravitational influence of two massive bodies, called the primaries. If the primaries
perform circular motions and the massless body is coplanar with them, one has the
Restricted Planar Circular 3-Body Problem (RPC3BP). In synodic coordinates, it
is a two degrees of freedom Hamiltonian system with five critical points, L1, .., Ls,
called the Lagrange points.

The Lagrange point L3 is a saddle-center critical point which is collinear with the
primaries and is located beyond the largest of the two. Between Part I and II, we
provide an asymptotic formula for the distance between the one dimensional stable
and unstable invariant manifolds of L3 when the ratio between the masses of the
primaries y is small. It implies that L3 cannot have one-round homoclinic orbits.

If the mass ratio p is small, the hyperbolic eigenvalues are weaker than the el-
liptic ones by factor of order ,/u. This implies that the distance between the invari-
ant manifolds is exponentially small with respect to u and, therefore, the classical
Poincaré-Melnikov method cannot be applied.

In this part, we approximate the RPC3BP by an averaged integrable Hamiltonian
system which possesses a saddle center with a homoclinic orbit and we analyze the
complex singularities of its time parameterization. We also derive and study the
inner equation associated to the original perturbed problem. The difference between
certain solutions of the inner equation gives the leading term of the distance between
the stable and unstable manifolds of Ls.
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Chapter 1.1

Introduction

The understanding of the motions of the 3-Body Problem has been of deep interest
in the last centuries. Since Poincaré, see | ], one of the fundamental problems
is to understand how the invariant manifolds of its different invariant objects (pe-
riodic orbits, invariant tori) structure its global dynamics. Assume that one of the
bodies (say the third) has mass zero. Then, one has the Restricted 3-Body Problem.
In this model, the two first bodies, called the primaries, are not influenced by the
massless one. As a result, their motions are governed by the classical Kepler laws. If
one further assumes that the primaries perform circular motion and that the third
body is coplanar with them, one has the Restricted Planar Circular 3-Body Problem
(RPC3BP).

Let us name the two primaries S (star) and P (planet). Normalizing their masses,
we can assume that mg =1—p and mp = p, with p € (O, %] Since the primaries fol-
low circular orbits, in rotating (usually also called synodic) coordinates, their positions
can be fixed at g5 = (u1,0) and ¢p = (1 —1,0). Then, denoting by (¢, p) € R? x R? the
position and momenta of the third body and taking appropriate units, the RPC3BP
is a 2-degrees of freedom Hamiltonian system with respect to

1| A D S ¢ ) "
arn == (5 ) ot - e 0

For pn > 0, it is a well known fact that h has five equilibrium points: Ly, L, L3, L4
and Lj, called Lagrange points' (see Figure I.1.1(a)). On an inertial (non-rotating)
system of coordinates, the Lagrange points correspond to periodic orbits with the
same period as the two primaries, i.e they lie on a 1:1 mean motion resonance. The
three collinear points with the primaries, Ly, Ly and Lg, are of center-saddle type
and, for small p, the triangular ones, L4 and Ls, are of center-center type (see for
instance | D).

Since the points L; and Lo are rather close to the small primary, their invariant
manifolds have been widely studied for their interest in astrodynamics applications,
(see | ; ; ]). The dynamics around the points L4 and Ls
have also been considerably studied since, due to its stability, it is common to find
objects orbiting around these points (for instance the Trojan and Greek Asteroids
associated to the pair Sun-Jupiter, see | : ; ).

On the contrary, the invariant manifolds of the Lagrange point L3 have received
somewhat less attention. Still, they structure the dynamics in regions of the phase
space of the RPC3BP. In particular, the horseshoe-shapped orbits that explain the
orbits of Saturn satellites Janus and Epimetheus lie “close” to the invariant mani-
folds of L3 (see | ]). Moreover, the invariant manifolds of Ls (more precisely

'For p1 = 0, the system has a circle of critical points (g, p) with ||q|| = 1 and p = (p1, p2) = (—q2, q1).
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Ficure I1.1.1: (a) Projection onto the g¢-plane of the equilibrium

points for the RPC3BP on rotating coordinates for u > 0. (b) Plot of

the stable (green) and unstable (blue) manifolds of Lz projected onto
the g-plane for p = 0.003.

its center-stable and center-unstable manifolds) act as effective boundaries of the sta-
bility domains around L4 (see in [ ). See Chapter II.1 in Part II for more
references about the dynamics of the RPC3BP in a neighborhood of L3 and its in-
variant manifolds.

The purpose of Part I and II is to study the invariant manifolds of L3 and,
particularly, show that they do not intersect for 0 < p < 1 (at their first round).

I.1.1 The unstable and stable invariant manifolds of L;

The eigenvalues of the the Lagrange point Lg satisfy that

Spec = {£/ip(), Liw(w)}, with { (1) = /& + 0. (11.2)
wm—1+u+0()

as p1 — 0 (see | ). Notice that, due to the different size in the eigenvalues,
the system posseses two time scales, which translates to rapidly rotating dynamics
coupled with a slow hyperbolic behavior around the critical point Ls.

The one dimensional unstable and stable invariant manifolds have two branches
each (see Figure 1.1.1(b)). One pair, which we denote by W™ (u) and W™ (u)
circumvents Ls whereas the other, denoted as W™~ (u) and W%~ (u), circumvents
Ly. Since the Hamiltonian system associated to h in (I.1.1) is reversible with respect
to the involution

é(qap) = (CIL_‘]%—pl,pQ)a (113)

the + branches are symmetric to the — ones. Thus, one can restrict the study to the
first ones.

As already mentioned, the aim of the work in Parts I and II is to give an asymptotic
formula for the distance between W™ (u) and Wt (u), for 0 < g < 1 (in an
appropriate transverse section). However, due to the rapidly rotating dynamics of
the system (see (I.1.2)), the stable and unstable manifolds of L3 are exponentially
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close to each other with respect to ,/u. This implies that the classical Melnikov
Theory | | cannot be applied and that obtaining the asymptotic formula is a
rather involved problem.

The precise statement for the asymptotic formula for the distance is properly
stated in Part II. Let us give here a more informal statement. Consider the classical
symplectic polar coordinates (7,0, R, G), where R is the radial momentum and G the
angular momentum, and the section ¥ = {§ = 7/2,r > 1}. Then, if one denotes by
P" and P the first intersections of the invariant manifolds W™ (1), W (u) with 3,
the distance between these points, is given by

disty,(P", P®) = \%Iu%e’% [|@| +0 (1>] , (1.1.4)
|log p
for 0 < u < 1 and certain constants A > 0 and © € C. The proof of this asymptotic
formula spans both Parts I and II. In this first part, we perform the first steps towards
the proof (see Section I.1.3 below). In particular, we obtain and describe the constants
A and © appearing in (1.1.4).

A fundamental problem in dynamical systems is to prove that a model has chaotic
dynamics (for instance a Smale Horseshoe). For many physically relevant problems,
like those in Celestial Mechanics, this is usually a remarkably difficult problem. Cer-
tainly, the fact that the invariant manifolds of L3 do not coincide does not lead to
chaotic dynamics. However, one should expect the existence of Lyapunov periodic
orbits which are exponentially close (with respect to (/i) to L3 and whose stable
and unstable invariant manifolds intersect transversally. If so, the Smale-Birkhoff
Theorem would imply the existence of a hyperbolic set whose dynamics is conju-
gated to that of the Bernoulli shift (in particular, with positive topological entropy)
exponentially close to the invariant manifolds of Ls.

1.1.2 Exponentially small splitting of separatrices

Even though there is a standard theory to analyze the breakdown of homoclinic and
heteroclinic connections, the so called Poincaré-Melnikov Theory (see | ] and
[ | for a more modern exposition), it cannot be applied to obtain (I.1.4) due to
its exponential smallness. Indeed, the breakdown of homoclinic connections to Ls fits
into what is usually referred to as exponentially small splitting of separatrices prob-
lems. This beyond all orders phenomenon was first detected by Poincaré in | ]
when he studied the non integrability of the 3-Body Problem.

The first obtention of an asymptotic formula for an exponentially small splitting
of separatrices did not appear until the 1980’s with the pioneering work by Lazutkin
for the standard map | ; |. Even if Lazutkin’s work was not complete (the
complete proof was achieved by Gelfreich in [ ]), the ideas he developed have
been very influential and have been the basis of many of the works in the field (and
in particular of this work). Other methods to deal with exponentially small splitting
of separatrices are Treschev’s continuous averaging (see | ]) or “direct” series
methods (see [ ).

Usually, the exponentially small splitting of separatrices problems are classified
as regular or singular.

In the regular cases, even if Melnikov theory cannot be straightforwardly applied,
the Melnikov function gives the leading term for the distance between the perturbed
invariant manifolds. That is, Melnikov theory provides the first order for the distance
but leads to too crude estimates for the higher order terms. This phenomenon has
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been studied in rapidly forced periodic or quasi-periodic perturbations of 1-degree
of freedom Hamiltonian systems, see [ ; ; ; ; ; ;

: ], in close to the identity area preserving maps, see | ], and in
Hamiltonian systems with two or more degrees of freedom which have hyperbolic tori
with fast quasiperiodic dynamics | ]. In particular, [ | provides the first
prove of exponentially small splitting of separatrices in a Celestial Mechanics problem
(see also [ ; ).

In the singular cases, the exponentially small first order for the distance between
the invariant manifolds is no longer given by the Melnikov function. Instead, one
has to consider an auxiliary equation, usually called inner equation, which does not
depend on the perturbative parameter and provides the first order for the distance.
Some results on inner equations can be found on [ ; ; ; ; ;

| and the application of the inner equation analysis to the original problem can
be found in [ : : : : : : : ].

Due to the extreme sensitivity of the exponentially small splitting of separatrices
phenomenon on the features of each particular model, most of the available results
apply under quite restrictive hypothesis and, therefore, cannot be applied to analyze
the invariant manifolds of Ls.

I[.1.3 Strategy to obtain an asymptotic formula for the
breakdown of the invariant manifolds of [;

For the limit problem A in (I.1.1) with u = 0, the five Lagrange point “disappear”
into the circle of (degenerate) critical points ||¢|| = 1 and p = (p1,p2) = (—q2,¢1). As
a consequence, the one-dimensional invariant manifolds of Ls disappear when p =0
too. For this reason, to analyze perturbatively these invariant manifolds, the first
step is to perform a singular change of coordinates to obtain a “new first order”
Hamiltonian which has a center saddle equilibrium point (close to L3) with stable
and unstable manifolds that coincide along a separatrix. To perform the change of
coordinates we use the Poincaré planar elements (see | ]) plus a singular (with
respect to u) scaling.

In the following list, we present the main steps of our strategy to prove formula
(I.1.4). We split the list in two. First we explain the steps performed in this part and
later those carried out in Part II.

In this part, we complete the following steps:

A. We perform a change of coordinates which captures the slow-fast dynamics of
the system. The new Hamiltonian becomes a (fast) oscillator weakly coupled
to a 1-degree of freedom Hamiltonian with a saddle point and a separatrix
associated to it.

B. We analyze the analytical continuation of a time-parametrization of the sepa-
ratrix. In particular, we obtain its maximal strip of analyticity (centered at the
real line). We also describe the character and location of the singularities at
the boundaries of this region.

C. We derive the inner equation, which gives the first order of the original system
close to the singularities of the separatrix described in Step B. This equation is
independent of the perturbative parameter pu.

D. We study two special solutions of the inner equation which are approximations of
the perturbed invariant manifolds near the singularities. Moreover, we provide
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an asymptotic formula for the difference between these two solutions of the
inner equation. We follow the approach presented in [ ]

In Part II we complete the following steps:

E. We prove the existence of the analytic continuation of suitable parametriza-
tions of W™ (§) and W**(§) in appropriate complex domains (and as graphs).
These domains contain a segment of the real line and intersect a neighborhood
sufficiently close to the singularities of the separatrix.

F. By using complex matching techniques, we compare the solutions of the inner
equation with the graph parametrizations of the perturbed invariant manifolds.

G. Finally, we prove that the dominant term of the difference between manifolds
is given by the term obtained from the difference of the solutions of the inner
equation.

The structure of this part goes as follows. In Chapter 1.2, we present the main
results for the Steps A to D and introduce some heuristics to contextualize them.
Chapters 1.3-1.5 are devoted to the proof of the results in Chapter 1.2.

The constants in the asymptotic formula for the distance. The constant
A in (I.1.4) is given by the height of the maximal strip of analyticity of the unper-
turbed separatrix (see Step B). Therefore, to obtain its value, one has to compute the
imaginary part of the singularities of the separatrix which are closer to the real line.
On all the previous mentioned works on splitting of separatrices, either the sepa-
ratrix of the unperturbed model has an analytic expression (see for example [ ;
; ; ; |) or otherwise certain properties of its analytic con-
tinuation are given as assumptions (see [ ; ; ; ). In this
case, we do not have an explicit expression for the time-parameterization of the sep-
aratrix and, to obtain its complex singularities, we need to rely on techniques of
analytical continuation to analyze them (see Section 1.2.2). In particular, we describe
the parametrization of the separatrix in terms of a multivalued function involving a
complex integral and (see Theorem 1.2.2 below) we obtain

V2—1
A/ T2 ”“’ da ~ 0.177744
o 1—z\/ 3z +1)(1 — 4o —422) '

This value agrees with the numerical computations of the distance between the in-
variant manifolds given in | ; ]

Since we are in a singular case, the constant © in (I.1.4) is not correctly given by
the Melnikov function but by the analysis of the inner equation of the system (see Step
C above and also Sections 1.2.3 and 1.2.4). In particular, © corresponds to a Stokes
constant and does not have a closed formula. By a numerical computation, we see
that |©] ~ 1.63 (see Remark 1.2.8). We expect that, by means of a computer assisted
proof, it would be possible to obtain rigorous estimates and verify that |©] # 0, see

[ J-
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Chapter 1.2

Main results

We devote this chapter to state the main results concerning the Steps A, B, C and D
explained in Section I.1.3. First, in Section .2.1, we present the changes of coordinates
involved to rewrite the Hamiltonian h in (I.1.1) as a singular perturbation problem
given by a fast oscillator weakly coupled with a one degree of freedom Hamiltonian
with a saddle point and a separatrix (Step A). In Section 1.2.2, we consider the
time-parametrization of the separatrix and analyze the properties of its analytical
continuation (Step B). In Section 1.2.3 we give some heuristic ideas regarding the
parametrization of the perturbed manifolds on certain complex domains (Step E)
and deduce the singular change of variables which leads to the inner equation (Step
C). Finally, in Section 1.2.4, we present the study of certain solutions of the inner
equation and give an asymptotic formula for their difference (Step D).

1.2.1 A singular perturbation formulation of the problem

When studying a close to integrable Hamiltonian system at a resonance, it is usual
to “blow-up” the “resonant zone” to capture the slow-fast time scales. In this section
we present the singular change of coordinates which transforms the Hamiltonian h in
(I.1.1) into a pendulum-like Hamiltonian plus a fast oscillator with a small coupling,

namely

3
H()\,A,l‘,y) = _§A2 + V()‘) + ﬁ + 0(1)?

Vi

with respect to the symplectic form dA A dA + idz A dy. In these coordinates, the
first order of the Hamiltonian has a saddle in the (A, A)—plane and a center in the
(z,y)-plane. Notice that the system possesses two time scales (~ 1 and ~ 1/,/j).
Recall that this two time scales are also present in the eigenvalues of L3 in (1.1.2).

We consider Poincaré coordinates for the RPC3BP (see (I.1.1)) in order to write
the system as a close to integrable Hamiltonian system and decouple (at first order)
the saddle and the center behaviour. To this end, we first consider the symplectic
polar and Delaunay coordinates.

Polar Coordinates. Let us consider the change of coordinates:

¢p01 : (T797R7 G) = (Q7p)7

where r is the radius, 6 the argument of ¢, R the linear momentum in the r direction
and G is the angular momentum. Then, the Hamiltonian (I.1.1), becomes

HP = HY' 4 i HP?, (1.2.1)
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where
ol 1/ o, G? 1
HJ*(r,R,G) =5 <R to2 ), -G,
1 1—pu
P g ) = 1.2.2
P i) =~ (122)
_ H
VT2 +2(1 — p)reos + (1 — p)?
The critical point L3 (see | ] for the details) satisfies that, as p — 0,
)
(r,6,R,G) = (d,,0,0,d2),  with %:1+ﬁﬂ+0m% (1.2.3)

Delaunay coordinates. The Delaunay elements, denoted (¢, L, g, G), are action—
angle variables for the 2-Body Problem (for negative energy) in non-rotating coordi-
nates. The variable £ is the mean anomaly, § is the argument of the pericenter, L is
the square root of the semi major axis and G is the angular momentum, (see | D).

Let us introduce some formulae to describe these elements from the non-rotating
polar coordinates (r, é, R, G), namely 6 = 6 +t. The action L is defined by

1 1 G? 1
- —Z(RZ4 =T ) _Z
212 2< + r2> r’

and the (osculating) eccentricity of the body is expressed as

@ JI-O(L+C
e:1—ﬂz¢( }*’f (1.2.4)

Let us recall now the “anomalies”: the three angular parameters that define a position
at the (osculating) ellipse. These are the mean anomaly ¢, the eccentric anomaly wu,
and the true anomaly f, which satisfy

D>

r = L*(1 — ecosu) and =f+g. (I.2.5)

To use these elements in a rotating frame, we consider rotating Delaunay coordinates
(¢,L,g,G), where the new angle is defined as g = g—1t (the argument of the pericenter
with respect to the line defined by the primaries S and J). As a result,

0=rf+g, (I.2.6)

and the unperturbed Hamiltonian H °l hecomes

1
pol __
Hy™ =5 — ¢

The eccentric and true anomalies are related by

cosu — e V1 —e?sinu

cos f = sin f = )
1 —ecosu

(1.2.7)

1—ecosu’
and the mean anomaly w is given by Kepler’s equation

u—esinu = /. (I.2.8)
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The critical point L3 (see (1.2.3)) satisfies § = ¢+ g = 0 and

d
L:¢2iﬁ:1+OW% G=d,=1+0(u), L-G=0(. (129)
Y

Note that the Delaunay coordinates are not well defined for circular orbits (e = 0),
since the pericenter, and as a consequence the angle g, are not well defined.

Poincaré coordinates. To “blow-down” the singularity of the Delaunay coordi-
nates at circular motions, we use the classical Poincaré coordinates, which can be
expressed by means of (rotating) Delaunay variables. Let us define

(bPOi : ()\7 L7 7, f) = (Ta 67 R7 G)a (1210)

given by

A=Ll+g, n=+vL—GeY, ¢ =VL—Ge™¥. (1.2.11)

These coordinates are symplectic and analytic. Moreover, even though they are
defined through the Delaunay variables, they are also analytic when the eccentricity
tends to zero (i.e at L = G), see | ; ].

The Hamiltonian equation associated to (I1.2.1), expressed in Poincaré coordinates,
defines a Hamiltonian system with respect to the symplectic form dAAdL + i dn A d€
and

HPoi — Hg’oi + ,UH1POi7

where

1 .
—5—L+n¢ and  H" = H o ¢poi. (1.2.12)

H(I;Oi(L? 7]75) = _2L

In Poincaré coordinates, the critical point Lg, as given in (1.2.9), satisfies
A=0,  (L,n,§) =(1,0,0) +O(n).

The linearized part of the vector field associated to this point has, at first order, an
uncoupled nilpotent and center blocks,

0 =3 0 0
0 0 0 0
0o o0 i o|TOW:
0 0 0 —i

The center is found on the projection to coordinates (7, ) and the degenerate behavior
on the projection to (A, L).
The perturbative term puH 1P °l is not explicit. We overcome this problem by com-
puting the first terms of the series of uH{°' in powers of (1,¢), (see Lemma 1.4.1).
Notice that, on the original coordinates, Hamiltonian h (see (I.1.1)) is analytic
at points away from collision with the primaries. However, the collisions are not as
easily defined in Poincaré coordinates.

A singular scaling. We consider the parameter

N

0=
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and we define the symplectic scaling
dse : (N Az, y) — (A, Lyn, &), L=1+06%A, n=9éz, €&=0dy, (1.2.13)

and the time reparameterization t = §~27. The transformed equations are Hamilto-
nian with respect to the Hamiltonian

674 (HE 0 ¢se) + (HT 0 ¢c)

and the symplectic form d\ A dA + idx A dy. The Hamiltonian (up to a constant)
satisfies

-4 Poi 312 1 2 ry
6~ (Hy® o ¢sc) =54 +5jFp(5 A)+67,
(Hi% 0 ¢sc) = V(A) + O(9),

with

V(A) = H{°(),1,0,0;0),

1 3 3 (1.2.14)
1) = (“5ae — 149) + 3+ 37 =06
The function V(A), which we call the potential, has an explicit formula:
1
V(A) = HP(1,\0) =1 —cosA — —o 1.2.15
9@ v ) 2+ 2cos A ( )

where HY °l is defined in (I.2.2). Indeed, taking § = 0 on the change of coor-
dinates (1.2.13), we have that (A\,L,n,§) = (A, 1,0,0). These coordinates, corre-
spond with a circular orbit, e = 0, and applying (I.2.5) and (I.2.6), we obtain that
(r,0) = (1, \).

We summarize the previous results in the following theorem.

Theorem 1.2.1. The Hamiltonian system given by h in (1.1.1) expressed in coor-
dinates (X, A, x,y) defines a Hamiltonian system with respect to the symplectic form
dA N dA + idz A dy and the Hamiltonian

H = Hy, + Hose + Hi, (1.2.16)

with
Hy(\ A) = —gAQ SV, Hoelo,yi6) = 55, (1.2.17)
Hi(\ A 2,y;0) = (HT 0 o) — V(N) + 5—14Fp(62A), (1.2.18)

and HY®', F, and V defined in (1.2.12), (1.2.14) and (1.2.15), respectively. Moreover,
the Hamiltonian H is real-analytic' away from collision with the primaries.
Moreover, for 6 > 0 small enough:

e The critical point L3 (see (1.2.3)) expressed in coordinates (A, A, x,y) is given

by
£(8) = (0,6%L4(0),0°L4(6), 6°L,(9)) (1.2.19)

'Real-analytic in the sense of H(\, A, z,v;6) = H(\, A, y,z;0).
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with |£A(0)], |£2(0)], |£4(8)| < C, for some constant C > 0 independent of 6.

e The point £(9) is a saddle-center equilibrium point and its linear part is

0 -3 0 0
7
~I 0 0 o0
8 ;
° 0 & 0 +0(9).
0 0 0 —%

Therefore, it possesses one-dimensional stable and unstable manifolds and a
two- dimensional center manifold.

The proof of Theorem 1.2.1 follows from the results obtained through Section I.2.1.
Since the original Hamiltonian is symmetric with respect to the involution ®
in (I.1.3), the Hamiltonian H is reversible with respect to the involution

O\ A, z,y) = (A, y, z). (1.2.20)
From now on, we consider as “new” unperturbed Hamiltonian
Ho(A\ A, z,y;6) = Hp(A A) + Hose(, y;6), (I.2.21)

which corresponds to an uncoupled pendulum-like Hamiltonian H, and an oscillator
Hys., and we refer to Hy as the perturbation.

I1.2.2 The Hamiltonian H, and its separatrices

In this section we analyze the 1-degree of freedom Hamiltonian Hy(\, A) introduced
in (1.2.17),

1

3
HyOA) = —SA24V()), VO)=1-cos)— —-—,
PN = SNV, V) =1 eosd - e

and the associated Hamiltonian system

A=-3\, A=—sin)\ 1—% : (1.2.22)
(24 2cos\)2

This Hamiltonian system has a singularity at A = m, which corresponds to the colli-
sion with the small primary P, and a saddle at (A, A) = (0,0) with two homoclinic
connections or separatrices, see Figure 1.2.1. From now on, we only consider the
separatrix on the right; by symmetry (see (1.2.20)), the results obtained below are
analogous for the separatrix on the left.

We consider the real-analytic time parametrization of the separatrix,

c:R—=>TxR

£ o (t) = (n(t), An(0), (1.2.23)

with initial condition

2
(0) = (XNp,0) where )Xo € (37r,7r> .

Theorem 1.2.2. The real-analytic time parametrization o in (1.2.23) satisfies:
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FIGURE 1.2.1: Phase portrait of equation (1.2.22). On blue the two
separatrices.

o [t extends analytically to the strip
Iy ={teC : |Imt| < A}, (1.2.24)

where

“ 1 x
A= dx ~ 0.177744 1.2.25
/0 1—x\/3(m+1)(a+—x)(x—a_) v ’ ( )

with a4 = —% + 72

e [t has only two singularities in 0ll4 at t = +iA.

o There exists v > 0 such that, for t € C with |t —iA| < v and arg (t —iA) €
(=32, %), o(t) = (A\n(t), An(t)) can be expressed as

M(t) = 7+ 3ai(t —iA)s + Ot — iA)3,

9 1 (1.2.26)
An(t) = = =55 + Ot — i),
3 (t—iA)s
with ay € C such that ai = %
An analogous result holds for [t + iA| < v, arg (t+iA) € (=%, %) and o = 7.

We can also describe the zeroes of Ay (t) in T14.

Proposition 1.2.3. Consider the real-analytic time parametrization o(t) = (An(t), An(t))
and the domain I14 defined in (1.2.23) and (1.2.24) respectively. Then, Ap(t) has only
one zero in 114 att = 0.

We can expand the region of analyticity of the time parametrization o.

Corollary 1.2.4. There exists 0 < 3 < § such that the real-analytic time parametriza-
tion o(t) extends analytically to

5% ={t € C : Imt| < tan fRet + A} U

(1.2.27)
{teC : |Imt| < —tanSRet + A}.
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""""" Y 5 Ret

FIGURE 1.2.2: Representation of the domain H‘j{‘fﬁ in (1.2.27).

(See Figure 1.2.2). Moreover,

1. o has only two singularities on 81‘[2‘% att = +iA.

2. Ay, has only one zero in the closure of H'fjftﬁ att = 0.

Proof. By | ], there exists T" > 0 such that o(¢) is analytic in {|Ret| > T} .
Moreover, applying Theorem 1.2.2; o () has two branching points at ¢ = +iA and can
be expressed as in (1.2.26) in the domains

Dy = {|t —iA| < v, arg (t —iA) € (=35, D) YU {|t +iA| < v, arg (t + i4) € (—3,35)},

for some v > 0. This implies that the only singularities in D; are at ¢t = +7A.
Thus, we only need to check Item 1 in

(5% N {|Ret| < T}) \ Dr.

To this end, note that, by Theorem 1.2.2; ¢(t) is analytic in the compact set Dy =
(ILy N {|Ret| < T})\D1. Therefore, there exists a cover of D; by open balls centered
in 0Dy where o(t) is analytic. Moreover, since D5 is compact, it has a finite subcover.
This implies that there exists > 0 such that we can extend the analyticity domain
of o(t) to (ITay N {|Ret| < T})\ Dy. In particular, taking 8 = arctan(n/T), o(t) is
analytic in (Hfj‘:ﬁ N{|Ret| <T})\ Ds.

The prove of Item 2 follows the same lines. O

I1.2.3 Derivation of the inner equation

The inner equation associated to the Hamiltonian H in (I1.2.16) describes the dominant
behavior of suitable complex parametrizations of the invariant manifolds close to (one
of) the singularities £iA of the unperturbed separatrix. Let us explain how this
equation arises from the Hamiltonian H.

First, we consider the translation of the equilibrium point £(9) to the origin,

w0t WA 2,y) = (A A, 2,y) + £06). (1.2.28)

Second, to measure the distance of the stable and unstable manifolds, we parameterize
them as graphs. In the unperturbed case, we know that the invariant manifolds
coincide along the separatrix (A,(t), An(t),0,0). Since we need to involve, in some
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sense, the time; we consider as a new independent variable u such that \,(u) = A.
Notice that @ = 1 for the unperturbed system. To this end, we consider the symplectic
change of coordinates

w
sep | (W, w,x,y) = (N, A, z,y), A=AM(u), A=Ap(u)— () (I.2.29)

where o0 = (A, Ap) is the parametrization of the separatrix studied in Theorem 1.2.2.
Notice that, except for u = 0 (see Proposition 1.2.3), the perturbed manifolds can be
expressed as a graph and the change (1.2.29) is well defined.

The Hamiltonian H, written in these coordinates and after the translation ¢eq
in (1.2.28), becomes

HseP — ngp + erp, (1.2.30)
with
sep . ry sep sep
HO (w,w,y)—w+6—2, Hl _HO(¢GQO¢SGP)_HO :

Since we look for the perturbed manifolds as graphs with respect to u, we consider
parametrizations

2°%(u) = (wo(u),xo(u),yo(u))T ,  for o =u,s,

such that the unstable and stable invariant manifolds of H associated to £(d) can be
expressed as

w®(u)
3Ah (u)

We = { (Ah(u),Ah(u) - ,xo(u),yo(u)> + 2(5)} , foro=u,s,

with u belonging to appropriate domains. The proof of existence of z" and 2° defined
in appropriate (complex) domains requires a significant amount of technicalities. We
present this result in Part II, (see Section I1.3.2).

Due to the slow-fast character of the system, to capture the asymptotic first order
of the difference Az = 2" — 2%, we need to give the main terms of this difference
close to the singularities, concretely, up to distance of order 62. To this end, we
derive the inner equation, see | ; ], which contains the first order of the
Hamiltonian H*P (see (1.2.30)) close to (one of) the singularities and is independent
of the small parameter 6. That is, we look, for instance, for a Hamiltonian which is
a good approximations of H*P in a neighborhood of u = iA. Here, we focus on a
domain near the singularity v = ¢A, but a similar analysys can be done near u = —i A.

Since we need to control the difference up to distance of order §2 of the singularity
u = 1A, we consider U such that

u—iA=§U.

Notice that we can take |[U| > 1 independent of 4. Close to the singularity u = ¢ A, the
homoclinic connection is not the dominant term of the perturbed invariant manifolds
anymore. Let us be more precise, take A = Ap(u) — ﬁ(u), and recall that, by
Theorem 1.2.2, we have

Ap(u) ~ —=F(u— iA)_%, for |u—iA| <v,
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or equivalently,

A(A +020) ~ ——20%_ L 0 (1> .

363U3 53U3
Then,
1
w(iA 4 6°U) ~ 3A2(iA 4 6°U) ~ O ((54> . (1.2.31)
3Us3

In addition, the unperturbed Hamiltonian must have all of its terms of the same
order. Therefore,

(i A 2 (i A 2 1
2°(iA+ V) y° A+ 8U) — ). (1.2.32)
62 03U3

By symmetry, 2°(iA + 62U), y°(iA + 62U) ~ O(ééU_%).
To avoid the dependence on the inner equation with respect to ay (see Theo-
rem 1.2.2) and to keep the symplectic character, we perform the scaling

Gin s (U, W, X)Y) = (u,w,z,y), (1.2.33)

given by

A
v="2 w=é w27 X=0", Y=—t—,
2007 83204 532004

52

and the time scaling 7 = §%t. The heuristics above lead us to assume that (U, W, X,Y) =
O(1) when u —iA = O(6?). In the following proposition, by applying the change of
coordinates ¢, we obtain the inner equation of the Hamiltonian HP.

Proposition 1.2.5. The Hamiltonian equations associated to (1.2.30) expressed in
inner coordinates (see (1.2.33)) are Hamiltonian with respect to

Hin _ H + Hin’
where
H(U,W,X,Y) = H"(UW,X,Y;0)|,_, =W+ XY +K({U,W,X,Y), (1L2.34)
with
1 1
K(U,W,X,Y) = Suiwe _ 1 (1.2.35)
4 3Us \V/1+J(UW,X,Y)
and
4aW?  16W 16 4(X+Y) ( 2 >
JUW,X,Y) = - + + W —
( ) oUs 2rUs  81U? U 3U3

(1.2.36)
4i(X-Y) X*+Y? N 10XY

3U3 3U3 s

Moreover, if c;* < |U| < ¢1 and |(W, X,Y)| < ¢y for some ey > 1 and 0 < cg < 1, we
have that there exist by, v1,v2 > 0 independent of 9, c1,co such that

|H (U, W, X,Y;6)| < boe]* )65
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Remark 1.2.6. The change of coordinates (1.2.33) allows us to study an approxi-
mation of the invariant manifolds z"™*(u) near the singularity uw = iA. To obtain an

approximation near u = —iA, one can proceed analogously by
i A
U:u—i—22 , W:6% w2’ Y- 1:J: ’ Yy — 1y :
5 202 5320 8320
where a_ = ax, (see Theorem 1.2.2).

I.2.4 The solutions of the inner equation and their dif-
ference

We devote this section to study two special solutions of the inner equation given by
the Hamiltonian # in (1.2.34). We introduce Z = (W, X,Y’) and the matrix

00 0
A=1{0 i o]. (1.2.37)
00

—1

Then, the equation associated to the Hamiltonian H can be written as

{ U=1+9(U, 2),

2= AZ+ f(U,2), (1:2.:38)

where f = (=0yK,idy K, —i0xK)" and g = oK.
We look for solutions of this equation parametrized as graphs with respect to U,
namely we look for functions

Z3(U) = (We(U), X3(U), Yg(U))",  foro=us,

satisfying the invariance condition given by (1.2.38), that is

ovZ§ = AZS +R[Z5),  for o =u,s, (1.2.39)
where (U, 0) (U, ) A
) —g(U, ) Ap
Rle)(U) = : 1.2.40
[‘P]( ) 1+g(U, (p) ( )

In order to “select” the solutions we are interested in, we point out that, since
we need some uniformity with respect to § and U = §2(u — iA), then ReU — o0
as § — 0, depending on the sign of ReU. Then, according to (1.2.31) and (1.2.32),
we deduce that (W, X,Y) — 0 as ReU — zoo. For that reason, we look for Z§
satisfying the asymptotic conditions

redm  Z3(U) =0, lim  Zi(U)=0. (1.2.41)

In fact, for a fixed 5y € (O, %), we look for functions Z§ and Zj satisfying (1.2.39),
(I.2.41) defined in the domains

Dp={UecC: ImU|>tanfyReU +r},  D;=-Dp, (1.2.42)

respectively, for some k > 0 big enough (see Figure 1.2.3). We analyze the the
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ImU

/50/ ReU

FIGURE 1.2.3: The inner domain, D}, for the unstable case.

difference AZy = Z§ — Zjj in the overlapping domain
Ec=DinD,N{UecC : ImU < 0}. (1.2.43)

Theorem 1.2.7. There ezist ko, by > 0 such that for any k > ko, the equation (1.2.39)
has analytic solutions Z3(U) = (WS(U), XS(U), YS(U))T, for U € D2, o = u,s,
satisfying

USWEW) <. USXZW) b, [USYS)] < b (1.2.44)
In addition, there exist © € C and by > 0 independent of K, and a function x =
(x1, X2, x3)T such that
AZo(U) = Z3(U) — Z3(U) = ee*iU((o, 0,1)7 + X(U)), (1.2.45)
and, for U € &,
U@ <by, UxU) <be [Uxs(U)] < b

Remark 1.2.8. This theorem implies that © = limpy, s oo AYy(U)eV. Thus, we
can obtain a numerical approximation of the constant ©. Indeed, for p > ko, we can
define

O, = |AYy(—ip)| €”, (1.2.46)

which, for p big enough, satisfies ©, ~ |0).

To compute AYy(—ip) = Yy'(—ip) =Y (—ip), we first look for good approximations
of Z§(U) for ReU < —1 and of Z§(U) for ReU > 1, as power series in U~3. One
can easily check that Z§(U) as ReU — —oo and Z§(U) as ReU — +oo0 have the
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same asymptotics expansion:

4 172
W) = - — 0 (U %),
243Us3  2187U's
21 28 201 16424
Xg(U) == Z4 + 7+ Z10 - m +0 (U_%) )
9Us 81Us 27YU3  6561Us
29 28 20z 16424 _16
Yo(U) = —g + ——r — —p — =+0(U7F).
9Us 81Us 27U 6561 U3

We use these expressions to set up the initial conditions for the numerical integration
for computing AYy(—ip). We take as initial points the value of the truncated power
series at order U™3 at U = 1000 — ip (for o =s) and U = —1000 —ip (for o = u).
(See Table 1.2.1). We perform the numerical integration for different values of p < 23
and an integration solver with tolerance 10712,

Table 1.2.1 shows that the constant © is approrimately 1.63 which indicates that
it is not zero. We expect that this computation method can be implemented rigorously

[ J

(o [1AY(=ip)[[ e* | ©, |
13] 3.7-107% |4.4-10° | 1.6373
14 1.4-107% |1.2-10° | 1.6361
15| 5.0-107 [3.3-10° | 1.6351
16| 1.8-1077 |8.9-10° | 1.6341
17| 3.7-107% |2.4-107 | 1.6333
18] 6.8-107% [6.6-10" | 1.6326
19| 9.1-107Y |1.8-10°% | 1.6320
20 || 3.4-107Y |[4.9-10% | 1.6315
21 1.2-107° [1.3-109 | 1.6312
22 || 46-10719 [ 3.6-10° | 1.6313
23| 1.7-10719 [ 9.7-10° | 1.6323

TABLE 1.2.1: Computation of O, as defined in (1.2.46), for different
values of p < 23.
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Chapter 1.3

Analytic continuation of the
separatrix

In this chapter we prove Theorem 1.2.2 and Proposition 1.2.3, which deal with the
study of the complex singularities and zeroes of the analytic extension of the time-
parametrization o(t) = (An(t), An(t)) of the homoclinic connection given in (I1.2.23).

Let us recall that o(t) is a solution of the Hamiltonian system H}, in (1.2.17) and

it is found at the energy level H, = —%. Therefore,
. A 3
(\)? =15 — 12 cos? <> - (1.3.1)
2) " cos (3)

Equation (I.3.1) can be solved as t = F'(\), where F' is a function defined by means
of an integral. Prove Theorem 1.2.2 and Proposition 1.2.3 boils down to studying the
analytic continuation of F~1.

We divide the proof of Theorem 1.2.2 into three main steps. First, in Section 1.3.1,
we perform the change of variables ¢ = cos(3) and rephrase Theorem 1.2.2 in terms
of q(t) (Theorem 1.3.1). Then, in Section 1.3.2, we analyze all the possibles types of
singularities that ¢(t) may have (Proposition 1.3.2), which turn out to be poles or
branching points. In addition we prove that all the singularities have to be given by
integrals along suitable complex paths. Finally, in Section 1.3.3, taking into account
all complex paths leading to singularities, we prove that the singularities of ¢(t) with
smaller imaginary part (in the first Riemann sheet of ¢(t)) are t = £iA.

Finally, in Section 1.3.4, we use the results obtained in the previous sections, to
analyze the zeroes of Ay (t) in the strip of analyticity 114 (see (1.2.24)), thus proving
Proposition 1.2.3.

In order to simplify the notation, through the rest of the chapters we denote by

C any positive constant independent of ¢.

1.3.1 Reformulation of Theorem 1.2.2

To prove Theorem 1.2.2; it is more convenient to work with the variable ¢ = cos (%)

instead of . Notice that this change of coordinates, when restricted to A € (0, 7), is
a diffeomorphism.

Theorem 1.3.1. Consider the real-analytic time parametrization o(t) = (Ap(t), An(t))

introduced in (1.2.23) and denote ay = —% + ? Then, q(t) = cos (’\"Qt)> satisfies

—~

q(t) € [ay,1) for teR, q(0) = ay, (1.3.2)
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and the differential equation
) 3
¢ = _(a=D e+ D(g-a)(g—ay). (1.3.3)

Moreover, we have that:
e The function q(t) extends analytically to the strip 114 defined in (1.2.24).
e The function q(t) has only two singularities on Ol at t = +iA.

o There exists v > 0 such that, for t € C with |t —iA| < v and arg (t —iA) €

(—3X,2), we have

q(t) = —30‘7*@ —iA)3 + Ot —iA)3, (1.3.4)

with ay € C such that ai = %

An analogous result holds for |t +iA| < v and arg (t + iA) € (=35, 2%) with
o =ag.

Theorem 1.2.2 is a corollary of Theorem 1.3.1.

Proof of Theorem I1.2.2. To obtain Theorem 1.2.2 from Theorem 1.3.1 it is enough to
prove that Ap(t) has no singularities in IT4 \ {£iA} and that (A, (), An(t)) can be
expressed as in (1.2.26) close to t = +iA.

Since A\;, = —3A;, and using the change of coordinates ¢ = cos(%), we have that
4 ¢3(t)
A (t) = — : 1.3.5
T 0) 139

We claim that, if Ap(t) has a singularity at ¢ = ¢*, then A?(¢) has a singularity at
t = t* as well. Indeed, the only case when the previous affirmation could be false is
if t* is a branching point of order % with £ > 1 an odd natural number. In this case,

A(t) = M (t") + C(t — t*)g_l (1 +O(t — t*)ﬁ) , when0< |t —t"| <1,

for some 5 > 0. Replacing this expression in (I.3.1) and comparing orders we see that
this case is not possible.

Thus, we proceed to prove that Ap(t) has no singularities in 14 \ {£iA}. Let
us assume it has. That is, there exists t* € T4 \ {£iA} such that Aj(t) is singular
at t = t*. Note that Theorem 1.3.1 implies that ¢(¢) and () are analytic in a
neighborhood of t* € T[4 \ {£iA}.

L. If ¢?(t*) # 1, 1/(1 — ¢3(t)) is analytic for 0 < |t —t*| < 1. Since ¢(¢) is also
analytic in this neighborhood, (I.3.5) implies that A7 (t) has no singularity at
t = t* and we reach a contradiction.

2. If ¢?(t*) = 1, by (1.3.3) and (1.3.5), we deduce that

M= o= )0 an)(g - o), (13.6)

Since by Theorem 1.3.1 ¢ is analytic in IT4 \ {£iA}, then A? must be as well.



1.3.2. Classification of the singularities of q(t) 43

Finally, we notice that, by equations (I.3.4) and (1.3.5), we have
4
AR (1) = Gad(tF iA)73 +O(1), when0 < |t Fid| < 1.

1in t = +iA. Moreover, integrat-

3
ing the expression for Ay(t) and applying that ¢(t) = cos(/\"T(t)) (and (1.3.4)), it is

immediate to see that A,(t) has branching points of order 2 at ¢t = +iA and can be

Therefore, A (t) has branching points of order —

expressed as in (1.2.26) close to t = +iA. O
We devote Sections 1.3.2 and 1.3.3 to prove Theorem I.3.1. The statements (1.3.2)
and (1.3.3) are straightforward by applying the change of coordinates ¢ = cos(%) to

equation (I1.3.1).

We divide the rest of the proof of Theorem 1.3.1 into two parts. In Section 1.3.2 we
classify the singularities of ¢(¢) and introduce a way to compute them using integration
in complex paths. Finally, in Section 1.3.3 we prove that the singularities of ¢(t) with
smallest imaginary part are t = £iA and are branching points of order %

I.3.2 Classification of the singularities of ¢(¢)

Equation (I.3.3) with initial condition ¢(0) = aj = —5 + @ is equivalent to

q(t)
t= / f(s)ds, for t € R,
ay

where

_ 1 q
@)= q— 1\/3(q +1)(¢—ay)(g—a-)’

is defined in R\ {[a—, —1]U (0, a+]U{1}} withay = -3+ g From | |, we know
that there exist v > 0 such that ¢(¢) can be extended to the open complex strip

I, ={teC : [Imt| < v},
and ¢(t) has singularities in JII,. Namely,

q(t)
t= f(q)dq, for t € I1,,. (1.3.7)

at

Since f is a multi-valued function in the complex plane, in order to analyze the
possible values of ffﬁt) f(s)ds, we consider its complete analytic continuation. That
is,

f:% —C .

gla) where g0) =5y — Su .y (139

;ar —
(q, gg(a)) g1
and Zy is the Riemann surface associated to f. We define p : Zy — C as the pro-
jection to the complex plane. We choose the first Riemann sheet to correspond to
arg g(q) € (—m, m]. Accordingly the second Riemann sheet corresponds to (m, 37].
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To integrate f along a path v C %y, we introduce the notation

/y f(a)dg = / far= [ fs) s)as.

S0

such that 7 : (S0, Sena) — #f where lim,_, s, py(s) = qo and lim,_,_, PY(S) = Gend-
Moreover, we assume that the paths v C %y are CY and C'-piecewise. Therefore,
by (1.3.7), we have that

q(t)
t= / fdv, for ¢t € 1I1,,. (1.3.9)
ay

Now, for ¢ € % and an integration path v C %y, we define the function G as the
right hand side of (1.3.9),

G(q) =/aifd'y-

Notice that for a given ¢ € %, G(q) may depend on the integration path, and
therefore, G may be multi-valued on #;. However, by (1.3.9), G is single-valued
when

t=G(q(t)), for t € I1,,.

We use G to characterize and locate the singularities of ¢(¢). Indeed, if function G(q)
is biholomorphic at ¢ = ¢*, then ¢(¢) is analytic at a neighborhood of all values of
t such that ¢(t) = ¢*. Therefore, ¢(t) may have singularities at ¢ = ¢* when the
hypothesis of the Inverse Function Theorem are not satisfied for G. That is, for
q(t*) = ¢* such that either

G'(¢*) =0, G ¢ Clatq=q", or |¢*| — 0. (1.3.10)

Namely, when there exist ¢* and v C % satisfying (I1.3.10), such that

t* =G(g") = /q* fdy. (1.3.11)

Since G is a multivalued function, the values of t* can, and in fact will, depend on
the integration path on v C #y. From (I1.3.8) and (1.3.10), one deduces that the
singularities may take place only if ¢(t*) = ¢* with

¢ =0,1,-1,a4,a_ and lg*| — oo. (1.3.12)
The following proposition proves that we only need to consider |¢*| — oo and ¢* = 0.

Proposition 1.3.2. Let q(t) be a solution of equation (1.3.3) with initial condition
q(0) = ay. Then, the singularities t* € C of the analytic extension of q(t) are
characterized by either

0 . oo
t*z/ Fdv, or t*z/ j dv,
a+ a+

for some path v C Zy.
Moreover:
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o Ift* = fi fdvy and Imt* > 0 with arg (t—t") e (—37”, %), then
3a sy 2 sy 4 "
qt) = =5 (¢ =)3 + Ot =73, for O<[t—t"] <1, (1.3.13)
g,%ﬂ), the

where o € C satisfies a® = % If Imt* < 0 and arg (t —t*) € (—

same holds true.

o Iftr = faoj fd, then
(1.3.14)

1
t)=————(1+ 0t —1t")), or 0 < |t —t"| < 1.

o) =~ (10U 1)), Jor 0< |t
Proof. To prove this result first we need to analyze all the possible values of ¢* that
may lead to singularities, (see (1.3.12)). We will use the expressions of ¢ and t* given

in (I.3.9) and (I.3.11), respectively.

1. If |¢*| — oo, we have
a(t)
t—t" = / fdy.
o0
Then, since
. 1 1
= +0 () , for > 1,
f(a) N 7 g
we obtain
t—t" = ! +0 ( ! >
V3q )’
which implies (1.3.14).
2. If ¢* = a4, we have that
q
t— = / fdr. (1.3.15)
ayt

The function f can be written as
ha, (q)

fla) = Vi

for some function h,, which is analytic and non-zero in a neighborhood of a .
Then, h,, can be written as hq, (¢) = > req k(¢ — at)¥, with co # 0 and, for

0 <|q—as| < 1, we obtain from (1.3.15)
ck
(q - a’+)k7

o0
k=0 2

which implies (¢ — t*)% = gq, (¢) with

~ 2
=(qg—a G _(g—a)F] .
9a, () = (q—ay) <k220 = %(q +) )

The function g, (¢) is analytic on a neighborhood of a and satisfies g, (a1) =

0, g, +(a+) = 403 # 0. Thus, applying the Inverse Function Theorem,
q(t) = gt;l ((t—t%)?), for 0<|t—t" < 1. (I.3.16)
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Therefore, ¢(t) is analytic for |t —¢*| < 1. One can analogously prove that the
same happens at ¢* = a_ and ¢ = —1.

. The value ¢* = 1 corresponds to the saddle point (A, A) = (0,0) of H, (see (1.2.17)).

Indeed,
q .
/ fdv is divergent. (1.3.17)
1

This implies that ¢(t) # 1 for any complex ¢.

q
t—t*:/ I dy.
0

We can introduce hy(q) = % f (¢) which is analytic and of the form hy(q) =
S50 ckq” with cg # 0. Then, for 0 < |g| < 1, we obtain

. Ifg" =0,

Wi

o (S ) (20
(=) = 00(0) q<k§j:0k+gq> (2 +0w)’

where go(g) is analytic in a neighborhood of ¢ = 0 and satisfies go(0) = 0,
2
g0(0) = (%co) 3 #£ 0. Thus, applying the Inverse Function Theorem,

2k

qt) = go (t—t ) Zth—t T, for0<|t—t"] << 1, (L3.18)

for some Cy € C and choosing the Riemann sheet arg (t — t*) € (—3—“ Z) for

2772
Imt* > 0 and arg (t —t*) € (—%,2F) for Imt* < 0. Replacmg (I.3.18) in
equation (1.3.3) we obtain C; = —322, where a € C satisfies o® = , which

implies (1.3.13).

I.3.3 Singularities closest to the real axis

Proposition 1.3.2 provides the type of singularities that ¢(¢) may posses in its first
Riemann sheet. Then, to prove Theorem 1.3.1, we look for those singularities which
are closest to the real axis. To do so, we analyze

0 [e’e)
/ fd, / fd, (1.3.19)
a4 a4

along all paths v C #; with such endpoints and prove that, for all possible paths,
the only singularities in the complex strip IT4 (see (1.2.24)) are t = +iA.

We introduce the following paths

Po = {7 (80, Send) = £y = lim (py(s), arg g(7(s))) = (a+,0), lim py(s) = 0},

Poo:{’Y:(SOaSend)—)%f : lim (py(s),argg(v(s))) = (a+,0), lim [|py(s)| = 00},

s—S0 S—Send

with the natural projection p : Zy — C.
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We have chosen 6y := lim,_,,, arg g((s)) = 0 without loss of generality. Indeed,
since ¢(t) € [a4,1) for t € R (see (1.3.2)), it could be either 0 or 27. The paths with
asymptotic argument 27 can be analyzed analogously and lead to singularities with
opposed signed with respect to those given by paths in Py, P

Furthermore, the asymptotic argument of the paths at its endpoints is not speci-
fied since it is given by the path itself.

For a given path v € Py U Py, we can define a path T[] : [sp, Send) — C in the
t-plane (or, more precisely, on the Riemann surface of ¢(t)) as

-/ @) (1)dr, for 5 € 50, Sena). (1.3.20)

Note that then the value of the integrals in (I1.3.19) is just

S—Send

t*(y) = lim Ty /f (I.3.21)

Since we are interested in the singularities of ¢(t) on its first Riemann sheet, we only
consider the paths T'[y] which belong to the complex strip 114 (Except, of course, the
endpoint of the path t*(y) € 0ll4). See Figure 1.3.1.

Imt¢ Imt¢

FIGuRrE 1.3.1: Example of paths v € Py U Pu. Left: T[y] C II4 and
t*(v) = iA. Right: T[y] ¢ T14.

The following definition characterizes the paths that we consider.

Definition 1.3.3. We say that a singularity t* of q(t) is visible if there exists a path
v € Py U Py such that

o ¥ =1t*(v),
e Tlv|(s) € 14, fors € [so,Send)-

Remark 1.3.4. In [ |, the authors use a different definition of visible singularity:
t* € C is considered a visible singularity if q(t) can be continued from the real axis
and then along the vertical line with a path of the form

¢(t) = Ret" +it, for te[0,Imt").

This condition on the paths is more restrictive than merely imposing that T[y] C 11,
forv =1Imt*. However, to compute t*(y), they are equivalent since both paths belong
to 11,,.

Theorem 1.3.1 is a consequence of Proposition 1.3.2 and the following result.
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Proposition 1.3.5. There exist two paths v+ € Py yielding the visible singularities
t*(v+) = £iA. Moreover, these are the only two visible singularities of q(t).

We devote the rest of this section to prove Proposition 1.3.5. Let us introduce
some tools and considerations to simplify the analysis of the integrals in (I.3.19).

e If v C %y is an integration path then, defining n =7%' , we have that
[ Fada= [ Fayda (13.22)
7 ¥

e Notice that the paths considered cannot contain the singularities of f (except
in their endpoints) since 0, a+, 1 ¢ Z;.

e When saying that a path v € Py U Py crosses R, we refer to the two lines
whose complex projection onto %y coincide with R. Analogously for any other
interval.

e Instead of detailing the paths v € Py U P, we only describe their projections
py C C. This omission makes sense since paths v are continuous on %y and,
as a result, arg g(y) must be continuous as well (see (I.3.8)). Therefore, we can
let the natural arguments of py and the initial point (a4,0) of the path define

arg g(7)-

To prove Proposition 1.3.5, we classify the paths as follows.
A. Paths not crossing R:

A.1. Paths in Py not crossing R: Lemma 1.3.6.
A.2. Paths in Py, not crossing R: Lemma 1.3.7.

B. Paths first crossing the real axis at R\ [0, 1]:

B.1. First crossing of R at (1,4+00): Lemma 1.3.10.
B.2. First crossing of R at (—oo,a_): Lemma 1.3.11.
B.3. First crossing of R at (—1,0): Lemma 1.3.12.
B.4. First crossing of R at (a—,—1): Lemma 1.3.13.

C. Paths first crossing the real axis at (0,1):

C.1. Paths in Py only crossing R at (0,1): Lemma 1.3.14.
C.2. Paths in Py only crossing R at (0,1): Lemma 1.3.15.
C.3. Paths also crossing R\ [0,1]: Lemma 1.3.16.

1.3.3.1 Paths not crossing the real axis
In this section, we check the singularities resulting from the paths A.1 and A.2.

Lemma 1.3.6. There exist only two singularities, tj 1, given by the paths v € Py not
crossing the real axis. These singularities are visible and

tii - :F’LA7

with A defined in (1.2.25) and satisfying A € [%, %]

!We define the conjugation on a Riemann surface as the natural continuation of the conjugation
in the complex plane. That is, for z = (z,0) € %y, its conjugated is Z = (T, —0) € Zy.
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Imgq
pY 4
P«
C— @ » Regq
a- -1 0 a4+ 1

FIGURE 1.3.2: Example of a path v € Py such that py C C*. Path
~s as defined in (1.3.23).

Proof. Let us consider paths v € Py such that py C CT = {Im 2 > 0}. Notice that,
since v does not cross the real axis, it does not encircle any singularity of f and, by
Cauchy’s Integral Theorem, all the paths considered generate the same singularity
1+ The singularity ¢ _ is given by the conjugated paths (see (I.3.22)).

Let us consider the path v, = v} V42 V42 with

7+ (q) = (¢,0) with ¢ € (ay,a4 + €],
p72(¢) = as +ee’  with ¢ € [0, 7], (1.3.23)
pY:(q) = with ¢ € [a; —¢€,0),

for e > 0 small enough, (see Figure 1.3.2). Then, the resulting singularity is
R 3
te=t"(w)= [ flode=>_ [ fla)dg
Y j=1"7
Since f,yj f(q)dg = O(/E) for j = 1,2, taking the limit & — 0, we have

t1+—;g%/§f(q)dq

Then, by following the natural arguments of the path ~,, we obtain
arg (12) =0, arg(y? —ay) =7, arg(y2+1)=0, arg(yl—a_)=0,

and, as a consequence, by the definition of A in (1.2.25), we have

R | T
t] L =1i dg = , dg = —iA.
L+ 51—13(1)[73 Ja)da /a+ x—1\/3(:C+1)|:U—a+]e”(a:—a_) 1 !

(1.3.24)
Moreover,
A< Vs “_dz 43 «* <3
(1 —ay)y/3a_| Vay —z 3 1—a+_107
A> ! / Vzde = 2V 3/2 3
~V3ag(ay +1)(agy —a_ — 50
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Now, it just remains to see that ¢] | is visible, namely, we check that Tlve] C 4.
Indeed, for s € (0,a4], we have that

“ 1 x
|ImT['y*](s)|:/s 1—1:\/3($—|—1)(a+—x)(x—a)dm<A'

O]

Lemma 1.3.7. There exist only two singularities, t5 ., resulting from the paths
v € Poo not crossing the real axis. These singularities are not visible and have imag-

mary part
2
Im (5 ) = —.
m (t5 ) T\ 91

Proof. Let us consider paths 7 € P4, such that py € C*. Then, since f (q) decays
with a rate of \q|_2 as |q| — oo, all paths considered generate the same singularity,
t5 . The singularity ¢; _ is given by the conjugated paths.

Let us consider the path v, = v} vV ~2 v 42 where

74+(q) = (¢,0) with ¢ € (ay,1—¢],
p2(¢) =1+ ee'®  with ¢ € [r,0], (1.3.25)
pY2(q) = ¢ with ¢ € [1 + ¢, +00),

for any small enough £ > 0. (See Figure 1.3.3). Then, the resulting singularity is

» Regq

FIGURE 1.3.3: Example of a path v € Py, such that py C CT. Path
v« as defined in (1.3.25).

Since f(q) € R when p(q) € (ay,1)U(1,+00) C R, the integrals on v} and 72 take
real values. Therefore, 72 is the only path that contributes to the imaginary part to
the singularity. Notice that the path +2 partially encircles the pole ¢ = (1,0) of f (q).
Then, one has

f(g)dg = —mRes (f, (1,0)) ]2

Im(th ) =1
m(2,+) m/ 21

Vi
Since, by Lemma 1.3.6, [Im (3 , )| > A, the singularity ¢3 | is not visible. O

Remark 1.3.8. Using mathematical software, one can see that the singularities t5
in Lemma 1.3.7 satisfy t5 ¢ = —0.086697 F 0.969516:.
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I.3.3.2 Paths first crossing the real axis at R\ [0, 1]

In this section, we continue the proof of Proposition 1.3.5 by checking that the singu-
larities generated by paths B.1 to B.4 (see the list in Section 1.3.3) are not visible.

First, we introduce some concepts. Let us consider a path v € PgUP~. We define
the parameter of the first crossing of the real line as

s1(y) = inf {s € (S0, Sena) : Impy(s) = 0},

the location of the first crossing as

ql(')’) = pfy(sl('y)) € R\ {a,, —1,0,a4, 1}>

the piece of the path before the first crossing of the real line as

71(7) ={7(s) : s € (s0,51(7))},

and the time of the first crossing as

In the following lemmas, we focus on the paths that stay in CT until the first crossing
of the real line, that is py1(7) € CT (see (I1.3.22) for the conjugate paths, i.e. py1(y) C
C7).

Remark 1.3.9. To prove that a singularity t*(7y) is not visible (see Definition 1.3.3)
it is sufficient to check that |Imti(y)| > A.

Lemma 1.3.10. The singularities t*(y) given by paths v € PoUPs such that q1(7y) €
(1,400) are not visible.

Proof. Consider a path v € Po U Peo with ¢1 = q1(7) € (1,+00) and pyi(y) C C*.
Integrating the function f along the path 7, () is equivalent to integrate f along the
path n = n' v n? v 73 where

771 Q) = ((LO) Wlthqe (a+71_5]7
pn?(¢) = 1+ ce®  with ¢ € [r,0], (1.3.26)
P’ (q) = q with ¢ € [1 + ¢, q1),

for e > 0 small enough, (see Figure 1.3.4). Then,

Imgq
A

» Req

FI1GURE 1.3.4: Example of a path v € H, o such that ¢1(7y) € (1, +00)
and py1(y) C C*. The path n has been defined in (1.3.26).
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Imgq

FiGure 1.3.5: Example of a path v € Py such that ¢1(y) € (—o0,a_)
and py1(y) € C*. The path 77 has been defined in (1.3.27).

and the integrals on n! and 73 take real values since f(q) € R when p(q) € (ay,1) U
(1,400) C R. Analogously to the proof of Lemma 1.3.7, we have that

Ilm ¢1(7) ‘Im/f dq‘—ﬂ"Res( 10))) \/§>A.

Therefore, t*(y) is not visible (see Remark 1.3.9). O

Lemma 1.3.11. The singularities t*(y) given by paths v € PoUPxs such that qi(7y) €
(—00,a—) are not visible.

Proof. Consider a path v € Py U Py with ¢1 = q1(7) € (—o0,a_) and pyi(y) € C*.
To compute t1(y) we introduce the auxiliary path 7. = v1(7) V 77, where

pi(g) =q  with ¢ € [¢1, —00), (1.3.27)

(see Figure 1.3.5). Then, taking into account that f]y] C R,

Imty(y)| = ‘Im f(q)dq‘ = ’Im f(q)dq' = ﬂ'\/z > A,
Noo e

where v* is the path defined in (I.3.25). Therefore ¢*(vy) is not visible. O

Lemma 1.3.12. The singularities t*(y) given by paths v € PoUPs such that qi(7y) €
(—1,0) are not visible.

Proof. Let v € Po U Po be a path such that ¢1 = ¢qi(7) € (—1,0) and py1(7y) C C™.
Integrating the function f along the path ~; () is equivalent to integrating f along
n=n'vn?Vvn?Vvn*Vvn® where

(1'(q) = (¢,0) with ¢ € (a4, ay + €],

p?(¢) = ay +ee'®  with ¢ € [0, 7],

p3(q) = ¢ with ¢ € [ay —¢,¢], (1.3.28)
pnt(¢) = ee'® with ¢ € [0, 7],

Lp°(q) = ¢ with ¢ € [—¢, q1),

for ¢ > 0 small enough, (see Figure 1.3.6). Using that fnj flq)dg = O(Ve) for
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» Req

FIGURE 1.3.6: Example of a path v € P, such that ¢;(v) € (—1,0)
and py1(y) C C*. The path n has been defined in (1.3.28).

Imgqg
A

Req

FIGURE 1.3.7: Example of a path v € Py, such that ¢;(y) € (a—,—1)
and py1(y) C C*. Path n as defined in (1.3.29).

j=1,2,4, that f]ns C R, and (I.3.24), one has that ¢*(v) is not visible since

Ity (7)] = lim f<q>dq' 4
E—r ,’73

O]

Lemma 1.3.13. The singularities t*(y) given by paths v € PoUPs such that g1(7y) €
(a—,—1) are not visible.

Proof. Take a path v € Py U Po with g1 = q1(7) € (a—,—1) and pyi(y) C CT. The
integral of the function f along the path v;(7) coincides with the integral along the
path

7
n=\/, (1.3.29)
j=1

where the paths 77, j = 1,2, 3,4, are defined in (1.3.28) and

p°(q) = ¢ with ¢ € [—¢,—1+¢],
pno(d) = -1+ ge’®  with ¢ € [0, 7],
pn'(q) =¢q with ¢ € [-1 —¢,q1),

for small enough € > 0, (see Figure 1.3.7). Then, proceeding analogously to the proof
of Lemma 1.3.12,

7
Im¢(y) = lim Im /f(q)dq =—-A+ Z limIm [ f(q)dq. (1.3.30)
e—0 n e e—0 i
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FIGURE 1.3.8: Example of paths v € Py only crossing R at (0,1).
Left: Oena(y) = . Right: Oena(y) = 3.

Since f|175 C R and fnﬁ f(q)dg = O(/2), it only remains to compute the integral on
n’. Following the natural arguments of the path 7, we obtain

arg(n’)=m, arg(n’ —ay) =7, arg(n"+1)=m, arg(n’ —a_)=0

and, as a consequence,

- i lqle’™ .
1 d : dq = —1iB
51—%/777f<q) = 1 Q—1\/3q+1\e”]q—a+\e”(q—a_) 4 iBlay),

where B(q1) a real-valued, positive and strictly decreasing function for ¢; € (a—, —1).
Then, t*(vy) is not visible since, by (1.3.30), |[Im¢;(v)| = A+ B(q1) > A. O

I.3.3.3 Paths first crossing the real axis at [0, 1]

In this section, we check that the singularities generated by paths C.1 to C.3 (see the
list in Section 1.3.3) are either not visible or +iA.

Lemma 1.3.14. The singularities t*(y) given by paths v € Py only crossing R at
(0,1) are either t*(y) =iA or t*(vy) = —iA.

Proof. The paths considered in this lemma can turn around the branching point
q = a4, but not around the other branching points nor the pole. Therefore, we
classify these paths depending on how many turns they perform around ¢ = a4. In
order to do so, we define

Oena(v) = lim arg(y(s) —a4). (1.3.31)
S—>Send
The considered paths satisfy fena(v) = (2k + 1)m for some k € Z (see Figure 1.3.8).
Integrating the function f along the path « is equivalent to integrating along n =
nt v n?vn? with

n*(q) = (¢,0) with ¢ € (a4, ay — €],
pn?(¢) = as +ee®  with ¢ € [, (2k + 1)7], (1.3.32)
P’ (a) = q with ¢ € [ay — ¢,0),

for small enough ¢ > 0. Since fnj f(q)dg = O(y/e) for j =1,2,

* q k+1;
t*(v) =1 )dq = dg = (— 1A.
55%/ f(a)da = /a+q1\/ 3¢+ 1)]q — ar| @@ (g—a_) ' =1)
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FIGURE 1.3.9: Example of paths v € P, only crossing R at (0, 1) such
that py ends on the positive complex plane. Left: Oena(y) € (0, 7).
Right: Oena(y) € (27, 3m).

O]

Lemma 1.3.15. The singularities t*(y) given by paths v € Ps only crossing R at
(0,1) are not wvisible.

Proof. We analyze the paths v € P, such that py goes to infinity on C* (by (1.3.22),
the paths on C~ give conjugated results). Following the proof of Lemma 1.3.14, we
classify the paths v depending on 6enq(7), the final argument with respect to a
(see (I.3.31) and Figure 1.3.9). The paths considered satisfy

Oena(7) € (27k, (2k + 1)7),  for some k € Z.

We compute t*(v) using the path n = n' v n? v n® v n* v > where the paths 5!, n?
are defined in (1.3.32) and

p*(q) = q with ¢ € [ay +¢,1 —¢],
pnt(¢) = 1+ e’ with ¢ € [, 0],
pn°(q) = with ¢ € [1 4+ ¢, +00),

for small enough & > 0. Since the integrals on 7% and 7° take real values and applying
the results in Lemma 1.3.14 for ' and n?, we obtain

() =T [ fla)da

774

Proceeding as in the proof of Lemma 1.3.7 and following the natural arguments of
the path 7, one deduces that

¢ 2
Im¢*(y) = —7mRes (f, (1,27rk;)) = (—l)kﬂw =
Therefore, since [Im¢*(7y)| > A, the singularity is not visible. O

Lemma 1.3.16. The singularities t*(y) given by paths v € Py U Ps both crossing
(0,1) and R\ [0,1] are not visible.

Proof. Let us define the parameter of the first crossing at R\ [0, 1] as

so(y) = 1inf {s € (S0, Sena) : Impy(s) =0, Repy(s) ¢ [0,1]}
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FiGure 1.3.10: Example of paths v € Ps crossing both (0,1) and
R\ [0, 1] with ¢2(7) € (1,400) and such that py approaches ga(y) from
C™T. Left: 65(y) = 0. Right: 65(y) = 2.

and the corresponding point

a2(v) =py(s2(7)) € R\ {[0,1},a—, —1}.

We consider paths v with g2 = g2(y) € (1,400) and such that py approaches ga2(7)
from C* (see 1.3.22). The cases g2 € (—o0,a_), g2 € (a—,—1) and g2 € (—1,0) are
proved analogously.

The strategy is to classify the paths v depending on how many turns they perform
around ¢ = a4 before crossing R\ [0, 1]. To this end, we define 02(y) = arg (g2(v)—a+)
(see Figure 1.3.10). The paths we are considering satisfy 02(y) = 27k for some k € Z.
We also define the piece of path before the crossing as y2(y) = {v(s) : s € (s0, s2(7))}
and the corresponding time

ta(y) = / @
Y2y

To prove that a singularity ¢*(+y) is not visible, it is sufficient to check that [Imta(y)| >
A.

1. Consider 03(y) = 2wk with k an even number. Let us consider the path n as
defined in (1.3.26) replacing ¢; by g2 in its definition. This path 7 lies entirely
on the first Riemann sheet, that is argg(n) € (—m, 7w|. Integrating the function
f along ~v2(7) is equivalent to integrating it along

E=a' VPV v,

where
'(q) = (¢,0) with ¢ € (as,as +€l,
pi2(¢) = ay +ee®  with ¢ € [0, 2], (1.3.33)
p7°(q) = ¢ with ¢ € [ay +¢€,a4),

for ¢ > 0 small enough. Notice that this construction makes sense since the
path 77° has argument argg(7®) = 27k (which belongs to the first Riemann
sheet).

Then, since fﬁj f(q)dq = O(y/e) for j = 1,2,3 and applying Lemma 1.3.10, we
have

|Im to(y)| = lim
e—0

I /£ f<q>dq‘ - 'Im /n f<q>dq‘ > A
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2. Consider 03(k) = 2wk with k an odd integer. We define the path n*, lying on
the second Riemann sheet, as

n* = (pn,argg(n) + 27) € C x (7,37},

where 7 is the path introduced in (1.3.26) (replacing ¢1 by g2 in its definition).
Note that the path 7 lies on the first Riemann sheet (argg(n) € (=7, 7]).

It can be easily checked that switching the Riemann sheet implies a change in
sign. That is,

[ fada =~ [ faia (13.34)
n n

Then, integrating the function f along the path y2(7y) is equivalent to integrating
it over

E=T VIV VI,
where paths 7/ for j = 1,2, 3, are defined on (1.3.33). This construction makes
sense since the path 7® has argument argg(7®) = 27k (which belongs to the
second Riemann sheet).

Then, since fﬁf f(q)dq = O(y/e) for j = 1,2,3 and applying Lemma 1.3.10 and
formula (1.3.34), we have

ummwhgghméﬂwﬂzhméﬂwﬂ>A.

1.3.4 Proof of Proposition 1.2.3

For t € R, Ap(t) satisfies Ap(t) = 0 if and only if ¢ = 0 (see Figure 1.2.1). To prove
Proposition 1.2.3, we follow the same techniques used in the proof of Theorem 1.2.2.
Let us consider ¢(t) = cos()‘hT(t)) as introduced in Theorem 1.3.1. Then, by (1.3.6),

Aﬂﬂ=3;ﬂ0—@@D@@%ﬂuﬂﬁ®—aJ-

Let Ap(t*) = 0 for a given t*. Then, defining ¢* = ¢(t*), we have three options:
¢ =1ar,a_.

We have seen that ¢* = 1 corresponds to the saddle equilibrium point, namely [t*| —
00, (see (1.3.17)). Therefore, it cannot lead to zeroes of Aj(t). On the contrary,
q* = ag leads to zeroes of Ay(t), since we have seen that ¢(t) is well defined and
analytic in a neighborhood of such t* (see (1.3.16)).

To prove Proposition 1.2.3 it only remains to compute all possible values of t* € 14
such that ¢* = ¢(t*) with ¢* = a4+,a_. To do so, we use the techniques and results
presented in Section 1.3.3.

From now on, we consider integration paths v : (o, Sena) — Z with initial point
lims_,s, 7(s) = (a+,0) and endpoint lims s, py(s) = ¢* = ax. Moreover, we say
that a zero t* of Ay, is visible if there exist a path v such that t* = t*(y) € II4 and
Tv](s) € I14 for s € [so, Send), (see (1.3.20) and (1.3.21)).

First, we recall some of the results obtained in Sections 1.3.3.2 and 1.3.3.3.



58

Chapter 1.3. Analytic continuation of the separatrix

e Consider q; € (—oo0,a—)U (a—,—1) U(1,400). In the proofs of Lemmas 1.3.10,

1.3.11, I.3.13 and 1.3.16 we have seen that

Qo
’Im/ fd’y) > A. (1.3.35)
at
e Consider ¢; € (—1,0). In the proofs of Lemmas 1.3.12 and 1.3.16, we have seen
that
q
’Im/ fd”y) = A. (1.3.36)
at

Now, we classify the paths depending on its endpoint ¢*.

1. Consider ¢* = a_. Analogously to the proof of (1.3.35), it can be seen that

Im t*(7)] = ‘Im/ ) fdv‘ > A
at

Therefore, g* = a_ does not lead to any visible zero.

2. Consider ¢* = a4. Notice that, by (1.3.35) and (I1.3.36), any path crossing

R\ [0, 1] leads to non-visible zeroes. Therefore, we only consider paths v either
crossing (0, 1) or not crossing R.

Since in (0, 1) the only singularity of f (q) is the branching point ¢ = ay, there
exists a homotopic path n = n' v 5% v 73 defined by

n*(q) = (¢,0) with ¢ € (as,as + €],
pn?(¢) = ay +ee®  with ¢ € [0, 27k],
P’ (a) = q with ¢ € [ay + ¢, a4),

for some k € Z and € > 0 small enough. Then,
* s : ¢
)= [ ddy=tim [ floda=o,
ay e—0 n

Therefore, these paths lead to the only visible zero t* = 0.
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Chapter 1.4

The inner system of coordinates

This chapter is devoted to prove Proposition 1.2.5. That is we perform the suitable
changes of coordinates, described in Section 1.2.3, to Hamiltonian H obtained in
Theorem 1.2.1 (see (I1.2.16)) to obtain the inner Hamiltonian H. However, recall that
the Hamiltonian H is defined by means of HT°' (see (1.2.12)) which does not have
a closed form. For this reason, a preliminary step to to prove Proposition 1.2.5 is
to provide suitable expansions for H{°' in an appropriate domain. This is done in
Section 1.4.1. Then, in Section 1.4.2, we apply the changes of coordinates introduced
in Section 1.2.3 to conclude the proof of the proposition.

1.4.1 The Hamiltonian in Poincaré variables

First, we give some formulae to translate the Delaunay variables and other orbital
elements into Poincaré coordinates (see (1.2.10)).

— Eccentricity e (see (1.2.4)): It can be written as

e = 2E(L VA where L&) = Y = e O(0). (141

Notice that € is analytic for (L,7,£) ~ (1,0,0)!.

— Argument of the perihelion g: From the expression of n and £ in (1.2.11),

cosg = sing = —i (1.4.2)

n+§
2v/n€’

— Mean anomaly /: Since A = £ + g, we have that

2vng

cosl = 2\}% (G_M’O + ei’\§> , sinf = 2\}% (e

These expressions are not analytic at (n,&) = (0,0). However, by (1.4.1),

—iAp ei,\g) .

ecosl = &(L,n,§) (6,% + e“f) . esinl=ié(L,n,¢) (e*% _ eMg) ,
(14.3)

are analytic for (L,n,£) ~ (1,0,0).

!This expansion is valid as long as L # 0. However, since our analysis focuses on L ~ 1, to
simplify notation we use this more restrictive domain.
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— Eccentric anomaly u: It can be implicitly defined by u = ¢+-esinu (see (1.2.8)),
which implies

u =L+ esinl + e?cossinl + O(esinl, e cos £)>.

Then, by (I.4.1) and (1.4.3),

Lo i ix ) 1 ( SN, A )2 “id, iAA3
ecosu=——|[e +e + — (e —e + O(e™"'n, e’ ,
NG ( n+etE) +or n—e (e7"n,e"¢)
o —iA i ) i ( —2iA\ 2 %A 2) —iX, iAe\3
esinu = e —e +— e —e + O(e ,€ ,
L ( U ) +3 n § (e7n,e"E)
(1.4.4)
which are also analytic for (L,n,&) ~ (1,0,0).
For any ¢ € [—1, 1], we define the function
D[¢] = (r* — 2¢rcos 0 + ¢?) o ¢pyi. (1.4.5)
By the definition of pH}°! in (1.2.12), we have that
. 1 1—
Poi I 1%
VDOl /Dl /Dli—1]

Lemma 1.4.1. For |(L —1,7,&)| < 1 and any ¢ € [—1,1], one can split D[(] as
DIC] = Dol¢] + D1[¢] + D2[¢] + D>3(¢],
where

Do[¢](\, L) = L* — 2CL% cos A + (2,

3 . .
Dy [C]()‘v L7, é) = 77\/22T (BC — 927 _ Ce—?z/\)
—iA
DQ[C](A7 L7 ga 77) = - 772 Le (g -+ 2L2€7i)\ + 3<672i)\)
2Lei)\

e (g 1 2L2% ¢ 3@2”) + €L (3L +2C cos \) .

4
Fiz 0 > 0. Then, for |[Im\| < g, the function D>3[(] is analytic and satisfies

|D>3[C)(\, Ly, €)| < C(n, €)1, (L.4.7)

with C = C(p) a positive constant independent of ¢ € [—1,1].

Proof of Lemma 1.4.1. In view of the definition of D[(] in (1.4.5), we look for expan-
sions for 72 and r cos § (expressed in Poincaré coordinates) in powers of (1, €).

Let us consider first 72. Taking into account that r = L?(1 — ecosu) (see (1.2.5))
and the expansions in (I.4.4) we obtain

r? =L* — L3V2Le Py — L3V2Le ¢ + 3L%n¢
I3 . I3 .. , , (1.4.8)
_ 76—21)\,’72 _ 7620\52 + O(e—z)\n, 61/\5)3.
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Now, we compute an expansion for r cos§. Taking into account (1.2.6) and (1.2.7),

rcosh = L? (cos(g+u) —ecosg — (\/1 —e? — 1) sinusing).

Notice that, since A\ = ¢+¢g and u = {+e sin u, we have that cos(g+u) = cos(A+esinu)
is analytic at (n,£) = (0,0). Then, using (1.4.1), (1.4.2) and (1.4.4), we deduce

V2L3 V2L3
2 2

rcosf =L%cosA — 7

(1 + ie"P sin A) —¢ (1 — e sin A)

L . ) )
—néLcos A+ 1”2 <e_l)‘ +e 2 cos N\ — 2ie 2 gin /\) (L4.9)
L /. . . , .
+ 522 (e“\ + 2 cos \ + 2ie?™ sin )\> + O(ez’\n, e_z)‘ﬁ)?’.

Then, joininig the results in (1.4.8) and (1.4.9) with the definition of D[(] in (1.4.5), we
obtain its expansion in (7,£). Moreover, since D[(] is analytic for (L,n,&) ~ (1,0,0)
and |Im A| < p, the terms of order 3 satisfy the estimate in (1.4.7). O

Remark 1.4.2. Observe that the Hamiltonian HY* = HE+pHP in (1.2.12) is ana-
lytic away from collision with the primaries. By the decomposition of pHY°' in (1.4.6),
collisions with the primary S are given by the zeroes of the function D[u] and colli-
sions with P are given by the zeroes of D[u — 1].

Since our analysis is performed for (L —1,n,¢)| <e <1 and 0 < p < 1, by
Lemma 1.4.1, one has

Dlp) =14+ O(u,e),  Dlp—1]=2+42cos A+ O(u,¢).

That is, collisions with S are not possible whereas collisions with P may take place
when A ~ .

I.4.2 Proof of Proposition 1.2.5

To prove Proposition 1.2.5, we analyze the Hamiltonian H'™ which is given (up to a
constant) by
53
ﬂ (H © ¢eq o (z)sep S (bm) )
where the changes ¢eq, Psep and ¢i, are defined in (1.2.28), (1.2.29) and (1.2.33), and
H = Hy+ H; (see (1.2.21) and H; in (1.2.18)).
In the rest of the section, when performing changes of coordinates, to simplify
notation, we omit the constant terms in the Hamiltonians.
Using the formulas for HF° in (I1.4.6) and Lemma 1.4.1, we split H{°' into two
terms: one for the perturbation coming from the massive primary (5) and the other
coming from the small primary (P),

Poi Poi, S Poi, P
1 =H T+ H T

which, recalling that j = 6%, are defined as

gPois _ L (1L 1-0 and HPOWP -1 (1.4.10)
1 54\ \/D0] /D[s%] ' Dl — 1] -
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We also define the Hamiltonian H®Y = H o ¢¢q, which can be split as
H = Hy + R* + H{" + H{%|
with
HIY™(\ A, z,y;0) = HFOL* 0 Psc © Peq,s for x = S, P,
RN A 2,y50) == V() + %Fp(ézA + 548A(0)) (1.4.11)
— 362ALA(0) + 6(xLy(8) + yLs(9)).

We recall that ¢ is the scaling given in (1.2.13), V' is the potential in (1.2.15), F}, is
the function (1.2.14) and (£€a, £,, £y) are introduced in (1.2.19).

Then, the Hamiltonian H™ can be written as
5
. 3 . .
H" = 2 (Hoo ¥+ B 0w + H" 0 0+ B0 @), (14.12)
Q
+

where
U= ¢sep 0 ¢in and &= ¢sc o (Zseq © ¢sep o ¢in-

In the following lemmas, we introduce expressions for the changes ¥ and .

Lemma 1.4.3. The change of coordinates W = (Vy, Wy, ¥,, ¥,) satisfies

Uy\(U) = 7+ 3040303 (1 + ga(620))

2a a UsW -
VAU, W) = ——5—+ (1 + ga(8°0)) + ——5— (1 +3a(6°D))
303U3 03

U, (X) = 6320, X,
U, (Y) = 63v2a.,

where gx(2), ga(z), ga(z) ~ O(zg). Moreover, taking into account the time-parametrization
of the separatriz (Ap, Ap) given in (1.2.23), we have that

2
Ap o din = _% (1+ ga(5%0)). (1.4.13)

03Us3

Lemma 1.4.4. The change of coordinates ® = (®y, P, ,), P¢) satisfies

\(U) = U,\(U), O (U,W) =1+ 6>Tp(U, W)+ 62L4(0),
O (X) = 00, (X) + 6£,(9), De(Y) = W, (V) +6€,(6),

where W = (W), Wp, V., W) is the change of coordinates given in Lemma I.4.5.

We omit the proofs of these lemmas since they are a straightforward consequence
of Theorem 1.2.2 and the definitions of the changes of coordinates (see (1.2.13),
(I1.2.28), (1.2.29) and (1.2.33)).

End of the proof of Proposition 1.2.5. We analyze each component of (1.4.12).

We denote by C(c1,c2) > 0 any constant satisfying that there exist by, y1,7v2 > 0

independent of ¢1, 2,6 such that C(c1,c2) < boei' ey’



1.4.2. Proof of Proposition 1.2.5 63

1. We compute the first term of the Hamiltonian H™ in (1.4.12). Since Hp(Ap, Ap) =
H,(0,0) = —1 and taking into account (1.4.13), we have

53 53 2
w zy
HoyoW =" (w— Y 12,4
2a% 0° 2a% <w 6A2 (u) * 52) ° in

1 2
1 —|—9A(52U))
— W+ XY — %U§W2 +O (5%U§W2) .

3.2 2
:W+XY—1U3W

Since |U| < ¢; and |W| < ¢, the error term (’)(5%U§W2) can be bounded by
C(Cl, 62)5% .
For the other terms in (I1.4.12), to simplify the notation, we are not specifying

the dependence of the error terms on the variables (U, W, X,Y"). Moreover, when

referring to error terms of order O(d%), we mean that they can be bounded by
C(e1,c2)0%.

2. For the second term of the Hamiltonian H™ in (I.4.12) (see by (I.4.11)) we have

4 4
53 5
—2;2 R9oQ = — O; V(Uy) + —— Fp (070 + 6424 (5))
+ + 3

*+ i (L.4.14)
36 22/\(5) Uyt 93L,(6) v, 4 03£,(9) w,
204 V2o V2ay
where F,(2) = O(2%) (see (1.2.14)) and V() is the potential given in (1.2.15).

First we analyze the potential term. By Lemma 1.4.3, we have that

"y = 2 :
2a% A 202 V2 +2cos Wy\(U)
4

03 8 4 2 16 8\\
s (90&53(]3 (1+ gx(6%0)) +0(5s U)) +O®

1
— + 0O
3035 (

+0(8%)

N

4
3

)

Wl

).
Then, since ¢; ' < |U| < ¢; and |(W, X,Y)| < cg, by (1.4.14) and Lemma 1.4.3,

4
03
2az Bl ——s

S C(Cl, 02)5%.
203 3U'3

3. We deal with the third term of the Hamiltonian H™ (see (I.4.10)). Since

(U, W, X,Y) — (7,1,0,0)| < C(c1,¢2)83 and |Im ®(U)| < C(c1)63,
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the hypotheses of Lemma I1.4.1 hold and therefore:

ol

K Poi.P 4 _ J 1
202 1 °r= 202 +/ DI[&4
+ + [(5 - 1] o (I)

9 _
:—(;d;- (D0—|—D1—|—D2—|-D>3)[54—1]Oq))
3

N |=

We compute every term D;[§% — 1], j =0,1,2,> 3.
a) The term Dg[d* — 1] satisfies
Dy[6* — 1J(\, L; 6) = L* 4+ 2(1 — 6Y)L? cos A + (1 — 6%)?
=2(1 4 cos\) + 4(L — 1)(1 +cos A) + 2(L — 1)*(3 + cos \)
+4(L — 1)+ (L — 1)* —26%(1 + cos \)
—46%(L — 1) cos A — 26*(L — 1)% cos A + 0°.

Performing the change ®, by Lemma [.4.4, we have that

2 2
S Dolot — 1] 0@ = (2(1 Fcos®y) + 4(0p — 1) + 0(5%))
3 3
1 1
—ovd ariw? — w10 Lo,
3 9U s

b) Analgously the term D;[6* — 1] satisfies

3 . . .
Di[6* — 1] = 2L [(—3 —2e7 A 47BN _4(L —1)e” P
—2(L = 1% 4643 - )]
3 . . .
+¢ 22L [(—3 —2e 4 ¥ — 4(L — 1)
~2(L — 1% 4 543 - )|
and therefore
2
20 Dy — 1] 0 ® = ijX (—41' (@3 — ) —4(21, — 1) + O(6))
03 55
L2 (41 (@1 —7) — 4@ — 1) + O(67))
3

3Us

+ (121U3 +4U3 — 81> +0O(63).
3U3

)

8
( 121U3—|—4U3— 1>
Y
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c) The term Ds[§* — 1] satisfies

—iX
9 Le

Dyl —1] =1 (12027 =372 16t (14 3072 )

Lefi)\

_52 (_1+2L2€i)\_3€2i)\+54 (1+362i/\))
+n§L (3L2 — 2cos A + 0*2 cos A)

and

2()£+

Dyf6* —1]0® = —3X2 — 3Y2 + 5XY + O(63).

8
3

d) By the estimates of D>3[6* — 1] in (1.4.7) and Lemma 1.4.4,

2OK+

D3[6* — 1] 0 ®| < C(cy, 2)3.

8
3

Collecting these results, we conclude that

4
03 - 1 1
S H o= +0(6h),
207 3U3 /1+J(UW,X,Y)
where the function J is given in (1.2.36).

4. Proceeding analogously as for H 1P Oi’P, it can be checked that

4
03 HPoi,S od

4
< C(Cl 62)55.
2 1 = 3
204
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Chapter 1.5

Analysis of the inner equation

We split the proof of Theorem 1.2.7 into two parts. In Section 1.5.1 we prove the
existence of the solutions Z} and Z§ and the estimates in (1.2.44). In Section 1.5.2,
we provide the asymptotic formula for the difference AZy = Z — Z§j given in (1.2.45).
For both parts, we follow the approach given in | ].

Throughout this chapter, we fix the Sy € (0, §) appearing in the definition of the
domains D} and D;, in (1.2.42) and &, in (1.2.43). We denote the components of all
the functions and operators by a numerical sub-index f = (f1, f2, f3)7, unless stated
otherwise. In order to simplify the notation, we denote by C' any positive constant
independent of k.

1.5.1 Existence of suitable solutions of the inner equation

From now on we deal only with the analysis for Z. The analysis for Zj is analogous.

I.5.1.1 Preliminaries and set up

The invariance equation (1.2.39), that is 0y Zy = AZy + R[Z{], can be written as
LZ} = R[Z}] where L is the linear operator

Lo = (0y — A)ep. (I.5.1)

Notice that if we can construct a left-inverse of £ in an appropriate Banach space,
we can write (1.2.39) as a fixed point equation to be able apply the Banah fixed point
theorem.

Given v € R and k > 0, we define the norm

lell, = sup [U"p(U)],
UeDy
where the domain D} is given in (1.2.42), and we introduce the Banach space
X, ={¢: D — C : ¢ analytic, ||¢|, < +oo}.

Next lemma, proven in [ |, gives some properties of these Banach spaces. We
use this lemma throughout the chapter without mentioning it.

Lemma 1.5.1. Let k > 0 and v,n € R. The following statements hold:
1. If v >, then X, C X, and [l¢l|, < (kcos Bo)" ™" [l -
2. If o € X, and ¢ € X)), then the product ¢ € X1y and [¢Cll,,.,, < llell, <], -

In the following lemma, we introduce a left-inverse of the operator £ in (I.5.1).
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Lemma 1.5.2. Consider the operator

G0 = ([ _ensas [ S Opisias, [ ei(S_U)wg(S)dS>T.

Figzn>1v>0and k > 1. Then, G: X)) x X, x X, = X1 x &, XX, isa
continuous linear operator and is a left-inverse of L.
Moreover, there exist a constant C > 0 such that

1. If g € &, then Gilg] € Xy and [|Gi¢]ll, 1 < Cliel,,-
2. If p € X, and j = 2,3, then G;[p] € X, and ||G;[o]||, < C o], -
Proof. Tt follows the same lines as the proof of Lemma 4.6 in | ] O

Let us then define the fixed point operator
F=GoR. (1.5.2)

A solution of Zj = F[Z] belonging to &, x A, x X, with n,v > 0 satisfies equa-
tion (1.2.39) and the asymptotic condition (I.2.41). Therefore, to prove the first part
of Theorem 1.2.7 and the asymptotic estimates in (1.2.44), we look for a fixed point
of the operator F in the Banach space

XX:ng.XgXXg,
3

3 3
endowed with the norm
el = llgrlls + lloalls + lgslls

Proposition 1.5.3. There exists kg > 0 such that for any k > kg, the fixed point
equation Z§ = F|Z§] has a solution Z§ € Xx. Moreover, there exists a constant
bs > 0, independent of k, such that

1Z511x < bs.

Remark 1.5.4. Notice that D} C D, when k > ko (see (1.2.42)). Then, for some
veR, if( € X, (defined for k) then ¢ € X, (defined for ko). This allows us to take
Kk as big as we need.

1.5.1.2 Proof of Proposition 1.5.3

We first state a technical lemma whose proof is postponed until Section 1.5.3.1. For
o0 > 0, we define the closed ball

B(o)={p X : |l <o}

Lemma 1.5.5. Let R be the operator defined in (1.2.40). Then, for o > 0 and for
k > 0 big enough, there exists a constant C > 0 such that, for any Zy € B(p),

R1[Zo][|lu < C, ||Rj[Z0]||% <C, Jj=2,3,

3
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and
[Ow R [Zo]l|5 < C, 10xR1[Zo][lz < C, 10y Ra[Zolllz < €,
1w R;[Zo]ll2 < C, 10xR;[Zo]ll, < C, 10y R;[Zoll, < C, j=2,3.
The next lemma gives properties of the operator F.

Lemma 1.5.6. Let F be the operator defined in (1.5.2). Then, for k > 0 big enough,
there exists a constant by > 0 independent of k such that

IFT0x < ba-

Moreover, for ¢ > 0 and k > 0 big enough, there exists a constant b5 > 0 indepen-
dent of k such that, for any Zy = (Wy, Xo, Yo)7, Z() = (WO,XO,YQ) € B(o) C X,

- 1 — ~ ~
I73020] = FilZolly < b5 (5o~ Fally + 1~ Koll + 1% - Tl )

= bs ~ .
| F;[Zo] — Fj[Zo]lla < ;HZo—Zollm Jj=2,3.

4
3

Proof. The estimate for F[0] is a direct consequence of Lemmas 1.5.2 and 1.5.5.
To estimate the Lipschitz constant, we first estimate each component R;[Z] —

R;j [Zo] separately for j = 1,2,3. By the mean value theorem we have
~ 1 ~ o~
Rj [Z()] - Rj [Zo] = |:/ DRJ [SZ() + (1 - S)Zg]ds (ZO - Z())
0

Then, for j = 2,3, we have

||R1[Z0]—R1[20}Hg HVVo—WOH8 sup |[|ow R[]l

% veB(o)
+||X0—Xo||4 sup [[OxRilp ]H7+||Yo—YoH4 sup Oy Rale]llz ,
3 peB(o) % pEB(0) s
IRj1Z0] = R;[Zo]ll s < [[Wo — Wolls SuI(’ 1Ow R[]Il _a
pEB
+HX0—X0H4 sup [|OxR;lp HIOHIYO—Yo!M sup [[OyR;¢]ll -
3 peB(p) % peB(o)

Applying Lemma 1.5.5, we obtain

IR1[Zo] — Ra[Zo]

11
3

1 N - -
<C <2\W0 — Wolls + || Xo — Xoll2 + [|Yo _YOH4> :
K 3 3 3

3

c = .
HRJ‘[ZO]_R[ZO]||4 ?”ZO_ZOHX7 j=2,3.

Finally, applying Lemma 1.5.2, we obtain the estimates in the lemma. O

Lemma I.5.6 shows that, by assuming x > 0 big enough, the operators F, and F3
have Lipschitz constant less than 1. However, this is not the case for F;. To overcome
this problem, we apply a Gauss-Seidel argument and define a new operator

_ ~ F1[Wo, FalZo), F3[Zo]]
]:[ZO] = f[(W07X071/E])] = fQ[ZO] 5
F3[Z]
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which has the same fixed points as F and turns out to be contractive in a suitable
ball.

End of the proof of Proposition 1.5.3. We first obtain an estimate for || F[0][x. No-
tice that

F[0] = F[0] + (F[0] = F[0]) = F[0] + (F1 [0, F[0], F3[0]] = F1[0],0,0)"

Then, by Lemma 1.5.6, (0, F2[0], F3[0))T € &« and

IF0)1 < IF(0]]l + [|F1[0, Fa[0], F3[0]] — F1[0]|

8
3
< |70l + CI72[0]][s + C{|F3[0]]s < C|[F[O]]] -

Thus, we can fix ¢ > 0 such that

IF0]l < &
Now, we prove that the operator F is contractive in B (o) C X«. By Lemma 1.5.6
and assuming x > 0 big enough, we have that for Zy, Zy € B(o),

_ o C N _ _
1F1[Z0] = F1[Z0]lls SEHWO = Wolls + [ F2[Z0] = FalZollls + [|F3[Z0] = F3[Zo]ll 4
Cc —~ Cc ~ C ~
< Wo = Wolls + =120 = Zollx < —1Z0 — Zol|,
K 3 K K
- o C _ ,
151 Z0] = Fj[Zo]ll 4 SEHZO—ZOIIX, for j = 2,3.

Then, there exists r9 > 0 such that for k > ko, the operator I B(p) — B(p) is well
defined and contractive. Therefore F has a fixed point Zj € B(o) C Xx. O

I.5.2 Asymptotic formula for the difference

The strategy to prove the second part of Theorem 1.2.7 is divided in three steps. In
Section 1.5.2.1 we characterize AZy = Z} — Zj as a solution of a linear homogeneous
equation. In Section 1.5.2.2, we prove that AZy is in fact the unique solution of
this linear equation in a suitable Banach space. Finally, in Section 1.5.2.3, we in-
troduce a Banach subspace of the previous one (with exponential weights) to obtain
exponentially small estimates for AZ.

1.5.2.1 A homogeneous linear equation for AZ,

By Theorem 1.2.7, the difference AZy(U) = Z§(U) — Z;(U) is well defined for U €
& (see (1.2.43)). Since Zj, Z; satisfy the same invariance equation (I1.2.39), their
difference AZ satisfies

OuAZy = AAZy + R(U)AZQ,

where

R(U) = /O " DyRISZY 4 (1 — $)Z3](U)ds, (1.5.3)
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and A and R are given in (1.2.37) and (I1.2.40), respectively. We denote by R;, Rs
and R3, the rows of the matrix R.

By the method of variation of parameters, there exists ¢ = (cy, €z, cy)T € C3 such
that

U
AZy(U) = AU <c+ / e‘ASR(S)AZO(S)dS> .
Uo
By Proposition 1.5.3, AZy = Z§ — Z§ satisfies limpy 7 —o0 AZy(U) = 0. Therefore

AZj satisfies
AZy = At + Z[AZy], (1.5.4)

where 7 is the linear operator
U
| mus).e()as

U
TAW) = |V [ e S(ma(s). p($))as | (15.5)

U
o / ¢S (Ry(S), (S))dS

—1iK
and AZ;,; is the function

AZwit (U) = (0,0,¢5e™"Y)T = (0,0,e"AYp(~in)e )T

1.5.2.2 Characterization of AZ, as a fixed point

Given v € R and s > 0, we define the norm
lell, = sup [U"(U)],
Ue&y
where the domain &, is given in (1.2.43), and we introduce the Banach space
YV, ={p:& — C : ¢ analytic, |||, < +oo}.

Note that ), satisfy analogous properties as the ones in Lemma 1.5.1. In this section,
we use this lemma without mentioning it.
We state a technical lemma, whose proof is postponed to Section 1.5.3.2.

Lemma 1.5.7. Let Z be the operator defined in (1.5.5). Then, for k > 0 big enough,
there exists a constant bg > 0 independent of k such that, for ¥ € Vs X V1 X V4,
3 3 3

1
Il < o (g 19l + 10l + el ).

b N
< 2 (IWills + [ alls + [ Ws]la),  j=2,3.
3 3 3

_[ﬂ'/Q

I1Z; (w111

4
3

These estimates characterize AZj as the unique solution of (I1.5.4) in Vs X Y1 X V.
3 3 3
Lemma 1.5.8. For k > 0 big enough, AZy is the unique solution of equation (1.5.4)

belonging to y% X y% X :))%. In particular,

AZy = T"[AZii).

n>0
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Proof. By Theorem 1.2.7, for x > 0 big enough, AZj is a solution of equation (I.5.4)
which satisfies AZy = Z — Zj € yg X y4 X y4 Then, it only remains to prove that

equation (I.5.4) has a unique solutlon in ys X y4 X y4 To this end, it is enough to
show that the operator Z is contractive Wlth a sultable norm in y% X y% X y% . Taking

¥, = ”‘I’ng + “||‘I’2H§ +H||‘I’3”§7

Lemma 1.5.7 implies
C
Izl < = 1%,

and, taking k big enough, the result is proven. O

1.5.2.3 Exponentially small estimates for AZ,

Once we have proved that AZj is the unique solution of (I1.5.4) in Vs X Y1 X Vi, we
3 3 3
use this equation to obtain exponentially small estimates for AZj.
For any v € R, we consider the norm

[el, = sup [U"eVo(U)|,
Ueéy
and the associated Banach space
Z,={¢:& — C : panalytic, [¢], < +oo}.
Moreover, for v1, 9,3 € R, we consider the product space

. 3
Zuyaws = Zuy X Zyy X Zyy,  with [[90]]1/1,1/2,1/3 = Zj:l [[‘Pj]]yj :

Next lemma, gives some properties of these Banach spaces. It follows the same
lines as Lemma 1.5.1.

Lemma 1.5.9. Let Kk > 0 and v,n € R. The following statements hold:
1. If v >mn, then 2, C 2, and [¢], < (rcos Bo)"" [¢],, -
2. If p € Z, and ( € Yy, then the product o( € Z,,, and [[goC]]H_n < [¥l, ||C||n
8. If p € Z, then eV € Y, and eV l,= [¢],

The next lemma analyzes how the operator Z acts on the space Z4 ;. Its proof
31 K
is postponed to Section 1.5.3.2.

Lemma 1.5.10. Let T be the operator defined in (1.5.5). For k > 0 big enough, there
erists a constant by > 0 independent of k such that, for ¥ € Za ,
310,

b7
[0 < br (W00, [B0VIL, < br (W00, [5011, < o7 ¥4 g
Moreover, there exists (:)(Fc) € C (depending on V), such that
Z3[U] — e VO(k) € Z;.

End of the proof of the second part of Theorem 1.2.7. Lemma 1.5.10 implies that op-
erator Z : Za oo — 24 o, is well defined and contractive. Indeed, taking x > 0 big
3’ I 37 I
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enough and ¥ € Z4 ,,
37 b

2] g0 = [B[2]]s + [L[2]], + [Z(2]],

(L5.6)
< Cml + 5 B + 51 < © 190 0.

Therefore, since AZiyix = (0,0, cye_iU)T € 2%7070, Lemma 1.5.8 and (1.5.6) imply that
AZy = (AW, AXy, AYy)T ZI [AZinid] € 21 00.
n>0

Lemma [.5.10 implies Z : Z1 45 — Z74, C 214, which allows to give better
3.0, .2, 3.0,
estimates for AZy. Indeed, we have that AZy — AZiniw = Z[AZy] € Z7 ,,, which
37 b

implies
AWy =14 [AZ()] S Zg, AXy= IQ[AZ()] € 2o,

Moreover, by the second statement in Lemma 1.5.10, there exists C:)(li) such that
AYy — cye” U — O(r)e U € Z,.

Calling © = ¢, + O(k) we have that AYy(U) — O~V € Z, and, therefore © =
limpy, 7o oo AYo(U)e™V, which is independent of x. Then, AZj is of the form

AZo(U) = eV ((0.0,0)" +x(U)), with x € Yz x Yo x 1.

Now we prove that, if there exists Uy € &, such that AZy(Up) # 0, then © # 0.
This implies AZy(U) # 0 for all U € &, since AZj is a solution of an homogeneous
linear differential equation. Therefore ¢, # 0. Indeed, ¢, = 0 would imply AZ;,;; = 0
and, by Lemma 1.5.8, one could conclude AZy = 0.

Thus, it only remains to prove that ¢, # 0 implies © # 0. By Lemma 1.5.8,

AZy — Ay = ZIn[AZinit]-

n>1

In addition, by the estimate (I.5.6), [Z3]4 < % if kK > 0 is big enough. Since AYjy;; =
3

cye*iU, we deduce that
[AY) — MYy € 3 = [AYiualy = 3 ley|
an 0 gl
and, by the definition of the norm [-],, for any U € &,
) 1
}erAYimt ‘ — |61UA}/0(U)’ 3 ey] -

Hence, using that eV AYy = © + x3(U) with x3 € Y1 and eV AYyy(U) = ¢y, we have
that for all U € &,

) ) 1 2
[T AV (U)] = [0 + x3(U)] = | AViwin(U)| = 5 ley| = S leyl

Finally, taking Im (U) — —oo, we obtain that [©] > 2 |¢,| > 0. O
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1.5.3 Proof of the technical lemmas

We devote this section to prove Lemma 1.5.5 of Section 1.5.3.1 and Lemmas 1.5.7 and
1.5.10 of Section 1.5.3.2.

1.5.3.1 Proof of Lemma 1.5.5
Fix o > 0 and take Zy = (Wy, X0, Yy)? € B(o) C Xx. By the definition (1.2.40) of R,

(L5.7)

R[Zo|(U) = ( f1(U, Zy) J?z(U, Zo) f’é(U’ Zo) > |

1+ g(U, Zy)" 1+9(U, Zo)" 14 g(U, Zy)

where

f2(U, Zo) = f2(U, Zy) — iXog(U, Z), [3(U, Zo) = f3(U, Zy) +iYog(U, Zo),

with g = Ow K, f = (—0uK,i0y K, —idxK)T and K is the Hamiltonian given in (I.2.35)
in terms of the function J (see (1.2.36)).
We first estimate J and its derivatives. For £ > 0 big enough, we have

C c _1
TOZ)| < e N+ TWZ 21 5> 5
Moreover, its derivatives satisfy
C C C
00T (U, Zo)| < —, [owI (U, Zo)| < —5, [0xIT (U, 2Zo)|, |0y T (U, Z)| < —,
U] U3 |U|5
and
C C C
Ovw I (U, Zo)| < —, lOux I (U, Zo)| < —, Ouy T (U, Zo)| £ —,
U3 U3 U3
C C C
05 T (U, Zo)| < —, Owx T (U, Zo)| < =, Owy T (U, Zo)| < 7=,
U|3 U U
C C C
0% T (U, Zo)| < —. Oxy I (U, Zy)| < —, 05T (U, Z)| < —-
U3 U3 U3
Using these estimates, we obtain the following bounds for g, fi, ]?2 and J?g,
3 1 0 C
9(0.20)| = |- 203wy 4 T o O
2 6Us (1+J)2| U]
2
1
‘fl(U7ZO)‘: Wol - 25 J - 2 Ov T 7| = Cll’
2Us U VI+IT(+VI+T) 6Us (1+7)z| |U]®
~ ; J
‘f2(U7ZO)‘ L 5 — i Xog(U, Z0)| < —,
6U 3 (1—|—j)2 ’ |3
~ 0 C
‘f?,(U, ZO)‘ == ! xJ 3 +lY()Q(U, Z()) < 7
6U% (1+.)8 ol
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Analogously, we obtain estimates for the derivatives,

2 C C
|8W9(Ua ZO)| < C |U|3 3 |6X9(U7 ZO)| ’g s lﬁyg(U, ZO)| < ‘U|g’
C c C
ow f1(U, Zo)| < —, |0x f1(U, Zo)| £ —, 9y f1(U, Zo)| < —,
U] 1UE E
- C - C C
whU.Z)| <5 |xhUZ)| <5 |RUZD)| < —
|U|3 U] U
- C C C
w20 < 5. |oxhw.2)| < oy (U, 20)| < —
|U|3 U’ u)*

Using these results we estimate the components of R in (1.5.7),

f1(- Zo) i (-, Zo)
R1Z =||— <C RMZ =||l———= <C
Rizlly = | 22 <o Rpall, = | ) <
3
for j = 2,3. Moreover,
owfi  f[idwg Oxfi  fidxg
OwR1LZ = — <C, |[9xR1[Z = — <C,
10w R [Zo]l5 H1+9 1492, = loxmalZollly = 1757 — T 07| <
wfr  f20wg Oxfr  fdxg
OwR2[Z = - <O, |l0xRa[Zo]ll, = -
10w Ra[Zo] |2 T+g Ut9l|. S 10x R2[Zo]]l5 119 (+g9)7
Analogously, we obtain the rest of the estimates,
10y R1[Zo] ||z, 10y Ra[Zo]lly » 10w Rs[Zo]ll2 , 10xRs[Zolll, , [|0y RE' [Zo]l, < C-
O]

1.5.3.2 Proof of Lemmas 1.5.7 and 1.5.10

Let us introduce, for k > 0 and « > 0 , the following linear operators,

Bo[W)(U) = eV / eoSy(8)ds, BW)(U) = / Su(S)ds. (L5.8)

The following lemma is proven in | ].

Lemma 1.5.11. Fizn > 1,v >0, a > 0 and k > 1. Then, the following operators
are well defined

BO:yn%yn—h Ba:yuﬁyy7 g:yuﬁyl/
and there exists a constant C' > 0 such that
1Bo[®]ll,—y < C ¥, 1Ba[¥]ll, <CI¥],, |B¥].<Cly],.

It is clear that Z,[¥] = Bo[(R1, ¥)], Zo[¥] = Bi[(Ry, ¥)] and Z3]¥] = B[(Rs3, ¥)]
(see (I.5.3) and (I.5.5)). Thus, we use this lemma to prove Lemmas 1.5.7 and 1.5.10.
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Proof of Lemma 1.5.7. By the definition of the operator R and Lemma 1.5.5, we have
that

|Ri1ll; <C, ”Rl,2H§ <C, HRL3Hg <C,

, (L5.9)
1Rjallz < C [Rj2ll, < C, |R;s3ll, <C, forj=2,3.

Then, by Lemma 1.5.11, for x big enough and ¥ € Vs x V1 X V4, we have that
3 3 3

IZ2(®)lls = |Bol(Rr, )]s < C[(Ry, ¥

< C([[Bually 101lls + 1Rl [[02fls + 1R 3]l [[s] 4
3 3 3 3 3

1
<C <2 [W1lls + [[W2fls + ||‘1’3||4> ,
K 3 3 3

which gives the first estimate of the lemma. Analogously, by Lemma 1.5.11,

1 Z2[W][ls = [1Br[(R2, W)][|s < C[[(R2, W4,

3

IZ5( )15 = IB[(Rs, V)]l 1< C (R, ¥,
and applying (1.5.9), for j = 2,3, we have
IR 0 < I Rjall_g [1lls + [ Rj2llg 192l 2 + 11 Rssllo 1954
< (1lls + 1+ 5] )

which gives the second and third estimates of the lemma. O

Proof of Lemma 1.5.10. Let us consider ¥ € Za ,, and define
37 b

o(U) = YV R(U)W(U),

in such a way that, by the definition of the operator B, in (1.5.8),

U
VT [W)(U) = eiU/ e ®(S)dS = Bi[®],

UL [W)(U) = Y / U e 2534(9)dS = Ba[®y], (1.5.10)
| U —100
UL [0 (U) = / By(5)dS.

—1iK

Since VW € Y1 x Yy x Vo, by the estimates in (I.5.9), we have that, for j = 2,3,
3

[Pl < 1Rl eV @[5 + > R
o p=23
19511, < 15l HeiU‘I’ng + > IRl €] < Cl¥]s g0
k=2,3

2 e ]ly < CT]a g0
(L5.11)
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Therefore, Lemma 1.5.11 and (1.5.10) imply
[T 9]z = [[Bi[@1]]z < C[@1lz < CTP]4 4,
[Z2[9]], = [|Ba[®2]lly < C'f| @2l < C[W]s o6

Now, we deal with operator Z3. Notice that, by the definition of the operator B,
in (I.5.8) and (1.5.10), we have that

—i00 U
VI [0)(U) = / <1>3(S)d5+/ P3(S)dS = —Bo[Ps](—ir) + Bo[®s](U).

Then, by Lemma 1.5.11 and using the estimates (I.5.11), we obtain
[Z5[¥]], < [Bo[®s](—ir)| + [ Bo[®s]llg < 2(|Bo[®s]llg

C C C
< — || By @ < —||P < — | .
< ol < sl < [0l
Finally, taking O(k) = —By[®3](—ix), we conclude

|[Z:910) - V8w | = I1Bol@slll, < C 1@slly < O 1]y g
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Part 11

Breakdown of homoclinic orbits
to L3






81

Abstract

The Restricted 3-Body Problem models the motion of a body of negligible mass
under the gravitational influence of two massive bodies called the primaries. If one
assumes that the primaries perform circular motions and that all three bodies are
coplanar, one has the Restricted Planar Circular 3-Body Problem (RPC3BP). In
rotating coordinates, it can be modeled by a two degrees of freedom Hamiltonian,
which has five critical points called the Lagrange points L1, ..., Ls.

The Lagrange point L3 is a saddle-center critical point which is collinear with the
primaries and beyond the largest of the two. In this part, we obtain an asymptotic
formula for the distance between the stable and unstable manifolds of Lg for small
values of the mass ratio 0 < u < 1. In particular we show that Ls cannot have (one
round) homoclinic orbits.

If the ratio between the masses of the primaries p is small, the hyperbolic eigenval-
ues of Lz are weaker, by a factor of order ,/j, than the elliptic ones. This rapidly rotat-
ing dynamics makes the distance between manifolds exponentially small with respect
to y/u. Thus, classical perturbative methods (i.e the Melnikov-Poincaré method) can
not be applied.

The obtention of this asymptotic formula relies on the results obtained in Part I
on the complex singularities of the homoclinic of a certain averaged equation and on
the associated inner equation.

In this part, we relate the solutions of the inner equation to the analytic continu-
ation of the parameterizations of the invariant manifolds of Lg via complex matching
techniques. We complete the proof of the asymptotic formula for their distance show-
ing that its dominant term is the one given by the analysis of the inner equation.
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Chapter II.1

Introduction

The Restricted Circular 3-Body Problem models the motion of a body of negligible
mass under the gravitational influence of two massive bodies, called the primaries,
which perform a circular motion. If one also assumes that the massless body moves
on the same plane as the primaries one has the Restricted Planar Circular 3-Body
Problem (RPC3BP).

Let us name the two primaries S (star) and P (planet) and normalize their masses
so that mg = 1 — p and mp = pu, with p € (O, %] Choosing a suitable rotating
coordinate system, the positions of the primaries can be fixed at ¢qs = (u,0) and
gp = (1 —1,0). Then, the position and momenta of the third body, (q,p) € R? x R?,
are governed by the Hamiltonian system associated to the Hamiltonian

Ny R AN ¢ S I
M =" q(—l 0)p - ol Ta—G-toy Y

Note that this Hamiltonian is autonomous. The conservation of h corresponds to the
preservation of the classical Jacobi constant.

For p > 0, it is a well known fact that (II.1.1) has five critical points, usually
called Lagrange points (see Figure II.1.1). On an inertial (non-rotating) system of
coordinates, the Lagrange points correspond to periodic dynamics with the same
period as the two primaries, i.e on a 1:1 mean motion resonance. The three collinear
Lagrange points, L1, Lo and L3, are of center-saddle type whereas, for small u, the
triangular ones, L4 and Ls, are of center-center type (see, for instance, | D).

Due to its interest in astrodynamics, a lot of attention has been paid to the study of
the invariant manifolds associated to the points L1 and Lo (see [ ; ;

). The dynamics around the points Ly and Ls has also been heavily studied
since, due to its stability, it is common to find objects orbiting around these points
(for instance the Trojan and Greek Asteroids associated to the pair Sun-Jupiter, see
[ ; ; ]). Since the point L3 is located “at the other side” of the
massive primary, it has received somewhat less attention. However, the associated
invariant manifolds (more precisely its center-stable and center-unstable invariant
manifolds) play an important role in the dynamics of the RPC3BP since they act
as boundaries of effective stability of the stability domains around Lj and Ls (see
[ ; ]). The invariant manifolds of L3 play also a fundamental role in
creating transfer orbits from the small primary to Lz in the RPC3BP (see | ;

]) or between primaries in the Bicircular 4-Body Problem (see | ; D-

Moreover, being far from collision, the dynamics close to the Lagrange point Lg
and its invariant manifolds for small y are rather similar to that of other mean motion
resonances which play an important role in creating instabilities in the Solar system,
see | ]. On the contrary, since the points L; and Ly are close to collision for
small p, the analysis of the associated dynamics is quite different.
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FiGURE II.1.1: Projection onto the g-plane of the Lagrange points
(red) and the unstable (blue) and stable (green) manifolds of L, for
= 0.0028.

Over the past years, one of the main focus of study of the dynamics “close” to
L3 and its invariant manifolds has been the so called “horseshoe-shaped orbits”, first
considered in [ |, which are quasi-periodic orbits that encompass the critical
points L4, L3 and Ls. The interest on these types of orbits arise when modeling
the motion of co-orbital satellites, the most famous being Saturn’s satellites Janus
and Epimetheus, and near Earth asteroids. Recently, in | |, the authors have
proved the existence of 2-dimensional elliptic invariant tori on which the trajectories
mimic the motions followed by Janus and Epimetheus (see also | ; ;

; ; ; ; ; -

Rather than looking at stable motions “close to” Lg as | ], the goal of
this work is rather different: its objective is to prove the breakdown of homoclinic
connections to L3. Indeed, since L3 is a center-saddle critical point, it possesses 1-
dimensional unstable and stable manifolds, which we denote by W"(u) and W*(u),
respectively, and a 2-dimensional center manifold. Theorem II.1.1 below gives an
asymptotic formula for the distance between the stable and unstable invariant mani-
folds (at a suitable transverse section) for mass ratio g > 0 small enough.

II.1.1 The distance between the invariant manifolds of
L

The one dimensional unstable and stable invariant manifolds of Lg have two branches
each (see Figure I1.1.1). One pair circumvents Ls, which we denote by W™ (u) and
WS*(u), and the other, W™~ (u) and W™~ (u), circumvents Ly. Since the Hamilto-
nian system associated to the Hamiltonian h is reversible with respect to the involu-
tion

(g, p;t) = (q1, —q2, —p1,P2; — 1),

the 4+ branches of the invariant manifolds are symmetric with respect to the —
branches. Thus, we restrict our analysis to the positive branches.
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To measure the distance between WY ST (1), we consider the symplectic polar
change of coordinates

cos 0 cos G [ sinf
a=r (sin 9> ’ p==R <sin9> o (— cos 6> ’ (11.1.2)

where R is the radial linear momentum and G is the angular momentum.
We consider the 3-dimensional section

EZ{(n@,R,G)eRxTxR? : r>1,0:g}

and denote by (r}, 3, R}, G}) and (13, 5, R}, G3) the first crossing of the invariant
manifolds with this section.
The next theorem measures the distance between these points for 0 < p < 1.

Theorem I1.1.1. There exists pg > 0 such that, for p € (0, up),

38

_ 1
10 B2 G2 — (0%, B2, G2 | = Vaphe [\@\ Lo ()] |
log 11|

where:

e The constant A > 0 is the real-valued integral

V2-1
2 2 x
A= dz ~ 0.177744. IL1.
/0 1—x\/3($+1)(1—4$—4x2) v~ 017 (I.1.3)

e The constant © € C s the Stokes constant associated to the inner equation
analyzed in Theorem 1.2.7 in Part I and in Theorem I11.3.13 below.

Remark I1.1.2. We can prove the same result for any section
2(0.) = {(r,0,R,G) ERxTxR* : r>1,0=0,},

with 0, € (0,6p) and 0y = arccos (3 — V2) (the value of po depends on how close to
the endpoints of the interval 6, is). The section 8 = 0y is close to the “turning point”
of the invariant manifolds (see Figure 11.1.1).

The constant A in (I1.1.3) is derived from the values of the complex singularities of
the separatrix of certain integrable averaged system studied in detail in Theorem 1.2.2
in Part I. The results obtained about this separatrix are summarized in Theorem 11.3.1
below.

The origin of the constant © appearing in Theorem II.1.1 is explained in Theo-
rem [.2.7, which analyzes the so-called inner equation. Moreover, in Remark 1.2.8 it is
seen, by a numerical computation, that |©| ~ 1.63. We expect that one should be able
to prove that || # 0 by means of rigorous computer computations (see | ).
Note that |©] # 0 implies that there are not primary (i.e. one round) homoclinic
orbits to Ls.

A fundamental problem in dynamical systems is to prove whether a given model
has chaotic dynamics (for instance a Smale horseshoe). For many physically relevant
models this is usually remarkably difficult. This is the case of many Celestial Me-
chanics models, where most of the known chaotic motions have been found in nearly
integrable regimes where there is an unperturbed problem which already presents
some form of “hyperbolicity”. This is the case in the vicinity of collision orbits (see
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for example | ; ; ; ]) or close to parabolic orbits (which allows
to construct chaotic/oscillatory motions), see [ : : : : :

; ]. There are also several results in regimes far from integrable
which rely on computer assisted proofs | ; ; ; ]. The problem
tackled in this work is radically different. Indeed, if one takes the limit g — 0 in
(IT.1.1) one obtains the classical integrable Kepler problem in the elliptic regime,
where no hyperbolicity is present. Instead, the (weak) hyperbolicity is created by
the O(u) perturbation, which can be captured considering an integrable averaged
Hamiltonian along the 1 : 1 mean motion resonance’.

One of the classical methods to construct chaotic dynamics is the Smale-Birkhoff
homoclinic theorem by proving the existence of transverse homoclinic orbits to invari-
ant objects, most commonly, periodic orbits. Certainly the breakdown of homoclinic
orbits to the critical point L3 given by Theorem II.1.1 does not lead to the exis-
tence of chaotic orbits. However, one should expect that Theorem II.1.1 implies that
there exist Lyapunov periodic orbits exponentially close to L3 whose stable and un-
stable invariant manifolds intersect transversally. This would create chaotic motions
“exponentially close” to Lz and its invariant manifolds (see Part III).

As already mentioned, Theorem II.1.1 rules out the existence of primary homo-
clinic connections to L3 in the RPC3BP for 0 < p < 1. However, it does not prevent
the existence of multiround homoclinic orbits, that is homoclinic orbits which pass
close to L3 multiple times. It has been conjectured (see for instance [ |, where
the authors analyze this problem numerically) that multi-round homoclinic connec-
tions to L3 should exist for a sequence of values {ji;} o satisfying i, — 0 as k — oo.

A first step towards proving Arnold diffusion along the 1:1 mean motion
resonance in the 3-Body Problem? Consider the 3-Body Problem in the plan-
etary regime, that is one massive body (the Sun) and two small bodies (the planets)
performing approximate ellipses (including the “Restricted limit” when one of plan-
ets has mass zero). A fundamental problem is to assert whether such configuration
is stable (i.e. is the Solar system stable?). Thanks to Arnold-Herman-Féjoz KAM
Theorem, many of such configurations are stable, see [ ; ]. However, it is
widely expected that there should be strong instabilities created by Arnold diffusion
mechanisms (as conjectured by Arnold in | ]). In particular, it is widely believed
that one of the main sources of such instabilities dynamics are the mean motion res-
onances, where the period of the two planets is resonant (i.e. rationally dependent)
[ )

The RPC3BP has too low dimension (2 degrees of freedom) to possess Arnold dif-
fusion. However, since it can be seen as a first order for higher dimensional models,
the analysis performed in this work can be seen as a humble first step towards con-
structing Arnold diffusion in the 1 : 1 mean motion resonance. In this resonance, the
RPC3BP has a normally hyperbolic invariant manifold given by the center manifold
of the Lagrange point Ls. This normally hyperbolic invariant manifold is foliated
by the classical Lyapunov periodic orbits. One should expect that the techniques
developed in the present work would allow to prove that the invariant manifolds of
these periodic orbits intersect transversally within the corresponding energy level of
(IT.1.1). Still, this is a much harder problem than the one considered in this work
and the technicalities involved would be considerable.

!The 1 : 1 averaged Hamiltonian has been also studied to obtain “good” approximations for the
global dynamics in the 1 : 1 resonant zone, see for example | ; ] and the references therein.
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This transversality would not lead to Arnold diffusion due to the low dimension
of the RPC3BP. However, if one considers either the Restricted Spatial Circular 3-
Body Problem with small g > 0 which has three degrees of freedom, the Restricted
Planar Elliptic 3-Body Problem with small g > 0 and eccentricity of the primaries
eo > 0, which has two and a half degrees of freedom, or the “full” planar 3-Body
Problem (i.e. all three masses positive, two small) which has three degrees of freedom
(after the symplectic reduction by the classical first integrals) one should be able to
construct orbits with a drastic change in angular momentum (or inclination in the
spatial setting).

In the Restricted Planar Elliptic 3-Body Problem the change of angular momen-
tum would imply the transition of the zero mass body orbit from a close to circular
ellipse to a more eccentric one. In the full 3BP, due to total angular momentum
conservation, the angular momentum would be transferred from one body to the
other changing both osculating ellipses. This behavior would be analogous to that
of | | for the 3 : 1 and 1 : 7 resonances. In that paper, the transversality
between the invariant manifolds of the normally hyperbolic invariant manifold was
checked numerically for the realistic Sun-Jupiter mass ratio g = 1073. Arnold diffu-
sion instabilities have been analyzed numerically for the Restricted Spatial Circular
3-Body Problem in | .

II.1.2 The strategy to prove Theorem II1.1.1

The main difficulty in proving Theorem II.1.1 is that the distance between the stable
and unstable manifolds of L3 is exponentially small with respect to \/ (this is also
usually known as a beyond all orders phenomenon). This implies that the classical
Melnikov Method | ] to detect the breakdown of homoclinics cannot be applied.

To prove Theorem II.1.1, we follow the strategy of exponentially small splitting
of separatrices (already outlined in Part I) which goes back to the seminal work
by Lazutkin | ; ]. See Chapter L1.1 for a list of references on the recent
developments in the field of exponentially small splitting of separatrices. In particular,
we follow similar strategies of those in | ; .

In the present work the first order of the difference between manifolds is not given
by the Melnikov function. Instead, we must derive and analyze an inner equation
which provides the dominant term of this distance. As a consequence, we need to
“match” (i.e. compare) certain solutions of the inner equation with the parameteri-
zations of the perturbed invariant manifolds.

The first part of the proof, that was completed in Part I, dealt with the following
steps:

A. We perform a change of coordinates to capture the slow-fast dynamics of the
system. The first order of the new Hamiltonian has a saddle point with an
homoclinic connection (also known as separatrix) and a fast harmonic oscillator.

B. We study the analytical continuation of the time-parametrization of the separa-
trix of this first order. In particular, we obtain its maximal strip of analyticity
and the singularities at the boundary of this strip.

C. We derive the inner equation.

D. We study two special solutions which will be “good approximation” of the per-
turbed invariant manifolds near the singularities of the unperturbed separatrix
(see Step F below).
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The remaining steps necessary to complete the proof of Theorem II.1.1 are the
following:

E We prove the existence of the analytic continuation of the parametrizations of
the invariant manifolds of Lz, W™ (§) and W™ (4), in an appropriate complex
domain called boomerang domain. This domain contains a segment of the real
line and intersects a sufficiently small neighborhood of the singularities of the
unperturbed separatrix.

F. By using complex matching techniques, we show that, close to the singularities
of the unperturbed separatrix, the solutions of the inner equation obtained in
Step D are “good approximations” of the parameterizations of the perturbed
invariant manifolds obtained in Step E.

G. We obtain an asymptotic formula for the difference between the perturbed in-
variant manifolds by proving that the dominant term comes from the difference
between the solutions of the inner equation.

The structure of this part goes as follows. In Chapter I1.2 we perform the change
of coordinates introduced in Step A and state Theorem 11.2.2, which is a reformulation
of Theorem II.1.1 in this new set of variables. Then, in Chapter 1.3, we state the
results concerning Steps B, C and D above (which are proven in Part I) and we carry
out Steps E, F and G. These steps lead to the proof of Theorem 11.2.2. Chapters 11.4
and I1.5 are devoted to proving the results in Chapter I1.3 which concern Steps E and
F.
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Chapter I1.2

A singular formulation of the
problem

The Lagrange point L3 is a centre-saddle equilibrium point of the Hamiltonian A in
(I1.1.1) whose eigenvalues, as pu — 0, satisfy

Spec = {+ tiw(p)}, with (k) = /% + Ow)
pec = (/i () Hiw()} . wit {w(u)=1+;u+0(,ﬂ>.

The center and saddle eigenvalues are found at different time-scales. Moreover,
when p = 0, the unstable and stable manifolds of Ls “collapse” to a circle of critical
points. Applying a suitable singular change of coordinates, the Hamiltonian A can
be written as a perturbation of a pendulum-like Hamiltonian weakly coupled with a
fast oscillator. The construction of this change of variables is presented in detail in
Section 1.2.1. In this chapter, we summarize the most important properties of this
set of coordinates.

The Hamiltonian h expressed in the classical (rotating) Poincaré coordinates,
dpoi : (A, L,n, &) — (q,p), defines a Hamiltonian system with respect to the symplectic
form dA A dL + ¢ dn A d¢ and the Hamiltonian

HPo = gPo 4 Tl (IL.2.1)
with

1 .
— —L+n¢ and  H{® = hyo¢poi (I1.2.2)

Moreover, the critical point L3 satisfies
A=0, (L;n,&) = (1,0,0) + O(p)

and the linearization of the vector field at this point has, at first order, an uncoupled
nilpotent and center blocks,

0 -3 0 0
0 0 0 0
0 0 i o|TOW:
0 0 0 —i

Since ¢po; is an implicit change of coordinates, there is no explicit expression for
HT°l. However, it is possible to obtain series expansion in powers of (L — 1,7, ), (see
Lemma I.4.1 and also Appendix II.A).
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To capture the slow-fast dynamics of the system, renaming
0= pi,
we perform the singular symplectic scaling
dsc : (N Az, y) — (N, Lyn, &), L=1+6A, n=dzx, £=90y (I1.2.3)

and the time reparametrization ¢t = 6 ~27. Defining the potential

1
V2 +2cos N

the Hamiltonian system associated to H'°!, expressed in scaled coordinates, defines
a Hamiltonian system with respect to the symplectic form dA A dA +idx A dy and the
Hamiltonian

V(\) = H°(X,1,0,0;0) =1 — cos A — (11.2.4)

H = Hy + Hose + Hi, (I1.2.5)

where

3 zy
HP()‘7A) = _7A2 + V()‘)7 Hosc(x7y;5) = ?7 (1126)
1
Hi(\ A, z,y;8) = HUO(\ 1+ 82A, 6, 5y; 6%) — VI(A) + il (62A) (I1.2.7)
and
Fps) = (o — (14 2) ) + 24+ 22— 0(¥) (1125)
pZ = 2(1—|—Z)2 z B 22 = z ). WL

Therefore, we can define the “new” first order
Ho = Hp + Hose. (1I1.2.9)

From now on, we refer to Hy as the unperturbed Hamiltonian and we identify H; as
the perturbation.

The next proposition, proven in Section [.2.1 in Theorem 1.2.1, gives some prop-
erties of the Hamiltonian H.

Proposition I1.2.1. The Hamiltonian H, away from collision with the primaries, is
real-analytic in the sense of H(\, A, z,y;0) = H(\, A, y,z;0).
Moreover, for § > 0 small enough,

e The critical point L expressed in coordinates (A, A, x,y) is given by
£(8) = (0,6%L4(0),0°L4(8), 6°L,(9)) (I1.2.10)
with |£A(0)], |£2(5)], |£4(9)| < C, for some constant C > 0 independent of §.

e The point £(9) is a saddle-center equilibrium point and its linearization is

0 -3 0 0
7
-z 0 0 O
8 ;
© o 4 o |tO0
0 0 0 -4
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A

FiGURE I1.2.1: Phase portrait of the system given by Hamiltonian
H,(A,A) on (I1.2.6). On blue the two separatrices.

Therefore, it possesses a one-dimensional unstable and stable manifolds, W"(4)

and W5(96).

The unperturbed system given by H in (I1.2.9) has two homoclinic connections
in the (X, A)-plane associated to the saddle point (0,0) and described by the energy
level Hy(A, A) = —1 (see Figure 11.2.1). We define

1
Ao = arccos (2 - \/5) , (I1.2.11)

which satisfies H}, (Ao, 0) = —% so that, for the unperturbed system, Ag is the “turning
point” in the (A, A) variables. We will see that, in our regime, § ~ X\ and thus the
value of 0y introduced in Remark II.1.2 is indeed close to the “turning point” of the
invariant manifolds (see Figure I1.1.1).

We rewrite Theorem II.1.1, in fact the more general result in Remark I1.1.2, in
the set of coordinates (A, A, z,y). For A\, € (0,)\), we consider the 3-dimensional
section

SOA) = {0\ A a,y) €RPXC? - A=A, A>0, 2 =7},

which is transverse to the flow of H, and we define the first crossings of the invariant
manifolds W%5(9) with this section as (A, AY, 2, y¥) and (A, AS, 25, 45).

Theorem I1.2.2. Fiz an interval [Ai, X2] C (0,Xg) with Ao as given in (I1.2.11).
Then, there exists o > 0 and by > 0 such that, for 6 € (0,d0) and M. € [\, A2}, the
first crossings are analytic with respect to \* and

A <bo, Sl gl <b0d’,  o=us. (I1.2.12)

Moreover,

| =yt -yt = V2she |jolr o ()],
|log 4
AT — AS| = O(55 e,

where A and © are the constants introduced in Theorem I1.1.1.
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1I1.2.1 Proof of Theorem I1.1.1

To prove Theorem II.1.1 (and Remark II.1.2) from Theorem I1.2.2 we need to “undo”
the changes of coordinates ¢py; and ¢ and adjust the section from A = constant to
f = constant.

First, we consider the change ¢s. given by (A, L,n,&) = (A1 + §2A, 6z, 6y),
(see (I1.2.3)). For A € [A1, A2] we define

L°(A\y;0) = 1+ 62A°, n°(Ae; 6) = 622, (N 0) =02, for o =u,s.
(I1.2.13)

Then, by Theorem I1.2.2, one has

AN 8)] = 18 (Ms ) — 1P (A 8)| = V20352 [|@| + 0 <O;5ﬂ C (11.2.14)
A& 6) = An(\s; 0).

Next, we study the change ¢py;. In the following result, we give a series expression
of the polar coordinates with respect to the Poincaré elements. Its proof is a direct
consequence of the definition of the Poincaré variables (see, for instance, Section
1.4.1).

Lemma I1.2.3. Fiz 0 > 0. Then, for |(L—1,n,)] < 1 and Im \| < g, the polar
coordinates (r,0, R, G) introduced in (11.1.2) satisfy

—iA et

r=142(L—-1)— —&+0O(L 1,7775)2,

oL
6 = A+i\/§e—i n—iv2e¢ + O(L —1,1,6)?,
_ Z'e—i)\ z)\ ) B B

Since in Theorem I1.2.2 the distance is measured in the section A\ = A, whereas
the Theorem II.1.1, and more generally Remark II.1.2, measures it in the section
0 = 6%, we must “translate” the estimates in (I1.2.14) to the new section. By Lemma
11.2.3, let gy be the function such that 6 = X + gp(A, L,n,&). Then, for o = u,s, we
consider

FO(X,0,0) =0 — X+ go (A, L°(X;6),1m°(X;6),€°(A;6)) -

Applying the Implicit Function Theorem, Lemma I1.2.3 and that, by (I1.2.13), L°(X; 0) =
1 and n°(A;0) = £°(\; 0) = 0, then there exist function /\°(9 9) such that FO()\O(@, 9),0,0) =
0 and

2o(0:6) =0 — iv/2e~ 70 (0, 6) + V2 €0 (6; 6)

. . 2 (I1.2.15)
+0 (L°(6:0) - 1,7°(6:0), €(6:0))

with 7°(0;8) = n°(A°(6;6);8), £2(0;8) = £°(X°(0;0); 6) and L°(8;6) = L(X°(6;6); 0).
Notice that, by (I1.2.12) (plus Cauchy estimates for their derivatives) and (I1.2.13)

Y

2°(6:0) = 6+ O(6Y).
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Thus, for any [61, 6] C (0, Ag) and § small enough, there exists [A1, A2] C (0, Ag) such
that, for 6 € [61, 03] one has \**(6;0) € [A1, A2]. In addition,
L°(0;6) = L°(0;0) + O(6%) = 1+ O(5?),
7°(0;6) = n°(6;6) + O(6%) = O(6Y), (I1.2.16)
£(0:0) =£7(0:0) + 0(6%) = 0(8").
Then, since A™* > 0, by (I1.2.13) one has that L™(6; 8) > 1 for § € [0}, 63]. Moreover,
by Lemma I1.2.3 and taking § small enough, one has r*5(6) — 1 > 0.

The difference between the invariant manifolds in a section of fixed 6 € [0y, 0] is
given by

~

An(0;0) =1"(0;0) —17°(6;0), AL(0;0) =£"(6;0) — £(6;0).

Then, by (I1.2.15) and (I1.2.16), one has that

AN(0;8) = \"(6;5) — X3(0;6), AL(0;8) = L"(6;8) — L3(6;6),

AX(0:6) = —iV2e T A(0:8) + V2P AE(D:6) + O (S2AL(6:9), 0*Aij(6:.8), 6 AE(0:9) )
Moreover, by the mean value theorem, (I1.2.14) and (I1.2.16),

AL(8;6) = AL(\'(6;6); 6) + LY (X"(6;0); ) — L*(X*(6; 6); 6)
— 05 e ) + 520 (AX(@; 5)) .
Analogously,
NT(0: 8) = An(X(6;6);6) + 50 (AX(9:9))
AE(6;6) = An(Ni(6;0);0) + 640 (AX(@; 5)) :

Therefore, using (11.2.14), one can conclude that

> . o 4 _A ~n. 6 4 _A 1
ISYCD)] —(’)<(536 52), |AR(0;0)] = V263e 52 [\@HO <|10g5|>},
AL@G;0) =0 (5Fe5),  AL0:8) = A7(6;9).

Once we have adjusted the transverse section, it only remains to apply Lemma I1.2.3
to translate these differences to polar coordinates. That is,

U — 15 = —v/2cos § Re A7j(6; 6) — V2sin 8 Im A7(6; 5) + O(
R" — R = —\/2cos § Im A7j(0; 6) + V2 sin § Re A7j(6;5) + O(5*
GU— G5 =055 e ),
which implies

10

|6, RY, G¥) — (5, B*, G®) | =V2 | A7(0: 8)| + O(6% e 3)

—yasse# oo ).
|log 4
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To conclude the proof of Theorem II.1.1, it is enough to recall that § = ,u%.
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Chapter I1.3

Proof of Theorem 11.2.2

In this chpater, we present the main steps necessary to prove Theorem I1.2.2 (see
the list in Section I1.1.2) and complete its proof. In Section I1.3.1 we summarize the
results concerning the analysis of the separatrix of the unperturbed Hamiltonian H
(see (I1.2.6)) done in Section 1.2.2 (Step B). In Section I1.3.2, we prove the existence of
parametrizations of the perturbed invariant manifolds in suitable complexs domains
(Step E). In Section I1.3.3, we study the difference between the perturbed manifolds
near the singularities of the perturbed separatrix. In particular, in Section I1.3.3.1,
we summarize the results concerning the derivation (Step C) and analysis (Step D)
of the inner equation obtained in Sections 1.2.3 and 1.2.4, in Section II1.3.3.2, we
compare certain solutions of the inner equation with the parametrizations of the
perturbed manifolds by means of complex matching techniques (Step F). Finally, in
Section I1.3.4, we combine all the previous results to obtain the dominant term of the
difference between the invariant manifolds and prove Theorem I1.2.2 (Step G).

I1.3.1 Analytical continuation of the unperturbed sepa-
ratrix

The unperturbed Hamiltonian
HO()‘a Av x, y) = Hp()‘v A) + HOSC(xa y)

(see (I1.2.9)) possesses a saddle with two separatrices in the (A, A)-plane (see Fig-
ure 11.2.1). Let us consider the real-analytic time parametrization of the separatrix
with A € (0,7),

c:R—=-TxR

Es 0(t) = (D), An(®)), (L.3.1)

with initial condition /(0) = (Ao, 0) where Ao = arccos (3 — V2) € (3, 7).
The following result (which encompass Theorem 1.2.2, Proposition 1.2.3 and Corol-

lary 1.2.4) gives the properties of the analytic extension of o(t) to the domain
5% ={t € C : [Imt| < tan fRet + A} U

(11.3.2)
{teC : |Imt|] < —tanSRet + A},
with A as given in (II.1.3) (see Figure I1.3.1).

Theorem 11.3.1. The real-analytic time parametrization o defined in (11.3.1) satis-

fies:

o There exists 0 < By < § such that o(t) extends analytically to 114 g, .
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e,

FIGURE II.3.1: Representation of the domain TI%% in (I1.3.2).

Ret

e o(t) has only two singularities on OHeAfftﬁo at t = +iA.

e There exists v > 0 such that, for t € C with |t —iA| < v and arg (t —iA) €
(_37”7 %);

M(t) = 7+ 3an(t —iA)5 + Ot — iA)3,

2 1
An(t) = =S ———— 1 Ot — iA)3,
3 (t—iA)s
with ay € C such that 0z§r = %
An analogous result holds for |t + iA| < v, arg (t+iA) € (=%, %) and a_ = 7.

o Ap(t) has only one zero in 1157, at t = 0.

I1.3.2 The perturbed invariant manifolds

In this section, following the approach described in [ : : ],
we study the analytic continuation of the parametrizations of the perturbed one-
dimensional stable and unstable manifolds, W"(4) and W*(9).

Since we measure the distance between the invariant manifolds in the section
A = A, (see Theorem 11.2.2), we parameterize them as graphs with respect to A (when-
ever is possible) or, more conveniently, with respect to the independent variable u
defined by A = A\p(u).

To define these suitable parameterizations we first translate the equilibrium point
£(9) to 0 by the change of coordinates

beq : (N Az, y) = (N A z,y) + £(9). (1I1.3.3)

Second, we consider the symplectic change of coordinates

w

oo (1 0,2,9) = A ,) A= Ma(w)y A = Anlw) = g

(11.3.4)

We refer to (u,w,x,y) as the separatriz coordinates.

Let us remark that ¢gep is not defined for u = 0 since Ap(0) = 0 (see Theo-
rem I1.3.1). We deal with this fact later when considering the domain of definition
for w.
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Imu

Reu

FI1GURE II.3.2: The boomerang domain D, 4 defined in (IL.3.7).
After these changes of variables, we look for the perturbed invariant manifolds as
a graph with respect to u. In other words, we look for functions
T
2°(u) = (w®(u), 2% (u),y(uw))", for o =u,s,
such that the invariant manifolds given in Proposition I1.2.1 can be expressed as

w®(u)

WO (5) = {()\h(u),Ah(u) i (u),ﬁ(u),y%u)) + 2(5)}, for o = u,s, (IL.3.5)

with u belonging to an appropriate domain contained in H‘jftﬁo (see (I1.3.2)). The
graphs z" and z° must satisfy the asymptotic conditions

(8 ) - (o) -0 s

Remark I1.3.2. Since the Hamiltonian H is real-analytic in the sense of HN\, Az, y;0) =
H(\,A,y,2;0) (see Proposition I1.2.1), then we say that z(u) = (w(u),z(u),y(u))’
1s real-analytic if it satisfies

w@) =wu),  z@)=y),  y@ =)

The classical way to study exponentially small splitting of separatrices, in this
setting, is to look for solutions z" and 2° in a certain complex common domain
containing a segment of the real line and intersecting a O(42) neighborhood of the
singularities u = £iA of the separatrix.

Recall that the invariant manifolds can not be expressed as a graph in a neigh-
borhood of © = 0. To overcome this technical problem, we find solutions z" and z°
defined in a complex domain, which we call boomerang domain due to its shape (see
Figure 11.3.2). Namely,

D.g={ueC : |Imu|<A- k0% + tan SyReu,
Tmu| < A — k§? — tan ByReu, (I1.3.7)
Imu| > dA — tan 1Reu},

where x > 0 is such that A — k62 > 0, By is the constant given in Theorem II.3.1 and
B1 € [Bo,5) and d € (i, %) are independent of §.
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Theorem 11.3.3. Fix a constant d € (i, %) Then, there exists g, ko > 0 such that,
for 6 € (0,00), K > Ko, the graph parameterizations z" and z° introduced in (11.3.5)
can be extended real-analytically to the domain Dy 4.

Moreover, there exists a real constant by > 0 independent of 6 and k such that,

forw € D, q we have that

by 6
u2 + A2|5

b162 by6*
| < 5
u? + A2 2 4 A2)3

b3
ly° (u)] < ——

|w® (u) < — .
u2 + A2|3

|2°(u)| <

Notice that the asymptotic conditions (I1.3.6) do not have any meaning in the
domain D, 4 since it is bounded. Therefore, to prove the existence of z" and 2° in
D,; 4 one has to start with different domains where these asymptotic conditions make
sense and then find a way to extend them real-analytically to D, 4. We describe the
details of these process in the following Sections 11.3.2.1 and 11.3.2.2.

11.3.2.1 Analytic extension of the stable and unstable manifolds

The Hamiltonian H written in separatrix coordinates (see (II.3.3) and (II.3.4)) be-
comes

H*P — P | [, (IL3.8)
with
sep Yy sep sep
HO =w + ?7 Hl =Ho (¢eq o (bsep) - HO . (1139)

Introducing the notation z = (w,z,y)” and defining

. 0
i

00
AP =01 0, (11.3.10)
00 -1

the equations associated to the Hamiltonian H*°P can be written as

=14 ¢*P(u,z2),
{ 5 = Ay 4 fn(u, 2) (IL3.11)

where ¢°P = 9, H{** and 5P = (-9, H*?,i0,H*", —i@foep)T. Consequently, the
parameterizations z"(u) and z%(u) given in (I1.3.5) satisfy the invariance equation

auzo _ Asepzo 4 RSep [20]7 for ¢ = u, s, (11312)

with
_ P p) — 7P (u, ) AP

R¥*Ple] (u) T+ g (u, )

(I1.3.13)

Remark I1.3.4. Note that one can use this invariance equation whenever
1+ g*P(u, ) = 1+ 0w HY™ (u, ) # 0

This condition is satisfied in the different domains that are considered in this section
and in the forthcoming ones and it is checked in Appendiz I1I.A (see (11.A.16) and
(I1.A.32)). This fact is also used later in Section II.3.3.
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Imu Imu

\ /
\ {A — K62 Z'A/
my o oz

U1

1A Tl e
<> o \6 i) 2 > s Reu
/ A \
ur -~

u, 00 S,00
DP Dﬂl

1

Ficure I1.3.3: The outer domains D’%" and D:‘g’s defined
in (I1.3.15)

The first step is to look for solutions of this equation in the domains
Dy ={ueC : Reu< —p1}, D5 ={ueC : Reu>pi}, (I1.3.14)

for some p; > 0, which allows us to take into account the asymptotic conditions
(11.3.6).

Proposition I1.3.5. Fiz p1 > 0. Then, there exists 69 > 0 such that, for 6 € (0,d),
the equation (11.3.12) has a unique real-analytic solution z° = (w®,x°,y°*)T in Dy
(for o = u,s) satisfying the corresponding asymptotic condition (I1.3.6).

Moreover, there exists by > 0 independent of § such that, for u € D3>,

]wo(u)e*2p“| < by, |z°(u)e | < bed3, ly®(u)e™""| < byd3.

wz’thuz”% foro=u (]/I’LdVI*\/% for o =s.

This proposition is proved in Section 11.4.1.

To extend analytically the invariant manifolds to reach the boomerang domain
D, 4 we have to face the problem that these parameterizations become undefined at
u = 0. To overcome it, first we extend the solutions z" and z°® of Proposition I11.3.5
to the outer domains (see Figure 11.3.3)

DYt ={ueC : [Imul < A- k62 — tan foRe u,
Imu| > d1 A+ tan f1Reu, Reu > —pa}, (11.3.15)
D" = {fueC: -ue DRt

where d; € (i, %) and ps > p; are fixed independent of §, and x > 0 is such that
A— k6% >0.

Proposition I1.3.6. Consider the functions 2", z° and the constant p1 > 0 obtained
i Proposition I1.3.5. Fix constants pa > p1 and di € (%,%) Then, there exist
o, k1 > 0 such that, for § € (0,00), k > k1, the functions z° = (w°,z°,y°)1, o = u,s,

can be extended analytically to the domain Dzeg’<>

Moreover, there exists bs > 0 independent of § and k such that, for u € D

sep,o

575 ’

b362 b3d? b33 b33
W (w)] < T ) S e )] <
|u? + A2 u2 + A2|5 luZ + A2|3 u2 + A2|3
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Reu

FIGURE 11.3.4: The domain En,d defined in (I1.3.16).

This proposition is proved in Section 11.4.2.
Notice that taking ps big enough, di < d and k1 < ko we have Dy, 4 C Dilolclltl -

Therefore, for the stable manifold 2°, Proposition I1.3.6 implies Theorem 11.3.3. How-
ever, we still need to extend further 2" in order to reach Dy, 4.

11.3.2.2 Further analytic extension of the unstable manifold

Since by Proposition I1.3.6 the unstable solution 2" is defined in Dz’logf pp+ To prove
Theorem I1.3.3 it only remains to extend it to the points in the boomerang domain

D, ¢ which do not belong to the outer unstable domain. Namely, we extend z" to

5&[1 ={ueC : |Imu| < A— kd* — tan fyReu, (I.3.16)
Imu| < dA + tan f1Rew, [Imu| > dA —tan B1Reu}, o

for suitable x and d (see Figure 11.3.4). Notice that IN?,M C D, q and that IN),@d only

contains points at distance of u = +iA of order 1 with respect to 9.

As we have mentioned, to measure the difference between the invariant manifolds
WH(6) and WH(J) it is convenient to parameterize them as graphs (see (I1.3.5)).
However, these graph parametrizations are not defined at © = 0. Moreover, since all
the fixed point arguments that we apply to obtain the graph parameterizations rely
on complex path integration, we are not able to extend them to domains which are
not simply connected. Therefore, to reach Dy 4 from D:g’u, we need to switch to a
different parametrization that is well defined at u = 0.

The auxiliary parametrization we consider is the classical time-parametrization
which is associated to the Hamiltonian H in (I1.2.5). (Recall that the graph parametriza-
tion z" was associated to the Hamiltonian H*%® = H 0 ¢eq © ¢sep)-

This analytic extension procedure has three steps:

1. We consider the outer transition domain (see Figure 11.3.5)

5:203; i =1weC : [Imv] < A- k20? — tan foRe v,
Im v| > d2 A + tan 51 Rev, (11.3.17)
Imov| < d3A + tan 51Re v},

where di < dy < d3 < % are independent of § and ko > k1 is such that

A — k962 > 0. Notice that D¥°U < pweut

k2,d2,d3 K1,d1,02°
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Imu

Rewv

Rewu

FIGURE I1.3.5: The domain D™°%"  given in (I1.3.17) (left) and
K2,02,d3
DR 4, in (IL3.19) (right).

Since 4 = 1+ o(1) (see (I1.3.11)), we look for a real-analytic and close to the
identity change of coordinates u = v + U(v) defined in Dz’;x 4, such that the
time-parametrization

TU(0) = dheq © Bsep(v + U(v), 2°(v + U(W))) (IL3.18)

is a solution of the Hamiltonian H in (I1.2.5). That is, o = 1 and I'*(v) € W"(9)
forv € Dz’;gs 4, See the details in Proposition I1.3.7 and Corollary I1.3.8 below.

2. We extend analytically the time-parametrization I'"(v) to reach the domain
D, 4. In particular, we extend I'* to the flow domain

D! ={veC : [Imv| < A— kd? — tan ByRew,

ri3la (11.3.19)
Imwv| < d4A + tan f1Re v},

where dy € (da,d3) is independent of § and k3 > kg is such that A — k362 > 0.
Notice that,

Dt nDf , #0,  and D4 C DI

K2,do,ds3 K3, K3,d4?
for ds € (dy1,ds) and kg4 > k3. See the details in Proposition I1.3.9.

3. We prove that there exists a real-analytic close to the identity change of variables
of the form v = u + V(u), u € Dy, 45, such that the function 2"(u) defined by

(11,2 (1)) = (9eq © Gep) ™" (T (1 + V(1) ) (11.3.20)

gives an invariant graph of H%®P in (I1.3.8). See the details in Proposition I1.3.10
and Corollary I1.3.11 below.

As a consequence, we have extended analytically 2" to 5,44,015.

For the first step, we look for a function U such that (v +U(v), 2" (v +U(v)))
is a solution of the differential equations given by the Hamiltonian H*P in (I1.3.8).
Therefore, U satisfies

Oy U(W) = Oy Hi® (v +U(v), 2" (v + U(v))). (I1.3.21)

u,out

The next proposition ensures that U exists and it is well defined for v € 15”2 do.ds
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Proposition I1.3.7. Let the function z" and the constants pa, di and k1 be as
obtained in Proposition I1.3.6 and consider constants da, ds € (d1, %) such that do < ds
and kg > k1. Then, there exists &y such that, for § € (0,0p), the equation (11.3.21)

has a real-analytic solution U : Dz’ozt g — C.
2,42,43

Moreover, for some constant by > 0 independent of § and for v € D:;g; g U
satisfies
UW)| < bs0%  and v+ U(w) e DM

K1,d1,p2°

This proposition is proved in Section 11.4.3. Together with Proposition 11.3.7
implies the following corollary.

Corollary I1.3.8. Under the hypothesis of Proposition I1.3.7, there exists g > 0
such that, for 6 € (0,00), the function I'" in (I1.3.18) is well defined and real-analytic

u,out
n DH2,d2 ds”

On the following, we use without mention that I'(v) can be split as

L ~ _ ), = (A, A, 0,0)7,
I'(v) =Th(v) +T(v), with { _ Aoy, (I1.3.22)

The next proposition extends the parametrization T" to the domain DH (see

K3,d4
(11.3.19)).

Proposition I1.3.9. Let the function I'" and the constants do,ds and ko be as ob-
tained in Corollary 11.3.8 and Proposition I1.5.7 and fix dy € (da,ds3) and k3 > Ka.
Then, there exists 6o > 0 such that, for o € (0,dp), T can be real-analytically extended
to Dﬂ

K3,da

Moreover, there exists a constant bs > 0 independent of § such that, forv € D

K3,dq’
A@) <bs0%,  [A@)] < b8, |x(v)] <bs6®, |y(v)] < bso®.

This proposition is proved in Section I11.4.4.

For the third step, we “go back” to the graph parametrization z"(u) by looking
for a change v = u + V(u) for u € ﬁﬂ’d. Notice that, in order to satisfy equation
(I1.3.20) and recalling (I1.2.10), ¥V must be a solution of

AMu+ V() = Mp(u) — My (u+ V(w)). (11.3.23)

Then, one can easily recover the graph parametrization (w"(u),z"(u),y"(u)) using

the equations

w" (u)

3Ah(u)
2 (u) + 63L.(0) = z(u + V(u)),

Y () +6°Ly(8) = y(u + V(u)).

Ap(u) = Ap(u +V(u)) - +6°L5(8) = Mu+ V(u)),

(11.3.24)

The next proposition ensures that V exists and it is well defined in 5H7d (see
(I1.3.16)).

Proposition 11.3.10. Let the function I'* and the constants dy and k3 be as obtained
in Proposition 11.3.9 and the constant dyi as obtained in Proposition 11.3.6. Let us
consider constants ds € (dy,ds) and k4 > k3. Then, there exists 6y > 0 such that, for
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0 € (0,00), equation (11.3.23) has a real-analytic solution V : ﬁ,{47d5 — C satisfying

V()| < bed? and  u+V(u) € DI

K3,d4
for some constant bg > 0 independent of § and u € 554@5-

Proposition I1.3.10 is proved in Section I1.4.5. Summarizing all the previous results
we obtain the following result.

Corollary I1.3.11. Let the function V and the constants ds and k4 be as obtained
in Proposition I1.3.10. Then, there exists 69 > 0 such that, for 6 € (0,d0), equation
(I1.3.24) has a unique solution 2% = (w", z%,y")T : ]_~),.§4’d5 — C3.

Moreover, there exists a constant by > 0 independent of § such that, foru € 15,%615,

()] <b76%, Ja"(w)| <0r0%, Jyt(w)| < b1

To finish this section, notice that, taking po big enough, d > ds and kg > k4 we
have that

Dlﬁo,d C Dueut Yy EH4,d57 with DY 554,d5 #+ @,

K1,d1,p2 k1,d1,p2

and then, Corollary I1.3.11 and Proposition 11.3.6 imply the statements of Theo-
rem I1.3.3 referring to the unstable manifold z".

I1.3.3 A first order of the invariant manifolds near the
singularities

Let us consider the difference
Az = (Aw, Az, Ay)T = 2% — 25,

where z" and z° are the perturbed invariant graphs given in Theorem I1.3.3. Since z"
and 2° satisfy the invariance equation (I1.3.12), the difference Az satisfies the linear
equation B

DuAz(u) = AP Az(u) + B (u)Az(u), (I1.3.25)

where A%P is as given in (II.3.10) and
_ 1
Bl(y) = / D.R*P[o2" + (1 — o) (u)dor (11.3.26)
0

Since z" and z° are already defined in D, 4, B! (u) can be considered as a “known”
function.

In addition, since the graphs of 2" and z® belong to the same energy level of HP
(see (I1.3.8)), we have that

H®P(u, 2" (u); 6) — H**P(u, 2°(u);0) =0, for u € D, 4.

Therefore, we can reduce (I1.3.25) to a two dimensional equation. Indeed, defining
T = (Y1, Y2, T3) such that

1
T(u) = /0 D, H*® (u,0z%(u) + (1 — 0)2°(u)) do, (11.3.27)
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and applying the mean value theorem we have that
T1(u)Aw(u) + To(u)Az(u) + Ts(u)Ay(u) = 0.

Notice that Y1 (u) = 1—|—f01 0w HI (u,02"(u) + (1 — 0)2%(u)) do and therefore Tq (u) #
0 for u € Dy 4 (see Remark I1.3.4). Therefore, writing
To(u)

Aw(u) = () Azx(u)

Ts(u)
- Ti’(u) y(u)

(I1.3.28)

and defining A® = (Ax, Ay)T, the last two components of (I1.3.25) are equivalent to

OuAD(u) = ASpl(u)Aq)(u) + BSpl(u)ACD(u), (I1.3.29)
where ‘ _
Asplz 5L2+B§f)2 ) 0 _
0 —H+ B
Y, 7spl ~spl Ts epl (I1.3.30)
Bepl _ﬁBQ?l 82?3 - ﬁBZI,)l

T2 zz5p! T3 zspl
B - Tl 8371

Next, we give an heuristic idea of how to obtain an exponentially small bound for
Ay(u) for v € Dy 4. The case for Az is analogous. If we omit the influence of BP!,
then there exists ¢, € C such that Ay is of the form

Ay(u) = ¢y e Y,
Evaluating this function at the points

uy = i(A — ré?), u_ = —i(A — kd?),

one has Ay(uy) ~ cye??_”. Then, since Ay(uy) ~ 1, it implies that ¢, ~ e tr
and, as a consequence, Ay is exponentially small for u € R. However, we are not
interested in an upper bound of Ay but in an asymptotic formula. Thus we have to
find the constant c,, or more precisely a good approximation of it.

To this end, we need to give the main terms of Ay at u = u,.. Likewise we need to

analyze Ax(u) ~ ¢ e at u = u_. To perform this analysis we proceed as follows:

1. We provide suitable solutions Zy*(U) of the so-called inner equation. The inner
equation, see [ ; ], describes the dominant behavior of the functions z"
and z® close to (one of) the singularities u = £iA. In particular, it involves the
first order of the Hamiltonian H®P close to a singularity and it is independent
of the small parameter §. See Section 11.3.3.1.

2. We check how well z"5(u) are approximated by Z,"*(U) around the singularities
u = +iA by means of a complex matching procedure. See Section 11.3.3.2.

11.3.3.1 The inner equation

In this section we summarize the results on the derivation and study of the inner
equation obtained in Sections I.2.3 and 1[.2.4. We focus on the inner equation around
the singularity © = ¢A, but analogous results hold near u = —iA.
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To derive the inner equation, we look for a new Hamiltonian which is a good
approximation of H*P, given in (I1.3.8), in a suitable neighborhood of u = iA. First,
we scale the variables (u,w,z,y) so that the graphs z"*(u) become O(1)-functions
when u —iA = O(6%). Since, by Theorem I1.3.3, we have that

w(u) =0(673),  2°(u) =0(3),  y(u)=0(3),  foro=u,s,

we consider the symplectic scaling ¢, : (U, W, X,Y) — (u,w, z,y), given by

u—1A

U= 52

) W = 6% %7 = 1#7 Y = #7
20[+ 03 \/§(X+ E] \/§Oé+
where oy € C is the constant given by in Theorem I1.3.1, which is added to avoid the

dependence of the inner equation on it. Moreover, we also perform the time scaling
7 = 62T. We refer to (U, W, X,Y) as the inner coordinates.

(11.3.31)

Proposition I1.3.12. The Hamiltonian system associated to (11.3.8) expressed in
the inner coordinates is Hamiltonian with respect to the symplectic form dU N dW +
dX NdY and

H™ =H + H>®, (11.3.32)
where
HU,W,X,Y)=HU,W,X,Y;0)|5=0 = W + XY + K(U,W, X,Y),
with
KU, W, X,Y) = — Suiw?— L ( ! —1),
4 3U3 \/1+J(UW,X,Y)

aw? 1 16  4(X+Y 2
Jwwxy)="W"_ 160 16 A +)<W— )

- + -
oUs 2tUs 81U U 305

4i(X-Y) X?+Y? 10XY
2 B T T 4
3U3 3U3 9U 3

Moreover, if 01_1 <|U| <c1 and |(W, X,Y)| < ca for some ¢; > 1 and 0 < ¢3 < 1,
there exist by, v1,7v2 > 0 independent of 6, cy, ca such that

|HI™(U, W, X,Y;6)| < boc] cJ253. (11.3.33)

This result is also stated in Proposition 1.2.5 and proven in Chapter 1.4.
Now, we present the study of the inner Hamiltonian H. Denoting Z = (W, X, Y)7,
the equations associated to the Hamiltonian H, can be written as

U=1+g¢"(U,2),
Z=A"Z + U, Z),

where

Ain —

o O O

0 0
i 0], (11.3.34)
0

—1

and fi* = (—8UIC,i8yIC,—i8XIC)T and ¢™ = K. We look for invariant graphs
Z =Z§(U) and Z = Z3(U) of this equation, that satisfy the invariance equation also
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ImU

Dy

H_
/K ReU

FIGURE 11.3.6: The inner domain D;}; for the unstable case.

called inner equation,
duZS(U) = AZS + R Z5)(U),  for o =u,s, (I1.3.35)

with

_[MUp) =" (U p) A%
L+ g™(U, )

These functions Z and Zjj will be defined in the domains

R[] (U) (11.3.36)
Di={U eC: |ImU| > tanfyReU + K}, DS = -D,

respectively, for some x > 0 and with 5y as given in Theorem I1.3.3 (see Figure 11.3.6).
Moreover, we analyze the difference AZy = Z§ — Z§ in the overlapping domain

Ee=DaNnD,N{UcC : ImU < 0}. (I1.3.37)
Theorem I1.3.13. There exist k5,b1 > 0 such that for k > ks, the equation (11.3.35)
has analytic solutions ZS(U) = (WS(U), X(U),Yg(UNT, for U € D2, o = u,s,
satisfying
USWEO) <bi,  [USXGU)| <bi,  [USYS(U)] < bi.

In addition, there exist © € C, by > 0 independent of k, and an analytic function
x = (x1,x2,x3)T such that, for U € &,

AZy(U) = Z§(U) = Z3(U) = e ((0,0,1)7 + x(U) )

with |(U3x1(U), U2xa(U), Uxa(U))] < bo.

This result is also stated in Theorem 1.2.7 and proven in Chapter L.5.
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Remark I1.3.14. To obtain the analogous result to Theorem I1.3.13 near the singu-

larity u = —iA, one must perform the change of coordinates
A . R -
V:u_’_; 5 W:(s% wQa X = 1$ ) Y = 1y P
0 202 6320 8320

where a— € C is a_ = ay (see Theorem I1.3.1). Then, for V € D2, one can prove
the existence of the corresponding solutions

~

Z3(V) = (Ws(V), Xg(V).Yg(V))',  where o =nu,s.

Due to the real-analyticity of the problem (see Remark 11.3.2) we have that )?O(V)

Y°(U). Therefore, the difference AZy = Z§ — Z3, is given asymptotically for U € &,
by

AZy(V) = ©e” ((0, 1,0)T + C(V)),

where ¢ = (C1,C2,(3)T satisfies ](Vgg“l(V),VCQ(V),V2C3(V)] < C, for a constant C

independent of k.

11.3.3.2 Complex matching estimates

We now study how well the solutions of the inner equation approximate the solutions
of the original system given by by Proposition 11.3.6 in an appropriate domain. As
in the previous section, we focus on the singularity u = ¢A, but analogous results can
be proven for u = —iA (see Remark I1.3.14). Let us recall that the functions z"*
are expressed in the separatrix coordinates (see (I1.3.4)) while the functions Z;* are
expressed in inner coordinates (see (II.3.31)).

We first define the matching domains in separatrix coordinates and, later, we
translate them to the inner coordinates. Let us consider fs, B3, and - independent
of § and k, such that

3
0<52</BO<B3<§7 and 76[571)7

with fp as given in Theorem II.3.1. Then, we define u; € C j = 2,3 (see Figure
I1.3.7), as the points satisfying:

e Imu; = —tan3;Reu; + A — k2.
o |u; —uy| =%, where uy = i(A — kd?).
e Reuy < 0 and Reus > 0.

We define the matching domains in the separatrix coordinates as the triangular do-
mains

DYt =T, DY = (<) ().

Let dy, p2 and k1 be as given in Proposition 11.3.6. Then, for k > k1 and ¢ > 0 small
enough, the matching domains satisfy

D’?ch,u c DZ’?gvu and DHmCh’S C D,Sie’gﬁ’ (11338)

and, as a result, 2% and z* are well defined in D™™ and DPMS, respectively.
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Imu Imu

e h,u - |
mch,s
K
Dy

Reu
FIGURE I1.3.7: The matching domains DMt and DS in the outer
variables.
The matching domains in inner variables are defined by
prcho {U €C: U +ide D,?Ch’°} . foro=u,s, (11.3.39)
with A
U =4 ;21 . forj=2,3. (IL.3.40)
Therefore, for U € D,?Ch’o,
C
HCOSIBQ S ‘U| S m
By definition,
DPM Cc Dy and DM C D,
for k> k5 (see Theorem 11.3.13). Thus, Zp*° is well defined in D™,
In order to compare z™%(u) and Z;*(U), we translate 2™ to inner coordinates
T
T L w® ° y° )
Z°(U) = (WO,XO,YO) (U)=|9ds 3 I , =3 (0°U +1iA),
20(+ (55 \/§a+ (5§ \/§a+
(I1.3.41)
with o = u,s and z° = (w® z°9°)" are given in Proposition 11.3.6. Therefore,

by (I1.3.38), Z° is well defined in the matching domain ppche (which is expressed in
inner variables).
Next theorem gives estimates for Z"5 — Z;"".

Theorem I1.3.15. Consider k1 and k5 as obtained in Proposition 11.53.6 and Theo-
rem I1.3.13, respectively. Then, there exist v* € [%, 1), kg > max {k1, K5} and Jp > 0

mch,o

such that, for v € (v*,1), there exists b1 > 0 satisfying that, for U € Dy ", kK > K¢
and § € (0,60),

W) < bnds N, U X)) < buds Y, U YR(O)] < buds ),
with (W, X2, YOV = 79 = Z° — Z$ and o = u,s.

This theorem is proven in Chapter IL.5.
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11.3.4 The asymptotic formula for the difference
We look for an asymptotic expression for the difference
A® = (Az, Ay)" = (2" — 2% y" — )T,

where (z",y") and (2®, y°) are components of the perturbed invariant graphs given in
Theorem II.3.3. Recall that, by (I1.3.29), A® satisfies

BuAD (1) = AP (1) AD(u) + BP (1) Ad(u), (IL.3.42)

with ASP! and BP! as given in (I1.3.30). The equation is split as a dominant part,
given by the matrix A%P' and a small perturbation corresponding to the the matrix
B!, Therefore, it makes sense to look for A® as A® = Adq + h.o.t with a suitable
dominant term A®y = (Axg, Ayo)” satisfying

DuADg(u) = AP (1) Adg(u). (11.3.43)

A fundamental matrix of (I1.3.43), for u € D,, 4, is given by

M(@:(mx(“) 0 ) (I1.3.44)

0 my(u)

with ‘ "
ma(u) = 2" By(u), By(u) = exp </ g;%l(s)ds> :

. . (I1.3.45)
my(u) = e 2"“By(u), By(u)=exp </ Bgf’;(s)ds> :
and a fixed uy, € Dy, g NR. Then, A®y must be of form
Azp(u AAmg(u
A®o(u) = ( ol )> - ( ’ ( )>, (11.3.46)
Ayo(u) cymy(u)

for suitable constants c2, cg € C which we now determine.

By Theorems 11.3.13 and I1.3.15 and using the inner change of coordinates in
(I1.3.31), we have a good approximation of Ay(u) near the singularity u = iA given
by

Ay(u) = V20, 53 AY, <U52ZA> .

Then, taking v = u; = i(A — k6?), we have that

U_J,_—ZA

Ay(uy) ~ Ago(us) ~ v2a, 5 AYy ( =

) = \/5045%6_”@(1 + x3(—ik)).
Then, using that Ay(uy) ~ Ayo(uy) = cgmy(u+), and proceeding analogously for
the component Az at the point u_ = —i(A — kd?) (see Remark 11.3.14), we take

) = §5e 2O V2a_B; Y u_) and cg = 5%6_5%@\/§Q+B;1(U+). (I1.3.47)

To prove Theorem I1.2.2, we check that A®g(u) is the leading term of A®(u), for
u € RN D, 4, by estimating the remainder A®; = A® — Ad,.
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In order to simplify the notation, throughout the rest of the document, we denote
by C any positive constant independent of § and k to state estimates.

11.3.4.1 End of the proof of Theorem 11.2.2

We look for A®; as the unique solution of an integral equation. Since A® satis-
fies (I1.3.42), by the variations of constants formula

m Bspl( )A(I)(s)) ds

o (u > / e

Acb(u)=<cymy(u / e m Bspl( ) M)(S)> ds

. (I13.48)

where M (u) is the fundamental matrix (I1.3.44), s belongs to some integration path
in Dy 4 and ¢, and ¢, are defined as

cx = Az(u_)m; (u_), cy = Ay(uq)m 1(u+) (I1.3.49)
For k1, ke € C, we define
Tlky, ko) (w) = (kr ma(u), ky my(u))”, (I1.3.50)

and the operator

1] (w) ma(w) [ o) m (B 5)ots)) b
7 / my ()72 (BP()(s) ) ds

Then, with this notation, A®y = I[cx,cy] (see (11.3.47)) and equation (I1.3.48) is

equivalent to A® = Z[c,, ¢y] +E[AP]. Since £ is a linear operator, A®; = AP — A
satisfies

(I1.3.51)

T

ADy(u) = Z[cy — 2, ¢y — 02} (u) + E[ADo|(u) + E[AD](u). (I1.3.52)

To obtain estimates for A®q, we first prove that Id — £ is invertible in the Banach
space XSPh = xsPl x APl with

A—|Im u|
XSPI — {(p N DK/,d — C . ”SDHSPI — Sup e 52 SD(U/) < +OO} ,
ueDn,d
endowed with the norm
1 1 1
lellZ" = el + g2, (I1.3.53)

for ¢ = (p1,92). Therefore, to prove Theorem I1.2.2 it is enough to see that A®d,
satisfies that | A®, [P < C63 llog 8]
First, we state a lemma whose proof is postponed to Appendix I1.B.1.

Lemma I1.3.16. Let kg, 09 be the constants given in Theorem I1.3.53. Then, there
ezists a constant C' > 0 such that, for k > ko, 6 € (0,00) and u € D,, 4, the function T
in (11.3.27), the matriz BP! in (11.3.30) and the functions B, B, in (11.3.45) satisfy
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for k> Ko, 0 € (0,00) and u € Dy, 4,

c Co Co
Ti(w) =1 <=, |To(u)| € ——mp Ts(u)| < ———
K u2 + A2|5 u2 + A2|5
(11.3.54)
Cil < ’B*<U’)| < Ca *=T,Y, and ’BSPI )‘ — 075227 Zm? € {172}
a2+ 47

In the next lemma we obtain estimates for the linear operator £ (see (I1.3.51)).

Lemma I1.3.17. Let kg, dg be the constants as given in Theorem I1.3.3. There exists
bi2 > 0 such that for § € (0,60) and k > Ko, the operator & : Xipl — Xipl in (I1.3.51)

is well defined and satisfies that, for ¢ € X5,

s bl? S
IELIP < == [l

In particular, Id — &€ is invertible and
1(1d — &)Vl < 21l

Proof. Let us consider £ = (&1,&)7, ¢ € Xipl and v € D, 4. We only prove the
estimate for & [p](u). The corresponding one for &;[p](u) follows analogously.
By the definition of m, in (I1.3.45) and Lemma I1.3.16, we have that

u
/ el e,
Ut |52 + A?|

U |Ims|—Ims dS
e & —
u+ |82 + A2

Let us consider the case Imu < 0. Then, for a fixed ug € RN D, 4, we define the
integration path p; C Dy 4 as

&) (u)] < Co2e 3

1
< 0O | P

~Jug +2t(up — uy) for ¢ € (0, 3),
uo + (2t — 1)(u — ug) for t € [1,1).
Then,
1 2|Im py |
z dt Le s C lmul-a
Salelw| <C P[P [ < M
0 |pr —iA] 1 |ps +iA] K

If Imu > 0, we consider the integration path p; = uy + t(u — uy) for ¢ € [0, 1] and

we obtain
1
— C |Im
Ealpl(u)] < Co%e ||| P! / ’“?”Ldt)s el
0 |pr—id] re
Therefore, [|E[¢][I™ < € |||l O

Notice that, by (I1.3.52), A®; satisfies

(Id — E)A® (u) = Zlex — 2, ¢y — cg](u) + E[ADp)(u). (I1.3.55)

x’
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Since, by Lemma I1.3.17, Id — £ is invertible in Xipl we have an explicit formula for
A®;. Nevertheless, we still need good estimates for the right hand side with respect
to the norm (I1.3.53).

Lemma I1.3.18. There exist ki, dp,b13 > 0 such that, for Kk = k.|logd| and 6 €
(0,d0),

Hspl b13 5%

1
b1393
Aq) bpl
ST ad EBaw]

[ Zle. * = Jlogd|’

x7cy

with T, (¢, ¢)), (Cay¢y), € and Adq defined in (11.3.50), (11.3.47), (11.3.49), (11.3.51)
and (11.3.46), respectively.

Proof. By the definition of the function Z,
1 1 1
HI[% - cg,cy - CS]HSP ‘Cx - CO‘ [[me | + ‘Cy - Cy| Hmy”sp

where m, and m, are given in (I1.3.45). Then, by Lemma II.3.16,

A _ Imud|I | A A
e[ = e52 sup |e™ 2 [Bp(u)|| < Cesz, [my [P < Ces,
’uGDmd
and, as a result,
1 A
|1 Zlex — ey — || < Ced (Jew — Sl + ey — &) - (I1.3.56)

We now obtain an estimate for |c, —cg|. The estimate for |c, —c2| follows analogously.
By the definition of m, (see (11.3.45)), one has

CA L
ey — el = 7B | By () [ Ay(uy) — Ao(uy)] (11.3.57)

Let us denote AY = Y" — Y® where Y'"* are given on (I1.3.41). Recall that Y"* =
YOU’S + V" where You’s is the third component of ZS * the solutions of the inner
equation (see Theorems I1.3.13 and I1.3.15). We write,

Ay(uy) = V20, 55 AY <“+ - “‘) = VB0, 6 [AY (—ik) + Y] (—ik) — Y7 (—ir)].

By the definition of Ay in (I1.3.46) (see also (11.3.47)), we have Ayg(u4) = \@agﬁ@e*”
Then, by (I1.3.57) and Lemma I1.3.16,

0 1 —%-Hﬁ . o —K u/ - S (-
ey —cy| < Cose s |AY) (—ik) — ©e™"| + [Y]" (=ik)| + YT (—ir)| |,
and, applying Theorems I11.3.13 and I1.3.15, we obtain

|y — 02| < Cose @t [|X3(—i/<)e_“} + 263(1_7)] < %5%6_5% <1 + 5%(1_7)6“> ;

where v € (v*,1) with v* € [%, 1) given in Theorem I1.3.15. Taking x = k., |logd]

with 0 < k, < 2(1 — ), we obtain

1 1
ey — )| < cos e <1+5%(177)7”*> < o3 e
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This bound and (I1.3.56) prove the first estimate of the lemma.

For the second estimate, it only remains to bound A®( and apply Lemma 11.3.17.
Indeed, by the definition of A®g in (I1.3.47), Lemma I1.3.16 and (I1.3.56), we have
that

1 1 A 1
AP = 21 ) < Cet (] + |]) < ot
Since K = ki [logd| with 0 < sy < 2(1 — ), Lemma I1.3.17 implies [E[AD][%P <

1
Cé3
[log d] * H

With this lemma, we can give sharp estimates for A®; by using equation (II1.3.55).
Indeed, since the right hand side of this equation belongs to Xipl, by Lemma I1.3.17,

Ay (u) = (Id — &) (T]ep — 2, ¢y — )] (u) + E[AD] (u)) .

Then, Lemmas I1.3.17 and I1.3.18 imply

1

Cé3
1
[AD][3 <

—_— I1.3.
~ |logd] (I1.3.58)

To prove Theorem I1.2.2, it only remains to analyze B, (u—) and By(uy).

Lemma I1.3.19. Let k4 be as given in Lemma [1.3.18. Then, there exists §g > 0
such that, for 6 € (0,00) and k = k4 |logd|, the functions By, By defined in (11.3.45)

satisfy
B o) =B (140 () )
o

-1 _ A o (u)) s
By lug)=ev <”O<|1og5|>>’

where ux = +i(A — kd?).

This lemma is proven in Appendix I1.B.2.
Let uy € Dy gNR. We compute the first order of A®q(u,) = (Axg(us), Ayo(u))T.
Since, by Theorem I1.3.1, (ay)? = (a_)? = 1, and applying Lemma I1.3.19 and

2
(I1.3.47), we obtain

|Azo(us)| = |Ayo(w)| = V2|0 53¢ 3 <1 +0 <Ilo;5l>) '

Moreover, by (I1.3.58),

Co5e 5
|Az(us) — Azo(us)], [Ay(us) — Ayo(ui)| < “Tlogd|
Finally, notice that the section u = u, € Dy g MR translates to A = X\* := A\, (uy) (see
(I1.3.4)). Moreover, since A\, = —3A, (see (IL.3.1)), one deduces that Aj(u) > 0 for
u > 0. Therefore, by the change of coordinates (I1.3.4), Theorem I1.3.3 and taking §
small enough,

W (uy)
3Ah (U*)

AS = Ap(uy) — = Ap(us) +O(0%) >0,  with o =u,s,
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and, therefore using formula (I1.3.28) for Aw and Lemma I1.3.16, we obtain that

IAY — AS| < C|Aw(w)| < C8 |Ax(u)| + C8 |Ay(u)| < Cose 2.
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Chapter 11.4

The perturbed invariant
manifolds

In this chapter, we prove Theorem I1.3.3 by following the scheme detailed in Sec-
tions 11.3.2.1 and 11.3.2.2.

Throughout this chapter and the following ones, we denote the components of all
the functions and operators by a numerical sub-index f = (f1, fo, f3)?, unless stated
otherwise.

I1.4.1 The invariant manifolds in the infinity domain

The first step is to prove Proposition 11.3.5, which deals with the proof of the existence
of parameterizations z" and z° satisfying the invariance equation (I1.3.12) and the
asymptotic conditions (II.3.6). We only consider the —u— case, being the —s— case
analogous.

Consider the invariance equation (I1.3.12), 0,2" = A*Pz" 4+ R*P[Y], with AP
and R*P defined in (I1.3.10) and (I1.3.13), respectively. This equation can be written
as

L2" = R*P[2Y], with Lo = (0y — A*P)p. (I1.4.1)

In order to obtain a fixed point equation from (II.4.1), we look for a left inverse of £
in a suitable Banach space. To this end, for a fixed p; > 0 and a given a € R, we
introduce

XS0 = {cp : Dy — C @ @ real-analytic, [|¢||y = sup [e”*p(u)| < oo},

u€D,)

and the product space XZ° = A30 x X7 x X7, with v = ‘/%1 endowed with the

weighted product norm

o0

el = 6 lleallz, + ezl + lleslly” -

Next lemmas, proven in | ], give some properties of these Banach spaces
and provide a left inverse operator of L.

Lemma I1.4.1. Let o, 8 € R. Then, the following statements hold:
1. Ifa> B >0, then X° C X5°. Moreover [lol|5” < [l¢lls -

2. If o € X5° and ¢ € Xg°, then ¢ € X3 5 and [[oCllo5 5 < llella” ICIZ -
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Lemma I1.4.2. The linear operator G : X3° — X3° given by
u u i u i T
Gl = ([ s, [ = (s, [ s

is continuous, injective and is a left inverse of the operator L.
Moreover, there exists a constant C independent of § and p1 such that, for o €
Xg°,

I < C (llprllgs + 8% all + 8 sl

Notice that the eigenvalues of the saddle point (0,0) of Hy(A, A) (see (11.2.6))

are £4/2L. Then, the parametrization of the separatrix o = (A, Ay) (see (IL3.1))

satisfies
Ap € Xpoo and Ay € X;O (1I1.4.2)

Therefore, z" is a solution of (I.4.1) satisfying the asymptotic conditions (IL.3.6) if
and only if 2" € AL° and satisfies the fixed point equation

o = Fle] = GoR*[g].
Thus, Proposition I1.3.5 is a straightforward consequence of the following proposition.

Proposition I1.4.3. There exists 6o > 0 such that, for § € (0,dy), equation ¢ = F|p]
has a solution z" € X°. Moreover, there exists a real constant biy > 0 independent
of § such that |23 < b1483.

To see that F is a contractive operator, we have to pay attention to the nonlinear
terms R°°P.

Lemma I1.4.4. Fiz ¢ > 0 and let R*P be the operator defined in (11.3.13). Then,
for § >0 small enough® and ||| < 083, there exists a constant C > 0 such that

IR lelll5, < €62, IR lelllyy < Co,  j=2,3,
and

J0REPIANE < C8% 0REPIRIE < €6, 9,REPI| < €,
10 RIS, <08, [0RPAIE<C 10,RPLIS <C, j=2.3,

The proof of this lemma is postponed to Appendix IT.A.1.

Proof of Proposition 11.4.3. Consider the closed ball

Bo)={pe X : oY <o}

First, we obtain an estimate for F[0]. By Lemmas I1.4.2 and I1.4.4, if 0 is small
enough,

[o¢] Se o0 se o0 se o 1
IFO < O3 IREPI0]55 + C8% [REPIO)I + Co [RFPIOI < 5buad®, (1143)

!To simplify the exposition, in this lemma and in the technical lemmas from now on, we avoid
referring to the existence of do and just mention that § must be small enough. We follow the same
convention for k whenever is needed.
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for some by4 > 0.
Then, it only remains to check that the operator F is contractive in B(b146%). Let
¢, € B(b1463). Then, by the mean value theorem,

1
Rl = RYP[9] = UO DR P[sp + (1 - smds] (=), =123
Applying Lemmas 11.4.1 and I1.4.4 and the above equality, we obtain
IRIPle] = RYP[E5, < sup {le — &1ll, 10w RYP[C]llg”
CEB(514(53)
+lp2 = G20l 10RIPIC, + llws — @5l IIOyRiep[C]IIZO} < Colle =2l

IRSPLe] — RPN < sup |l = Gullgp 10uRSICI,
! ! P CEB(b1463) 2 J r

+ 2 = Gall 7 10 REPICHIG + lles — Bsll° HayRiep[CHIﬂ <Clle -2l

for j = 2,3. Then, by Lemma I1.4.2 and taking § small enough,

3
IFle] = FIRNE <CSIRTP[e] = RIPI@ 5, + C6° YIRS el — RSP(@)]1°
=2

N 1 N
<C&|lp -3 < 5 lle =213
(I1.4.4)

Then, by the definition of ¢ in (I1.4.3) and (I1.4.4), F : B(b146°) — B(b1463) is well
defined and contractive. Therefore, F has a fixed point 2" € B(b146%). O]

I1.4.2 The invariant manifolds in the outer domain

To prove Proposition 11.3.6, we must extend analytically the parameterizations z" and
2% given in Proposition I1.3.5 to the outer domains, D,Sjg’u and ijg’s, respectively.
Again, we only deal with the unstable -u- case, being the -s- case analogous. We
prove the existence of z" by means of a fixed point argument in a suitable Banach
space.

Given «, 8 € R, we consider the norm

_ 8 1 52
ol = sup g5 () (2 + 4%)7 o), galw) = T ,
a,B ueDsn J ( ) [u? + A2| u? + AQ\%
and the associated Banach space
X3 = {cp : DR — C ¢ ¢ real-analytic, lellots < oo} . (I1.4.5)

These Banach spaces have the following properties, which we use without men-
tioning along the chapter. Their proof follows the same lines as the proof of Lemma
7.11in | ].

Lemma I1.4.5. The following statements hold:
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1. If p € Xg}lﬂtl, then ¢ € ngﬁtz for any B2 € R and

lellass, < Cllelle, , for By — B1 >0,
lellass, < C(r6%)P2=P |lp||2%,,  for B2 — 1 < 0.

2. If p € X, , then ¢ € X3, 5 for any B2 € R and

a,B17?

t t
lellaZy g < Cllelags, - for By — p1 > 3,
)8
el 5, < C8%(r6%) 2P =5 lp|0%, ,  for Bo— 1 < 5.

3. If o € X and ¢ € X%, | then ¢ € X o o and

a1,81 az,B2?

leCllantsaz ap, < llellars, I<lo0s, -

4o If o € X5y and C € AP o, then ¢+ 5°C € X7y and

lo +6%¢IITE < llellgls + 1SN 5.5 -

Let us recall that, by Proposition I1.3.5, the invariance equation (I1.3.12) has a
unique solution z" in the domain Dp;™ satisfying the asymptotic condition (IL.3.6).
Our objective is to extend analytically 2" to the outer domain D,ifg’u. Notice that,
since p1 < pa, Dpi™ N DR" # 0 (see definitions (I1.3.14) and (I1.3.15) of D™ and
D)

As explained in Section I1.4.1, equation (I1.3.12) is equivalent to L£z" = R5P[z"]
with Lo = (9, — A%P)p and R*P given in (I1.3.13). In the following lemma we

introduce a right-inverse operator of £ defined on X g‘g

Lemma I1.4.6. Let us consider the operator G[p] = (Gi[¢1], Galpa], Gsles])T, such

that
u u i u o T
gmw—( / o1(s)ds, / e #Cy (s)ds, / eﬂ“—“)m(s)ds) ,

—p2 u1 u1

where uy and Wy are the vertices of the domain Dzeg’u (see Figure I1.3.3). Fiz 3 > 0.
There exists a constant C' such that:

1. If g € A7, then Gilp] € APY, and |Gi[2]lIV5_1 < Cllell}s-

2. If ¢ € ALY, then Gl € Xg%, j = 2,3, and ||G;l¢lIgs < CO* llel5's-

The proof of this lemma follows the same lines as the proof of Lemma 7.3 in

[ J

Consider u; and uy as in Figure 11.3.3 and the function

i

i (a7 T
FO(U) - (wu(_pQ)’ :Uu(al)e*p(ulfu), Y% (up)es? (ulfu))

Notice that, since 0 < p; < pa, we have {—pa,u1, 1} € Dp,™. Therefore, by Propo-
sition I1.3.5, 2" is already defined at these points. We define the fixed point operator

Flp] = F + G o R*P[y], (I1.4.6)
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where the operator R*P is given in (I1.3.13). Since £L(F) = 0, by Lemma I1.4.6, a
solution z" = F[z"] satisfies £z" = R*P[z"] and by construction is the real-analytic
continuation of the function z" obtained in Proposition II1.3.5.
We rewrite Proposition 11.3.6 in terms of the operator F defined in the Banach
space
X)(zut Xout X(iu % Xout

endowed with the norm

out out out + H(ngouf )

lelli™ = o lleallyo + llwallp s

Proposition I1.4.7. There exist dy, k1 > 0 such that, for 6 € (0,0p) and k > K1,
the fized point equation 2" = F|[2Y] has a unique solution 2" € X2". Moreover, there
exists a real constant bys > 0 independent of § and k such that ||2:uHOut < by56°.

We prove this proposition through a fixed point argument. First, we state a
technical lemma, whose proof is postponed until Appendix II.A.2. Fix ¢ > 0 and
define

Bo) = {p e a2 : [lp|%" <o}

Lemma I1.4.8. Fiz o > 0 and let R*P be the operator defined in (11.3.13). For
6 > 0 small enough and k > 0 big enough, there exists a constant C > 0 such that,
for ¢ € B(0d8%),

IR <08 IR <03 j=23,
and,
[0.REPLAIISE < O, [0 RIPIAGT <o, 0,RIPLAIGY < Co.
10.REPIAIE < €5, RSP, <€, 19,R5™IllgY < 05,
10.REPIAIIGS < 6. [0 REPIAISE < C8%  110,REPIAII™ s < C.

The next lemma gives properties of the operator F.

Lemma I1.4.9. Fiz ¢ > 0 and let F be the operator defined in (11.4.6). Then,
for 6 > 0 small enough and k > 0 big enough, there exist constants big,b17 > 0
independent of 0 and k such that

IFTOYIS" < bigd®.
Moreover, for ¢, p € B(063),
out d out out
O |[F1le] = Falellty < bar | =5 lln = @nllig + llwz = @2llgis + llos — Psllos )
b17 o .
I75le] = Fil@lllos < 5 le—@l%™,  for j=2.3.

Proof. First, we obtain the estimates for F[0]. By Proposition I1.3.5, we have that

' (=p2)] < O, |at ()| < CF, |y (ur)| < CF,



120 Chapter I1.4. The perturbed invariant manifolds

and, as a result, [|[F9||9* < C§3. Then, applying Lemmas I1.4.6 and 11.4.8, we obtain

ou out se u se ou
IFIONIE™ < [[FOIST + COIRTPIOITY + C8* S5 IRFI0]5% < C3°.

For the second statement, since F = FO + G o R*P and G is linear, we need to
compute estimates for R%P[p] — R*P[p]. Then, by the mean value theorem,

R[] - R[] [/)Dﬁwﬁw+«1—@ Alds| (0 — @), j=123.

In addition, by Lemmas I1.4.5 and 11.4.8, for j = 2, 3, we have the estimates

C C C
sep out < = sep out < = sep out < =
1R < 50 IRRIPIAIT L < 50 ORI <
Se u C se u C se u C
RPN s < =, BRI < 50 IO,RIPIAIRE < s
We estimate each component separately. For j = 1, we have that
SIRSPIe] - RPN < sup 6] ller — @ullg 10uRIPICIGY
CEB(00%)
+ llp2 — 902||°ut 10 R (C ]Ili’uf; + |3 — </>3H°“t 19, RY*[C ]Hout

Cé
<= ller = @1l5h + C llw2 — 902||Out +C g3 — ¢3H

Analogously, for j = 2,3, we obtain

IR5Pel = RVl < sup [ llon =l IuRFVICI
ce

B(ed?)
+llp2 = G2igd 10:RFPICNGE + les — Bsllo'd 10,RFPICGH
C out
252 H(p - H )
and, using Lemma I1.4.6, we obtain the estimates for the second statement. O

Lemma I1.4.9 shows that, by assuming  big enough, operators F» and F3 have
Lipschitz constant less than 1 with the norm in X2". However, we are not able to
control the Lipschitz constant of ;. To overcome this problem, we apply a Gauss-
Seidel argument to define a new operator

which turns out to be contractive in a suitable ball and has the same fixed points as
the operator F.

End of the proof of Proposition I1.4.7. We look for a fixed point of F. First, we ob-

tain an estimate for || F[0]]|%"*. We rewrite it as

T
FI0] = F10) + (F1[0, [0, F3[0])] - F1[0],0,0) ",
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and we notice that, by Lemma I1.4.9, ||(0, F2[0], F3[0])[|2* < || F[0]|%* < €3, Then,
applying Lemma 11.4.9, there exists constant b5 > 0 such that

IFT0] [ < [|FI0][19™ + [|F1[0, F2[0], F5[0]) — F1[0][1$'s .
QWMM+meWwCWHW“<mw h

Now, we prove that the operator F is contractive in B(b156%). Indeed, by Lemma I1.4.9,
we have that, for ¢, p € B(b156°),

T ou J ou ou ou
S|l File] — Fa[@IgE < <K2 o1 — &1ll7 t+Hf2[<P] Fa[2llg t+Hf3[ | — Fs[2llg t)
Co ou ou ou
<= ller = @llyy + <o — gl < *Hso g%,
T T [,%]||ou u C u .
176 - BRI = 155l - BRI < Sl - g2, forj=2.3.

Then, for k > 0 big enough, we have that H]?[cp] - ,7?[95]”‘;“‘“ <3 Llp — @12 . To-

gether with (I1.4.7), this implies that F : B(b150%) — B(b156°) is well defined and
contractive. Therefore, F has a fixed point 2% € B(b155%). O

11.4.3 Switching to the time-parametrization

In this section, by means of a fixed point argument, we prove Proposition I1.3.7. That
is, we obtain a change of variables U satisfying (I1.3.21), that is

OU = RU]  where R[U] = 0, H;® (v+U(v), 2" (v +U(V))). (I1.4.8)

To this end, we consider the Banach space

yout _ {(p : 15:’2(?3;% — C : @ real-analytic, ||¢|lsup := sup |[U(v)| < oo}.
i
(11.4.9)

First, we state a technical lemma. Its proof is a direct consequence of the proof
of Lemma I1.4.8 (see also Remark II.A.7 in Appendix I1.A.2).

Lemma I1.4.10. Fiz o > 0. Ford > 0 small enough and ¢ € Y°" such that ||¢||sup <
002, there exists a constant C > 0 such that | R[¢]||sup < C6% and || DR[¢]||sup < C62.

Let us define the operators
Glol(v) = / ©(s)ds, and F=GoR, (I1.4.10)
P3

u,out

where p3 € R is the rightmost vertex of the domain D,,c dods (see Figure I1.3.5). Then,
a solution U = F[U] satisfies equation (I.4.8) and the initial condition ¢ (ps) = 0.

Proof of Proposition I1.3.7. The operator G in (11.4.10) satisfies that, for ¢ € Y°ut,

1GT lsup < Cliellsup- (I1.4.11)
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Then, by Lemma I1.4.10, there exists by > 0 independent of § such that
1
1F 0wy < ROy < 5b05% (141

Moreover, for ¢, ¢ € B(b46?) = {p € Y : ||¢|lsup < b46?}, by the mean value
theorem and Lemma 11.4.10,

le = Gllsup < CO?[le> = Gllsup.

sup

HMﬂ—Rmmw=HAUHm¢+u—@@w

Then, by Lemma I1.4.10, (I1.4.11), (I1.4.12) and taking 0 small enough, F' is well
defined and contractive in B(bs6?) and, as a result, has a fixed point U € B(b46?).
It only remains to check that v +U(v) € Dg’logf o, for v e Dz’:;; 4, Indeed, since

U ||sup < b46% and Dzzosz 4, C D", taking ¢ small enough the statement is proved.
0

I1.4.4 Extending the time-parametrization

In this section, we extend analytically the parametrization I'" given in Corollary I1.3.8
from the transition domain D}"3" to the flow domain DR, (see (I1.3.19)).

Since ' satisfies the equations given by H in (11.2.5), F=I"-T, (see (I1.3.22))
satisfies

(0,\ = —3A + OAH (T, +T;6),
AuA = —V’(Ah +A) + V' (\p) — 9 Hi (T, +T36),

Dy 52 = 1 i0,Hy(T) +T50),

Dyy = — 0, Hy(T), + T ),

\ 52

which can be rewritten as £9T = RP[T], where

0 -3 0 0
[y, — (av_Aﬂ(v)) o, Ay ="V (gh(“)) 8 i 8 . (IL4.13)
0 0 0 —%
and
OnHq (T (v) 4 ¢(v);6)
R[] (v) T[(pl]fajﬂl?liil()ri(;zut (g)(v) e (IL.4.14)

with T[gol] = —V/<)\h + 1) + V/()\h) + V”()\h)(pl.
We look for I'" through fixed point argument in the Banach space Xﬂ = (X ﬂ)4,
where

xf = { DK,3 4, — C 1 ¢ real-analytic, el = sup Jo(v)| < oo},

vGDK3 dy
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endowed with the norm

fl fl fl fl fl
el = dllenll™ + dllp2ll™ + llsl” + [leall™

A fundamental matrix of the linear equation & = Afl(v)¢ is

BAh(v) 3fh(v) 0 0
—A — 0 0 v
d(v) = g(v) fg(v) cEv o | With i) = M) / A%Ll(s)ds.
0 0 0 e 5

Note that f5(v) is analytic at v = 0.
To look for a right inverse of operator £ in (I11.4.13), let us consider the linear

operator
gﬂwxm::([:wm@da[:¢x$da[f¢A$da[j¢4@mﬁT,

where vy, v1 and T are the vertexs of the domain DES ds (see Figure 11.3.5). Then,

the linear operator C?[‘P] = ®G[®!¢] is a right inverse of the operator £, and, for
@ € X satisfies

IG1elI + Gl < © (el + leall™) . IG5 LAlIT < €% for j = 3,4.
(I1.4.15)

Next, we state a technical lemma providing estimates for R, Tts proof is a direct
consequence of the definition of the operator in (I1.4.14) and Corollary I1.A.2, which
gives estimates for H}° in (I1.2.1) (see also the change of coordinates (I1.2.3) which
relates H{° and Hy).

Lemma I1.4.11. Fiz ¢ > 0 and consider o € X% with ||| < 063. Then, for § >0
small enough , there exists a constant C' > 0 such that the operator R in (11.4.14)
satisfies

IRTI® IR < €82, RS, 1RGN < €,
DR <o, j,0e{1,2,3,4}.
Denote by ej, j = 1,2,3,4, the canonical basis in R*. Noticing that, by Corol-

lary 11.3.8, the function T' = (A, A, z,y) is already defined at {vg,v1,71} € 52532 dy
we can consider the function

FO(v) = ®(v) [@71(1)0) (5\(1)0)94 + A(fuo)e2> + 2(71)® 1 (T1)es + y(v1) @ (v1)eq| .
Then, since G (F%) = 0, it only remains to check that F = F? 4+ G o RY is contractive
in a suitable ball of X1,

End of proof of Proposition I1.5.9. First, we obtain a suitable estimate for F[0]. Ap-
plying Propositions 11.3.6 and I11.3.7 and using (I1.3.18) we obtain that, for v €

~u,out
K2,d2,d3?

Aw) <08, [A@w)| <08 fa() <C8, y(v)] < CF.
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u,out

Therefore, since {vg, v1,71} € D, s ds

IEOIIS < O8I (vo)| + C3|A(vo)| + C |z(1)| + Cly(v1)| < C°,

and, applying (I1.4.15) and Lemma II1.4.11, there exists b; > 0 independent of § such
that

1
IFO1% < IF°I% + 11 0 RTO][% < 5b56°. (I1.4.16)

Let us define B(b56%) = {p € X8 o) < b50°}. By the mean value theorem and
Lemma I1.4.11, for ¢, € B(b56%) and j = 1,..,4, we obtain

4
u@m—@mwszlam{Mmﬁwhm—mﬂstww
=1 L¢eB®s5%)

Then, by (I1.4.15) and taking ¢ small enough,

2
1Fle) = FlEll% <Cs | > IR el - RE[EN" | + C6°
j=1

4
Y IRl - R?[@]Ilﬂ]

=3
a1 <
<Cdllp - @llx < slle— k-
(11.4.17)

Therefore, by (I1.4.16) and (I1.4.17), F is well defined and contractive in B(b506%)
and, as a result, has a fixed point I' € B(b563). dJ
I1.4.5 Back to a graph parametrization

Now we prove Proposition I1.3.10 by obtaining the change of variables V : IN),.C 1ds — C
as a solution of equation (I1.3.23). This equation is equivalent to V = N[V] with

NAl(0) = g (M )+ () = M) + 38 ()]

We obtain V by means of a fixed point argument in the Banach space

Y= {go : l~),€47d5 — C @ g real-analytic, |¢[lsup == sup [p(u)] < oo}.
“€D~4’d5

Proof of Proposition 11.3.10. Let us first notice that, by Theorem I1.3.1,

C™H < A lsup < C. (I1.4.18)

Since ds < d4 and k4 > k3, we have that 15;-;4,115 C D237d4, (see (I1.3.16) and

(I1.3.19)). Then, applying Proposition 11.3.9, there exists bg > 0 independent of &
such that

1 _ . 1
N0l llsup < S 11CAR) ™ loupll M lsup < 5068

Next, we compute the Lipschitz constant of N in B(bgd?) = {p € Y : lellsup <
bsd?}. By the mean value theorem, for ¢, 3 € B(bgd?) and ¢, = (1 — s)¢ + 5@, we
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have that

”N[(p] _N[Sa]Hsup < s~up

ueD

1
/0 DN . (w)ds| | — @llsup-

Kq,ds

For u € l~),{4,d5 and J small enough, we have that u + ps(u) € D237d4. Therefore, by
Proposition 11.3.9, (11.4.18) and recalling that An = —3Ap,

1 ~
|DN[ps](u)| < 3[An ()] {\&ﬂ\(u + @s(u)| + [An(u + ps(u)) — Ah(“)’} < 06,

and, taking § small enough, [N[¢] —N[@][lsup < [/ —B|lsup- Therefore, the operator
N is well defined and contractive in B(bgd?) and, as a result, has a fixed point
Ve Bbg?). R
Besides, since D, 45 C D237d4, we obtain that u + V(u) € D237d4 for u € Dy, 45
and ¢ small enough.
O
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Chapter II1.5

Complex matching estimates

This chapter is devoted to prove Theorem I1.3.15 which provides estimates for Z}"° =
Z"% — Zy® in the matching domains DEMY and DR given in (I1.3.39). We only
prove the theorem for Zj', being the proof for Zj analogous.

I11.5.1 Preliminaries and set up

Proposition I1.3.12 shows that the Hamiltonian H®°P expressed in inner coordinates,
that is H™ as given in (I1.3.32), is of the form H™ = W + XY + K + Hi™. Then, the
equation associated to H™ can be written as

U=1+g"U,Z2)+g"™U,2),
T ! N (I1.5.1)
Z =AnZ 4 fiNU, Z) + foh(U, Z),
where A" is given in (I1.3.34) and
n — (—9yK,i0y K, —idxK)T, n— 9k,
I = (Z0uk, iy K, ~i0xK) g (I1.5.2)

fmch _ (—8UHin,iaYHin,—iaxHin)T7 gmch _ aWHjlln

Notice that, since (u, 2%(u)) = ¢in (U, Z*(U)) (see (11.3.41)), (U, Z*(U)) is an invariant
graph of equation (I1.5.1). Therefore, Z" satisfies the invariance equation

aUZu — AinZu + Rin [Zu] + Rmch[Zu]’
with R™ as defined in (I1.3.36) and

A + (U, ) + MU, ) 4 -
mch _ __Ain . goin
R™p] = T U) + gl AP R []. (IL5.3)

Similarly Z satisfies the invariance equation 9y Z3 = AZY + R®[ZY] (see Theo-
rem [1.3.13) and, therefore, the difference Z' = Z" — Z§ must be a solution of

du 2t = A ZE 4 B(U) Z + R™1[ 2], (I1.5.4)

with .
BU) = / DyR[(1— )20 + s2°)(U)ds. (IL5.5)
0
The key point is that, since the existence of both Zj and Z" is already been proven, we

can think of B(U) and R™"[Z4](U) as known functions. Therefore, equation (I1.5.4)
can be understood as a non homogeneous linear equation with independent term
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R™M[ZU)(U). Moreover, defining the linear operator £¢ = (dy — A")p, equa-
tion (II.5.4) is equivalent to

LRZNU) = BU)ZXU) + R™M[ZY(U). (IL.5.6)

We prove Theorem I1.3.15 by solving this equation (with suitable initial conditions).
To this end, we define the Banach space X2h = X meh x pmeh 5 pmeh with

el — { . DRBU L, C 1 o real-analytic, || ™" = sup  |[U%p(U)| < oo},
UE'D?CI]’U

mch

+ |lo3 |7

mch | | mch mch

= o1l + llall
Next lemma gives some properties of these Banach spaces.

endowed with the product norm |[|¢||3

Lemma I1.5.1. Let v € [%, 1) and o, 8 € R. The following statements hold:
1. If o € X2N then o € Xémh for any B € R. Moreowver,

IIsOHE“Ch < CRI= |2t for o> B,
Bt < Ca2=B0=D =R for o < 6.

2. If o € X2 and ¢ € XP<h, then ¢ € X2 and | o¢|lnsy < [lel2™ ICIF"

This lemma is a direct consequence of the fact that, as explained in Section 11.3.3.2,
U satisfies

kcos By < |U| < 520 (IL.5.7)

(1= "

Now, we present the main result of this chapter, which implies Theorem II.3.15.

Proposition 11.5.2. There exist v* € [%, 1), ke > max {r1,k5}, 6o > 0 and big > 0
such that, for 7 € (v*,1), k > kg and 6 € (0,8), Z}' satisfies || Z}| 2" < bys 65077

I1.5.2 An integral equation formulation

To prove Proposition 11.5.2, we first introduce a right-inverse of £ = 9y — A™.

Lemma I1.5.3. The operator G"[p] = (Gi*[¢1], G [p2], gén[gpg])T defined as

U U U T
/ 01(9)dS, | e 57U py(8)dS, e’(SU)go;z,(S)dS) , (IL5.8)
Us Us Us

G fol(0) = (

where Uy and Us are introduced in (11.3.40), is a right inverse of L™,
Moreover, there exists a constant C' > 0 such that:

1. Let > 1. If ¢ € X2V, then G"[p] € X2 and |G HmCh <C| ¢ mCh

2. Let a > 0, j = 2,3. If p € X2V then Q]i-n[@] € Xmeh gnd HQ}“[(p]HglCh <
h
Cllelle™ -

The proof of this lemma follows the same lines as the proof of Lemma 20 in
[ ]. Using the operator G, equation (I1.5.6) is equivalent to

Zi(U) = " 1 GN B 21 (U) + (G o R™MZ]) (U),
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where O™l = (Clch Cmach Cmeh)T ig defined as
Cmch Wl (Ug), Cmch iU?’Xl(Ug), Cmch _ eiUQ}/]_(UQ)-

Then, defining the operator T[p](U) = G™ [B - ¢] (U), this equation is equivalent to
(Id — T)Z» = CmehA™U 4 (gin o Rmeh [Zu]) (IL.5.9)

and therefore, to estimate Z, we need to prove that Id — 7 is invertible in X",
Lemma I1.5.4. Let us consider operators B and G as given in (I11.5.5) and (I1.5.8).
Then, for v € [%, 1), k > 0 big enough and 6 > 0 small enough, for ¢ € XN,

ITIAIES = G215 A2 < 5 el

and therefore
(1 = T)7 | 2" < 2 )2t

To prove this lemma, we use the following estimates, whose proof is a direct result
of Lemma 1.5.5 in Part I.

Lemma I1.5.5. Fiz o > 0 and take k > 0 big enough. Then, there exists a constant
C (depending on o but independent of k) such that, for p € X2N with ||g0||r;wh <o,
the functions g™ and f™ in (11.3.36) and the operator R™ in (11.5.2) satisfy

Il <o frcaln e IeelliT <o j=2.3
and

lowRP" <. [laxRYIT" < ¢ [lavRET < c.

o REAIE™ <C. JoxREGE® < ¢ R < ¢, -2

Proof of Lemma I1.5.4. Let Z" be as given in (I1.3.41). Then, by Proposition I1.3.6,
estimates (I1.5.7) and taking v € [2,1), we have that, for U € prehn

4
C Cés C
g T < —=,
s UL s
Then, using also Theorem 11.3.13, we obtain that (1—s)Z}+sZ" € X1 for s € [0, 1]

and v € [2,1) and [(1 — )2 + SZ“||§ICh < C. As a result, using the definition of B
n (IL.5.5) and Lemma II.5.5,

(W) <

XUt <c, yret < c. (IL5.10)
3 3

B3 < C, |8, 2HmCh 1B, 3HmCh

. ||mch ) mch ) mch < for 7 — (I1.5.11)
HBJJH% <C, ||BJQH2 <C, ||Bj,3H2 <, or j =2,3.
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Therefore, by Lemmas I1.5.3 and I1.5.1 and (I1.5.11), we obtain
ITiIIE" < C lm (Be) 7

h h h h h h
< O (1B Joor 17 + 1By a5 ol + 1B 5 sl

4
3
C
Ch<7

C mch C mch C m mch
< S lonl5 + Z ol + = sl < = ol

Proceeding analogously, for j = 2,3, we have

3
C
h h h h h h
I3l < [HBJHTE a5+ > 185l uma‘“] < Z el
=2 R

Taking x > 0 big enough, we obtain the statement of the lemma. ]

I1.5.3 End of the proof of Proposition I1.5.2

To complete the proof of Proposition 11.5.2, we study the right-hand side of equa-
tion (I1.5.9). '
First, we deal with the term C™eA™U . Recall that Uy and Us in (I1.3.40) satisfy

c-1 C ‘
mS‘Uj‘Sm, for j =2,3.

Then, taking into account that Wi* = W" — W', (I1.5.10) and Theorem I1.3.13 imply

¢ _ C5s (=)

§ —

ICH = WU < W (O5)|+ W (U] <
3

and, as a result, by Lemma I1.5.1, [|Ceh|peh < 31, Analogously, for U €
Dmch,u :

K i

CefIm (U-Us3)

CRetet| = |1V X ()] < < 0530

|Us |3

and then ||CRcheiV||meh < O 507, An analogous result holds for Cihe=% . There-
fore,
in 2
|Cmehe A"V meh < 55 (1=), (I1.5.12)

Now, we estimate the norm of G o R™M[Z1]. The operator R™" in (I1.5.3) can
be rewritten as
Rmch[Zu] _ fmCh(l + gi‘n) — gmc%l(Ainzu + fin)
(1 +g1n)<1 +gln +gmch)

Then by (I1.5.10), Lemmas I1.5.1 and I1.5.5 and taking x big enough, we obtain

lom 2™ <

mch

[, 25" < e |=ive 4 ezt <o

mch

Gst i rmemlt <o

IN

(I1.5.13)
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To analyze f™ and g™ (see (I1.5.2)) we rely on the estimates for Hi" in (I1.3.33)
and its derivatives, which can be easily obtained by Cauchy estimates. Indeed, they
can be applied since U € D™ and, by (I1.5.10),

WHO)], XML [YHU)] < C.
Then, there exists m > 0 such that

g™ (U, 2% < Ca5 2= | ey, 79| < 652 for j = 1,2, 3,
(I1.5.14)

We note that, for y € (75, 1) with 75 = max{2, #=2}, we have that 5—2m(1—y) > 0.

3m
Then, for v € (15,1), 6 small enough and s big enough, using (I1.5.13) and (I1.5.14)
we obtain
IRPD[ZY(U)| < €852 for j=1,2,3.
Then, by Lemmas I1.5.1 and I1.5.3,
1g7 0 RPMZEL = 1G1 0 RYP(ZY ™ + S, 1G5 0 RY 2

. 4_9(m+I)(1—
< OIRPMZNE® + 5 CIRPD 20 < oo (m3) 0,

If we take v* = max{%,'yg,'y’f} with 77 = g%i?, and v € (v*,1),

G o RMHZV 2 < CoR. (I1.5.15)

To complete the proof of Proposition I1.5.2, we consider equation (I1.5.9). By Lemma
11.5.4, (Id — T) is invertible in X" and moreover

mch

|23 = H(Id ! <CmcheAinU 1 gino Rmch[ZuD

X

X
mch

< 9 Hcmche.Ai“U + gin o Rmch[Zu]

X

Then, it is enough to apply (I1.5.12) and (I1.5.15).
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Appendix II.A

Estimates for the invariant
manifolds

In this appendix we prove the technical Lemmas 11.4.4 and 11.4.8. All these results
involve, in some sense, estimates for the first and second derivatives of the Hamil-

tonian H;’ in (I1.3.9). However, to obtain estimates for H;°", we first obtain some

properties of HP°! (see (I1.2.2)), which can be written as

HYol = ;P[O] - 1;“73[;4] — Plp— 1], (ILA.1)

where

PIIOL0.€) = (la = (607 ) © b (ILA2)

In Section I1.4.1, we computed the series expansion of P[(] in powers of (n,&). In
particular, P[(] can be written as

1

N RN (A3
where A and B are of the form
A[C](N) =1 — 2Ccos A + ¢, (IT.A.4)
BICJ\ L1, €) =4(L — 1)(1 — Ccos ) + % (3¢ — 267 — cem2) .
+ \% (3¢ = 2¢™ = ¢e®*) + RICI(A, Ly, ), o
and, for fixed o > 0, R is analytic and satisfies that
IRICI(N, Ly, §)| < K () |(L—1,m,9)?, (ILA.6)

for |Im)‘| <o |(L - 177775)‘ < 1 and C € [_171]'
Then, wherever [A[CJ(\)] > [BICI(A, Ly, )], PICIOA, Ly, €) can be written as

_ L NS () B

Remark I1.A.1. The Hamiltonian HY* = HE4+-pHE (see (11.2.1) and (IL.A.1)) is
analytic away from the collisions with the primaries, that is zeroes of the denominators
of Plu] and Pl —1]. For 0 < pp < 1, one has

Alpl =14 O(n), Alp—1] =24 2cos A+ O(p).
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Therefore, in the regime that we consider, collisions with the primary S are not

possible but collisions with P may take place at A ~ .
We now obtain estimates for H}°' in domains “far” from A = .

Lemma II.A.2. Fiz Ao € (0,7) and po € (0,3) and consider the Hamiltonian Hf°!
and the potential V introduced in (I1.A.1) and (I1.2.4), respectively. Then, for for
IA| < Xo, [(L—1,1,8)| < 1 and p € (0, o), the Hamiltonian HY' can be written as

HYOM (A, Ly, &) = V() =Do(p, A) + D, A) (L = 1),m,€) 4+ Da(X, Ly, & ),
such that, for j =1,2,3,
’DO(H7>‘)|SKM’ ’(Dl(/“’l'7)\))]|§K7 |D2()\,L,77,£,,LL)‘§K|(L—1,77,£)|2,

with K a positive constant independent of A and p.

II.A.1 Estimates in the infinity domain

To prove Lemma I1.4.4, we need to obtain estimates for R*P and its derivatives. Let
us recall that, by its definition in (I1.3.13), for z = (w,z,y) we have

se se ir se se W se T
Revp = [ SiT02) ST = G2 S+ 2 )
1+g*(,2) 1+ g*°P (-, 2) 1+ gsep (-, 2)
(ILA.8)

where ¢*°P = 9, H{* and [P = (-9, H]", 10, H]", —i@xHTEP)T.
Therefore, we need to obtain first estimates for the first and second derivatives of
Hi?| introduced in (IL.3.9), that is

Se ‘/L'y
Hl p — H ] (¢eq o d)sep) - (’LU + ﬁ) 3 (IIAQ)

where H = Ho + H; with Hy = Hy, + Hose (see (11.2.5), (I1.2.9)).
Since (Ap, Ap) is a solution of the Hamiltonian Hj, and belongs to the energy level

Hp:_%v
Hy o ¢sep = H, )\(u)A(u)—iw + Hose( ‘5)——1-1-10— v + 2
0 sep — {1p h [avy. 3Ah(u) osc\ L, Y;0) = B GA%(U) 52

Therefore, by (II.A.9), the Hamiltonian H{*" can be expressed (up to a constant) as

w2

Hiep = M (¢] (Z)sep — m, (IIAlO)

where
M()UAax?y; 5) = (H © (beq)()\uAaxay; 5) - HO()UAax?y)'

In the following lemma we give properties of M.
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Lemma II.A.3. Fix constants 0 > 0 and Ao € (0,7). Then, there exists 5o > 0 such
that, for § € (0,00), |A| < Ao, |A| < 0 and |(x,y)| < 00 , the function M satisfies

|O\M| < C8% |(A\, )] + Cd (2, )] |02 M| < COI(A A, 2, y)]
OAM| < C8 (A, M)| + Cd (2, y)] , |0y M| < Co (A Az, 9)]
and
‘8§M‘ ) |8)\AM’ ’ ‘8/2&M‘ < 0(527 |82jM| < 051 f07’ 1] € {)‘7‘/\7337?/} .

Proof. Applying ¢eq (see (I1.3.3)) to the Hamiltonian H = Hy + Hy, we have that

M:(Hoogbeq*HO)‘FHlo(beq

3 (ILA.11)

Then,

‘&LJM’ § ‘(%Hl()\,/\ + 52/8/\,1' + (ng,y + 521,,5)‘ s for i,j c {)\,A,i’,y} .

(ILA.12)

Since [A| < gand |(z,y)| < o0, then |[A + 62€,5| < 20 and |(x + 63L,,y + 63L,)| < 206,
for § small. By the definition of H; in (I1.2.7) we have that,

oi 1
H1<)\,A;$,y§ 5) = Hf’ (Aa 1+ (52‘/\7 53775%54) - V()‘) + 574Fp(62A)7

where HF°! is given in (I1.2.2) (see also (I1.2.3)), V is given (I1.2.4) and F, is given
(I1.2.8) and satisfies F,(s) = O(s%). Since ‘(52A,5m,5y)‘ < 206% < 1, we apply
Lemma II.A.2 (recall that § = ui) and Cauchy estimates to obtain

|02H, | |Oan Hn |,

O3 H1| < C8, |0, H1| < C8, fori,j € {\A,z,y}. (ILA.13)

Then, (II.A.12) and (II.A.13) give the estimates for the second derivatives of M.
For the first derivatives of M, let us take into account that, by Theorem II1.3.1,
0 is a critical point of both Hamiltonians (H o ¢eq) and Hy and, therefore, also of
M = (H o ¢eq) — Hp. This fact and the estimates of the second derivatives, together
with the mean value theorem, gives the estimates for the first derivatives of M. [

End of the proof of Lemma II.4.4. Let us consider ¢ = (pu, ¢z, py)] € X such
that [|¢]|% < 063, We estimate the first and second derivatives of H{" evaluated at
(u, p(u)) (recall (II.A.8)), given by

U 2 (u
HTQP(U,QP(U)Q(S) =M <)\h(u),Ah(u) — ?:iiﬂh((qj)’(px(u),@y(u); 5) . Pw(u) _
First, let us define

oxa(u) = Ap(u),  oau) = Ap(u) — ?f{”h((lg) and @ = (px, A, Pz, y)-
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Since [l¢[|% < 06% and A, Aj € X3° (see (11.4.2)),

lpwlzy <C8% lleall2 eyl < C8% leally s llpally < €. (ILA.15)
Moreover since, by Theorem I1.3.1, A, (u) # 7 for u € D™, we have that
loa(u)| = ()] <7, lea(u)] < Ce ™ < O, [(pa(u), py(u)| < C&?7 < CF°

and, therefore, we can apply Lemma II.A.3 to (II.A.14). In the following computa-
tions, we use generously Lemma I1.4.1 without mentioning it.

1. First, we consider ¢°" = 9,H;". By (II.A.14), we have that

CMod()  pulw)
3An(u) 3A2 (u)’

9> (u, p(u)) =

Notice that, by Theorem I1.3.1, [Ay(u)| > C for u € Dp;>. Then, [|A;1]|>, < C.
Therefore, by Lemma II.A.3 and estimates (II.A.15), we have that

lg™P @)l <C0 | lloally” + alleally” + lleally” + eyl

(I1.A.16)
+C lpulls, < C82.

To compute its derivative with respect to w, by (II.A.14), we have that

O3 M o ®(u) 1
Qg™ (u, p(u)) = A - )
9A? (u) 3A2 (u)
and, by Lemma IT.A.3 and estimates (IL.A.15), [|0,6%P (-, )], < C. Follow-

ing a similar procedure, we obtain [|0;g°P (-, )[|Z, < €6 and [|9yg°P (-, )| =, <
Cs.

2. Now, we obtain estimates for f{¥ = —9,H;". By (II.A.14), we have that

Ah(u) 2

P p(u) =~ An(u)OrM o ®(w) — T ()

_ (Ah(u) v SAA%((“J) gow(u)> OAM o D (u).

Then, since A, Aj, € A2, by Lemma I1.A.3 and estimates (IL.A.15), we have
that [[fy(, 0)ll3, < C§2. To compute its derivative with respect to z, by
(IL.A.14),

Ah (u)
3A2(u)

&uffep(u, SO(U)) =— )\h(u)@)\M o <I>(u) — (Ah(u) + Sow(u)) OupaM o <I)(u)

and, therefore, |0, f{"(-, gp)||zO < (6. Similarly one can obtain ||, f7 (-, ) ||y~ <
Co% and |9, ;% (-, )57 < Co.

3. Analogously to the previous estimates, we can obtain bounds for f5* = i0, H"
and 3% = —i0, H)™". Then, for j = 2,3, it can be seen that || f;"(-, ¢)[|5° < C9,
and differentiating we obtain Hawf;ep(-, )=, <06, ||8zf;ep(', o)lle° < C6 and

10y 5 (- )IF° < .
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Then, by the definition of R*P in (II.A.8) and the just obtained estimates, we com-
plete the proof of the lemma. O

II.A.2 Estimates in the outer domain

To obtain estimates of R*P, we write H;" in (IL.3.9) (up to a constant) as

w2

6A (u)

Hi® = Hj 0 peq © Psep — +0(zLy +yLy) +36%Lx <Ah(u) R ) ,

3Ah(u)

(see (II.A.10) and (II.A.11)). Then, by the definition of H; in (I1.2.7), we obtain

. 1 52w
se Poi 2 4
H | S (H — V) (@] ¢)SC o ¢eq O Qbsep + 674Fp <(5 Ah(u) — 3Ah(u) + 6 ;SA)

2

w 9 w
. . M) - ).
GA%(U) —|—5(x£y+y2 )+35 £A< h(u) >

3Ah(u)

where HT°! is given in (II.A.1), the potential V in (I1.2.4) and F}, in (I1.2.8). The
changes of coordinates s, eq and ¢sep are given in (I1.2.3), (I1.3.3) and (I1.3.4),
respectively.

Considering z = (w, x,y), we denote the composition of change of coordinates as

()‘7 L,n, f) = @(ua Z) = (Qbsc © ¢eq o ¢sep)(u7 Z) (II-A'17)

Then, since u = §%, the Hamiltonian H 1P can be split (up to a constant) as

H™® = Mp + Mg + Mg, (II.A.18)
where
1
Mp(u,z;0) =— (P[0* —1] - ——— ) 0 O(u, 2), 11.A.19
p0) = (PO = 1= o) o, (.A19)
1 16
Mg (u,2;0) = <5473[0] - 545 P64 — 1 + cos )\> 0 O(u, z), (IT.A.20)
2 w

. (ILA.21)

l 2 _ 4
+ i (5 An(w) = gy +9 s:A),

and P is the function given in (IT.A.2).
To obtain estimates for the derivatives of Mp, Mg and Mg, we first analyze the
change of coordinates © in (IT.A.17). It can be expressed as

O(u, 2) = (w +Ox(w),1+ O (u,w), O,(x), eg(y)), (IL.A.22)

where

Ox(u) = Mp(u) —m, 0,(z) = dx + 6*£,(9),
5w

Or(u,w) = (52Ah(u) — AL ()

F6LA(0),  Oc(x) = oy + 54, (6).
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Next lemma, which is a direct consequence of Theorem I1.3.1, gives estimates for this
change of coordinates.

Lemma II.A.4. Fiz 9 >0 and § > 0 small enough. Then, for ¢ € B(0d%) C A2,
I0xllg%2 < C, 0L, @)llo1 < Co%, 104, 9)llgs < C°,
_ out ou ou
1Ox gz < € I1+60L(. 9o < C. 18, ) llg4 < Ca.

Moreover, its derivatives satisfy

[0 @AII‘)“t <C, 10uOL(, )||°“t <C8%  0uOL( )||°“t1 < 082,
10u©rL(, )||°ut < ¥, 0.0, 0,0¢ = 0, ai@L,a%n,a;eg =0.

In the next lemma we obtain estimates for the derivatives of Mp.

Lemma II.A.5. Fiz o > 0, 6 > 0 small enough and k > 0 big enough. Then, for
¢ € B(06%) and * = z,v,

[0uMp (-, @)IITY < C%, [0uMp(-@)ITE2 < CO% 0 Mp(- )5t < C,

out

10w Mp (- @)ITS < O, 0uMp ()l < C3, (|05 Me(9)|[gs < COF,

Hout

10uws Mp (-, 9)llgs < CO°, |07 Mp(:, < 0o, H@acyMP(-,cp)\lout < 0o

Proof. We consider ¢ € B(p6%) C X2 and we estimate the derivatives of P[6* —
1] 0 O(u, p(u)). We first we obtain bounds for A[6* — 1] and B[6* — 1] (see (I1.A.4)
and (II.A.5)). To simplify the notation, we define

A(u) = A[6* = 1)(7 + O, (u)), B(u,z) = B[§* — 1] 0 O(u, 2). (II.A.23)

In the following computations we use extensively the results in Lemma I11.4.5
without mentioning them.

1. Estimates of A(u): Defining A = A\ — &, by (ILA.4),
A[6* = 1] (A +7) = 2(1 — cos A) — 264(1 — cos \) + 0°.

Then, applying Lemma II.A .4,

[sin@x§2: < ClOAEE: <€, (1 —cos) Mok < Cfl037|5s < ©
and, as a result,
||Z—1||°uf < C||(1 = cos @A>—1;|g“: <c,
(I1.A.24)

10w A\Iout; < Cllsin@, 522 2u01]5% <
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2. Estimates of B(u, ¢(u)): Considering the auxiliary variables (A, A) = (A—m, L—
1), we have that
Bl —1](m+ A\ 14+ A, 1, &) =4A(1 — cos A + 6% cos \)
n —iX | =2k 54 —2iX
+ —=(—3+2e"" +e +46°(3+e
ﬂ( ( )

+ %(—3 + 261 4 €22 4 §4(3 + €2Y))
+ R[5 = 1)(m+ A\ 1+ A, n,€).

(ILA.25)

Then, by the estimates in (II.A.6) and Lemma I1.A 4,

o ou C ou
IB(-, )Ilout2<CH@L CH P ' ﬁll@( DEN:

ou out
+ ? ||@£(7S0)@)\”0 2t + 5 52 H ®L7®n7 65 H < 052
(I1.A.26)

Now, we look for estimates of the first derivatives of B(u, ¢(u)). By its definition
in (II.A.23) and the expression of © in (II.A.22), we have that

8,B = [0\B[6* — 1] 0©0] 8,05 + [0 B[6* — 1] 0 0] 8,01,

8B = [0rB[¢* — 1] 0 0] 8,07, (I1.A.27)

8B = [0,B[6* —1]00]8,0,,  9,B= [0:B[5"* —1]00] 9,0:.

l

Differentiating (II.A.25) and applying Lemma II.A .4,

[3BI* 110 00,74 <CIOL(- DO + 5 04,

+§md>wwcﬁqw

ou C
roletel+ S <e

louBls* —1]0 0, 97"y <C 311524 +

lo.Bls* - »P%<m@um2+9<c for + = €.

Then, using also (II.A.27) and taking % = z, vy,

[0uB( @)lISy < C8% |0wB( @)l s < C8% ||OuB( )5 < CO.
(I1.A.28)

Analogously, for the second derivatives, one can obtain the estimates
10w BC Py < OF, 1EBC QIR < 8", 10w BC. I3 < b

||f9w*§(',<ﬂ)!\8?f% <O, |02B(-, )0 < €82, [|0myB(,9) |38 < Co%.
(IL.A.29)

Now, we are ready to obtain estimates for Mp(u, ¢(u)) by using the series expansion
(IILA.7). First, we check that it is convergent. Indeed, by (II.A.24) and (II.A.26), for
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u € Dzeg’u and taking x big enough we have that

~ C
< [IB(, )IIO“t4||A g < 2(52|13( Pt < 5 <L

Therefore, by (II.A.3) and (II.A.19),

. 1 |B(u, p(u))|

Mp(u, N Ry R

| Mp(u, p(u ‘\/A o —1](Mn(u) /24 2cos A, (u) [A(u)[2
(ILA.30)

Then, to estimate Mp and its derivatives, it only remains to analyze the u-derivative
of its first term. Indeed, by the definition of A[§* — 1] in (IL.A.4).

out

< cst. (IT.A.31)

4
0,3

1 1
<\/A 4 — 1M (u)) - \/2+2COS)\h(u)>

Therefore, applying estimates (I1.A.24), (I1.A.26), (II.A.28), (II.A.29) and (II.A.31),
to the derivatives of Mp and using (II.A.30), we obtain the statement of the lemma.
O

Analogously to Lemma II.A.5, we obtain estimates for the first and second deriva-
tives of Mg and Mp (see (II.A.20) and (IL.A.21)).

Lemma II.A.6. Fixz o > 0, § > 0 small enough and k > 0 big enough. Then, for
© € B(06%) and * = z,y, we have

10uMs (-, )llgs < €62, [|0wMs (- @)lgts < C6% [0 Ms ()5 < C9,
10w Ms (- Q)5 < C8%,  10uMs( )5 < €6, |07, M, H"‘% < 04,
100 Ms (-, @) [§2 1 < C8%, [|02Ms (-, 9) o < C8 (100 Ms (-, 0)I55 < €8

and
10uMR (- ITY < C8, 10wMR (@)} < C8%, 110.Mr( ¢)llgg < C9,
10uw M (-, IS < €67, OuMr(-9) =0, ||OMr( )02 <C,
Ouw MR(+, ) =0, OZMR(-, ) =0 OuyMR(-,¢) = 0.

End of the proof of Lemma I1.4.8. We start by estimating the first and second deriva-
tives of H{""(u, p(u);d) in suitable norms. Recall that by (IL.A.18), HY® = Mp +
Mg + Mp. Therefore, taking ¢ € B(p8%) € X2 and applying Lemmas II.A.5 and
11.A.6:

1. For ¢°P = 9,,H;*" one has

Hgsep( (P)H??j% < ”ﬁwMP( )Hout +C ||(9st( )Hout1 + ||8wMR( )Hom
<Cs?

and, in particular, for x big enough

lg*P (L )ll5G < Cr* < L. (I1.A.32)
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Analogously, [|0wg*P(-,9)[0" 2 < C and [|9.g°P(-, ) |0 < C&°, for x = z,y.
T3 '3

2. For fi = —0,H|*", one has that
PRI < 10,0 )55 +CI0Ms (. 0I5+ [0MAC. I < O

100 i (L @)ITE < C8% and [0S (,@)g < C6,  for x = z,y.
3. For f3 =0, H{*® and f3® = —id,H,"", we can obtain the estimates

12050055 <110y Mp(, )l + Cll0yMs (-, ) + Mr(-, )5y < €,
||f3(~,<,0)||°ut < ||<9acf\4p(~,s0)||°“t +C0:Ms (-, ¢) + . Mg(- ¢)ll5 < C6.
(ILA.33)

Analogously, we have that [|0,, f;" (-, )H‘mt < 08 and |0, £3 (-, )1y < €&,
for j =2,3 and * = z,y.

Joining these estimates and taking x big enough, we complete the proof of the
lemma. O

Remark I1.A.7. Note that that DE Ost ds C Dsep’ and Yo C AP (see (11.4.9) and

(I1.4.5) ). Then, the proof of Lemma U4 10 is a direct consequence of the estimates
for ¢*® and its derivatives in Item 1 above and the fact that, by (11.3.11) and (11.4.8),

R[U](v) = 0 H™® (v +U(v), 2" (v + U(€))) = ¢*P (v + U(v), 2" (v + U(v))).
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Appendix I1.B

Estimates for the difference

In this appendix we prove Lemmas 11.3.16 and 11.3.19.

II.B.1 Proof of Lemma 11.3.16

First, we prove the estimates for the operator T given in (I1.3.27). For o € [0, 1], we
define z, = 02" + (1 — 0)2° with 2z, = (ws, Z4,Ys)’. Then, by Theorem I1.3.3, for
u € D, 4, we have that

< oo 20 ()], g0 ()] < — SO

(ILB.1)

|we (u)

Recalling that H*P = w + 5§ + H{" (see (I1.3.8)), one has

T1(u) — 1] < sup |0wH{™ (u, 26(u))|,
c€l0,1]

o)l < W00 sup (9. H5 0,20 ()
o€[0,1]

|0 (u))|
52

T3(u)| < + sup |0y H}™ (u, 20 (u))] -

o€l0,1]
Then, by (I1.B.1) and applying (II.A.32) and (I1.A.33) in the proof of Lemma I1.4.8

we obtain the estimates for T1, T2 and T3.
We also need estimates for the matrix B! given in (I1.3.26), which satisfies

BE ()] < sup |(D:RP[zo])(u));)
’ o€l0,1] ’
for zo = 02"+ (1 —0)2°. Then, by (II.B.1) and applying Lemma I1.4.8, for u € Dy, 4,

cd co

spl ~opl

S NS
u u

~ C Cs? ~ Cs?

821)21(“) < T+ ) B3p21(u) < —

’ 2 + A2|3 lu2 + A2)? ’ lu2 + A2J?

~ C6? ~ C Cs?

BRw)| < ———3, BR(w)| < .
lu2 + A2| lu2 + A25  |u® + A2

(ILB.2)
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Then, by (I1.3.54) and taking ~ big enough,

2
slt| < [ |Bl| < <
— 21( ) = ‘U2—|—A2|27
spl »spl |T3(u)| s 1 062
Bia(u )‘ < 32173(“))+ O RIE [u? + A2

and analogous estimates hold for B;f)ll and 83?21.

Finally, we compute estimates for By (u) (see (I1.3.45)) and u € Dy, 4. The esti-
mates for B,(u) can be computed analogously. Let us consider the integration path
pr = Uy + (u — uy)t, for t € [0,1]. Then

u) = exp ( / B (o) (u u*>dt> .

Using the bounds in (II.B.2), we have that

1 2
| 5
|logBy(u)|§C|u—u*|/ ] <
0 |p2+ 25 |pf + A2

which implies C~! < |B,(u)| < C.

II.B.2 Proof of Lemma I1.3.19

We only give an expression for By(uy). The result for B,(u_) is analogous. First,
we analyze Bg%

Lemma II.B.1. For 6 > 0 small enough, x > 0 large enough and w € Dy q, the
function BSpl defined in (11.3.26) is of the form

4
Bi(u) = — 5 An(u) + 8°m(u: ),
for some function m satisfying

C
mu: )| < ———
(s 0) <

Proof. Let us define 2z, = 72" + (1 — 7)2° and recall that, for v € D, 4,

Bg 3 / 8 Rsep 27— )d (H.B.3)

sep

Then, by the expression of R3" in (II.A.8), the estimates in the proof of Lemma
I1.4.8 (see Appendix I1.A.2) and Theorem I1.3.3, we have that

se T e _
Oy Ry 2] (u) = 529 P(u, zr () + 6°m(u; 6),

where |m(u;0)| < ﬁ. In the following, to simplify notation, we denote by m(u; J)

any function satisfying the previous estimate. Since g°° = 9,,H;°", by (IL.A.18) one
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has
G (u, 2 (1)) = D Mp(u, 27 ()3 6) + 0 M, 27 ()3 6) + 9 Mp(u, 2, (); 9,

with Mp, Mg and Mg as given in (II.A.19), (II.A.20) and (II.A.21), respectively.
Then, taking into account that Fj,(s) = 223 + O(z*) (see (1.2.14)) and following the
proofs of Lemmas II.A.5 and I1.A.6, it is a tedious but an easy computation to see
that,

9*P(u, 2z (u)) = 0wMp(u,0,0,0;0) + OywMg(u,0,0,0;0)
we(uw) §2L5(0)
3A7 (u) Ap(u)

— 262 Ay (u) + 84 (u; 6),

and, by (II1.B.3),

1

Bs3(u) = = [0 Mp(u,0,0,0;0) + Oy Mg (u,0,0,0;8)]

wh(u) +ws(u) . La(5) ’ o (I1.B.4)
R A ()T OmO0)

Next, we study the terms w"*(u). Since H*P = w + 5§ + Mp + Mg + Mg (see
(I1.3.8) and (II.A.18)), one can see that

H5P (u, 2%(u); 6) = H*P(u, 25(u);6) =  lim  H%P(u,0,0,0;6) = 61K (6),

Reu—do0
with |K(0)| < C, for § small enough. Then, by Theorem I1.3.3, for ¢ = u,s,
<& <& & < 054
|w®(u) + Mp(u, 2°(u); §) + Mg(u, 2°(u); 8) + Mr(u, 2°(u); )| < ——.
|u? + A2|3
Again, following the proofs of Lemmas II.A.5 and II.A.6, one obtains

4
lw® () + Mp(u,0,0,0;8) + Ms(u, 0,0,0:8) + 62An(u) (3 + 202 (w)] < — 0

T 2 + A2]3

and, by (I1.B.4),

_ 4i i Mp(u,0,0,0;
8373(11) = - gAh(U) + ? |:8U)MP(U) 07 07 07 5) + P(SA%(U) ):|
) Mg(u,0,0,0;06)

+ 55 [ast(u, 0,0,0;0) + } + 6%m(u; 6).

307 (u)

Therefore, it only remains to check that

M 0,0,0;0 st
8u)MP,S(U,0,0’O;6)+ P,S(u7 » Uy Uy )’ <

32w | g A2
Indeed, by (II.A.7) and the definition (II.A.19) of Mp, one has

52w

Mp(,,0,0:6) = Mp (u Al = g1+ 54>:A<6>) |
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where Mp(u, A) is an analytic function for u € D, 4 and |A| < 1. Moreover, following
the proof of Lemma II.A.5, there exist ag and a; such that

Mp(u, A .5 o)A < A
(Mp(u,A) — ag(u; 0) — a1 (u; §)A| < m,
with o5 c
lao(u;0)]| < ———,  |ar(w;d)| < ———.
|u? + A2|3 |u? + A2?|3
Therefore,
Mp(u,0,0,0;8)| _ |ag(u)| = LA (8) |as(u)] cs*
8’LUMP(u707070;5) + S + +
3A,%(u) 3A%(u) 3A,%(u) lu? + A2\2
Cot
T u2 A2
An analogous estimate holds for Mg. O

End of the proof of Lemma 11.3.19. By Lemma I1.B.1 and recalling that uy = iA —
K62,

u | 44 1A
log By(us) = [ Bfiwdu =73 [ Ay
" i " (ILB.5)
+ 3 Ap(u)du + 62 / m(u;9).
Uy u*

Then, by Theorem II.3.1 and taking into account that x = k. |logd| (see Lemma
11.3.18), we obtain

C5? < C
lue —iA| ~ |logd|

Wl

< = 4 Ck363 +

- rtA
log By (u4) + i%;/ Ap(u)du %

Finally, recalling that A, = —3Ay,, applying the change of coordinates A\ = Ay (u) and
using that A\, (iA) = 7, we have that

4i (1A 4i [T 4i
— [ Ap(w)du=—— A= —— (7 — An(uy)).
3 S ) 9 ) 9 (

Joining the last statements with (II.B.5), we obtain the statement of the lemma. [
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Part 111

Homoclinic reconnections and
chaotic dynamics
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Abstract

The Restricted 3-Body Problem models the motion of a body of negligible mass
under the gravitational influence of two massive bodies, called the primaries. If the
primaries perform circular motions and the massless body is coplanar with them, one
has the so called Restricted Planar Circular 3-Body Problem (RPC3BP). In synodic
coordinates, can be modeled by a two degrees of freedom Hamiltonian system with
five critical points, L1, .., L5, called the Lagrange points.

The Lagrange point Lg is a saddle-center critical point, which is collinear with
the primaries and beyond the largest one. When the ratio between the masses of
the primaries y is small, the modulus of the hyperbolic eigenvalues are weaker, by a
factor of order /i, than the elliptic ones. Due to the rapidly rotating dynamics, the
1-dimensional unstable and stable manifold of L3 are exponentially close to each other
with respect to /. In Parts I and II the authors provided an asymptotic formula for
the distance between these invariant manifolds for small ratios of the mass parameter.
This result relies on a Stokes constant which we assume that is non zero. In this part
and under this assumption, we study different chaotic and homoclinic phenomena
occurring in a neighborhood of L3 and its invariant manifolds.

The first result concerns the existence of 2-round homoclinic connections to L3,
i.e. homoclinic orbits that approach the critical point 2-times. More concretely, we
prove the existence of 2-round homoclinic orbits for a specific sequence of mass ratio
parameters. The second result studies the family of Lyapunov periodic orbits of L3
with Hamiltonian energy level exponentially close to that of Ls. In particular, we
show that there exists a set of periodic orbits whose unstable and stable manifolds
intersect transversally. By the Smale-Birkhoff homoclinic theorem, this implies the
existence of chaotic motions (Smale horseshoe) exponentially close to L3 and its
invariant manifolds. In addition, we also show the existence of a generic unfolding of
a quadratic homoclinic tangency.
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Chapter III.1

Introduction

The understanding of the planetary motions, and in particular of its stability or
instability, has been a fundamental field of study in the last centuries. A significant
model to approximate and understand the motions of different celestial bodies is the 3-
Body Problem and its various simplified models. Indeed, since Poincaré (see | D,
one of the cornerstone problems of dynamical systems has been to understand how
the invariant manifolds of the different invariant objects (periodic orbits, invariant
tori) structure the global dynamics of the 3-Body Problem.

The Restricted Circular 3-Body Problem models the motion of a body of negligible
mass under the gravitational influence of two massive bodies, called the primaries,
which perform a circular motion. If one also assumes that the massless body moves
on the same plane as the primaries one has the Restricted Planar Circular 3-Body
Problem (RPC3BP). Let us name the two primaries S (star) and P (planet) and
normalize their masses so that mg =1 — p and mp = p, with p € (O7 %] Choosing
a suitable rotating coordinate system, the positions of the primaries can be fixed at
gs = (1,0) and gp = ( — 1,0) and then, the position and momenta of the third
body, (¢, p) € R? x R?, are governed by the Hamiltonian system associated to the two
degrees of freedom Hamiltonian

h(g, p; ) = ho(g,p) + ph1(g; 1) (IIL.1.1)

where

p||? 0 1 1

oy L (1—p) p
W) = g T O Tl — e - L0
Note that this Hamiltonian is autonomous and the conservation of h corresponds to
the preservation of the classical Jacobi constant.
For 0 < p < 3, it is a well known fact that (IIL.1.1) has five critical points,
usually called Lagrange points. On an inertial (non-rotating) system of coordinates,
the Lagrange points correspond to periodic dynamics with the same period as the two
primaries, i.e on a 1:1 mean motion resonance. The three collinear Lagrange points,
L1, Ly and Ls, are of center-saddle type whereas, for small u, the triangular ones, Ly
and Ls, are of center-center type (see, for instance, | D).
Due to its interest in astrodynamics, a lot of attention has been paid to the
study of the invariant manifolds associated to the points L and Ly (see [ ;
; ]). The dynamics around the points Ly and L has also been
heavily studied since, due to its stability, it is common to find objects orbiting around
these points (for instance the Trojan and Greek Asteroids associated to the pair Sun-
Jupiter, see | : : ]). Since the point L3 is located “at the other

(I11.1.2)
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L5
Lo
Ly Ly )
oo . v
0 _________________________
L4

FI1GURE III.1.1: Projection onto the g-plane of the Lagrange equilib-
rium points for the RPC3BP on rotating coordinates.

side” of the massive primary, it has received somewhat less attention. However, the
associated invariant manifolds (more precisely its center-stable and center-unstable
invariant manifolds) play an important role in the dynamics of the RPC3BP since
they act as boundaries of effective stability of the stability domains around L4 and L

(see [ ; ]). The invariant manifolds of Lg are also relevant in creating
transfer orbits from the small primary to Lz in the RPC3BP (see | ; )
or between primaries in the Bicircular 4-Body Problem (see [ ; 1.

Over the past years, one of the main focus of the study of the dynamics “close”
to L3 and its invariant manifolds has been the so called “horseshoe-shaped orbits”,
first considered in | |, which are quasi-periodic orbits that encompass the critical
points Ly, L3 and Ls. The interest on these types of orbits arise when modeling the
motion of co-orbital satellites, the most famous being Saturn’s satellites Janus and
Epimetheus, and near Earth asteroids. Recently, in [ |, the authors have proved
the existence of 2-dimensional elliptic invariant tori on which the trajectories mimic
the motions followed by Janus and Epimetheus (see also | ; ; ;

; ; ; ; D

The aim of this work is different, rather than looking at stable motions “close
to” Ls as | ], the goal is to look for homoclinic and chaotic phenomena arising
from L3 and its invariant manifolds. Being far from collision, these dynamics are
rather similar to that of other mean motion resonances which play an important
role in creating instabilities in the Solar system, see for instance [ ]. On the
contrary, even though the points Ly and Lo are saddle-center, the analysis of their
associated dynamics is quite different since they are close to collision with the primary
P for small values of pu.

The results presented here (see Section I11.1.2) heavily rely on the previous works
in Parts I and II. Their objective was to prove the breakdown of homoclinic con-
nections to Lg for small values of the mass ratio u > 0. In particular, to give an
asymptotic formula for the distance between the 1-dimensional stable and unstable
invariant manifolds (at a first crossing with a suitable transverse section). Before
presenting the main results of this part, in the next section, we state the main result
given in Parts I and II, (see Theorem II1.1.1 below).
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0.5F

051

FIGURE III.1.2: Projection onto the g-plane of the unstable (red) and
stable (green) manifolds of Lg, for ;1 = 0.0028.

I11.1.1 The distance between the invariant manifolds of

Ls
The critical point L3 (see [ | for the details) satisfies that, as p — 0,
. )
(q17q27p17p2) = (d,uv 07 07 d,u)a with d,u =1+ oM + O(IU’3) (11113)

12

Moreover, the eigenvalues of the Lagrange point Lg satisfy that

Spec = {=£/1i peig (11), i weig (1)}, with { peig (1) = \/% +O(w), (I11.1.4)
weig(p) = 1+ g + O(1?),

as ;1 — 0 (see [ ). Therefore, L3 has a one-dimensional unstable and stable
manifolds, which we denote as W"(L3) and W#(L3). Notice that, due to the different
size in the eigenvalues, the system posseses two time scales which translates to rapidly
rotating dynamics coupled with a slow hyperbolic behavior around the critical point
Ls.

The manifolds W"(L3) and W?*(L3) have two branches each. One pair, which we
denote by W™ (L3) and W™ (L3) circumvents Ls whereas the other circumvents
L4 and it is denoted as W™~ (L3z) and W%~ (L3), see Figure II1.1.2. Notice that
the Hamiltonian system associated to h in (III.1.1) is reversible with respect to the
involution

(g, p) = (q1, —G2, —P1,P2)- (IIL.1.5)

Therefore, by (III.1.3), L3 = (d,,0,0,d,) belongs to the symmetry axis given by ¥
and the + branches of the invariant manifolds of L3 are symmetric to the — ones.
Thus, to compute the distance between the manifolds, one can restrict the study to
the first ones, W% (Ls) and W1 (Ls).
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We perform the classical symplectic polar change of coordinates

cos 6 cos 6 G [ sinf
=" (sinH) ’ p=R <sin9> o <— coS 9) ’ (ITL.1.6)

where R is the radial linear momentum and G is the angular momentum. We consider
as well the 3-dimensional section

Z:{(r,H,R,G)eRx’]I‘xR2 ;r>1,9:g} (I11.1.7)
and denote by (7}, 5, R},G}) and (1], 5, R}, G3) the first crossing of the invariant
manifolds with this section (see Figure III.1.2). The next theorem measures the

distance between these points for 0 < p < 1. Its proof is given in Theorem II.1.1 in
Part II.

Theorem IIL.1.1. (Distance between the unstable and stable manifolds of
L3). There exists o > 0 such that, for p € (0, uo),

. \ 1
PLREGY) = (3, R, G| = VApde [@ +0(>},
It )~ ( )| = Viu 0140 ogm

where:

e The constant A > 0 is given by the real-valued integral

V2

-1
2 2 x
A= dz ~ 0.177744. II1.1.8

/0 1—:L'\/3(1‘—|—1)(1—4x—4:x2) v ( )

e The constant © € C is the Stokes constant associated to the inner equation
analyzed in Theorem 1.2.7 in Part I.

For the limit problem A in (II1.1.1) with p = 0, the five Lagrange point disappear
into the circle of (degenerate) critical points ||¢|| = 1 and p = (p1,p2) = (—q2,q1). As
a consequence, the one-dimensional invariant manifolds of Lg disappear when p =0
too. For this reason, in Section 1.2.1 in Part I, it was performed a singular change of
coordinates to obtain a new first order Hamiltonian with a center-saddle equilibrium
point (close to Lg). We reintroduce this change of coordinates in Section II1.2.1 and,
in Theorem II1.2.5 we reproduce Theorem III.1.1 in this set of variables.

Notice that, in Theorem III.1.1, due to the rapidly rotating dynamics of the
system (see (I11.1.4)), the distance between the stable and unstable manifolds of Ls
is exponentially small with respect to /. Due to the symmetry in (IIL.1.5), an
analogous result holds for the opposite branches. In addition, a more general result
can be proved for sections X(6,) = {r > 1, 0 = 6, }, (see Theorem II1.2.5 below or
Part II for more details).

By numerical computation one obtains |©| ~ 1.63 (see Remark 1.2.8 in Part I.
The corresponding code can be found at | ]). We expect that, by means of a
computer assisted proof, it would be possible to obtain rigorous estimates and verify
O # 0, see | |. As a result, we consider the following ansatz.

Ansatz I11.1.2. The constant © as given in Theorem III.1.1 satisfies that © # 0.
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‘,,‘_rsﬁJr (Lg) M/uHr (Lg)
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Figurge II1.1.3: Projection onto the g-plane for examples of 2-
round homoclinic connection to Ls. (Left) u = 0.012144, (right)
1 = 0.004192.

I11.1.2 Main results

Theorem II1.1.1 and Ansatz I11.1.2 imply that the invariant manifolds of Ls do not
meet the first time they meet the section 3. Certainly this do not prevent the existence
of multi-round homoclinic orbits. The first result of this part is the existence of such
homoclinic connections for certain values of the mass parameter u.

To state it, we first classify the types of homoclinic orbits by how many “rounds”
they take before returning to Ls. In particular, we say that an homoclinic connection
to Lg is k-round if, on a d-neighborhood of this critical point, the closure of the
homoclinic orbit has k connected components, (see Figure II1.1.3 for examples of
2-round connections).

According to this definition, Theorem III.1.1 and Ansatz I11.1.2 imply the follow-
ing.

Corollary II1.1.3. (1-round homoclinic connections). Assume Ansatz II1.1.2.

There exists py > 0 such that, for u € (0, pg), there do not exist 1-round homoclinic
connections to Ls.

E. Barrabés, J.M. Mondelo and M. Ollé in | | analyze the existence of multi-
round homoclinic connections to L3 in the RPC3BP. In particular, they conjectured
the existence of 2-round homoclinic orbits for a sequence of mass ratios {jin},cy
satisfying pu, — 0 as n — oo and supported their claim with numeric computations.
In the following result, we prove this conjecture.

Theorem III.1.4. (2-round homoclinic connections). Assume Ansatz I11.1.2
and consider peig(p) given in (I11.1.4) and A > 0 given in Theorem II1.1.1. Then,
there exists a sequence {jn}n>N, with Ny big enough, of the form

A 1
un:(1+(’)< )) forns 1,
N7 Peig (0) logn

such that, the Hamiltonian system (II1.1.1) has a 2-round homoclinic connection to
the equilibrium point Ls between W™ (L3) and WS~ (Lg).

This theorem is a consequence of Theorem II1.2.8, which is stated in a different
system of coordinates and it is proved in Chapter II1.3. Using the same tools, one

can obtain an analogous result for the homoclinic connections between W™~ (L3) and
Ws’+ (Lg).
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Remark III.1.5. (Multi-round homoclinic connections). In [ |, the
authors also conjectured the existence of k-round homoclinic connections for k > 2
for different sequences of the mass parameter . We believe that our strateqy can be
applied also for proving the existence of k-round homoclinic symmetric connections.

Next we study the existence of chaotic phenomena associated to L3 and its invari-
ant manifolds. In particular, we prove the existence of a Smale horseshoe close to the
invariant manifolds of Ls by means of the Smale-Birkhoff homoclinic theorem. This
classical result (see | ; ]) states that, by proving the existence of transverse
homoclinic orbits to periodic orbits (for flows) one can construct symbolic dynamics.

The Lyapunov Center Theorem (see for instance | |) ensures the existence
of a family of periodic orbits emanating from a saddle-center which, close to the
equilibrium point, are hyperbolic. Let us denote by Ils the Lyapunov family of
hyperbolic periodic orbits of Ls. This family can be parametrized by the energy level
given by the Hamiltonian h in (III.1.1).

Proposition II1.1.6. (Lyapunov periodic orbits to L3). There exist g, 0o > 0
small enough such that, for p € (0, o), system (I11.1.1) has a family of hyperbolic
periodic orbits

II3 = {ngg periodic orbit : h(Ps,) = 0® + h(Ls), o € |0, QO]} .

In Proposition I11.2.4 we state this result in a different set of coordinates and
provide estimates for the periodic orbits. Its proof can be found in Appendix III.A.

We denote by W"(Ps,) and W*(Ps,) the 2-dimensional unstable and stable in-
variant manifolds of the Lyapunov periodic orbit P3,. Analogously to the L3 case,
the invariant manifolds have two branches each which we denote by W™ (P; ,) and
W=+t (Ps,) the ones that circumvent Lz and, by W™~ (Ps ,) and W™~ (Ps ,), the ones
that surround L4 (see Figure I11.1.4). By the Smale-Birkhoff homoclinic theorem,
proving the existence of transverse intersections between W™ (Ps ,) and W (P;,)
implies the existence of chaotic motions on a neighborhood of L3 and its invariant
manifolds. More specifically, we prove the following result.

Theorem II1.1.7. (Chaotic motions). Let the constants A > 0 and © be as given
in Theorem II1.1.1 and og in Proposition 111.1.6. Assume Ansatz II1.1.2. Then, there
exist py > 0 and functions omin, Omax : (0, o) — [0, 0o] of the form

2 1 [ 1
Omin = —|O|uze V¥ 1+O< >:|a
(1) = —-18]n Toe 1

/2 1 [ 1
Omax = —|O|uze V¥ 2+O< >:|7
(u) = —-18]n Tog 1

such that, for u € (0, o) and 0 € (Omin(t), Omax ()], the invariant manifolds W™+ (Ps ,)
and WS (P ,) intersect transversally.

Consider the section ig =YN{h=0*+h(Ls)} with ¥ as given in (I11.1.7) and
the induced Poincaré map P : ig — ig. Then, there exists M > 0 such that P has
an invariant set X, homeomorphic to ZN, such that PM |y is topologically conjugated
to the shift.

38

S

Notice that, due to the symmetry in (III.1.5), an analogous result holds for the
transverse intersections of branches W%~ (P3,) and W%~ (Ps,). To prove Theo-
rem II1.1.7, we use the asymptotic formula for the distance of the invariant manifolds
of L3 obtained in Theorem III.1.1. Since W"(L3) and W*(L3) are exponentially close
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FIGURE I11.1.4: Projection onto the ¢g-plane of the unstable (red) and
stable (green) manifolds of the Lyapunov periodic orbit Ps , (blue), for
11 = 0.003.

to each other with respect to /i, the energy levels where chaotic motions are found
is also exponentially close to the energy level of Ls. In addition, by restricting p one
can take pmax(p) bigger, (see Theorem II1.2.8).

Theorem III.1.8. (Homoclinic tangencies). Assume Ansatz II1.1.2 and denote
by f, the flow of the Hamiltonian system given in (II1.1.1) restricted to the energy
level h = 0> +h(L3). Let 0o, o > 0 and omin (1) : (0, o) — [0, 00] be as given in Theo-
rem II1.1.7. Then, for a fized v and o close to pmin(pt), the flow f, unfolds generically
an homoclinic quadratic tangency between W™ (Ps , ) and WSH (P, ).

Both Theorems II1.1.7 and III.1.8 are stated in the previously mentioned set of
coordinates in Theorem II1.2.8 and proved in Chapter I11.4.

Remark II1.1.9. We use the definition of generic unfolding given in [Dua0S] for
area preserving diffeomorphisms (see Theorem I11.2.8 for more details). In particular,
Theorem 111.1.8 should lead to prove the existence of a Newhouse domain.

II1.1.3 State of the art

A fundamental problem in dynamical systems is to prove whether a given model has
chaotic dynamics. For many physically relevant models this is usually remarkably
difficult. This is the case of many Celestial Mechanics models, where most of the
known chaotic motions have been found in nearly integrable regimes where there is
an unperturbed problem which already presents some form of “hyperbolicity”. This
is the case in the vicinity of collision orbits (see for example [Moe89; BNOG; Bol06;
Moe07]) or close to parabolic orbits (which allows to construct chaotic/oscillatory
motions), see [Sit60; Ale76; LIig0; MosOl; GMS16; GSMT17; GPST21]. There are
also several results in regimes far from integrable which rely on computer assisted
proofs [Ari02; WZ03; Capl2; GZ19].

The problem tackled in this work is radically different. Indeed, if one takes the
limit 4 — 0 in (III.1.1) one obtains the classical integrable Kepler problem in the
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elliptic regime, where no hyperbolicity is present. Instead, the (weak) hyperbolicity
is created by the O(u) perturbation. The bifurcation scenario we are dealing with is
the so called 0%iw resonance or Hamiltonian Hopf-Zero bifurcation. Indeed, for p > 0
the Hamitlonian system given by A in (III.1.1) has a saddle-center equilibrium point
at Ls. However, for y = 0, the equilibrium point degenerates and the spectrum of
its linear part consists in a pair of purely imaginary and a double 0 eigenvalues, (see
(I11.1.4)).

Most of the studies in homoclinic phenomena around a saddle-center equilib-

rium are focused on the non-degenerate case, see | ; ; ; ;

]. However, for the resonance 0%iw cases, to the best of authors knowledge, the
results are more rare. In [ ], the authors study this singularity combining nu-
merical and analytic techniques. The reversible case is considered in | ; ]
where the author proves the existence of transverse homoclinic connections for every
periodic orbit exponentially close to the origin, except the origin itself. In | ],
the authors show the existence of homoclinic connections with several loops for every
periodic orbit close to the equilibrium point.

On the contrary, the work here presented shows the existence of homoclinic con-
nections for both the equilibrium point and periodic orbits (exponentially) close to
the equilibrium point. In the case of the (non-Hamiltonian) Hopf-zero singularity, we
remark the similar work | ]. Also, in | ], the authors use similar tech-
niques to analyze breather solutions for the nonlinear Klein-Gordon partial differential
equation.

A first step towards proving Arnold diffusion? Consider the 3-Body Problem
in the planetary regime, that is one massive body (the Sun) and two small bodies
(the planets) performing approximate ellipses (including the “restricted case” when
one of the planets has mass zero). A fundamental problem is to assert whether such
configuration is stable (i.e. is the Solar system stable?). Thanks to Arnold-Herman-
Féjoz KAM Theorem, many of such configurations are stable, see | ; .
However, it is widely expected that there should be strong instabilities created by
Arnold diffusion mechanisms (as conjectured by Arnold in [ ). In particular,
it is widely believed that one of the main sources of such instabilities dynamics are
the mean motion resonances, where the period of the two planets is resonant (i.e.
rationally dependent) | ].

The RPC3BP has too low dimension (2 degrees of freedom) to possess Arnold
diffusion. However, since it can be seen as a first order for higher dimensional mod-
els, the analysis performed in this part can be seen as a humble first step towards
constructing Arnold diffusion along the 1 : 1 mean motion resonance. In this reso-
nance, the RPC3BP has a normally hyperbolic invariant manifold given by the center
manifold of the Lagrange point Ls. This normally hyperbolic invariant manifold is
foliated by the classical Lyapunov periodic orbits. One should expect that the tech-
niques developed in this work would allow to prove that the invariant manifolds of
these periodic orbits intersect transversally for a non exponentially small range of
energy levels. Still, this is a much harder problem than the one considered in this
work and the technicalities involved would be considerable.

This transversality would not lead to Arnold diffusion due to the low dimension
of the RPC3BP. However, it is a first order for other instances of the 3-body prob-
lem where one should be able to construct orbits with a drastic change in angular
momentum (or inclination in the spatial setting). For example:
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(i) The Restricted Spatial Circular 3-Body Problem with small ;z > 0 which has
three degrees of freedom.

(ii) The Restricted Planar Elliptic 3-Body Problem with small x> 0 and eccentric-
ity of the primaries eg > 0, which has two and a half degrees of freedom.

(iii) The “full” planar 3-Body Problem (i.e. all three masses positive, two small)
which has three degrees of freedom (after the symplectic reduction by the clas-
sical first integrals).

This part is organized as follows. Chapter I11.2 is devoted to reformulate the
main results of the part (Theorems III.1.1, III.1.4, I11.1.7 and III.1.8) by perform-
ing the singular change of coordinates introduced in Section 1.2.1 in Part I. Finally,
Chapter I11.3 to II1.5 are devoted to the proofs of the results in Chapter II1.2.
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Chapter II1.2

Reformulation of the problem

Recall that, for the unperturbed problem A in (II1.1.1) with g = 0, the five Lagrange
point disappear into a circle of degenerate critical points. For this reason, in Sec-
tion 1.2.1 in Part I, we introduced a singular change of coordinates to obtain a new
first order Hamiltonian which has a center saddle equilibrium point (close to L3) with
stable and unstable manifolds that coincide along a separatrix.

First, in Section I11.2.1, we introduce the main features of this change of coordi-
nates, its relation to L3 and the Lyapunov family of periodic orbits surrounding Ls.
Then, in Section II1.2.2, we state Theorems I11.2.5, TI1.2.8 and I11.2.10, which are
reformulations of Theorems III.1.1, II1.1.4 and together Theorems II11.1.7 and II1.1.8
in the new set of coordinates.

I11.2.1 Change of coordinates and Lyapunov periodic or-
bits

Applying a suitable singular change of coordinates, the Hamiltonian h can be written
as a perturbation of a pendulum-like Hamiltonian weakly coupled with a fast oscil-
lator. We summarize the most important properties of this set of coordinates, which
was studied in detail in Section 1.2.1.

The Hamiltonian h expressed in the classical (rotating) Poincaré coordinates,
¢t (N, L,n,€) — (g, p), defines a Hamiltonian system with respect to the symplectic
form dA A dL + i dn A d§ and Hamiltonian

HPOi — HOPOi + MH]?Oi, (11121)
with

; 1 .
HFO(L,n,€) = —5pz ~L+n¢  and HY' = hy o ¢po;. (I11.2.2)

Moreover, the critical point L3 satisfies
A=0, (L,n,&) =(1,0,0) + O(u), (I11.2.3)

and the linearization of the vector field at this point has, at first order, an uncoupled
nilpotent and center blocks. Since ¢"°' is an implicit change of coordinates, there is
no explicit expression for H{ . However, since HY°! is analytic for |(L,n,&)| < 1, it
is possible to obtain series expansion in powers of (L — 1,7,&) (see Lemma 1.4.1).

In addition, since the original Hamiltonian h is reversible with respect to the invo-
lution ¥ in (III.1.5), the Hamiltonian H'°! is reversible with respect to the involution

q)Poi()\aL7777£) = (_)‘7L>£777)' (11124)
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To capture the slow-fast dynamics of the system, renaming
§ = pi, (IT1.2.5)

we perform the singular symplectic scaling

b5 (N A z,y) = (N, Ly, &), L=1+6%A, n=9dx, &=y, (I11.2.6)
and the time reparametrization ¢t = 6 ~2¢. Defining the potential
1
V(A) = H (A, 1,0,0;0) =1 — cos A — ——, I11.2.7
W)= ( ) 24 2cos A ( )

the Hamiltonian system associated to H'°!, expressed in scaled coordinates, defines
a Hamiltonian system with respect to the symplectic form dA A dA +idx A dy and the
Hamiltonian

H = Hy + Hose + Hi, (I11.2.8)

where

3,2 : Yy
Hp(AaA) - _7A + V<)‘)7 HOSC(JI, Y; 6) - 5727 (11129)
oi 1
Hi(\ A, 2,y;6) = HUPO(N 1+ 82A, 62, 0y; 6%) — V(A + il (62A),  (I11.2.10)
and
Fy(z) = fL—(Hz) L343 = 0(2%) (I11.2.11)
P 2(1 4 2)2 2 27 ’ -

We introduce a suitable neighborhood where the coordinates (A, A, z,y) are de-
fined. For ¢y > 0 we denote

Ur(co,c1) = {(A\ A, 2,T) € R/27Z x R x C? : |1 — A| > o, |(A, )| < c1}. (111.2.12)

Notice that, the domain is still 4-dimensional. For technical reasons, we consider
some of the objects of the system in an analytical extension of the domain Ug. In
particular we employ the domain

Uc(co,c1) = {(/\,A,x,y) € C/2rZ x C3 :

(111.2.13)
|m —ReA| > co, |[(Im A, A, 2, y)| < ¢1}.
The next proposition states some properties of the Hamiltonian H.

Proposition IT1.2.1. Fiz cy,c; > 0. Then, there exists o9 = do(co,c1) > 0 such that,
for 6 € (0,600), one has that

o The Hamiltonian H as given in (111.2.8) is real-analytic in the sense of H(\, A, x,y;6) =
H(\ A, y,2;0) in the domain Uc(co,c1).

e There exists by > 0 independent of 6 such that, for (A, A, z,y) € Uc(co, c1), the
second derivatives of the Hamiltonian Hy given in (111.2.10) satisfy

|03 H1 |, |0xsH1 |, |0xyH1| < bod, |0\ H1 |, |03 Hy| < bod?,
|02H1| |02y H1 |, |05 Hy| < by, |Opz H1 | |0ay H1| < bod®.
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Moreover!,

1001 ,a0,05 H1| < bo, with ar,ag,03 € {\ A, z,y}.

Proof. The first statement follows from Theorem 1.2.1 in Part I. The second statement
is a consequence of Lemma I1.A.3 in Part II. 0

Remark I11.2.2. Consider M C CF a symmetric subset with respect to the real line.
We say that a function ¢ = (Cx,CA,Ca, Gy) + M — Uc(co, 1) is real-analytic if, for

m € M, (\(m) = (\(m), Ca (M) = Ca(m), G (M) = ¢y(m) and ¢, (M) = C(m).
Notice that, as a consequence, ((m) € Ur(co), for m € M NRF.

Notice that, by (I11.2.4), the Hamiltonian H is reversible with respect to the
involution

SN A z,y) = (=N Ay, x). (I11.2.14)
with corresponding symmetry axis
S={A=0,z=y}. (II1.2.15)

In the next proposition, proven in Theorem I1.2.1 in Part I, we obtain an expression
and suitable estimates for the equilibrium point Ls.

Proposition I11.2.3. There exist 5o > 0 and by > 0 such that, for 6 € (0,dp), the
critical point L3 expressed in coordinates (A, A, x,y) is of the form

£(8) = (0,6%84(5),6°£,(5),5°8,(5))" €8, (I11.2.16)

with |€x(6)], [£2(0)],[Ly(0)| < b1 and S as given in (111.2.15).

The linearization of £(¢) is given by

0 -3 0 0
7
~I 0 0 o0
8 ;
O 0 & 0 +0(9)
0 0 0 —%

This analysis leads us to define a “new” first order for the Hamiltonian H in (I11.2.8)
as
Ho(A, A, @,y;0) = Hp (A, A) + Hose(@, 95 0), (IIL.2.17)

and we refer to Hy as the unperturbed Hamiltonian and to Hy (see (I11.2.10)) as the
perturbation.

Notice that the unperturbed Hamiltonian is uncoupled. In the (z,y)-plane, it
displays a fast oscillator of velocity 6% whereas, in the (A, A)-plane, it possesses a

saddle at (0,0) with two homoclinic connections or separatrices at the energy level
H,(X\, A) = —3, (see Figure I11.2.1). We define

1
Ao = arccos (2 - \f2> , (I11.2.18)

which satisfies Hy, (A, 0) = Hy,(0,0) = —3 and corresponds with the crossing point of
the right separatrix with the axis {A = 0}. (See Section III.4.1 for more details).

'One can obtain more precise estimates for the third derivatives of H;. However, these rough
estimates are sufficient for the proofs of this part.
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FI1GURE II1.2.1: Phase portrait of the system given by Hamiltonian
H,(A A) on (II1.2.9). On blue the two separatrices.

The Lyapunov Center Theorem (see for instance [ |) ensures the existence of
a family of periodic orbits emanating from a saddle-center equilibrium point. In our
setting, this family will correspond to perturbed orbits of the fast oscillator, centered
at £(0). Since we need quantitative estimates for the parametrization of this family,
we present a more thorough result in the following proposition. Its proof can be found
in Appendix IIL.A.

For d > 0, we denote

T =R/27Z, Tyg={reC/2nZ : |Im7| < d}. (II1.2.19)

Proposition II1.2.4. Let d,co,c1 > 0. There exist pg,dg > 0 such that, for § €
(0,00), there exists a family of periodic orbits {PB,(7;6) : 7 € Tq} where P, :
Ty — Uc(co,c1) are real-analytic functions satisfying that

p€E[0,p0]

2
H(%,(7:9)) = 55 + H(£(0)).

Furthermore, there exist w,s > 0 and a constant by > 0, independent of p and ¢,
such that the parametrization of the periodic orbit satisfies

. Wp,s
7_: p?

52 with lwps — 1] < bad™.

In addition, the parametrization can be written as
—ir _ir\T T
Pp(750) = £(8) +p- (0,0,e77,eT)" +0p- (Ap, A, oy, yp) (1), (111.2.20)

where (7], [Aq(7)| < ba, and lep(r)] lyn(7)] < ba®.

I11.2.2 Main results in scaled Poincaré coordinates

To prove the results in Theorems I11.1.4, I11.1.7 and II1.1.8, we analyze the unstable
and stable manifolds of both, the critical point £(J) and the family of periodic orbits
PBo(+,6), for small values of §. Recall that there exists two symmetric branches for
each stable and unstable manifold (see Figure I11.1.2) with respect to the involution
S(NA,z,y) = (=M A, z,y) as given in (111.2.14).

For § > 0, we denote by W"(£) and W*(£) the 1-dimensional unstable and stable
manifolds of £(J). In addition, as done in Chapter III.1, we consider each branch
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independently. Let 1; be the flow given by the Hamiltonian H and e; = (1,0,0,0)7.
We denote

W (L) = {z EW'(L) : lim (Y4(2) e1) = 0+} : W (L) = & (W),
WSt (L) = {z eWs(L) : t_l;eroo(wt(z),el) = o+} , WhT(8) =& (W),

the branches of W°(£), for o = u,s.

Next result, proven in Theorem 11.2.2 in Part II, gives an asymptotic formula for
the distance between the first intersection of the one dimensional manifolds W% (£)
and WS (£) on a suitable section. In particular, Theorem III.1.1 is a consequence of
this result.

Theorem II1.2.5. Fiz an interval [A1, A2] C (0, \g) with Ao as given in (II1.2.18).
There ezists 0o > 0 such that, for § € (0,00) and \. € [A1, 2], the invariant
manifolds Wt (L) and W>T (L) intersect the section {\ = A\, A > 0}. Denote by
(A, AY, x5, y8) and (A, Aj, x5, y5) the first intersection points of the unstable and
stable manifolds with this section, respectively. They satisfy

1 _A 1 -
R e e e [ B e
LA =0 (5%5%) :
where A > 0 and © € C are the constants described in Theorem II1.1.1.

Now, we consider the case of homoclinic connections between the 1-dimensional
branches, W%*(£) and W**(£), of the unstable and stable manifolds.

Definition IT1.2.6. Let I'(t) be an an homoclinic orbit to the critical point £(5) and
Bys a ball centered at £(8) of radius 6. Then, we say I'(t) is k-round if

U ['(t)\ Bs  has k connected components.
teR

Let us recall that, by Ansatz I11.1.2, one has that © # 0. Then, Theorem II1.2.5
imply that they do not exist homoclinic connections between the “+” branches of
the stable and unstable manifolds of £(d) at its first intersection with the section
{A = As, A > 0}. Moreover, due to the symmetry of the system (see (II1.2.14)), an
analogous result holds for W%~ (£) and W%~ (£). Therefore, one obtains the following
corollary, which is equivalent to Corollary III.1.3.

Corollary II1.2.7. Assume Ansatz II1.1.2. Then, there exists 6g > 0 such that, for
0 € (0,00), there do not exist 1-round homoclinic connections to £(9).

In the next result, we study the existence of 2-round homoclinic connections to
£(9) for certain values of the parameter §. Theorem III.1.4 is a direct consequence of
it.

Theorem II1.2.8. Assume Ansatz I11.1.2. Then, there exist Ny > 0 and a sequence
{6n}n>nN, satisfying

5,1:\8/24& 1+0 1 , for n > Ny.
21V nm logn
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A=A\, A>0}

FIGURE II1.2.2: Projection into the (A, A)-plane of the unstable and
stable manifolds and its intersections with the symmetry axis and sec-
tion {A = A, A > 0}.

such that, for each n > Ny, there exist a 2-round homoclinic connection to the equi-

librium point £(3,,) between W™ (L) and W~ (£).

To prove Theorem II1.2.8, we take advantage of the fact that the Hamiltonian H
is reversible with respect to the axis S = {\ =0, z = y}, (see (II1.2.15)). Therefore,
by symmetry, it is only necessary to see that there exists a sequence of § such that
W (L) intersects the symmetry axis S, see Figure 111.2.2.

In particular, we extend the manifold W™ (£) from the section {\ = A\, A > 0},
studied in Theorem II1.2.5, to a neighborhood of the critical point £() and look for
intersections with S. To study the invariant manifolds near £(§), we use a normal
form result for systems in a neighborhood of a saddle-center critical point. Note that,
the classical normal form result by Moser in | ] is not enough for our purposes.
Indeed, we need to control that the radius of convergence of the normal form does not
goes to zero when § — 0. For that reason, we apply a more quantitative normal form
obtained by T. Jézéquel, P. Bernard and E. Lombardi in [ | that ensures that the
normalization does not blow up when § — 0. The complete proof of Theorem I11.2.8
is postponed to Chapter II1.3.

Next, we focus on the study of the intersections between the unstable and stable
manifolds of the family of periodic orbits {,(, 5)}‘)6[07/)0] in Proposition I11.2.4. Let
us denote by W"(B,) and W*(*B,) the 2-dimensional unstable and stable manifolds
of the periodic orbit B,(-,d). Analogously to the invariant manifolds of £(9), for
o € {u,s}, we denote each branch as W (3,) and W*~(B,), (see Figure I11.1.4).

To prove Theorem II1.1.7 and I11.1.8, we focus on the study of the “4” invariant
manifolds. By symmetry, there exist analogous results for the “—” invariant mani-
folds. In particular, for ¢o,c1 > 0, we look for intersections between W% (9,) and
W= (B,) in a suitable 2-dimensional section of the domain Ug(co, ¢1) (see (I11.2.12))
within a fixed energy level. In particular, for technical reasons, we choose such section
as

EP = {(AaAaxay) € UR(C()aCl) :

0 (111.2.21)

A = 82r(0), HO Ay) = 55 + H(2(0) },

where £ = (0,628x,0%L,, 53£y)Tas given in Proposition I11.2.3.
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p=0 p € (0, pmin(6))
O
° O
(=", y") prt
Jan y ’e_?aplpl A
gp oD, [ ‘ -
P Ep ()’Dp ()D/,
W“’*(‘l‘p) oD, oD,

p = pmin(é) pe [Pmin(5)7 Pmax((s)]

Ficure I11.2.3: Left: Intersection of the unstable and stable mani-
folds W™+ (9,) and W (B,) with section X,. Right: different pos-
sibilities given in Corollary I11.2.9 and Theorem III.2.10.

We notice that, by Proposition 111.2.4, the periodic orbit 3, belongs to the energy
level H = g—z + H(£(5)) where 3, is included. In addition, for p = 0, one has that
Po = £. For this case, Theorem I11.2.10 can be adapted to give an asymptotic formula
for the distance between the first intersection of W™t (£) and Wt (£) with the
section Yg. It is an almost direct consequence of Theorem I11.2.10, see Appendix I11.B
for the details.

Corollary II1.2.9. There ezists 6o > 0 such that, for every § € (0,0¢), the invariant
manifolds W™ (L) and W>T (L) intersect the section So. Denote by (A, 62Lx, 2, y)
and (A3, 528, x5, y5) the first intersection points of the unstable and stable manifolds,
respectively, with the section. Then, they satisfy

u s u S Sem .
j§ — a5 = [y — 3l = V2037 [’@’ o (\log5|>] 7

where A > 0 and © € C are the constants described in Theorem I1I1.1.1.

In the next result, we see that the 2-dimensional invariant manifolds W™ (B,)
and W1 (,) intersect in the section X, for certain values of p, (see Figure I11.2.3).
Its proof is postponed to Chapter I11.4.

Theorem II1.2.10. Assume Ansatz II1.1.2. Let py and B,, for p € [0, po], be as
given in Proposition I11.2.4. Then, the following is satisfied.

e There erxists &g > 0 such that, for every p € [0,po] and 6 € (0,0q), the in-
variant manifolds W™ (B,) and Wt (B,) intersect the section 3,. The first
intersection is given by closed curves, which we denote by 9D} and OD;,.

o Let R > 1. There exists dg > 0, satisfying limg_ .o 6 = 0, and functions
Pmins Pmax : (0,0r) — [0, po] such that, for d € (0,6r) and p € [pmin(J), Pmax(9)],
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the curves 9D} and 0D, intersect. Moreover,

2 L4 1
= — 3 1
ot |10 ()|
V2 14 1
pmax((s) - 7’9’536 o |:R+O(|10g5’>:| :

o For p € (pmin(9); pmax(9)], the curves D} and 0D, intersect transversally at
least twice.

Pmin(9)

e For p = pmin(0), the curves 0D, and OD}, have at least one quadratic tangency
at a point Qo € 9D, N ID;,.

e Fiz § € (0,00) and let ¢ be any smooth curve transverse to 0D, . and 9D}
within X, . at Qo. Then, for p close to pmin, the local intersections of 0D}
and 0D}, with the curve ¢ cross each other with relative non zero velocity at

(Q07 pmin)~

Theorem I11.2.10 implies in particular that, for small values of §, there exist
transverse intersections between some unstable and stable manifolds of Lyapunov
periodic orbits of £(J). Thus, applying the Smale-Birkhoff homoclinic theorem (see
[ ; ]), it is possible to construct a Smale horseshoe map in a tubular

neighborhood of the invariant manifolds W% (£) and W**(£) of size 0(5%675%).
By symmetry, an analogous result holds for W%~ (£) and W%~ (£). This proves
Theorem III.1.7.

Moreover, the last two statements of Theorem II1.2.10 imply the existence of a
generic unfolding of a quadratic tangency between W™ (9,) and W5 (,). (We
follow the definition of generic unfolding given in [ ). Indeed, denoting by
fo to the flow of h in (IIL.1.1) restricted to the energy level h = p + h(Ls3), for
d € (0,60), one has that f, unfolds generically an homoclinic quadratic tangency.
Finally, noticing that the energy level H(\, A, z,y;d) = g—j + H(L) corresponds to
h(q,p; ) = /ip* + h(L3) (see (I11.2.5) and (I11.2.6)), one proves Theorem IIL.1.8. In
particular, from this result one should be able to prove the existence of a Newhouse
domain (see Remark II1.1.9).
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Proof of Theorem I11.2.8

To prove Theorem II1.2.8, we perform a detailed analysis of the system close to
the equilibrium point £(d) by means of a normal form. In the next proposition we
introduce the normal form result given in [ | adapted to Hamiltonian H in
(II1.2.8). Then, in Proposition II1.3.2, we translate the results in Theorem II1.2.5
and the symmetry axis S in (II1.2.15) into the new set of coordinates. The proof of
both results is postponed to Appendix II1.C.

Proposition I11.3.1. There exist oy, 00, co, c1 > 0 and a family of analytic canonical
changes of coordinates

Fs5:B(oo) ={z € R |z| < 00} — Ur(co,c1)
("Ul,’wl,vg,UJQ) = ()\,A,«T,y)7

with respect to the form dvy A dwy + dve N dwy defined for 6 € (0,dp) such that
F5(0) = £(5) and the Hamiltonian H (see (111.2.8)) in the new coordinates reads

H(Ul, w1, V2, W, 5) = H(Jrg(’l)l, w1, V2, wz); 5) — H(S((S), (5)
)
=viwy + O;ESQ) (v3 +w3) + R(viws,v3 + w3;5),
where a(3) is a Cl-function in § satisfying that a(8) = /& + O(6*) and R satisfies
that

|R(viwy,v5 + w33 6)| < C|(viwr, v + w3),

for (vi,w1,v2,w2) € B(gp) and C > 0 a constant independent of 0.

The system of equations given by Hamiltonian H in Proposition II1.3.1 is of the
form
v =v (1+ IR (viwy,v3 + ws3; ),

wl = —w1 (1 + 8173('01“)17”% + w%’ 6)) ’

0
U.Q = W2 (Oé(s(z) + 827?,(2}111}1’1}% + w%’ 5)) , (11131)
a(d

We = —Uy (52) + DR (viwy, v3 + w%;é)) .
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Since this system has two conserved quantities: vyw; and v3 + w3. Then

(I11.3.2)
va(t)\ v2(0) _ [ cosf sinf
(wi(t)) = Rot(t2,(9)) (w22(0)> ’ Rot(0) = <— sinf cos 9> '
where, for (v1(0),w1(0),v2(0),w=2(0)) € B(oo),
1(8) = 1+ 1R (v1(0)wi(0),v3(0) +w3(0); ) > 0,
a(5) ) ) (II1.3.3)
() = —r + &R (v1(0)w1(0),v3(0) +w3(0); ) > 0.

Notice that, by (II1.3.2), the local unstable and stable manifolds are given by {w; = v2 = we = 0}
and {v1 = vy = wy = 0}, respectively.

Proposition I11.3.2. Assume the setting given in Proposition II1.3.1. Then,

1. Fiz an interval (A1, 2] C (0,Xo) with \g as given in (I111.2.18) and denote
z§(\) and z5(\.) to the first intersection of the invariant manifolds W™ (L)
and Wt (L) with the section {\ = A\, A > 0} with A\ € [A\1, N, respectively
(see Theorem II1.2.5).

There exist 0 < p1 < p2 < oo such that, for o € |o1,02] and § € (0,0¢), there
ezist A (0) € [A1, A2] and (v}, w}, vy, wy), (v, ws, v, w5) € B(oo) such that

(vf, wis vy, wy) = Fs (z5(A(0)),  (vf, wi, v, w3) = Fi (25(A(0)))
(IT1.3.4)
and

Sk oo(g) e
v} = ——4§ 3¢e — |, v} =0,
! 0 [log ] '
w?—g+0(5%efé%>, wy = o,

21 1 _4 1

R Rl £ Pt} s _
v =4 53¢ 52 |Re©@ + O Tosd] )| v =0,
u__ 3/74 E 140 1 s _
wy = V4 3 dse s [ Im®+o<|log5|>]’ wy = 0.

2. Let S = {\ =0,z = y} be the symmetry axis of Hamiltonian H given in (I11.2.15).

There exist real-analytic functions Wi, s : B(og) % (0,09) — R and constants
C1,Cy > 0 such that the curve

Sloc = {111 +wy = Wy (vi, wi, v, we;0), wy = \Pg(vl,wl,vg,wg;é)} (II1.3.5)
satisfies that Fs(Sioe) C S and, for (vi,ws,ve, we;0) € B(go) % (0, ),

(a) | @1 (v, wr,v9, wa;8)| < C16 |(v1, w1, va, wa)| + Co | (v1, wr)|.
(b) |¥a(v1, w1, v, we;d)| < C16 |(v1,wr, v2, w2)|.

From now on, we work in the set of local coordinates (vi,w;,ve,w2) € B(0o)
given in Proposition II1.3.1. Then, to prove Theorem III.2.8, it remains to extend the
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(vr, wi)

U1

Fyt (wit(g)

’.'\) B ( QO) SlOC

FiGure III1.3.1: Representation of the unstable and stable mani-
folds in local coordinates (v1, w1, v2,wy) given in Propositions I11.3.1
and TI1.3.2.

unstable manifold from the point (v}, w},v§,wy) given in (II1.3.10) and to analyze
for which values of the parameter § > 0 it intersects with the symmetry curve Sjo¢
given in (II1.3.5), (see Figure I11.3.1).

To give an intuition of the proof, in the next lemma, we consider the intersection
of the unstable manifold with a convenient “first order” of the symmetry curve Soc.
From now on, we denote by C any positive constant independent of §.

Lemma II1.3.3. Assume Ansatz II11.1.2. Let ®"(t;0) be the trajectory of the Hamil-
tonian system given by Hamiltonian H in Proposition I11.3.1 with initial condition
(v}, wi, vy, wy) as given in Proposition I1I11.3.2. Then, there exist No > 0 and se-
quences {,—fn}nZNo and {gn}nZNo such that , for n > Ny,

o~

@u(fn; o) € {v1 + w1 =0, wy =0}.

gn:f/é{l/i 1+0 1 , forn > Ny,
21V nm logn

where A > 0 is the constant described in Theorem 1I1.1.1.

Moreover,

Proof. Let (v1(t), w1 (t), va(t), wa(t)) be a trajectory of the Hamiltonian system given
by H(v1, w1, va, we;d). We want 6 > 0 to be such that there exists T(? > 0 satisfying

(Ul 0),11} (0)71)2(0)771)2(0)) - (Ulllvwil7v57w5)7

1
(01(T3), wi(T7), v2(T3), wa(T3)) € {v1 + w1 =0, wp = 0}
In other words, using (II1.3.2),

vilel’l(‘;)Tg + w?e_yl(‘s)Tg =0, (IIL.3.6)
cos(v(8)T§)wy — sin(va(8)T)vy = 0, (I11.3.7)
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where, by its definition in (III.3.3) and Proposition I11.3.2, one has that

W) =1+0 (5—%;%‘), vy () = 512\/?“9(52) (IIL3.8)

Equation (II1.3.6) is solved by

1 T
79 =——_In(-——L
"= T2 (0) “< uﬂf)

A 2 6 1 ].

1 1 9 I11.3.9
=5 30g5 og(\[]@]g )—i—(’)(“ ‘> ( )
A 2
=5 (1+ O(6% [logdl)) .

Next, we study equation (I11.3.7). Let us denote § = arg ©. From Proposition I11.3.2,

vy = V44 28 §5e [\@\cosﬁ—i—(’)(“ ! ‘>]

_ _f\ff“’e - ['@'Sln“o (u 5,)}

By Ansatz II1.1.2, one has that © # 0. Then, (II1.3.7) is equivalent to
cos(v2(0)TY) sin 0 + sin(vo(6)T§) cos O = sin (6 + 15(8)TY) = go(0),
where go(d) contains the higher order terms, that is,
A 1
4/ 8 € 673
21 Vile)

A 1
_ 8 es?d s
— SIH(VQ((S)T(?) < ¢ ﬁva — COS 9) .

go(0) = — cos(yg(d)Tg) ( wy + sin 9)

Note that go(d) satisfies that go(d) = O(|logd] ™). So, we deduce that, for n € Z,
vo(8)TY 4 0 = nm — arcsin go(9).

Using the asymptotic expressions of ky(8) and T} in (II1.3.8) and (IIL.3.9), we have

that 0 has to satisfy
A /8
S ar (4 01(0)) = mn,

where g1(8) = O(6? |log 6]). Then, by the Implicit Function Theorem, there exists
Ny > 0 and a sequence {0y, }n>n, C (0,00) satisfying the previous equation and the
asymptotic expression of the lemma. Finally, one has that T,, = T(Q for 0 = 4,,. O

End of the proof of Theorem II1.2.8. We proceed analogously to the proof of Lemma II1.3.3.
Let us consider the expressions of (vi(t),w;(t),va(t),wa(t)) given in (II1.3.2) and
Ts > 0, such that

(v1(0), w1(0),v2(0), w2(0)) = (v7, wi, vy, w3),
(v1(Ts), w1 (Ts), v2(T5), w2 (T5)) € Sioc,
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with Sjpe = {v1 + w1 = ¥y, wy = Yo} as given in Proposition 111.3.2.
First, we deal with the equation v; + wy = W¥q. Then, T5 must satisfy

Ul(T(g) + wl(T(;) = \Ifl (Ul(T(;), wl(T(;), 'UQ(T(S), wg(T(;)) . (111.3.10)

Let us denote 7(8) = Ty — Ty, with T} satisfying vi(T}) + w1(TY) = 0 (see equa-
tion (II1.3.6) and (II1.3.9)). Then, by (II1.3.2), 7 has to satisfy

(T O 4oy (TO)e 1O — ) (T9) (1O — 1(0)7)
= Uy (01 (T) + 7), wi (T +7),02(T§ +7), ws(T§ + 7).

Namely 7(6) = F[7](5) with

6_1/1(6)7— — 6”1(6)7 -+ 2TV1(5) B \1’1(2}1 (t)a w1 (t)7 V2 (t)v w2(t))|t:T§J+T
201(3) 201 (8)w: (T}) '

First we obtain estimates for F'[0]. Indeed, by Proposition I11.3.2 and (I11.3.8),
U1 (01 (T), w1 (TQ), va(TY), wo(T}))]|
- 2|V1(5)w1( )‘
)

8 |((T9), w(T))] + |(v1(TP), wi (TP))]”
w1 (T9)] '

[F[0}(9)] <

<C

Let us recall that, by (II1.3.9), we have an asymptotic expression for 79. Then,
by (IIL.3.2), (II1.3.8) and Proposition I11.3.2,

1
T9) = wie 0 Clr. 5 1+0
(1) = e 9% = jels S 140 ().
vo(TY) = cos(va(8)TP)vy + sin(ve(8)Twy = O (556 %) , (II1.3.11)
wy(TY) = — sin(ve(0)TP) vy 4 cos(va(6)Tws = O (5%6_5%) .
Since vy (1)) = —w1 (1Y), one has that |F[0](6)| < C4. Next, we study the Lipschitz
constant of the operator F. Let us consider continuous functions 79,7 : (0,d9) — R

such that |79(9)],|m1(6)| < C§ and the function 7, = o + (1 — 0)79. Then, by the
Mean Value Theorem,

|F'[r1] — Flro)| <C|m — 7ol

4 .
Sl[lp] { I7.|? + 5582 ‘D\Iq(vl,wl,vg,wg) (vl,wl,vg,wg)Th:TngTg }
o€l0,1

Since W is a real-analytic change of coordinates, by Proposition I11.3.2, one can
obtain |[DW4| < Cd+ C |(vy,w1)|. Moreover, using (I11.3.1), one can obtain estimates
for the derivatives (v, w1, va, w2). Then,

|F[11](8) — Flmol(d)] < Cd[71(6) — 70(0)]-

This implies that, taking § > 0 small enough, |F[r] — F[r]| < 5 |r1 — 10| and, as a
result, F' is well defined and contractive. Hence, F' has a fixed point 7(d) such that
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|7(6)] < C6. Therefore, there exists T satisfying equation (II1.3.10) such that

Ts =T+ 7(8) = %(1 + O(6% |log 8])). (I11.3.12)
Next, we study the equation wo = Ws. Indeed, one has that 6 > 0 must satisfy
wa(Ts) = Yo (v(T5), w(Ts)) . (II1.3.13)
Ansatz II1.1.2 implies that © # 0. Then, by (II1.3.2), 6 has to satisfy

cos(v2(0)Ty) sin 6 + sin(v2(0)T5) cos @ = sin (0 + v2(0)T5) = Go(9),

where
A4 1
- 4/ 8 e s
90(6) = \IJQ (U(Té),w(T5)) — COS(VQ((E)T&) imw2 + sin
8 ei 55
. es E
_ SIH(VQ((s)Té) <4 ﬁm’UQ — COS 9) .

So, we deduce that, for n € Z,
v2(0)Ts 4+ 60 = nm — arcsin go(0).

By Proposition I11.3.2 and using the asymptotic expressions in (I11.3.11) and (II1.3.12),

C C

C
< :
[log 6| ~ [log 4|

190(0)] < CO|(v(T5), w(T5))| + Tlogd] = O5 | (o(T3), w(T3)| +

A /8 ~
51\ 51 (1+g1(5)) = ™,

where G1(6) = O(62|logd|). Then, by the Implicit Function Theorem, there exists
Ny > 0 and a sequence {0y }n>n, C (0,00) satisfying the statement of the Theorem

and that
A 1
5n=,8/§{‘/7 1+0 , for n > Np.
21 V nrw logn

Then,  has to satisfy
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Chapter I11.4

Proof of Theorem 111.2.10

This section is devoted to prove Theorem II1.2.10. First, in Section I11.4.1 we sum up
the results concerning the unperturbed separatrix of the Hamiltonian H}, in (I11.2.9)
presented in Part I. Next, in Section II1.4.2, we obtain and analyze parametriza-
tions of the unstable and stable manifold of the Lyapunov periodic orbits given in
Proposition I11.2.4. Last, in Section 1I1.4.3, we analyze the intersections between the
manifolds to finish the prove of Theorem II1.2.10.

Throughout this section and the following ones, we denote the components of
all the functions and operators by a numerical sub-index f = (f1, f2, f3, f4)7, unless

stated otherwise. In addition, we denote the canonical base of C* by {e; bicia

I1I1.4.1 The unperturbed separatrix

Let us consider the unperturbed system Hj as given in (II1.2.17). Notice that the
plane {z = y = 0} is invariant for Hy and the dynamics on it are described by

1
V2+2cos\

(see (I11.2.9)). The origin (A\,A) = (0,0) is a saddle point with two separatrices
associated to it (see Figure II1.2.1). In Part I, we studied a real-analytic time-
parametrization of such separatrices. The following result summarizes Theorem 1.2.2
and Corollary 1.2.4.

Hy(\A) = _gAQ FVO), V) =1—cosh—

Proposition II1.4.1. Let A\g > 0 be as given in (I11.2.18). There exists 0 < fp < §
such that the time-parametrization (Ap(u), Ap(u)) of the right separatriz (i.e, Ap(u) €

4,8,

T

FIGURE II1.4.1: Representation of the domain 114 g, in (II1.4.1).

Reu




176 Chapter I11.4. Proof of Theorem II1.2.10

Imu Imu

GA e

2

D* > / Ds
Bo Reu

..................................... 7 ZA

FIGURE I11.4.2: Representation of the domains D" and D*® in (II1.4.3).

0,7)) of Hy, with (A,(0),A,(0)) = (Ao, 0) extends analytically to
P P p

Mapg, ={ueC : |Imu| <tanfReu+ A}U

(ITL.4.1)
{fueC : |Imu| < —tanSReu+ A},

with A > 0 as given in (I111.1.8), (see Figure II1.4.1). Moreover,

21
e For |u| > 1, there exists C' > 0 such that |Ap(u)|,|Ap(u)] < Ce_\/;‘Reu‘.
o Foru € llgg,, \p(u) =7 if and only if u = +iA.
o Forucllag,, Ap(u) =0 if and only if u = 0.

Next result establishes a suitable domain for the time-parametrization of the un-
perturbed separatrix, which we denote as

op(u) = Ap(u), Ap(u),0,0)T. (I11.4.2)

I11.4.2 Existence of the perturbed invariant manifolds

We devote this section to obtain and analyze parametrizations of the 2-dimensional
branches of the manifolds W (,) and W (B,), where {3,}
of periodic orbits given in Proposition I11.2.4.

We find parametrizations of the manifolds through a Perron-like method. In
particular, following the ideas in | |, we write the perturbed manifolds as
functions of 7, which parametrizes the Lyapunov periodic orbit 3,(7; d), and u, which
parametrizes the unperturbed homoclinic orbit op,(u) (see (I11.4.2)).

Let us consider the following complex domains (see Figure 111.4.2),

p€(0,p0] is the family

D"={ueC : [Imu| <4 —tanfyReu}, D*={ueC : —ueD"}.
(IIL.4.3)
Then, for ¢ € {u,s}, we consider the parametrizations Z°(u, ) satisfying that
{Z°(u,7) : (u,7) € D° x Tg} C W (RB,).
Notice that, for the unperturbed problem, since op,(u) is a time-parametrization it

satisfies & = 1. In addition, by Proposition III.2.4, the dynamics for ,(7;6) satisfy

T = %. Therefore, we impose that the dynamics on the perturbed parametrizations
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Z° are given by

i=1, i= °‘;’;5.
Hence, the parametrizations satisfy the system given by the Hamiltonian H in (I11.2.8):
O wﬂ76 O _ J 0 > . . . 0 1
OuZ°(u, ) + 52 0-Z°(u, ) = <0 iJ) DH(Z®(u,7);d) with J = (_1 0

(I11.4.4)

and we impose the asymptotic conditions

lim Z%u,7)=_lim Z%u,7)= Py(r;0), forall 7Ty (I11.4.5)

Reu——oco Reu—+4o0

In the next theorem we prove the existence and certain properties of the parametriza-
tion Z°, for o € {u,s}. In order to do so, we consider the decomposition

Z°(u, ) = Pp(1390) + op(u) + Z7 (u, 1), (I11.4.6)

with o}, as given in (II1.4.2). Notice that, since D" C Il a o2 Op 18 well defined in D".
=2
The proof of the following result is deferred to Section III1.5.1.

Proposition II1.4.2. Fiz d > 0 and o € {u,s}. Let po > 0 be the constant given
in Proposition II1.2.4. There exist cg,c1,90,b3 > 0 such that, for p € [0, po] and
0 € (0,90), equation (I111.4.4) has a unique real-analytic solution Z° : D® x Ty —
Uc(co, c1) that can be decomposed as in (I11.4.6) and satisfies

(Z7(0,7),e2) =0, for all T € Ty,
and the corresponding asymptotic condition in (111.4.5). In addition, for v = %\/%,

| Z$ (u, 7)| < bgbe vReul, for (u,7) € D° x T,.

Notice that, by Proposition II1.2.4 when p = 0, Bo(7;9) = £(4) is a fixed point
and that, W%t (£) and W (L) are 1-dimensional invariant manifolds. Then, for
o € {u, s}, Proposition I11.4.2 provides parametrizations z{ independent of 7 satisfying

{2°(u) : uw€ D°} CW>T (L),
that can be decomposed as
2°(u) = £+ op(u) + 27 (u). (I11.4.7)

Corollary II1.4.3. Let o € {u,s}. There exist cg,c1,00,b3 > 0 such that, for § €
(0,90) and p = 0, equation (111.4.4) has a unique real-analytic solution z° : D® —
Uc(co, c1) that can be decomposed as in (111.4.7) and satisfies (25(0),e2) =0 and the

corresponding asymptotic condition in (111.4.5). In addition, for v = % %1,

|29 (u)] < bgdeVIReul, for u e D°.

Finally, for ¢ € {u,s}, we can measure how well the 1-dimensional manifolds
W (L) approximate the 2-dimensional manifolds W (,,).

Proposition I11.4.4. Fiz d > 0 and o € {u,s}. Let py be the constant in Proposi-
tion I11.2.4 and Z5 and 25 be the parametrizations given in Proposition I111.4.2 and
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Corollary I11.4.3, respectively. Then, there exists dg > 0 and a constant by > 0 such
that, for p € [0, po] and § € (0,dp),

| Z3 (u, ) — 25 ()] < badp, for (u,7) € D° x Ty.

The proof of this proposition is postponed to Section II1.5.2.

I1I1.4.3 End of the proof of Theorem II11.2.10

To prove the first statement of Theorem II1.2.10, in the next lemma we study the
intersections between the section ¥, (see (II1.2.21)) and the unstable and stable
manifolds of ‘B3, parametrized by Z" and Z*®, respectively.

Lemma III.4.5. Fiz o € {u,s}. Let py and B, be as given in Proposition 111.2.4, Z°
be the parametrization given in (I11.4.6) and Proposition II1.4.2 and ¥, the section
given in (IIL.2.21). Then, there exists dp > 0 and a real-analytic function Uy : Tqg —
D? such that, for p € [0, po] and § € (0, d),

Z°U; (1), T) € %), for 7€ T =R/27Z.
Moreover, there exists C' > 0 independent of p and § such that, for T € Ty,
U =0,  Uj(r)| < Cop.

Proof. Since the parametrization Z° is real-analytic (see Remark II1.2.2), one has
that
Z°(u,7) € Ur(co, c1) for (u,7) € (D°NR) x T.

In addition, by Propositions I11.2.4 and I11.5.4, one has that

o

H(Z°(u, 7)) = H(P,(159)) = 52 + H(£(9)), for (u,7) € (D°NR) x T.

Therefore, it is only necessary to find a function U (1) satisfying that (Z°(U; (1), 7), €2) =
62€7(8) for all 7 € T. Then, by the decomposition (II1.4.6) of Z° and Proposi-
tion II1.2.4,

opAs(7) + Ap (U5 (7)) + (27 (U (7), 7), €2) = 0.

By Proposition I11.4.1, one has that A, (u) = A, (0)u+O(u?) with A, (0) = —V'(\o) #
0. Then, L{;> is a solution of the fixed point equation given by the operator

1

FUEIm =55

[30Ap(7) + (ApU3 (1) = Ap(O)U5 ) + (25 W3 (7), 7), e0)]
Notice that, by Propositions I11.2.4 and 111.4.2,

[Ag(7)]
Fl01(1)| = 6p—2LL < Cép.
[F'[0](7)] p|Ap(0)| < Cép

Moreover, for real-analytic functions U,V : Ty — D® satisfying that |U|, |V| < Cdp
and applying the Mean Value Theorem, Proposition I11.4.2, the operator satisfies
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that, if 6 small enough,

|FlU] = FV]| < CU? = V2| + U = V| sup [(0u,Z7(sU + (1 = 5)V,7),e2)]
s€[0,1]

1
< Copld =V <5 lU-VI],

where we have used that (Z7(0,7),e2) = 0. Hence, F' has a fixed point U, satisfying
that }M;(TH < Cop, for T € Ty. O

Then, the first statement of Theorem I11.2.10 is a direct consequence of Lemma I11.4.5.
Moreover, if we denote by 9D, and ODj the first intersection of the manifolds
W (B,) and WHT(3,,) with the section X, respectively, one has that

oD, = {Z"(Uy(1),7) : T€T} C T, NWH(R,), (II1.4.8)
D5 = {Z°(Us(7),7) : T€T} CI,NWH(B,). o
In particular, the first intersection of the manifolds W™ (£) and WS*(£) with the
section X correspond to the points D§ = {z"(0)} and 9D; = {z°(0)}.

To prove the rest of statements, we study the difference between the parametriza-
tions Z" and Z° at the points considered in (II1.4.8). Since ¥, C Ur(co,c1) (see
(I11.2.21)), by the definition of the domain in (II1.2.12), for 7", 7° € T one has that

(Z (U (T), 7") = Z°UL(7°),7°), e2) = 0,
(Z5Uy (%), 7) = Z2(Uy(7°),7°), e4) = (20U (TY), T4) = Z5(U(T), 7°), €3),

and (Z"(Uy ("), ") — Z°(Uy(T),7°),e1) can be recovered by the conservation of en-
(

ergy H = g—z + H(L). Therefore, it suffices to study the zeroes of the function

A(T,7%) = (2N U (), ) — Z5U(T), ), ea).

Let us recall that, by Proposition I11.4.4, the difference A(7",7%) is given at first
order, by the difference 2" — 2°. Therefore, by (I11.4.6) and (II1.4.7), for ¢ € {u,s},
we consider the decomposition

Z°U(7), ) = Bp(7) + op(U(7)) + 27U (7)) + (ZT U (7), T) — 27 (U°(7)))

where Z7 and z{ are given in Proposition I11.4.2 and Corollary I11.4.3, respectively.
Recall that, op = (Ap, Ap,0,0) (see (II1.4.2)) and, by Proposition II1.2.4, P, = £+
p(0,0,e7,e7") 4+ 0p(Ap, Asp, 2, yp). Therefore, we look for 7" and 7° such that

A(TY, %) = p(e_”u—e_”s)—i—%d%e_é% 10| e+ M (8)+R(7%,75,5,p) = 0, (I11.4.9)

0 =arg (z1'(0) — 27(0), ea),
M(8) = (z3(0) — 25(0), eq) — V2655 O] ™,
R(r",7%,0,p) =(Z7 (U, ("), 7") — 2{ (U, (T")), ea) — (Z1 U, (%), T°) — 25 (U, (7)), eq)
+ (U, (7)) — 21(0), e4) — (25 (UL (77)) — 21(0), eq)
+ 0p(yp(T") — yp(7°)).
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Notice that, by Corollary I11.2.9, Propositions I111.2.4 and I11.4.4 and Lemma II1.4.5,

1 A
6567572 u _s _
M(6) =0 <|log5|> ) R(t",7%,8,p) = O(dp).

Since, by Ansatz I11.1.2, |©] # 0, we can consider the auxiliary parameter r €
(0’ TO]»

A A
2e5% 2es?
r=—"""p,  and o=~ —p. (I1.4.10)
2630 Y2630
Then, equation (I11.4.9) is equivalent to
r(efi(T‘J«l»a) _ efi(Ts“i’e)) _|_ 2 + g(fru7 7'S7 7"’ 5) = 07 (111411)
where,
932 ¢~if 2 1 A
gt 7% 0) = ——— | M(0) + R| 7", 7°,6, -63[Ole *r
¥248310) 2
1
=0 —— O (or).
() 007
By introducing G = (G1,Gs) : T? x [0, 7] x [0,d0) — R?, as
Gi(7", 7", 1,0) = 7 (cos(r" +0) = cos(r" 4 0)) 4 2+ Reg(e", T md), 1

Go(t%,7%,1r,0) = r (sin(t" + 0) — sin(7° + 0)) + Im g(7", 7°, 7, ),

equations (III.4.11) are equivalent to G(7",7°,7,6) = (0,0). Next result characterizes
the solutions of this equation (see also Figure 111.4.3).

Lemma I11.4.6. Fiz v € (0, %) and consider I, = [~0 — ~, —0 +v]. There exists 0,

satisfying lim,_, /5 64 = 0 and functions
(i, 74) : Iy x (0,04) = T x R,

such that G(T2(7%,0),7%,1.(75,0),d) = (0,0) and

1
uy/.s — 7 —75_9
(1% 0) =7 —T 0+O<\10g5\>7

s 1 1
rl(7,0) = cos(75 + 0) +0 <llog5]> '

Proof. For r > 1, the equation G(7%,7%,7,0) = (0,0) has a family of solutions given
by

u s _ b : _ T
Sa_{(T’T’T’O)_<7T_a_9’a_9’cosa’o>} with o € | %’Y]C< 2’2)'

Therefore, for § > 0, it only remains to find zeroes of function G using the Implicit
Function Theorem around every solution of this family. O

To prove the second statement of Theorem I11.2.10, we assume the setting given
by Lemma I11.4.6. In particular, for R > 1, we take v = arccos() € (0, ).
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T4y — 60 = Coi_y_,,..
u S
(7%, 0)
T —6
7+(7%,0)
1 T
T—v—0
i ] | i ] | |
—y —0 —0 vy —0 —y —0 —0 v —0
5 5

F1Gure I11.4.3: Plot in 7° of functions 7(7°,0) and r.(7%,0) as given
in Lemma III.4.6.

First consider equation G(7",7%,7,0) = (0,0) and notice that it has solutions for
r € [1, R], see Figure I11.4.3. Moreover, the minimum and maximum points, for § = 0,
are given at r,(—0,0) =1 and r.(+y — 0) = R. Therefore, for ¢ € (0,d,), there exist
Tmin(0) and Tmax(9) such that, for r € [rmin(0), "max(d)], equation G(7",7%,r,0) =
(0,0) has at least one solution and

1 1
min =1 5 max = .
an(® =10 (o) ) = R0 ()

In addition, there exists 7. (d), such that

m

T;m<5>=—0+0< ) uin(8) = 7 (7 (6),8), Do (755n(6), 8) = 0.

(111.4.13)

[log ]

Taking into account (I11.4.10), we define

V2 V2
prin(0) = L2830 ia(d). puae(3) = 5 B lrane(0)

and assume ¢ > 0 small enough such that pyax(d) < po. Then, for p € [pPmin(0), Pmax(9)],
the closed curves 9D} and 0D, (see (I11.4.8)) intersect at least once. See Figure I11.4.4
for a representation of the case § = 0.

Finally, we prove the third and fourth statement of Theorem II1.2.10. Let us
denote the solutions of equation G(7",7%,r,0) = (0,0) given in Lemma I11.4.6 as

P(7%,0) = (.1(7°,0), 7%, (75, 6), 0)

and consider the function

G(r*,6) = det (O(OG(P(TS,(S))> . (5,0) eI, % (0,5,).

T4, 75)

Then, the values such that G # 0 correspond to transverse intersections of the closed
curves 9D} andN(?Df,. Therefore,~by (II1.4.13), we need to see that (7;,(6),0) is a
simple zero of G and otherwise G # 0, for 7° # 75, (). Likewise, the values such
that G = 0 and 0,sG # 0 correspond to quadratic tangencies.
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= —3(r) — 0

T =m+7(r) -0 OD;}

(a)r=1 (b) r € (1, R]

3(r) = arccos(2)

FiGure 1III1.4.4: Representation of solutions of equation
G(r,7%,7,0) = (0,0) (see (II1.4.12)) in function of coordinate r.

I
—y =0 —0 v —0

FIGURE I11.4.5: Plot in 7° of function G(7%,0) as given in (I11.4.12).

By the definition of function G in (II11.4.12) and Lemma II1.4.6, for (75,0) €
I, x (0,45), one has that

~ 1 ~ 2 1
s 5) =92t sS40 [ s S,(S = 5 < Mae 510
G(1%,9) an(7° + )+O(|10g5|>5 OrsG(7°,9) C052(7.s+9)Jr(/)(|log5|>

(see Figure I11.4.5). Notice that, for § small enough,

~ 1
8,:G (75,6 22+0<> > 0.
(7%,9) 23]

lo

Therefore, Gisa strictly increasing function in 7° and can only have one simple zero.
Moreover, this zero corresponds to 7° = 75, (0). Indeed, since G(P(75;,(6),6)) =
(0,0) and Orsry(75,,(0),0) = 0 (see (II1.4.13)), taking the derivatives one has that

8TSG(P(TISnin(5)7 6)) + a7"JCTY(P<7_1rSnin (5>7 5))87'57—;1(7—rsrﬁn(5)7 5) = (07 O)a

and, as a result, the vectors 0,sG and 0..G at P(75;.(0),0) are linearly dependent
and, therefore, G(735,;,,6) = 0. Hence, there exists at least one quadratic tangency at
r = rmin(0) and at least two transverse intersection for each r € (ryin(9), "max ()]
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Chapter II1.5

The perturbed invariant
manifolds

In this section, we prove Propositions I11.4.2 and I11.4.4. We only prove these results
for the unstable manifold, the proof for the stable manifold is analogous.

From now on, we consider a fixed d > 0 and the corresponding complex torus Ty
(see (II1.2.19)). We also set pg satisfying the conditions in Proposition II1.2.4 and
p € [0,p0]. To avoid cumbersome notations, throughout the rest of the document,
we omit the dependence in the parameter § unless necessary and denote by C any
positive constant independent of § and p to state estimates.

II1.5.1 Proof of Proposition I11.4.2

We look for parametrizations of the invariant manifold W*™(9,) of the form (see
(IIL.4.6))

Z"(u, ) = B,(1) + op(u) + 2 (u, 7), (u,7) € D" x Ty,

satisfying the equation (I11.4.4) and the asymptotic condition given in (I11.4.5).

Let us recall that H = Hj, + Hos + Hi (see (I11.2.8)). Since o, = (Ap, Ap, 0,0)
is a solution of the unperturbed system H}, + Hogc, it satisfies equation (II1.4.4) for
the unperturbed Hamiltonian (see Proposition III.4.1). By Proposition 111.2.4, 8,
satisfies (II1.4.4). Then, the parametrization Z7 satisfies

L, 77 = R,[Z}, (I11.5.1)
where
0 -3 0 0
L,¢= (9u+ 520, — Aw) ¢, A= _V”(gp(u)) 8 (?-2 8 (I1L.5.2)
0 0 0 —%
and
ONH (B, + 0p + ) — OaH1(R))
N O
—i0y H1 (P + op + () + 10 H1(P))
with

TplG) =V A+ Bpa + ) = V' (Ap) = VI (Bp1) = V' (Ap)Ga (I1.5.4)
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We solve equation (II1.5.1) by means of a fixed point scheme on a suitable Banach
space. For o > 0, we consider the Banach space

Va=14(:D"xTqg— C : (real-analytic, |([lo ;==  sup  |e"**((u,T)| < +o0p,
(u,7)EDYXTy

where D" is the domain introduced in (II1.4.3). We also consider the product Banach
space yg = Yo X ... X Y, endowed with the norm

4
11 ="l lla-
Jj=1

In the next lemma, we state some properties of these Banach spaces. We will use
them without special mention throughout the section.

Lemma II1.5.1. The following statements hold.
1. Ifa> (>0, then Yo € Yg. Moreover, for ¢ € Va, ||Cllg < C|¢]la-

2. If C € Yo and n € Vg, then (n € Yot and [[Cnllats < [Cllallnlls-

Next, we obtain and analyze a suitable right-inverse of operator £, = 0,, + %87 — A,
introduced in (IIL.5.2).

Lemma II1.5.2. Fiz up € R\ {0} and consider the linear differential equation (=
A(u)(, with A as given in (I111.5.2). Then, a real-analytic fundamental matriz of this
equation 1s

3fq>(U) 39@(“) 0 0
—fo(u) —go(u) 0 0
Slu)=| 7 0 e 0 |
0 0 0 e v
with
1 £0) _ _Ap(w) = o
folu) = T(O) (5(%) — AP(O) Ap(u)> , ga(u) = _Ap(o)v §(u) = Ap(u) wo A}%(U)v

where the integration path in D" corresponds to the straight line if u € C\ R and a
path avoiding v = 0 when u € R.
Moreover, ®(u) satisfies that det ®(u) = 1, ®(0) = Id and that there ezists a

constant C > 0 such that, denoting v = %, / %,

lgallzv < C, Ngallzv < C,  Nfall-2v < C,  |lfall-20 < C.

Proof. Let us recall that, by Proposition II1.4.1, the time-parametrization of the
separatrix satisfies that Ap(u) = —3Ap(u) and Ap(u) = —V'(Ap(u)), for u € Tl4g,.
Then, a fundamental matrix of the equation ¢ = A(u)( is given by

3¢(u)  3Ap(u) 0 0

—S(u) —Ap(w) 0 0
sw=| 7 T e |

0 0 0 e
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We stress that ¢ is real-analytic in D" C II4 g,. Indeed, one has that u = 0 is the only
zero of A,(u) (see Proposition I11.4.1), that A,(0) = —V’(A,(0)) # 0 and A,(0) = 0.
Thus, Ap(u) = Ap(0)u + O(u?). That implies that the integral appearing on ¢ does
not depend on the path of integration since its residue is zero. As a consequence,
&(u) €R for u € R.

In addition, since £(0) = —A; 1(0) # 0, we can perform a linear transformation to
¢(u) to obtain the fundamental matrix ®(u) satisfying ®(0) = Id and det ®(u) = 1.
Lastly, recalling that, by Proposition IIL.4.1, |[Ap|l2, < C and ||Ap|l2, < C, we obtain
the corresponding estimates for fo and ge. O

We construct now a right-inverse of the operator £, = 0, + %87 — A(u). For
¢ € YV}, we consider the operator

4
GolCl(u, 7) =D Gy [C](u, 7)ey, (IIL5.5)
j=1

given by

0 w
(Qp,l[d(w)>:(3fg>(u) 39e(0) [ Bl (et i) a

G, 2[C)(u,T) —fo(u) —go(u) /(;IQ[Q,CQ] (u+t,r+ %Q "
and
Go3[C)(u, ) = /io e (u T L‘g’ft) dt,
GpalC)(u,7) = /_(; esic, (u Ft T+ “:Spft) dt,
where

Th[Cr, Go)(u, 7) = —ga(w)C1(u, T) — 3ga (u)Ca(u, 7),
Io[Cr, &) (u, ) = fo(u)éi(u,7) + 3fa(u)la(u, 7).

Lemma IIL.5.3. For p € [0,p0] and 6 € (0,1), the operator G, : Vi — Vi is
well defined and is a right-inverse of the operator L, given in (I111.5.2). Moreover,
G,,2[¢](0,-) = 0 and there exists a constant C' > 0 independent of p and 6 such that

1G, (<]l < Cl¢I-
In addition, if 0,( =0, one has that G,[C] = G;[C] for p,p € [0, po].

Proof. The fact that G, is a right inverse of £, is straightforward. We show how to
obtain estimates for G, 1. The estimates for G, 2, G, 3 and G, 4 are analogous.
Let (1,(2 € ). By the estimates in Lemma I11.5.2, for (u,7) € D" x T4 one has

[Z3[G1, Gl (u, ) < Cle [ (Gl + N1cllu)
| Za[C1, CoJ (u, T < Cle™™ | ([[Call + lIC2llw) -
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Then,

[Goa(u, T)e| <Cle]

0
/ 71, o] (u b7t w(;’ft) dt‘

0 w
/ TolCr, o] <u+t,7'+ 5”2’675) dt‘

—Uu

<C(Iilly +licllv) -

+C|el/'u’

We introduce the fixed point operator
Fo=G,0R,, (I11.5.6)

with R, and G, as given in (II1.5.3) and (II1.5.5), respectively. Then, equation (II1.5.1)
can be expressed as Zj' = F,[Z}].
proving Proposition I11.4.2 is equivalent to prove the following result.

Proposition I11.5.4. Let pg > 0 be the constant given in Proposition I11.2.4. There
exists 6o > 0 and b3 > 0 such that, for p € [0, po] and 6 € (0,0¢), equation Z}' = F|[Z}]
has a unique solution Z% € Y2 satisfying

1231 < bso.

Proof. For ¢ > 0, let us consider B(s) = {¢ € Y} : [|¢[l} < <}. We will check that
F, : B(s) = B(s) is a contraction for a suitable .
We first claim that there exist dg > 0 such that, for p € [0, po] and § € (0, dp),

IR <6, 19 R,[CMllg < €, (IL.5.7)

for ¢ € B(¢6) and j = 1,..,4. Indeed, we obtain the estimates for R,2[(], the
other cases are proven analogously. For the derivatives it is enough to apply Cauchy
estimates.

We recall the definitions

op = (Apy A, 0,0)7,
mp = (07 5221\7 53£2a 53£y)T + ,O(O, Oa eiT7 e_iT)T + 510()“137 A‘ﬁv Iy, y‘B)T7
Rp,2[<] = —(%Hl(% +op + C) =+ a)\Hl(mp) - Tp[@]a

Tp[G1] = V'(Ap +dpAp + G1) = VI(Ap) = V' (0pAp) — V' (Ap)C1,
(ITL.5.8)

where V' is the potential given in (II1.2.7). Then, by the Mean Value Theorem,

1
Ropald)(u,7) = — /0 DoyH, (50 (u) + 5C(u, 7) + 8B, (7))ds (0 () + C(u, 7))

= G, 7) [V Op () + pAgp (1)) = V" ()] + O (Ga(u, 7))
= 0pAq(T)Ap(W)V"(0) + O (3pAgp(T) Ap(w))*.

From Proposition I11.2.4 and Proposition II1.4.1, one easily checks that

lsop+sC+RBlly <€, for s € [0, 1],
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Thus, applying the estimates in Proposition II1.2.1 and using that A\, A, € Vs,

IRp2[Clll < COlIA + Cully + CO*[[Ap + ol + COlIs[l + CdlICall
+ CllGll + CopllApll, < Co.

and (II1.5.7) is proven.
As a consequence of (II1.5.7) and using lemmas II1.5.3, there exists a constant
bz > 0 such

1
IF, 10017 < ClR, Ol < 5bs0. (IIL.5.9)

In addition, for ¢, € B (b3d) and by the Mean Value Theorem,

~. 1 ~ ~
Rfcl = Ryld] = | [ DRS¢ + 1= )1as] (6 - O
Then, from Lemma I11.5.3 and (II1.5.7), we deduce that

17,161 = Folclll < ClIR,IC] = RylCIlS

4 . _ B 111.5.10
< sup ZHakRp[SC + (1 = s)¢llollCk — Ckllw < COlIC =<l ( )

s€[0,1] .

This implies that, taking & small enough, ||F,[¢]—F,[C][1 < 1]|¢ (|| and, therefore,
F, : B(b36) — B(b3d) is well defined and contractive. Hence, F, has a fixed point
Z{ € B(bsd). Since G,2[¢](0,-) = 0 (see (II1.5.5)) and F, = G, o R, this solution
satisfies that

(Z1(0,7),e2) =0, for all 7€ Ty.

II1.5.2 Proof of Proposition I11.4.4

Let us consider the parametrizations Z}'(u,7) and z{'(u) given in Proposition I11.4.2
and Corollary I11.4.3, respectively.

Let us recall that, by Proposition I11.5.4, Z}' satisfies Z}' = (G, o R,)[Z}] and, as
a result, z}' = (Gp o Rop)[z}']. By Lemma II.5.3, since z}' does not depend on 7, one
has that

21 =G, 0 Ro[2]], for any p € [0, po]. (IT1.5.11)
Then, by Proposition 1I1.5.4,

Zy — 21 = }—p[Zil] -G o Rolz1]

= fp[Zil] - fp[zil] + gp (Rp[zﬁ _ Ro[zlll]) 7 (111512)

where we recall that 7, = G, 0 R, (see (II1.5.6)).
Let us consider the constant b3 as given in Proposition I11.4.2. It is clear that,

Zy, 2 € B(bsd) :== {¢ € Yy« |[C[l) < bsd}.
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Since F, is contractive with Lipschitz constant Lip(F,) < C§ (see (I11.5.10)), for 6
small enough, one has that

1
IFp[27] = Folodll < CollZT — =110 < 51121 — =110

Thus, by (II1.5.12) and Lemma II1.5.3,

121 = 27 < %IIZE1 — 21l + ClIR,[21] — Rolz1]Il7 (IL.5.13)
We claim that, for p € [0, po] and 0 > 0 small enough,
|R,[21] — Rol=1]ll, < Cdp. (IT1.5.14)
Indeed, first we consider estimates for R, as given in (II1.5.3). One has that
Rpalzr] = Roalzt] = (OaHi(op + B, + 21') — OaH1(By))
— (OnHi(op +Po + 21') — O H1(Po))-

Denoting P* = (1 — s)Po + sB,, by the Mean Value Theorem,

Roal4] = Roale1] = (B — Bo)” [  DOpH:(r(op + 21) + F*)drds | (o + 21)

[0,1]

Then, using Lemma II1.5.1 and for (a1, a9, a3, a4) = (A, A, z,y), one sees that

4 4

IRpal4] = Roaletlly < DY sup sup [9a;apn Hi(r(op + 21') +B)o

llop + 201719, — Bollg -

Notice that, Proposition II1.2.4 implies that |3, — Boll|; < Cp and Proposition
II1.4.1 and Corollary II1.4.3 imply that ||o, + 2|5 < C. These estimates and those
of Proposition I11.2.1, which bound ||0;a;aH1l|o, imply that

Rp1[21] — Ro1[21]]l, < Cép.
Analogously, it can be seen that

IRy 2l21] = Roalzi]lly < Cop+ [ Tp[21] — Tol=1] L,
Rp3l21] — Rogl21]ll, < Cdp,
IR p,a[21] = Roalz1]l, < Cop,

with 7, defined in (II1.5.4). Therefore, it only remains to analyze T),[z}] — Tp[z}].
Indeed, applying the Mean Value Theorem one sees that

Tplz1] = Tolar] = V'(Ap +Bp1 +21) = V' (Bpa) = V(A + 21) + V'(0)

=PBp1 (Ap +21) /[0 . V" (sAp + 1B, 1 + szi)drds.

Then, since A, € Vo, and taking into account that B, 1(7) = dpAgp(7) with |[Agpllo < C
(see Proposition I11.2.4), one has that ||7},[2}'] —To[2}]||, < Cdp. This proves (I11.5.14)
and, by (II1.5.13), Proposition II1.4.4 holds.
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Appendix III.A

Lyapunov periodic orbits

In this section we prove Proposition I11.2.4. Let us recall that the equilibrium point
L3 in the set of coordinates (A, A, z,y) (see (II1.2.6)), by Proposition I11.2.3 and for
6 > 0 small enough, is given by

£(8) = (0,0224(6), 53,(6), 532, (8)) ",

with [£A(9)],[L2(0)][Ly(8)] < bi. We observe that £(d) is an equilibrium point of
the Hamiltonian system given by H, using that H = Hy + Hy, we have that

O\ (200 8) = O, OIL(EERD) =30,
0. H(£(0):6) = —6,(8), O, HL(L(6):8) = —6L4(5). A
In addition, one can easily check that
H(£(5):6) = —% _ ;5421(5) +642,(8)€,(5) + H1(£(5): ). (ITLA.2)

For p > 0, we consider a polar symplectic change of coordinates ¢rya : (A, J,,I) =
(A, A, z,y) given by

A=J+88A0), z=/p2+1e ¥ +35L.(5), y=p>+I1e¥+352,09).
(II1.A.3)

The Hamiltonian system associated to H expressed in the coordinates (A, J, p, I) is
a Hamiltonian system with respect to the symplectic form dA A dJ + dyp A dI and
HWa = H o ¢ry, is

PP +1

3
HLya()‘a J,QO,I,p,(S) - = 5‘]2 + V(A) + T + Hl((rbLya()V J, @, I),(S) - 352J£A

, . 3
+0V2+ I (e7L, +e8,) — 554£A +6°2,8,,
which, using (III.A.1) and (III.A.2), can be rewritten as

3 1 I
HLya(A7J7 90717 P, 5) = - 5‘]2 + V(A) + 5 + ﬁ + H1(¢Lya()‘7j7907[);6)

— H1(£;6) — DH1(£;6) - (frya(N, Lo, 1) — &) (IILA4)
2
p
ta T H(£L:9).
We are interested in proving the existence of a periodic orbit in the energy level
2
HWa = & +H(L;6). To this end, in the following lemma, we first obtain an expression

of I with respect to the other coordinates, by means of restricting the energy level.
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Let us denote by B(s) = {z € C : |z| <}, the open ball of radius s.

Lemma III.A.1. Fiz d, A\, Jo, po > 0. There exists ég > 0 such that, for all p €
(0, po] and 6 € (0,0dp), there exists a function

~

Ip75 : B((Sp)\o) X B((;pJo) X Tg — (C,

such that H™2(\, J, ¢, fpﬁ()\, J,o0);p,0) = g—z + H(L;0).
Moreover, there exists a constant C > 0 independent of p and 6 such that

11,5\ J,58)| < C8*p?, 3I,5(N, J, 038)] < C6%p,
1051,5(), J, 38)| < C8°p, 10p1,5(N, J, 038)| < C8*p2.

Proof. One has that the function ]A'W; should satisfy the equation ]A'W; =F [fp’g] with
F[I}()‘a J7 90) :52HLya(A7 J7 Sov-[v P, 6) —I- p2 - 62H(£7 5)

3 1
:62 §J2 + V()\) + 5 + Hl(quya()\a ']7 ®, I)’ 5)
— Hy(£;0) = DH(£;0) - (¢rya(N, J, 0, 1) — £)7 |

Let (X, J,0) € B(dpAo) x B(6pJo) x Tg. Then, using the estimates of D2H; in
Proposition I11.2.1, one has that

IF[0](A, J, )| < C6%p?.

In addition, for functions t1,t2 : B(dpAo) X B(dpJy) x Ty — C such that |eq],|ea] <
C6%p?, by the estimates of the third derivatives of H; in Proposition I11.2.1 and the
mean value theorem, one has that

[Fl](A\ T, @) — Fla](A, J,0)| < C6%p iy — o] < CSipo|er — tal.

Then, taking dy small enough and applying the fixed point theorem, one obtains
the existence of function I,s and its corresponding bounds. The estimates for the

derivatives of 11;75 are straightforward from Cauchy’s integral theorem. O

By Lemma IIL.A.1, the Hamiltonian system on the energy level HW?& = gé +
H(£;9) is of the form

7 ) 1
)‘:_3J+f1()‘7<]790)7 J:_g)\‘i‘fQ()\,J,SO)? 90:572—’_9()‘“]730)7
(ITLA.5)
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where, denoting ./fmg = fp’(g()\, J, ) and using the expression of H™ in (II1.A.4) and

that V" (0) = -2,

10 0, 9) = OnH (615X Ty 2, T,5):6) — ONHL(£(0):9),
fQ()\a J7 80) = _V/()\) + V”(O))‘ - a)\Hl (¢Lya(A7 J7 P, Tpﬁ); 6) + 8)\H1 (2(6)a 6)7

—ip

90N T 0) = m (e (¢13a(A 4,9, T,5):0) — 0o H(£(6):9) )
el® ~
+ (0uH1 (G150 0, T2, T,)58) — 0, Hi (20);6) )

24/p* + s
(IIL.A.6)

Since ¢ # 0, we look for the periodic orbit of the system (III.A.5) as a graph over .
In other words, we look for periodic functions

w=(wywy):Tg—=C>  w=uwlp),

satisfying the invariance equation Lw = R[w], with

Lw = 0y — 2 A)w, A= <_O7 _03> )
* (IILA.7)

_ g2 (Awt flunlp)wie) ) )
Rlullp) =0 (1+529(wx(s0)7wJ(90)790) A )

where the functions f = (f1, f2) and g are given in (IIL.A.6).
Let us consider the Banach space

Z=<h:Ty— C : h analytic, ||h| := sup |h(p)] < +o0 ¢,
p€Tq
and the space Z2 endowed with the product norm ||h|* = ||h1]| + ||h2].

Proposition III.A.2. There exist pg,do,bs > 0 such that, for p € (0,pp] and 6 €
(0,80), there exists a solution of Lw = R[w] belonging to Z? satisfying

[w]|* < bedp.

To prove Proposition I1I.A.2 we first study the right-inverse of operator £ =
0p — 52 A in Z2. First, notice that

A=PDP~! where D:(V 0>, 73:(3 3), L

0 —v v v 8
Lemma ITII.A.3. We consider the linear operator
2
Glh)(p) =Pe” P (e?"P —1d) ! / e~ PP (f)do

. 0 (IILA.8)
+ Pes?P / e PP 1h(0)do.
0
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The operator G : Z? — 22 is a right-inverse of the operator L given in (IILA.7). In
addition, there exists C > 0 such that, for 6 € (0,1),

C
IGMII < 5Inl*,  forhe z2.
Proof. If w is a solution of L[w] = h, it must exist Ky € R2 such that

(]
w(p) = Pe#dP [K0+ / e 0" Pp1h(9)do| .
0

Then, imposing that w has to be 27-periodic, one obtains (III.A.8). The estimates
for the operator are straightforward from

—ons2 _ —ons? _ C
[(e™2™P —1d) 1| < (1 = [le P —1d|)) 1§57-
For ¢ > 0, we denote B(g)z{héZQ || R]* Sg}.

Lemma IIT.A.4. Let R be as given in (IIL.A.7) and fix constants pg,s > 0. Then,
there exist 0o, C > 0 such that, for p € (0, po], 6 € (0,00) and h € B(sdp),

IR\ < C8%,  IIRafh]] < Co%p.
and
[oR[h]|| < C6*, [|0aRa[R]|| < C*, |01 Ra[h]|| < C8°,  ||02Ra[h]|| < C™.

Proof. Let h = (h1,h2) € B(sop) and ¢ € T,4. For s € [0,1], we denote

~

2(9) = 501 (M), h2(0), 2, Tps(h(9))) + (1 = 5)£(6).

We notice that, by the definition in (III.A.3) of ¢rya,

T
2 () — () = (’h(@)’ ha(), \/ P2 + L.s(h(9))e ™, 1/ p? + 2;75(h(<,0))6i<p) .

We recall that fi = OaHi(¢rya) — OAH1(L) (see (IIILA.6)) and then, by the mean
value theorem and the estimates in Proposition II1.2.1 and Lemma III.A.1,

A, 9 < sup {103 H: ()] P ()] + [0 Hi (2°())] IRa(9)
s€lo.1] (IIL.A.9)

(1000 Hy (2°(0))] + 08y (2*(0)]) 16 + Tps(hl))]3 } < C8%.
Analogously,

f2(h(), )| < Cép,  |g(h(p),9)| < C&°. (IT1.A.10)
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To obtain estimates for the derivatives of fi, fo and g, we compute them by
M5
24/p2 + I

;1,5 » .
L [6 ZSO&AZHI (2:1(90)) + eW)aAyHl (21(90))] )

2/ +Ips

where 1/';;,5 =1, 5(h(¢)). Then, using the estimates in Proposition I11.2.1 and Lemma III.A.1,

Ifi(h(p), 0) =OHi (2 () + [e™ 0. Hy (21 () + €06, H1 (2 ()],

dsfi(h(p), ) =03 Hi (z'(9)) +

0xf1(h()s @)l < C8%, 185 fi(hlp), p)| < C8%. (IIL.A.11)
Analogously,

Orfa(h(0),0)l < C8, 195 fa(hlp), )| < CF,

cs 053 (IT1.A.12)
Oag(h(p), @)l < —,  1059(h(),0)| < ——

p p
Lastly, joining the previous bounds in (ITI.A.9), (II1.A.10), (ITI.A.11), (ITT.A.12) with
the definition of the operator R in (III.A.7), we obtain the statement of the lemma.
O

Proof of Proposition I1I.A.2. A fixed point of w = Flw] with F = Go R is a periodic
solution of Lw = R[w]. By Lemmas III.A.3 and III.A 4, there exists bg > 0 such that

IF 011 < 5 (IR0l + [Ra0001) < 5 (ITL.A.13)
Moreover, for h, h € B(bgdp), by the mean value theorem,
IR[R] = R[A]|* < sup IDRI(L = )k + sh](h — h)[*|.
Thus, by Lemmas III.A.3 and III.A 4,
|10~ FIRI < SIRI) ~ RI)I < Ol — A" (IIL.A.14)

Then, if § small enough, the operator F : B(bgdp) — B(bedp) is well defined and
contractive and, as a consequence, it has a fixed point w € B(bgdp). ]

End of the proof of Proposition II1.2.4. Let w(p) = (wx(p),w (p)) be the solution
of Lw = R[w] in Proposition III.A.2 and introduce wr(yp) = I,s(w(p),p) as given
in Lemma III.A.1. Then, the curve (wy(p),ws(¢), go,wj( ) 1s a parametrization

of a periodic solution given in the energy level HW2 = g—g + H(L). However, ¢ =
Op = 5% + g(w(p), ) and then, in order to prove Proposition I11.2.4, we look for
a reparametrization ¢ = @(7) and w,s such that 7 = %. Moreover, we impose

©(t)|t=0 = 0 and therefore p(27) = 27. Then, @ must satisfy that

14 62 ?),p
0,5 = +6%g(w(®), 9)
Wp,s

and p(27) = 27.
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Notice that, by (III.A.10) and for ¢ small enough, one has that 0,p # 0. Then, its
inverse 7 = 7(¢p) satisfies that

0.7 hadia)

= and 7(21) = 27,
T T g w(e), ) (2m)

These conditions give definitions for the functions 7(¢) and w, s,

T(p) =w /90 i and w 27
T = Wps S = o .
"o 1+ 0%g(w(n),m) N e

We notice that 7(¢ + 27) = 27 +7(p). By the estimate for g in (I1I.A.10), we obtain
wps — 1] < C8*, IT(¢) — | < O, |3(T) — 7] < C8*. (IT1.A.15)
Then, for 7 € Ty, the curve

P (750) = drya (wa(B(7)), ws (B(7)), B(7), wi(B(7)))

is a real-analytic and 2m-periodic solution of the Hamiltonian system given by the

2
Hamiltonian H in (II1.2.8) and int belongs to the energy level H = £ + H(£). In
addition, the functions in (I11.2.20),

P2+ wi(§(r)e P — peit

wlr) = DAy - - ,
wy(p(T 2+ wi(@(r))e®m) — peir
Ag(7) J(;OP( ). po(r) = YO z(w((s[))) o= pe”

satisfy, by Lemma III.A.1, Proposition III.A.2 and (II1.A.15), that |Ap(7)|, [Ap(T)] <
C and |zgp(7)], lyp(T)| < C8. O
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Appendix III.B

Difference between the invariant
manifolds of Lg

In this section we prove Corollary I1I1.2.9 relying on the results stated in Sections
[11.4.2 and II1.5.1.

Let us consider the real-analytic time parametrizations z" and z° of the unstable
and stable manifolds W"*(£) and W™*(£) given in (II1.4.7) and Corollary I11.4.3.
Notice that, for u € D" N D® (see (II1.4.3)), they satisfy

2" (u) — op(u) — 6284 | <6, |2%(u) — op(u) — 6°La| <6, (ITIL.B.1)

where o, = (Ap, Ap,0,0)7 is given in (IIL4.2). Moreover, z(0), 2°(0) € {A = 62L, }
and, since z" and z° satisfy equation (I11.4.4) and are independent of 7, for z® = (A, A®, z°, y°),
© =u,s, one has that

dX® dz® j

= S3A% 4 0N (0), dz = 5121«0 + 00, Hy (2" 6)

He . ) bt P ] (IIL.B.2)
7 = =V (A\°) — O\H1(2%;9), %:—ﬁy — 0, Hy (2" 9).

Fix A\, € (%”,/\0), with g as given in (I11.2.18). By Proposition I11.4.1, there
exists u, > 0 such that A\, = Ap(u.). Therefore, by (IIL.B.1) and for 6 > 0 small
enough, there exist T", 7% = u, + O(J) such that z*(T"), 2°(T%) € {\ = A\, A > 0}.
Moreover, by Theorem I11.2.5,

ST — 25(T%) = V265 e (0,0.8,0)" + 04, (IIL.B.3)

where O5 = (0,0(8), O(Jlog 8| 1), O([log 6| )T Therefore, to prove Corollary I11.2.9,
we need to deduce the difference 2"(0) — 2°(0) from (II1.B.3).

We first define A(u) = 2"(u) — 25(u), for u € [0,T"]. It is clear that, by (III.B.2)
function A(u) satisfies the linear equation
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with
0 30 0
w0 0 o
0 00 -4
0 00 0
000 ! N .
_mwpzmy)ooo +/me@zw+u—qummg
0
0 00 0

1
m(u) = V"(Ap(u)) - /0 V" (A" (w) + (1 = )X (u)) de,

where J is the symplectic matrix associated with the form dAAdA+idxAdy. Moreover,
from Proposition I11.2.1 and Corollary 111.4.3, we deduce that |M;(u)| < C§, for
u € [0, T"]. Let ®(u) be the fundamental matrix of the differential equation %Q‘D(u) =
My®(u) given in Lemma II1.5.2, which satisfies ®(0) = Id. Then,

u

Au) = ®(u) [é—l(TU)A(TU)Jr/ & (o) My (0)A(o)do | .

u

On one hand, using Gronwall’s Lemma, one has that |A(u)| < C|A(T")| for u €
[0,7"] and, on the other hand

|A0) — @~ HT™M)A(T™)| < CST™ |A(TY)] . (IT1.B.4)

Therefore, to obtain an asymptotic formula for A(0), we need to compute A(T"). We
write

A(TY) = 2%(T") — 25(T%) + 25(T%) — 25(TY). (II.B.5)

Since the difference 2"(T") — 2%(7®) is given by (II1.B.3), we only need to analyze the
component z°(7T%) — z5(T"). Indeed, one has that

22(T%) = 2°5(TY) = (T° = T") /01 0u2°(sT" + (1 —¢)T®)ds.

In addition, since z% = (A%, A%, 25 y°) satisfies equation (II1.B.2) and using the Mean
Value Theorem, we obtain that

AY(T®) — A™(TY)
V!(Ap(ux)) + BT, T5)

T _ TS —
where, denoting T'(¢) = ¢T" + (1 — ¢)T*, the function [ satisfies

1 1
ﬁ(T“,TS)Z/O V(AT () = V' (Ap(u))] d<+/0 H1(2"(T(5)))ds.

Notice that V' (Ap(us)) = V'(As) # 0 (see (II1.2.7)). In addition, since T%, T® = u, + O(9),
by (III.B.1) and the estimates in Proposition II1.2.1, one can see that |3(T",T%)| <

A
C9. Therefore, one has that |[T" — T%| < Co5e 52 and, as a result,

2(T%) = 2°(T") = O <5%e_6%> .
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Therefore, by (III1.B.3) and (II1.B.5)
A(TY) = V2557 [(0,0,8,0)" + Oy . (ITL.B.6)

where Oy = (O(8), 0(5), O(llog §|~1), O([log 8| ™1))T. Lastly, joining the results in
(III.B.4) and (II1.B.6), we obtain

IA(0)] = V203¢ 32 [|<1>*1(Tu) (0,0,8,0)" | + c’o}} .

Then, applying the expression of the fundamental matrix ® given in Lemma II1.5.2,
we obtain the statement of the corollary.
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Appendix III.C

Normal form in a neighborhood
of L3

We devote this section to prove Propositions I11.3.1 and III1.3.2.

III.C.1 Proof of Proposition II1.3.1

First, in the following lemma, we introduce a series of linear changes of coordinates
in order to put the Hamiltonian H(\, A, x,y;6) in (II1.2.8) in the form considered
in | ].

Lemma III.C.1. Fiz cy,c; > 0. There exists dg,00 > 0 and a family of affine
transformations

(Zg : B(Z)\o) = {Z € R4 : |Z’ < @0} — UR(Co,Cl)
(617@17627@2) = <)‘7Aax7y)a

defined for § € (0,8), with C*-functions of § as coefficients and such that QAﬁg(O) = £(0)
and

F F 0 0 YT V3 0 0
D¢>0= 2 2 ) Dd’ - 21 1

O 0 4271 4ﬁ 0 O O 4§ 4@

0 0 & —iyE, 0 0 —i{/3 /3

Moreover, 55 is a symplectic scaling with respect to the form dvy A dwy + dvs A Ws.
Then, the Hamiltonian system given by H (see (I11.2.8)) in the new coordinates and
after a scaling in time is Hamiltonian with respect to

o ald) o
—avi + ) (34 @) + R ) (IIL.C.1)

242
+ 6H1 (01, w1, V2, Wa; 6),

where a(0) is a Cl-function in § satisfying a(8) = / =+O(6*) and, for (1, W, Vs, Wa) €
B(0o), there exists a constant C' > 0 independent of 0 such that

K@, @) < Cloy+an|®,  |Hy(@y, @y, 0y, 2;8)| < C| (@1, @1, Do, @2)]° .
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Proof. For technical reasons, we consider first the Poincaré Hamiltonian H POi()\, L,n, &)
introduced in (II1.2.1) instead of the scaled version H defined in (II1.2.8). Let

us denote the point Lg in Poincaré coordinates (A, L,n,¢) as LY = (¢P°)~1(L3).
Therefore, Lg"i is a saddle-center equilibrium point of the system given by H'°' and,

by (II1.2.3), it satisfies that

We perform several changes of coordinates.

1. Translation of the equilibrium point: We translate Lg %l to the origin by means
of the translation ¢4 : (A, L,7,€) — (A, L,n,€) such that ¢°4(0) = LE.. The
Hamiltonian system associated to HT°' after this translation defines a Hamil-
tonian system with respect to the symplectic form dA A dL + idn A d¢ and
Hamiltonian

Hed — HPoi ° d)eq . HPOi(LEOi).
Denoting z = (A, L, 7, E), H®Y(z; ) can be written as
H*NzZ; p) = Hy'(Z) + Ry (25 1) + R5* (% ),
with

H(E) = 5 DPHP (LY 0)7,7) = — 1+ 7
= 1 oi oi =~ P~ =
Ry (2Z; 1) = §D2HP (L5 )z, 2] — Ho'(z) = O(p z*), (I11.C.2)
R (2 ) = (H"' 0 ¢°9)(2; p) — Ho(2) — Ry (2 ) — H™'(L5*s p)

= O(L) + O(u [2*),
where we have used that L = L — 14+ O(u), 77 = 1+ O(p) and € = £ + O(p).

Notice that as a result, for > 0, 2z = 0 is saddle-center point of the system
given by the Hamiltonian H®Y(z; p).

2. Reduction of the terms order 2: Following the proof of | , Theorem 1.3]
one obtains that, for y > 0, there exists a family ¢ffd t X = (x), 2L, Ty, Te) >

z = (), L, 7, E ) of real-analytic linear diffeomorphisms satisfying that D@fed(0) =
Id and that

H™(x; ) = (H* o ¢7) (x; 1) = Hy(x) + RE(x; o) + RE (x; ),

where R (x; 1) is a real polynomial of degree 2 in x with C'-functions of y as
coefficients and

R ) = O(ulx),  {Hitod REY} =0, R¥Y(xip) = O(xP),

where J is the matrix associated to the symplectic form dxy Adxy +idz, A dxe.

The fact that {H;% o J, R¥4} = 0 and that R? is a polynomial of order 2 and
O(p|x|?) imply that there exist C!'-functions oy (u), o2(n) = O(1) such that

2
o
Ry, 2p, Ty Tgs 1) = lwl(ﬂ)j\ + poa(p)zyTe.
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Since d)ffd is linear and taking into account that Dgﬁged (0) = Id and the defini-
tion of the potential V' (\) in (II1.2.7), one has that
1 i . : 7
01(0) = —O2HPNLEN )| = 93HT(0,1,0,0;0) = V"(0) = 5 (I11.C.3)
1

Therefore, by (ITI1.C.2), one has that

3 z2
H™(x; p) = =S + pon () 5+ (1+ poa(p)) e + RE(x; 1),

In addition, since the terms of order 3 and higher of H®d are of the form O(L?)+
O(u|[X[*) (see (II1.C.2)), one has that

R (x; ) = O(a) + O(u |xP).

3. Scaling: We rename the perturbative parameter § = ;ﬁ (see (III.2.5)) and, sim-
ilarly to (II1.2.6), we consider ¢*® : y = (yx,yr, Yy, Ye) — X = (2x, T, Ty, T¢)
such that

1 52 0 0
T\ = —F/————— s €Ty —= — s Ly = ———— , L — —— ,
* o1(0%) RV S 301(54)%’ T3 301(54)yE

and a scaling in time by a factor of §21/301 (). The Hamiltonian system ex-
pressed in these coordinates defines a system associated with the form dyy A dyr+
tdyy, N dye and Hamiltonian

H(y;0) = = (v3 — 3) +—a(5)y%g§—%1(“”(yk)4—5}¥?3(y;5), (IIL.C.4)

1+ 6oa(Y)  [3 )
)= 2220 ) [° oY),
o) =+ = |5 o
1
Ksca(y)\) :54R§ed< Uy/\(0)7070’0; O) :O(y§)7
1
1

SH (v30) = 5 R (6°(3); 6%) = K*(n) = O3 |y "),

N

where

where we have used Cauchy estimates to bound DRged.

4. Linearization: Consider the symplectic change of coordinates ¢ : (T, Wy, Vo, Wa) —

y= (y/\7 YL, Yn, yﬁ)
o)-aC )G G)-wl @)

YL V2 \—1 1) \w )’ Ye V2 \1 —i)\wz)"
Then, the Hamiltonian system associated to (II1.C.4) expressed in these coordi-
nates, defines a Hamiltonian system with respect to the form dvy Adwy +dvs Adwe
and the Hamiltonian

~ PR ald) , . R ~
H (01, W1, 09, We; §) =01W1 + 2552) (v% + w%) + K (v, W)
+ 6 Hy (0, By, Dy, a3 0),

(I11.C.5)
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where

v + Wy

V2

[?(6177:0\1) — [sca ( > =0 (’{)\1 + &]\1‘3> 7 I:jl _ cha ° (blin.

O

Next proposition introduces a normal form expression in a neighborhood of the
saddle-center equilibrium point. It is a direct consequence of | , Proposition
C.1]. We consider an artificial parameter v > 0 and rewrite H in (III1.C.1) as

~ A ald) . R PN
H (01, Wy, V2, Wo; 6, v) =011 + ©) (05 + w5) + K (v, @1)

202 (I11.C.6)
+ vHy (01, W, V2, W2; 6).
We are interested in the case v = 4, but in order to apply [ ] we are forced to

use this artificial parameter.

Proposition III.C.2. There exist dg, 00 > 0 and a family of analytical canonical
change of coordinates

Fow = (010 Y10, P20, %2) : Blo) = B(2o) C R?
('Ul,'UJl,UQ,wQ) = (617@1a627@2)a

with respect to the form dvi A dwy + dva A dws defined for v € [0,6) and 6 € (0,6o)
such that the Hamiltonian H in (II1.C.6) in the new coordinates reads

H(vl,wl, V2, W2, 5, U) =H (.7'—57V(1}1,?.U1,’U2,w2); (5, I/)

a(d)

552 (U% + w%) + R(vowy, v3 + w3)

=viwy +
and there exists C > 0 independent of 6 and v such that, for (vi, w1, v, w2) € B(op),
|R(Ulw1,v§ + w%;é)‘ < C](vlwl,vg + w%)\?

In addition, for all (vi,w1,ve,ws) € B(gp) and all (v1, w1, Vs, W) € B(00), the
individual components of the change of coordinates satisfy
(1) |1 (v1, w1, v, wp) — 1| < C {\(vl, wi)[* + v |(v1, w1,v2,w2)l2}
b (01, @1, B, @2) = Bt < C {1, @) + v (D1, @1, B, D) |
(2) [ (vr, w1, v, w2) = w1] < C {01, w0) 4 | (01, w01, v, w05)

)
)
P},
|1 (01, @1, By, Wa) — W1 < C{|(@1,@1)|2 +v |(@1,@1,52,@2)|2};
(3) ’@Q,V(Ulvwlav%w?) - UQ‘ < CV‘(’Ul,wl,Ug,wQ”z,
|05, (01, W1, B, Wa) — | < Cv |(T1, W1, V2, W2)|?,

(4) |’QZJ2,V(U1,IU1,’U2,U)2) - ’UJ2| < Cv |(U17w17’027w2)|2}
’1/}2_7,3(617@17627@2) - @2’ S CV ’(617@17627w2)‘ .

Notice that Proposition II1.3.1 is a direct consequence of Lemma III.C.1 and
Proposition I11.C.2.
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II1.C.2 Proof of Proposition I11.3.2

To prove Proposition I11.3.2 we translate the results in Theorem II1.2.5 (Statement 1)
and the axis of symmetry S (Statement 2) into the set of coordinates (v1, w1, va, w2)
given in Proposition I11.3.1.

Recall that in the proof of Proposition II1.3.1 we have used the “intermediate”
system of coordinates (v, w1, v, w2). Therefore, we translate first the results via
the change of coordinates 55 : (U1, W1, 02, Wa) — (A, A, z,y), given by Lemma III.C.1.
Then, we apply the second change of coordinates ]?57V 2 (vg, w1, v9, wa) — (V1, W1, Vg, W)
with v = §, given by Proposition I11.C.2.

Statement 1: Let A\, € [A1, A2] C (0, \g) to be chosen later and consider the section
L) = {A=A,A>0}. Let z§(A\s) and z5(\) be the first intersections of the
invariant manifolds W™ (£) and W*™(£) with the section ¥(\.), respectively.

Let us recall that, by Proposition II1.2.3, the critical point £(9) in (A, A, z,y)
coordinates is of the form £(J) = (0,5213/\(5),63235(5),(53£y((5))T, with €a, £, £y =

O(1). Then, applying the change of coordinates ¢s given in Lemma III.C.1, there
exist C! functions 1,72 : (0,80) — R* satisfying v1,v2 = O(1) such that

(A, 8) = @5 (SA)) = {1 + @1+ 8(31(6), (81, 1, B, D)) = YA,

w1 — V1 + 5(72(5), (61,’&71,@\2,7:0\2» -+ 52\/6,2/\(5) > O}
(ITIT.C.7)
Notice that, on a first order, it corresponds to S(A4, 0) = {0y + @1 = g)\*, Wy > U1}
Moreover, we denote

(@}, @Y, 85, @) = @5 ' (25(A\)) € B\, 0),
(i)\ia@iaﬁgau/};) = d)&_l (Z%(A*)) € Z()\*,(S)

Since g/b\g is an affine transformation, by Theorem II1.2.5 and Lemma III.C.1, one has
that

o - ) = <f,—\/§,o,o> +0()

@il - @? = <\f, \@,0,0) + (’)(5) . (Zg()\*) _ Zg(A*))T -0 (5%675%) ’

[ 21 /21
= %\4/—15%6_6% Re®+ O . ,
8 [log o]
1 8 . . 4)21 u s T
wy —ws = |[0,0,—1 3—2,1 3 +000)| - (z5 (M) —25(\))

_ i Hste# lmotro ()],
8 [log 4

~u S

vy — V5 = (2§ () —23(A)T

—_

(I11.C.8)
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Next, we consider the change of coordinates ]?5,,, with v = § given in Proposi-
tion III.C.2. Let us denote

(vf, wi, v, wy) = Fy i (01, @7, 03, @3),  (vf,wi,v3,wh) = Fs5 (07, @, 03, @3).

(II1.C.9)

Since, the local stable manifold is given by {v1 = vy = wg = 0} (see (I11.3.2)), one has
that v§ = 0§ = ng: 0 and we call p = w}, (see Figure I11.4.4). Since F55(0, 0,0,0) =
(05, w5, 05, W) € B(As,9) for A € [A1, Ag], by (IIL.C.7), the value A\, must satisfy

7 ~
)\* - \/; [@1,5(07 o, 07 O) + 1/’1,6(07 o, 07 0) + 54(71 (6)7 ]:6,6(07 o, O) O)>:| )

where .7?575 = (¥1,6, 1,5, 92,5, %2,5). Then, by Proposition II1.C.2, one has that

h =/ 1o+ 0(.0)

and there exists [p1, 02] C (0, 0o) such that, for ¢ € [o1, 02] and § > 0 small enough,
one has that A\, € [A1, Aa].

Next, we consider the values for the extension of the unstable manifold (vf', wY', vy, wy).
Since (v§, w§,v5, ws) = (0, 0,0,0) and (II1.C.9), one has that

For w}, by the Mean Value Theorem, Proposition III.C.2 and (III.C.8), one obtains
A
W} — o] < C 5} —B| + C|@} — @] + Ca[53 — B3| + O3 | — @3] < Cote i,
Analogously, for vj, one has that
A
vy — (@5 — T5)| < CO|(@} — 5, @Y — @5, 05 — 05, @ — @5)| < Code 32

and, by (III.C.8), one obtains the expression of the statement for v§. An analo-
gous estimate holds for wj. Lastly, by the expression of Hamiltonian # in Propo-
sition III.C.2, one sees that H(v},w, vy, wy) = H(0,0,0,0) = 0 and obtains the
expression for vf.

Statement 2: Let us consider the symmetry axis S = {A =0,z =y} given in
(II1.2.15). Notice that, by Proposition II1.2.3, one has that ¢5(0) = £(6) € S. Then,
applying the affine transformation ¢s given in Lemma III.C.1, there exist functions
v3,74 : (0,d0) — R satisfying 3,74 = O(1) such that

$5(S) = {1 + W1 + 6(33(9), (Br, D1, D2, Ba)) =0,
Wy + 6(v4(0), (01, W1, Va, Wa)) =0}.
Then, applying the change of coordinates .7?5’5, one has that

Sioc = {v1 + w1 = ¥y (v1, w1, v, w3 8), wy = Ya(v1, wr,v2, w2;6)},
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where

Uy =(p1,6 —v1) + (V1,5 — wi) + 5(73(0), Fs,6),
Uy = (P56 —wa) + 0(74(d), Fs.5)-

Then, by Proposition III.C.2 and for (vi, w1, v, w2) € B(gp) and § > 0 small enough,

W1 (1, w1, v, w; 8)| < CF |(v1, w1, v, wa)| + C |(v1,w1)[*,
|Wa(v1, wr,v2, ws; )] < CF|(v1,wr, v, wa)|
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Conclusions and future work

The present thesis has been devoted to the rigorous study of the Lagrange point
L3 and its invariant manifolds, in particular on the study of homoclinic and chaotic
phenomena. The setting considered is that of the Restricted Circular Planar 3-Body
Problem. This thesis was performed from September of 2018 to July of 2022 by Mar
Giralt Miron and was supervised by Professors Inma Baldoma Barraca and Marcel
Guardia Munarriz.

The results here presented can also be found in the articles [ I, 1 ]
and [ ]. At the current date, the first is already published, the second one is
under revisions and the third one is being prepared.

To conclude the thesis, we introduce different future work that has not been
possible to tackle on the development of this thesis and different open problems for
which this thesis could be seen as a first step.

Future work

Stokes constant. The coincidence or not of the unstable and stable invariant man-
ifolds of Lj, for small values of u, depends on the value of the Stokes constant © € C
given in Theorem A. In Ansatz A it was assumed that © # 0. Following the ap-
proach in [ ], it should be possible to obtain a rigorous estimates and verify
the ansatz by means of a computer assisted proof.

Multi-round homoclinic orbits. We say that an homoclinic connection to L is k-
round if, on a p-neighborhood of this equilibrium point, the closure of the homoclinic
orbit has k£ connected components. In Corollary A and Theorem B we analyze the
existence of 1-round and 2-round, respectively. Following the strategy applied to
prove Theorem B, one should be able to prove the existence of k-round homoclinic
symmetric connections for k > 2, as conjectured in | ).

Newhouse domain In Theorem D it was seen that there exists a generic unfold-
ing of an homoclinic quadratic tangency between the invariant manifolds of a certain
Lyapunov periodic orbit of Ls. It is expected that this fact would lead to the ex-
istence of a Newhouse domain as established in [ | for area-preserving surface
diffeomorphisms. More research is necessary to completely understand the scope of
this result.

Numerical study To the best of our knowledge, the last complete numerical study
of the breakdown of the homoclinic orbits to L3 was performed in 1993 in | . It
would be valuable to perform with current techniques a complete numerical study of
the splitting of separatrices of L3 and to numerically check the extend of the validity
of the results obtained in this thesis.
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Open problems

Singularities of a general separatrix The size of the exponentially small term
in the splitting of separatrices phenomenon is given by the height of the maximal
strip of analyticity of the time-parametrization of the separatrix. In the case of Lg,
the separatrix did not have an explicit expression for its time-parameterization and,
to obtain its complex singularities, it was necessary to rely on techniques of analytical
continuation to analyze them (see Chapter 1.3). This method could be generalized
to be applied to integrable one degree of freedom Hamiltonians with more general
expressions.

Higher dimensional models The RPC3BP is a convenient simplification of 2
degrees of freedom of the planetary 3-Body Problem. Moreover, it can be taken as
a first step in order to study more complex models of higher dimension. Indeed, one
can consider either the Restricted Spatial Circular 3-Body Problem with small p > 0
which has 3 degrees of freedom, the Restricted Planar Elliptic 3-Body Problem with
small &+ > 0 and eccentricity of the primaries eg > 0, which has 2 and a half degrees of
freedom, or the full planetary planar 3-Body Problem (i.e. all three masses positive,
two small) which has three degrees of freedom (after the symplectic reduction by the
classical first integrals).

Arnol’d diffusion Arnol’d diffusion is the name given to a mechanism of strong
instability found in nearly integrable Hamiltonian systems. The first result on this
phenomenon was published by V. I. Arnol’d in 1964, see | |, and refers to the
existence of solutions that exhibit a significant change in the action variables. In a
footnote in | ], V. 1. Arnol’d conjectured the existence of this type of instabilities
for the 3-Body Problem and it is widely expected to be true. In particular, it is
believed that one of the main sources of such instabilities dynamics are the mean
motion resonances, where the period of the two planets is resonant (i.e. rationally
dependent), see | ].

The RPC3BP has too low dimension (2 degrees of freedom) to possess Arnol’d
diffusion. However, since it can be seen as a first order for higher dimensional models
(see the paragraph above), the analysis performed in this thesis can be seen as a
humble first step towards constructing Arnol’d diffusion in the 1 : 1 mean motion
resonance. Indeed, in the Restricted Planar Elliptic 3-Body Problem the change of
angular momentum would imply the transition of the zero mass body orbit from a
close to circular ellipse to a more eccentric one. In the full 3-Body Problem, due to
total angular momentum conservation, the angular momentum would be transferred
from one body to the other changing both osculating ellipses. This behavior would be
analogous to that of | ] for the 3: 1 and 1 : 7 resonances. In that paper, the
transversality between the invariant manifolds of the normally hyperbolic invariant
manifold was checked numerically for the realistic Sun-Jupiter mass ratio p = 1073,
Arnol’d diffusion instabilities have been analyzed numerically for the Restricted Spa-
tial Circular 3-Body Problem in [ ].
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